blob_id
stringlengths
40
40
repo_name
stringlengths
5
127
path
stringlengths
2
523
length_bytes
int64
22
545k
score
float64
3.5
5.34
int_score
int64
4
5
text
stringlengths
22
545k
ca96436efca7c0b171625683d122951b8ba4b833
YashMeh/HCI-Project
/image_operations.py
739
3.5625
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jul 28 19:25:56 2018 @author: yash """ import numpy as np import cv2 #Usually people perform analysis on grayscale image #then export the result on coloured image img=cv2.imread('tejas.jpg',cv2.IMREAD_COLOR) ###Referencing a particular pixel px=img[55,55] print(px) ###Changing the value of pixel img[55,55]=[255,255,255] px=img[55,55] print(px) ##ROI=region of image roi=img[100:150,100:150] print(roi) ##Changing the region img[100:150,100:150]=[255,255,255] cv2.imshow('image',img) cv2.waitKey(0) cv2.destroyAllWindows() ##Copying a region and pasting it face=img[37:111,107:194] img[0:74,0:87]=face cv2.imshow('image',img) cv2.waitKey(0) cv2.destroyAllWindows()
37940d1160cc5a78595a58676589eca91d3d7fdc
AlanaMina/CodeInPlace2020
/Assignment1/TripleKarel.py
1,268
4.28125
4
from karel.stanfordkarel import * """ File: TripleKarel.py -------------------- When you finish writing this file, TripleKarel should be able to paint the exterior of three buildings in a given world, as described in the Assignment 1 handout. You should make sure that your program works for all of the Triple sample worlds supplied in the starter folder. """ def main(): # Pre-condition: Three building with white walls # Post-condition: Three buildings with painted walls for i in range(3): paint_building() turn_right() turn_left() # Pre-condition: Karel is facing certain point # Post-condition: Karel will turn three times anticlockwise the initial point def turn_right(): turn_left() turn_left() turn_left() # Pre-condition: One of the buildings has white walls # Post-condition: One of the buildings gets all its walls painted def paint_building(): for i in range(2): paint_wall() turn_left() move() paint_wall() # Pre-condition: A wall is white # Post-condition: The wall is painted def paint_wall(): while left_is_blocked(): put_beeper() move() # There is no need to edit code beyond this point if __name__ == "__main__": run_karel_program()
3da0242e36ee059b8471559ae4491a435b90e234
AlanaMina/CodeInPlace2020
/Assignment5/word_guess.py
2,881
4.1875
4
""" File: word_guess.py ------------------- Fill in this comment. """ import random LEXICON_FILE = "Lexicon.txt" # File to read word list from INITIAL_GUESSES = 8 # Initial number of guesses player starts with def play_game(secret_word): """ Add your code (remember to delete the "pass" below) """ nro = INITIAL_GUESSES guess = "" aux = [] for i in range(len(secret_word)): guess += "-" for i in range(len(secret_word)): aux.append("-") while ("-" in guess) and (nro > 0): print("The word now looks like this: " + str(guess)) print("You have " + str(nro) + " guesses left") letter = input("Type a single letter here, then press enter: ") if len(letter) != 1: print("Guess should only be a single character.") else: letter = letter.upper() if letter in secret_word: print("That guess is correct") res = [] for idx, val in enumerate(secret_word): if val in letter: res.append(idx) for j in range(len(guess)): aux[j] = guess[j] if len(res) > 1: for m in range(len(res)): aux[res[m]] = str(letter) else: i = secret_word.index(letter) aux[i] = str(letter) guess = "" for n in range(len(aux)): guess += aux[n] else: print("There are no " + str(letter) + "'s in the word") nro -= 1 if nro == 0: print("Sorry, you lost. The secret word was: " + str(secret_word)) elif "-" not in guess: print("Congratulations, the word is: " + str(secret_word)) def get_word(): """ This function returns a secret word that the player is trying to guess in the game. This function initially has a very small list of words that it can select from to make it easier for you to write and debug the main game playing program. In Part II of writing this program, you will re-implement this function to select a word from a much larger list by reading a list of words from the file specified by the constant LEXICON_FILE. """ aux = [] with open(LEXICON_FILE) as file: for line in file: line = line.strip() aux.append(line) index = random.randrange(122000) return str(aux[index]) def main(): """ To play the game, we first select the secret word for the player to guess and then play the game using that secret word. """ secret_word = get_word() play_game(secret_word) # This provided line is required at the end of a Python file # to call the main() function. if __name__ == "__main__": main()
fbd5d7800af041a8e69102609f84bba5d8b6c63f
AlanaMina/CodeInPlace2020
/Assignment5/credit_card_total.py
1,036
3.984375
4
""" File: credit_card_total.py -------------------------- This program totals up a credit card bill based on how much was spent at each store on the bill. """ INPUT_FILE = 'bill1.txt' def main(): """ Add your code (remember to delete the "pass" below) """ dict = {} name = "" num = "" with open(INPUT_FILE) as file: for line in file: line = line.strip() ini = line.index('[') end = line.index(']') for i in range(ini + 1, end): name += line[i] for j in range(end + 3, len(line)): num += line[j] if name not in dict: dict[name] = num else: add = str(int(num) + int(dict[name])) dict[name] = add name = "" num = "" for name in dict: print(name, "-> $", dict[name]) # This provided line is required at the end of a Python file # to call the main() function. if __name__ == '__main__': main()
46f4a78818e9ff35199700107f193ce49587569c
SpiralBL0CK/Programming-solutions-from-codeforces
/asu_3_cup.py
230
3.53125
4
x = int(raw_input()) y = int(raw_input()) command = raw_input() for i in command: if i == 'U': y = y + 1 if i == 'D': y = y -1 if i == 'L': x = x-1 if i == 'R': x = x+1 print(x,y)
6033405dc1913c086c43a57b8ed06e70a481a8c1
mrahmed0116/Practise1
/sortbasedonvalues.py
429
4.28125
4
''' Sort dictionary based on keys ''' dict1= {'x':4,'y':3,'z':2,'a':1,'b':1, 'c':0} s1 = sorted(dict1.keys()) print(s1) output={} for s in s1: for i in dict1: if i == s: output[i] = dict1[i] print(output) ''' Sort dictionary based on values ''' s2 = sorted(dict1.values()) print(s2) output1={} for j in s2: for i in dict1: if j == dict1[i]: output1[i] = dict1[i] print(output1)
6946898e4785bc0dca8b2f0e4284a9bd51b4b24d
ckid/LeetCode
/AddTwo.py
1,405
3.921875
4
class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): @staticmethod def addTwoNumbers( l1, l2): """ :type l1: ListNode :type l2: ListNode :rtype: ListNode """ datareturn = ListNode(0) curNodeReturn = datareturn curNode = l1 c = 0 if (l1 and l2) is None: return l1 or l2 while curNode is not None: var,c = Solution.nodeAdd(l1,l2,c) curNodeReturn.next = ListNode(val) curNodeReturn = curNodeReturn.next curNode = curNode.next l1 = l1.next l2 = l2.next #如果l1为空 则将l2连接到curNodeReturn if l1 is None: if c ==1: curNodeReturn.next = l2 break if l2 is None: curNodeReturn.next = l1 break return datareturn.next @staticmethod def nodeAdd(n1, n2, c): if n1 and n2 is None: node = n1 or n2 if !None and var = n1.var + v2.val + c if var >9: return var -10, 1 else: return var , 0 if __name__ == "__main__": l1 = ListNode(5) l1.next=ListNode(8) l2 = ListNode(0) a = Solution.addTwoNumbers(l1, l2) print(a)
0857fa157a39ff743884d00466b885fadb02e17d
cduhaney1/ubiquitous-fiesta
/prompt_user.py
154
3.953125
4
print("hello") user_input = int(input("Give me a number! ")) result = int (user_input) * int(user_input) print (result) name = input ('What is your name')
bb91dc84c3520303d5ccc1dfc29615d6a85a3dd9
cduhaney1/ubiquitous-fiesta
/Hello.py
70
3.625
4
user_name = input('What is your name?') print('hello, %s' %user_name)
cf7a0769baca60bd80d8fe5c6e1af2eb07c1273c
li-MacBook-Pro/li
/static/Mac/play/调用/累加/累加.py
401
3.890625
4
def sum_numbers(num): if num == 1: return 1 temp = sum_numbers(num - 1) return num + temp print(sum_numbers(3)) def sum_numbers(num): if num == 3: return 3 temp = sum_numbers(num + 1) return num + temp print(sum_numbers(1)) def my_sum(i): if i < 0: raise ValueError elif i <= 1: return i else: return i + my_sum(i - 1) print(my_sum(10)) print(my_sum(100))
51adf901afcf2ff68f2b82d4c28c19e8074bd715
li-MacBook-Pro/li
/static/Mac/play/调用/器/迭代器.py
1,016
4.09375
4
# 可迭代对象 # 可通过for…in 进行遍历的数据类型包括 list,tuple, dict, set, str;以及生成器generator,及带yield的生成器函数 # 这些可直接作用于for循环的对象统称为可迭代对象:Iterable # from collections import Iterable # print(isinstance('abc',Iterable)) # print(isinstance((x for x in range(10)),Iterable)) # print(isinstance(100,Iterable)) # 迭代器 # Iterator,无限大数据流,内部定义__next__( )方法,返回下一个值的对象 # 生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1 print('done') g = fib(5) print(next(g)) next(g) next(g) next(g) print(next(g)) g = fib(10) for item in g: print(item) g = fib(20) while True: try: x = next(g) print('g: ', x) except StopIteration as e: print('Generation return value: ', e.value) break
347c26e4de6383598ea3a21ca20ff027713b3e8f
li-MacBook-Pro/li
/static/Mac/play/调用/二分树/小偷偷钱.py
1,101
3.828125
4
#定义一个二叉房子类,包括当前节点、左节点和右节点 class House(): def __init__(self, value): self.value = value self.left = None self.right = None #定义一个函数,返回根节点最后的偷值和不偷值较大那个 def rob(root): a = helper(root) print(max(a[0], a[1])) #定义一个辅助函数,递归算出根节点偷值和不偷值 def helper(root): if(root == None): return [0, 0] left = helper(root.left) right = helper(root.right) #当前节点偷值等于当前节点的偷值加上左右子节点的不偷值 robValue = root.value + left[1] + right[1] #当前节点不偷值等于左右子节点的偷值与不偷值中较大的那个值 skipValue = max(left[0], left[1]) + max(right[0], right[1]) #返回偷值和不偷值 return [robValue, skipValue] node1 = House(3) node2 = House(4) node3 = House(5) node4 = House(1) node5 = House(3) node7 = House(1) node1.left = node2 node1.right = node3 node2.left = node4 node2.right = node5 node3.right = node7 DLR(node1) rob(node1)
5612738c34956713a04a55923765d1718fdcd934
li-MacBook-Pro/li
/static/Mac/play/调用/长方体/changfangxing.py
2,251
3.8125
4
#第一种 import random class cube: def define(self): global x,y,z x=self.x = random.randint(1,5) y=self.y = random.randint(1,5) z=self.z = random.randint(1,5) return x,y,z def Cuboid_Area(self): global Area Area=(2*(self.x * self.y + self.x * self.z + self.y * self.z)) return Area def Cuboid_volume(self): global svolume svolume=(self.x*self.y*self.z) return svolume class z_cobe(cube): def side(self): global a a=self.a=random.randint(1,5) return a def side_superficial_area(self): global cobe_area cobe_area=(6*(self.a**2)) return cobe_area def cobe_volume(self): global vvlume vvlume=(self.a**3) return vvlume ALL=cube() ALL.define() ALL.Cuboid_Area() ALL.Cuboid_volume() print(('the long of cube is ' + str(x))) print(('the wide of cube is ' + str(y))) print(('the high of cube is ' + str(z))) print('the Cuboid_Area of cube is ' + str(Area)) print('the Cuboid_svolume of cube is ' + str(svolume)) all=z_cobe() all.side() all.side_superficial_area() all.cobe_volume() print() print('the side_superficial_area of cube is ' + str(cobe_area)) print('the cobe_volume of cube is ' + str(vvlume)) #第二种 class Cube: def __init__(self,L,W,H): self.L = L self.W = W self.H = H def surface(self): global result1 result1 = (L*W+W*H+H*L)*2 return result1 def volume(self): global result2 result2 = L*W*H return result2 L = 2 W = 3 H = 4 a = Cube(L,W,H) a.surface() a.volume() print ('the surface of cube is '+str(result1)) print ('the volume of cube is '+str(result2)) #第三种 class Cube: def __init__(self,l,w,h): self.l = l self.w = w self.h = h def surface(self): global result3 result3 = (l*w+w*h+h*l)*2 return result3 def volume(self): global result4 result4 = l*w*h return result4 l = int(input('长:')) w = int(input('宽:')) h = int(input('高:')) a = Cube(l,w,h) a.surface() a.volume() print ('the surface of cube is '+str(result3)) print ('the volume of cube is '+str(result4))
e93fdc9cee0fa4388f92877ceaee733624c3900a
tveebot/organizer
/tveebot_organizer/matcher.py
1,919
3.75
4
import re from tveebot_organizer.dataclasses import Episode, TVShow class Matcher: """ The Matcher is one of the sub-components of the *Organizer*. An organizer is associated with a single matcher. The matcher is used to match an episode name, using some pre-defined format, to an episode object. Supported formats: - TV.Show.Name.S01E02.720p -> Episode("TV Show Name", season=1, number=2) """ # An episode pattern corresponds to a 'word' of the form S01E01 # Where S01 indicates the episode corresponds to season 1 # and E01 indicates the episode is the first episode of the season _episode_pattern = re.compile('S(?P<season>\d+)E(?P<number>\d+)\Z') def match(self, name: str) -> Episode: """ Takes an episode name, parses it, and returns the corresponding episode object. The format of the episode name must follow the list of support formats specified in the *Matcher*'s class documentation. :raise ValueError: if it can not match *name* to an episode """ # The character '.' divides words # Take each word words = name.split('.') # Look for an episode pattern episode = None for index, word in enumerate(words): match = self._episode_pattern.match(word) if match: # The words before the episode pattern compose the tv show name. tvshow_name = " ".join(words[:index]) # Capitalize the first letter of each word of the tvshow name tvshow_name = tvshow_name.title() season = int(match.group('season')) number = int(match.group('number')) episode = Episode(TVShow(tvshow_name), season, number) if episode is None: raise ValueError(f"could not match name '{name}' to an episode") return episode
46a808d1c32ca99e7672ed19389480728ee21b6b
CooperNederhood/spring2018_project
/data_processing/model0.py
1,663
3.734375
4
from keras import layers from keras import models ''' From Chapter 5, create a simple CNN model from scratch ''' model = models.Sequential() model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(128, 128, 3))) model.add(layers.MaxPooling2D( (2,2))) model.add(layers.Conv2D(64, (3,3), activation='relu')) model.add(layers.MaxPooling2D( (2,2))) model.add(layers.Conv2D(128, (3,3), activation='relu')) model.add(layers.MaxPooling2D( (2,2))) model.add(layers.Conv2D(128, (3,3), activation='relu')) model.add(layers.MaxPooling2D( (2,2))) model.add(layers.Flatten()) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dense(3, activation='softmax')) from keras import optimizers model.compile(loss='categorical_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc']) from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1./255) test_datagen = ImageDataGenerator(rescale=1./255) train_dir = "lagos/training" validation_dir = "lagos/validation" train_generator = train_datagen.flow_from_directory( train_dir, target_size=(128, 128), batch_size=20, class_mode='categorical') validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(128, 128), batch_size=20, class_mode='categorical') history = model.fit_generator( train_generator, steps_per_epoch=100, epochs=30, validation_data=validation_generator, validation_steps=50) model.save('first_lum_model.h5') acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(acc)+1)
662afa79e92cac1dab547c962292fa42efca4e57
MrCordero/testgithub2
/ejercicio_7.py
410
4
4
#Contador de numeros cont_num = 0 #Contador de vueltas cont_vueltas = 0 #Acumulador de numeros acu_num = 0 while(True): num = int(input("Ingrese numero : ")) #Suma acu_num += num cont_vueltas = cont_vueltas + 1} prom = acu_num / cont_vueltas if(cont_vueltas == -1): break print("La suma de los numeros es :", acu_num) print("El promedio de los numeros es" , prom)
712b6de931dcfe6fcdce13e16c4edf5e16b7fc94
KontextuellEnergivisualisering/Priority-Calculations
/Algorithms.py
1,521
3.6875
4
import time # Calculates the minimum power in the combined list with old data ('points') and new data ('lastHourData') def min(points, lastHourData): min = -1 # Check if points are from database if not isinstance(points[0][1], int): # If points come from database, loop through every point until a point with 'min' # is found, this points value will be the current minimum to compare to for a in points: if a[1].find("min") != -1: min = a[0] if min == -1: min = lastHourData[0][2] change = 0 for n in lastHourData: if n[2] < min: min = n[2] change = 1 if change == 1: return [min, "min", 3, int(time.time())] else: return [] # Calculates the minimum power in the combined list with old data ('points') and new data ('lastHourData') def max(points, lastHourData): max = -1 # Check if points are from database if not isinstance(points[0][1], int): # If points come from database, loop through every point until a point with 'max' # is found, this points value will be the current maximum to compare to for a in points: if a[1].find("max") != -1: max = a[0] if max == -1: max = lastHourData[0][2] change = 0 for n in points: if n[2] > max: max = n[2] change = 1 if change == 1: return [max, "max", 3, int(time.time())] else: return []
a2942eea4bbccc41c49f0a87b00324f23b93fb40
pisa-engine/pisa
/script/bp/generate_config.py
1,394
3.703125
4
#!/usr/bin/env python import argparse import sys def generate_recursive(lvl, first, last, out): if last - first < 2: return left_range = (first, first + (last - first) // 2) right_range = (left_range[1], last) print(lvl, 20, left_range[0], left_range[1], right_range[0], right_range[1], 0, file=out) generate_recursive(lvl + 1, left_range[0], left_range[1], out) generate_recursive(lvl + 1, right_range[0], right_range[1], out) def generate(ndoc, out): """ Generates nodes (one per line) in format: LVL I FL FR SL SR C where - LVL is integer defining level (depth) in recursion tree - I is iteration count - FL first range's beginning - FR first range's end - SL second range's beginning - SR second range's end - 0 or 1 (cache gains or not) """ generate_recursive(0, 0, ndoc, out); if __name__ == '__main__': parser = argparse.ArgumentParser(description='Generate BP config file.') parser.add_argument('ndoc', type=int, help='Number of document in collection.') parser.add_argument('-o', '--output', type=argparse.FileType('w'), default=sys.stdout, help='Ouptut config file (if absent, write to stdout)') args = parser.parse_args() generate(args.ndoc, args.output)
7b16f62b068e3f5de037781f496881846d025fa3
XiaoyuZhou1106/CSC108-Introduction-to-Computer-Programming
/a3/tweets.py
14,057
3.953125
4
