blob_id
stringlengths
40
40
repo_name
stringlengths
5
127
path
stringlengths
2
523
length_bytes
int64
22
3.06M
score
float64
3.5
5.34
int_score
int64
4
5
text
stringlengths
22
3.06M
9a171f9585f56bb701ddbf6d88c6437c5123eca2
hcmMichaelTu/python
/lesson14/tri_color_wheel.py
1,797
3.6875
4
import turtle as t import time import math class TriColorWheel: def __init__(self, omega, center=(0, 0), radius=100, colors=("red", "green", "blue"), up_key=None, down_key=None): self.center = center self.radius = radius self.colors = colors self.omega = omega # vận tốc góc độ/giây (+, 0, -) self.angle = 0 # góc điểm chốt A if up_key: t.onkeypress(self.speed_up, up_key) if down_key: t.onkeypress(self.speed_down, down_key) def speed_up(self): self.omega += 2 def speed_down(self): self.omega -= 2 def rotate(self, dt): self.angle += self.omega * dt A = self.angle; B = A + 120; C = B + 120 t.up(); t.goto(self.center); t.down() for angle, color in zip((A, B, C), self.colors): t.color(color) t.begin_fill() t.setheading(angle); t.forward(self.radius); t.left(90) t.circle(self.radius, 120); t.goto(self.center) t.end_fill() def contain(self, point): return math.dist(point, self.center) <= self.radius if __name__ == "__main__": def run(): global tm t.clear() tcw1.rotate(time.time() - tm) tcw2.rotate(time.time() - tm) t.update() tm = time.time() t.ontimer(run, 1000//24) # 24 fps tcw1 = TriColorWheel(180, center=(100, 0), up_key="Left", down_key="Right") tcw2 = TriColorWheel(-180, center=(-100, 0), colors=("cyan", "magenta", "yellow"), up_key="a", down_key="d") t.tracer(False); t.hideturtle(); t.listen() tm = time.time(); run(); t.exitonclick()
db6bca60ff9d43d14f893a5d2afaf0dcb825091b
hcmMichaelTu/python
/lesson08/Newton_sqrt2.py
166
3.75
4
def Newton_sqrt(x): if x < 0: return if x == 0: return 0 y = x for i in range(100): y = y/2 + x/(2*y) return y
a4fbc2deb5430e99feeeafc0af267677f4e957fc
hcmMichaelTu/python
/lesson05/square.py
192
3.71875
4
import turtle as t t.shape("turtle") d = int(input("Kích thước hình vuông? ")) t.forward(d); t.left(90) t.forward(d); t.left(90) t.forward(d); t.left(90) t.forward(d); t.left(90)
2d17aba920279d5c521fcd5646ef53b844dde294
hcmMichaelTu/python
/lesson06/exam.py
191
3.65625
4
điểm_thi = float(input("Bạn thi được bao nhiêu điểm? ")) if điểm_thi < 5: print("Chúc mừng! Bạn đã rớt.") else: print("Chia buồn! Bạn đã đậu.")
113c8f8c95c6b98f181af8c197305be9729c853e
hcmMichaelTu/python
/lesson15/turtle_escape.py
552
3.65625
4
import turtle as t import random t.shape("turtle") d = 20 try: while (abs(t.xcor()) < t.window_width()/2 and abs(t.ycor()) < t.window_height()/2): direction = random.choice("LRUD") if direction == "L": t.setheading(180) elif direction == "R": t.setheading(0) elif direction == "U": t.setheading(90) else: # direction == "D" t.setheading(270) t.forward(d) print("Congratulations!") except t.Terminator: pass
30ab7ff7d01d2d2ac154a8a1643169059633d8a8
hcmMichaelTu/python
/lesson12/turtle_draw2.py
349
3.625
4
import turtle as t def forward(deg): def _forward(): t.setheading(deg) t.forward(d) return _forward t.shape("turtle") d = 20 actions = {"Left": 180, "Right": 0, "Up": 90, "Down": 270} for act in actions: t.onkey(forward(actions[act]), act) t.onkey(t.bye, "Escape") t.listen() t.mainloop()
f7627d984bb9d995801c88ebe76baffac933ebca
hcmMichaelTu/python
/lesson17/triangle.py
271
3.5
4
import sys char = input("Nhập kí hiệu vẽ: ") n = int(input("Nhập chiều cao: ")) stdout = sys.stdout with open("triangle.txt", "wt") as f: sys.stdout = f for i in range(1, n + 1): print(char * i) sys.stdout = stdout print("Done!")
5d437d6e804b72f26526c22418c8f2cb719ed1d6
hcmMichaelTu/python
/lesson18/guess_number2.py
872
3.765625
4
import random def binary_guess(): if left <= right: return (left + right) // 2 else: return None def hint(n, msg): global left, right if msg == "less": left = n + 1 else: right = n - 1 max = 1000 print("Trò chơi đoán số!") print(f"Bạn đoán một con số nguyên trong phạm vi 1-{max}.") left, right = 1, max secret = random.randint(1, max) count = 0 while True: count += 1 input("Press Enter to guess.") n = binary_guess() print(f"Đoán lần {count} số {n}") if n < secret: print("Số bạn đoán nhỏ quá!") hint(n, "less") elif n > secret: print("Số bạn đoán lớn quá!") hint(n, "greater") else: print(f"Bạn đoán đúng số {secret} sau {count} lần.") break
4de83b6bff15ac23aa0a775e068a487b51c771e4
mikemeko/6.01_Tools
/src/core/math/line_segments.py
2,443
3.671875
4
""" Utility for line segments. (1) Check whether two line segments intersect. Credit to: http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect (2) Translate segments. """ __author__ = '[email protected] (Michael Mekonnen)' from core.util.util import overlap from math import atan2 from math import cos from math import pi from math import sin def _cross(V, W): """ Returns the magnitude of the cross product of vectors |V| and |W|. """ vx, vy = V wx, wy = W return vx * wy - vy * wx def intersect(segment1, segment2): """ If |segment1| or |segment2| has 0 length, returns False. If |segment1| and |segment2| intersect and are colliniar, returns 'collinear'. Otherwise, if |segment1| and |segment2| intersect at exactly one point, returns that point. Otherwise, returns False. Segments should be given in the form ((x0, y0), (x1, y1)). """ (x00, y00), (x01, y01) = segment1 x00, y00, x01, y01 = float(x00), float(y00), float(x01), float(y01) R = (x01 - x00, y01 - y00) if R == (0, 0): return False (x10, y10), (x11, y11) = segment2 x10, y10, x11, y11 = float(x10), float(y10), float(x11), float(y11) S = (x11 - x10, y11 - y10) if S == (0, 0): return False QmP = (x10 - x00, y10 - y00) RcS = float(_cross(R, S)) QmPcS = _cross(QmP, S) QmPcR = _cross(QmP, R) if RcS == 0: # segments are parallel if QmPcR == 0: # segments are collinear if R[0] == 0: return 'collinear' if overlap((min(y00, y01), max(y00, y01)), (min(y10, y11), max(y10, y11))) else False else: for (x, vx, xs) in [(x00, R[0], (x10, x11)), (x10, S[0], (x00, x01))]: for ox in xs: if 0 <= (ox - x) / vx <= 1: return 'collinear' return False else: return False t = QmPcS / RcS if t < 0 or t > 1: return False u = QmPcR / RcS if u < 0 or u > 1: return False return (x00 + t * R[0], y00 + t * R[1]) def translate(segment, d): """ Returns a new segment that corresponds to the given |segment| translated perpendicularly by |d| units. Segment should be given and is returned in the form ((x1, y1), (x2, y2)). """ (x1, y1), (x2, y2) = segment if x1 > x2: x1, x2 = x2, x1 y1, y2 = y2, y1 phi = atan2(y2 - y1, x2 - x1) theta = pi / 2 - phi dx = d * cos(theta) dy = d * sin(theta) return ((x1 - dx, y1 - dy), (x2 - dx, y2 - dy))
fe5ece5986e3f29e5f82a7512ea54746f2efa9bc
guimesmo/python-demo
/frase_do_dia_typed.py
1,260
3.578125
4
import random import typing class Frase: def __init__(self, conjunto: str, idioma_padrao: str = "pt"): self.conjunto = conjunto self.idioma_padrao = idioma_padrao self.output = dict() self.parse() def __str__(self): return self.output.get(self.idioma_padrao, "Não definido") def parse(self) -> None: conjunto = self.conjunto.split("\n") for frase in conjunto: if frase: # previne linha em branco idioma, frase = frase.split("|") self.output[idioma] = frase def gerador_de_frase_i18n(idioma: str = "pt") -> str: with open("frases-i18n.txt", "r") as arquivo: conjuntos = arquivo.read().split("\n\n") frases = [] for conjunto in conjuntos: frase_instancia = Frase(conjunto) frases.append(frase_instancia) frase = random.choice(frases) return frase.output.get(idioma) def gerador_de_frase() -> str: with open("frases.txt", "r") as arquivo: frases = list(arquivo.readlines()) return random.choice(frases) if __name__ == '__main__': import sys if len(sys.argv) > 1: idioma = sys.argv[1] else: idioma = "pt" print(gerador_de_frase_i18n(idioma))
62bb6e65edf4da3a18f8f681413b99518182631f
lokeki/python
/ZadSrdZaw/wykladI/Zad8EnumerateZip.py
1,292
3.71875
4
#wyk/enumerate/zip ''' workDays = [19, 21, 22, 21, 20, 22] print(workDays) print(workDays[2]) enumerateDays = list(enumerate(workDays)) print(enumerateDays) #enumerate - numerujemy kazdy element z listy i tworza sie tumple for pos, value in enumerateDays: print("Pos:", pos, "Value:", value) month = ['I', 'II', 'III', 'IV', 'V', 'VI'] #zip - laczymy dwie tablice i tworza sie yumple(pary) monthDay = list(zip(month,workDays)) print(monthDay) for mon, day in monthDay: print('Month:', mon, 'Day:', day) for pos, (mon, day) in enumerate(zip(month, workDays)): print('Pos:', pos, 'Month:', mon, 'Day:', day) print('{} - {} - {}'.format(pos, mon, day) ''' projects = ['Brexit', 'Nord Stream', 'US Mexico Border'] leaders = ['Theresa May', 'Wladimir Putin', 'Donald Trump and Bill Clinton', 'cosik'] for project, leader in zip(projects, leaders): print('The leader of {} is {}'.format(project, leader)) print('') dates = ['2016-06-23', '2016-08-29', '1994-01-01'] for project, data, leader in zip(projects, dates, leaders): print('The leader of {} started {} is {}'.format(project, data, leader)) print('') for position, (project, data, leader) in enumerate(zip(projects, dates, leaders)): print('{} The leader of {} started {} is {}'.format(position + 1, project, data, leader))
14547f40099598502bbadfea46a328fb21330128
lokeki/python
/ZadSrdZaw/wykladI/Zad11Generator.py
1,645
3.671875
4
