question
stringclasses
96 values
options
sequencelengths
2
4
answer
stringlengths
1
95
question_type
stringclasses
3 values
tid
int64
1
105
difficulty
stringclasses
3 values
format_hint
stringclasses
1 value
relevant_concepts
sequencelengths
1
8
question_hint
stringclasses
93 values
category
stringclasses
5 values
subcategory
stringclasses
13 values
id
int64
1
763
ts1
sequencelengths
128
308
ts2
sequencelengths
128
299
Seasonal stationarity refers to a time series where statistical properties remain constant within seasons but may vary between seasons. Does the time series exhibit seasonal stationarity?
[ "Yes", "No" ]
Yes
binary
37
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "Sine Wave", "Linear Trend", "Gaussian White Noise" ]
Determine if the statistical properties of the series are constant within seasons across years.
Pattern Recognition
Stationarity Detection
401
[ 0.20432338448620013, 0.7034089598870233, 0.7028284807814119, 0.3379278035517066, 1.0505130208710298, 1.5441585548256258, 1.6225857711255962, 1.3909059842480704, 1.9391323382619527, 1.4704972848614732, 1.715030145141416, 1.8095082964634175, 1.4361176815373211, 1.1818235249470639, 1.2535666958272578, 1.166839221664393, 0.997403133220572, 0.3376546622929128, -0.17094195967026285, -0.08570866308523711, -0.17785282885065293, -0.6404055876578111, -0.692729022516191, -1.0895535949290318, -1.2462531944244488, -1.5594626808335634, -1.2809233294593008, -2.217352124667777, -1.6968355627661074, -1.6128743502408234, -1.5077594924072804, -1.3669938099316776, -1.0397550053243312, -1.3005844268588684, -0.6938982248710588, -0.11605002062683656, 0.10040967801283884, 0.35841314835755167, 0.5452897160489425, 0.9578437794104412, 0.6912558683620011, 1.261538782482589, 1.4439881048148717, 1.7367587493228493, 1.6052043042596287, 2.0503972203853884, 1.9884226569609156, 1.586608922380087, 1.5880264553400814, 1.646190574894044, 1.6110430201190105, 1.0209783090587918, 0.7851805637130533, 0.7317888858413446, -0.2271096269991607, -0.5672419308508513, -0.2073943179998682, -0.3590333704109938, -0.9454597549172162, -1.5240424701696567, -1.393851903081474, -1.1175001628308068, -1.5065096152892985, -1.450508645801811, -1.5681425731208776, -1.3752491496042578, -1.4932406002028253, -1.3916546055950423, -1.277573633815415, -1.1922184102126012, -0.6860082729657961, -0.49023193999425363, -0.45704770558296637, -0.3869299482917964, 0.0009956253478569654, 0.3981097997892917, 0.7535007354383534, 0.8619024242377816, 1.0098039740933429, 1.4070277691678594, 1.6000967278727467, 1.583182355840154, 1.0990129875297796, 1.7234337957678056, 1.367136990173035, 1.655762018737584, 1.183082573945107, 1.0764132481875248, 0.9401024673219125, 0.3646225218463086, 0.20314532377618988, -0.05588669888640903, -0.1352854126826333, -0.6062627822255306, -0.766558584340775, -0.655712218962051, -0.8286383300342648, -1.2830152201392575, -1.2077701618551209, -1.4739133778407538, -1.466449142166236, -1.7498076787926518, -1.5498893285070403, -1.5362000930704707, -1.3838625727027216, -1.0043159388255989, -1.1152671795754459, -0.7415029526009607, -0.8917123972788857, -0.5041191631053359, 0.206708802117434, 0.5470538474362074, 0.6665337245777198, 0.39427575161935646, 0.9751538042211426, 0.976798254871104, 1.704495579741712, 1.4998366289615932, 1.4614724351121136, 1.8139882971950703, 1.7602106279864427, 1.5728441172418792, 1.264608861413116, 1.5661815159118266, 1.151651120994402, 1.262478966622349, 0.5869447322902065, 0.8413478581413948 ]
null
Is the noise in the time series more likely to be additive or multiplicative to the signal?
[ "Multiplicative", "Additive" ]
Multiplicative
binary
58
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Additive Composition", "Multiplicative Composition", "Gaussian White Noise" ]
Additive noise is added to the signal, while multiplicative noise is multiplied to the signal. When a trend component is added with a white noise, the general trend still remains. When a trend component is multiplied with a white noise, the noise is amplified. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
402
[ 0, -0.024138638285030992, -0.101507358711664, -0.04689238042694379, -0.1423109943279832, -0.0772427630138815, 0.006318930206808974, 0.14392565607044117, -0.03569377942643222, 0.0058142032773322305, -0.14856198528017467, -0.4247610175667042, -0.566013626343017, -0.12103495297213655, 0.030268396729168274, -0.16805874978333799, -0.7394757024627818, 0.08745717650000522, 0.7491378284638488, -0.05564181866769585, -0.2960691894296641, -0.03245030247047922, -0.620623214476148, -0.6867390363778769, 0.2767408140256703, 0.6324163549783866, -0.0976940286872107, -1.3612756677863194, 0.252725271173748, 1.531459894077025, -0.18690316184232084, -0.14082900495171333, -0.713294274854201, 0.4057564074682991, -0.5827437150662348, 0.9132592626776878, -0.6046977061234168, 0.32303516785072856, -0.044984850503742235, 1.549219792902416, 0.418387690488675, 1.4526114835372106, 0.11653595763919962, -0.18753889840204144, -0.04292377893159647, -0.8867152796882034, 0.6247206436244849, -0.8288182356081586, 0.13789163642995408, 1.0704136397223007, 2.0224991582878804, 0.2121639995531773, 1.143925619639058, 1.0043866545016804, -0.52743930214215, 2.961281305994301, -0.8242898508967419, 0.13248828070440824, 2.154343899707112, 2.154320670818517, 0.021947911651849828, 1.5432442738732608, -0.35470959269633767, -0.786413557631809, -1.9826776593105806, 1.201898012966875, 1.3979803119595635, -0.9719084294326639, 0.46568542469706115, 4.672440571074536, 2.0503500469668006, -1.6349452267769304, 1.842032634176572, -1.6723810627269777, -5.472678054145903, -0.03910540020555357, 3.0346975059923755, 2.7486107007359473, 0.7516118885367203, -1.0931918145211015, 0.994064984227175, -0.5569070001883908, -1.075902263024283, 2.2515955067902804, -1.1287075614845787, 2.4474895934064125, -1.3008985297710332, 4.574622800258895, -3.687918880891283, -2.1751244801216068, -0.3571825268123324, -4.611896305166931, -6.041912435266196, -4.69274046739378, -0.7013426205538137, -0.6472168037359538, 0.8165854804885, -0.48812167247342514, 0.7497796345334815, -1.138527127884602, 1.8259167858870042, 1.5332793177361708, -0.8511896986487681, 1.402363547430453, -0.5064630366777402, -4.083041586765876, 2.4490614791253225, -2.47850521978687, 2.46582703020057, 0.9021822036659258, -0.2374930481364602, -5.321972019002035, 4.405080466508992, -1.0481130656480606, 1.8478506306884062, -0.3348042516842064, -0.8042873469906826, 0.5762320513122023, 0.08009358759236712, -0.8115837801762333, -0.1695538130235377, 1.319975482965666, 1.5513804580375736, 0.13622390651636943, 1.9667813467015078, -1.3540485191932954, 7.160861043681367, 4.819357516775295 ]
null
The given time series is a square wave. What is the most likely period of the square wave?
[ "30.23", "15.78", "57.77" ]
30.23
multiple-choice
22
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Square Wave", "Period" ]
Check the time interval between two peaks.
Pattern Recognition
Cycle Recognition
403
[ 0.01601108906395973, 2.9335324685671123, 2.807212604511449, 2.995096544566087, 2.850967968683241, 2.9273558946939895, 2.9774419893904653, 2.9694137710476682, 2.893984180338351, 2.939836030136426, 3.0320674058954, 2.909261462895641, 2.7849366992920133, 2.9162064125945597, 2.8541732176962125, 2.623101226057737, -2.811701537127862, -2.8462362744966105, -2.7422595623484276, -2.932910705247002, -3.008472305736102, -2.8410332535571206, -2.8198836007376267, -2.8485180449596146, -2.855830471129631, -2.964774034918804, -2.8717930531956637, -2.892741922448613, -2.7506304654214273, -2.8199688030951098, -2.885701051672691, 3.030289827140448, 2.8310105718766705, 2.913680011886788, 2.841209206139243, 3.0210165910009716, 2.8665873170795324, 2.8695427622872387, 2.8439143036209, 2.8775525320982926, 2.9778551233629624, 2.94248572396664, 2.8607089576097886, 3.028033850143837, 2.945199903632428, 2.8140832275784367, -2.995936174871565, -2.8994027196778283, -2.8165664616431463, -2.7981813024350286, -2.7219875711679693, -2.9673559370100713, -2.9018168728928524, -2.975665606485623, -2.991781260656116, -2.9206832140935033, -2.821240115068769, -2.78076189600914, -2.952736750160339, -2.938828931436895, -3.0358836570305145, 2.879336560325871, 2.7846874493010976, 3.024204477319356, 2.8988822194631307, 2.840756765152494, 2.7937900967437264, 2.7084343174787486, 2.7211141618036283, 2.7956872440409577, 2.788011051295741, 2.7579841552135718, 2.895610812242406, 2.909327898739657, 2.8120380997679986, 3.0514165663247033, -3.0325742761497807, -2.852084949600945, -2.8797593599069637, -2.912971427694897, -2.9276676240994775, -2.8585973277894072, -2.8804541222303444, -2.897088992209427, -2.987773302997109, -3.0197125212792213, -2.886752987017728, -2.8981109499478244, -2.8776050255258543, -2.868763519287122, -2.910151573686453, 2.8366605971163508, 2.772548508687822, 3.0102959204145, 2.7779273246831746, 2.8208032685516375, 2.785522460586783, 2.7838431854776813, 2.860365496161966, 2.84767791850987, 2.8119553004606503, 2.82955374034274, 2.7859199843988445, 2.8980739032707876, 3.0634206137572426, 2.7704172117748493, -2.818505017124711, -2.8534064437961004, -2.7910383636849123, -2.788222043448564, -2.8373600697763055, -2.8618833971096813, -2.901346359463016, -2.934397374809035, -2.8675859055933497, -2.9863602226399393, -2.917286938509918, -2.7472159770509146, -2.848050117390202, -2.7686348976046165, -2.710936950832329, 2.8401983939066895, 2.8786339229175355, 2.827716750082896, 2.7766407634506107, 2.762604513564931, 2.9422163767578207, 2.878764067546736 ]
null
Does the given time series exhibit regime switching?
[ "No", "Yes" ]
Yes
binary
40
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Regime Switching" ]
Identify whether the time series exhibit different patterns over time.
Pattern Recognition
Regime Switching Detection
404
[ 0.04663583744463343, -0.01622320138103869, 0.04669890111376545, -0.03622963732966519, 0.27200007594726017, -0.08195834798957737, 0.11304336355624668, 0.31269147853408386, 0.12677239201156543, 0.12285005499986189, 0.12187096716341432, 0.15533789221266195, 0.3264234588010015, -0.01628602885515651, 0.37400508335187244, 0.09402754892167106, 0.2255195821876898, 0.2250219240257108, 0.34256324397709464, 0.13965703275609362, 0.3614482854971084, 0.5334235321620451, 0.21043672031852442, 0.38148628848329075, 0.31207900488703605, 0.4366274942304462, 0.41171510229716357, 0.36141318459560307, 0.4901106549315871, 0.6375197883675998, 0.4537561491606413, 0.560583873492635, 0.3750423344351462, 0.4244875434849074, 0.5831333598991917, 0.7000658859091962, 0.6029771688786114, 0.5518715818921757, 0.5988680764312722, 0.4896597134364108, 0.6909135704133649, 0.7344568949546149, 0.6167761063834115, 0.6307424758352151, 0.7200960645208159, 0.6655978188959972, 0.7184180819819201, 0.9507650733055997, 0.7318518752587942, 0.7364819810757173, 0.7233233666587694, 0.8782582953167246, 0.8014782317893664, 0.7704248962234798, 0.9832541542273693, 1.0088456023958774, 0.822604496315089, 0.7117544086973435, 1.014921323761543, 0.8614685231462962, 1.0247556165830192, 0.7644442258400044, 1.0664758923855646, 0.8718605165720014, 1.0660541214067318, 1.0544094968359774, 1.0175927286649238, 1.1322875198641646, 1.3016274774047674, 1.303589557572875, 1.4114458908608545, 1.610653131817409, 1.3165893927470096, 1.694739291967232, 1.603458108774945, 1.5631485907425653, 1.5800001135532338, 1.7541239176016836, 1.9252054484240875, 1.8802900057461427, 2.104164891360885, 1.867936309883249, 2.0718494646560535, 2.0078234955516017, 2.229430508807665, 2.3417605401071526, 2.2710001022815716, 2.1126593765392183, 2.452980057433835, 2.5367635784797913, 2.593523679354864, 2.7366769035931644, 2.5659977969982988, 2.801129256060503, 2.91236287731551, 2.6752578482193154, 2.945086269764119, 2.922707584623709, 3.0249777809665654, 3.1279021771828184, 3.1044161529698835, 3.1455726820173324, 3.2765632122345503, 3.224427857151722, 3.2845744187017383, 3.5210987404381617, 3.3982864891788997, 3.6398016233379415, 3.67943398308467, 3.5205986614724694, 3.685427349670218, 3.932599235760775, 3.775076222894324, 3.8867568303296083, 4.039407826437991, 4.131545268593316, 4.08805680961286, 4.1134641593004, 4.375456645491671, 4.467114106253831, 4.451114425504508, 4.4217649152350855, 4.392411009366744, 4.450197621427435, 4.645497953161922, 4.695090845276469, 4.853415363034498, 4.838304993545723 ]
null
What is the type of the trend of the given time series?
[ "Exponential", "Linear", "No Trend" ]
Linear
multiple_choice
1
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
It would be helpful to check if slope of the time series changes over time.
Pattern Recognition
Trend Recognition
405
[ -0.9024310637635867, 0.26522013424554736, 0.2392587462006264, 0.8393329797814565, -0.44589289683888117, -0.3942878000916433, -0.4254025813324603, -0.7052745621516644, -2.069287233447774, 0.8288617775999251, 0.7265558164690886, -1.166519390028417, -0.2707243193376588, -0.519477009340503, -0.481381667657027, -1.6407108725031017, -0.40864626384014824, 0.5937684872698992, 2.1923812489408205, 0.44139425562512846, 0.22701143346219518, -0.2841351897175629, -0.346585097851425, 0.9159544328596685, 0.3895890124318415, -0.3560680111873015, -0.6629588524603427, 0.04126554368941057, -0.25418214943148243, 0.18084541479107197, 0.0054947246522766, 0.5141192771791278, -0.822299605759728, 1.0971845636912463, 2.4722374892743466, 1.1924658233201453, 0.4075198678838037, 0.9521184183992544, -0.5761513363751435, -1.035803557221553, 0.8835858565640649, -0.17474882078135195, -0.8245874388335507, -0.4399083853506943, -0.6363925620535829, 0.3966901024066802, 0.7664409802738948, 1.020885542854919, 1.0326199425161013, 0.9259231391662177, 0.15139661467501841, -0.18010196310878257, -0.8917373627940952, 1.2312124819073924, 0.20084886411922873, 0.018413816630399427, 1.3153711546542057, -0.36473593193101544, 1.0482058010789665, 0.6177517004129579, -0.45888448469651427, 0.3283119112166475, 1.1859096971326388, 1.0483438776966332, 1.62274215036156, 0.689876022625344, 3.158834087758033, -0.3188325505896556, 0.11102615052993076, 0.3915633905599848, -0.7041420422247056, 1.2998573323513136, 1.193465218478463, 0.4819464778877678, 0.03916965927641247, -0.7341181042859124, -0.15488517456090783, 1.09570392397237, 0.3262833253500822, 0.15841194877739262, 0.9182492314376509, 1.4576660342697254, 0.7327249248863992, 0.7856998023720831, 1.650262931202274, 0.6856980605022459, 0.2985784651476468, 1.1023222297811524, 0.3540988895441174, 0.2702404296016473, 1.608963802320051, 0.34460250486508887, -1.567060807459046, 0.8747718893175861, 0.27971969741118996, 0.3724509243773423, 0.9811277388567818, 0.48512410700413855, 0.8007442444370558, -1.0086788259580555, -0.12633386982637573, 1.7849562582888598, 0.6368009642698869, -0.7000121988165453, -0.20585616575558208, -0.13457941780813032, 0.7604883777637661, 0.33269403451756574, 0.15519218557541048, 0.6997882070417352, 1.0907411017782378, 0.499139661567195, 0.24931579544332777, 0.380056608480297, 1.004353982537844, 0.7289472103620445, 1.3640861285662276, -0.18548316116152852, 0.12482628924605177, 1.3880015592265385, 0.11610641577791136, 1.896585134127757, 1.920173916290357, 1.9161112914804974, 0.07770276892182326, 0.8612546673464512, 0.4047527249037051, 1.5608892094274727 ]
null
You are given two time series following similar pattern. One has an anomaly and the other does not. Which time series has the anomaly, and what is the likely type of anomaly?
[ "Time series 2 with cutoff anomaly", "Time series 1 with flip anomaly", "Time series 1 with speed up/down anomaly" ]
Time series 2 with cutoff anomaly
multiple_choice
73
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Linear Trend", "Speed Up/Down Anomaly", "Cutoff Anomaly", "Flip Anomaly" ]
You should first identify the time series with the anomaly. Remember, both time series share similar pattern. Then, you should check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
406
[ 0, 0.4331589342254652, 0.8211854603578765, 1.1231856148521993, 1.306344285287487, 1.3490069212750684, 1.2427131421234776, 0.9929912624560959, 0.6188391208226725, 0.15093996738119958, -0.37121904098610364, -0.9030551321616768, -1.39907674629421, -1.8171557087665762, -2.1224835431773075, -2.2908403817148137, -2.3108694851977925, -2.1851437695758116, -1.929924179966065, -1.573632603642296, -1.1541827327507523, -0.7154195389900817, -0.3030017339296297, 0.039886101398939555, 0.2765890380163454, 0.3804241121904657, 0.33718615809480923, 0.14648183384867552, -0.17823343922301005, -0.6109190931252492, -1.1153949176122828, -1.6487387919139058, -2.165317558257485, -2.62107249248526, -2.9776569175141407, -3.2060373908478565, -3.2892202738263556, -3.2238476268632543, -3.0205125580242393, -2.7027644101415103, -2.3048972106671344, -1.8687290738847653, -1.4396750061070116, -1.0624819219522652, -0.7770264020022635, -0.6145698300149733, -0.5948225947442933, -0.7240930610833312, -0.9946951431162792, -1.385670114682532, -1.8647548712617048, -2.3914118010847565, -2.9206357262402247, -3.40718039886643, -3.8098076365437943, -4.095160054923818, -4.240893704116129, -4.237776418778724, -4.090554823059938, -3.817508568803483, -3.448733669100305, -3.023316141619573, -2.5856613886375186, -2.181324026573817, -1.852729791297383, -1.6351912807714353, -1.5535917019520837, -1.6200480556854673, -1.832773213021761, -2.176243746874829, -2.6226577577328194, -3.134545787065855, -3.668289624075617, -4.178218549958903, -4.620898335931349, -4.959210209495044, -5.165836727795832, -5.225827195061119, -5.138001702350087, -4.915061934373654, -4.582398337368101, -4.175705668475902, -3.737630853566859, -3.3137679576356183, -2.948376385439256, -2.6802244218551117, -2.5389484506192392, -2.542269762062218, -2.694330323134289, -2.98530379977311, -3.3923183610215153, -3.881604603131733, -4.411666879242928, -4.937180210838711, -5.413246816840104, -5.79961252401817, -6.0644470900095016, -6.18733342376571, -6.161184981763757, -5.992911274745535, -5.702768986362531, -5.322459641037747, -4.8921524715894025, -4.456712073082564, -4.061485108959221, -3.7480417454851676, -3.55027174207585, -3.491201818857818, -3.5808331867163607, -3.815202320262393, -4.176753177780079, -4.635985912484181, -5.1542272424174085, -5.687262309861216, -6.18948695750624, -6.618190475597459, -6.937566621566229, -7.12207623195405, -7.15884563926409, -7.048875655220022, -6.80694758320424, -6.460235086372568, -6.04575227275946, -5.606877651099779, -5.1892803973052555, -4.836631501335779, -4.586502566374467, -4.4668374095376855 ]
[ 0, 0.3637796000845974, 0.7203979322602428, 1.062841480832978, 1.3843891860958288, 1.6787511141106717, 1.9401982314469148, 2.163680607347637, 2.3449316045606508, 2.480555909155653, 2.56809958308477, 2.6061006941529317, 2.59411947879389, 2.532747415329571, 2.4235950205120655, 2.269258621131619, 2.0732667862631238, 1.8400075253680264, 1.5746377543098957, 1.2829768971926676, 0.9713868192423226, 0.6466405679724812, 0.3157826307833157, -0.014016407822731114, -0.335607810677105, -0.6420121816242667, -0.926563465334912, -1.1830464822303246, -1.4058251608793564, -1.5899588221604453, -1.7313041159986648, -1.8266005075057337, -1.8735375487617536, -1.870802548278521, -1.8181076546217874, -1.716195795399655, -1.566825349083115, -1.3727338659117339, -1.1375815863994974, -0.8658759227743743, -0.5628784614604194, -0.23449640533933813, 0.11283930443105405, 0.4723066724348728, 0.8368334012987775, 1.1992428082552464, 1.552401895398931, 1.8893685186312703, 2.2035346188843716, 2.488762560458955, 2.7395117635258632, 2.950953018092873, 3.1190681208961237, 3.240732779494745, 3.313781073080651, 3.3370501400395813, 3.3104041702638374, 3.234737207204165, 3.1119547018484894, 2.9449341992082148, 2.7374659684336544, 2.494174801485774, 2.220424593824321, 1.9222076758159905, 1.6060211781915046, 1.278732982395646, 0.9474400215600959, 0.6193218556520178, 0.30149254185486973, 0.000853856411313636, -0.27604710372583807, -0.5231530014532326, -0.7350212352873393, -0.9069362318292873, -1.0350067380912042, -1.1162461063362015, -1.148633914984632, -1.1311576542160575, -1.0638336162041269, -0.9477065589743228, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, -0.013466780973613462, -0.008805912660471066, -0.011305523046815669, 0.001344288826280219, 0.005821227947130392, 0.008877484595933573 ]
Two time series are given. Both of them have a noise component. Do they have the same level of noise?
[ "Yes, they both have the same level of noise", "No, they have different level of noise" ]
No, they have different level of noise
binary
88
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Variance" ]
Noise level refers to the amplitude of the random fluctuations in the time series. Both time series have a white noise component added to it. You should check the amplitude of the noise for both time series.
Similarity Analysis
Shape
407
[ -0.15648544249554608, 0.39039010572680394, 0.5745927423642532, 0.6424330663628133, 1.2015332899489726, 1.392970142861164, 1.8749549924876132, 1.8582610388399472, 1.9860764203431855, 2.2910110439673512, 2.2815043519693923, 2.3381141711004196, 2.4955670847707183, 2.32870158394514, 2.2349227976116284, 2.4617838219436368, 2.2178123074301923, 1.968403017223958, 1.7964500214583838, 1.619644950599351, 1.4127060527964659, 0.9643367137183059, 0.783913796679005, 0.3916357995770753, 0.11110090055056672, -0.16838862947291308, -0.49653239782596087, -0.7255145341653809, -1.0403552864186307, -1.511864106930037, -1.746305582627667, -1.8703383387961656, -1.8430298003853918, -2.2700756837449725, -2.3286317349795924, -2.4461735813577574, -2.4931083400841954, -2.4247333819183203, -2.266941355038094, -2.286079924903993, -2.2981294090694413, -1.7918783081582728, -1.8745842894438483, -1.7242747720183595, -1.281894897127414, -1.2030300659070758, -0.7037317008911708, -0.6566001364851188, -0.11662739151911003, 0.07467318184568719, 0.4969701054576378, 0.8652546651892536, 0.8578670438643736, 1.3786954286617596, 1.369529019022432, 1.6400248521608354, 1.8698740021396354, 2.1738002404244554, 2.2648452551328084, 2.345538782291648, 2.43852088910397, 2.5045881362414035, 2.4934060911191462, 2.4769925262979045, 2.451422103160181, 2.131596571017621, 1.9106532951446382, 1.8206876661943168, 1.4123869333233945, 1.2011719932785088, 1.090224776230138, 0.6827420900196518, 0.2677083903783308, -0.07350490908223936, -0.23395328397382892, -0.43498628175207377, -0.7375908082603321, -1.126563264355873, -1.2051533540826782, -1.6616680445157264, -1.8828793888602233, -2.3126954537575335, -2.253618827340389, -2.240084170230923, -2.246840234403261, -2.524469035154706, -2.393056199469853, -2.292091834316859, -2.313522507782527, -2.4225584963581586, -2.0128033462300645, -1.7709972099318954, -1.7209449665960665, -1.403788582329608, -1.2232995047228465, -1.075822948720387, -0.4136256974344198, -0.2056806295297446, 0.26887715677137136, 0.5074530007868139, 0.6919370788593202, 1.012649193237899, 1.3543108192297197, 1.6496477399885352, 1.8148120257703797, 2.0932125105633377, 2.120308103845596, 2.1820290098816293, 2.369298423465091, 2.451046378741693, 2.3249300898959135, 2.285533656266331, 2.3980611569153383, 2.207887422013926, 2.089956545616911, 1.8937537629307821, 1.8730543490376985, 1.6099821159698469, 1.09834518410851, 0.8868666605146369, 0.7276649675920929, 0.3947492016950859, 0.016768388774669903, -0.4068330791276716, -0.6704678588292452, -0.9530728038162847, -1.1579727313615855, -1.2799685149052937 ]
[ -0.686880234788128, -0.48654966944387257, 0.921336896822382, 2.458463804735811, 0.24693142729218676, 3.2605435623774954, 1.5836963863482905, 0.8106026263284513, -0.40652971093503054, 1.4403947376918182, 0.03619639218257395, -0.16728630432625147, -1.7534340965702706, -1.6088320836790668, -2.096173557952628, -1.8837042478361896, -2.464069258741257, -3.176953675077997, 1.3868253042630396, -2.282000960999276, -0.23054499078898089, -1.6399814221617333, -1.3329557358338953, 1.2335870347194329, 1.6785383529869788, 2.997327035128939, 2.2092179059128267, 1.5691756082053707, 0.5224182652248743, 2.590232965859185, 1.5400652713811827, -1.170691359058881, -0.42885076256739885, -0.8227740388354174, -1.724591887505301, -0.8938323829919713, -0.9692574171165945, -1.963045377194981, -1.8638443032503385, 0.24948552853789208, 0.13046495845055983, -0.20996604645934017, -1.365820033796985, 1.129158321518828, 1.933627574201244, -1.1809221511786538, 2.020459180806875, 1.386095186143009, 1.4522284295378078, 0.4838875796775528, 0.8347767224941881, 1.8772878922976421, -0.5028929999736836, 0.3724244851866666, -1.882208220783721, -0.702034480028751, -1.7112394819967305, -1.4572458614377795, -1.7340014286194385, -0.8731149122618517, -3.7181968554030225, -2.1016998151823256, 0.26593642268855905, -1.6502106127834626, 0.37145948132658313, 1.2744013855323737, 0.8065007676316134, 1.1003634360738546, 2.057876626919736, 2.6275565186363936, 0.34465371415311163, 0.2944137239068185, -0.37446899540869055, -2.6097057572364, -0.5746103820215682, -0.24447556404363546, -0.5182138940172787, -2.6217444520766837, -3.0596054621532196, -1.6788637893518288, -0.6091579816067522, -0.8907673328425255, -0.2684360431060389, 1.1226748112664073, -0.21796651883908158, 0.7941435004389674, 3.049463660592849, 1.4901585754320443, 0.5383720210982017, 1.0909246364531557, 0.6166352319669859, 1.5651547056023456, -0.1446034609486575, 0.4974201916198907, -1.055218950640246, -2.9590558128545443, -0.9696047314438092, -1.4522790612914056, -1.2619702861780284, -2.4698952111112504, -2.430264964300655, -0.9529894935015152, 0.5839688896457979, -0.4194660893481143, 0.5375190405132935, 0.3246468193392745, -0.42284840924539235, 2.4608622974275702, 2.6387211837343054, 2.5206427330558947, 1.542939305377146, 2.0801375400875735, 2.0002043447328326, 2.249369189651274, 1.0832993673708047, -0.38445914466529296, -2.258831472782172, -1.2107951536278854, -1.4015190309334633, -1.0899624034358424, -0.42243919275133135, -1.6873238140877376, 0.8377254053112593, -2.578786785253496, 0.11810963314083223, -0.5540983246171218, -1.1393674619473917, 1.0197024940664057 ]
You are given two time series where one is the lagged version of the other. What is the most likely lagging step?
[ "Lagging step is between 5 to 20", "Lagging step is between 30 to 45", "Lagging step is between 60 to 75" ]
Lagging step is between 30 to 45
multiple_choice
100
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
You already know that one time series is the lagged version of the other. Shift the time series by lags proposed in the options and check which one looks the same as the other time series.
Causality Analysis
Granger Causality
408
[ -0.00521513578753946, 0.44666582016109496, -0.16622898656892873, -0.13920132204346153, -0.4883156686512214, -1.1075019612896806, -1.2142746736976857, -1.3660486656038713, -0.17210053578799486, 0.040916343886019696, -0.6368735206828371, -0.9147431728827069, -0.4122210685228512, 0.615295889855162, -0.16501026466283486, -1.0899358653505955, -0.16941820922761597, 0.02227254700170836, -0.40492877181312514, -0.14189046424291518, -1.4386822820645027, -1.4370215277854026, -1.275733021924764, -0.8209907350712647, -1.319829055443232, -1.2776708442626428, -1.732981140206329, -1.607331951605856, -2.0478436772803685, -2.2486298986759317, -2.7385725577964197, -2.4182125558946557, -1.995853326442978, -2.1112869967102617, -2.0924738461723567, -2.8051829822006997, -2.952624339874919, -2.97732508632074, -1.6878909776079347, -2.23498041236894, -1.514603027633713, -1.0241470246490336, -0.8860734951763606, -0.020829594632096642, 0.16224685274567904, 0.3537137572987057, 0.32757831680462157, 0.9295760314468497, 1.4690405294528008, 1.1612063710425833, 0.5121347841395504, 0.4122680078716971, 0.018647841231784118, -0.012606344201953994, 0.5962150632356733, 0.3712219670397472, 0.3501527995795039, 0.37870007162429536, 0.7961293307844867, -0.30934357192533346, -0.6078410216149011, -0.5038891299633306, 0.08655150606456896, -0.15546523159576273, -1.0787319611401256, -0.773833005658512, -1.0864322483644842, -1.671750018576805, -1.9789288812917678, -2.0697156324085353, -2.367250909110292, -3.4523926979743202, -3.0110347914694007, -2.383794370164189, -2.0632445789254277, -2.622987625204228, -2.7221217603551606, -2.72533025717214, -2.4307225246313187, -2.1018980076038423, -2.463112611346636, -2.422770675325667, -2.19778803439343, -1.481521281086405, -1.1349030129864128, -0.7466859462167212, -0.7054431202796242, -0.01149511767078173, 0.19010878894820832, -0.23354774684557092, 0.45691237105390614, 0.8002818218030491, 0.5823035027745028, 0.34639224783086314, 0.4923078582708704, 0.7201954682082355, 0.8172635570859146, 0.9704278886194799, 1.8068094517573785, 2.3340102804600735, 2.427803275623668, 2.890929484971558, 2.382926184815395, 2.5787068867475833, 3.4688883087154156, 3.361609403049018, 2.944572246241593, 2.6237435407087686, 2.08764246155893, 1.7015384325832097, 1.5192478956035982, 0.8277068262937515, 0.8353910698858205, 1.2793127847955106, 0.832695390586691, 1.5801853464583397, 1.8314958156679817, 2.338543000517905, 2.0148874191101185, 2.4353151050295048, 1.8980819978267574, 2.336085095707252, 2.42063030711934, 2.6928307323177263, 2.1144364333936054, 1.674060736333877, 1.967897910255549, 1.5013092780732862 ]
[ -0.8860734951763606, -0.020829594632096642, 0.16224685274567904, 0.3537137572987057, 0.32757831680462157, 0.9295760314468497, 1.4690405294528008, 1.1612063710425833, 0.5121347841395504, 0.4122680078716971, 0.018647841231784118, -0.012606344201953994, 0.5962150632356733, 0.3712219670397472, 0.3501527995795039, 0.37870007162429536, 0.7961293307844867, -0.30934357192533346, -0.6078410216149011, -0.5038891299633306, 0.08655150606456896, -0.15546523159576273, -1.0787319611401256, -0.773833005658512, -1.0864322483644842, -1.671750018576805, -1.9789288812917678, -2.0697156324085353, -2.367250909110292, -3.4523926979743202, -3.0110347914694007, -2.383794370164189, -2.0632445789254277, -2.622987625204228, -2.7221217603551606, -2.72533025717214, -2.4307225246313187, -2.1018980076038423, -2.463112611346636, -2.422770675325667, -2.19778803439343, -1.481521281086405, -1.1349030129864128, -0.7466859462167212, -0.7054431202796242, -0.01149511767078173, 0.19010878894820832, -0.23354774684557092, 0.45691237105390614, 0.8002818218030491, 0.5823035027745028, 0.34639224783086314, 0.4923078582708704, 0.7201954682082355, 0.8172635570859146, 0.9704278886194799, 1.8068094517573785, 2.3340102804600735, 2.427803275623668, 2.890929484971558, 2.382926184815395, 2.5787068867475833, 3.4688883087154156, 3.361609403049018, 2.944572246241593, 2.6237435407087686, 2.08764246155893, 1.7015384325832097, 1.5192478956035982, 0.8277068262937515, 0.8353910698858205, 1.2793127847955106, 0.832695390586691, 1.5801853464583397, 1.8314958156679817, 2.338543000517905, 2.0148874191101185, 2.4353151050295048, 1.8980819978267574, 2.336085095707252, 2.42063030711934, 2.6928307323177263, 2.1144364333936054, 1.674060736333877, 1.967897910255549, 1.5013092780732862, 1.7292074644838227, 1.0565736251341278, 1.473876602498594, 0.86747329378806, 1.1392056866737788, 1.4470170389205728, 1.1042042652804185, 1.3905622041595713, 1.5187001860712497, 1.25358918934469, 0.7573787808996474, -0.20823598592047038, -0.03620764127763334, -0.8060929381018845, -0.7591834498067885, -0.8888003649530701, -0.554661106751754, -0.7032679428878968, -0.8653567450179883, -0.5052752671985714, -0.3404262172762984, -0.1848770149148073, 0.04600333900689897, -0.709500435338612, -0.33715927631966314, -0.03582371639838455, -0.536033331658084, -0.656121288659911, -0.6754605327847243, -0.7416331512616869, -0.57737354988354, 0.1268610411219882, 0.6590918841847642, 0.013478084335690425, 0.3195374471494216, 0.9733746219644905, 1.1636849909228373, 1.7004489869008377, 2.6904890467292804, 3.194155669891234, 3.31681587069686, 3.8310009583024986 ]
Does the following time series exhibit a mean reversion property?
[ "No", "Yes" ]
Yes
binary
47
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean Reversion" ]
Mean reversion first requires the time series have constant mean. You should check this first. Then, see if the time series tends to revert back to the mean after a shock.
Pattern Recognition
AR/MA recognition
409
[ -28.025759334235794, 28.480798855938456, -26.15100991337131, 11.134000616603522, -12.528160996331016, 1.344181457770615, 3.9926857713785657, 12.965792008529425, -2.1123456897557222, 29.315128959700434, -38.98822746351439, 26.130234926120448, -30.334439864319464, 36.56123503505415, -31.454491597828707, 27.058755243035503, -15.310148874697813, -2.299769405609169, -4.373674107562633, 13.47159882302925, -16.2581580635026, -4.129903239884841, -5.71870628493461, 1.71228449189503, 0.29777760537825926, -0.9463551838078017, -5.3850942723835, 13.701209806391493, -12.251577210732282, 11.895275388565063, -15.12578008473637, 27.19002671019122, -25.668332420221585, 21.281594602109877, -6.6752812604191, 8.140647618934876, -3.961621130773085, -16.56725818934767, 20.060156568416982, -15.492255852598685, 17.809455713804454, -12.4154340873552, 4.340771698655439, 5.470454306571593, -2.3950973324581177, -10.977787044462604, 21.867401199031708, -31.798716603100086, 34.448265624985495, -12.689294780686328, -0.911518535083566, -0.49840303931202923, -1.7607600298921438, -0.3011035278951708, 18.543266374646773, -25.781801828888607, 17.55977101432091, 0.9854081767607834, -4.017814824800109, -6.143545298824875, 7.544983056757381, 2.020418971664249, -5.544744878814372, 9.979479811126946, -21.749734789647192, 4.189516997531811, -7.752476400551723, 12.102155320358658, -2.0667444464360667, -10.16676491743178, 15.377618981271217, -10.637024780669172, -0.2824271199778412, -13.115941824247711, 12.790985008441424, 2.6628442349013213, -1.7750510801414867, -7.929167629949174, -12.336888766834925, 25.164419482354027, -9.713029482685602, 10.791192073864497, 6.1469860135630086, -2.678397813314463, -3.167651255525264, 8.08544345492231, -14.765611526615762, 1.8560110427608034, 6.2312622618640425, 3.5725778661495866, -15.595445097793762, 0.10837925381644808, -4.537200339383275, -3.4832880602900076, 7.551518079885694, -5.560716086252659, 16.09763544536818, -9.705531103954712, 1.3186565864469921, -19.96621388802205, 17.76753095318941, -31.317305864914303, 18.484292322723086, -22.004701639145225, 12.519490162481866, -23.17593472925407, 11.287981702303762, 2.428660422674991, 9.488556537609337, 7.73415252457224, -6.085856762220049, 7.580876698758503, 5.54141281792978, -19.139739823714997, 23.36807692600901, -5.671014306850655, -4.352791814895715, 17.308624907953167, 6.730260876653299, 2.3942580037856462, 4.029637283572717, -14.42147031815076, 22.22921554492985, -28.039278962315013, 26.128831196255646, -16.19211388369427, -20.008839012869878, 20.06510504565341 ]
null
The given time series is a sine wave followed by a square wave patterns with different amplitude. How does the amplitude vary over time?
[ "Increase", "Remain the same", "Decrease" ]
Remain the same
multiple-choice
20
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Focus on the amplitude instead of cyclic pattern change, check if the distance between the peak and the baseline changes.
Pattern Recognition
Cycle Recognition
410
[ 0.08624334095553571, 0.8465366378078115, 1.5464024543070924, 2.335601009687801, 2.8162670785196124, 3.4098790279139015, 3.7536864523544766, 3.8856168446469823, 3.854034059956827, 3.7909364427506884, 3.4631079606935526, 2.9585342243768205, 2.3098621928976626, 1.7195211097771086, 0.9035636771775005, 0.03747166068518493, -0.6696891484188935, -1.2993950284393938, -2.220708728444467, -2.664743779434524, -3.1133430927386994, -3.788333480767343, -3.902532272304855, -3.73674784500753, -3.8342863559882714, -3.5302651891203936, -3.2617394238061217, -2.5764855822024035, -1.7885409930477676, -0.8431693126402832, -0.30129623351675333, 0.36847830718600083, 1.187807562782524, 2.061596669561204, 2.8315120265423364, 3.3102051252361098, 3.686479622396252, 4.009827014432602, 3.8796351553890203, 3.857492175213965, 3.542752766656129, 3.153278736525952, 2.5295581369704774, 1.9331827165599593, 1.2181459910987078, 0.3849481651405074, -0.4108656223188301, -1.1542454791096846, -1.819828498779642, -2.4784932898256744, -3.0878910362291236, -3.7092833807070313, -3.885494850231063, -3.9785964438068784, -3.949797102371377, -3.6168272778792185, -3.421496576918594, -2.564348083161784, -1.9690356370578395, -1.306364086938569, -0.5681690392919692, 0.3771597359786498, 1.1285871633061497, 1.9304115920545968, 1.8138426054068035, 4.673301030521659, 4.611058509504229, 4.545323351478836, 4.619967013978359, 4.452453527751846, 4.37761968600054, 4.5265247732399905, 4.488660677353896, 4.47459798770748, 4.616000925870184, 4.511083643256306, 4.5207266292887915, 4.461664466059833, 4.582482035863196, -0.7846865165388757, -0.7675081269802382, -0.9046004913332855, -0.7244652486649681, -0.6709972522930303, -0.770670254937197, -0.9358029233940967, -0.9350943230932877, -0.8924117902289763, -0.9113118160715197, -0.861983357238394, -0.7916298480328828, -0.8258788505946827, -0.8346451890310387, -0.8789943696496821, 4.486985129218788, 4.574027272688143, 4.293173919185262, 4.49323068108737, 4.523168481427976, 4.572728028789972, 4.39336512800686, 4.388078753689931, 4.552765221423057, 4.303924497909551, 4.627588633011322, 4.517028921084524, 4.650241843219587, 4.385662484278292, 4.450733775063419, -1.095660927362356, -0.9344430709691952, -0.8732587827418555, -1.0511448526705112, -0.8943367758895076, -1.053608112355692, -0.8806201131608101, -0.7401629019588439, -0.8583720696810798, -0.6890533574084873, -0.7762448383302066, -0.7200593098089705, -0.9313686187574959, -0.9337882575089278, 4.52893106357378, 4.336599512771957, 4.541484096911452, 4.46197774028055, 4.627369405689909 ]
null
Seasonal stationarity refers to a time series where statistical properties remain constant within seasons but may vary between seasons. Does the time series exhibit seasonal stationarity?
[ "Yes", "No" ]
No
binary
37
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "Sine Wave", "Linear Trend", "Gaussian White Noise" ]
Determine if the statistical properties of the series are constant within seasons across years.
Pattern Recognition
Stationarity Detection
411
[ 0.062892086657363, 0.5160996377867759, 0.8849649518760886, 1.4987532491672388, 1.5246847806848154, 1.9021907188531835, 2.3384689061027455, 2.2437785304077296, 2.5153498841102837, 2.3604921432831465, 2.267349060881824, 2.2638719805164476, 2.005504622585347, 1.6856037901979437, 1.221143801723011, 0.6539529580740827, 0.6172873971077383, -0.1561361004983979, -0.5626301139710232, -0.9501249773468309, -1.2672157759399298, -1.5192447241438087, -2.0676211787065784, -2.148551622978674, -2.1530763651550178, -2.2424474739279137, -2.2287656495941444, -2.3181443760823526, -1.8152222774250968, -1.5999002828539635, -1.3903466177693096, -1.2598340185207968, -0.37487235545878583, -0.18010900107083125, 0.12484106336571407, 0.7216959039660786, 1.1417119571328331, 1.4698700499671693, 1.9892758062347573, 1.876564937350122, 2.210158690898675, 2.6972551992729117, 2.5079536214445715, 2.397938254651426, 2.056550664955597, 2.3064792045622577, 1.9783615713454852, 1.7336472769205316, 1.3874743303779309, 0.6419768111516625, 0.41244892837416286, -0.07408600387410542, -0.36667501554640325, -1.1147839305760454, -1.2099142539587462, -1.6277818269953834, -2.1152821942149727, -2.219485535708008, -2.276283401280739, -2.156136045455266, -2.001070250552748, -2.1097946536539167, -1.8769938154859702, -1.4580196908870835, -0.9330336640554892, -0.8678291548816461, -0.3359501209066513, -0.15754767015016102, 0.5378291429432722, 1.119387902882003, 1.365824117707996, 1.9697016871019848, 2.1250465156276377, 2.3131476390403183, 2.487485056843754, 2.739956276853606, 2.8498556253839484, 2.5407862484643102, 2.3216038925649305, 2.2609099055066495, 1.8339690284626518, 1.4152265889563278, 1.205398556983446, 0.97319482615796, 0.43210576427724695, -0.24558499679761242, -0.50415923315973, -0.7996929411648881, -1.2197932227604937, -1.5371464249509628, -1.8276259766358218, -2.006271224169642, -2.262199869077579, -2.2305539961028407, -2.1999229069499915, -1.7271648489299567, -1.6529881497902026, -1.4025876022299804, -1.1925636864707705, -0.5550367693771301, 0.20035107518521322, 0.1865864284790147, 0.7376963120921192, 1.365783840734601, 1.4235031923772699, 2.028242866863128, 2.196989743302487, 2.5419205614290497, 2.6968771284831186, 2.705752841054296, 2.7625233590551277, 2.89694099146665, 2.575723124824936, 2.4255977361000673, 1.996878162122985, 1.6933800654552413, 1.0856756217808807, 0.7729457097556665, 0.3738395412619719, -0.1657412016198947, -0.4684082698007483, -0.8361383452516095, -1.1918186730165516, -1.7014262429253788, -1.7263934973605637, -1.9366593900283462, -1.8573091839961813, -2.100286510025984 ]
null
Does any part of the given time series, composed of several concatenated patterns, appear to be stationary?
[ "No", "Yes" ]
No
binary
32
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
You can try to identify different parts in the time series first, and see if any part is stationary.
Pattern Recognition
Stationarity Detection
412
[ -1.7567198344172636, -1.6902679155041118, -1.4696016101094131, -1.3357691597963608, -1.276680975311132, -0.9559609724538545, -0.8277986783912947, -0.6935446096082883, -0.5820277339775384, -0.505533560470159, -0.35370202387377153, -0.1704340309044149, 0.12240158405400439, 0.24843701497255904, 0.1444572348630606, 0.4667412303893216, 0.3441127064354409, 0.7007521869681382, 0.8292270391028614, 1.1046035797492297, 1.092244612350007, 1.2002734696445803, 1.4552773667144339, 1.6564356390853399, 1.6353856625926737, -1.6050006550012748, -1.5868584880431655, -1.4121419725749178, -1.1523532777175265, -1.1838448938169321, -0.8103753980880797, -0.8058946554352222, -0.5751962879718963, -0.457942106121116, -0.2815830978781585, -0.19062554094463213, -0.09298465726598294, 0.29975940837259185, 0.2559249523969655, 0.30022730628485633, 0.708930524814813, 0.6830275331190521, 0.6938385259465332, 0.9357925262376358, 0.9744631674757205, 1.2445013604267423, 1.6501924466420785, 1.6723326310444242, 1.7780175266691154, -1.8073063031496446, -1.6113147838991506, -1.3339779398860903, -1.4761671285876434, -0.8473987298067204, -1.0775517358274231, -0.8621806886832821, -0.701154616335628, -0.5517249861628387, -0.4482433139189826, -0.14152834039292334, 0.037135047818775885, 0.17063081251781548, 0.23606659087161605, 0.32027890298873407, 0.5127120121476101, 0.674676672601668, 0.7373356980002622, 1.0052496458084386, 1.3194420915171032, 1.2745681124257306, 1.4935920722998604, 1.5299635603915591, 1.8362860228925124, -1.8461224506186982, -1.6696105639606036, -1.424491762236979, -1.4232510620970136, -1.1288716739566687, -0.914956226471791, -0.8517202214337856, -0.629085898857232, -0.6930661844351114, -0.3670262297932213, -0.3054073806522721, -0.06920372905258618, 0.2024955780927199, -0.10211699853519102, 0.2863594549579901, 0.2713985195476444, 0.5294383773503427, 0.7570698203974032, 1.0426464493676513, 1.1894896384522808, 1.3386522924492452, 1.4688366333358038, 1.4307676717271522, 1.7971344331577357, -1.8789042604321, -1.6142798933474343, -1.5988188223063111, -1.373006568057363, -1.2096742500844286, -1.0162983578468168, -0.9827278605906629, -0.680580985098594, -0.7259956333984507, -0.2725749047822863, -0.3657341968290185, -0.334270662598038, 0.006328761310347785, 0.12440679224734921, 0.2258460797240261, 0.6042770899800762, 0.6972487386556485, 0.8200218952683005, 0.8303315212781948, 1.0249264668518212, 1.1688770407925873, 1.1993485431538913, 1.5612336306955341, 1.7205981227504574, 1.8504175603710957, -1.6671029852891877, -1.651076608650206, -1.4751871794553315, -1.2653283523054173, -0.9431900530776196, -0.8133198227553265 ]
null
Despite the noise, does the given two time series have similar pattern?
[ "No, they have different shape", "Yes, they have similar shape" ]
Yes, they have similar shape
binary
80
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave" ]
Noise refers to the random fluctuations in the time series. You should focus on the overall pattern of the time series. Pattern refers to the general shape of the time series. In this case, you see both time series have cyclic patterns. Do their behaviors at peak and trough look similar?
Similarity Analysis
Shape
413
[ -0.15084121627900945, 1.0239292051779887, 1.855933385077645, 2.1934424920652122, 2.521036891691647, 2.7904255694842144, 3.226508002100676, 3.334221555738756, 2.208110483910275, 1.617978128369894, 1.3008312728155595, 0.16818900742895668, -0.2990573249410319, -1.193338624994228, -1.9775935220277174, -2.421733954008764, -2.781311828521419, -3.0245384814909824, -3.245130063285825, -2.544509899048268, -1.7568701556823798, -1.7278147954521001, -0.8274584375851668, 0.2707949351487519, 0.9988551055566733, 1.8041220506190636, 2.1825470231321864, 2.9797866455246096, 2.9737852857011906, 3.0967185777798028, 2.7906351030703918, 2.3247292976047507, 1.804886129634012, 0.9796863424914994, -0.10405326483391952, -0.46707752267286917, -1.2876873688531476, -2.529686050908658, -2.736710140584507, -2.697873733838425, -3.352404343205463, -2.6530739565325216, -2.5098800739043567, -1.665744603860578, -1.2399453096299804, -0.5962863729534787, 0.43176205131852713, 1.158091963939822, 1.7079784736623616, 2.8783602632078704, 2.6208824238255795, 2.5340191839809374, 3.2408875422257135, 2.5285930222605324, 2.1066482017468062, 1.4513069632236384, 0.6506692745523002, -0.20475316022553502, -1.0630963705356227, -1.5976762704353584, -2.316111451097252, -2.545643249804746, -2.847607872702771, -3.159418354960707, -2.7570677262049754, -2.457041010577785, -1.9870042758310578, -0.9307098987834289, -0.2919688333436888, 0.47192472216737746, 1.1616042758903766, 1.805621760606255, 2.9353491298578573, 2.9388908099133384, 2.7711023467167335, 2.9380836335837146, 2.7662469475469273, 2.0675368075901392, 1.6351959882774039, 0.27530297259190434, -0.6350818792076645, -0.9874868767689913, -1.7084412355364949, -3.022401338871655, -2.8919096671550464, -3.172340949505844, -3.22774874076948, -2.9072628520092354, -2.137012396135412, -1.8401353891985566, -1.0899853215606587, -0.40626481109406565, 0.9883749695226227, 1.5830600437046614, 1.6460523366434772, 2.434278201124618, 3.023674230189589, 3.2408114946278044, 2.9935469458741535, 2.381409280942036, 1.5079544913846747, 1.3667056651202574, 0.34150357702146544, -0.4074357944549836, -1.2469280333791104, -2.1811657555759503, -2.3913705248657036, -2.7867238624732606, -3.070787091039643, -2.8192227793880336, -2.8957187100747284, -2.1839777349962475, -1.4731076958860034, -1.0616704228291884, 0.09159471067254175, 1.0596511818814132, 1.5931410414015486, 2.262755667383432, 2.8261937676466546, 2.8750759658382044, 2.9086837391665243, 2.524025597848019, 2.338814951062477, 1.6801613299058187, 1.1201445905823162, 0.32904832837323283, -0.44573488075588164, -1.4802838590649838 ]
[ -0.4353162171248232, 0.7366261110853798, 1.2484860165484915, 1.580847440094305, 2.3229228285379384, 2.3723497517180943, 3.2533846150390717, 3.291628980367146, 3.4217558822338896, 3.6049744101167653, 3.7339223880148813, 3.736612636363826, 3.6163617615579744, 3.3005937153376133, 3.123856633473193, 2.7076178643350546, 2.132667107238027, 1.6036428556668434, 1.3430891784929575, 0.7546552867804868, 0.0737585455493571, -0.3418072040278801, -1.495057112491996, -1.7649451236001121, -2.392349911503189, -2.16619519773821, -2.8673919507843726, -3.345091903235524, -3.410403605995607, -3.4953453311322584, -3.558065279104325, -3.563358118510596, -3.677397477951946, -3.514028874099511, -3.3118802737432316, -2.64863115515909, -2.3436007281319426, -1.9018710045204776, -1.3743705092749934, -0.4210668060131938, 0.06589048019005038, 0.8309300190446522, 1.1488247712779966, 1.6071683530909429, 2.1045701420986407, 2.3680596464286983, 2.7196330889464235, 3.400768160598667, 3.359356389757759, 3.749166742350692, 4.000229697846602, 3.622272867333271, 4.0441839114105615, 3.2419292185743656, 3.3522669925494855, 2.876483011577391, 2.5996359688163504, 1.6493387672569024, 1.800116515567908, 0.7364722322941254, 0.322255629394936, -0.11403231664922187, -1.1039002776658016, -1.3739096014718464, -2.2119351317075577, -2.246698635733955, -3.0850259998291256, -3.2607219942295527, -3.462994234186319, -3.537282138374402, -3.3803589137688825, -3.852401280253135, -3.430548588366721, -3.0713937182419575, -3.1550093995951034, -2.943210529262729, -2.755185144472488, -1.5498155097015627, -1.4457113236778956, -1.0334109123035182, -0.520821675994656, 0.14025599423454152, 1.1065880259189838, 1.6934875496621022, 2.1354967149221844, 2.5058427184570915, 2.64416127932336, 3.0906700155842994, 3.2798625686549356, 3.794968829094527, 3.5572834023027977, 3.6247792721651537, 3.636811434256058, 3.1559203556447586, 3.230571591096252, 2.852635319540463, 2.6937266949923595, 1.8158661580914701, 1.1947137108065136, 0.8190127316690228, 0.09169927752655518, -0.2709442480907676, -1.234062193058811, -1.5454389914428397, -2.1376326725621975, -2.318433845059599, -3.014867260446217, -3.551232186381342, -3.517566642378877, -3.6016893054815817, -3.8190536847029106, -3.894489717676804, -3.8220358873021887, -3.4907769277672425, -3.431292501875957, -2.979863004165237, -2.35383404183639, -2.292934207172418, -1.5206211106968335, -1.3120649798115827, -0.327808838116195, 0.02081386491242429, 1.0051874553073583, 1.071049257124313, 1.9867294445830772, 2.628160374388008, 2.6053297513627656, 2.998119770204567 ]
What is the type of the trend of the given time series?