"""Assignment 3: Tweet Analysis""" from typing import List, Dict, TextIO, Tuple HASH_SYMBOL = '#' MENTION_SYMBOL = '@' URL_START = 'http' # Order of data in the file FILE_DATE_INDEX = 0 FILE_LOCATION_INDEX = 1 FILE_SOURCE_INDEX = 2 FILE_FAVOURITE_INDEX = 3 FILE_RETWEET_INDEX = 4 # Order of data in a tweet tuple TWEET_TEXT_INDEX = 0 TWEET_DATE_INDEX = 1 TWEET_SOURCE_INDEX = 2 TWEET_FAVOURITE_INDEX = 3 TWEET_RETWEET_INDEX = 4 # Helper functions. def first_alnum_substring(text: str) -> str: """Return all alphanumeric characters in text from the beginning up to the first non-alphanumeric character, or, if text does not contain any non-alphanumeric characters, up to the end of text." >>> first_alnum_substring('') '' >>> first_alnum_substring('IamIamIam') 'iamiamiam' >>> first_alnum_substring('IamIamIam!!') 'iamiamiam' >>> first_alnum_substring('IamIamIam!!andMore') 'iamiamiam' >>> first_alnum_substring('$$$money') '' """ index = 0 while index < len(text) and text[index].isalnum(): index += 1 return text[:index].lower() def clean_word(word: str) -> str: """Return all alphanumeric characters from word, in the same order as they appear in word, converted to lowercase. >>> clean_word('') '' >>> clean_word('AlreadyClean?') 'alreadyclean' >>> clean_word('very123mes$_sy?') 'very123messy' """ cleaned_word = '' for char in word.lower(): if char.isalnum(): cleaned_word = cleaned_word + char return cleaned_word # Required functions def extract_mentions(text: str) -> List[str]: """Return a list of all mentions in text, converted to lowercase, with duplicates included. >>> extract_mentions('Hi @UofT do you like @cats @CATS #meowmeow') ['uoft', 'cats', 'cats'] >>> extract_mentions('@cats are #cute @cats @cat meow @meow') ['cats', 'cats', 'cat', 'meow'] >>> extract_mentions('@many @cats$extra @meow?!') ['many', 'cats', 'meow'] >>> extract_mentions('No valid mentions @! here?') [] """ b = '' result_mentions = [] for a in range(len(text)): if text[a] == '@': b = first_alnum_substring(text[a + 1:]) result_mentions.append(b) if result_mentions == ['']: return [] return result_mentions def extract_hashtags(text: str) -> List[str]: """Return a list of all hashtags in text, converted to lowercase, without duplicates included. >>> extract_hashtags('#qwe tweet #ASD hahahah #zxc') ['qwe', 'asd', 'zxc'] >>> extract_hashtags('haha #Qwer hahaha #Qwer') ['qwer'] >>> extract_hashtags('lalalala #qwe hahahha #qwe lalala #asd') ['qwe', 'asd'] >>> extract_hashtags('#QWE lalala #qWe hehehehe #QWe') ['qwe'] """ c = '' result_hashtags = [] for d in range(len(text)): if text[d] == '#': c = first_alnum_substring(text[d + 1:]) if not c in result_hashtags: result_hashtags.append(c) if result_hashtags == ['']: return[] return result_hashtags def find_words(text: str) -> List[str]: """Return the seperate words from the text. >>> find_words('#UofT Nick Frosst: Google Brain re-searcher by day, singer @goodkidband by night!') ['nick', 'frosst', 'google', 'brain', 'researcher', 'by', 'day', 'singer', 'by', 'night'] """ e = '' new_text = ' ' + text + ' ' result_wordslist = [] g = '' h = 0 for f in range(len(new_text) - 1): if new_text[f] == ' ': g = new_text[f + 1:] h = g.index(' ') e = g[:h] if e[0] != '@' and e[0] != '#': result_wordslist.append(first_alnum_substring(clean_word(e))) return result_wordslist def count_words(text: str, words_times: Dict[str, int]) -> None: """Return the number of words in text. If a word is not the dictionary yet, it should be added. >>> words = {'nick': 1, 'google': 1, 'by': 1} >>> count_words('#UofT Nick Frosst: Google Brain re-searcher by day, singer @goodkidband by night!', words) >>> words {'nick': 2, 'google': 2, 'by': 3, 'frosst': 1, 'brain': 1, 'researcher': 1, 'day': 1, 'singer': 1, 'night': 1} """ new_list = find_words(text) for i in range(len(new_list)): if new_list[i] in words_times: words_times[new_list[i]] = words_times[new_list[i]] + 1 else: words_times[new_list[i]] = 1 def invert_dict(words_times: Dict[str, int]) -> Dict[int, List[str]]: """invert the keys and values of words_times. >>> invert_dict({'key': 2, 'words': 3, 'mind': 4, 'google': 3}) {2: ['key'], 3: ['words', 'google'], 4: 'mind'} """ result_dict = {} for words in words_times: times = words_times[words] if not (times in result_dict): result_dict[times] = [words] else: result_dict[times].append(words) return result_dict def common_words(words_times: Dict[str, int], words_num: int) -> None: """Keep no more than words_number words in the words_times. If after adding the number of tie words , the number is over words_number, delet all tie words. >>> words = {'key': 2, 'words': 3, 'mind': 4, 'google': 3} >>> common_words(words, 1) >>> words {'mind': 4} >>> common_words(words, 3) >>> words {'words': 3, 'mind': 4, 'google': 3} >>> common_words(words, 2) >>> words {'mind': 4} """ new_dict = invert_dict(words_times) h = [] for j in new_dict: h.append(j) h.sort() h.reverse() m = 0 n = [] #the list of words will in the new dict o = [] #the list of num whose words will in the new dict while m < len(h) and len(n) < words_num: n.extend(new_dict[h[m]]) o.append(h[m]) m = m + 1 if len(n) > words_num: o.pop(-1) p = [] for num in o: p.extend(new_dict[num]) nnew_list = [] for q in words_times: if q not in p: nnew_list.append(q) for it in nnew_list: del words_times[it] def read_tweets(file_name: TextIO) -> Dict[str, List[tuple]]: """Return the context of file_name into dictionary. The key will be the user name and write other information in the list of tuple. """ #find the username and manage them into str big_users = [] users = [] text_list1 = [] text_list2 = [] date_list1 = [] date_list2 = [] source_list2 = [] favourite_list1 = [] retweet_list2 = [] source_list1 = [] favourite_list2 = [] retweet_list1 = [] fline = 0 index_b = 0 index_a = 0 text0 = '' tweets = {} tuple1 = () tuple_list = [] file_list = [] for lines in file_name: file_list.append(lines) for line in range(len(file_list)): if len(file_list[line]) >= 2 and file_list[line][-2] == ':': big_users = file_list[line][:-2].lower() users.append(big_users) fline = line + 1 while fline < len(file_list) and len(file_list[fline]) >= 2 and file_list[fline][-2] != ':': if file_list[fline][:13].isdigit(): date_list1.append(int(file_list[fline][0:14])) index_b = file_list[fline][15:].index(',') + 15 index_a = file_list[fline][index_b + 1:].index(',') + index_b + 1 source_list1.append(file_list[fline][index_b + 1:index_a]) index_b = file_list[fline][index_a + 1:].index(',') + index_a + 1 favourite_list1.append(int(float(file_list[fline] [index_a + 1:index_b]))) retweet_list1.append(int(float(file_list[fline] [index_b + 1:]))) fline = fline + 1 while fline < len(file_list) and '<<<EOT' not in file_list[fline]: text0 = text0 + file_list[fline].rstrip() fline = fline + 1 text_list1.append(text0) text0 = '' fline = fline + 1 text_list2.append(text_list1) text_list1 = [] date_list2.append(date_list1) date_list1 = [] source_list2.append(source_list1) source_list1 = [] favourite_list2.append(favourite_list1) favourite_list1 = [] retweet_list2.append(retweet_list1) retweet_list1 = [] for zz in range(len(users)): for xx in range(len(text_list2[zz])): tuple1 = (text_list2[zz][xx], date_list2[zz][xx], source_list2[zz][xx], favourite_list2[zz][xx], retweet_list2[zz][xx]) tuple_list.append(tuple1) tweets[users[zz]] = tuple_list tuple_list = [] return tweets def most_popular(tweets: Dict[str, List[tuple]], first_date: int, last_date: int) -> str: """Return the username of the most popular tweet which between the first date and the last date. The first date and the last date are inclusive. If there is no tweet between the dates or the number of the favourable are tie, just return the string 'tie'. Precondition: first_date and last_date should be an int with 14 digits. >>> most_popular({'uoftcompsci': [('hahahaha', 20181103091833, 'Twitter for Android', 3, 1), ('hahaha', 20181107051833, 'Twitter for Android', 7, 3)], 'uoft': [('haha', 20181105091933, 'Twitter for Android', 3, 8)]}, 20181031211000, 20181231091100) 'uoft' >>> most_popular({'uoftcompsci': [('hahahaha', 20181103091833, 'Twitter for Android', 3, 1), ('hahaha', 20181107051833, 'Twitter for Android', 7, 3)], 'uoft': [('haha', 20181105091933, 'Twitter for Android', 2, 8)]}, 20181031211000, 20181231091100) 'tie' >>> most_popular({'uoftcompsci': [('hahahaha', 20181103091833, 'Twitter for Android', 3, 1), ('hahaha', 20181107051833, 'Twitter for Android', 7, 3)], 'uoft': [('haha', 20181105091933, 'Twitter for Android', 2, 8)]}, 20181031211000, 20181106091100) 'uoft' >>> most_popular({'uoftcompsci': [('hahahaha', 20181103091833, 'Twitter for Android', 3, 1), ('hahaha', 20181107051833, 'Twitter for Android', 7, 3)], 'uoft': [('haha', 20181105091933, 'Twitter for Android', 2, 8)]}, 20180131211000, 20180106091100) 'tie' """ num1 = 0 mostlove = [] list1 = [] list2 = [] user1 = [] favourite_user = [] for r in tweets: for s in tweets[r]: if first_date <= s[1] <= last_date: num1 = s[3] + s[4] list1.append(num1) list1.sort() if len(list1) >= 1: list2.append(list1[-1]) list1 = [] if list2 == []: return 'tie' for u in range(len(list2)): if list2[u] == max(list2): mostlove.append(u) if len(mostlove) > 1: return 'tie' for v in tweets: user1.append(v) favourite_user = user1[mostlove[0]] return favourite_user def find_hashtags(tweets: Dict[str, List[tuple]], username: str) -> List[str]: """Retrun the hashtags which the user use. >>> find_hashtags({'uoftcompsci': [('#hah ahaha #has', 20181103091833, 'Twitter for Android', 3, 1), ('hahaha #has', 20181107051833, 'Twitter for Android', 7, 3)], 'uoft': [('haha #1', 20181105091933, 'Twitter for Android', 3, 8)]}, 'uoftcompsci') ["#hah', '#has'] """ #text2 = '' #num2 = 0 tag = '' tag_list = [] new_username = username.lower() tweets1 = tweets[new_username] for w in tweets1: tag = extract_hashtags(w[0]) if tag[0] not in tag_list: tag_list.extend(tag) tag = '' return tag_list def detect_author(tweets: Dict[str, List[tuple]], aim_word: str) -> str: """Retrun the more like username in the tweets dictionary who write about the aim_word. If there are more that one person use the hashtag, return the string 'unknown'. >>> detect_author({'uoftcompsci': [('#hah ahaha', 20181103091833, 'Twitter for Android', 3, 1), ('hahaha #has', 20181107051833, 'Twitter for Android', 7, 3)], 'uoft': [('haha #1 lalala #hah', 20181105091933, 'Twitter for Android', 3, 8)]}, '#1 lala') 'uoft' >>> detect_author({'uoftcompsci': [('#hah ahaha', 20181103091833, 'Twitter for Android', 3, 1), ('hahaha #has', 20181107051833, 'Twitter for Android', 7, 3)], 'uoft': [('haha #1 lalala #hah', 20181105091933, 'Twitter for Android', 3, 8)]}, '#3') 'unknown' >>> detect_author({'uoftcompsci': [('#hah ahaha', 20181103091833, 'Twitter for Android', 3, 1), ('hahaha #has', 20181107051833, 'Twitter for Android', 7, 3)], 'uoft': [('haha #1 lalala #hah', 20181105091933, 'Twitter for Android', 3, 8)]}, '#hah kjdfhi' 'unknown' """ aim_user = [] text_tag = [] find_tag = [] text_tag.extend(extract_hashtags(aim_word)) if len(text_tag) == 0: return 'unknown' for x in tweets: for y in text_tag: if y in find_hashtags(tweets, x): aim_user.append(x) find_tag.append(y) find_tag = [] if x in aim_user and find_tag != text_tag: aim_user.remove(x) if len(aim_user) == 1: return aim_user[0] else: return 'unknown' if __name__ == '__main__': pass
a2c11f8cdd280ce12b1d56ad3745fff0b19f456c
osamaawadallah/AlgorithmicToolbox
/week1_programming_challenges/2_maximum_pairwise_product/max_pairwise_product.py
1,028
3.875
4
# python3 from random import randrange def max_pairwise_product(numbers): n = len(numbers) max_product = 0 for first in range(n): for second in range(first + 1, n): max_product = max(max_product, numbers[first] * numbers[second]) return max_product def max_pairwise_product_fast(numbers): temp = numbers[:] max_product = 0 max1 = max(temp) temp.remove(max1) max2 = max(temp) max_product = max1 * max2 return max_product while True: n = randrange(10) + 2 numbers = [] print(n) for num in range(n): numbers.append(randrange(100000)) print(numbers) res1 = max_pairwise_product(numbers) res2 = max_pairwise_product_fast(numbers) if res1 == res2: print(f"OK, result is {res1}") else: print(f"Error: {res1} != {res2}") break if __name__ == '__main__': input_n = int(input()) input_numbers = [int(x) for x in input().split()] print(max_pairwise_product(input_numbers))
e7a2aeeaece89d8091827c210ba333275b31c263
Xudoge/PythonStudy
/Python/BaseKnowledge/inherit/inherit.py
433
3.71875
4
class A: def __init__(self,value,name): self.value=value self.name=name print("这是一个父类方法") def hihi(): print(self.name) class B(A): def __init__(self,value,name): #A.__init__(self,value=1,name="a") super().__init__(value,name) print("这是一个子类类方法1") b=B(1,"nameB") print(b.name) c=B(1,"nameC") print(c.name) print(b.name)
15a0cde2ab30d5ed1d4eaf04cac7af6d6f3faf31
bjmyers/prtp
/Combination.py
15,540
3.75
4
import numpy as np from prtp.Rays import Rays import astropy.units as u import prtp.transformationsf as trans class Combination: ''' Class Combination: A combination object is a group of several components that the user wants to group together When Rays are traced to a Combination Object, they will be traced to each Component individually and only those components who missed every component will be removed Tracing to Combinations will also give detailed information about how each Component affected the overall efficiency ''' def __init__(self): self.componentlist = [] def addComponent(self,comp,index=None): ''' Function addComponent: Adds a Component to the componentlist Inputs: comp - The component to add index - Where in the list you want to add the component, if None, it will be added to the end ''' if index is None: self.componentlist.append(comp) else: self.componentlist.insert(index,comp) def applyToAll(self, func, **kwargs): ''' Function applyToAll: Applies a function to each component in the Combination Object (e.g: applyToAll(self,FlatComponent.UnitRotate,theta=.1*u.rad,axis=2) will rotate each component in the Combination .1 radians about the y-axis Inputs: func - The function you want to apply to each element **kwargs - Any other arguments that func requires Outputs: None ''' for c in self.componentlist: func(c,**kwargs) def setAttribute(self, name, value): ''' Function setAttribute: Changes the value of a parameter for every Component in the Combination Inputs: name - The name of the parameter value - The value that you would like to set the parameter to Notes: - This function cannot check for astropy units, check what form the parameter should be in before you call this function. ''' for c in self.componentlist: setattr(c,name,value) def getSubComponents(self): ''' Function getSubComponents: Returns a list of the components in this Combination. If one of the components is a Combination itself, the components that make up this Combination will be returned instead. This process is repeated until every component of every Combination in self has been returned Inputs: Nothing Output: - A list containing every subcomponent ''' output = [] combinations = [] for c in self.componentlist: if isinstance(c,Combination): combinations.append(c) else: output.append(c) while len(combinations) > 0: comb = combinations.pop() for c in comb.componentlist: if isinstance(c,Combination): combinations.append(c) else: output.append(c) return output ## Movement Functions: @u.quantity_input(x=u.mm,y=u.mm,z=u.mm) def defineRotationPoint(self,x=0*u.mm,y=0*u.mm,z=0*u.mm): ''' Function defineRotationPoint: Defines the point about which the entire Stack can rotate Inputs: x,y,z - The Coordinates of the Rotation Point, must be astropy units of length Outputs: None Notes: Calling this function is required if you try to rotate the whole stack. Using Combination.applyToAll and a rotation function will rotate each Grating about their centers, rather than rotating the whole stack about this point ''' self.rx = x.to(u.mm) self.ry = y.to(u.mm) self.rz = z.to(u.mm) @u.quantity_input(theta=u.rad) def unitrotate(self,theta=0*u.rad,axis=1): ''' Function unitrotate: Rotates the entire Graint Stack about the rotationpoint and about a unit axis Inputs: theta - The amount by which you want to rotate, must be an astropy unit of angle axis - integer input of 1, 2, or 3 to rotate about the x, y, or z axes, respectively. Outputs: None Notes: - Theta can be a single value or an array/list. If it is array-like, it must have the same length as the component list as it specifies the rotation angle of each component ''' theta = theta.to(u.rad) try: len(theta) if (len(theta) != len(self.componentlist)): raise ValueError('Theta Array must be the same length as the component list') else: arr = True except: arr = False # arr is True if theta is an array, False otherwise if (arr): for i in range(len(self.componentlist)): g = self.componentlist[i] # Rotates the Grating's two vectors g.unitrotate(theta[i],axis) # Move the Grating's so the rotation point is about the origin g.translate(-self.rx,-self.ry,-self.rz) # Rotate the Grating's position g.x,g.y,g.z = trans.rotatevector(g.x,g.y,g.z,theta[i],axis) # Translate the origin back down g.translate(self.rx,self.ry,self.rz) else: for g in self.getSubComponents(): # Rotates the Grating's two vectors g.unitrotate(theta,axis) # Move the Grating's so the rotation point is about the origin g.translate(-self.rx,-self.ry,-self.rz) # Rotate the Grating's position g.x,g.y,g.z = trans.rotatevector(g.x,g.y,g.z,theta,axis) # Translate the origin back down g.translate(self.rx,self.ry,self.rz) @u.quantity_input(theta=u.rad) def rotate(self,theta=0*u.rad,ux=1,uy=0,uz=0): ''' Function unitrotate: Rotates the entire Graint Stack about the rotationpoint and about a user-defined axis Inputs: theta - The amount by which you want to rotate, must be an astropy unit of angle ux,uy,uz - The x, y, and z components of the vector about which you want to rotate Outputs: None Notes: - Theta can be a single value or an array/list. If it is array-like, it must have the same length as the component list as it specifies the rotation angle of each component ''' theta = theta.to(u.rad) try: len(theta) if (len(theta) != len(self.componentlist)): raise ValueError('Theta Array must be the same length as the component list') else: arr = True except: arr = False # arr is True if theta is an array, False otherwise if (arr): for i in range(len(self.componentlist)): g = self.componentlist[i] # Rotates the Grating's two vectors g.rotate(theta[i],ux,uy,uz) # Move the Grating's so the rotation point is about the origin g.translate(-self.rx,-self.ry,-self.rz) # Rotate the Grating's position g.x,g.y,g.z,q1,q2,q3 = trans.rotateaxis(g.x.value,g.y.value,g.z.value,ux,uy,uz,theta[i].value) # Restore units g.x *= u.mm g.y *= u.mm g.z *= u.mm # Translate the origin back down g.translate(self.rx,self.ry,self.rz) else: for g in self.getSubComponents(): # Rotates the Grating's two vectors g.rotate(theta,ux,uy,uz) # Move the Grating's so the rotation point is about the origin g.translate(-self.rx,-self.ry,-self.rz) # Rotate the Grating's position g.x,g.y,g.z,q1,q2,q3 = trans.rotateaxis(g.x.value,g.y.value,g.z.value,ux,uy,uz,theta.value) # Restore units g.x *= u.mm g.y *= u.mm g.z *= u.mm # Translate the origin back down g.translate(self.rx,self.ry,self.rz) @u.quantity_input(theta=u.rad) def unitrotateinplace(self,theta,axis=1): ''' Function unitrotateinplace: Rotates each of the components in this combination about a unit axis. Unlike unitrotate which rotates each component about a single point, this function rotates each component about their center. Leaving them "in place" and not changing the position of their centers. Inputs: theta - The amount by which you want to rotate, must be an astropy unit of angle. Can be a single value or array-like axis - integer input of 1, 2, or 3 to rotate about the x, y, or z axes, respectively. Outputs: None ''' if isinstance(theta.value, (list, tuple, np.ndarray)): if (len(theta.value) != len(self.componentlist)): raise ValueError('Theta Array must be the same length as the component list') for i in range(len(self.componentlist)): self.componentlist[i].unitrotate(theta[i],axis) else: for i in range(len(self.componentlist)): self.componentlist[i].unitrotate(theta,axis) @u.quantity_input(theta=u.rad) def