repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
inveniosoftware/invenio-access
invenio_access/permissions.py
Permission._load_permissions
def _load_permissions(self): """Load permissions associated to actions.""" result = _P(needs=set(), excludes=set()) if not self.allow_by_default: result.needs.update(self.explicit_needs) for explicit_need in self.explicit_needs: if explicit_need.method == 'action': action = current_access.get_action_cache( self._cache_key(explicit_need) ) if action is None: action = _P(needs=set(), excludes=set()) actionsusers = ActionUsers.query_by_action( explicit_need ).all() actionsroles = ActionRoles.query_by_action( explicit_need ).join( ActionRoles.role ).all() actionssystem = ActionSystemRoles.query_by_action( explicit_need ).all() for db_action in chain( actionsusers, actionsroles, actionssystem): if db_action.exclude: action.excludes.add(db_action.need) else: action.needs.add(db_action.need) current_access.set_action_cache( self._cache_key(explicit_need), action ) # in-place update of results result.update(action) elif self.allow_by_default: result.needs.add(explicit_need) self._permissions = result
python
def _load_permissions(self): """Load permissions associated to actions.""" result = _P(needs=set(), excludes=set()) if not self.allow_by_default: result.needs.update(self.explicit_needs) for explicit_need in self.explicit_needs: if explicit_need.method == 'action': action = current_access.get_action_cache( self._cache_key(explicit_need) ) if action is None: action = _P(needs=set(), excludes=set()) actionsusers = ActionUsers.query_by_action( explicit_need ).all() actionsroles = ActionRoles.query_by_action( explicit_need ).join( ActionRoles.role ).all() actionssystem = ActionSystemRoles.query_by_action( explicit_need ).all() for db_action in chain( actionsusers, actionsroles, actionssystem): if db_action.exclude: action.excludes.add(db_action.need) else: action.needs.add(db_action.need) current_access.set_action_cache( self._cache_key(explicit_need), action ) # in-place update of results result.update(action) elif self.allow_by_default: result.needs.add(explicit_need) self._permissions = result
[ "def", "_load_permissions", "(", "self", ")", ":", "result", "=", "_P", "(", "needs", "=", "set", "(", ")", ",", "excludes", "=", "set", "(", ")", ")", "if", "not", "self", ".", "allow_by_default", ":", "result", ".", "needs", ".", "update", "(", "self", ".", "explicit_needs", ")", "for", "explicit_need", "in", "self", ".", "explicit_needs", ":", "if", "explicit_need", ".", "method", "==", "'action'", ":", "action", "=", "current_access", ".", "get_action_cache", "(", "self", ".", "_cache_key", "(", "explicit_need", ")", ")", "if", "action", "is", "None", ":", "action", "=", "_P", "(", "needs", "=", "set", "(", ")", ",", "excludes", "=", "set", "(", ")", ")", "actionsusers", "=", "ActionUsers", ".", "query_by_action", "(", "explicit_need", ")", ".", "all", "(", ")", "actionsroles", "=", "ActionRoles", ".", "query_by_action", "(", "explicit_need", ")", ".", "join", "(", "ActionRoles", ".", "role", ")", ".", "all", "(", ")", "actionssystem", "=", "ActionSystemRoles", ".", "query_by_action", "(", "explicit_need", ")", ".", "all", "(", ")", "for", "db_action", "in", "chain", "(", "actionsusers", ",", "actionsroles", ",", "actionssystem", ")", ":", "if", "db_action", ".", "exclude", ":", "action", ".", "excludes", ".", "add", "(", "db_action", ".", "need", ")", "else", ":", "action", ".", "needs", ".", "add", "(", "db_action", ".", "need", ")", "current_access", ".", "set_action_cache", "(", "self", ".", "_cache_key", "(", "explicit_need", ")", ",", "action", ")", "result", ".", "update", "(", "action", ")", "elif", "self", ".", "allow_by_default", ":", "result", ".", "needs", ".", "add", "(", "explicit_need", ")", "self", ".", "_permissions", "=", "result" ]
Load permissions associated to actions.
[ "Load", "permissions", "associated", "to", "actions", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/permissions.py#L122-L165
train
inveniosoftware/invenio-access
invenio_access/cli.py
lazy_result
def lazy_result(f): """Decorate function to return LazyProxy.""" @wraps(f) def decorated(ctx, param, value): return LocalProxy(lambda: f(ctx, param, value)) return decorated
python
def lazy_result(f): """Decorate function to return LazyProxy.""" @wraps(f) def decorated(ctx, param, value): return LocalProxy(lambda: f(ctx, param, value)) return decorated
[ "def", "lazy_result", "(", "f", ")", ":", "@", "wraps", "(", "f", ")", "def", "decorated", "(", "ctx", ",", "param", ",", "value", ")", ":", "return", "LocalProxy", "(", "lambda", ":", "f", "(", "ctx", ",", "param", ",", "value", ")", ")", "return", "decorated" ]
Decorate function to return LazyProxy.
[ "Decorate", "function", "to", "return", "LazyProxy", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L30-L35
train
inveniosoftware/invenio-access
invenio_access/cli.py
process_action
def process_action(ctx, param, value): """Return an action if exists.""" actions = current_app.extensions['invenio-access'].actions if value not in actions: raise click.BadParameter('Action "%s" is not registered.', value) return actions[value]
python
def process_action(ctx, param, value): """Return an action if exists.""" actions = current_app.extensions['invenio-access'].actions if value not in actions: raise click.BadParameter('Action "%s" is not registered.', value) return actions[value]
[ "def", "process_action", "(", "ctx", ",", "param", ",", "value", ")", ":", "actions", "=", "current_app", ".", "extensions", "[", "'invenio-access'", "]", ".", "actions", "if", "value", "not", "in", "actions", ":", "raise", "click", ".", "BadParameter", "(", "'Action \"%s\" is not registered.'", ",", "value", ")", "return", "actions", "[", "value", "]" ]
Return an action if exists.
[ "Return", "an", "action", "if", "exists", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L39-L44
train
inveniosoftware/invenio-access
invenio_access/cli.py
process_email
def process_email(ctx, param, value): """Return an user if it exists.""" user = User.query.filter(User.email == value).first() if not user: raise click.BadParameter('User with email \'%s\' not found.', value) return user
python
def process_email(ctx, param, value): """Return an user if it exists.""" user = User.query.filter(User.email == value).first() if not user: raise click.BadParameter('User with email \'%s\' not found.', value) return user
[ "def", "process_email", "(", "ctx", ",", "param", ",", "value", ")", ":", "user", "=", "User", ".", "query", ".", "filter", "(", "User", ".", "email", "==", "value", ")", ".", "first", "(", ")", "if", "not", "user", ":", "raise", "click", ".", "BadParameter", "(", "'User with email \\'%s\\' not found.'", ",", "value", ")", "return", "user" ]
Return an user if it exists.
[ "Return", "an", "user", "if", "it", "exists", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L48-L53
train
inveniosoftware/invenio-access
invenio_access/cli.py
process_role
def process_role(ctx, param, value): """Return a role if it exists.""" role = Role.query.filter(Role.name == value).first() if not role: raise click.BadParameter('Role with name \'%s\' not found.', value) return role
python
def process_role(ctx, param, value): """Return a role if it exists.""" role = Role.query.filter(Role.name == value).first() if not role: raise click.BadParameter('Role with name \'%s\' not found.', value) return role
[ "def", "process_role", "(", "ctx", ",", "param", ",", "value", ")", ":", "role", "=", "Role", ".", "query", ".", "filter", "(", "Role", ".", "name", "==", "value", ")", ".", "first", "(", ")", "if", "not", "role", ":", "raise", "click", ".", "BadParameter", "(", "'Role with name \\'%s\\' not found.'", ",", "value", ")", "return", "role" ]
Return a role if it exists.
[ "Return", "a", "role", "if", "it", "exists", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L57-L62
train
inveniosoftware/invenio-access
invenio_access/cli.py
allow_user
def allow_user(user): """Allow a user identified by an email address.""" def processor(action, argument): db.session.add( ActionUsers.allow(action, argument=argument, user_id=user.id) ) return processor
python
def allow_user(user): """Allow a user identified by an email address.""" def processor(action, argument): db.session.add( ActionUsers.allow(action, argument=argument, user_id=user.id) ) return processor
[ "def", "allow_user", "(", "user", ")", ":", "def", "processor", "(", "action", ",", "argument", ")", ":", "db", ".", "session", ".", "add", "(", "ActionUsers", ".", "allow", "(", "action", ",", "argument", "=", "argument", ",", "user_id", "=", "user", ".", "id", ")", ")", "return", "processor" ]
Allow a user identified by an email address.
[ "Allow", "a", "user", "identified", "by", "an", "email", "address", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L108-L114
train
inveniosoftware/invenio-access
invenio_access/cli.py
allow_role
def allow_role(role): """Allow a role identified by an email address.""" def processor(action, argument): db.session.add( ActionRoles.allow(action, argument=argument, role_id=role.id) ) return processor
python
def allow_role(role): """Allow a role identified by an email address.""" def processor(action, argument): db.session.add( ActionRoles.allow(action, argument=argument, role_id=role.id) ) return processor
[ "def", "allow_role", "(", "role", ")", ":", "def", "processor", "(", "action", ",", "argument", ")", ":", "db", ".", "session", ".", "add", "(", "ActionRoles", ".", "allow", "(", "action", ",", "argument", "=", "argument", ",", "role_id", "=", "role", ".", "id", ")", ")", "return", "processor" ]
Allow a role identified by an email address.
[ "Allow", "a", "role", "identified", "by", "an", "email", "address", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L119-L125
train
inveniosoftware/invenio-access
invenio_access/cli.py
process_allow_action
def process_allow_action(processors, action, argument): """Process allow action.""" for processor in processors: processor(action, argument) db.session.commit()
python
def process_allow_action(processors, action, argument): """Process allow action.""" for processor in processors: processor(action, argument) db.session.commit()
[ "def", "process_allow_action", "(", "processors", ",", "action", ",", "argument", ")", ":", "for", "processor", "in", "processors", ":", "processor", "(", "action", ",", "argument", ")", "db", ".", "session", ".", "commit", "(", ")" ]
Process allow action.
[ "Process", "allow", "action", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L130-L134
train
inveniosoftware/invenio-access
invenio_access/cli.py
deny_user
def deny_user(user): """Deny a user identified by an email address.""" def processor(action, argument): db.session.add( ActionUsers.deny(action, argument=argument, user_id=user.id) ) return processor
python
def deny_user(user): """Deny a user identified by an email address.""" def processor(action, argument): db.session.add( ActionUsers.deny(action, argument=argument, user_id=user.id) ) return processor
[ "def", "deny_user", "(", "user", ")", ":", "def", "processor", "(", "action", ",", "argument", ")", ":", "db", ".", "session", ".", "add", "(", "ActionUsers", ".", "deny", "(", "action", ",", "argument", "=", "argument", ",", "user_id", "=", "user", ".", "id", ")", ")", "return", "processor" ]
Deny a user identified by an email address.
[ "Deny", "a", "user", "identified", "by", "an", "email", "address", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L149-L155
train
inveniosoftware/invenio-access
invenio_access/cli.py
deny_role
def deny_role(role): """Deny a role identified by an email address.""" def processor(action, argument): db.session.add( ActionRoles.deny(action, argument=argument, role_id=role.id) ) return processor
python
def deny_role(role): """Deny a role identified by an email address.""" def processor(action, argument): db.session.add( ActionRoles.deny(action, argument=argument, role_id=role.id) ) return processor
[ "def", "deny_role", "(", "role", ")", ":", "def", "processor", "(", "action", ",", "argument", ")", ":", "db", ".", "session", ".", "add", "(", "ActionRoles", ".", "deny", "(", "action", ",", "argument", "=", "argument", ",", "role_id", "=", "role", ".", "id", ")", ")", "return", "processor" ]
Deny a role identified by an email address.
[ "Deny", "a", "role", "identified", "by", "an", "email", "address", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L160-L166
train
inveniosoftware/invenio-access
invenio_access/cli.py
process_deny_action
def process_deny_action(processors, action, argument): """Process deny action.""" for processor in processors: processor(action, argument) db.session.commit()
python
def process_deny_action(processors, action, argument): """Process deny action.""" for processor in processors: processor(action, argument) db.session.commit()
[ "def", "process_deny_action", "(", "processors", ",", "action", ",", "argument", ")", ":", "for", "processor", "in", "processors", ":", "processor", "(", "action", ",", "argument", ")", "db", ".", "session", ".", "commit", "(", ")" ]
Process deny action.
[ "Process", "deny", "action", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L171-L175
train
inveniosoftware/invenio-access
invenio_access/cli.py
remove_global
def remove_global(): """Remove global action rule.""" def processor(action, argument): ActionUsers.query_by_action(action, argument=argument).filter( ActionUsers.user_id.is_(None) ).delete(synchronize_session=False) return processor
python
def remove_global(): """Remove global action rule.""" def processor(action, argument): ActionUsers.query_by_action(action, argument=argument).filter( ActionUsers.user_id.is_(None) ).delete(synchronize_session=False) return processor
[ "def", "remove_global", "(", ")", ":", "def", "processor", "(", "action", ",", "argument", ")", ":", "ActionUsers", ".", "query_by_action", "(", "action", ",", "argument", "=", "argument", ")", ".", "filter", "(", "ActionUsers", ".", "user_id", ".", "is_", "(", "None", ")", ")", ".", "delete", "(", "synchronize_session", "=", "False", ")", "return", "processor" ]
Remove global action rule.
[ "Remove", "global", "action", "rule", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L193-L199
train
inveniosoftware/invenio-access
invenio_access/cli.py
remove_user
def remove_user(user): """Remove a action for a user.""" def processor(action, argument): ActionUsers.query_by_action(action, argument=argument).filter( ActionUsers.user_id == user.id ).delete(synchronize_session=False) return processor
python
def remove_user(user): """Remove a action for a user.""" def processor(action, argument): ActionUsers.query_by_action(action, argument=argument).filter( ActionUsers.user_id == user.id ).delete(synchronize_session=False) return processor
[ "def", "remove_user", "(", "user", ")", ":", "def", "processor", "(", "action", ",", "argument", ")", ":", "ActionUsers", ".", "query_by_action", "(", "action", ",", "argument", "=", "argument", ")", ".", "filter", "(", "ActionUsers", ".", "user_id", "==", "user", ".", "id", ")", ".", "delete", "(", "synchronize_session", "=", "False", ")", "return", "processor" ]
Remove a action for a user.
[ "Remove", "a", "action", "for", "a", "user", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L204-L210
train
inveniosoftware/invenio-access
invenio_access/cli.py
remove_role
def remove_role(role): """Remove a action for a role.""" def processor(action, argument): ActionRoles.query_by_action(action, argument=argument).filter( ActionRoles.role_id == role.id ).delete(synchronize_session=False) return processor
python
def remove_role(role): """Remove a action for a role.""" def processor(action, argument): ActionRoles.query_by_action(action, argument=argument).filter( ActionRoles.role_id == role.id ).delete(synchronize_session=False) return processor
[ "def", "remove_role", "(", "role", ")", ":", "def", "processor", "(", "action", ",", "argument", ")", ":", "ActionRoles", ".", "query_by_action", "(", "action", ",", "argument", "=", "argument", ")", ".", "filter", "(", "ActionRoles", ".", "role_id", "==", "role", ".", "id", ")", ".", "delete", "(", "synchronize_session", "=", "False", ")", "return", "processor" ]
Remove a action for a role.
[ "Remove", "a", "action", "for", "a", "role", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L215-L221
train
inveniosoftware/invenio-access
invenio_access/cli.py
process_remove_action
def process_remove_action(processors, action, argument): """Process action removals.""" for processor in processors: processor(action, argument) db.session.commit()
python
def process_remove_action(processors, action, argument): """Process action removals.""" for processor in processors: processor(action, argument) db.session.commit()
[ "def", "process_remove_action", "(", "processors", ",", "action", ",", "argument", ")", ":", "for", "processor", "in", "processors", ":", "processor", "(", "action", ",", "argument", ")", "db", ".", "session", ".", "commit", "(", ")" ]
Process action removals.
[ "Process", "action", "removals", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L226-L230
train
inveniosoftware/invenio-access
invenio_access/cli.py
list_actions
def list_actions(): """List all registered actions.""" for name, action in _current_actions.items(): click.echo('{0}:{1}'.format( name, '*' if hasattr(action, 'argument') else '' ))
python
def list_actions(): """List all registered actions.""" for name, action in _current_actions.items(): click.echo('{0}:{1}'.format( name, '*' if hasattr(action, 'argument') else '' ))
[ "def", "list_actions", "(", ")", ":", "for", "name", ",", "action", "in", "_current_actions", ".", "items", "(", ")", ":", "click", ".", "echo", "(", "'{0}:{1}'", ".", "format", "(", "name", ",", "'*'", "if", "hasattr", "(", "action", ",", "'argument'", ")", "else", "''", ")", ")" ]
List all registered actions.
[ "List", "all", "registered", "actions", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L235-L240
train
inveniosoftware/invenio-access
invenio_access/cli.py
show_actions
def show_actions(email, role): """Show all assigned actions.""" if email: actions = ActionUsers.query.join(ActionUsers.user).filter( User.email.in_(email) ).all() for action in actions: click.secho('user:{0}:{1}:{2}:{3}'.format( action.user.email, action.action, '' if action.argument is None else action.argument, 'deny' if action.exclude else 'allow', ), fg='red' if action.exclude else 'green') if role: actions = ActionRoles.query.filter( Role.name.in_(role) ).join(ActionRoles.role).all() for action in actions: click.secho('role:{0}:{1}:{2}:{3}'.format( action.role.name, action.action, '' if action.argument is None else action.argument, 'deny' if action.exclude else 'allow', ), fg='red' if action.exclude else 'green')
python
def show_actions(email, role): """Show all assigned actions.""" if email: actions = ActionUsers.query.join(ActionUsers.user).filter( User.email.in_(email) ).all() for action in actions: click.secho('user:{0}:{1}:{2}:{3}'.format( action.user.email, action.action, '' if action.argument is None else action.argument, 'deny' if action.exclude else 'allow', ), fg='red' if action.exclude else 'green') if role: actions = ActionRoles.query.filter( Role.name.in_(role) ).join(ActionRoles.role).all() for action in actions: click.secho('role:{0}:{1}:{2}:{3}'.format( action.role.name, action.action, '' if action.argument is None else action.argument, 'deny' if action.exclude else 'allow', ), fg='red' if action.exclude else 'green')
[ "def", "show_actions", "(", "email", ",", "role", ")", ":", "if", "email", ":", "actions", "=", "ActionUsers", ".", "query", ".", "join", "(", "ActionUsers", ".", "user", ")", ".", "filter", "(", "User", ".", "email", ".", "in_", "(", "email", ")", ")", ".", "all", "(", ")", "for", "action", "in", "actions", ":", "click", ".", "secho", "(", "'user:{0}:{1}:{2}:{3}'", ".", "format", "(", "action", ".", "user", ".", "email", ",", "action", ".", "action", ",", "''", "if", "action", ".", "argument", "is", "None", "else", "action", ".", "argument", ",", "'deny'", "if", "action", ".", "exclude", "else", "'allow'", ",", ")", ",", "fg", "=", "'red'", "if", "action", ".", "exclude", "else", "'green'", ")", "if", "role", ":", "actions", "=", "ActionRoles", ".", "query", ".", "filter", "(", "Role", ".", "name", ".", "in_", "(", "role", ")", ")", ".", "join", "(", "ActionRoles", ".", "role", ")", ".", "all", "(", ")", "for", "action", "in", "actions", ":", "click", ".", "secho", "(", "'role:{0}:{1}:{2}:{3}'", ".", "format", "(", "action", ".", "role", ".", "name", ",", "action", ".", "action", ",", "''", "if", "action", ".", "argument", "is", "None", "else", "action", ".", "argument", ",", "'deny'", "if", "action", ".", "exclude", "else", "'allow'", ",", ")", ",", "fg", "=", "'red'", "if", "action", ".", "exclude", "else", "'green'", ")" ]
Show all assigned actions.
[ "Show", "all", "assigned", "actions", "." ]
3b033a4bdc110eb2f7e9f08f0744a780884bfc80
https://github.com/inveniosoftware/invenio-access/blob/3b033a4bdc110eb2f7e9f08f0744a780884bfc80/invenio_access/cli.py#L247-L271
train
BD2KGenomics/protect
src/protect/addons/assess_mhc_pathway.py
run_mhc_gene_assessment
def run_mhc_gene_assessment(job, rsem_files, rna_haplotype, univ_options, reports_options): """ A wrapper for assess_mhc_genes. :param dict rsem_files: Results from running rsem :param str rna_haplotype: The job store id for the rna haplotype file :param dict univ_options: Dict of universal options used by almost all tools :param dict reports_options: Options specific to reporting modules :return: The results of running assess_mhc_genes :rtype: toil.fileStore.FileID """ return job.addChildJobFn(assess_mhc_genes, rsem_files['rsem.genes.results'], rna_haplotype, univ_options, reports_options).rv()
python
def run_mhc_gene_assessment(job, rsem_files, rna_haplotype, univ_options, reports_options): """ A wrapper for assess_mhc_genes. :param dict rsem_files: Results from running rsem :param str rna_haplotype: The job store id for the rna haplotype file :param dict univ_options: Dict of universal options used by almost all tools :param dict reports_options: Options specific to reporting modules :return: The results of running assess_mhc_genes :rtype: toil.fileStore.FileID """ return job.addChildJobFn(assess_mhc_genes, rsem_files['rsem.genes.results'], rna_haplotype, univ_options, reports_options).rv()
[ "def", "run_mhc_gene_assessment", "(", "job", ",", "rsem_files", ",", "rna_haplotype", ",", "univ_options", ",", "reports_options", ")", ":", "return", "job", ".", "addChildJobFn", "(", "assess_mhc_genes", ",", "rsem_files", "[", "'rsem.genes.results'", "]", ",", "rna_haplotype", ",", "univ_options", ",", "reports_options", ")", ".", "rv", "(", ")" ]
A wrapper for assess_mhc_genes. :param dict rsem_files: Results from running rsem :param str rna_haplotype: The job store id for the rna haplotype file :param dict univ_options: Dict of universal options used by almost all tools :param dict reports_options: Options specific to reporting modules :return: The results of running assess_mhc_genes :rtype: toil.fileStore.FileID
[ "A", "wrapper", "for", "assess_mhc_genes", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/addons/assess_mhc_pathway.py#L27-L39
train
BD2KGenomics/protect
attic/ProTECT.py
parse_config_file
def parse_config_file(job, config_file): """ This module will parse the config file withing params and set up the variables that will be passed to the various tools in the pipeline. ARGUMENTS config_file: string containing path to a config file. An example config file is available at https://s3-us-west-2.amazonaws.com/pimmuno-references /input_parameters.list RETURN VALUES None """ job.fileStore.logToMaster('Parsing config file') config_file = os.path.abspath(config_file) if not os.path.exists(config_file): raise ParameterError('The config file was not found at specified location. Please verify ' + 'and retry.') # Initialize variables to hold the sample sets, the universal options, and the per-tool options sample_set = defaultdict() univ_options = defaultdict() tool_options = defaultdict() # Read through the notes and the with open(config_file, 'r') as conf: for line in conf: line = line.strip() if line.startswith('##') or len(line) == 0: continue if line.startswith('BEGIN'): break # The generator function tool_specific_param_generator will yield one group name at a time # along with it's parameters. for groupname, group_params in tool_specific_param_generator(job, conf): if groupname == 'patient': if 'patient_id' not in group_params.keys(): raise ParameterError('A patient group is missing the patient_id flag.') sample_set[group_params['patient_id']] = group_params elif groupname == 'Universal_Options': univ_options = group_params required_options = {'java_Xmx', 'output_folder', 'storage_location'} missing_opts = required_options.difference(set(univ_options.keys())) if len(missing_opts) > 0: raise ParameterError(' The following options have no arguments in the config ' 'file :\n' + '\n'.join(missing_opts)) if univ_options['sse_key_is_master']: assert univ_options['sse_key_is_master'] in ('True', 'true', 'False', 'false') univ_options['sse_key_is_master'] = \ univ_options['sse_key_is_master'] in ('True', 'true') # If it isn't any of the above, it's a tool group else: tool_options[groupname] = group_params # Ensure that all tools have been provided options. required_tools = {'cutadapt', 'bwa', 'star', 'phlat', 'transgene', 'mut_callers', 'rsem', 'mhci', 'mhcii', 'snpeff', 'rank_boost'} # 'fusion', 'indels'} missing_tools = required_tools.difference(set(tool_options.keys())) if len(missing_tools) > 0: raise ParameterError(' The following tools have no arguments in the config file : \n' + '\n'.join(missing_tools)) # Start a job for each sample in the sample set for patient_id in sample_set.keys(): job.addFollowOnJobFn(pipeline_launchpad, sample_set[patient_id], univ_options, tool_options) return None
python
def parse_config_file(job, config_file): """ This module will parse the config file withing params and set up the variables that will be passed to the various tools in the pipeline. ARGUMENTS config_file: string containing path to a config file. An example config file is available at https://s3-us-west-2.amazonaws.com/pimmuno-references /input_parameters.list RETURN VALUES None """ job.fileStore.logToMaster('Parsing config file') config_file = os.path.abspath(config_file) if not os.path.exists(config_file): raise ParameterError('The config file was not found at specified location. Please verify ' + 'and retry.') # Initialize variables to hold the sample sets, the universal options, and the per-tool options sample_set = defaultdict() univ_options = defaultdict() tool_options = defaultdict() # Read through the notes and the with open(config_file, 'r') as conf: for line in conf: line = line.strip() if line.startswith('##') or len(line) == 0: continue if line.startswith('BEGIN'): break # The generator function tool_specific_param_generator will yield one group name at a time # along with it's parameters. for groupname, group_params in tool_specific_param_generator(job, conf): if groupname == 'patient': if 'patient_id' not in group_params.keys(): raise ParameterError('A patient group is missing the patient_id flag.') sample_set[group_params['patient_id']] = group_params elif groupname == 'Universal_Options': univ_options = group_params required_options = {'java_Xmx', 'output_folder', 'storage_location'} missing_opts = required_options.difference(set(univ_options.keys())) if len(missing_opts) > 0: raise ParameterError(' The following options have no arguments in the config ' 'file :\n' + '\n'.join(missing_opts)) if univ_options['sse_key_is_master']: assert univ_options['sse_key_is_master'] in ('True', 'true', 'False', 'false') univ_options['sse_key_is_master'] = \ univ_options['sse_key_is_master'] in ('True', 'true') # If it isn't any of the above, it's a tool group else: tool_options[groupname] = group_params # Ensure that all tools have been provided options. required_tools = {'cutadapt', 'bwa', 'star', 'phlat', 'transgene', 'mut_callers', 'rsem', 'mhci', 'mhcii', 'snpeff', 'rank_boost'} # 'fusion', 'indels'} missing_tools = required_tools.difference(set(tool_options.keys())) if len(missing_tools) > 0: raise ParameterError(' The following tools have no arguments in the config file : \n' + '\n'.join(missing_tools)) # Start a job for each sample in the sample set for patient_id in sample_set.keys(): job.addFollowOnJobFn(pipeline_launchpad, sample_set[patient_id], univ_options, tool_options) return None
[ "def", "parse_config_file", "(", "job", ",", "config_file", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Parsing config file'", ")", "config_file", "=", "os", ".", "path", ".", "abspath", "(", "config_file", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "config_file", ")", ":", "raise", "ParameterError", "(", "'The config file was not found at specified location. Please verify '", "+", "'and retry.'", ")", "sample_set", "=", "defaultdict", "(", ")", "univ_options", "=", "defaultdict", "(", ")", "tool_options", "=", "defaultdict", "(", ")", "with", "open", "(", "config_file", ",", "'r'", ")", "as", "conf", ":", "for", "line", "in", "conf", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "line", ".", "startswith", "(", "'##'", ")", "or", "len", "(", "line", ")", "==", "0", ":", "continue", "if", "line", ".", "startswith", "(", "'BEGIN'", ")", ":", "break", "for", "groupname", ",", "group_params", "in", "tool_specific_param_generator", "(", "job", ",", "conf", ")", ":", "if", "groupname", "==", "'patient'", ":", "if", "'patient_id'", "not", "in", "group_params", ".", "keys", "(", ")", ":", "raise", "ParameterError", "(", "'A patient group is missing the patient_id flag.'", ")", "sample_set", "[", "group_params", "[", "'patient_id'", "]", "]", "=", "group_params", "elif", "groupname", "==", "'Universal_Options'", ":", "univ_options", "=", "group_params", "required_options", "=", "{", "'java_Xmx'", ",", "'output_folder'", ",", "'storage_location'", "}", "missing_opts", "=", "required_options", ".", "difference", "(", "set", "(", "univ_options", ".", "keys", "(", ")", ")", ")", "if", "len", "(", "missing_opts", ")", ">", "0", ":", "raise", "ParameterError", "(", "' The following options have no arguments in the config '", "'file :\\n'", "+", "'\\n'", ".", "join", "(", "missing_opts", ")", ")", "if", "univ_options", "[", "'sse_key_is_master'", "]", ":", "assert", "univ_options", "[", "'sse_key_is_master'", "]", "in", "(", "'True'", ",", "'true'", ",", "'False'", ",", "'false'", ")", "univ_options", "[", "'sse_key_is_master'", "]", "=", "univ_options", "[", "'sse_key_is_master'", "]", "in", "(", "'True'", ",", "'true'", ")", "else", ":", "tool_options", "[", "groupname", "]", "=", "group_params", "required_tools", "=", "{", "'cutadapt'", ",", "'bwa'", ",", "'star'", ",", "'phlat'", ",", "'transgene'", ",", "'mut_callers'", ",", "'rsem'", ",", "'mhci'", ",", "'mhcii'", ",", "'snpeff'", ",", "'rank_boost'", "}", "missing_tools", "=", "required_tools", ".", "difference", "(", "set", "(", "tool_options", ".", "keys", "(", ")", ")", ")", "if", "len", "(", "missing_tools", ")", ">", "0", ":", "raise", "ParameterError", "(", "' The following tools have no arguments in the config file : \\n'", "+", "'\\n'", ".", "join", "(", "missing_tools", ")", ")", "for", "patient_id", "in", "sample_set", ".", "keys", "(", ")", ":", "job", ".", "addFollowOnJobFn", "(", "pipeline_launchpad", ",", "sample_set", "[", "patient_id", "]", ",", "univ_options", ",", "tool_options", ")", "return", "None" ]
This module will parse the config file withing params and set up the variables that will be passed to the various tools in the pipeline. ARGUMENTS config_file: string containing path to a config file. An example config file is available at https://s3-us-west-2.amazonaws.com/pimmuno-references /input_parameters.list RETURN VALUES None
[ "This", "module", "will", "parse", "the", "config", "file", "withing", "params", "and", "set", "up", "the", "variables", "that", "will", "be", "passed", "to", "the", "various", "tools", "in", "the", "pipeline", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L46-L109
train
BD2KGenomics/protect
attic/ProTECT.py
run_cutadapt
def run_cutadapt(job, fastqs, univ_options, cutadapt_options): """ This module runs cutadapt on the input RNA fastq files and then calls the RNA aligners. ARGUMENTS 1. fastqs: Dict of list of input RNA-Seq fastqs fastqs +- 'tumor_rna': [<JSid for 1.fastq> , <JSid for 2.fastq>] 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. cutadapt_options: Dict of parameters specific to cutadapt cutadapt_options |- 'a': <sequence of 3' adapter to trim from fwd read> +- 'A': <sequence of 3' adapter to trim from rev read> RETURN VALUES 1. output_files: Dict of cutadapted fastqs output_files |- 'rna_cutadapt_1.fastq': <JSid> +- 'rna_cutadapt_2.fastq': <JSid> This module corresponds to node 2 on the tree """ job.fileStore.logToMaster('Running cutadapt on %s' %univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() fq_extn = '.gz' if fastqs['gzipped'] else '' input_files = { 'rna_1.fastq' + fq_extn: fastqs['tumor_rna'][0], 'rna_2.fastq' + fq_extn: fastqs['tumor_rna'][1]} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['-a', cutadapt_options['a'], # Fwd read 3' adapter '-A', cutadapt_options['A'], # Rev read 3' adapter '-m', '35', # Minimum size of read '-o', docker_path('rna_cutadapt_1.fastq'), # Output for R1 '-p', docker_path('rna_cutadapt_2.fastq'), # Output for R2 input_files['rna_1.fastq'], input_files['rna_2.fastq']] docker_call(tool='cutadapt', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files = defaultdict() for fastq_file in ['rna_cutadapt_1.fastq', 'rna_cutadapt_2.fastq']: output_files[fastq_file] = job.fileStore.writeGlobalFile('/'.join([work_dir, fastq_file])) return output_files
python
def run_cutadapt(job, fastqs, univ_options, cutadapt_options): """ This module runs cutadapt on the input RNA fastq files and then calls the RNA aligners. ARGUMENTS 1. fastqs: Dict of list of input RNA-Seq fastqs fastqs +- 'tumor_rna': [<JSid for 1.fastq> , <JSid for 2.fastq>] 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. cutadapt_options: Dict of parameters specific to cutadapt cutadapt_options |- 'a': <sequence of 3' adapter to trim from fwd read> +- 'A': <sequence of 3' adapter to trim from rev read> RETURN VALUES 1. output_files: Dict of cutadapted fastqs output_files |- 'rna_cutadapt_1.fastq': <JSid> +- 'rna_cutadapt_2.fastq': <JSid> This module corresponds to node 2 on the tree """ job.fileStore.logToMaster('Running cutadapt on %s' %univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() fq_extn = '.gz' if fastqs['gzipped'] else '' input_files = { 'rna_1.fastq' + fq_extn: fastqs['tumor_rna'][0], 'rna_2.fastq' + fq_extn: fastqs['tumor_rna'][1]} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['-a', cutadapt_options['a'], # Fwd read 3' adapter '-A', cutadapt_options['A'], # Rev read 3' adapter '-m', '35', # Minimum size of read '-o', docker_path('rna_cutadapt_1.fastq'), # Output for R1 '-p', docker_path('rna_cutadapt_2.fastq'), # Output for R2 input_files['rna_1.fastq'], input_files['rna_2.fastq']] docker_call(tool='cutadapt', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files = defaultdict() for fastq_file in ['rna_cutadapt_1.fastq', 'rna_cutadapt_2.fastq']: output_files[fastq_file] = job.fileStore.writeGlobalFile('/'.join([work_dir, fastq_file])) return output_files
[ "def", "run_cutadapt", "(", "job", ",", "fastqs", ",", "univ_options", ",", "cutadapt_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running cutadapt on %s'", "%", "univ_options", "[", "'patient'", "]", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "fq_extn", "=", "'.gz'", "if", "fastqs", "[", "'gzipped'", "]", "else", "''", "input_files", "=", "{", "'rna_1.fastq'", "+", "fq_extn", ":", "fastqs", "[", "'tumor_rna'", "]", "[", "0", "]", ",", "'rna_2.fastq'", "+", "fq_extn", ":", "fastqs", "[", "'tumor_rna'", "]", "[", "1", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "parameters", "=", "[", "'-a'", ",", "cutadapt_options", "[", "'a'", "]", ",", "'-A'", ",", "cutadapt_options", "[", "'A'", "]", ",", "'-m'", ",", "'35'", ",", "'-o'", ",", "docker_path", "(", "'rna_cutadapt_1.fastq'", ")", ",", "'-p'", ",", "docker_path", "(", "'rna_cutadapt_2.fastq'", ")", ",", "input_files", "[", "'rna_1.fastq'", "]", ",", "input_files", "[", "'rna_2.fastq'", "]", "]", "docker_call", "(", "tool", "=", "'cutadapt'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ")", "output_files", "=", "defaultdict", "(", ")", "for", "fastq_file", "in", "[", "'rna_cutadapt_1.fastq'", ",", "'rna_cutadapt_2.fastq'", "]", ":", "output_files", "[", "fastq_file", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "fastq_file", "]", ")", ")", "return", "output_files" ]
This module runs cutadapt on the input RNA fastq files and then calls the RNA aligners. ARGUMENTS 1. fastqs: Dict of list of input RNA-Seq fastqs fastqs +- 'tumor_rna': [<JSid for 1.fastq> , <JSid for 2.fastq>] 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. cutadapt_options: Dict of parameters specific to cutadapt cutadapt_options |- 'a': <sequence of 3' adapter to trim from fwd read> +- 'A': <sequence of 3' adapter to trim from rev read> RETURN VALUES 1. output_files: Dict of cutadapted fastqs output_files |- 'rna_cutadapt_1.fastq': <JSid> +- 'rna_cutadapt_2.fastq': <JSid> This module corresponds to node 2 on the tree
[ "This", "module", "runs", "cutadapt", "on", "the", "input", "RNA", "fastq", "files", "and", "then", "calls", "the", "RNA", "aligners", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L256-L298
train
BD2KGenomics/protect
attic/ProTECT.py
run_star