[ "Exponential", "No Trend", "Linear" ]
No Trend
multiple_choice
1
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
It would be helpful to check if slope of the time series changes over time.
Pattern Recognition
Trend Recognition
414
[ 9.172249639622134, 9.009240588672373, 9.249247960268887, 9.194525556639224, 9.16027629515443, 9.061080887183211, 9.153175792940278, 9.097038978922086, 8.973048687936812, 9.119033059997696, 9.109333949118696, 9.2205630757607, 8.919772577722492, 9.145092226441145, 9.018203663121163, 9.152758223815358, 9.157781396537322, 9.115710057025726, 9.19728792179151, 9.009974327213317, 9.224697809769614, 9.059030935834775, 8.981678966346765, 9.098781046269139, 8.93247896346828, 9.146823350436726, 9.0999803960524, 9.23619052886993, 9.182838922541894, 8.996632812638607, 9.04714205453496, 9.171136969433126, 9.200917840122072, 9.235169958639476, 9.234440831649282, 9.1154657413475, 9.156720825849288, 9.242125596820848, 9.095960703858337, 9.158278281600406, 9.093810051990278, 9.073366969669422, 9.12804793700664, 9.060904511814806, 9.111689162675823, 9.02920796789023, 9.106299064693099, 9.164542943009453, 9.069916829199835, 9.124481201609484, 9.13634656365723, 9.164921080957951, 9.111446121074893, 9.222703921022818, 8.931953320036563, 9.391663257790606, 9.044154404623217, 9.160437283296483, 9.038011083935979, 9.182414121515333, 9.148866611902498, 9.064264738169886, 9.22153801222666, 9.108674266500524, 9.173559432568958, 9.03995515733353, 9.120815381514083, 9.306416991858816, 9.211490901352521, 9.151699646329355, 9.082675565347401, 9.129791775168426, 9.141658652944285, 9.164619411949863, 9.025402897833477, 9.18461654851513, 9.024222975714814, 9.272451400137887, 9.053232916385625, 9.150696736781352, 9.215338980264681, 9.1006072260847, 9.154708553461216, 9.254574160145548, 9.175127515997946, 9.156072592369492, 8.969919812220457, 9.038444060328228, 9.219150611192532, 9.175633632908562, 9.189457394496927, 9.181604743253926, 9.241306114292863, 9.09978428515931, 9.134627430721679, 9.029780980554543, 9.00703136016714, 8.973664578306881, 9.042874383030382, 9.265283505392595, 8.981968329924687, 9.095939945435283, 9.005651616781872, 9.068802794615484, 9.139115695778978, 9.059757450127243, 9.223050484351647, 9.263587997211022, 8.918434205860779, 9.06131973941194, 9.129029366621245, 9.22637624590804, 9.082189873506305, 9.121814623776645, 9.018096353047792, 8.983786780975164, 9.255505057276013, 8.957212006888552, 9.336088119085922, 9.189793611848765, 9.185671707177685, 9.17613710804419, 9.100579340197509, 9.159405811495153, 9.106399214762614, 9.174093834653352, 9.120560020927647, 9.036927171383367 ]
null
Is the given time series likely to be stationary after removing the trend?
[ "Yes", "No" ]
Yes
binary
34
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "Linear Trend", "Exponential Trend" ]
Trend brings the overall shape of the time series up or down. Assume this effect is removed, does the time series satisfy the stationarity condition?
Pattern Recognition
Stationarity Detection
415
[ 2.2748812125413784, -0.21340431990403616, -0.03317152675973713, -1.6280898830781891, -1.007925979299178, -0.5202488532665445, 1.6514388433430411, 2.3755452308194247, 0.724619258159984, 0.5604443514921067, 0.9757828958198838, -0.6481339581088623, 1.8510417396303462, -1.5104666480120876, -0.3261758258564015, 1.0159794802094477, -0.32659881925042367, 3.22015910994579, 1.0798715964598415, 1.4736629945063624, -0.5967169222278594, 1.4826386638823825, 1.3127508267886698, 2.231584910218227, -2.25013181785629, -0.5446891170095318, 0.8080462569760474, 0.8594483734768167, 0.3826436203072705, -1.376994858914818, 0.7029882764805102, 0.8526584398401178, 0.49533088080761084, 0.4704049411503705, 1.6580449781594018, 0.36128360595558767, -0.9352574120838929, 2.257005729066908, 2.205108663693814, 0.5605809152479154, 1.6712372363810568, -1.1852236861437389, 0.4818936580961578, -1.3817095037920009, 2.03236685588688, -1.0892873591504848, 0.22476923370893237, 0.9910513367710421, 1.7347391401691876, 1.3951665639283757, 2.147895663691012, 1.7575113894672638, 2.377225235904017, -1.2747255644981363, 0.2617821920044371, 1.397881658484855, 2.7570896659348936, 0.28410962985083965, 3.2568428743839677, 1.3425479181947277, 0.08356034405339519, -0.43105774799391117, 1.8473894620762215, 0.21592587726776802, 0.6719737150422815, 1.207436556811752, 1.2678788897288975, 3.3341470193672484, 1.5316916329335286, 0.3517929300276613, 0.1978223261296771, 3.1029124039348073, 0.5054540360780699, 1.8382086993561046, 1.3838502247557456, 1.672862287286725, 2.8588892972754856, 1.5390216933730536, 2.1947686724396913, 1.5977348075487257, 0.7043345387097925, 1.8543599754697064, 0.49928776549178366, -0.09892978768522354, 2.005870572830095, 1.8807573763489485, 1.7734367575851042, 1.3289272833034882, 1.285560113653997, 0.09057138397994757, -0.8262987944069371, 2.481650408614074, 2.481139364283034, 1.1496247805140543, 3.2275502575750274, 2.079691778830801, 1.9013073497366224, 3.9275989730805967, 0.025585077185032556, 1.4870326213841922, 0.5391047822120103, 1.1345226099575514, 1.5097820994408715, 1.552683236769454, 0.3364965937078821, 1.7185117231330813, 0.6651643788552468, 3.1008314883180876, 2.5991269731234956, 2.111154956438654, 1.1453397794577578, 1.9159070799772486, 2.5923882605354924, 1.3543531691070396, -0.12604085856238445, 2.653887330790392, 2.4427067427702487, 2.208706467989656, 0.9314063529247132, 3.0044803544103837, 3.246326998531983, 2.2236224635558615, 1.4278039704529017, 1.468486227001356, 1.4599864288635187, 1.4209602383951856, 1.5407627515652866, 2.3670057407743843 ]
null
Does the given time series exhibit regime switching?
[ "No", "Yes" ]
Yes
binary
40
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Regime Switching" ]
Identify whether the time series exhibit different patterns over time.
Pattern Recognition
Regime Switching Detection
416
[ 0.0072363510990797325, 0.03033516896060394, 0.08991457187553403, 0.03737409486091853, 0.11103526225688579, 0.2948658403516943, 0.13343643867714577, 0.15989737135949916, 0.05809353494701639, -0.058598198766562956, -0.14100281406389975, 0.04582112090041043, -0.15146715201762226, 0.16680575054572458, 0.08604998406621922, 0.0018750303260878232, 0.15518076343338216, 0.07711096653924672, 0.20493264573341144, 0.2394984878154925, 0.10743327299930536, 0.1627694056540244, 0.21686793361178652, 0.06355497133862945, 0.23462077944548104, 0.07891899681474732, 0.2874733940428813, 0.1962661642896819, 0.10500909161298586, 0.1995468395682344, 0.21265757582788003, 0.3821579567508262, 0.3015171728056186, 0.1974397915854334, 0.4668550005269029, 0.37347824642281746, 0.2860778038787029, 0.17320745663207426, 0.29501235171846474, 0.32430123566562447, 0.39213661174132464, 0.42483986402717205, 0.4536532570671875, 0.22072913890716672, 0.41160719857225325, 0.3836759683960152, 0.6763161130027318, 0.4238686637602885, 0.3640147344694217, 0.44619777445215786, 0.44318489444429715, 0.25401862699517974, 0.5026338385169724, 0.43962841757223803, 0.4768959395889518, 0.4010890421808554, 0.3879353070135951, 0.5940957979072907, 0.625934064608916, 0.5657790939732645, 0.35177030783848506, 0.5900372382854884, 0.3710180816905949, 0.4933750078063444, 0.6460484161648952, 0.6705221819824273, 0.6957288327881324, 0.8265921242495711, 0.7965731361211925, 0.5839394613991189, 0.7941580618003784, 0.8722200631757157, 0.9057764987946916, 0.9052069164841973, 0.9091745831708838, 1.2975344559859825, 1.0638552390422797, 1.3831596894231104, 1.0791402061328668, 1.3042450160071803, 1.3067729132930739, 1.236883581470388, 1.3275925857176327, 1.4181050522864116, 1.3804761600287032, 1.4845435248645804, 1.3189371042518685, 1.6718487083406113, 1.768682039248824, 1.7366730051092178, 1.9629322096759372, 1.8499857821649557, 1.9413268858055297, 1.996151967701592, 1.6424841113148247, 2.0052225293711516, 1.8698314769873245, 1.9353043893847295, 1.997967169884426, 2.1126626795856867, 2.2542500181840013, 2.2778727671337093, 2.278485408874086, 2.39728165379925, 2.448631704360671, 2.4598152536476023, 2.2883721186395967, 2.4321590808342095, 2.553994905686954, 2.669977173129605, 2.509043681565905, 2.6860368908835834, 2.575878726744973, 2.880302733478654, 2.8472154252660054, 2.7336368563567457, 2.7782473686947182, 2.9975331721563805, 3.141539638977078, 2.9396509262986346, 3.173259683427984, 3.085645263286401, 3.2674582078812797, 3.2987276511713293, 3.2912083068058497, 3.137508954552354, 3.4343364127156306, 3.4616895373257135 ]
null
Does any part of the given time series, composed of several concatenated patterns, appear to be stationary?
[ "No", "Yes" ]
Yes
binary
33
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
You can try to identify different parts in the time series first, and see if any part is stationary.
Pattern Recognition
Stationarity Detection
417
[ -0.15465914845986015, 0.7773395913134253, -1.0983748227560357, 1.6822421288723208, -4.402196783856812, 0.2838519985568158, 2.251895282611162, 2.6539168061005913, -0.3892467064049808, -2.5224916658906364, 2.3806835255920538, 0.0109554204522877, -0.38701417265803384, -1.4857407776323293, -1.9540764951208893, 0.975306581835333, 1.2595170571348742, 0.300386831379922, -1.3081709822605945, -1.841409771009874, -2.4875878069100654, -0.9731990052428723, -1.8828885515634666, -2.955686035215768, 1.247458084945191, -2.351720065118369, 1.5757093615107844, 0.6799097282414099, 0.5143863733837842, 2.885111660947156, -2.209854475000412, 1.5011721547657209, -0.5440012843899847, 4.268466679835487, -0.658226028622963, -0.8547855355056515, 0.7790915853955178, -0.5316185026739186, -1.2716364463372194, -1.7482677236084083, 2.632471756674761, -1.956673540608091, 0.4710661567929689, 1.807993002710774, 1.8818731464377731, -0.879127932470775, -0.25525978170207103, -0.6724697366798746, -2.644559957399017, 0.7483361340656292, 0.0982907441758896, 2.4505190864892645, -1.3521302494527927, 1.947248192627328, 2.1053644301210266, 0.11418302035480002, -3.816400947835077, -1.091325624544961, 2.9710336765361016, 0.6412583367518443, 1.367932200875691, -0.17624815565989443, -0.5281412669747132, -3.257649283116577, -3.079027343346506, -3.2441090717110854, -3.118295188333704, -3.1525515817127334, -3.090606914680913, -2.9720059694319962, -3.0870287505153473, -3.1235150991470695, -2.937569198972052, -3.087651174132519, -3.1941009627702663, -3.0382595128022394, -3.0544603163079724, -3.1221959334904104, -3.135364133252059, -3.105631305479004, -3.1211941212397702, -3.0867809961029646, -3.136684503197943, -3.005989202899857, -3.0056843690620383, -2.994484151477054, -3.027441091885748, -3.03117031228667, -2.861403235660894, -2.9910630554845463, -2.86362678830486, -3.081844899969121, -2.9154853469744326, -3.0400732628026534, -3.0144179807080667, -2.99219320061357, -2.9906623422232737, -2.9823627397531625, -2.805874593858002, -2.9152608142773757, -2.88949622141026, -2.9499175854284476, -2.8107074874435733, -2.853095618733573, -2.9116939397345205, -3.031429293304292, -2.8435710869435225, -2.7998326092722445, -2.9474851741002066, -2.8713396808798697, -2.780283997605939, -2.983292682206293, -2.8832849235771865, -2.772908639815639, -2.6922975188351987, -2.5764212102353246, -2.5913335433678135, -2.7650219007150034, -2.8200213658368805, -2.671486279653678, -2.810357627545214, -2.824407692409494, -2.7709245978935204, -2.7756651514168027, -2.6835345878345858, -2.7772376410966912, -2.7006851018955547, -2.5419017912268855 ]
null
Is the noise in the time series more likely to be additive or multiplicative to the signal?
[ "Multiplicative", "Additive" ]
Additive
binary
59
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Additive Composition", "Multiplicative Composition", "Gaussian White Noise" ]
Additive noise is added to the signal, while multiplicative noise is multiplied to the signal. When a cyclic component is added with a white noise, the cyclic pattern still remains. When a cyclic component is multiplied with a white noise, the noise is amplified. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
418
[ -0.19119334744265265, -0.06892069725231198, 0.9892750082388432, 2.0807203121239137, 2.5893739982081474, 1.6360381967924802, 2.1837172523325186, 2.7288193078262393, 1.9176918732795893, 2.575807800006733, 1.526564164122351, 0.18339141361179778, 0.8369904650244352, 0.5063397124469526, -1.0561673431254932, -1.3920005857083766, -1.9376480668509708, -1.7815398678533392, -2.730192210152269, -2.503732089381379, -3.045507645827763, -2.416321569791934, -2.0644243722341753, -1.9517407224195458, -2.2283031306761525, 0.5024243262756927, 0.14644095096757448, 0.12705011478720019, 1.2588155959485148, 2.012382257229975, 2.222044803921176, 2.6545096313578425, 3.0098430059952146, 1.9339632899454358, 2.1104010039011456, 2.1014488911491744, 1.9290523201616834, 1.4116022233852437, -0.5627891845349848, 1.8110028052421376, 0.5330270537411173, -1.343877167916415, -1.1083389415676508, -2.3336746710807286, -2.823007304410937, -2.915215217284064, -2.7028567509922437, -2.0456256932259076, -1.7768055333911115, -1.843131974523604, -2.2162964183784672, -0.46733562194186296, 0.6699504604689105, 0.2899768291428072, 0.9383247946750278, 2.723816155195151, 2.412363143095442, 1.6406718897280719, 1.7176747330424535, 1.6917709336537494, 2.551580445945593, 3.049520886387977, 2.0858964370553315, 0.7226554846587019, 1.2781773140894301, -0.2733302288932954, 1.1036103993503676, -1.2734320544520286, -2.080862280842611, -1.685943393687506, -1.652603790584466, -2.1539983304379953, -2.229672025641019, -1.9344717684110815, -2.065330956740037, -1.5325843641155756, -0.8519922677474994, -1.5354197298673955, -0.38665156640186815, 0.7692181187447067, 0.0005106285751775852, 1.6214900900108458, 1.5539595644337245, 2.0154995004529743, 2.3805027296585863, 1.4880376713558001, 2.0106423249060814, 2.9162521078668098, 0.6326940806018782, 2.3205734792971167, 0.5029437987811364, -0.06774172871861073, -0.24492427852359155, -0.009423555545361895, -2.1801906181201667, -2.1317296200777696, -1.7084466269006786, -1.8926031562294774, -1.3499278164132642, -3.0025643007799276, -2.8551522198644843, -1.331462813136987, -1.7864575580970854, -0.6171723486772354, 0.10467206984360744, -0.7118901371877366, 1.921945698070711, 1.5591354348673168, 1.4423668612353713, 2.1908882306417636, 2.4638906914805228, 2.575478667580928, 2.887769518577525, 1.8346017571864457, 1.9513325527491678, 1.2453932290224008, 1.1272092305937562, 0.4540930357279807, -1.4306808829214785, -1.184819499684495, -2.3864313246121487, -0.7037945594687935, -1.5578754750234496, -3.080583315139714, -1.9235037973745985, -2.6434182511139235, -2.0846333841721068, -3.083639654593891 ]
null
What is the direction of the linear trend of the given time series, if any?
[ "Upward", "No Trend", "Downward" ]
No Trend
multiple_choice
4
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the time series values increase or decrease over time.
Pattern Recognition
Trend Recognition
419
[ 2.0444969766963563, 2.065700148660502, 2.001963258123466, 2.0422373272565695, 2.063327454089692, 2.037947165458086, 2.0205406538159747, 2.027627003617191, 2.031930231303876, 2.025237004598366, 2.036828771768547, 2.0707134692096347, 2.0277601172382704, 2.029997750186508, 2.0493253118929373, 2.0363797950089078, 2.012831376653856, 2.0386978249828527, 2.0379287042386562, 2.0598493478266655, 2.020114651781947, 2.0599848234441214, 2.0379503403203625, 2.017344623895811, 2.0132476647954043, 2.0794065181915986, 2.036683835524963, 2.059050214700973, 2.0051013222118144, 2.093753588405144, 2.0581677444828705, 2.034735193570625, 2.0337004178126774, 2.0549314414934106, 2.0537601770693747, 2.043669534914052, 2.0401679568905964, 2.051391501834288, 2.0044162235023086, 2.0323722323108804, 2.006350902096766, 2.0522793936641595, 2.0261597957804107, 2.0078866913737374, 2.0237532193621015, 2.0429928220053353, 2.035759487838987, 2.0160142753707095, 2.005167636632261, 2.0414542250522763, 2.02809868012132, 2.034681328883079, 2.036688544441477, 2.0487191440320065, 2.0572232876845646, 2.042934744731338, 2.0334087730128867, 2.0404511989076557, 2.033025785027296, 2.0064388340657078, 2.0622211487313744, 2.058375701357725, 2.080506976580228, 2.086466991299512, 2.0159558600223177, 2.033104058713044, 2.0911800885451544, 2.0391188254186923, 2.0449278067200853, 2.0089158059404433, 2.0430118430764237, 2.079356577188469, 2.0661925083064414, 2.027502678986424, 2.03186139608367, 2.016876280404963, 2.022582767353658, 2.000978743571602, 2.0382157605028244, 2.0707514790497443, 2.047196655540436, 2.0678165742132486, 2.061839744705465, 2.028791446145596, 2.024452510060644, 2.025234260313461, 2.004918898939354, 2.040605555396247, 1.9806965297661416, 2.0520105933324055, 2.0414123683927783, 2.0495631549630016, 2.061508597858741, 2.0440013384186613, 2.0732292190821897, 2.0526333950110454, 2.024501056994047, 2.0350968591122616, 1.9938169194291377, 2.0215418379654437, 2.0321739150133755, 2.051089722938272, 2.024639076035742, 2.014522922742354, 2.0014414038584523, 2.02777944056476, 2.0797423601063443, 2.0454764733058273, 2.0591129490721674, 2.0215854154519444, 2.00784851008274, 2.0150367147675734, 2.0379646138827985, 1.999266883796714, 2.0194121347946217, 2.0279845945231894, 2.0129998726730745, 1.996624048562757, 2.045854815228903, 2.0408817888154953, 2.055837824998582, 2.017293950038233, 2.0554480499680463, 2.0711430163891262, 2.0452950751301935, 2.027503664832611, 2.042905603052677, 2.0265275283200133 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Amplitude remain the same over time", "Amplitude increase over time", "Amplitude decrease over time" ]
Amplitude remain the same over time
multiple-choice
28
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline, and see how it changes over time.
Pattern Recognition
Cycle Recognition
420
[ 0.002943669074238714, 0.699857032776623, 1.326281150651435, 1.8223753064496226, 2.5145331109731854, 2.4896738977767074, 2.4418230261304843, 2.2532973640592537, 1.8339482677518613, 1.4350584774406334, 0.5403991104910552, 0.09012377950963193, -0.8986371010133544, -1.3546256640233638, -1.9944137801530621, -2.3951052738033543, -2.41539606252942, -2.3855030790143297, -2.1477523787210346, -1.5061131074828342, -1.1675185735918456, -0.5025366496349011, 0.2780218773571067, 1.2403564603059554, 1.8396888623533676, 2.1283802826615643, 2.2474543824125455, 2.5545482046218795, 2.348427872530427, 2.06798482835928, 1.5006490135808466, 0.7981374410332587, 0.41937245419884317, -0.5848772917519528, -1.0791624714015793, -1.8433622218397188, -2.381212936661216, -2.4724821289747076, -2.6045317066155866, -2.411401770757793, -1.9994598632491238, -1.548257285200985, -0.9582746914402226, -0.06313966147241533, 0.7814293392265556, 1.280044929363845, 1.954988309674567, 2.495640651359723, 2.5434576781673304, 2.5527141965636955, 2.3263267612638714, 1.8331701923955155, 1.2220048517831832, 0.530700128900075, -0.07847094129943699, -0.7746760274856083, -1.4332672455055406, -2.0870321139147956, -2.302099466455076, -2.539187228303442, -2.5041912302188924, -2.574347965578344, -1.8619914555798547, -1.321772229584427, -0.3975337877928351, 0.2975726006843632, 0.9048399773176556, 1.6809297522238407, 2.007136997994906, 2.3624770125601797, 2.50475598417876, 2.5210704070915364, 2.289820116400092, 1.5924356970056646, 1.1449349713369374, 0.2935125948178219, -0.4359312683110157, -1.1754125738560992, -1.7994705417059833, -2.1961331666259754, -2.4370759042332155, -2.658432312904942, -2.430608921898552, -1.8826788531571665, -1.496628908236268, -0.8224615943989344, 0.0007308850611408707, 0.5788159312561472, 1.3173369437848879, 1.982611828963591, 2.4443887854878596, 2.307479736198741, 2.478862217002664, 2.2455459368446613, 1.9276749874014036, 1.2785357497499492, 0.7521300370372856, -0.040064422000241476, -0.7065692295839835, -1.3711536813103997, -1.9456007524144108, -2.424007306963501, -2.5549348100729694, -2.5696182148302564, -2.404941230769775, -1.726346534097343, -1.2294586426893024, -0.6674647005732669, 0.2840423964608825, 0.9360397686410897, 1.3995564023517661, 1.9796025861124658, 2.3794745269303066, 2.596167981283393, 2.5619096509079826, 2.2566596835476713, 1.7554318524228547, 1.062336968231499, 0.5185691924813061, -0.3323594353745853, -1.0948313709287638, -1.6806914891427343, -2.25076088970689, -2.503277495616966, -2.781407943273904, -2.470117356386248, -1.9082336555676322, -1.5460537549079942 ]
null
What is the most likely mean of the given time series?
[ "22.21", "5.73", "-13.6" ]
5.73
multiple_choice
41
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean" ]
The given time series is stationary. Check the average value of the time series over time.
Pattern Recognition
First Two Moment Recognition
421
[ 5.809147305119085, 5.640912266112466, 5.701204731932598, 5.708068821310536, 5.710689880684805, 5.696615755644166, 5.685670695268006, 5.7146102909936545, 5.6934462363949265, 5.766283641876571, 5.728981445172596, 5.714561587247764, 5.723097685087078, 5.791038647667396, 5.699542291339191, 5.654298053583895, 5.671252176761322, 5.713882429366468, 5.754804871147542, 5.777616668372737, 5.821649363117725, 5.769561181822185, 5.676659641242128, 5.715588875548242, 5.603310327419655, 5.709385458031864, 5.692572232902763, 5.594755845256018, 5.847931454364853, 5.705580093609597, 5.6065433521046, 5.7115274391047945, 5.821771461194926, 5.836451999272929, 5.730571097826279, 5.732747858400171, 5.797420607080176, 5.718607924005158, 5.753589589816132, 5.77531332298271, 5.665606764613135, 5.815242255000992, 5.676846318946034, 5.690929392410868, 5.732945135762906, 5.781041198766073, 5.766024611705836, 5.7243988526225, 5.743503137025122, 5.788697836117444, 5.727708795680968, 5.680719821899799, 5.692697032418388, 5.779304662158317, 5.680766699760867, 5.637434100292777, 5.709806505352287, 5.7229127735689085, 5.776510785344124, 5.643737905895135, 5.747071322176836, 5.7931633139961765, 5.680416861049643, 5.731904006510921, 5.604058802117582, 5.777236162053694, 5.77279370344597, 5.726083911579093, 5.651211664999913, 5.765422010194731, 5.713196494557657, 5.5679892470786, 5.771798088797563, 5.79387101638775, 5.803933181945122, 5.6540912171410715, 5.6174489217139065, 5.703724391768158, 5.756887367635628, 5.673232309578418, 5.63610591511611, 5.768725837620833, 5.707457301750841, 5.762885190234631, 5.728132797574608, 5.7177148616162805, 5.723554870969067, 5.706699100917922, 5.7009663145584675, 5.664155203411692, 5.754910610208272, 5.798677382741449, 5.698564493481969, 5.834103866718779, 5.748795564620195, 5.742014331866888, 5.764742470219679, 5.783074739028255, 5.701193599426147, 5.759004092142989, 5.78717124042569, 5.705500285282554, 5.727499488644105, 5.683285479288461, 5.698990087636122, 5.707200488809881, 5.675442671450086, 5.723622942668626, 5.746175414352773, 5.751737772261129, 5.680925090281462, 5.692502644817897, 5.775962050059828, 5.692364893580833, 5.774431403935177, 5.685278178885001, 5.748819507176616, 5.770316981397555, 5.575474507901322, 5.776967168893411, 5.801915213501346, 5.709535849390084, 5.747029311375907, 5.679169630739663, 5.7480454442974835, 5.868178019166457, 5.601416017533478, 5.698551193758645 ]
null
Does time series 1 granger cause time series 2?
[ "No, time series 2 granger causes time series 1", "No, they are not granger causality", "Yes, time series 1 granger causes time series 2" ]
Yes, time series 1 granger causes time series 2
binary
103
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
422
[ -2.7621005763582267, -2.4691684028964196, -2.898229823541024, -2.4548003532386327, -2.5217657246787724, -2.7107410007432198, -2.99634109211383, -2.876390312296289, -2.8782493822863873, -2.7290925426236843, -2.5721266012150252, -2.327324003241974, -1.210566343418795, -1.194600371573807, -1.4900818215393365, -2.3025498240675577, -2.7833648755704, -2.2864470492377853, -1.9968580973162058, -2.5398887076663588, -1.5486615840063183, -1.4172208819313972, -1.232058916741985, -0.3293214607735196, 0.3703729576961004, 0.6845847685244764, 1.0181352919244497, 1.3893247240591655, 1.2923959232425204, 1.4077580950216675, 1.6387779705523058, 1.5877797918786716, 1.1994407072206141, 1.0923900050089514, 0.6949950478974356, 0.7208888536451291, 0.0047016482645188245, 0.14188406655091687, -0.5142945563791538, -0.6765912131434592, -0.4738170327286536, -0.15557901631490842, 0.11487683951937545, 0.24348950420180726, -0.20673712821156262, 0.18771165504246518, -0.25331475681781335, 0.18697733167469516, 0.43947097666823215, 0.9860878256791695, 0.9960911498533079, 0.6667440621412715, 0.14677580693081507, -0.3285133628251607, -0.9869044573377904, -0.6079846749769094, -0.17861721521713453, 0.04410805601011973, 0.03081738037980757, 0.8598363643747027, 0.8203562299344429, 0.9092198070600557, 0.8899715810829277, 0.7538874813307268, 1.0076963730691884, 0.7528729290183445, 0.4710661609320173, 0.7451865766571257, 0.545024081861526, 0.5987171014031435, 0.4614181880674499, 0.4567716892813727, 0.18594177819681654, -0.07173444170692726, -0.401470912375938, -0.06224217333308648, 0.006898338670270355, 0.376384538746168, 0.7888453144901708, 0.6038452114017046, 0.9584619375403882, 0.9527818904985005, 0.888955622998009, 1.3927191031004658, 1.615471943495835, 1.4737096202307198, 1.6703262690847733, 1.1611945519015552, 1.2606759646483428, 0.6574666816778706, 0.26149286324942617, 0.49666362890702753, -0.5774402979528039, 0.1476183924859506, 0.4832923000991479, -0.25625590947820664, 0.708537886486521, 1.7841936479849965, 1.711591048871228, 1.3389116988989038, 2.017225716661498, 1.8789364590439945, 1.9437144487453355, 2.4333680928637333, 2.371618251749032, 2.274654407556065, 1.762834731447624, 1.5091993675750788, 1.4043049435631372, 0.9060940722471003, 0.44433797512723494, 0.45785407296606684, -0.28618767012042146, -0.6398301616132626, 0.14238093305119187, 0.0034164964945272943, -0.18593154923003466, -0.32669693017353063, -0.46110940956139673, -0.22986895039849323, -0.026787017801473637, -0.1839692198647208, -0.26998512106760103, 0.2580766239805897, -0.34944203500994164, -0.3726043467037293, -0.3182015537680021, -0.6306214996310802 ]
[ -2.7621005763582267, -3.9715390007584017, -6.8699634689587095, -8.258146174963453, -8.620240373906688, -9.766951425775567, -9.17222854162861, -11.189366483866229, -12.082257326228778, -12.542384977912533, -11.792645122282236, -9.88435307122578, -9.15065825112616, -9.041980670666776, -10.891294002295064, -11.262519827562233, -12.2352812707985, -11.487654499446421, -11.898650483135759, -11.785055398851163, -12.41037381991439, -12.972268618270896, -9.125235906958336, -7.0178639919260934, -4.562605931093501, -3.5644699065631564, -0.6772192139462688, 1.5778638694797378, 1.9371225877937008, 2.1180758604772434, 2.598060037659683, 3.4610550039165506, 4.070317331182474, 4.197733543755201, 5.292099572293859, 3.8423016801434873, 1.974159478208505, 1.2812705843610601, -1.283062077674969, -0.8638388282130781, -0.8454616152652852, -0.9841376717285567, -1.0496411207779437, 0.1019813445311325, 0.9234780971515706, 0.4784991987117792, 1.0307828143739395, 2.136347042695003, 2.8620211942672014, 3.0793211794504445, 3.6013668667629215, 2.1354051707562256, 1.5224553377362642, 0.2757503606770646, -0.8990917769141396, -2.776210612258092, -3.2962871351408687, -2.9507139625691994, -0.9064151016293028, 0.45830696291481976, 2.2272282783391972, 3.951103865154292, 4.384240157763592, 4.566271771130186, 3.5354742700174553, 5.473830074924145, 3.6028420213103236, 3.668482645973659, 4.355829864223754, 4.8750696903466935, 3.1857517587569406, 2.3955843112253175, 1.0949997847757278, -1.337320557525547, -1.13451404865298, -1.5867657281489338, 0.5476262446764697, 1.6862306898126844, 2.1624369354291937, 2.1224007545903487, 2.8118947348828516, 3.0409602343034243, 3.801586013121695, 6.534894503072425, 5.810962134027837, 6.081456915698374, 7.02543994234291, 6.413628864108883, 7.5917921434860185, 7.230158041055882, 5.318943165496788, 4.410892085992468, 2.7343290346802367, 1.642920988571115, 1.365540478411565, 2.8796754835484464, 4.477663440904514, 5.337990952305988, 6.730451267181779, 7.4815316755605386, 6.868580792394561, 7.456133179401593, 8.250516769293364, 9.878135373796983, 9.697050750940004, 8.878608792852656, 8.74015978454558, 7.793474579376753, 7.0002495141025545, 6.182163092862033, 4.920527377411335, 4.847899097043267, 4.889419842946372, 4.578680525705044, 1.922233116432675, 0.7549223529568297, 0.11656477419622227, -2.1472431282601567, -2.899440176066965, -2.648773369327312, -2.711263225320458, -2.324616290018846, -3.2846588698872186, -3.209586327282157, -2.791112916115786, -2.6320115131507613, -2.2033043039728426, -2.129579266182353 ]
What is the most likely variance of the given time series?
[ "1", "varies across time", "0.53" ]
0.53
multiple_choice
42
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Variance" ]
Check the degree of variation of the time series over time.
Pattern Recognition
First Two Moment Recognition
423
[ -0.49864058798827815, -0.3224637209201871, 0.09412095419959511, -0.4705439770164649, -0.4751409161716889, 0.5449706765897245, -0.5570350666269994, -0.5042831411603178, 0.6964200488084447, -0.24693714984319418, 0.6225036099189399, -0.6164980382802373, 0.0432707769614597, 0.21594814285630473, -0.5529482684704394, 1.0034765520473543, -0.23273757911658516, 0.02429409778149444, -0.1993299876995617, 0.701577291389029, 0.11378907238235905, 1.2180268071563294, 0.5508374602320969, 0.24672837813762352, -0.48456616537676656, 0.12413661347690413, -0.21478673676630705, 0.0016191050440453342, -0.039670492883316075, -0.577020396400073, -0.11516397753656799, 0.013763972258272, -0.5257606548326164, 0.5263187950714673, 0.28330404370832674, 0.519775663812519, 0.09928594449444425, -0.93679789973929, -0.35404873681266014, 0.8644390881988627, 0.25425411816496424, -0.914854613797623, 0.021915143737226167, -0.4687608789089357, -1.1798745122707233, 0.8424482280095069, 0.1580789299421554, -0.018116448723019707, -0.7380559189367355, -0.725472749546277, -0.7366185557974352, 0.8642852545209355, -0.835147095471713, 0.8879123579654035, -0.643132965782856, -0.6309994009851997, -0.14154479688614036, -0.3585908626004833, 0.017243060541302473, -0.5244112989266327, -0.16335195004259326, -0.33431007999811185, 0.6340951301828563, 0.32684808558388256, 0.35911887533077735, 0.5785947303761617, 0.3179043799891985, 0.13834282293195943, -0.03961041725884057, -0.3965173219905361, -0.34861510089566144, 0.12114894494536248, 0.39786328278181526, 0.37236428747656825, 0.15091367642303807, -0.5162738023336971, 0.33705681973075846, -0.06950146370847168, 0.006950528904085956, 0.1939215925955975, -0.5021979504075054, -0.02404171546183831, 0.007923085800582666, 0.5502539444777418, -0.27867304726873077, -0.01691515414998242, 0.143873436248616, -0.21962540125288244, -0.29142460103743584, -0.29928170588677866, -0.07440653583128796, 0.9296861265037025, -0.1875555365925604, 0.33409169202323397, 0.12165122867362937, -0.09928172679658916, 0.04322273730511596, 0.30878221563695596, -0.16986972962656854, -0.0022246730117271712, -0.12160024746915848, -0.5097063675609799, 0.5728174782779025, -0.21122263508637307, 0.8436114097663998, 0.12017970972237059, 0.5547728327025622, -0.037152245168758716, -0.3309144184088486, 0.4235671155126707, -0.4140072231553065, 0.7697826183377369, 0.4186927150536957, 0.5099707806566716, -0.47355890765813813, 0.48499697929313723, -0.38632565066034735, -1.2572551584652012, 0.39872540254104916, 0.061873258605564446, 0.44137603619561594, 0.12347882927974124, 0.10828726843971113, 0.7067405045085898, -0.022062643700843917, -0.24070467489302727, 0.10351660778645633, 0.024295799172251983 ]
null
The time series has three cyclic pattern composed additively. Which cycle pattern is most dominant in the given time series?
[ "SawtoothWave", "SquareWave", "SineWave" ]
SawtoothWave
multiple-choice
21
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition", "Amplitude" ]
The cyclic patterns have different period and amplitude. The dominant pattern is the one that has the highest amplitude. Identify the pattern with the highest peak.
Pattern Recognition
Cycle Recognition
424
[ -4.353705369374808, -3.718057657654491, -3.314993483940233, -3.350344820362459, -3.1555295103740058, -2.9369868917966095, -2.8708008070278748, -2.7086421506733505, -2.6742975588917397, -2.5694600666877907, -2.4480166356459168, -2.5169729337026885, -2.478499316140748, -2.557472134395922, -2.4007461684462714, -2.3378350122252347, -2.105078912249438, -2.0958202618775537, -1.9221522728875842, -1.5963441663903928, -1.204223253433552, -1.1845744810438121, -0.9147922377718428, -0.6106295599709722, -0.44592780892698436, -0.2613389826408982, -0.16788989529504053, -0.042773756335646756, -0.01833047601997266, 0.1708129641497503, -0.729071264612295, -0.6741201562772348, -0.7699227628096919, -0.6088428077750129, -0.535739560183187, -0.7063637262286798, -0.5233257664987041, -0.2540963675663325, -0.2830437155810929, 0.017736739227160958, 0.17345927421136148, 0.4313774087870726, 0.6373907467225237, 0.9435230533375156, 0.9930976524598587, 1.2126860595613953, 1.6347271991437697, 1.8532964139331372, 1.766265626456438, 2.0310715070227583, 1.8476557549992068, 1.9153112847082545, 2.143922642452704, 2.1033115356856555, 2.2126908980267355, 2.1414764034804916, 2.0571776544114275, 2.2717686619532107, 2.4912742983660854, 3.451965917189204, 3.619215832983582, 3.903726289799712, 4.0249111895096075, 4.345547871151297, 4.557821770424989, 4.728934446799295, 5.085073109997419, 5.236181149298655, -3.466393394162303, -3.3085978155485534, -3.2411387173476265, -3.212289716199484, -3.2743991278055105, -3.1231357114549665, -3.112424647969403, -3.00949299181366, -2.934548992775129, -2.995318742442216, -2.7871221119137726, -2.7988098585756527, -2.56294255222539, -2.4283650107891965, -2.086284374577863, -1.9238717072433291, -1.7114907679399278, -1.5274735237212822, -1.2711687737551773, -0.8461015908819132, -0.8942082948765496, -1.5814639327009052, -1.516367362025667, -1.3665759899597316, -1.262076012392395, -1.3371014135385388, -1.2007905084918855, -0.9713674681860238, -1.1613437566652554, -1.0145847442563642, -1.0646116764442535, -1.115633738667911, -0.8739580406810327, -0.7821635666385337, -0.6267592627714197, -0.36746373025506257, -0.15049684856521536, -0.006001585355602204, 0.6064127810528261, 0.6431760307871452, 0.7963574092212149, 0.9661383139188066, 1.2334714079767952, 1.4454728041569855, 1.4002226647935816, 1.410017861160895, 1.5894513797032088, 1.486476382109853, 1.540515119359982, 1.6259135099483024, 2.470136141728399, 2.3641361053700285, 2.6181410090676818, 2.859482952384316, 3.004470198668947, 3.250111253544407, 3.282858771678159, 3.705647210216976, 3.8010105886270225, 4.078569791445938 ]
null
You are given two time series where one is the lagged version of the other. What is the most likely lagging step?
[ "Lagging step is between 30 to 45", "Lagging step is between 5 to 20", "Lagging step is between 60 to 75" ]
Lagging step is between 60 to 75
multiple_choice
100
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
You already know that one time series is the lagged version of the other. Shift the time series by lags proposed in the options and check which one looks the same as the other time series.
Causality Analysis
Granger Causality
425
[ -0.8829782534975581, -1.145957751328759, -1.203202990596473, -1.4007870404356715, -1.4165686096619878, -1.1928854166391654, -1.4936567739644242, -1.4745222064190002, -1.27505537527648, -1.2938428897137821, -1.13654934587673, -1.199170333540733, -1.161932437996062, -1.065848097976539, -1.1905358373646133, -0.756599063963497, -0.6306954625389626, -0.3466646517896616, -0.1131978940119878, -0.041853864016524585, 0.26022692932173996, 0.30118944795615243, 0.1421096534772983, 0.1453400181741079, -0.0739889031099793, -0.5321281416941163, -0.7179692463975312, -0.702082192459668, -0.4705989118905683, -0.6570889484463861, -0.43688906061466826, -0.7007993423159838, -0.9012411061091861, -0.5853472413112167, -0.5749665909340824, -0.6128135062924105, -0.5615260849416639, -0.8245034501767026, -0.8966232567948478, -0.8960431652274736, -0.6276210484896555, -0.9917463091564139, -0.607441519032165, -0.6346128100475996, -0.8766970021490585, -1.1582535167663384, -1.0987111641916396, -1.3923821231162101, -1.5144804463816854, -1.5689554724351211, -1.3196517404923365, -1.097644540849647, -1.2378069985676785, -1.2841686605585956, -1.631938046403891, -2.0764295256967866, -2.3443440677134864, -2.099526105885138, -1.9294804989304608, -1.845897287418712, -2.163637020601131, -2.318767869672712, -2.50575966839288, -2.5419447616551225, -2.5918749162572228, -2.8102861101065604, -2.7341622137375072, -2.6842554219492927, -2.8431276549342597, -2.7767996425703574, -2.531722713475638, -2.22042741454483, -2.113470606289379, -2.0129212846981295, -2.0652678768205646, -1.840806293137658, -2.074126457337566, -1.874921172711465, -1.9376145840388752, -1.6126132726481497, -1.484393317135182, -1.4991871123486924, -1.5507377847979409, -1.4361622616349792, -1.332156487637533, -1.418989139755312, -1.39897035604481, -1.203571095264108, -1.500761803562228, -1.3425315088335812, -1.2289147422528772, -0.9702438323392698, -1.126245339030679, -1.124999320123427, -1.0802975662258825, -0.9192512813932593, -0.825710386720318, -1.0959143452684166, -1.0324712196934642, -0.5955801535659688, -0.46222640522922764, -0.10515734946437552, 0.12221399806486678, 0.41919667873939503, 0.48676508235789784, 0.6005192950599142, 0.6562182384872651, 0.6571644803453542, 0.8189515778461895, 0.7053811633758112, 1.1163655283724723, 0.9140729657476979, 1.090943104179292, 1.3914722818249599, 1.3529714542848705, 1.1103595078438395, 1.3622471968563925, 1.4065842480922404, 1.5838746505748376, 1.560015230436535, 1.9375481900597704, 1.4760729748535557, 1.5580738988715281, 1.8505546625236933, 1.8735169551477573, 1.939426502720819, 1.8448185987037977, 1.849328375419145 ]
[ -2.7341622137375072, -2.6842554219492927, -2.8431276549342597, -2.7767996425703574, -2.531722713475638, -2.22042741454483, -2.113470606289379, -2.0129212846981295, -2.0652678768205646, -1.840806293137658, -2.074126457337566, -1.874921172711465, -1.9376145840388752, -1.6126132726481497, -1.484393317135182, -1.4991871123486924, -1.5507377847979409, -1.4361622616349792, -1.332156487637533, -1.418989139755312, -1.39897035604481, -1.203571095264108, -1.500761803562228, -1.3425315088335812, -1.2289147422528772, -0.9702438323392698, -1.126245339030679, -1.124999320123427, -1.0802975662258825, -0.9192512813932593, -0.825710386720318, -1.0959143452684166, -1.0324712196934642, -0.5955801535659688, -0.46222640522922764, -0.10515734946437552, 0.12221399806486678, 0.41919667873939503, 0.48676508235789784, 0.6005192950599142, 0.6562182384872651, 0.6571644803453542, 0.8189515778461895, 0.7053811633758112, 1.1163655283724723, 0.9140729657476979, 1.090943104179292, 1.3914722818249599, 1.3529714542848705, 1.1103595078438395, 1.3622471968563925, 1.4065842480922404, 1.5838746505748376, 1.560015230436535, 1.9375481900597704, 1.4760729748535557, 1.5580738988715281, 1.8505546625236933, 1.8735169551477573, 1.939426502720819, 1.8448185987037977, 1.849328375419145, 1.4848893315822875, 1.3282823439583955, 1.156781819330866, 1.3026405643829082, 1.1780907392866693, 1.0598394077002429, 0.9774579241545007, 0.81426488629799, 0.8729076059009787, 0.9552254617275396, 1.1350668308850314, 1.2773563155120558, 1.3978490075723757, 1.3261389672778745, 1.2404483920358584, 1.050537784761707, 0.8566963289979979, 0.8990423303486158, 0.7422206914815423, 1.0622927831898044, 1.0541181801784103, 1.38139814592433, 1.5060345752855984, 1.3366089793412979, 1.3230838639319924, 0.9582969759228538, 0.9998067763309755, 0.850319804251573, 0.6076030732364485, 0.939407669938065, 1.1640599564817793, 1.382707036308527, 1.5531952729175211, 1.284008442569936, 1.1967100688409833, 1.1227034934539295, 0.7500070913814151, 0.6285894142755876, 0.5095484495712223, 0.5370142834164903, 1.0890358553644979, 1.0844807882578187, 1.1120589947216, 1.0575170011990438, 1.218327069790136, 0.9842296253061786, 1.3975366555762414, 1.3704718567787737, 1.2843265475744694, 1.4957797193564424, 1.3015722885120067, 1.4583579473321602, 1.7646634208193213, 1.712054406074635, 2.159542323842823, 2.299987973271071, 2.4431372279408827, 2.7408748765250484, 3.096350030883018, 3.15342690523658, 3.3271400423572226, 3.631521024936025, 3.378264068291914, 3.001259129062544, 2.988713259065689, 2.606479095769048 ]
What is the direction of the linear trend of the given time series, if any?
[ "No Trend", "Upward", "Downward" ]
Upward
multiple_choice
4
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the time series values increase or decrease over time.
Pattern Recognition
Trend Recognition
426
[ 0.0419414938153645, 0.0005323986736810449, -0.19197833213959203, 0.07029214293406069, -0.08580443666968729, 0.16174869062010586, 0.028095184085447276, 0.16212901036656846, -0.00003620644264323847, 0.0948221629484017, 0.2432870449440956, 0.07272203842773722, 0.04312046108319627, 0.20443915854051192, 0.2116685691214809, 0.07701235334273678, -0.0883708437409143, 0.0887290433060705, 0.255104916717741, 0.08781187854493533, 0.19045834282227217, 0.1213068828943487, -0.02434322032978037, 0.13829421916280515, 0.312127190881356, -0.04892771847170735, 0.28003824226335505, 0.11446935728426849, 0.3426068865044751, 0.36509082558915645, 0.26674463275367105, 0.2766118010876527, 0.20866025443186498, 0.1525797461620366, 0.5328492364636388, 0.23027886315601967, 0.5361598361074325, 0.25013642810769077, 0.4283631349150465, 0.23542130344629367, 0.4473235247430609, 0.3535180960021238, 0.36469951820408075, 0.48664226508886477, 0.3648036594868008, 0.25759865433241613, 0.5338350464080993, 0.3111518008085147, 0.5232020782014046, 0.5883848037577816, 0.43374582617047225, 0.6330607058147293, 0.5573300684905496, 0.4234978145742249, 0.6885098810483194, 0.38838298080688477, 0.4911360134428109, 0.5214762758350445, 0.629900573804909, 0.7016269515303546, 0.7035875281858753, 0.6122104255339605, 0.560417216248956, 0.38175884884162503, 0.45368359198632435, 0.8384744263103072, 0.40929885757058504, 0.5469572341230868, 0.7914855322849053, 0.6872173149324983, 0.7842902518026413, 0.7469654146245457, 0.8694214758031371, 0.7360142432903372, 0.7904238416374654, 0.6310103503222557, 0.8002113159925603, 0.6901501708610721, 0.6928003014745768, 0.8665378147644739, 0.8769676490642878, 0.9823814078200321, 0.9840329830700894, 0.9076472675452311, 0.5959920236513757, 1.0376969616713396, 0.93649529889422, 0.7410166201725118, 0.932649487096927, 0.727142004175015, 0.9383979856419948, 0.7123419720759367, 0.7838055379988793, 0.9782855751884566, 1.0320785872001856, 0.9506384879584169, 0.8857424585318194, 0.6726205208957441, 0.9143170624389376, 1.0143341256444063, 0.9203742943836147, 0.9657919650939344, 0.9555254043761993, 0.9485410958247026, 1.0065511010650707, 0.9736891149069319, 1.1922630623985755, 0.7573658313840104, 0.9691918245238743, 0.9392720075728714, 1.081532161344045, 1.0738321032274936, 1.2715883033296642, 1.3212395044612306, 0.9990539869634598, 1.1028558642538293, 1.1362917949985045, 1.0248107249764022, 1.2080922411222605, 1.111984183302684, 1.0207186076934782, 1.1262843281085997, 1.0484178974279956, 1.3057611607452033, 1.4206857042749454, 1.2285059750247755, 1.221831753521555, 1.2364337809293735 ]
null
The given time series has a cycle component and a trend component. Is it an additive or multiplicative model?
[ "Additive", "Multiplicative" ]
Multiplicative
multiple_choice
11
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Additive Composition", "Multiplicative Composition" ]
For a multiplicative composition, the amplitude of the cyclic component will increase or decrease depending on the trend component.
Pattern Recognition
Trend Recognition
427
[ -0.03107397732764521, -0.06192397592650159, 0.08092807027867581, 0.09105523186352216, 0.12361770286500642, 0.381674249082487, 0.44200772706699876, 0.5060164118870617, 0.2547192196923692, 0.21255654424816176, 0.130379152335653, -0.14302198993131288, -0.2653209878536472, -0.5083881639730615, -0.7253515522552983, -0.7942234677003404, -0.9694793339420855, -1.0195681644204377, -0.9516354258881016, -0.7373689422243829, -0.5297893723646652, -0.2252954733066563, 0.41447575253186775, 0.9115845635377406, 1.1401475180981653, 1.6375850539715, 1.6523716305378804, 1.5235916750897824, 1.7020028669156972, 1.2946335882166626, 1.0313912260417375, 0.27568469321864875, -0.15502538327438886, -0.8964582073624436, -1.3797737712712028, -1.8130243390580207, -2.180897574039317, -2.386462161578253, -2.479606051896023, -1.9998268195384576, -1.497098946083643, -1.0615379660971045, -0.28437534292410693, 0.7299870106440516, 1.4014549965222665, 2.0428571466668806, 2.703436906040905, 2.9401230857469614, 3.089832304487868, 2.8267502691193727, 2.361552364662144, 1.7957370498160516, 0.5476302776282697, -0.1469039083214148, -1.124775133793062, -2.22688282463867, -2.8562005150551872, -3.5940300025894327, -3.8169591307253534, -3.7527089981697808, -3.1711954859005855, -2.7245170829628584, -1.4167427580975567, -0.46826180843823867, 0.842875988940225, 2.022006633144773, 3.0325304040772605, 3.767361819387259, 4.443247186515797, 4.386876990686146, 4.090646348447162, 3.5962546756631544, 2.535074797968939, 1.4149799414375177, -0.11725545762635983, -1.5944268909943726, -2.821854270389778, -3.9946720564555576, -4.788790429086973, -5.01814119732525, -4.84703380303798, -4.532875355455598, -3.6683647272494766, -2.3071494191978594, -0.7256051476443109, 0.869183097163504, 2.5467586893242986, 3.8986277163265526, 4.81768432932745, 5.560658587516089, 5.669562891452879, 5.606890332390713, 4.481851215656906, 3.3066735580094724, 1.8048921864926455, 0.13435876153577853, -1.7970747358185946, -3.487415150107344, -4.919941248152407, -5.897594425124595, -6.5613276012660435, -6.4963428857817105, -5.625909118744857, -4.6189868931117655, -3.0119488565344747, -1.2060471317597352, 0.7940764516110557, 2.8404403244724383, 4.643290289388286, 6.058100364967156, 6.859180130709549, 7.2718743411992035, 6.6024547335752075, 5.996981914722013, 4.382406713159887, 2.57869551484303, 0.2993307573740094, -1.9973801971906124, -3.9326552100951924, -5.902627384983422, -7.098137795795025, -7.840836343923339, -7.801826516956427, -7.039227193475296, -5.860215807634162, -3.9353964881737924, -1.667006168252159, 0.614238576660755 ]
null
You are seeing two time series that are random walk. Are they likely to have the same variance?