#generator zazwyczaj się używa kiedy jest duza baza danych ''' listA = list(range(6)) listaB = list(range(6)) print(listA, listaB) product = [] for a in listA: for b in listA: product.append((a,b)) print(product) #skrocona wersja z ifem (lista) product = [(a,b) for a in listA for b in listaB if a % 2 != 0 and b % 2 == 0] print(product) #wersja ze slownikiem, zmiana nawiasow kawadratowych na klamrowe, zmiana w zapisie danych #zamiast (a,b), to a:b product = { a:b for a in listA for b in listaB if a % 2 != 0 and b % 2 == 0} #klucz (a) zosal a dane (b) sie zmienialy print(product) print('-' * 30) #generator nie zajmuje pamięci jak lista, nie jest to gotowa np lista, nie przechowuje danych, # przechowuje raczej metode, sposob na wygenerowanie tych danych gen = ((a,b) for a in listA for b in listaB if a % 2 != 0 and b % 2 == 0) print(gen) print('-' * 30) #zwraca i usuwa print(next(gen)) print(next(gen)) print('-' * 30) for x in gen: print(x) print('-' * 30) gen = ((a,b) for a in listA for b in listaB if a % 2 != 0 and b % 2 == 0) #wyłapanie konca generatora poprzez try/except while True: try: print(next(gen)) except StopIteration: print("All values have been generated") break ''' ports = ['WAW', 'KRK', 'GDN', 'KTW', 'WMI', 'WRO', 'POZ', 'RZE', 'SZZ', 'LUZ', 'BZG', 'LCJ', 'SZY', 'IEG', 'RDO'] routes = ((port1, port2) for port1 in ports for port2 in ports if port1 < port2) line = 0 while True: try: print(next(routes)) line += 1 except StopIteration: print("All values have been generated. It have been", line) break
a0556b957eaf8394c0277e7830d7b347319bb402
lokeki/python
/ZadSrdZaw/wykladI/Zad18FunkcjaArgumentemFunkcji.py
969
3.53125
4
# Funkcja jako argument funkcji ''' def Bake (what): print("Baking:", what) def Add (what): print("Adding:",what) def Mix (what): print("Mixing:", what) cookBook = [(Add, "milk"), (Add, "eggs"), (Add, "flour"), (Add, "sugar"), (Mix, "ingerdients"), (Bake, "cookies")] for activity, obj in cookBook: activity(obj) print("-" * 40) def Cook(activity, obj): activity(obj) for activity, obj in cookBook: Cook(activity, obj) ''' def double(x): return 2 * x def root(x): return x ** 2 def negative(x): return -x def div2(x): return x / 2 def generateValues(nameFunctoin, parametrs): listWithResult = [] for parametr in parametrs: listWithResult.append(nameFunctoin(parametr)) return listWithResult x_table = list(range(11)) print(type(x_table)) print(generateValues(double, x_table)) print(generateValues(root, x_table)) print(generateValues(negative, x_table)) print(generateValues(div2, x_table))
dc30adb10fb9d8482e0f4febadf412dd4524bc80
lokeki/python
/ZadSrdZaw/wykladI/Zad24OptymalizacjaFunkcjiCache.py
737
3.5625
4
#Optymalizacja funkcji przez cache# musi byc deterministyczna, miec zawsze takie # same argumenty i taki rezultat ''' import time import functools @functools.lru_cache() def Factorial (n): time.sleep(0.1) if n == 1: return 1 else: return n * Factorial(n - 1) start = time.time() for i in range(1,11): print('{}! = {}'.format(i, Factorial(i))) stop = time.time() print("Time:", stop - start) print(Factorial.cache_info()) ''' import time import functools @functools.lru_cache() def fib(n): if n <= 2: result = n else: result = fib(n - 1) + fib(n - 2) return result start = time.time() for i in range(1, 33): print(fib(i)) stop = time.time() print(stop - start)
30532ca431def7eaaba8588814e5b22873ff8017
lokeki/python
/ZadSrdZaw/wykladI/Zad19FunkcjaZwracaFunkcje.py
1,208
3.53125
4
# Zwaracanie funkcji # # def Calculate ( kind = "+", *args): # result = 0 # # if kind == "+": # # for a in args: # result += a # # elif kind == '-': # # for a in args: # result -= a # # return result # # def CreateFunction(kind = "+"): # source = ''' # def f(*args): # result = 0 # for a in args: # result {}= a # return result # '''.format(kind) # exec(source, globals()) # # return f # # fAdd = CreateFunction("+") # print(fAdd(1,2,3,4)) # fSubs = CreateFunction("-") # print(fSubs(1,2,3,4)) import datetime def TimeFunk(timeF = 'm' ): if timeF == 'm': sec = 60 elif timeF == 'h': sec = 3600 elif timeF == 'd': sec = 86400 source = ''' def f(start, end): temp = end - start tempSec = temp.total_seconds() return divmod(tempSec, {})[0] '''.format(sec) exec(source, globals()) return f TimeFunk() f_minutes = TimeFunk('m') f_hours = TimeFunk('h') f_days = TimeFunk('d') start = datetime.datetime(2019, 12, 10, 0, 0, 0) end = datetime.datetime(2020, 12, 10, 0, 0, 0) print(f_minutes(start, end)) print(f_hours(start, end)) print(f_days(start, end))
8a23940de2d48ab3b767e90e2e3a3e55836daffd
andyreagan/2018-advent-of-code
/2019-mm-month-of-python/13-manselmi/bruteforce.py
489
3.953125
4
import sys def collatz_f(i: int) -> int: if i % 2 == 0: return int(i / 2) else: return int(3*i + 1) def get_path_length(i: int) -> int: # print(i) l = 1 while i != 1: i = collatz_f(i) l += 1 # print(i, l) return l def main(n): all_path_lengths = [get_path_length(i+1) for i in range(n)] m = max(all_path_lengths) print(m, all_path_lengths.index(m)+1) if __name__ == '__main__': main(int(sys.argv[1]))
8122e6d19531fc76d06288aaf9dfb1590aca10d7
webclinic017/StockPredictor-1
/CAP4621_Stock_Prediction_Project.py
15,684
3.59375
4
#!/usr/bin/env python # coding: utf-8 # # Dhruv's Section # In[ ]: get_ipython().system('pip install matplotlib') get_ipython().system('pip install seaborn') get_ipython().system('pip install yfinance') import platform import yfinance as yf import datetime import matplotlib.pyplot as plt import seaborn # prints the ticker's close form the most recent, and its change from the day before def getTickerData(tickerSymbol): tickerData = yf.Ticker(tickerSymbol) tickerInfo = tickerData.info companyName = tickerInfo['shortName'] print('Company Name: ' + companyName) today = datetime.datetime.today().isoformat() # tickerOF = tickerData.history(period='1d', start='2020-10-1', end=today[:10]) # tickerOF = tickerData.history(period='1d', start='2018-5-1', end='2018-6-1') tickerOF = tickerData.history(period='1d', start='2020-10-1', end='2020-10-20') priceLast = tickerOF['Close'].iloc[-1] priceYest = tickerOF['Close'].iloc[-2] change = priceLast - priceYest print(companyName + ' last price is: ' + str(priceLast)) print('Price change = ' + str(change)) # Gives a chart of the last 10 days def getChart(tickerSymbol): tickerData = yf.Ticker(tickerSymbol) hist = tickerData.history(period="30d", start='2020-9-21', end='2020-10-20') # hist = tickerData.history(period='1d', start='2020-10-1', end=today[:10]) # Plot everything by leveraging the very powerful matplotlib package hist['Close'].plot(figsize=(16, 9)) # Calling the functions getTickerData('MSFT') getChart('MSFT') # # Andres's Section # In[ ]: pip install quandl # In[ ]: import quandl import numpy as np from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn.model_selection import train_test_split # In[ ]: # Get stock data df = quandl.get("WIKI/FB") # Print Data print(df.tail()) # In[ ]: # Get Close Price df = df[['Adj. Close']] # Print it print(df.head()) # In[ ]: # Var for predicting 'n' days out into the future forecast_out = 30 # Create another column (the target or dependent variable) shifted 'n' units up df['Prediction'] = df[['Adj. Close']].shift(-2) # Print new dataset print(df.tail()) # In[ ]: # Create independent Data set (X) # Convert dataframe to numpy array X = np.array(df.drop(['Prediction'], 1)) # Remove the last 'n' rows X = X[:-2] print(X) # In[ ]: # Create dependent data set (y) # Convert the dataframe to numpy array (All of the values including NaN's) y = np.array(df['Prediction']) # Get all of the y values except the last n rows y = y[:-2] print(y) # In[ ]: # Split the data into 80% training and 20& testing x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # In[ ]: # Create and train the Support Vector Machine (Regressor) svr_rbf = SVR(kernel="rbf", C=1e3, gamma=0.1) svr_rbf.fit(x_train, y_train) # In[ ]: # Test Model: Score returns the coefficient of determination R^2 of the prediction # The best possible score is 1.0 svm_confidence = svr_rbf.score(x_test, y_test) print("svm confidence: ", svm_confidence) # In[ ]: # Create and train the Linear Regression Model lr = LinearRegression() # Train the Model lr.fit(x_train, y_train) # In[ ]: # Test Model: Score returns the coefficient of determination R^2 of the prediction # The best possible score is 1.0 lr_confidence = lr.score(x_test, y_test) print("lr confidence: ", lr_confidence) # In[ ]: # Set x_forecast equal to the last 2 rows of the original data set from Adj. Close column x_forecast = np.array(df.drop(['Prediction'],1))[-2:] print(x_forecast) # In[ ]: # Print linear regression model predictions for the next n days lr_prediction = lr.predict(x_forecast) print(lr_prediction) # Print SVR model predictions svm_prediction = svr_rbf.predict(x_forecast) print(svm_prediction) # Backtesting with Zipline # In[ ]: get_ipython().system('pip install backtrader') # In[ ]: from zipline.api import order_target, record, symbol import matplotlib.pyplot as plt def initialize(context): context.i = 0 context.asset = symbol('AAPL') def handle_data(context, data): # Skip first 300 days to get full windows context.i += 1 if context.i < 300: return # Compute averages # data.history() has to be called with the same params # from above and returns a pandas dataframe. short_mavg = data.history(context.asset, 'price', bar_count=100, frequency="1d").mean() long_mavg = data.history(context.asset, 'price', bar_count=300, frequency="1d").mean() # Trading logic if short_mavg > long_mavg: # order_target orders as many shares as needed to # achieve the desired number of shares. order_target(context.asset, 100) elif short_mavg < long_mavg: order_target(context.asset, 0) # Save values for later inspection record(AAPL=data.current(context.asset, 'price'), short_mavg=short_mavg, long_mavg=long_mavg) def analyze(context, perf): fig = plt.figure() ax1 = fig.add_subplot(211) perf.portfolio_value.plot(ax=ax1) ax1.set_ylabel('portfolio value in $') ax2 = fig.add_subplot(212) perf['AAPL'].plot(ax=ax2) perf[['short_mavg', 'long_mavg']].plot(ax=ax2) perf_trans = perf.ix[[t != [] for t in perf.transactions]] buys = perf_trans.ix[[t[0]['amount'] > 0 for t in perf_trans.transactions]] sells = perf_trans.ix[ [t[0]['amount'] < 0 for t in perf_trans.transactions]] ax2.plot(buys.index, perf.short_mavg.ix[buys.index], '^', markersize=10, color='m') ax2.plot(sells.index, perf.short_mavg.ix[sells.index], 