|
from io import BytesIO |
|
import datasets |
|
import pandas as pd |
|
import numpy as np |
|
import json |
|
from astropy.io import fits |
|
|
|
from .utils import ParallelZipFile |
|
|
|
_DESCRIPTION = ( |
|
"AstroM3 is a multi-modal time-series astronomy dataset containing photometry, spectra, " |
|
"and metadata features for variable stars. The dataset consists of multiple subsets " |
|
"('full', 'sub10', 'sub25', 'sub50') and supports different random seeds (42, 66, 0, 12, 123). " |
|
"\n\nEach sample includes:\n" |
|
"- **Photometry**: Time-series light curve data with shape `(N, 3)` representing time, flux, " |
|
"and flux uncertainty.\n" |
|
"- **Spectra**: Spectral observations with shape `(M, 3)` containing wavelength, flux, and flux uncertainty.\n" |
|
"- **Metadata**: Auxiliary astrophysical and photometric parameters (e.g., magnitudes, parallax, motion data) " |
|
"stored as a dictionary.\n" |
|
"- **Label**: The classification of the star as a string." |
|
) |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/AstroM3" |
|
_LICENSE = "CC BY 4.0" |
|
_URL = "https://huggingface.co/datasets/MeriDK/AstroM3Dataset/resolve/main" |
|
_VERSION = datasets.Version("1.0.0") |
|
|
|
_CITATION = """ |
|
@article{rizhko2024astrom, |
|
title={AstroM $\^{} 3$: A self-supervised multimodal model for astronomy}, |
|
author={Rizhko, Mariia and Bloom, Joshua S}, |
|
journal={arXiv preprint arXiv:2411.08842}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
_PHOTO_COLS = ['amplitude', 'period', 'lksl_statistic', 'rfr_score'] |
|
_METADATA_COLS = [ |
|
'mean_vmag', 'phot_g_mean_mag', 'e_phot_g_mean_mag', 'phot_bp_mean_mag', 'e_phot_bp_mean_mag', 'phot_rp_mean_mag', |
|
'e_phot_rp_mean_mag', 'bp_rp', 'parallax', 'parallax_error', 'parallax_over_error', 'pmra', 'pmra_error', 'pmdec', |
|
'pmdec_error', 'j_mag', 'e_j_mag', 'h_mag', 'e_h_mag', 'k_mag', 'e_k_mag', 'w1_mag', 'e_w1_mag', |
|
'w2_mag', 'e_w2_mag', 'w3_mag', 'w4_mag', 'j_k', 'w1_w2', 'w3_w4', 'pm', 'ruwe', 'l', 'b' |
|
] |
|
_ALL_COLS = _PHOTO_COLS + _METADATA_COLS |
|
_METADATA_FUNC = { |
|
"abs": [ |
|
"mean_vmag", |
|
"phot_g_mean_mag", |
|
"phot_bp_mean_mag", |
|
"phot_rp_mean_mag", |
|
"j_mag", |
|
"h_mag", |
|
"k_mag", |
|
"w1_mag", |
|
"w2_mag", |
|
"w3_mag", |
|
"w4_mag", |
|
], |
|
"cos": ["l"], |
|
"sin": ["b"], |
|
"log": ["period"] |
|
} |
|
|
|
|
|
class AstroM3Dataset(datasets.GeneratorBasedBuilder): |
|
"""Hugging Face dataset for AstroM3, a multi-modal variable star dataset.""" |
|
|
|
|
|
DEFAULT_CONFIG_NAME = "full_42" |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name=f"{sub}_{seed}{norm}", version=_VERSION) |
|
for sub in ["full", "sub10", "sub25", "sub50"] |
|
for seed in [42, 66, 0, 12, 123] |
|
for norm in ["", "_norm"] |
|
] |
|
|
|
def _info(self): |
|
"""Defines the dataset schema, including features and metadata.""" |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"photometry": datasets.Array2D(shape=(None, 3), dtype="float32"), |
|
"spectra": datasets.Array2D(shape=(None, 3), dtype="float32"), |
|
"metadata": { |
|
"meta_cols": {el: datasets.Value("float32") for el in _METADATA_COLS}, |
|
"photo_cols": {el: datasets.Value("float32") for el in _PHOTO_COLS}, |
|
}, |
|
"label": datasets.Value("string"), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _get_photometry(self, file_name): |
|
"""Loads photometric light curve data from a compressed file.""" |
|
csv = BytesIO() |
|
file_name = file_name.replace(' ', '') |
|
data_path = f'vardb_files/{file_name}.dat' |
|
|
|
|
|
csv.write(self.reader_v.read(data_path)) |
|
csv.seek(0) |
|
|
|
|
|
lc = pd.read_csv(csv, sep=r'\s+', skiprows=2, names=['HJD', 'MAG', 'MAG_ERR', 'FLUX', 'FLUX_ERR'], |
|