[ "No, time series 2 has higher variance", "Yes, they have the same variance", "No, time series 1 has higher variance" ]
No, time series 1 has higher variance
multiple_choice
93
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise", "Variance" ]
Random walk is a time series model where the next value is a random walk from the previous value. Variance refers to the distance of the values from the previous steps. At a high level, you should check the distance of the values from the previous steps for both time series.
Similarity Analysis
Distributional
428
[ -6.98755967482704, -6.935622269501669, -8.353115210762795, -7.673860466637845, -10.197766864349047, -7.863293986826051, -7.199550451432585, -5.930474291284089, -5.108128228527596, -5.161324057921872, -6.120678629968519, -6.15121736691821, -5.112109127288126, -6.1344924954917985, -5.939345462815027, -8.189012960697564, -9.193650251079754, -10.260783315291842, -8.172480885583358, -9.834622684148815, -9.339309234487741, -7.357733296811929, -6.10822748232296, -4.217402269049507, -2.1420230816896715, -2.0722019127552813, -1.481751017988907, -1.2395007322287641, -0.6420120444326949, -0.11781184276416723, 2.016528808057368, 2.3791469300269816, 1.193820010531552, 1.934313659483768, 2.842542028269906, 1.8210353165218307, 0.7486972134434439, 1.930384988780909, 1.267939068061599, 0.7539479381849706, 0.1804421098642754, 0.4850846156300228, 1.8561578656795585, 2.68712396056832, 2.1126325701814945, 3.7755518448170324, 4.856056065860096, 6.089469013686197, 7.282446523431058, 6.642926513347705, 5.49975249968214, 5.079167797006406, 6.310269717569442, 4.843946888532945, 3.209561544961474, 0.9554341269906781, -0.6056085775734065, -1.5862708464855957, -1.431551045603587, -2.862578768922229, -2.0399239557797797, -1.983912914349798, -4.522748510229472, -4.545769163832642, -4.3698766255572385, -1.9880880618591503, -1.687295868292, -3.88610630249324, -3.600772649337225, -3.3840212443432307, -2.6322474771207176, 0.644892783551746, -0.021945611917256636, -0.8330122517784753, -0.25005479622509574, 2.0187161050547644, 2.8526775583377932, 2.4268498925092628, 3.6508120625357825, 5.8801796881939445, 4.924745064633815, 3.68111341874675, 3.7505389095861568, 4.124799891791625, 5.844875099322538, 5.262297430076707, 5.761743906858408, 7.696623935997959, 7.974980051337413, 7.483811858510498, 8.19244037587413, 7.781871540134935, 8.201460559439658, 7.969796308030755, 7.790415273384692, 7.289763928390583, 6.576773717693526, 7.812075558597461, 8.048174154005103, 9.631231785711673, 6.83449659626951, 6.188491959134556, 5.267981044928348, 4.952380919615906, 3.6698365843142238, 1.6723552211210193, 2.5078186992281895, 1.7705962516533598, 2.4611570549449158, 0.9967807040578346, -1.036415228135104, -0.7366257053410485, 0.049659455270254185, -0.7153387237522648, -1.9793342776437275, -0.4267654037839009, -0.4978874002366731, -1.7383367350162424, -3.5988909035239147, -4.454442186589408, -4.9444960837163965, -3.996429641070023, -4.017175636628586, -4.1855583504624585, -5.3231488259567605, -3.6071382374312115, -2.393582006171637, -1.2791833549721505 ]
[ -0.49955869569830347, -0.3643852070791658, -1.2323560961207995, -1.1641171491795395, -0.5159695153167021, -0.7115908125062294, -1.0438095238779899, -1.0918018581636675, -1.3821677232434793, -1.6936656287405343, -1.604339068601902, -1.326424581376053, -1.2340483367164805, -1.6204351934033254, -1.8460067124355328, -1.7377807522291706, -1.5161891173687183, -1.586305812541225, -1.8874157868065784, -1.6263807986740704, -1.0154489721065898, -0.6366463162086222, 0.03224244955559221, -0.17720883708767277, 0.17044543968022846, 0.6047261823310914, 0.4405309385344074, 0.16223402745197313, -0.16172722869097594, -0.19240318058439954, -0.6999289026562332, -0.13045997336760543, -0.5631830985210196, -0.42099870642149, -1.1838222205896944, -0.4944248738247167, -0.07327581436766221, -0.6104980022188534, -0.5076759511371304, -0.5890968305855767, -0.5368434565687481, -0.3226966718620887, -0.5925483055933215, -0.6106201696266732, -1.2205525591517832, -1.1925131901549402, -1.8865569427511444, -1.446411409437732, -1.9401610363623045, -1.8409545561159844, -1.561647887579087, -0.9332969667995156, -0.33555331803234417, 0.13429078378611023, 0.12888434667345708, 0.5049392372403545, 0.5979547209867015, 0.7197020495471564, 0.5106447353836436, 1.0976522517994522, 0.8270280581405902, 0.4662255889826181, 0.6036311131141402, -0.0004197412563784553, 0.039206221175287735, 0.59019318982061, 0.7301068599523218, 0.7407647902268877, 0.4576282147083121, -0.048744485227226145, 0.24233594640203718, 0.25177066308188073, 0.46228124022913686, -0.2766336208811956, -0.02990020828607087, 0.6394484676299698, 1.0915637649234364, 1.1915590173996513, 0.8394976262873836, 0.8805517402856528, 0.9324903459074658, 0.7654340545146023, 0.6241159425179312, 1.3314816266809832, 1.0059645583021846, 0.8614029554974604, 1.0505360990934383, 1.7856571909582302, 1.684183825256531, 1.0778405126716184, 0.3576604073251163, 1.2071156716157634, 0.5635315553286825, 0.5891412682397911, 0.07929056721673315, -0.18656606888104346, -0.4050741797618741, -1.064144123639624, -0.6532439128393308, -0.5080478861839979, -0.6519931183052969, -0.8457581216574771, -0.47885872578652006, -0.4485269075841258, 0.2544922625166857, 0.10361137845603417, 0.24706175168615005, -0.16801042415788697, -0.31404578946031253, 0.03566841256138029, 0.43301408927218477, 1.0536672919092416, 1.2036841687831576, 1.6202233109733812, 1.8305176305158248, 1.6912981554330555, 1.1809450289657157, 1.1029252861055747, 0.7168809096499524, 1.072353973506827, 1.446958446034326, 1.1046542500952217, 1.4795262957901767, 1.0816798045812424, 1.56862214329555, 1.5141300895963448, 1.668766637368211, 2.1573034988388855 ]
What is the primary cyclic pattern observed in the time series?
[ "SquareWave", "SawtoothWave", "No Pattern at all", "SineWave" ]
No Pattern at all
multiple-choice
15
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave" ]
Check the overall shape of the time series against the definition of provided concepts
Pattern Recognition
Cycle Recognition
429
[ 1.0470063281503015, 1.0513508153962476, 1.0565376944221412, 1.0540775979190815, 1.0506302197391617, 1.051700025443701, 1.0540483726941736, 1.0491015755232316, 1.0251920329803432, 1.0468912687875234, 1.0560513373969256, 1.0333442409582851, 1.0376231995268832, 1.0410811699080282, 1.0436875944426538, 1.0359247363055728, 1.0423037702264868, 1.0470538530182234, 1.0207660934958118, 1.0424862224653892, 1.0377219294811346, 1.0239265781321585, 1.0475845757691424, 1.044950014361591, 1.0434253465897732, 1.0480667363678695, 1.0450537504194828, 1.0340205260431847, 1.0492386311029156, 1.0510226037763544, 1.0303963318923826, 1.0508796509234393, 1.03875361110671, 1.048091067971724, 1.043290160374688, 1.0399152796222961, 1.0473242577684543, 1.0382369820955208, 1.052960754782508, 1.0546737216413944, 1.0360083585032172, 1.0399652407118536, 1.037809774707333, 1.0456163278982598, 1.0553542174127373, 1.0243360794220229, 1.0269327021632477, 1.0408371735820627, 1.0436441160148422, 1.0319017476210495, 1.0435900505771638, 1.0339886671771508, 1.0370531536702436, 1.0549330864703361, 1.0381328240474594, 1.037949569958371, 1.0430798396573144, 1.0530857382359935, 1.0412590999557956, 1.035892028970258, 1.04774005786109, 1.0501735930979983, 1.0536312882232353, 1.0413357661661347, 1.0466572007589237, 1.0499408334584486, 1.0436017458030482, 1.0554519828928626, 1.0484927827539874, 1.061321215955093, 1.0512671238412672, 1.021636592746127, 1.0375573951202532, 1.0248540561327002, 1.0350526256467685, 1.0378387603336565, 1.050756848750287, 1.0371273396293355, 1.0562308353205276, 1.0347431287759374, 1.0387021682183255, 1.0287931153822578, 1.056755228892477, 1.0581489146674623, 1.0403309121953057, 1.0262830636093383, 1.0395385660154448, 1.0441256397101484, 1.0350938591098688, 1.0661962630051616, 1.060721981308492, 1.0234896686885322, 1.0296880097054102, 1.0464858158325008, 1.0305414318541741, 1.0436126029574833, 1.041818774369629, 1.0412950857038021, 1.052320180045964, 1.060535285634133, 1.0458332350106823, 1.0290809485260255, 1.0432061336488365, 1.0356221225823952, 1.0624609241464655, 1.0489279805207523, 1.045900340910218, 1.0484742586257116, 1.0413076332646278, 1.0547500154912341, 1.0357602744207626, 1.051708048120954, 1.0582912748163287, 1.0332283046800144, 1.0452246620181989, 1.0460465374246535, 1.030513968372023, 1.0274464870050555, 1.0321652502511287, 1.0411647958534846, 1.046070633835545, 1.0378568953837082, 1.06181890465246, 1.0523970162354794, 1.0464228584929196, 1.0372232654144167, 1.0424347075583824, 1.053182241455817 ]
null
The given time series has square wave pattern. How does its period change from the beginning to the end?
[ "Remain the same", "Decrease", "Increase" ]
Remain the same
multiple-choice
18
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Square Wave", "Period" ]
Base on the definition of period, check if the time interval between two peaks remains the same.
Pattern Recognition
Cycle Recognition
430
[ -0.11970550048264106, 1.8808120690562482, 1.7164004755320343, 1.6690802356856553, 1.6176284561802599, 1.6374954317061998, 1.4619359474104554, 1.625847191978375, 1.6172664147045996, 1.51972939064855, 1.5562906296018502, 1.7616609143030537, 1.597625782929212, 1.8172604052120092, 1.4360753313099597, 1.5579302563361233, 1.4554154198340061, 1.4892010295695146, 1.5273227043927684, 1.6416742376357571, 1.636825892066737, -1.6780723069214587, -1.8329232306923564, -1.4623739876554829, -1.6387197465623338, -1.721772291988812, -1.5826501968516895, -1.5896987579063808, -1.6424109214586946, -1.5952901733945477, -1.7256462589994999, -1.5341519906410497, -1.7098299844343852, -1.6707002404890414, -1.5452630933435405, -1.4897473784576747, -1.4515658181540643, -1.504563451112041, -1.6425504933388764, -1.7642465818687445, -1.4696377163984087, -1.4730736760682006, 1.5429456596233486, 1.702262178741154, 1.5769254955656242, 1.760270963309871, 1.55865680871832, 1.8080084037135484, 1.6887553297185227, 1.789897759427297, 1.5637635479937102, 1.6506462354031175, 1.5132153551242615, 1.6945422001706179, 1.7000474282424105, 1.8498456667788168, 1.658347254680663, 1.6825526952093075, 1.56306023730832, 1.664281212222222, 1.5721541540899397, 1.621729350842898, 1.6275948411132777, -1.645373762293615, -1.6038487653044988, -1.6476727919300402, -1.648116387462082, -1.502476809808471, -1.592601910776057, -1.5754366477386705, -1.7558737518572518, -1.567797441775659, -1.5571009285611743, -1.6499771372275733, -1.401640307332629, -1.8390660013771047, -1.5317065613816434, -1.5388627944632118, -1.555984981758757, -1.5925220043948358, -1.5550753426961943, -1.5233257270031086, -1.6827320333418976, -1.580223712740689, 1.5918115907563677, 1.5007664349361474, 1.6818602724200271, 1.5537072324902947, 1.4603574074807515, 1.5562322088885332, 1.5302533851493851, 1.7129911758777092, 1.6254625890145058, 1.7483815495276922, 1.5434876518353935, 1.697560262148348, 1.8941055664394895, 1.6457465216714122, 1.6963081611910134, 1.6794950413812388, 1.4679357422161154, 1.6687250047054432, 1.640788907023655, 1.5841685366188671, 1.52173963753821, -1.5407449509259945, -1.7073836489197602, -1.3967787144905084, -1.5987263666098852, -1.7324739797373485, -1.661542902791532, -1.6379567087876798, -1.3689056095663135, -1.6986021696396478, -1.621765001283837, -1.6639261119452005, -1.5602174264005317, -1.6623316163292026, -1.7240489415726692, -1.629672732938318, -1.6400826592919224, -1.6693677127210995, -1.6640243108484098, -1.4916736951705978, -1.6421172963854485, -1.7235560412065414, 1.5639316785787125, 1.6155768409052373 ]
null
The given time series is a random walk process. What is the most likely noise level?
[ "7.74", "1.72", "4.6" ]
7.74
multiple_choice
55
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the past value.
Noise Understanding
Red Noise Recognition
431
[ 22.195554382073173, 21.933585880105834, 21.882619145374836, 21.462153303580802, 20.827693547478408, 19.361459072204173, 19.280659512033615, 20.516581471542597, 17.596003300564806, 20.128296873944926, 13.263708117883684, 13.402495995541974, 14.066029153129369, 13.101556604134199, 9.172516389057021, 8.812237703880395, 9.247542238763623, 6.913908558945529, 5.5001120113842745, 7.291576121615289, 7.566661548349002, 4.713172785750514, 5.366862666804804, 3.759721231521351, 2.429167341856904, 2.438378991741229, 2.9508039237059918, 2.2544524793784233, 0.9942365660836961, 0.602303403542091, -0.7520471025924891, 1.1628318754459164, -1.573598056165258, -2.058770547149619, -5.057455508183969, -3.226772103807168, -3.5327888971228387, -5.530931075339735, -4.089279612108285, -8.724615776273923, -7.960600315374234, -6.025113953329523, -5.544842360455333, -6.461564817342805, -9.19452828865418, -6.7610146179894235, -4.963378001257866, -6.210222177357685, -7.282015712636789, -5.151075741734422, -4.298013669100244, -7.492168373295373, -8.04481041094385, -8.416070008281276, -7.873779073089908, -7.900738822045551, -8.77806076872965, -8.32769274868042, -9.535376293352664, -3.010962988244282, -2.7148702154392685, -2.8205690896547653, 0.6960643920651165, -1.7936744793809833, -2.014514685462616, -3.8462346072171485, -2.6577560947063446, -3.6278896792980526, -2.370253858302929, -1.3855352058570862, 0.022784532351931674, 0.7958767854145652, 0.46176940800687816, -2.1297982531024924, -0.3394133119452159, 2.4217870344707437, 0.646085232853376, 2.1410799702902668, -0.22595948668583143, 0.3241323456410917, 0.8847543856480514, 0.09431325808847149, 0.3175869127289277, 1.9611031473896348, 1.5081656610950074, 0.5215763847761873, -1.6630272844792011, -2.5063144806780264, -4.809531344330526, -5.6091509670593265, -6.560034648418361, -5.0254674144797775, -4.735581463154439, 0.29557358184919813, -3.987021800197344, -3.0538745388577277, -4.043878850758518, -5.813968564396157, -5.930372186156613, -6.170787119223987, -3.987350109317102, -3.8014036805475864, -5.06835728250477, -4.6729683485311355, -4.850462446785404, -6.972766677803955, -7.488571578035, -7.137265851672192, -6.927909764839575, -6.35140611901316, -7.232132061620966, -6.766216944467425, -6.4920684762877015, -6.434698983115445, -6.169271083797731, -2.1678697461742784, 0.05344605611096556, 0.6385274628091909, -1.0115236741850306, -1.4991194284284692, 1.5646481482781025, 0.5215871141993887, 0.25098909605367226, -0.17994457583337392, 0.41046981259121723, -0.21578103413853522, 0.03336525431966643, -0.6832490567719745 ]
null
Is the two time series lagged version of each other despite amplitude difference?
[ "Yes, they are lagged versions", "No, they are not lagged versions" ]
Yes, they are lagged versions
binary
99
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the scale difference. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
432
[ 0.7097854922137934, 0.357587194403462, 0.2593726222993195, -0.29114146198906665, -0.5428940127682795, -1.246176766874466, -1.2526649172806947, -0.7208965832490825, -0.7105273536627278, -0.6992361838102173, -0.8155742311300238, -0.4993429992682167, -0.5161165263068646, -0.8720078199977606, -0.8170834178228973, -0.3144972249360356, -0.7765982343469703, -1.081230085987963, -1.115038604782548, -1.22850771823562, -1.0925459901132024, -1.4107693316894934, -1.5822598344643513, -1.5652822269708269, -1.5372069325487077, -0.6944016542238414, -0.44082314854037835, -0.9395588805490527, -1.2682719766041348, -1.7090689986919247, -1.186568465679292, -1.5327015066685101, -1.34255138997426, -1.184854857035845, -1.659359260099065, -1.7949639185772535, -1.8805654177833606, -2.392385348959519, -1.8145176041308737, -1.7593649207883966, -1.2436107003701988, -0.5287830291728752, -0.4771119334166505, -0.3561673364898916, -0.6112036284252254, -0.17947410188794036, -0.19495568748581293, -0.33201630268766935, -0.580539917625615, -0.5568224522020278, -0.35561417123701794, -0.28968678695113476, -0.1399649018664134, -0.2097828125865979, -0.04635338007592737, 0.1071362907676297, 0.500421397365556, 0.7614370691729294, 0.811494097455313, 0.9457649751240303, 0.5730380926386668, 0.98673031222564, 0.9059415636630564, 0.8655685415044057, 0.7106913460012527, 0.4236387407227909, 0.15897007804440705, -0.18988529904364113, -0.26739934122446246, 0.0023876969201653392, -0.00495420077109058, 0.2098218819833536, 0.36560381701287953, 0.22041778413348678, 0.621259199943472, 0.9447501519449427, 1.2106118854331882, 1.3452360048158738, 1.2352415445821503, 1.124522392073545, 1.1148495575122677, 1.5609324726859377, 1.922779510243578, 1.4557494766908718, 1.5398100933542724, 0.7346210104564302, 0.5917435237457387, 0.3725274350718947, 0.5525458518425661, 0.20029641313071334, -0.2944825978366506, -0.45598060947609953, -0.4585150943628772, -1.0214533278111049, -0.6531039713943526, -0.7182794308617387, -0.7100927519806357, -0.3531349784895875, -0.59038426136754, -0.11083719226250027, -0.109041837141196, 0.14734885780827364, 0.29107564311299305, 0.5134819011050891, 0.5380927049961503, 0.3865443647578412, 1.0141910269114078, 1.007672462210383, 0.6523189277026231, 1.1278258598100916, 1.027218103993767, 0.46935190950398337, 0.20251954873565572, -0.43137964228996484, -0.6833264614368595, -0.11416415950648862, 0.03441633351733378, 0.03287901519674136, -0.15405634303106328, -0.19875479529304968, 0.16212745835187717, -0.4295648289005733, 0.5220327490928731, 0.2362855676451825, 0.1555137289631347, 0.10378318628519026, 0.04355212442971725, -0.17392936787178084 ]
[ -6.42695266525735, -5.629611634423864, -4.968355578850879, -6.958056329241722, -7.5266763230473375, -7.885622132834228, -10.031795054627981, -7.608669203551254, -7.377401938749974, -5.214731681617274, -2.217302902032365, -2.0006346955078835, -1.4934875463826343, -2.562910502554914, -0.7525741655859403, -0.8174918402849947, -1.3922169790943602, -2.4343308560987698, -2.3348783358565224, -1.491168003483501, -1.2147200608762114, -0.586903448048467, -0.879665218969618, -0.19436986153305844, 0.4492459011092527, 2.0983763763246293, 3.192872180170114, 3.4027722487318046, 3.9657994078654353, 2.4028740630543375, 4.137576026680555, 3.798811133034894, 3.629518220332647, 2.980084263299385, 1.7764099023512412, 0.6665963087649269, -0.7962305925009184, -1.1212639260113328, 0.01001213544719397, -0.02077404746550367, 0.8798290454958638, 1.5330567732568814, 0.9242599808530201, 2.6050757133860523, 3.96154403230325, 5.076360432755689, 5.640868811660548, 5.179637980812564, 4.7153683567440625, 4.6748080456895496, 6.5453312807275426, 8.062635056008245, 6.10427597184381, 6.456760524091897, 3.0804265804953843, 2.481310027125184, 1.5620890181812908, 2.3169456151285153, 0.8398866710909675, -1.234829944906881, -1.9120264321707268, -1.9226540816688578, -4.283177225995511, -2.7386078054863656, -3.0119027628611836, -2.9775742276404698, -1.4807722060197026, -2.4756103426619407, -0.4647645905754187, -0.4572362738537692, 0.6178659904053496, 1.2205438385473877, 2.1531419252284376, 2.256340409064724, 1.6208650702774556, 4.252724809840026, 4.22539104224299, 2.735315945574339, 4.729220519530891, 4.307350193458892, 1.9680952178920617, 0.8492087649489357, -1.8088691957897798, -2.8653373167997596, -0.47871529193699786, 0.144315214322715, 0.13786890234683896, -0.6459919430727307, -0.8334223302995785, 0.679835895007935, -1.8012592862939334, 2.188997501168173, 0.9907970678778035, 0.652103081059927, 0.43518560058985, 0.18262358388985972, -0.7293238830565275, 0.45822369877992225, 2.006973346090265, 3.303777140150597, 3.424724639574416, 2.624706221638283, 2.372813047407987, 2.25543765965548, 0.9245117139227617, 1.1663591009940801, 3.6092077961889624, 3.3787515170865707, 4.057389766881353, 3.1656256357616854, 4.368028238596591, 3.4750977948875224, 2.9141629055027356, 3.6165585380813208, 2.271653342571258, 2.8587883262432077, 4.285670073850389, 4.506833729246825, 5.686102381762411, 3.932699036754033, 4.541126259403626, 3.9218825905712382, 4.444946788125222, 6.5921703560624065, 2.5401522697006165, 1.6975366696820173, -1.4123160389960245, -3.0834356247662775 ]
You are given two time series where one is the lagged version of the other. What is the most likely lagging step?
[ "Lagging step is between 5 to 20", "Lagging step is between 30 to 45", "Lagging step is between 60 to 75" ]
Lagging step is between 60 to 75
multiple_choice
98
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
You already know that one time series is the lagged version of the other. Shift the time series by lags proposed in the options and check which one looks the same as the other time series.
Causality Analysis
Granger Causality
433
[ 0.2892055842796135, 0.0892597386828929, 0.13294942413832092, -0.9716348576162369, -1.6595103943708398, -2.4371936688194973, -1.6784334792438134, -1.2120668659166207, -1.1145616935735572, -0.5914370786097425, -1.0987161030910442, -0.35439631380519215, -0.305887182299667, -0.42513324220420257, 0.08264933040064858, 0.5606290108483215, -0.14959626383409053, 0.2816184684804086, 0.19511429208452966, 0.3338965099743305, 0.1278008622002947, -0.42119044006712875, -1.0982514650937762, -1.4084639385516993, -1.190360175532247, -1.062813163913337, -0.9611832579451935, -0.5624322283120469, -0.5902443457376938, 0.3579706270305701, 0.5467132402474753, 0.05288071822133797, -0.6167849175297974, -0.45037666928264597, -0.5578474638416235, -1.1361565998253047, -1.2149999444727608, -1.4906710042732865, -1.7127523180615427, -1.0335856116144613, -0.674368570440174, -0.15014959550845552, 0.7089727338466849, 0.7715270261819874, 0.8978341708171825, 1.0612571582601287, 1.6164878480060147, 2.143953817545228, 1.850321575321156, 1.2781421796471242, 0.7401497280283137, 0.7660355263753081, 0.1491749791419848, 0.3310827458216958, -0.7332721677268544, 0.2026141958055314, -0.4836585612671519, -0.8100001391807097, -1.099022537466568, -0.36651182490268824, -0.3701339205920425, -0.903589590807712, -0.9396830224102233, -0.9172669517196699, -0.7237117890310651, -1.27146880414631, -0.8288876268282988, -0.7638316360476058, -0.02989727227782036, -0.1167073294246679, -0.1544646993664106, -0.23737754474185155, 0.3889169399669056, 0.7315887775620531, 0.3657500798785739, 1.7044371255670296, 1.383477666934017, 1.120717267539977, 1.6029780649247987, 1.5226433663995433, 0.9831682053168224, 1.5997871809018873, 2.601759451076255, 2.0888288527510688, 2.7015086753909845, 2.454214406968221, 1.4124629884746647, 1.7385999057128863, 0.8021831093540056, 0.43682226939430746, 0.2992084176020298, 0.28274206987579253, 0.8297227921523208, 0.5228200550349793, 1.2212268385890728, 1.1754397476357237, 0.6319408671539926, 0.9292933403452821, 1.8300275360532772, 1.5995791109317725, 1.0771630014798712, 0.7886432568957636, -0.080251428361588, 0.07276231851902533, -0.7039239821395277, -0.3829195572676453, -0.5162033850015229, -0.16904684378494764, -0.30056787027592685, -0.05755710228454214, -0.5517352428193071, -0.41214165619858467, -0.7406339282588299, -0.43560255604607545, -0.507653854666349, 0.0438895781150412, -0.08216232015328617, -0.45669321248688194, -0.3888946597741587, 0.784239507403377, 1.3233366247849339, 0.922351584061686, 0.9205965773223983, 0.5875121390116413, 0.1518371230622872, 0.15906668009333821, 0.029772039445223414, -0.4911201240160754 ]
[ -0.1544646993664106, -0.23737754474185155, 0.3889169399669056, 0.7315887775620531, 0.3657500798785739, 1.7044371255670296, 1.383477666934017, 1.120717267539977, 1.6029780649247987, 1.5226433663995433, 0.9831682053168224, 1.5997871809018873, 2.601759451076255, 2.0888288527510688, 2.7015086753909845, 2.454214406968221, 1.4124629884746647, 1.7385999057128863, 0.8021831093540056, 0.43682226939430746, 0.2992084176020298, 0.28274206987579253, 0.8297227921523208, 0.5228200550349793, 1.2212268385890728, 1.1754397476357237, 0.6319408671539926, 0.9292933403452821, 1.8300275360532772, 1.5995791109317725, 1.0771630014798712, 0.7886432568957636, -0.080251428361588, 0.07276231851902533, -0.7039239821395277, -0.3829195572676453, -0.5162033850015229, -0.16904684378494764, -0.30056787027592685, -0.05755710228454214, -0.5517352428193071, -0.41214165619858467, -0.7406339282588299, -0.43560255604607545, -0.507653854666349, 0.0438895781150412, -0.08216232015328617, -0.45669321248688194, -0.3888946597741587, 0.784239507403377, 1.3233366247849339, 0.922351584061686, 0.9205965773223983, 0.5875121390116413, 0.1518371230622872, 0.15906668009333821, 0.029772039445223414, -0.4911201240160754, -0.820653520982919, -0.7937169301749953, -1.0830272757536692, -1.0906989823695137, -1.4402232910450645, -1.2060146518309938, -1.5496949693840272, -1.2323848163978257, -1.378736373546661, -2.4524161955016672, -2.584493608688559, -2.3317772393201026, -2.6083334952988553, -2.7064842754103733, -2.394006922699718, -1.633503889343983, -1.0562479009442114, -1.0017912998179126, -0.7217275124593061, -0.6766395221926569, -1.428269960326489, -0.7947020244513427, -0.1362071871482529, -0.9749388246051874, -1.1663404192722326, -0.39851123408563327, -0.28883341343337043, -0.7888745538833246, -0.17932024642029218, -0.12124224374200017, 0.5269897724039277, 0.5696889646555603, -0.5085049232893002, 0.39562401427366173, -0.1584851039750377, -0.37723354048115637, 0.22371979321068525, 1.3649245820268923, 1.3319725744166366, 1.5109469092387366, 0.9177032962907872, 0.7791973171738382, 1.3284719192581962, 1.4825418552606342, 2.350641248363454, 1.651883786625821, 0.9323039861298809, 0.5897133307251164, 0.27127364301558243, 0.7499990378311855, 0.5444261261069249, -0.04492665522481847, 0.15390218649962437, -0.23074489165721102, -0.7779358615890947, -0.24747581581049133, 0.3999758390729665, 0.8897680639995326, 0.4722546427750814, 0.17735638421825936, 0.44951070571187157, 0.8208561435053733, 0.7058907405723349, 1.3088718935933443, 0.2853375346488687, -0.0012390956122295175, 1.1072914611193196, 1.1002007394647229, 0.8611778236846487, 1.0984773160876777 ]
Weak stationarity requires the mean, variance to be constant over time. Does the following time-series exhibit weak stationarity?
[ "Yes", "No, the variance is different overtime", "No, the mean is different overtime" ]
No, the variance is different overtime
multiple_choice
33
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
For mean, check if the average value changes over time. For variance, check if the degree of variation changes over time.
Pattern Recognition
Stationarity Detection
434
[ -0.3397758474078744, 0.3504703975769039, 0.40553313817614617, 0.01701471680825513, 0.31179984783321485, 0.2685192568807629, -0.5289072842996707, -0.27287486544697104, -1.0947895527138636, 0.6322558964007334, -0.25230790921908164, 0.1472954145916821, 0.4438406087010005, -0.37713100071093886, -0.34266514511437396, -0.3708416315680317, -1.4499955405670972, -0.11210782742807796, 1.1748936588456043, -0.42949347050078335, -0.2773503800990609, -0.23463036124206746, 0.21131106031907487, 0.45475680788559375, -0.2610408176230913, 0.30932847833611876, -0.10600895234871265, 0.21398505013579577, 0.04883400555592929, -0.4053374330805618, -0.3328927381125061, 0.16621708866626209, 0.0654742694152466, 0.427901312133484, -0.12849395405567468, 0.5977307493080862, -0.8162031983604775, 0.058773812417339186, -0.7045286631881895, 0.6316547920251695, -0.04266859597036116, -0.35328221863981635, -0.2273611294532965, 0.27766220778638345, 0.1784357039750062, -0.1370555791387537, 0.4169014498341446, 0.22178046970250753, 0.047919136573963475, 0.6379346808721755, 1.171583073903915, 0.18319215274172074, 0.13294370512645945, 0.41730712394896885, -0.4828906347195161, 0.0596285138325999, -0.15596734948664498, 0.23450940289618272, 0.17589464174188785, 0.9240019335445727, 0.8449288792372377, -0.6609377262631959, 0.22306731665025253, 0.5321725487176171, 0.5057066839380685, -1.4040107588336956, 5.051080211513689, 1.5785984515466258, -3.41522176378756, 3.7379890603986676, 2.0094925414201743, -1.750461992790848, -2.3283262637124067, -2.119707295040626, 4.372639424996591, 2.267352603503315, 3.706968250039267, 1.0403864376234941, -1.8193303191792198, -2.551523964974794, 4.053296780457736, 1.9688529267629744, -0.635540429072815, 0.2821114075096405, 3.9356055216026, 2.206560802771423, 0.13376747805361916, 0.09572415247781597, -1.721292189380203, 0.5032791427114698, -0.6099374091371184, 0.08158137078349095, -1.4674875688744502, -4.4912128172431895, 3.5179778200330274, 2.4993338263105023, -0.5850858015007431, -0.6906740555215545, -4.374182851266628, 3.9902379791132807, 4.685169567375358, -0.07311837754606663, 1.4879739198565594, -3.112091096695473, 0.8521494011085751, -2.0958370423469828, -1.9624281804586954, -0.6752442358147729, -1.034639627172716, -0.23045301391484158, 3.979597939098236, -6.878738614412618, -1.4684093465202812, 2.5766457640148044, 0.9364844621361103, -2.3768917938674905, 7.608116358430991, 9.727262726158557, 0.43388026290763804, -3.258325056629173, -0.5505508355011995, -3.6071279865593433, 1.6524617553379484, 2.359861685689518, 3.750011972846939, 1.6133761688921928, 1.019741411135809, -3.081872044804179 ]
null
Based on the given time series, how many different regimes are there?
[ "4", "3", "1" ]
1
multiple_choice
40
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Regime Switching" ]
First identify the different patterns in the time series. It might be helpful to identify their individual starting and ending points. Then, count the number of different patterns.
Pattern Recognition
Regime Switching Detection
435
[ -0.16251896596729257, -0.10026444408514185, -0.11535162801982876, -0.09171273298064797, -0.06587230473797684, 0.17579741675007518, 0.21537533100800688, 0.10070558071500643, 0.17405393690435217, 0.16495126367836951, 0.0852962722229916, 0.19377944483299808, 0.18397013607797552, 0.18050372325783337, 0.12881525171873742, 0.14790937755592376, 0.1178403418237006, -0.045531788570962045, 0.146279416874674, 0.1675231755448793, 0.07357326063587094, 0.12692022462054392, 0.26299669295204225, 0.290500892785876, 0.024790244249303067, 0.13754192830213624, 0.30732889861868207, 0.09307358459800247, 0.22420123089700605, 0.11222098626387689, 0.15918777327980982, 0.3019565163850462, 0.34016666972564824, 0.39409013973445767, 0.5916240784219786, 0.2773814018406736, 0.2914016783655384, 0.453297550756132, 0.4451238186945137, 0.390776235146583, 0.29878493429253017, 0.4290412973888828, 0.29378225502341265, 0.2946661645858717, 0.4044100721451182, 0.6065886740001866, 0.3607679827668068, 0.40633768413586696, 0.2381526581475263, 0.3191872160082635, 0.4648323733747384, 0.4857952667444032, 0.6522691112171319, 0.3379029368753048, 0.47444666103649263, 0.419052122132255, 0.5073299601828329, 0.42724844573424037, 0.3062030627153087, 0.5714833332827406, 0.43042461770977425, 0.49387027346691154, 0.5349666650295155, 0.5333887628525869, 0.2236726025705364, 0.3810252547215869, 0.5317248896473921, 0.8191856373552833, 0.47785650930291185, 0.5467997525940309, 0.7411305596411792, 0.6803643063504444, 0.6585309567605043, 0.634380027771719, 0.4240444123543794, 0.46751590332580684, 0.5478559140021269, 0.6121706698608133, 0.7942522393866552, 0.6758319190887894, 0.6120622499405044, 0.6590150497835587, 0.8464257717387247, 0.7201644535568943, 0.7870346069741915, 0.6710732184032973, 0.5235723621626146, 0.8111069378190353, 0.7838150088903075, 0.862009914982037, 0.7750385833685269, 1.0360113447830606, 0.6811601554146656, 0.673954620593915, 0.7801536937322052, 0.7766160451383087, 0.7959246277170732, 0.8149063186491785, 0.7992975572131417, 0.7836264757775191, 0.7439825310393812, 0.9196698204107537, 0.9968859450907437, 1.2326982741140424, 0.9249712712292957, 1.0156214229553753, 0.9255653379318152, 0.9869544796618096, 0.9113481760541076, 0.8964555544470578, 0.910539505378231, 1.149662034225745, 1.1458741476239707, 0.8711538336688379, 1.0242521991648363, 0.9503961107971095, 1.1810365015474205, 0.8674446489693248, 1.127259928645626, 1.0235796759936526, 0.8207455883534829, 1.2374834583696195, 0.8511969885734748, 0.9365342961346559, 0.9209336275499205, 1.2045023320187824, 1.0064320704918805, 0.955146827773635 ]
null
Does the given two time series have similar pattern?
[ "Yes, they have similar shape", "No, they have different shape" ]
No, they have different shape
binary
78
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave" ]
Pattern refers to the general shape of the time series. In this case, you see both time series have cyclic patterns. Do their behaviors at peak and trough look similar?
Similarity Analysis
Shape
436
[ 0, 0.16101318284941138, 0.3192414332663539, 0.4719479878472304, 0.6164915881001783, 0.7503721644462567, 0.8712740781747361, 0.9771061734266281, 1.0660379464552996, 1.1365312065697675, 1.187366681143474, 1.2176651045203104, 1.2269024260578285, 1.2149188742647523, 1.181921720256739, 1.1284816927328292, 1.0555231064802324, 0.9643078751477956, 0.8564136848080343, 0.7337067058243598, 0.5983093150072565, 0.4525633863467, 0.2989897852553493, 0.14024476692226023, -0.0209259670756824, -0.18173475925396512, -0.3394002123826331, -0.49119529736923856, -0.6344945207741305, -0.7668193361345564, -0.8858810136496619, -0.9896202267394256, -1.076242670776487, -1.1442500979185928, -1.192466231253846, -1.2200571100399196, -1.2265455141398536, -1.2118192181650613, -1.1761329325594003, -1.1201038980507323, -1.044701209669675, -0.9512290549905099, -0.8413041565106865, -0.7168278083323085, -0.5799529908075587, -0.43304713194305694, -0.27865115965309983, -0.11943555310630717, 0.04184584668516876, 0.20240346812797086, 0.35946025831672096, 0.5102997157762231, 0.6523128758879245, 0.7830434363265514, 0.9002302420038228, 1.0018463946868585, 1.0861343108395662, 1.1516361213160489, 1.1972188871037799, 1.2220941949774715, 1.2258317941313264, 1.2083670379263616, 1.1700020020381185, 1.1114002596649355, 1.0335754041663519, 0.937873517647538, 0.825949888718394, 0.6997403821239584, 0.5614279554455955, 0.4134049020101856, 0.25823147306529404, 0.09859159490365509, -0.0627535531331373, -0.22301329684290275, -0.3794157355031196, -0.5292556854994077, -0.669941469994885, -0.7990397453521244, -0.9143175889764913, -1.013781120616858, -1.0957099891180508, -1.158687128131797, -1.2016232661224373, -1.2237757667349929, -1.2247614736568893, -1.2045633378047726, -1.1635307122105771, -1.1023733095064272, -1.0221489265215142, -0.9242451483100294, -0.8103553480627714, -0.6824493980151893, -0.5427395979447853, -0.39364241056886573, -0.23773666567865603, -0.07771895592371819, 0.08364300426549624, 0.24355824989876265, 0.39926083879588375, 0.5480576921544642, 0.6873751748507484, 0.8148036098067252, 0.9281389564895137, 1.0254209326592627, 1.1049669200002847, 1.1654010671934583, 1.2056780870544157, 1.2251013361350318, 1.2233348640780046, 1.2004092243152684, 1.1567209456066443, 1.0930256735591664, 1.0104251007534077, 0.9103479115372995, 0.7945250710719916, 0.6649598860378664, 0.523893354839748, 0.37376540662453756, 0.21717269953292442, 0.0568237081192875, -0.10450812323871725, -0.26403235066819475, -0.41898979515738816, -0.5667002661456709, -0.7046089189054806, -0.8303304439050591, -0.9416903238394679, -1.0367624447358093 ]
[ 0, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, 7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435, -7.6320180601429435 ]
Is the given time series stationary?
[ "No", "Yes" ]
No
binary
31
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Try to see if the time series has a constant mean, and degree of variation over time.
Pattern Recognition
Stationarity Detection
437
[ 1.2601902075337392, 0.9713032312331263, 0.9948168755777554, 1.6558037527064329, 1.347082251192555, 1.2868685293576143, 1.4315199964464131, 0.9008678318559427, 2.145265430982966, -0.08750973790376237, 1.8028441331252916, 1.5326195452586597, 1.2134470318394028, 1.1371098535277848, 1.0271669392493359, 1.6645697380941091, 1.1008766082379724, 0.7648843259336066, 1.5878933455393338, 1.9374179941266003, 0.18964147005423448, 2.340021697954591, 0.6514189004367703, 0.698003615408515, 0.5641359614131165, 1.1954937061514852, 0.5637591187624653, 0.6330984676035205, 0.8766253084680604, 1.298862037660492, 1.3558573461989618, 1.8678884588710538, 1.8652868541610037, 1.7775046023246133, 1.1434411233811683, 0.3627743293575637, 0.3608887376167408, 1.8106572686883533, 1.7329821056214745, 1.0121317961284495, 0.6095621542964281, 0.8158685959400833, 1.436373144595036, 1.4469569246490155, 1.8896615281142695, 1.1530076592342706, 1.2660258967204079, 1.9606341148796838, 0.3454265944495527, 1.5767726423093227, 1.2610759554767157, 1.7947869778808039, 1.7050002202373984, 1.1109055366420144, 1.2158305068307511, 0.3290224650759528, 1.8655933704431682, 1.6211477134477237, 2.211256443691223, 1.3231165365638617, 1.9908780178613372, 1.0097187898800046, 0.20333699406569905, 1.5196040513175417, 1.294728886135583, 1.0639479761113644, 2.0497810678703345, 2.2163027245078206, 1.676422960350423, 1.5440682211112606, 1.678380470636839, 1.3323453764255238, 1.9519729728715753, 0.9129403943962474, 1.158124207880965, 1.3111556884664715, 1.9896736950195768, 1.580048110188166, 2.42387326383926, 2.1578065703465663, 1.368167961733809, 2.09810017209042, 1.5900070031064408, 2.0435351653967824, 2.245757212922393, 2.390247114604948, 1.9470124120130843, 2.659269080775963, 2.093164494043662, 1.9534286180437181, 1.7481363912351242, 1.5973266316619446, 2.136607761815158, 1.990827369974749, 2.08474260048398, 2.2086832639275915, 2.1106916508689086, 3.0032199040208587, 1.7468724949033898, 2.2413865188828344, 1.925881053034674, 0.8235830587522319, 1.9722785405364558, 1.6155673890012625, 2.065311533139899, 2.1005349855341255, 2.3215360746987774, 1.8789964967955084, 1.9568777233072352, 2.525218726638188, 1.7859008617984173, 1.2868731552661892, 2.3003969471250034, 2.7732001563244597, 2.59837423769492, 2.3576488318126283, 2.911467475953727, 2.8435076552208534, 2.1535129952337044, 2.459320175745455, 2.4974971472977376, 2.3257189668696365, 2.9531656878059303, 2.327040543789612, 2.170162277379873, 1.1418450343531998, 2.055901519513635, 1.8149070474903886 ]
null
The given time series has a cyclic component and a trend component added together. What is the most likely type of the trend component?
[ "Linear", "Exponential", "Log" ]
Exponential
multiple_choice
10
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend", "Sine Wave", "Additive Composition" ]
Despite having a cyclic component, check the general trend of the time series.
Pattern Recognition
Trend Recognition
438
[ 1.1808589967121408, 1.3439041049705134, 1.4025129563352217, 1.8081471954420303, 1.9781392610383997, 2.0611198083564664, 2.1130772111449407, 2.166205319272725, 2.285408161583245, 2.1436047313162145, 2.2563121055703697, 2.1609629712769696, 1.8595316432136484, 1.791594080681058, 1.4330266748844058, 1.192176261103151, 1.1667780326157475, 1.0221842762422912, 0.8922393665166023, 0.5940838949291316, 0.552497998251349, 0.4489745189766868, 0.5595423400215014, 0.5147649068315591, 0.6541001698616116, 0.6088666682081183, 0.8894126451749792, 1.2181072715442305, 1.4587175166162596, 1.741291226608845, 1.9335170537960422, 2.1205395435027157, 2.4279384200312153, 2.660758428872409, 2.86811925227133, 2.893848582033924, 3.064576643549491, 3.133834677918853, 2.9204617022167043, 3.1820843906464775, 3.02548775087697, 2.907940012896526, 2.6719798834873085, 2.6032162706005395, 2.2715377054736354, 2.097137928241559, 2.047814989609532, 1.8618217168980356, 1.569613935685809, 1.7645787307819398, 1.4850180828500528, 1.550568862943478, 1.7925953005039708, 1.517067750884492, 1.7062272595157093, 2.1190017642669385, 2.0625663962987506, 2.371183698459702, 2.9782154630197044, 3.1147233920608612, 3.6691743259520457, 3.6284820315985256, 3.960918564410403, 4.27706354567549, 4.462271705784345, 4.5378815254824705, 4.599215589453941, 4.738851572707305, 4.856838638969916, 4.753719034247068, 4.532521836234033, 4.382035016793681, 4.273122042068766, 4.061762171914836, 4.0466868044531905, 3.962982378828193, 3.7415095901457547, 3.8148563860121296, 3.7505037841272473, 3.576758936216997, 3.6373591516351373, 3.5495594816701814, 3.7280744745034946, 4.0666017812157165, 4.1036736130096125, 4.5738533858395485, 4.833663542490657, 5.119677524910263, 5.264168602992746, 5.691392407738961, 6.12170957548885, 6.276658395576196, 6.647976907928168, 6.999605267751054, 7.084149644201322, 7.227533294969543, 7.255587424071996, 7.472675431144101, 7.618714960456974, 7.4429291909445, 7.485962642086736, 7.388911802107952, 7.254432520803276, 7.307545438488819, 7.294355673078924, 7.151300809224364, 6.926579203196098, 7.1744747748618165, 7.095989992509804, 7.0183008094679105, 7.106266098711458, 7.469031911788374, 7.600305512421402, 7.77396638933366, 8.165568474312904, 8.499418533924397, 8.847517449708445, 9.441586130520022, 9.83854457120185, 10.26383698157795, 10.670944883280637, 10.884444896282444, 11.273638752738432, 11.80105535800892, 11.945080133536344, 12.02100803606586, 12.377237681836315, 12.563540904704254 ]
null
Are the given two time series likely to have the same underlying distribution?
[ "No, they have different underlying distribution", "Yes, they have the same underlying distribution" ]
No, they have different underlying distribution
binary
93
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise" ]
You should focus on the underlying distribution of the time series. You can start from analyzing whether both time series are stationary. Then, you can check if they have the same mean and degree of variation from mean.
Similarity Analysis
Distributional
439
[ 0.32042166052011306, 1.537425428823951, 0.42383027874398205, 1.6241796749951174, -1.3383961111409088, 1.3941415364661935, 1.915494497470445, 0.2545065049205213, 2.8700179194799484, -1.0315097920625822, -0.6002910603011489, 0.8879257643895618, 0.10262666237878387, -1.0833531258935212, 0.6773942079813939, 0.5378432315787571, -0.8379184331012425, 0.1517000112673199, 0.8142834261742611, -0.6944541639480217, 0.7206131115308343, -0.9504604089747126, -0.8988981484046038, 1.3810634352645224, 0.6510860393444131, -2.2993362884434547, -0.3998445790109628, 0.6974269622650323, -0.04726497553729467, 0.7563205704724013, 0.2807725834415491, -0.13688448748772247, -0.18875047895291414, 1.2612550179355533, 0.9771872785043343, 0.4370336769444781, 0.09724750378743942, -0.7096981155551241, -0.35957332942502135, 1.428113346184656, 1.0812326083728356, -0.7718701529703119, 0.15975570223761154, 0.5206463039047573, 0.5171514063405049, 0.6988874724608429, -1.5196351589530974, -1.4566406368915068, 1.4380196806055836, 1.784493766318273, -1.500253255039368, 0.02134980991971979, 0.8784971273540427, -2.894651052912195, -1.2619852970603145, -0.18688615905903466, -0.5922521335584641, 0.22504592442815247, 1.718713548993554, -1.0882440196745242, 0.15935343927464404, -0.3747693361543883, 0.3402513721408562, -0.014507297883667971, 3.2705401465922215, 1.8865432970988436, -1.8415355787044234, -1.1378627990242873, -0.891890977973141, -1.5000629262528882, -1.6645956422005184, -0.29595141102820105, -1.1051772635846422, -0.9507603772379989, 2.482798010216721, -0.9443779347059305, -0.46333640441037627, 1.0220928430853267, -0.46139867116517214, -1.4966683384189596, -0.3846511489504749, 2.3706783183693987, -0.4952137441262693, -1.0530261769770553, 0.7864406157332715, -0.5334681141135622, 3.301966917105079, -1.142922378222095, 2.153075856443032, 1.5114361906277882, -0.3162487135257622, 0.014607630443835352, -1.4348700100089304, -0.6551616436322519, -0.42535393984089037, 0.09008725103269831, -1.7322530761527086, 0.24840041908958355, -0.23740078491774497, 0.5719460333625871, 0.7288673530339024, -0.412330036333713, 0.5189809335799059, -0.09955255808614702, 0.9203665723353993, 0.31541980659937807, 0.2662461758839989, -0.12722767410774827, 1.306983331998131, 0.4320780575772745, -1.6556360855314078, -0.5020344611283046, -0.20640116416834542, -0.16856644860525194, 0.25721429216335157, -1.147500609088295, -0.06946227810120702, -0.44067176719835816, 1.3036026480519747, -1.086484900580568, -0.00976539417575426, -0.8318180038583528, 2.2015733238178967, 1.6225366675670412, -2.111160810659588, -1.0415933983938879, 0.9177841866693313, 0.572219657180247 ]
[ 3.017624828150362, 3.019688378178192, 3.70776193025038, 4.604092859225198, 4.252772792163109, 3.2745091116432685, 1.8735983287577265, 1.8764798444391038, 0.3615705209687918, 0.4883654615110695, 0.2583064168744069, 1.745227403192314, 2.0076867197273605, 2.069061784562554, 0.9192168772470503, -0.3110366669743009, 0.42194138882100174, 0.00754692241752998, 1.9402116851007172, 2.1069883706582337, 2.350551633165793, 1.0469574688115737, 1.7346591405259222, 1.195417805376068, 1.4777861832045593, 2.274205411714689, 2.4119608765995206, 3.7376211337533873, 3.2962195882853966, 4.63940530138985, 3.6384124257386596, 4.184148361025561, 4.143428272723241, 3.5145802446270973, 2.206197541908332, 2.263379436040503, 1.722916406551884, 1.6875188646250958, 2.398300009694768, 1.7392180223716565, 3.152576702577979, 2.8429074882607233, 3.343121229997345, 3.2917438220745248, 3.0039067499732637, 3.1850989555700178, 2.367459329467117, 2.1323071558570783, 1.025711802079975, 0.7193491793330457, 0.25128438421507576, 0.8470052861078915, 0.4965211700625035, 0.2712543344735159, 0.4479158807890931, 0.5710189672712029, 0.2012349922988495, 0.30129432258645267, 0.22017939220089772, -0.1731369737690328, -0.6313744970699123, 0.1495583246191685, -0.19371304928310773, 0.0901313189436472, -1.0160264129596357, -0.3093161821051758, -0.6397428079730946, -0.20915875665084802, -0.3840349892130511, -0.06696905996966418, 0.31666270868658375, 0.10247941368159416, -1.3781237714694015, -0.631671720303971, -0.8598332953893829, -0.48927475876024384, 0.13652891358244568, -0.29556167758242813, 0.22546306973340974, -0.3904579663835663, 0.06004643066828218, -0.11486337738222997, -0.3424093993775109, -0.3607925926173984, -1.264931538123231, -0.989431245168443, -0.7910186048298489, -0.2341190017962002, 1.0348641636829907, 0.7917951703834045, 0.8005175937150095, -0.16963510902207812, 1.0378590140851909, -0.010006375052558636, 0.13454331456491542, -0.6811610202832712, -0.4434784109167865, -1.593386227357335, -0.5181067590154709, -1.4561543198042979, -0.4804585666450998, -1.283092122483905, -0.3561186917670171, -1.046115923372266, -1.6461811217552418, -1.4543130483483604, -2.2869690241031875, -3.1544974623864506, -3.668588938101143, -3.3713685172645103, -3.436795132209185, -3.422450983809097, -3.4649737267469343, -3.3203585838862466, -2.6368005579915494, -1.7373192800159896, -2.189264726860271, -3.0734574299257402, -4.666644937777861, -4.557698856399669, -6.134402629710084, -6.5668162058890305, -5.178057011208948, -6.104107426117058, -7.266486761217546, -6.664834053443941, -8.902863315137296, -8.725471080838766 ]
The given time series has multiple trends followed by each other, what is the correct ordering of the trend components?