'v', markersize=10, color='k') ax2.set_ylabel('price in $') plt.legend(loc=0) plt.show() # # Abhinay's Section # In[ ]: get_ipython().system('pip install stocknews') # In[ ]: from stocknews import StockNews # In[ ]: # In[ ]: scraper.find('div', {'class', 'My(6px) Pos(r) smartphone_Mt(6px)'}).find('span').text # In[ ]: # # John and Dhruv's Section # In[ ]: from google.colab import drive drive.mount('/content/drive') # In[ ]: import numpy as np from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn.model_selection import train_test_split import pandas as pd from sklearn.metrics import mean_squared_error, r2_score import matplotlib.pyplot as plt import os # plt.style.use('fivethirtyeight') # In[ ]: # df = pd.read_csv('/content/drive/My Drive/AI Stock Predictor Project Group/data/aapl.csv', sep = ',', header = 0) df = pd.read_csv('aapl.csv',sep = ',', header = 0) #print(df.tail()) # In[ ]: df.shape plt.figure(figsize=(16,8)) plt.title('Close Price History') plt.plot(df['Close']) plt.xlabel('Date', fontsize=18) plt.ylabel('Close Price USD ($)', fontsize=18) plt.show() # In[ ]: print(df.tail()) # In[ ]: # Create independent Data set (X) # Convert dataframe to numpy array # X = np.array(df) # X = df['Close'] # converting list to array X = np.array(df['Close']) X = np.reshape(X, (-1, 1)) # print(Temp) # Remove the last 'n' rows # X = X[:-forecast_out] print(X) # In[ ]: # Create dependent data set (y) # Convert the dataframe to numpy array (All of the values including NaN's) y = np.array(df['Prediction']) # Get all of the y values except the last n rows # y = y[:-forecast_out] print(y) # In[ ]: # Split the data into 80% training and 20& testing # x_train, x_test, y_train, y_test = train_test_split(df, y, test_size=0.2) # x_train1 = np.array(x_train.drop(['Sentiment','Date', 'Prediction'], axis=1)) # x_test1 = np.array(x_test.drop(['Sentiment','Date', 'Prediction'], axis=1)) x_train1 = np.array(df.drop(['Date', 'Prediction'],1))[:-40] x_test1 = np.array(df.drop(['Date', 'Prediction'],1))[-40:] # Split the data into training/testing sets x_train = X[:-40] x_test = X[-40:] # Split the targets into training/testing sets y_train = y[:-40] y_test = y[-40:] print(x_train) print(x_test) print(y_train) print(y_test) # In[ ]: # # Create and train the Support Vector Machine (Regressor) # svr_rbf = SVR(kernel="rbf", C=1e3, gamma=0.1) # svr_rbf.fit(x_train, y_train) # In[ ]: # # Test Model: Score returns the coefficient of determination R^2 of the prediction # # # The best possible score is 1.0 # svm_confidence = svr_rbf.score(x_test, y_test) # print("svm confidence: ", svm_confidence) # In[ ]: # Create and train the Linear Regression Model lr = LinearRegression() # Train the Model lr.fit(x_train1, y_train) # In[ ]: # Test Model: Score returns the coefficient of determination R^2 of the prediction # The best possible score is 1.0 lr_confidence = lr.score(x_test1, y_test) print("lr confidence: ", lr_confidence) # In[ ]: # # Print linear regression model predictions for the next n days # lr_prediction = lr.predict(x_test) # print(lr_prediction) # CODE ##################################################################################### # Make predictions using the testing set # x_forecast is the last row of the data, which we ant to predict x_forecast = np.array(df.drop(['Date', 'Prediction'],1))[-1:] print(x_forecast) lr_prediction = lr.predict(x_forecast) print('Prediction for the 1 day out:', lr_prediction) # Print SVR model predictions # svm_prediction = svr_rbf.predict(x_forecast) # print(svm_prediction) # In[ ]: lr_prediction = lr.predict(x_test1) print(lr_prediction) # lr_prediction = scalar.inverse_transform(lr_prediction) # train = df[:x_train1] # valid = df[x_train1:] train = x_train1 valid = df.drop(['Date', 'Prediction'],1)[-40:] valid['Predictions'] = lr_prediction # Visulaize the date plt.figure(figsize=(16,8)) plt.title('Model') plt.xlabel('Date', fontsize=18) plt.ylabel('Close Price USD ($)', fontsize=18) plt.plot(df['Close']) plt.plot(valid[['Close', 'Predictions']]) plt.legend(['Train', 'Val', 'Predictions']) plt.show() # In[ ]: lr_prediction = lr.predict(x_test1) print(lr_prediction) # The coefficients print('Coefficients: \n', lr.coef_) # The mean squared error print('Mean squared error: %.2f' % mean_squared_error(y_test, lr_prediction)) # The coefficient of determination: 1 is perfect prediction print('Coefficient of determination: %.2f' % r2_score(y_test, lr_prediction)) # Prediction is black line, actual is blue dot plt.plot(x_test['Date'], lr_prediction, color='black') plt.plot_date(x_test['Date'], x_test['Close'], color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show() # In[ ]: # Set x_forecast equal to the last n row of the original data set from Close column x_forecast = np.array(df.drop(['Sentiment', 'Date', 'Prediction'],1))[-1:] print(x_forecast) # # John's Section # In[ ]: import urllib.request, json with urllib.request.urlopen('https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=AMZN&apikey=RKHOCKAPF9H87FQQ') as response: data = json.loads(response.read()) meta=data["Meta Data"] data=data["Time Series (Daily)"] print(meta) print(data) # In[ ]: # # Dhruv's Section # In[ ]: import math import pandas_datareader as web import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') # In[ ]: # Get the stock quote #df = pd.read_csv('aapl.csv',sep = ',', header = 0) # print(type(df)) # print(df.tail()) n = 60 #df = web.DataReader('AAPL', data_source='yahoo', start='2012-01-01', end='2019-12-17') # df # In[ ]: # Visualize the data # df.shape plt.figure(figsize=(16,8)) plt.title('Close Price History') plt.plot(df['Close']) plt.xlabel('Date', fontsize=18) plt.ylabel('Close Price USD ($)', fontsize=18) plt.show() # In[ ]: #Create a new Dataframe df = web.DataReader('AAPL', data_source = 'yahoo', start = '2015-01-01', end = '2020-10-01') data = df[['Close']] print(data.values) #print(data.values) #print(len(data)) # print(type(data)) #Convert to numpy array dataset = np.array(data.values) dataset = np.reshape(dataset, (-1, 1)) #print(dataset) #print(dataset) #Get the number of rows to train the model training_data_len = math.ceil(len(data) * .8) # In[ ]: #Scale the data scaler = MinMaxScaler(feature_range=(0,1)) scaled_data = scaler.fit_transform(dataset) print(scaled_data) # In[ ]: #Create the scaled training data set train_data = scaled_data[0:training_data_len, :] #Split the data into x_train and y_train x_train = [] y_train = [] for i in range(n, len(train_data)): x_train.append(train_data[i-n:i, 0]) y_train.append(train_data[i, 0]) # In[ ]: #Convert the x_train and y_train to numpy arrays x_train, y_train = np.array(x_train), np.array(y_train) #Reshape the data # (#samples, timesteps, and features) #x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) #x_train.shape # In[ ]: #Build the LSTM model model = Sequential() # 50 neurons, (timesteps, features) model.add(LSTM(50, return_sequences = True, input_shape = (x_train.shape[1], 1))) model.add(LSTM(50, return_sequences = False)) #model.add(LSTM(50)) model.add(Dense(25)) model.add(Dense(1)) # In[ ]: model.compile(optimizer = 'adam', loss = 'mean_squared_error') # In[ ]: #Train the model model.fit(x_train, y_train, batch_size = 1, epochs = 5) # In[ ]: #Create the testing dataset #Create a new array containing scaled values from index size-n to size # [last n values, all the columns] test_data = scaled_data[training_data_len - n:, :] #Create the datasets x_test, y_test x_test = [] # 61st values y_test = dataset[training_data_len:, :] for i in range(n, len(test_data)): # Past n values x_test.append(test_data[i-n:i, 0]) # In[ ]: #convert to numpy array x_test = np.array(x_test) print(x_test.shape) # In[ ]: #Reshape the data for the LSTM model to 3-D x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) # In[ ]: #Get the models predicted price and values print(x_test[0]) #predictions = model.predict(x_test) #print(predictions) # We want predictions to contain the same values as y_test dataset #predictions = scaler.inverse_transform(predictions) #print(predictions) # print(type(predictions)) # In[ ]: #Get the root mean squred error (RMSE) - lower the better rmse = np.sqrt(np.mean(predictions - y_test)**2) print(rmse) # In[ ]: #Plot the data #print(data[:56]) train = data[:training_data_len] valid = data[training_data_len:] #train = data.loc[:'2020-09-01'] #valid = data.loc['2020-09-01':] #print(data.loc[:'2020-09-01']) valid['Predictions'] = predictions #print(type(train)) #print(type(valid)) #predictions_series = [] #indices = list(range(162, 202)) #for prediction in predictions: # predictions_series.append(prediction) #predictions = pd.Series(predictions_series, index = indices) # Visulaize the date plt.figure(figsize=(16,8)) plt.title('Model') plt.xlabel('Date', fontsize=18) plt.ylabel('Close Price USD ($)', fontsize=18) plt.plot(train['Close']) plt.plot(valid['Close']) plt.plot(valid['Predictions']) plt.legend(['Train', 'Val', 'Predictions'], loc='lower right') plt.show() # In[ ]: print(valid[[180]], predictions[[180]]) # In[ ]: #Get the quote # apple_quote = web.DataReader('AAPL', data_source="yahoo", start) stock_quote = pd.read_csv('/content/aapl.csv',sep = ',', header = 0) new_df = stock_quote.filter(['Close']) last_n_days = new_df[-n:].values last_n_days_scaled = scaler.transform(last_n_days) X_test = [] X_test.append(last_n_days_scaled) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) pred_price = model.predict(X_test) pred_price = scaler.inverse_transform(pred_price) print(pred_price)
02960d761aec2401238739d0c6cee1a6a5b54571
Wowol/Blackjack-Reinforcement-Learning
/game/card.py
333
3.875
4
from random import randint class Card: """Generate one card and store its number in value field """ value = 0 def __init__(self): number = randint(1, 13) if number == 1: self.value = 11 elif number > 10: self.value = 10 else: self.value = number