rotateinplace(self,theta,ux=1,uy=0,uz=0): ''' Function unitrotateinplace: Rotates each of the components in this combination about a user-defined axis. Unlike unitrotate which rotates each component about a single point, this function rotates each component about their center. Leaving them "in place" and not changing the position of their centers. Inputs: theta - The amount by which you want to rotate, must be an astropy unit of angle. Can be a single value or array-like ux,uy,uz - Components of the vector about which you want to rotate, does not need to be a unit vector (can have any length) Outputs: None ''' if isinstance(theta.value, (list, tuple, np.ndarray)): if (len(theta.value) != len(self.componentlist)): raise ValueError('Theta Array must be the same length as the component list') for i in range(len(self.componentlist)): self.componentlist[i].rotate(theta[i],ux,uy,uz) else: for i in range(len(self.componentlist)): self.componentlist[i].rotate(theta[i],ux,uy,uz) @u.quantity_input(x=u.mm,y=u.mm,z=u.mm) def translate(self,dx=0*u.mm,dy=0*u.mm,dz=0*u.mm): ''' Function translate Translates the GratingStack in three-dimensions Inputs: dx,dy,dz - The amount to move in x, y, and z, respectively, must be astropy units of length Outputs: None Notes: - This move is relative, not absolute. That is, you will move BY dx, dy, and z, you will not move TO dx, dy, and dz ''' for g in self.getSubComponents(): g.translate(dx,dy,dz) ## Trace Function: def trace(self,rays,considerweights=False,eliminate='remove'): ''' Function trace: Traces rays to each component in the Combination, keeps the photons which hit either component Inputs: rays - The Rays object you want to trace considerweights - If True, the weighting of rays will be used when trying to remove rays based on a probability, with reflectivity, for example. eliminate - If 'remove', photons that miss will be removed from the Rays object. If it is anything else, the photons which miss will be given NaN for their x-position Outputs: Efficiency information about the combination ''' # Store the length of the incoming rays l = rays.length(considerweights) # Initialize a list in which efficiencies will be stored effs = [] # Make a Rays object to store the Rays that make it finalrays = rays.copy() finalrays.x[:] = np.nan # Keep track of the input rays for when we're finished with one Mirror temprays = rays.copy() # This array will keep track of which rays have been successfully traced success = np.zeros(len(rays)).astype(bool) # Iterate through each Mirror Object for r in self.componentlist: # Through each pass we need to ensure that the rays that make it are # placed into a final rays object # All those that miss are passed to the next Mirror eff = r.trace(temprays,considerweights=considerweights,eliminate='nan') # Some components return a list of efficiencies, check if this is the case if type(eff) == list: effs.extend(eff) else: effs.append(eff) # Find the Rays which hit the component tarray = np.logical_not(np.isnan(temprays.x)) # Save the Rays which hit this component in finalrays, if they # haven't hit any other component first finalrays.pullrays(temprays,np.logical_and(tarray,np.logical_not(success))) # Update success to include the rays which just hit success = np.logical_or(success,tarray) # Back remaining rays up to their original position temprays = rays.copy() # If there are no rays left, we can stop if len(temprays) == 0: break # Make it so that the original rays now contain the output rays.makecopy(finalrays) # Remove NaNs, if needed if eliminate == 'remove': rays.remove(np.isnan(rays.x)) # Sort efficiency outputs into rays lost by missing the components and # rays lost through other effects # hit_but_lost stores the number of rays which hit a component but were # lost through other effects hit_but_lost = 0 for e in effs: # All missed efficiencies start with "Missed" if e[0][:6] != 'Missed': hit_but_lost += e[2] - e[1] eff1 = ('Missed Combination',l,rays.length(considerweights)+hit_but_lost) eff2 = ('Lost By Combination - Other', rays.length(considerweights)+hit_but_lost,rays.length(considerweights)) return [eff1,eff2]
692e4f7a9df5800599d2492b20a732b65e7e7c60
keerthz/luminardjango
/Luminarpython/collections/listdemo/prgmforsearching.py
232
3.84375
4
lst=[10,12,13,14,15] element=int(input("enter the element for search")) flg=0 for i in lst: if(i==element): flg=1 break else: flg=0 if(flg==1): print("element found") else: print("not found")
ff64e2214caf2f674365a5cacd003b9afe7b1d0d
keerthz/luminardjango
/Luminarpython/languagefundamentals/sumof6.py
87
4.0625
4
num=int(input("enter the num")) sum=0 for i in range(0,num+1): sum=sum+i print(sum)
6ed8de9512fcf7f26e356d1e8def736dfe7e5051
keerthz/luminardjango
/Luminarpython/languagefundamentals/secondlargest.py
353
4.1875
4
num1=int(input("enter num1")) num2=int(input("enter num2")) num3=int(input("enter num3")) if((num2>num1) & (num1>num3)): print("num1 is largest",num1) elif((num3>num2) & (num2>num1)): print("num2 is largest",num2) elif((num1>num3) & (num3>num2)): print("num3 is largest",num3) elif((num1==num2) & (num2==num3)): print("they are equall")
8c9824e79adaffc0d82b70faf2fbf5cd8b5fc11e
keerthz/luminardjango
/Luminarpython/collections/listdemo/pattern.py
170
3.65625
4
lst=[3,5,8]#output[13,11,8] #3+5+8=16 #16-3=13 #16-5=11 #16-8=8 output=[] total=sum(lst) for item in lst: num=total-item#16-3=13 output.append(num) print(output)
b83ddc757ec963dbe30a142285ed68655fbc93b5
keerthz/luminardjango
/Luminarpython/languagefundamentals/vowels.py
167
3.734375
4
string=input("enter a word") list=["a","e","i","o","u"] count=0 for i in list: if(i in string): count+=1 print(count,i) else: break
009248f4014b9f8ce04bf4701c45e2ec4ecd46c2
keerthz/luminardjango
/Luminarpython/oops/polymorphism/empl1.py
484
3.859375
4
class employee: def __init__(self,id,name,salary): self.id=id self.name=name self.salary=int(salary) #def printValues(self): # print(self.id) # print(self.name) # print(self.salary) obj=employee(1001,"ayay",25000) obj2=employee(1002,"arun",30000) obj3=employee(1003,"jinu",35000) lst=[] lst.append(obj) lst.append(obj2) lst.append(obj3) for employee in lst: if(employee.salary>=35000): print(employee.name)
832f2cb1ee730068f1865f9c0655e38472a9fab0
keerthz/luminardjango
/Luminarpython/regularexpression/quantifiers.py
251
4
4
import re #pattern="a+" #pattern="a*" #pattern="a?" #pattern="a{2}" pattern="a{2,3}" matcher=re.finditer(pattern,"aabaaaabbaaaaaabaaabb") count=0 for match in matcher: print(match.start()) print(match.group()) count+=1 print("count",count)
d15700beffef5f6f30597d848d67c736c9673182
Yuji-Takai/switchIn
/website/switchinweb/modules/utility.py
708
4.03125
4
from datetime import datetime """ converts the string extracted from text to date :param date: string representing the date :returns: datetime for the string """ def convertDateFormat(date): if (len(date) == 8): month = date[0:2] day = date[3:5] year = date[6:len(date)] year = "19" + year if int(year) > 50 else "20" + year date = year + "-" + month + "-" + day return datetime.strptime(date, '%Y-%m-%d') return "" def str_to_num(money): if (money): money = money.split(",") new_money = "" for num in money: new_money = new_money + num return int(new_money[1:len(new_money)]) return 0
4f06365db3bb2fdfa5e6c62e722e03f1ca916a7b
twillis209/algorithmsAndDataStructures
/arraySearchAndSort/insertionSort/insertionSort.py
422
4.125
4
def insertionSort(lst): """ Executes insertion sort on input. Parameters ---------- lst : list List to sort. Returns ------- List. """ if not lst: return lst sortedLst = lst[:] i = 1 while i < len(sortedLst): j = i - 1 while j >= 0 and sortedLst[j] > sortedLst[j+1]: temp = sortedLst[j] sortedLst[j] = sortedLst[j+1] sortedLst[j+1] = temp j -= 1 i +=1 return sortedLst
18290f2b984ca71bdbc4c147ec052ba17e246ad0
twillis209/algorithmsAndDataStructures
/arraySearchAndSort/timsort/timsort.py
1,029
4.25
4
import pythonCode.algorithmsAndDataStructures.arraySearchAndSort.insertionSort as insertionSort def timsort(): pass def reverseDescendingRuns(lst): """ Reverses order of descending runs in list. Modifies list in place. Parameters --------- lst : list List to sort. Returns ------- List. """ runStack = getRunStack(lst) while runStack: start, stop = runStack.pop() lst = reverseSubsequence(lst, start, stop) return lst def reverseSubsequence(lst, start, stop): """ """ if start >= stop: return lst else: lst[start], lst[stop] = lst[stop], lst[start] return reverseSubsequence(lst, start+1,stop-1) def getRunStack(lst): """ Identifies all runs of descending elements. Parameters ---------- lst : list List to sort. Returns ------- List. """ runStack = [] i = 0 while i < len(lst)-1: # Descending if lst[i] > lst[i+1]: j = i+1 while j < len(lst)-1 and lst[j] > lst[j+1]: j += 1 runStack.append((i,j)) i = j+1 else: i += 1 return runStack
e47c62abda3b57756034c72860b47ebeef96f4dc
luoyun/LuoYunCloud
/lyweb/lib/SQLAlchemy-0.8.2/examples/association/__init__.py
922
3.515625
4
""" Examples illustrating the usage of the "association object" pattern, where an intermediary class mediates the relationship between two classes that are associated in a many-to-many pattern. This directory includes the following examples: * basic_association.py - illustrate a many-to-many relationship between an "Order" and a collection of "Item" objects, associating a purchase price with each via an association object called "OrderItem" * proxied_association.py - same example as basic_association, adding in usage of :mod:`sqlalchemy.ext.associationproxy` to make explicit references to "OrderItem" optional. * dict_of_sets_with_default.py - an advanced association proxy example which illustrates nesting of association proxies to produce multi-level Python collections, in this case a dictionary with string keys and sets of integers as values, which conceal the underlying mapped classes. """
227ffd15cf6fd13ac446c356d96c0761e1932f4d
ruteshr/python
/string_palindraome.py
243
4.15625
4
#String is Palindrome string=list(str(input("enter a String :"))) a="" for i in string: a=i+a if("".join(string)==a): print('{} is palindrome'.format("".join(string)) ) else: print('{} is not palindrome'.format("".join(string)) )
a7947ff5b7e90e1996753e5c05c0fbe3ff0f582d
ruteshr/python
/pattern_diamond.py
2,697
3.75
4
n=5 for i in range(n): for j in range(n-i-1): print(end=" ") for j in range(2*i+1): print("*",end="") print() for i in range(1,n):#for i in range(n)-->for 10 line for j in range(i): print(end=" ") for j in range(2*n-(2*i+1)): print("*",end="") print() ''' OUTPUT: * *** ***** ******* ********* ******* ***** *** * ''' #============================================ n=5 for i in range(n): for j in range(n-i-1): print(end=" ") for j in range(2*i+1): print(j+1,end="") print() for i in range(1,n): for j in range(i): print(end=" ") for j in range(2*n-(2*i+1)): print(j+1,end="") print() ''' OUTPUT: 1 123 12345 1234567 123456789 1234567 12345 123 1 ''' #============================================ n=5 for i in range(n): for j in range(n-i-1): print(end=" ") for j in range(2*i+1): print(i+1,end="") print() for i in range(1,n): for j in range(i): print(end=" ") for j in range(2*n-(2*i+1)): print(n-i,end="") print() ''' OUTPUT: 1 222 33333 4444444 555555555 4444444 33333 222 1 ''' #================================================ n, m = map(int,input().split()) for i in range(n//2): for j in range(1, (n-1),2): txt='.|.'*j print(txt.center(m,"-")) break w="WELCOME" print(w.center(m,"-")) for i in range(n//2): for j in range(n-2,0,-2): txt='.|.'*j print(txt.center(m,"-")) break ''' INPUT: 7 21 OUTPUT: ---------.|.--------- ------.|..|..|.------ ---.|..|..|..|..|.--- -------WELCOME------- ---.|..|..|..|..|.--- ------.|..|..|.------ ---------.|.--------- ''' #============================================= n=5 a=n if(n==1): print('a') else: for i in range(n): for j in range(2*n-(2*i)-2): print(end="-") for j in range(i+1): print(chr(96+a-j),end="-") for j in range(i): if((96+n+1-i+j==96+n) and (j==n-2)): print(chr(96+n+1-i+j),end="") else: print(chr(96+n+1-i+j),end="-") for j in range(2*n-(2*i)-2-1): print(end="-") print() for i in range(n-1): for j in range(2+2*i): print(end="-") for j in range(n-i-1): print(chr(96+n-j),end="-") for j in range(n-2-i): print(chr(97+2+j+i),end="-") for j in range(2*i+1): print(end="-") print() ''' OUTPUT: --------e-------- ------e-d-e------ ----e-d-c-d-e---- --e-d-c-b-c-d-e-- e-d-c-b-a-b-c-d-e --e-d-c-b-c-d-e-- ----e-d-c-d-e---- ------e-d-e------ --------e-------- '''' #===========================================
df296049dd2cd2d136f15afdf3d8f1ebec49871d
wulianer/LeetCode_Solution
/062_Unique_Paths.py
902
4.25
4
""" A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below). How many possible unique paths are there? Above is a 3 x 7 grid. How many possible unique paths are there? Note: m and n will be at most 100. """ class Solution(object): memo = {} def uniquePaths(self, m, n): """ :type m: int :type n: int :rtype: int """ if (m, n) in self.memo: return self.memo[(m, n)] if m == 1 or n == 1: self.memo[(m, n)] = 1 return 1 res = self.uniquePaths(m-1, n) + self.uniquePaths(m, n-1) self.memo[(m, n)] = res return res s = Solution() print(s.uniquePaths(100, 100))
4e88fc3f4a0a63fbc41f29b2dc27ae7690190719
wulianer/LeetCode_Solution
/025_Reverse_Nodes_in_k_Group.py
2,023
3.96875
4
""" Given a linked list, reverse the nodes of a linked list k at a time and return its modified list. k is a positive integer and is less than or equal to the length of the linked list. If the number of nodes is not a multiple of k then left-out nodes in the end should remain as it is. You may not alter the values in the nodes, only nodes itself may be changed. Only constant memory is allowed. For example, Given this linked list: 1->2->3->4->5 For k = 2, you should return: 2->1->4->3->5 For k = 3, you should return: 3->2->1->4->5 """ # Definition for singly-linked list. import time class ListNode(object): def __init__(self, x): self.val = x self.next = None def __repr__(self): repr_str = '' node = self while node: repr_str += str(node.val) + ' -> ' node = node.next return repr_str + 'None' class Solution(object): def reverseKGroup(self, head, k): if not self.needReverse(head, k): return head head = self.reverseKNodes(head, k) i, prev, node = 0, None, head while i < k: prev = node node = node.next i += 1 prev.next = self.reverseKGroup(node, k) return head def reverseKNodes(self, head, k): if head is None or head.next is None: return head prev, curr = None, head while curr and k: next = curr.next curr.next = prev prev = curr curr = next k -= 1 node = prev while node.next: node = node.next node.next = curr return prev def needReverse(self, head, k): while k > 0: if not head: return False head = head.next k -= 1 return True a, b, c, d, e, f, g = (ListNode(i) for i in 'abcdefg') s = Solution() a.next, b.next, c.next = b, c, d d.next, e.next, f.next = e, f, g print(s.reverseKGroup(a, 5))
43e7ef8659037e36c7e61b0e3c5b3c6766e1bda4
wulianer/LeetCode_Solution
/128_Longest_Consecutive_Sequence.py
772
3.9375
4
""" Given an unsorted array of integers, find the length of the longest consecutive elements sequence. For example, Given [100, 4, 200, 1, 3, 2], The longest consecutive elements sequence is [1, 2, 3, 4]. Return its length: 4. Your algorithm should run in O(n) complexity. """ class Solution(object): def longestConsecutive(self, nums): """ :type nums: List[int] :rtype: int """ numsSet = set(nums) maxLength = 0 for num in numsSet: if num-1 not in numsSet: currLength = 1 n = num while n+1 in numsSet: n = n+1 currLength += 1 maxLength = max(maxLength, currLength) return maxLength
4b367305f53d32a184f9260916827e26a6896c42
wulianer/LeetCode_Solution
/041_First_Missing_Positive.py
1,112
3.796875
4
""" Given an unsorted integer array, find the first missing positive integer. For example, Given [1,2,0] return 3, --> lower: 2, upper: 2 and [3,4,-1,1] return 2. --> lower: 1, upper: 3 nums: 1 5 4 2 3 6 8 lower: 1 1 1 2 3 upper: 1 5 4 4 Your algorithm should run in O(n) time and uses constant space. """ class Solution(object): def firstMissingPositive(self, nums): """ :type nums: List[int] :rtype: int Idea: 1. For any array whose length is l, the first missing positive value must in 1, 2, 3, ..., l+1, so we only care about the values in this range and remove the rest 2. We can use the array index as the hash to restore the frequency of each number within the range 1, 2, 3, ..., l """ nums.append(0) n = len(nums) for i in range(n): if nums[i] <= 0 or nums[i] > n: nums[i] = 0 for i in range(n): nums[nums[i]%n] += n for i in range(1, n): if int(nums[i]/n) == 0: return i return n
70f0a5a7ee0fd7b6d75193be8bde2978db720f7d
wulianer/LeetCode_Solution
/076_Minimum_Window_Substring.py
1,001
4.09375
4
""" Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n). For example, S = "ADOBECODEBANC" T = "ABC" Minimum window is "BANC". Note: If there is no such window in S that covers all characters in T, return the empty string "". If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S. """ from collections import Counter class Solution(object): def minWindow(self, s, t): need, missing = Counter(t), len(t) i = I = J = 0 for j in range(len(s)): if need[s[j]] > 0: missing -= 1 need[s[j]] -= 1 if not missing: while i < j and need[s[i]] < 0: need[s[i]] += 1 i += 1 if not J or j-i < J-I: I, J = i, j return s[I:J+1] s = Solution() r = s.minWindow('ADOBECDDDODEBANC', 'ABC') print(r)
81437f168b3fa1c08f38fffa627e0567263482be
wulianer/LeetCode_Solution
/050_Pow(x, n).py
532
3.78125
4
""" Implement pow(x, n). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 """ class Solution(object): def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n == 0: return 1 if n < 0: n = -n return 1/self.myPow(x, n) if n % 2 == 0: return self.myPow(x*x, n/2) return x * self.myPow(x, n-1) s = Solution() r = s.myPow(2, -10) print(r)
d7eb6774c273c399562026528da66b35a05d89f7
wulianer/LeetCode_Solution
/078_Subsets.py
688
3.984375
4
""" Given a set of distinct integers, nums, return all possible subsets (the power set). Note: The solution set must not contain duplicate subsets. For example, If nums = [1,2,3], a solution is: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ] """ class Solution(object): def subsets(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ if len(nums) == 0: return [] res = [[]] for i, num in enumerate(nums): expandRes = [r+[num] for r in res] res = res + expandRes res.sort() return res s = Solution() r = s.subsets([1, 2, 3]) print(r)
b6783ba65e1f3c7e793e8eb36ad695ba2007015b
vishwanathvishu95/Python-games
/madlibs.generator.py
613
3.953125
4
#prompts for a series of input programmer = input("Someones Name: ") company = input("A Company Name: ") language1 = input("A Programming Language: ") hr = input("Someone else's Name: ") language2 = input("Another Programming Language: ") #printing the story with the given inputs print("--------------------------------------------------------------------") print(programmer + " went to attend an interview at " + company + " for the first time.") print("He knows well to code in " + language1 +".") print(recruiter + ', the HR says that "we need a ' + language2 + ' developer, so You can go home".')