[ "Linear -> Exponential -> Log", "Linear -> Exponential", "Log", "Exponential -> Linear -> Log" ]
Exponential -> Linear -> Log
multiple_choice
9
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend" ]
Identify the different components first, and then check the assignment of each component.
Pattern Recognition
Trend Recognition
440
[ 1.025619624619305, 0.8908589790293873, 1.0962972887058497, 1.3180972706193714, 1.3429516306124254, 1.396329290998628, 1.5070883642382988, 1.4790177769348232, 1.5629013793877096, 1.8641394255928756, 1.9297068147171113, 1.8890627658961683, 1.9000576233574047, 2.1474789054108037, 2.4148421359027474, 2.444007550933792, 2.7016340403108883, 2.9794446657670917, 3.0076875489492645, 3.2312670676080923, 3.4793189971431246, 3.518418588555601, 3.7787737608934493, 4.172663557742075, 4.363148517654255, 4.647444102821713, 4.931863827262792, 5.338186241200044, 5.615478228982574, 5.969315811676592, 6.421484340790815, 6.858467654049023, 7.345930621086692, 7.514242042755657, 8.29816318134057, 8.450934839945402, 9.295754949499447, 9.614719723790571, 10.283542708625456, 10.943355961714593, 11.547054741997611, 12.378475050565442, 12.28826937290608, 12.314403981719215, 12.502121101980105, 12.733076295003464, 12.616781772773914, 12.804380978909474, 12.693807398796913, 12.718121561701484, 12.959950325156914, 13.158220688667964, 13.071650036067576, 13.20151447620441, 13.336457313266791, 13.25138697797537, 13.307928825473903, 13.438439129399534, 13.524327345644728, 13.38752306686103, 13.62508827905287, 13.663542716177917, 13.652754113907646, 13.79282009949735, 13.751363796025288, 13.784898646920634, 14.010771385568546, 14.162389403640443, 14.10554776818199, 14.112299056313002, 14.195937244831411, 14.399456715863307, 14.579395926577353, 14.557798164622266, 14.678926876100833, 14.5121804570954, 14.67764497589538, 14.855002193307744, 14.68131049083902, 14.823486068295542, 15.051620446058779, 15.051356248129904, 14.99709771851924, 14.99862181172326, 15.29543547058045, 15.396529913493026, 15.969698274335308, 16.086307315233828, 16.43325788372602, 16.383187186505786, 16.88592407430935, 16.785179206237725, 16.909189119058308, 16.87226154103335, 17.024715438971743, 17.108598357854937, 17.374125763831383, 17.30449389279557, 17.38416586863658, 17.444384948894317, 17.511772509208487, 17.364599268720628, 17.760273832358692, 17.51684872631931, 17.647695525216335, 17.84951783882235, 17.932741573874075, 17.86101822886573, 17.76947100289382, 17.870729118979018, 17.911275198838158, 17.950146343574783, 17.84102516919404, 18.123038527737123, 18.04242945614842, 17.987702816797082, 18.040110060215742, 18.146083782439103, 18.007131846921787, 18.262809565715855, 18.225244279124265, 18.384445600603726, 18.261076211804244, 18.16960101781861, 18.18255680255251, 18.286903606038322, 18.320574903769373, 18.31490923016558 ]
null
Which additive combination of patterns best describes the time series?
[ "SineWave + SquareWave", "SawtoothWave + SquareWave", "SineWave + SawtoothWave" ]
SawtoothWave + SquareWave
multiple-choice
16
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition" ]
Imagine the shape of the time series as addition of two different patterns.
Pattern Recognition
Cycle Recognition
441
[ -1.249055612208408, -0.32703200704969393, -0.22677897213947706, -0.12652593722925987, -0.02627290231904289, 0.0739801325911742, 0.17423316750139128, 0.27448620241160815, 0.37473923732182524, 0.4749922722320423, 0.5752453071422594, 0.6754983420524765, 0.7757513769626936, 0.8760044118729107, -0.6672836937138666, -0.5670306588036496, -0.46677762389343247, -0.3665245889832154, -0.2662715540729983, -0.16601851916278143, -0.06576548425256412, 0.034487550657652744, 0.13474058556787005, 0.23499362047808692, 0.3352466553883042, -2.062611534118295, -1.962358499208078, -0.218564323800867, -0.11831128889065001, -0.018058253980433037, 0.08219478092978405, 0.18244781584000103, 0.2827008507502181, 0.3829538856604352, 0.4832069205706523, 0.5834599554808693, 0.6837129903910864, 0.7839660253013032, 0.8842190602115205, 0.9844720951217374, -0.5588160104650395, -0.4585629755548224, -0.3583099406446053, -0.2580569057343882, -0.15780387082417158, -0.05755083591395449, 0.04270219899626282, 0.14295523390647968, 0.243208268816697, 0.34346130372691386, -2.0543968857796853, -1.9541438508694682, -1.853890815959251, -0.11009664055204005, -0.009843605641823072, 0.09040942926839401, 0.190662464178611, 0.29091549908882797, 0.39116853399904505, 0.49142156890926214, 0.5916746038194791, 0.6919276387296962, 0.7921806736399131, 0.8924337085501304, 0.9926867434603472, 1.0929397783705643, -0.45034832721621254, -0.35009529230599545, -0.24984225739577837, -0.1495892224855615, -0.049336187575344415, 0.05091684733487245, 0.15116988224508976, 0.2514229171553066, 0.3516759520655235, -2.046182237441075, -1.9459292025308583, -1.8456761676206412, -1.7454231327104242, -0.0016289573032131077, 0.09862407760700387, 0.19887711251722084, 0.29913014742743793, 0.399383182337655, 0.4996362172478721, 0.599889252158089, 0.7001422870683061, 0.8003953219785231, 0.9006483568887402, 1.000901391798957, 1.1011544267091742, 1.2014074616193913, -0.3418806439673856, -0.2416276090571685, -0.14137457414695165, -0.04112153923673478, 0.059131495673482526, 0.1593845305836994, 0.2596375654939167, 0.35989060040413356, -2.0379675891024656, -1.9377145541922483, -1.8374615192820314, -1.7372084843718143, -1.6369554494615972, 0.10683872594561383, 0.2070917608558308, 0.3073447957660478, 0.40759783067626487, 0.5078508655864818, 0.608103900496699, 0.7083569354069161, 0.808609970317133, 0.9088630052273499, 1.009116040137567, 1.109369075047784, 1.2096221099580011, 1.3098751448682182, -0.23341296071855866, -0.1331599258083418, -0.03290689089812471, 0.0673461440120926, 0.16759917892230947, 0.2678522138325268, 0.3681052487427432, -2.0297529407638555, -1.9294999058536384, -1.8292468709434213 ]
null
What is the most likely linear trend coefficient of the given time series?
[ "2.38", "0", "9.9" ]
0
multiple_choice
2
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
The bigger the slope of the line, the higher the trend coefficient.
Pattern Recognition
Trend Recognition
442
[ 2.5423809740677563, 2.5394280895003107, 2.572384937473698, 2.603509034139746, 2.5913458958220814, 2.5274389017449446, 2.542354345582262, 2.591922476871275, 2.5425377031309355, 2.561997624279831, 2.5818897262105778, 2.542900860655972, 2.5704714732840763, 2.533511028421404, 2.552323965249883, 2.575976927951894, 2.526861330875425, 2.5790760363431855, 2.567261424544481, 2.5819523246246088, 2.5735152674860027, 2.602793606954825, 2.570981149003523, 2.5567395491040483, 2.570905990512021, 2.5817162975196073, 2.5690202893207608, 2.5688079767196097, 2.5497401755887448, 2.5507439349703285, 2.531750060449138, 2.612690708312996, 2.5358261839753293, 2.549973495360506, 2.549318662017246, 2.5907452381932, 2.56019206060087, 2.5998047698872426, 2.550472016116551, 2.5749295935440677, 2.546315922285931, 2.6228480802329086, 2.5372709326182092, 2.575721147063162, 2.5840395824237143, 2.578391068402023, 2.5630079242963206, 2.564432185835417, 2.568890653145237, 2.5639910102624586, 2.5925158343358863, 2.6245267281266655, 2.55345059449641, 2.532592346450115, 2.565498801068382, 2.6340065681490215, 2.547129197492326, 2.6098543559445724, 2.6108451028751243, 2.553550828341458, 2.5823758294215033, 2.6095790867825404, 2.5580305651992394, 2.56253821059284, 2.5528294743458533, 2.5417091021672196, 2.5510937512530747, 2.5363377591256655, 2.5686408608046407, 2.5479945688542887, 2.573768751606183, 2.5278139228287344, 2.5762619062405383, 2.589168747790837, 2.516571217680925, 2.5773705734189556, 2.599289340223498, 2.5367049303097327, 2.6107134168807073, 2.5785251035085452, 2.5496626247526883, 2.5663336579704907, 2.5821022040314108, 2.5697173175585926, 2.5815996686630025, 2.5441249366828966, 2.5721144663153095, 2.531464801579881, 2.56490965257766, 2.5445554470339125, 2.548878991793693, 2.5995056534964074, 2.595787963913564, 2.583406916800506, 2.5397176449460868, 2.559641049634039, 2.598915183576109, 2.571404635472319, 2.6273206250740078, 2.5778651576873726, 2.572697048501686, 2.5598282907346976, 2.5711946947231077, 2.563850609078409, 2.5859482487623997, 2.5923315509287566, 2.547583309611707, 2.533582734339979, 2.5206162258715374, 2.580809704140718, 2.539433808198004, 2.5124844914914686, 2.5777434652411877, 2.6317800631466066, 2.567609790422264, 2.5892961555179794, 2.5698668633877406, 2.5652264226321297, 2.5913654076825026, 2.5603121070897394, 2.574631685269302, 2.576026123056902, 2.550610679843749, 2.5932390001598167, 2.563273120623733, 2.548359912392483, 2.5815419928231065, 2.544695124747972 ]
null
There are two time series given. Is one of them a scaled version of the other?
[ "Yes, time series 2 is a scaled version of time series 1", "Yes, time series 1 is a scaled version of time series 2", "No, they do not share similar pattern" ]
No, they do not share similar pattern
binary
87
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Moving Average Process" ]
Scaled version refers to the same pattern but with different amplitude. You should check if the pattern is the same for both time series. If they are the same, you should check the amplitude of the cyclic component.
Similarity Analysis
Shape
443
[ -0.1631451067014617, 0.5161515123903031, 0.7936108301223807, 1.090867850388748, 1.3855276794162832, 1.8035655986746972, 2.099984593416226, 2.2953400654483938, 2.2721046284499526, 2.576094748224318, 2.64298430116444, 2.5239868174222013, 2.5870908824239036, 2.2645186277083527, 2.29025556603924, 1.9352416563406412, 1.5881406533571505, 1.2832596618007264, 1.0615445737466649, 0.6093048239386916, 0.26032168134381356, -0.09107504633793208, -0.6408413826679324, -0.9514229565668514, -1.3399009510087516, -1.5381616658924893, -1.962075041790493, -2.1579002120575765, -2.1212562475856442, -2.3553423753411153, -2.6621630324956294, -2.48323623606646, -2.4590110828716427, -2.53313426594911, -2.2724449412495935, -2.141554302464428, -2.0233977332222484, -1.4942554855249248, -1.1910944841065148, -0.8846618153452779, -0.3914548821169275, -0.20932619012471887, 0.40002973125450403, 0.7813264873963778, 1.2132613628191717, 1.3238142476937411, 2.0020208230777734, 2.2256796629611335, 2.1867301998663526, 2.5708924407113956, 2.614635431564547, 2.5296994385764293, 2.497326041580114, 2.4292804266496852, 2.631226263939502, 2.2957202918174318, 1.8999112187923293, 1.6240036503224582, 1.3974970045508688, 1.0394427209461004, 0.48722922364901655, 0.22284156345265926, -0.25652313344160455, -0.5756861216344891, -0.9714897208643181, -1.2180402660367657, -1.668803169466274, -1.9138149937500974, -2.3519764338111804, -2.3195791041593585, -2.562427532657148, -2.7106638357454553, -2.4604140182330414, -2.5315405673451616, -2.629858482928231, -2.338491742871011, -2.0446226356039476, -1.778689201522463, -1.527359478411122, -1.4745621641837672, -0.8271539313841697, -0.2806892709005997, 0.14570955424889462, 0.3378554636745292, 0.9707263177639007, 0.9861353308798044, 1.4053634290217962, 1.8791954068755108, 2.1251592156620265, 2.264392093894079, 2.313925833620595, 2.4172642442315975, 2.5011732793366854, 2.449858438662761, 2.4947434414290073, 2.338239001507848, 2.042080991552968, 1.8828764760934968, 1.368588687238837, 1.344320423509376, 1.0282119856075225, 0.4890714250184198, 0.11172263571253707, -0.17820648381197127, -0.5829412431019302, -0.8919110990621115, -1.3998205500427785, -1.7101373728456701, -1.9495316610419235, -2.272260884004479, -2.377305339282551, -2.590271230789417, -2.517500536241264, -2.6667447284381027, -2.501547124449796, -2.2755501542057646, -2.215994438958612, -2.0258707130353937, -1.9165526660940873, -1.3362743663975551, -1.024005567541669, -0.7849875107196038, -0.42350021252303843, -0.07319286148369561, 0.5802441275289416, 0.8633947132980269, 1.0744433975174288, 1.5985262791743853 ]
[ 4.513023345729781, -1.083574710749084, 1.8100680566062985, -0.356318733899684, 2.337595577600008, 1.846760873266103, 0.7914841000998244, 2.1940401808428915, 1.3161108603927865, -0.058111889109239145, -1.6313476803917382, -2.0333881830392295, -1.3736287638965046, 0.16465182662018207, 1.184398799040886, 3.0980640475894226, 0.42706517704509916, 4.539283710091296, 2.2670136262045495, 3.722744383083855, -0.15380089153536292, 3.100344451024874, 1.7397828440540812, 2.32123307038127, 2.03747183008341, 1.3174211907611926, 1.3960247298613528, -0.10064513624305715, 2.3853717445677955, 0.6833703079316966, 1.1230248285493976, 0.23981118429848114, 1.3789290328476906, 1.5945626414318081, -3.3455453156173522, -2.042800908567389, 0.47526562468077604, 2.884521659435743, -0.005412613384033316, -0.908445952857921, 0.47560967033318535, -0.3985296221156067, -0.4869419851747566, -0.6555500843755707, 1.3786359881775665, 3.7303942595581265, 3.1957921866971253, 2.910718043390472, 2.366087990633986, 2.113351251785704, 0.12087919137198319, -0.21475493228219827, 0.26273895914771594, 0.6875105548154072, 0.15464088842403934, 0.08341258113921923, 3.1901653559143304, 0.9653954225210777, 4.109865859281764, 1.040596007103696, 1.689474321120234, -1.2449871520763531, 1.3438851503405922, 1.2853406365224829, 0.6150705027123223, 1.3103405534430885, 1.8276697626246226, -0.4768913577710734, 0.38144079898986083, -0.23153663333651753, 2.4768371258359343, 0.5019765387788367, 3.4060794803910044, 2.5345734163722065, 1.1336927845136162, -0.6415130253241271, -1.3360844450828295, 0.7829723243515354, -0.5620269662792514, 0.9766823142248968, 0.7384973590044381, 1.6345267183565677, 0.39006868950542795, 1.3320510955358669, 0.574013648908086, 2.7696771779504186, 0.36992812882921955, 0.9527368551528623, 0.10926337791224855, 1.1417328950444778, -0.8234699158418286, 0.0335708825764629, 1.5203447254912534, 0.7151135838107612, 0.7340797195140027, 2.6811927693266595, 3.125686968736744, 2.9126161534397417, 0.7626046789581011, 0.29405697978347434, 0.8224325764585482, 1.2640062586874425, 2.5507727725048825, 1.4981406652137674, 2.173671961400365, 1.2467066916173228, 2.7525061614669557, 0.3969561425664119, -0.7617148236716906, -1.653676757023761, 1.3042313471593512, -1.4740920932898114, -0.9655384545030834, 0.1924472906387905, 3.159315963765266, 4.192388045525295, 3.3427674404695233, 1.2144495110493498, 2.344946834701231, 1.8815674386433536, 1.7532749930682419, -1.7592753537061574, 2.560552400339483, 2.175081943474419, -1.59259199658921, -3.3533155524430747, 0.828300320251118, 0.9141078998117469 ]
What is the type of the trend of the given time series?
[ "Exponential", "No Trend", "Linear" ]
Linear
multiple_choice
1
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
It would be helpful to check if slope of the time series changes over time.
Pattern Recognition
Trend Recognition
444
[ -0.18429879553059414, 1.4594410105328117, -0.0028679147775684567, -0.7056768195498997, -0.9808742076650374, -0.05104366491347309, -1.5121067420867025, -0.9666113888959575, 1.246861440050924, 1.0823301222431767, -0.03856275380481522, -0.2942752075777431, 0.11877899950720851, 1.9023316314756795, 0.3999836416535142, 0.7979681502510816, -0.059369880056599544, 0.15119757498575914, 0.6124571106850911, 0.2140400432306228, -1.3507654536538785, 1.122517892500877, -0.34307235967831884, 1.7797158901544852, 0.6799449805912006, 0.20792372633927936, 0.5000081899940867, 0.08081825272469914, -0.20647779026334004, 0.33844484890303683, 0.8704499708362039, -0.17113449329964392, -0.287457367522037, -0.07425468348003322, 0.9469332146253515, 1.341638807305678, 0.5011159838449274, 0.6774822693624057, -0.25657392833186066, 0.9190729036010264, 0.6728590572338308, -0.3006744230235289, -1.1311104030129728, -0.6847292539497003, -0.25056326785367244, 1.1771517853770124, 1.4867566659175195, -0.05390894003538016, -0.02326140483133432, 0.5026464366840246, 0.31507877322154393, 1.0344907286768252, -0.08830126859916687, 1.0608531305224447, 0.14437904766571646, 0.9991953748855156, 0.13190497154437797, -0.1275351920356449, 1.8391768168538787, 1.1876526582011415, -1.024472164744569, 0.026039839723906777, 1.3144441873375443, -0.5439075128015705, 0.9895451819558627, 0.915211241818302, -0.13932462271419477, 0.40272436749892937, -1.2068988444508397, 1.7962665440370371, 0.1879450167784548, 1.0580600995358824, 0.9166889025893991, 1.5004354825246213, 0.11596603198611533, 0.6167106662636854, 0.8986496194826565, 1.1480952327899043, 1.3729929975679083, 0.11231079502808555, -0.02663353998653728, 1.5510710042657783, -1.0802158894154124, 1.7262686591756338, 0.27878122717692444, 0.5160607084166133, -0.004019345653531681, 0.4944125330347918, 1.5247877163833374, 1.1425130563537897, 0.9326641477866542, 0.625277302991702, -0.5599026486394003, -0.08683721138994516, 0.3081762213741582, 0.9360490637838127, 0.6409205129131417, 1.3565004661667168, 0.9667714716215745, 0.6473796984786666, 2.378080643600293, 0.9327839961176061, 0.2881861594167486, 2.0736184713676984, 1.567686828696489, 2.0517788798357137, 0.5618537744279657, 1.4120442728376106, -0.46771537691508625, 1.2749763811779662, 0.5499787853911882, -0.37345619872084257, 1.486310784016274, -0.7145255855046231, -0.7880466628082623, 0.9844002707107158, 1.1526698895803857, 1.4686826320362951, 1.2973528660135971, 1.8738453753834685, 1.2771895288470216, 0.6369598064059308, 0.6886353549200743, 0.5327943002396881, 0.9874025697484745, -0.08780023324071762, 1.0349094098532534, 0.7092611285070884 ]
null
Is the two time series lagged version of each other despite minor noise?
[ "No, they are not lagged versions at all", "Yes, they are lagged versions" ]
Yes, they are lagged versions
binary
100
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair", "Red Noise" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the noise. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
445
[ 0.6482837346632121, 0.6254880264325292, 0.47094368331478254, 0.3170304347462216, 0.4349846286459937, 0.38634599677797477, 0.19023966037175355, -0.1132323530893021, 0.14794497003347015, 0.08590130400870846, -0.15988657254149974, -0.23403887485119376, -0.15566241256510605, -0.28110681081532357, -0.31861017108052986, -0.10174239851571461, -0.10621590187449476, 0.06261696031001647, -0.09468216909999194, -0.033364959572518435, 0.0029751006575180344, 0.20364492716469806, 0.21324040091942956, -0.015832427457311248, -0.11673755202670022, -0.15941461887460395, 0.10713712995294372, -0.12174125736355709, 0.0596908287730782, 0.34789657779428707, 0.1726390177855985, 0.2208659752470069, 0.24028838943637953, 0.1806978191277952, 0.20842496088658616, 0.0452154488792232, 0.04511982143458607, 0.038350080410052695, 0.15590592555230476, 0.2872474490239504, -0.09593569187194076, 0.11492886768420477, 0.15935322013242412, -0.007760085514554847, -0.061631968905670936, 0.21123263878980716, 0.06600220685204125, 0.3212795243751094, 0.32977540700016483, 0.22261248721034566, -0.26145752792816473, -0.16304200521232806, -0.10661549889090514, -0.36826790249229713, -0.37832289312328815, -0.1397381447200529, -0.29660138076011633, -0.7437088334262544, -0.6838732300850621, -0.4580120509710681, -0.8916172249327532, -0.477888215115426, -0.5718933721690479, -0.47217765801892775, -0.7059755064774303, -0.2568851118599707, -0.23001136909606099, -0.35926462397423586, -0.06660208671641718, -0.17968229293867666, -0.24225176456589795, -0.4829980028263038, -0.14338467681586853, -0.04959764822700571, -0.05659397714585315, -0.19450938038842872, -0.4429971848328295, -0.4446402372948104, -0.27767810093272727, -0.4654883094389344, -0.4031422910285323, -0.355189538434346, -0.1119562738417286, -0.30087777427144513, -0.42225259102117574, -0.16301162810913455, -0.4355582541836789, -0.29920279154446583, -0.3043537751493465, 0.014244545601447, -0.0924966566252812, -0.12542271879878614, -0.00013359060055223582, -0.05741488704347435, -0.194041199525468, -0.035657980803563416, 0.15030018748466895, 0.0337392041658805, 0.4878724190262783, 0.36743310906217486, 0.19536756259114776, 0.07300636020141929, 0.18548589486378297, -0.07578234777709672, -0.010119284280013269, 0.3633227283598746, -0.02915776469223387, 0.018548834145304546, 0.13005992880675277, 0.36382231602680926, 0.01073196985724352, -0.133822764751889, 0.02859072525614533, -0.08190315471496509, -0.37759265839657985, -0.2957785029442368, -0.3662018277918805, 0.01718821853959379, -0.28485301714456696, -0.39136605696182636, -0.2125364602076895, 0.0803942751938283, -0.12276492369513221, 0.005616739095953213, -0.21474884527459243, 0.11060758933002073, 0.34289224929217005, 0.3482462939551968 ]
[ -0.06780532703355624, 0.10451368916584822, 0.11113874046263553, 0.08766583549716947, -0.018711544683679415, 0.22420508588393306, 0.10656895192196188, 0.1391322194745079, 0.2755754470473787, 0.009170461349390174, -0.31823373799351123, -0.14785813683170906, -0.08639556245210588, -0.2052360855905621, -0.3093869307597216, -0.2523506045396295, -0.5325469150275649, -0.5791052415894843, -0.9089875714596041, -0.6081932029311721, -0.7529878363216919, -0.5719670990994612, -0.5422479053079585, -0.5213592153464045, -0.43521735070677525, -0.29292418134768056, -0.20784233275407013, -0.1987408455606456, -0.10241238976785343, -0.05491179453010003, -0.23343149710170102, -0.3124309875338984, -0.20589086557669, 0.05226056603379771, -0.28120449428047906, -0.3444798962247, -0.4564438913239386, -0.4101321221605887, -0.346858304861106, -0.3418278449075626, -0.24149287094256297, -0.4233318820161933, -0.1127618743588458, -0.118949558798421, -0.4786716976395927, -0.3256683877525521, -0.21506590283050225, -0.22446223409841293, -0.34563354717285205, 0.006458086210079386, -0.05119323593247383, -0.1531853939781433, -0.14123354387766066, -0.08895294629390232, -0.055289003699383166, 0.13478392824609414, 0.16205833920140633, 0.16338463452588248, 0.2764230911670326, 0.26410087003800814, 0.3183540155752781, 0.11893906459945003, -0.012078642894110932, 0.060968946591787414, 0.21689481727318888, 0.32370212109302887, 0.053750476278697015, 0.08784391686783494, 0.11531651134466084, 0.2535904976723821, -0.09900811968305286, -0.1247184107265235, -0.06561712171700237, -0.25350907606190254, -0.18196017909306472, -0.14501659539314118, -0.18907961383593513, -0.16405269521897664, -0.356718761448593, -0.2861371223777465, -0.14103229563982078, 0.16872225327561371, -0.0053271135841839595, -0.0011612479537410347, 0.08349237272553185, 0.04832133596788514, 0.040722639284495196, 0.3723305871484896, 0.25207143930856823, 0.20166735189278479, 0.3302921169179519, 0.08891543598291482, 0.42435960600158185, 0.6062635668782208, 0.5925554628490166, 0.4363444914820923, 0.7930071511780578, 0.7572017441548088, 0.5128962577578564, 0.3863068891117581, 0.32963604382344475, 0.4493548002266363, 0.47183474045800355, 0.43692317048305335, 0.2670695083008075, 0.18613657748249918, 0.22674569848801263, -0.017497730526459157, -0.2809645964874219, -0.4106803639932898, -0.22135890035471395, -0.17440575460121452, 0.06530666262826851, 0.07845350294110431, -0.007917282107541775, 0.25860837839363127, 0.020857734699852457, -0.04276636081546055, 0.00900108868626745, 0.4017053846135916, 0.42089802693285916, 0.3442205195004195, 0.3239915100616041, 0.23111611614159602, 0.14576055611128796, -0.07668761211899815, 0.12614384027188277, -0.10497070584985699 ]
Which of the following best describe the cycle pattern in the given time series?
[ "Amplitude decrease over time", "Amplitude increase over time", "Amplitude remain the same over time" ]
Amplitude increase over time
multiple-choice
28
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline, and see how it changes over time.
Pattern Recognition
Cycle Recognition
446
[ 0.10005483257015378, 0.5109595991437327, 0.8154783657621248, 1.161780633263691, 1.5970756168192686, 1.7023006267736156, 1.8718518147243304, 1.5078636140171062, 1.628355168834557, 1.232780979772034, 1.074276002503959, 0.7682153548556552, 0.44778780834521364, -0.2597781888079047, -0.6481409598230163, -0.9980344060392914, -1.417935859557553, -1.473261872472266, -1.7319520284502918, -1.7602827404077201, -1.6487790368489597, -1.5508682213249838, -1.3632309700756793, -0.9465960137446573, -0.6267892885204703, -0.09790391925455207, 0.43015899361735804, 0.6317717577017155, 0.9686677731415729, 1.4303347418739452, 1.5643026496368493, 1.7588084907711696, 1.7876743153909427, 2.283920757252285, 3.2843217658109225, 3.7650844726597303, 4.473208677974496, 4.909113907476993, 5.308454301107275, 5.797233361591218, 5.79043196872135, 5.841616155579932, 5.62111171145596, 5.390121667233281, 4.968775705135629, 4.442045846782097, 3.9251237157562713, 3.156876661065934, 2.6487814792061357, 1.7724426640165722, 0.821290800236623, 0.20473362065761627, -0.39789111781284914, -1.0175104065486464, -1.4418579728783676, -1.8068056632694496, -2.272841060062715, -2.1249293028705374, -2.2806479639123363, -2.1310213308090113, -1.839844324647786, -1.285663547629543, -0.8721600427539481, -0.30105077824068793, -0.2770915295512709, 0.9982002292949175, 2.4327083872561612, 3.5897869424975974, 4.679261863635098, 5.509272276301264, 5.941022155758287, 6.137278554855076, 5.917636695073052, 5.25089808623105, 4.508491127328403, 3.46072708326356, 2.0148178030703097, 0.7465590127265092, -0.5671764759551605, -1.970125634692008, -3.21505387671698, -4.376445392397922, -5.5396085133402035, -5.984971677937235, -6.392923054214386, -6.4026960514463855, -6.0900912981586535, -5.634189508293264, -4.63970604198372, -3.7631000128887253, -2.5005885016307783, -0.9825960655449247, 0.3591251690908652, 1.8109929706692092, 3.2684170388655316, 4.2217388471849855, 4.203606293720999, 5.142591558856742, 6.0857336990796425, 7.233300152011604, 8.271007710943461, 8.976292213367259, 9.796641016979562, 10.535764432785628, 11.045887138147872, 11.327004119947567, 11.537731807358318, 11.45894431883689, 11.489563854159242, 11.31913513026103, 10.913556970467871, 10.539123235878671, 10.094512306271984, 9.329972449013086, 8.377690179033785, 7.52307788140998, 6.39896456399893, 5.599215129886706, 4.252226451829303, 3.4508100069085437, 2.376618949673822, 1.2560490775468356, 0.37224760859298045, -0.5831538576843525, -1.3488664273677813, -2.0605278452352853, -2.364925811008378, -2.7291458331782468 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Period increase over time", "Period decrease over time", "Period remain the same over time" ]
Period decrease over time
multiple-choice
29
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Period" ]
Check the time interval between two peaks, and see how it changes over time.
Pattern Recognition
Cycle Recognition
447
[ 0.14166748407239185, 0.32519243862071134, 0.3268617239799573, 0.5245670621449168, 0.6460940271916782, 0.8312346620654878, 0.9026579809249216, 1.2560231758450588, 1.1216365754863946, 1.3976202136900984, 1.5948247200999055, 1.852209350934247, 1.7804556312300215, 1.9798203234498557, 2.019701570748185, 2.2012574220668526, 2.2109702370846684, 2.3104307399492163, 2.2133617227272344, 2.1948163487983448, 2.3473415064856984, 2.2627979319733615, 2.302071912384061, 2.3048355822286863, 2.358118320451038, 2.2603833954647343, 2.048707673327819, 1.925050652613423, 2.12114744346435, 1.691631627068654, 1.6933532202067145, 1.681700238132196, 1.7810518807949873, 1.7251634266658185, 1.8724592246505092, 1.9051151115080585, 2.124154952539537, 2.1100639559498044, 2.257131962036446, 2.507979879375497, 2.478948811374995, 2.695061648379234, 2.6584638314222806, 2.5961016956979064, 2.8970536018660775, 2.683470641398795, 2.776793249357995, 2.8259183391846743, 2.9422394445335183, 2.771673804427704, 2.7013991304951945, 2.7674932771160052, 2.674849548212852, 2.582980553756345, 2.5740068558781664, 2.3446304278850922, 2.196365636594627, 2.477942220625928, 2.163085216064158, 2.05295203964158, 1.8357256910187825, 1.8789098118819203, 1.609166586986363, 1.256790373171016, 1.4787018078982062, 1.8466412394013352, 2.1922199931407444, 2.513981458551908, 2.7795362468378206, 3.061004683843168, 3.373241514552274, 3.479235188647128, 3.658129091167459, 4.04010958515388, 4.181938685675127, 4.360275539277572, 4.308878045358464, 4.236497380999588, 4.142336036501071, 4.187021039441477, 4.2182075216403545, 4.181644676737233, 3.868093849618864, 3.5326934077098424, 3.326640701223284, 3.0630348914768475, 2.81714760102873, 2.660461627084521, 2.3441689146011266, 1.8729480393186937, 1.5692210475496007, 1.1316732904113407, 0.705661075572191, 0.730281144073337, 0.008292190375180558, -0.23513347363105, 0.12809114365136987, 0.25149386933129786, 0.4293399623477646, 0.884021555508443, 1.1401631495754538, 1.1423718120067163, 1.3942605625032003, 1.660901860546563, 1.567273736290401, 1.700491401434713, 1.7849726658712521, 1.3212824297279284, 1.3947930009717677, 1.277869528451153, 0.8551484397524414, 0.7305935651472119, 0.611484442878909, 0.14287838695992672, -0.2370051635047872, -0.27623143773644543, -0.6352032847265097, -0.9575321302855435, -1.203786278955629, -1.2992332629294958, -1.5391269253090727, -1.6238118142763238, -1.8270082950730853, -1.9663142567989202, -1.676144680256692, -1.5400470324195883, -1.5351627451145138, -1.24149354821758 ]
null
You are given two AR(1) process, which one of them is more likely to have a larger magnitude in autocorrelation at lag 1?
[ "Time Series 1", "Time Series 2" ]
Time Series 2
multiple_choice
47
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Autocorrelation", "AutoRegressive Process" ]
While it is hard to directly measure the autocorrelation for higher order lags, the autocorrelation at lag 1 can be approximated by observing the time series pattern. You can tell this by checking the sign and magnitude changes at each step compared to the previous step. You should compare the two time series to see which one has a larger magnitude in autocorrelation at lag 1.
Pattern Recognition
AR/MA recognition
448
[ 2.8709024226523154, -7.827314669877464, -17.945766655121833, -15.448144474618948, -17.48784267242623, 0.5238221075100025, 2.424802866810193, 6.364067303645387, 7.962276105880616, 7.077866415371954, 16.08621330312095, 13.561035909425868, 10.94004507529595, 3.4618004747930655, 7.553568480609596, -3.350694937394388, -2.5450622536991228, 16.959641520796534, -3.8751863300490665, -6.694707433791108, -4.290197646858293, -5.92207466040208, -5.2376867090095915, 1.8992157107595173, 2.940251276768886, 9.404950384188792, 22.821267194188135, -1.4012765225786352, -0.7957484336220545, -18.459066541611417, -14.768982567071076, -2.9390100251880273, 4.341922132722115, 5.348019975710503, 6.7056042594868925, 13.245226499177054, 18.38140075858511, -0.5958240142438072, -8.080843692246496, 5.740793228915272, 9.912318278747858, 2.3495476460903197, -1.5550005834983351, -5.197161619903882, -0.9420706033907109, 6.806476777496194, -6.001971512921213, -8.609745206058388, 5.134957468406055, -7.966951200270379, 0.7149424136845893, 1.0536130682783484, 0.10946894058707679, -6.415634030514648, 16.697496092910647, 5.653059492820703, -4.578767504232491, 2.851492400974891, 18.607400104617174, 2.7558675881118333, 15.609105611291103, -9.916628797809617, -9.503154556383787, -22.35432103732853, 17.52220446853528, -15.266344190281018, 0.21540033609988285, 17.397923016061107, 11.451423618206533, 4.908069008386343, 13.32204313739543, -5.351673375306889, 4.641692787512782, -0.6623104174403557, -1.3986902544969393, 1.7660148508125182, 11.929806350395333, 16.858377794015354, -0.9843109222973316, -10.98535457360238, -9.294334793105946, 18.548515120662735, 16.66261598567379, -9.246548343012671, 15.685436424035212, -5.548048283418461, 6.091247780234234, -6.514953222766451, 20.97720470528715, -3.6036887501562016, -10.858468451565042, -5.651091531001142, 25.70366375284403, 5.175910371806781, -9.764557366708301, -8.86026240953888, -18.362820921242943, 3.5650414901729803, -12.148924663500788, 9.841694514902548, 8.885025097674017, -0.11168759187956101, 12.350043213616368, 10.490898291598441, 2.6181950597594588, -7.419672136945856, 3.3933728179394747, 4.416319098339483, 5.356181209442937, 1.325942232526959, 3.4041360727410575, 3.3619117613100062, 13.957102820208956, -11.345292751760173, -11.150413977575996, -0.3637413952539703, -7.6362577084985555, 1.345100868925154, -10.997038438885625, -10.653506209314969, 19.539609295499766, -0.3393652497695412, -11.746353164898496, -2.3228625442905697, 10.131923386164493, 13.068497359201597, -13.303866351856128, -9.000819565399754 ]
[ 7.838423578683818, -9.729323514528648, -22.163358841102113, -28.406719276969394, -40.43425288391613, -36.93211345094249, -17.60072373626486, -20.73901133355575, -5.768652962646831, -4.317956529370326, -5.288186291945201, -20.887944407212483, -5.012185350099612, -2.8454746718347614, -18.27530639421767, -10.801698807092983, -14.51971293352604, -11.002555016166285, -6.400702476236063, 7.036794859431613, -5.6433507599716055, 1.2041408925719175, 14.246287125208376, 36.60189741484365, 39.77711745259755, 35.43575857379741, 31.09882504700994, 40.40007673270584, 29.455691461911382, 31.523578631042128, 47.15988951123035, 36.63416687241129, 9.167811328194645, -1.2738847954941797, 1.9153462560359145, -6.837227375340035, -8.941921668069115, -10.103995788360004, -2.473703598153305, -11.43862138368067, -14.988544060476205, 2.0796366486279734, -3.155911593171701, 4.733126018606129, 3.925881820340059, 2.909527965787407, 9.709038037000049, -10.857392219984167, -4.25246969714248, 2.1256476031942872, 10.184954118065122, 4.393255903361829, 3.5198610310467036, -21.70941726239859, -24.06594677955356, -17.49690441885252, 0.7090911994594311, 19.02506209218329, 11.795570684751663, 18.176772476434095, 13.069350999779099, -5.704105288842859, 1.4872685666549366, 19.50266731699842, 11.787763651527964, 0.35764188580558276, 0.9598020248230978, -0.46007401325091934, 25.73235948918438, 30.644508798506216, 25.809508015647193, -8.30569092517079, -8.077537645229842, 12.060236180955837, 10.448664048882288, 16.577425841434682, 17.181533972740926, 8.878606585753783, 24.016042507509177, 21.101893201733812, 9.812811776880315, 8.065499864399502, 20.72786655143731, 1.7877770053080546, 4.132884170731305, 4.042654953112912, -12.166963269254069, -2.0658927058506737, 0.9118029870714128, 9.514722823460183, 18.992560660002866, 14.638448120375855, 6.154721278044239, -9.32151744001295, -13.900598584879342, -11.011000115278666, -18.44456825403916, -8.921135284217165, -16.17116645736612, -30.565126543303435, -30.231454561704442, -22.342883493682614, -30.468759165988885, -33.257628770896645, -32.90783068985982, -31.315046045818853, -22.0732147094378, -11.279582957455734, -13.767976910056264, -21.403765847679804, -15.75565556257167, -7.4272784545797705, 10.195916115744057, 19.618445300053708, 3.106278356541699, 1.0751045826195742, 5.421700290750874, -4.164564013407229, -6.838690363215628, 1.2686403411498626, 3.5146262988541395, 2.828985267568665, -4.272303942428913, -17.873876380051556, -17.423451848796944, -14.851028235128464, -26.565098538291195, -20.7723697192474 ]
The following time series has a noise component. Is it a white noise or random walk?
[ "Random Walk", "White Noise" ]
White Noise
binary
52
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise", "Gaussian White Noise" ]
White noise is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. This can help you distinguish between white noise and random walk.
Noise Understanding
White Noise Recognition
449
[ 0.042553090560800186, 0.1657314146210468, 0.4427560329787515, 0.670247451856642, 1.0285336212877025, 1.3157160719308871, 1.2399001203604636, 1.653598818691149, 1.6258143801892293, 1.6770580179560106, 1.721974134599885, 1.6706852555531493, 1.687122853652122, 1.6442612152583078, 1.5835394061824208, 1.6963817281194342, 1.819916452103864, 1.374156687682057, 1.3289520608120915, 1.3795131871190383, 1.0353904995004442, 0.8964114072538041, 0.7538423637035928, 0.9395741383571143, 0.8192466067583691, 0.7256203251820365, 0.8227199976695476, 1.059058851048168, 0.9793308126194489, 1.2425497434689097, 1.3322963940084716, 1.4630167223651724, 1.6336034497603775, 1.9297572717628984, 2.11260247874359, 2.3426147741561167, 2.331035128895871, 2.7826123308506685, 2.8802935874345845, 3.178752288230989, 3.6623665822049065, 3.730153282078878, 4.140247037570532, 4.190052574456808, 4.15316501721699, 4.29306246718833, 4.497910578888873, 4.530650830173689, 4.597139168424791, 4.199155825480341, 4.235782838580546, 4.293819063522591, 4.3710352659283105, 4.294471295737537, 3.7489650323916663, 3.8842786937486453, 3.9578367625613966, 3.6685546409748198, 3.744731608008727, 3.700577764443868, 3.5375992103879907, 3.586160180674723, 3.5663411525348763, 3.679875986884062, 3.6555093016244475, 3.5560706712963124, 3.974689023235209, 4.056956191367667, 4.3086245885660315, 4.341202980057537, 4.63454752460403, 4.8425098409383525, 5.262424011149989, 5.485831560954018, 5.839242352506402, 5.886285857509228, 5.981623138988601, 6.226038534724858, 6.664610329926104, 6.889996831392346, 6.714537581339152, 6.934839813783937, 6.949300610640957, 7.388982298152046, 7.22011457148764, 7.065015522291343, 7.031162181160398, 7.272115949041727, 7.1021833718117815, 6.9408747700547515, 6.786613431962258, 6.686290858138643, 6.461735167069374, 6.445521949085877, 6.386518111075576, 6.350713608018071, 6.30148108126312, 6.395656203882464, 6.1818965006110504, 6.464533113385614, 6.329494504419875, 6.470378628472806, 6.667330112806602, 6.747451776138932, 6.9419478652513815, 6.971859474216303, 7.239580440315459, 7.5803455900057575, 7.826393734327908, 8.006250549675885, 8.325078009670724, 8.385718164385112, 8.808080791538, 9.065912884594983, 9.161806965945868, 9.369349425204314, 9.25963641890136, 9.81100616869734, 9.787101487976159, 9.888579535559808, 9.899984638890926, 9.927839123739462, 9.90354106517983, 9.99601841760199, 10.056306302785295, 9.806018410244821, 9.732389315612354, 9.423210052930084 ]
null
Does the trend of the time series change direction?
[ "No", "Yes" ]
No
binary
12
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the overall direction of the time series changes at any point.
Pattern Recognition
Trend Recognition
450
[ -0.009580369776909644, 0.03002662600033841, 0.060786822973658394, 0.09839536129364487, 0.01049558632716647, 0.01734605435794889, 0.03925801565262821, 0.000943082791863864, -0.026059901180552167, 0.028791102033577872, 0.07205986228248334, 0.029299184205434675, 0.06385818426520513, -0.039734924871778744, 0.0526902924403135, 0.03655970982437658, -0.0007184123969913372, 0.09382775175354999, 0.15340100644375732, 0.11687464205128889, 0.1235753755983333, 0.11123304205081336, 0.11183078863553408, 0.0005449566624694535, 0.08282760595515583, 0.11645866347341202, 0.12122928690346728, 0.15973465530469672, 0.05511426485791926, 0.1359013587753788, 0.060983189415876056, 0.10480287550432914, 0.11554418756722984, 0.1627108267649989, 0.1608830961017979, 0.1352196705020448, 0.03209126291108015, 0.15787902196906997, 0.12808377056597126, 0.20980233229414338, 0.20230041027549805, 0.10767433028071072, 0.18284471540726133, 0.18747436427982347, 0.18775705789600455, 0.18536588080998073, 0.19990755645279212, 0.24457299260002235, 0.15176396829212785, 0.13880307343699805, 0.22188699679914942, 0.10024925416029624, 0.22324044775748686, 0.2186169946959021, 0.08962814343567205, 0.17368246121353587, 0.2813910070155978, 0.14249612688542262, 0.22469825092547865, 0.17116220304969237, 0.1887778278832099, 0.31590045989675497, 0.23531435029288444, 0.25751594082681395, 0.23162720846460652, 0.1693857303010617, 0.18861159289661433, 0.3034210496565995, 0.2589095033712372, 0.2192100692827629, 0.2580884904778776, 0.29393051125874625, 0.2878955379002924, 0.23404069055231966, 0.1998730746963071, 0.25849778531829326, 0.33347532584811085, 0.3252043075996609, 0.30803368683295157, 0.2844077511695491, 0.2718494233530806, 0.29268350870515814, 0.34029987847594473, 0.35474026222353444, 0.29864293985755275, 0.4338871572221149, 0.32269797641012254, 0.30574429462053304, 0.3951326292813221, 0.2336333343082983, 0.3557286662447033, 0.33344031705986715, 0.40864763380617053, 0.3727054344884745, 0.3545077039466459, 0.3828221362559189, 0.30574591915136967, 0.4045263252810148, 0.29956265961444706, 0.38333101191501845, 0.37185319196189426, 0.2909946698643183, 0.3808235957533276, 0.3945411940508047, 0.35419852157706877, 0.3410911005518163, 0.4155281933892081, 0.41312479782074035, 0.4104565556642938, 0.4039106386509507, 0.38056108543452866, 0.5177199612443102, 0.4005749858456346, 0.37763078877592793, 0.42456268019734933, 0.41719916482513403, 0.41429229316553673, 0.5212240814212634, 0.3836985476104375, 0.4422728677038267, 0.3942554931001754, 0.4224813828746171, 0.5332377412356019, 0.4685515004641588, 0.4716856359325344, 0.4185560172930175, 0.44646275729104656, 0.5558370527079114 ]
null
The following time series has an anomaly with random large fluctuations. What is the likely pattern of the time series without the anomaly?
[ "Square wave with log trend", "Sawtooth wave with linear trend", "Sine wave with linear trend" ]
Sine wave with linear trend
multiple_choice
66
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Spike Anomaly" ]
Spikes anomaly bring constant large random fluctuations. Can you check the place where the spikes disappear and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
451
[ -12.452104230873235, 2.1267073022323357, -0.9228894009692994, 1.2109503549260734, 1.3037190415807105, 1.204490669279966, 1.9502264948931458, -8.908782553252887, -4.241379546975837, -0.157603345370517, -0.45606480427161616, -8.252117258659943, -0.2445360543944174, 0.09090276597539115, 0.5527923262487417, 1.0685252328806645, -1.5356496243127384, 1.9372699577724413, 2.155027973720629, 0.9658232362278008, 2.0203560645138703, 1.7142863567812472, 1.3287828278503182, 0.944612525056746, 4.240729329667878, 0.4875584403269069, -3.1167456336793613, 4.368847080834606, 1.1289574781706815, 8.109043030302752, 2.133630431719054, 2.592501666266616, -1.207070837642327, 3.436668807750488, 0.7211203109058282, 2.818728247059232, 2.476825987401832, 6.1792759531889425, 1.7177265575329748, 1.4599082534349255, 1.3665641723899493, 1.4655817801813331, 4.265312283681658, 2.179422953260579, 5.597243791909061, 3.191969819914612, 1.7929824431582118, -0.2655409498709993, 3.9738018720496626, 6.476790030506812, 8.497495174398146, 5.701969050917183, 9.235803237725497, 14.411685626779512, 0.7754653391866557, 2.2686458795017206, 2.4340236651822, 2.7744391723330057, 3.2392712794434106, 3.7553800048677703, 4.240344523436535, 10.32513524410166, 4.829240007735228, 4.84856865905639, 5.50278373842746, 4.373102335124093, 8.907523789474778, 3.6035968414645057, 6.749736710258103, -1.3204371117837645, 3.193997430365113, 3.423463318073698, 7.424770722620368, 10.25369693379045, 6.810727468169816, 9.686646080253603, 5.601102746591831, 5.748095645916647, 5.701138248378006, 1.8602656832947315, 9.255672270263693, 4.740119226044119, 4.377782333283721, 4.124478834616536, 4.037048150419253, 4.582043603841821, -2.1634872065636914, 4.70330770207467, 5.374056379629698, 5.877537426907397, 6.492426815145115, 5.919660756309406, 6.061535223762465, 10.00479076110842, 6.261781224056652, 9.534898935078562, 5.497782452512199, 5.1650476223161625, 4.9637435479779075, 4.941297981624537, 8.442998835352391, 5.458105429814939, 8.880695879779463, 14.709933211530789, 6.924827722243511, 7.297319600111713, 12.462299960410391, 7.516342121794177, 7.3452158388371895, 7.031837956707, 6.643921096296394, 12.74392122415847, 10.212872635077506, 2.992305582482698, 7.296599347737308, 7.310320619037616, 6.498691360546689, 11.081262705451131, 14.247134406119518, 7.99317128202752, 14.52060433714162, 8.419937925945206, 8.366900542921847, 8.140587438609103, 7.792952890117788, 0.3596855702831059, 7.811867097723121, 6.789222533946849 ]
null
Does the following time series exhibit a mean reversion property?
[ "Yes", "No" ]
No
binary
46
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean Reversion" ]
Mean reversion first requires the time series have constant mean. You should check this first. Then, see if the time series tends to revert back to the mean after a shock.
Pattern Recognition
AR/MA recognition
452
[ 1, 1.0124675008935529, 1.0250904403656365, 1.0378707563468674, 1.0508104109290144, 1.0639113906662265, 1.0771757068800187, 1.0906053959680588, 1.1042025197168042, 1.1179691656180368, 1.1319074471893442, 1.1460195042985966, 1.1603075034924681, 1.1747736383290566, 1.1894201297146465, 1.2042492262446736, 1.2192632045489393, 1.2344643696411295, 1.2498550552726895, 1.2654376242911132, 1.281214469002698, 1.297188011539822, 1.3133607042328008, 1.3297350299863804, 1.346313502660924, 1.3630986674583514, 1.3800931013128892, 1.3972994132866938, 1.4147202449704064, 1.4323582708887024, 1.450216198910895, 1.4682967706666614, 1.4866027619669488, 1.5051369832301298, 1.523902279913471, 1.5429015329499793, 1.5621376591906975, 1.58161361185251, 1.6013323809715365, 1.6212969938621742, 1.6415105155818654, 1.6619760494016589, 1.6826967372826374, 1.703675760358287, 1.7249163394228784, 1.746421735425937, 1.7681952499728801, 1.7902402258318928, 1.8125600474471262, 1.8351581414582914, 1.8580379772267335, 1.881203067368063, 1.9046569682914287, 1.9284032807455136, 1.9524456503713385, 1.9767877682619566, 2.001433371529127, 2.026386243877053, 2.051650216183273, 2.077229167086796, 2.1031270235835646, 2.1293477616293477, 2.1558954067501466, 2.1827740346602105, 2.2099877718877607, 2.237540796408512, 2.2654373382870965, 2.293681680326479, 2.322278158725475, 2.351231163744463, 2.3805451403793962, 2.4102245890442195, 2.4402740662617917, 2.4706981853634242, 2.501501617197142, 2.5326890908447712, 2.56426539434797, 2.59623537544331, 2.628603942306523, 2.661376064306026, 2.6945567727658415, 2.7281511617380287, 2.762164388784745, 2.7966016757700585, 2.8314683096616333, 2.8667696433424057, 2.902511096432388, 2.9386981561207057, 2.9753363780080226, 3.012431386959458, 3.049988877968141, 3.0880146170295357, 3.126514442026656, 3.165494263626329, 3.2049600661866267, 3.2449179086756095, 3.2853739256015286, 3.326334327954621, 3.3678054041606504, 3.4097935210463355, 3.452305124816811, 3.495346742045282, 3.538924980675009, 3.5830465310337907, 3.6277181668610963, 3.6729467463479946, 3.7187392131900605, 3.765102597653398, 3.8120440176539594, 3.8595706798503233, 3.907689880750087, 3.9564090078300667, 4.005735540670448, 4.055677052103094, 4.106241209374151, 4.157435775321166, 4.209268609564872, 4.261747669715826, 4.314881012596104, 4.368676795476221, 4.423143277327464, 4.4782888200898565, 4.534121889955914, 4.590651058670417, 4.647885004846381, 4.705832515297433, 4.764502486386815, 4.823903925393176 ]
null
Two time series are given, one with an upward trend and the other with a downward trend. Do they exhibit similar patterns aside from the trend?