d81541f0bfae3d2a5323f517300afa9501bdf685
ntshcalleia/Listas_AlgGraf_2017_2
/lista2/questao5.py
1,868
3.734375
4
import math def troco(T): moedas = { 1: 0, 5: 0, 10: 0, 25: 0, 50: 0, 100: 0 } while(T > 0): # Criterio guloso: escolher maior moeda possivel. Colocar quantas der dela if T >= 100: moedas[100] = int(math.floor(T/100)) T = T % 100 elif T >= 50: moedas[50] = int(math.floor(T/50)) T = T % 50 elif T >= 25: moedas[25] = int(math.floor(T/25)) T = T % 25 elif T >= 10: moedas[10] = int(math.floor(T/10)) T = T % 10 elif T >= 5: moedas[5] = int(math.floor(T/5)) T = T % 5 elif T >= 1: moedas[1] = T T = 0 return moedas def main(): T = int(input("T = ")) moedas = troco(T) print("{} pode ser representado por:".format(T)) if moedas[1] != 0: if moedas[1] == 1: print("1 moeda de 1") else: print("{} moedas de 1".format(moedas[1])) if moedas[5] != 0: if moedas[5] == 1: print("1 moeda de 5") else: print("{} moedas de 5".format(moedas[5])) if moedas[10] != 0: if moedas[10] == 1: print("1 moeda de 10") else: print("{} moedas de 10".format(moedas[10])) if moedas[25] != 0: if moedas[25] == 1: print("1 moeda de 25") else: print("{} moedas de 25".format(moedas[25])) if moedas[50] != 0: if moedas[50] == 1: print("1 moeda de 50") else: print("{} moedas de 50".format(moedas[50])) if moedas[100] != 0: if moedas[100] == 1: print("1 moeda de 100") else: print("{} moedas de 100".format(moedas[100])) if __name__ == '__main__': main()
f8576b094f7f0676433b035d8630f2a64477eb85
Huitzoo/Rosalind_Bioinformatics
/rabbits.py
299
3.671875
4
def main(): months = int(input('Enter the months')) litters = int(input('Enter the number of litters')) fibo = [1,1] if months <= 2: print('1') else: for i in range(2,months): fibo.append(litters*fibo[i-2]+fibo[i-1]) print(fibo) main()
e9f2417dd3507d88cfb24b12c8c927c259e7fc91
halesahinn/Searching-Reverse-Complement-of-DNA-Motif
/Project1_150114063_150116841_150114077.py
2,536
3.5625
4
#Büşra YAŞAR-150114063 #Emine Feyza MEMİŞ-150114077 #Hale ŞAHİN-150116841 import operator import re import os import sys from os import path #print("Please enter the input file path :") #path = input() def reverse(s): str = "" for i in s: str = i + str return str def readFile(file_path): path2 = path.relpath(file_path) with open(path2) as f: text = f.read() printText(text) def printText(text): # Extract your code into a function and print header for current kmer #print("%s\n################################" %name) kmers = {} for i in range(len(text) - k + 1): kmer = text[i:i+k] if kmer in kmers: kmers[kmer] += 1 else: kmers[kmer] = 1 print ('Inputs: k=%d,x=%d' % (k,x)) print ('Outputs:') print ('%d-mer:\t' % (k)) i = 0 occuredKmers = {} passAmount = 0 for kmer, count in kmers.items(): if count >= x: print (kmer) occuredKmers[i] = kmer i = i + 1 passAmount = passAmount + 1 if passAmount == 0: print('There is no such %d-mer which appears more than %d times for the input DNA string.' % (k,x)) print ('Reverse Complement: ') j = 0 reverseComplement = "" noReverse = 0 occurence = 0 while j < len(occuredKmers): kmer = occuredKmers[j] reverseKmer = reverse(kmer) for base in reverseKmer: if base == 'A': base = 'T' elif base == 'T': base = 'A' elif base == 'G': base = 'C' elif base == 'C': base = 'G' reverseComplement = reverseComplement + base for i in range(len(text) - k + 1): kmer = text[i:i+k] if reverseComplement == kmer: occurence = occurence +1 if occurence > 0: print (reverseComplement + ' appearing' + ' %d times' % (occurence)) noReverse = noReverse + 1 j = j + 1 occurence = 0 reverseComplement="" if noReverse == 0: print ('There is no reverse complement %d-mers in DNA string.' % (k)) if __name__ == "__main__": print("Please enter the k value: ") k =int(input()) print("Please enter the x value: ") x =int(input()) print("Please enter the input file path:") file_path = input() readFile(file_path)
235a6863fd259e561c92567af98b6ccf29a7fee0
optimizely/pycon2019
/lambda_calculus_seminar/pylambda1.py
202
4.09375
4
''' ''' f = lambda x: 3*x + 1 f(2) # eli5 - you replace the x with the 2 f(4) ''' def f(x): return x def f(x): return x(x) ''' def f(x): def g(y): return x(y) return g
314411a03d4703ed284d6f12d7f1c356eab8a094
pandast3ph4n/password-generator
/passgen.py
1,071
3.5625
4
import random import string import tkinter as tk pool = string.ascii_letters + string.digits + string.punctuation def generate_password(length=12, random_length=False): if random_length: length = random.randrange(10, 16) if length < 4: print('hey din dust.... ikke noe tull') return False elif length > 1000: print('yo, for langt... thats what she said!') return False while True: password = random.choices(pool, k=length) password = ''.join(password) if not any(character in string.digits for character in password): continue if not any(character in string.punctuation for character in password): continue if not any(character in string.ascii_lowercase for character in password): continue if not any(character in string.ascii_uppercase for character in password): continue break return password if __name__ == "__main__": password = generate_password() print(generate_password())
8a5bb6ad81f3f444da59c72d9c3f3f4dbaf9cfa3
ccmien/Fundamentals-of-Computing-Projects
/Word Wrangler.py
4,042
4.0625
4
""" Student code for Word Wrangler game """ import urllib2 import codeskulptor import poc_wrangler_provided as provided WORDFILE = "assets_scrabble_words3.txt" # Functions to manipulate ordered word lists def remove_duplicates(list1): """ Eliminate duplicates in a sorted list. Returns a new sorted list with the same elements in list1, but with no duplicates. This function can be iterative. """ if len(list1) == 0: return list1 if len(list1) == 1: return [list1[0]] elif list1[len(list1)/2 -1] == list1[len(list1)/2]: return remove_duplicates(list1[:len(list1)/2]) + remove_duplicates(list1[len(list1)/2 + 1:]) else: return remove_duplicates(list1[:len(list1)/2]) + remove_duplicates(list1[len(list1)/2:]) def intersect(list1, list2): """ Compute the intersection of two sorted lists. Returns a new sorted list containing only elements that are in both list1 and list2. This function can be iterative. """ if len(list1) == 0 or len(list2) == 0: return [] index1 = 0 index2 = 0 intersect_list = [] while index1 < len(list1) and index2 < len(list2): if list1[index1] == list2[index2]: intersect_list.append(list1[index1]) index1 += 1; index2 += 1; elif list1[index1]<list2[index2]: index1 += 1 else: index2 += 1 return intersect_list # Functions to perform merge sort def merge(list1, list2): """ Merge two sorted lists. Returns a new sorted list containing all of the elements that are in either list1 and list2. This function can be iterative. """ merged_list = list2 index_add = 0 for (index1, item1) in enumerate(list1): for index2 in range(index_add, len(list2)): if index2 == len(list2) - 1 and item1 >= list2[index2]: merged_list = merged_list + [item1] if item1 < list2[index2]: merged_list = merged_list[:(index2+index1)] + [item1] + merged_list[(index2+index1):] index_add = index2 break return merged_list def merge_sort(list1): """ Sort the elements of list1. Return a new sorted list with the same elements as list1. This function should be recursive. """ if len(list1) < 2: return list1 if len(list1) == 2: return merge([list1[0]], [list1[1]]) else: return merge(merge_sort(list1[:len(list1)/2]), merge_sort(list1[len(list1)/2:])) # Function to generate all strings for the word wrangler game def gen_all_strings(word): """ Generate all strings that can be composed from the letters in word in any order. Returns a list of all strings that can be formed from the letters in word. This function should be recursive. """ if len(word) == 0: return [""] if len(word) == 1: return ["", word] else: first = word[0] rest = word[1:] rest_strings = gen_all_strings(rest) new_strings = [] for string in rest_strings: for index_s in range(len(string) + 1): new_strings.append(str(string[:index_s]) + first + str(string[index_s:])) return new_strings + rest_strings # Function to load words from a file def load_words(filename): """ Load word list from the file named filename. Returns a list of strings. """ res = [] url = codeskulptor.file2url(filename) netfile = urllib2.urlopen(url) for line in netfile.readlines(): res.append(line[:-1]) return res def run(): """ Run game. """ words = load_words(WORDFILE) wrangler = provided.WordWrangler(words, remove_duplicates, intersect, merge_sort, gen_all_strings) provided.run_game(wrangler) # Uncomment when you are ready to try the game run()
ae97a6da42d85c675d029aacdd0991f18ec08c6c
SofiaDaniela/Mision_02
/extraGalletas.py
446
3.890625
4
# Autor: Sofía Daniela Méndez Sandoval, A01242259 # Descripción: Cantidad de Ingredientes para # de Galletas cantidad = int(input("¿Cuántas galletas realizará?: ")) azucar = (cantidad*1.5)/48 mantequilla = cantidad/48 harina = (cantidad*2.75)/48 print("Para realizar el determinado número de galletas, necesitará: ") print("Azúcar: ", "%.2f" % azucar, "tazas") print("Mantequilla: ", "%.2f" % mantequilla, "tazas") print("Harina: ", "%.2f" % harina, "tazas")
c4061364eb081676fcaa1c2720decd4187d1eef9
vamsikvs1994/Web_crawler
/word_counter.py
3,854
4.09375
4