def run_star(job, fastqs, univ_options, star_options): """ This module uses STAR to align the RNA fastqs to the reference ARGUMENTS 1. fastqs: REFER RETURN VALUE of run_cutadapt() 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. star_options: Dict of parameters specific to STAR star_options |- 'index_tar': <JSid for the STAR index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_files: Dict of aligned bams output_files |- 'rnaAligned.toTranscriptome.out.bam': <JSid> +- 'rnaAligned.sortedByCoord.out.bam': Dict of genome bam + bai |- 'rna_fix_pg_sorted.bam': <JSid> +- 'rna_fix_pg_sorted.bam.bai': <JSid> This module corresponds to node 9 on the tree """ assert star_options['type'] in ('star', 'starlong') job.fileStore.logToMaster('Running STAR on %s' %univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() input_files = { 'rna_cutadapt_1.fastq': fastqs['rna_cutadapt_1.fastq'], 'rna_cutadapt_2.fastq': fastqs['rna_cutadapt_2.fastq'], 'star_index.tar.gz': star_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['--runThreadN', str(star_options['n']), '--genomeDir', input_files['star_index'], '--outFileNamePrefix', 'rna', '--readFilesIn', input_files['rna_cutadapt_1.fastq'], input_files['rna_cutadapt_2.fastq'], '--outSAMattributes', 'NH', 'HI', 'AS', 'NM', 'MD', '--outSAMtype', 'BAM', 'SortedByCoordinate', '--quantMode', 'TranscriptomeSAM', '--outSAMunmapped', 'Within'] if star_options['type'] == 'star': docker_call(tool='star', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) else: docker_call(tool='starlong', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files = defaultdict() for bam_file in ['rnaAligned.toTranscriptome.out.bam', 'rnaAligned.sortedByCoord.out.bam']: output_files[bam_file] = job.fileStore.writeGlobalFile('/'.join([ work_dir, bam_file])) job.fileStore.deleteGlobalFile(fastqs['rna_cutadapt_1.fastq']) job.fileStore.deleteGlobalFile(fastqs['rna_cutadapt_2.fastq']) index_star = job.wrapJobFn(index_bamfile, output_files['rnaAligned.sortedByCoord.out.bam'], 'rna', univ_options, disk='120G') job.addChild(index_star) output_files['rnaAligned.sortedByCoord.out.bam'] = index_star.rv() return output_files
python
def run_star(job, fastqs, univ_options, star_options): """ This module uses STAR to align the RNA fastqs to the reference ARGUMENTS 1. fastqs: REFER RETURN VALUE of run_cutadapt() 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. star_options: Dict of parameters specific to STAR star_options |- 'index_tar': <JSid for the STAR index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_files: Dict of aligned bams output_files |- 'rnaAligned.toTranscriptome.out.bam': <JSid> +- 'rnaAligned.sortedByCoord.out.bam': Dict of genome bam + bai |- 'rna_fix_pg_sorted.bam': <JSid> +- 'rna_fix_pg_sorted.bam.bai': <JSid> This module corresponds to node 9 on the tree """ assert star_options['type'] in ('star', 'starlong') job.fileStore.logToMaster('Running STAR on %s' %univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() input_files = { 'rna_cutadapt_1.fastq': fastqs['rna_cutadapt_1.fastq'], 'rna_cutadapt_2.fastq': fastqs['rna_cutadapt_2.fastq'], 'star_index.tar.gz': star_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['--runThreadN', str(star_options['n']), '--genomeDir', input_files['star_index'], '--outFileNamePrefix', 'rna', '--readFilesIn', input_files['rna_cutadapt_1.fastq'], input_files['rna_cutadapt_2.fastq'], '--outSAMattributes', 'NH', 'HI', 'AS', 'NM', 'MD', '--outSAMtype', 'BAM', 'SortedByCoordinate', '--quantMode', 'TranscriptomeSAM', '--outSAMunmapped', 'Within'] if star_options['type'] == 'star': docker_call(tool='star', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) else: docker_call(tool='starlong', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files = defaultdict() for bam_file in ['rnaAligned.toTranscriptome.out.bam', 'rnaAligned.sortedByCoord.out.bam']: output_files[bam_file] = job.fileStore.writeGlobalFile('/'.join([ work_dir, bam_file])) job.fileStore.deleteGlobalFile(fastqs['rna_cutadapt_1.fastq']) job.fileStore.deleteGlobalFile(fastqs['rna_cutadapt_2.fastq']) index_star = job.wrapJobFn(index_bamfile, output_files['rnaAligned.sortedByCoord.out.bam'], 'rna', univ_options, disk='120G') job.addChild(index_star) output_files['rnaAligned.sortedByCoord.out.bam'] = index_star.rv() return output_files
[ "def", "run_star", "(", "job", ",", "fastqs", ",", "univ_options", ",", "star_options", ")", ":", "assert", "star_options", "[", "'type'", "]", "in", "(", "'star'", ",", "'starlong'", ")", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running STAR on %s'", "%", "univ_options", "[", "'patient'", "]", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'rna_cutadapt_1.fastq'", ":", "fastqs", "[", "'rna_cutadapt_1.fastq'", "]", ",", "'rna_cutadapt_2.fastq'", ":", "fastqs", "[", "'rna_cutadapt_2.fastq'", "]", ",", "'star_index.tar.gz'", ":", "star_options", "[", "'index_tar'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "parameters", "=", "[", "'--runThreadN'", ",", "str", "(", "star_options", "[", "'n'", "]", ")", ",", "'--genomeDir'", ",", "input_files", "[", "'star_index'", "]", ",", "'--outFileNamePrefix'", ",", "'rna'", ",", "'--readFilesIn'", ",", "input_files", "[", "'rna_cutadapt_1.fastq'", "]", ",", "input_files", "[", "'rna_cutadapt_2.fastq'", "]", ",", "'--outSAMattributes'", ",", "'NH'", ",", "'HI'", ",", "'AS'", ",", "'NM'", ",", "'MD'", ",", "'--outSAMtype'", ",", "'BAM'", ",", "'SortedByCoordinate'", ",", "'--quantMode'", ",", "'TranscriptomeSAM'", ",", "'--outSAMunmapped'", ",", "'Within'", "]", "if", "star_options", "[", "'type'", "]", "==", "'star'", ":", "docker_call", "(", "tool", "=", "'star'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ")", "else", ":", "docker_call", "(", "tool", "=", "'starlong'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ")", "output_files", "=", "defaultdict", "(", ")", "for", "bam_file", "in", "[", "'rnaAligned.toTranscriptome.out.bam'", ",", "'rnaAligned.sortedByCoord.out.bam'", "]", ":", "output_files", "[", "bam_file", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "bam_file", "]", ")", ")", "job", ".", "fileStore", ".", "deleteGlobalFile", "(", "fastqs", "[", "'rna_cutadapt_1.fastq'", "]", ")", "job", ".", "fileStore", ".", "deleteGlobalFile", "(", "fastqs", "[", "'rna_cutadapt_2.fastq'", "]", ")", "index_star", "=", "job", ".", "wrapJobFn", "(", "index_bamfile", ",", "output_files", "[", "'rnaAligned.sortedByCoord.out.bam'", "]", ",", "'rna'", ",", "univ_options", ",", "disk", "=", "'120G'", ")", "job", ".", "addChild", "(", "index_star", ")", "output_files", "[", "'rnaAligned.sortedByCoord.out.bam'", "]", "=", "index_star", ".", "rv", "(", ")", "return", "output_files" ]
This module uses STAR to align the RNA fastqs to the reference ARGUMENTS 1. fastqs: REFER RETURN VALUE of run_cutadapt() 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. star_options: Dict of parameters specific to STAR star_options |- 'index_tar': <JSid for the STAR index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_files: Dict of aligned bams output_files |- 'rnaAligned.toTranscriptome.out.bam': <JSid> +- 'rnaAligned.sortedByCoord.out.bam': Dict of genome bam + bai |- 'rna_fix_pg_sorted.bam': <JSid> +- 'rna_fix_pg_sorted.bam.bai': <JSid> This module corresponds to node 9 on the tree
[ "This", "module", "uses", "STAR", "to", "align", "the", "RNA", "fastqs", "to", "the", "reference" ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L301-L361
train
BD2KGenomics/protect
attic/ProTECT.py
run_bwa
def run_bwa(job, fastqs, sample_type, univ_options, bwa_options): """ This module aligns the SAMPLE_TYPE dna fastqs to the reference ARGUMENTS -- <ST> depicts the sample type. Substitute with 'tumor'/'normal' 1. fastqs: Dict of list of input WGS/WXS fastqs fastqs +- '<ST>_dna': [<JSid for 1.fastq> , <JSid for 2.fastq>] 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 4. bwa_options: Dict of parameters specific to bwa bwa_options |- 'index_tar': <JSid for the bwa index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_files: Dict of aligned bam + reference (nested return) output_files |- '<ST>_fix_pg_sorted.bam': <JSid> +- '<ST>_fix_pg_sorted.bam.bai': <JSid> This module corresponds to nodes 3 and 4 on the tree """ job.fileStore.logToMaster('Running bwa on %s:%s' % (univ_options['patient'], sample_type)) work_dir = job.fileStore.getLocalTempDir() fq_extn = '.gz' if fastqs['gzipped'] else '' input_files = { 'dna_1.fastq' + fq_extn: fastqs[sample_type][0], 'dna_2.fastq' + fq_extn: fastqs[sample_type][1], 'bwa_index.tar.gz': bwa_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['mem', '-t', str(bwa_options['n']), '-v', '1', # Don't print INFO messages to the stderr '/'.join([input_files['bwa_index'], 'hg19.fa']), input_files['dna_1.fastq'], input_files['dna_2.fastq']] with open(''.join([work_dir, '/', sample_type, '_aligned.sam']), 'w') as samfile: docker_call(tool='bwa', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], outfile=samfile) # samfile.name retains the path info output_file = job.fileStore.writeGlobalFile(samfile.name) samfile_processing = job.wrapJobFn(bam_conversion, output_file, sample_type, univ_options, disk='60G') job.addChild(samfile_processing) # Return values get passed up the chain to here. The return value will be a dict with # SAMPLE_TYPE_fix_pg_sorted.bam: jobStoreID # SAMPLE_TYPE_fix_pg_sorted.bam.bai: jobStoreID return samfile_processing.rv()
python
def run_bwa(job, fastqs, sample_type, univ_options, bwa_options): """ This module aligns the SAMPLE_TYPE dna fastqs to the reference ARGUMENTS -- <ST> depicts the sample type. Substitute with 'tumor'/'normal' 1. fastqs: Dict of list of input WGS/WXS fastqs fastqs +- '<ST>_dna': [<JSid for 1.fastq> , <JSid for 2.fastq>] 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 4. bwa_options: Dict of parameters specific to bwa bwa_options |- 'index_tar': <JSid for the bwa index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_files: Dict of aligned bam + reference (nested return) output_files |- '<ST>_fix_pg_sorted.bam': <JSid> +- '<ST>_fix_pg_sorted.bam.bai': <JSid> This module corresponds to nodes 3 and 4 on the tree """ job.fileStore.logToMaster('Running bwa on %s:%s' % (univ_options['patient'], sample_type)) work_dir = job.fileStore.getLocalTempDir() fq_extn = '.gz' if fastqs['gzipped'] else '' input_files = { 'dna_1.fastq' + fq_extn: fastqs[sample_type][0], 'dna_2.fastq' + fq_extn: fastqs[sample_type][1], 'bwa_index.tar.gz': bwa_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['mem', '-t', str(bwa_options['n']), '-v', '1', # Don't print INFO messages to the stderr '/'.join([input_files['bwa_index'], 'hg19.fa']), input_files['dna_1.fastq'], input_files['dna_2.fastq']] with open(''.join([work_dir, '/', sample_type, '_aligned.sam']), 'w') as samfile: docker_call(tool='bwa', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], outfile=samfile) # samfile.name retains the path info output_file = job.fileStore.writeGlobalFile(samfile.name) samfile_processing = job.wrapJobFn(bam_conversion, output_file, sample_type, univ_options, disk='60G') job.addChild(samfile_processing) # Return values get passed up the chain to here. The return value will be a dict with # SAMPLE_TYPE_fix_pg_sorted.bam: jobStoreID # SAMPLE_TYPE_fix_pg_sorted.bam.bai: jobStoreID return samfile_processing.rv()
[ "def", "run_bwa", "(", "job", ",", "fastqs", ",", "sample_type", ",", "univ_options", ",", "bwa_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running bwa on %s:%s'", "%", "(", "univ_options", "[", "'patient'", "]", ",", "sample_type", ")", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "fq_extn", "=", "'.gz'", "if", "fastqs", "[", "'gzipped'", "]", "else", "''", "input_files", "=", "{", "'dna_1.fastq'", "+", "fq_extn", ":", "fastqs", "[", "sample_type", "]", "[", "0", "]", ",", "'dna_2.fastq'", "+", "fq_extn", ":", "fastqs", "[", "sample_type", "]", "[", "1", "]", ",", "'bwa_index.tar.gz'", ":", "bwa_options", "[", "'index_tar'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "parameters", "=", "[", "'mem'", ",", "'-t'", ",", "str", "(", "bwa_options", "[", "'n'", "]", ")", ",", "'-v'", ",", "'1'", ",", "'/'", ".", "join", "(", "[", "input_files", "[", "'bwa_index'", "]", ",", "'hg19.fa'", "]", ")", ",", "input_files", "[", "'dna_1.fastq'", "]", ",", "input_files", "[", "'dna_2.fastq'", "]", "]", "with", "open", "(", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "sample_type", ",", "'_aligned.sam'", "]", ")", ",", "'w'", ")", "as", "samfile", ":", "docker_call", "(", "tool", "=", "'bwa'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "outfile", "=", "samfile", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "samfile", ".", "name", ")", "samfile_processing", "=", "job", ".", "wrapJobFn", "(", "bam_conversion", ",", "output_file", ",", "sample_type", ",", "univ_options", ",", "disk", "=", "'60G'", ")", "job", ".", "addChild", "(", "samfile_processing", ")", "return", "samfile_processing", ".", "rv", "(", ")" ]
This module aligns the SAMPLE_TYPE dna fastqs to the reference ARGUMENTS -- <ST> depicts the sample type. Substitute with 'tumor'/'normal' 1. fastqs: Dict of list of input WGS/WXS fastqs fastqs +- '<ST>_dna': [<JSid for 1.fastq> , <JSid for 2.fastq>] 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 4. bwa_options: Dict of parameters specific to bwa bwa_options |- 'index_tar': <JSid for the bwa index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_files: Dict of aligned bam + reference (nested return) output_files |- '<ST>_fix_pg_sorted.bam': <JSid> +- '<ST>_fix_pg_sorted.bam.bai': <JSid> This module corresponds to nodes 3 and 4 on the tree
[ "This", "module", "aligns", "the", "SAMPLE_TYPE", "dna", "fastqs", "to", "the", "reference" ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L364-L414
train
BD2KGenomics/protect
attic/ProTECT.py
bam_conversion
def bam_conversion(job, samfile, sample_type, univ_options): """ This module converts SAMFILE from sam to bam ARGUMENTS 1. samfile: <JSid for a sam file> 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> RETURN VALUES 1. output_files: REFER output_files in run_bwa() """ job.fileStore.logToMaster('Running sam2bam on %s:%s' % (univ_options['patient'], sample_type)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'aligned.sam': samfile} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) bamfile = '/'.join([work_dir, 'aligned.bam']) parameters = ['view', '-bS', '-o', docker_path(bamfile), input_files['aligned.sam'] ] docker_call(tool='samtools', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_file = job.fileStore.writeGlobalFile(bamfile) job.fileStore.deleteGlobalFile(samfile) reheader_bam = job.wrapJobFn(fix_bam_header, output_file, sample_type, univ_options, disk='60G') job.addChild(reheader_bam) return reheader_bam.rv()
python
def bam_conversion(job, samfile, sample_type, univ_options): """ This module converts SAMFILE from sam to bam ARGUMENTS 1. samfile: <JSid for a sam file> 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> RETURN VALUES 1. output_files: REFER output_files in run_bwa() """ job.fileStore.logToMaster('Running sam2bam on %s:%s' % (univ_options['patient'], sample_type)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'aligned.sam': samfile} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) bamfile = '/'.join([work_dir, 'aligned.bam']) parameters = ['view', '-bS', '-o', docker_path(bamfile), input_files['aligned.sam'] ] docker_call(tool='samtools', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_file = job.fileStore.writeGlobalFile(bamfile) job.fileStore.deleteGlobalFile(samfile) reheader_bam = job.wrapJobFn(fix_bam_header, output_file, sample_type, univ_options, disk='60G') job.addChild(reheader_bam) return reheader_bam.rv()
[ "def", "bam_conversion", "(", "job", ",", "samfile", ",", "sample_type", ",", "univ_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running sam2bam on %s:%s'", "%", "(", "univ_options", "[", "'patient'", "]", ",", "sample_type", ")", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'aligned.sam'", ":", "samfile", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "bamfile", "=", "'/'", ".", "join", "(", "[", "work_dir", ",", "'aligned.bam'", "]", ")", "parameters", "=", "[", "'view'", ",", "'-bS'", ",", "'-o'", ",", "docker_path", "(", "bamfile", ")", ",", "input_files", "[", "'aligned.sam'", "]", "]", "docker_call", "(", "tool", "=", "'samtools'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "bamfile", ")", "job", ".", "fileStore", ".", "deleteGlobalFile", "(", "samfile", ")", "reheader_bam", "=", "job", ".", "wrapJobFn", "(", "fix_bam_header", ",", "output_file", ",", "sample_type", ",", "univ_options", ",", "disk", "=", "'60G'", ")", "job", ".", "addChild", "(", "reheader_bam", ")", "return", "reheader_bam", ".", "rv", "(", ")" ]
This module converts SAMFILE from sam to bam ARGUMENTS 1. samfile: <JSid for a sam file> 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> RETURN VALUES 1. output_files: REFER output_files in run_bwa()
[ "This", "module", "converts", "SAMFILE", "from", "sam", "to", "bam" ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L417-L448
train
BD2KGenomics/protect
attic/ProTECT.py
fix_bam_header
def fix_bam_header(job, bamfile, sample_type, univ_options): """ This module modified the header in BAMFILE ARGUMENTS 1. bamfile: <JSid for a bam file> 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> RETURN VALUES 1. output_files: REFER output_files in run_bwa() """ job.fileStore.logToMaster('Running reheader on %s:%s' % (univ_options['patient'], sample_type)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'aligned.bam': bamfile} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['view', '-H', input_files['aligned.bam']] with open('/'.join([work_dir, 'aligned_bam.header']), 'w') as headerfile: docker_call(tool='samtools', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], outfile=headerfile) with open(headerfile.name, 'r') as headerfile, \ open('/'.join([work_dir, 'output_bam.header']), 'w') as outheaderfile: for line in headerfile: if line.startswith('@PG'): line = '\t'.join([x for x in line.strip().split('\t') if not x.startswith('CL')]) print(line.strip(), file=outheaderfile) parameters = ['reheader', docker_path(outheaderfile.name), input_files['aligned.bam']] with open('/'.join([work_dir, 'aligned_fixPG.bam']), 'w') as fixpg_bamfile: docker_call(tool='samtools', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], outfile=fixpg_bamfile) output_file = job.fileStore.writeGlobalFile(fixpg_bamfile.name) job.fileStore.deleteGlobalFile(bamfile) add_rg = job.wrapJobFn(add_readgroups, output_file, sample_type, univ_options, disk='60G') job.addChild(add_rg) return add_rg.rv()
python
def fix_bam_header(job, bamfile, sample_type, univ_options): """ This module modified the header in BAMFILE ARGUMENTS 1. bamfile: <JSid for a bam file> 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> RETURN VALUES 1. output_files: REFER output_files in run_bwa() """ job.fileStore.logToMaster('Running reheader on %s:%s' % (univ_options['patient'], sample_type)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'aligned.bam': bamfile} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['view', '-H', input_files['aligned.bam']] with open('/'.join([work_dir, 'aligned_bam.header']), 'w') as headerfile: docker_call(tool='samtools', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], outfile=headerfile) with open(headerfile.name, 'r') as headerfile, \ open('/'.join([work_dir, 'output_bam.header']), 'w') as outheaderfile: for line in headerfile: if line.startswith('@PG'): line = '\t'.join([x for x in line.strip().split('\t') if not x.startswith('CL')]) print(line.strip(), file=outheaderfile) parameters = ['reheader', docker_path(outheaderfile.name), input_files['aligned.bam']] with open('/'.join([work_dir, 'aligned_fixPG.bam']), 'w') as fixpg_bamfile: docker_call(tool='samtools', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], outfile=fixpg_bamfile) output_file = job.fileStore.writeGlobalFile(fixpg_bamfile.name) job.fileStore.deleteGlobalFile(bamfile) add_rg = job.wrapJobFn(add_readgroups, output_file, sample_type, univ_options, disk='60G') job.addChild(add_rg) return add_rg.rv()
[ "def", "fix_bam_header", "(", "job", ",", "bamfile", ",", "sample_type", ",", "univ_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running reheader on %s:%s'", "%", "(", "univ_options", "[", "'patient'", "]", ",", "sample_type", ")", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'aligned.bam'", ":", "bamfile", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "parameters", "=", "[", "'view'", ",", "'-H'", ",", "input_files", "[", "'aligned.bam'", "]", "]", "with", "open", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'aligned_bam.header'", "]", ")", ",", "'w'", ")", "as", "headerfile", ":", "docker_call", "(", "tool", "=", "'samtools'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "outfile", "=", "headerfile", ")", "with", "open", "(", "headerfile", ".", "name", ",", "'r'", ")", "as", "headerfile", ",", "open", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'output_bam.header'", "]", ")", ",", "'w'", ")", "as", "outheaderfile", ":", "for", "line", "in", "headerfile", ":", "if", "line", ".", "startswith", "(", "'@PG'", ")", ":", "line", "=", "'\\t'", ".", "join", "(", "[", "x", "for", "x", "in", "line", ".", "strip", "(", ")", ".", "split", "(", "'\\t'", ")", "if", "not", "x", ".", "startswith", "(", "'CL'", ")", "]", ")", "print", "(", "line", ".", "strip", "(", ")", ",", "file", "=", "outheaderfile", ")", "parameters", "=", "[", "'reheader'", ",", "docker_path", "(", "outheaderfile", ".", "name", ")", ",", "input_files", "[", "'aligned.bam'", "]", "]", "with", "open", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'aligned_fixPG.bam'", "]", ")", ",", "'w'", ")", "as", "fixpg_bamfile", ":", "docker_call", "(", "tool", "=", "'samtools'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "outfile", "=", "fixpg_bamfile", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "fixpg_bamfile", ".", "name", ")", "job", ".", "fileStore", ".", "deleteGlobalFile", "(", "bamfile", ")", "add_rg", "=", "job", ".", "wrapJobFn", "(", "add_readgroups", ",", "output_file", ",", "sample_type", ",", "univ_options", ",", "disk", "=", "'60G'", ")", "job", ".", "addChild", "(", "add_rg", ")", "return", "add_rg", ".", "rv", "(", ")" ]
This module modified the header in BAMFILE ARGUMENTS 1. bamfile: <JSid for a bam file> 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> RETURN VALUES 1. output_files: REFER output_files in run_bwa()
[ "This", "module", "modified", "the", "header", "in", "BAMFILE" ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L451-L491
train
BD2KGenomics/protect
attic/ProTECT.py
run_rsem
def run_rsem(job, star_bams, univ_options, rsem_options): """ This module will run rsem on the RNA Bam file. ARGUMENTS 1. star_bams: Dict of input STAR bams star_bams +- 'rnaAligned.toTranscriptome.out.bam': <JSid> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. rsem_options: Dict of parameters specific to rsem rsem_options |- 'index_tar': <JSid for the rsem index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_file: <Jsid of rsem.isoforms.results> This module corresponds to node 9 on the tree """ job.fileStore.logToMaster('Running rsem index on %s' % univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() input_files = { 'star_transcriptome.bam': star_bams['rnaAligned.toTranscriptome.out.bam'], 'rsem_index.tar.gz': rsem_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['--paired-end', '-p', str(rsem_options['n']), '--bam', input_files['star_transcriptome.bam'], '--no-bam-output', '/'.join([input_files['rsem_index'], 'hg19']), 'rsem'] docker_call(tool='rsem', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_file = \ job.fileStore.writeGlobalFile('/'.join([work_dir, 'rsem.isoforms.results'])) return output_file
python
def run_rsem(job, star_bams, univ_options, rsem_options): """ This module will run rsem on the RNA Bam file. ARGUMENTS 1. star_bams: Dict of input STAR bams star_bams +- 'rnaAligned.toTranscriptome.out.bam': <JSid> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. rsem_options: Dict of parameters specific to rsem rsem_options |- 'index_tar': <JSid for the rsem index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_file: <Jsid of rsem.isoforms.results> This module corresponds to node 9 on the tree """ job.fileStore.logToMaster('Running rsem index on %s' % univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() input_files = { 'star_transcriptome.bam': star_bams['rnaAligned.toTranscriptome.out.bam'], 'rsem_index.tar.gz': rsem_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['--paired-end', '-p', str(rsem_options['n']), '--bam', input_files['star_transcriptome.bam'], '--no-bam-output', '/'.join([input_files['rsem_index'], 'hg19']), 'rsem'] docker_call(tool='rsem', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_file = \ job.fileStore.writeGlobalFile('/'.join([work_dir, 'rsem.isoforms.results'])) return output_file
[ "def", "run_rsem", "(", "job", ",", "star_bams", ",", "univ_options", ",", "rsem_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running rsem index on %s'", "%", "univ_options", "[", "'patient'", "]", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'star_transcriptome.bam'", ":", "star_bams", "[", "'rnaAligned.toTranscriptome.out.bam'", "]", ",", "'rsem_index.tar.gz'", ":", "rsem_options", "[", "'index_tar'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "parameters", "=", "[", "'--paired-end'", ",", "'-p'", ",", "str", "(", "rsem_options", "[", "'n'", "]", ")", ",", "'--bam'", ",", "input_files", "[", "'star_transcriptome.bam'", "]", ",", "'--no-bam-output'", ",", "'/'", ".", "join", "(", "[", "input_files", "[", "'rsem_index'", "]", ",", "'hg19'", "]", ")", ",", "'rsem'", "]", "docker_call", "(", "tool", "=", "'rsem'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'rsem.isoforms.results'", "]", ")", ")", "return", "output_file" ]
This module will run rsem on the RNA Bam file. ARGUMENTS 1. star_bams: Dict of input STAR bams star_bams +- 'rnaAligned.toTranscriptome.out.bam': <JSid> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. rsem_options: Dict of parameters specific to rsem rsem_options |- 'index_tar': <JSid for the rsem index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_file: <Jsid of rsem.isoforms.results> This module corresponds to node 9 on the tree
[ "This", "module", "will", "run", "rsem", "on", "the", "RNA", "Bam", "file", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L565-L603
train
BD2KGenomics/protect
attic/ProTECT.py
merge_radia
def merge_radia(job, perchrom_rvs): """ This module will merge the per-chromosome radia files created by spawn_radia into a genome vcf. It will make 2 vcfs, one for PASSing non-germline calls, and one for all calls. ARGUMENTS 1. perchrom_rvs: REFER RETURN VALUE of spawn_radia() RETURN VALUES 1. output_files: Dict of outputs output_files |- radia_calls.vcf: <JSid> +- radia_parsed_filter_passing_calls.vcf: <JSid> This module corresponds to node 11 on the tree """ job.fileStore.logToMaster('Running merge_radia') work_dir = job.fileStore.getLocalTempDir() # We need to squash the input dict of dicts to a single dict such that it can be passed to # get_files_from_filestore input_files = {filename: jsid for perchrom_files in perchrom_rvs.values() for filename, jsid in perchrom_files.items()} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) chromosomes = [''.join(['chr', str(x)]) for x in range(1, 23) + ['X', 'Y']] with open('/'.join([work_dir, 'radia_calls.vcf']), 'w') as radfile, \ open('/'.join([work_dir, 'radia_filter_passing_calls.vcf']), 'w') as radpassfile: for chrom in chromosomes: with open(input_files[''.join(['radia_filtered_', chrom, '.vcf'])], 'r') as filtradfile: for line in filtradfile: line = line.strip() if line.startswith('#'): if chrom == 'chr1': print(line, file=radfile) print(line, file=radpassfile) continue else: print(line, file=radfile) line = line.split('\t') if line[6] == 'PASS' and 'MT=GERM' not in line[7]: print('\t'.join(line), file=radpassfile) # parse the PASS radia vcf for multiple alt alleles with open(radpassfile.name, 'r') as radpassfile, \ open('/'.join([work_dir, 'radia_parsed_filter_passing_calls.vcf']), 'w') as parsedradfile: parse_radia_multi_alt(radpassfile, parsedradfile) output_files = defaultdict() for radia_file in [radfile.name, parsedradfile.name]: output_files[os.path.basename(radia_file)] = job.fileStore.writeGlobalFile(radia_file) return output_files
python
def merge_radia(job, perchrom_rvs): """ This module will merge the per-chromosome radia files created by spawn_radia into a genome vcf. It will make 2 vcfs, one for PASSing non-germline calls, and one for all calls. ARGUMENTS 1. perchrom_rvs: REFER RETURN VALUE of spawn_radia() RETURN VALUES 1. output_files: Dict of outputs output_files |- radia_calls.vcf: <JSid> +- radia_parsed_filter_passing_calls.vcf: <JSid> This module corresponds to node 11 on the tree """ job.fileStore.logToMaster('Running merge_radia') work_dir = job.fileStore.getLocalTempDir() # We need to squash the input dict of dicts to a single dict such that it can be passed to # get_files_from_filestore input_files = {filename: jsid for perchrom_files in perchrom_rvs.values() for filename, jsid in perchrom_files.items()} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) chromosomes = [''.join(['chr', str(x)]) for x in range(1, 23) + ['X', 'Y']] with open('/'.join([work_dir, 'radia_calls.vcf']), 'w') as radfile, \ open('/'.join([work_dir, 'radia_filter_passing_calls.vcf']), 'w') as radpassfile: for chrom in chromosomes: with open(input_files[''.join(['radia_filtered_', chrom, '.vcf'])], 'r') as filtradfile: for line in filtradfile: line = line.strip() if line.startswith('#'): if chrom == 'chr1': print(line, file=radfile) print(line, file=radpassfile) continue else: print(line, file=radfile) line = line.split('\t') if line[6] == 'PASS' and 'MT=GERM' not in line[7]: print('\t'.join(line), file=radpassfile) # parse the PASS radia vcf for multiple alt alleles with open(radpassfile.name, 'r') as radpassfile, \ open('/'.join([work_dir, 'radia_parsed_filter_passing_calls.vcf']), 'w') as parsedradfile: parse_radia_multi_alt(radpassfile, parsedradfile) output_files = defaultdict() for radia_file in [radfile.name, parsedradfile.name]: output_files[os.path.basename(radia_file)] = job.fileStore.writeGlobalFile(radia_file) return output_files
[ "def", "merge_radia", "(", "job", ",", "perchrom_rvs", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running merge_radia'", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "filename", ":", "jsid", "for", "perchrom_files", "in", "perchrom_rvs", ".", "values", "(", ")", "for", "filename", ",", "jsid", "in", "perchrom_files", ".", "items", "(", ")", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "False", ")", "chromosomes", "=", "[", "''", ".", "join", "(", "[", "'chr'", ",", "str", "(", "x", ")", "]", ")", "for", "x", "in", "range", "(", "1", ",", "23", ")", "+", "[", "'X'", ",", "'Y'", "]", "]", "with", "open", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'radia_calls.vcf'", "]", ")", ",", "'w'", ")", "as", "radfile", ",", "open", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'radia_filter_passing_calls.vcf'", "]", ")", ",", "'w'", ")", "as", "radpassfile", ":", "for", "chrom", "in", "chromosomes", ":", "with", "open", "(", "input_files", "[", "''", ".", "join", "(", "[", "'radia_filtered_'", ",", "chrom", ",", "'.vcf'", "]", ")", "]", ",", "'r'", ")", "as", "filtradfile", ":", "for", "line", "in", "filtradfile", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "line", ".", "startswith", "(", "'#'", ")", ":", "if", "chrom", "==", "'chr1'", ":", "print", "(", "line", ",", "file", "=", "radfile", ")", "print", "(", "line", ",", "file", "=", "radpassfile", ")", "continue", "else", ":", "print", "(", "line", ",", "file", "=", "radfile", ")", "line", "=", "line", ".", "split", "(", "'\\t'", ")", "if", "line", "[", "6", "]", "==", "'PASS'", "and", "'MT=GERM'", "not", "in", "line", "[", "7", "]", ":", "print", "(", "'\\t'", ".", "join", "(", "line", ")", ",", "file", "=", "radpassfile", ")", "with", "open", "(", "radpassfile", ".", "name", ",", "'r'", ")", "as", "radpassfile", ",", "open", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'radia_parsed_filter_passing_calls.vcf'", "]", ")", ",", "'w'", ")", "as", "parsedradfile", ":", "parse_radia_multi_alt", "(", "radpassfile", ",", "parsedradfile", ")", "output_files", "=", "defaultdict", "(", ")", "for", "radia_file", "in", "[", "radfile", ".", "name", ",", "parsedradfile", ".", "name", "]", ":", "output_files", "[", "os", ".", "path", ".", "basename", "(", "radia_file", ")", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "radia_file", ")", "return", "output_files" ]
This module will merge the per-chromosome radia files created by spawn_radia into a genome vcf. It will make 2 vcfs, one for PASSing non-germline calls, and one for all calls. ARGUMENTS 1. perchrom_rvs: REFER RETURN VALUE of spawn_radia() RETURN VALUES 1. output_files: Dict of outputs output_files |- radia_calls.vcf: <JSid> +- radia_parsed_filter_passing_calls.vcf: <JSid> This module corresponds to node 11 on the tree
[ "This", "module", "will", "merge", "the", "per", "-", "chromosome", "radia", "files", "created", "by", "spawn_radia", "into", "a", "genome", "vcf", ".", "It", "will", "make", "2", "vcfs", "one", "for", "PASSing", "non", "-", "germline", "calls", "and", "one", "for", "all", "calls", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L738-L787
train
BD2KGenomics/protect
attic/ProTECT.py
run_radia
def run_radia(job, bams, univ_options, radia_options, chrom): """ This module will run radia on the RNA and DNA bams ARGUMENTS 1. bams: Dict of bams and their indexes bams |- 'tumor_rna': <JSid> |- 'tumor_rnai': <JSid> |- 'tumor_dna': <JSid> |- 'tumor_dnai': <JSid> |- 'normal_dna': <JSid> +- 'normal_dnai': <JSid> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. radia_options: Dict of parameters specific to radia radia_options |- 'dbsnp_vcf': <JSid for dnsnp vcf file> +- 'genome': <JSid for genome fasta file> 4. chrom: String containing chromosome name with chr appended RETURN VALUES 1. Dict of filtered radia output vcf and logfile (Nested return) |- 'radia_filtered_CHROM.vcf': <JSid> +- 'radia_filtered_CHROM_radia.log': <JSid> """ job.fileStore.logToMaster('Running radia on %s:%s' %(univ_options['patient'], chrom)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'rna.bam': bams['tumor_rna'], 'rna.bam.bai': bams['tumor_rnai'], 'tumor.bam': bams['tumor_dna'], 'tumor.bam.bai': bams['tumor_dnai'], 'normal.bam': bams['normal_dna'], 'normal.bam.bai': bams['normal_dnai'], 'genome.fasta': radia_options['genome_fasta'], 'genome.fasta.fai': radia_options['genome_fai']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) radia_output = ''.join([work_dir, '/radia_', chrom, '.vcf']) radia_log = ''.join([work_dir, '/radia_', chrom, '_radia.log']) parameters = [univ_options['patient'], # shortID chrom, '-n', input_files['normal.bam'], '-t', input_files['tumor.bam'], '-r', input_files['rna.bam'], ''.join(['--rnaTumorFasta=', input_files['genome.fasta']]), '-f', input_files['genome.fasta'], '-o', docker_path(radia_output), '-i', 'hg19_M_rCRS', '-m', input_files['genome.fasta'], '-d', '[email protected]', '-q', 'Illumina', '--disease', 'CANCER', '-l', 'INFO', '-g', docker_path(radia_log)] docker_call(tool='radia', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files = defaultdict() for radia_file in [radia_output, radia_log]: output_files[os.path.basename(radia_file)] = \ job.fileStore.writeGlobalFile(radia_file) filterradia = job.wrapJobFn(run_filter_radia, bams, output_files[os.path.basename(radia_output)], univ_options, radia_options, chrom, disk='60G', memory='6G') job.addChild(filterradia) return filterradia.rv()
python
def run_radia(job, bams, univ_options, radia_options, chrom): """ This module will run radia on the RNA and DNA bams ARGUMENTS 1. bams: Dict of bams and their indexes bams |- 'tumor_rna': <JSid> |- 'tumor_rnai': <JSid> |- 'tumor_dna': <JSid> |- 'tumor_dnai': <JSid> |- 'normal_dna': <JSid> +- 'normal_dnai': <JSid> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. radia_options: Dict of parameters specific to radia radia_options |- 'dbsnp_vcf': <JSid for dnsnp vcf file> +- 'genome': <JSid for genome fasta file> 4. chrom: String containing chromosome name with chr appended RETURN VALUES 1. Dict of filtered radia output vcf and logfile (Nested return) |- 'radia_filtered_CHROM.vcf': <JSid> +- 'radia_filtered_CHROM_radia.log': <JSid> """ job.fileStore.logToMaster('Running radia on %s:%s' %(univ_options['patient'], chrom)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'rna.bam': bams['tumor_rna'], 'rna.bam.bai': bams['tumor_rnai'], 'tumor.bam': bams['tumor_dna'], 'tumor.bam.bai': bams['tumor_dnai'], 'normal.bam': bams['normal_dna'], 'normal.bam.bai': bams['normal_dnai'], 'genome.fasta': radia_options['genome_fasta'], 'genome.fasta.fai': radia_options['genome_fai']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) radia_output = ''.join([work_dir, '/radia_', chrom, '.vcf']) radia_log = ''.join([work_dir, '/radia_', chrom, '_radia.log']) parameters = [univ_options['patient'], # shortID chrom, '-n', input_files['normal.bam'], '-t', input_files['tumor.bam'], '-r', input_files['rna.bam'], ''.join(['--rnaTumorFasta=', input_files['genome.fasta']]), '-f', input_files['genome.fasta'], '-o', docker_path(radia_output), '-i', 'hg19_M_rCRS', '-m', input_files['genome.fasta'], '-d', '[email protected]', '-q', 'Illumina', '--disease', 'CANCER', '-l', 'INFO', '-g', docker_path(radia_log)] docker_call(tool='radia', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files = defaultdict() for radia_file in [radia_output, radia_log]: output_files[os.path.basename(radia_file)] = \ job.fileStore.writeGlobalFile(radia_file) filterradia = job.wrapJobFn(run_filter_radia, bams, output_files[os.path.basename(radia_output)], univ_options, radia_options, chrom, disk='60G', memory='6G') job.addChild(filterradia) return filterradia.rv()
