VSP / blocks /task3 /test.py
AnonyCAD's picture
Upload folder using huggingface_hub
45f037d verified
import pathlib
import textwrap
import google.generativeai as genai
from IPython.display import display
from IPython.display import Markdown
import PIL.Image
import time
import os
import random
import numpy as np
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
# torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
# torch.backends.cudnn.deterministic = True
# env.seed(seed)
seed_everything(1)
levels = [3,4,5]
in_context_example_num = 0 # 0, 1, 2, 4, 8
GOOGLE_API_KEY='YOUR-API-KEY'
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel('gemini-pro-vision')
if in_context_example_num > 0:
output_path = "output/output_img_%d/"%(in_context_example_num)
input_backup_path = "input/input_backup_img_%d/"%(in_context_example_num)
else:
output_path = "output/output_img/"
input_backup_path = "input/input_backup_img/"
os.makedirs(output_path, exist_ok=True)
os.makedirs(input_backup_path, exist_ok=True)
EXAMPLE_DICT = {
3: [],
4: [],
5: [],
}
for level in levels:
for example_id in range(8):
curr_example_pack = {}
curr_example_pack["image_path"] = "example/level%d/image_input/%d.jpg"%(level, example_id)
with open("example/level%d/text_input/%d.txt"%(level, example_id), 'r') as f:
curr_example_pack["question"] = f.read()
with open("example/level%d/answer/%d.txt"%(level, example_id), 'r') as f:
curr_example_pack["answer"] = f.read()
EXAMPLE_DICT[level].append(curr_example_pack)
example_img = PIL.Image.open('prompt-visual-images/example0.jpg')
for level in levels:
os.makedirs(output_path + "level%d"%(level), exist_ok=True)
os.makedirs(input_backup_path + "level%d"%(level), exist_ok=True)
start_idx = 0
end_idx = 100
runned_term = 0
input_img_path = "level%d/image_input/"%(level)
input_txt_path = "level%d/text_input/"%(level)
while True:
try:
curr_id = start_idx + runned_term
if curr_id >= end_idx:
break
prompt_input_1 = '''In this task, you will analyze an image containing several stacks of blocks. Later, you will be presented with four choices, each offering a textual representation of a block configuration. You will need to choose the configuration that exactly reflects the contents of the given image.
## Game Setup
- Each block has a unique color (blue, yellow, purple, orange, red, green).
- Blocks are stacked vertically in a stack, forming multiple stacks.
This is an image input example:\n
'''
prompt_input_2 = '''
This example features four blocks arranged in three stacks:
- Stack 1: Purple block (alone)
- Stack 2: Blue block (alone)
- Stack 3: From bottom to top: Orange block, Red block
Here are examples of textual representations:
(A)
- Stack with red block, yellow block, from bottom to top
- Stack with orange block, purple block, green block, from bottom to top
(B)
- Stack with purple block
- Stack with blue block
- Stack with orange block, red block, from bottom to top
(C)
- Stack with orange block
- Stack with purple block
- Stack with blue block
- Stack with green block, yellow block, from bottom to top
(D)
- Stack with green block
- Stack with yellow block, blue block, from bottom to top
- Stack with red block, orange block, from bottom to top
We can analyze which text representation exactly reflects the configurations in the image accordingly. In this example:
- The input image has 3 stacks, while Candidate A only has 2 stacks. Therefore, Candidate A is not the correct answer.
- Similarly, Candidate C has 4 stacks, which also cannot be correct.
- For Candidate B, the blocks in each stack match what's shown in the image. This is the correct answer.
- For Candidate D, the blocks in each stack do not match the image. For example, stack 1 in the image has a purple block, and there is no any purple block in Candidate D. So this is incorrect.
- Therefore, the final answer is B.
## Procedure and Output
Your output should follow this format:
1. First, analyze the block configuration in the image and candidates as shown above;
2. Then, answer the question with the format <Output> <Choice>, where <Choice> is one of {A,B,C,D}. For example, "<Output> A".
'''
prompt_examples = []
image_examples = []
if in_context_example_num > 0:
prompt_examples.append("## Example:\n")
example_indices = random.sample(range(8), in_context_example_num)
for example_index in example_indices:
this_example = EXAMPLE_DICT[level][example_index]
image_examples.append(PIL.Image.open(this_example["image_path"]))
prompt_examples.append(this_example["question"] + "\n" + this_example["answer"] + "\n")
prompt_input_3 = "\n\nNow please choose the correct textual representation based on the given image below:\n"
prompt_input_4 = "\nHere are the textual candidates:\n"
with open(input_txt_path + "%d.txt"%(curr_id), 'r') as f:
candidates = f.read()
input_img = PIL.Image.open(input_img_path + "%d.jpg"%(curr_id))
model_input_seq = [prompt_input_1, example_img, prompt_input_2]
if in_context_example_num > 0:
assert len(prompt_examples) == len(image_examples) + 1
assert len(prompt_examples) == in_context_example_num + 1
model_input_seq.append(prompt_examples[0])
for example_index in range(in_context_example_num):
model_input_seq.append(image_examples[example_index])
model_input_seq.append(prompt_examples[example_index+1])
model_input_seq += [prompt_input_3, input_img, prompt_input_4, candidates]
# , prompt_input_3, input_img, prompt_input_4, candidates]
response = model.generate_content(model_input_seq)
with open(input_backup_path + "level%d/%d.txt"%(level, curr_id), "w") as f:
contents = ""
for input_prompt_index in range(len(model_input_seq)):
if type(model_input_seq[input_prompt_index]) == type("string"):
contents += model_input_seq[input_prompt_index]
f.write(contents)
with open(output_path + "level%d/%d.txt"%(level, curr_id), "w") as f:
f.write(response.text)
time.sleep(2)
runned_term += 1
except:
time.sleep(2)
pass