''' Author: Venkata Sai Vamsi Komaravolu Date: 30th December 2017 File Name: word_counter.py Description: This python program performs the word count in a web-page given the URL. It makes use of certain methods and packages available in python. The working of this program classified as mentioned below: 1. Open the given URL 2. Read the web-page and using the utf-8 format decoding 3. Remove the tags in the web page 4. Remove all the non-alphanumeric characters in the word string 5. Count the words and form a dictionary 6. Finally sorting and displaying the top 5 most used words in the web-page ''' import re #regular expression package from urllib.request import urlopen #urlopen is used to open the web-page using the given URL def main(url): opened_url = urlopen(url) #open the given web-page from the given url decoded_url = opened_url.read().decode('utf-8') #read the web-page and decode according to utf-8 format text = remove_tags(decoded_url).lower() #remove the tags in the webpage and lower() makes all case-based characters lowercased words = remove_non_alp_num(text) #remove all non-alphanumeric characters dict = word_counter(words) #creates a dictionary with the words and their count sorted_words = sort_counter(dict) #sorts the dictionary and returns the words and their count in descending order count=0 for s in sorted_words: #displays the 5 top most used words in the given web-page if(count<5): print(str(s)) count+=1 return def remove_tags(page_info): #method to remove the tags in the the given web-page start = page_info.find("</a>") end = page_info.rfind("</li>") #rfind() returns the last index where the substring is found page_info = page_info[start:end] ins = 0 word_form = '' for char in page_info: # creating a word form from the characters if char == '<': # word string is between the < and > characters ins = 1 elif (ins == 1 and char == '>'): ins = 0 elif ins == 1: continue else: word_form += char return word_form def remove_non_alp_num(text): #method for removing all non-alphanumeric characters using UNICODE definition return re.compile(r'\W+', re.UNICODE).split(text) #re.compile() is used to compile a regular expression pattern into a regular expression object, which can be used for matching using its match(), search() and other methods def word_counter(words): #method for creating a Python dictionary with words and their respective count wordfreq = [words.count(p) for p in words] return dict(zip(words,wordfreq)) def sort_counter(dict): #method for sorting and displaying the words with their count in descending order out = [(dict[key], key) for key in dict] out.sort() out.reverse() return out
2aefeb397fb1ea15bc2519fa34be929718bf4a9a
agoldh20/exercism
/python/pangram/pangram.py
249
3.609375
4
import re def is_pangram(sentence): sentence = sentence.lower() sentence = re.sub(r'([^a-z])', "", sentence) if len(list(set(sentence))) < 26: return False elif len(list(set(sentence))) == 26: return True pass
3eb68789808cd0ae37f3509e941521452b9141f7
IlkoAng/Python-OOP-Softuni
/exercise1-first-steps-oop/04-cup.py
407
3.59375
4
class Cup: def __init__(self, size, quantity): self.size = size self.quantity = quantity def fill(self, mil): if self.size >= self.quantity + mil: self.quantity += mil def status(self): result = self.size - self.quantity return result cup = Cup(100, 50) print(cup.status()) cup.fill(40) cup.fill(20) print(cup.status())
cbc85235c505b37df1c409b2a9b9a070ae497e42
liu-creator/python__basic
/Py_mysql/一次插入多条数据.py
1,135
3.59375
4
'''插入100条数据到数据库(一次插入多条)''' import pymysql import string,random #打开数据库连接 conn=pymysql.connect('localhost','root','123456') conn.select_db('testdb') #获取游标 cur=conn.cursor() #创建user表 cur.execute('drop table if exists user') sql="""CREATE TABLE IF NOT EXISTS `user` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(255) NOT NULL, `age` int(11) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=0""" cur.execute(sql) #修改前查询所有数据 cur.execute("select * from user;") print('修改前的数据为:') for res in cur.fetchall(): print (res) print ('*'*40) #循环插入数据 words=list(string.ascii_letters) sql="insert into user values(%s,%s,%s)" random.shuffle(words)#打乱顺序 cur.executemany(sql,[(i+1,"".join(words[:5]),random.randint(0,80)) for i in range(100) ]) #插入100条后查询所有数据 cur.execute("select * from user;") print('修改后的数据为:') for res in cur.fetchall(): print (res) print ('*'*40) cur.close() conn.commit() conn.close() print('sql执行成功')
54873a969653a53afa1be805c1c8b96dcd77daa3
MattBJ/Radar_Object_Detection_System
/Data_Simulations/Sampled_Frequency_Data_out.py
9,078
3.5
4
# Matthew Bailey # Simulation python code: # Purpose: Generate 3 sampled frequency data sets that represent a moving ordinance and 2 stationary objects in a 3D Area # Secondary purpose: Ditch the stationary objects (explain how it would've worked) - Use only x,x',y, and y' and assume stationary Z, as everything would've been stationary # Vision: We have 1 transmitting radar, and 3 receivers. The receivers are set up in an equilateral triangle configuration, with the transmitter in the center. # There, hopefully, 2 objects that are stationary (represented as single points), that will contribute constant frequency information # There will be an ordinance traveling from the near edge of the field to a close point next to the radar dish # Important information: Bandwidth is 100 MHz, the chirp is 100 microseconds (10 KHz) # Chirp waveform: Triangulat (so from 0 modulation to 100 MHz is 50uS) # Delta Frequency = 600 GHz # Time per freq. change = 1.666 pico seconds # Arbitrary distance constraint: 6 meters --> Roughly 25KHz difference (there and back = 12 meters) # Constraints: C (Speed of light) = 3e8 # Arbitrary distance max = 6 meters (from any receiver) # The distance to any object to any receiver is calculated by the following: # D_TX = sqrt((TX_x - Obj_x)^2 + (TX_y - Obj_y)^2 + (TX_z - Obj_z)^2) # D_RXn = sqrt((RX_x - Obj_x)^2 + (RX_y - Obj_y)^2 + (RX_z - Obj_z)^2) # D_Tot = D_TX + D_RXn # Converting distance to frequency information: # (D_tot / c) * 600 GHz = Frequency_Data # For the stationary objects, this can simply be calculated over the entirety of the large sample set # For the ordinance, the distance will be dynamically changing # For each sample in time, a new distance must be calculated and thus the corresponding frequency changes (should steadily get lower) # Each data set will be represented by a vector of scalars which are set equal to the 3 CURRENT frequency components multiplied by time # FIRST CHALLENGE: Create a varying frequency dataset (1 HZ to 1KHz, changes once per ____ samples) # make the sampling extremely high frequency (1 nanosecond) # figure out how to change frequencies dynamically over time WITHOUT jumping around # after 1000 samples, change frequency # np.cos() requires an array of data (time set), then outputs an array of equal size. will always take that last element and append it import numpy as np import matplotlib.pyplot as plt import copy def freq_data(freq,sampling_freq,sample_num): # Takes the frequency, sampling frequency, and the time instance of the data required # t = np.arange(0,(sample_num+1)+(1/sampling_freq),(1/sampling_freq)) # print(t) out = np.cos(2*(np.pi)*(freq)*(sample_num / sampling_freq)) # print(out) # return out[(sample_num)*(sampling_freq)] # the last element return out # THE CODE BELOW WAS ME TESTING DYNAMICALLY CHANGING FREQUENCY OF A SIGNAL AS THE SIGNAL IS BEING SAMPLED # frequency_jumps = np.arange(50,151) # print(frequency_jumps.shape) # print(frequency_jumps) # print(frequency_jumps[999]) # j = 0 # data_buffer = [] # sampling_freq = 1000 # 1ksps # N = 2224 # freq_jump_prev = 0 # freq_jump_next = (2/50) * 1000 # print(int(52.6)) # for i in range(N): # print(i) # if(freq_jump_next == i): # j += 1 # freq_jump_prev = freq_jump_next # freq_jump_next = freq_jump_prev + (2/frequency_jumps[j]) * 1000 # freq_jump_next = int((freq_jump_next + 0.5)) # print(int(freq_jump_next)) # print('Frequency: ',frequency_jumps[j]) # data_buffer.append(freq_data(frequency_jumps[j],1000,i)) # data_buffer = np.array(data_buffer) # Now display the sinusoids over the time # fig = plt.figure() # ax = fig.add_subplot(1, 1, 1) # plt.plot(np.arange(0,N),data_buffer,'r') # plt.show() # First attempt, all 1's... # Generate the 2 object frequencies for the 3 receivers --> Will probably get rid of it # For now let's just do the ordinance frequencies # nf_pos = 0.1 TX_pos = np.array([0,1,0]) RX1_pos = np.array([0,1,0]) RX2_pos = np.array([0,0,((4/3)**(1/2))/2]) RX3_pos = np.array([0,0,-((4/3)**(1/2))/2]) x_0 = 4 x_f = 1 sampling_freq = 100000 samples = int(sampling_freq*.9) print(samples) # dt = 0.0000001 # let's make it real as possible --> 10 Msps dt = 1/sampling_freq dx_0 = (x_f - x_0)/(dt*samples) y_0 = 5 y_f = 3 # dt = 1/sampling_freq dy_0 = 2.18777777777 # per second def generate_y_data(y_0, v_0, nf_pos, nf_vel,dt,samples): # count is in milliseconds # time step will be 1 millisecond a = -9.8 # meters per second # a = -9.8e-3 # per milisecond v_0_mili = copy.copy(v_0) v_0_mili = v_0_mili/1000 # v_0_mili *= 1e-3 # get in velocity per milisecond count = (-2*v_0)/a # count is in MILISECONDS count = int(round(count*1000)) # return np.array([np.random.randn()*nf_pos + y_0 + v_0*i/1000 + (1/2)*a*((i/1000)**2) for i in range(count)]), count, np.array([y_0 + v_0*i/1000 + (1/2)*a*((i/1000)**2) for i in range(count)]), np.array([np.random.randn()*nf_vel + v_0 + (a)*(i/1000) for i in range(count)]), np.array([v_0 + (a)*(i/1000) for i in range(count)]) return np.array([y_0 + v_0 * (i*dt) + (1/2)*a*((i*dt)**2) for i in range(samples)]) actual_x = np.array([x_0 + (dx_0)*(i*dt) for i in range(samples)]) actual_y = generate_y_data(y_0,dy_0,0,0,dt,samples) # actual_x = np.ones(samples) * x_0 # actual_y = np.ones(samples) * y_0 # let's just keep it stationary # Try and work with the generation using stationary object! print(actual_x.shape) print(actual_y.shape) TX_x = np.ones(samples) * 0 TX_y = np.ones(samples) * 0.5 RX1_x = RX1_pos[0] * np.ones(samples) RX1_y = RX1_pos[1] * np.ones(samples) RX2_x = RX2_pos[0] * np.ones(samples) RX2_y = RX2_pos[1] * np.ones(samples) RX3_x = RX3_pos[0] * np.ones(samples) RX3_y = RX3_pos[1] * np.ones(samples) dist_TX = ((TX_x - actual_x)**2+(TX_y - actual_y)**2)**(1/2) dist_RX1 = ((RX1_x - actual_x)**2 + (RX1_y - actual_x)**2)**(1/2) dist_RX2 = ((RX2_x - actual_x)**2 + (RX2_y - actual_x)**2)**(1/2) dist_RX3 = ((RX3_x - actual_x)**2 + (RX3_y - actual_x)**2)**(1/2) # Now have all the distance information from the separate RX's # Now convert the 3 buffers to frequency data! --> Total distance * the frequency rate change F_1 = (dist_TX + dist_RX1)/(3e8) * 6e11 F_2 = (dist_TX + dist_RX2)/(3e8) * 6e11 F_3 = (dist_TX + dist_RX3)/(3e8) * 6e11 # print(D_1) # Turn the 3 buffers from frequency data into an actual signal print(int(1/dt)) k = 0 # Responsible for 'batch programming' print('total samples: ',samples) print('sampling freq: ',sampling_freq) # PROBLEM: running out of RAM space with these 900K - 64-bit (double precision) floating point arrays of frequency information # Solution: Somehow, call these routines as FUNCTIONS (subroutines), upon return the STACK is cleared (RAM) # 'Garbage collection doesn't happen in line' --> Need to create a function and call it (kinda like a stack!) # With this function, return 2 things: # 1) Return the string to append to the original string # 2) Return the ITERATION to continue the calculation! text_file_buf1 = open("RX1_buffer.txt","w") text_file_buf2 = open("RX2_buffer.txt","w") text_file_buf3 = open("RX3_buffer.txt","w") # samples_calc = 100 # just do batches of 100 # s_sampled_1 = 'float32_t sampled_RX1[] = {' # s_sampled_2 = 'float32_t sampled_RX2[] = {' # s_sampled_3 = 'float32_t sampled_RX3[] = {' s_sampled_1 = '' s_sampled_2 = '' s_sampled_3 = '' # text_file_buf1.write(s_sampled_1) # text_file_buf2.write(s_sampled_2) # text_file_buf3.write(s_sampled_3) def calc_write(text_file,freq,sampling_freq,sample_num): sample_value = freq_data(freq,sampling_freq,sample_num) s = str(sample_value) + '\n' text_file.write(s) for q in range(samples): print('text_file writing, iteration: ', q, 'Frequency at q: ', F_1[q]) calc_write(text_file_buf1,F_1[q],sampling_freq,q) calc_write(text_file_buf2,F_2[q],sampling_freq,q) calc_write(text_file_buf3,F_3[q],sampling_freq,q) sample_size = 512 # or 2024 true_RX1Dist_fname = "RX1_TruDist.txt" file_true = open(true_RX1Dist_fname,'w') for x in range(int(samples/sample_size)): print(F_1[x*sample_size]/(6e11)) for x in range(samples): s = str(F_1[x]/(6e11)) + '\n' file_true.write(s) file_true.close() print('final x value of ordinance: ',actual_x[-1]) print('final y value of ordinance: ',actual_y[-1]) # text_file_buf1.close() # Write a function that does the computation AND creates the string, THEN appends it to the text files # somehow, for the last 3 files delete the last ',' then write '};' and be done! # write the large datasets to txt files # text_file_buf1.write() text_file_buf1.close() # text_file_buf2.write() text_file_buf2.close() # text_file_buf3.write() text_file_buf3.close() print(s_sampled_1) # {number,number,number,number,....,number,number, + '};'... get rid of LAST ','
0a6ff68dfe1aa589b13e7baeddc216e2780ca7ec
ngantonio/DataScience-Analysis
/practicas con bases de datos/coutingDomains.py
1,457
3.59375
4
""" cuenta el número total de dominios de emails y los almacena en una base de datos """ import sqlite3 as sql # Iniciamos las variables de conexión, y creamos la base de datos. connection = sql.connect('domaindb.sqlite') cur = connection.cursor() # Verificamos si la tabla existe, si no, la creamos. cur.execute('DROP TABLE IF EXISTS Counts') cur.execute('CREATE TABLE Counts (org TEXT, count INTEGER)') file = input('Enter file name: ') if len(file) < 1: file = 'mbox.txt' fh = open(file) # Por cada linea... for line in fh: # Obtenemos solo las lineas que comiencen por "From: " if not line.startswith('From: '): continue pieces = line.split() # Obtenemos el email email = pieces[1] # Para obtener el dominio del email, separamos el string por el caracter '@' # para: [email protected] el dominio se encuentra en la pos. 1 email = email.split('@') domain = email[1] # Almacenamos el dominio y Preguntamos si ya existe en la DB, # si es asi, actualiza el contador cur.execute('SELECT count FROM Counts WHERE org = ?', (domain,)) row = cur.fetchone() if row is None: cur.execute('INSERT INTO Counts (org, count) VALUES(?,1)',(domain,)) else: cur.execute('UPDATE Counts SET count = count+1 WHERE org = ?',(domain,)) connection.commit() sqlstr = 'SELECT org, count FROM Counts ORDER BY count DESC LIMIT 10' for row in cur.execute(sqlstr): print(str(row[0]),row[1]) cur.close()
492009c5e453bbcd947240576e7741225109328e
Tachone/PythonCode
/countline0007/countline0007.py
1,154
3.640625
4
#!/usr/bin/env python #coding=utf-8 # 统计目录下文件的代码行数 import os def walk_dir(path): file_path=[] for root,dirs,files in os.walk(path): for f in files: if f.lower().endswith('py'): file_path.append(os.path.join(root,f)) return file_path def count_codeline(path): file_name=os.path.basename(path) line_num=0 empty_line_num=0 note_num=0 note_flag=False with open(path) as f: for line in f.readlines(): line_num+=1 if line.strip().startswith('\"\"\"') and not note_flag: note_num+=1 note_flag=True continue if line.strip().startswith('\"\"\"'): note_flag=False note_num+=1 if line.strip().startswith('#') or note_flag: note_num+=1 if line.strip()=='': empty_line_num+=1 print u"在%s中,共有%d行代码,其中有%d空行,有%d行注释" %(file_name,line_num,empty_line_num,note_num) if __name__ =='__main__': for f in walk_dir('.'): count_codeline(f)
8f2417a4bd242c6372d79c5244b5af3be83ca9a2
MahadiRahman262523/Python_Code_Part-2
/formatted string.py
198
3.875
4
''' num1 = 20 num2 = 30 print("sum is = ",num1 + num2) ''' ''' num1 = 20 num2 = 30 print(f"{num1} + {num2} = {num1 + num2} ") ''' print("mahadi rahman", end = " ") print("01301442265")
4ee6c5e0690d7c0302b76dbebff6751bbf507c1e
MahadiRahman262523/Python_Code_Part-2
/factorial.py
119
3.953125
4
n = int(input("enter any positive number = ")) fact = 1 for i in range(n) : fact = fact*(i+1) print(fact)
67293e2d186feadeafd7db8ea20284a37e3b93bd
MahadiRahman262523/Python_Code_Part-2
/sum of n number.py
130
3.9375
4
n = int(input("enter any integer value = ")) sum = 0 i = 1 while i <= n : sum = sum + i i = i + 1 print(sum)
ad0b647a1611a07369624c42e3cea0484b7afd4c
flaherty-kr/DS2000HW
/conv.py
247
3.96875
4
# Kristen Flaherty # Sec 01 #key parameters #input km = float(input('Please enter the number of kilometers:\n')) #km to miles conversion conv = .621 full_miles = int(km * conv) #print full miles statement print("The number of full miles is:", full_miles)
77019b16ce59e91dc2f26b3a73a6f353873b9b6c
cbstudent/Exercises
/4. Sorting/mergeSort.py
606
4.03125
4
def mergeSort(array): _mergeSort(array, 0, len(array) - 1) return array def _mergeSort(array, lo, hi): if lo >= hi: return mid = (lo + hi) // 2 + 1 _mergeSort(array, lo, mid - 1) _mergeSort(array, mid, hi) merge(array, lo, mid, hi) def merge(array, lo, mid, hi): copy = array[:] p1 = lo p2 = mid cur = lo while cur <= hi: if p1 < mid and p2 <= hi: if copy[p1] < copy[p2]: array[cur] = copy[p1] p1 += 1 else: array[cur] = copy[p2] p2 += 1 elif p1 < mid: array[cur] = copy[p1] p1 += 1 else: array[cur] = copy[p2] p2 += 1 cur += 1
837e845a9c83a16b34c9581c2bad17b55eda0102
cbstudent/Exercises
/3. Arrays/threeNumberSum.py
599
3.96875
4
def threeNumberSum(array, targetSum): # Sort the array (can be sorted in place, because we don't care about the original indices) array.sort() res = [] # Use two pointers, one starting from the left, and one starting from the right for idx, curr in enumerate(array): i = idx + 1 j = len(array) - 1 while i < j: currSum = curr + array[i] + array[j] if currSum < targetSum: i += 1 elif currSum > targetSum: j -= 1 elif currSum == targetSum: ares = sorted([curr, array[i], array[j]]) res.append(ares) i += 1 j -= 1 return sorted(res)
9c5cd49ac894af1653d42d202d98446ac5814a77
cbstudent/Exercises
/7. Graphs/hasSingleCycle.py
441
3.71875
4
def hasSingleCycle(array): # Write your code here. idx = 0 counter = 0 while counter < len(array): # If we've jumped more than once and we find ourselves back at the starting index, we haven't visited each element if counter > 0 and idx == 0: return False jump = array[idx] idx = (idx + jump) % len(array) if idx < 0: idx = idx + len(array) counter += 1 if idx == 0: return True else: return False
19dcfff0b8fc4eaa073e604d83e2519e862d5353
SteventsStuff/ElementaryTasks
/tests/t3_triangles_test.py
1,728
3.578125
4
#!/usr/bin/env python3 import unittest import tasks.t3_triangles as triang from tasks.t3_triangles import Triangle class TestTriangle(unittest.TestCase): def setUp(self) -> None: self.triangle_1 = Triangle("tr1", 12, 15, 14) self.triangle_2 = Triangle("tr2", 10.5, 13.5, 12.5) self.triangle_3 = Triangle("tr3", 2, 5, 4) self.triangle_4 = Triangle("test_1", 7, 10.3, 9) # testing Triangle class def test_Triangle_constructor(self): self.assertEqual(("test_1", 7, 10.3, 9), (self.triangle_4._name, self.triangle_4.a_size, self.triangle_4.b_size, self.triangle_4.c_size)) def test_validate_triangle_size_perfect_input(self): self.assertEqual(None, self.triangle_4.validate_triangle_size()) # idk # def test_validate_triangle_size_incorrect_input(self): # self.assertRaises(ValueError, Triangle("test_error", 7, 1, 9)) def test_get_area(self): self.assertEqual(78.92678569408487, self.triangle_1.get_area()) def test_get_name(self): self.assertEqual("tr3", self.triangle_3.get_name()) # testing print func def test_print_triangles_empty_list(self): expected = "There are no triangles in this list!" self.assertEqual(expected, triang.print_triangles([])) def test_print_triangles_perfect_list(self): triangle_list = [self.triangle_1, self.triangle_2, self.triangle_3, self.triangle_4] expected = """1. [tr1]: 78.93cm 2. [tr2]: 62.15cm 3. [test_1]: 30.93cm 4. [tr3]: 3.80cm """ self.assertEqual(expected, triang.print_triangles(triangle_list)) if __name__ == "__main__": unittest.main()
bb3e8df598c01c38d5982158ec26c99f8e77fb3c
blaise594/PythonPuzzles
/printStatements.py
687
4.09375
4