[ "def", "run_radia", "(", "job", ",", "bams", ",", "univ_options", ",", "radia_options", ",", "chrom", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running radia on %s:%s'", "%", "(", "univ_options", "[", "'patient'", "]", ",", "chrom", ")", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'rna.bam'", ":", "bams", "[", "'tumor_rna'", "]", ",", "'rna.bam.bai'", ":", "bams", "[", "'tumor_rnai'", "]", ",", "'tumor.bam'", ":", "bams", "[", "'tumor_dna'", "]", ",", "'tumor.bam.bai'", ":", "bams", "[", "'tumor_dnai'", "]", ",", "'normal.bam'", ":", "bams", "[", "'normal_dna'", "]", ",", "'normal.bam.bai'", ":", "bams", "[", "'normal_dnai'", "]", ",", "'genome.fasta'", ":", "radia_options", "[", "'genome_fasta'", "]", ",", "'genome.fasta.fai'", ":", "radia_options", "[", "'genome_fai'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "radia_output", "=", "''", ".", "join", "(", "[", "work_dir", ",", "'/radia_'", ",", "chrom", ",", "'.vcf'", "]", ")", "radia_log", "=", "''", ".", "join", "(", "[", "work_dir", ",", "'/radia_'", ",", "chrom", ",", "'_radia.log'", "]", ")", "parameters", "=", "[", "univ_options", "[", "'patient'", "]", ",", "chrom", ",", "'-n'", ",", "input_files", "[", "'normal.bam'", "]", ",", "'-t'", ",", "input_files", "[", "'tumor.bam'", "]", ",", "'-r'", ",", "input_files", "[", "'rna.bam'", "]", ",", "''", ".", "join", "(", "[", "'--rnaTumorFasta='", ",", "input_files", "[", "'genome.fasta'", "]", "]", ")", ",", "'-f'", ",", "input_files", "[", "'genome.fasta'", "]", ",", "'-o'", ",", "docker_path", "(", "radia_output", ")", ",", "'-i'", ",", "'hg19_M_rCRS'", ",", "'-m'", ",", "input_files", "[", "'genome.fasta'", "]", ",", "'-d'", ",", "'[email protected]'", ",", "'-q'", ",", "'Illumina'", ",", "'--disease'", ",", "'CANCER'", ",", "'-l'", ",", "'INFO'", ",", "'-g'", ",", "docker_path", "(", "radia_log", ")", "]", "docker_call", "(", "tool", "=", "'radia'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ")", "output_files", "=", "defaultdict", "(", ")", "for", "radia_file", "in", "[", "radia_output", ",", "radia_log", "]", ":", "output_files", "[", "os", ".", "path", ".", "basename", "(", "radia_file", ")", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "radia_file", ")", "filterradia", "=", "job", ".", "wrapJobFn", "(", "run_filter_radia", ",", "bams", ",", "output_files", "[", "os", ".", "path", ".", "basename", "(", "radia_output", ")", "]", ",", "univ_options", ",", "radia_options", ",", "chrom", ",", "disk", "=", "'60G'", ",", "memory", "=", "'6G'", ")", "job", ".", "addChild", "(", "filterradia", ")", "return", "filterradia", ".", "rv", "(", ")" ]
This module will run radia on the RNA and DNA bams ARGUMENTS 1. bams: Dict of bams and their indexes bams |- 'tumor_rna': <JSid> |- 'tumor_rnai': <JSid> |- 'tumor_dna': <JSid> |- 'tumor_dnai': <JSid> |- 'normal_dna': <JSid> +- 'normal_dnai': <JSid> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. radia_options: Dict of parameters specific to radia radia_options |- 'dbsnp_vcf': <JSid for dnsnp vcf file> +- 'genome': <JSid for genome fasta file> 4. chrom: String containing chromosome name with chr appended RETURN VALUES 1. Dict of filtered radia output vcf and logfile (Nested return) |- 'radia_filtered_CHROM.vcf': <JSid> +- 'radia_filtered_CHROM_radia.log': <JSid>
[ "This", "module", "will", "run", "radia", "on", "the", "RNA", "and", "DNA", "bams" ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L790-L857
train
BD2KGenomics/protect
attic/ProTECT.py
run_filter_radia
def run_filter_radia(job, bams, radia_file, univ_options, radia_options, chrom): """ This module will run filterradia on the RNA and DNA bams. ARGUMENTS 1. bams: REFER ARGUMENTS of run_radia() 2. univ_options: REFER ARGUMENTS of run_radia() 3. radia_file: <JSid of vcf generated by run_radia()> 3. radia_options: REFER ARGUMENTS of run_radia() 4. chrom: REFER ARGUMENTS of run_radia() RETURN VALUES 1. Dict of filtered radia output vcf and logfile |- 'radia_filtered_CHROM.vcf': <JSid> +- 'radia_filtered_CHROM_radia.log': <JSid> """ job.fileStore.logToMaster('Running filter-radia on %s:%s' % (univ_options['patient'], chrom)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'rna.bam': bams['tumor_rna'], 'rna.bam.bai': bams['tumor_rnai'], 'tumor.bam': bams['tumor_dna'], 'tumor.bam.bai': bams['tumor_dnai'], 'normal.bam': bams['normal_dna'], 'normal.bam.bai': bams['normal_dnai'], 'radia.vcf': radia_file, 'genome.fasta': radia_options['genome_fasta'], 'genome.fasta.fai': radia_options['genome_fai'] } input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) filterradia_output = ''.join(['radia_filtered_', chrom, '.vcf']) filterradia_log = ''.join([work_dir, '/radia_filtered_', chrom, '_radia.log' ]) parameters = [univ_options['patient'], # shortID chrom.lstrip('chr'), input_files['radia.vcf'], '/data', '/home/radia/scripts', '-b', '/home/radia/data/hg19/blacklists/1000Genomes/phase1/', '-d', '/home/radia/data/hg19/snp135', '-r', '/home/radia/data/hg19/retroGenes/', '-p', '/home/radia/data/hg19/pseudoGenes/', '-c', '/home/radia/data/hg19/cosmic/', '-t', '/home/radia/data/hg19/gaf/2_1', '--noSnpEff', '--rnaGeneBlckFile', '/home/radia/data/rnaGeneBlacklist.tab', '--rnaGeneFamilyBlckFile', '/home/radia/data/rnaGeneFamilyBlacklist.tab', '-f', input_files['genome.fasta'], '--log=INFO', '-g', docker_path(filterradia_log)] docker_call(tool='filterradia', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files = defaultdict() output_files[filterradia_output] = \ job.fileStore.writeGlobalFile(''.join([work_dir, '/', univ_options['patient'], '_', chrom, '.vcf'])) output_files[os.path.basename(filterradia_log)] = \ job.fileStore.writeGlobalFile(filterradia_log) return output_files
python
def run_filter_radia(job, bams, radia_file, univ_options, radia_options, chrom): """ This module will run filterradia on the RNA and DNA bams. ARGUMENTS 1. bams: REFER ARGUMENTS of run_radia() 2. univ_options: REFER ARGUMENTS of run_radia() 3. radia_file: <JSid of vcf generated by run_radia()> 3. radia_options: REFER ARGUMENTS of run_radia() 4. chrom: REFER ARGUMENTS of run_radia() RETURN VALUES 1. Dict of filtered radia output vcf and logfile |- 'radia_filtered_CHROM.vcf': <JSid> +- 'radia_filtered_CHROM_radia.log': <JSid> """ job.fileStore.logToMaster('Running filter-radia on %s:%s' % (univ_options['patient'], chrom)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'rna.bam': bams['tumor_rna'], 'rna.bam.bai': bams['tumor_rnai'], 'tumor.bam': bams['tumor_dna'], 'tumor.bam.bai': bams['tumor_dnai'], 'normal.bam': bams['normal_dna'], 'normal.bam.bai': bams['normal_dnai'], 'radia.vcf': radia_file, 'genome.fasta': radia_options['genome_fasta'], 'genome.fasta.fai': radia_options['genome_fai'] } input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) filterradia_output = ''.join(['radia_filtered_', chrom, '.vcf']) filterradia_log = ''.join([work_dir, '/radia_filtered_', chrom, '_radia.log' ]) parameters = [univ_options['patient'], # shortID chrom.lstrip('chr'), input_files['radia.vcf'], '/data', '/home/radia/scripts', '-b', '/home/radia/data/hg19/blacklists/1000Genomes/phase1/', '-d', '/home/radia/data/hg19/snp135', '-r', '/home/radia/data/hg19/retroGenes/', '-p', '/home/radia/data/hg19/pseudoGenes/', '-c', '/home/radia/data/hg19/cosmic/', '-t', '/home/radia/data/hg19/gaf/2_1', '--noSnpEff', '--rnaGeneBlckFile', '/home/radia/data/rnaGeneBlacklist.tab', '--rnaGeneFamilyBlckFile', '/home/radia/data/rnaGeneFamilyBlacklist.tab', '-f', input_files['genome.fasta'], '--log=INFO', '-g', docker_path(filterradia_log)] docker_call(tool='filterradia', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files = defaultdict() output_files[filterradia_output] = \ job.fileStore.writeGlobalFile(''.join([work_dir, '/', univ_options['patient'], '_', chrom, '.vcf'])) output_files[os.path.basename(filterradia_log)] = \ job.fileStore.writeGlobalFile(filterradia_log) return output_files
[ "def", "run_filter_radia", "(", "job", ",", "bams", ",", "radia_file", ",", "univ_options", ",", "radia_options", ",", "chrom", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running filter-radia on %s:%s'", "%", "(", "univ_options", "[", "'patient'", "]", ",", "chrom", ")", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'rna.bam'", ":", "bams", "[", "'tumor_rna'", "]", ",", "'rna.bam.bai'", ":", "bams", "[", "'tumor_rnai'", "]", ",", "'tumor.bam'", ":", "bams", "[", "'tumor_dna'", "]", ",", "'tumor.bam.bai'", ":", "bams", "[", "'tumor_dnai'", "]", ",", "'normal.bam'", ":", "bams", "[", "'normal_dna'", "]", ",", "'normal.bam.bai'", ":", "bams", "[", "'normal_dnai'", "]", ",", "'radia.vcf'", ":", "radia_file", ",", "'genome.fasta'", ":", "radia_options", "[", "'genome_fasta'", "]", ",", "'genome.fasta.fai'", ":", "radia_options", "[", "'genome_fai'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "filterradia_output", "=", "''", ".", "join", "(", "[", "'radia_filtered_'", ",", "chrom", ",", "'.vcf'", "]", ")", "filterradia_log", "=", "''", ".", "join", "(", "[", "work_dir", ",", "'/radia_filtered_'", ",", "chrom", ",", "'_radia.log'", "]", ")", "parameters", "=", "[", "univ_options", "[", "'patient'", "]", ",", "chrom", ".", "lstrip", "(", "'chr'", ")", ",", "input_files", "[", "'radia.vcf'", "]", ",", "'/data'", ",", "'/home/radia/scripts'", ",", "'-b'", ",", "'/home/radia/data/hg19/blacklists/1000Genomes/phase1/'", ",", "'-d'", ",", "'/home/radia/data/hg19/snp135'", ",", "'-r'", ",", "'/home/radia/data/hg19/retroGenes/'", ",", "'-p'", ",", "'/home/radia/data/hg19/pseudoGenes/'", ",", "'-c'", ",", "'/home/radia/data/hg19/cosmic/'", ",", "'-t'", ",", "'/home/radia/data/hg19/gaf/2_1'", ",", "'--noSnpEff'", ",", "'--rnaGeneBlckFile'", ",", "'/home/radia/data/rnaGeneBlacklist.tab'", ",", "'--rnaGeneFamilyBlckFile'", ",", "'/home/radia/data/rnaGeneFamilyBlacklist.tab'", ",", "'-f'", ",", "input_files", "[", "'genome.fasta'", "]", ",", "'--log=INFO'", ",", "'-g'", ",", "docker_path", "(", "filterradia_log", ")", "]", "docker_call", "(", "tool", "=", "'filterradia'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ")", "output_files", "=", "defaultdict", "(", ")", "output_files", "[", "filterradia_output", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "univ_options", "[", "'patient'", "]", ",", "'_'", ",", "chrom", ",", "'.vcf'", "]", ")", ")", "output_files", "[", "os", ".", "path", ".", "basename", "(", "filterradia_log", ")", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "filterradia_log", ")", "return", "output_files" ]
This module will run filterradia on the RNA and DNA bams. ARGUMENTS 1. bams: REFER ARGUMENTS of run_radia() 2. univ_options: REFER ARGUMENTS of run_radia() 3. radia_file: <JSid of vcf generated by run_radia()> 3. radia_options: REFER ARGUMENTS of run_radia() 4. chrom: REFER ARGUMENTS of run_radia() RETURN VALUES 1. Dict of filtered radia output vcf and logfile |- 'radia_filtered_CHROM.vcf': <JSid> +- 'radia_filtered_CHROM_radia.log': <JSid>
[ "This", "module", "will", "run", "filterradia", "on", "the", "RNA", "and", "DNA", "bams", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L860-L921
train
BD2KGenomics/protect
attic/ProTECT.py
merge_mutect
def merge_mutect(job, perchrom_rvs): """ This module will merge the per-chromosome mutect files created by spawn_mutect into a genome vcf. It will make 2 vcfs, one for PASSing non-germline calls, and one for all calls. ARGUMENTS 1. perchrom_rvs: REFER RETURN VALUE of spawn_mutect() RETURN VALUES 1. output_files: <JSid for mutect_passing_calls.vcf> This module corresponds to node 11 on the tree """ job.fileStore.logToMaster('Running merge_mutect') work_dir = job.fileStore.getLocalTempDir() # We need to squash the input dict of dicts to a single dict such that it can be passed to # get_files_from_filestore input_files = {filename: jsid for perchrom_files in perchrom_rvs.values() for filename, jsid in perchrom_files.items()} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) chromosomes = [''.join(['chr', str(x)]) for x in range(1, 23) + ['X', 'Y']] with open('/'.join([work_dir, 'mutect_calls.vcf']), 'w') as mutvcf, \ open('/'.join([work_dir, 'mutect_calls.out']), 'w') as mutout, \ open('/'.join([work_dir, 'mutect_passing_calls.vcf']), 'w') as mutpassvcf: out_header_not_printed = True for chrom in chromosomes: with open(input_files[''.join(['mutect_', chrom, '.vcf'])], 'r') as mutfile: for line in mutfile: line = line.strip() if line.startswith('#'): if chrom == 'chr1': print(line, file=mutvcf) print(line, file=mutpassvcf) continue else: print(line, file=mutvcf) line = line.split('\t') if line[6] != 'REJECT': print('\t'.join(line), file=mutpassvcf) with open(input_files[''.join(['mutect_', chrom, '.out'])], 'r') as mutfile: for line in mutfile: line = line.strip() if line.startswith('#'): if chrom == 'chr1': print(line, file=mutout) continue elif out_header_not_printed: print(line, file=mutout) out_header_not_printed = False else: print(line, file=mutout) output_file = job.fileStore.writeGlobalFile(mutpassvcf.name) return output_file
python
def merge_mutect(job, perchrom_rvs): """ This module will merge the per-chromosome mutect files created by spawn_mutect into a genome vcf. It will make 2 vcfs, one for PASSing non-germline calls, and one for all calls. ARGUMENTS 1. perchrom_rvs: REFER RETURN VALUE of spawn_mutect() RETURN VALUES 1. output_files: <JSid for mutect_passing_calls.vcf> This module corresponds to node 11 on the tree """ job.fileStore.logToMaster('Running merge_mutect') work_dir = job.fileStore.getLocalTempDir() # We need to squash the input dict of dicts to a single dict such that it can be passed to # get_files_from_filestore input_files = {filename: jsid for perchrom_files in perchrom_rvs.values() for filename, jsid in perchrom_files.items()} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) chromosomes = [''.join(['chr', str(x)]) for x in range(1, 23) + ['X', 'Y']] with open('/'.join([work_dir, 'mutect_calls.vcf']), 'w') as mutvcf, \ open('/'.join([work_dir, 'mutect_calls.out']), 'w') as mutout, \ open('/'.join([work_dir, 'mutect_passing_calls.vcf']), 'w') as mutpassvcf: out_header_not_printed = True for chrom in chromosomes: with open(input_files[''.join(['mutect_', chrom, '.vcf'])], 'r') as mutfile: for line in mutfile: line = line.strip() if line.startswith('#'): if chrom == 'chr1': print(line, file=mutvcf) print(line, file=mutpassvcf) continue else: print(line, file=mutvcf) line = line.split('\t') if line[6] != 'REJECT': print('\t'.join(line), file=mutpassvcf) with open(input_files[''.join(['mutect_', chrom, '.out'])], 'r') as mutfile: for line in mutfile: line = line.strip() if line.startswith('#'): if chrom == 'chr1': print(line, file=mutout) continue elif out_header_not_printed: print(line, file=mutout) out_header_not_printed = False else: print(line, file=mutout) output_file = job.fileStore.writeGlobalFile(mutpassvcf.name) return output_file
[ "def", "merge_mutect", "(", "job", ",", "perchrom_rvs", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running merge_mutect'", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "filename", ":", "jsid", "for", "perchrom_files", "in", "perchrom_rvs", ".", "values", "(", ")", "for", "filename", ",", "jsid", "in", "perchrom_files", ".", "items", "(", ")", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "False", ")", "chromosomes", "=", "[", "''", ".", "join", "(", "[", "'chr'", ",", "str", "(", "x", ")", "]", ")", "for", "x", "in", "range", "(", "1", ",", "23", ")", "+", "[", "'X'", ",", "'Y'", "]", "]", "with", "open", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'mutect_calls.vcf'", "]", ")", ",", "'w'", ")", "as", "mutvcf", ",", "open", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'mutect_calls.out'", "]", ")", ",", "'w'", ")", "as", "mutout", ",", "open", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'mutect_passing_calls.vcf'", "]", ")", ",", "'w'", ")", "as", "mutpassvcf", ":", "out_header_not_printed", "=", "True", "for", "chrom", "in", "chromosomes", ":", "with", "open", "(", "input_files", "[", "''", ".", "join", "(", "[", "'mutect_'", ",", "chrom", ",", "'.vcf'", "]", ")", "]", ",", "'r'", ")", "as", "mutfile", ":", "for", "line", "in", "mutfile", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "line", ".", "startswith", "(", "'#'", ")", ":", "if", "chrom", "==", "'chr1'", ":", "print", "(", "line", ",", "file", "=", "mutvcf", ")", "print", "(", "line", ",", "file", "=", "mutpassvcf", ")", "continue", "else", ":", "print", "(", "line", ",", "file", "=", "mutvcf", ")", "line", "=", "line", ".", "split", "(", "'\\t'", ")", "if", "line", "[", "6", "]", "!=", "'REJECT'", ":", "print", "(", "'\\t'", ".", "join", "(", "line", ")", ",", "file", "=", "mutpassvcf", ")", "with", "open", "(", "input_files", "[", "''", ".", "join", "(", "[", "'mutect_'", ",", "chrom", ",", "'.out'", "]", ")", "]", ",", "'r'", ")", "as", "mutfile", ":", "for", "line", "in", "mutfile", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "line", ".", "startswith", "(", "'#'", ")", ":", "if", "chrom", "==", "'chr1'", ":", "print", "(", "line", ",", "file", "=", "mutout", ")", "continue", "elif", "out_header_not_printed", ":", "print", "(", "line", ",", "file", "=", "mutout", ")", "out_header_not_printed", "=", "False", "else", ":", "print", "(", "line", ",", "file", "=", "mutout", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "mutpassvcf", ".", "name", ")", "return", "output_file" ]
This module will merge the per-chromosome mutect files created by spawn_mutect into a genome vcf. It will make 2 vcfs, one for PASSing non-germline calls, and one for all calls. ARGUMENTS 1. perchrom_rvs: REFER RETURN VALUE of spawn_mutect() RETURN VALUES 1. output_files: <JSid for mutect_passing_calls.vcf> This module corresponds to node 11 on the tree
[ "This", "module", "will", "merge", "the", "per", "-", "chromosome", "mutect", "files", "created", "by", "spawn_mutect", "into", "a", "genome", "vcf", ".", "It", "will", "make", "2", "vcfs", "one", "for", "PASSing", "non", "-", "germline", "calls", "and", "one", "for", "all", "calls", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L973-L1026
train
BD2KGenomics/protect
attic/ProTECT.py
run_mutect
def run_mutect(job, tumor_bam, normal_bam, univ_options, mutect_options, chrom): """ This module will run mutect on the DNA bams ARGUMENTS 1. tumor_bam: REFER ARGUMENTS of spawn_mutect() 2. normal_bam: REFER ARGUMENTS of spawn_mutect() 3. univ_options: REFER ARGUMENTS of spawn_mutect() 4. mutect_options: REFER ARGUMENTS of spawn_mutect() 5. chrom: String containing chromosome name with chr appended RETURN VALUES 1. output_files: Dict of results of mutect for chromosome output_files |- 'mutect_CHROM.vcf': <JSid> +- 'mutect_CHROM.out': <JSid> This module corresponds to node 12 on the tree """ job.fileStore.logToMaster('Running mutect on %s:%s' % (univ_options['patient'], chrom)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'tumor.bam': tumor_bam['tumor_dna_fix_pg_sorted.bam'], 'tumor.bam.bai': tumor_bam['tumor_dna_fix_pg_sorted.bam.bai'], 'normal.bam': normal_bam['normal_dna_fix_pg_sorted.bam'], 'normal.bam.bai': normal_bam['normal_dna_fix_pg_sorted.bam.bai'], 'genome.fa': mutect_options['genome_fasta'], 'genome.fa.fai': mutect_options['genome_fai'], 'genome.dict': mutect_options['genome_dict'], 'cosmic.vcf': mutect_options['cosmic_vcf'], 'cosmic.vcf.idx': mutect_options['cosmic_idx'], 'dbsnp.vcf': mutect_options['dbsnp_vcf'], 'dbsnp.vcf.idx': mutect_options['dbsnp_idx']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) mutout = ''.join([work_dir, '/mutect_', chrom, '.out']) mutvcf = ''.join([work_dir, '/mutect_', chrom, '.vcf']) parameters = ['-R', input_files['genome.fa'], '--cosmic', input_files['cosmic.vcf'], '--dbsnp', input_files['dbsnp.vcf'], '--input_file:normal', input_files['normal.bam'], '--input_file:tumor', input_files['tumor.bam'], #'--tumor_lod', str(10), #'--initial_tumor_lod', str(4.0), '-L', chrom, '--out', docker_path(mutout), '--vcf', docker_path(mutvcf) ] Xmx = mutect_options['java_Xmx'] if mutect_options['java_Xmx'] else univ_options['java_Xmx'] docker_call(tool='mutect:1.1.7', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], java_opts=Xmx) output_files = defaultdict() for mutect_file in [mutout, mutvcf]: output_files[os.path.basename(mutect_file)] = job.fileStore.writeGlobalFile(mutect_file) return output_files
python
def run_mutect(job, tumor_bam, normal_bam, univ_options, mutect_options, chrom): """ This module will run mutect on the DNA bams ARGUMENTS 1. tumor_bam: REFER ARGUMENTS of spawn_mutect() 2. normal_bam: REFER ARGUMENTS of spawn_mutect() 3. univ_options: REFER ARGUMENTS of spawn_mutect() 4. mutect_options: REFER ARGUMENTS of spawn_mutect() 5. chrom: String containing chromosome name with chr appended RETURN VALUES 1. output_files: Dict of results of mutect for chromosome output_files |- 'mutect_CHROM.vcf': <JSid> +- 'mutect_CHROM.out': <JSid> This module corresponds to node 12 on the tree """ job.fileStore.logToMaster('Running mutect on %s:%s' % (univ_options['patient'], chrom)) work_dir = job.fileStore.getLocalTempDir() input_files = { 'tumor.bam': tumor_bam['tumor_dna_fix_pg_sorted.bam'], 'tumor.bam.bai': tumor_bam['tumor_dna_fix_pg_sorted.bam.bai'], 'normal.bam': normal_bam['normal_dna_fix_pg_sorted.bam'], 'normal.bam.bai': normal_bam['normal_dna_fix_pg_sorted.bam.bai'], 'genome.fa': mutect_options['genome_fasta'], 'genome.fa.fai': mutect_options['genome_fai'], 'genome.dict': mutect_options['genome_dict'], 'cosmic.vcf': mutect_options['cosmic_vcf'], 'cosmic.vcf.idx': mutect_options['cosmic_idx'], 'dbsnp.vcf': mutect_options['dbsnp_vcf'], 'dbsnp.vcf.idx': mutect_options['dbsnp_idx']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) mutout = ''.join([work_dir, '/mutect_', chrom, '.out']) mutvcf = ''.join([work_dir, '/mutect_', chrom, '.vcf']) parameters = ['-R', input_files['genome.fa'], '--cosmic', input_files['cosmic.vcf'], '--dbsnp', input_files['dbsnp.vcf'], '--input_file:normal', input_files['normal.bam'], '--input_file:tumor', input_files['tumor.bam'], #'--tumor_lod', str(10), #'--initial_tumor_lod', str(4.0), '-L', chrom, '--out', docker_path(mutout), '--vcf', docker_path(mutvcf) ] Xmx = mutect_options['java_Xmx'] if mutect_options['java_Xmx'] else univ_options['java_Xmx'] docker_call(tool='mutect:1.1.7', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], java_opts=Xmx) output_files = defaultdict() for mutect_file in [mutout, mutvcf]: output_files[os.path.basename(mutect_file)] = job.fileStore.writeGlobalFile(mutect_file) return output_files
[ "def", "run_mutect", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "mutect_options", ",", "chrom", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running mutect on %s:%s'", "%", "(", "univ_options", "[", "'patient'", "]", ",", "chrom", ")", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'tumor.bam'", ":", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam'", "]", ",", "'tumor.bam.bai'", ":", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam.bai'", "]", ",", "'normal.bam'", ":", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam'", "]", ",", "'normal.bam.bai'", ":", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam.bai'", "]", ",", "'genome.fa'", ":", "mutect_options", "[", "'genome_fasta'", "]", ",", "'genome.fa.fai'", ":", "mutect_options", "[", "'genome_fai'", "]", ",", "'genome.dict'", ":", "mutect_options", "[", "'genome_dict'", "]", ",", "'cosmic.vcf'", ":", "mutect_options", "[", "'cosmic_vcf'", "]", ",", "'cosmic.vcf.idx'", ":", "mutect_options", "[", "'cosmic_idx'", "]", ",", "'dbsnp.vcf'", ":", "mutect_options", "[", "'dbsnp_vcf'", "]", ",", "'dbsnp.vcf.idx'", ":", "mutect_options", "[", "'dbsnp_idx'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "mutout", "=", "''", ".", "join", "(", "[", "work_dir", ",", "'/mutect_'", ",", "chrom", ",", "'.out'", "]", ")", "mutvcf", "=", "''", ".", "join", "(", "[", "work_dir", ",", "'/mutect_'", ",", "chrom", ",", "'.vcf'", "]", ")", "parameters", "=", "[", "'-R'", ",", "input_files", "[", "'genome.fa'", "]", ",", "'--cosmic'", ",", "input_files", "[", "'cosmic.vcf'", "]", ",", "'--dbsnp'", ",", "input_files", "[", "'dbsnp.vcf'", "]", ",", "'--input_file:normal'", ",", "input_files", "[", "'normal.bam'", "]", ",", "'--input_file:tumor'", ",", "input_files", "[", "'tumor.bam'", "]", ",", "'-L'", ",", "chrom", ",", "'--out'", ",", "docker_path", "(", "mutout", ")", ",", "'--vcf'", ",", "docker_path", "(", "mutvcf", ")", "]", "Xmx", "=", "mutect_options", "[", "'java_Xmx'", "]", "if", "mutect_options", "[", "'java_Xmx'", "]", "else", "univ_options", "[", "'java_Xmx'", "]", "docker_call", "(", "tool", "=", "'mutect:1.1.7'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "java_opts", "=", "Xmx", ")", "output_files", "=", "defaultdict", "(", ")", "for", "mutect_file", "in", "[", "mutout", ",", "mutvcf", "]", ":", "output_files", "[", "os", ".", "path", ".", "basename", "(", "mutect_file", ")", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "mutect_file", ")", "return", "output_files" ]
This module will run mutect on the DNA bams ARGUMENTS 1. tumor_bam: REFER ARGUMENTS of spawn_mutect() 2. normal_bam: REFER ARGUMENTS of spawn_mutect() 3. univ_options: REFER ARGUMENTS of spawn_mutect() 4. mutect_options: REFER ARGUMENTS of spawn_mutect() 5. chrom: String containing chromosome name with chr appended RETURN VALUES 1. output_files: Dict of results of mutect for chromosome output_files |- 'mutect_CHROM.vcf': <JSid> +- 'mutect_CHROM.out': <JSid> This module corresponds to node 12 on the tree
[ "This", "module", "will", "run", "mutect", "on", "the", "DNA", "bams" ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1029-L1083
train
BD2KGenomics/protect
attic/ProTECT.py
run_indel_caller
def run_indel_caller(job, tumor_bam, normal_bam, univ_options, indel_options): """ This module will run an indel caller on the DNA bams. This module will be implemented in the future. This module corresponds to node 13 on the tree """ job.fileStore.logToMaster('Running INDEL on %s' % univ_options['patient']) indel_file = job.fileStore.getLocalTempFile() output_file = job.fileStore.writeGlobalFile(indel_file) return output_file
python
def run_indel_caller(job, tumor_bam, normal_bam, univ_options, indel_options): """ This module will run an indel caller on the DNA bams. This module will be implemented in the future. This module corresponds to node 13 on the tree """ job.fileStore.logToMaster('Running INDEL on %s' % univ_options['patient']) indel_file = job.fileStore.getLocalTempFile() output_file = job.fileStore.writeGlobalFile(indel_file) return output_file
[ "def", "run_indel_caller", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "indel_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running INDEL on %s'", "%", "univ_options", "[", "'patient'", "]", ")", "indel_file", "=", "job", ".", "fileStore", ".", "getLocalTempFile", "(", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "indel_file", ")", "return", "output_file" ]
This module will run an indel caller on the DNA bams. This module will be implemented in the future. This module corresponds to node 13 on the tree
[ "This", "module", "will", "run", "an", "indel", "caller", "on", "the", "DNA", "bams", ".", "This", "module", "will", "be", "implemented", "in", "the", "future", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1086-L1096
train
BD2KGenomics/protect
attic/ProTECT.py
run_fusion_caller
def run_fusion_caller(job, star_bam, univ_options, fusion_options): """ This module will run a fusion caller on DNA bams. This module will be implemented in the future. This module corresponds to node 10 on the tree """ job.fileStore.logToMaster('Running FUSION on %s' % univ_options['patient']) fusion_file = job.fileStore.getLocalTempFile() output_file = job.fileStore.writeGlobalFile(fusion_file) return output_file
python
def run_fusion_caller(job, star_bam, univ_options, fusion_options): """ This module will run a fusion caller on DNA bams. This module will be implemented in the future. This module corresponds to node 10 on the tree """ job.fileStore.logToMaster('Running FUSION on %s' % univ_options['patient']) fusion_file = job.fileStore.getLocalTempFile() output_file = job.fileStore.writeGlobalFile(fusion_file) return output_file
[ "def", "run_fusion_caller", "(", "job", ",", "star_bam", ",", "univ_options", ",", "fusion_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running FUSION on %s'", "%", "univ_options", "[", "'patient'", "]", ")", "fusion_file", "=", "job", ".", "fileStore", ".", "getLocalTempFile", "(", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "fusion_file", ")", "return", "output_file" ]
This module will run a fusion caller on DNA bams. This module will be implemented in the future. This module corresponds to node 10 on the tree
[ "This", "module", "will", "run", "a", "fusion", "caller", "on", "DNA", "bams", ".", "This", "module", "will", "be", "implemented", "in", "the", "future", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1099-L1109
train
BD2KGenomics/protect
attic/ProTECT.py
run_mutation_aggregator
def run_mutation_aggregator(job, fusion_output, radia_output, mutect_output, indel_output, univ_options): """ This module will aggregate all the mutations called in the previous steps and will then call snpeff on the results. ARGUMENTS 1. fusion_output: <JSid for vcf generated by the fusion caller> 2. radia_output: <JSid for vcf generated by radia> 3. mutect_output: <JSid for vcf generated by mutect> 4. indel_output: <JSid for vcf generated by the indel caller> RETURN VALUES 1. output_file: <JSid for merged vcf> This module corresponds to node 15 on the tree """ job.fileStore.logToMaster('Aggregating mutations for %s' % univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() input_files = { 'mutect.vcf': mutect_output, 'radia.vcf': radia_output['radia_parsed_filter_passing_calls.vcf'], 'indel.vcf': indel_output, 'fusion.vcf': fusion_output} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) # Modify these once INDELs and Fusions are implemented input_files.pop('indel.vcf') input_files.pop('fusion.vcf') # read files into memory vcf_file = defaultdict() mutcallers = input_files.keys() with open(''.join([work_dir, '/', univ_options['patient'], '_merged_mutations.vcf']), 'w') as merged_mut_file: for mut_caller in mutcallers: caller = mut_caller.rstrip('.vcf') vcf_file[caller] = defaultdict() with open(input_files[mut_caller], 'r') as mutfile: for line in mutfile: if line.startswith('#'): if caller == 'radia': print(line.strip(), file=merged_mut_file) continue line = line.strip().split() vcf_file[caller][(line[0], line[1], line[3], line[4])] = line # This method can be changed in the future to incorporate more callers and # fancier integration methods merge_vcfs(vcf_file, merged_mut_file.name) export_results(merged_mut_file.name, univ_options) output_file = job.fileStore.writeGlobalFile(merged_mut_file.name) return output_file
python
def run_mutation_aggregator(job, fusion_output, radia_output, mutect_output, indel_output, univ_options): """ This module will aggregate all the mutations called in the previous steps and will then call snpeff on the results. ARGUMENTS 1. fusion_output: <JSid for vcf generated by the fusion caller> 2. radia_output: <JSid for vcf generated by radia> 3. mutect_output: <JSid for vcf generated by mutect> 4. indel_output: <JSid for vcf generated by the indel caller> RETURN VALUES 1. output_file: <JSid for merged vcf> This module corresponds to node 15 on the tree """ job.fileStore.logToMaster('Aggregating mutations for %s' % univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() input_files = { 'mutect.vcf': mutect_output, 'radia.vcf': radia_output['radia_parsed_filter_passing_calls.vcf'], 'indel.vcf': indel_output, 'fusion.vcf': fusion_output} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) # Modify these once INDELs and Fusions are implemented input_files.pop('indel.vcf') input_files.pop('fusion.vcf') # read files into memory vcf_file = defaultdict() mutcallers = input_files.keys() with open(''.join([work_dir, '/', univ_options['patient'], '_merged_mutations.vcf']), 'w') as merged_mut_file: for mut_caller in mutcallers: caller = mut_caller.rstrip('.vcf') vcf_file[caller] = defaultdict() with open(input_files[mut_caller], 'r') as mutfile: for line in mutfile: if line.startswith('#'): if caller == 'radia': print(line.strip(), file=merged_mut_file) continue line = line.strip().split() vcf_file[caller][(line[0], line[1], line[3], line[4])] = line # This method can be changed in the future to incorporate more callers and # fancier integration methods merge_vcfs(vcf_file, merged_mut_file.name) export_results(merged_mut_file.name, univ_options) output_file = job.fileStore.writeGlobalFile(merged_mut_file.name) return output_file
[ "def", "run_mutation_aggregator", "(", "job", ",", "fusion_output", ",", "radia_output", ",", "mutect_output", ",", "indel_output", ",", "univ_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Aggregating mutations for %s'", "%", "univ_options", "[", "'patient'", "]", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'mutect.vcf'", ":", "mutect_output", ",", "'radia.vcf'", ":", "radia_output", "[", "'radia_parsed_filter_passing_calls.vcf'", "]", ",", "'indel.vcf'", ":", "indel_output", ",", "'fusion.vcf'", ":", "fusion_output", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "False", ")", "input_files", ".", "pop", "(", "'indel.vcf'", ")", "input_files", ".", "pop", "(", "'fusion.vcf'", ")", "vcf_file", "=", "defaultdict", "(", ")", "mutcallers", "=", "input_files", ".", "keys", "(", ")", "with", "open", "(", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "univ_options", "[", "'patient'", "]", ",", "'_merged_mutations.vcf'", "]", ")", ",", "'w'", ")", "as", "merged_mut_file", ":", "for", "mut_caller", "in", "mutcallers", ":", "caller", "=", "mut_caller", ".", "rstrip", "(", "'.vcf'", ")", "vcf_file", "[", "caller", "]", "=", "defaultdict", "(", ")", "with", "open", "(", "input_files", "[", "mut_caller", "]", ",", "'r'", ")", "as", "mutfile", ":", "for", "line", "in", "mutfile", ":", "if", "line", ".", "startswith", "(", "'#'", ")", ":", "if", "caller", "==", "'radia'", ":", "print", "(", "line", ".", "strip", "(", ")", ",", "file", "=", "merged_mut_file", ")", "continue", "line", "=", "line", ".", "strip", "(", ")", ".", "split", "(", ")", "vcf_file", "[", "caller", "]", "[", "(", "line", "[", "0", "]", ",", "line", "[", "1", "]", ",", "line", "[", "3", "]", ",", "line", "[", "4", "]", ")", "]", "=", "line", "merge_vcfs", "(", "vcf_file", ",", "merged_mut_file", ".", "name", ")", "export_results", "(", "merged_mut_file", ".", "name", ",", "univ_options", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "merged_mut_file", ".", "name", ")", "return", "output_file" ]
This module will aggregate all the mutations called in the previous steps and will then call snpeff on the results. ARGUMENTS 1. fusion_output: <JSid for vcf generated by the fusion caller> 2. radia_output: <JSid for vcf generated by radia> 3. mutect_output: <JSid for vcf generated by mutect> 4. indel_output: <JSid for vcf generated by the indel caller> RETURN VALUES 1. output_file: <JSid for merged vcf> This module corresponds to node 15 on the tree
[ "This", "module", "will", "aggregate", "all", "the", "mutations", "called", "in", "the", "previous", "steps", "and", "will", "then", "call", "snpeff", "on", "the", "results", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1112-L1161
train
BD2KGenomics/protect
attic/ProTECT.py
run_snpeff
def run_snpeff(job, merged_mutation_file, univ_options, snpeff_options): """ This module will run snpeff on the aggregated mutation calls. Currently the only mutations called are SNPs hence SnpEff suffices. This node will be replaced in the future with another translator. ARGUMENTS 1. merged_mutation_file: <JSid for merged vcf> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. snpeff_options: Dict of parameters specific to snpeff snpeff_options +- 'index_tar': <JSid for the snpEff index tarball> RETURN VALUES 1. output_file: <JSid for the snpeffed vcf> This node corresponds to node 16 on the tree """ job.fileStore.logToMaster('Running snpeff on %s' % univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() input_files = { 'merged_mutations.vcf': merged_mutation_file, 'snpeff_index.tar.gz': snpeff_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['eff', '-dataDir', input_files['snpeff_index'], '-c', '/'.join([input_files['snpeff_index'], 'snpEff_hg19_gencode.config']), '-no-intergenic', '-no-downstream', '-no-upstream', #'-canon', '-noStats', 'hg19_gencode', input_files['merged_mutations.vcf']] Xmx = snpeff_options['java_Xmx'] if snpeff_options['java_Xmx'] else univ_options['java_Xmx'] with open('/'.join([work_dir, 'snpeffed_mutations.vcf']), 'w') as snpeff_file: docker_call(tool='snpeff', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], java_opts=Xmx, outfile=snpeff_file) output_file = job.fileStore.writeGlobalFile(snpeff_file.name) return output_file
python
def run_snpeff(job, merged_mutation_file, univ_options, snpeff_options): """ This module will run snpeff on the aggregated mutation calls. Currently the only mutations called are SNPs hence SnpEff suffices. This node will be replaced in the future with another translator. ARGUMENTS 1. merged_mutation_file: <JSid for merged vcf> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. snpeff_options: Dict of parameters specific to snpeff snpeff_options +- 'index_tar': <JSid for the snpEff index tarball> RETURN VALUES 1. output_file: <JSid for the snpeffed vcf> This node corresponds to node 16 on the tree """ job.fileStore.logToMaster('Running snpeff on %s' % univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() input_files = { 'merged_mutations.vcf': merged_mutation_file, 'snpeff_index.tar.gz': snpeff_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['eff', '-dataDir', input_files['snpeff_index'], '-c', '/'.join([input_files['snpeff_index'], 'snpEff_hg19_gencode.config']), '-no-intergenic', '-no-downstream', '-no-upstream', #'-canon', '-noStats', 'hg19_gencode', input_files['merged_mutations.vcf']] Xmx = snpeff_options['java_Xmx'] if snpeff_options['java_Xmx'] else univ_options['java_Xmx'] with open('/'.join([work_dir, 'snpeffed_mutations.vcf']), 'w') as snpeff_file: docker_call(tool='snpeff', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], java_opts=Xmx, outfile=snpeff_file) output_file = job.fileStore.writeGlobalFile(snpeff_file.name) return output_file
[ "def", "run_snpeff", "(", "job", ",", "merged_mutation_file", ",", "univ_options", ",", "snpeff_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running snpeff on %s'", "%", "univ_options", "[", "'patient'", "]", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'merged_mutations.vcf'", ":", "merged_mutation_file", ",", "'snpeff_index.tar.gz'", ":", "snpeff_options", "[", "'index_tar'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "parameters", "=", "[", "'eff'", ",", "'-dataDir'", ",", "input_files", "[", "'snpeff_index'", "]", ",", "'-c'", ",", "'/'", ".", "join", "(", "[", "input_files", "[", "'snpeff_index'", "]", ",", "'snpEff_hg19_gencode.config'", "]", ")", ",", "'-no-intergenic'", ",", "'-no-downstream'", ",", "'-no-upstream'", ",", "'-noStats'", ",", "'hg19_gencode'", ",", "input_files", "[", "'merged_mutations.vcf'", "]", "]", "Xmx", "=", "snpeff_options", "[", "'java_Xmx'", "]", "if", "snpeff_options", "[", "'java_Xmx'", "]", "else", "univ_options", "[", "'java_Xmx'", "]", "with", "open", "(", "'/'", ".", "join", "(", "[", "work_dir", ",", "'snpeffed_mutations.vcf'", "]", ")", ",", "'w'", ")", "as", "snpeff_file", ":", "docker_call", "(", "tool", "=", "'snpeff'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "java_opts", "=", "Xmx", ",", "outfile", "=", "snpeff_file", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "snpeff_file", ".", "name", ")", "return", "output_file" ]
