File size: 7,379 Bytes
b553e52 48ee9d4 b553e52 8a3abc3 b553e52 48ee9d4 8a3abc3 b553e52 21bb2fa b553e52 48ee9d4 b553e52 8a3abc3 6ca06f3 8a3abc3 b553e52 8a3abc3 b553e52 8a3abc3 b553e52 8a3abc3 48ee9d4 8a3abc3 48ee9d4 8a3abc3 6ca06f3 48ee9d4 b553e52 8a3abc3 b553e52 8a3abc3 b553e52 8a3abc3 b553e52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import os
import random
from glob import glob
import json
from huggingface_hub import hf_hub_download
from astropy.io import fits
import datasets
from datasets import DownloadManager
from fsspec.core import url_to_fs
_DESCRIPTION = (
"GBI-16-4D is a dataset which is part of the AstroCompress project. It contains data "
"assembled from the Sloan Digital SkySurvey (SDSS). Each FITS file contains a series "
"of 800x800 pixel uint16 observations of the same portion of the Stripe82 field, "
"taken in 5 bandpass filters (u, g, r, i, z) over time. The filenames give the "
"starting run, field, camcol of the observations, the number of filtered images per "
"timestep, and the number of timesteps. For example: "
"`cube_center_run4203_camcol6_f44_35-5-800-800.fits` contains 35 frames of 800x800 "
"pixel images in 5 bandpasses starting with run 4203, field 44, and camcol 6. "
"The images are stored in the FITS standard."
)
_HOMEPAGE = "https://google.github.io/AstroCompress"
_LICENSE = "CC BY 4.0"
_URL = "https://huggingface.co/datasets/AstroCompress/GBI-16-4D/resolve/main/"
_URLS = {
"tiny": {
"train": "./splits/tiny_train.jsonl",
"test": "./splits/tiny_test.jsonl",
},
"full": {
"train": "./splits/full_train.jsonl",
"test": "./splits/full_test.jsonl",
}
}
_REPO_ID = "AstroCompress/GBI-16-4D"
class GBI_16_4D(datasets.GeneratorBasedBuilder):
"""GBI-16-4D Dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="tiny",
version=VERSION,
description="A small subset of the data, to test downsteam workflows.",
),
datasets.BuilderConfig(
name="full",
version=VERSION,
description="The full dataset",
),
]
DEFAULT_CONFIG_NAME = "tiny"
def __init__(self, **kwargs):
super().__init__(version=self.VERSION, **kwargs)
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Array4D(shape=(None, 5, 800, 800), dtype="uint16"),
"ra": datasets.Value("float64"),
"dec": datasets.Value("float64"),
"pixscale": datasets.Value("float64"),
"ntimes": datasets.Value("int64"),
"nbands": datasets.Value("int64"),
"image_id": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation="TBD",
)
def _split_generators(self, dl_manager: DownloadManager):
ret = []
base_path = dl_manager._base_path
locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT)
_, path = url_to_fs(base_path)
for split in ["train", "test"]:
if locally_run:
split_file_location = os.path.normpath(os.path.join(path, _URLS[self.config.name][split]))
split_file = dl_manager.download_and_extract(split_file_location)
else:
split_file = hf_hub_download(repo_id=_REPO_ID, filename=_URLS[self.config.name][split], repo_type="dataset")
with open(split_file, encoding="utf-8") as f:
data_filenames = []
data_metadata = []
for line in f:
item = json.loads(line)
data_filenames.append(item["image"])
data_metadata.append({"ra": item["ra"],
"dec": item["dec"],
"pixscale": item["pixscale"],
"ntimes": item["ntimes"],
"nbands": item["nbands"],
"image_id": item["image_id"]})
if locally_run:
data_urls = [os.path.normpath(os.path.join(path,data_filename)) for data_filename in data_filenames]
data_files = [dl_manager.download(data_url) for data_url in data_urls]
else:
data_urls = data_filenames
data_files = [hf_hub_download(repo_id=_REPO_ID, filename=data_url, repo_type="dataset") for data_url in data_urls]
ret.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
gen_kwargs={"filepaths": data_files,
"split_file": split_file,
"split": split,
"data_metadata": data_metadata},
),
)
return ret
def _generate_examples(self, filepaths, split_file, split, data_metadata):
"""Generate GBI-16-4D examples"""
for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
task_instance_key = f"{self.config.name}-{split}-{idx}"
with fits.open(filepath, memmap=False) as hdul:
image_data = hdul[0].data.tolist()
yield task_instance_key, {**{"image": image_data}, **item}
def make_split_jsonl_files(config_type="tiny", data_dir="./data",
outdir="./splits", seed=42):
"""
Create jsonl files for the GBI-16-4D dataset.
config_type: str, default="tiny"
The type of split to create. Options are "tiny" and "full".
data_dir: str, default="./data"
The directory where the FITS files are located.
outdir: str, default="./splits"
The directory where the jsonl files will be created.
seed: int, default=42
The seed for the random split.
"""
random.seed(seed)
os.makedirs(outdir, exist_ok=True)
fits_files = glob(os.path.join(data_dir, "*.fits"))
random.shuffle(fits_files)
if config_type == "tiny":
train_files = fits_files[:2]
test_files = fits_files[2:3]
elif config_type == "full":
split_idx = int(0.8 * len(fits_files))
train_files = fits_files[:split_idx]
test_files = fits_files[split_idx:]
else:
raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.")
def create_jsonl(files, split_name):
output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl")
with open(output_file, "w") as out_f:
for file in files:
print(file, flush=True, end="...")
with fits.open(file, memmap=False) as hdul:
image_id = os.path.basename(file).split(".fits")[0]
ra = hdul[0].header.get('CRVAL1', 0)
dec = hdul[0].header.get('CRVAL2', 0)
pixscale = hdul[0].header.get('CD1_2', 0.396)
ntimes = hdul[0].data.shape[0]
nbands = hdul[0].data.shape[1]
item = {"image_id": image_id, "image": file, "ra": ra, "dec": dec,
"pixscale": pixscale, "ntimes": ntimes, "nbands": nbands}
out_f.write(json.dumps(item) + "\n")
create_jsonl(train_files, "train")
create_jsonl(test_files, "test")
|