dtype={'HJD': float, 'MAG': float, 'MAG_ERR': float, 'FLUX': float, 'FLUX_ERR': float}) |
|
|
|
return lc[['HJD', 'FLUX', 'FLUX_ERR']].values |
|
|
|
@staticmethod |
|
def _get_spectra(file_name): |
|
"""Loads spectral data from a FITS file.""" |
|
|
|
hdulist = fits.open(file_name) |
|
len_list = len(hdulist) |
|
|
|
if len_list == 1: |
|
head = hdulist[0].header |
|
scidata = hdulist[0].data |
|
coeff0 = head['COEFF0'] |
|
coeff1 = head['COEFF1'] |
|
pixel_num = head['NAXIS1'] |
|
specflux = scidata[0,] |
|
ivar = scidata[1,] |
|
wavelength = np.linspace(0, pixel_num - 1, pixel_num) |
|
wavelength = np.power(10, (coeff0 + wavelength * coeff1)) |
|
hdulist.close() |
|
elif len_list == 2: |
|
head = hdulist[0].header |
|
scidata = hdulist[1].data |
|
wavelength = scidata[0][2] |
|
ivar = scidata[0][1] |
|
specflux = scidata[0][0] |
|
else: |
|
raise ValueError(f'Wrong number of fits files. {len_list} should be 1 or 2') |
|
|
|
return np.vstack((wavelength, specflux, ivar)).T |
|
|
|
@staticmethod |
|
def transform(df): |
|
"""Applies transformations to metadata.""" |
|
|
|
for transformation_type, value in _METADATA_FUNC.items(): |
|
if transformation_type == "abs": |
|
for col in value: |
|
df[col] = ( |
|
df[col] - 10 + 5 * np.log10(np.where(df["parallax"] <= 0, 1, df["parallax"])) |
|
) |
|
elif transformation_type == "cos": |
|
for col in value: |
|
df[col] = np.cos(np.radians(df[col])) |
|
elif transformation_type == "sin": |
|
for col in value: |
|
df[col] = np.sin(np.radians(df[col])) |
|
elif transformation_type == "log": |
|
for col in value: |
|
df[col] = np.log10(df[col]) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Defines dataset splits and downloads required files.""" |
|
|
|
|
|
name = self.config.name.split("_") |
|
sub, seed = name[0], name[1] |
|
|
|
|
|
urls = { |
|
"train": f"splits/{sub}/{seed}/train.csv", |
|
"val": f"splits/{sub}/{seed}/val.csv", |
|
"test": f"splits/{sub}/{seed}/test.csv", |
|
"info": f"splits/{sub}/{seed}/info.json", |
|
} |
|
extracted_path = dl_manager.download(urls) |
|
|
|
|
|
spectra_urls = {} |
|
|
|
for split in ("train", "val", "test"): |
|
df = pd.read_csv(extracted_path[split]) |
|
for _, row in df.iterrows(): |
|
spectra_urls[row["spec_filename"]] = f"spectra/{row['target']}/{row['spec_filename']}" |
|
|
|
spectra_files = dl_manager.download(spectra_urls) |
|
|
|
|
|
photometry_path = dl_manager.download(f"photometry.zip") |
|
self.reader_v = ParallelZipFile(photometry_path) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"], |
|
"info_path": extracted_path["info"], |
|
"spectra_files": spectra_files, |
|
"split": "train"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"], |
|
"info_path": extracted_path["info"], |
|
"spectra_files": spectra_files, |
|
"split": "val"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"], |
|
"info_path": extracted_path["info"], |
|
"spectra_files": spectra_files, |
|
"split": "test"} |
|
), |
|
] |
|
|
|
def _generate_examples(self, csv_path, info_path, spectra_files, split): |
|
"""Yields individual dataset examples.""" |
|
|
|
df = pd.read_csv(csv_path) |
|
|
|
with open(info_path) as f: |
|
info = json.loads(f.read()) |
|
|
|
if "norm" in self.config.name: |
|
|
|
self.transform(df) |
|
|
|
|
|
df[_ALL_COLS] = (df[_ALL_COLS] - info["mean"]) / info["std"] |
|
|
|
for idx, row in df.iterrows(): |
|
photometry = self._get_photometry(row["name"]) |
|
spectra = self._get_spectra(spectra_files[row["spec_filename"]]) |
|
|
|
yield idx, { |
|
"photometry": photometry, |
|
"spectra": spectra, |
|
"metadata": { |
|
"meta_cols": {el: row[el] for el in _METADATA_COLS}, |
|
"photo_cols": {el: row[el] for el in _PHOTO_COLS}, |
|
}, |
|
"label": row["target"], |
|
} |
|
|