3af7d990e3433ff03e3a62368f454d627efe4c35
Kezuo0605/Python
/Lesson1.py
4,667
4.34375
4
# 1.Поработайте с переменными, создайте несколько, выведите на экран, запросите у пользователя несколько чисел и строк и сохраните в переменные, выведите на экран. number = 1205 word = "START" print(f'Планируем начать обучение {number} {word} course Python') number = int(input('Напишите, когда хотите начать курс в формате ДДММ ')) print(f'{number} {word} course Python') # 2. Пользователь вводит время в секундах. # Переведите время в часы, минуты и секунды и # выведите в формате чч:мм:сс. # Используйте форматирование строк. time = int(input('введите время в секундах ')) time_h = time // 3600 time = time - (time_h * 3600) time_m = time // 60 time = time % 60 print(f' Время которое вы ввели {time_h:02.0f}:{time_m:02.0f}:{time:02.0f} ') #3. Узнайте у пользователя число n. Найдите сумму чисел n + nn + nnn. # Например, пользователь ввёл число 3. Считаем 3 + 33 + 333 = 369. number = input("введите число от 1 до 9") number_1= int(number) number_2= int(number + number) number_3= int(number + number + number) sum= number_1 + number_2 + number_3 print(sum) #4Пользователь вводит целое положительное число. # Найдите самую большую цифру в числе. # Для решения используйте цикл while и арифметические операции number = int(input("Введите целое положительное число")) schet = -1 while number > 10: dis = number % 10 number //= 10 if dis > schet: schet = dis continue print(schet) #5. Запросите у пользователя значения выручки и издержек фирмы. # Определите, с каким финансовым результатом работает фирма # (прибыль — выручка больше издержек, или убыток — издержки больше выручки). # Выведите соответствующее сообщение. Если фирма отработала с прибылью, вычислите рентабельность # выручки (соотношение прибыли к выручке). # Далее запросите численность сотрудников фирмы и определите прибыль фирмы в расчете на одного сотрудника. rev = int(input("введите значение выручки фирмы")) coast = int(input("введите значение издержек фирмы")) saldo = rev - coast if saldo > 0: print("фирма работает в прибыль") elif saldo < 0: print("фирма работает в убыток") if saldo == 0: print("фирма работает в 0 и это не считая налогов!") if saldo > 0: re = (saldo / rev) * 100 print(f' рентабельность составляет {re:0.0f} процентов') sotr = int(input("сколко сотрудников работает в фирме?")) rent = (saldo / sotr) print(f' "рентабельность на одного сотрудника составляет" , {rent}') # 6. Спортсмен занимается ежедневными пробежками. В первый день его результат составил a километров. # Каждый день спортсмен увеличивал результат на 10 % относительно предыдущего. # Требуется определить номер дня, на который общий результат спортсмена составить не менее b километров. # Программа должна принимать значения параметров a и b и выводить одно натуральное число — номер дня. k_start = int(input(" сколько километров спортсмент пробегает за день? введите число ")) k_target = int(input(" сколько километров должен пробегать спортсмен?")) i=0 while k_start < k_target: k_start = k_start * 1.1 i= i+1 print(i)
4e72c806834109e6ac6810e7b6706af02b5a6f22
tzmhuang/GaussianProcess
/GP_regression.py
2,140
3.609375
4
''' based on: Machine learning -- Introduction to Gaussian Processes, Nando de Freitas ''' import numpy as np import matplotlib.pyplot as plt np.random.seed(seed = 1010) n = 5 data_x = np.linspace(3,5,n).reshape(-1,1) def kernel(a,b): #define kernel sqr_dist = np.sum(a**2,1).reshape(-1,1)+ np.sum(b**2,1) - 2*np.dot(a,b.T) return np.exp(-0.5*sqr_dist) def getL(K): return np.linalg.cholesky(K) mu = 0 sigma = 1 d = np.random.normal(mu,sigma,(n,1)) #generate 10 random standard normal datasets K = kernel(data_x,data_x) #Calculating kernel matrix for GP prior L = getL(K+1e-6*np.eye(n)) #Calculate Cholesky decomposition f_prior = np.dot(L,d) #Drawing samples from prior GP '''Inference Step''' N = 50 data_x_new = np.linspace(0,10,N).reshape(-1,1) K_ = kernel(data_x,data_x_new) _K_ = kernel(data_x_new,data_x_new) '''raw methode for calculating K inverse''' InvK = np.linalg.inv(K+1e-6*np.eye(n)) #K is singular, adding 1e-6 to make K invertable mu_ = K_.T @ InvK @ f_prior #Mean inference Cov_matrix = _K_- K_.T @ InvK @ K_ #Covariance inference # '''a better way to computer K inverse?''' # InvK = np.linalg.inv(L.T) @ np.linalg.inv(L) # mu_ = K_.T @ InvK @ f_prior #Mean inference # Cov_matrix = _K_- K_.T @ InvK @ K_ #Covariance inference L_ = getL(Cov_matrix+1e-6*np.eye(N)) #Calculate Cholesky decomposition of infered Covariance matrix rand_sample = np.random.normal(0,1,(N,10)) #Drawing 5 sets of random sample each of size 50 f_post = np.dot(L_,rand_sample)+mu_ #Drawing samples from posterior GP '''Plots''' plt.plot(data_x,f_prior,'ro',label = 'Observations') plt.plot(data_x_new,mu_,'k-',label = 'Infered mean') # plt.plot(data_x_new,mu_+1.65*np.diag(Cov_matrix).reshape(-1,1), 'g--',label='CI') # plt.plot(data_x_new,mu_-1.65*np.diag(Cov_matrix).reshape(-1,1), 'g--') plt.fill_between(data_x_new.reshape(-1),(mu_+1.65*np.diag(Cov_matrix).reshape(-1,1)).reshape(-1),(mu_-1.65*np.diag(Cov_matrix).reshape(-1,1)).reshape(-1),facecolor = 'grey',alpha = 0.5, label = 'C.I.') plt.plot(data_x_new,f_post,'-') plt.legend() plt.show()
d8e7568483e6583d0157bced6a93fd3672d67c34
shadowstep666/phamminhhoang-fundamental-c4e25
/section1/intro.py
174
3.703125
4
from turtle import * shape("turtle") speed(0) for i in range(300): for j in range (4): forward(200) left(90) right(7) mainloop()
55cab638287d2ff91e594c7e2111123ed2b4c4ac
shadowstep666/phamminhhoang-fundamental-c4e25
/section3/homework_day3/turtle2.py
300
3.8125
4
from turtle import * colors = [ 'red','blue','brown','yellow','gray'] for index , colour in enumerate(colors): color(colour) begin_fill() for i in range(2): forward(50) left(90) forward(100) left(90) forward(50) end_fill() mainloop()
33eaa474c2cf5191c44e189987c0de0d1fef4bc1
shadowstep666/phamminhhoang-fundamental-c4e25
/section3/menu.py
679
3.78125
4
# item1= " bun dau mam tom" # item2="pho" # item3="banh my" # item4 = "lau" # items = [] # empty list # print(type(items)) # items = [ " bun dau"] # print(items) items = ["bun dau mam tom ", "pho","banh mi", "lau"] # print(items)# print la mot loai read nhung chi doc ket qua # items.append("banh ny") # them banh my vao sau danh sach # print(items) # read all => list # for i in items : # print(i) # read one => detail # print(items[0]) # print(items[-1]) # print(items[1]) # items[1]= " pho xao" # change pho thanh pho xao # print(items[1]) # print(items) # items.remove("pho") # xoa ten # print(items) # xoa vi tri items.pop(2) print(items)
c68bf1082ec0684aef2788848101c283c88cb508
shadowstep666/phamminhhoang-fundamental-c4e25
/section2/homeworkDay2/n_start.py
88
3.515625
4
xs = "* " n = int(input("nhap vao n :" )) for i in range(n): print(xs, end=" ")
4d09e92399cffd253ec767fa52db207f28521079
ChihaoFeng/Leetcode
/20. Valid Parentheses.py
541
3.796875
4
class Solution: def isValid(self, s): """ :type s: str :rtype: bool """ stack = [] for p in s: if p == '(': stack.append(')') elif p == '[': stack.append(']') elif p == '{': stack.append('}') elif not stack or stack.pop() != p: return False return len(stack) == 0 """ The idea is to use the stack to record the complement of '(', '[', '{' Time: O(n) Space: O(n) """
273c9140794b49bd00f600c924355d478b4580b3
ChihaoFeng/Leetcode
/74. Search a 2D Matrix.py
682
3.78125
4
class Solution: def searchMatrix(self, matrix, target): """ :type matrix: List[List[int]] :type target: int :rtype: bool """ if not matrix or not matrix[0]: return False x, y = len(matrix), len(matrix[0]) i, j = 0, x * y - 1 while i <= j: m = (i + j) // 2 m_i = m // y m_j = m % y if matrix[m_i][m_j] == target: return True elif matrix[m_i][m_j] < target: i = m + 1 else: j = m - 1 return False """ think about it as binary search Time: O(log(m*n)) Space: O(1) """
62f5eec73b9300a69398ba171c6daa4444fbf416
ChihaoFeng/Leetcode
/52. N-Queens II.py
1,600
3.515625
4
def totalNQueens(self, n): """ :type n: int :rtype: int """ def dfs(row): if row == n: self.ret += 1 return for col in range(n): if cols[col] or d1[col - row + n - 1] or d2[row + col]: continue cols[col] = d1[col - row + n - 1] = d2[row + col] = True dfs(row + 1) cols[col] = d1[col - row + n - 1] = d2[row + col] = False self.ret = 0 cols, d1, d2 = [False] * n, [False] * (2 * n - 1), [False] * (2 * n - 1) dfs(0) return self.ret """ The idea is to have three lookup boolean array for columns and diagonals. for diagonal k = 1, we use row + col as the index for diagonal k = -1, we use col - row + n - 1 as the index ----------------------------------------------------------------------------- eg. n = 4 index i, j for each elements: (0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3) ----------------------------------------------------------------------------- i + j for each elements: 0 1 2 3 | ----------- 0 1 2 3 | 1 2 3 4 | 4 2 3 4 5 | 5 3 4 5 6 | 6 we can use that elements on the same diagonal line (k = 1) are same index = i + j ----------------------------------------------------------------------------- i - j for each elements: | 4 5 6 -------------------- 3 | 0 1 2 3 2 | -1 0 1 2 1 | -2 -1 0 1 0 | -3 -2 -1 0 we can use that elements on the same diagonal line (k = -1) are same index = i - j + n - 1 Time: O(n*n) Space: O(n) """
520410658429bb33202f390ea275b2393e154f5e
ChihaoFeng/Leetcode
/9. Palindrome Number.py
755
3.90625
4
class Solution: def isPalindrome(self, x): """ :type x: int :rtype: bool """ if x < 0 or (x and not x % 10): return False y = 0 while x > y: y = y * 10 + x % 10 x //= 10 return x == y or x == y // 10 """ we first need to handle some corner case: negative number and positive number with last digit 0 Then we use the same idea as reverse integer. Here we only need to reverse half of the number, which can be perfectly controlled by condition x > y Finally, the number is palindrome if x == y if x has even number of digits or x == y//10 if x has odd number if digits Time: O(log(n)/2) = O(log(n)) depends on the number of digits of x Space: O(1) """
a0fc54a4a0ef4f59666707712ed0f16318e9f512
ChihaoFeng/Leetcode
/37. Sudoku Solver.py
1,824
3.703125
4
class Solution: def solveSudoku(self, board): """ :type board: List[List[str]] :rtype: void Do not return anything, modify board in-place instead. """ def pre_process(): for i in range(9): for j in range(9): if board[i][j] == '.': continue val = 1 << int(board[i][j]) rows[i] |= val cols[j] |= val squares[3 * (i // 3) + j // 3] |= val def is_valid(i, j, c): val = 1 << int(c) if rows[i] & val or cols[j] & val or squares[3 * (i // 3) + j // 3] & val: return False return True def set_helper(i, j, c, flag): val = 1 << int(c) if flag: board[i][j] = c rows[i] |= val cols[j] |= val squares[3 * (i // 3) + j // 3] |= val else: board[i][j] = '.' rows[i] &= ~val cols[j] &= ~val squares[3 * (i // 3) + j // 3] &= ~val def solve(): for i in range(9): for j in range(9): if board[i][j] == '.': for c in '123456789': if is_valid(i, j, c): set_helper(i, j, c, True) if solve(): return True set_helper(i, j, c, False) return False return True rows, cols, squares = [0] * 9, [0] * 9, [0] * 9 pre_process() solve() """ dfs, borrow the same idea from valid sudoku Time: don't know Space: don't know """
078fe3fd6e966d82b68b0be61dd2ad73223a0b7f
ChihaoFeng/Leetcode
/103. Binary Tree Zigzag Level Order Traversal.py
745
3.90625
4
# Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def zigzagLevelOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] queue = [root] ret = [] flag = True while queue: if flag: ret.append([queue[i].val for i in range(len(queue))]) else: ret.append([queue[i].val for i in range(len(queue) - 1, -1, -1)]) queue = [node0 for node in queue for node0 in [node.left, node.right] if node0] flag = not flag return ret
1fb90380a3e2c19219922cb9d46e2cf8aa520344
ChihaoFeng/Leetcode
/69. Sqrt(x).py
403
3.609375
4
class Solution: def mySqrt(self, x): """ :type x: int :rtype: int """ i, j = 0, x while i <= j: m = (i + j) // 2 if m * m == x: return m elif m * m < x: i = m + 1 else: j = m - 1 return j """ binary search problem Time: O(logn) Space: O(1) """
2c231997492be2f5c53c01e6e3469e7d735e0af3
JuliandroR/Atividades-IFMS
/python/bin4dec.py
243
3.65625
4
entrada = input("A sequência em binário, please") a = int(entrada[:7], 2) b = int(entrada[8:15], 2) c = int(entrada[16:23], 2) d = int(entrada[24:31], 2) print("A sequẽncia informada convertida é: {} . {} . {} . {}".format(a, b, c, d))
c9364b322396ef9d1c140ba5c8e6c184acf6a41c
chenchals/interview_prep
/amazon/copy_linked_list_with_random_pointer.py
882
3.703125
4
# Definition for singly-linked list with a random pointer. class RandomListNode(object): def __init__(self, x): self.label = x self.next = None self.random = None class Solution(object): def copyRandomList(self, head): """ :type head: RandomListNode :rtype: RandomListNode """ cur = head # copy all duplicated node to a hashtable look_up = dict() look_up[None] = None while cur: new = RandomListNode(cur.label) look_up[cur] = new cur = cur.next cur = head copied_head = look_up[head] # another run while cur: copied_head.next = look_up[cur.next] copied_head.random = look_up[cur.random] copied_head = copied_head.next cur = cur.next return look_up[head]
db082c1d53e70879e26a3d2d1cc9d08f85e38d2c
chenchals/interview_prep
/algorithms/tree_traversal.py
1,857
3.625
4
import math class Node(object): def __init__(self, value): self.value = value self.left = None self.right = None def PreOrderTraversal(root, cb): cb(root.value, end=' ') if root.left is not None: PreOrderTraversal(root.left, cb) if root.right is not None: PreOrderTraversal(root.right, cb) return cb def InOrderTraversal(root, cb): if root.left is not None: InOrderTraversal(root.left, cb) cb(root.value, end=' ') if root.right is not None: InOrderTraversal(root.right, cb) return cb def PostOrderTraversal(root, cb): if root.left is not None: PostOrderTraversal(root.left, cb) if root.right is not None: PostOrderTraversal(root.right, cb) cb(root.value, end=' ') return cb def CompleteTree(tree_serialized): root = Node(tree_serialized.pop(0)) stack = list() stack.append(root) while len(stack) > 0: this = stack.pop(0) if len(tree_serialized) > 0 : new_node = Node(tree_serialized.pop(0)) this.left = new_node stack.append(this.left) if len(tree_serialized) > 0 : new_node = Node(tree_serialized.pop(0)) this.right = new_node stack.append(this.right) return root def BuildBST(tree_serialized, start, end, balance='left'): if start > end: return None if balance == 'right': mid = math.ceil((end+start) / 2) elif balance == 'left': mid = math.floor((end+start) / 2) else: mid = int((end+start) / 2) root = Node(tree_serialized[mid]) # print(root.value) # because the mid is used above root.left = BuildBST(tree_serialized, start, mid-1) root.right = BuildBST(tree_serialized, mid+1, end) return root if __name__ == "__main__": t1 = [1,2,3,4,5,6,7] print(t1) # test = CompleteTree(t1) root = BuildBST(t1, 0, len(t1)-1, 'middle') print('root', root.value) InOrderTraversal(root, print) print() PreOrderTraversal(root, print) print() PostOrderTraversal(root, print)
a2aba7dc8d55e05aa6b7ce31cbc456bed61e946b
chenchals/interview_prep
/amazon/intersection_of_linked_list.py
1,258
3.6875
4
# Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def getIntersectionNode(self, headA, headB): """ :type head1, head1: ListNode :rtype: ListNode """ if not headA or not headB: return None track_A = headA track_B = headB len_A = self.find_length(track_A) len_B = self.find_length(track_B) A_shorter = len_A < len_B diff = abs(len_A-len_B) track_A = headA track_B = headB if A_shorter: while diff: track_B = track_B.next diff -= 1 else: while diff: track_A = track_A.next diff -= 1 # share the same head while True: if track_A == track_B: return track_A if not track_A.next: return None track_A = track_A.next track_B = track_B.next return None def find_length(self, head): count = 0 this = head while this.next != None: this = this.next count += 1 return count
33ce2afb61fca3b33bd2439f9b12d1d09f41436f
chenchals/interview_prep
/linked_list/merge_two_sorted_linked_list.py
1,303
3.96875
4