[ "No, they have different cyclic components", "Yes, they share a similar pattern" ]
Yes, they share a similar pattern
binary
89
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Square Wave" ]
You should focus on the cyclic components of the time series. Do they have similar patterns aside from the trend?
Similarity Analysis
Shape
453
[ 0.25974372073752244, 0.16617941667630032, 0.4962031337314375, 0.8486365732633708, 1.053016986691133, 1.2526401536959526, 1.2977349020203506, 1.4613157433031436, 1.4913644466138454, 1.454645554993494, 1.46662825682735, 1.4642658474097794, 1.2402254483013289, 1.0998783344608123, 1.051859327900069, 0.8794808115042041, 0.7850478554170152, 0.3094313234583846, 0.4584357078034974, 0.34365728997185985, 0.14992611251962745, 0.26292992413947464, 0.3892552553358583, 0.29529820246967575, 0.5626214373459678, 0.7879624385673649, 0.8127540258916375, 1.1537732148205069, 1.4665524301363344, 1.6358476988865913, 1.9068532935198728, 2.2506113662108578, 2.5938682113631804, 2.7990310495967807, 2.83329483228361, 3.127404549906822, 3.075427976663654, 3.047173779881697, 3.17345620284273, 3.2799367507199015, 3.15095012001681, 2.969766845416916, 2.7878365408752677, 2.634450446296864, 2.5226155719019676, 2.2479106991052094, 2.1777644690360964, 2.07304804675584, 1.874012298661885, 1.8790346505267708, 2.0018635146115082, 2.0067382937676674, 2.0675982396798958, 2.146177609051101, 2.5763014911989752, 2.5528756209986234, 2.9092459438605243, 3.103294268142573, 3.4345498882459458, 3.7561287171098146, 3.843123371085899, 4.229785691087644, 4.571426134318652, 4.814432680004352, 4.769328035927394, 4.884711109586117, 5.15224416817659, 5.047936585432449, 4.831429705564644, 4.75005199379531, 4.793036043710458, 4.456463947919528, 4.510577947702828, 4.273563430590572, 4.134639488650958, 3.9144434951694733, 3.758331646958802, 3.8809732301257633, 3.6626318520701346, 3.642801477453939, 3.7194584566239364, 3.838076644070714, 3.8532294978689197, 4.079950404451744, 4.291713136227301, 4.6847172688729835, 4.779119830421453, 4.970806802937771, 5.22924910642387, 5.549127468354547, 6.083319799440478, 6.1716386159461685, 6.407217773740596, 6.5560804695488155, 6.607641448776317, 6.646512228240958, 6.763132033208214, 6.6332417774279655, 6.678427676214822, 6.486899458078303, 6.223834892103774, 6.080465401803444, 5.895787094660513, 5.932747659646471, 5.627174042873057, 5.4682037220631585, 5.4924395482490835, 5.402052855569018, 5.43647438685087, 5.638179642229029, 5.630421277247183, 5.678041341514333, 5.713448033672229, 6.020388340529813, 6.38741435450556, 6.4662564724368226, 7.075943028337353, 7.1429829839744094, 7.417050258972092, 7.597195920967679, 7.937325656561483, 7.960067173470441, 8.438983884928076, 8.455197307552725, 8.475258844409373, 8.243833266272938, 8.364633069063922, 8.385965287278689 ]
[ 0.059310539935773926, 0.18606752441581947, 0.4939460689043063, 0.7597995608287333, 0.9521137791236671, 1.3238907046808532, 1.08024838541133, 1.376121687857383, 1.1530011688120732, 1.0907627208547452, 0.8257365064234377, 0.7516893580072033, 0.6849967566868757, 0.2447371367043622, -0.24890789617839743, -0.39368918538343495, -0.744172179473987, -1.2206930926970723, -1.3699802492321926, -1.7997725390195836, -2.077211881419191, -2.435257089817639, -2.4405767468135364, -2.5645808868983653, -2.5500693969178374, -2.6202372138235064, -2.426451822740391, -2.352589291029597, -2.2701315998465246, -1.7036451095234544, -1.6774923075618162, -1.229218018645264, -0.921869568013047, -0.6538352499486655, -0.47508204990761216, -0.22056858860188175, -0.05213019024813924, 0.06421978139697236, 0.19003836969498455, -0.0007103305977698773, -0.1253917876419754, -0.3942578485435846, -0.4905215110379397, -0.7488394979310014, -1.1572775366968426, -1.4354412503436234, -1.8875558068704668, -2.16262794944094, -2.499261098482152, -2.837613900284178, -3.216586759318374, -3.5864737374407905, -3.742195940624745, -3.757952215877629, -3.6430708687127207, -3.9253482321339, -3.7834581739840134, -3.761172930717075, -3.625105738634696, -3.3722066871368384, -3.255398122772133, -2.632498857985932, -2.702975074120646, -2.2235606005994897, -2.0507589856259445, -1.7883932460288603, -1.3719460708571456, -1.3513957767300655, -1.3896687786083808, -1.3384170452337132, -1.4093648204936402, -1.4570667880270645, -1.618634450709783, -1.6870416605745389, -2.3581360880021425, -2.498852818108918, -2.8828657367756105, -3.1266546924737706, -3.5563001945020503, -3.890079264095157, -4.245734906659427, -4.66638459922892, -4.696416408479382, -4.9250801228509955, -5.037770675377134, -5.060902431437908, -5.136451500450141, -4.956075234924203, -4.932217458344048, -4.804845499880656, -4.553199124881496, -4.292449226069822, -4.060072209942285, -3.5569758569602103, -3.4102017508025013, -3.1710139635251644, -2.915792270356483, -2.475339830391438, -2.7590284301528563, -2.6637369463731164, -2.716013695380067, -2.667078879726624, -2.751278906705596, -3.016793916629224, -3.27476774380116, -3.5045492378620198, -3.9038486606124376, -4.182187159539024, -4.4729078867790415, -4.885676599695654, -5.218696526043163, -5.523089894708079, -5.888026540533835, -6.16649091673032, -6.403890094643494, -6.477986566408786, -6.536697672608706, -6.38973458279176, -6.342535975116298, -6.1628805775413955, -6.152695317150334, -5.656211487016233, -5.57499980238366, -5.358215422134951, -5.004554855570451, -4.434838512896994, -4.4679658380711995, -4.2433446898659195 ]
Is the two time series lagged version of each other despite amplitude difference?
[ "Yes, they are lagged versions", "No, they are not lagged versions" ]
Yes, they are lagged versions
binary
104
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the scale difference. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
454
[ 0, 0.20102290135442413, 0.39835280523929356, 0.5883645583471777, 0.7675674493278515, 0.9326693367463362, 1.0806371291073495, 1.208752505865903, 1.3146618557717733, 1.3964195151290861, 1.452523511639716, 1.4819431571793256, 1.4841379825983763, 1.4590676666963276, 1.407192776963567, 1.3294663084828724, 1.227316176429493, 1.1026189838006302, 0.9576655462881095, 0.7951188076377937, 0.6179649186338738, 0.4294583784374173, 0.23306224608920875, 0.0323845205530737, -0.16888814193626142, -0.3670581555402899, -0.5584849332719054, -0.7396517683230527, -0.907230439586073, -1.058142354498844, -1.1896151059567845, -1.2992334042830562, -1.3849834485842865, -1.445289922344372, -1.4790449336092457, -1.4856283681016482, -1.4649192813582494, -1.4172981206038426, -1.343639735544498, -1.245297306478593, -1.1240774849828554, -0.9822072038645795, -0.8222927661153383, -0.6472719644441925, -0.46036011100381896, -0.2649909687989986, -0.06475366992826607, 0.13667322046451819, 0.33558928321562265, 0.5283402256477235, 0.7113850146851901, 0.8813609292739684, 1.0351453370262493, 1.1699130601893466, 1.283188277067, 1.3728900054105515, 1.437370332203345, 1.4754446875178895, 1.4864136062838658, 1.470075578180939, 1.4267307495906172, 1.3571754095984896, 1.2626873613446696, 1.145002447465757, 1.0062826608801307, 0.8490764267542061, 0.6762717853108301, 0.4910433355597608, 0.2967939146484598, 0.09709208424356075, -0.1043934276175773, -0.30396112483455395, -0.4979447435346337, -0.6827806051112142, -0.8550730846654121, -1.0116569921281815, -1.149655720057602, -1.2665340898764514, -1.3601449257103437, -1.4287685002171315, -1.4711441277470796, -1.4864933244349945, -1.4745341097495728, -1.4354861867658042, -1.3700669059935016, -1.2794780869105673, -1.165383939302995, -1.0298804900193048, -0.8754570768013599, -0.7049506165895236, -0.5214934884404275, -0.32845598850172775, -0.1293844142052122, 0.07206408486475097, 0.2721886925708065, 0.46731291402170033, 0.6538521165650711, 0.8283793831764238, 0.9876884684497802, 1.1288527006237294, 1.2492787475520384, 1.3467542588826948, 1.419488509209478, 1.4661452955396093, 1.4858674847171458, 1.4782927598406992, 1.4435602763975939, 1.3823081058344293, 1.2956615135282863, 1.1852122865043053, 1.0529894906707233, 0.9014221947910606, 0.7332948459923799, 0.5516961166075006, 0.3599621620872401, 0.1616153323932157, -0.03970053719400991, -0.24028706707710432, -0.4364592763792943, -0.6246132798334276, -0.801292494861305, -0.9632511425510428, -1.1075138759543042, -1.2314304402701668, -1.332724360751874, -1.409534763889488, -1.46045056357038, -1.4845363841825365 ]
[ -6.391341122713936, -6.669639932784695, -6.825410596914571, -6.855791447778165, -6.760224357895444, -6.540464993007634, -6.20055055869168, -5.746725632741134, -5.187327445848938, -4.532632718103936, -3.7946688650722273, -2.9869930418018544, -2.124443083939713, -1.2228649214285352, -0.2988214724747919, 0.6307116342953628, 1.548657919595038, 2.4381537659659274, 3.2828582197769216, 4.067253191350516, 4.77692853823214, 5.3988467943292, 5.921582681573578, 6.33553300403172, 6.63309306849175, 6.808796390499976, 6.859415119303093, 6.78401933678668, 6.58399414102749, 6.2630142006170475, 5.826976247219898, 5.283890746547528, 4.643734737863748, 3.9182685455110025, 3.1208197296555893, 2.266038245298728, 1.369627307534217, 0.4480549073349526, -0.4817487223802571, -1.402702132539774, -2.2978864617084755, -3.1508562529750934, -3.9459415739113894, -4.66853588934889, -5.30536439845424, -5.844727906474906, -6.276717750980523, -6.593397834183817, -6.7889504172199615, -6.85978299799367, -6.804594309137906, -6.624398223633901, -6.322505128921628, -5.904461111677464, -5.3779460704972495, -4.752632628259586, -4.040008436094278, -3.253165133414928, -2.4065578410369057, -1.5157396057394052, -0.5970756747983624, 0.33255715043933226, 1.2560805587559816, 2.156528475206835, 3.0173587453681128, 3.822757031729015, 4.557927339338348, 5.2093638334509285, 5.765098955603862, 6.214923279975402, 6.550573071038626, 6.76588209688313, 6.8568949092378055, 6.8219395091241335, 6.661658063197244, 6.378995106483925, 5.979143448245442, 5.469448774730088, 4.859274701361043, 4.159830753489715, 3.3839664358848527, 2.545935174113031, 1.661132464449943, 0.7458130427780193, -0.18320773163121867, -1.1088627915633582, -2.0141469014408844, -2.88242906099225, -3.697758033833596, -4.445155388088377, -5.11089066558781, -5.682733624510507, -6.150178921504792, -6.504639105651744, -6.739602378771717, -6.850752223854807, -6.836046703918391, -6.695755974489764, -6.432457320571228, -6.050987809263635, -5.55835542786833, -4.9636103399520435, -4.277678624533138, -3.5131615527715923, -2.6841040896560884, -1.8057368735505999, -0.8941964137013491, 0.03377135403588071, 0.9611187072623135, 1.870809321231966, 2.7461312436606087, 3.571003910479177, 4.330273562336212, 5.009991634744137, 5.597671007556423, 6.082515406208948, 6.455617740388664, 6.7101237364445225, 6.84135785744472, 6.8469091975993885, 6.726675773079789, 6.482866395566146, 6.119960094105149, 5.644623830739166, 5.065590021555994, 4.393496113223083, 3.6406891621507045, 2.820999006365483 ]
Which additive combination of patterns best describes the time series?
[ "SineWave + SawtoothWave", "SineWave + SquareWave", "SawtoothWave + SquareWave" ]
SawtoothWave + SquareWave
multiple-choice
17
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition" ]
Imagine the shape of the time series as addition of two different patterns.
Pattern Recognition
Cycle Recognition
455
[ -0.8322277640662838, 0.32958491159554915, 0.38855284047103134, 0.44752076934651364, 0.5064886982219959, 0.5654566270974781, 0.6244245559729604, 0.6833924848484427, 0.742360413723925, 0.8013283425994072, 0.8602962714748894, 0.9192642003503717, 0.9782321292258541, 1.0372000581013363, 1.0961679869768186, 1.1551359158523007, 1.214103844727783, 1.2730717736032653, 1.3320397024787476, 1.39100763135423, -0.7557139333429894, -0.6967460044675069, -0.6377780755920248, -0.5788101467165425, -0.51984221784106, -0.4608742889655779, -0.4019063600900956, -0.34293843121461354, -0.283970502339131, -1.8894581015962166, -1.8304901727207343, -1.771522243845252, -1.7125543149697697, -1.6535863860942874, -1.5946184572188051, -1.535650528343323, -1.4766825994678408, -1.4177146705923585, -1.3587467417168764, -1.299778812841394, 0.9648786096067897, 1.023846538482272, 1.0828144673577542, 1.1417823962332365, 1.2007503251087188, 1.2597182539842011, 1.3186861828596832, 1.3776541117351655, 1.4366220406106478, 1.49558996948613, 1.5545578983616124, 1.6135258272370945, 1.6724937561125768, 1.7314616849880593, 1.7904296138635414, 1.8493975427390237, 1.908365471614506, 0.3028778723574205, 0.3618458012329028, 0.4208137301083851, -1.7259078345888341, -1.6669399057133518, -1.6079719768378695, -1.5490040479623872, -1.4900361190869051, -1.4310681902114228, -1.3721002613359405, -1.3131323324604582, -1.254164403584976, -1.1951964747094936, -1.1362285458340113, -1.077260616958529, -1.018292688083047, -0.9593247592075647, -0.9003568303320824, -0.8413889014566003, -0.782420972581118, -0.7234530437056355, -0.6644851148301534, -0.6055171859546711, 1.6591402364935126, 1.718108165368995, 1.7770760942444772, 1.8360440231199593, 1.8950119519954416, 0.2895243527383562, 0.3484922816138385, 0.4074602104893207, 0.466428139364803, 0.5253960682402853, 0.5843639971157675, 0.6433319259912498, 0.7022998548667321, 0.7612677837422144, 0.8202357126176966, 0.8792036414931788, 0.9381715703686612, 0.9971394992441435, 1.0561074281196257, 1.115075356995108, -1.0316462077021114, -0.9726782788266289, -0.9137103499511467, -0.8547424210756644, -0.7957744922001821, -0.7368065633247001, -0.6778386344492175, -0.6188707055737355, -0.5599027766982532, -0.5009348478227706, -0.44196691894728857, -0.38299899007180627, -0.3240310611963242, -1.9295186604534096, -1.8705507315779273, -1.811582802702445, -1.7526148738269627, -1.6936469449514804, -1.634679016075998, -1.5757110872005158, 0.6889463352476677, 0.74791426412315, 0.8068821929986323, 0.8658501218741145, 0.9248180507495969, 0.9837859796250791, 1.0427539085005613, 1.1017218373760436 ]
null
Is time series 2 a lagged version of time series 1?
[ "No, they do not share similar pattern", "No, time series 1 is a lagged version of time series 2", "Yes" ]
Yes
multiple_choice
96
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Focus on the time delay between the two time series. If time series 2 is a lagged version, then it should look the same to time series 1 after being shifted by a certain number of steps. Can you check this?
Causality Analysis
Granger Causality
456
[ 4.26283971812262, 4.44768226098468, 3.976084721557908, 4.243002656326335, 3.8952671999772837, 3.25076486824241, 2.7564331717497446, 2.6904316825668904, 2.3935812730181145, 2.55168306043662, 2.3439917476736025, 2.496742559890957, 2.3257289780748134, 2.299087791534179, 1.7598100634133695, 2.5488449663637436, 1.6524080513197612, 3.021017792791609, 3.2815090305106356, 2.422400161744924, 2.4768073328597486, 2.5990604239710526, 3.419648991181081, 2.6780907037546147, 1.9371879796414853, 2.126756781855234, 2.2330242097660373, 3.039660724420265, 2.4909089984921384, 1.8970616344451283, 2.925213461078053, 2.900162445728804, 2.4903380704784706, 2.8783270054975887, 1.7508577576223088, 1.9588253389257855, 1.6114059133372005, 1.3353627810940574, 2.047508200531568, 2.283455611799374, 1.6634600379859106, 1.6917543790424083, 1.7560770493765074, 1.6119678576828775, 1.084046834665115, 1.2087304283649725, 1.5940054772675345, 1.843447756128997, 1.4515589891395866, 1.3648269765268446, 0.150887907765712, 1.0295985523279365, 0.6988470474186911, 0.41287319605662004, -0.30979374427959866, 0.16350322485763152, 0.7287008436795743, 0.4154962457811789, -0.21003963222139949, -0.1987901433049492, -0.3798541230482448, 0.029341710423356492, -0.04283581068388888, -0.15417461289026174, 0.2144104570914499, -0.6520110238395959, -0.8231350155638542, -0.7174849238412598, -0.9526682530451888, -0.7983354971968939, -0.6765059899933187, -0.19320965072531832, -0.34403863996900613, -1.4615490584845838, -2.312359085398818, -2.0575065478249446, -1.957765107889917, -2.0819392058648676, -2.1662138967812887, -2.52248035403239, -2.8768431416925875, -3.1775888374417556, -3.3311053679931217, -3.264020799418741, -3.3061360054099276, -3.486185235753588, -3.103711999076254, -2.625927304396753, -1.8899523073963442, -1.993586676728664, -2.2797392067937605, -2.3147287408362023, -2.616314003855147, -2.6250339031077243, -2.401269868361393, -2.3427214170929327, -2.4315027333118904, -2.0803942834680966, -1.1587420521670313, -1.5477945782597, -1.3640058757631717, -1.4688119339277335, -1.9327639669962682, -2.328371389616159, -2.551819412813331, -1.6869041969067793, -1.1628986618844739, -1.6539791402816235, -1.3545903476958225, -1.8882985547030546, -2.232620712356641, -1.510786918405517, -0.4203738678269807, -1.461384993418672, -1.4444718489937514, -1.2203711665075185, -1.3713072228412182, -1.2940039973355286, -1.51699252558857, -1.1720712293355275, -1.3599477386465397, -1.0524674691359723, -0.5107275828263838, -0.04624309397758011, -0.1473951002356248, -1.3881518790032212, -1.1188396111264842, -1.9136146297167023 ]
[ 1.8970616344451283, 2.925213461078053, 2.900162445728804, 2.4903380704784706, 2.8783270054975887, 1.7508577576223088, 1.9588253389257855, 1.6114059133372005, 1.3353627810940574, 2.047508200531568, 2.283455611799374, 1.6634600379859106, 1.6917543790424083, 1.7560770493765074, 1.6119678576828775, 1.084046834665115, 1.2087304283649725, 1.5940054772675345, 1.843447756128997, 1.4515589891395866, 1.3648269765268446, 0.150887907765712, 1.0295985523279365, 0.6988470474186911, 0.41287319605662004, -0.30979374427959866, 0.16350322485763152, 0.7287008436795743, 0.4154962457811789, -0.21003963222139949, -0.1987901433049492, -0.3798541230482448, 0.029341710423356492, -0.04283581068388888, -0.15417461289026174, 0.2144104570914499, -0.6520110238395959, -0.8231350155638542, -0.7174849238412598, -0.9526682530451888, -0.7983354971968939, -0.6765059899933187, -0.19320965072531832, -0.34403863996900613, -1.4615490584845838, -2.312359085398818, -2.0575065478249446, -1.957765107889917, -2.0819392058648676, -2.1662138967812887, -2.52248035403239, -2.8768431416925875, -3.1775888374417556, -3.3311053679931217, -3.264020799418741, -3.3061360054099276, -3.486185235753588, -3.103711999076254, -2.625927304396753, -1.8899523073963442, -1.993586676728664, -2.2797392067937605, -2.3147287408362023, -2.616314003855147, -2.6250339031077243, -2.401269868361393, -2.3427214170929327, -2.4315027333118904, -2.0803942834680966, -1.1587420521670313, -1.5477945782597, -1.3640058757631717, -1.4688119339277335, -1.9327639669962682, -2.328371389616159, -2.551819412813331, -1.6869041969067793, -1.1628986618844739, -1.6539791402816235, -1.3545903476958225, -1.8882985547030546, -2.232620712356641, -1.510786918405517, -0.4203738678269807, -1.461384993418672, -1.4444718489937514, -1.2203711665075185, -1.3713072228412182, -1.2940039973355286, -1.51699252558857, -1.1720712293355275, -1.3599477386465397, -1.0524674691359723, -0.5107275828263838, -0.04624309397758011, -0.1473951002356248, -1.3881518790032212, -1.1188396111264842, -1.9136146297167023, -1.6594361259379857, -1.4490456012659714, -1.5630036889218697, -1.5262674236809437, -0.7264754809685361, -0.014297678846415373, -0.20748577820836836, -1.2463401576449071, -0.3826931206681397, -1.2502206327993675, -1.2000795344719115, -1.2404321115624903, -1.0010921060818594, -0.28678176013368156, -0.25346371187098204, -0.530944244281572, -0.37445809653988543, -1.1237961571896973, -1.4998585023743118, -1.616178271769631, -1.31761343998039, -0.5554350217293239, 0.03901117133727789, 0.5451421571563111, 1.1455390422862444, 1.4694225485946921, 1.5120400157502454, 0.9622253218538149, 0.9797111428946996 ]
The given time series has multiple trends followed by each other, what is the correct ordering of the trend components?
[ "Log", "Exponential -> Linear -> Log", "Linear -> Exponential", "Linear -> Exponential -> Log" ]
Log
multiple_choice
9
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend" ]
Identify the different components first, and then check the assignment of each component.
Pattern Recognition
Trend Recognition
457
[ -0.14170765579218222, 0.27392689334391507, 0.2855238850837152, 0.26999425490371964, 0.4807737224020934, 0.6053232836087262, 0.6118891297789275, 0.5995687446912769, 0.6959453413579589, 0.8324512650017268, 0.882823915609758, 1.04035979139228, 0.9447504820024137, 0.9264845523799595, 1.3286552390426527, 1.134280969273673, 1.2441276097238765, 1.2549114574438458, 1.2617142244671495, 1.2590489051306468, 1.0387612818559089, 1.2487975135623786, 1.4227588384673402, 1.1515112544190371, 1.4630421735366284, 1.5534538041553418, 1.6011499904118447, 1.6072267490186105, 1.6719891030874205, 1.7646468382993192, 1.7408740392034698, 1.6774028652505233, 1.670033226413229, 1.7200867703935137, 1.705584979998383, 1.8688181987515584, 1.8376364052110468, 1.7651514588266315, 1.9579908859906416, 1.818229770761093, 1.7742094196817204, 1.8886341639184436, 1.8277881366514053, 2.02390357916248, 1.8654259659903192, 1.9577383250654237, 2.082186463618629, 1.9355838635900755, 2.0661675273772593, 1.945633682438136, 2.085020022632292, 2.134608253656147, 2.090676104344185, 2.1149669476100743, 2.172460991984009, 2.116193474680972, 2.249123929315051, 2.3129572924863133, 2.0986974365319075, 2.383180021139335, 2.1910959186033754, 2.4356290023190077, 2.2217382130838437, 2.3357949386940158, 2.3493829303387863, 2.2543787693345876, 2.3141093870472615, 2.4643872854364046, 2.3015484003058533, 2.305205068448581, 2.244634192710464, 2.5295899970640146, 2.337447853950193, 2.5180552283948865, 2.3502983196584655, 2.5395175483387855, 2.5154010296400253, 2.4238270268552116, 2.3850353921404186, 2.404815251942517, 2.4150593598150603, 2.5995474782737076, 2.5203137418893014, 2.4039145959594896, 2.5012269829979883, 2.524231822104352, 2.3342110602664286, 2.539119887753982, 2.641639242501457, 2.5659958064931816, 2.615530091745713, 2.648765890850429, 2.576176030796991, 2.693531975453733, 2.7761257833769974, 2.487814877019555, 2.6154435917299756, 2.8925244218761264, 2.686161387371637, 2.675071636369163, 2.662116066679115, 2.824640440388032, 2.6124889573551284, 2.8081133685735677, 2.6968462507612987, 2.6584817690569866, 2.719221204739936, 2.7464809243848287, 2.7100555655668037, 2.8797429091033484, 2.702819039274267, 2.7995240425859946, 2.8476774671760863, 2.8152538973784837, 2.8877828679301865, 2.7754137856938454, 2.88917634665216, 2.9002141358651663, 2.9398162704449815, 2.662387717509338, 2.9097446832790363, 2.956791892034664, 2.833283144532932, 2.827351140714871, 2.8196408957935764, 2.7941654553445323, 2.9714722561690583, 3.1405604913930327 ]
null
What is the type of the trend of the given time series?
[ "No Trend", "Exponential", "Linear" ]
No Trend
multiple_choice
1
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
It would be helpful to check if slope of the time series changes over time.
Pattern Recognition
Trend Recognition
458
[ 2.0977297400460846, 2.13159641320453, 2.0854967677429035, 2.086837791752121, 2.1093560094172283, 2.0872004483665467, 2.102520320532275, 2.066746607465465, 2.1458041508118786, 2.0710256100066324, 2.092563703285388, 2.0986364363999455, 2.1394717290814103, 2.071505586587234, 2.140962581000776, 2.1152138684303092, 2.108074475278706, 2.0786477213905346, 2.111308389443376, 2.084130029551259, 2.1259095684342215, 2.078932633690928, 2.096942759733786, 2.087661367090284, 2.0785870663026516, 2.114880979436777, 2.110559300297773, 2.124699289291565, 2.0619530725732256, 2.121658647210415, 2.1519156645214337, 2.0898369326238515, 2.1391035186781937, 2.0937937239479396, 2.070507067733567, 2.092902118889514, 2.121323454624992, 2.0817223243146943, 2.0867152973038805, 2.111778598754019, 2.09938255832605, 2.1115914134602343, 2.10431111584659, 2.109387178919888, 2.090242938757682, 2.10418308684643, 2.079849805361815, 2.1263666397710277, 2.08600287142628, 2.1230164188089695, 2.094414163013763, 2.1035589189672956, 2.088927435256651, 2.0779893385511445, 2.0626902423347118, 2.0771637033725847, 2.092518438849756, 2.103766335145346, 2.1205293947270993, 2.089960448733117, 2.0808031528641684, 2.069031140974047, 2.109396380197485, 2.1283559725512244, 2.125902620000408, 2.1142220649531978, 2.112723373554529, 2.1349568436915285, 2.1062897636808477, 2.1128826353734786, 2.0925840423658557, 2.070724690768617, 2.0849621515078667, 2.099126039361249, 2.100594395193659, 2.1397571885184954, 2.1010245832014065, 2.1240659930809023, 2.0901846605104875, 2.092775247776129, 2.071418215975807, 2.0837344887902725, 2.1103813336095274, 2.099477028986636, 2.119113599897913, 2.1031234140722566, 2.0919191909885573, 2.144417906294164, 2.0973469819167834, 2.123733409115671, 2.090895658373425, 2.1142150685809984, 2.118800319449583, 2.1036952268620586, 2.04989022547428, 2.099701493988851, 2.1251495898975734, 2.1103918184798607, 2.1086778939056563, 2.063162661459038, 2.0841936714723173, 2.107954022832893, 2.1079335680332476, 2.1248180389374673, 2.0962771024092026, 2.107837856120109, 2.099662064194934, 2.0785992470917827, 2.0519620761338553, 2.108366582148633, 2.102970022342503, 2.0863408548465516, 2.065326720179771, 2.1125385537085437, 2.0937358079093817, 2.111008889782785, 2.1384506289666048, 2.0543628660240763, 2.08463146881373, 2.094922856133811, 2.1298597490853575, 2.0649650084170403, 2.1399582018334877, 2.1021703645607905, 2.0973029572588784, 2.0951604118475076, 2.0901597669911456, 2.121321623842949 ]
null
Are the given two time series likely to have the same underlying distribution?
[ "No, they have different underlying distribution", "Yes, they have the same underlying distribution" ]
Yes, they have the same underlying distribution
binary
94
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "AutoRegressive Process", "Moving Average Process" ]
The difference between AR(1) and MA(1) is that AR(1) is a linear combination of past values and white noise, while MA(1) is a linear combination of past white noise values. You should check if the time series exhibit any dependency on the previous values. This could give you a clue about whether the time series is AR(1) or not. Check this for both time series.
Similarity Analysis
Distributional
459
[ 1.3344659909643735, -26.926915481593355, -20.627854794208165, -25.61786938875833, -12.38893436270929, -0.4985202605698227, 1.9183937936860571, 3.965181331485334, 4.808036208851023, -3.157612879600797, -8.674369808170756, 6.292773631212519, 12.386633347866244, 11.970176523342998, 15.576794482198014, 11.850600297960865, 11.32994793162948, 15.009127457004633, -8.735506237692187, 2.07298419076003, 10.001789564179091, 0.19454888026870165, 12.59666426578219, -12.095816433981135, -6.147122299047384, -4.518367373675375, -6.709404645934698, -5.173850441874625, 1.6882252297759344, -16.705102356031283, -3.3544359819352003, -6.7862839093563245, 4.725501354261731, 10.215577859908812, 3.861760878503757, 2.2961467390408727, 1.6311231203240533, 17.367502303525974, 2.4895439751202506, -2.389093387716872, -17.733155218924914, -12.947441718779237, -16.593043509926726, -18.29614987646716, 0.20998412481384499, -8.06570792628432, -8.04778682168868, -11.024232319249542, -12.777689622098912, 17.495744397237264, -3.3531614516689405, 3.758156268614416, 27.280258858688377, 32.615064800422566, 26.56147349483564, 9.52149559461758, 20.664939816128154, 25.905411633859522, 5.427404937071074, 1.1391116500466412, -11.149650142743884, -37.51492050093953, -42.305511206934874, -32.79001670373419, -20.42882159039185, -19.577426803740845, -1.920687517971075, 8.757849113062662, 5.753502919324324, 2.0767754592478678, 5.4888165544828205, 4.212589145651363, -10.886769499203872, -11.663235446255115, -2.674916378251072, 11.007469545612263, 18.407614604545877, 18.06911865988929, 29.0290113525571, 27.46272576267777, 21.084680094712112, 31.65485975610442, 32.52647439321129, 39.04121045215592, 19.356899686467244, 6.8828334598806205, -2.6677839761444746, -0.3164609329680148, 17.99032658524855, 3.0027925476275197, 11.455884096132534, -2.860978165575659, 18.886411484849827, -0.8573874146278229, 6.717093355913011, 14.177428915276177, 17.541993021228464, 5.261098717195395, -6.354555747235948, 7.640361676701815, 16.59635566371116, 23.624692602015838, 30.45947398277138, 9.006762430558044, -8.454300541626818, -13.476678509871235, -15.577756861833272, -18.32422767553945, -11.884402416092902, 1.6449829999434815, -1.6239656860808998, -9.452344915543323, 0.5673550764647901, -2.3657608231202305, -0.8193598271549938, -3.980220386839923, 0.21552728622045736, -9.966619500953339, -0.7105733419911795, -0.8962256931699115, -8.360142856814168, -1.3787844219575662, -8.755738828344725, -14.215317042632947, -23.385022621685504, -35.743839700077984, -23.252217967983963, -6.945607883275567 ]
[ -0.3452048916231458, -18.399111705783092, -36.45280016358336, -21.89493467371321, -37.25602576162699, -41.244156315276854, -30.16101186850143, -23.231736867951103, -15.338365658853657, -12.201498042197045, -13.330466971706155, -22.043030323902766, -23.9758587118454, -22.07116573008785, -36.56035060674081, -37.111641524165464, -33.411498315800294, -33.618846211175224, -30.32062215643387, -17.5692202161343, -6.140516900055161, 10.20111795973123, -6.9181292658252165, -9.741954901640845, 4.482231129358558, -13.871574242279117, -22.85955191719816, -24.44499820347409, 0.8872394609687042, -9.035535472172366, 3.609778040574687, 2.6088534957596554, -9.377457364421062, 20.496275571841466, 18.34350049653124, 18.436823575826153, 20.094534342728046, 20.64518929590359, 38.036884995343485, 48.2889464789707, 29.315175747888503, 43.63938972803317, 27.910182252927445, 25.550554611166042, 5.9252625046491065, 15.106274142368802, 9.011406900416544, -4.285750845451585, 8.456409463985791, 21.12714152024084, 31.60274103337963, 10.052688332851469, 23.777579866778353, 16.016907088451365, 33.32856038000007, 32.91238528464162, 28.84322083229823, 23.1597873932225, 18.391200681178827, 7.917817389186995, -4.346384564278796, -7.103727364983825, 6.225903472500635, -8.985526880368997, 6.218240801738717, 6.408490104995559, 12.941538272609023, 18.6848355583453, 24.231318192257653, 19.609070434203257, 16.210687593877516, 21.909516834639078, 7.114665853400259, -6.252852883031734, -9.649151531666789, -4.83841600546018, 15.33797869502972, 12.7502101604899, 30.201693253321018, 29.315931581905172, 18.918118761830435, 26.605181494673566, 18.855516950018337, 17.596508044433605, 0.7134934027781874, -14.515842975999849, -6.076119072724717, 6.176394281336142, 24.397790450601672, 11.424507947043171, 23.777047607542983, 32.166107085804356, 20.821257078275952, 30.537874557184544, 33.872463408599614, 38.51980151227549, 52.48944499725239, 52.99817447330191, 21.029558285020116, 20.04925158799162, 0.37138625969845407, 1.811609710530221, 2.385566382977233, -3.9284959212374515, -13.418828168723802, -16.038381542451397, -16.202310748241985, -14.278897057939709, -10.368778584983147, -2.442514612563845, -5.0795347802706186, 8.73285652250345, 6.603900141221835, 14.528028298711185, 8.57761446506587, 34.29918326542129, 32.11198836267567, 42.04257670330658, 26.69464147451736, 16.884210396552565, 10.985991790747942, 33.51879270027922, 24.687633979567376, 11.515766234086563, 22.221677522741118, 18.365385475555573, 12.5111137739363, 3.906067904370456 ]
The given time series is a sine wave. What is the most likely amplitude of the sine wave?
[ "18.21", "2.68", "4.21" ]
4.21
multiple-choice
21
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
460
[ 0.09115089868851967, 0.42222922172813326, 1.2627235665751237, 1.6302702109674017, 2.2824969011748855, 2.8908538670040107, 3.061666452011068, 3.41826729503018, 3.691421893820968, 3.9767833800934356, 4.274691072811478, 4.092417524350302, 4.127191552730174, 4.164422603446833, 3.939254086269137, 3.5603760842797443, 3.2514832662548714, 2.9617938896098357, 2.569366074692338, 2.0746799374428417, 1.498355217069648, 0.7223143381853941, 0.38454870309754774, -0.461836724992928, -1.136039774464818, -1.5235040468591543, -1.9206392777243608, -2.4945957957434066, -3.0104783923975296, -3.3568446875983953, -3.6488088706447233, -3.9302358008577984, -4.139632353528208, -4.268149968131966, -4.184039429802632, -4.125916383760438, -3.9504947687488077, -3.6054681273977804, -3.420814001870746, -3.035814655273764, -2.5554515943441993, -1.8204835615983943, -1.6597700751115805, -0.8782984727990713, -0.4348000175124243, 0.17957783018972726, 0.6413726765778442, 1.5322984306356067, 1.9116359000130216, 2.463102530600974, 2.707858414565834, 3.1976289881493307, 3.6428358023954104, 3.8541344827831736, 4.107153481564963, 4.384838472342771, 4.254685221694061, 4.106036736144374, 3.9505317068286563, 3.724628376209771, 3.468866676515048, 3.1142376715108786, 2.7436025528981367, 2.3095500930038027, 1.7807266873299596, 1.1965674770025976, 0.6262907554339889, 0.2705947706965784, -0.6446986008782746, -1.1543245152758812, -1.8846391708781027, -2.266200062320328, -2.795611377500085, -3.203133676744499, -3.6113583527576787, -3.9216872638762004, -3.993199876456965, -4.074293847546847, -4.280556005700068, -4.381288624654234, -4.060036505983787, -3.8364762055152037, -3.5516748883574136, -3.3853677251211445, -2.943220597260241, -2.5361073653395545, -1.9936709354316566, -1.4554526177517917, -0.8570169335217986, -0.24483555485459663, 0.3824592229208352, 0.8697991217774681, 1.5049011113058584, 1.9627360125812539, 2.3719098625558432, 3.0452250147618085, 3.3095758564521, 3.52060670787657, 3.995115495274337, 4.081382727706163, 4.238091766803383, 4.238235388448077, 4.007723462931722, 4.049701942638868, 3.5347816211741434, 3.366347152704488, 2.9805080466413467, 2.510223680971707, 2.2204499209567587, 1.5965200385214247, 0.8632163966012134, 0.29550079858594874, 0.046758413496290036, -0.8035318848355506, -1.4077120734035926, -1.7585093072904403, -2.560921403863885, -2.7065253315543942, -3.330869040996963, -3.5412802211064607, -3.911431716989046, -4.215492191872007, -4.1546248435423, -4.10975135748182, -4.388441785228177, -4.136261691657091, -3.6846240445230585, -3.481206386071666 ]
null
Is time series 1 a lagged version of time series 2?
[ "Yes", "No, they do not share similar pattern", "No, time series 2 is a lagged version of time series 1" ]
Yes
multiple_choice
99
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Focus on the time delay between the two time series. If time series 1 is a lagged version, then it should look the same to time series 2 after being shifted by a certain number of steps. Can you check this?
Causality Analysis
Granger Causality
461
[ 3.020843073251915, -1.2566573996988502, -1.6746290167674582, 3.910905636740395, -2.0701472606609173, -0.22662716901166546, 3.488639471108739, 0.07529799506928891, 1.511326397199801, 0.5061016554534843, 2.7474319062938504, 2.270248022654318, -0.35257389396411765, 4.087293016693013, 2.799706383054075, -0.3435499881889946, 2.180917664367195, 2.3623326090669505, -1.2143601715864905, 1.2394758590660329, 0.5264243526668917, 1.0820908870927486, 1.014107091398145, 1.147082270881722, 1.2701865319220753, -0.3399555857067941, 0.9786453336677925, 0.6765438024806867, 0.5993677657237766, 1.0927309420162232, -0.06511871546631653, 1.4671934356748833, 0.560234141247022, 2.1451809067455123, 1.888241367635366, -0.7282844064736584, 2.522716070693851, -0.05432488720106177, 0.002664609935003337, 1.9453968509401123, -1.5632131771810287, 0.6548327744747187, -0.8884532662357103, 0.2081754378809204, 2.065057445434326, -0.7948211556918944, 2.6588288847360566, -0.47036180710208064, -0.5372878924375442, 1.2531995917736272, 1.5064010557612992, 2.242180202592587, 0.3071470035537749, 1.327643603621317, -0.4910010108920325, -1.5163176890467214, 1.1372498137816538, 0.8873755426337769, 1.2233108714467553, 2.122328267481383, -0.7044970756082224, 0.6840257290459515, 1.1256335997296956, -2.700977910776338, 1.9763749343045371, 2.8692018534624246, -0.05103137158186333, 1.9289066066796754, 0.7652306008624815, 0.2414693466743864, -0.13607969908319517, 1.2072340933526706, 2.9936476209845395, 1.1720862372565402, 1.0042808787319812, 2.5765971936725744, 2.2452753441437534, 1.0439462816649914, 3.4821053765293244, 2.749920159430884, -1.8077639552068165, 1.4420342543359739, 1.611453180133227, 0.7333980452822472, 2.4811000781642765, 1.1392962154950435, 0.3939440154277668, -0.9120150430397052, 0.3071325059645476, 0.04856587941076862, -0.39891962454510277, 2.5154187569103987, 0.8356169938980391, -0.37752483941294296, 0.48112139823795097, -0.36569873362437166, 0.686280389098183, 1.2297979459400707, 1.285632201644763, 1.7335044387974157, -2.1318744111716166, -1.9870623709167246, 3.519730234044256, 0.31749806464384833, 0.7490625110056434, 2.687712873274438, -2.507511541372983, 0.7418986900057992, 0.45307777288477036, 1.2664059235103808, 2.362538772897855, -0.3359871106859129, -0.19870169075584432, -0.10583093115545039, 0.6336575314818085, 0.6003471566591941, 1.0404304737208814, 2.02685207405058, -1.7632584287565942, 1.416127610078415, 0.7734748475244339, 1.1127927629548298, 0.4477133673514362, 1.0845833666091513, 1.2505018022768795, -1.594245122305663, 1.537104157700457, 0.32361090547769145 ]
[ 1.2323239536027037, -0.9263114069432996, 2.748181518972701, 1.0869463783806177, -0.05087076575498753, 2.2271812297591365, 3.020843073251915, -1.2566573996988502, -1.6746290167674582, 3.910905636740395, -2.0701472606609173, -0.22662716901166546, 3.488639471108739, 0.07529799506928891, 1.511326397199801, 0.5061016554534843, 2.7474319062938504, 2.270248022654318, -0.35257389396411765, 4.087293016693013, 2.799706383054075, -0.3435499881889946, 2.180917664367195, 2.3623326090669505, -1.2143601715864905, 1.2394758590660329, 0.5264243526668917, 1.0820908870927486, 1.014107091398145, 1.147082270881722, 1.2701865319220753, -0.3399555857067941, 0.9786453336677925, 0.6765438024806867, 0.5993677657237766, 1.0927309420162232, -0.06511871546631653, 1.4671934356748833, 0.560234141247022, 2.1451809067455123, 1.888241367635366, -0.7282844064736584, 2.522716070693851, -0.05432488720106177, 0.002664609935003337, 1.9453968509401123, -1.5632131771810287, 0.6548327744747187, -0.8884532662357103, 0.2081754378809204, 2.065057445434326, -0.7948211556918944, 2.6588288847360566, -0.47036180710208064, -0.5372878924375442, 1.2531995917736272, 1.5064010557612992, 2.242180202592587, 0.3071470035537749, 1.327643603621317, -0.4910010108920325, -1.5163176890467214, 1.1372498137816538, 0.8873755426337769, 1.2233108714467553, 2.122328267481383, -0.7044970756082224, 0.6840257290459515, 1.1256335997296956, -2.700977910776338, 1.9763749343045371, 2.8692018534624246, -0.05103137158186333, 1.9289066066796754, 0.7652306008624815, 0.2414693466743864, -0.13607969908319517, 1.2072340933526706, 2.9936476209845395, 1.1720862372565402, 1.0042808787319812, 2.5765971936725744, 2.2452753441437534, 1.0439462816649914, 3.4821053765293244, 2.749920159430884, -1.8077639552068165, 1.4420342543359739, 1.611453180133227, 0.7333980452822472, 2.4811000781642765, 1.1392962154950435, 0.3939440154277668, -0.9120150430397052, 0.3071325059645476, 0.04856587941076862, -0.39891962454510277, 2.5154187569103987, 0.8356169938980391, -0.37752483941294296, 0.48112139823795097, -0.36569873362437166, 0.686280389098183, 1.2297979459400707, 1.285632201644763, 1.7335044387974157, -2.1318744111716166, -1.9870623709167246, 3.519730234044256, 0.31749806464384833, 0.7490625110056434, 2.687712873274438, -2.507511541372983, 0.7418986900057992, 0.45307777288477036, 1.2664059235103808, 2.362538772897855, -0.3359871106859129, -0.19870169075584432, -0.10583093115545039, 0.6336575314818085, 0.6003471566591941, 1.0404304737208814, 2.02685207405058, -1.7632584287565942, 1.416127610078415, 0.7734748475244339, 1.1127927629548298 ]
What is the most likely autocorrelation at lag 1 for the given time series?
[ "No autocorrelation", "Negative autocorrelation", "High positive autocorrelation" ]
High positive autocorrelation
multiple_choice
46
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Autocorrelation" ]
While it is hard to directly measure the autocorrelation for higher order lags, the autocorrelation at lag 1 can be approximated by observing the time series pattern. You can tell this by checking the sign and magnitude changes at each step compared to the previous step.
Pattern Recognition
AR/MA recognition
462
[ 16.75819356070815, 10.073404903486482, 4.005713314755756, 8.074177046101388, -0.09471875916496586, 1.8305509489801362, -2.0935250201146656, 2.006206465476396, -0.005210584243078298, -6.929980241299125, 5.5090848809968165, 6.802830277231268, 4.906410468596409, 8.125015827085175, -10.211860667298186, 12.732359713822053, 10.432765409914227, -11.285516770881868, 2.9425318458840675, -5.159859550121491, 6.309245892664114, 6.263071591257782, -10.69369097538363, -5.942335694255063, -2.8767740741248033, 9.216295434568885, 12.594675051539284, -2.318376429319489, 8.167991582729538, 2.393748938180405, 19.117652239093676, 11.74632291777137, 7.284144756284538, -2.3918875207098935, -6.899490373309655, -13.148999131968875, 1.2452889480876195, -12.318851837074432, -1.8092851122831242, 6.8391731253508175, 19.2468137297464, 15.835066268196472, 2.401115433814347, 0.20331187345185908, 6.109634798569609, 5.7350072238570675, 8.255283300943784, 20.257087999668688, 22.025703944021114, 19.604978440525446, -2.759633869786507, -10.046212942376377, -12.083721535842988, -29.438109023218946, -34.64317308324683, -30.399064078565104, -25.376431509863057, -15.24304255145385, -14.247359981677013, -8.917481556383564, -11.311879735897506, -8.629371493183255, -2.3937690870295274, 12.811287237006956, 5.102601708593435, 5.52390128196404, 13.11039639775317, -3.907618960099631, 16.852166082191605, 25.272040391672757, 3.102747459688807, 6.196016383785444, -0.6877212316128025, -4.523657304471355, -0.11391087535604028, 10.412866658459556, 3.671563905034791, -1.5872309338082369, 2.4518828766144947, 7.6810695210165925, -3.9264581012275315, 14.095562535937521, 4.843306757151802, 13.521387802585643, 15.334156740975288, 18.330564612863103, 8.424937527877805, -10.498552165798142, -8.612856711730496, -7.063086729997359, -15.230688460850766, -3.0051188530595017, -2.9193894643120073, -10.426238190874129, -2.4902771088584927, 4.123978324040306, -3.8642967321267587, 9.242481938392402, 29.826425183017463, 12.960835191677514, 8.531728489576082, 10.195480800650774, 30.958986943509892, 17.429416726734125, 4.547688495439816, -5.826040676495662, 7.553403392722992, -1.035590068160957, -9.32981408170495, -5.15417797841242, -1.041129266890132, 9.877301307616252, 8.821101416165265, 9.54620219253488, 6.584255598234902, -7.775664756676212, -8.216578528977767, -5.944927093988806, -9.194176472104363, -22.999881043923175, -29.749809512749735, -24.193660589151275, -10.027397512268418, 8.800922951417425, 5.20243255793272, -3.0067966607785674, -6.130532313960902, -15.368578213105838 ]
null
What type of noise is present in the given time series?
[ "Gaussian White Noise", "Red Noise", "No significant noise" ]
No significant noise
multiple_choice
63
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise" ]
Observe the pattern of fluctuations in the time series.
Noise Understanding
Signal to Noise Ratio Understanding
463
[ 9.397098835100394, 9.64513485314609, 9.47954413059066, 9.497415338655728, 9.599894640985939, 9.756573400660482, 9.641767657781362, 9.646228319068134, 9.48506533773696, 9.628509782238782, 9.474664959805724, 9.757502286759513, 9.49098585560266, 9.511642904881988, 9.446770909361897, 9.596237619496645, 9.59220828996445, 9.73309924185407, 9.662452279077613, 9.51219075466197, 9.67175078996471, 9.468781141262461, 9.519133784675923, 9.599367455425702, 9.479484168603515, 9.690089134761624, 9.80655027469915, 9.559770736416333, 9.525525738636565, 9.575584478350848, 9.534568630543, 9.613104281978368, 9.461217274787074, 9.618547966480133, 9.77132492514952, 9.39604392352755, 9.475959515486586, 9.545337401986577, 9.63996627792631, 9.67337946289593, 9.665666139018175, 9.425809010405928, 9.523353200384378, 9.501687071524579, 9.581758267335356, 9.589762238955428, 9.45672791628921, 9.545865029077993, 9.64366971613669, 9.527765122209006, 9.568811151283839, 9.750707500417082, 9.778813762245024, 9.380778034777764, 9.598930052660469, 9.867694923052397, 9.633921425970652, 9.589782371204763, 9.713870210402662, 9.608920301683723, 9.656001679770146, 9.567845527540149, 9.607522135365217, 9.628914933861337, 9.670999399638012, 9.546616122392416, 9.544010254260238, 9.403202343504793, 9.550889462409366, 9.679386664338294, 9.632423547633374, 9.492440875069882, 9.40546702679581, 9.574354228917658, 9.676581451252302, 9.542092724835257, 9.44947023500797, 9.53148753865367, 9.61928168558472, 9.707134548181239, 9.563397598796563, 9.689152727767983, 9.67852439383907, 9.475190775014044, 9.707927556318054, 9.616304982857232, 9.472312656246684, 9.756838219490596, 9.575969343234581, 9.401672027690125, 9.520292657755341, 9.496688139004034, 9.522644252649908, 9.545325122788533, 9.56333103517548, 9.559724654744961, 9.578662649819185, 9.644328876530727, 9.516441153236418, 9.701243986199158, 9.470538831831208, 9.64698719718328, 9.745566554297627, 9.571004579780478, 9.606559020820436, 9.495200257429657, 9.538939862042147, 9.738318710333731, 9.659774096398568, 9.628139611939051, 9.40219635806842, 9.519314052464154, 9.75474424330745, 9.627400150416825, 9.63936248034755, 9.604362387024208, 9.529236051894467, 9.619893662014517, 9.441292464264977, 9.434078392842677, 9.517511332330319, 9.606434267876791, 9.437509133573302, 9.600190408022028, 9.492651107143521, 9.505569394399728, 9.7126142098414, 9.591585302520505 ]
null
Are there any granger causality between the two time series?