This module will run snpeff on the aggregated mutation calls. Currently the only mutations called are SNPs hence SnpEff suffices. This node will be replaced in the future with another translator. ARGUMENTS 1. merged_mutation_file: <JSid for merged vcf> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. snpeff_options: Dict of parameters specific to snpeff snpeff_options +- 'index_tar': <JSid for the snpEff index tarball> RETURN VALUES 1. output_file: <JSid for the snpeffed vcf> This node corresponds to node 16 on the tree
[ "This", "module", "will", "run", "snpeff", "on", "the", "aggregated", "mutation", "calls", ".", "Currently", "the", "only", "mutations", "called", "are", "SNPs", "hence", "SnpEff", "suffices", ".", "This", "node", "will", "be", "replaced", "in", "the", "future", "with", "another", "translator", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1164-L1205
train
BD2KGenomics/protect
attic/ProTECT.py
run_transgene
def run_transgene(job, snpeffed_file, univ_options, transgene_options): """ This module will run transgene on the input vcf file from the aggregator and produce the peptides for MHC prediction ARGUMENTS 1. snpeffed_file: <JSid for snpeffed vcf> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. transgene_options: Dict of parameters specific to transgene transgene_options +- 'gencode_peptide_fasta': <JSid for the gencode protein fasta> RETURN VALUES 1. output_files: Dict of transgened n-mer peptide fastas output_files |- 'transgened_tumor_9_mer_snpeffed.faa': <JSid> |- 'transgened_tumor_10_mer_snpeffed.faa': <JSid> +- 'transgened_tumor_15_mer_snpeffed.faa': <JSid> This module corresponds to node 17 on the tree """ job.fileStore.logToMaster('Running transgene on %s' % univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() input_files = { 'snpeffed_muts.vcf': snpeffed_file, 'pepts.fa': transgene_options['gencode_peptide_fasta']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['--peptides', input_files['pepts.fa'], '--snpeff', input_files['snpeffed_muts.vcf'], '--prefix', 'transgened', '--pep_lens', '9,10,15'] docker_call(tool='transgene', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files = defaultdict() for peplen in ['9', '10', '15']: peptfile = '_'.join(['transgened_tumor', peplen, 'mer_snpeffed.faa']) mapfile = '_'.join(['transgened_tumor', peplen, 'mer_snpeffed.faa.map']) output_files[peptfile] = job.fileStore.writeGlobalFile(os.path.join(work_dir, peptfile)) output_files[mapfile] = job.fileStore.writeGlobalFile(os.path.join(work_dir, mapfile)) return output_files
python
def run_transgene(job, snpeffed_file, univ_options, transgene_options): """ This module will run transgene on the input vcf file from the aggregator and produce the peptides for MHC prediction ARGUMENTS 1. snpeffed_file: <JSid for snpeffed vcf> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. transgene_options: Dict of parameters specific to transgene transgene_options +- 'gencode_peptide_fasta': <JSid for the gencode protein fasta> RETURN VALUES 1. output_files: Dict of transgened n-mer peptide fastas output_files |- 'transgened_tumor_9_mer_snpeffed.faa': <JSid> |- 'transgened_tumor_10_mer_snpeffed.faa': <JSid> +- 'transgened_tumor_15_mer_snpeffed.faa': <JSid> This module corresponds to node 17 on the tree """ job.fileStore.logToMaster('Running transgene on %s' % univ_options['patient']) work_dir = job.fileStore.getLocalTempDir() input_files = { 'snpeffed_muts.vcf': snpeffed_file, 'pepts.fa': transgene_options['gencode_peptide_fasta']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['--peptides', input_files['pepts.fa'], '--snpeff', input_files['snpeffed_muts.vcf'], '--prefix', 'transgened', '--pep_lens', '9,10,15'] docker_call(tool='transgene', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files = defaultdict() for peplen in ['9', '10', '15']: peptfile = '_'.join(['transgened_tumor', peplen, 'mer_snpeffed.faa']) mapfile = '_'.join(['transgened_tumor', peplen, 'mer_snpeffed.faa.map']) output_files[peptfile] = job.fileStore.writeGlobalFile(os.path.join(work_dir, peptfile)) output_files[mapfile] = job.fileStore.writeGlobalFile(os.path.join(work_dir, mapfile)) return output_files
[ "def", "run_transgene", "(", "job", ",", "snpeffed_file", ",", "univ_options", ",", "transgene_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running transgene on %s'", "%", "univ_options", "[", "'patient'", "]", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'snpeffed_muts.vcf'", ":", "snpeffed_file", ",", "'pepts.fa'", ":", "transgene_options", "[", "'gencode_peptide_fasta'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "parameters", "=", "[", "'--peptides'", ",", "input_files", "[", "'pepts.fa'", "]", ",", "'--snpeff'", ",", "input_files", "[", "'snpeffed_muts.vcf'", "]", ",", "'--prefix'", ",", "'transgened'", ",", "'--pep_lens'", ",", "'9,10,15'", "]", "docker_call", "(", "tool", "=", "'transgene'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ")", "output_files", "=", "defaultdict", "(", ")", "for", "peplen", "in", "[", "'9'", ",", "'10'", ",", "'15'", "]", ":", "peptfile", "=", "'_'", ".", "join", "(", "[", "'transgened_tumor'", ",", "peplen", ",", "'mer_snpeffed.faa'", "]", ")", "mapfile", "=", "'_'", ".", "join", "(", "[", "'transgened_tumor'", ",", "peplen", ",", "'mer_snpeffed.faa.map'", "]", ")", "output_files", "[", "peptfile", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "os", ".", "path", ".", "join", "(", "work_dir", ",", "peptfile", ")", ")", "output_files", "[", "mapfile", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "os", ".", "path", ".", "join", "(", "work_dir", ",", "mapfile", ")", ")", "return", "output_files" ]
This module will run transgene on the input vcf file from the aggregator and produce the peptides for MHC prediction ARGUMENTS 1. snpeffed_file: <JSid for snpeffed vcf> 2. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 3. transgene_options: Dict of parameters specific to transgene transgene_options +- 'gencode_peptide_fasta': <JSid for the gencode protein fasta> RETURN VALUES 1. output_files: Dict of transgened n-mer peptide fastas output_files |- 'transgened_tumor_9_mer_snpeffed.faa': <JSid> |- 'transgened_tumor_10_mer_snpeffed.faa': <JSid> +- 'transgened_tumor_15_mer_snpeffed.faa': <JSid> This module corresponds to node 17 on the tree
[ "This", "module", "will", "run", "transgene", "on", "the", "input", "vcf", "file", "from", "the", "aggregator", "and", "produce", "the", "peptides", "for", "MHC", "prediction" ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1208-L1249
train
BD2KGenomics/protect
attic/ProTECT.py
run_phlat
def run_phlat(job, fastqs, sample_type, univ_options, phlat_options): """ This module will run PHLAT on SAMPLE_TYPE fastqs. ARGUMENTS -- <ST> depicts the sample type. Substitute with 'tumor_dna', 'normal_dna', or 'tumor_rna' 1. fastqs: Dict of list of input WGS/WXS fastqs fastqs +- '<ST>': [<JSid for 1.fastq> , <JSid for 2.fastq>] 2. sample_type: string of 'tumor' or 'normal' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 4. phlat_options: Dict of parameters specific to phlat phlat_options |- 'index_tar': <JSid for the PHLAT index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_file: <JSid for the allele predictions for ST> This module corresponds to nodes 5, 6 and 7 on the tree """ job.fileStore.logToMaster('Running phlat on %s:%s' % (univ_options['patient'], sample_type)) work_dir = job.fileStore.getLocalTempDir() fq_extn = '.gz' if fastqs['gzipped'] else '' input_files = { 'input_1.fastq' + fq_extn: fastqs[sample_type][0], 'input_2.fastq' + fq_extn: fastqs[sample_type][1], 'phlat_index.tar.gz': phlat_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['-1', input_files['input_1.fastq'], '-2', input_files['input_2.fastq'], '-index', input_files['phlat_index'], '-b2url', '/usr/local/bin/bowtie2', '-tag', sample_type, '-e', '/home/phlat-1.0', # Phlat directory home '-o', '/data', # Output directory '-p', str(phlat_options['n'])] # Number of threads docker_call(tool='phlat', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_file = job.fileStore.writeGlobalFile(''.join([work_dir, '/', sample_type, '_HLA.sum'])) return output_file
python
def run_phlat(job, fastqs, sample_type, univ_options, phlat_options): """ This module will run PHLAT on SAMPLE_TYPE fastqs. ARGUMENTS -- <ST> depicts the sample type. Substitute with 'tumor_dna', 'normal_dna', or 'tumor_rna' 1. fastqs: Dict of list of input WGS/WXS fastqs fastqs +- '<ST>': [<JSid for 1.fastq> , <JSid for 2.fastq>] 2. sample_type: string of 'tumor' or 'normal' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 4. phlat_options: Dict of parameters specific to phlat phlat_options |- 'index_tar': <JSid for the PHLAT index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_file: <JSid for the allele predictions for ST> This module corresponds to nodes 5, 6 and 7 on the tree """ job.fileStore.logToMaster('Running phlat on %s:%s' % (univ_options['patient'], sample_type)) work_dir = job.fileStore.getLocalTempDir() fq_extn = '.gz' if fastqs['gzipped'] else '' input_files = { 'input_1.fastq' + fq_extn: fastqs[sample_type][0], 'input_2.fastq' + fq_extn: fastqs[sample_type][1], 'phlat_index.tar.gz': phlat_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['-1', input_files['input_1.fastq'], '-2', input_files['input_2.fastq'], '-index', input_files['phlat_index'], '-b2url', '/usr/local/bin/bowtie2', '-tag', sample_type, '-e', '/home/phlat-1.0', # Phlat directory home '-o', '/data', # Output directory '-p', str(phlat_options['n'])] # Number of threads docker_call(tool='phlat', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_file = job.fileStore.writeGlobalFile(''.join([work_dir, '/', sample_type, '_HLA.sum'])) return output_file
[ "def", "run_phlat", "(", "job", ",", "fastqs", ",", "sample_type", ",", "univ_options", ",", "phlat_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running phlat on %s:%s'", "%", "(", "univ_options", "[", "'patient'", "]", ",", "sample_type", ")", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "fq_extn", "=", "'.gz'", "if", "fastqs", "[", "'gzipped'", "]", "else", "''", "input_files", "=", "{", "'input_1.fastq'", "+", "fq_extn", ":", "fastqs", "[", "sample_type", "]", "[", "0", "]", ",", "'input_2.fastq'", "+", "fq_extn", ":", "fastqs", "[", "sample_type", "]", "[", "1", "]", ",", "'phlat_index.tar.gz'", ":", "phlat_options", "[", "'index_tar'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "parameters", "=", "[", "'-1'", ",", "input_files", "[", "'input_1.fastq'", "]", ",", "'-2'", ",", "input_files", "[", "'input_2.fastq'", "]", ",", "'-index'", ",", "input_files", "[", "'phlat_index'", "]", ",", "'-b2url'", ",", "'/usr/local/bin/bowtie2'", ",", "'-tag'", ",", "sample_type", ",", "'-e'", ",", "'/home/phlat-1.0'", ",", "'-o'", ",", "'/data'", ",", "'-p'", ",", "str", "(", "phlat_options", "[", "'n'", "]", ")", "]", "docker_call", "(", "tool", "=", "'phlat'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "sample_type", ",", "'_HLA.sum'", "]", ")", ")", "return", "output_file" ]
This module will run PHLAT on SAMPLE_TYPE fastqs. ARGUMENTS -- <ST> depicts the sample type. Substitute with 'tumor_dna', 'normal_dna', or 'tumor_rna' 1. fastqs: Dict of list of input WGS/WXS fastqs fastqs +- '<ST>': [<JSid for 1.fastq> , <JSid for 2.fastq>] 2. sample_type: string of 'tumor' or 'normal' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 4. phlat_options: Dict of parameters specific to phlat phlat_options |- 'index_tar': <JSid for the PHLAT index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_file: <JSid for the allele predictions for ST> This module corresponds to nodes 5, 6 and 7 on the tree
[ "This", "module", "will", "run", "PHLAT", "on", "SAMPLE_TYPE", "fastqs", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1252-L1294
train
BD2KGenomics/protect
attic/ProTECT.py
merge_phlat_calls
def merge_phlat_calls(job, tumor_phlat, normal_phlat, rna_phlat): """ This module will merge the results form running PHLAT on the 3 input fastq pairs. ARGUMENTS 1. tumor_phlat: <JSid for tumor DNA called alleles> 2. normal_phlat: <JSid for normal DNA called alleles> 3. rna_phlat: <JSid for tumor RNA called alleles> RETURN VALUES 1. output_files: Dict of JSids for consensus MHCI and MHCII alleles output_files |- 'mhci_alleles.list': <JSid> +- 'mhcii_alleles.list': <JSid> This module corresponds to node 14 on the tree """ job.fileStore.logToMaster('Merging Phlat calls') work_dir = job.fileStore.getLocalTempDir() input_files = { 'tumor_dna': tumor_phlat, 'normal_dna': normal_phlat, 'tumor_rna': rna_phlat} input_files = get_files_from_filestore(job, input_files, work_dir) with open(input_files['tumor_dna'], 'r') as td_file, \ open(input_files['normal_dna'], 'r') as nd_file, \ open(input_files['tumor_rna'], 'r') as tr_file: # TODO: Could this be a defautdict? mhc_alleles = {'HLA_A': [], 'HLA_B': [], 'HLA_C': [], 'HLA_DPA': [], 'HLA_DQA': [], 'HLA_DPB': [], 'HLA_DQB': [], 'HLA_DRB': []} for phlatfile in td_file, nd_file, tr_file: mhc_alleles = parse_phlat_file(phlatfile, mhc_alleles) # Get most probable alleles for each allele group and print to output with open(os.path.join(work_dir, 'mhci_alleles.list'), 'w') as mhci_file, \ open(os.path.join(work_dir, 'mhcii_alleles.list'), 'w') as mhcii_file: for mhci_group in ['HLA_A', 'HLA_B', 'HLA_C']: mpa = most_probable_alleles(mhc_alleles[mhci_group]) print('\n'.join([''.join(['HLA-', x]) for x in mpa]), file=mhci_file) drb_mpa = most_probable_alleles(mhc_alleles['HLA_DRB']) print('\n'.join([''.join(['HLA-', x]) for x in drb_mpa]), file=mhcii_file) dqa_mpa = most_probable_alleles(mhc_alleles['HLA_DQA']) dqb_mpa = most_probable_alleles(mhc_alleles['HLA_DQB']) for dqa_allele in dqa_mpa: for dqb_allele in dqb_mpa: print(''.join(['HLA-', dqa_allele, '/', dqb_allele]), file=mhcii_file) output_files = defaultdict() for allele_file in ['mhci_alleles.list', 'mhcii_alleles.list']: output_files[allele_file] = job.fileStore.writeGlobalFile(os.path.join(work_dir, allele_file)) return output_files
python
def merge_phlat_calls(job, tumor_phlat, normal_phlat, rna_phlat): """ This module will merge the results form running PHLAT on the 3 input fastq pairs. ARGUMENTS 1. tumor_phlat: <JSid for tumor DNA called alleles> 2. normal_phlat: <JSid for normal DNA called alleles> 3. rna_phlat: <JSid for tumor RNA called alleles> RETURN VALUES 1. output_files: Dict of JSids for consensus MHCI and MHCII alleles output_files |- 'mhci_alleles.list': <JSid> +- 'mhcii_alleles.list': <JSid> This module corresponds to node 14 on the tree """ job.fileStore.logToMaster('Merging Phlat calls') work_dir = job.fileStore.getLocalTempDir() input_files = { 'tumor_dna': tumor_phlat, 'normal_dna': normal_phlat, 'tumor_rna': rna_phlat} input_files = get_files_from_filestore(job, input_files, work_dir) with open(input_files['tumor_dna'], 'r') as td_file, \ open(input_files['normal_dna'], 'r') as nd_file, \ open(input_files['tumor_rna'], 'r') as tr_file: # TODO: Could this be a defautdict? mhc_alleles = {'HLA_A': [], 'HLA_B': [], 'HLA_C': [], 'HLA_DPA': [], 'HLA_DQA': [], 'HLA_DPB': [], 'HLA_DQB': [], 'HLA_DRB': []} for phlatfile in td_file, nd_file, tr_file: mhc_alleles = parse_phlat_file(phlatfile, mhc_alleles) # Get most probable alleles for each allele group and print to output with open(os.path.join(work_dir, 'mhci_alleles.list'), 'w') as mhci_file, \ open(os.path.join(work_dir, 'mhcii_alleles.list'), 'w') as mhcii_file: for mhci_group in ['HLA_A', 'HLA_B', 'HLA_C']: mpa = most_probable_alleles(mhc_alleles[mhci_group]) print('\n'.join([''.join(['HLA-', x]) for x in mpa]), file=mhci_file) drb_mpa = most_probable_alleles(mhc_alleles['HLA_DRB']) print('\n'.join([''.join(['HLA-', x]) for x in drb_mpa]), file=mhcii_file) dqa_mpa = most_probable_alleles(mhc_alleles['HLA_DQA']) dqb_mpa = most_probable_alleles(mhc_alleles['HLA_DQB']) for dqa_allele in dqa_mpa: for dqb_allele in dqb_mpa: print(''.join(['HLA-', dqa_allele, '/', dqb_allele]), file=mhcii_file) output_files = defaultdict() for allele_file in ['mhci_alleles.list', 'mhcii_alleles.list']: output_files[allele_file] = job.fileStore.writeGlobalFile(os.path.join(work_dir, allele_file)) return output_files
[ "def", "merge_phlat_calls", "(", "job", ",", "tumor_phlat", ",", "normal_phlat", ",", "rna_phlat", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Merging Phlat calls'", ")", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "input_files", "=", "{", "'tumor_dna'", ":", "tumor_phlat", ",", "'normal_dna'", ":", "normal_phlat", ",", "'tumor_rna'", ":", "rna_phlat", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ")", "with", "open", "(", "input_files", "[", "'tumor_dna'", "]", ",", "'r'", ")", "as", "td_file", ",", "open", "(", "input_files", "[", "'normal_dna'", "]", ",", "'r'", ")", "as", "nd_file", ",", "open", "(", "input_files", "[", "'tumor_rna'", "]", ",", "'r'", ")", "as", "tr_file", ":", "mhc_alleles", "=", "{", "'HLA_A'", ":", "[", "]", ",", "'HLA_B'", ":", "[", "]", ",", "'HLA_C'", ":", "[", "]", ",", "'HLA_DPA'", ":", "[", "]", ",", "'HLA_DQA'", ":", "[", "]", ",", "'HLA_DPB'", ":", "[", "]", ",", "'HLA_DQB'", ":", "[", "]", ",", "'HLA_DRB'", ":", "[", "]", "}", "for", "phlatfile", "in", "td_file", ",", "nd_file", ",", "tr_file", ":", "mhc_alleles", "=", "parse_phlat_file", "(", "phlatfile", ",", "mhc_alleles", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "work_dir", ",", "'mhci_alleles.list'", ")", ",", "'w'", ")", "as", "mhci_file", ",", "open", "(", "os", ".", "path", ".", "join", "(", "work_dir", ",", "'mhcii_alleles.list'", ")", ",", "'w'", ")", "as", "mhcii_file", ":", "for", "mhci_group", "in", "[", "'HLA_A'", ",", "'HLA_B'", ",", "'HLA_C'", "]", ":", "mpa", "=", "most_probable_alleles", "(", "mhc_alleles", "[", "mhci_group", "]", ")", "print", "(", "'\\n'", ".", "join", "(", "[", "''", ".", "join", "(", "[", "'HLA-'", ",", "x", "]", ")", "for", "x", "in", "mpa", "]", ")", ",", "file", "=", "mhci_file", ")", "drb_mpa", "=", "most_probable_alleles", "(", "mhc_alleles", "[", "'HLA_DRB'", "]", ")", "print", "(", "'\\n'", ".", "join", "(", "[", "''", ".", "join", "(", "[", "'HLA-'", ",", "x", "]", ")", "for", "x", "in", "drb_mpa", "]", ")", ",", "file", "=", "mhcii_file", ")", "dqa_mpa", "=", "most_probable_alleles", "(", "mhc_alleles", "[", "'HLA_DQA'", "]", ")", "dqb_mpa", "=", "most_probable_alleles", "(", "mhc_alleles", "[", "'HLA_DQB'", "]", ")", "for", "dqa_allele", "in", "dqa_mpa", ":", "for", "dqb_allele", "in", "dqb_mpa", ":", "print", "(", "''", ".", "join", "(", "[", "'HLA-'", ",", "dqa_allele", ",", "'/'", ",", "dqb_allele", "]", ")", ",", "file", "=", "mhcii_file", ")", "output_files", "=", "defaultdict", "(", ")", "for", "allele_file", "in", "[", "'mhci_alleles.list'", ",", "'mhcii_alleles.list'", "]", ":", "output_files", "[", "allele_file", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "os", ".", "path", ".", "join", "(", "work_dir", ",", "allele_file", ")", ")", "return", "output_files" ]
This module will merge the results form running PHLAT on the 3 input fastq pairs. ARGUMENTS 1. tumor_phlat: <JSid for tumor DNA called alleles> 2. normal_phlat: <JSid for normal DNA called alleles> 3. rna_phlat: <JSid for tumor RNA called alleles> RETURN VALUES 1. output_files: Dict of JSids for consensus MHCI and MHCII alleles output_files |- 'mhci_alleles.list': <JSid> +- 'mhcii_alleles.list': <JSid> This module corresponds to node 14 on the tree
[ "This", "module", "will", "merge", "the", "results", "form", "running", "PHLAT", "on", "the", "3", "input", "fastq", "pairs", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1297-L1347
train
BD2KGenomics/protect
attic/ProTECT.py
boost_ranks
def boost_ranks(job, isoform_expression, merged_mhc_calls, transgene_out, univ_options, rank_boost_options): """ This is the final module in the pipeline. It will call the rank boosting R script. This module corresponds to node 21 in the tree """ job.fileStore.logToMaster('Running boost_ranks on %s' % univ_options['patient']) work_dir = os.path.join(job.fileStore.getLocalTempDir(), univ_options['patient']) os.mkdir(work_dir) input_files = { 'rsem_quant.tsv': isoform_expression, 'mhci_merged_files.tsv': merged_mhc_calls['mhci_merged_files.list'], 'mhcii_merged_files.tsv': merged_mhc_calls['mhcii_merged_files.list'], 'mhci_peptides.faa': transgene_out['transgened_tumor_10_mer_snpeffed.faa'], 'mhcii_peptides.faa': transgene_out['transgened_tumor_15_mer_snpeffed.faa']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) output_files = {} for mhc in ('mhci', 'mhcii'): parameters = [mhc, input_files[''.join([mhc, '_merged_files.tsv'])], input_files['rsem_quant.tsv'], input_files[''.join([mhc, '_peptides.faa'])], rank_boost_options[''.join([mhc, '_combo'])] ] docker_call(tool='rankboost', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files[mhc] = { ''.join([mhc, '_concise_results.tsv']): job.fileStore.writeGlobalFile(''.join([work_dir, '/', mhc, '_merged_files_concise_results.tsv'])), ''.join([mhc, '_detailed_results.tsv']): job.fileStore.writeGlobalFile(''.join([work_dir, '/', mhc, '_merged_files_detailed_results.tsv']))} export_results(work_dir, univ_options) return output_files
python
def boost_ranks(job, isoform_expression, merged_mhc_calls, transgene_out, univ_options, rank_boost_options): """ This is the final module in the pipeline. It will call the rank boosting R script. This module corresponds to node 21 in the tree """ job.fileStore.logToMaster('Running boost_ranks on %s' % univ_options['patient']) work_dir = os.path.join(job.fileStore.getLocalTempDir(), univ_options['patient']) os.mkdir(work_dir) input_files = { 'rsem_quant.tsv': isoform_expression, 'mhci_merged_files.tsv': merged_mhc_calls['mhci_merged_files.list'], 'mhcii_merged_files.tsv': merged_mhc_calls['mhcii_merged_files.list'], 'mhci_peptides.faa': transgene_out['transgened_tumor_10_mer_snpeffed.faa'], 'mhcii_peptides.faa': transgene_out['transgened_tumor_15_mer_snpeffed.faa']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) output_files = {} for mhc in ('mhci', 'mhcii'): parameters = [mhc, input_files[''.join([mhc, '_merged_files.tsv'])], input_files['rsem_quant.tsv'], input_files[''.join([mhc, '_peptides.faa'])], rank_boost_options[''.join([mhc, '_combo'])] ] docker_call(tool='rankboost', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub']) output_files[mhc] = { ''.join([mhc, '_concise_results.tsv']): job.fileStore.writeGlobalFile(''.join([work_dir, '/', mhc, '_merged_files_concise_results.tsv'])), ''.join([mhc, '_detailed_results.tsv']): job.fileStore.writeGlobalFile(''.join([work_dir, '/', mhc, '_merged_files_detailed_results.tsv']))} export_results(work_dir, univ_options) return output_files
[ "def", "boost_ranks", "(", "job", ",", "isoform_expression", ",", "merged_mhc_calls", ",", "transgene_out", ",", "univ_options", ",", "rank_boost_options", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Running boost_ranks on %s'", "%", "univ_options", "[", "'patient'", "]", ")", "work_dir", "=", "os", ".", "path", ".", "join", "(", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", ",", "univ_options", "[", "'patient'", "]", ")", "os", ".", "mkdir", "(", "work_dir", ")", "input_files", "=", "{", "'rsem_quant.tsv'", ":", "isoform_expression", ",", "'mhci_merged_files.tsv'", ":", "merged_mhc_calls", "[", "'mhci_merged_files.list'", "]", ",", "'mhcii_merged_files.tsv'", ":", "merged_mhc_calls", "[", "'mhcii_merged_files.list'", "]", ",", "'mhci_peptides.faa'", ":", "transgene_out", "[", "'transgened_tumor_10_mer_snpeffed.faa'", "]", ",", "'mhcii_peptides.faa'", ":", "transgene_out", "[", "'transgened_tumor_15_mer_snpeffed.faa'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "True", ")", "output_files", "=", "{", "}", "for", "mhc", "in", "(", "'mhci'", ",", "'mhcii'", ")", ":", "parameters", "=", "[", "mhc", ",", "input_files", "[", "''", ".", "join", "(", "[", "mhc", ",", "'_merged_files.tsv'", "]", ")", "]", ",", "input_files", "[", "'rsem_quant.tsv'", "]", ",", "input_files", "[", "''", ".", "join", "(", "[", "mhc", ",", "'_peptides.faa'", "]", ")", "]", ",", "rank_boost_options", "[", "''", ".", "join", "(", "[", "mhc", ",", "'_combo'", "]", ")", "]", "]", "docker_call", "(", "tool", "=", "'rankboost'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ")", "output_files", "[", "mhc", "]", "=", "{", "''", ".", "join", "(", "[", "mhc", ",", "'_concise_results.tsv'", "]", ")", ":", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "mhc", ",", "'_merged_files_concise_results.tsv'", "]", ")", ")", ",", "''", ".", "join", "(", "[", "mhc", ",", "'_detailed_results.tsv'", "]", ")", ":", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "mhc", ",", "'_merged_files_detailed_results.tsv'", "]", ")", ")", "}", "export_results", "(", "work_dir", ",", "univ_options", ")", "return", "output_files" ]
This is the final module in the pipeline. It will call the rank boosting R script. This module corresponds to node 21 in the tree
[ "This", "is", "the", "final", "module", "in", "the", "pipeline", ".", "It", "will", "call", "the", "rank", "boosting", "R", "script", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1676-L1712
train
BD2KGenomics/protect
attic/ProTECT.py
get_files_from_filestore
def get_files_from_filestore(job, files, work_dir, cache=True, docker=False): """ This is adapted from John Vivian's return_input_paths from the RNA-Seq pipeline. Returns the paths of files from the FileStore if they are not present. If docker=True, return the docker path for the file. If the file extension is tar.gz, then tar -zxvf it. files is a dict with: keys = the name of the file to be returned in toil space value = the input value for the file (can be toil temp file) work_dir is the location where the file should be stored cache indiciates whether caching should be used """ for name in files.keys(): outfile = job.fileStore.readGlobalFile(files[name], '/'.join([work_dir, name]), cache=cache) # If the file pointed to a tarball, extract it to WORK_DIR if tarfile.is_tarfile(outfile) and file_xext(outfile).startswith('.tar'): untar_name = os.path.basename(strip_xext(outfile)) files[untar_name] = untargz(outfile, work_dir) files.pop(name) name = os.path.basename(untar_name) # If the file is gzipped but NOT a tarfile, gunzip it to work_dir. However, the file is # already named x.gz so we need to write to a temporary file x.gz_temp then do a move # operation to overwrite x.gz. elif is_gzipfile(outfile) and file_xext(outfile) == '.gz': ungz_name = strip_xext(outfile) with gzip.open(outfile, 'rb') as gz_in, open(ungz_name, 'w') as ungz_out: shutil.copyfileobj(gz_in, ungz_out) files[os.path.basename(ungz_name)] = outfile files.pop(name) name = os.path.basename(ungz_name) else: files[name] = outfile # If the files will be sent to docker, we will mount work_dir to the container as /data and # we want the /data prefixed path to the file if docker: files[name] = docker_path(files[name]) return files
python
def get_files_from_filestore(job, files, work_dir, cache=True, docker=False): """ This is adapted from John Vivian's return_input_paths from the RNA-Seq pipeline. Returns the paths of files from the FileStore if they are not present. If docker=True, return the docker path for the file. If the file extension is tar.gz, then tar -zxvf it. files is a dict with: keys = the name of the file to be returned in toil space value = the input value for the file (can be toil temp file) work_dir is the location where the file should be stored cache indiciates whether caching should be used """ for name in files.keys(): outfile = job.fileStore.readGlobalFile(files[name], '/'.join([work_dir, name]), cache=cache) # If the file pointed to a tarball, extract it to WORK_DIR if tarfile.is_tarfile(outfile) and file_xext(outfile).startswith('.tar'): untar_name = os.path.basename(strip_xext(outfile)) files[untar_name] = untargz(outfile, work_dir) files.pop(name) name = os.path.basename(untar_name) # If the file is gzipped but NOT a tarfile, gunzip it to work_dir. However, the file is # already named x.gz so we need to write to a temporary file x.gz_temp then do a move # operation to overwrite x.gz. elif is_gzipfile(outfile) and file_xext(outfile) == '.gz': ungz_name = strip_xext(outfile) with gzip.open(outfile, 'rb') as gz_in, open(ungz_name, 'w') as ungz_out: shutil.copyfileobj(gz_in, ungz_out) files[os.path.basename(ungz_name)] = outfile files.pop(name) name = os.path.basename(ungz_name) else: files[name] = outfile # If the files will be sent to docker, we will mount work_dir to the container as /data and # we want the /data prefixed path to the file if docker: files[name] = docker_path(files[name]) return files
[ "def", "get_files_from_filestore", "(", "job", ",", "files", ",", "work_dir", ",", "cache", "=", "True", ",", "docker", "=", "False", ")", ":", "for", "name", "in", "files", ".", "keys", "(", ")", ":", "outfile", "=", "job", ".", "fileStore", ".", "readGlobalFile", "(", "files", "[", "name", "]", ",", "'/'", ".", "join", "(", "[", "work_dir", ",", "name", "]", ")", ",", "cache", "=", "cache", ")", "if", "tarfile", ".", "is_tarfile", "(", "outfile", ")", "and", "file_xext", "(", "outfile", ")", ".", "startswith", "(", "'.tar'", ")", ":", "untar_name", "=", "os", ".", "path", ".", "basename", "(", "strip_xext", "(", "outfile", ")", ")", "files", "[", "untar_name", "]", "=", "untargz", "(", "outfile", ",", "work_dir", ")", "files", ".", "pop", "(", "name", ")", "name", "=", "os", ".", "path", ".", "basename", "(", "untar_name", ")", "elif", "is_gzipfile", "(", "outfile", ")", "and", "file_xext", "(", "outfile", ")", "==", "'.gz'", ":", "ungz_name", "=", "strip_xext", "(", "outfile", ")", "with", "gzip", ".", "open", "(", "outfile", ",", "'rb'", ")", "as", "gz_in", ",", "open", "(", "ungz_name", ",", "'w'", ")", "as", "ungz_out", ":", "shutil", ".", "copyfileobj", "(", "gz_in", ",", "ungz_out", ")", "files", "[", "os", ".", "path", ".", "basename", "(", "ungz_name", ")", "]", "=", "outfile", "files", ".", "pop", "(", "name", ")", "name", "=", "os", ".", "path", ".", "basename", "(", "ungz_name", ")", "else", ":", "files", "[", "name", "]", "=", "outfile", "if", "docker", ":", "files", "[", "name", "]", "=", "docker_path", "(", "files", "[", "name", "]", ")", "return", "files" ]
This is adapted from John Vivian's return_input_paths from the RNA-Seq pipeline. Returns the paths of files from the FileStore if they are not present. If docker=True, return the docker path for the file. If the file extension is tar.gz, then tar -zxvf it. files is a dict with: keys = the name of the file to be returned in toil space value = the input value for the file (can be toil temp file) work_dir is the location where the file should be stored cache indiciates whether caching should be used
[ "This", "is", "adapted", "from", "John", "Vivian", "s", "return_input_paths", "from", "the", "RNA", "-", "Seq", "pipeline", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1866-L1904
train
BD2KGenomics/protect
attic/ProTECT.py
merge_vcfs
def merge_vcfs(vcf_file, merged_mut_file): """ This module will accept the vcf files for mutect and radia read into memory in a dict object VCF_FILE and will merge the calls. Merged calls are printed to MERGED_MUT_FILE. VCF_FILE is a dict with key : mutation caller (mutect or radia) value : dict with key: (chrom, pos, ref, alt) value: vcf line in list form (split by tab) """ mutect_keys = set(vcf_file['mutect'].keys()) radia_keys = set(vcf_file['radia'].keys()) common_keys = radia_keys.intersection(mutect_keys) # Open as append since the header is already written with open(merged_mut_file, 'a') as outfile: for mutation in common_keys: print('\t'.join(vcf_file['radia'][mutation]), file=outfile) return None
python
def merge_vcfs(vcf_file, merged_mut_file): """ This module will accept the vcf files for mutect and radia read into memory in a dict object VCF_FILE and will merge the calls. Merged calls are printed to MERGED_MUT_FILE. VCF_FILE is a dict with key : mutation caller (mutect or radia) value : dict with key: (chrom, pos, ref, alt) value: vcf line in list form (split by tab) """ mutect_keys = set(vcf_file['mutect'].keys()) radia_keys = set(vcf_file['radia'].keys()) common_keys = radia_keys.intersection(mutect_keys) # Open as append since the header is already written with open(merged_mut_file, 'a') as outfile: for mutation in common_keys: print('\t'.join(vcf_file['radia'][mutation]), file=outfile) return None
[ "def", "merge_vcfs", "(", "vcf_file", ",", "merged_mut_file", ")", ":", "mutect_keys", "=", "set", "(", "vcf_file", "[", "'mutect'", "]", ".", "keys", "(", ")", ")", "radia_keys", "=", "set", "(", "vcf_file", "[", "'radia'", "]", ".", "keys", "(", ")", ")", "common_keys", "=", "radia_keys", ".", "intersection", "(", "mutect_keys", ")", "with", "open", "(", "merged_mut_file", ",", "'a'", ")", "as", "outfile", ":", "for", "mutation", "in", "common_keys", ":", "print", "(", "'\\t'", ".", "join", "(", "vcf_file", "[", "'radia'", "]", "[", "mutation", "]", ")", ",", "file", "=", "outfile", ")", "return", "None" ]
This module will accept the vcf files for mutect and radia read into memory in a dict object VCF_FILE and will merge the calls. Merged calls are printed to MERGED_MUT_FILE. VCF_FILE is a dict with key : mutation caller (mutect or radia) value : dict with key: (chrom, pos, ref, alt) value: vcf line in list form (split by tab)
[ "This", "module", "will", "accept", "the", "vcf", "files", "for", "mutect", "and", "radia", "read", "into", "memory", "in", "a", "dict", "object", "VCF_FILE", "and", "will", "merge", "the", "calls", ".", "Merged", "calls", "are", "printed", "to", "MERGED_MUT_FILE", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L1956-L1974
train
BD2KGenomics/protect
attic/ProTECT.py
docker_call
def docker_call(tool, tool_parameters, work_dir, java_opts=None, outfile=None, dockerhub='aarjunrao', interactive=False): """ Makes subprocess call of a command to a docker container. work_dir MUST BE AN ABSOLUTE PATH or the call will fail. outfile is an open file descriptor to a writeable file. """ # If an outifle has been provided, then ensure that it is of type file, it is writeable, and # that it is open. if outfile: assert isinstance(outfile, file), 'outfile was not passsed a file' assert outfile.mode in ['w', 'a', 'wb', 'ab'], 'outfile not writeable' assert not outfile.closed, 'outfile is closed' # If the call is interactive, set intereactive to -i if interactive: interactive = '-i' else: interactive = '' # If a tag is passed along with the image, use it. if ':' in tool: docker_tool = '/'.join([dockerhub, tool]) # Else use 'latest' else: docker_tool = ''.join([dockerhub, '/', tool, ':latest']) # Get the docker image on the worker if needed call = ['docker', 'images'] dimg_rv = subprocess.check_output(call) existing_images = [':'.join(x.split()[0:2]) for x in dimg_rv.splitlines() if x.startswith(dockerhub)] if docker_tool not in existing_images: try: call = ' '.join(['docker', 'pull', docker_tool]).split() subprocess.check_call(call) except subprocess.CalledProcessError as err: raise RuntimeError('docker command returned a non-zero exit status ' + '(%s)' % err.returncode + 'for command \"%s\"' % ' '.join(call),) except OSError: raise RuntimeError('docker not found on system. Install on all' + ' nodes.') # If java options have been provided, it needs to be in the docker call if java_opts: base_docker_call = ' docker run -e JAVA_OPTS=-Xmx{} '.format(java_opts) + '--rm=true ' + \ '-v {}:/data --log-driver=none '.format(work_dir) + interactive else: base_docker_call = ' docker run --rm=true -v {}:/data '.format(work_dir) + \ '--log-driver=none ' + interactive call = base_docker_call.split() + [docker_tool] + tool_parameters try: subprocess.check_call(call, stdout=outfile) except subprocess.CalledProcessError as err: raise RuntimeError('docker command returned a non-zero exit status (%s)' % err.returncode + 'for command \"%s\"' % ' '.join(call),) except OSError: raise RuntimeError('docker not found on system. Install on all nodes.')
python
def docker_call(tool, tool_parameters, work_dir, java_opts=None, outfile=None, dockerhub='aarjunrao', interactive=False): """ Makes subprocess call of a command to a docker container. work_dir MUST BE AN ABSOLUTE PATH or the call will fail. outfile is an open file descriptor to a writeable file. """ # If an outifle has been provided, then ensure that it is of type file, it is writeable, and # that it is open. if outfile: assert isinstance(outfile, file), 'outfile was not passsed a file' assert outfile.mode in ['w', 'a', 'wb', 'ab'], 'outfile not writeable' assert not outfile.closed, 'outfile is closed' # If the call is interactive, set intereactive to -i if interactive: interactive = '-i' else: interactive = '' # If a tag is passed along with the image, use it. if ':' in tool: docker_tool = '/'.join([dockerhub, tool]) # Else use 'latest' else: docker_tool = ''.join([dockerhub, '/', tool, ':latest']) # Get the docker image on the worker if needed call = ['docker', 'images'] dimg_rv = subprocess.check_output(call) existing_images = [':'.join(x.split()[0:2]) for x in dimg_rv.splitlines() if x.startswith(dockerhub)] if docker_tool not in existing_images: try: call = ' '.join(['docker', 'pull', docker_tool]).split() subprocess.check_call(call) except subprocess.CalledProcessError as err: raise RuntimeError('docker command returned a non-zero exit status ' + '(%s)' % err.returncode + 'for command \"%s\"' % ' '.join(call),) except OSError: raise RuntimeError('docker not found on system. Install on all' + ' nodes.') # If java options have been provided, it needs to be in the docker call if java_opts: base_docker_call = ' docker run -e JAVA_OPTS=-Xmx{} '.format(java_opts) + '--rm=true ' + \ '-v {}:/data --log-driver=none '.format(work_dir) + interactive else: base_docker_call = ' docker run --rm=true -v {}:/data '.format(work_dir) + \ '--log-driver=none ' + interactive call = base_docker_call.split() + [docker_tool] + tool_parameters try: subprocess.check_call(call, stdout=outfile) except subprocess.CalledProcessError as err: raise RuntimeError('docker command returned a non-zero exit status (%s)' % err.returncode + 'for command \"%s\"' % ' '.join(call),) except OSError: raise RuntimeError('docker not found on system. Install on all nodes.')