class Node(object): def __init__(self): self.__v = None self.next = None def next(self, Node): self.next = Node @property def v(self): return self.__v @v.setter def v(self, v): self.__v = v def build_linked_list_from_list(li): head = Node() head.v = li[0] this = head for each in li[1:]: new = Node() new.v = each this.next = new this = this.next return head def merge_sorted_linked_list(head1, head2): if head2 is None: return head1 elif head1 is None: return head2 elif head1 is None and head2 is None: return None # a dummy node to start head = tail = Node() # both list1 and list2 exist while head1 is not None and head2 is not None: if head1.v < head2.v: c = head1 head1 = head1.next else: c = head2 head2 = head2.next tail.next = c tail = c tail.next = head1 or head2 head = head.next return head l1 = [1,3,4] l2 = [1,4,6] head1 = build_linked_list_from_list(l1) head2 = build_linked_list_from_list(l2) head = merge_sorted_linked_list(head1, head2) this = head while this != None: print(this.v, end=' ') this = this.next
6f6010cd508110c20469513733cac735f6313694
chenchals/interview_prep
/algorithms/dijkstra.py
462
3.8125
4
class Vertex(object): def __init__(self, x, distance): # 2-dim tuple (x, y) self.key = x # distance[(1,2)] = distance -> coord to cost dict self.distance = distance self.parent = None def Dijkstra(graph, start, end): # set of visited coord for i in range(len(graph)): for j in range(len(graph[0])): neighbour_list = [(i+1, j), (i-1,j), (i,j-1), (i, j+1)] for coord in neighbour_list: x, y = coord if x < 0 or y < 0: continue
f75ae19fcc5b53606004ffe42edd406d0264c7ae
Catherine1000/PythonExercises
/AverageGrades.py
560
4.0625
4
bio_score = float(input("Enter your biology score: ")) chem_score = float(input("Enter your chemistry score: ")) physics_score = float(input("Enter your physics score: ")) if bio_score < 40: print("Fail") elif chem_score < 40: print("Fail") elif physics_score < 40: print("Fail") else: score = (bio_score + chem_score + physics_score) / 3 if score >= 70: print("1st") elif score >= 60: print("2.1") elif score >= 50: print("2.2") elif score >= 40: print("Pass") else: print("Fail")
fb10a2f3e98da33e6f5cbbe1f1d08f41dc452855
vincenttchang90/think-python
/chapter_1/chapter_1_exercises.py
1,190
4.375
4
#chapter 1 exercises #1-1 # In a print statement, what happens if you leave out one of the parentheses, or both? ## print 'hello') or print('hello' return errors # If you are trying to print a string, what happens if you leave out one of the quotation marks, or both? ## print('hello) or print(hello') return errors while print(hello) says hello is not defined #You can use a minus sign to make a negative number like -2. What happens if you put a plus sign before a number? What about 2++2? ## 2++2 returns 4, +1+2 returns 3 so it seems you can specify a number is positive with a + # In math notation, leading zeros are okay, as in 02. What happens if you try this in Python? ## 2+02 returns an invalid token error # What happens if you have two value with no operator between them? ## returns invalid syntax #1-2 # How many seconds are there in 42 minutes 42 seconds? ## 42*60+42 = 2562 # How many miles are there in 10 kilometers? Hint: there are 1.61 kilometeres in a mile. ## 10/1.61 = 6.2 miles # If you run a 10 kilometer race in 42 minutes 52 seconds, what is your average pace? What is your average speed in miles per hour? ## 6:52 minutes per mile. 8.73 miles per hour
4919605e133d383f8a7c848efa3eaf1405a58a96
bharatanand/B.Tech-CSE-Y2
/applied-statistics/python-revisited/intermediate-concepts/list-comprehension/gen-n-even-nos.py
91
3.796875
4
n = int(input("Display even numbers below: ")) ls = [i for i in range(0, n, 2)] print(ls)
526886cff12e987b705d2443cd0bc1741a552f36
bharatanand/B.Tech-CSE-Y2
/applied-statistics/lab/experiment-3/version1.py
955
4.28125
4
# Code by Desh Iyer # TODO # [X] - Generate a random sample with mean = 5, std. dev. = 2. # [X] - Plot the distribution. # [X] - Give the summary statistics import numpy as np import matplotlib.pyplot as plt import random # Input number of samples numberSamples = int(input("Enter number of samples in the sample list: ")) # Generate sample list sampleList = [random.normalvariate(5, 2) for x in range(numberSamples)] # Printing details print('\nGenerated sample list containing {} elements: '.format(numberSamples)) print(sampleList) print('\n\nCalculated Mean = {:.3f}\nRounded Calculated Mean = {}\n\nCalculated Std. Deviation = {:.3f}\nRounded Calculated Std. Deviation = {}'.format( np.mean(sampleList), round(np.mean(sampleList)), np.std(sampleList), round(np.std(sampleList)) ) ) plt.hist(sampleList) plt.show() # Reference: # https://stackoverflow.com/questions/51515423/generate-sample-data-with-an-exact-mean-and-standard-deviation
5ad337bd7a7d4d10ee0fec4a1e2e1f8806039911
sjrathod/learning-python
/crackingTheCodingInterview/arrayAndStrings/oneAway.py
844
3.65625
4
#!/usr/bin/python def oneAway(str1, str2): i = 0 j = 0 edited = False diff = len(str1) - len(str2) if diff < -1 or diff > 1: return False s1 = str1 if (len(str1) > len(str2)) else str2 s2 = str2 if (len(str1) > len(str2)) else str1 if diff == 0: while(i < len(s1) and j < len(s2)): if s1[i] != s2[j]: if edited: return False edited = True if diff == 0: j += 1 else: j += 1 i += 1 return True def main(): str1 = raw_input("Enter string1 for one away check:") str2 = raw_input("Enter string2 for one away check:") if oneAway(str1, str2): print "Strings are one edit away." else: print "Strings are NOT one edit away." if __name__ == "__main__": main()
1f45cddab2c6b1ac0f4c7b4b24415815c8c24df1
sjrathod/learning-python
/crackingTheCodingInterview/linkedLists/partition.py
952
3.828125
4
#! /usr/bin/python from basicLinkedList import * import pdb def partition(current, k): beforeLL = LinkedList() afterLL = LinkedList() while current: if current.data < k : beforeLL.insertAtTail(current.data) else: afterLL.insertAtTail(current.data) current = current.next print "Before partition LL" beforeLL.printList() print "After partition LL" afterLL.printList() temp = beforeLL.head while temp.next: temp = temp.next temp.next = afterLL.head return beforeLL def main(): llist = LinkedList() llist.generateLLofNnodes(n=5) llist.insertAtNth(11, 5) llist.insertAtNth(14, 2) llist.insertAtNth(10, 3) llist.insertAtNth(1, 6) llist.insertAtNth(20, 1) llist.printList() k = int(raw_input("Enter number for partition, K:")) resLL = partition(llist.head, k) print "Final LL" resLL.printList() if __name__ == "__main__": main()
fa57f7fed7a1b413b04d7f7e331794660b15a2bd
haema5/python_level_1
/hw01_easy.py
2,447
3.9375
4
__author__ = 'Пашков Игорь Владимирович' import random # Задача-1: Дано произвольное целое число (число заранее неизвестно). # Вывести поочередно цифры исходного числа (порядок вывода цифр неважен). # Подсказки: # * постарайтесь решить задачу с применением арифметики и цикла while; # * при желании решите задачу с применением цикла for. print('Задача-1:') print('') number = random.randint(1000, 9999) print('Произвольное целое число:', number) while number > 0: n = int(number) % 10 number = int(number) // 10 print(n) # Задача-2: Исходные значения двух переменных запросить у пользователя. # Поменять значения переменных местами. Вывести новые значения на экран. # Подсказка: # * постарайтесь сделать решение через дополнительную переменную # или через арифметические действия # Не нужно решать задачу так: # print("a = ", b, "b = ", a) - это неправильное решение! print('') print('Задача-2:') print('') a = input('Введите число а: ') b = input('Введите число b: ') print('') print('a: {}, b: {}'.format(a, b)) print('') print('С помощью дополнительной переменной:') x = a a = b b = x print('a: {}, b: {}'.format(a, b)) print('') print('Через арифметические действия: ') a = int(a) b = int(b) a = a + b b = a - b a = a - b print('a: {}, b: {}'.format(a, b)) print('') # Задача-3: Запросите у пользователя его возраст. # Если ему есть 18 лет, выведите: "Доступ разрешен", # иначе "Извините, пользование данным ресурсом только с 18 лет" print('') print('Задача-3:') print('') answer = int(input('Укажите свой возраст: ')) if answer >= 18: print('Доступ разрешен') else: print('Извините, пользование данным ресурсом только с 18 лет')
b8f822a44c8b35e6d1e40a6c04c3afdac0989219
LBHukan/Clima
/clima.py
1,176
3.671875
4
import requests import json name_city = str(input("Digite Sua Cidade: ")) name_state = str(input("Digite Seu Estado Abreviado: ")) def ID(cidade, estado): city = str(cidade) state = str(estado) requisicao = requests.get("https://api.hgbrasil.com/weather?key=40acff95&city_name="+ name_city +","+ name_state +"") jsn = json.loads(requisicao.text) return jsn def Status(json): json = json print("################################################################################") print("Dia " + str(json['results']['date']) + " às " + str(json['results']['time'])) # Horario e Dia print("Condicao: " + str(json['results']['description'])) # descricao print("Cidade: " + str(json['results']['city'])) # cidade print("Nivel de Humidade: " + str(json['results']['humidity'] + "%")) # humidade print("Temperatura de: " + str(json['results']['temp']) + "°") # temperatura print("################################################################################") name = ID(name_city, name_state) show = Status(name)
c5d76587c717609f3a2f3da3a9136f92b3fee367
bmgarness/school_projects
/lab2_bmg74.py
755
4.125
4
seconds = int(input('Enter number of seconds to convert: ')) output = '{} day(s), {} hour(s), {} minute(s), and {} second(s).' secs_in_min = 60 secs_in_hour = secs_in_min * 60 # 60 minutes per hour secs_in_day = secs_in_hour * 24 # 24 hours per day days = 0 hours = 0 minutes = 0 if seconds >= secs_in_day: days = seconds // secs_in_day # Interger Division seconds = seconds % secs_in_day # Remainder Divsion if seconds >= secs_in_hour: hours = seconds // secs_in_hour # Interger Divsion seconds = seconds % secs_in_hour # Remainder Divsion if seconds >= secs_in_min: minutes = seconds //secs_in_min # Interger Divsion seconds = seconds % secs_in_min # Remainder Divsion print(output. format(days, hours, minutes, seconds))
285c7fe0c7af03f251dd0b45dfc1d2cb0d66fced
B7504C/ichw
/pyassign4/wcount.py
1,823
3.75
4
#!/usr/bin/env python3 """wcount.py: count words from an Internet file. __author__ = "Bai Yuchen" __pkuid__ = "1800011798" __email__ = "[email protected]" """ import sys from urllib.request import urlopen def wcount(lines, topn): """count words from lines of text string, then sort by their counts in reverse order, output the topn (word count), each in one line. """ strlist=[] for i in lines: string_dl=i.decode().lower() string=' '+string_dl+' ' replace_list=['\r\n',',','.',':','"','!','?',"'"] for j in replace_list: string=string.replace(j,' ') strlist=strlist+[string] #每行字符串的list all_words=[] for i in strlist: all_words=all_words+i.split() #所有单词的list words=list(set(all_words)) #所有出现过的单词 countlist=[] for word in words: countlist=countlist+[all_words.count(word)] #每个单词出现次数 ziplist=zip(words,countlist) sortlist=sorted(ziplist,key=lambda i:i[1],reverse=True) #按次数倒序排序 dic={} for item in sortlist: dic[item[0]]=item[1] if int(topn)<=len(words): for i in range(int(topn)): print(sortlist[i][0]+' ',dic[sortlist[i][0]]) else: for i in range(len(words)): print(sortlist[i][0]+' ',dic[sortlist[i][0]]) pass def main(): doc = urlopen(sys.argv[1]) lines = doc.readlines() topn = sys.argv[2] wcount(lines,topn) if __name__ == '__main__': if len(sys.argv) == 1: print('Usage: {} url [topn]'.format(sys.argv[0])) print(' url: URL of the txt file to analyze ') print(' topn: how many (words count) to output. If not given, will output top 10 words') sys.exit(1) main()
9e905216e5e04d4b1b21d0f30afa26115da84044
ayeshaghoshal/learn-python-the-hard-way
/ex29.py
1,607
4.03125
4
# -*- coding: utf-8 -*- print "EXERCISE 29 - What if" people = 200 cats = 45 dogs = 100 if people < cats: print "Too many cats! The world is doomed!" if people > cats: print "Not many cats! The world is saved!" if people < dogs: print "The world is drooled on!" if people > dogs: print "The world is dry!" # increment operator. Means dogs = dogs + 5 = 100 + 5 dogs += 5 if people >= dogs: print "People are greater than or equal to dogs." if people <= dogs: print "People are less than or equal to dogs." if people == dogs: print "People are dogs." if cats == 45: print "Thaaat's right!!" if people >= cats + dogs: print "People rulee!!" # STUDY DRILLS # if-statement: it's a condition that is to be obeyed by the set parameters # why indented? the if-statement will only apply to the indented code otherwise, there's an indentationError # Actual explaination!! # if-statement - creates what is called a "branch" in the code. The if-statement tells your script, # "If this boolean expression is True, then run the code under it, otherwise skip it. # why indented? - A colon at the end of a line is how you tell Python you are going to # create a new "block" of code, and then indenting four spaces tells Python what lines of # code are in that block. # This is exactly the same thing you did when you made functions in the first half of the book. # If not indented? - will most likely create a Python error. # Python expects you to indent something after you end a line with a : (colon) #
ec32d18f39290dc135c190a49764ae585be27ccd
ayeshaghoshal/learn-python-the-hard-way
/ex14.py
1,252
4.5
4
# -*- coding: utf-8 -*- print "EXERCISE 14 - Prompting and Passing" # Using the 'argv' and 'raw_input' commands together to ask the user something specific # 'sys' module to import the argument from from sys import argv # define the number of arguments that need to be defined on the command line script, user_name = argv # instead of using raw_data in the previous formats, this is a new way. # Defines what character will show up when a raw input is required by the user prompt = '@ ' # print "Hi %s, I'm the %s script." % (user_name, script) print "I'd like to ask you a few questions." print "Do you like me %s?" % user_name # the following line defines that a prompt is required by the user likes = raw_input(prompt) print "Where do you live %s?" % user_name lives = raw_input(prompt) print "What kind of computer do you have?" computer = raw_input(prompt) # Use of triple brackets and % command together to combine string and raw input data # since this line of code comes after 'likes', 'lives' and 'computer', we know what value to insert print """ Alright, so you said %r about liking me. You live in %r. Not sure where that is. And you have a %r computer. Nice. """ % (likes, lives, computer)
8c787b221b005f2f997f7d927a008d3ff9fa1514
ayeshaghoshal/learn-python-the-hard-way
/ex19.py
2,520
4.40625
4
# -*- coding: utf-8 -*- print "EXERCISE 19 - Functions and Variables" # defining the function that commands the following strings to be printed out # there are 2 parameters that have to be defined in brackets def cheese_and_crackers(cheese_count, boxes_of_crackers): # use of the parameters is the same method as writing string and designating values to it print "You have %d cheeses!" % cheese_count print "You have %d boxes of crackers!" % boxes_of_crackers print "Man, that's enough for a party!" print "Get a blanket.\n" # a new method of displaying the function directly by designating it values print "We can just give the function numbers directly:" # the following function will promth the command to print the stated 4 sentences above cheese_and_crackers(20,30) # another method of printing the same function print "OR, we can use variables from our script:" # designate a value to new variables amt_of_cheese = 10 amt_of_crackers = 30 # the new variables will replace the old parameters to state the defined values right above cheese_and_crackers(amt_of_cheese,amt_of_crackers) # use just numbers to define the two parameters inside the defined function print "We can even do math inside too:" cheese_and_crackers(20 + 25, 48 + 50) # Showcases the use of both variables and math to display the defined function # as long as there are only 2 paramenters defined within the brackets!!! print "And we can combine the two, variables and math:" cheese_and_crackers(amt_of_cheese + 20, amt_of_crackers + 450) #STUDY DRILLS - NEW FUNCTION! def animals_on_farm(cows, chickens, sheep): print "Can you spot %d cows?" % cows print "I bet you won't be able to identify %d red chickens!" % chickens print "Did you sheer all %d sheep this season?" % sheep print "I hope so! otherwise they will all look like cotton balls! HAHAHA\n" animals_on_farm(10, 4, 23) animals_on_farm(3 + 4, 51 + 1, 2 + 7) a = 20 b = 14 c = 24 # can replace the name of parameters inside the function () animals_on_farm(a, b, c) animals_on_farm(a + 2, b*2, c - 10) print "We can assign the function to a variable and simply call it by its new variable name" poo = animals_on_farm poo(2, 4, 8) print "We can pass a function as arguments" print "Now ask the user for the number of cows, chickens and sheep! - brackets within brackets" animals_on_farm(int(raw_input("How many cows?")), int(raw_input("How many chickens?")), int(raw_input("How many sheep?)")))