[ "Yes, time series 1 granger causes time series 2", "No, they are not granger causality", "Yes, time series 2 granger causes time series 1" ]
No, they are not granger causality
binary
103
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
464
[ -0.004892229287716464, -0.3068340308129312, -0.7764435174819758, -1.176805176747027, -1.1768182357015275, -1.2443448242544761, -1.1912651183241232, -1.0848690990215422, -0.9263788810024497, -0.6563792996234907, -0.5260599702408377, 0.1349184350925311, 0.24404451837284222, 0.4557350416991815, 0.7222323454533628, 1.188253609389969, 1.3249791922377623, 1.55389786164522, 1.8200267661156255, 1.6097525920448938, 1.6223457236077408, 1.2248371820534532, 1.0585331455215878, -0.6806395949080406, -0.23989084606390698, 0.2831427040441922, 0.7120371770742685, 0.8677063025262644, 1.1576845772975144, 0.9050435478651266, 0.8838644464411057, 0.7791186773739326, 0.5199021810037694, 0.3384184949706899, -0.10382219120715397, -0.44409392198087694, -0.7607990402467998, -1.1378914833435936, -1.5094604057925172, -1.6216450856834161, -2.0401549755920327, -1.9993670505288552, -2.22871976127616, -1.834854594789828, -1.9111248479481528, -1.9268376494736108, 1.1295513190938753, 0.65950467723486, 0.15179229613137082, 0.03329034735853162, -0.32212478691401525, -0.5689041369240361, -0.5649022730150941, -0.4489145115425034, -0.6300021764846924, -0.4218348615622921, -0.10545851483143087, 0.006991758190580122, 0.5220446927052372, 0.9984156710921254, 1.166340405156402, 1.3542740234916355, 1.8985133666626237, 2.244191681060299, 2.0100522561015883, 2.4649311514613115, 2.5213426242098884, 2.454875047929584, -2.1085777531484835, -1.5684226549743117, -1.1027931384938776, -0.4859596474668736, -0.2540769656040115, 0.2688780114446802, 0.3282261406529024, 0.36239449598989004, 0.2896926213795439, 0.38345208181697066, 0.11072789949550924, -0.07470694614988081, -0.30805550923400293, -0.7094527156739199, -0.7477864635448164, -1.403499782777912, -1.6160520019282962, -2.0669113222406668, -2.441550788039502, -2.5835642868164475, -2.7733411662906398, -2.7277997999102364, -2.8688957048642556, 2.505536721576529, 2.023832463057796, 1.4171822460808898, 0.9303675889065641, 0.5329912953107132, 0.2058271126180508, 0.06556624110755363, -0.2676026978037124, -0.21589433114102252, -0.04572180166897996, -0.050727820294410704, 0.0817700084159402, 0.2797681305395153, 0.5429370065826757, 1.0953862141980093, 1.3489871276462873, 1.6702970844827252, 2.069917092026004, 2.3701277006219104, 2.7911009803749436, 3.057986681307404, 3.306878647186832, -3.3973985297448097, -2.719351250437208, -2.166247081263626, -1.7480241075638396, -1.1420858783192087, -0.8065042066153358, -0.4192727324310592, -0.36325533361647394, -0.24550944982801287, 0.07416840502275143, -0.13347824029257954, -0.050910903247985466, -0.13547498495549987, -0.2731129582521959, -0.6190665318103495 ]
[ -1.9705206105540987, -1.8691673686097057, -1.1109083676121532, 0.341931851948832, -0.3150054388476301, -1.046170292696555, -0.2744978890894982, -0.4096176189270747, -0.5718546987261001, 1.7689959148754943, 2.8988658269728433, 3.087263685408629, 3.602393497155412, 3.856396932893023, 2.6827096868262155, 3.0622182345043547, 2.9756192518294577, 2.377879108995524, 2.0344510278792862, 0.7964772432517662, -0.7787124616056826, -1.5175957605559582, -2.432939828489574, -0.39257241231378565, 1.1438729313902725, 0.6543928353554079, 1.265314536809577, 1.2781146816809454, 0.676435662731073, -0.42932024028773924, -0.8205840170299011, -1.4254357492373129, -1.641470982584035, 0.9311922489823232, 0.8262054765277818, -0.784105117313654, -1.0639247547665918, 0.4877355865438447, 3.284187258180483, 1.4561053355473803, 1.5402585919895553, 2.0802911896568883, 3.5779022327657453, 3.3769770468060893, 3.4425150510699325, 2.8575201063130153, 0.8815973926551894, 2.383160058114951, 0.900859684082105, -1.635414982523393, -2.433245931066273, -5.285855961585267, -6.057398986428217, -6.947839833266842, -7.218213760782908, -8.184576383705586, -8.212781147102438, -4.889542344610228, -9.635523360547754, -6.882693542857636, -9.766591706561933, -9.035762046704539, -6.648669355796258, -7.1429733072325545, -6.839430714984558, -5.413435986575451, -3.280231755416033, -5.853774601618791, -5.029766683650178, -5.245010474501369, -4.209102341268459, -3.1524060865521184, -3.3440274435040465, -3.3707540827020646, -2.123134690667425, -3.2458083875187413, -1.4176089328457233, -3.2992027333466916, 1.7218102598815737, 3.0199822336962567, 3.738085636714769, 2.274964608857135, 1.9888937578573767, 3.208912415948033, 6.745162550107553, 3.5808589355283247, -0.257098264295963, -1.6195134210983273, -2.8470631564982534, -4.236714798272128, -2.8290600716325813, -2.1428305243979997, -2.9104958073322433, 1.4475505717123354, 9.02802852656387, 10.99747184574369, 12.676695838144935, 13.137621561140099, 9.441629617316982, 13.108718520183992, 12.468388723988108, 12.45330683938338, 13.159245405322924, 8.823667650115015, 14.02127121774524, 17.521793995707007, 14.54735623825022, 10.577214873876207, 7.524360342532567, 4.3193064695786205, -0.3549544696828653, 0.9866140284903919, 2.3231957035937807, -3.1463685853637227, 5.980031644238264, 1.4981019710964534, -7.8542966511053, -4.958877445782839, -5.0974596073914045, -7.059088816736177, -6.495210717016026, -6.837261056034207, -3.388584455182652, -4.482399116399198, -7.150894592059396, -6.111280362871543, -1.9076801629404965, -2.4744518322948807 ]
The time series has three cyclic pattern composed additively. Which cycle pattern is most dominant in the given time series?
[ "SawtoothWave", "SquareWave", "SineWave" ]
SquareWave
multiple-choice
20
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition", "Amplitude" ]
The cyclic patterns have different period and amplitude. The dominant pattern is the one that has the highest amplitude. Identify the pattern with the highest peak.
Pattern Recognition
Cycle Recognition
465
[ -0.13603256486371348, 4.78702310120068, 4.810557162118027, 4.864871764240225, 4.882798901047283, 5.0115345325855865, 4.889599008598999, 5.098917005460819, 5.172345147801562, 5.08079041529728, 5.363193697471897, 5.202613441316916, 5.072170830040436, 5.2250880876598895, 5.281718678445275, 5.339823927527988, 5.285812368811173, 5.224122829349003, 5.226566223110672, -4.61843143263262, -4.603964976534774, -4.659716933171912, -4.62039714242006, -4.484857145682232, -4.392345486113403, -4.4906064082917, -4.446980545330767, -4.4938649336348755, -4.523800530934969, -4.658671297998908, -4.630320136238656, -4.707521224971905, -4.709722203267163, -4.704416945446794, -4.664127005234204, -4.717980664558489, -4.801652007649131, -4.805142812922362, 4.771101666789834, 4.769889819174148, 4.527335477466361, 4.548516129989467, 4.745180388439908, 4.607961024905297, 4.552862845853962, 4.551974326852327, 4.5370324044070545, 4.606478737838143, 4.429530669341107, 4.534966991899916, 4.551892887111299, 4.564440473971961, 4.547458466059988, 4.580010858163592, 4.477330886369688, 4.449552932715533, -5.095449038756512, -5.356265836114357, -5.326693770713146, -5.219759759220185, -5.104505276340602, -5.292521367630898, -5.309416873998205, -5.302877082731062, -4.986301842030117, -5.214379206411842, -5.0764814307731365, -5.133022373400033, -5.140329606476436, -4.983795344583593, -5.006504054756271, -4.939406423988505, -4.626753576102176, -4.741851967703561, -4.648284854833417, 4.947071694518708, 4.8964419884443, 4.903611294520622, 5.0124233437955175, 5.042980714833944, 5.0062972042558, 5.111430057555292, 5.0611076186577755, 5.145735042649951, 5.15817096118913, 5.091159442763616, 5.00667640628541, 5.168918270016354, 5.461463312285065, 5.265438856937262, 5.386435571828531, 5.105876986539902, 5.2240222559852265, -4.703970442860454, -4.588053714006207, -4.327764906551976, -4.528825145016127, -4.412824925453616, -4.617892409502645, -4.468407714589905, -4.412238332173827, -4.647217112293674, -4.708777809115546, -4.806852670646283, -4.727628767356191, -4.711386260015255, -4.540297861483451, -4.8974268892571375, -4.7869680195018445, -4.999584151411839, -4.886007524143393, -4.837073046256481, 5.055680111321053, 4.706320464698028, 4.6646672233291575, 4.661754546875326, 4.588574299691, 4.461218663330563, 4.364762884095198, 4.481288594416673, 4.510801490900913, 4.640393022545604, 4.4982437058524045, 4.4846350550310285, 4.541613529579968, 4.477685130161014, 4.590277167350026, 4.714636751905705 ]
null
What is the most likely linear trend coefficient of the given time series?
[ "0", "4.28", "8.31" ]
4.28
multiple_choice
2
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
The bigger the slope of the line, the higher the trend coefficient.
Pattern Recognition
Trend Recognition
466
[ 0.06207279743129417, -0.22967892634157008, -0.2360098967070986, 0.24810479103192437, -0.2216665969322618, -0.777883125183052, -0.17812182871595078, 0.10467747632143198, 0.9217960118548929, 0.09329021600161419, 0.5567341686852492, 0.29900721796315805, 0.930351576540997, 0.9343927359369955, 0.9763061012641612, -0.23689814270901277, 0.6283934350964138, 0.8987444759370863, 0.7707748957056135, 0.9138003994601743, 0.6997727699154559, 0.38938447502304585, 0.015076507206598921, 0.4993730121438883, 1.9572393648711188, 0.6353717323077475, 0.03764356517709477, 1.224865366544802, 1.3112257171957555, 1.5300091992699105, 1.213960403243285, 1.4082171421195802, 1.8681278884411874, 0.7939514735270874, 0.7426894700113272, 0.7118408119403915, 1.1007102591907527, 1.8625174113318712, 1.5083304576413936, 1.5251970069613976, 0.5700053319240994, 1.0862634564257863, 0.6304768790700713, 1.9526113203093107, 2.1639119776717957, 1.852262002032939, 1.129154907899627, 2.220726823404994, 1.5109348821778705, 1.1328172223209227, 1.273699156723285, 1.536351738087791, 1.7756468567793133, 1.7190093579974042, 1.216581350206892, 2.375500053618118, 1.8248260798214524, 1.6172673673024802, 2.432576251193987, 1.4835081158991201, 1.3263659682123694, 2.603284790585123, 2.9022093386539405, 1.9275287161872539, 2.1395686319807163, 1.7016822488345469, 2.2290963307161187, 2.056651550541776, 2.2504600199036093, 2.503317225079255, 1.8911643808753613, 2.2404068554051477, 1.6562910336247398, 2.310807879023186, 2.4566165487159877, 2.6285038760032786, 2.66678176383425, 2.9851789002469102, 1.9718899771139442, 2.028504797405827, 2.9257298199427204, 1.8591680880791404, 2.8450996928684313, 2.2945667645755647, 3.5079549379259, 2.97508860526945, 2.8076096374754136, 3.461304984847561, 2.513344754175095, 2.6284910839999878, 2.495960272052906, 2.6995546877261316, 3.1301314040683805, 3.349331317112954, 3.5833709901892585, 2.423303709437347, 3.1652590097155024, 2.7978116956352683, 3.218414529324679, 4.340255137131001, 3.498909585704511, 3.792993519933406, 4.281445564934482, 3.958118129741745, 3.316884884214917, 2.9958778453647303, 3.5633678340356787, 3.3667723740961706, 2.9905352535248952, 3.780730993012202, 3.8251649226024202, 4.503006581233944, 3.623707210225783, 3.9324799503291428, 3.561045525294185, 4.254065825003478, 3.8602731680724323, 3.44497659734397, 3.975373976050359, 4.182215884394101, 4.158002795782369, 4.530507064840991, 3.495638287773252, 3.7887412498414963, 4.457713180854839, 3.906553319600845, 4.354091557330738, 3.2479823489062856 ]
null
What is the primary cyclic pattern observed in the time series?
[ "SawtoothWave", "SquareWave", "No Pattern at all", "SineWave" ]
SquareWave
multiple-choice
15
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave" ]
Check the overall shape of the time series against the definition of provided concepts
Pattern Recognition
Cycle Recognition
467
[ -0.050638561449650246, 2.569880481224077, 2.773903872125783, 2.7853230948912118, 2.733205081663334, 2.861203877169056, 2.699117671639062, 2.786995193988996, 2.77381964596008, 2.6453250110627975, 2.840722858226938, 2.738053722585929, 2.822697114661078, 2.595142860442455, 2.736211543646418, 2.6791768564861886, 2.6400910455338407, 2.8661860133173707, 2.7447658691145462, 2.5775393173613925, 2.6755054814963897, 2.819141395959617, 2.639948382531442, 2.6297376681725044, -2.7399406595628504, -2.678305424276872, -2.7980634361207453, -2.686164065926551, -2.7217499859077154, -2.70959261678293, -2.965710583171842, -2.723644707213794, -2.750305269138517, -2.686201328629266, -2.7906165394982336, -2.7623307537043233, -2.6719258425153862, -2.5806643923046284, -2.8576935109725494, -2.673921483128912, -2.603242905965213, -2.6557657064721565, -2.6099825024858285, -2.7795883788133695, -2.6015590145686405, -2.7976824203430986, -2.7197233829824556, 2.6749971287468552, 2.6790166851925656, 2.5531008067994567, 2.528054686745667, 2.842914541736293, 2.5453361194977204, 2.7502804628704562, 2.595332639892305, 2.6403807776173998, 2.7936664619327076, 2.741439602880076, 2.71252216204025, 2.8397016254436824, 2.696268758009371, 2.8482339495653064, 2.6182918048793056, 2.6062571389172846, 2.7114193888908713, 2.725563794229159, 2.639397392098207, 2.6976256587252854, 2.8617126790044205, 2.6857970408250478, 2.531599276025753, -2.899569343725518, -2.516573641984717, -2.5801786334369283, -2.768836400541356, -2.6441768235942646, -2.6991943428417513, -2.5981856654154214, -2.8323584321684163, -2.829533106853238, -2.593299325936565, -2.874560502193912, -2.7182559239351884, -2.7297064850930397, -2.6468100465686186, -2.71124838114156, -2.738440172167085, -2.763290176323966, -2.82471681287984, -2.7418459798205714, -2.608726262212342, -2.7538295179922088, -2.5846101856014374, -2.6521357790121756, 2.7728941431735876, 2.7090538807012634, 2.662395297122644, 2.8933950411113574, 2.8045946152857755, 2.711298163892883, 2.895147705405936, 2.788140001914678, 2.5831864749370386, 2.6825839587098517, 2.7979469408704154, 2.8759929488995595, 2.9613663057976467, 2.7277929853983203, 2.7868605844887155, 2.6640781464842016, 2.63649633262978, 2.5566538398976, 2.764236042266247, 2.8516870316415757, 2.8028243129269854, 2.733949812073842, 2.8475972773175373, 3.0203126781794394, -2.808405432450858, -2.967594484801984, -2.6909962685192763, -2.616985164242637, -2.879969772165419, -2.6419613146603593, -2.7589469007727114, -2.691551901227207, -2.8171381826257553, -2.823290836230491 ]
null
You are seeing two time series that are random walk. Are they likely to have the same variance?
[ "No, time series 1 has higher variance", "No, time series 2 has higher variance", "Yes, they have the same variance" ]
No, time series 2 has higher variance
multiple_choice
93
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise", "Variance" ]
Random walk is a time series model where the next value is a random walk from the previous value. Variance refers to the distance of the values from the previous steps. At a high level, you should check the distance of the values from the previous steps for both time series.
Similarity Analysis
Distributional
468
[ 0.3053186173401266, 0.4674892175387886, 0.3946809344741481, 0.23327758921894967, -0.3143548458216796, -0.3450009826044436, -0.2673194622785455, -0.7862599411933029, -0.3768419518829092, -0.2715961427581725, -0.5928483249731465, -0.6289854868162611, -0.31204454752446736, 0.20663218572327638, 0.8076036325890832, 1.4893418790252466, 0.9855273387811476, 0.7166444305154898, 0.18602667409085052, 0.5991754109025729, 0.5337074901966379, 1.0118966454836122, 0.47521506248540546, 0.2142244521645721, -0.08807852435341686, 0.38090781360458975, 0.6462851687357649, -0.122095919303809, -0.29861739652339886, 0.06471504368967167, 0.4864026200469633, 0.6430468223955074, 0.7114882613491126, 0.3590591516449207, 0.7643353447609907, 0.3110657960216702, -0.2991438525919181, -0.22050185867209426, -0.38835788128653337, -0.11435519541999602, 0.06912450205940522, 0.715849059716954, 0.8690498206484805, 1.270401932397219, 0.9479966969304733, 1.2174738885830287, 1.1127274712485904, 0.9256592845705436, 0.5838788044096804, 1.1679675797140647, 1.1653620039213335, 0.8667926390590048, 1.1235784111826645, 0.9569698629808611, 0.654601580367891, 1.753640217698039, 1.2958836612281732, 2.002191142370461, 1.6953016099527842, 1.9323662684515368, 1.8938896874653162, 2.17276619600833, 1.6494164020563271, 1.0798336977437886, 1.370271453160562, 0.6961278012676642, 0.25357350768147585, 0.2195968857739111, -0.270492513940761, -0.7123139775433026, -0.8679799757512225, -1.6952502540407937, -2.2257627154765722, -1.7182603868767155, -1.3558823873337746, -0.49808108137719037, -0.2728562134575458, 0.22006009103301497, 0.0604276338120557, -0.010433237909515116, 0.14593239461871885, -0.571243300694921, -0.3645617991504073, -0.6007979561644029, -0.7735341496084567, -0.39587628642512923, -0.9836500809283836, -0.9627597808493015, -0.7931615308504842, -0.9940021827715374, -0.9798666385497967, -0.9475138028329445, -0.6076591440164332, -0.6767389532608995, -1.1509784822518812, -1.3698301419676688, -1.5019110082156433, -1.8052348438312533, -1.7335027928804456, -1.679875392085303, -1.6458474319048229, -1.9857330606217614, -1.9365816485732312, -1.448708150038342, -1.3371623324650153, -0.931076701016729, -0.8898298683149943, -1.1311563430912934, -0.8053498047791218, -1.3382764115490133, -1.549702394095268, -1.6032072477000845, -1.3560071441609098, -0.8733334770431994, -0.5527785724026053, -0.2702235551741765, 0.05719670016989218, 0.43740245445410003, 0.006587979799328064, 0.8415374769387678, 1.2617831655521952, 1.1932459356752905, 1.333858153620065, 0.8364591730131684, 0.7380600159226156, 0.6084995491266265, 0.4477792102892243, 0.7561978825246207 ]
[ -0.13762465384800293, -2.4588592275754144, -4.743404186486931, -8.561957703961703, -6.8522766341707335, -7.2888049768526075, -5.822121666066139, 0.28045843690018046, -1.4664169874295354, -0.8309582763515573, 1.973826993552025, 1.0234933613690058, 0.3642347258068673, 1.3948922311017058, 6.3368915276286515, 7.573644380037463, 5.935706983146525, 4.532770100909151, 3.583575235710246, 0.04730317546781948, -0.2623576804245288, -0.24784723852919782, -0.15833949171668588, -2.9761061036455736, -2.305025432835986, -4.2172899998643185, -4.681650990237084, -6.1248498148226895, -3.880830526615173, -5.212481342515564, -2.597360165992149, -2.332450004251462, -1.516478587666254, -1.3546319812814458, -3.010971122943513, -2.2218916877850345, -3.0574442779000073, -2.4401849344771915, -1.2664925553149977, 2.4398729724398596, 3.3550010436718143, 5.2141571906332995, 6.49786392627139, 6.0606142699219445, 7.380423121038929, 7.1388934087922, 6.33641117152587, 4.2183449619236075, 5.486881529380298, 4.382692099439526, 5.604053436753932, 5.6131628809282565, 5.060858118848243, 3.3825409665936412, 5.910561190061192, 5.147482584723527, 8.23093102017119, 6.640775181321964, 9.570869135214423, 9.73400492526933, 11.406792821490697, 8.879240433708194, 6.342339864756213, 6.843756997796509, 4.873343977940362, 7.456170217348937, 8.163596536832161, 6.911669203186946, 5.123613896123756, 4.562861464777023, 3.459313050850708, 4.421886882906675, 4.272742948899614, 6.54342704846702, 7.77211764990811, 6.0871836299402435, 5.26013742087004, 3.580001021559333, 1.901604908554474, -1.5874359679777075, 0.2418382984261337, 2.753401523608943, 0.8341318591758711, -1.2808269985173935, -0.19069034417273753, -1.7831071642989713, 0.6929978055372533, -0.6999611468408583, -4.855875514036064, -5.109033520670713, -6.260168886640493, -5.973924940976509, -6.652019162390629, -5.531537531478957, -4.709210855139955, -4.076158610579185, -3.7054023619857923, -3.706613476896088, -6.422225960170583, -5.665681107330248, -4.243158607643308, -3.5649226566968077, -3.956545693767733, -2.809240146941758, -2.34937349358104, -0.969312584181758, -1.1395154893435948, -3.91351928486041, -4.260945333645506, -6.104633392087825, -7.0056722302386305, -6.837500512644436, -4.913371217790765, -3.619019166804502, -3.2131924839389905, -0.7875214107982037, -0.6954514328921384, -0.3021286429975265, -1.0389629264698423, -3.117359745622675, -2.035006132517074, -5.082528138731563, -6.892373526031472, -6.5473783478618035, -8.197352014777149, -8.162780436971778, -7.876365301771799, -8.96524959594483 ]
Given that following time series exhibit piecewise linear trend, how many pieces are there?
[ "1", "4", "2" ]
4
multiple_choice
5
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Piecewise Linear Trend" ]
Check if the time series values increase or decrease linearly over time with different slopes. The slope change could be both positive and negative.
Pattern Recognition
Trend Recognition
469
[ 0.10841982440435427, 0.051656004290274844, 0.08109075225389928, 0.09095886546571204, 0.07072705635007925, 0.17490873531524914, 0.2313130452013101, 0.039690332741971646, 0.19112951840999287, 0.2501366053723188, 0.3318740632501809, 0.45621380354154095, 0.29033432175722546, 0.3483379188031948, 0.37750639268839925, 0.37923274501067544, 0.4552925547779787, 0.5977171265560773, 0.4458790552889209, 0.6246697446087212, 0.44232378235967257, 0.5870059059853608, 0.6408164758758581, 0.8718770734571386, 0.7075365759585386, 0.5455181593567908, 0.596379316283833, 0.8302968658727014, 0.9188966930850995, 0.9256908935369091, 0.9355280186223582, 1.0656226680609011, 0.8954375862366214, 1.1043923550098744, 0.9172044020014077, 1.0554156983071004, 1.0307109332045827, 1.2494351337276426, 1.3377981331648447, 1.4193389952109885, 1.4796217723739076, 1.4461826951008787, 1.5854185348375873, 1.5202025435151914, 1.8717746989858488, 1.7705937852796811, 1.8175723717619694, 2.0908596076076043, 1.8732455125051306, 1.950416045553714, 2.018857315566912, 2.187196800980678, 2.302651693211243, 2.3989606681561244, 2.647697244190695, 2.2310590581179794, 2.582380453547355, 2.5312984284745474, 2.5938745619397507, 2.656043455100098, 2.6926482919415453, 3.0174823335795455, 2.998764173917448, 2.9823586301686524, 3.115140607561615, 2.803441373167821, 2.7962789939494095, 2.686207971247827, 2.8087185278397606, 2.869485071907358, 2.8382563144149096, 2.8175598851124577, 2.636175248284655, 2.832251643037459, 2.75055415798475, 2.7745520716922436, 2.486625663171432, 2.6817062041950095, 2.5064358317082718, 2.560135267829682, 2.6279593203332494, 2.558287428479996, 2.4386793072612662, 2.4991158582424338, 2.3199902484844213, 2.5628257569834085, 2.401925852828747, 2.5089644865886984, 2.3191115608383552, 2.294062368092095, 2.244656525653762, 2.3833478348716475, 2.199442563354286, 2.309500459713445, 2.1814509140897917, 1.996755061252352, 2.1373199844628674, 1.9960399608788828, 2.036940445757055, 1.8341087908950258, 1.96534646560759, 1.7832407605744791, 1.6941881382075616, 1.6971363425358472, 1.6475372132383288, 1.468736035727431, 1.3132252720231208, 1.1325477314404904, 1.160939108421839, 1.0874222505342144, 1.0794486115718938, 0.9538275692325151, 0.9767349456251142, 0.766242712366556, 0.7414363138819845, 0.7851385659606211, 0.6205217341100823, 0.49993484961938295, 0.3653435506683752, 0.2818142462640487, 0.1796754517140054, 0.13023548150456354, 0.17950214303093867, 0.0013461231009340713, -0.1918429656343089, 0.03955066168344634, -0.18567035743436197, -0.43876182552654197 ]
null
The given time series is a sine wave followed by a square wave. What is the most likely amplitude of the square wave?
[ "6.34", "2.2", "18.98" ]
2.2
multiple-choice
24
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
After the sine wave, the square wave follows. Begin by identifying where the square wave starts. Next, measure the distance between its peak and baseline.
Pattern Recognition
Cycle Recognition
470
[ -0.13097832656785363, 0.32944222375316123, 0.7337742207505811, 0.977782098952006, 1.2180111350587257, 1.4993033686331594, 1.8998687261568796, 1.7282656113621504, 2.08754652607852, 2.113891357180089, 1.8808706957696497, 1.8375780625644536, 1.5286462175120774, 1.394967848684288, 1.3065587856720369, 0.8905112243282239, 0.36700413729623427, -0.07455842085681552, -0.33391383845701866, -0.6289460348795187, -0.9139030576072044, -1.293809186210909, -1.358218826188231, -1.7361196087521038, -1.9313235921118779, -1.9127620638493714, -1.9109407843584383, -2.006734538105304, -1.9092788407938674, -1.8038885152087079, -1.4380457287753599, -1.0098238133115593, -0.7494089210512518, -0.3608743026081167, -0.18011659128431867, 0.23139718419777827, 0.41129510431975047, 1.036667548838458, 1.3728790593957756, 1.3932637805968655, 1.873667621454437, 1.8416114655352316, 1.8483491115691886, 1.9512847546737766, 2.005633073555947, 1.8323669947402257, 1.6134725915928745, 1.5081591966166572, 1.2465851720239232, 0.8505701323742211, 0.4930937070258996, 0.11733789237277067, -0.1428606898795088, -0.7073817305792919, -0.9611776068617288, -1.2094897604466068, -1.5405872775103495, -1.6559766129533604, -1.8284362333793418, -1.698433348993107, -2.059278086826885, -1.9546194812128581, -1.9542434763593586, -1.507480590954987, -1.5313388253874658, 0.3386454659657969, 0.4789903294961517, 0.49904073472763516, 0.4614187270455155, 0.44704952734737863, 0.5725276863143693, 0.6742244378732645, 0.5761429608980202, 0.5818523140077366, 0.45995413258255663, -3.7966252731045613, -3.7969543482072052, -3.9458229742360493, -3.9216680115035083, -4.0558813876223745, -4.033617246856009, -3.9417324240328426, -4.005336566988786, -3.8179178787514703, -3.914256164914139, 0.5486949974778533, 0.3733594542005478, 0.6253136956445801, 0.5443941842729443, 0.5358838837065474, 0.5901235247195169, 0.5273144505329276, 0.39409672149074565, 0.5581267293665446, 0.41669596912822937, 0.5165264374128299, -3.975641702588921, -3.732137484548265, -3.8313936319777535, -3.7976148751777745, -3.974282756737865, -3.8684682595726376, -3.8793389172692296, -3.8873269625869336, -4.092101665088691, -3.7019309150646125, 0.4915910083677839, 0.5456183999135449, 0.363963011710259, 0.641812627722383, 0.6333768595426286, 0.5808751815652313, 0.5227222816893984, 0.7289895367937743, 0.5937472963992121, 0.3588252264167303, 0.5178861233121412, -3.839984112935408, -3.88785404907513, -3.8410486356836278, -3.7542357887604547, -3.917224584252524, -3.9363494185342645, -4.006910429569182, -4.084952749827307, -3.92958350708132, -3.966087796977018, 0.4747743485378636 ]
null
What is the primary cyclic pattern observed in the time series?
[ "SquareWave", "No Pattern at all", "SawtoothWave", "SineWave" ]
No Pattern at all
multiple-choice
15
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave" ]
Check the overall shape of the time series against the definition of provided concepts
Pattern Recognition
Cycle Recognition
471
[ 2.567777233154349, 2.5747969783355256, 2.5433461032299767, 2.5553203503332185, 2.553954210286114, 2.5915589477254657, 2.5470688343196826, 2.5247162594183785, 2.5192855083513415, 2.5320502576490447, 2.6048259322732785, 2.570253108004013, 2.5827179074894473, 2.583623482974348, 2.5712804597869607, 2.5679148677249235, 2.596679247624789, 2.5735884813516523, 2.605791144314637, 2.5857909401870747, 2.553960269971798, 2.5570610926547017, 2.5511419678454885, 2.6011256198683537, 2.559427477136626, 2.549317178503006, 2.5780543980940096, 2.5673395889879336, 2.577406554396331, 2.618401754719066, 2.5933010528566247, 2.5705307519918574, 2.533642444914198, 2.556988405510919, 2.5881093480377793, 2.539742783345281, 2.6248560636776137, 2.5702071069814814, 2.5710919487741855, 2.552704932548224, 2.5826019736780292, 2.540077870334105, 2.6254708275187553, 2.603690401180039, 2.5951314354208397, 2.534104871041156, 2.5751154103314016, 2.600908169957369, 2.5850784646516307, 2.544084058082741, 2.5531302774548794, 2.5582226044793024, 2.5543292583957853, 2.6091237433082437, 2.5204697256646877, 2.586692675155342, 2.5366265394414205, 2.5451340320931535, 2.518189760750703, 2.5557268230124066, 2.608659960159656, 2.5766421752492326, 2.539040690941626, 2.5959756583400875, 2.6014791328036586, 2.5725104494514612, 2.6221263539653625, 2.5909494806462607, 2.5873796790278565, 2.5491911046216202, 2.5859597409422324, 2.5754078065262394, 2.5831953809721866, 2.5522438929055054, 2.5731285569211386, 2.548844618867799, 2.514658837785454, 2.595491421305951, 2.531227682575284, 2.5725911419037124, 2.5783942355590197, 2.5782287608597696, 2.562561955164141, 2.576806316697433, 2.581939709125264, 2.5887240198899635, 2.6143832352850427, 2.575855031953341, 2.5714825755518995, 2.54653517183491, 2.5810397331711856, 2.5869872802875578, 2.5648947472143555, 2.5838322764709947, 2.5623194365993047, 2.5870800397984253, 2.593289013380217, 2.5929298929153966, 2.5728650315283415, 2.5431111424275366, 2.554111459135646, 2.5851311957596397, 2.6327671003821793, 2.5610806576994376, 2.5815509084840227, 2.5555469825991666, 2.544807263057501, 2.5524564121127757, 2.5163204973147653, 2.6046176948153263, 2.5125259208530117, 2.5630566703832307, 2.5395606627322524, 2.5471094981973006, 2.6052110083344906, 2.5750037180251852, 2.545027520801039, 2.554686997694018, 2.5501650081153655, 2.5687175722451943, 2.5742796587118626, 2.6185497996491405, 2.520590825947459, 2.5689420052602085, 2.5617270507358008, 2.5941613756123045, 2.578954870827465, 2.585007969118383 ]
null
The given time series is a sine wave followed by a square wave. What is the most likely amplitude of the square wave?
[ "18.21", "2.85", "5.99" ]
2.85
multiple-choice
25
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
After the sine wave, the square wave follows. Begin by identifying where the square wave starts. Next, measure the distance between its peak and baseline.
Pattern Recognition
Cycle Recognition
472
[ -0.05046946897455465, 0.3488895426602833, 0.6804925493332383, 0.9950536430314582, 1.1383606894848863, 1.6422686562443625, 1.7465509669916621, 1.83420477544468, 1.982071527784777, 2.13338003249867, 1.9877190468833066, 2.1840558746298426, 2.035274122884085, 2.0334635331146202, 1.7026372647031782, 1.3617957688300308, 1.0890815197406145, 0.8779886982938653, 0.573748454425214, 0.21557652140151626, -0.05162015963696938, -0.4588853667502625, -0.6993228961233663, -1.0837400998885782, -1.249542103909088, -1.5918111140406004, -1.645093961733288, -1.8689795610278728, -2.0307971759110974, -2.135412186000753, -2.277957615053241, -1.942750878626732, -2.0579226425376835, -1.8365666790777755, -1.6207297379124916, -1.4413891289552774, -1.0197880966214865, -0.9805993445767927, -0.3667358302552143, -0.1410836255089817, 0.10423519879350523, 0.43923613919227855, 0.5633438358762293, 1.0027657794980547, 1.3274637852288744, 1.6215227738292648, 1.9306710838459016, 2.163970771464192, 2.093745677531146, 2.1415140181369825, 2.0731171196421596, 1.89857648214545, 1.9054838612736256, 1.7921411929630255, 1.7113618438905367, 1.4263987841263486, 1.1227288107454325, 0.7409973472414313, 0.2793122898019345, -0.04819065556413116, -0.3595416662621822, -0.5546732310053617, -0.7451835529837327, -1.0457981176726323, -1.063133098460977, 1.6512320752376903, 1.8171679402012053, 1.60963456596051, 1.788080967475382, 1.5352839916106888, 1.5850303992007726, 1.8680031296865507, 1.682358162206574, 1.6346446376478494, 1.8130174944560598, -3.8660138105712085, -4.031079053736858, -3.959904627632722, -3.9740602303862214, -4.270461116999936, -4.1273369808033085, -3.893525531508728, -4.07101139783121, -3.9347671833204294, -3.961446927792382, -3.8662076959141474, 1.5663624747487086, 1.7421622076856196, 1.69620017777595, 1.6237641895219996, 1.6230619825615706, 1.7254897116720607, 1.7657086406946734, 1.7091012518439237, 1.7122130487752223, 1.652892183185892, 1.659523041884522, -4.0669980087627255, -4.039611138096438, -3.928283413743436, -3.917110410483551, -4.11533853450755, -4.077394640455095, -4.058790775293855, -3.994154659103577, -4.156066253530576, -4.075641677700769, -4.1263091242291425, 1.742789837010506, 1.6997741293562678, 1.6564868710452574, 1.596413895512692, 1.6580319784605748, 1.6462724120137022, 1.8662082788414815, 1.8024435947476714, 1.6336708309966024, 1.71926115768474, 1.7971624882480939, -4.056852391656564, -4.129462047024263, -4.167436825020198, -3.8605242809354747, -4.006857211073927, -3.9586184496394656, -4.045174710458841, -4.114540864775904, -4.095881055410845 ]
null
Is the given time series likely to be stationary after differencing?
[ "No", "Yes" ]
No
binary
31
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Differencing is a common technique to make a time series stationary. Focus on checking if the trend is removed after differencing.
Pattern Recognition
Stationarity Detection
473
[ 0.9011983239046029, 0.6864132714668829, 1.109786070542277, 0.7929024419679453, 1.105442825299899, 0.4033802221141056, 0.846813202347441, 1.791487953062757, 1.2516504268738726, 1.8423983129199168, 0.893505980913804, 1.09378082886129, 1.3474212691868914, 1.1650362132845558, 0.5880720084769985, 1.591879969672285, 0.8393206162679163, 1.3509947782165654, 0.3154916353200441, 1.0814065971976352, 1.368002406048424, 1.7376621498826377, 0.8656393597139165, 1.0645876578574627, 2.4196375679795534, 2.547907759739366, 1.8509570984858608, 2.2622459324538697, 1.4543122417308505, 2.0082939898052405, 2.013581283108138, 1.2722098056330848, 1.8727844899076613, 1.6589520592441673, 2.0232132650140846, 1.6050148320695397, 1.1789893975646903, 1.949527031793876, 2.3913058858631713, 2.427114659329331, 1.1600147303826058, 2.176372951808252, 2.4671490998875827, 2.2297719623377374, 2.6326693277227204, 1.5348552057663656, 1.7081437827766184, 2.616565911190875, 2.189742497068835, 2.9931193562481044, 2.6035533215849354, 2.0467643780701454, 2.066684360682402, 1.6471209173927792, 2.9759979457111543, 2.62149627533727, 3.1864925530331702, 2.90653956451088, 2.8851551883535964, 3.286743912477758, 2.8821506015672234, 2.817933934436334, 3.0380262929792745, 3.5138991839335216, 2.6780456006855085, 3.6682685502630927, 3.2955669317867327, 3.1308747319971575, 3.474629751113421, 4.0323834604392905, 4.090956870884543, 3.7659272168795885, 3.947437339107845, 3.7217902184953364, 3.4746967047003916, 4.057669249657221, 3.680169364948077, 3.4619295124226928, 3.83590830977281, 3.299225818960018, 3.5755190527460456, 5.285194225684188, 4.910854348481182, 4.306428741307189, 4.767623845755891, 4.112791610371088, 5.00182147206926, 4.88610980977486, 4.489026254748063, 4.767419582312196, 4.821854769006745, 5.533951271834161, 5.160655877997005, 4.506336716235257, 5.1667232045556695, 5.097486315901362, 4.8489481570049815, 5.308390228388353, 4.712616701290432, 5.431220941431379, 6.101301333086463, 6.338680737014754, 6.4740707613284, 6.813550938067273, 7.043243211583373, 6.053806120226097, 5.996486771064683, 6.827003987315809, 7.202091551171936, 6.636425434525085, 7.313985324257078, 8.22280763560444, 6.775643424451793, 7.581340285644302, 8.234811712954633, 7.756077836802073, 8.203453027651646, 8.596700223199743, 8.138032718333081, 7.908198748271455, 8.54096654675619, 8.199421862444947, 8.629743695835279, 9.286964503596236, 9.320512150462, 9.895777511010385, 9.682808426296031, 9.349972597603214 ]
null
Are the given two time series likely to have the same underlying distribution?
[ "No, they have different underlying distribution", "Yes, they have the same underlying distribution" ]
Yes, they have the same underlying distribution
binary
95
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise", "AutoRegressive Process", "Linear Trend" ]
When we say two time series have the same underlying distribution, you should check if they have the same mean and variance. They should also share similar behaviors over time.
Similarity Analysis
Distributional
474
[ 1.8182711369309736, 1.927729239828341, 1.0066476811951037, 0.9675141059533915, 1.6068980367908647, 1.5934417722193488, 1.6121456569248782, 1.8637241696425813, 2.2135402613752926, 2.4945486353350224, 2.548999017351817, 2.442617397104831, 2.555795587451947, 3.148728105870273, 3.215442270293982, 3.5210703988932726, 2.8164874725519073, 2.42954119494041, 2.2099897706852065, 1.7943936925596493, 1.5794302867153658, 1.2991009366319382, 1.617659389202411, 1.4570430145458675, 0.9717592792836269, 0.844959154743879, 0.829807117203029, 0.6657836858710927, 0.7729543262592035, 0.5912566760267789, 1.1647028498612142, 1.4775571591459034, 1.2322662886088347, 0.31836517629211303, 0.4064004432051337, -0.27412365513101833, -0.6562175056822891, -0.4747849331754637, -0.3333073866533447, -0.08487582364369511, -0.06530727596690203, -0.144051846332567, -0.785426762033422, -1.0408875817973395, -1.7076726412258132, -1.2237630157164625, -1.7203610384167085, -1.632565327850891, -1.6800633359758612, -1.656439815480459, -1.485196166148921, -2.027433188941332, -2.0385212250741693, -1.6733299057390252, -2.0353825185015646, -1.3749504697665378, -1.3473068141917957, -1.257159795398037, -1.5228756933497152, -1.3699436246780075, -1.6479254329656783, -0.9610717053103459, -1.7830846671015572, -1.4600518554572555, -1.744346111796422, -1.5720356979972325, -1.3571339022547853, -1.6307243765103607, -2.0388258602892444, -1.7827704075478439, -1.517234496467105, -1.3709267361468171, -0.9271085959669008, -1.0844078993892625, -1.3342233774960433, -1.1240107186632808, -1.2763618853280407, -1.6476547619569717, -1.567538153848633, -1.1046763924539331, -0.8746592196765489, -1.1266946135295588, -0.2214541428439229, 0.1317126222512575, -0.06412436896417893, 0.3254913609213619, 0.2555362142679727, 0.6106133175219863, 0.714509165203762, 0.4809135520579103, 0.3530784253883636, 0.35984627898378696, 0.27397437956653387, 0.27952303176366333, 0.4329399790891498, -0.3113461391222639, -0.1636409734915641, 0.9118533649308939, 0.7592163034342028, 1.1612066338404636, 1.4877326310831485, 0.8967805928140562, 1.2970116391389184, 0.571808458822824, 0.6885806625759522, 0.22429847460408886, 0.1670168050181555, 0.18356522540140008, 0.5885392369533781, 0.05803770805034685, 0.38080439832921953, 0.6047599163163433, 0.2756610259456281, -0.2220435327057912, -0.5516790561561226, -0.23255946468247435, -0.6386854470997944, -1.050291079098345, -0.47697528020166086, -0.8786342037572772, -0.832252634161771, -0.439108833667639, -0.6937925431745622, -1.1567395443955315, -0.9509306303720564, -0.8319498357396261, -1.1790885870777978, -0.4828781886873168 ]
[ 2.4310583586062515, 2.6799985812957847, 1.3379930520741157, 1.2357442952298505, 0.7973870130309497, 0.44413679933329575, -0.05150805048847232, 0.7614837888764522, 0.21466953174611636, 0.06743322781405818, 1.0703586974938222, 0.9398955455415627, 0.2962617034922149, 1.2770547023021372, 1.3185820322516828, 1.217713612117947, 1.4910609274318463, 2.322443390273451, 1.569831475006842, 2.550969270448177, 1.3743148802415575, 0.8569111231885048, 0.1943873680418381, 0.14024310941559065, -0.4199486732429154, 0.547386656775136, 0.8578719697178723, 0.8552224284922019, 0.1829227621637386, 1.3115599457307547, 1.4624611812290866, 1.1702321437833205, 1.0456391830499534, 0.8121033719013427, 1.4760772280295995, 2.2378135120115306, 1.539479053485935, 1.105062404538223, 0.8636846344684352, 0.9098539921027275, 1.8095860189776363, 0.5472587056430364, -0.10583143081366606, -0.29859786875608274, 0.09636861398348982, -0.7763688983121246, -1.0716015503646552, -1.4149954934300712, -0.9790262268601667, -0.9402554463320469, -1.3923150120123826, -2.4606209968812482, -2.7364768274191307, -3.0796499152052452, -2.1781019076388555, -1.3015665900979037, -2.503330679771959, -1.5351864477752402, -1.0056125913186107, -1.4485890368330399, -1.0339939115102086, -1.5763085899452958, -1.2004704501691865, 0.5678238274566448, 0.6588377546214635, 0.48031459286821604, -0.5613459743016658, -0.4765211934686697, 0.2432504240852271, -0.14505193712289205, -0.0023126428698022616, 0.01321886138399811, -0.30685525175221995, -0.21235693432209019, -1.2809898162988316, -1.4082623920338992, -0.8274839417885078, -0.8734535269881757, -0.890047423704914, -0.7905493074983523, 0.43334856235017805, 0.67474690239869, -0.15827970365515254, -0.7394386563833808, -0.6243924984186067, 0.02730433578577806, 0.6128702806119851, 1.2325380965767576, 0.7016689104449738, 0.9349619930875284, 0.48711105122705345, 0.2872185566214884, 0.9745146082836125, 0.3287351112342296, -0.4385479567496593, -0.6811285820630628, -0.7822362150786243, -0.4052128808814321, -0.7252699280828432, -1.142634138374032, -1.0419507591149157, -0.7409343588508008, -0.602246014729145, -0.5478572294259717, -1.2534354769833524, -0.557712710332383, 0.3123014097206369, -0.08121776809013533, -0.47121554920434916, 0.0397922068334115, 0.3401481021991541, 0.6384511324638618, 0.8221748433191131, 1.1434053451084483, 0.6519491643560176, -0.5935969326736413, -0.5238787340838785, -0.11199781648550519, 0.14883291934253015, -0.33305897080464164, -0.8004718915154343, 1.0940176213143435, 1.1671595540684878, -0.5848202507772868, -0.967899755877716, -1.0911774969216217, -1.9412134901769345, -2.0826050196998236 ]
What is the direction of the linear trend of the given time series, if any?
[ "Downward", "Upward", "No Trend" ]
Downward
multiple_choice
4
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the time series values increase or decrease over time.
Pattern Recognition
Trend Recognition
475
[ -0.1500999065237383, 0.06521543483864173, 0.2116980150869246, -0.4628215702394428, 0.03542974933624972, -0.5446927516825335, -0.2713313062073083, 0.20338639886617935, -0.2286153418506623, -0.3551841807607585, -0.1859066349262945, 0.2267401827916922, -0.5238618751700933, -0.39148303198113876, 0.07453882842118958, 0.12765595083569078, -0.2572125492726671, -0.48632944779870907, 0.1280183318328994, 0.018561507756478135, -0.16902360819890497, -0.46525664515789444, -0.33608511111951045, -0.37194630213319907, -0.294124238464268, -0.09763859795529023, -0.2203370928468346, -0.6043866685544501, -0.1562640120996569, -0.37174795501000524, -0.3160529982349354, -0.18384344581193296, -0.6851206561900989, -0.49701122786147056, -0.6053790071412603, -0.8157764402503349, -0.46940556473939066, -0.07581421757739532, -0.9117049640040298, -0.5854791017413166, -0.47339177991843284, -0.5858793713171828, -0.6453011637366053, -0.8839397762604673, -0.6097487199862198, -0.8113060529609579, -1.0965599215059192, -0.47285063204977296, -0.5322724521097032, -0.7182028025696732, -0.6995857959340169, -0.5549675675785454, -0.7301914046461773, -0.6168108536952087, -0.8583571852286143, -0.5695510064569502, -0.7714191386037724, -0.8101864632885246, -1.1012807529388722, -0.8223702683659816, -1.0483343126522748, -1.0266497746373855, -1.0749184907725977, -1.1371049137075895, -0.5499052254196958, -0.7144603727174196, -0.6181829004701996, -1.226086871728879, -0.9967724373546716, -1.2691217807779251, -1.1711869493788978, -1.2280099360012047, -0.8357648788198663, -1.1592543955226304, -0.8977787655903615, -1.0002277822919614, -0.694431263317745, -1.423051892298545, -0.9211943172789882, -0.9573312778282924, -1.372139521834953, -1.0133270450342855, -1.1547803573675264, -1.275976418652049, -1.4033681150899753, -1.398446421834326, -0.890882613521707, -1.2923535023557917, -1.1597718648710869, -1.4714156974077477, -1.4841876552710676, -1.1477658025007522, -1.6213911241659562, -1.4599585502520012, -1.3900551191409976, -1.390318311288471, -1.459977415551535, -1.3663631291521923, -1.3251766661278725, -1.3321497014780979, -1.6716061497885883, -1.5540803060939687, -1.2899049681893897, -1.361384723983457, -1.804057461155005, -1.4935778045701782, -1.94798570319527, -1.580749371671319, -1.2464039829533993, -1.7981584302963145, -1.7915870515091314, -1.504877613747194, -1.9549698405906315, -1.798125024385325, -1.5810653733340252, -1.8281260854355839, -1.7678308720809588, -1.5977583609409314, -1.6734877718475534, -1.7175367823851555, -1.846717369397928, -1.727769936505455, -1.8357914679170662, -1.7409271825796417, -1.9359162365437137, -1.8914606271624328, -2.0586489807996142, -1.8933320624320917 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Period decrease over time", "Period increase over time", "Period remain the same over time" ]
Period decrease over time
multiple-choice
30
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Period" ]
Check the time interval between two peaks, and see how it changes over time.
Pattern Recognition
Cycle Recognition
476
[ 0.059657234488355, 0.07386725610266565, 0.46323629376171815, 0.4649015772733288, 0.638280122572743, 0.708230598903792, 0.8078510688235158, 0.9531768609322285, 1.0963377308809577, 1.0761816630793015, 1.3694309389452064, 1.5051978298236637, 1.4652883346143317, 1.5160920764466825, 1.568693981428461, 1.8839096741065138, 1.718106505169832, 1.873936855343476, 1.8245875154395288, 1.8435893612252139, 1.80521346193637, 1.7876446581535153, 1.950885910529295, 1.7590983149235504, 1.8755224242446005, 1.7987583988037872, 1.8151689969808984, 1.6191749933060986, 1.7188514040403495, 1.5181819888442996, 1.704180703110327, 1.1880485832664216, 1.5923596905705961, 1.5483415369153877, 1.7927960979897977, 1.915694784145266, 2.0189944633813957, 2.315088336264544, 2.5138988149339014, 2.74007751210373, 2.9924322051429026, 3.0436241027284923, 3.1739632846648935, 3.303349093344091, 3.183304497058563, 3.2676759547684076, 3.3399048465514714, 3.487976500263423, 3.353524103848847, 3.4666565199033066, 3.3733451684614955, 3.5133092961536145, 3.4429297332527398, 3.284595110718857, 3.0218164278442816, 3.067868727622647, 2.987956096768981, 2.8846902267995254, 2.813909622388371, 2.57333859870838, 2.2905068744440737, 2.049416021848659, 1.8007583920838515, 1.802824028525401, 1.6839168969063187, 1.941747056612657, 2.027693076860602, 2.163876868222268, 2.4391689845684414, 2.6270407952708776, 2.8386627303795517, 2.8892979666478116, 3.0881813413729144, 3.3032057648320583, 3.0933876230818966, 3.098525609008937, 3.4578233600925263, 3.182997998471813, 3.2606571587126014, 3.3024864893327126, 3.1532808743788756, 3.0453609105055417, 2.9310558515573937, 3.0265342776563413, 2.785699447460905, 2.3560615677836054, 2.33608373484863, 2.0780082507749453, 1.8161552362351914, 1.5155345016424917, 1.4406563153778802, 1.1584987262233895, 0.952448043041475, 0.7259215508239958, 0.7287900694262144, 0.3949726687362572, 0.395581946705619, 0.8484879998750408, 1.0306334889298185, 1.2605663762792738, 1.5370279125936916, 1.6474569851778078, 1.2997991678051237, 1.410639571101672, 1.1151821036386467, 0.9857329223706678, 0.7465096360453449, 0.4118261039324274, 0.04692103543806175, -0.2295200954908272, -0.27169012390671315, -0.34646866469204013, -0.7815830115408317, -0.597789517943092, -0.3960940278844605, -0.299454283760114, -0.17133636711245925, 0.172189903734632, 0.5508181672438793, 0.7865018972294316, 1.0806408284635465, 1.3012910029457125, 1.4001956818642851, 1.6030630675184145, 1.4561505078699286, 1.3009966983000028, 1.4457159379550495, 0.9744435684836156 ]
null
What is the most likely linear trend coefficient of the given time series?
[ "4.92", "9.82", "0" ]
4.92
multiple_choice
2
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
The bigger the slope of the line, the higher the trend coefficient.
Pattern Recognition
Trend Recognition
477
[ -0.44429776780675356, 0.19818060449368674, -0.502241518669031, 0.700048940109746, -0.07357749955205037, 0.29245836330338637, 0.37154800802881693, 0.14369521319906275, 0.5981390318117243, 0.11492512719044645, 0.8154859898301672, -0.2359084765154924, 0.5266771047338105, 1.4565144480528867, 0.050162663433636734, 0.24747162228006397, 0.8720501351067433, 0.7463933733620012, 0.8691998725034016, 0.9760322913926918, 1.086295047542569, 1.3585263197700388, 1.0531473181051143, 0.7717628408379014, 1.259752660170764, 1.901860870921658, 0.9413028132926103, 0.5661035846503127, 1.6282223904071316, 1.0634625967743419, 0.0931834494773538, 1.6166990302880775, 0.9755931229272046, 1.232984934470822, 1.4794223282068977, 1.448576468150747, 1.7424270885514699, 1.2182393830090845, 1.7233190770679916, 1.3821626542891499, 1.9117089061928085, 1.8897311139357569, 1.1660016640122537, 2.198528954356063, 1.4398244014788537, 2.139313626852232, 1.9613243216050498, 2.72319068157904, 1.7483091375149433, 1.725147561415058, 1.926050834186552, 1.825254386859391, 2.406307277407121, 1.2570880871596202, 1.5724116880005385, 1.604181422845214, 2.6350812284640757, 3.0475914307546095, 2.1939424398856953, 2.201006181101018, 2.357158576939926, 2.9326581032945196, 1.9442161995958354, 2.556046090254069, 2.9570139482286413, 2.7626367533312637, 2.6481960728568192, 3.085858037183133, 1.3033912615418153, 3.0043976531020458, 2.388266597829068, 1.848533651880044, 3.0385902474803403, 3.5013217586736656, 2.7971100656020247, 3.3718706158848146, 3.734773125265365, 3.6272885636647576, 3.8258087915173866, 3.423106383146318, 3.1340436673592325, 2.3480756547106245, 3.0534066095476633, 2.7985178020806085, 4.3191317560291465, 3.2040443086560075, 3.3898017780050287, 3.6390744495680747, 3.4280898494043095, 4.278723264690064, 3.177956427585337, 3.618466149883578, 3.1964712174675833, 2.9512344145712186, 3.338153491633199, 3.6594279783513617, 3.505285795337185, 3.414637537291566, 3.102368026456124, 3.79162650073638, 3.1314129583444346, 4.283584036973002, 3.989151431237376, 3.27073905665932, 3.8740243599800364, 3.694964827015687, 4.260388041213705, 4.801202125976115, 3.258978890750445, 4.276156002883011, 4.1795883167747725, 4.627087248455178, 4.440556665199791, 4.004752532786944, 4.2563038797606545, 4.060516428886752, 5.0195983949488125, 4.539777787592005, 5.502717197082667, 4.576900617325923, 4.2971534840658085, 3.9399424188686525, 3.836360767295434, 3.9827441618398476, 4.931614526739108, 5.089106394214815, 4.100328065584422, 5.356458156678102 ]
null
The given time series has a trend and a cyclic component. It also has an anomaly. What is the most likely combination of components without the anomaly?