[ "def", "docker_call", "(", "tool", ",", "tool_parameters", ",", "work_dir", ",", "java_opts", "=", "None", ",", "outfile", "=", "None", ",", "dockerhub", "=", "'aarjunrao'", ",", "interactive", "=", "False", ")", ":", "if", "outfile", ":", "assert", "isinstance", "(", "outfile", ",", "file", ")", ",", "'outfile was not passsed a file'", "assert", "outfile", ".", "mode", "in", "[", "'w'", ",", "'a'", ",", "'wb'", ",", "'ab'", "]", ",", "'outfile not writeable'", "assert", "not", "outfile", ".", "closed", ",", "'outfile is closed'", "if", "interactive", ":", "interactive", "=", "'-i'", "else", ":", "interactive", "=", "''", "if", "':'", "in", "tool", ":", "docker_tool", "=", "'/'", ".", "join", "(", "[", "dockerhub", ",", "tool", "]", ")", "else", ":", "docker_tool", "=", "''", ".", "join", "(", "[", "dockerhub", ",", "'/'", ",", "tool", ",", "':latest'", "]", ")", "call", "=", "[", "'docker'", ",", "'images'", "]", "dimg_rv", "=", "subprocess", ".", "check_output", "(", "call", ")", "existing_images", "=", "[", "':'", ".", "join", "(", "x", ".", "split", "(", ")", "[", "0", ":", "2", "]", ")", "for", "x", "in", "dimg_rv", ".", "splitlines", "(", ")", "if", "x", ".", "startswith", "(", "dockerhub", ")", "]", "if", "docker_tool", "not", "in", "existing_images", ":", "try", ":", "call", "=", "' '", ".", "join", "(", "[", "'docker'", ",", "'pull'", ",", "docker_tool", "]", ")", ".", "split", "(", ")", "subprocess", ".", "check_call", "(", "call", ")", "except", "subprocess", ".", "CalledProcessError", "as", "err", ":", "raise", "RuntimeError", "(", "'docker command returned a non-zero exit status '", "+", "'(%s)'", "%", "err", ".", "returncode", "+", "'for command \\\"%s\\\"'", "%", "' '", ".", "join", "(", "call", ")", ",", ")", "except", "OSError", ":", "raise", "RuntimeError", "(", "'docker not found on system. Install on all'", "+", "' nodes.'", ")", "if", "java_opts", ":", "base_docker_call", "=", "' docker run -e JAVA_OPTS=-Xmx{} '", ".", "format", "(", "java_opts", ")", "+", "'--rm=true '", "+", "'-v {}:/data --log-driver=none '", ".", "format", "(", "work_dir", ")", "+", "interactive", "else", ":", "base_docker_call", "=", "' docker run --rm=true -v {}:/data '", ".", "format", "(", "work_dir", ")", "+", "'--log-driver=none '", "+", "interactive", "call", "=", "base_docker_call", ".", "split", "(", ")", "+", "[", "docker_tool", "]", "+", "tool_parameters", "try", ":", "subprocess", ".", "check_call", "(", "call", ",", "stdout", "=", "outfile", ")", "except", "subprocess", ".", "CalledProcessError", "as", "err", ":", "raise", "RuntimeError", "(", "'docker command returned a non-zero exit status (%s)'", "%", "err", ".", "returncode", "+", "'for command \\\"%s\\\"'", "%", "' '", ".", "join", "(", "call", ")", ",", ")", "except", "OSError", ":", "raise", "RuntimeError", "(", "'docker not found on system. Install on all nodes.'", ")" ]
Makes subprocess call of a command to a docker container. work_dir MUST BE AN ABSOLUTE PATH or the call will fail. outfile is an open file descriptor to a writeable file.
[ "Makes", "subprocess", "call", "of", "a", "command", "to", "a", "docker", "container", ".", "work_dir", "MUST", "BE", "AN", "ABSOLUTE", "PATH", "or", "the", "call", "will", "fail", ".", "outfile", "is", "an", "open", "file", "descriptor", "to", "a", "writeable", "file", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L2130-L2182
train
BD2KGenomics/protect
attic/ProTECT.py
untargz
def untargz(input_targz_file, untar_to_dir): """ This module accepts a tar.gz archive and untars it. RETURN VALUE: path to the untar-ed directory/file NOTE: this module expects the multiple files to be in a directory before being tar-ed. """ assert tarfile.is_tarfile(input_targz_file), 'Not a tar file.' tarball = tarfile.open(input_targz_file) return_value = os.path.join(untar_to_dir, tarball.getmembers()[0].name) tarball.extractall(path=untar_to_dir) tarball.close() return return_value
python
def untargz(input_targz_file, untar_to_dir): """ This module accepts a tar.gz archive and untars it. RETURN VALUE: path to the untar-ed directory/file NOTE: this module expects the multiple files to be in a directory before being tar-ed. """ assert tarfile.is_tarfile(input_targz_file), 'Not a tar file.' tarball = tarfile.open(input_targz_file) return_value = os.path.join(untar_to_dir, tarball.getmembers()[0].name) tarball.extractall(path=untar_to_dir) tarball.close() return return_value
[ "def", "untargz", "(", "input_targz_file", ",", "untar_to_dir", ")", ":", "assert", "tarfile", ".", "is_tarfile", "(", "input_targz_file", ")", ",", "'Not a tar file.'", "tarball", "=", "tarfile", ".", "open", "(", "input_targz_file", ")", "return_value", "=", "os", ".", "path", ".", "join", "(", "untar_to_dir", ",", "tarball", ".", "getmembers", "(", ")", "[", "0", "]", ".", "name", ")", "tarball", ".", "extractall", "(", "path", "=", "untar_to_dir", ")", "tarball", ".", "close", "(", ")", "return", "return_value" ]
This module accepts a tar.gz archive and untars it. RETURN VALUE: path to the untar-ed directory/file NOTE: this module expects the multiple files to be in a directory before being tar-ed.
[ "This", "module", "accepts", "a", "tar", ".", "gz", "archive", "and", "untars", "it", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L2185-L2199
train
BD2KGenomics/protect
attic/ProTECT.py
bam2fastq
def bam2fastq(job, bamfile, univ_options): """ split an input bam to paired fastqs. ARGUMENTS 1. bamfile: Path to a bam file 2. univ_options: Dict of universal arguments used by almost all tools univ_options |- 'dockerhub': <dockerhub to use> +- 'java_Xmx': value for max heap passed to java """ work_dir = os.path.split(bamfile)[0] base_name = os.path.split(os.path.splitext(bamfile)[0])[1] parameters = ['SamToFastq', ''.join(['I=', docker_path(bamfile)]), ''.join(['F=/data/', base_name, '_1.fastq']), ''.join(['F2=/data/', base_name, '_2.fastq']), ''.join(['FU=/data/', base_name, '_UP.fastq'])] docker_call(tool='picard', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], java_opts=univ_options['java_Xmx']) first_fastq = ''.join([work_dir, '/', base_name, '_1.fastq']) assert os.path.exists(first_fastq) return first_fastq
python
def bam2fastq(job, bamfile, univ_options): """ split an input bam to paired fastqs. ARGUMENTS 1. bamfile: Path to a bam file 2. univ_options: Dict of universal arguments used by almost all tools univ_options |- 'dockerhub': <dockerhub to use> +- 'java_Xmx': value for max heap passed to java """ work_dir = os.path.split(bamfile)[0] base_name = os.path.split(os.path.splitext(bamfile)[0])[1] parameters = ['SamToFastq', ''.join(['I=', docker_path(bamfile)]), ''.join(['F=/data/', base_name, '_1.fastq']), ''.join(['F2=/data/', base_name, '_2.fastq']), ''.join(['FU=/data/', base_name, '_UP.fastq'])] docker_call(tool='picard', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], java_opts=univ_options['java_Xmx']) first_fastq = ''.join([work_dir, '/', base_name, '_1.fastq']) assert os.path.exists(first_fastq) return first_fastq
[ "def", "bam2fastq", "(", "job", ",", "bamfile", ",", "univ_options", ")", ":", "work_dir", "=", "os", ".", "path", ".", "split", "(", "bamfile", ")", "[", "0", "]", "base_name", "=", "os", ".", "path", ".", "split", "(", "os", ".", "path", ".", "splitext", "(", "bamfile", ")", "[", "0", "]", ")", "[", "1", "]", "parameters", "=", "[", "'SamToFastq'", ",", "''", ".", "join", "(", "[", "'I='", ",", "docker_path", "(", "bamfile", ")", "]", ")", ",", "''", ".", "join", "(", "[", "'F=/data/'", ",", "base_name", ",", "'_1.fastq'", "]", ")", ",", "''", ".", "join", "(", "[", "'F2=/data/'", ",", "base_name", ",", "'_2.fastq'", "]", ")", ",", "''", ".", "join", "(", "[", "'FU=/data/'", ",", "base_name", ",", "'_UP.fastq'", "]", ")", "]", "docker_call", "(", "tool", "=", "'picard'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "java_opts", "=", "univ_options", "[", "'java_Xmx'", "]", ")", "first_fastq", "=", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "base_name", ",", "'_1.fastq'", "]", ")", "assert", "os", ".", "path", ".", "exists", "(", "first_fastq", ")", "return", "first_fastq" ]
split an input bam to paired fastqs. ARGUMENTS 1. bamfile: Path to a bam file 2. univ_options: Dict of universal arguments used by almost all tools univ_options |- 'dockerhub': <dockerhub to use> +- 'java_Xmx': value for max heap passed to java
[ "split", "an", "input", "bam", "to", "paired", "fastqs", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L2386-L2408
train
BD2KGenomics/protect
attic/ProTECT.py
main
def main(): """ This is the main function for the UCSC Precision Immuno pipeline. """ parser = argparse.ArgumentParser() parser.add_argument('--config_file', dest='config_file', help='Config file to be used in the' + 'run.', type=str, required=True, default=None) Job.Runner.addToilOptions(parser) params = parser.parse_args() START = Job.wrapJobFn(parse_config_file, params.config_file).encapsulate() Job.Runner.startToil(START, params) return None
python
def main(): """ This is the main function for the UCSC Precision Immuno pipeline. """ parser = argparse.ArgumentParser() parser.add_argument('--config_file', dest='config_file', help='Config file to be used in the' + 'run.', type=str, required=True, default=None) Job.Runner.addToilOptions(parser) params = parser.parse_args() START = Job.wrapJobFn(parse_config_file, params.config_file).encapsulate() Job.Runner.startToil(START, params) return None
[ "def", "main", "(", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", ")", "parser", ".", "add_argument", "(", "'--config_file'", ",", "dest", "=", "'config_file'", ",", "help", "=", "'Config file to be used in the'", "+", "'run.'", ",", "type", "=", "str", ",", "required", "=", "True", ",", "default", "=", "None", ")", "Job", ".", "Runner", ".", "addToilOptions", "(", "parser", ")", "params", "=", "parser", ".", "parse_args", "(", ")", "START", "=", "Job", ".", "wrapJobFn", "(", "parse_config_file", ",", "params", ".", "config_file", ")", ".", "encapsulate", "(", ")", "Job", ".", "Runner", ".", "startToil", "(", "START", ",", "params", ")", "return", "None" ]
This is the main function for the UCSC Precision Immuno pipeline.
[ "This", "is", "the", "main", "function", "for", "the", "UCSC", "Precision", "Immuno", "pipeline", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/ProTECT.py#L2530-L2541
train
BD2KGenomics/protect
src/protect/mutation_calling/strelka.py
run_strelka_with_merge
def run_strelka_with_merge(job, tumor_bam, normal_bam, univ_options, strelka_options): """ A wrapper for the the entire strelka sub-graph. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict strelka_options: Options specific to strelka :return: fsID to the merged strelka calls :rtype: toil.fileStore.FileID """ spawn = job.wrapJobFn(run_strelka, tumor_bam, normal_bam, univ_options, strelka_options, split=False).encapsulate() job.addChild(spawn) return spawn.rv()
python
def run_strelka_with_merge(job, tumor_bam, normal_bam, univ_options, strelka_options): """ A wrapper for the the entire strelka sub-graph. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict strelka_options: Options specific to strelka :return: fsID to the merged strelka calls :rtype: toil.fileStore.FileID """ spawn = job.wrapJobFn(run_strelka, tumor_bam, normal_bam, univ_options, strelka_options, split=False).encapsulate() job.addChild(spawn) return spawn.rv()
[ "def", "run_strelka_with_merge", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "strelka_options", ")", ":", "spawn", "=", "job", ".", "wrapJobFn", "(", "run_strelka", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "strelka_options", ",", "split", "=", "False", ")", ".", "encapsulate", "(", ")", "job", ".", "addChild", "(", "spawn", ")", "return", "spawn", ".", "rv", "(", ")" ]
A wrapper for the the entire strelka sub-graph. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict strelka_options: Options specific to strelka :return: fsID to the merged strelka calls :rtype: toil.fileStore.FileID
[ "A", "wrapper", "for", "the", "the", "entire", "strelka", "sub", "-", "graph", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/strelka.py#L39-L53
train
BD2KGenomics/protect
src/protect/mutation_calling/strelka.py
run_strelka
def run_strelka(job, tumor_bam, normal_bam, univ_options, strelka_options, split=True): """ Run the strelka subgraph on the DNA bams. Optionally split the results into per-chromosome vcfs. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict strelka_options: Options specific to strelka :param bool split: Should the results be split into perchrom vcfs? :return: Either the fsID to the genome-level vcf or a dict of results from running strelka on every chromosome perchrom_strelka: |- 'chr1': | |-'snvs': fsID | +-'indels': fsID |- 'chr2': | |-'snvs': fsID | +-'indels': fsID |-... | +- 'chrM': |-'snvs': fsID +-'indels': fsID :rtype: toil.fileStore.FileID|dict """ if strelka_options['chromosomes']: chromosomes = strelka_options['chromosomes'] else: chromosomes = sample_chromosomes(job, strelka_options['genome_fai']) num_cores = min(len(chromosomes), univ_options['max_cores']) strelka = job.wrapJobFn(run_strelka_full, tumor_bam, normal_bam, univ_options, strelka_options, disk=PromisedRequirement(strelka_disk, tumor_bam['tumor_dna_fix_pg_sorted.bam'], normal_bam['normal_dna_fix_pg_sorted.bam'], strelka_options['genome_fasta']), memory='6G', cores=num_cores) job.addChild(strelka) if split: unmerge_strelka = job.wrapJobFn(wrap_unmerge, strelka.rv(), chromosomes, strelka_options, univ_options).encapsulate() strelka.addChild(unmerge_strelka) return unmerge_strelka.rv() else: return strelka.rv()
python
def run_strelka(job, tumor_bam, normal_bam, univ_options, strelka_options, split=True): """ Run the strelka subgraph on the DNA bams. Optionally split the results into per-chromosome vcfs. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict strelka_options: Options specific to strelka :param bool split: Should the results be split into perchrom vcfs? :return: Either the fsID to the genome-level vcf or a dict of results from running strelka on every chromosome perchrom_strelka: |- 'chr1': | |-'snvs': fsID | +-'indels': fsID |- 'chr2': | |-'snvs': fsID | +-'indels': fsID |-... | +- 'chrM': |-'snvs': fsID +-'indels': fsID :rtype: toil.fileStore.FileID|dict """ if strelka_options['chromosomes']: chromosomes = strelka_options['chromosomes'] else: chromosomes = sample_chromosomes(job, strelka_options['genome_fai']) num_cores = min(len(chromosomes), univ_options['max_cores']) strelka = job.wrapJobFn(run_strelka_full, tumor_bam, normal_bam, univ_options, strelka_options, disk=PromisedRequirement(strelka_disk, tumor_bam['tumor_dna_fix_pg_sorted.bam'], normal_bam['normal_dna_fix_pg_sorted.bam'], strelka_options['genome_fasta']), memory='6G', cores=num_cores) job.addChild(strelka) if split: unmerge_strelka = job.wrapJobFn(wrap_unmerge, strelka.rv(), chromosomes, strelka_options, univ_options).encapsulate() strelka.addChild(unmerge_strelka) return unmerge_strelka.rv() else: return strelka.rv()
[ "def", "run_strelka", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "strelka_options", ",", "split", "=", "True", ")", ":", "if", "strelka_options", "[", "'chromosomes'", "]", ":", "chromosomes", "=", "strelka_options", "[", "'chromosomes'", "]", "else", ":", "chromosomes", "=", "sample_chromosomes", "(", "job", ",", "strelka_options", "[", "'genome_fai'", "]", ")", "num_cores", "=", "min", "(", "len", "(", "chromosomes", ")", ",", "univ_options", "[", "'max_cores'", "]", ")", "strelka", "=", "job", ".", "wrapJobFn", "(", "run_strelka_full", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "strelka_options", ",", "disk", "=", "PromisedRequirement", "(", "strelka_disk", ",", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam'", "]", ",", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam'", "]", ",", "strelka_options", "[", "'genome_fasta'", "]", ")", ",", "memory", "=", "'6G'", ",", "cores", "=", "num_cores", ")", "job", ".", "addChild", "(", "strelka", ")", "if", "split", ":", "unmerge_strelka", "=", "job", ".", "wrapJobFn", "(", "wrap_unmerge", ",", "strelka", ".", "rv", "(", ")", ",", "chromosomes", ",", "strelka_options", ",", "univ_options", ")", ".", "encapsulate", "(", ")", "strelka", ".", "addChild", "(", "unmerge_strelka", ")", "return", "unmerge_strelka", ".", "rv", "(", ")", "else", ":", "return", "strelka", ".", "rv", "(", ")" ]
Run the strelka subgraph on the DNA bams. Optionally split the results into per-chromosome vcfs. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict strelka_options: Options specific to strelka :param bool split: Should the results be split into perchrom vcfs? :return: Either the fsID to the genome-level vcf or a dict of results from running strelka on every chromosome perchrom_strelka: |- 'chr1': | |-'snvs': fsID | +-'indels': fsID |- 'chr2': | |-'snvs': fsID | +-'indels': fsID |-... | +- 'chrM': |-'snvs': fsID +-'indels': fsID :rtype: toil.fileStore.FileID|dict
[ "Run", "the", "strelka", "subgraph", "on", "the", "DNA", "bams", ".", "Optionally", "split", "the", "results", "into", "per", "-", "chromosome", "vcfs", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/strelka.py#L56-L102
train
BD2KGenomics/protect
src/protect/mutation_calling/strelka.py
run_strelka_full
def run_strelka_full(job, tumor_bam, normal_bam, univ_options, strelka_options): """ Run strelka on the DNA bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict strelka_options: Options specific to strelka :return: Dict of fsIDs snv and indel prediction files output_dict: |-'snvs': fsID +-'indels': fsID :rtype: dict """ work_dir = os.getcwd() input_files = { 'tumor.bam': tumor_bam['tumor_dna_fix_pg_sorted.bam'], 'tumor.bam.bai': tumor_bam['tumor_dna_fix_pg_sorted.bam.bai'], 'normal.bam': normal_bam['normal_dna_fix_pg_sorted.bam'], 'normal.bam.bai': normal_bam['normal_dna_fix_pg_sorted.bam.bai'], 'genome.fa.tar.gz': strelka_options['genome_fasta'], 'genome.fa.fai.tar.gz': strelka_options['genome_fai'], 'config.ini.tar.gz': strelka_options['config_file'] } input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) for key in ('genome.fa', 'genome.fa.fai', 'config.ini'): input_files[key] = untargz(input_files[key + '.tar.gz'], work_dir) input_files = {key: docker_path(path) for key, path in input_files.items()} parameters = [input_files['config.ini'], input_files['tumor.bam'], input_files['normal.bam'], input_files['genome.fa'], str(job.cores) ] docker_call(tool='strelka', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], tool_version=strelka_options['version']) output_dict = {} for mutation_type in ['snvs', 'indels']: output_dict[mutation_type] = job.fileStore.writeGlobalFile(os.path.join( work_dir, 'strelka_out', 'results', 'passed.somatic.' + mutation_type + '.vcf')) job.fileStore.logToMaster('Ran strelka on %s successfully' % univ_options['patient']) return output_dict
python
def run_strelka_full(job, tumor_bam, normal_bam, univ_options, strelka_options): """ Run strelka on the DNA bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict strelka_options: Options specific to strelka :return: Dict of fsIDs snv and indel prediction files output_dict: |-'snvs': fsID +-'indels': fsID :rtype: dict """ work_dir = os.getcwd() input_files = { 'tumor.bam': tumor_bam['tumor_dna_fix_pg_sorted.bam'], 'tumor.bam.bai': tumor_bam['tumor_dna_fix_pg_sorted.bam.bai'], 'normal.bam': normal_bam['normal_dna_fix_pg_sorted.bam'], 'normal.bam.bai': normal_bam['normal_dna_fix_pg_sorted.bam.bai'], 'genome.fa.tar.gz': strelka_options['genome_fasta'], 'genome.fa.fai.tar.gz': strelka_options['genome_fai'], 'config.ini.tar.gz': strelka_options['config_file'] } input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) for key in ('genome.fa', 'genome.fa.fai', 'config.ini'): input_files[key] = untargz(input_files[key + '.tar.gz'], work_dir) input_files = {key: docker_path(path) for key, path in input_files.items()} parameters = [input_files['config.ini'], input_files['tumor.bam'], input_files['normal.bam'], input_files['genome.fa'], str(job.cores) ] docker_call(tool='strelka', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], tool_version=strelka_options['version']) output_dict = {} for mutation_type in ['snvs', 'indels']: output_dict[mutation_type] = job.fileStore.writeGlobalFile(os.path.join( work_dir, 'strelka_out', 'results', 'passed.somatic.' + mutation_type + '.vcf')) job.fileStore.logToMaster('Ran strelka on %s successfully' % univ_options['patient']) return output_dict
[ "def", "run_strelka_full", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "strelka_options", ")", ":", "work_dir", "=", "os", ".", "getcwd", "(", ")", "input_files", "=", "{", "'tumor.bam'", ":", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam'", "]", ",", "'tumor.bam.bai'", ":", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam.bai'", "]", ",", "'normal.bam'", ":", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam'", "]", ",", "'normal.bam.bai'", ":", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam.bai'", "]", ",", "'genome.fa.tar.gz'", ":", "strelka_options", "[", "'genome_fasta'", "]", ",", "'genome.fa.fai.tar.gz'", ":", "strelka_options", "[", "'genome_fai'", "]", ",", "'config.ini.tar.gz'", ":", "strelka_options", "[", "'config_file'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "False", ")", "for", "key", "in", "(", "'genome.fa'", ",", "'genome.fa.fai'", ",", "'config.ini'", ")", ":", "input_files", "[", "key", "]", "=", "untargz", "(", "input_files", "[", "key", "+", "'.tar.gz'", "]", ",", "work_dir", ")", "input_files", "=", "{", "key", ":", "docker_path", "(", "path", ")", "for", "key", ",", "path", "in", "input_files", ".", "items", "(", ")", "}", "parameters", "=", "[", "input_files", "[", "'config.ini'", "]", ",", "input_files", "[", "'tumor.bam'", "]", ",", "input_files", "[", "'normal.bam'", "]", ",", "input_files", "[", "'genome.fa'", "]", ",", "str", "(", "job", ".", "cores", ")", "]", "docker_call", "(", "tool", "=", "'strelka'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "tool_version", "=", "strelka_options", "[", "'version'", "]", ")", "output_dict", "=", "{", "}", "for", "mutation_type", "in", "[", "'snvs'", ",", "'indels'", "]", ":", "output_dict", "[", "mutation_type", "]", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "os", ".", "path", ".", "join", "(", "work_dir", ",", "'strelka_out'", ",", "'results'", ",", "'passed.somatic.'", "+", "mutation_type", "+", "'.vcf'", ")", ")", "job", ".", "fileStore", ".", "logToMaster", "(", "'Ran strelka on %s successfully'", "%", "univ_options", "[", "'patient'", "]", ")", "return", "output_dict" ]
Run strelka on the DNA bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict strelka_options: Options specific to strelka :return: Dict of fsIDs snv and indel prediction files output_dict: |-'snvs': fsID +-'indels': fsID :rtype: dict
[ "Run", "strelka", "on", "the", "DNA", "bams", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/strelka.py#L105-L148
train
BD2KGenomics/protect
src/protect/mutation_calling/strelka.py
wrap_unmerge
def wrap_unmerge(job, strelka_out, chromosomes, strelka_options, univ_options): """ A wwrapper to unmerge the strelka snvs and indels :param dict strelka_out: Results from run_strelka :param list chromosomes: List of chromosomes to retain :param dict strelka_options: Options specific to strelka :param dict univ_options: Dict of universal options used by almost all tools :return: Dict of dicts containing the fsIDs for the per-chromosome snv and indel calls output: |- 'snvs': | |- 'chr1': fsID | |- 'chr2': fsID | |- ... | +- 'chrM': fsID +- 'indels': |- 'chr1': fsID |- 'chr2': fsID |- ... +- 'chrM': fsID :rtype: dict """ return {'snvs': job.addChildJobFn(unmerge, strelka_out['snvs'], 'strelka/snv', chromosomes, strelka_options, univ_options).rv(), 'indels': job.addChildJobFn(unmerge, strelka_out['indels'], 'strelka/indel', chromosomes, strelka_options, univ_options).rv()}
python
def wrap_unmerge(job, strelka_out, chromosomes, strelka_options, univ_options): """ A wwrapper to unmerge the strelka snvs and indels :param dict strelka_out: Results from run_strelka :param list chromosomes: List of chromosomes to retain :param dict strelka_options: Options specific to strelka :param dict univ_options: Dict of universal options used by almost all tools :return: Dict of dicts containing the fsIDs for the per-chromosome snv and indel calls output: |- 'snvs': | |- 'chr1': fsID | |- 'chr2': fsID | |- ... | +- 'chrM': fsID +- 'indels': |- 'chr1': fsID |- 'chr2': fsID |- ... +- 'chrM': fsID :rtype: dict """ return {'snvs': job.addChildJobFn(unmerge, strelka_out['snvs'], 'strelka/snv', chromosomes, strelka_options, univ_options).rv(), 'indels': job.addChildJobFn(unmerge, strelka_out['indels'], 'strelka/indel', chromosomes, strelka_options, univ_options).rv()}
[ "def", "wrap_unmerge", "(", "job", ",", "strelka_out", ",", "chromosomes", ",", "strelka_options", ",", "univ_options", ")", ":", "return", "{", "'snvs'", ":", "job", ".", "addChildJobFn", "(", "unmerge", ",", "strelka_out", "[", "'snvs'", "]", ",", "'strelka/snv'", ",", "chromosomes", ",", "strelka_options", ",", "univ_options", ")", ".", "rv", "(", ")", ",", "'indels'", ":", "job", ".", "addChildJobFn", "(", "unmerge", ",", "strelka_out", "[", "'indels'", "]", ",", "'strelka/indel'", ",", "chromosomes", ",", "strelka_options", ",", "univ_options", ")", ".", "rv", "(", ")", "}" ]
A wwrapper to unmerge the strelka snvs and indels :param dict strelka_out: Results from run_strelka :param list chromosomes: List of chromosomes to retain :param dict strelka_options: Options specific to strelka :param dict univ_options: Dict of universal options used by almost all tools :return: Dict of dicts containing the fsIDs for the per-chromosome snv and indel calls output: |- 'snvs': | |- 'chr1': fsID | |- 'chr2': fsID | |- ... | +- 'chrM': fsID +- 'indels': |- 'chr1': fsID |- 'chr2': fsID |- ... +- 'chrM': fsID :rtype: dict
[ "A", "wwrapper", "to", "unmerge", "the", "strelka", "snvs", "and", "indels" ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/strelka.py#L165-L190
train
budacom/trading-bots
trading_bots/utils.py
get_iso_time_str
def get_iso_time_str(timestamp: Union[int, float, str, datetime]=None) -> str: """Get the ISO time string from a timestamp or date obj. Returns current time str if no timestamp is passed""" if isinstance(timestamp, (int, float)): maya_dt = maya.MayaDT(timestamp) elif isinstance(timestamp, str): maya_dt = maya.when(timestamp) elif timestamp is None: maya_dt = maya.now() else: raise ValueError(f'`{type(timestamp)}` is not supported') return maya_dt.iso8601()
python
def get_iso_time_str(timestamp: Union[int, float, str, datetime]=None) -> str: """Get the ISO time string from a timestamp or date obj. Returns current time str if no timestamp is passed""" if isinstance(timestamp, (int, float)): maya_dt = maya.MayaDT(timestamp) elif isinstance(timestamp, str): maya_dt = maya.when(timestamp) elif timestamp is None: maya_dt = maya.now() else: raise ValueError(f'`{type(timestamp)}` is not supported') return maya_dt.iso8601()
[ "def", "get_iso_time_str", "(", "timestamp", ":", "Union", "[", "int", ",", "float", ",", "str", ",", "datetime", "]", "=", "None", ")", "->", "str", ":", "if", "isinstance", "(", "timestamp", ",", "(", "int", ",", "float", ")", ")", ":", "maya_dt", "=", "maya", ".", "MayaDT", "(", "timestamp", ")", "elif", "isinstance", "(", "timestamp", ",", "str", ")", ":", "maya_dt", "=", "maya", ".", "when", "(", "timestamp", ")", "elif", "timestamp", "is", "None", ":", "maya_dt", "=", "maya", ".", "now", "(", ")", "else", ":", "raise", "ValueError", "(", "f'`{type(timestamp)}` is not supported'", ")", "return", "maya_dt", ".", "iso8601", "(", ")" ]
Get the ISO time string from a timestamp or date obj. Returns current time str if no timestamp is passed
[ "Get", "the", "ISO", "time", "string", "from", "a", "timestamp", "or", "date", "obj", ".", "Returns", "current", "time", "str", "if", "no", "timestamp", "is", "passed" ]
8cb68bb8d0b5f822108db1cc5dae336e3d3c3452
https://github.com/budacom/trading-bots/blob/8cb68bb8d0b5f822108db1cc5dae336e3d3c3452/trading_bots/utils.py#L27-L37
train
budacom/trading-bots
trading_bots/utils.py
truncate
def truncate(value: Decimal, n_digits: int) -> Decimal: """Truncates a value to a number of decimals places""" return Decimal(math.trunc(value * (10 ** n_digits))) / (10 ** n_digits)
python
def truncate(value: Decimal, n_digits: int) -> Decimal: """Truncates a value to a number of decimals places""" return Decimal(math.trunc(value * (10 ** n_digits))) / (10 ** n_digits)
[ "def", "truncate", "(", "value", ":", "Decimal", ",", "n_digits", ":", "int", ")", "->", "Decimal", ":", "return", "Decimal", "(", "math", ".", "trunc", "(", "value", "*", "(", "10", "**", "n_digits", ")", ")", ")", "/", "(", "10", "**", "n_digits", ")" ]
Truncates a value to a number of decimals places
[ "Truncates", "a", "value", "to", "a", "number", "of", "decimals", "places" ]
8cb68bb8d0b5f822108db1cc5dae336e3d3c3452
https://github.com/budacom/trading-bots/blob/8cb68bb8d0b5f822108db1cc5dae336e3d3c3452/trading_bots/utils.py#L40-L42
train
budacom/trading-bots
trading_bots/utils.py
truncate_to
def truncate_to(value: Decimal, currency: str) -> Decimal: """Truncates a value to the number of decimals corresponding to the currency""" decimal_places = DECIMALS.get(currency.upper(), 2) return truncate(value, decimal_places)
python
def truncate_to(value: Decimal, currency: str) -> Decimal: """Truncates a value to the number of decimals corresponding to the currency""" decimal_places = DECIMALS.get(currency.upper(), 2) return truncate(value, decimal_places)
[ "def", "truncate_to", "(", "value", ":", "Decimal", ",", "currency", ":", "str", ")", "->", "Decimal", ":", "decimal_places", "=", "DECIMALS", ".", "get", "(", "currency", ".", "upper", "(", ")", ",", "2", ")", "return", "truncate", "(", "value", ",", "decimal_places", ")" ]
Truncates a value to the number of decimals corresponding to the currency
[ "Truncates", "a", "value", "to", "the", "number", "of", "decimals", "corresponding", "to", "the", "currency" ]
8cb68bb8d0b5f822108db1cc5dae336e3d3c3452
https://github.com/budacom/trading-bots/blob/8cb68bb8d0b5f822108db1cc5dae336e3d3c3452/trading_bots/utils.py#L45-L48
train
budacom/trading-bots
trading_bots/utils.py
truncate_money
def truncate_money(money: Money) -> Money: """Truncates money amount to the number of decimals corresponding to the currency""" amount = truncate_to(money.amount, money.currency) return Money(amount, money.currency)
python
def truncate_money(money: Money) -> Money: """Truncates money amount to the number of decimals corresponding to the currency""" amount = truncate_to(money.amount, money.currency) return Money(amount, money.currency)
[ "def", "truncate_money", "(", "money", ":", "Money", ")", "->", "Money", ":", "amount", "=", "truncate_to", "(", "money", ".", "amount", ",", "money", ".", "currency", ")", "return", "Money", "(", "amount", ",", "money", ".", "currency", ")" ]
Truncates money amount to the number of decimals corresponding to the currency
[ "Truncates", "money", "amount", "to", "the", "number", "of", "decimals", "corresponding", "to", "the", "currency" ]
8cb68bb8d0b5f822108db1cc5dae336e3d3c3452
https://github.com/budacom/trading-bots/blob/8cb68bb8d0b5f822108db1cc5dae336e3d3c3452/trading_bots/utils.py#L51-L54
train
budacom/trading-bots
trading_bots/utils.py
spread_value
def spread_value(value: Decimal, spread_p: Decimal) -> Tuple[Decimal, Decimal]: """Returns a lower and upper value separated by a spread percentage""" upper = value * (1 + spread_p) lower = value / (1 + spread_p) return lower, upper
python
def spread_value(value: Decimal, spread_p: Decimal) -> Tuple[Decimal, Decimal]: """Returns a lower and upper value separated by a spread percentage""" upper = value * (1 + spread_p) lower = value / (1 + spread_p) return lower, upper
[ "def", "spread_value", "(", "value", ":", "Decimal", ",", "spread_p", ":", "Decimal", ")", "->", "Tuple", "[", "Decimal", ",", "Decimal", "]", ":", "upper", "=", "value", "*", "(", "1", "+", "spread_p", ")", "lower", "=", "value", "/", "(", "1", "+", "spread_p", ")", "return", "lower", ",", "upper" ]
Returns a lower and upper value separated by a spread percentage
[ "Returns", "a", "lower", "and", "upper", "value", "separated", "by", "a", "spread", "percentage" ]
8cb68bb8d0b5f822108db1cc5dae336e3d3c3452
https://github.com/budacom/trading-bots/blob/8cb68bb8d0b5f822108db1cc5dae336e3d3c3452/trading_bots/utils.py#L57-L61
train
budacom/trading-bots
trading_bots/utils.py
spread_money
def spread_money(money: Money, spread_p: Decimal) -> Tuple[Money, Money]: """Returns a lower and upper money amount separated by a spread percentage""" upper, lower = spread_value(money.amount, spread_p) return Money(upper, money.currency), Money(lower, money.currency)
python
def spread_money(money: Money, spread_p: Decimal) -> Tuple[Money, Money]: """Returns a lower and upper money amount separated by a spread percentage""" upper, lower = spread_value(money.amount, spread_p) return Money(upper, money.currency), Money(lower, money.currency)
[ "def", "spread_money", "(", "money", ":", "Money", ",", "spread_p", ":", "Decimal", ")", "->", "Tuple", "[", "Money", ",", "Money", "]", ":", "upper", ",", "lower", "=", "spread_value", "(", "money", ".", "amount", ",", "spread_p", ")", "return", "Money", "(", "upper", ",", "money", ".", "currency", ")", ",", "Money", "(", "lower", ",", "money", ".", "currency", ")" ]
Returns a lower and upper money amount separated by a spread percentage
[ "Returns", "a", "lower", "and", "upper", "money", "amount", "separated", "by", "a", "spread", "percentage" ]
8cb68bb8d0b5f822108db1cc5dae336e3d3c3452
https://github.com/budacom/trading-bots/blob/8cb68bb8d0b5f822108db1cc5dae336e3d3c3452/trading_bots/utils.py#L64-L67
train
nepalicalendar/nepalicalendar-py
nepalicalendar/functions.py
check_valid_ad_range
def check_valid_ad_range(date): """ Checks if the english date is in valid range for conversion """ if date < values.START_EN_DATE or date > values.END_EN_DATE: raise ValueError("Date out of range") return True
python
def check_valid_ad_range(date): """ Checks if the english date is in valid range for conversion """ if date < values.START_EN_DATE or date > values.END_EN_DATE: raise ValueError("Date out of range") return True
[ "def", "check_valid_ad_range", "(", "date", ")", ":", "if", "date", "<", "values", ".", "START_EN_DATE", "or", "date", ">", "values", ".", "END_EN_DATE", ":", "raise", "ValueError", "(", "\"Date out of range\"", ")", "return", "True" ]
Checks if the english date is in valid range for conversion
[ "Checks", "if", "the", "english", "date", "is", "in", "valid", "range", "for", "conversion" ]
a589c28b8e085049f30a7287753476b59eca6f50
https://github.com/nepalicalendar/nepalicalendar-py/blob/a589c28b8e085049f30a7287753476b59eca6f50/nepalicalendar/functions.py#L8-L14
train
nepalicalendar/nepalicalendar-py
nepalicalendar/functions.py
check_valid_bs_range
def check_valid_bs_range(date): """ Checks if the nepali date is in valid range for conversion """ ERR_MSG = "%s out of range" % str(date) if date.year < values.START_NP_YEAR or date.year > values.END_NP_YEAR: raise ValueError(ERR_MSG) if date.month < 1 or date.month > 12: raise ValueError(ERR_MSG) if date.day < 1 or date.day > values.NEPALI_MONTH_DAY_DATA[date.year][date.month - 1]: raise ValueError(ERR_MSG) return True
python
def check_valid_bs_range(date): """ Checks if the nepali date is in valid range for conversion """ ERR_MSG = "%s out of range" % str(date) if date.year < values.START_NP_YEAR or date.year > values.END_NP_YEAR: raise ValueError(ERR_MSG) if date.month < 1 or date.month > 12: raise ValueError(ERR_MSG) if date.day < 1 or date.day > values.NEPALI_MONTH_DAY_DATA[date.year][date.month - 1]: raise ValueError(ERR_MSG) return True
[ "def", "check_valid_bs_range", "(", "date", ")", ":", "ERR_MSG", "=", "\"%s out of range\"", "%", "str", "(", "date", ")", "if", "date", ".", "year", "<", "values", ".", "START_NP_YEAR", "or", "date", ".", "year", ">", "values", ".", "END_NP_YEAR", ":", "raise", "ValueError", "(", "ERR_MSG", ")", "if", "date", ".", "month", "<", "1", "or", "date", ".", "month", ">", "12", ":", "raise", "ValueError", "(", "ERR_MSG", ")", "if", "date", ".", "day", "<", "1", "or", "date", ".", "day", ">", "values", ".", "NEPALI_MONTH_DAY_DATA", "[", "date", ".", "year", "]", "[", "date", ".", "month", "-", "1", "]", ":", "raise", "ValueError", "(", "ERR_MSG", ")", "return", "True" ]
Checks if the nepali date is in valid range for conversion
[ "Checks", "if", "the", "nepali", "date", "is", "in", "valid", "range", "for", "conversion" ]
a589c28b8e085049f30a7287753476b59eca6f50
https://github.com/nepalicalendar/nepalicalendar-py/blob/a589c28b8e085049f30a7287753476b59eca6f50/nepalicalendar/functions.py#L17-L29
train
nepalicalendar/nepalicalendar-py
nepalicalendar/functions.py
nepali_number
def nepali_number(number): """ Convert a number to nepali """ nepnum = "" for n in str(number): nepnum += values.NEPDIGITS[int(n)] return nepnum
python
def nepali_number(number): """ Convert a number to nepali """ nepnum = "" for n in str(number): nepnum += values.NEPDIGITS[int(n)] return nepnum
[ "def", "nepali_number", "(", "number", ")", ":", "nepnum", "=", "\"\"", "for", "n", "in", "str", "(", "number", ")", ":", "nepnum", "+=", "values", ".", "NEPDIGITS", "[", "int", "(", "n", ")", "]", "return", "nepnum" ]
Convert a number to nepali
[ "Convert", "a", "number", "to", "nepali" ]
a589c28b8e085049f30a7287753476b59eca6f50
https://github.com/nepalicalendar/nepalicalendar-py/blob/a589c28b8e085049f30a7287753476b59eca6f50/nepalicalendar/functions.py#L31-L38
train
bkg/django-spillway
spillway/serializers.py
GeoModelSerializer.get_fields
def get_fields(self): """Returns a fields dict for this serializer with a 'geometry' field added. """ fields = super(GeoModelSerializer, self).get_fields() # Set the geometry field name when it's undeclared. if not self.Meta.geom_field: for name, field in fields.items(): if isinstance(field, GeometryField): self.Meta.geom_field = name break return fields
python
def get_fields(self): """Returns a fields dict for this serializer with a 'geometry' field added. """ fields = super(GeoModelSerializer, self).get_fields() # Set the geometry field name when it's undeclared. if not self.Meta.geom_field: for name, field in fields.items(): if isinstance(field, GeometryField): self.Meta.geom_field = name break return fields
[ "def", "get_fields", "(", "self", ")", ":", "fields", "=", "super", "(", "GeoModelSerializer", ",", "self", ")", ".", "get_fields", "(", ")", "if", "not", "self", ".", "Meta", ".", "geom_field", ":", "for", "name", ",", "field", "in", "fields", ".", "items", "(", ")", ":", "if", "isinstance", "(", "field", ",", "GeometryField", ")", ":", "self", ".", "Meta", ".", "geom_field", "=", "name", "break", "return", "fields" ]
Returns a fields dict for this serializer with a 'geometry' field added.