a4757d33b940e4cfcb580a0d18cb9f7117384929
giuschil/Python-Essentials
/sorting algorithms/bubblesort.py
1,214
3.859375
4
# -*- coding: utf-8 -*- """ Created on Mon Jul 29 11:36:50 2019 @author: giuse """ def swap(a,b): tmp = b b = a a = tmp return a,b def random_array(): import random n= int(input("How many numbers you want to generate? ")) m= int(input("Number Max for choice? ")) my_random=[] for i in range(n): my_random.append(random.randrange(1, m, 1)) return my_random def check_array(array): for i in range(0,len(array)-1): if array[i] <= array[i+1]: continue else: return False return True def bubblesort(array): while check_array(array) != True: for j in range(0,len(array)-1): if array[j]>array[j+1]: tmp = array[j] array[j] = array[j+1] array[j+1]=tmp return array from datetime import datetime tstart = datetime.now() bubblesort(array) tend = datetime.now() print(tend - tstart) if __name__ == '__main__': import sys # importiamo il modulo sys della libreria standard import random #importiamo il modulo random per numeri casuali
77bac9d5c187722aba0582983c074af89176dbfa
giuschil/Python-Essentials
/Hello.py
251
3.9375
4
"Write the numbers from 1 to 10" lista = [] for i in range(0,11): lista.append(i) print("il numero è: ",i) print("La lista è: ",lista) print("/n") for i in lista: print("il numero nella lista è: ",lista[i])
c5ee299d12ea8ad5e50aec5dcc1fcde6a5b789cb
juletats/LabsNMPy
/lab3.2.py
5,264
3.875
4
def NullMatrix(n): """Создание нулевой матрицы""" nullM = [0] * (n); for i in range(n): nullM[i] = [0] * (n) return nullM def MultiplyMM(matrix1, matrix2): """Умножение матрицы на матрицу""" n = len(matrix1); result = NullMatrix(n); for i in range(n): for j in range(n): c = 0; for k in range(n): c += matrix1[i][k] * matrix2[k][j] result[i][j] = c return result def MultiplyMV(matrix, vector): """Умножение матрицы на вектор""" n = len(vector); result = [0] * n; for i in range(n): for j in range(n): result[i] += matrix[i][j] * vector[j]; return result; def Swap(matrix, stroke1, stroke2): """Смена строк""" tmp = 0; n = len(matrix) for i in range(n): tmp = matrix[stroke2][i] matrix[stroke2][i] = matrix[stroke1][i] matrix[stroke1][i] = tmp; def SLAE(matrix1, matrix2, vector): """Решение СЛАУ""" n = len(matrix1) vector1 = [0] * n; vector2 = [0] * n; vector2[0] = vector[0] for i in range(1, n): summ = 0 for j in range(0, i): summ += matrix1[i][j] * vector2[j] vector2[i] = vector[i] - summ vector1[n - 1] = vector2[n - 1] / matrix2[n - 1][n - 1] for k in range(n - 2, -1, -1): summ = 0 for e in range(k + 1, n): summ += matrix2[k][e] * vector1[e]; vector1[k] = (1 / matrix2[k][k] * (vector2[k] - summ)) return vector1 def LU(A, b): n = len(A) M = NullMatrix(n) L = NullMatrix(n) P = NullMatrix(n) P_k = NullMatrix(n) for i in range(n): for j in range(n): if i == j: M[i][j] = 1 L[i][j] = 1 P[i][j] = 1 P_k[i][j] = 1 for i in range(n - 1): maximum = -100000 for l in range(0, n): if A[l][i] > maximum: maximum = A[l][i] index = l; Swap(P_k, i, index) P = MultiplyMM(P_k, P) A = MultiplyMM(P_k, A) m = i + 1 l = i for m in range(i + 1, n): for l in range(i, n): if m == l: M[m][l] = 1 else: if (m != l) and (l == i): M[m][i] = -A[m][i] / A[i][i] A = MultiplyMM(M, A) m = i + 1 for m in range(i + 1, n): M[m][i] *= -1 L = MultiplyMM(P_k, L) L = MultiplyMM(L, P_k) L = MultiplyMM(L, M) M = NullMatrix(n) P_k = NullMatrix(n) m = 0 l = 0 for l in range(0, n): for m in range(0, n): if l == m: M[l][m] = 1 P_k[l][m] = 1 b = MultiplyMV(P, b) x = SLAE(L, A, b) return x #################################################################### xi = [-0.4, -0.1, 0.2, 0.5, 0.8] fi = [1.9823, 1.6710, 1.3694, 1.0472, 0.64350] X = 0.1 hi = [] # xi = [0, 1, 2, 3, 4] # fi = [0, 1.8415, 2.9093, 3.1411, 3.2432] # X = 1.5 n = len(xi) for i in range(n - 1): hi.append(xi[i + 1] - xi[i]) C = NullMatrix(n - 2) C[0][0] = 2 * (hi[0] + hi[1]) C[0][1] = hi[1] # i=2 C[1][0] = hi[1] C[1][1] = 2 * (hi[1] + hi[2]) C[1][2] = hi[2] C[2][1] = hi[2] C[2][2] = 2 * (hi[2] + hi[3]) rightSide = [] rightSide.append(3 * (((fi[2] - fi[1]) / hi[1]) - ((fi[1] - fi[0]) / hi[0]))) rightSide.append(3 * (((fi[3] - fi[2]) / hi[2]) - ((fi[2] - fi[1]) / hi[1]))) rightSide.append(3 * (((fi[-1] - fi[-2]) / hi[3]) - ((fi[-2] - fi[-3]) / hi[2]))) ai = []; bi = []; di = [] ci = LU(C, rightSide); ci.insert(0, 0) for i in range(len(ci) - 1): ai.append(fi[i]) bi.append(((fi[i + 1] - fi[i - 1 + 1]) / hi[i]) - (1 / 3) * hi[i] * (ci[i + 1] + 2 * ci[i])) di.append((ci[i + 1] - ci[i]) / (3 * hi[i])) ai.append(fi[-2]) bi.append((fi[-1] - fi[-2]) / (hi[-1]) - (2 / 3) * hi[-1] * ci[-1]) di.append(-ci[-1] / (3 * hi[-1])) print('\nКубический сплайн\n') print('| --- a --- | --- b --- | --- c --- | --- d --- |') print('| --------------------------------------------- |') for i in range(len(ai)): print('| {0: 9f} | {1: 9f} | {2: 9f} | {3: 9f} |'.format(round(ai[i], 5), round(bi[i], 5), round(ci[i], 5), round(di[i], 5))) print('| --------------------------------------------- |\n') index = 0 while X > xi[index]: index += 1 index -= 1 print('f = {0} + {1}*(x-({2})) + {3}*(x-({4}))^2 + {5}*(x-({6}))^3'.format(round(ai[index], 5), round(bi[index], 5), round(xi[index], 5), round(ci[index], 5), round(xi[index], 5), round(di[index], 5), round(xi[index], 5))) f = ai[index] + bi[index] * (X - xi[index]) + ci[index] * (X - xi[index]) ** 2 + di[index - 1] * (X - xi[index]) ** 3 print('\nf({0}) = {1}\n'.format(X, round(f, 4)))
cce19d5079460040e6174142d487e9fac7a22adf
jamesfeng1994/ORIE5270
/HW2/tree/tree_print.py
2,454
4.15625
4
class Tree(object): def __init__(self, root): self.root = root def get_depth(self, current, n): """ This function is to get the depth of the tree using recursion parameters: current: current tree node n: current level of the tree return: the depth of the tree """ if current is not None: return max(self.get_depth(current.left, n + 1), self.get_depth(current.right, n + 1)) else: return n def traverse_tree(self, current, n, tree_list): """ This function is to traverse the tree and store keys of tree nodes parameters: current: current tree node n: current tree level tree_list: a list storing keys of tree nodes (from parents to kids) return: a list storing all nodes' keys (from root to leaves) """ depth = self.get_depth(self.root, 0) if n == 0: tree_list = [[] for i in range(depth)] tree_list[n].append(current.value) if current.left is not None: tree_list = self.traverse_tree(current.left, n + 1, tree_list) elif n < depth - 1: tree_list[n + 1].append(None) if current.right is not None: tree_list = self.traverse_tree(current.right, n + 1, tree_list) elif n < depth - 1: tree_list[n + 1].append(None) return tree_list def print_tree(self): """ This function is to print the tree by returning a matrix return: a matrix representing the tree """ tree_list = self.traverse_tree(self.root, 0, []) depth = self.get_depth(self.root, 0) for i in range(depth - 1): for j in range(len(tree_list[i])): if tree_list[i][j] is None: tree_list[i + 1].insert(2 * j, None) tree_list[i + 1].insert(2 * j + 1, None) tree_matrix = [['|' for i in range(2 ** depth - 1)] for j in range(depth)] for i in range(depth): for j in range(len(tree_list[i])): if tree_list[i][j] is not None: tree_matrix[i][2 ** (depth - i - 1) - 1 + j * 2 ** (depth - i)] = tree_list[i][j] return tree_matrix class Node(object): def __init__(self, value, left, right): self.value = value self.left = left self.right = right
6ecb1094565598ff59b837c26a0af6ff7d802067
EnriqueDev01/be_semana_01
/Reto_01.py
723
3.765625
4
''' BIENVENIDA Para este reto tendremos que hacer lo siguiente: 1) Ingresar un nombre y su edad. 2) Si es menor de edad que indique que dependiendo de la hora (si es mas de las 6pm) debe ir a dormir y si no hacer la tarea. 3) Si es mayor de edad que indique que no esta obligado a hacer nada. ''' import datetime as dt def bienvenida(nombre, edad): hora = dt.datetime.now().hour if edad >= 18: print(f'{nombre} tienes libertad de hacer lo que gustes') else: if hora < 18: print(f'{nombre} debes hacer la tarea') else: print(f'{nombre} debes ir a dormir') nombre = input("Ingrese su nombre: ") edad = int(input("Ingrese su edad: ")) bienvenida(nombre, edad)
5dd1ad88e8daabdd120c401431088fe8326d86ff
Vandeilsonln/Python_Automate_Boring_Stuff_Exercises
/Chapter-10_Debugging/personalnotes.py
3,054
3.671875
4
#! python3 import logging logging.basicConfig(filename=r'C:\delicious\logfile.txt', level=logging.DEBUG, format=' %(asctime)s - %(levelname)s - %(message)s') # logging.disable(logging.CRITICAL) # Comment this out to disable logging messages to be diplayed # I'll be writing the author's suggestion and notes in this code. # ---------------------------------------- # RAISING EXCEPTIONS def boxPrint(symbol, width, height): if len(symbol) != 1: raise Exception('Symbol must be a single character string.') if width <=2: raise Exception('Width must be greater than 2.') if height <= 2: raise Exception('Height must be greater than 2.') print(symbol * width) for i in range(height-2): print(symbol + (' ' * (width - 2) + symbol)) print(symbol * width) for sym, w, h in (('*', 4, 4), ('0', 20, 5), ('x', 1, 3), ('ZZ', 3, 3)): try: boxPrint(sym, w, h) except Exception as err: print('An exception happened: ' + str(err)) # ---------------------------------------- print('-' * 50) # GETTING THE TRACEBACK AS A STRING import traceback try: raise Exception('This is the error message.') except: errorFile = open(r'C:\Users\aline\Documents\Coisas do Vandeilson\errorInfo.txt', 'a') errorFile.write(traceback.format_exc()) errorFile.close() print('The traceback info was written to errorInfo.txt') # ---------------------------------------- print('-' * 50) # ASSERTIONS podBayDoorStatus = 'open' # assert podBayDoorStatus == 'open', 'The pod bay doors need to be "open".' podBayDoorStatus = 'I\'m sorry, Dave. I\'m afraid I can\'t do that.' # assert podBayDoorStatus == 'open', 'The pod bay doors need to be "open".' # ---------------------------------------- print('-' * 50) # USING AN ASSERTION IN A TRAFFIC LIGHT SIMULATION market_2nd = {'ns': 'yellow', 'ew': 'green'} mission_16th = {'ns': 'red', 'ew': 'green'} def switch_lights(stoplight): for key in stoplight.keys(): if stoplight[key] == 'green': stoplight[key] = 'yellow' if stoplight[key] == 'yellow': stoplight[key] = 'red' if stoplight[key] == 'red': stoplight[key] = 'green' print(stoplight.values()) # assert 'red' in stoplight.values(), 'Neither light is red! ' + str(stoplight) switch_lights(market_2nd) # ---------------------------------------- print('-' * 50) # LOGGING logging.debug('Start of program') def factorial(n): logging.debug('Start of factorial (%s%%)' % (n)) total = 1 for i in range(1, n + 1): total *= i logging.debug('i is ' + str(i) + ', total is ' + str(total)) logging.debug('End of factorial(%s%%)' % (n)) return total print(factorial(5)) logging.debug('End of Program') # ---------------------------------------- print('-' * 50) # breakpoints import random heads = 0 for i in range(1000): if random.randint(0,1) == 1: heads += 1 if i == 500: print('Halway done!') print('Heads came up ' + str(heads) + ' times.')