#The Purpose of this program is to demonstrate print statements # Print full name print("My name is Daniel Rogers") # Print the name of the function that converts a string to a floating point number print("The float() function can convert strings to a float") # Print the symbol used to start a Python comment print("The symbol used to start a comment in Python is the pound symbol \'#\' ") # Print the name of Python data type for numbers without decimals print("The Python data type used for numbers is the integer type, whole numbers only") # Print the purpose of the \t escape character print ('The backslash-t escape character is used to insert TAB spaces into outputs\tlike\tthis')
639d50d4d0579ee239adf72a08d7b4d78d9b91b6
blaise594/PythonPuzzles
/weightConverter.py
424
4.21875
4
#The purpose of this program is to convert weight in pounds to weight in kilos #Get user input #Convert pounds to kilograms #Display result in kilograms rounded to one decimal place #Get user weight in pounds weightInPounds=float(input('Enter your weight in pounds. ')) #One pound equals 2.2046226218 kilograms weightInKilos=weightInPounds/2.2046226218 print('Your weight in kilograms is: '+format(weightInKilos, '.1f'))
2b32c38f8df34e7624b993aba7ba38a88059dcbb
i-djurdjevic/BioinformaticsCourseBook
/poglavlja/9/kodovi/SuffixArrayMultiple.py
1,715
3.8125
4
#Formiranje sufiksnog niza na osnovu niza niski strings def suffix_array_construction(strings): suffix_array = [] for s in range(len(strings)): string = strings[s] + '$' for i in range(len(string)): suffix_array.append((string[i:],s, i)) suffix_array.sort() return suffix_array #Funkcija vraca pozicije na kojima se niska pattern pojavljuje u svakoj pojedinacnoj niski, u "okolini" pozicije mid def find_neighborhood(suffix_array, mid, pattern): up = mid down = mid while up >= 0 and len(suffix_array[up][0]) > len(pattern) and suffix_array[up][0][:len(pattern)] == pattern: up -= 1 while down < len(suffix_array) and len(suffix_array[down][0]) > len(pattern) and suffix_array[down][0][:len(pattern)] == pattern: down += 1 positions = [] for i in range(up+1, down): positions.append((suffix_array[i][1], suffix_array[i][2])) positions.sort() print(positions) return positions #Trazenje pozicija na kojima se pojavljuje niska pattern u svakoj pojedinacnoj niski koja je ucestvovala u formiranju suffix_array-a def pattern_matching_with_suffix_array(suffix_array, pattern): top = 0 bottom = len(suffix_array)-1 while top <= bottom: mid = (top + bottom) // 2 if len(suffix_array[mid][0]) > len(pattern): if suffix_array[mid][0][:len(pattern)] == pattern: return find_neighborhood(suffix_array, mid, pattern) if pattern < suffix_array[mid][0]: bottom = mid - 1 else: top = mid + 1 def main(): strings = ['ananas', 'and', 'antenna', 'banana', 'bandana', 'nab', 'nana', 'pan'] suffix_array = suffix_array_construction(strings) pattern = 'an' print(pattern_matching_with_suffix_array(suffix_array, pattern)) if __name__ == "__main__": main()
f25285c2cc809eeb16fd3696bbfa60ddc341e9e9
juliali/ClassicAlgorithms
/undirected_graph/ugraph_circle.py
1,159
3.59375
4
import queue import os import csv def is_undirected_graph_circled(adj_matrix): n = len(adj_matrix) degrees = [0] * n visited = [] q = queue.Queue() for i in range(0, n): degrees[i] = sum([int(value) for value in adj_matrix[i]]) if degrees[i] <= 1: q.put(i) visited.append(i) while not q.empty(): i = q.get() for j in range(0, n): if int(adj_matrix[i][j]) == 1: degrees[j] -= 1 if degrees[j] == 1: q.put(j) visited.append(j) if len(visited) == n: return False else: return True def processFile(file_name): script_dir = os.path.dirname(__file__) file_path = os.path.join(script_dir, file_name) data = list(csv.reader(open(file_path))) result = is_undirected_graph_circled(data) if result: print("YES. It contains circle(s): " + file_path) else: print("NO. It doesn't contain circle(s): " + file_path) return processFile("graph1.csv") processFile("graph2.csv")
9d2a6aa7b90925def161452c31235a27d5af40ca
bushidosds/MeteorTears
/lib/utils/fp.py
979
3.625
4
# -*- coding:utf-8 -*- import os def iter_files(path: str, otype='path') -> list: r""" Returns a list of all files in the file directory path. :param path: file path, str object. :param otype: out params type, str object default path. :return: files path list. :rtype: list object """ filename = [] def iterate_files(path): path_rest = path if not isinstance(path, bytes) else path.decode() abspath = os.path.abspath(path_rest) try: all_files = os.listdir(abspath) for items in all_files: files = os.path.join(path, items) if os.path.isfile(files): filename.append(files) if otype == 'path' else filename.append(items) else: iterate_files(files) except (FileNotFoundError, AttributeError, BytesWarning, IOError, FileExistsError): pass iterate_files(path) return filename
b858cea86ba5635c86653bcc25a02aa9319d3104
rdauncey/CS50_problem_set_solutions
/pset6/credit.py
2,025
4
4
from cs50 import get_string from sys import exit def main(): # Get input from user number = get_string("Number: ") digits = len(number) # Check length is valid if digits < 13 or digits > 16 or digits == 14: print("INVALID") exit(1) # Luhn's algorithm if luhns(number) is False: print("INVALID") exit(1) # VISA or MASTERCARD if digits == 13 or digits == 16: # Use the number at the beginning to determine the type if number[0] == "4": print("VISA") exit(0) elif (int(number[:2]) > 50) and (int(number[:2]) < 56): print("MASTERCARD") exit(0) else: print("INVALID") exit(0) # AMEX elif digits == 15: # Check the beginning of the number is correct if number[:2] == "34" or number[:2] == "37": print("AMEX") exit(0) else: print("INVALID") exit(1) # Function takes the number (as a string) as an input, and returns a boolean value # which indicates whether the number is or is not a valid credit card number def luhns(number): even_digits = [] odd_digits = [] for i in range(len(number)): # If even, append digit in int form to odds list if i % 2 == 0: odd_digits.append(int(number[len(number) - i - 1])) # If not, append to evens list else: even_digits.append(int(number[len(number) - i - 1])) # Multiply all entries in even_digits by 2 even_digits = [i * 2 for i in even_digits] # If we have a two digit number, preemptively sum the digits for k in range(len(even_digits)): # Can be at most two digits if even_digits[k] > 9: even_digits[k] = 1 + (even_digits[k] - 10) # Now we can just sum over the two lists output = sum(even_digits) + sum(odd_digits) if output % 10 == 0: return True else: return False main()
abe6d35e9add0faca38e2eb800fef850dee91aed
paperbackdragon/python-300
/project/dbhelper.py
2,907
3.875
4
""" Database Helper Author: Heather Hoaglund-Biron """ import sqlite3 class DatabaseHelper: """ A DatabaseHelper reads and writes MP3 metadata to an SQLite database. It is necessary to close the connection to the database when finished with the close() method. """ def __init__(self): """ Initializes the MP3 metadata database. """ self.conn = sqlite3.connect('tags.db') self.c = self.conn.cursor() #Create table self.c.execute("""CREATE TABLE IF NOT EXISTS songs (title TEXT NOT NULL, album TEXT NOT NULL, artist TEXT, track INTEGER, length TEXT, PRIMARY KEY (title, album))""") #Commit changes self.conn.commit() def write(self, data): """ Takes the given song and writes it to the database, returning the primary key. Song title and album name are required. """ insert_text = "INSERT into songs (title, album" columns = ['title', 'album', 'artist', 'track', 'length'] used = ['title', 'album'] primary_key = {} #See which tags are in the dictionary (title and album aren't optional) for column in columns[2:]: if column in data: insert_text += ", " + column used.append(column) insert_text += ") values (" #Prepare values values = [] for column in used: if column == "track": values.append(data[column]) else: values.append("\"" + data[column] + "\"") if column == "title" or column == "album": primary_key[column] = data[column] insert_text += ", ".join(values) insert_text += ")" #Execute command(s) and commit try: self.c.execute(insert_text) self.conn.commit() print "Writing tag: %s" % data except sqlite3.IntegrityError: primary_key = {} print "Item already exists in database." return primary_key def read(self, key): """ Reads the information given in the query, grabs the specified data from the database, and returns it. """ select_text = "SELECT * from songs WHERE title is \"%s\" AND album is "\ "\"%s\" ORDER BY artist, album, track" % (key["title"], key["album"]) self.c.execute(select_text) rows = [] for row in self.c.fetchall(): rows.append(row) print "Reading tag: %s" % rows return rows def close(self): self.conn.close()
3f04d5bef7608689c343a5eddb61c3ac1939a3e8
boconganh/algorithm
/python/merge-sort.py
418
3.609375
4
def merge(A,p,q,r): n1=q-p+1 n2=r-q L=A[p:p+n1]+[float("inf")] R=A[q+1:q+1+n2]+[float("inf")] #print A[p:r+1],L,R i=0 j=0 for k in range(p,r+1): if L[i]<=R[j]: A[k]=L[i] i+=1 else: A[k]=R[j] j+=1 def merge_sort(A,p,r): if p<r: q=(p+r)//2 merge_sort(A,p,q) merge_sort(A,q+1,r) merge(A,p,q,r) A=[1,2,4,2,4,32,45,6] print A merge_sort(A,0,len(A)-1) print A
a2dad7fea5ec6e42767c6ab36c4658c857d5548c
boconganh/algorithm
/python/find-max-subarray.py
997
3.59375
4
def find_max_cross_subarray(A,low,mid,high): left_sum=float("-inf") sum=0 for i in range(mid,low-1,-1): sum+=A[i] if sum>left_sum: left_sum=sum max_left=i right_sum=float("-inf") sum=0 for j in range(mid+1,high+1): sum+=A[j] if sum>right_sum: right_sum=sum max_right=j return (max_left,max_right,left_sum+right_sum) def find_max_subarray(A,low,high): if low==high: return (low,high,A[low]) else: mid=(low+high)//2 left_low,left_high,left_sum=find_max_subarray(A,low,mid) right_low,right_high,right_sum=find_max_subarray(A,mid+1,high) cross_low,cross_high,cross_sum=find_max_cross_subarray(A,low,mid,high) if left_sum>=right_sum and left_sum>=cross_sum: return (left_low,left_high,left_sum) elif right_sum>=left_sum and right_sum>=cross_sum: return (right_low,right_high,right_sum) else: return (cross_low,cross_high,cross_sum) A=[11,-2,-4,3,-4,23,-145,345,23] print A print find_max_subarray(A,0,len(A)-1)