[ "Returns", "a", "fields", "dict", "for", "this", "serializer", "with", "a", "geometry", "field", "added", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/serializers.py#L31-L42
train
BD2KGenomics/protect
src/protect/mutation_calling/muse.py
run_muse_with_merge
def run_muse_with_merge(job, tumor_bam, normal_bam, univ_options, muse_options): """ A wrapper for the the entire MuSE sub-graph. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :return: fsID to the merged MuSE calls :rtype: toil.fileStore.FileID """ spawn = job.wrapJobFn(run_muse, tumor_bam, normal_bam, univ_options, muse_options, disk='100M').encapsulate() merge = job.wrapJobFn(merge_perchrom_vcfs, spawn.rv(), disk='100M') job.addChild(spawn) spawn.addChild(merge) return merge.rv()
python
def run_muse_with_merge(job, tumor_bam, normal_bam, univ_options, muse_options): """ A wrapper for the the entire MuSE sub-graph. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :return: fsID to the merged MuSE calls :rtype: toil.fileStore.FileID """ spawn = job.wrapJobFn(run_muse, tumor_bam, normal_bam, univ_options, muse_options, disk='100M').encapsulate() merge = job.wrapJobFn(merge_perchrom_vcfs, spawn.rv(), disk='100M') job.addChild(spawn) spawn.addChild(merge) return merge.rv()
[ "def", "run_muse_with_merge", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "muse_options", ")", ":", "spawn", "=", "job", ".", "wrapJobFn", "(", "run_muse", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "muse_options", ",", "disk", "=", "'100M'", ")", ".", "encapsulate", "(", ")", "merge", "=", "job", ".", "wrapJobFn", "(", "merge_perchrom_vcfs", ",", "spawn", ".", "rv", "(", ")", ",", "disk", "=", "'100M'", ")", "job", ".", "addChild", "(", "spawn", ")", "spawn", ".", "addChild", "(", "merge", ")", "return", "merge", ".", "rv", "(", ")" ]
A wrapper for the the entire MuSE sub-graph. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :return: fsID to the merged MuSE calls :rtype: toil.fileStore.FileID
[ "A", "wrapper", "for", "the", "the", "entire", "MuSE", "sub", "-", "graph", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/muse.py#L44-L60
train
BD2KGenomics/protect
src/protect/mutation_calling/muse.py
run_muse
def run_muse(job, tumor_bam, normal_bam, univ_options, muse_options): """ Spawn a MuSE job for each chromosome on the DNA bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :return: Dict of results from running MuSE on every chromosome perchrom_muse: |- 'chr1': fsID |- 'chr2' fsID | |-... | +- 'chrM': fsID :rtype: dict """ # Get a list of chromosomes to handle if muse_options['chromosomes']: chromosomes = muse_options['chromosomes'] else: chromosomes = sample_chromosomes(job, muse_options['genome_fai']) perchrom_muse = defaultdict() for chrom in chromosomes: call = job.addChildJobFn(run_muse_perchrom, tumor_bam, normal_bam, univ_options, muse_options, chrom, disk=PromisedRequirement( muse_disk, tumor_bam['tumor_dna_fix_pg_sorted.bam'], normal_bam['normal_dna_fix_pg_sorted.bam'], muse_options['genome_fasta']), memory='6G') sump = call.addChildJobFn(run_muse_sump_perchrom, call.rv(), univ_options, muse_options, chrom, disk=PromisedRequirement(muse_sump_disk, muse_options['dbsnp_vcf']), memory='6G') perchrom_muse[chrom] = sump.rv() return perchrom_muse
python
def run_muse(job, tumor_bam, normal_bam, univ_options, muse_options): """ Spawn a MuSE job for each chromosome on the DNA bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :return: Dict of results from running MuSE on every chromosome perchrom_muse: |- 'chr1': fsID |- 'chr2' fsID | |-... | +- 'chrM': fsID :rtype: dict """ # Get a list of chromosomes to handle if muse_options['chromosomes']: chromosomes = muse_options['chromosomes'] else: chromosomes = sample_chromosomes(job, muse_options['genome_fai']) perchrom_muse = defaultdict() for chrom in chromosomes: call = job.addChildJobFn(run_muse_perchrom, tumor_bam, normal_bam, univ_options, muse_options, chrom, disk=PromisedRequirement( muse_disk, tumor_bam['tumor_dna_fix_pg_sorted.bam'], normal_bam['normal_dna_fix_pg_sorted.bam'], muse_options['genome_fasta']), memory='6G') sump = call.addChildJobFn(run_muse_sump_perchrom, call.rv(), univ_options, muse_options, chrom, disk=PromisedRequirement(muse_sump_disk, muse_options['dbsnp_vcf']), memory='6G') perchrom_muse[chrom] = sump.rv() return perchrom_muse
[ "def", "run_muse", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "muse_options", ")", ":", "if", "muse_options", "[", "'chromosomes'", "]", ":", "chromosomes", "=", "muse_options", "[", "'chromosomes'", "]", "else", ":", "chromosomes", "=", "sample_chromosomes", "(", "job", ",", "muse_options", "[", "'genome_fai'", "]", ")", "perchrom_muse", "=", "defaultdict", "(", ")", "for", "chrom", "in", "chromosomes", ":", "call", "=", "job", ".", "addChildJobFn", "(", "run_muse_perchrom", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "muse_options", ",", "chrom", ",", "disk", "=", "PromisedRequirement", "(", "muse_disk", ",", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam'", "]", ",", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam'", "]", ",", "muse_options", "[", "'genome_fasta'", "]", ")", ",", "memory", "=", "'6G'", ")", "sump", "=", "call", ".", "addChildJobFn", "(", "run_muse_sump_perchrom", ",", "call", ".", "rv", "(", ")", ",", "univ_options", ",", "muse_options", ",", "chrom", ",", "disk", "=", "PromisedRequirement", "(", "muse_sump_disk", ",", "muse_options", "[", "'dbsnp_vcf'", "]", ")", ",", "memory", "=", "'6G'", ")", "perchrom_muse", "[", "chrom", "]", "=", "sump", ".", "rv", "(", ")", "return", "perchrom_muse" ]
Spawn a MuSE job for each chromosome on the DNA bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :return: Dict of results from running MuSE on every chromosome perchrom_muse: |- 'chr1': fsID |- 'chr2' fsID | |-... | +- 'chrM': fsID :rtype: dict
[ "Spawn", "a", "MuSE", "job", "for", "each", "chromosome", "on", "the", "DNA", "bams", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/muse.py#L63-L101
train
BD2KGenomics/protect
src/protect/mutation_calling/muse.py
run_muse_perchrom
def run_muse_perchrom(job, tumor_bam, normal_bam, univ_options, muse_options, chrom): """ Run MuSE call on a single chromosome in the input bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :param str chrom: Chromosome to process :return: fsID for the chromsome vcf :rtype: toil.fileStore.FileID """ work_dir = os.getcwd() input_files = { 'tumor.bam': tumor_bam['tumor_dna_fix_pg_sorted.bam'], 'tumor.bam.bai': tumor_bam['tumor_dna_fix_pg_sorted.bam.bai'], 'normal.bam': normal_bam['normal_dna_fix_pg_sorted.bam'], 'normal.bam.bai': normal_bam['normal_dna_fix_pg_sorted.bam.bai'], 'genome.fa.tar.gz': muse_options['genome_fasta'], 'genome.fa.fai.tar.gz': muse_options['genome_fai']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) for key in ('genome.fa', 'genome.fa.fai'): input_files[key] = untargz(input_files[key + '.tar.gz'], work_dir) input_files = {key: docker_path(path) for key, path in input_files.items()} output_prefix = os.path.join(work_dir, chrom) parameters = ['call', '-f', input_files['genome.fa'], '-r', chrom, '-O', docker_path(output_prefix), input_files['tumor.bam'], input_files['normal.bam']] docker_call(tool='muse', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], tool_version=muse_options['version']) outfile = job.fileStore.writeGlobalFile(''.join([output_prefix, '.MuSE.txt'])) job.fileStore.logToMaster('Ran MuSE on %s:%s successfully' % (univ_options['patient'], chrom)) return outfile
python
def run_muse_perchrom(job, tumor_bam, normal_bam, univ_options, muse_options, chrom): """ Run MuSE call on a single chromosome in the input bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :param str chrom: Chromosome to process :return: fsID for the chromsome vcf :rtype: toil.fileStore.FileID """ work_dir = os.getcwd() input_files = { 'tumor.bam': tumor_bam['tumor_dna_fix_pg_sorted.bam'], 'tumor.bam.bai': tumor_bam['tumor_dna_fix_pg_sorted.bam.bai'], 'normal.bam': normal_bam['normal_dna_fix_pg_sorted.bam'], 'normal.bam.bai': normal_bam['normal_dna_fix_pg_sorted.bam.bai'], 'genome.fa.tar.gz': muse_options['genome_fasta'], 'genome.fa.fai.tar.gz': muse_options['genome_fai']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) for key in ('genome.fa', 'genome.fa.fai'): input_files[key] = untargz(input_files[key + '.tar.gz'], work_dir) input_files = {key: docker_path(path) for key, path in input_files.items()} output_prefix = os.path.join(work_dir, chrom) parameters = ['call', '-f', input_files['genome.fa'], '-r', chrom, '-O', docker_path(output_prefix), input_files['tumor.bam'], input_files['normal.bam']] docker_call(tool='muse', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], tool_version=muse_options['version']) outfile = job.fileStore.writeGlobalFile(''.join([output_prefix, '.MuSE.txt'])) job.fileStore.logToMaster('Ran MuSE on %s:%s successfully' % (univ_options['patient'], chrom)) return outfile
[ "def", "run_muse_perchrom", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "muse_options", ",", "chrom", ")", ":", "work_dir", "=", "os", ".", "getcwd", "(", ")", "input_files", "=", "{", "'tumor.bam'", ":", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam'", "]", ",", "'tumor.bam.bai'", ":", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam.bai'", "]", ",", "'normal.bam'", ":", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam'", "]", ",", "'normal.bam.bai'", ":", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam.bai'", "]", ",", "'genome.fa.tar.gz'", ":", "muse_options", "[", "'genome_fasta'", "]", ",", "'genome.fa.fai.tar.gz'", ":", "muse_options", "[", "'genome_fai'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "False", ")", "for", "key", "in", "(", "'genome.fa'", ",", "'genome.fa.fai'", ")", ":", "input_files", "[", "key", "]", "=", "untargz", "(", "input_files", "[", "key", "+", "'.tar.gz'", "]", ",", "work_dir", ")", "input_files", "=", "{", "key", ":", "docker_path", "(", "path", ")", "for", "key", ",", "path", "in", "input_files", ".", "items", "(", ")", "}", "output_prefix", "=", "os", ".", "path", ".", "join", "(", "work_dir", ",", "chrom", ")", "parameters", "=", "[", "'call'", ",", "'-f'", ",", "input_files", "[", "'genome.fa'", "]", ",", "'-r'", ",", "chrom", ",", "'-O'", ",", "docker_path", "(", "output_prefix", ")", ",", "input_files", "[", "'tumor.bam'", "]", ",", "input_files", "[", "'normal.bam'", "]", "]", "docker_call", "(", "tool", "=", "'muse'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "tool_version", "=", "muse_options", "[", "'version'", "]", ")", "outfile", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "''", ".", "join", "(", "[", "output_prefix", ",", "'.MuSE.txt'", "]", ")", ")", "job", ".", "fileStore", ".", "logToMaster", "(", "'Ran MuSE on %s:%s successfully'", "%", "(", "univ_options", "[", "'patient'", "]", ",", "chrom", ")", ")", "return", "outfile" ]
Run MuSE call on a single chromosome in the input bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :param str chrom: Chromosome to process :return: fsID for the chromsome vcf :rtype: toil.fileStore.FileID
[ "Run", "MuSE", "call", "on", "a", "single", "chromosome", "in", "the", "input", "bams", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/muse.py#L104-L142
train
BD2KGenomics/protect
src/protect/mutation_calling/muse.py
run_muse_sump_perchrom
def run_muse_sump_perchrom(job, muse_output, univ_options, muse_options, chrom): """ Run MuSE sump on the MuSE call generated vcf. :param toil.fileStore.FileID muse_output: vcf generated by MuSE call :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :param str chrom: Chromosome to process :return: fsID for the chromsome vcf :rtype: toil.fileStore.FileID """ work_dir = os.getcwd() input_files = { 'MuSE.txt': muse_output, 'dbsnp_coding.vcf.gz': muse_options['dbsnp_vcf'], 'dbsnp_coding.vcf.gz.tbi.tmp': muse_options['dbsnp_tbi']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) tbi = os.path.splitext(input_files['dbsnp_coding.vcf.gz.tbi.tmp'])[0] time.sleep(2) shutil.copy(input_files['dbsnp_coding.vcf.gz.tbi.tmp'], tbi) os.chmod(tbi, 0777) open(tbi, 'a').close() input_files = {key: docker_path(path) for key, path in input_files.items()} output_file = ''.join([work_dir, '/', chrom, '.vcf']) parameters = ['sump', '-I', input_files['MuSE.txt'], '-O', docker_path(output_file), '-D', input_files['dbsnp_coding.vcf.gz'], '-E'] docker_call(tool='muse', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], tool_version=muse_options['version']) outfile = job.fileStore.writeGlobalFile(output_file) export_results(job, outfile, output_file, univ_options, subfolder='mutations/muse') job.fileStore.logToMaster('Ran MuSE sump on %s:%s successfully' % (univ_options['patient'], chrom)) return outfile
python
def run_muse_sump_perchrom(job, muse_output, univ_options, muse_options, chrom): """ Run MuSE sump on the MuSE call generated vcf. :param toil.fileStore.FileID muse_output: vcf generated by MuSE call :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :param str chrom: Chromosome to process :return: fsID for the chromsome vcf :rtype: toil.fileStore.FileID """ work_dir = os.getcwd() input_files = { 'MuSE.txt': muse_output, 'dbsnp_coding.vcf.gz': muse_options['dbsnp_vcf'], 'dbsnp_coding.vcf.gz.tbi.tmp': muse_options['dbsnp_tbi']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) tbi = os.path.splitext(input_files['dbsnp_coding.vcf.gz.tbi.tmp'])[0] time.sleep(2) shutil.copy(input_files['dbsnp_coding.vcf.gz.tbi.tmp'], tbi) os.chmod(tbi, 0777) open(tbi, 'a').close() input_files = {key: docker_path(path) for key, path in input_files.items()} output_file = ''.join([work_dir, '/', chrom, '.vcf']) parameters = ['sump', '-I', input_files['MuSE.txt'], '-O', docker_path(output_file), '-D', input_files['dbsnp_coding.vcf.gz'], '-E'] docker_call(tool='muse', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], tool_version=muse_options['version']) outfile = job.fileStore.writeGlobalFile(output_file) export_results(job, outfile, output_file, univ_options, subfolder='mutations/muse') job.fileStore.logToMaster('Ran MuSE sump on %s:%s successfully' % (univ_options['patient'], chrom)) return outfile
[ "def", "run_muse_sump_perchrom", "(", "job", ",", "muse_output", ",", "univ_options", ",", "muse_options", ",", "chrom", ")", ":", "work_dir", "=", "os", ".", "getcwd", "(", ")", "input_files", "=", "{", "'MuSE.txt'", ":", "muse_output", ",", "'dbsnp_coding.vcf.gz'", ":", "muse_options", "[", "'dbsnp_vcf'", "]", ",", "'dbsnp_coding.vcf.gz.tbi.tmp'", ":", "muse_options", "[", "'dbsnp_tbi'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "False", ")", "tbi", "=", "os", ".", "path", ".", "splitext", "(", "input_files", "[", "'dbsnp_coding.vcf.gz.tbi.tmp'", "]", ")", "[", "0", "]", "time", ".", "sleep", "(", "2", ")", "shutil", ".", "copy", "(", "input_files", "[", "'dbsnp_coding.vcf.gz.tbi.tmp'", "]", ",", "tbi", ")", "os", ".", "chmod", "(", "tbi", ",", "0777", ")", "open", "(", "tbi", ",", "'a'", ")", ".", "close", "(", ")", "input_files", "=", "{", "key", ":", "docker_path", "(", "path", ")", "for", "key", ",", "path", "in", "input_files", ".", "items", "(", ")", "}", "output_file", "=", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "chrom", ",", "'.vcf'", "]", ")", "parameters", "=", "[", "'sump'", ",", "'-I'", ",", "input_files", "[", "'MuSE.txt'", "]", ",", "'-O'", ",", "docker_path", "(", "output_file", ")", ",", "'-D'", ",", "input_files", "[", "'dbsnp_coding.vcf.gz'", "]", ",", "'-E'", "]", "docker_call", "(", "tool", "=", "'muse'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "tool_version", "=", "muse_options", "[", "'version'", "]", ")", "outfile", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "output_file", ")", "export_results", "(", "job", ",", "outfile", ",", "output_file", ",", "univ_options", ",", "subfolder", "=", "'mutations/muse'", ")", "job", ".", "fileStore", ".", "logToMaster", "(", "'Ran MuSE sump on %s:%s successfully'", "%", "(", "univ_options", "[", "'patient'", "]", ",", "chrom", ")", ")", "return", "outfile" ]
Run MuSE sump on the MuSE call generated vcf. :param toil.fileStore.FileID muse_output: vcf generated by MuSE call :param dict univ_options: Dict of universal options used by almost all tools :param dict muse_options: Options specific to MuSE :param str chrom: Chromosome to process :return: fsID for the chromsome vcf :rtype: toil.fileStore.FileID
[ "Run", "MuSE", "sump", "on", "the", "MuSE", "call", "generated", "vcf", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/muse.py#L145-L182
train
bkg/django-spillway
spillway/models.py
AbstractRasterStore.linear
def linear(self, limits=None, k=5): """Returns an ndarray of linear breaks.""" start, stop = limits or (self.minval, self.maxval) return np.linspace(start, stop, k)
python
def linear(self, limits=None, k=5): """Returns an ndarray of linear breaks.""" start, stop = limits or (self.minval, self.maxval) return np.linspace(start, stop, k)
[ "def", "linear", "(", "self", ",", "limits", "=", "None", ",", "k", "=", "5", ")", ":", "start", ",", "stop", "=", "limits", "or", "(", "self", ".", "minval", ",", "self", ".", "maxval", ")", "return", "np", ".", "linspace", "(", "start", ",", "stop", ",", "k", ")" ]
Returns an ndarray of linear breaks.
[ "Returns", "an", "ndarray", "of", "linear", "breaks", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/models.py#L81-L84
train
bkg/django-spillway
spillway/models.py
AbstractRasterStore.quantiles
def quantiles(self, k=5): """Returns an ndarray of quantile breaks.""" arr = self.array() q = list(np.linspace(0, 100, k)) return np.percentile(arr.compressed(), q)
python
def quantiles(self, k=5): """Returns an ndarray of quantile breaks.""" arr = self.array() q = list(np.linspace(0, 100, k)) return np.percentile(arr.compressed(), q)
[ "def", "quantiles", "(", "self", ",", "k", "=", "5", ")", ":", "arr", "=", "self", ".", "array", "(", ")", "q", "=", "list", "(", "np", ".", "linspace", "(", "0", ",", "100", ",", "k", ")", ")", "return", "np", ".", "percentile", "(", "arr", ".", "compressed", "(", ")", ",", "q", ")" ]
Returns an ndarray of quantile breaks.
[ "Returns", "an", "ndarray", "of", "quantile", "breaks", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/models.py#L86-L90
train
bkg/django-spillway
spillway/forms/fields.py
CommaSepFloatField.to_python
def to_python(self, value): """Normalize data to a list of floats.""" if not value: return [] return map(super(CommaSepFloatField, self).to_python, value.split(','))
python
def to_python(self, value): """Normalize data to a list of floats.""" if not value: return [] return map(super(CommaSepFloatField, self).to_python, value.split(','))
[ "def", "to_python", "(", "self", ",", "value", ")", ":", "if", "not", "value", ":", "return", "[", "]", "return", "map", "(", "super", "(", "CommaSepFloatField", ",", "self", ")", ".", "to_python", ",", "value", ".", "split", "(", "','", ")", ")" ]
Normalize data to a list of floats.
[ "Normalize", "data", "to", "a", "list", "of", "floats", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/forms/fields.py#L27-L31
train
bkg/django-spillway
spillway/forms/fields.py
CommaSepFloatField.run_validators
def run_validators(self, values): """Run validators for each item separately.""" for val in values: super(CommaSepFloatField, self).run_validators(val)
python
def run_validators(self, values): """Run validators for each item separately.""" for val in values: super(CommaSepFloatField, self).run_validators(val)
[ "def", "run_validators", "(", "self", ",", "values", ")", ":", "for", "val", "in", "values", ":", "super", "(", "CommaSepFloatField", ",", "self", ")", ".", "run_validators", "(", "val", ")" ]
Run validators for each item separately.
[ "Run", "validators", "for", "each", "item", "separately", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/forms/fields.py#L33-L36
train
bkg/django-spillway
spillway/forms/fields.py
BoundingBoxField.to_python
def to_python(self, value): """Returns a GEOS Polygon from bounding box values.""" value = super(BoundingBoxField, self).to_python(value) try: bbox = gdal.OGRGeometry.from_bbox(value).geos except (ValueError, AttributeError): return [] bbox.srid = self.srid return bbox
python
def to_python(self, value): """Returns a GEOS Polygon from bounding box values.""" value = super(BoundingBoxField, self).to_python(value) try: bbox = gdal.OGRGeometry.from_bbox(value).geos except (ValueError, AttributeError): return [] bbox.srid = self.srid return bbox
[ "def", "to_python", "(", "self", ",", "value", ")", ":", "value", "=", "super", "(", "BoundingBoxField", ",", "self", ")", ".", "to_python", "(", "value", ")", "try", ":", "bbox", "=", "gdal", ".", "OGRGeometry", ".", "from_bbox", "(", "value", ")", ".", "geos", "except", "(", "ValueError", ",", "AttributeError", ")", ":", "return", "[", "]", "bbox", ".", "srid", "=", "self", ".", "srid", "return", "bbox" ]
Returns a GEOS Polygon from bounding box values.
[ "Returns", "a", "GEOS", "Polygon", "from", "bounding", "box", "values", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/forms/fields.py#L46-L54
train
BD2KGenomics/protect
src/protect/mutation_calling/mutect.py
run_mutect_with_merge
def run_mutect_with_merge(job, tumor_bam, normal_bam, univ_options, mutect_options): """ A wrapper for the the entire MuTect sub-graph. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict mutect_options: Options specific to MuTect :return: fsID to the merged MuTect calls :rtype: toil.fileStore.FileID """ spawn = job.wrapJobFn(run_mutect, tumor_bam, normal_bam, univ_options, mutect_options).encapsulate() merge = job.wrapJobFn(merge_perchrom_vcfs, spawn.rv()) job.addChild(spawn) spawn.addChild(merge) return merge.rv()
python
def run_mutect_with_merge(job, tumor_bam, normal_bam, univ_options, mutect_options): """ A wrapper for the the entire MuTect sub-graph. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict mutect_options: Options specific to MuTect :return: fsID to the merged MuTect calls :rtype: toil.fileStore.FileID """ spawn = job.wrapJobFn(run_mutect, tumor_bam, normal_bam, univ_options, mutect_options).encapsulate() merge = job.wrapJobFn(merge_perchrom_vcfs, spawn.rv()) job.addChild(spawn) spawn.addChild(merge) return merge.rv()
[ "def", "run_mutect_with_merge", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "mutect_options", ")", ":", "spawn", "=", "job", ".", "wrapJobFn", "(", "run_mutect", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "mutect_options", ")", ".", "encapsulate", "(", ")", "merge", "=", "job", ".", "wrapJobFn", "(", "merge_perchrom_vcfs", ",", "spawn", ".", "rv", "(", ")", ")", "job", ".", "addChild", "(", "spawn", ")", "spawn", ".", "addChild", "(", "merge", ")", "return", "merge", ".", "rv", "(", ")" ]
A wrapper for the the entire MuTect sub-graph. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict mutect_options: Options specific to MuTect :return: fsID to the merged MuTect calls :rtype: toil.fileStore.FileID
[ "A", "wrapper", "for", "the", "the", "entire", "MuTect", "sub", "-", "graph", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/mutect.py#L41-L57
train
BD2KGenomics/protect
src/protect/mutation_calling/mutect.py
run_mutect
def run_mutect(job, tumor_bam, normal_bam, univ_options, mutect_options): """ Spawn a MuTect job for each chromosome on the DNA bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict mutect_options: Options specific to MuTect :return: Dict of results from running MuTect on every chromosome perchrom_mutect: |- 'chr1': fsID |- 'chr2' fsID | |-... | +- 'chrM': fsID :rtype: dict """ # Get a list of chromosomes to handle if mutect_options['chromosomes']: chromosomes = mutect_options['chromosomes'] else: chromosomes = sample_chromosomes(job, mutect_options['genome_fai']) perchrom_mutect = defaultdict() for chrom in chromosomes: perchrom_mutect[chrom] = job.addChildJobFn( run_mutect_perchrom, tumor_bam, normal_bam, univ_options, mutect_options, chrom, memory='6G', disk=PromisedRequirement(mutect_disk, tumor_bam['tumor_dna_fix_pg_sorted.bam'], normal_bam['normal_dna_fix_pg_sorted.bam'], mutect_options['genome_fasta'], mutect_options['dbsnp_vcf'], mutect_options['cosmic_vcf'])).rv() return perchrom_mutect
python
def run_mutect(job, tumor_bam, normal_bam, univ_options, mutect_options): """ Spawn a MuTect job for each chromosome on the DNA bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict mutect_options: Options specific to MuTect :return: Dict of results from running MuTect on every chromosome perchrom_mutect: |- 'chr1': fsID |- 'chr2' fsID | |-... | +- 'chrM': fsID :rtype: dict """ # Get a list of chromosomes to handle if mutect_options['chromosomes']: chromosomes = mutect_options['chromosomes'] else: chromosomes = sample_chromosomes(job, mutect_options['genome_fai']) perchrom_mutect = defaultdict() for chrom in chromosomes: perchrom_mutect[chrom] = job.addChildJobFn( run_mutect_perchrom, tumor_bam, normal_bam, univ_options, mutect_options, chrom, memory='6G', disk=PromisedRequirement(mutect_disk, tumor_bam['tumor_dna_fix_pg_sorted.bam'], normal_bam['normal_dna_fix_pg_sorted.bam'], mutect_options['genome_fasta'], mutect_options['dbsnp_vcf'], mutect_options['cosmic_vcf'])).rv() return perchrom_mutect
[ "def", "run_mutect", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "mutect_options", ")", ":", "if", "mutect_options", "[", "'chromosomes'", "]", ":", "chromosomes", "=", "mutect_options", "[", "'chromosomes'", "]", "else", ":", "chromosomes", "=", "sample_chromosomes", "(", "job", ",", "mutect_options", "[", "'genome_fai'", "]", ")", "perchrom_mutect", "=", "defaultdict", "(", ")", "for", "chrom", "in", "chromosomes", ":", "perchrom_mutect", "[", "chrom", "]", "=", "job", ".", "addChildJobFn", "(", "run_mutect_perchrom", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "mutect_options", ",", "chrom", ",", "memory", "=", "'6G'", ",", "disk", "=", "PromisedRequirement", "(", "mutect_disk", ",", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam'", "]", ",", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam'", "]", ",", "mutect_options", "[", "'genome_fasta'", "]", ",", "mutect_options", "[", "'dbsnp_vcf'", "]", ",", "mutect_options", "[", "'cosmic_vcf'", "]", ")", ")", ".", "rv", "(", ")", "return", "perchrom_mutect" ]
Spawn a MuTect job for each chromosome on the DNA bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict mutect_options: Options specific to MuTect :return: Dict of results from running MuTect on every chromosome perchrom_mutect: |- 'chr1': fsID |- 'chr2' fsID | |-... | +- 'chrM': fsID :rtype: dict
[ "Spawn", "a", "MuTect", "job", "for", "each", "chromosome", "on", "the", "DNA", "bams", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/mutect.py#L60-L93
train
BD2KGenomics/protect
src/protect/mutation_calling/mutect.py
run_mutect_perchrom
def run_mutect_perchrom(job, tumor_bam, normal_bam, univ_options, mutect_options, chrom): """ Run MuTect call on a single chromosome in the input bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict mutect_options: Options specific to MuTect :param str chrom: Chromosome to process :return: fsID for the chromsome vcf :rtype: toil.fileStore.FileID """ work_dir = os.getcwd() input_files = { 'tumor.bam': tumor_bam['tumor_dna_fix_pg_sorted.bam'], 'tumor.bam.bai': tumor_bam['tumor_dna_fix_pg_sorted.bam.bai'], 'normal.bam': normal_bam['normal_dna_fix_pg_sorted.bam'], 'normal.bam.bai': normal_bam['normal_dna_fix_pg_sorted.bam.bai'], 'genome.fa.tar.gz': mutect_options['genome_fasta'], 'genome.fa.fai.tar.gz': mutect_options['genome_fai'], 'genome.dict.tar.gz': mutect_options['genome_dict'], 'cosmic.vcf.tar.gz': mutect_options['cosmic_vcf'], 'cosmic.vcf.idx.tar.gz': mutect_options['cosmic_idx'], 'dbsnp.vcf.gz': mutect_options['dbsnp_vcf'], 'dbsnp.vcf.idx.tar.gz': mutect_options['dbsnp_idx']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) # dbsnp.vcf should be bgzipped, but all others should be tar.gz'd input_files['dbsnp.vcf'] = gunzip(input_files['dbsnp.vcf.gz']) for key in ('genome.fa', 'genome.fa.fai', 'genome.dict', 'cosmic.vcf', 'cosmic.vcf.idx', 'dbsnp.vcf.idx'): input_files[key] = untargz(input_files[key + '.tar.gz'], work_dir) input_files = {key: docker_path(path) for key, path in input_files.items()} mutout = ''.join([work_dir, '/', chrom, '.out']) mutvcf = ''.join([work_dir, '/', chrom, '.vcf']) parameters = ['-R', input_files['genome.fa'], '--cosmic', input_files['cosmic.vcf'], '--dbsnp', input_files['dbsnp.vcf'], '--input_file:normal', input_files['normal.bam'], '--input_file:tumor', input_files['tumor.bam'], # '--tumor_lod', str(10), # '--initial_tumor_lod', str(4.0), '-L', chrom, '--out', docker_path(mutout), '--vcf', docker_path(mutvcf) ] java_xmx = mutect_options['java_Xmx'] if mutect_options['java_Xmx'] \ else univ_options['java_Xmx'] docker_call(tool='mutect', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], java_xmx=java_xmx, tool_version=mutect_options['version']) output_file = job.fileStore.writeGlobalFile(mutvcf) export_results(job, output_file, mutvcf, univ_options, subfolder='mutations/mutect') job.fileStore.logToMaster('Ran MuTect on %s:%s successfully' % (univ_options['patient'], chrom)) return output_file
python
def run_mutect_perchrom(job, tumor_bam, normal_bam, univ_options, mutect_options, chrom): """ Run MuTect call on a single chromosome in the input bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict mutect_options: Options specific to MuTect :param str chrom: Chromosome to process :return: fsID for the chromsome vcf :rtype: toil.fileStore.FileID """ work_dir = os.getcwd() input_files = { 'tumor.bam': tumor_bam['tumor_dna_fix_pg_sorted.bam'], 'tumor.bam.bai': tumor_bam['tumor_dna_fix_pg_sorted.bam.bai'], 'normal.bam': normal_bam['normal_dna_fix_pg_sorted.bam'], 'normal.bam.bai': normal_bam['normal_dna_fix_pg_sorted.bam.bai'], 'genome.fa.tar.gz': mutect_options['genome_fasta'], 'genome.fa.fai.tar.gz': mutect_options['genome_fai'], 'genome.dict.tar.gz': mutect_options['genome_dict'], 'cosmic.vcf.tar.gz': mutect_options['cosmic_vcf'], 'cosmic.vcf.idx.tar.gz': mutect_options['cosmic_idx'], 'dbsnp.vcf.gz': mutect_options['dbsnp_vcf'], 'dbsnp.vcf.idx.tar.gz': mutect_options['dbsnp_idx']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=False) # dbsnp.vcf should be bgzipped, but all others should be tar.gz'd input_files['dbsnp.vcf'] = gunzip(input_files['dbsnp.vcf.gz']) for key in ('genome.fa', 'genome.fa.fai', 'genome.dict', 'cosmic.vcf', 'cosmic.vcf.idx', 'dbsnp.vcf.idx'): input_files[key] = untargz(input_files[key + '.tar.gz'], work_dir) input_files = {key: docker_path(path) for key, path in input_files.items()} mutout = ''.join([work_dir, '/', chrom, '.out']) mutvcf = ''.join([work_dir, '/', chrom, '.vcf']) parameters = ['-R', input_files['genome.fa'], '--cosmic', input_files['cosmic.vcf'], '--dbsnp', input_files['dbsnp.vcf'], '--input_file:normal', input_files['normal.bam'], '--input_file:tumor', input_files['tumor.bam'], # '--tumor_lod', str(10), # '--initial_tumor_lod', str(4.0), '-L', chrom, '--out', docker_path(mutout), '--vcf', docker_path(mutvcf) ] java_xmx = mutect_options['java_Xmx'] if mutect_options['java_Xmx'] \ else univ_options['java_Xmx'] docker_call(tool='mutect', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], java_xmx=java_xmx, tool_version=mutect_options['version']) output_file = job.fileStore.writeGlobalFile(mutvcf) export_results(job, output_file, mutvcf, univ_options, subfolder='mutations/mutect') job.fileStore.logToMaster('Ran MuTect on %s:%s successfully' % (univ_options['patient'], chrom)) return output_file
[ "def", "run_mutect_perchrom", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "mutect_options", ",", "chrom", ")", ":", "work_dir", "=", "os", ".", "getcwd", "(", ")", "input_files", "=", "{", "'tumor.bam'", ":", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam'", "]", ",", "'tumor.bam.bai'", ":", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam.bai'", "]", ",", "'normal.bam'", ":", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam'", "]", ",", "'normal.bam.bai'", ":", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam.bai'", "]", ",", "'genome.fa.tar.gz'", ":", "mutect_options", "[", "'genome_fasta'", "]", ",", "'genome.fa.fai.tar.gz'", ":", "mutect_options", "[", "'genome_fai'", "]", ",", "'genome.dict.tar.gz'", ":", "mutect_options", "[", "'genome_dict'", "]", ",", "'cosmic.vcf.tar.gz'", ":", "mutect_options", "[", "'cosmic_vcf'", "]", ",", "'cosmic.vcf.idx.tar.gz'", ":", "mutect_options", "[", "'cosmic_idx'", "]", ",", "'dbsnp.vcf.gz'", ":", "mutect_options", "[", "'dbsnp_vcf'", "]", ",", "'dbsnp.vcf.idx.tar.gz'", ":", "mutect_options", "[", "'dbsnp_idx'", "]", "}", "input_files", "=", "get_files_from_filestore", "(", "job", ",", "input_files", ",", "work_dir", ",", "docker", "=", "False", ")", "input_files", "[", "'dbsnp.vcf'", "]", "=", "gunzip", "(", "input_files", "[", "'dbsnp.vcf.gz'", "]", ")", "for", "key", "in", "(", "'genome.fa'", ",", "'genome.fa.fai'", ",", "'genome.dict'", ",", "'cosmic.vcf'", ",", "'cosmic.vcf.idx'", ",", "'dbsnp.vcf.idx'", ")", ":", "input_files", "[", "key", "]", "=", "untargz", "(", "input_files", "[", "key", "+", "'.tar.gz'", "]", ",", "work_dir", ")", "input_files", "=", "{", "key", ":", "docker_path", "(", "path", ")", "for", "key", ",", "path", "in", "input_files", ".", "items", "(", ")", "}", "mutout", "=", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "chrom", ",", "'.out'", "]", ")", "mutvcf", "=", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "chrom", ",", "'.vcf'", "]", ")", "parameters", "=", "[", "'-R'", ",", "input_files", "[", "'genome.fa'", "]", ",", "'--cosmic'", ",", "input_files", "[", "'cosmic.vcf'", "]", ",", "'--dbsnp'", ",", "input_files", "[", "'dbsnp.vcf'", "]", ",", "'--input_file:normal'", ",", "input_files", "[", "'normal.bam'", "]", ",", "'--input_file:tumor'", ",", "input_files", "[", "'tumor.bam'", "]", ",", "'-L'", ",", "chrom", ",", "'--out'", ",", "docker_path", "(", "mutout", ")", ",", "'--vcf'", ",", "docker_path", "(", "mutvcf", ")", "]", "java_xmx", "=", "mutect_options", "[", "'java_Xmx'", "]", "if", "mutect_options", "[", "'java_Xmx'", "]", "else", "univ_options", "[", "'java_Xmx'", "]", "docker_call", "(", "tool", "=", "'mutect'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "java_xmx", "=", "java_xmx", ",", "tool_version", "=", "mutect_options", "[", "'version'", "]", ")", "output_file", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "mutvcf", ")", "export_results", "(", "job", ",", "output_file", ",", "mutvcf", ",", "univ_options", ",", "subfolder", "=", "'mutations/mutect'", ")", "job", ".", "fileStore", ".", "logToMaster", "(", "'Ran MuTect on %s:%s successfully'", "%", "(", "univ_options", "[", "'patient'", "]", ",", "chrom", ")", ")", "return", "output_file" ]
Run MuTect call on a single chromosome in the input bams. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict mutect_options: Options specific to MuTect :param str chrom: Chromosome to process :return: fsID for the chromsome vcf :rtype: toil.fileStore.FileID
[ "Run", "MuTect", "call", "on", "a", "single", "chromosome", "in", "the", "input", "bams", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/mutect.py#L96-L150
train
BD2KGenomics/protect
src/protect/mutation_calling/mutect.py
process_mutect_vcf