dab565b2e260dadc9fb14543fee9df41c84c904a
Vandeilsonln/Python_Automate_Boring_Stuff_Exercises
/Chapter-9_Organizing-Files/renamepictures.py
1,491
3.8125
4
#! python3 # renamepictures.py - The code will go through a directory tree and will rename all the pictures # based on it's creation date. # For now the code will just identify '.jpg' files. Any other formats will remain unchanged, although # their filenames will be written in the 'rejected.txt' file. By doing this, you are aware of any # other formats you have to deal with. import os, shutil from PIL import Image def write_to_reject(rejectedFile): with open('.\\rejected.txt', 'a') as rejected: rejected.write(rejectedFile) rejected.write('\n') # TODO: Create a list of acceptable extension files and make the code working with all of them. def rename_pictures_to_date(rootPath, ext='.jpg'): os.chdir(rootPath) root = os.getcwd() for folderName, subfolders, filenames in os.walk(root): for file in filenames: if not file.endswith(ext): write_to_reject(file) continue else: oldName = os.path.abspath(folderName) + '\\' + file with Image.open(oldName) as photo: try: info = photo._getexif() newFileName = root + '\\' + (info[36867].replace(':', '_')) + ext # shutil.move(oldName, newFileName) except: write_to_reject(file) return 'Done.' print(rename_pictures_to_date(r'C:\Users\aline\Pictures\Viagens', '.jpg'))
180595fd0f78376e8b9d3da6af980876a743fcda
Vandeilsonln/Python_Automate_Boring_Stuff_Exercises
/Chapter-9_Organizing-Files/selective_copy.py
1,268
4.125
4
#! python3 # selective_copy.py - Once given a folder path, the program will walk through the folder tree # and will copy a specific type of file (e.g. .txt or .pdf). They will be copied to a new folder. import os, shutil def copy_files(folderPath, destinyPath, extension): """ Copy files from 'folderPath' to 'destinyPath' according to 'extension'. folderPath (str) - absolute path of the origin folder. destinyPath (str) - absolute path of the destination folder extension (str) - extension that will work as a filter. Only files with this extension will be copied. """ try: for currentFolder, subfolders, filenames in os.walk(folderPath): print(f'Looking for {extension} files in {currentFolder}') for file in filenames: if file.endswith(extension): print(f'\tFound file: {os.path.basename(file)}.') newFilePath = os.path.join(destinyPath, file) + extension shutil.copy(os.path.join(currentFolder, file), newFilePath) except: print('Something went wrong. Please, verify the function arguments and try again.') print('Done.') return None copy_files('C:\\delicious', 'C:\\Python_Projetos', '.zip')
26d42973cb952c3c2af0cddba3d4772c34b2d788
Liam-Hearty/ICS3U-Unit2-03-Python
/circumference_finder.py
493
4.625
5
#!/usr/bin/env python3 # Created by: Liam Hearty # Created on: September 2019 # This program will calculate the circumference of a determined circle radius. import constants def main(): # this function will calculate the circumference # input radius = int(input("Enter the radius of circle (mm): ")) # process circumference = constants.TAU*radius # output print("") print("circumference is {}mm".format(circumference)) if __name__ == "__main__": main()
8c22a3529adcc775f3178ebe0c2a500e2ba98d74
Snehitkale/pythonprogramminglab
/lab_function.py
658
4.09375
4
def armn(x): #define a function sum=0 #then assign variables for values t=x #using while loop assign a condition while(t>0): #using a variable d assign a condition of input number to it d=t%10 #then use the if....else function to get the output sum+=d**3 #using return function and print the code. t=t//10 if sum==x: return "amstrong number" else: return "not an amstrong number" x=int(input("enter number")) print(armn(x))
748da75ce2505e4ea7c3a099ce23016174eced4c
Ziqi-Li/Cracking-the-code-for-interview
/Ch4. Trees and Graphs /4.2.py
1,148
3.921875
4
''' Ziqi Li 8.2 Implement the "paint fill" function that one might see on many image editing programs. That is, given a screen (represented by a 2-dimensional array of Colors), a point, and a new color, fill in the surrounding area until you hit a border of that color. ''' from collections import deque def BFS(g,start,end): dq = deque([[start]]) path=[] while dq: cur = dq.popleft() if cur[-1] == end: path.append(cur) for i in xrange(0,len(g[start])): if i!=cur[-1] and g[cur[-1]][i]==1: newPath = cur+[i] dq.append(newPath) return path def DFS(g,start,end): def helper(g,start,end,path,res): if start == end: res.append(path) return for i in xrange(0,len(g[start])): if i!=start and g[start][i]==1: helper(g,i,end,path+[i],res) res = [] helper(g,start,end,[start],res) return res def printM(m): for k in m: print k def main(): matrix = [[1,1,1,0,0,0,0],[0,1,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,1,1],[0,0,0,1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]] print "G is:" printM(matrix) print "BFS path",BFS(matrix,0,6) print "DFS path",DFS(matrix,0,6) if __name__ == "__main__": main()
df06470e115da8ebaa8e2e9435c68d4595dec9e4
Ziqi-Li/Cracking-the-code-for-interview
/Ch2. Linked List/2.3.py
902
4.0625
4
''' Ziqi Li 2.3 Implement an algorithm to delete a node in the middle of a single linked list, given only access to that node. EXAMPLE Input: the node 'c' from the linked list a->b->c->d->e Result: nothing is returned, but the new linked list looks like a->b->d->e ''' class node(object): def __init__(self,data,next): self.data = data self.next = next def printList(list): if not list: print None return while list!= None: print str(list.data) list = list.next def deleteNode(nodeX): while nodeX.next: p = nodeX nodeX.data = nodeX.next.data nodeX = nodeX.next p.next = None def main(): list = node(0,node(1,node(2,node(3,node(4,node(5,None)))))) index = 2 c = list for i in range(0,index): c = c.next deleteNode(c) printList(list) if __name__ == "__main__": main()
e579216c6a8e871f956dcfab2c3902e182a75017
Ziqi-Li/Cracking-the-code-for-interview
/Ch8. Recursion/8.2.py
1,230
4.09375
4
''' Ziqi Li 8.2 Implement the "paint fill" function that one might see on many image editing programs. That is, given a screen (represented by a 2-dimensional array of Colors), a point, and a new color, fill in the surrounding area until you hit a border of that color. ''' def robotWalk(m, n): if m == 1 or n == 1: return 1 else: return robotWalk(m-1,n) + robotWalk(m,n-1) def robotPaths(matrix): n = len(matrix) m = len(matrix[0]) def dfs(n,m,i,j,path,res): if i==n and j==m and matrix[i-1][j-1]==0: res.append(path+[(i,j)]) return if i+1<=n and matrix[i][j-1]==0: dfs(n,m,i+1,j,path+[(i,j)],res) if j+1<=m and matrix[i-1][j]==0: dfs(n,m,i,j+1,path+[(i,j)],res) res = [] dfs(n,m,1,1,[],res) return res def printM(m): for k in m: print k def main(): matrixA = [[0,0,0,1,1,1,1,0],[0,0,1,0,0,0,1,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0],[0,1,1,1,0,0,0,0],[0,0,0,1,1,0,0,0]] matrixB = [[0,0,0,1],[1,0,0,0],[0,0,0,0]] printM(matrixB) A = robotPaths(matrixB) print "without traps there are:",robotWalk(len(matrixB),len(matrixB[0])),"paths" print "with traps paths are:" for i in A: print i if __name__ == "__main__": main()
28fb6e72d2529ad57810ed6545e84db41f4a4471
Ziqi-Li/Cracking-the-code-for-interview
/Ch1. Arrays and Strings/1.6.py
730
3.890625
4
''' Ziqi Li 1.6 Given an image represented by an NxN matrix, where each pixel in the image is 4 bytes, write a method to rotate the image by 90 degrees. Can you do this in place? ''' def rotate(img,n): for i in range (0,n): for j in range (i+1,n): img[i][j], img[j][i] = img[j][i], img[i][j] for i in range (0,n/2): for j in range (0,n): img[i][j], img[n-i-1][j] = img[n-i-1][j], img[i][j] return img def main(): print rotate([1],1) print rotate([[1,2],[3,4]],2) print rotate([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]],4) print rotate([[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20],[21,22,23,24,25]],5) if __name__ == '__main__': main()
b478e1623d95f0cc868f41ba52824423a8e2fc93
petef4/payg
/footnote.py
1,054
3.65625
4
from textwrap import fill def definitions(footnotes): """Convert JSON footnotes into a format suitable for Jinja2. In JSON a footnote is a list. The first element is the id. Other elements are either string or list, concatenated to make the text. A list is a grade (e.g. poor) followed by a string that will be rendered in a span with class="{{ grade }}". The definitions returned have numbers, ids and plain and rich text. The index returned is a map from id to index into definitions. """ defs = [] index = {} for i, footnote in enumerate(footnotes): id, *text = footnote defs.append({ 'number': i + 1, 'id': id, 'richtext': text, 'tooltip': tooltip(text)}) index[id] = i return defs, index def tooltip(richtext, width=40): """Strip out rich formattting and fill to fixed width.""" text = [item[1] if isinstance(item, list) else item for item in richtext] return fill(' '.join(text), width=width)
0d36514e5d069335e7e00b9f1ce6f88635624b65
eleven2021/xor
/xor.py
544
3.6875
4
def crypto_text_to_hex(src_text, key): xor_code = key while len(src_text) > len(xor_code): xor_code += key return "".join([chr(ord(data) ^ ord(code)) for (data, code) in zip(src_text, xor_code)]).encode().hex() def decrypto_hex_to_text(hex_text, key): crypt_data = bytes.fromhex(hex_text).decode() xor_code = key while len(crypt_data) > len(xor_code): xor_code += key return "".join([chr(ord(data) ^ ord(code)) for (data, code) in zip(crypt_data, xor_code)])
57d65fa197e6ad4672a2f5cc5cfc049c9de3af0b
ronyu21/data-analysis-app
/src/DataAnalysisApp.py
5,434
3.96875
4
from typing import List import matplotlib.pyplot as plt from src.FileHandling import load_csv_to_2d_list, save_data_to_csv if __name__ == "__main__": # load from csv file and save as a list data_list = load_csv_to_2d_list('./resource/Emissions.csv') # transform the list to become dictionary # with the first item as key, the remaining list as value data_dict = dict() for item in data_list: key = item[0] value = item[1:] data_dict.setdefault(key, value) # output the dictionary as shown in the email day 1 # key - value # for key, val in data_dict.items(): # print(key, ' - ', val) # day 2 print("All data from Emissions.csv has been read into a dictionary\n") # wait for user input target_year = input("Select a year to find statics (1997 to 2010): ") # find the index of the user input header_row_key = "CO2 per capita" index = None years = data_dict.get(header_row_key) temp_idx = 0 for year in years: if target_year == year: index = temp_idx break temp_idx += 1 if index is None: print("User entered an invalid year: {}".format(target_year)) exit(-1) # extract the emissions for the target year target_year_emissions = [] target_year_emission_countries = [] for k, v in data_dict.items(): if k == header_row_key: continue else: target_year_emissions.append(float(v[index])) target_year_emission_countries.append(k) # calculate the min, max, average min_val = min(target_year_emissions) min_val_country = target_year_emission_countries[target_year_emissions.index(min_val)] max_val = max(target_year_emissions) max_val_country = target_year_emission_countries[target_year_emissions.index(max_val)] avg_val = sum(target_year_emissions) / len(target_year_emissions) # output the result as shown in email print('In {}, countries with minimum and maximum CO2 emission levels were [{}] and [{}] respectively.'.format( target_year, min_val_country, max_val_country)) print('Average CO2 emissions in {} were {:0.6f}'.format(target_year, avg_val)) # day 3 visualize the data for specific country # get target country from user input target_country = input("Select the country to visualize: ").capitalize() # get the year data and convert to int year_header = list(map(lambda x: int(x), data_dict.get(header_row_key))) # get the data for the targeted country target_country_data = data_dict.get(target_country) if target_country_data is None: print("No emission data for {} available".format(target_country_data)) exit(-1) # convert string values to float target_country_data = list(map(lambda x: float(x), target_country_data)) fig, ax = plt.subplots() ax.plot(year_header, target_country_data) ax.set(xlabel='Year', ylabel='Emissions in {}'.format(target_country), title='Year vs Emission in Capita') plt.show() print("\n") # day 4 plotting a comparison graph # get user inputs target_countries = input("Write two comma-separated countries for which you want to visualize data: ").split(",") # create temporary plotting data dictionary plotting_data = dict() # iterate through the target countries to obtain data and store in the temporary variable for target in target_countries: # strip the whitespace and capitalize the string striped_capitalized_country_name = target.strip().capitalize() plotting_data.setdefault(striped_capitalized_country_name, list(map(lambda x: float(x), data_dict.get(striped_capitalized_country_name)))) # create a new plot fig, ax = plt.subplots() # plotting data for data in plotting_data.keys(): ax.plot(year_header, plotting_data.get(data), label=data) # add legend to plot ax.legend() ax.set(xlabel='Year', ylabel='Emissions in', title='Year vs Emission in Capita') # display the plot plt.show() # day 5 exporting subset of data # get user input target_countries = input("Write up to three comma-separated countries for which you want to extract data: ").split( ",") # ensure user only enter maximum of 3 countries if len(target_countries) > 3: print("ERR: Sorry, at most 3 countries can be entered.") exit(-1) # temporary data storage variable extracted_data = [] # get and prepare headers header = data_dict.get(header_row_key) header.insert(0, header_row_key) extracted_data.append(','.join(header) + '\n') countries = None # get the country data for target in target_countries: striped_capitalized_country_name = target.strip().capitalize() data: List = data_dict.get(striped_capitalized_country_name) data.insert(0, striped_capitalized_country_name) if countries is None: countries = striped_capitalized_country_name else: countries += ', ' + striped_capitalized_country_name extracted_data.append(','.join(data) + '\n') # call data save function save_data_to_csv('./resource/Emissions_subset.csv', extracted_data) print("Data successfully extracted for countries {} saved into file Emissions_subset.csv".format(countries))
eac543f52b8e273aaa54942592edc2e1d0680759
dudu9999/Tkinter_Projects_dudu9999
/03 - muda label Funcionou/main.py
366
3.671875
4
from tkinter import * def bt_click(): print("Botao clicado") lb['text'] = 'Funcionou' janela = Tk() janela.title("Janela Principal") janela["bg"] = "purple" lb = Label(janela, text="Texto Label") lb.place(x=120, y=100) bt = Button(janela, width=20, text='OK', command=bt_click ) bt.place(x=80, y=150) janela.geometry("300x300+200+200") janela.mainloop
2b37622cd4de1d5beb32d3e3734ebd704f5582e2
bipins867/Python-Server-Clinet-Remote-Controlling
/Encode.py
1,412
3.53125
4
#Encoder from collections import OrderedDict from re import sub def encode(text): ''' Doctest: >>> encode('WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW') '12W1B12W3B24W1B14W' ''' return sub(r'(.)\1*', lambda m: str(len(m.group(0))) + m.group(1), text) def decode(text): ''' Doctest: >>> decode('12W1B12W3B24W1B14W') 'WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW' ''' return sub(r'(\d+)(\D)', lambda m: m.group(2) * int(m.group(1)), text) def runLengthEncoding(input): # Generate ordered dictionary of all lower # case alphabets, its output will be # dict = {'w':0, 'a':0, 'd':0, 'e':0, 'x':0} dict=OrderedDict.fromkeys(input, 0) print(dict) # Now iterate through input string to calculate # frequency of each character, its output will be # dict = {'w':4,'a':3,'d':1,'e':1,'x':6} for ch in input: dict[ch] += 1 print(dict) # now iterate through dictionary to make # output string from (key,value) pairs output = '' for key,value in dict.items(): output = output + key + str(value) return output # Driver function if __name__ == "__main__": input="wwwwaaadexxxxxx" print (runLengthEncoding(input))
32f56e3193bb85c6b23213a1e09332aef8f5ac17
bjrubinstein/PyHSPF
/examples/evapotranspiration/etexample01.py
9,200
3.65625
4
# etexample01.py # # David J. Lampert ([email protected]) # # last updated: 03/15/2015 # # this example shows how to use the ETCalculator class to compute daily # reference evapotranspiration from the other time series after using the # ClimateProcessor class to extract and aggregate the climate data from the # World Wide Web. the script consists of five parts: # # 1. download and aggregate climate data # 2. get pan evaporation data # 3. get areal-weighted average latitude, longitude, and elevation # 4. calculate reference evapotranspiration # 5. plot (4) vs (2) for comparison # import os, datetime, pickle from pyhspf.preprocessing import ClimateProcessor, ETCalculator from shapefile import Reader # output directory for data files output = 'HSPF_data' if not os.path.isdir(output): os.mkdir(output) # start and end dates start = datetime.datetime(1980, 1, 1) end = datetime.datetime(2010, 1, 1) # use the "subbasin_catchments" shapefile to define the data processing area filename = 'subbasin_catchments' if not os.path.isfile(filename + '.shp'): print('error: file {} does not exist!'