[ "Log trend and sawtooth wave", "Exponential trend and square wave", "Linear trend and sine wave" ]
Linear trend and sine wave
multiple_choice
71
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Exponential Trend", "Square Wave", "Log Trend", "Sawtooth Wave", "Cutoff Anomaly", "Flip Anomaly" ]
The anomaly only influences a small part of the time series. You should focus on the overall pattern of the time series without the anomaly. Can you recover the original pattern?
Anolmaly Detection
General Anomaly Detection
478
[ 0, 1.167845466296633, 2.159066173701185, 2.8245552642828287, 3.065954429905834, 2.8509780049500555, 2.21844302978887, 1.2722216078692221, 0.16505777106378944, -0.9252298359933631, -1.823451862668202, -2.3843425186031797, -2.515191789365771, -2.190289532572221, -1.4549310836488978, -0.41836030321654494, 0.7632504701332427, 1.911131861099192, 2.8517694869968273, 3.443937266270921, 3.6007002529211936, 3.3029589846962644, 2.602425153741104, 1.6135649941950534, 0.4957655961660966, -0.5714973895124954, -1.4166218173909568, -1.9026144319144644, -1.9484342332251312, -1.5416185564380678, -0.7402247381448193, 0.336215138897519, 1.5253171842242796, 2.6471448923898624, 3.5322430096081083, 4.048038435416941, 4.1194949342348135, 3.7408036804020055, 2.976288265441279, 1.9503831686182629, 0.8282470316710665, -0.20996883644982267, -0.9971877923203856, -1.4054381753978584, -1.3657911213984308, -0.87909958706719, -0.015865460659240993, 1.0947445378589842, 2.285022858845532, 3.374849734681872, 4.199755598414437, 4.6365452220857755, 4.6224913683104125, 4.165107609877088, 3.3409777251678223, 2.2838240480202128, 1.1636737071497778, 0.16036862713691447, -0.5644536026412601, -0.8925426480272942, -0.7674586738256628, -0.20336559456169834, 0.7171756444380539, 1.8560699517910284, 3.0412031204072703, 4.0932569905189595, 4.853646978892009, 5.209229344572882, 5.109928832246647, 4.5765403299717455, 3.697489053461732, 2.615054015865233, 1.5032011480077436, 0.5404796392833187, -0.11779578700233184, -0.36374269957967487, -0.15371889756875623, 0.4848781930541337, 1.4578800017424636, 2.6190181505930292, 3.7927128717917324, 4.801428100364037, 5.493331355403727, 5.765949037317127, 5.582131677442962, 4.975841775532229, 4.046862487757677, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, -0.013466780973613462, -0.008805912660471066, -0.011305523046815669, 6.91181170926374, 6.109326005558601, 5.063107647471492, 3.941480055649044, 2.9245153083921505, 2.1759791529463404, 1.8178165213386506, 1.9111526732339135, 2.4467699623165378, 3.346543933245427, 4.475615007199181, 5.663399423699591, 6.730165962108117, 7.515037825168081, 7.901057028627308, 7.833406298595358, 7.327949529423552, 6.468760210204396, 5.3950228877327975, 4.279348400462714, 3.300881340976132, 2.617389568306527, 2.3406841867291686, 2.51919952541322, 3.1304471347835867, 4.084519456856029, 5.23809730239835, 6.416778788729742, 7.4422509195445405, 8.160070511002132, 8.463726232993029, 8.311232931767186, 7.731672860676412, 6.8206647040389505, 5.7254663141417685, 4.62203213501065, 3.6875997356074177, 3.073076433880429, 2.8795281386705143, 3.142433416425708, 3.826155978049134, 4.829496765028646, 6.001460627262611, 7.16478116528583, 8.143538597973016, 8.790567828907866, 9.010386571372583, 8.774071360782157, 8.123763791742398, 7.166104914031686, 6.0556206998219055, 4.9706471041012295, 4.085545561652133, 3.543537708956156, 3.434391644982438, 3.7804361815543945, 4.533082044362509, 5.580392016848051, 6.7645206086757135, 7.906306171796351, 8.83318404534239, 9.406071898752721, 9.541038572663735, 9.222380441166806, 8.505068015700123, 7.506181612963902, 6.38667039833147, 5.326276721371127, 4.495532498431282, 4.029190568390257, 4.0052303807728995, 4.432708901917431, 5.250349551745874, 6.336089012900027, 7.52609453216135, 8.64028884405486, 9.510405967713634, 10.006206821414798, 10.055770297141468, 9.656698472920056, 8.876490205853322, 7.842024900554641, 6.719794867781789, 5.689966045329169, 4.918308386134695, 4.530369121553232, 4.5919126708004665, 5.098674632487857, 5.977026172649483, 7.095445298496042, 8.285007808803101, 9.365705458297626, 10.174491001267414, 10.590680734147181, 10.5547568549566, 10.077640257163408, 9.238989069102571, 8.174788024232017, 7.056162221723071, 6.062716065120629, 5.354551136734049, 5.047322585465599, 5.194220209456368, 5.777681556749087, 6.712128131789564, 7.857298410457224, 9.040100397733895, 10.08157912878335, 10.824797612878864, 11.159287406443283, 11.038259448657591, 10.485893734493033, 9.593572103867919, 8.505641073335, 7.396922842060935, 6.445478227256898, 5.8048650272539035, 5.580213922113659, 5.811849254429365, 6.46900655073787, 7.454625585296128, 8.62047223330298, 9.790233149079777, 10.786985149269924, 11.460759607932177, 11.711907367676714, 11.506623944971164, 10.882216223415803, 9.941290091226957, 8.835764581226849, 7.74320308892671, 6.839149233237116, 6.269777395668125, 6.129118947395808, 6.444412287526912, 7.1718591369861775, 8.203448251756914, 9.383783430087899, 10.534294032673962, 11.481056049180335 ]
null
The given time series is a square wave. What is the most likely period of the square wave?
[ "33.49", "13.34", "51.29" ]
13.34
multiple-choice
22
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Square Wave", "Period" ]
Check the time interval between two peaks.
Pattern Recognition
Cycle Recognition
479
[ 0.06777665661808034, 1.0330424865693308, 1.0306741709924394, 0.8507188658057133, 1.112721384507865, 1.0173226834936238, 0.9964577159080429, -1.0665575001633831, -1.0859035006278381, -0.9748159925346022, -1.1814581308483085, -0.9275919746974961, -1.1119523943620688, -1.2124099192830295, 1.1887313822551024, 0.9207331457279425, 0.9343259345103307, 1.1199956837633078, 1.1919849407141645, 0.8532416928021573, 0.9109250446374334, -1.09480973287856, -0.9130616843929349, -0.842628637869547, -1.1145671068203082, -0.8650673168656784, -1.0774452618153705, 1.0401541409570576, 0.8793964807197185, 0.9943488093043006, 0.9954305792552287, 0.9750260200309729, 1.04503894879447, 0.9058387641772477, -1.0949141804811846, -0.9627546361675647, -0.8723383175649275, -1.0088232200672926, -0.9561747733162831, -0.9307338496327663, -0.9234913317991512, 0.9111893780788365, 0.9288408276420099, 0.9375343912681469, 1.1994052307518968, 1.0573611445796907, 1.0528734227010021, -0.9699182753441264, -1.1386211910244501, -0.8127228035847964, -0.9586230975838043, -0.9342258393970051, -1.1830939795540805, -0.9285774654263486, 0.9709206056497377, 0.8742635531898766, 0.9111654840753206, 0.8800524298171637, 0.8783634311510393, 1.0125966326989213, 0.9678655717893352, -0.9731349144463616, -0.8389442635556998, -1.019492222025234, -1.231030780058343, -1.030737671817282, -0.8872024070227131, 0.9979479034128174, 1.1594749160316706, 1.0518360099762822, 0.8227148772227615, 1.0175000757063362, 1.0362419800889733, 1.1145774307898648, -0.8245781935013435, -0.9157692986916304, -0.9624938709237787, -0.9389230235046657, -1.0233425313074571, -1.1528296343432431, -1.0023922420402143, 1.0430708834083908, 0.8861760880713081, 1.1392040146124944, 1.1070829522107435, 0.8693657091337135, 1.1431250795414878, -1.0373732875834851, -1.0843910071743352, -0.8986140813878477, -1.0116472919385062, -0.8166233185788133, -1.0918306550511754, -1.1797076030597657, 0.9784980225458862, 1.0854641005685477, 0.9138275521089461, 0.8735318123825124, 1.0294345909327758, 0.8601731296457487, 1.0372111206238417, -1.040604155785318, -0.957095201827263, -1.1449247310549606, -0.8767255355181099, -1.0248452991618693, -0.930189583872018, 1.1025293967909893, 0.8907973554259048, 1.094767601623308, 0.8640351731480678, 0.8695280763865111, 1.2029417742613437, 1.1177271875421628, -0.7991754331191249, -1.0435632537232915, -0.9962989842546994, -0.953806375987264, -1.0077614073218897, -1.0811554527320908, -1.0961503204505052, 1.0279280739453953, 0.8998558664962698, 0.897055501425815, 1.0458990517779596, 0.9970259155139388, 1.1002624777206689, -1.0490329916707846 ]
null
Two time series are given. Both of them have a noise component. Do they have the same level of noise?
[ "No, they have different level of noise", "Yes, they both have the same level of noise" ]
No, they have different level of noise
binary
89
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Variance" ]
Noise level refers to the amplitude of the random fluctuations in the time series. Both time series have a white noise component added to it. You should check the amplitude of the noise for both time series.
Similarity Analysis
Shape
480
[ -0.02710404622885425, 0.4975770402785354, 1.2839191456036962, 1.6839656612914047, 1.8121904463360794, 2.2712857939102506, 2.6570715598136014, 2.5236749166511614, 2.7085240643442186, 2.5681641279549163, 2.1892681151863753, 1.9146218460483613, 1.2768451266379197, 1.1665411270445152, 0.41782615591276867, -0.03178735702892982, -0.6066539036900906, -1.0581344299405866, -1.7095480773978842, -2.0433424653265058, -2.312690480476085, -2.479909168581479, -2.5350626279258357, -2.662603294209903, -2.5282866356810723, -2.0623506999282943, -2.0398938468616494, -1.2345901742312886, -0.9147712692446454, -0.3382380215495084, 0.15590244977643114, 0.7711752278024978, 1.4201361196385744, 1.8290987883323793, 2.1816321819163633, 2.4258906966615577, 2.448595000819556, 2.5685010341020975, 2.559277182508653, 2.4636338495754715, 2.14057438088824, 1.8519353546064834, 1.3422137672124586, 0.7834327685071473, 0.45380007519949483, -0.29508121901636647, -0.9257578628960775, -1.2038128051692887, -1.7146325781292118, -2.015579802725875, -2.4721757572741954, -2.516879877939823, -2.795871578321104, -2.48929018299602, -2.3853165419536166, -2.200546212898014, -1.5645872551508742, -1.3768059368820302, -0.8613357736944616, -0.07801390323001905, 0.5038054074126457, 1.0846064198061072, 1.558307332129402, 2.0617195233662033, 2.328108238000633, 2.4875301234291243, 2.623828400511564, 2.6152958275588443, 2.566739761267904, 2.207249554822915, 2.026870600737739, 1.5704853597814683, 1.1221594122359513, 0.5888064205557223, -0.24313166494099323, -0.6469679334807427, -1.101641051910333, -1.5813067079026586, -1.964071359282351, -2.2847058754623895, -2.3843416125949832, -2.611916484454205, -2.663023680801375, -2.6620677549865137, -2.3971392062801495, -1.863403065208389, -1.3815371646886394, -0.8373041963269621, -0.5335891853899439, 0.07968926174229737, 0.6902439057737251, 1.3967913608209162, 1.676073285796978, 2.2175340575529177, 2.3846544688142965, 2.681958749377769, 2.7530658231888823, 2.631826634598855, 2.3606053592913194, 2.1726242768841573, 1.986602146284381, 1.4811589479424598, 0.8431484631515054, 0.3056285153102015, -0.3951366449614193, -0.629557478967835, -1.2025864034170608, -1.764146722125473, -2.1111031811899834, -2.633225663775263, -2.641384522732905, -2.519468507274754, -2.495882259495483, -2.3856574489704787, -2.1363251908942975, -1.6755157334252126, -1.3248174631542342, -0.9464694796083268, -0.2289309539138186, 0.373937759789372, 0.9928556586347157, 1.2439051667543857, 1.820868938002194, 2.188483591524501, 2.3501745111018235, 2.662922157367979, 2.7254103535810508, 2.539147488691652 ]
[ 2.0550926086214725, 0.23064193710749414, 0.6317510478512911, 1.0889028868283663, 1.173857127941082, 1.77709629311002, 1.1571830499618903, 2.553267578865271, 2.84816032907859, 0.4443276953598798, 2.4546749430898864, 2.327989924297663, 2.4400320424116893, 2.6941554276763418, 1.8465375536813582, -0.1585455020585933, -0.8260700989165181, -0.058113566386026494, -1.7078524460693416, -2.8660672117752304, 0.3229257658481415, -2.694700697148886, -3.249768907107076, -4.951767549006143, -1.9364037437623849, -3.6945809252675956, -2.4907175363870215, -1.2646073283521075, -2.831811046609917, -1.3334465708394598, 0.6128825586121399, -2.8299048737610955, -0.6312825367577586, -0.17996602891091296, 1.054607658815637, 1.661970549085767, 1.049695897334779, 1.7749970404094437, 1.8792848991071884, 2.420836895640786, 3.0002705620295087, 3.593930351672282, 3.53478232312147, 2.831934292810326, 0.9177484444546812, 1.3315833731613964, 3.2000156000333124, 1.2986449400635856, -0.7091082619861195, 0.771252333671756, -1.7092406784659482, -2.4481468474493333, -0.7727902584346418, -3.7819060836080176, -4.592814727997025, -1.8394693944268194, -2.74572731780753, -2.529952184311701, -2.798428157172974, -2.359614548496613, -2.1801631520777898, -1.8814446592000833, -1.1215255072973913, -0.6082246617643244, -0.4708769223180163, 0.3509897676411958, -1.103293012157472, 2.532533516764383, 2.614100822732728, 2.4276825547759264, 2.9401235627649096, 3.0605889693607002, 2.0379242065907075, 2.095945964696412, 2.9203604910088075, 2.2692564375797772, 3.693926955743844, 2.7943404679887767, 1.5857930977851344, -0.656501358393777, -1.0109977797929215, -1.9826538111447038, -1.1965596795629696, -4.655085239737158, -2.735496779667914, -2.8570489343203977, -4.248061966873038, -1.9926561484778182, -3.886724681465919, -2.32927909369766, 0.439163997732563, -3.6112622340378993, -1.7260073653149832, -1.5002525030170915, -1.1672415214762026, 0.7446660228607529, 1.6410430020455191, 1.8356811945822438, 0.82830464220178, 4.412241827116117, 0.5573141165078472, 1.5528122120938859, 2.9116615520750497, 2.88028709244284, 3.218447982451666, 4.1429707536910545, 2.174911988270377, 2.050425131576423, 0.9081611837320466, 1.598056978522823, 0.15870275393144434, -0.39313652144664646, -0.07895194409051731, -0.11145979228127456, -3.833475396399135, -1.679836619512472, -2.6460379681361355, -1.6702644494623553, -3.007385535779494, -1.4874607469590138, -3.3868196061370153, -4.756336157356266, -1.1909507410405336, -2.714680662836674, -3.006599416334624, -0.9095689148295819, -0.6277758157757555, 0.9867725849200724 ]
The following time series has an anomaly with random large fluctuations. What is the likely pattern of the time series without the anomaly?
[ "Square wave with log trend", "Sine wave with linear trend", "Sawtooth wave with linear trend" ]
Sawtooth wave with linear trend
multiple_choice
66
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Spike Anomaly" ]
Spikes anomaly bring constant large random fluctuations. Can you check the place where the spikes disappear and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
481
[ -13.821519358271045, 0.7110704596545191, -2.7233858389173133, -0.7003478003649297, -0.5765022179554116, -0.45265663554589336, 0.7032830684029956, -9.915725287984916, -4.609493788313238, 0.0427256940921793, 0.07749395027893263, -7.745424231149802, 0.41426244132073364, 0.5381080237302518, 0.6619536061397701, 0.7857991885492882, -2.25561940707525, 1.0334903533683244, 1.1573359357778428, 0.03737675090793413, 1.405027100596879, 1.528872683006397, 1.6527182654159154, 1.7765638478254335, 5.584818414667899, 2.0242550126444696, -1.5749113745497114, 5.984416986639476, 2.395791759873024, 9.165409476609238, 2.6434829246920604, 2.7673285071015785, -1.3374904639877174, 3.3842541391186614, -1.374269878785507, 1.1189417415526832, 1.2427873239622014, 5.561438005658852, 1.4904784887812372, 1.6143240711907558, 1.738169653600274, 1.862015236009792, 4.561241292702384, 2.109706400828828, 5.213302852560118, 2.3573975656478647, 0.6168736266911321, -1.6469680764684709, 2.7289343128764187, 5.523167739463628, 7.989039473624864, 5.628371916219331, 9.773432331276249, 15.54072376412199, 1.9138658470360843, 3.5958533897430462, 3.7196989721525644, 3.843544554562082, 3.967390136971601, 4.091235719381119, 4.215081301790637, 10.18306223427463, 4.462772466609674, 4.586618049019192, 5.549977477520975, 4.834309213838228, 9.996915240740652, 5.0820003786572645, 6.589006974287441, -1.3973862663878411, 3.3097680306988506, 3.433613613108368, 7.254739517331494, 9.77186258601674, 5.843450080177448, 8.44526342177731, 4.052841525155959, 4.176687107565478, 4.300532689974996, 0.7184384274617259, 8.767441961825565, 4.672069437203549, 4.795915019613068, 4.919760602022587, 5.043606184432104, 5.6176949789256, -1.4619850061063229, 5.249338292924526, 5.538988514070177, 5.6628340964796955, 5.988259717927547, 5.251372908895837, 5.438311449503302, 9.713187883823473, 6.282062008527285, 10.137148358879172, 6.529753173346322, 6.653598755755841, 6.777444338165359, 6.901289920574877, 10.434940852289257, 7.148981085393913, 8.154553896257468, 13.718183258223302, 5.3767487374354985, 5.500594319845018, 10.70198027498882, 5.748285484664054, 5.872131067073572, 5.99597664948309, 6.119822231892608, 12.879782969843832, 10.71373159160706, 3.591528583010646, 8.077109545325461, 7.974110087922544, 6.862895726349717, 11.173501336923987, 14.012490173960686, 7.269516243002613, 13.74890926236849, 7.482123638397308, 7.605969220806826, 7.729814803216344, 7.853660385625863, 0.7711103821918686, 8.893758672850572, 8.225197132854417 ]
null
In which part of the time series does the anomaly occur?
[ "Middle", "Beginning", "End" ]
End
multiple_choice
77
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Linear Trend", "Spike Anomaly", "Cutoff Anomaly", "Wander Anomaly" ]
Identify where in the time series sequence the unusual pattern or disruption occurs.
Anolmaly Detection
General Anomaly Detection
482
[ 0.04967141530112327, 0.3255752680663304, 0.7353700770251448, 1.1378980975223152, 1.2533571693278738, 1.5136858451521522, 1.918211024681028, 2.0176998110854707, 2.0277953100156716, 2.2126841441867344, 2.1436636802114073, 2.1221570362892597, 2.119333824516162, 1.7797034104069482, 1.6269467404375757, 1.528307548049844, 1.2302683248465363, 1.0780579438862736, 0.6459021274436013, 0.26806386825802486, 0.21891954458149526, -0.2885085993364658, -0.5905940337749347, -1.0563184175430442, -1.262171526052365, -1.4607833002252593, -1.8149502884896096, -1.8485461796413305, -2.0862016886359016, -2.145673239629351, -2.2151751831312105, -1.9554588951390184, -2.0752266908355996, -2.061944603635743, -1.7081530504957627, -1.7026590136154298, -1.3108516466201943, -1.2458727255352124, -0.8747038426103962, -0.39543237224840977, -0.0036549018895543073, 0.27994346362558925, 0.5860171277074311, 0.8886239396542347, 1.0706514408524492, 1.4176635074890094, 1.679554762342103, 2.0264315933777834, 2.104605685295196, 1.9942859675706595, 2.2517554543759974, 2.17684597978009, 2.0910363086985058, 2.1120297731768054, 1.997488632816414, 1.7862472753524505, 1.3680285355955935, 1.1458235380216129, 0.9073166773761228, 0.6491916530439943, 0.16900244639228035, -0.1403980046340112, -0.5670251724164561, -0.8982539476843965, -0.9994772278083109, -1.2197181636621446, -1.6029981292098243, -1.695895648572985, -1.9156574404266469, -2.1390255707913237, -2.109787332311516, -2.010889366674868, -2.134302134947245, -1.8887272911633521, -2.172518133770531, -1.6482094128416236, -1.5007815090821792, -1.2834181576342636, -0.9598806153145418, -0.8621145880133497, -0.36615582047911777, 0.016067227806893097, 0.4498407535713693, 0.5609147471187708, 0.82368874684686, 1.1198332736902508, 1.4939009817380837, 1.6284773414730738, 1.7075030669856195, 1.9285545628771044, 1.9527481107253626, 2.0532071294565597, 1.8466274081754641, 1.7927219311686164, 1.6453314007479396, 1.3510784015540713, 1.298316632551627, 1.0300334234254747, 0.7100460704465437, 0.3692188347619036, -0.08048402631875176, -0.31934886585962424, -0.648388976077342, -1.0214936209490704, -1.266912012255527, -1.4947462117304247, -1.5988412936297165, -1.9841185234449155, -2.146537888344431, -2.302898135629501, -2.559931183928914, -2.3909666719256197, -2.349702988832804, -2.024731209811763, -2.155570544780664, -1.92465183311238, -1.7343203984602396, -1.5867355751789975, -1.0638822607771439, -0.7875928369032511, -0.4522495433383551, -0.28281221055691896, 0.287727057300142, 0.3382252092011711, 0.8517025866120449, 1.3027114002348834, 1.2442824992265744, 1.5091274261471166 ]
null
Does time series 1 granger cause time series 2?
[ "No, time series 2 granger causes time series 1", "Yes, time series 1 granger causes time series 2", "No, they are not granger causality" ]
Yes, time series 1 granger causes time series 2
binary
101
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
483
[ 2.6580989046929786, 2.585500191528546, 2.4335199032782118, 2.4734981120553967, 2.3950767157071473, 2.218406080952117, 1.736949506895201, 1.5111345011556077, 1.419988481437926, 1.65942395049516, 1.6419316841612903, 1.2635421409876346, 1.2880397260531835, 1.1748907993871676, 1.3176567808057729, 0.951990363268417, 1.2548313439700869, 1.366600661149546, 1.3143842207725636, 0.9283633442343893, 0.5630726849712622, 0.7344434179219613, 0.9352723912481867, 1.1957105652058324, 1.6125924586555513, 1.799908973844786, 1.901798706549873, 2.499005767681922, 2.362619779924575, 2.337443620280591, 1.9520676126880956, 2.1082120764180994, 2.057341204855199, 1.9022773002619786, 1.752403938141967, 1.55362651968784, 1.5113864234427894, 1.150873183614516, 0.8128816891767034, 0.5360497355052359, 0.3809989726900123, 0.2649891946867902, -0.2473067104332746, -0.37611601564446345, -0.5864630047638476, -0.39074162590640427, -0.6157726705936774, -0.36474017774256423, 0.0707977941397778, 0.3625472608550922, 0.11707318458307407, 0.24695600060306092, 0.00578408243928554, -0.20062455624736192, -0.3902482929814127, -0.35620775259407106, -0.5747247763898343, -0.5650544090528945, -0.2493884448854046, -0.5248796044403746, -0.9269835941459916, -1.0870429437488855, -0.7299908585546947, -0.5578212200517837, -0.771490602069572, -1.0328946871695361, -0.951966825077789, -0.9275620118727883, -0.7718443636713936, -1.0606996915850107, -1.0816556642664281, -0.8576282942068147, -0.5754270964419035, -0.8851679049913306, -0.9065076078131128, -0.9780117937890866, -1.1872451456633974, -1.3711372901084335, -1.2293602242013304, -1.4208820316566901, -1.4516961508757045, -1.3299953968542675, -0.8918172298679242, -0.8169649677976634, -0.6367365143736651, -0.5709886774273941, -0.6223951446954774, -0.6782644548057744, -0.7073418713978421, -1.2423156534841537, -1.3240851571947407, -1.2144968678928902, -1.3987673883825567, -1.0355091347682637, -1.004205468152501, -1.0370046144530967, -0.8280064081460835, -0.6869664553813807, -0.4037177449258338, -0.07176689741928395, 0.294616138281612, 0.408847971259316, 0.14956871058129606, 0.08997644457447611, 0.49978918301982406, 0.5646465610392424, 0.4560848653150156, 0.31984053314905014, 0.05043646746952507, 0.28030581583711134, 0.16736522023198455, -0.0783731902720943, -0.29587705125569075, -0.9482944163733793, -0.7717374129376889, -0.8310935795477726, -1.1383149187520596, -0.7914736588872476, -0.7798434879126093, -1.3402988460868688, -1.159818397982562, -1.4125467702385117, -1.2636644280277716, -1.137365838481955, -1.1030192894897464, -1.4159948148820094, -1.7241999030626618, -1.7364270550183323 ]
[ 2.6580989046929786, -1.1598043128130469, -2.9536877631481944, -3.5568211796039018, -2.6804040457128604, -2.9733073572058224, -3.999964912985614, -3.407723215755355, -5.207810605224229, -6.0212376102369545, -5.083200490850636, -5.798058182308806, -5.6714316213719, -6.229363030072865, -6.222254929270802, -6.065813496496631, -5.511814061016147, -5.288405038339196, -4.338925168336527, -3.729438706562285, -3.8192617406431086, -4.481261787844886, -5.5657336756824645, -8.4927820750822, -8.433004589672134, -9.666250642100339, -10.539987643218426, -10.810006437021453, -11.089131819319142, -10.176229179746388, -10.065037980554974, -8.175601285128595, -5.997442759613404, -6.610335331053468, -7.528954010101246, -9.005177701153258, -6.391238463885016, -6.56969081522007, -6.304083158799462, -6.089117787016647, -5.32119235020907, -4.647452223765109, -2.548679165819796, -4.399560380196481, -3.2447712585980164, -1.4873669075630416, -1.606533113941416, -0.7006565995086077, -0.6230290244759464, -1.431652871777397, -3.062393313988471, -2.0676829041975258, -1.1754311452144064, -1.4136691465420759, 0.008348799313890098, -0.05412168446750498, 1.394488844625264, 1.8112101717324938, 3.4066644152266923, 3.8057405130938484, 3.8613716078901343, 1.9008810419688098, 2.1705694303487957, 2.1684835354586105, 4.136537487482713, 4.3640707681128905, 5.039507482574617, 6.232272605245247, 7.155574838874171, 6.502867535779088, 8.064873622486026, 6.6189761597116235, 7.297719504264128, 5.887853651853932, 6.450709942796918, 5.20702638467974, 5.870886376856072, 5.00327551680262, 4.14099814393849, 3.556926378645668, 4.409260855368243, 4.910974474868565, 5.098406672147214, 4.889199756017012, 3.9558371566103046, 2.9801304668113233, 1.9253197781258335, 1.1960349882726906, 3.095582529581566, 2.504967217342293, 2.207223181139784, 1.8162316023549496, 1.1277759265165588, 2.0935052377223635, 1.9661371804611787, 2.1516881075456955, 2.164329312308527, 2.3666471433673832, 2.0602514353599584, 2.662297221045664, 1.217263149699129, 0.18653268283958624, -0.15048843446590904, -0.5130589539348099, -2.330312283003569, -3.8315420058873046, -3.4506882293091303, -1.5680691372650266, 0.09275103858415412, -1.1551319494866894, -1.3045688698924296, -0.5131280725974723, 0.45583541343130607, 0.13049325289876323, 2.591499411491217, 2.2919896195130374, 2.9934024853061216, 2.89889562156653, 2.9240188272267456, 4.225692974852538, 5.4639481224204225, 6.1558139731037915, 5.054693039327145, 3.749128463482278, 6.869083567455204, 7.197085822314589, 6.421547671104431, 7.623110855789698 ]
Is the given time series likely to have an anomaly?
[ "Yes, it's pattern is flipped at certain point in time", "Yes, it's pattern is distorted by random spikes", "No" ]
No
binary
63
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Flip Anomaly", "Spike Anomaly" ]
Anomaly is an observation that deviates from the general pattern in the time series. You should check if the time series has any sudden changes or unexpected patterns. If so, check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
484
[ 0, 0.5165854271606111, 1.0209355731755418, 1.5011483180080536, 1.9459787920146872, 2.345145568602033, 2.6896106227699454, 2.9718254323981266, 3.185936521050623, 3.3279448454616807, 3.3958146876546333, 3.389529086611229, 3.3110903001123972, 3.164465284174749, 2.9554776746528075, 2.6916492122985294, 2.3819949292012206, 2.036777673587404, 1.6672286571580268, 1.2852416343312227, 0.9030490407499422, 0.5328889096547487, 0.18667163583659208, -0.12434433896530517, -0.3898590882821722, -0.600811663202047, -0.7496268178640029, -0.8304212799378634, -0.8391639494386458, -0.773785663735234, -0.6342355399023574, -0.4224823602393659, -0.1424609632287841, 0.20003490031570292, 0.5975103284337266, 1.0409733507703036, 1.520179775815504, 2.0239121355533687, 2.5402851319848883, 3.057069268355972, 3.562023852760031, 4.0432303065794715, 4.489416701929661, 4.890264691099233, 5.236690470438443, 5.5210921281774565, 5.737556641006566, 5.882020882996192, 5.9523822626573875, 5.94855597554632, 5.872477313450476, 5.728048967278542, 5.521034758572117, 5.25890269328163, 4.9506216113803045, 4.606416969454216, 4.237492406196794, 3.855724672451935, 3.4733402327211884, 3.1025823441280234, 2.755377678126628, 2.4430115626937194, 2.175820688009874, 1.9629116431141038, 1.8119129476498563, 1.728767330764553, 1.7175699133132314, 1.7804566995908497, 1.9175464149123864, 2.126937272776811, 2.4047587596436055, 2.7452770272460194, 3.1410510226565913, 3.583135104754703, 4.061322629942356, 4.564423874380641, 5.080570725051484, 5.597539843046414, 6.103085499493828, 6.58527302115477, 7.032803766116038, 7.435322780641286, 7.783700759824702, 8.07028263438766, 8.289096014713612, 8.43601381628546, 8.508866638309133, 8.507501835504907, 8.433787674568528, 8.291562462123668, 8.086530029388307, 7.826104419459675, 7.519208006312061, 7.176028542634753, 6.807741751986396, 6.426207018954475, 6.043644463537719, 5.67230219286824, 5.324122790856852, 5.010418127095964, 4.741561339824856, 4.526704380120256, 4.373528808454851, 4.288036629319271, 4.274386859385265, 4.334782279384147, 4.4694094533950555, 4.676433648790442, 4.9520487951662595, 5.290581121898104, 5.68464365232002, 6.125337347720155, 6.602493424094316, 7.104950243482986, 7.620857240267416, 8.137997606650748, 8.644120950746093, 9.127276869144083, 9.57614035093134, 9.98032015255736, 10.330641746643252, 10.619397140165653, 10.840554759580947, 10.989923687813937, 11.065267781012766, 11.066366557723162, 10.995021202497576, 10.855005520463724 ]
null
Is the two time series lagged version of each other despite amplitude difference?
[ "Yes, they are lagged versions", "No, they are not lagged versions" ]
No, they are not lagged versions
binary
99
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the scale difference. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
485
[ 0, 0.31760229506153154, 0.6298891499838791, 0.9316578700678531, 1.2179288600583773, 1.484051246001444, 1.725801524615862, 1.9394731477346752, 2.12195514164674, 2.270798093748949, 2.3842661068706956, 2.4613736192709306, 2.501906309321356, 2.506425641467934, 2.476256957046635, 2.413461362558322, 2.3207920116786593, 2.2016357083023785, 2.059941069275756, 1.9001347705527016, 1.7270276532715774, 1.5457126813303563, 1.3614569148750801, 1.1795897910446125, 1.0053900816412389, 0.8439739254602755, 0.7001863102173511, 0.5784983058428357, 0.48291222892103036, 0.4168767498247694, 0.3832137432022227, 0.3840584333852761, 0.42081410429116506, 0.49412233446255227, 0.60384938858861, 0.7490890541556212, 0.9281818630590952, 1.1387502904690938, 1.3777491843480159, 1.6415303559637735, 1.9259199613733564, 2.226307032543399, 2.537741280280159, 2.855038094477585, 3.1728885145303645, 3.4859718373369724, 3.7890684743719802, 4.077170664024006, 4.345588690887316, 4.5900503589969786, 4.806791609087501, 4.992636357798397, 5.145063865362779, 5.262262202847441, 5.343166684854475, 5.387482452490984, 5.395690727601034, 5.369038605601796, 5.30951260342729, 5.219796523652547, 5.103214528539352, 4.963660631456145, 4.8055161012247884, 4.633556531324959, 4.45285054510502, 4.268652285556213, 4.086289970042313, 3.9110528738427943, 3.748079139693884, 3.6022467929917714, 3.4780702743270133, 3.379604683991606, 3.3103597695219484, 3.273225480682066, 3.270410670935337, 3.303396245603609, 3.3729037504849364, 3.4788800671946376, 3.6204985398557428, 3.7961765092406923, 4.003608882448782, 4.239817026075225, 4.501211945802106, 4.783670412313265, 5.08262241883142, 5.393148115221756, 5.710082162599162, 6.02812329498072, 6.34194676407864, 6.646317282174763, 6.936200067452967, 7.206867636414563, 7.454000078209868, 7.673776683974025, 7.862956987623388, 8.018949499161675, 8.139866672598373, 8.224564942558622, 8.27266898037076, 8.284579655137298, 8.261465530927598, 8.20523808044472, 8.118511140907659, 8.004545472127512, 7.867179592752459, 7.710748361709272, 7.539991031804841, 7.359950725756594, 7.175867466858835, 6.993067033204335, 6.816847992966703, 6.652369316830514, 6.504540951414301, 6.377919674726075, 6.27661244265433, 6.204189276605444, 6.163607540021966, 6.157149209947355, 6.186372474165822, 6.252078680586998, 6.354295339909816, 6.492275542094946, 6.664513799022934, 6.868777977300527, 7.102156643890555, 7.361120820320471, 7.641598835605191, 7.9390626901839685 ]
[ 6.343399632999431, 6.261544377023997, 5.834611480178534, 3.345559889771601, 3.3804217738752214, 2.28886427455912, 1.8512135161100531, 0.7578027388742078, 1.456040082372605, 1.464417977461451, 0.000915835473766613, 1.4676339679175783, 1.810811609292397, 1.330457671586969, 0.5813162240197096, 0.5452665924063925, -0.7206840048004726, 0.6529843675493082, 1.8408453627764212, 1.5358007466711372, 1.1643278500925442, 0.28846619982074695, 0.5923371177855307, 0.9049745174458195, 1.66452491973863, 1.9893396299287591, 1.109143145913605, 0.3993824641148853, 0.5793998149080533, -0.09765244770532977, 1.3431448962475763, 1.3574786102720717, -0.0809411322058815, -0.14160594559713724, -0.30828357901008574, 1.109903104129291, 1.1898143026512202, 1.8341329469763892, 1.7181011849729853, 2.8012227722887193, 4.1883053298459245, 3.2953945788022727, 2.733953522975319, 2.5566768153392454, 3.537396128121602, 2.9201307230289415, 0.690343724758238, 1.5584086648880076, 0.8105418068853232, 0.5127811095664119, 0.16040509942647452, -1.9203464795201035, -3.0781511326433026, -2.1570473826597016, -2.147786228921799, -1.123396907523853, 0.5772082486579588, -1.0414298823953207, -1.329740267405731, -1.3916222225340973, 0.20605938116696132, -0.8445507647807826, -0.4553684673369438, 0.9117705035534169, 1.8770077881173035, 2.4561261706604913, 1.781591763964694, 2.951563441356482, 1.3706940667711205, 1.9440028696232337, 0.23672224716507184, 2.125141856614464, 1.0169959417403729, 0.6111910487100363, 2.3800521433848933, 2.9063350634081084, 2.2334606481920645, 2.4266178830262555, 2.7967452032466538, 3.3016419691187235, 3.1610240426492338, 2.907546563236116, 3.6868126698379946, 3.5066514181150237, 2.489443804496183, 2.2482796806564975, 2.3106427078306018, 2.7480428065596136, 3.0338341670137896, 1.7725939034992768, 2.3705878303948196, 2.248094983948408, 1.7660108385357716, 2.8154639837436153, 2.1722223122508084, 4.092729663796257, 5.915532200504531, 7.046104185596609, 6.4614060970590455, 7.151489357952548, 7.532172478051983, 6.9033025639665295, 8.105698601786576, 8.217472855716853, 5.827075924463111, 7.453150376202039, 9.113362976503732, 9.168375252451106, 9.924697955025984, 10.40179743074828, 10.043069784563581, 12.899177552400555, 12.400303809974428, 12.586750233027104, 11.58085580113596, 12.594676900658815, 13.443230492879167, 14.466975465246154, 13.367093879244267, 13.798288298777484, 14.35250841854663, 13.162644835422558, 13.718840532486459, 13.218269338500217, 13.076810484681042, 13.8330407687579, 14.205201593541032, 13.618373568355779 ]
The given time series has multiple cycle patterns with same amplitude and period. How are they combined together?
[ "Multiplicative", "Additive" ]
Additive
multiple-choice
27
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition", "Multiplicative Composition" ]
For additive composition, the patterns are added together. This changes amplitude. For multiplicative composition, the overall shape of the time series might be distorted with cyclic patterns unobservable.
Pattern Recognition
Cycle Recognition
486
[ -1.6034291302785126, 1.609104962017397, 2.2191944709349136, 2.6099286528589203, 2.87467677747349, 3.5624258561552367, 3.695826356309223, 3.9164637803194706, 4.0948892041493865, 3.8487219898956186, 3.888781036084668, 3.95552463012977, 3.619814183130591, 3.4462872408050145, 3.1972104906127803, 2.781461549587479, -2.6236128960723364, -2.7979603194534004, -3.0972195951596695, -3.3032889489882007, -3.507947526826979, -3.700861464158396, -3.770184789766766, -3.7613764624119366, -3.752386691304023, -3.614659581851834, -3.324750769314124, -2.960906522146143, -2.603891410297705, -2.056027830047647, -4.519108475745649, 1.1817094104078165, 1.692339473436215, 2.2730524366050915, 2.6229293692826956, 3.154123550069913, 3.480461211652038, 3.852272602414662, 4.13784195077033, 4.192184510194729, 4.221770139578609, 4.217641369541746, 4.081176735344195, 3.92903323192955, 3.861702852608291, 3.420361149246569, -1.7990129690885608, -2.2803117782060207, -2.2846296756843865, -2.9306950869408714, -3.096163657124847, -3.371053145039755, -3.5721857603440923, -3.47557189382327, -3.706104517061177, -3.596750088731786, -3.322771895369085, -3.079758656725966, -2.9919795742430644, -5.346960087401919, -4.968990523886506, 0.5819728076651519, 1.088671484306475, 1.4702409196255495, 2.347327085757624, 2.7590107091022125, 2.975052689601223, 3.5811063793360827, 3.779917495072969, 4.194310171657958, 4.241507482316335, 4.362298972736639, 4.396238521962567, 4.307621988400818, 4.389464059405859, 4.152395707046812, -1.3549497230110477, -1.5403920147047458, -2.1056038028320616, -2.3729589548460046, -2.500781279475189, -2.7478160135150413, -3.0266718795573166, -3.422930232230861, -3.456568685056046, -3.3513708697594575, -3.1144088308440834, -3.118076986497504, -5.804486208194028, -5.653949298826386, -5.31076392060932, 0.14617571371379806, 0.7961641492139685, 1.1787578466968776, 1.7586745541416053, 2.1978926608013247, 2.714038340898706, 3.138882627250462, 3.58740999029874, 4.025315104056861, 4.091692403316551, 4.2869510193913705, 4.616950392166882, 4.775197257865019, 4.7775589970917895, 4.388253276886569, 4.305964936408071, -1.2121846249088477, -1.3835544218068667, -1.5093867762780626, -1.9293869120585865, -2.26892928457814, -2.4613847954959254, -2.8453098659920273, -2.8080068223931853, -3.107628676341164, -3.2195213498539705, -3.114754140757405, -5.913022207827567, -5.679657397731816, -5.614116926711602, -5.16579510497084, 0.30804526744125993, 0.6718563045344841, 1.1294996409925822, 1.595816008324221, 2.1378912726005206, 2.822127862410452 ]
null
One type of noise in time series is white noise. Is the given time series noisy based on your understanding of white noise?
[ "No", "Yes" ]
Yes
binary
56
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
When we say a time series is noisy, it typically refers to there are random fluctuations that disrupt the overal pattern of the time series. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
487
[ 0.11122957610050258, 0.9337988796971164, -1.802912149992718, 1.4710673094511852, 0.1752390124248204, -0.30077192875607284, 0.7378856815188183, 2.56245701377769, 0.1515171710515043, 0.3210855888200256, -0.5241047295316, -0.8523313919408092, 0.9519860231799133, -0.9546991510044305, 0.044705465200103725, -0.546761243509624, 0.5733447833944741, 0.20693905601370396, 1.0404552821359347, -0.5033948888270501, -0.28861440683770545, -1.1270933595427595, -0.5014299908083323, 0.46214546857972316, 0.8035032176093715, -1.1224136456740224, 1.004631010759013, 1.4377620980159493, 0.5091438425039096, 1.9556829147531332, -0.7735944890143058, -1.3626234097492538, -1.9892431642443227, 1.7929139446836495, 0.9077804270610276, 0.03847344628659859, 0.13304716042957124, -1.4028559058452386, 2.707944763774377, 0.14898445525902207, 0.17568290334448827, 0.7495380784247538, 0.56354009347357, 0.17806643290638843, -0.9565620644438866, 0.39338987747614357, 2.0395407445530878, 1.3888566834804044, 1.7070955208431442, -0.4737156007662727, -1.21591518061417, 0.12075301788310144, 0.11245420878566581, 1.2579295321125155, -2.0029758254394663, 1.802629779372161, -0.23654729864899174, -0.4713487366883155, -0.8904532186445726, -1.8841456067388451, 1.0473741706097648, 0.01273331679525673, -1.4647026208047087, -1.2899209802968328, -0.4430569703409436, 2.0718297164592094, -0.2232770229236677, -1.758932513279523, -0.21512478911042532, -0.2116722976082705, -2.9927185247273207, -0.21852500571598882, -0.3343049073907439, 0.7638761998143868, 2.0869624799997406, 1.338184238288976, -0.28681368139947455, -1.3869521415724302, 2.9529942245167478, 0.1281382814844347, 0.07175745628228893, 0.08075036961025553, 0.3077728146027266, -0.11760631164197138, -0.6568324596229639, -0.7855507975359036, 0.005860540791842284, -0.5947958777820128, -0.7803184874918843, -0.007115970748048109, -0.39693120827409156, 1.8089639990666067, -3.0068427219747322, 1.3045549322766643, 1.4143353828531455, -2.3456580760506105, -0.29435114104865623, -0.47235427576998973, -1.584747408336698, -0.9272997209578207, -1.3014548960351868, 1.9539678966354348, 1.0821034850660172, 1.392479726234543, 0.9430499578354776, -1.3683946164664618, -0.6128377247965333, 0.5103661418278658, -1.2396680200771761, 0.8273047603793658, -0.1690442456266541, -0.5731344705210715, 0.8320452406308597, 0.5922025393987508, -0.4006561828273495, 1.419779377870334, -1.2763038008184604, 0.8386360714044021, 0.901725520986903, -0.38692272017522233, 0.3248770710366997, -1.2718610015700542, 1.2046492235631903, -0.2617339784100097, -0.6341334111707029, 1.1600871971709998, -0.9322906737416986, -1.6873003423575634 ]
null
Both time series have a cyclic components. Which time series has a higher amplitude of the cyclic component?
[ "Time series 2 has higher amplitude", "Time series 1 has higher amplitude" ]
Time series 2 has higher amplitude
binary
84
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Amplitude refers to the height of the peak and the depth of the trough in the cyclic component. You should check the height of the peak and the depth of the trough for both time series.
Similarity Analysis
Shape
488
[ 0.15228219558256756, 3.0277670101354386, 3.1701509130691945, 2.9439120474788134, 3.055706248102795, 3.239367521626187, 3.414882143364736, 3.3506766166027266, 3.5361490645881744, 3.4030931238016047, 3.591217129794971, -2.212152746486324, -2.128835148387991, -2.1871662876189752, -2.076578592129559, -2.1709535606360437, -1.9648225320958823, -1.783580776499389, -1.855472389025829, -1.841411186157469, -1.6259098081125913, -1.4129663096478933, 4.549125604925469, 4.420506204534669, 4.533979634285628, 4.68335766160598, 4.606189756691085, 4.69075694597402, 4.674894097469651, 5.0065537095606745, 4.904196977831692, 4.868159934994158, 4.899918991999637, -1.076423498788269, -0.9861893012080057, -0.8381867871468988, -0.6101737255508084, -0.6078297501816022, -0.7033559918085239, -0.6079620703816423, -0.4245846258203346, -0.22283196347102135, -0.4378101576146105, -0.21915510537249333, 5.663693753989433, 5.7291604782194465, 5.71602486635344, 5.958582667956505, 5.909869482240318, 5.98591091100539, 6.182062063238349, 6.249845067893148, 6.135778142480148, 6.301019332999248, 6.4245174151067745, 0.46739060261728593, 0.6153416555136282, 0.5790102699374339, 0.638815538620198, 0.6427791372723534, 0.9697621353421491, 0.8126921024372991, 0.8435736857285074, 0.8817209590664449, 1.0572758082801699, 1.0096945513913178, 7.013420330183858, 7.227136399180456, 7.2546777371498345, 7.137839839114055, 7.4074192585218395, 7.4007810566018, 7.573783744336785, 7.664431950178891, 7.424330977263798, 7.724226800376373, 7.873810337831394, 1.883139073686528, 1.9935612601803112, 2.0098019203072828, 2.1478127916767358, 2.1507847048845514, 1.972763842923168, 2.2254462540598348, 2.281550620664021, 2.4340756536038044, 2.5429472385872725, 8.375781323498114, 8.338626100815466, 8.55430066861864, 8.508649663534175, 8.58820375948994, 8.94958443207753, 8.70616807490057, 8.680018527210102, 8.959428697488255, 9.032341785031024, 9.112060899332642, 3.26003232427719, 3.253173196320939, 3.316788993878397, 3.4576993081703122, 3.587168154429865, 3.362801436210395, 3.490610260794359, 3.6767980879018256, 3.7020588676340913, 3.5600788144685076, 3.744374231619267, 9.805255142642592, 9.838811649827685, 9.864223291875179, 10.197089672675105, 10.02275911285222, 10.110918529779534, 10.163675500694673, 10.234111065156307, 10.279282419414663, 10.129838575598452, 10.301620052509438, 4.520999832505898, 4.696322911417363, 4.647689146454101, 4.657044084822688, 4.897179387026701, 5.000421795613904, 4.7746051387801325, 5.000135917624298 ]
[ -0.2670168563461756, 7.935073283178383, 8.202870138361236, 8.071832779885225, 7.972741743387553, 8.023415731037744, 8.114008810013633, 8.188316209457042, 8.114417232330844, 8.38483282599234, 8.454505174218083, -7.422698991296134, -7.134894713381145, -7.334202759803126, -7.122764084387451, -7.333602700435712, -7.116626544731438, -7.053404593595642, -7.12125774252455, -6.985264582318684, -7.0258517898846975, -6.93675548646898, 8.950364394757324, 8.886324344486836, 9.1273670097071, 9.182487784924907, 9.134165324360556, 9.243915922237239, 9.175947247418726, 9.190903086849902, 9.324353063093529, 9.481660061665693, -6.38278117930526, -6.370876040375697, -6.245249942514061, -6.322190574537217, -6.305018574571372, -6.16945339797132, -6.17097483560152, -6.1567131595877065, -5.899152398146225, -5.721034832425606, -6.048585291907635, 9.949505729018728, 10.056752666940483, 9.915457438983958, 10.11345343606377, 10.168930129443257, 10.28014831459184, 10.203090507019642, 10.27212342576116, 10.473933577058492, 10.466940283163924, -5.290001025515189, -5.489994820463788, -5.333208370967542, -5.066537646826524, -5.178346727959949, -5.134313789685175, -5.081755161127336, -4.868318985535985, -5.051728214965168, -4.861749323977406, -4.854290342340785, 10.866914072208122, 11.021885086430945, 11.016578752183245, 11.020844553709475, 11.316022025639864, 11.122596862377284, 11.367733977536217, 11.25485350590131, 11.524967762327126, 11.395456538148608, -4.316792725580135, -4.358775135475832, -4.4706380186591455, -4.372478317406304, -4.347318892085438, -4.083918915803783, -4.063956174794058, -3.9534105375825246, -4.032585894899625, -4.133585395963429, -3.7380522991216467, 12.11497102205154, 12.101577139237932, 12.223485225288922, 12.1504500729065, 12.235338308350286, 12.186668600226577, 12.19817363296378, 12.195786758167095, 12.326390198724694, 12.716074862539244, -3.489945913836582, -3.383473210669536, -3.230189525630172, -2.953538733451975, -3.250041705541319, -3.1597244496055352, -2.981499537843335, -2.938944589812793, -3.0216793376534694, -2.987413908389505, -2.811014282248609, 12.9980333431042, 13.105375483027437, 13.107903391010534, 13.20818215266761, 13.266742049273645, 13.074694432592679, 13.271381587346898, 13.399264546448904, 13.495164084807676, 13.429119602905805, -2.5099336775688794, -2.152355663790157, -2.1434906741369373, -2.170297829287253, -2.179084250567531, -2.024390170733233, -2.0817052710406037, -1.9003977066315454, -1.7601117134271544, -1.940338835251842, -1.7653202695269123, 13.975340131725744 ]
Two time series are given. Both of them have a noise component. Do they have the same level of noise?
[ "No, they have different level of noise", "Yes, they both have the same level of noise" ]
No, they have different level of noise
binary
88
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Variance" ]
Noise level refers to the amplitude of the random fluctuations in the time series. Both time series have a white noise component added to it. You should check the amplitude of the noise for both time series.