def process_mutect_vcf(job, mutect_vcf, work_dir, univ_options): """ Process the MuTect vcf for accepted calls. :param toil.fileStore.FileID mutect_vcf: fsID for a MuTect generated chromosome vcf :param str work_dir: Working directory :param dict univ_options: Dict of universal options used by almost all tools :return: Path to the processed vcf :rtype: str """ mutect_vcf = job.fileStore.readGlobalFile(mutect_vcf) with open(mutect_vcf, 'r') as infile, open(mutect_vcf + 'mutect_parsed.tmp', 'w') as outfile: for line in infile: line = line.strip() if line.startswith('#'): print(line, file=outfile) continue line = line.split('\t') if line[6] != 'REJECT': print('\t'.join(line), file=outfile) return outfile.name
python
def process_mutect_vcf(job, mutect_vcf, work_dir, univ_options): """ Process the MuTect vcf for accepted calls. :param toil.fileStore.FileID mutect_vcf: fsID for a MuTect generated chromosome vcf :param str work_dir: Working directory :param dict univ_options: Dict of universal options used by almost all tools :return: Path to the processed vcf :rtype: str """ mutect_vcf = job.fileStore.readGlobalFile(mutect_vcf) with open(mutect_vcf, 'r') as infile, open(mutect_vcf + 'mutect_parsed.tmp', 'w') as outfile: for line in infile: line = line.strip() if line.startswith('#'): print(line, file=outfile) continue line = line.split('\t') if line[6] != 'REJECT': print('\t'.join(line), file=outfile) return outfile.name
[ "def", "process_mutect_vcf", "(", "job", ",", "mutect_vcf", ",", "work_dir", ",", "univ_options", ")", ":", "mutect_vcf", "=", "job", ".", "fileStore", ".", "readGlobalFile", "(", "mutect_vcf", ")", "with", "open", "(", "mutect_vcf", ",", "'r'", ")", "as", "infile", ",", "open", "(", "mutect_vcf", "+", "'mutect_parsed.tmp'", ",", "'w'", ")", "as", "outfile", ":", "for", "line", "in", "infile", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "line", ".", "startswith", "(", "'#'", ")", ":", "print", "(", "line", ",", "file", "=", "outfile", ")", "continue", "line", "=", "line", ".", "split", "(", "'\\t'", ")", "if", "line", "[", "6", "]", "!=", "'REJECT'", ":", "print", "(", "'\\t'", ".", "join", "(", "line", ")", ",", "file", "=", "outfile", ")", "return", "outfile", ".", "name" ]
Process the MuTect vcf for accepted calls. :param toil.fileStore.FileID mutect_vcf: fsID for a MuTect generated chromosome vcf :param str work_dir: Working directory :param dict univ_options: Dict of universal options used by almost all tools :return: Path to the processed vcf :rtype: str
[ "Process", "the", "MuTect", "vcf", "for", "accepted", "calls", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/mutect.py#L153-L174
train
idlesign/steampak
steampak/libsteam/resources/utils.py
Utils.get_universe
def get_universe(self, as_str=False): """Returns universe the client is connected to. See ``Universe``. :param bool as_str: Return human-friendly universe name instead of an ID. :rtype: int|str """ result = self._iface.get_connected_universe() if as_str: return Universe.get_alias(result) return result
python
def get_universe(self, as_str=False): """Returns universe the client is connected to. See ``Universe``. :param bool as_str: Return human-friendly universe name instead of an ID. :rtype: int|str """ result = self._iface.get_connected_universe() if as_str: return Universe.get_alias(result) return result
[ "def", "get_universe", "(", "self", ",", "as_str", "=", "False", ")", ":", "result", "=", "self", ".", "_iface", ".", "get_connected_universe", "(", ")", "if", "as_str", ":", "return", "Universe", ".", "get_alias", "(", "result", ")", "return", "result" ]
Returns universe the client is connected to. See ``Universe``. :param bool as_str: Return human-friendly universe name instead of an ID. :rtype: int|str
[ "Returns", "universe", "the", "client", "is", "connected", "to", ".", "See", "Universe", "." ]
cb3f2c737e272b0360802d947e388df7e34f50f3
https://github.com/idlesign/steampak/blob/cb3f2c737e272b0360802d947e388df7e34f50f3/steampak/libsteam/resources/utils.py#L136-L147
train
APSL/django-kaio
kaio/mixins/logs.py
LogsMixin.EXTRA_LOGGING
def EXTRA_LOGGING(self): """ lista modulos con los distintos niveles a logear y su nivel de debug Por ejemplo: [Logs] EXTRA_LOGGING = oscar.paypal:DEBUG, django.db:INFO """ input_text = get('EXTRA_LOGGING', '') modules = input_text.split(',') if input_text: modules = input_text.split(',') modules = [x.split(':') for x in modules] else: modules = [] return modules
python
def EXTRA_LOGGING(self): """ lista modulos con los distintos niveles a logear y su nivel de debug Por ejemplo: [Logs] EXTRA_LOGGING = oscar.paypal:DEBUG, django.db:INFO """ input_text = get('EXTRA_LOGGING', '') modules = input_text.split(',') if input_text: modules = input_text.split(',') modules = [x.split(':') for x in modules] else: modules = [] return modules
[ "def", "EXTRA_LOGGING", "(", "self", ")", ":", "input_text", "=", "get", "(", "'EXTRA_LOGGING'", ",", "''", ")", "modules", "=", "input_text", ".", "split", "(", "','", ")", "if", "input_text", ":", "modules", "=", "input_text", ".", "split", "(", "','", ")", "modules", "=", "[", "x", ".", "split", "(", "':'", ")", "for", "x", "in", "modules", "]", "else", ":", "modules", "=", "[", "]", "return", "modules" ]
lista modulos con los distintos niveles a logear y su nivel de debug Por ejemplo: [Logs] EXTRA_LOGGING = oscar.paypal:DEBUG, django.db:INFO
[ "lista", "modulos", "con", "los", "distintos", "niveles", "a", "logear", "y", "su", "nivel", "de", "debug" ]
b74b109bcfba31d973723bc419e2c95d190b80b7
https://github.com/APSL/django-kaio/blob/b74b109bcfba31d973723bc419e2c95d190b80b7/kaio/mixins/logs.py#L26-L45
train
nepalicalendar/nepalicalendar-py
nepalicalendar/nepdate.py
NepDate.from_ad_date
def from_ad_date(cls, date): """ Gets a NepDate object from gregorian calendar date """ functions.check_valid_ad_range(date) days = values.START_EN_DATE - date # Add the required number of days to the start nepali date start_date = NepDate(values.START_NP_YEAR, 1, 1) # No need to update as addition already calls update return start_date + (date - values.START_EN_DATE)
python
def from_ad_date(cls, date): """ Gets a NepDate object from gregorian calendar date """ functions.check_valid_ad_range(date) days = values.START_EN_DATE - date # Add the required number of days to the start nepali date start_date = NepDate(values.START_NP_YEAR, 1, 1) # No need to update as addition already calls update return start_date + (date - values.START_EN_DATE)
[ "def", "from_ad_date", "(", "cls", ",", "date", ")", ":", "functions", ".", "check_valid_ad_range", "(", "date", ")", "days", "=", "values", ".", "START_EN_DATE", "-", "date", "start_date", "=", "NepDate", "(", "values", ".", "START_NP_YEAR", ",", "1", ",", "1", ")", "return", "start_date", "+", "(", "date", "-", "values", ".", "START_EN_DATE", ")" ]
Gets a NepDate object from gregorian calendar date
[ "Gets", "a", "NepDate", "object", "from", "gregorian", "calendar", "date" ]
a589c28b8e085049f30a7287753476b59eca6f50
https://github.com/nepalicalendar/nepalicalendar-py/blob/a589c28b8e085049f30a7287753476b59eca6f50/nepalicalendar/nepdate.py#L207-L215
train
nepalicalendar/nepalicalendar-py
nepalicalendar/nepdate.py
NepDate.from_bs_date
def from_bs_date(cls, year, month, day): """ Create and update an NepDate object for bikram sambat date """ return NepDate(year, month, day).update()
python
def from_bs_date(cls, year, month, day): """ Create and update an NepDate object for bikram sambat date """ return NepDate(year, month, day).update()
[ "def", "from_bs_date", "(", "cls", ",", "year", ",", "month", ",", "day", ")", ":", "return", "NepDate", "(", "year", ",", "month", ",", "day", ")", ".", "update", "(", ")" ]
Create and update an NepDate object for bikram sambat date
[ "Create", "and", "update", "an", "NepDate", "object", "for", "bikram", "sambat", "date" ]
a589c28b8e085049f30a7287753476b59eca6f50
https://github.com/nepalicalendar/nepalicalendar-py/blob/a589c28b8e085049f30a7287753476b59eca6f50/nepalicalendar/nepdate.py#L218-L220
train
nepalicalendar/nepalicalendar-py
nepalicalendar/nepdate.py
NepDate.events_list
def events_list(self): """ Returns the events today """ evt = [] evt.extend(events.NEPALI_EVENTS[self.month, self.day]) evt.extend(events.ENGLISH_EVENTS[self.en_date.month, self.en_date.day]) return evt
python
def events_list(self): """ Returns the events today """ evt = [] evt.extend(events.NEPALI_EVENTS[self.month, self.day]) evt.extend(events.ENGLISH_EVENTS[self.en_date.month, self.en_date.day]) return evt
[ "def", "events_list", "(", "self", ")", ":", "evt", "=", "[", "]", "evt", ".", "extend", "(", "events", ".", "NEPALI_EVENTS", "[", "self", ".", "month", ",", "self", ".", "day", "]", ")", "evt", ".", "extend", "(", "events", ".", "ENGLISH_EVENTS", "[", "self", ".", "en_date", ".", "month", ",", "self", ".", "en_date", ".", "day", "]", ")", "return", "evt" ]
Returns the events today
[ "Returns", "the", "events", "today" ]
a589c28b8e085049f30a7287753476b59eca6f50
https://github.com/nepalicalendar/nepalicalendar-py/blob/a589c28b8e085049f30a7287753476b59eca6f50/nepalicalendar/nepdate.py#L269-L274
train
nepalicalendar/nepalicalendar-py
nepalicalendar/nepdate.py
NepDate.update
def update(self): """ Updates information about the NepDate """ functions.check_valid_bs_range(self) # Here's a trick to find the gregorian date: # We find the number of days from earliest nepali date to the current # day. We then add the number of days to the earliest english date self.en_date = values.START_EN_DATE + \ ( self - NepDate( values.START_NP_YEAR, 1, 1 ) ) return self
python
def update(self): """ Updates information about the NepDate """ functions.check_valid_bs_range(self) # Here's a trick to find the gregorian date: # We find the number of days from earliest nepali date to the current # day. We then add the number of days to the earliest english date self.en_date = values.START_EN_DATE + \ ( self - NepDate( values.START_NP_YEAR, 1, 1 ) ) return self
[ "def", "update", "(", "self", ")", ":", "functions", ".", "check_valid_bs_range", "(", "self", ")", "self", ".", "en_date", "=", "values", ".", "START_EN_DATE", "+", "(", "self", "-", "NepDate", "(", "values", ".", "START_NP_YEAR", ",", "1", ",", "1", ")", ")", "return", "self" ]
Updates information about the NepDate
[ "Updates", "information", "about", "the", "NepDate" ]
a589c28b8e085049f30a7287753476b59eca6f50
https://github.com/nepalicalendar/nepalicalendar-py/blob/a589c28b8e085049f30a7287753476b59eca6f50/nepalicalendar/nepdate.py#L291-L305
train
BD2KGenomics/protect
attic/precision_immuno.py
get_file_from_s3
def get_file_from_s3(job, s3_url, encryption_key=None, write_to_jobstore=True): """ Downloads a supplied URL that points to an unencrypted, unprotected file on Amazon S3. The file is downloaded and a subsequently written to the jobstore and the return value is a the path to the file in the jobstore. """ work_dir = job.fileStore.getLocalTempDir() filename = '/'.join([work_dir, os.path.basename(s3_url)]) # This is common to encrypted and unencrypted downloads download_call = ['curl', '-fs', '--retry', '5'] # If an encryption key was provided, use it to create teh headers that need to be injected into # the curl script and append to the call if encryption_key: key = generate_unique_key(encryption_key, s3_url) encoded_key = base64.b64encode(key) encoded_key_md5 = base64.b64encode( hashlib.md5(key).digest() ) h1 = 'x-amz-server-side-encryption-customer-algorithm:AES256' h2 = 'x-amz-server-side-encryption-customer-key:{}'.format(encoded_key) h3 = 'x-amz-server-side-encryption-customer-key-md5:{}'.format(encoded_key_md5) download_call.extend(['-H', h1, '-H', h2, '-H', h3]) # This is also common to both types of downloads download_call.extend([s3_url, '-o', filename]) try: subprocess.check_call(download_call) except subprocess.CalledProcessError: raise RuntimeError('Curl returned a non-zero exit status processing %s. Do you' % s3_url + 'have premssions to access the file?') except OSError: raise RuntimeError('Failed to find "curl". Install via "apt-get install curl"') assert os.path.exists(filename) if write_to_jobstore: filename = job.fileStore.writeGlobalFile(filename) return filename
python
def get_file_from_s3(job, s3_url, encryption_key=None, write_to_jobstore=True): """ Downloads a supplied URL that points to an unencrypted, unprotected file on Amazon S3. The file is downloaded and a subsequently written to the jobstore and the return value is a the path to the file in the jobstore. """ work_dir = job.fileStore.getLocalTempDir() filename = '/'.join([work_dir, os.path.basename(s3_url)]) # This is common to encrypted and unencrypted downloads download_call = ['curl', '-fs', '--retry', '5'] # If an encryption key was provided, use it to create teh headers that need to be injected into # the curl script and append to the call if encryption_key: key = generate_unique_key(encryption_key, s3_url) encoded_key = base64.b64encode(key) encoded_key_md5 = base64.b64encode( hashlib.md5(key).digest() ) h1 = 'x-amz-server-side-encryption-customer-algorithm:AES256' h2 = 'x-amz-server-side-encryption-customer-key:{}'.format(encoded_key) h3 = 'x-amz-server-side-encryption-customer-key-md5:{}'.format(encoded_key_md5) download_call.extend(['-H', h1, '-H', h2, '-H', h3]) # This is also common to both types of downloads download_call.extend([s3_url, '-o', filename]) try: subprocess.check_call(download_call) except subprocess.CalledProcessError: raise RuntimeError('Curl returned a non-zero exit status processing %s. Do you' % s3_url + 'have premssions to access the file?') except OSError: raise RuntimeError('Failed to find "curl". Install via "apt-get install curl"') assert os.path.exists(filename) if write_to_jobstore: filename = job.fileStore.writeGlobalFile(filename) return filename
[ "def", "get_file_from_s3", "(", "job", ",", "s3_url", ",", "encryption_key", "=", "None", ",", "write_to_jobstore", "=", "True", ")", ":", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "filename", "=", "'/'", ".", "join", "(", "[", "work_dir", ",", "os", ".", "path", ".", "basename", "(", "s3_url", ")", "]", ")", "download_call", "=", "[", "'curl'", ",", "'-fs'", ",", "'--retry'", ",", "'5'", "]", "if", "encryption_key", ":", "key", "=", "generate_unique_key", "(", "encryption_key", ",", "s3_url", ")", "encoded_key", "=", "base64", ".", "b64encode", "(", "key", ")", "encoded_key_md5", "=", "base64", ".", "b64encode", "(", "hashlib", ".", "md5", "(", "key", ")", ".", "digest", "(", ")", ")", "h1", "=", "'x-amz-server-side-encryption-customer-algorithm:AES256'", "h2", "=", "'x-amz-server-side-encryption-customer-key:{}'", ".", "format", "(", "encoded_key", ")", "h3", "=", "'x-amz-server-side-encryption-customer-key-md5:{}'", ".", "format", "(", "encoded_key_md5", ")", "download_call", ".", "extend", "(", "[", "'-H'", ",", "h1", ",", "'-H'", ",", "h2", ",", "'-H'", ",", "h3", "]", ")", "download_call", ".", "extend", "(", "[", "s3_url", ",", "'-o'", ",", "filename", "]", ")", "try", ":", "subprocess", ".", "check_call", "(", "download_call", ")", "except", "subprocess", ".", "CalledProcessError", ":", "raise", "RuntimeError", "(", "'Curl returned a non-zero exit status processing %s. Do you'", "%", "s3_url", "+", "'have premssions to access the file?'", ")", "except", "OSError", ":", "raise", "RuntimeError", "(", "'Failed to find \"curl\". Install via \"apt-get install curl\"'", ")", "assert", "os", ".", "path", ".", "exists", "(", "filename", ")", "if", "write_to_jobstore", ":", "filename", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "filename", ")", "return", "filename" ]
Downloads a supplied URL that points to an unencrypted, unprotected file on Amazon S3. The file is downloaded and a subsequently written to the jobstore and the return value is a the path to the file in the jobstore.
[ "Downloads", "a", "supplied", "URL", "that", "points", "to", "an", "unencrypted", "unprotected", "file", "on", "Amazon", "S3", ".", "The", "file", "is", "downloaded", "and", "a", "subsequently", "written", "to", "the", "jobstore", "and", "the", "return", "value", "is", "a", "the", "path", "to", "the", "file", "in", "the", "jobstore", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/attic/precision_immuno.py#L2159-L2191
train
bkg/django-spillway
spillway/query.py
filter_geometry
def filter_geometry(queryset, **filters): """Helper function for spatial lookups filters. Provide spatial lookup types as keywords without underscores instead of the usual "geometryfield__lookuptype" format. """ fieldname = geo_field(queryset).name query = {'%s__%s' % (fieldname, k): v for k, v in filters.items()} return queryset.filter(**query)
python
def filter_geometry(queryset, **filters): """Helper function for spatial lookups filters. Provide spatial lookup types as keywords without underscores instead of the usual "geometryfield__lookuptype" format. """ fieldname = geo_field(queryset).name query = {'%s__%s' % (fieldname, k): v for k, v in filters.items()} return queryset.filter(**query)
[ "def", "filter_geometry", "(", "queryset", ",", "**", "filters", ")", ":", "fieldname", "=", "geo_field", "(", "queryset", ")", ".", "name", "query", "=", "{", "'%s__%s'", "%", "(", "fieldname", ",", "k", ")", ":", "v", "for", "k", ",", "v", "in", "filters", ".", "items", "(", ")", "}", "return", "queryset", ".", "filter", "(", "**", "query", ")" ]
Helper function for spatial lookups filters. Provide spatial lookup types as keywords without underscores instead of the usual "geometryfield__lookuptype" format.
[ "Helper", "function", "for", "spatial", "lookups", "filters", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L16-L24
train
bkg/django-spillway
spillway/query.py
geo_field
def geo_field(queryset): """Returns the GeometryField for a django or spillway GeoQuerySet.""" for field in queryset.model._meta.fields: if isinstance(field, models.GeometryField): return field raise exceptions.FieldDoesNotExist('No GeometryField found')
python
def geo_field(queryset): """Returns the GeometryField for a django or spillway GeoQuerySet.""" for field in queryset.model._meta.fields: if isinstance(field, models.GeometryField): return field raise exceptions.FieldDoesNotExist('No GeometryField found')
[ "def", "geo_field", "(", "queryset", ")", ":", "for", "field", "in", "queryset", ".", "model", ".", "_meta", ".", "fields", ":", "if", "isinstance", "(", "field", ",", "models", ".", "GeometryField", ")", ":", "return", "field", "raise", "exceptions", ".", "FieldDoesNotExist", "(", "'No GeometryField found'", ")" ]
Returns the GeometryField for a django or spillway GeoQuerySet.
[ "Returns", "the", "GeometryField", "for", "a", "django", "or", "spillway", "GeoQuerySet", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L26-L31
train
bkg/django-spillway
spillway/query.py
get_srid
def get_srid(queryset): """Returns the GeoQuerySet spatial reference identifier.""" try: srid = list(six.viewvalues(queryset.query.annotations))[0].srid except (AttributeError, IndexError): srid = None return srid or geo_field(queryset).srid
python
def get_srid(queryset): """Returns the GeoQuerySet spatial reference identifier.""" try: srid = list(six.viewvalues(queryset.query.annotations))[0].srid except (AttributeError, IndexError): srid = None return srid or geo_field(queryset).srid
[ "def", "get_srid", "(", "queryset", ")", ":", "try", ":", "srid", "=", "list", "(", "six", ".", "viewvalues", "(", "queryset", ".", "query", ".", "annotations", ")", ")", "[", "0", "]", ".", "srid", "except", "(", "AttributeError", ",", "IndexError", ")", ":", "srid", "=", "None", "return", "srid", "or", "geo_field", "(", "queryset", ")", ".", "srid" ]
Returns the GeoQuerySet spatial reference identifier.
[ "Returns", "the", "GeoQuerySet", "spatial", "reference", "identifier", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L33-L39
train
bkg/django-spillway
spillway/query.py
agg_dims
def agg_dims(arr, stat): """Returns a 1D array with higher dimensions aggregated using stat fn. Arguments: arr -- ndarray stat -- numpy or numpy.ma function as str to call """ axis = None if arr.ndim > 2: axis = 1 arr = arr.reshape(arr.shape[0], -1) module = np.ma if hasattr(arr, 'mask') else np return getattr(module, stat)(arr, axis)
python
def agg_dims(arr, stat): """Returns a 1D array with higher dimensions aggregated using stat fn. Arguments: arr -- ndarray stat -- numpy or numpy.ma function as str to call """ axis = None if arr.ndim > 2: axis = 1 arr = arr.reshape(arr.shape[0], -1) module = np.ma if hasattr(arr, 'mask') else np return getattr(module, stat)(arr, axis)
[ "def", "agg_dims", "(", "arr", ",", "stat", ")", ":", "axis", "=", "None", "if", "arr", ".", "ndim", ">", "2", ":", "axis", "=", "1", "arr", "=", "arr", ".", "reshape", "(", "arr", ".", "shape", "[", "0", "]", ",", "-", "1", ")", "module", "=", "np", ".", "ma", "if", "hasattr", "(", "arr", ",", "'mask'", ")", "else", "np", "return", "getattr", "(", "module", ",", "stat", ")", "(", "arr", ",", "axis", ")" ]
Returns a 1D array with higher dimensions aggregated using stat fn. Arguments: arr -- ndarray stat -- numpy or numpy.ma function as str to call
[ "Returns", "a", "1D", "array", "with", "higher", "dimensions", "aggregated", "using", "stat", "fn", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L41-L53
train
bkg/django-spillway
spillway/query.py
GeoQuerySet.extent
def extent(self, srid=None): """Returns the GeoQuerySet extent as a 4-tuple. Keyword args: srid -- EPSG id for for transforming the output geometry. """ expr = self.geo_field.name if srid: expr = geofn.Transform(expr, srid) expr = models.Extent(expr) clone = self.all() name, val = clone.aggregate(expr).popitem() return val
python
def extent(self, srid=None): """Returns the GeoQuerySet extent as a 4-tuple. Keyword args: srid -- EPSG id for for transforming the output geometry. """ expr = self.geo_field.name if srid: expr = geofn.Transform(expr, srid) expr = models.Extent(expr) clone = self.all() name, val = clone.aggregate(expr).popitem() return val
[ "def", "extent", "(", "self", ",", "srid", "=", "None", ")", ":", "expr", "=", "self", ".", "geo_field", ".", "name", "if", "srid", ":", "expr", "=", "geofn", ".", "Transform", "(", "expr", ",", "srid", ")", "expr", "=", "models", ".", "Extent", "(", "expr", ")", "clone", "=", "self", ".", "all", "(", ")", "name", ",", "val", "=", "clone", ".", "aggregate", "(", "expr", ")", ".", "popitem", "(", ")", "return", "val" ]
Returns the GeoQuerySet extent as a 4-tuple. Keyword args: srid -- EPSG id for for transforming the output geometry.
[ "Returns", "the", "GeoQuerySet", "extent", "as", "a", "4", "-", "tuple", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L87-L99
train
bkg/django-spillway
spillway/query.py
GeoQuerySet.pbf
def pbf(self, bbox, geo_col=None, scale=4096): """Returns tranlated and scaled geometries suitable for Mapbox vector tiles. """ col = geo_col or self.geo_field.name w, s, e, n = bbox.extent trans = self._trans_scale(col, -w, -s, scale / (e - w), scale / (n - s)) g = AsText(trans) return self.annotate(pbf=g)
python
def pbf(self, bbox, geo_col=None, scale=4096): """Returns tranlated and scaled geometries suitable for Mapbox vector tiles. """ col = geo_col or self.geo_field.name w, s, e, n = bbox.extent trans = self._trans_scale(col, -w, -s, scale / (e - w), scale / (n - s)) g = AsText(trans) return self.annotate(pbf=g)
[ "def", "pbf", "(", "self", ",", "bbox", ",", "geo_col", "=", "None", ",", "scale", "=", "4096", ")", ":", "col", "=", "geo_col", "or", "self", ".", "geo_field", ".", "name", "w", ",", "s", ",", "e", ",", "n", "=", "bbox", ".", "extent", "trans", "=", "self", ".", "_trans_scale", "(", "col", ",", "-", "w", ",", "-", "s", ",", "scale", "/", "(", "e", "-", "w", ")", ",", "scale", "/", "(", "n", "-", "s", ")", ")", "g", "=", "AsText", "(", "trans", ")", "return", "self", ".", "annotate", "(", "pbf", "=", "g", ")" ]
Returns tranlated and scaled geometries suitable for Mapbox vector tiles.
[ "Returns", "tranlated", "and", "scaled", "geometries", "suitable", "for", "Mapbox", "vector", "tiles", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L110-L120
train
bkg/django-spillway
spillway/query.py
GeoQuerySet.tile
def tile(self, bbox, z=0, format=None, clip=True): """Returns a GeoQuerySet intersecting a tile boundary. Arguments: bbox -- tile extent as geometry Keyword args: z -- tile zoom level used as basis for geometry simplification format -- vector tile format as str (pbf, geojson) clip -- clip geometries to tile boundary as boolean """ # Tile grid uses 3857, but GeoJSON coordinates should be in 4326. tile_srid = 3857 bbox = getattr(bbox, 'geos', bbox) clone = filter_geometry(self, intersects=bbox) field = clone.geo_field srid = field.srid sql = field.name try: tilew = self.tilewidths[z] except IndexError: tilew = self.tilewidths[-1] if bbox.srid != srid: bbox = bbox.transform(srid, clone=True) # Estimate tile width in degrees instead of meters. if bbox.srs.geographic: p = geos.Point(tilew, tilew, srid=tile_srid) p.transform(srid) tilew = p.x if clip: bufbox = bbox.buffer(tilew) sql = geofn.Intersection(sql, bufbox.envelope) sql = SimplifyPreserveTopology(sql, tilew) if format == 'pbf': return clone.pbf(bbox, geo_col=sql) sql = geofn.Transform(sql, 4326) return clone.annotate(**{format: sql})
python
def tile(self, bbox, z=0, format=None, clip=True): """Returns a GeoQuerySet intersecting a tile boundary. Arguments: bbox -- tile extent as geometry Keyword args: z -- tile zoom level used as basis for geometry simplification format -- vector tile format as str (pbf, geojson) clip -- clip geometries to tile boundary as boolean """ # Tile grid uses 3857, but GeoJSON coordinates should be in 4326. tile_srid = 3857 bbox = getattr(bbox, 'geos', bbox) clone = filter_geometry(self, intersects=bbox) field = clone.geo_field srid = field.srid sql = field.name try: tilew = self.tilewidths[z] except IndexError: tilew = self.tilewidths[-1] if bbox.srid != srid: bbox = bbox.transform(srid, clone=True) # Estimate tile width in degrees instead of meters. if bbox.srs.geographic: p = geos.Point(tilew, tilew, srid=tile_srid) p.transform(srid) tilew = p.x if clip: bufbox = bbox.buffer(tilew) sql = geofn.Intersection(sql, bufbox.envelope) sql = SimplifyPreserveTopology(sql, tilew) if format == 'pbf': return clone.pbf(bbox, geo_col=sql) sql = geofn.Transform(sql, 4326) return clone.annotate(**{format: sql})
[ "def", "tile", "(", "self", ",", "bbox", ",", "z", "=", "0", ",", "format", "=", "None", ",", "clip", "=", "True", ")", ":", "tile_srid", "=", "3857", "bbox", "=", "getattr", "(", "bbox", ",", "'geos'", ",", "bbox", ")", "clone", "=", "filter_geometry", "(", "self", ",", "intersects", "=", "bbox", ")", "field", "=", "clone", ".", "geo_field", "srid", "=", "field", ".", "srid", "sql", "=", "field", ".", "name", "try", ":", "tilew", "=", "self", ".", "tilewidths", "[", "z", "]", "except", "IndexError", ":", "tilew", "=", "self", ".", "tilewidths", "[", "-", "1", "]", "if", "bbox", ".", "srid", "!=", "srid", ":", "bbox", "=", "bbox", ".", "transform", "(", "srid", ",", "clone", "=", "True", ")", "if", "bbox", ".", "srs", ".", "geographic", ":", "p", "=", "geos", ".", "Point", "(", "tilew", ",", "tilew", ",", "srid", "=", "tile_srid", ")", "p", ".", "transform", "(", "srid", ")", "tilew", "=", "p", ".", "x", "if", "clip", ":", "bufbox", "=", "bbox", ".", "buffer", "(", "tilew", ")", "sql", "=", "geofn", ".", "Intersection", "(", "sql", ",", "bufbox", ".", "envelope", ")", "sql", "=", "SimplifyPreserveTopology", "(", "sql", ",", "tilew", ")", "if", "format", "==", "'pbf'", ":", "return", "clone", ".", "pbf", "(", "bbox", ",", "geo_col", "=", "sql", ")", "sql", "=", "geofn", ".", "Transform", "(", "sql", ",", "4326", ")", "return", "clone", ".", "annotate", "(", "**", "{", "format", ":", "sql", "}", ")" ]
Returns a GeoQuerySet intersecting a tile boundary. Arguments: bbox -- tile extent as geometry Keyword args: z -- tile zoom level used as basis for geometry simplification format -- vector tile format as str (pbf, geojson) clip -- clip geometries to tile boundary as boolean
[ "Returns", "a", "GeoQuerySet", "intersecting", "a", "tile", "boundary", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L122-L157
train
bkg/django-spillway
spillway/query.py
RasterQuerySet.arrays
def arrays(self, field_name=None): """Returns a list of ndarrays. Keyword args: field_name -- raster field name as str """ fieldname = field_name or self.raster_field.name arrays = [] for obj in self: arr = getattr(obj, fieldname) if isinstance(arr, np.ndarray): arrays.append(arr) else: arrays.append(obj.array()) return arrays
python
def arrays(self, field_name=None): """Returns a list of ndarrays. Keyword args: field_name -- raster field name as str """ fieldname = field_name or self.raster_field.name arrays = [] for obj in self: arr = getattr(obj, fieldname) if isinstance(arr, np.ndarray): arrays.append(arr) else: arrays.append(obj.array()) return arrays
[ "def", "arrays", "(", "self", ",", "field_name", "=", "None", ")", ":", "fieldname", "=", "field_name", "or", "self", ".", "raster_field", ".", "name", "arrays", "=", "[", "]", "for", "obj", "in", "self", ":", "arr", "=", "getattr", "(", "obj", ",", "fieldname", ")", "if", "isinstance", "(", "arr", ",", "np", ".", "ndarray", ")", ":", "arrays", ".", "append", "(", "arr", ")", "else", ":", "arrays", ".", "append", "(", "obj", ".", "array", "(", ")", ")", "return", "arrays" ]
Returns a list of ndarrays. Keyword args: field_name -- raster field name as str
[ "Returns", "a", "list", "of", "ndarrays", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L161-L175
train
bkg/django-spillway
spillway/query.py
RasterQuerySet.aggregate_periods
def aggregate_periods(self, periods): """Returns list of ndarrays averaged to a given number of periods. Arguments: periods -- desired number of periods as int """ try: fieldname = self.raster_field.name except TypeError: raise exceptions.FieldDoesNotExist('Raster field not found') arrays = self.arrays(fieldname) arr = arrays[0] if len(arrays) > 1: if getattr(arr, 'ndim', 0) > 2: arrays = np.vstack(arrays) fill = getattr(arr, 'fill_value', None) arr = np.ma.masked_values(arrays, fill, copy=False) # Try to reshape using equal sizes first and fall back to unequal # splits. try: means = arr.reshape((periods, -1)).mean(axis=1) except ValueError: means = np.array([a.mean() for a in np.array_split(arr, periods)]) obj = self[0] setattr(obj, fieldname, means) return [obj]
python
def aggregate_periods(self, periods): """Returns list of ndarrays averaged to a given number of periods. Arguments: periods -- desired number of periods as int """ try: fieldname = self.raster_field.name except TypeError: raise exceptions.FieldDoesNotExist('Raster field not found') arrays = self.arrays(fieldname) arr = arrays[0] if len(arrays) > 1: if getattr(arr, 'ndim', 0) > 2: arrays = np.vstack(arrays) fill = getattr(arr, 'fill_value', None) arr = np.ma.masked_values(arrays, fill, copy=False) # Try to reshape using equal sizes first and fall back to unequal # splits. try: means = arr.reshape((periods, -1)).mean(axis=1) except ValueError: means = np.array([a.mean() for a in np.array_split(arr, periods)]) obj = self[0] setattr(obj, fieldname, means) return [obj]
[ "def", "aggregate_periods", "(", "self", ",", "periods", ")", ":", "try", ":", "fieldname", "=", "self", ".", "raster_field", ".", "name", "except", "TypeError", ":", "raise", "exceptions", ".", "FieldDoesNotExist", "(", "'Raster field not found'", ")", "arrays", "=", "self", ".", "arrays", "(", "fieldname", ")", "arr", "=", "arrays", "[", "0", "]", "if", "len", "(", "arrays", ")", ">", "1", ":", "if", "getattr", "(", "arr", ",", "'ndim'", ",", "0", ")", ">", "2", ":", "arrays", "=", "np", ".", "vstack", "(", "arrays", ")", "fill", "=", "getattr", "(", "arr", ",", "'fill_value'", ",", "None", ")", "arr", "=", "np", ".", "ma", ".", "masked_values", "(", "arrays", ",", "fill", ",", "copy", "=", "False", ")", "try", ":", "means", "=", "arr", ".", "reshape", "(", "(", "periods", ",", "-", "1", ")", ")", ".", "mean", "(", "axis", "=", "1", ")", "except", "ValueError", ":", "means", "=", "np", ".", "array", "(", "[", "a", ".", "mean", "(", ")", "for", "a", "in", "np", ".", "array_split", "(", "arr", ",", "periods", ")", "]", ")", "obj", "=", "self", "[", "0", "]", "setattr", "(", "obj", ",", "fieldname", ",", "means", ")", "return", "[", "obj", "]" ]
Returns list of ndarrays averaged to a given number of periods. Arguments: periods -- desired number of periods as int
[ "Returns", "list", "of", "ndarrays", "averaged", "to", "a", "given", "number", "of", "periods", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L177-L202
train
bkg/django-spillway
spillway/query.py
RasterQuerySet.raster_field
def raster_field(self): """Returns the raster FileField instance on the model.""" for field in self.model._meta.fields: if isinstance(field, models.FileField): return field return False
python
def raster_field(self): """Returns the raster FileField instance on the model.""" for field in self.model._meta.fields: if isinstance(field, models.FileField): return field return False
[ "def", "raster_field", "(", "self", ")", ":", "for", "field", "in", "self", ".", "model", ".", "_meta", ".", "fields", ":", "if", "isinstance", "(", "field", ",", "models", ".", "FileField", ")", ":", "return", "field", "return", "False" ]
Returns the raster FileField instance on the model.
[ "Returns", "the", "raster", "FileField", "instance", "on", "the", "model", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L218-L223
train
bkg/django-spillway
spillway/query.py
RasterQuerySet.zipfiles
def zipfiles(self, path=None, arcdirname='data'): """Returns a .zip archive of selected rasters.""" if path: fp = open(path, 'w+b') else: prefix = '%s-' % arcdirname fp = tempfile.NamedTemporaryFile(prefix=prefix, suffix='.zip') with zipfile.ZipFile(fp, mode='w') as zf: for obj in self: img = obj.image arcname = os.path.join(arcdirname, os.path.basename(img.name)) try: zf.write(img.path, arcname=arcname) except OSError: img.seek(0) zf.writestr(arcname, img.read()) img.close() fp.seek(0) zobj = self.model(image=fp) return [zobj]
python
def zipfiles(self, path=None, arcdirname='data'): """Returns a .zip archive of selected rasters.""" if path: fp = open(path, 'w+b') else: prefix = '%s-' % arcdirname fp = tempfile.NamedTemporaryFile(prefix=prefix, suffix='.zip') with zipfile.ZipFile(fp, mode='w') as zf: for obj in self: img = obj.image arcname = os.path.join(arcdirname, os.path.basename(img.name)) try: zf.write(img.path, arcname=arcname) except OSError: img.seek(0) zf.writestr(arcname, img.read()) img.close() fp.seek(0) zobj = self.model(image=fp) return [zobj]
[ "def", "zipfiles", "(", "self", ",", "path", "=", "None", ",", "arcdirname", "=", "'data'", ")", ":", "if", "path", ":", "fp", "=", "open", "(", "path", ",", "'w+b'", ")", "else", ":", "prefix", "=", "'%s-'", "%", "arcdirname", "fp", "=", "tempfile", ".", "NamedTemporaryFile", "(", "prefix", "=", "prefix", ",", "suffix", "=", "'.zip'", ")", "with", "zipfile", ".", "ZipFile", "(", "fp", ",", "mode", "=", "'w'", ")", "as", "zf", ":", "for", "obj", "in", "self", ":", "img", "=", "obj", ".", "image", "arcname", "=", "os", ".", "path", ".", "join", "(", "arcdirname", ",", "os", ".", "path", ".", "basename", "(", "img", ".", "name", ")", ")", "try", ":", "zf", ".", "write", "(", "img", ".", "path", ",", "arcname", "=", "arcname", ")", "except", "OSError", ":", "img", ".", "seek", "(", "0", ")", "zf", ".", "writestr", "(", "arcname", ",", "img", ".", "read", "(", ")", ")", "img", ".", "close", "(", ")", "fp", ".", "seek", "(", "0", ")", "zobj", "=", "self", ".", "model", "(", "image", "=", "fp", ")", "return", "[", "zobj", "]" ]
Returns a .zip archive of selected rasters.