.format(filename)) raise # make an instance of the ClimateProcessor to fetch the climate data processor = ClimateProcessor() # the Penman-Monteith Equation requires temperature, humidity of dewpoint, # wind speed, and solar radiation, which can be obtained from the processor processor.download_shapefile(filename, start, end, output, space = 0.) # let's get the daily tmin, tmax, dewpoint, and wind speed from GSOD tmax = processor.aggregate('GSOD', 'tmax', start, end) tmin = processor.aggregate('GSOD', 'tmin', start, end) dewt = processor.aggregate('GSOD', 'dewpoint', start, end) wind = processor.aggregate('GSOD', 'wind', start, end) # let's use the hourly METSTAT data from the NSRDB for solar radiation solar = processor.aggregate('NSRDB', 'metstat', start, end) # since the solar data are hourly and this example uses daily ET, the time # series has to be aggregated to an average daily value solar = [sum(solar[i:i+24]) / 24 for i in range(0, 24 * (end-start).days, 24)] # let's parse the GHCND data and see if there are any pan evaporation # observations (only available from GHCND) to compare with estimated PET # (there are two stations with data); let's store the data in a dictionary # structure with keys as names and values as the timeseries data evaporation = {} for k, v in processor.metadata.ghcndstations.items(): if v['evap'] > 0: its = v['name'], v['evap'] print('station {} has {} evaporation observations'.format(*its)) # open up the file and use the GHCNDStation instance to get the data with open(k, 'rb') as f: s = pickle.load(f) data = s.make_timeseries('evaporation', start, end) # ignore datasets with no observations during the requested period observations = [v for v in data if v is not None] if len(observations) > 0: # the pan evaporation data are "backward-looking;" i.e., the value # for June 2 represents evaporation between midnight June 1 and # midnight June 2; whereas the ETCalculator uses data that are # "forward-looking;" i.e., tmin, tmax, dewpoint, wind speed for # June 2 represent values between midnight June 2 and midnight # June 3; so the pan evaporation data must be shifted forward by # a day for comparison. evaporation[v['name']] = data[1:] + [None] print('') # the ETCalculator class uses the Penman-Monteith Equation to estimate # evapotranspiration time series; let's make an instance to use calculator = ETCalculator() # the ETCalculator makes use of hourly and daily time series that must be # supplied externally as: # # 1. time series type (temperature, dewpoint, humidity, wind, solar, etc) # 2. time step step ("daily", "hourly", or size in minutes, e.g., 60, 1440) # 3. start time # 4. list of data values # # note these are the same formats used by the PyHSPF HSPFModel class # so now we can add the daily timeseries from above calculator.add_timeseries('tmin', 'daily', start, tmin) calculator.add_timeseries('tmax', 'daily', start, tmax) calculator.add_timeseries('dewpoint', 'daily', start, dewt) calculator.add_timeseries('wind', 'daily', start, wind) calculator.add_timeseries('solar', 'daily', start, solar) # the temperature and dewpoint are assumed to be in C, wind speed in m/s, and # solar radiation in W/m2; these are the units supplied by the other classes # in PyHSPF already so no manipulation is needed # some of the parameters in the Penman-Monteith Equation depend on the # geographic location so let's use the information in the shapefile to # provide the average longitude, latitude, and elevation sf = Reader(filename) # make a list of the fields for each shape fields = [f[0] for f in sf.fields] # get the area, centroid and elevation of each shape areas = [r[fields.index('AreaSqKm') - 1] for r in sf.records()] xs = [r[fields.index('CenX') - 1] for r in sf.records()] ys = [r[fields.index('CenY') - 1] for r in sf.records()] zs = [r[fields.index('AvgElevM') - 1] for r in sf.records()] # get the areal-weighted averages lon = sum([a * x for a, x in zip(areas, xs)]) / sum(areas) lat = sum([a * y for a, y in zip(areas, ys)]) / sum(areas) elev = sum([a * z for a, z in zip(areas, zs)]) / sum(areas) # add the information to the calculator calculator.add_location(lon, lat, elev) # it is pretty trivial to get the corresponding reference evapotranspiration # (RET) time series from the Daily Penman-Monteith Equation if the necessary # data are available by calling the public "penman_daily" method calculator.penman_daily(start, end) # the RET estimates are stored in the calculator's daily timeseries dictionary # with the start date and data (the timestep is 1440 minutes = 1 day) start, RET = calculator.daily['RET'] # calculate the linear regression between the Penman-Monteith model and the # observed pan evaporation using scipy from scipy import stats # plot up the results (note that there are no observations over the winter) from matplotlib import pyplot, dates, ticker fig = pyplot.figure(figsize = (8,10)) # make plots for 1. evaporation (3x) 2. temperature (2x) 3. solar 4. wind subs = [] subs.append(pyplot.subplot2grid((7,1), (0,0), rowspan = 3)) subs.append(pyplot.subplot2grid((7,1), (3,0), rowspan = 2, sharex = subs[-1])) subs.append(pyplot.subplot2grid((7,1), (5,0))) subs.append(pyplot.subplot2grid((7,1), (6,0))) # make a list of times times = [start + i * datetime.timedelta(days = 1) for i in range((end-start).days)] subs[0].plot_date(times, RET, fmt = '-', lw = 2, color = 'green', label = 'Penman-Monteith Equation') # make a label for the series l = '' # plot the pan evaporation for comparison colors = ('green', 'brown', 'blue', 'red') for k,c in zip(evaporation, colors): v = evaporation[k] # remove the Nones (first have to remove the predictions that have no # corresponding observation) model = [m for o,m in zip(v, RET) if o is not None] data = [o for o,m in zip(v, RET) if o is not None] m, b, r, p, stderr = stats.linregress(model, data) subs[0].plot_date(times, v, fmt = 's', markerfacecolor = 'None', markeredgecolor = c, markersize = 4, label = k) # add a label with the correlation and pan coefficient its = k[:20] + ':', m, b, r**2 l += '{:<20s}\ny = {:.2f}x + {:.2f}; r\u00B2 = {:.2f}\n'.format(*its) # add the regression info t = subs[0].text(0.01,0.98, l, ha = 'left', va = 'top', fontsize = 9, transform = subs[0].transAxes) subs[-1].xaxis.set_major_locator(dates.YearLocator(3)) subs[-1].xaxis.set_major_formatter(dates.DateFormatter('%Y')) subs[0].set_ylim((0, 12)) subs[0].set_ylabel('Evaporation (mm)', fontsize = 11) subs[0].legend(fontsize = 8) subs[1].plot_date(times, tmin, fmt = '-', color = 'blue', label = 'tmin') subs[1].plot_date(times, tmax, fmt = '-', color = 'red', label = 'tmax') subs[1].plot_date(times, dewt, fmt = '-', color = 'green', label = 'dewpoint') subs[1].set_ylabel('Temperature\n(\u00B0C)', fontsize = 11) subs[1].legend(fontsize = 8) subs[2].plot_date(times, solar, fmt = '-', color = 'orange') subs[2].set_ylabel('Solar Radiation\n(W/m\u00B2)', fontsize = 11) subs[3].plot_date(times, wind, fmt = '-', color = 'purple') subs[3].set_ylabel('Wind\n(m/s)', fontsize = 11) for t in (subs[0].xaxis.get_ticklabels() + subs[1].xaxis.get_ticklabels() + subs[2].xaxis.get_ticklabels()): t.set_visible(False) for t in (subs[0].yaxis.get_ticklabels() + subs[1].yaxis.get_ticklabels() + subs[2].yaxis.get_ticklabels() + subs[3].yaxis.get_ticklabels()): t.set_fontsize(10) for sub in subs[-2:]: sub.yaxis.set_major_locator(ticker.MaxNLocator(6)) filename = '{}/daily_penman_monteith'.format(output) pyplot.suptitle('Penman-Monteith Calculation') pyplot.subplots_adjust(hspace = 0.3, top = 0.95) pyplot.savefig(filename) pyplot.show()
c9497ad2a313d2664ee99f371138776ab980f1f4
hugovk/wotdbot
/wotdbot.py
3,644
3.609375
4
#!/usr/bin/env python """ Pick a random [Finnish] word from a word list, open its Wiktionary page and tweet it """ import argparse import random import sys import webbrowser from urllib.parse import quote import yaml # pip install pyyaml from twitter import OAuth, Twitter # pip install twitter def load_yaml(filename): with open(filename) as f: data = yaml.safe_load(f) if not data.keys() >= { "oauth_token", "oauth_token_secret", "consumer_key", "consumer_secret", }: sys.exit("Twitter credentials missing from YAML: " + filename) return data def random_word(filename): words = [] with open(filename, encoding="utf-8") as infile: for line in infile: words.append(line.rstrip()) print("Loaded", len(words), "words") randnum = random.randrange(len(words)) print("Random number:", randnum) word = words[randnum] print(word) return word def open_url(url): print(url) if not args.no_web: webbrowser.open(url, new=2) # 2 = open in a new tab, if possible def tweet_it(string, credentials): if len(string) <= 0: return # Create and authorise an app with (read and) write access at: # https://dev.twitter.com/apps/new # Store credentials in YAML file. See data/onthisday_example.yaml t = Twitter( auth=OAuth( credentials["oauth_token"], credentials["oauth_token_secret"], credentials["consumer_key"], credentials["consumer_secret"], ) ) print("TWEETING THIS:\n", string) if args.test: print("(Test mode, not actually tweeting)") else: result = t.statuses.update(status=string) url = ( "http://twitter.com/" + result["user"]["screen_name"] + "/status/" + result["id_str"] ) print("Tweeted:\n" + url) if not args.no_web: webbrowser.open(url, new=2) # 2 = open in a new tab, if possible if __name__ == "__main__": parser = argparse.ArgumentParser( description="Pick a random word from a word list, open its " "Wiktionary page and tweet it", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "-y", "--yaml", default="/Users/hugo/Dropbox/bin/data/wotdbot.yaml", help="YAML file location containing Twitter keys and secrets", ) parser.add_argument( "-w", "--wordlist", default="data/finnish.txt", help="Filename of word list with a single word per line", ) parser.add_argument( "-x", "--test", action="store_true", help="Test mode: don't tweet" ) parser.add_argument( "-nw", "--no-web", action="store_true", help="Don't open a web browser to show the tweeted tweet", ) args = parser.parse_args() twitter_credentials = load_yaml(args.yaml) # Can generate word lists with wotdbot_extract_words.py word = random_word(args.wordlist) url_word = quote(word.encode("utf8")) foreign_url = "https://fi.wiktionary.org/wiki/" + url_word + "#Suomi" open_url(foreign_url) native_url = "https://en.wiktionary.org/wiki/" + url_word + "#Finnish" open_url(native_url) tweet = ( "Finnish word of the day: " + word + " " + native_url + " " + foreign_url + " #Finnish #WOTD #Suomi #" + word.replace(" ", "") ) print("Tweet this:\n", tweet) tweet_it(tweet, twitter_credentials) # End of file
cfbb448e37e667067f98ffcfbf1c7972b807f85e
xiawq1/leetcode-c-
/leetcode/stack.py
4,902
3.5625
4
#coding:gbk #ջźƥ䣬ųջжջǷΪգΪΪTrueΪFalse. class Solution: def isValid(self, s): stack = [] #ڴſ mapping = {')':'(', '}':'{', ']':'['} #ɢбƥ for char in s: if char in mapping: if len(stack) != 0: tmp = stack.pop() if mapping[char] != tmp: return False else: return False else: stack.append(char) return not stack Solution().isValid("([)]") #42 class Solution: def trap(self, height): if len(height) < 3: return 0 hei_len = len(height) left = 0 right = hei_len - 1 max_left = height[0] max_right = height[-1] res = 0 while left < right: if height[left] < height[right]: #עߵұʱ߿ʼߴұʱұ߿ʼԶϵһ࣡ if max_left < height[left]: max_left = height[left] else: res += max_left - height[left] left += 1 # else: if max_right < height[right]: max_right = height[right] else: res += max_right - height[right] right -= 1 return res Solution().trap([0,1,0,2,1,0,1,3,2,1,2,1]) #ջӦhttps://leetcode-cn.com/problems/trapping-rain-water/solution/dan-diao-zhan-jie-fa-fu-xiang-xi-jie-ti-kmyyl/ class Solution(object): def trap(self, height): """ :type height: List[int] :rtype: int """ if len(height) < 3: return 0 stack = [] ######¼ sum = 0 for i in range(0, len(height)): while stack and height[i] > height[stack[-1]]: temp = height[stack.pop()] if stack: w = i - stack[-1] - 1 # h = min(height[i], height[stack[-1]])-temp sum += w*h stack.append(i) return sum #496 class Solution: def nextGreaterElement(self, nums1, nums2): stack = [] dic = {} for i in nums2: while stack and stack[-1] < i: dic[stack.pop()] = i stack.append(i) return [dic.get(i, -1) for i in nums1] Solution().nextGreaterElement([4,1,2], [1,3,4,2]) #503 class Solution: def nextGreaterElements(self, nums): nums1 = nums + nums res = [-1] * len(nums1) #ſԽres[stack.pop()] = nums1[i] # tar = nums[0] stack = [] for i in range(len(nums1)): while stack and nums1[stack[-1]] < nums1[i]: res[stack.pop()] = nums1[i] stack.append(i) return res[:len(nums)] #739 class Solution: def dailyTemperatures(self, T): stack = [] res = [0] * len(T) for i in range(len(T)): while stack and T[stack[-1]] < T[i]: j = stack.pop() res[j] = i - j stack.append(i) return res #901 class StockSpanner(object): def __init__(self): self.stack = [] def next(self, price): weight = 1 while self.stack and self.stack[-1][0] <= price: weight += self.stack.pop()[1] self.stack.append((price, weight)) return weight #84 class Solution: def largestRectangleArea(self, heights): n = len(heights) left, right = [0] * n, [0] * n ## ұ mono_stack = list() for i in range(n): while mono_stack and heights[mono_stack[-1]] >= heights[i]: mono_stack.pop() left[i] = mono_stack[-1] if mono_stack else -1 mono_stack.append(i) mono_stack = list() for i in range(n - 1, -1, -1): while mono_stack and heights[mono_stack[-1]] >= heights[i]: mono_stack.pop() right[i] = mono_stack[-1] if mono_stack else n mono_stack.append(i) ans = max((right[i] - left[i] - 1) * heights[i] for i in range(n)) if n > 0 else 0 return ans Solution().largestRectangleArea([2,1,5,6,2,3]) #71 class Solution: def simplifyPath(self, path): stack = [] path = path.split("/") for item in path: if item == "..": if stack : stack.pop() elif item and item != ".": stack.append(item) return "/" + "/".join(stack) Solution().simplifyPath("/a/./b/../../c/")
8f8b1f239de525c01abfce4e556caed1f12a9300
JensMellberg/Neural-Networks-Exercise-2
/Exercise2.py
6,083
3.65625
4
# coding: utf-8 # # Tensorflow Tutorial (MNIST with one hidden layer) # ## Neural Networks (TU Graz 2018) # (Adapted from the documentation of tensorflow, find more at: www.tensorflow.org) # # # Improving the MNIST tutorial by adding one hidden layer # # <img src="hidden_layer.png" style="width: 200px;" /> # In[1]: #get_ipython().run_line_magic('matplotlib', 'inline') # Import dataset and libraries. # Please ignore the deprecation warning while importing the MNIST dataset. # In[11]: from nn18_ex2_load import load_isolet import tensorflow as tf import numpy as np import numpy.random as rd import matplotlib.pyplot as plt import sys from tensorflow.examples.tutorials.mnist import input_data #mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) (X, C, X_tst, C_tst) = load_isolet() #print(X.shape[0]) #print( X[1,:]) #print(np.mean(X[1,:])) #print(np.std(X[1,:])) # for i in range(X.shape[0]): mean = np.mean(X[i,:]) std = np.std(X[i,:]) for f in range(X.shape[1]): X[i,f] = (X[i,f] - mean)/std #print(np.std(X[1,:])) #print(np.std(X[5,:])) #print(X[1,:]) C_matrix = np.zeros((6238,26)) for x in range(6238): C_matrix[x,C[x]-1] = 1 C_matrix_test = np.zeros((1559,26)) for x in range(1559): C_matrix_test[x,C_tst[x]-1] = 1 print(X.shape) C = C_matrix C_tst = C_matrix_test # Define your variables and the operations that define the tensorflow model. # - x,y,z do have have numerical values, those are symbolic **"Tensors"** # - x is a matrix and not a vector, is has shape [None,784]. The first dimension correspond to a **batch size**. Multiplying larger matrices is usually faster that multiplying small ones many times, using minibatches allows to process many images in a single matrix multiplication. # In[3]: final = False if len(sys.argv) > 1 and sys.argv[1] == "final": final = True if not final: Val_set = X[0:1247,:] Val_set_tar = C[0:1247,:] X = X[1247:,:] C = C[1247:,:] # Give the dimension of the data and chose the number of hidden layer n_in = 300 n_out = 26 n_hidden = 220 learning_rate = 0.3 # Set the variables W_hid = tf.Variable(rd.randn(n_in,n_hidden) / np.sqrt(n_in),trainable=True) b_hid = tf.Variable(np.zeros(n_hidden),trainable=True) w_out = tf.Variable(rd.randn(n_hidden,n_out) / np.sqrt(n_in),trainable=True) b_out = tf.Variable(np.zeros(n_out)) # Define the neuron operations x = tf.placeholder(shape=(None,300),dtype=tf.float64) y = tf.nn.tanh(tf.matmul(x,W_hid) + b_hid) z = tf.nn.softmax(tf.matmul(y,w_out) + b_out) # Define the loss as the cross entropy: $ - \sum y \log y'$ # In[4]: z_ = tf.placeholder(shape=(None,26),dtype=tf.float64) cross_entropy = tf.reduce_mean(-tf.reduce_sum(z_ * tf.log(z), reduction_indices=[1])) # The operation to perform gradient descent. # Note that train_step is still a **symbolic operation**, it needs to be executed to update the variables. # # In[23]: #argument is learning rate train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy) # To evaluate the performance in a readable way, we also compute the classification accuracy. # In[8]: correct_prediction = tf.equal(tf.argmax(z,1), tf.argmax(z_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64)) # Open a session and initialize the variables. # In[7]: init = tf.global_variables_initializer() # Create an op that will sess = tf.Session() sess.run(init) # Set the value of the variables to their initialization value # In[24]: # Re init variables to start from scratch sess.run(init) # Create some list to monitor how error decreases test_loss_list = [] train_loss_list = [] test_acc_list = [] train_acc_list = [] # Create minibatches to train faster k_batch = 40 X_batch_list = np.array_split(X,k_batch) labels_batch_list = np.array_split(C,k_batch) train_acc_final=0 test_acc_final=0 final_test_eval = 0 epochs=0 iterations = 50 if final: iterations = int(sys.argv[2]) for k in range(iterations): # Run gradient steps over each minibatch for x_minibatch,labels_minibatch in zip(X_batch_list,labels_batch_list): sess.run(train_step, feed_dict={x: x_minibatch, z_:labels_minibatch}) train_loss = sess.run(cross_entropy, feed_dict={x:X, z_:C}) train_acc = sess.run(accuracy, feed_dict={x:X, z_:C}) test_loss = 0 test_acc = 0 if final: test_loss = sess.run(cross_entropy, feed_dict={x:X_tst, z_:C_tst}) test_acc = sess.run(accuracy, feed_dict={x:X_tst, z_:C_tst}) else: test_loss = sess.run(cross_entropy, feed_dict={x:Val_set, z_:Val_set_tar}) test_acc = sess.run(accuracy, feed_dict={x:Val_set, z_:Val_set_tar}) #test_acc = sess.run(accuracy, feed_dict={x:X_tst, z_:C_tst}) if test_acc > test_acc_final and not final: train_acc_final=train_acc test_acc_final=test_acc epochs=k final_test_eval = sess.run(accuracy, feed_dict={x:X_tst, z_:C_tst}) # Put it into the lists test_loss_list.append(test_loss) train_loss_list.append(train_loss) test_acc_list.append(test_acc) train_acc_list.append(train_acc) if np.mod(k,10) == 0: print('iteration {} test accuracy: {:.3f}'.format(k+1,test_acc)) # In[25]: if not final: print("Training error") print(train_acc_final) print("Validation error") print(test_acc_final) print("Epochs") print(epochs) print("Test set accuracy") print(final_test_eval) else: print("Training error") print(train_acc_list[-1]) print("Test error") print(test_acc_list[-1]) fig,ax_list = plt.subplots(1,2) ax_list[0].plot(train_loss_list, color='blue', label='training', lw=2) ax_list[0].plot(test_loss_list, color='green', label='testing', lw=2) ax_list[1].plot(train_acc_list, color='blue', label='training', lw=2) ax_list[1].plot(test_acc_list, color='green', label='testing', lw=2) ax_list[0].set_xlabel('training iterations') ax_list[1].set_xlabel('training iterations') ax_list[0].set_ylabel('Cross-entropy') ax_list[1].set_ylabel('Accuracy') plt.legend(loc=2) plt.show()
71fecce0bba7ea6072ac11c0c7e82466480c5015
EdgeLord836/229
/Labs_Mat_Vec_etc/Lab3_229.py
490
3.75
4
# -*- coding: utf-8 -*- """ Created on Wed Feb 22 15:48:46 2017 @author: Sam """ print('P1') s = [1,2,3,4] def cubes(arg): return [x**3 for x in s if x % 2 == 0] print(cubes(s)) print('\nP2') dct = {0:'A', 1:'B', 2:'C'} keylist = [1,2,0] def dict2list(dct, keylist): return [dct[i] for i in keylist] print(dict2list(dct,keylist)) print('\nP3') L = ['A','B','C'] keylist = [0,1,2] def list2dict(L,keylist): return {x:y for (x,y) in zip(keylist,L)} print(list2dict(L,keylist))
d97f49825c56c71f1f6864c46840bbe7f71237f8
OldSchoolWeaver/WeatherGeneratorApp
/Run.py
2,725
3.609375
4
#!/usr/bin/env python3 # coding: utf-8 import pandas as pd import numpy as np import datetime import random import sys from Aux import * from WeatherSimulator import * from WeatherDataGenerator import * def RunSimulation(): """ This function will create an instance of a simulation and will save the output as as csv file """ #Initialise variables start_date = datetime.datetime.strptime('1900-01-01 00:00:00', '%Y-%m-%d %H:%M:%S') end_date = datetime.datetime.strptime('2019-01-01 00:00:00', '%Y-%m-%d %H:%M:%S') random_date = get_randomDate(start_date,end_date) weather_simulation = WeatherSimulation() #Run and save the simulation try: df = weather_simulation.generate(random_date) print(df.columns) print(df) save_csvFile(df=df, file_location='Simulations/', file_name='weatherforecast_simulation.csv', sep='|', encoding='utf-8' ) print('Simulation run successfully at: ', datetime.datetime.now().replace(microsecond=0).isoformat()) except: print('Error running the weather simulator') def LoadHistoricalData(google_api_key,dark_sky_api_key): """ This function will create an instance of a weather data and retrive the historical data for the specific location save the output as csv file as csv file """ #Load historical data try: #Creates a weather_historical_data object weather_historical_data=WeatherData(google_api_key,dark_sky_api_key) #Returns a pandas data frame with locations df_locations=weather_historical_data.loadLocations() #Returns a pandas data frame with the coordinates of the locations df_geographic_coordinates=weather_historical_data.generateGeographicCoordinates(df_locations) #Returns a pandas data frame with the elevation of the locations df_geographic_elevation=weather_historical_data.generateGeographicElevation(df_geographic_coordinates) #Returns a pandas data frame with historical weather data of the locations df_historical_data=weather_historical_data.generateHistoricalData(df_geographic_elevation) #Saves the data frame into a csv save_csvFile(df=df_historical_data, file_location='Data/', file_name='Locations_HistoricalData.csv', sep='|', encoding='utf-8' ) except: print('Error running the weather data generator') if __name__ == '__main__': #Run Simulation RunSimulation()