Similarity Analysis
Shape
489
[ -0.13803898467240677, 0.2077456873883833, 0.7086194924898017, 0.8257312126222879, 1.2245398787757487, 1.3319016465172717, 1.4685005669476314, 1.7269643974883873, 1.8229022600170128, 1.9932247668032586, 2.1654099400491704, 2.2558700782894694, 2.0679368478284808, 2.2099449853174082, 2.100482758896072, 2.0053873094955454, 1.9597017048155871, 1.7347982573861287, 1.7413114798680869, 1.5081485016804677, 1.2703616071253927, 0.8461118737115285, 0.5276876656577293, 0.3499628598232556, 0.03878924721086527, -0.29590086417158035, -0.6374749420988203, -0.8001767448456159, -1.0991436110495099, -1.2347756806697021, -1.4600097718728997, -1.6136309907352082, -2.0177893798656865, -1.9880280703461704, -2.2029837735217845, -2.318490875678473, -2.2685153105994416, -2.1104915341577475, -2.2089418503081863, -1.9329227318723299, -1.9171343709187134, -1.8607599113112028, -1.5239878464143337, -1.3864636147258036, -1.2911597433493935, -0.7587413126509747, -0.6494761204703687, -0.3929670085590407, -0.19316999292218157, 0.2993801703601219, 0.519140215529828, 0.8084476727681076, 0.9603210316575324, 1.3429995707223736, 1.5780641751586664, 1.622246724566486, 1.7212082515301914, 2.0634403152996237, 1.9565779472025793, 2.2021078450951967, 2.17832954985383, 2.343613510481231, 2.143722687474328, 2.218214323828325, 1.945038285844321, 1.9517934267373396, 1.8819638384251554, 1.3650236245411493, 1.2721326388459717, 1.2679666928804414, 0.7331747850376558, 0.45388156299727084, 0.2401963976310565, -0.12362007128344828, -0.5853734049495546, -0.5813585206525304, -1.163115880729378, -1.2565120090222643, -1.3256341057728664, -1.6892056535422686, -1.9022361241375811, -1.8933743141162531, -2.1814647019864273, -2.2983081540792596, -2.1917030210979815, -2.2431264260968966, -2.3173962294063313, -2.060579496835379, -1.9732812307104775, -1.917131550990291, -1.7400208723369954, -1.4647543309151312, -1.1681921204116006, -1.0692545272195364, -0.7117145528327123, -0.443777293529082, -0.12705129880431432, 0.0778862782874435, 0.2704141653674008, 0.5969949977921024, 0.9482908200311057, 1.3512129582913346, 1.3566236713327198, 1.6974910826489975, 1.7689493563445509, 1.9671878836342875, 2.2291088787121756, 2.240422978150779, 2.0898285161793275, 2.1693740469930316, 2.327391819369678, 2.1540093680752572, 1.9269368996801206, 1.8275236363372773, 1.815195583651168, 1.650316774259713, 1.33256104408309, 1.3357852476485585, 0.9098121406782622, 0.528251535061078, 0.18692136506006535, -0.11762778801287693, -0.27488923733126247, -0.6404045161777288, -0.6972816089255686, -0.9765859223719726, -1.299547175471498, -1.6974282931717366 ]
[ -0.672218872552405, 1.593959995409874, 0.1064491763805856, 2.108937798100211, 1.758116555568823, 1.6051996063501517, 1.0882445567711152, 1.8971044112388258, 2.3397688304994277, 3.2966254234611685, 1.4451346406360028, 2.086263456856776, 2.3631603469288107, 2.9019600095456277, 1.205096733478098, 0.6272256059411299, 2.4074875814574903, -0.030825013873790885, 2.494714891371475, 0.751210144386528, -0.9618978414411081, -0.2284941547885535, 0.29209256362327163, -0.9568756262222162, -0.7324487670121073, -0.32502301668733735, -1.5577186382198076, -2.5547646656574745, -2.1451578237424154, -0.6213275934812075, -0.498665018380847, -4.3057098234050635, -1.249175940142046, -2.0957081694988906, -1.3786392945788957, -2.761891337697107, -3.842363642363142, -1.3090856458780644, -2.61456526930923, -2.807017643624768, -2.452698586547462, -0.22531747636156296, -0.3614947827641438, 0.6172421631326291, 0.8430179320886304, 0.0885508091510332, 0.7639352083936317, 0.6305071836351975, 1.2153555638987386, 0.7124570086418346, 2.289220466664029, 3.1533130528655082, 1.3977273734900868, 3.5856128880844875, 2.459846724092184, 2.580490460164128, 0.5843165689530769, 0.37322675922162185, 2.175908589182801, 2.6304864211986576, 0.9399759285758607, 3.0184728415644395, 1.7922382374704378, -0.1641490843441007, 0.4464223094895086, 2.555223995665746, -1.5031795299148922, -0.06582493727152172, -1.2379382684092908, -0.51032428601621, -0.22660779123428787, -2.125647973064808, -0.8297799886981081, 0.10383910179356093, -2.1756372394954258, -1.5348511419060094, -2.9396667439387785, -2.3104966307914534, -2.4384105618615433, -1.3496461337143513, -0.7820194888935681, -1.8950623364797392, -0.013290097495275432, 0.25386559468928316, -0.13200229628239213, -1.1771581085220042, -0.9414584247203195, -0.8036397500977251, 1.2960967186559746, -0.5338783002278087, 1.6715600825147912, 0.20971630234550886, 2.383575114403568, 1.8139420403939115, 3.3296120799428524, 3.295084505469728, 3.7014716507827288, 3.792770994114032, 2.492532940039594, 1.1581094407745285, 1.1840972728765458, 0.022880061587408296, 0.8552057953172292, 1.7964336352078252, 0.9206919970910471, 1.022097425169946, 1.3917816297723429, 0.27309824032872587, -0.8785956857812114, -0.1489997397174741, -1.331260049703955, -1.0315409445164825, 0.26989120735170213, -1.6331642038198801, 0.14692234155844375, -0.41993181213331243, -2.619820354814631, -3.298063195077079, -2.3403437295396086, -1.1876360554121514, -2.8355449753405235, -1.392778530609585, -0.9999951493373918, -2.844004899851019, -2.5644375712667875, -0.9547790693538963, -1.2598998980621308, -1.8126955198789005 ]
Is the given time series likely to have an anomaly?
[ "Yes, it's pattern is flipped at certain point in time", "No", "Yes, it's pattern is distorted by random spikes" ]
Yes, it's pattern is flipped at certain point in time
binary
63
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Flip Anomaly", "Spike Anomaly" ]
Anomaly is an observation that deviates from the general pattern in the time series. You should check if the time series has any sudden changes or unexpected patterns. If so, check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
490
[ 0, 1.092560519338032, 2.0510989566479276, 2.7590384013056135, 3.1324215104056043, 3.1308389335060296, 2.7626892521409667, 2.084085766730511, 1.1915524304965692, 0.20945967434282303, -0.7261644439068717, -1.4853405215523632, -1.9610567614229044, -2.083198311845979, -1.8276738641966572, -1.2195515317165957, -0.3297958235584668, 0.7339695496154335, 1.8414706661758835, 2.8567406803999935, 3.655818136756503, 4.1428825858170955, 4.262727186823044, 4.007944783182165, 3.4198920653471307, 2.5833063194681434, 1.6152754802466482, 0.649997216458361, -0.17868909594489857, -0.7547237630477923, -0.9949338450510457, -0.8598594780911275, -0.35889022250660707, 0.4509571423912808, 1.4724602869939698, 2.580846411652931, 3.6400334723306447, 4.520343489835353, 5.115382265014988, 5.355888328217732, 5.2187484551793135, 4.730006232125775, 3.961472056015113, 3.0213758339688517, 2.0402790863209423, 1.1540802240576278, 0.48632514243520353, 0.132125697051944, 0.14577933638664708, 0.533701398617259, 1.2535900501710693, 2.2199325629456634, 3.315136197939528, 4.40483482828533, 5.355378893730856, 6.051232082226029, 6.410010275271343, 6.393205191711882, 6.011196871911949, 5.321902545310392, 4.423237753397334, 3.440371036564522, 2.509431196308093, 1.759787899743845, 1.2972120962852025, 1.19010819435487, 1.4606101060689336, 2.081700155666973, 2.980725872994543, 4.048856903704713, 5.155251064260537, 6.164085597412803, 6.952236731007972, 7.425306255673297, 7.529908999521078, 7.260621783573988, 10.796480486273461, 10.707128452206796, 10.248140996174397, 9.471070277941585, 8.468872209147056, 7.363806717296568, 6.291523611622493, 5.383405536295822, 4.749466365135497, 4.464031092141688, 4.556061214892993, 5.005384920783382, 5.745322779170284, 6.671367162549531, 7.654785627783893, 8.559377554276283, 9.25920288788808, 9.654975303900239, 9.68698595007553, 9.34287553276457, 8.659243081617397, 7.716881985796262, 6.630263409686516, 5.53263599398096, 4.558681360346875, 3.8269830901241297, 3.424591126915546, 3.395690799154847, 3.7358513751476674, 4.3926027954479085, 5.272265511394529, 6.252144414341143, 7.196499615757194, 7.974215219313436, 8.475866204567485, 8.627961887508679, 8.402511938036458, 7.820669780352784, 6.949979127970431, 5.895582061951547, 4.786533065146211, 3.7590004652702564, 2.9385418944350703, 2.423760904683447, 2.2734720989858763, 2.4990454463388043, 3.0629262938775597, 3.8835237206933577, 4.8458309339555665, 5.816395288651696, 6.660689337427482, 10.512759049325949 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Amplitude remain the same over time", "Amplitude decrease over time", "Amplitude increase over time" ]
Amplitude increase over time
multiple-choice
28
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline, and see how it changes over time.
Pattern Recognition
Cycle Recognition
491
[ -0.14724128355850763, 0.8467804532435166, 1.4064647281006106, 2.088733927832667, 2.566652710291884, 2.900842206812211, 2.8589861159802616, 2.88374516280726, 2.6495244369211006, 2.443434601069159, 1.8889644214907353, 1.3528074333360445, 0.6725014111379151, -0.3298957254057241, -0.73104357414305, -1.4279281888007738, -2.1252915683506086, -2.493225741700024, -2.828453258145224, -2.8731046093588497, -2.9140865428257015, -2.5983755499754237, -2.2498084103796825, -1.7744024979963835, -1.0827630167442273, -0.13550228643813145, 0.24533559185404388, 0.9900674664143471, 1.5884141126785045, 2.1395819554958933, 2.6861771838457162, 2.9283378818688295, 2.856163285573092, 3.721942091325448, 4.434430946672442, 5.021991233991373, 5.491341621575574, 6.23626895521527, 6.563013133715434, 6.811421087356264, 6.886897603732433, 6.989055808640819, 6.787978245512077, 6.4311048451811015, 5.907503179408792, 5.600625444379567, 4.925466989916214, 4.191112257794805, 3.154511514966807, 2.6512229750223515, 1.8728024879128753, 1.1107021869749536, 0.5827695695473744, -0.003839793557444557, -0.5113121940479033, -0.8110208432830379, -1.2443612480484836, -1.2743387192750162, -1.1648057276391819, -1.0362579654789963, -0.5685384846267126, -0.2377892199334477, 0.5068299237559802, 0.9335521843926928, 1.2398664895177736, 3.3105093352109183, 4.981608461780267, 6.613117599725804, 7.446784853925717, 7.9636353166614615, 7.571719631746777, 6.565213398928462, 4.907302628386008, 3.398886369988701, 1.3912457182884546, -0.5979857280105024, -2.6549674930731646, -4.136342913329999, -5.360724737002407, -5.82611645585866, -5.517147809503721, -5.06839822462638, -3.465179872205302, -1.7247760154780964, 0.4902032550578871, 2.4040392254075895, 4.47556743309859, 6.160823801605117, 7.085862013761116, 7.798664283811362, 7.703164501087841, 7.137218483667633, 5.835653292710163, 4.020576924304103, 1.9286765463817457, 0.03124619053669342, -0.07933375672519376, 1.3967651483750854, 2.9822441022048913, 4.649347983126176, 5.792398750472559, 7.220882732465231, 7.819583806351496, 8.52582606774043, 8.868154257146251, 8.808632550706395, 8.388885100107561, 8.074168507512793, 7.151445366280783, 6.167162227594721, 4.864718829098778, 3.4599846442533417, 2.029844867154255, 0.19426364224288292, -1.4334775976002496, -3.1449119078719736, -4.4928741046789895, -5.780916327578963, -7.027439422701207, -7.864756656091018, -8.590718890413363, -9.086835476492581, -9.013354532787938, -8.854456676270264, -8.319306604020628, -7.611093067050204, -6.593728615334565, -5.271368548818745 ]
null
The given time series is a swatooth wave followed by a square wave. What is the most likely period of the swatooth wave?
[ "31.01", "50.69", "19.05" ]
31.01
multiple-choice
26
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Square Wave", "Period" ]
The sawtooth wave comes before the square wave. Begin by identifying where the sawtooth wave starts. Next, measure the time interval between two peaks.
Pattern Recognition
Cycle Recognition
492
[ -1.0009108020341122, -1.0744079208669879, -0.7821160207967823, -0.6888685222752535, -0.6822573103364739, -0.7854854714184252, -0.6994820160864806, -0.6717352073299456, -0.41602299442261803, -0.30051010657311195, -0.31922876280566187, -0.20195215711291076, -0.31709815300485383, -0.1500761871618902, -0.2359778064741556, -0.11049710414965656, 0.12021999722095411, 0.0740648631846788, 0.28463418267491836, 0.2831636575776498, 0.5684815447168197, 0.37008754342803535, 0.285742145296881, 0.4886013780077503, 0.4614244526128139, 0.7211156869029292, 0.6932673648708193, 0.7410138483162306, 0.8079994627400415, 0.9601184550251765, 0.906509821598131, 1.095132695925154, -0.8491317015948985, -0.9222313180878731, -0.9149501371462875, -0.8079703353865065, -0.6199912079843537, -0.6160825732634442, -0.4966512949562579, -0.31769336998384057, -0.4052200733174549, -0.4435374631488091, -0.19122975152134014, -0.2261643448574189, -0.07838404343714189, 0.006662766808781848, -0.13018622564147464, 0.16958671602059291, 0.18757012320124972, 0.10233916155933617, 0.2588461823970695, 0.3197936911101902, 0.3621377950609584, 0.5126076840978092, 0.6348235896521179, 0.5574902656950238, 0.7555194328203644, 0.7869232326757623, 0.7770042590451868, 0.8370644070349736, 0.7698614492659352, 0.8007128187134145, 1.0329636094472607, -1.040248097010933, -0.9586188194319581, 1.318882058803109, 1.1934986824900657, 1.4080787871817788, 1.3308951524491264, 1.380368204242197, 1.2830363056251932, 1.338866608248642, 1.5283863471014034, 1.3852034329952236, 1.4273059674943822, -3.4087459241317117, -3.0427551477048613, -3.0973173676120545, -3.1453151943489375, -3.1987821456836203, -3.280144415618121, -3.237451341757435, -3.176856769044613, -3.3445157181916785, -3.326108617866026, 1.2054350970790622, 1.29516642521244, 1.5384785060489308, 1.3389236238730786, 1.340563642337057, 1.4041250362318274, 1.2111256022706631, 1.4668865019968722, 1.498989018525403, 1.4100779595341564, -3.1165236447961586, -3.4143419200576974, -3.097287163668923, -3.354732883767073, -3.409650716770421, -3.3053979395647746, -3.0944581753968774, -3.2836029575340624, -3.374917909100216, -3.4111529908920937, 1.3618364825134741, 1.1728521758323505, 1.2423290488287715, 1.526655098174024, 1.504674713703239, 1.3595071183341445, 1.3257818558626608, 1.3781992232187998, 1.6071480258331476, 1.4128458838651679, -3.1906849259481262, -3.3019044960272628, -3.2755690827323916, -3.2169424737654033, -3.269049260661705, -3.4713964416929737, -3.1536046672763614, -3.3431721112212407, -3.0705269792824827, -3.212973892167511, 1.37944557455209, 1.4162810469984588, 1.3614985441317642 ]
null
What is the direction of the linear trend of the given time series, if any?
[ "Downward", "Upward", "No Trend" ]
Downward
multiple_choice
4
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the time series values increase or decrease over time.
Pattern Recognition
Trend Recognition
493
[ 0.006463237506395048, -0.010823469783792668, -0.042538528357531954, -0.01667428435552815, -0.009001898545787212, -0.02072987655867518, -0.031110347545231433, -0.01624184707494028, 0.04717494266177591, 0.023807901896797004, -0.04739126774380497, -0.005944367408684318, -0.011325120388586282, -0.05908296822465091, -0.04777086901607168, -0.027108583976719242, -0.08382879791905007, -0.06651681621450192, -0.06802577264848778, -0.07437509675589324, -0.07934935936205281, -0.05102384445735031, -0.07184996672066965, -0.0493527866707609, 0.02655163979677133, -0.10545158971033815, -0.07706296583394494, -0.06812685875087693, -0.04687189018036915, -0.07788237717212003, -0.14553085773309912, -0.13071715925157862, -0.09996310192720145, -0.13854837302070733, -0.1749541013379599, -0.15004770338398737, -0.15313596027823337, -0.16523094829250246, -0.019602077702604387, -0.11606776500955683, -0.1277970983069141, -0.09725098436054899, -0.06355225875423144, -0.12632783846269457, -0.10307105640406349, -0.17039374560885912, -0.1907394668726068, -0.1175855397194708, -0.12170895849093709, -0.12897758144540822, -0.1605414654041331, -0.20198298883468374, -0.19270612445611576, -0.12712818366657275, -0.20398554948669706, -0.1745691887322804, -0.2182019656469121, -0.1971003313544189, -0.23787792455324613, -0.19882316935840308, -0.21911191593519727, -0.2741958733933351, -0.1780485884865804, -0.18328233054771653, -0.2098996882737003, -0.26293164935101965, -0.2656659287290531, -0.12404742640079452, -0.33597556923672584, -0.27478555627668383, -0.14162057472563572, -0.1317519625553114, -0.16722740044770523, -0.21971155498944372, -0.27223679460031136, -0.31962164496645046, -0.23495598624936467, -0.2875206872459289, -0.19755275658387217, -0.3400846597005365, -0.2568878399981887, -0.22952683579126887, -0.22930879596331014, -0.2401664321647806, -0.26425586684148883, -0.2765333790121154, -0.24698478283102987, -0.27419932163243266, -0.2761588564304386, -0.2937316288548249, -0.31471724872943724, -0.3586738122214054, -0.3547236392275024, -0.3245870593550846, -0.3168384492352169, -0.3558395294201774, -0.36230314499554217, -0.33707031752626, -0.2870335112848908, -0.41764780550954184, -0.3711859685052854, -0.3281725243296828, -0.28409880660320086, -0.25059569731924547, -0.3593420860260803, -0.3632732036362839, -0.35736214694956697, -0.34531269940902587, -0.3600867203529476, -0.3566026598208763, -0.4211175954439724, -0.4381503265673661, -0.34133229779417695, -0.38289877538445855, -0.3429868261461517, -0.3719861513256131, -0.4450899649223026, -0.3226215811424055, -0.3900409098904935, -0.42615326917339236, -0.4204961178413118, -0.45233493240582556, -0.3906141338200653, -0.4126280888601108, -0.32623494741550757, -0.39267772053785205, -0.33541996438836025, -0.46170064724414056 ]
null
The following time series has a noise component. Is it a white noise or random walk?
[ "White Noise", "Random Walk" ]
Random Walk
binary
52
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise", "Gaussian White Noise" ]
White noise is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. This can help you distinguish between white noise and random walk.
Noise Understanding
White Noise Recognition
494
[ -0.1569566097288859, 0.07042289067647864, 0.4806225003484573, -0.09924874741105949, 0.11769703764887995, 0.10034223854654356, -0.015086600428042551, 0.10426750481496505, 0.11144945408584506, 0.07506791015830605, -0.019402963282804997, 0.1605865909094082, 0.2633061759457459, -0.28818849496994736, -0.5988565868404372, -0.8511482310072848, -1.3513691116893076, -0.7255513919031397, -0.699982352756973, -0.9338928198995391, -0.5333695026293772, -0.30789056888846855, -0.2557468239877897, 0.20451021196601904, 0.7458022554837599, 1.2395820063717893, 1.689319770768813, 1.7981921365009015, 1.631667740419311, 1.5251280551253747, 1.5420235421104866, 1.1758156063291727, 1.6368997511990635, 1.3287592261994012, 1.1692524857161306, 1.0482279202692126, 1.1412792285422837, 1.0655246359558879, 0.9191507828841148, 1.3329155842066711, 1.5979471238491936, 1.6044812188168038, 1.642526297448609, 1.638177998909384, 1.9171143965440312, 1.982655444540478, 2.012254902630863, 2.6280675591616793, 2.7326173233447233, 3.039593491641807, 3.259333133246921, 3.5448702354667896, 3.8673350103436372, 4.095551436541317, 4.04516230334047, 4.050012402423327, 4.257110541007322, 4.2904991333506075, 4.307633491240826, 4.403009260002, 4.368478937744179, 4.023546585372262, 3.905815523025814, 3.792519985939173, 3.229304794331057, 2.685750799310096, 2.730098514248524, 2.5812637444862117, 2.5236551735950234, 2.7174835494088407, 2.907498701857577, 3.1325409154211776, 3.7914012604836693, 4.036224548084299, 4.420867708975798, 4.585045798344772, 5.136888676122353, 5.474686279510351, 6.122245302103456, 6.301564776824738, 6.4579593227429894, 6.45999873391229, 6.806345258288, 6.7926498757429234, 6.620182054367273, 6.21131121338707, 5.455605520377648, 5.2816224324275165, 5.0260189945378455, 4.082824417771142, 3.880780642995777, 3.5768457721090803, 4.020671570243526, 4.093745576051342, 4.559582014302785, 4.8848753142483075, 5.401659721967534, 6.277915239833449, 6.799341298702031, 7.928316018533067, 8.390705264588656, 8.974000150196568, 9.12106708180971, 8.937283002168837, 8.419464037599214, 8.69098973086128, 8.551225645385813, 8.38809049937205, 8.169775226431112, 7.833576568425369, 8.060098233566166, 7.6373001170361885, 7.569835393471522, 7.527675869236257, 7.027070340645409, 7.099138303987319, 6.79581943498802, 6.825592781375784, 6.847189975344462, 7.0412242620890835, 7.428042803231984, 7.483048717797857, 7.6417168714772785, 7.549436651222512, 7.588883003635238, 8.07412553964309, 8.237484246623415, 8.675381707227485 ]
null
Two time series are given. One has noise and the other does not. Do they have similar pattern?
[ "Yes, they have similar pattern", "No, they have different pattern" ]
Yes, they have similar pattern
binary
82
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave" ]
Noise refers to the random fluctuations in the time series. You should focus on the overall pattern of the time series. Pattern refers to the general shape of the time series. In this case, you see both time series have cyclic patterns. Do their behaviors at peak and trough look similar?
Similarity Analysis
Shape
495
[ 0.02898159386618084, 0.37568513394404834, 1.0027513285471854, 1.1215523017315296, 1.2177411056383332, 1.3780151312567077, 2.256768911615055, 1.9474392268378482, 1.8120684556241797, 1.976970141342754, 1.8729951949395955, 1.544032336799254, 2.014369442499618, 2.1874571397221736, 1.3391702419184361, 1.4698929405774432, 1.0753140684234237, 1.0490723414404695, 0.6152599630556761, 0.06676761573603796, -0.1766810205731692, -0.46623743011605556, -0.34368409035269154, -0.6512745918585178, -1.2473049033751076, -1.185580576976588, -1.6768577512947205, -1.8784410029966971, -1.9281977436165418, -1.9616981919508019, -2.159388719610842, -2.0234323696851146, -1.8002176005814476, -1.813737807323888, -1.668028698584866, -1.373655485164578, -1.0990183270407166, -0.9745895449057925, -0.7630635082377661, -0.32019313900256985, -0.35787041257286356, 0.23877046693558102, 0.09956217292967273, 0.557220416746375, 0.8038058532960322, 1.6265660812549312, 1.6332623424808645, 1.5515218651131701, 2.0314605569879913, 2.2129789967027502, 2.14962412542056, 1.992742268303488, 2.0098441627678576, 2.0284571000299843, 1.5938871636876872, 1.4919820443689065, 1.1964733187849543, 0.6565902217162574, 0.8699814365845039, 0.7887108500005311, -0.11614686873755464, -0.0689308095623905, -0.7435452994340231, -0.8481923433545097, -0.8513419000458192, -1.5070090642147103, -1.6214999097788227, -2.1548913564408356, -2.0595383567816423, -2.3929040606507317, -1.961532312339391, -1.8666508140914204, -2.0131599182848015, -1.7993243031971322, -1.7638799154688385, -1.3512815134577656, -1.2374583876702756, -1.393523975094661, -0.5170496638698173, -0.4743533884701685, -0.3322170058257903, 0.15428826296234072, 0.17595267284364696, 0.6070635877713069, 1.165330707589259, 1.4339614937173364, 1.6677997761356518, 1.785728536892425, 1.7813993020530896, 1.9969762334574725, 1.9591810888859884, 1.7101310672257477, 1.819656910014576, 2.0425849319684324, 2.027235588407293, 1.6428911000332345, 1.5874142276717063, 1.0304962807953324, 1.071834922732553, 0.8264947995626377, -0.24903084163363814, -0.17836257165080371, -0.5202500026852296, -0.924075778705355, -1.022050682121149, -1.3659656882550149, -1.7414050069456604, -1.7807409741062348, -1.6721535605806128, -1.9673962208135691, -1.920300058239925, -2.092821886844618, -1.8888544559363938, -2.114524922953542, -1.8202082452904695, -1.5462776900162958, -1.5491494199172398, -1.1963969513003518, -0.6789854153601463, -0.40874519700025613, 0.04409696646040323, 0.08312494621181203, 0.5301770158344293, 0.6870187392035447, 1.2452505608765028, 1.5977864397195125, 1.678638342825852, 1.977830661190251 ]
[ 0, 0.7192922925101795, 1.4033375288689713, 2.0186158436376864, 2.5349771162948023, 2.927118399816888, 3.1758238260742506, 3.2689062296881874, 3.2018043485110983, 2.977806336466417, 2.607888636080429, 2.110178106340314, 1.5090637629098782, 0.8340016575735184, 0.11807146069643604, -0.6036445223601719, -1.2957804687659567, -1.9244200487876701, -2.4587584076997238, -2.8726116779193234, -3.1457000516329305, -3.2646415402625992, -3.223607724162919, -3.024609359232752, -2.677397845029362, -2.198987382684847, -1.6128212380387745, -0.9476229651032213, -0.23598888267945695, 0.4872092238350957, 1.186532903988061, 1.82771361176691, 2.3793319469561878, 2.814357281482986, 3.111472325348504, 3.2561177252222575, 3.2412055078498723, 3.067466407827754, 2.743414059846472, 2.2849278100692128, 1.7144745898934262, 1.0600079821569184, 0.3535984281980542, -0.37013830107397333, -1.0757373613933687, -1.728622697992944, -2.296801355631604, -2.752431210518586, -3.073185301491266, -3.243345904930156, -3.25457474110306, -3.1063215699709525, -2.8058511542762177, -2.367887268656937, -1.8138911991986724, -1.17101008868491, -0.4707466611638696, 0.25258448746568, 0.9635383873670343, 1.62727658372592, 2.211274305012751, 2.686914255186949, 3.030888930183459, 3.226342741793571, 3.2636979821166694, 3.1411241543339705, 2.864627671464953, 2.4477575276512624, 1.9109413647845594, 1.280484468814059, 0.5872807473273748, -0.13470114638945896, -0.8500823592427723, -1.523807487411834, -2.122862375635374, -2.6178918903983166, -2.9846383922332156, -3.205130418525903, -3.268563328502945, -3.1718287566735848, -2.919666930231347, -2.524434386495475, -2.005498472797476, -1.3882882997778017, -0.7030486536689468, 0.016642071133589533, 0.7355172943356818, 1.4183503971873863, 2.031680911713637, 2.5454541642998763, 2.934494027144417, 3.179736609206609, 3.269164432820319, 3.1983953190671457, 2.9708971251064247, 2.59781781081535, 2.097439161883361, 1.4942809382460465, 0.8178993467445925, 0.10143871574684066, -0.6199926568354874, -1.311042894771323, -1.9378488706595147, -2.4696955807968193, -2.8805212543964025, -3.150194443176963, -3.2655005108544257, -3.220789182173033, -3.018251420012618, -2.667812062926261, -2.1866434841278757, -1.5983241038115859, -0.9316829897275758, -0.21938716337127626, 0.50365916281209, 1.202024975972237, 1.8414886678881695, 2.390714976260499, 2.8227904880962105, 3.116542461818765, 3.2575763426412045, 3.2389811304480496, 3.0616680354596015, 2.7343258267347217, 2.2729950615430736, 1.7002820593939771, 1.0442511378890174, 0.337049393511931 ]
The given time series has square wave pattern. How does its period change from the beginning to the end?
[ "Remain the same", "Increase", "Decrease" ]
Decrease
multiple-choice
18
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Square Wave", "Period" ]
Base on the definition of period, check if the time interval between two peaks remains the same.
Pattern Recognition
Cycle Recognition
496
[ -0.13055124375829716, 1.2822162153147256, 1.3469411945636405, 1.254853053945971, 1.1946062519293577, 1.2749418234338032, 1.4527336875247774, 1.2613318356548389, 1.3544592750720985, 1.5831560891040717, 1.3835688298648066, 1.4227393418404748, 1.2938822410423603, 1.6048337282375298, 1.3343567939536727, 1.365675774422364, 1.520192110664252, 1.3703128183821536, 1.393275121135037, 1.3603174107886025, 1.3610030050617927, 1.4255364439503246, 1.443780561787326, 1.324161399746259, 1.3118781972528226, 1.3275726339817593, 1.2483608414475387, -1.5475292687194453, -1.3587695281450247, -1.2946266625500042, -1.3013817135529937, -1.6266853701811814, -1.4129927515718417, -1.4986954384267714, -1.3741124990854299, -1.4302685947484537, -1.3292950522430567, -1.3904015519076496, -1.5780864323593045, -1.4851948301474696, -1.3879077313848502, -1.3794751999444068, -1.5290539236379157, -1.5421322132221278, -1.3828617091101976, -1.5288529734725682, -1.555349185517594, -1.4330002941306497, -1.4373308520013806, -1.4763262906014456, -1.4588599385400118, -1.387102670545276, -1.4605025332354975, 1.3955559450339994, 1.350439389255782, 1.4052512584061811, 1.47630679941118, 1.4724110274065751, 1.5173072899741238, 1.4723009325572316, 1.412341996021696, 1.345143079103501, 1.349710150585893, 1.3007085122239346, 1.3889391719726714, 2.9851118057137906, 2.842806297554295, 2.9116512719762198, 2.8476368349704204, 2.9363084908613586, 2.860434719447602, 2.841422000713192, 2.8473763883493945, 2.9657059352271538, 2.9056981173095617, 2.8725308848425937, -0.11226012185284523, -0.17985219385433132, -0.02574878273899596, -0.23578718747689195, -0.15709772338929445, -0.2788770942742664, -0.1730880112965757, -0.3063641218782293, -0.06376891985165366, -0.06175019540700839, -0.059983554735118655, 2.918260305860044, 2.827386017371588, 2.8353389946390024, 3.068390263364649, 3.058940768222577, 2.927628573537674, 2.8638096544345646, 3.052235400112448, 2.845922741704116, 2.938257978652188, 3.050568788382443, -0.22203442207402907, -0.05547821354385507, -0.0863444925231793, -0.1423522263307224, -0.2377439320208779, -0.21084454811789388, -0.10945546482250043, -0.280734251595705, -0.12532618620574132, -0.08429547370139998, -0.03987855482665621, 2.775537350396575, 3.0469977875587246, 3.0849094072605907, 2.9563882146139564, 2.811568199700131, 2.882562129006573, 2.9106133333307462, 2.942419408715653, 2.9175712131069576, 2.9434895721320586, 2.9062983821086847, -0.11188986265634197, -0.18445291422369767, -0.17221924380581313, -0.19600308915523307, 0.0533253813428409, 0.00798950650986599, -0.08287115310620471, -0.005869672380792418 ]
null
Despite the noise, does the given two time series have similar pattern?
[ "No, they have different shape", "Yes, they have similar shape" ]
No, they have different shape
binary
80
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave" ]
Noise refers to the random fluctuations in the time series. You should focus on the overall pattern of the time series. Pattern refers to the general shape of the time series. In this case, you see both time series have cyclic patterns. Do their behaviors at peak and trough look similar?
Similarity Analysis
Shape
497
[ 0.14652801544311586, 0.25249965138591907, 0.5484351350112376, 0.388055422960247, 1.2125257512528942, 1.3225833543154282, 1.6555563819169126, 1.0545616464481926, 2.2015048729697204, 1.875531680537785, 2.2122699166506212, 1.8359143244622125, 2.1848832377259755, 1.834934972637667, 1.8692953582126948, 2.291306688416813, 1.7522932088937075, 1.6853355354814525, 1.639303684221436, 1.3628982669702672, 1.0707821584130612, 0.872892939114325, 1.0261554268399862, 0.2702249450651765, 0.053443740978967466, -0.04539530575330186, -0.2988167949550741, -0.538051933507414, -0.8900336922914476, -1.471358881981896, -1.1198724130620124, -1.8549783869134628, -1.7166297388825107, -2.0491757034254987, -1.9999633796975114, -1.976336416666149, -1.9979722199682821, -1.9628724032104874, -1.6746407072712115, -1.8227658998761254, -1.8457871587345764, -1.4570002605138535, -1.2366715723082737, -1.519707722447556, -0.9326137356575062, -0.6718384805985794, -0.6177267959446734, -0.0197014946364078, -0.05645843696995974, 0.2675141871107669, 0.4725001244389727, 0.7663043555493889, 0.7870023931855674, 0.9441688666108434, 1.756004615766835, 1.4481467830260961, 1.572132193273155, 1.4624353875654974, 1.8557640158486606, 1.7755803673891903, 2.3904771112616943, 2.250774266744829, 1.86300457938955, 2.3688535904037535, 1.9997611889765197, 1.5927523177248422, 0.9838994316307286, 1.7427465551881876, 0.7855313711627, 0.49513218132458503, 0.7754470159061674, 0.7958753687834326, 0.3165241837984059, -0.11647981751703532, -0.3753352784485707, -0.5802046068158742, -0.8429079937031528, -1.1653112403785804, -1.4067491787052215, -1.621820916731046, -1.9143846208612758, -1.9439634662294616, -2.318486828331679, -2.0578917950096334, -2.2595379336444177, -2.2709987692662255, -1.9678252484528878, -1.6447807666368206, -1.626122882263319, -1.9796514574858421, -1.690860100059119, -1.1067228690827215, -1.2712517340080154, -0.8812435744891449, -0.47361786974094205, -0.5146631482210119, -0.031815188363895866, -0.050690138550935654, 0.3611639526577202, 0.8025124048191303, 0.6644903687258552, 1.2989647301940264, 1.4140889400393557, 1.7114973532358182, 1.8014830588787383, 2.155293958419716, 2.0011980617463294, 1.9502845024225264, 2.0859400730626625, 2.16032627026301, 2.0166631356108526, 1.9360352841695776, 1.6756915675326058, 1.540735415618185, 1.2215059337850374, 1.6550582818150144, 0.8372458099539348, 0.7098065331192736, 0.45261820030767275, 0.5130353045321361, 0.007118848821036333, 0.04658902087039138, -0.6032671464227704, -0.6703951188683622, -1.138513509660315, -0.7711104289663997, -1.6459049815095395, -1.53066646562713 ]
[ 0.12675537618641972, 1.161446900827319, 1.0416295495614776, 1.052722941390334, 1.0874493757328412, 1.0492866810113215, 1.2714629046960013, 1.5207916816552896, 0.9671887243354526, 0.8047264854212037, 1.0610306716667683, 1.594628948867883, -1.2394219949309655, -0.7508637202482058, -0.7431469185217312, -1.189404729678618, -0.9648904654999642, -0.7530077567113116, -1.1545126295345167, -1.1194031533574917, -1.195023264126748, -1.2816384274755928, -1.2085425903502207, -1.3234751346894706, 1.0855037749888645, 0.924692435125291, 1.125444263695169, 0.7675079520962937, 1.1448631277799106, 1.2453928736588042, 0.6799399528227281, 1.1534983953065336, 1.3242208798316777, 0.8367588775987782, 1.4132015587045599, 1.1624908832102283, -1.219689452488701, -1.0898408968685604, -0.9670216988326747, -1.063486003054537, -0.9709358828477455, -1.2628217999528926, -1.0448149165298037, -1.3614299807180155, -1.1009322936067594, -1.2594686096299772, -1.2257930698549726, -0.8314684462949318, 1.296949105455873, 1.2005147055184546, 0.8602245284025035, 1.015405391398059, 1.321306621332856, 1.1070304640650002, 1.542552989333358, 1.1573506492158936, 1.1170969046350256, 1.016863788496519, 1.1053952622934757, 1.0481931140609106, -0.9370653459993012, -0.8873466179781024, -1.2358849734386093, -1.344933672048575, -1.4459281559576787, -0.9770888159545106, -1.299360402571794, -1.509265199927516, -1.0009713604308264, -0.5800871778504612, -1.079901263644998, 1.2463852362273478, 1.0950529530465323, 1.0589091506987907, 1.262502377934573, 1.020632172499289, 1.1321655441513998, 1.143026642576222, 0.9450689906084095, 1.2770955512443238, 1.0436951299979376, 0.9275380494384503, 1.1859890500511, -1.2583806776952269, -1.0730508498631937, -1.08051088066586, -0.8615079681707036, -0.9837474347610288, -1.083692473086048, -0.9151338214969619, -0.8006455715335565, -0.9671250200666468, -1.0766165573683433, -1.3410543278070512, -1.2917098139520937, 1.0176421404660858, 0.9567846409051627, 1.0412928207399301, 1.0900170663164408, 1.1846256322083655, 1.064587325725201, 1.1759874101022596, 1.0915819642990434, 0.683593768066245, 0.8908200025732684, 1.049869570192696, 0.8367481327687978, -0.9587013353377783, -0.7725369148682798, -0.834934710997556, -1.121375655523061, -0.7805418539670288, -1.048953589896597, -1.1461042755606272, -1.2013676140452072, -1.139181018634645, -1.156322445045265, -1.0446038368619217, -1.0465722851270465, 1.0792962853677022, 1.1660747152862894, 1.3168163362942875, 1.268597908425284, 0.7817074876470386, 0.5679028543566284, 1.2655510635848741, 0.805311341653935, 1.0337340009584826 ]
You are given two time series with same underlying pattern but different noise level. Which time series has higher magnitude of noise?
[ "Time series 1", "Time series 2" ]
Time series 2
multiple_choice
61
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Exponential Trend", "Gaussian White Noise", "Variance" ]
When the noise level is high, it can distort the pattern in the time series. Both time series have the same underlying pattern, but different noise level. To tell which time series has higher noise level, you should check the degree of distortion of the time series pattern.
Noise Understanding
Signal to Noise Ratio Understanding
498
[ 1.0793488720552213, 1.2194424516509996, 1.9134303240697235, 1.9940226536840453, 2.623732495929204, 2.9709152356878645, 3.059465671772638, 3.405777833439671, 3.5785045910410256, 3.870232122046114, 4.021147966425264, 4.245542502026318, 4.368159889466292, 4.399440153031014, 4.179595393600773, 4.144780376246235, 3.882684389067078, 3.8133972164669774, 3.793926132030501, 3.6264572179523427, 3.0769987838888033, 2.8493852137844913, 2.5918774528858886, 2.29149375224002, 1.8402097413948957, 1.6158468547320188, 1.1788447054774722, 0.8840277391555816, 0.6116480140211268, 0.2471712168787839, -0.08425143116013248, -0.3103401681370569, -0.5340180050021647, -0.7509437463154357, -0.8880385479906489, -0.8070926247014711, -0.9700475592680121, -1.0677645340482207, -0.932736681002884, -0.952156547359205, -0.670664153647169, -0.5745393436321156, -0.4022604270525121, -0.08613454824001268, 0.009801312022617636, 0.38512444776834365, 0.7378734392342764, 1.2545745278193923, 1.8147333809125268, 2.278364375926137, 2.539520904803416, 2.947095510986482, 3.1330995443902827, 3.6642101155921236, 4.028413993240452, 4.411904901417143, 4.797054458017859, 5.075059172638381, 5.19720724085774, 5.703791439810802, 5.713738396701516, 5.992929093775559, 6.278924073157874, 6.035881949985076, 5.884907972834985, 6.074027842289293, 6.1334877650944115, 6.0982688241402645, 5.619682359562008, 5.597184014858847, 5.274621201538912, 5.05755593779902, 5.057981947193982, 4.352443518966648, 4.226776413475245, 3.9421614346192726, 3.6992409419622256, 3.3029645070034324, 3.0395688993149506, 2.7039653754101565, 2.5285787814805105, 2.2550939179809033, 2.173132223821288, 1.9334840544354288, 1.9090522481349665, 1.8136295230257486, 1.9209056797251642, 1.8429430546578434, 1.7593711369232454, 2.2002977974997986, 2.1690879805112186, 2.426517055369632, 2.709080505652377, 3.2245328483722147, 3.2301930609197997, 4.148401075611863, 4.360747026497817, 4.722646868164322, 5.159340002671793, 5.671600274599517, 6.181280938763667, 6.681828908685379, 7.157128399457205, 7.585109885586353, 8.01571265817768, 8.45898759908721, 8.867689363043105, 9.383481685114523, 9.678217940223005, 9.635963651832647, 10.266295790030592, 10.44830167679678, 10.611065283344834, 10.713478508542716, 10.95946773659364, 10.992658461381927, 10.82911573556938, 10.915490337724835, 10.70879655313704, 10.56551551428386, 10.50877699973549, 10.500745748216136, 10.333032390840268, 10.097827661985688, 9.919119280149957, 9.695501620255962, 9.380179930416046, 9.297122592972832 ]
[ 1.4002047626138412, 1.771441313881605, 2.3774529855192297, 2.5144237760881447, 2.6962019792658296, 3.3933198411633203, 3.1553016851696274, 3.0059219366212706, 3.6075415759177374, 3.5192729026717635, 3.7143622573566475, 4.095317113441625, 3.8409190543543508, 4.105891007132498, 3.2890048627817103, 4.272349417307157, 4.0516309459702855, 3.485439907582501, 4.027063802936958, 3.9336840044107984, 2.3966537388923084, 2.5272692504166736, 2.209946853688132, 1.7935260858036273, 2.3359075143529346, 1.476527680899208, 1.0939712195292586, -0.11645821595996719, 0.8747286043253699, -0.37310020752904616, -0.010646526974311454, -0.16069071876537777, 0.15514758883769442, -1.3683528428867788, -2.3719150196343515, -0.8750325693750953, -0.12588391330670912, -0.41874332577558604, -0.8976024138166446, -1.1645926911996276, -0.38441531908717796, -1.0982766627041594, -0.15335132797397966, 0.12182883876227296, 0.6969938809789075, 1.877631214114863, 1.0534739234635655, 0.9857984054892721, 1.6286947248680204, 1.1706964088623146, 2.1283592291148117, 2.6923698444354844, 3.05116111883826, 3.7946549315823868, 3.6959824022401757, 5.034504994904491, 4.813972372335437, 5.117618069838781, 5.23118986363886, 5.7065957561285385, 6.233561831609314, 5.535439299508994, 5.7424575616452485, 5.975957394755387, 5.465001263373011, 5.692999334616554, 5.785281364822225, 6.3396286690745685, 5.873917983508212, 5.644309048218967, 5.746601228300903, 4.999464879029735, 4.988780037456723, 4.451129675339915, 4.334083622025602, 3.604012788636938, 2.3712537303300767, 3.2260266105631907, 3.7201379134145105, 3.2062379332731314, 2.9843648296515854, 2.9074785064337534, 2.155303830316402, 2.06910294174259, 1.562516261027573, 1.6585193763807216, 2.1161862295335183, 2.4500246456011, 1.8669512459034339, 1.8490110150026935, 2.2599251900257795, 2.792497063699072, 2.0467192269899552, 1.938998562486514, 3.1684920575718776, 3.2242700092887846, 4.001071246767556, 4.62643281734267, 4.938205198221915, 6.369278634349124, 6.292541078226893, 6.767544529895787, 7.4126715248785615, 7.006735258570444, 8.555002393918546, 8.436232784184831, 9.22242049969898, 8.734176058907739, 8.841982884986887, 10.338947344311588, 10.388910475426375, 9.977802280146147, 10.178104618352076, 11.315047746058989, 10.252350518161375, 11.719242291797624, 10.456093135027805, 11.193981071816571, 10.641652988716675, 11.005071046303923, 10.29939172113739, 10.333109947941713, 10.25817947400052, 9.545425392085221, 10.21702187417522, 9.387277008308674, 9.330028132268332, 8.756755651201182 ]
Weak stationarity requires the mean, variance to be constant over time. Does the following time-series exhibit weak stationarity?
[ "Yes", "No, the variance is different overtime", "No, the mean is different overtime" ]
Yes
multiple_choice
33
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
For mean, check if the average value changes over time. For variance, check if the degree of variation changes over time.
Pattern Recognition
Stationarity Detection
499
[ -0.9375113643180223, 2.5339381089930066, 0.5567100267017563, 0.40645110765998405, 0.8155499398113075, 1.0730773511522105, -0.8518974356401415, 0.944004684994059, 2.194080573804253, 1.0813465571963383, -0.5979528139273254, 1.5094810450906464, 1.3724590970264121, 0.17126187572834994, 2.807007361938091, -1.7978969956624573, 1.7231332204115362, -0.7384572962480643, -1.3570165560702354, 2.2734522687775254, 1.4954956080021062, -0.07941871646358423, 0.8401981021217859, -1.1434623631163534, 1.405142250611735, 2.351849298221585, 2.2647351538808054, 0.6003355043525734, 1.0689891700076168, 1.6783039951748107, 0.12265026697363393, 0.39557797436929265, -1.136122747328947, 1.0288501483469055, 1.7399975696213004, -2.1336439076642186, 1.793257143465941, -0.16706514996552363, -0.2778018876728908, 2.773318919979925, 2.9500195334030783, -1.7487552641075268, 3.2840603397684394, 2.7669876831117213, -0.9786683769227105, 2.15541625778151, 0.7402954505889321, -1.1713392029422216, 0.1454076640239651, 3.7012962038556214, -0.77681164449797, 1.8222625274631596, 0.6086314069020308, -0.13503028693655206, 1.6855744940753676, 3.703642913239033, -0.25606685814893215, 2.158630834133423, -0.6962834293927556, 1.9081541845917216, 1.569596998704661, -0.5052147095778082, 3.422300397775788, 0.06495442695189363, -1.1929571261952376, 4.256084533208529, -1.1784104277873007, 0.6614988235993843, 4.2581799623015115, 0.04950125503139957, 1.8689818814944927, -0.08129070819113915, 0.19943486214551814, 3.9251344348878248, 1.5247419136556977, 0.32725983451295265, 1.3375655853773518, -2.4908978901885406, 2.972089675565317, 3.023501551323142, -0.3169773726508148, 2.138326173816352, 1.1156992739331082, -0.9933324478151414, 2.7378571125000706, 4.064383391564613, -3.9752683597755585, 5.101074003891602, -0.7995656120591639, -1.7444099797298411, 4.576394019320786, -1.2720413189017132, -1.0776501530531002, 3.784235027437212, -0.8134352159739371, 1.817514125065416, 1.9632560251442277, -1.248240390202969, 0.27802676182169384, 0.49530166599798675, 2.5254107501119005, 0.34489399406961363, 3.902592401102657, -0.8469115208879069, 1.0265330513931352, 0.025963728460837998, 2.137649879669544, 0.6767121083591479, 2.638747505859979, 2.8995060774963344, -0.8618455927143384, 1.9437564322946739, 0.25210304855282817, 0.09067352010125601, 3.47618171936291, -0.3131460598054243, 0.7738429698259315, 0.7143764100291519, -0.8561193617675777, 2.8914234349043118, 0.1559208836942697, -0.14991163735105117, 1.823864511583965, 0.42288727394666265, 1.427303884698776, 2.088815927317213, -1.4492120435565776, 3.11937681115463 ]
null
You are given two time series following similar pattern. Both of them have an anomaly. What is the likely type of anomaly in each time series?
[ "Time series 1 with flip anomaly and time series 2 with speed up/down anomaly", "Time series 1 with cutoff anomaly and time series 2 with flip anomaly", "Time series 1 with cutoff anomaly and time series 2 with speed up/down anomaly" ]
Time series 1 with cutoff anomaly and time series 2 with flip anomaly
multiple_choice
74
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
You already know both time series have an anomaly. You should treat them separately and check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
500
[ -2.5425406933718913, -2.091377973789162, -1.6402152542064332, -1.189052534623704, -0.7378898150409747, -0.2867270954582457, 0.16443562412448315, 0.6155983437072124, 1.0667610632899418, 1.5179237828726702, 1.9690865024553998, -2.6648321647056536, -2.2136694451229246, -1.7625067255401954, -1.3113440059574664, -0.8601812863747371, -0.4090185667920082, 0.04214415279072109, 0.49330687237344995, 0.9444695919561787, 1.3956323115389084, 1.8467950311216375, -2.787123636039416, -2.335960916456687, -1.8847981968739578, -1.4336354772912285, -0.9824727577084996, -0.5313100381257703, -0.08014731854304147, 0.37101540103968744, 0.8221781206224171, 1.273340840205146, 1.7245035597878748, -2.9094151073731784, -2.4582523877904494, -2.0070896682077204, -1.555926948624991, -1.1047642290422621, -0.6536015094595328, -0.20243878987680353, 0.24872392970592538, 0.6998866492886546, 1.1510493688713834, -3.48286929828967, -3.031706578706941, -2.5805438591242114, -2.129381139541483, -1.6782184199587535, -1.2270557003760243, -0.7758929807932953, -0.32473026121056603, 0.12643245837216277, 0.577595177954892, 1.028757897537622, -3.6051607696234322, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, 0.21072076395360462, -4.423197903207448, -3.9720351836247194, -3.5208724640419904, -3.069709744459261, -2.6185470248765315, -2.167384305293803, -1.7162215857110739, -1.2650588661283444, -0.8138961465456158, -0.3627334269628859, 0.08842929261984267, -4.54548937454121, -4.094326654958482, -3.6431639353757523, -3.1920012157930233, -2.7408384962102943, -2.2896757766275653, -1.8385130570448363, -1.3873503374621072, -0.9361876178793778, -0.4850248982966483, -0.03386217871391972, -4.667780845874973, -4.216618126292245, -3.765455406709515, -3.3142926871267857, -2.8631299675440567, -2.411967247961327, -1.9608045283785982, -1.5096418087958692, -1.0584790892131397, -0.6073163696304111, -0.1561536500476821, -4.790072317208735, -4.338909597626007, -3.887746878043277, -3.4365841584605485, -2.985421438877819, -2.5342587192950896, -2.083095999712361, -1.6319332801296316, -1.1807705605469034 ]
[ 0, 0.5895648940604998, 1.1209391597706895, 1.5431157192019527, 1.8161913540152175, 1.9154795940977187, 1.8340576445086794, 1.583485509199388, 1.1926234453354896, 0.7046694582066011, 0.17272160744276613, -0.3456783882329881, -0.7944589930448442, -1.1247818458737397, -1.3000611257445964, -1.299723003928496, -0.6343515614674518, -0.44471450810652846, -0.09999553260691707, 0.3630420431637099, 0.8954486388781924, 1.4411225536190848, 1.9425796987508073, 2.346865493934706, 2.611000872539639, 2.706402260596696, 2.6218209226552682, 2.3644993544854724, 1.9594257834963202, 1.4467634518307362, 0.8777190849769061, 0.30927548213624134, -0.201670007736092, -0.6041582543596677, -0.8584103898536107, -0.9399199732623605, -0.8419743894176143, -0.5763461529061178, -0.17208301780399948, 0.32747866350835275, 0.8691701457497809, 1.395457725131695, 1.8503590598298074, 2.1851998642203383, 2.363618882073049, 2.365306359722285, 2.1880915022627407, 1.8481642062676142, 1.3784082559805975, 0.8250174096749558, 0.24274241086498594, -0.31074222927540196, -0.7807722994229263, -1.1213184848398678, -0.6481103980636533, -0.48330028820164417, -0.15561241918360857, 0.30249436247738326, 0.8451323890978792, 1.4177051832617347, 1.9625231787538282, 2.4247375611778583, 2.7579819190384063, 2.9291414484321834, 2.9217591876722144, 2.7377289428889426, 2.397100783577713, 1.9360191137558656, 1.403005393457344, 0.8539678419635158, 0.3464513871374434, -0.06628073227498832, -0.3407249896338671, -0.44761179055432443, -0.3749157056359693, -0.12909210583203, 0.2655869907177333, 0.7695295508840821, 1.331895853384474, 1.8958276618756158, 2.404296411490773, 2.8059689089801862, 3.060487245286886, 3.1426198690407325, 3.0448568732577566, 2.778182563935326, 2.370945850164166, 1.8659446390002314, 1.3160241122359146, 0.7786416130223422, 0.30995715694920745, -0.040942627152517286, -0.23709304499253236, -0.2574531177983874, -0.09906957406572836, 0.22261951977736127, 0.6753727190373688, 1.213461425382816, 1.7823732948521698, 2.3244190725136087, 2.784666177441657, 3.116588754617285, 3.286853072412612, 3.278746076103584, 3.0938944625146414, 2.75209746490692, 2.289290546654176, 1.7538494427715907, 1.201614687572801, 0.6901483678047869, 0.2728138080636202, -0.006712892868205422, -0.11893497302898548, -0.051568741163204646, 0.1891930933869661, 0.5793184313485142, 1.0794076167113738, 1.6387458585092074, 2.20051943991022, 2.7076592150179066, 3.108710375730878, 3.3631247690714963, 3.4454314374632653, 3.347856431902171, 3.0811224439756657, 2.673346012688496, 2.167145731056928, 1.6152588804059071 ]