[ "Returns", "a", ".", "zip", "archive", "of", "selected", "rasters", "." ]
c488a62642430b005f1e0d4a19e160d8d5964b67
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/query.py#L265-L284
train
idlesign/steampak
steampak/libsteam/resources/main.py
Api.init
def init(self, app_id=None): """Initializes Steam API library. :param str|int app_id: Application ID. :raises: SteamApiStartupError """ self.set_app_id(app_id) err_msg = ( 'Unable to initialize. Check Steam client is running ' 'and Steam application ID is defined in steam_appid.txt or passed to Api.' ) if self._lib.steam_init(): try: _set_client(self._lib.Client()) self.utils = Utils() self.current_user = CurrentUser() self.friends = Friends() self.groups = Groups() self.apps = Applications() self.overlay = Overlay() self.screenshots = Screenshots() except Exception as e: raise SteamApiStartupError('%s:\n%s' % (err_msg, e)) else: raise SteamApiStartupError(err_msg)
python
def init(self, app_id=None): """Initializes Steam API library. :param str|int app_id: Application ID. :raises: SteamApiStartupError """ self.set_app_id(app_id) err_msg = ( 'Unable to initialize. Check Steam client is running ' 'and Steam application ID is defined in steam_appid.txt or passed to Api.' ) if self._lib.steam_init(): try: _set_client(self._lib.Client()) self.utils = Utils() self.current_user = CurrentUser() self.friends = Friends() self.groups = Groups() self.apps = Applications() self.overlay = Overlay() self.screenshots = Screenshots() except Exception as e: raise SteamApiStartupError('%s:\n%s' % (err_msg, e)) else: raise SteamApiStartupError(err_msg)
[ "def", "init", "(", "self", ",", "app_id", "=", "None", ")", ":", "self", ".", "set_app_id", "(", "app_id", ")", "err_msg", "=", "(", "'Unable to initialize. Check Steam client is running '", "'and Steam application ID is defined in steam_appid.txt or passed to Api.'", ")", "if", "self", ".", "_lib", ".", "steam_init", "(", ")", ":", "try", ":", "_set_client", "(", "self", ".", "_lib", ".", "Client", "(", ")", ")", "self", ".", "utils", "=", "Utils", "(", ")", "self", ".", "current_user", "=", "CurrentUser", "(", ")", "self", ".", "friends", "=", "Friends", "(", ")", "self", ".", "groups", "=", "Groups", "(", ")", "self", ".", "apps", "=", "Applications", "(", ")", "self", ".", "overlay", "=", "Overlay", "(", ")", "self", ".", "screenshots", "=", "Screenshots", "(", ")", "except", "Exception", "as", "e", ":", "raise", "SteamApiStartupError", "(", "'%s:\\n%s'", "%", "(", "err_msg", ",", "e", ")", ")", "else", ":", "raise", "SteamApiStartupError", "(", "err_msg", ")" ]
Initializes Steam API library. :param str|int app_id: Application ID. :raises: SteamApiStartupError
[ "Initializes", "Steam", "API", "library", "." ]
cb3f2c737e272b0360802d947e388df7e34f50f3
https://github.com/idlesign/steampak/blob/cb3f2c737e272b0360802d947e388df7e34f50f3/steampak/libsteam/resources/main.py#L125-L155
train
BD2KGenomics/protect
src/protect/common.py
get_files_from_filestore
def get_files_from_filestore(job, files, work_dir, docker=False): """ Download a dict of files to the given directory and modify the path to a docker-friendly one if requested. :param dict files: A dictionary of filenames: fsIDs :param str work_dir: The destination directory :param bool docker: Should the file path be converted to our standard docker '/data/filename'? :return: Dict of files: (optionallly docker-friendly) fileepaths :rtype: dict """ for name in files.keys(): outfile = job.fileStore.readGlobalFile(files[name], '/'.join([work_dir, name])) # If the files will be sent to docker, we will mount work_dir to the container as /data and # we want the /data prefixed path to the file if docker: files[name] = docker_path(outfile) else: files[name] = outfile return files
python
def get_files_from_filestore(job, files, work_dir, docker=False): """ Download a dict of files to the given directory and modify the path to a docker-friendly one if requested. :param dict files: A dictionary of filenames: fsIDs :param str work_dir: The destination directory :param bool docker: Should the file path be converted to our standard docker '/data/filename'? :return: Dict of files: (optionallly docker-friendly) fileepaths :rtype: dict """ for name in files.keys(): outfile = job.fileStore.readGlobalFile(files[name], '/'.join([work_dir, name])) # If the files will be sent to docker, we will mount work_dir to the container as /data and # we want the /data prefixed path to the file if docker: files[name] = docker_path(outfile) else: files[name] = outfile return files
[ "def", "get_files_from_filestore", "(", "job", ",", "files", ",", "work_dir", ",", "docker", "=", "False", ")", ":", "for", "name", "in", "files", ".", "keys", "(", ")", ":", "outfile", "=", "job", ".", "fileStore", ".", "readGlobalFile", "(", "files", "[", "name", "]", ",", "'/'", ".", "join", "(", "[", "work_dir", ",", "name", "]", ")", ")", "if", "docker", ":", "files", "[", "name", "]", "=", "docker_path", "(", "outfile", ")", "else", ":", "files", "[", "name", "]", "=", "outfile", "return", "files" ]
Download a dict of files to the given directory and modify the path to a docker-friendly one if requested. :param dict files: A dictionary of filenames: fsIDs :param str work_dir: The destination directory :param bool docker: Should the file path be converted to our standard docker '/data/filename'? :return: Dict of files: (optionallly docker-friendly) fileepaths :rtype: dict
[ "Download", "a", "dict", "of", "files", "to", "the", "given", "directory", "and", "modify", "the", "path", "to", "a", "docker", "-", "friendly", "one", "if", "requested", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/common.py#L45-L64
train
BD2KGenomics/protect
src/protect/common.py
gunzip
def gunzip(input_gzip_file, block_size=1024): """ Gunzips the input file to the same directory :param input_gzip_file: File to be gunzipped :return: path to the gunzipped file :rtype: str """ assert os.path.splitext(input_gzip_file)[1] == '.gz' assert is_gzipfile(input_gzip_file) with gzip.open(input_gzip_file) as infile: with open(os.path.splitext(input_gzip_file)[0], 'w') as outfile: while True: block = infile.read(block_size) if block == '': break else: outfile.write(block) return outfile.name
python
def gunzip(input_gzip_file, block_size=1024): """ Gunzips the input file to the same directory :param input_gzip_file: File to be gunzipped :return: path to the gunzipped file :rtype: str """ assert os.path.splitext(input_gzip_file)[1] == '.gz' assert is_gzipfile(input_gzip_file) with gzip.open(input_gzip_file) as infile: with open(os.path.splitext(input_gzip_file)[0], 'w') as outfile: while True: block = infile.read(block_size) if block == '': break else: outfile.write(block) return outfile.name
[ "def", "gunzip", "(", "input_gzip_file", ",", "block_size", "=", "1024", ")", ":", "assert", "os", ".", "path", ".", "splitext", "(", "input_gzip_file", ")", "[", "1", "]", "==", "'.gz'", "assert", "is_gzipfile", "(", "input_gzip_file", ")", "with", "gzip", ".", "open", "(", "input_gzip_file", ")", "as", "infile", ":", "with", "open", "(", "os", ".", "path", ".", "splitext", "(", "input_gzip_file", ")", "[", "0", "]", ",", "'w'", ")", "as", "outfile", ":", "while", "True", ":", "block", "=", "infile", ".", "read", "(", "block_size", ")", "if", "block", "==", "''", ":", "break", "else", ":", "outfile", ".", "write", "(", "block", ")", "return", "outfile", ".", "name" ]
Gunzips the input file to the same directory :param input_gzip_file: File to be gunzipped :return: path to the gunzipped file :rtype: str
[ "Gunzips", "the", "input", "file", "to", "the", "same", "directory" ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/common.py#L163-L181
train
BD2KGenomics/protect
src/protect/common.py
is_gzipfile
def is_gzipfile(filename): """ Attempt to ascertain the gzip status of a file based on the "magic signatures" of the file. This was taken from the stack overflow post http://stackoverflow.com/questions/13044562/python-mechanism-to-identify-compressed-file-type\ -and-uncompress :param str filename: A path to a file :return: True if the file appears to be gzipped else false :rtype: bool """ assert os.path.exists(filename), 'Input {} does not '.format(filename) + \ 'point to a file.' with open(filename, 'rb') as in_f: start_of_file = in_f.read(3) if start_of_file == '\x1f\x8b\x08': return True else: return False
python
def is_gzipfile(filename): """ Attempt to ascertain the gzip status of a file based on the "magic signatures" of the file. This was taken from the stack overflow post http://stackoverflow.com/questions/13044562/python-mechanism-to-identify-compressed-file-type\ -and-uncompress :param str filename: A path to a file :return: True if the file appears to be gzipped else false :rtype: bool """ assert os.path.exists(filename), 'Input {} does not '.format(filename) + \ 'point to a file.' with open(filename, 'rb') as in_f: start_of_file = in_f.read(3) if start_of_file == '\x1f\x8b\x08': return True else: return False
[ "def", "is_gzipfile", "(", "filename", ")", ":", "assert", "os", ".", "path", ".", "exists", "(", "filename", ")", ",", "'Input {} does not '", ".", "format", "(", "filename", ")", "+", "'point to a file.'", "with", "open", "(", "filename", ",", "'rb'", ")", "as", "in_f", ":", "start_of_file", "=", "in_f", ".", "read", "(", "3", ")", "if", "start_of_file", "==", "'\\x1f\\x8b\\x08'", ":", "return", "True", "else", ":", "return", "False" ]
Attempt to ascertain the gzip status of a file based on the "magic signatures" of the file. This was taken from the stack overflow post http://stackoverflow.com/questions/13044562/python-mechanism-to-identify-compressed-file-type\ -and-uncompress :param str filename: A path to a file :return: True if the file appears to be gzipped else false :rtype: bool
[ "Attempt", "to", "ascertain", "the", "gzip", "status", "of", "a", "file", "based", "on", "the", "magic", "signatures", "of", "the", "file", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/common.py#L184-L203
train
BD2KGenomics/protect
src/protect/common.py
get_file_from_gdc
def get_file_from_gdc(job, gdc_url, gdc_download_token, write_to_jobstore=True): """ Download a supplied "URL" that points to a file in the NCBI GDC database. The path to the gdc download token must be provided. The file is downloaded and written to the jobstore if requested. :param str gdc_url: URL for the file (in the form of gdc://<UUID>) :param str gdc_download_token: Path to the gdc download token :param bool write_to_jobstore: Should the file be written to the job store? :return: Path to the downloaded file or fsID (if write_to_jobstore was True) :rtype: list(str|toil.fileStore.FileID) """ work_dir = job.fileStore.getLocalTempDir() parsed_url = urlparse(gdc_url) assert parsed_url.scheme == 'gdc', 'Unexpected url scheme: %s' % gdc_url file_dir = '/'.join([work_dir, parsed_url.netloc]) # This is common to encrypted and unencrypted downloads currwd = os.getcwd() os.chdir(work_dir) try: download_call = ['gdc-client', 'download', '-t', gdc_download_token, parsed_url.netloc] subprocess.check_call(download_call) finally: os.chdir(currwd) assert os.path.exists(file_dir) output_files = [os.path.join(file_dir, x) for x in os.listdir(file_dir) if not x.endswith('logs')] # NOTE: We only handle vcf and bam+bai if len(output_files) == 1: assert output_files[0].endswith('vcf') else: if not {os.path.splitext(x)[1] for x in output_files} >= {'.bam', '.bai'}: raise ParameterError('Can currently only handle pre-indexed GDC bams.') # Always [bam, bai] output_files = [x for x in output_files if x.endswith(('bam', 'bai'))] output_files = sorted(output_files, key=lambda x: os.path.splitext(x)[1], reverse=True) if write_to_jobstore: output_files = [job.fileStore.writeGlobalFile(f) for f in output_files] return output_files
python
def get_file_from_gdc(job, gdc_url, gdc_download_token, write_to_jobstore=True): """ Download a supplied "URL" that points to a file in the NCBI GDC database. The path to the gdc download token must be provided. The file is downloaded and written to the jobstore if requested. :param str gdc_url: URL for the file (in the form of gdc://<UUID>) :param str gdc_download_token: Path to the gdc download token :param bool write_to_jobstore: Should the file be written to the job store? :return: Path to the downloaded file or fsID (if write_to_jobstore was True) :rtype: list(str|toil.fileStore.FileID) """ work_dir = job.fileStore.getLocalTempDir() parsed_url = urlparse(gdc_url) assert parsed_url.scheme == 'gdc', 'Unexpected url scheme: %s' % gdc_url file_dir = '/'.join([work_dir, parsed_url.netloc]) # This is common to encrypted and unencrypted downloads currwd = os.getcwd() os.chdir(work_dir) try: download_call = ['gdc-client', 'download', '-t', gdc_download_token, parsed_url.netloc] subprocess.check_call(download_call) finally: os.chdir(currwd) assert os.path.exists(file_dir) output_files = [os.path.join(file_dir, x) for x in os.listdir(file_dir) if not x.endswith('logs')] # NOTE: We only handle vcf and bam+bai if len(output_files) == 1: assert output_files[0].endswith('vcf') else: if not {os.path.splitext(x)[1] for x in output_files} >= {'.bam', '.bai'}: raise ParameterError('Can currently only handle pre-indexed GDC bams.') # Always [bam, bai] output_files = [x for x in output_files if x.endswith(('bam', 'bai'))] output_files = sorted(output_files, key=lambda x: os.path.splitext(x)[1], reverse=True) if write_to_jobstore: output_files = [job.fileStore.writeGlobalFile(f) for f in output_files] return output_files
[ "def", "get_file_from_gdc", "(", "job", ",", "gdc_url", ",", "gdc_download_token", ",", "write_to_jobstore", "=", "True", ")", ":", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "parsed_url", "=", "urlparse", "(", "gdc_url", ")", "assert", "parsed_url", ".", "scheme", "==", "'gdc'", ",", "'Unexpected url scheme: %s'", "%", "gdc_url", "file_dir", "=", "'/'", ".", "join", "(", "[", "work_dir", ",", "parsed_url", ".", "netloc", "]", ")", "currwd", "=", "os", ".", "getcwd", "(", ")", "os", ".", "chdir", "(", "work_dir", ")", "try", ":", "download_call", "=", "[", "'gdc-client'", ",", "'download'", ",", "'-t'", ",", "gdc_download_token", ",", "parsed_url", ".", "netloc", "]", "subprocess", ".", "check_call", "(", "download_call", ")", "finally", ":", "os", ".", "chdir", "(", "currwd", ")", "assert", "os", ".", "path", ".", "exists", "(", "file_dir", ")", "output_files", "=", "[", "os", ".", "path", ".", "join", "(", "file_dir", ",", "x", ")", "for", "x", "in", "os", ".", "listdir", "(", "file_dir", ")", "if", "not", "x", ".", "endswith", "(", "'logs'", ")", "]", "if", "len", "(", "output_files", ")", "==", "1", ":", "assert", "output_files", "[", "0", "]", ".", "endswith", "(", "'vcf'", ")", "else", ":", "if", "not", "{", "os", ".", "path", ".", "splitext", "(", "x", ")", "[", "1", "]", "for", "x", "in", "output_files", "}", ">=", "{", "'.bam'", ",", "'.bai'", "}", ":", "raise", "ParameterError", "(", "'Can currently only handle pre-indexed GDC bams.'", ")", "output_files", "=", "[", "x", "for", "x", "in", "output_files", "if", "x", ".", "endswith", "(", "(", "'bam'", ",", "'bai'", ")", ")", "]", "output_files", "=", "sorted", "(", "output_files", ",", "key", "=", "lambda", "x", ":", "os", ".", "path", ".", "splitext", "(", "x", ")", "[", "1", "]", ",", "reverse", "=", "True", ")", "if", "write_to_jobstore", ":", "output_files", "=", "[", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "f", ")", "for", "f", "in", "output_files", "]", "return", "output_files" ]
Download a supplied "URL" that points to a file in the NCBI GDC database. The path to the gdc download token must be provided. The file is downloaded and written to the jobstore if requested. :param str gdc_url: URL for the file (in the form of gdc://<UUID>) :param str gdc_download_token: Path to the gdc download token :param bool write_to_jobstore: Should the file be written to the job store? :return: Path to the downloaded file or fsID (if write_to_jobstore was True) :rtype: list(str|toil.fileStore.FileID)
[ "Download", "a", "supplied", "URL", "that", "points", "to", "a", "file", "in", "the", "NCBI", "GDC", "database", ".", "The", "path", "to", "the", "gdc", "download", "token", "must", "be", "provided", ".", "The", "file", "is", "downloaded", "and", "written", "to", "the", "jobstore", "if", "requested", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/common.py#L206-L248
train
BD2KGenomics/protect
src/protect/common.py
get_file_from_url
def get_file_from_url(job, any_url, encryption_key=None, per_file_encryption=True, write_to_jobstore=True): """ Download a supplied URL that points to a file on an http, https or ftp server. If the file is found to be an https s3 link then the file is downloaded using `get_file_from_s3`. The file is downloaded and written to the jobstore if requested. Encryption arguments are for passing to `get_file_from_s3` if required. :param str any_url: URL for the file :param str encryption_key: Path to the master key :param bool per_file_encryption: If encrypted, was the file encrypted using the per-file method? :param bool write_to_jobstore: Should the file be written to the job store? :return: Path to the downloaded file or fsID (if write_to_jobstore was True) :rtype: str|toil.fileStore.FileID """ work_dir = job.fileStore.getLocalTempDir() filename = '/'.join([work_dir, str(uuid.uuid4())]) url = any_url parsed_url = urlparse(any_url) try: response = urllib2.urlopen(url) except urllib2.HTTPError: if parsed_url.netloc.startswith(('s3', 'S3')): job.fileStore.logToMaster("Detected https link is for an encrypted s3 file.") return get_file_from_s3(job, any_url, encryption_key=encryption_key, per_file_encryption=per_file_encryption, write_to_jobstore=write_to_jobstore) else: raise else: with open(filename, 'w') as f: f.write(response.read()) if write_to_jobstore: filename = job.fileStore.writeGlobalFile(filename) return filename
python
def get_file_from_url(job, any_url, encryption_key=None, per_file_encryption=True, write_to_jobstore=True): """ Download a supplied URL that points to a file on an http, https or ftp server. If the file is found to be an https s3 link then the file is downloaded using `get_file_from_s3`. The file is downloaded and written to the jobstore if requested. Encryption arguments are for passing to `get_file_from_s3` if required. :param str any_url: URL for the file :param str encryption_key: Path to the master key :param bool per_file_encryption: If encrypted, was the file encrypted using the per-file method? :param bool write_to_jobstore: Should the file be written to the job store? :return: Path to the downloaded file or fsID (if write_to_jobstore was True) :rtype: str|toil.fileStore.FileID """ work_dir = job.fileStore.getLocalTempDir() filename = '/'.join([work_dir, str(uuid.uuid4())]) url = any_url parsed_url = urlparse(any_url) try: response = urllib2.urlopen(url) except urllib2.HTTPError: if parsed_url.netloc.startswith(('s3', 'S3')): job.fileStore.logToMaster("Detected https link is for an encrypted s3 file.") return get_file_from_s3(job, any_url, encryption_key=encryption_key, per_file_encryption=per_file_encryption, write_to_jobstore=write_to_jobstore) else: raise else: with open(filename, 'w') as f: f.write(response.read()) if write_to_jobstore: filename = job.fileStore.writeGlobalFile(filename) return filename
[ "def", "get_file_from_url", "(", "job", ",", "any_url", ",", "encryption_key", "=", "None", ",", "per_file_encryption", "=", "True", ",", "write_to_jobstore", "=", "True", ")", ":", "work_dir", "=", "job", ".", "fileStore", ".", "getLocalTempDir", "(", ")", "filename", "=", "'/'", ".", "join", "(", "[", "work_dir", ",", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", "]", ")", "url", "=", "any_url", "parsed_url", "=", "urlparse", "(", "any_url", ")", "try", ":", "response", "=", "urllib2", ".", "urlopen", "(", "url", ")", "except", "urllib2", ".", "HTTPError", ":", "if", "parsed_url", ".", "netloc", ".", "startswith", "(", "(", "'s3'", ",", "'S3'", ")", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "\"Detected https link is for an encrypted s3 file.\"", ")", "return", "get_file_from_s3", "(", "job", ",", "any_url", ",", "encryption_key", "=", "encryption_key", ",", "per_file_encryption", "=", "per_file_encryption", ",", "write_to_jobstore", "=", "write_to_jobstore", ")", "else", ":", "raise", "else", ":", "with", "open", "(", "filename", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "response", ".", "read", "(", ")", ")", "if", "write_to_jobstore", ":", "filename", "=", "job", ".", "fileStore", ".", "writeGlobalFile", "(", "filename", ")", "return", "filename" ]
Download a supplied URL that points to a file on an http, https or ftp server. If the file is found to be an https s3 link then the file is downloaded using `get_file_from_s3`. The file is downloaded and written to the jobstore if requested. Encryption arguments are for passing to `get_file_from_s3` if required. :param str any_url: URL for the file :param str encryption_key: Path to the master key :param bool per_file_encryption: If encrypted, was the file encrypted using the per-file method? :param bool write_to_jobstore: Should the file be written to the job store? :return: Path to the downloaded file or fsID (if write_to_jobstore was True) :rtype: str|toil.fileStore.FileID
[ "Download", "a", "supplied", "URL", "that", "points", "to", "a", "file", "on", "an", "http", "https", "or", "ftp", "server", ".", "If", "the", "file", "is", "found", "to", "be", "an", "https", "s3", "link", "then", "the", "file", "is", "downloaded", "using", "get_file_from_s3", ".", "The", "file", "is", "downloaded", "and", "written", "to", "the", "jobstore", "if", "requested", ".", "Encryption", "arguments", "are", "for", "passing", "to", "get_file_from_s3", "if", "required", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/common.py#L337-L373
train
BD2KGenomics/protect
src/protect/common.py
bam2fastq
def bam2fastq(bamfile, univ_options, picard_options): """ Split an input bam to paired fastqs. :param str bamfile: Path to a bam file :param dict univ_options: Dict of universal options used by almost all tools :param dict picard_options: Dict of options specific to Picard :return: Path to the _1.fastq file :rtype: str """ work_dir = os.path.split(bamfile)[0] base_name = os.path.split(os.path.splitext(bamfile)[0])[1] parameters = ['SamToFastq', ''.join(['I=', docker_path(bamfile)]), ''.join(['F=/data/', base_name, '_1.fastq']), ''.join(['F2=/data/', base_name, '_2.fastq']), ''.join(['FU=/data/', base_name, '_UP.fastq'])] docker_call(tool='picard', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], java_xmx=univ_options['java_Xmx'], tool_version=picard_options['version']) first_fastq = ''.join([work_dir, '/', base_name, '_1.fastq']) assert os.path.exists(first_fastq) return first_fastq
python
def bam2fastq(bamfile, univ_options, picard_options): """ Split an input bam to paired fastqs. :param str bamfile: Path to a bam file :param dict univ_options: Dict of universal options used by almost all tools :param dict picard_options: Dict of options specific to Picard :return: Path to the _1.fastq file :rtype: str """ work_dir = os.path.split(bamfile)[0] base_name = os.path.split(os.path.splitext(bamfile)[0])[1] parameters = ['SamToFastq', ''.join(['I=', docker_path(bamfile)]), ''.join(['F=/data/', base_name, '_1.fastq']), ''.join(['F2=/data/', base_name, '_2.fastq']), ''.join(['FU=/data/', base_name, '_UP.fastq'])] docker_call(tool='picard', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], java_xmx=univ_options['java_Xmx'], tool_version=picard_options['version']) first_fastq = ''.join([work_dir, '/', base_name, '_1.fastq']) assert os.path.exists(first_fastq) return first_fastq
[ "def", "bam2fastq", "(", "bamfile", ",", "univ_options", ",", "picard_options", ")", ":", "work_dir", "=", "os", ".", "path", ".", "split", "(", "bamfile", ")", "[", "0", "]", "base_name", "=", "os", ".", "path", ".", "split", "(", "os", ".", "path", ".", "splitext", "(", "bamfile", ")", "[", "0", "]", ")", "[", "1", "]", "parameters", "=", "[", "'SamToFastq'", ",", "''", ".", "join", "(", "[", "'I='", ",", "docker_path", "(", "bamfile", ")", "]", ")", ",", "''", ".", "join", "(", "[", "'F=/data/'", ",", "base_name", ",", "'_1.fastq'", "]", ")", ",", "''", ".", "join", "(", "[", "'F2=/data/'", ",", "base_name", ",", "'_2.fastq'", "]", ")", ",", "''", ".", "join", "(", "[", "'FU=/data/'", ",", "base_name", ",", "'_UP.fastq'", "]", ")", "]", "docker_call", "(", "tool", "=", "'picard'", ",", "tool_parameters", "=", "parameters", ",", "work_dir", "=", "work_dir", ",", "dockerhub", "=", "univ_options", "[", "'dockerhub'", "]", ",", "java_xmx", "=", "univ_options", "[", "'java_Xmx'", "]", ",", "tool_version", "=", "picard_options", "[", "'version'", "]", ")", "first_fastq", "=", "''", ".", "join", "(", "[", "work_dir", ",", "'/'", ",", "base_name", ",", "'_1.fastq'", "]", ")", "assert", "os", ".", "path", ".", "exists", "(", "first_fastq", ")", "return", "first_fastq" ]
Split an input bam to paired fastqs. :param str bamfile: Path to a bam file :param dict univ_options: Dict of universal options used by almost all tools :param dict picard_options: Dict of options specific to Picard :return: Path to the _1.fastq file :rtype: str
[ "Split", "an", "input", "bam", "to", "paired", "fastqs", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/common.py#L376-L398
train
BD2KGenomics/protect
src/protect/common.py
export_results
def export_results(job, fsid, file_name, univ_options, subfolder=None): """ Write out a file to a given location. The location can be either a directory on the local machine, or a folder with a bucket on AWS. :param str fsid: The file store id for the file to be exported :param str file_name: The name of the file that neeeds to be exported (path to file is also acceptable) :param dict univ_options: Dict of universal options used by almost all tools :param str subfolder: A sub folder within the main folder where this data should go :return: None """ job.fileStore.logToMaster('Exporting %s to output location' % fsid) file_name = os.path.basename(file_name) try: assert univ_options['output_folder'], 'Need a path to a folder to write out files' assert univ_options['storage_location'], 'Need to know where the files need to go. ' + \ 'Local or AWS/Azure, etc.' except AssertionError as err: # This isn't a game killer. Continue the pipeline without erroring out but do inform the # user about it. print('ERROR:', err.message, file=sys.stderr) return if univ_options['output_folder'] == 'NA': output_folder = '' else: output_folder = univ_options['output_folder'] output_folder = os.path.join(output_folder, univ_options['patient']) output_folder = os.path.join(output_folder, subfolder) if subfolder else output_folder if univ_options['storage_location'] == 'local': # Handle Local try: # Create the directory if required os.makedirs(output_folder, 0755) except OSError as err: if err.errno != errno.EEXIST: raise output_url = 'file://' + os.path.join(output_folder, file_name) elif univ_options['storage_location'].startswith('aws'): # Handle AWS bucket_name = univ_options['storage_location'].split(':')[-1] output_url = os.path.join('S3://', bucket_name, output_folder.strip('/'), file_name) # Can't do Azure or google yet. else: # TODO: Azure support print("Currently doesn't support anything but Local and aws.") return job.fileStore.exportFile(fsid, output_url)
python
def export_results(job, fsid, file_name, univ_options, subfolder=None): """ Write out a file to a given location. The location can be either a directory on the local machine, or a folder with a bucket on AWS. :param str fsid: The file store id for the file to be exported :param str file_name: The name of the file that neeeds to be exported (path to file is also acceptable) :param dict univ_options: Dict of universal options used by almost all tools :param str subfolder: A sub folder within the main folder where this data should go :return: None """ job.fileStore.logToMaster('Exporting %s to output location' % fsid) file_name = os.path.basename(file_name) try: assert univ_options['output_folder'], 'Need a path to a folder to write out files' assert univ_options['storage_location'], 'Need to know where the files need to go. ' + \ 'Local or AWS/Azure, etc.' except AssertionError as err: # This isn't a game killer. Continue the pipeline without erroring out but do inform the # user about it. print('ERROR:', err.message, file=sys.stderr) return if univ_options['output_folder'] == 'NA': output_folder = '' else: output_folder = univ_options['output_folder'] output_folder = os.path.join(output_folder, univ_options['patient']) output_folder = os.path.join(output_folder, subfolder) if subfolder else output_folder if univ_options['storage_location'] == 'local': # Handle Local try: # Create the directory if required os.makedirs(output_folder, 0755) except OSError as err: if err.errno != errno.EEXIST: raise output_url = 'file://' + os.path.join(output_folder, file_name) elif univ_options['storage_location'].startswith('aws'): # Handle AWS bucket_name = univ_options['storage_location'].split(':')[-1] output_url = os.path.join('S3://', bucket_name, output_folder.strip('/'), file_name) # Can't do Azure or google yet. else: # TODO: Azure support print("Currently doesn't support anything but Local and aws.") return job.fileStore.exportFile(fsid, output_url)
[ "def", "export_results", "(", "job", ",", "fsid", ",", "file_name", ",", "univ_options", ",", "subfolder", "=", "None", ")", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'Exporting %s to output location'", "%", "fsid", ")", "file_name", "=", "os", ".", "path", ".", "basename", "(", "file_name", ")", "try", ":", "assert", "univ_options", "[", "'output_folder'", "]", ",", "'Need a path to a folder to write out files'", "assert", "univ_options", "[", "'storage_location'", "]", ",", "'Need to know where the files need to go. '", "+", "'Local or AWS/Azure, etc.'", "except", "AssertionError", "as", "err", ":", "print", "(", "'ERROR:'", ",", "err", ".", "message", ",", "file", "=", "sys", ".", "stderr", ")", "return", "if", "univ_options", "[", "'output_folder'", "]", "==", "'NA'", ":", "output_folder", "=", "''", "else", ":", "output_folder", "=", "univ_options", "[", "'output_folder'", "]", "output_folder", "=", "os", ".", "path", ".", "join", "(", "output_folder", ",", "univ_options", "[", "'patient'", "]", ")", "output_folder", "=", "os", ".", "path", ".", "join", "(", "output_folder", ",", "subfolder", ")", "if", "subfolder", "else", "output_folder", "if", "univ_options", "[", "'storage_location'", "]", "==", "'local'", ":", "try", ":", "os", ".", "makedirs", "(", "output_folder", ",", "0755", ")", "except", "OSError", "as", "err", ":", "if", "err", ".", "errno", "!=", "errno", ".", "EEXIST", ":", "raise", "output_url", "=", "'file://'", "+", "os", ".", "path", ".", "join", "(", "output_folder", ",", "file_name", ")", "elif", "univ_options", "[", "'storage_location'", "]", ".", "startswith", "(", "'aws'", ")", ":", "bucket_name", "=", "univ_options", "[", "'storage_location'", "]", ".", "split", "(", "':'", ")", "[", "-", "1", "]", "output_url", "=", "os", ".", "path", ".", "join", "(", "'S3://'", ",", "bucket_name", ",", "output_folder", ".", "strip", "(", "'/'", ")", ",", "file_name", ")", "else", ":", "print", "(", "\"Currently doesn't support anything but Local and aws.\"", ")", "return", "job", ".", "fileStore", ".", "exportFile", "(", "fsid", ",", "output_url", ")" ]
Write out a file to a given location. The location can be either a directory on the local machine, or a folder with a bucket on AWS. :param str fsid: The file store id for the file to be exported :param str file_name: The name of the file that neeeds to be exported (path to file is also acceptable) :param dict univ_options: Dict of universal options used by almost all tools :param str subfolder: A sub folder within the main folder where this data should go :return: None
[ "Write", "out", "a", "file", "to", "a", "given", "location", ".", "The", "location", "can", "be", "either", "a", "directory", "on", "the", "local", "machine", "or", "a", "folder", "with", "a", "bucket", "on", "AWS", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/common.py#L401-L448
train
BD2KGenomics/protect
src/protect/common.py
parse_chromosome_string
def parse_chromosome_string(job, chromosome_string): """ Parse a chromosome string into a list. :param chromosome_string: Input chromosome string :return: list of chromosomes to handle :rtype: list """ if chromosome_string is None: return [] else: assert isinstance(chromosome_string, str) chroms = [c.strip() for c in chromosome_string.split(',')] if 'canonical' in chroms: assert 'canonical_chr' not in chroms, 'Cannot have canonical and canonical_chr' chr_prefix = False chroms.remove('canonical') out_chroms = [str(c) for c in range(1, 23)] + ['X', 'Y'] elif 'canonical_chr' in chroms: assert 'canonical' not in chroms, 'Cannot have canonical and canonical_chr' chr_prefix = True chroms.remove('canonical_chr') out_chroms = ['chr' + str(c) for c in range(1, 23)] + ['chrX', 'chrY'] else: chr_prefix = None out_chroms = [] for chrom in chroms: if chr_prefix is not None and chrom.startswith('chr') is not chr_prefix: job.fileStore.logToMaster('chromosome %s does not match the rest that %s begin ' 'with "chr".' % (chrom, 'all' if chr_prefix else 'don\'t'), level=logging.WARNING) out_chroms.append(chrom) return chrom_sorted(out_chroms)
python
def parse_chromosome_string(job, chromosome_string): """ Parse a chromosome string into a list. :param chromosome_string: Input chromosome string :return: list of chromosomes to handle :rtype: list """ if chromosome_string is None: return [] else: assert isinstance(chromosome_string, str) chroms = [c.strip() for c in chromosome_string.split(',')] if 'canonical' in chroms: assert 'canonical_chr' not in chroms, 'Cannot have canonical and canonical_chr' chr_prefix = False chroms.remove('canonical') out_chroms = [str(c) for c in range(1, 23)] + ['X', 'Y'] elif 'canonical_chr' in chroms: assert 'canonical' not in chroms, 'Cannot have canonical and canonical_chr' chr_prefix = True chroms.remove('canonical_chr') out_chroms = ['chr' + str(c) for c in range(1, 23)] + ['chrX', 'chrY'] else: chr_prefix = None out_chroms = [] for chrom in chroms: if chr_prefix is not None and chrom.startswith('chr') is not chr_prefix: job.fileStore.logToMaster('chromosome %s does not match the rest that %s begin ' 'with "chr".' % (chrom, 'all' if chr_prefix else 'don\'t'), level=logging.WARNING) out_chroms.append(chrom) return chrom_sorted(out_chroms)
[ "def", "parse_chromosome_string", "(", "job", ",", "chromosome_string", ")", ":", "if", "chromosome_string", "is", "None", ":", "return", "[", "]", "else", ":", "assert", "isinstance", "(", "chromosome_string", ",", "str", ")", "chroms", "=", "[", "c", ".", "strip", "(", ")", "for", "c", "in", "chromosome_string", ".", "split", "(", "','", ")", "]", "if", "'canonical'", "in", "chroms", ":", "assert", "'canonical_chr'", "not", "in", "chroms", ",", "'Cannot have canonical and canonical_chr'", "chr_prefix", "=", "False", "chroms", ".", "remove", "(", "'canonical'", ")", "out_chroms", "=", "[", "str", "(", "c", ")", "for", "c", "in", "range", "(", "1", ",", "23", ")", "]", "+", "[", "'X'", ",", "'Y'", "]", "elif", "'canonical_chr'", "in", "chroms", ":", "assert", "'canonical'", "not", "in", "chroms", ",", "'Cannot have canonical and canonical_chr'", "chr_prefix", "=", "True", "chroms", ".", "remove", "(", "'canonical_chr'", ")", "out_chroms", "=", "[", "'chr'", "+", "str", "(", "c", ")", "for", "c", "in", "range", "(", "1", ",", "23", ")", "]", "+", "[", "'chrX'", ",", "'chrY'", "]", "else", ":", "chr_prefix", "=", "None", "out_chroms", "=", "[", "]", "for", "chrom", "in", "chroms", ":", "if", "chr_prefix", "is", "not", "None", "and", "chrom", ".", "startswith", "(", "'chr'", ")", "is", "not", "chr_prefix", ":", "job", ".", "fileStore", ".", "logToMaster", "(", "'chromosome %s does not match the rest that %s begin '", "'with \"chr\".'", "%", "(", "chrom", ",", "'all'", "if", "chr_prefix", "else", "'don\\'t'", ")", ",", "level", "=", "logging", ".", "WARNING", ")", "out_chroms", ".", "append", "(", "chrom", ")", "return", "chrom_sorted", "(", "out_chroms", ")" ]
Parse a chromosome string into a list. :param chromosome_string: Input chromosome string :return: list of chromosomes to handle :rtype: list
[ "Parse", "a", "chromosome", "string", "into", "a", "list", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/common.py#L521-L554
train
BD2KGenomics/protect
src/protect/common.py
email_report
def email_report(job, univ_options): """ Send an email to the user when the run finishes. :param dict univ_options: Dict of universal options used by almost all tools """ fromadd = "[email protected]" msg = MIMEMultipart() msg['From'] = fromadd if univ_options['mail_to'] is None: return else: msg['To'] = univ_options['mail_to'] msg['Subject'] = "Protect run for sample %s completed successfully." % univ_options['patient'] body = "Protect run for sample %s completed successfully." % univ_options['patient'] msg.attach(MIMEText(body, 'plain')) text = msg.as_string() try: server = smtplib.SMTP('localhost') except socket.error as e: if e.errno == 111: print('No mail utils on this maachine') else: print('Unexpected error while attempting to send an email.') print('Could not send email report') except: print('Could not send email report') else: server.sendmail(fromadd, msg['To'], text) server.quit()
python
def email_report(job, univ_options): """ Send an email to the user when the run finishes. :param dict univ_options: Dict of universal options used by almost all tools """ fromadd = "[email protected]" msg = MIMEMultipart() msg['From'] = fromadd if univ_options['mail_to'] is None: return else: msg['To'] = univ_options['mail_to'] msg['Subject'] = "Protect run for sample %s completed successfully." % univ_options['patient'] body = "Protect run for sample %s completed successfully." % univ_options['patient'] msg.attach(MIMEText(body, 'plain')) text = msg.as_string() try: server = smtplib.SMTP('localhost') except socket.error as e: if e.errno == 111: print('No mail utils on this maachine') else: print('Unexpected error while attempting to send an email.') print('Could not send email report') except: print('Could not send email report') else: server.sendmail(fromadd, msg['To'], text) server.quit()
[ "def", "email_report", "(", "job", ",", "univ_options", ")", ":", "fromadd", "=", "\"[email protected]\"", "msg", "=", "MIMEMultipart", "(", ")", "msg", "[", "'From'", "]", "=", "fromadd", "if", "univ_options", "[", "'mail_to'", "]", "is", "None", ":", "return", "else", ":", "msg", "[", "'To'", "]", "=", "univ_options", "[", "'mail_to'", "]", "msg", "[", "'Subject'", "]", "=", "\"Protect run for sample %s completed successfully.\"", "%", "univ_options", "[", "'patient'", "]", "body", "=", "\"Protect run for sample %s completed successfully.\"", "%", "univ_options", "[", "'patient'", "]", "msg", ".", "attach", "(", "MIMEText", "(", "body", ",", "'plain'", ")", ")", "text", "=", "msg", ".", "as_string", "(", ")", "try", ":", "server", "=", "smtplib", ".", "SMTP", "(", "'localhost'", ")", "except", "socket", ".", "error", "as", "e", ":", "if", "e", ".", "errno", "==", "111", ":", "print", "(", "'No mail utils on this maachine'", ")", "else", ":", "print", "(", "'Unexpected error while attempting to send an email.'", ")", "print", "(", "'Could not send email report'", ")", "except", ":", "print", "(", "'Could not send email report'", ")", "else", ":", "server", ".", "sendmail", "(", "fromadd", ",", "msg", "[", "'To'", "]", ",", "text", ")", "server", ".", "quit", "(", ")" ]
Send an email to the user when the run finishes. :param dict univ_options: Dict of universal options used by almost all tools
[ "Send", "an", "email", "to", "the", "user", "when", "the", "run", "finishes", "." ]
06310682c50dcf8917b912c8e551299ff7ee41ce
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/common.py#L619-L649
train
0k/kids.cache
src/kids/cache/__init__.py
make_key_hippie
def make_key_hippie(obj, typed=True): """Return hashable structure from non-hashable structure using hippie means dict and set are sorted and their content subjected to same hippie means. Note that the key identifies the current content of the structure. """ ftype = type if typed else lambda o: None if is_hashable(obj): ## DO NOT RETURN hash(obj), as hash collision would generate bad ## cache collisions. return obj, ftype(obj) ## should we try to convert to frozen{set,dict} to get the C ## hashing function speed ? But the convertion has a cost also. if isinstance(obj, set): obj = sorted(obj) if isinstance(obj, (list, tuple)): return tuple(make_key_hippie(e, typed) for e in obj) if isinstance(obj, dict): return tuple(sorted(((make_key_hippie(k, typed), make_key_hippie(v, typed)) for k, v in obj.items()))) raise ValueError( "%r can not be hashed. Try providing a custom key function." % obj)
python
def make_key_hippie(obj, typed=True): """Return hashable structure from non-hashable structure using hippie means dict and set are sorted and their content subjected to same hippie means. Note that the key identifies the current content of the structure. """ ftype = type if typed else lambda o: None if is_hashable(obj): ## DO NOT RETURN hash(obj), as hash collision would generate bad ## cache collisions. return obj, ftype(obj) ## should we try to convert to frozen{set,dict} to get the C ## hashing function speed ? But the convertion has a cost also. if isinstance(obj, set): obj = sorted(obj) if isinstance(obj, (list, tuple)): return tuple(make_key_hippie(e, typed) for e in obj) if isinstance(obj, dict): return tuple(sorted(((make_key_hippie(k, typed), make_key_hippie(v, typed)) for k, v in obj.items()))) raise ValueError( "%r can not be hashed. Try providing a custom key function." % obj)
[ "def", "make_key_hippie", "(", "obj", ",", "typed", "=", "True", ")", ":", "ftype", "=", "type", "if", "typed", "else", "lambda", "o", ":", "None", "if", "is_hashable", "(", "obj", ")", ":", "return", "obj", ",", "ftype", "(", "obj", ")", "if", "isinstance", "(", "obj", ",", "set", ")", ":", "obj", "=", "sorted", "(", "obj", ")", "if", "isinstance", "(", "obj", ",", "(", "list", ",", "tuple", ")", ")", ":", "return", "tuple", "(", "make_key_hippie", "(", "e", ",", "typed", ")", "for", "e", "in", "obj", ")", "if", "isinstance", "(", "obj", ",", "dict", ")", ":", "return", "tuple", "(", "sorted", "(", "(", "(", "make_key_hippie", "(", "k", ",", "typed", ")", ",", "make_key_hippie", "(", "v", ",", "typed", ")", ")", "for", "k", ",", "v", "in", "obj", ".", "items", "(", ")", ")", ")", ")", "raise", "ValueError", "(", "\"%r can not be hashed. Try providing a custom key function.\"", "%", "obj", ")" ]
Return hashable structure from non-hashable structure using hippie means dict and set are sorted and their content subjected to same hippie means. Note that the key identifies the current content of the structure.
[ "Return", "hashable", "structure", "from", "non", "-", "hashable", "structure", "using", "hippie", "means" ]
668f3b966877c4a0855d60e05cc3706cf37e4570
https://github.com/0k/kids.cache/blob/668f3b966877c4a0855d60e05cc3706cf37e4570/src/kids/cache/__init__.py#L29-L54
train