ac8ff352c058b7b1e3885d3bca7611f29437f2b4
SaeedTaghavi/MonteCarloIntegration
/test.py
1,391
3.640625
4
import numpy as np import random def calc_pi(N): inCircle = 0 for i in range(N): point = (random.random() , random.random()) r = point[0]*point[0] + point[1]*point[1] if r < 1.0 : inCircle = inCircle +1 # plt.plot(point[0], point[1], 'r.') # else: # plt.plot(point[0], point[1], 'b.') res = float(inCircle)/float(N) res = 4.0*res return res def pi_diff(temp_pi): return np.pi-temp_pi def calc_pi_array(num_array): res_array = [] for num in num_array: res_array = res_array + [calc_pi(num)] return res_array Numbers = [] for i in range(2,7): Numbers = Numbers + [int(10.0**i)] Numbers = Numbers + [int(3.0 * 10.0 ** i)] Numbers = Numbers + [int(6.0 * 10.0 ** i)] import matplotlib.pyplot as plt for i in range(1,5): pis = calc_pi_array(Numbers) pi_diff_array = [] for pi in pis: pi_diff_array = pi_diff_array + [pi_diff(pi)] print(Numbers) print(pis) print(pi_diff_array) plt.plot(Numbers,pi_diff_array,'-s') plt.xscale('log') plt.xlabel('N') plt.ylabel('pi_calc - pi') plt.savefig('PiDeviationFromTheExactValue.png') plt.show() # # def double(x): # return 2.0*x # # def sinSquare(x): # return np.sin(x)*np.sin(x) # # print(double(3.0)) # print(sinSquare(np.pi/6.0))
eac27c0231a6e7acfd305620cff56fd69e3f6d3e
apan64/basic-data-structures
/Lab_11.py
1,194
3.703125
4
import math class AdjMatrixGraph: def __init__ (self, n): self.n = n self.array = [] for x in range(n): q = [] for y in range(n): q.append(int(0)) self.array.append(q) def display (self): for x in range (self.n): for y in range (self.n): print ("{0:2}".format(self.array[x][y]), end=" ") print( ) print( ) def insert (self, x, y, w): self.array[x][y] = int(w) def floyd (self): for i in range(0, self.n): for r in range(0, self.n): for c in range(0, self.n): self.array[r][c] = min(self.array[r][c], self.array[r][i] + self.array[i][c]) def main( ): n = eval(input("Enter number of vertices: ")) G = AdjMatrixGraph(n) G.display( ) k = math.ceil(math.sqrt(n)) for x in range(n): for y in range(n): if x!=y: weight = (x%k-y%k)**2 + (x//k-y//k)**2 + 1 G.insert(x, y, weight) G.display( ) G.floyd( ) G.display( ) if __name__ == '__main__': main( )
ab96fe2f94f539e7535d8110c3dafcd2f35cf097
apan64/basic-data-structures
/Lab_6.py
2,569
3.921875
4
class Node: def __init__ (self, x, q): self.data = x self.next = q class Stack: def __init__ (self): self.top = None def isEmpty (self): return self.top == None def push (self, x): self.top = Node (x, self.top) def pop (self): if self.isEmpty( ): raise KeyError ("Stack is empty.") x = self.top.data self.top = self.top.next return x class List: def __init__ (self): self.head = None def build_list (self): str = input ("Enter strings separated by blanks: ") for x in str.split (" "): if self.head == None: self.head = Node (x, None) curr = self.head else: curr.next = Node (x, None) curr = curr.next def display (self): curr = self.head while curr != None: print (curr.data, end=" ") curr = curr.next print( ) def reverse_display_1 (self): st = Stack() curr = self.head while curr != None: st.push(curr.data) curr = curr.next while (not(st.isEmpty())): print(st.pop(), end = " ") print( ) def recur(self, q): if q.next != None: self.recur(q.next) print(q.data, end = " ") def reverse_display_2 (self): self.recur(self.head) print( ) def reverse_display_3 (self): w = self.head curr = self.head head = self.head head = head.next curr.next = None while head != None: curr = head head = head.next curr.next = w w = curr head = curr.next while curr != None: print (curr.data, end=" ") curr = curr.next print( ) curr = w curr.next = None while head != None: curr = head head = head.next curr.next = w w = curr def main( ): L = List( ) L.build_list( ) print ("Forward: ", end="\t") L.display( ) print ("Backward: ", end="\t") L.reverse_display_1( ) print ("Backward: ", end="\t") L.reverse_display_2( ) print ("Backward: ", end="\t") L.reverse_display_3( ) print ("Forward: ", end="\t") L.display( ) if __name__ == '__main__': main( )
02856d56ce1a0c1a834220d6e0eb7d259010e53d
naitiknakrani/Machine-Learning-algorithms
/1.3-polynomial-regression.py
3,466
3.546875
4
# -*- coding: utf-8 -*- """ Created on Sun Jul 11 17:42:30 2021 @author: naitik """ import matplotlib.pyplot as plt import pandas as pd import pylab as pl import numpy as np %matplotlib inline df = pd.read_csv("FuelConsumptionCo2.csv") df.head() # show data df.describe() #summarize data cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS']] # select few samples cdf.iloc[5:7,:] # select specific row and column cdf.head(9) # give first 9 rows data # Training starts from here # Let's split our dataset into train and test sets. # 80% of the entire dataset will be used for training and 20% for testing. # We create a mask to select random rows using np.random.rand() function: msk = np.random.rand(len(df)) < 0.8 train = cdf[msk] test = cdf[~msk] # Build a Model of Linear Regression from sklearn import linear_model from sklearn.preprocessing import PolynomialFeatures train_x = np.asanyarray(train[['ENGINESIZE']]) train_y = np.asanyarray(train[['CO2EMISSIONS']]) test_x = np.asanyarray(test[['ENGINESIZE']]) test_y = np.asanyarray(test[['CO2EMISSIONS']]) poly = PolynomialFeatures(degree=2) train_x_poly = poly.fit_transform(train_x) # convert Train_x into 1 x x^2 train_x_poly # Now we can use same linear model for polynomial data regr = linear_model.LinearRegression() regr.fit (train_x_poly, train_y) # The coefficients print ('Coefficients: ', regr.coef_) print ('Intercept: ',regr.intercept_) # plot the data and non-linear regression line plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue') XX = np.arange(0.0, 10.0, 0.1) # generate sample sequence like for XX=0:0.1:10 yy = regr.intercept_[0]+ regr.coef_[0][1]*XX+ regr.coef_[0][2]*np.power(XX, 2) plt.plot(XX, yy, '-r' ) plt.xlabel("Engine size") plt.ylabel("Emission") #Evaluation matrix from sklearn.metrics import r2_score test_x_poly=poly.fit_transform(test_x) test_y_ = regr.predict(test_x_poly) print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2)) print("R2-score: %.2f" % r2_score(test_y , test_y_) ) print('Variance score: %.2f' % regr.score(test_x_poly, test_y)) # regression with cubic polynomial poly = PolynomialFeatures(degree=3) train_x_poly = poly.fit_transform(train_x) # convert Train_x into 1 x x^2 train_x_poly # Now we can use same linear model for polynomial data regr = linear_model.LinearRegression() regr.fit (train_x_poly, train_y) # The coefficients print ('Coefficients: ', regr.coef_) print ('Intercept: ',regr.intercept_) # plot the data and non-linear regression line plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue') XX = np.arange(0.0, 10.0, 0.1) # generate sample sequence like for XX=0:0.1:10 yy = regr.intercept_[0]+ regr.coef_[0][1]*XX+ regr.coef_[0][2]*np.power(XX, 2)+regr.coef_[0][3]*np.power(XX, 3) plt.plot(XX, yy, '-r' ) plt.xlabel("Engine size") plt.ylabel("Emission") #Evaluation matrix from sklearn.metrics import r2_score test_x_poly=poly.fit_transform(test_x) test_y_ = regr.predict(test_x_poly) print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2)) print("R2-score: %.2f" % r2_score(test_y , test_y_) ) print('Variance score: %.2f' % regr.score(test_x_poly, test_y))
7ebafa063d92a5960289cba76c3043e18990810e
IqbalHadiSubekti/Factorial
/factorial.py
462
4.0625
4
count = 0 while count == 0: def factorial(n): if 1 <= n <= 2: return n elif 3 <= n <= 5: return n + 1 elif 6 <= n <= 8: return n + 2 elif 9 <= n <= 11: return n + 3 else: print("Input Salah") n = int(input("Input: ")) print("Output:",factorial(n)) ulangi = str(input("Hitung ulang? ya/tidak: ")) if ulangi == "ya": pass elif ulangi == 'tidak': break
5e238d1bc97635963bcb15b615c9e94fbf7c7b5f
dharanpreethi/Text-Minining_Indian-English-Liteature
/Text_mining/Corpus_tm.py
2,458
3.890625
4
# Corpus of text analysis # Now, we can mine the corpus of texts using little more advanced methods of Python. #1.Install glob using pip and import the module #2. Import other necessary modules which we already installed in our previous analysis #3. Asterisk mark will import all plain text files in the corpus #4. Create a corpus of text files and call them using glob #5. Store the stopwords of nltk in a variable import nltk from nltk.tokenize import RegexpTokenizer from nltk.corpus import stopwords import glob corpus = glob.glob("E:\Medium Blog\Text_mining\*.txt") stop_words = set(stopwords.words('english')) # Pre-processing and analysis # We will call the corpus using for loop and then read the texts and convert them into lowercase. We extract the content for analysis, apply stopwords list and tokenization as we did for the single text, but everything should be in the for loop as in the below code. for i in range(len(corpus)): text_file = open(corpus[i], "r", encoding = "UTF-8") lines = [] lines = text_file.read().lower() extract1 =lines.find("start of this project") extract2 = lines.rfind("end of this project") lines = lines[extract1:extract2] tokenizer = RegexpTokenizer('\w+') # extracting words tokens = tokenizer.tokenize(lines) # tokenize the text new_stopwords = ("could", "would", "also", "us") # add few more words to the list of stopwords stop_words = stopwords.words('english') for i in new_stopwords: stop_words.append(i) # adding new stopwords to the list of existing stopwords""" words_list = [w for w in tokens if not w in stop_words] filtered_words = [] for w in tokens: if w not in stop_words: filtered_words.append(w) fre_word_list = nltk.FreqDist(filtered_words) #extracting frequently appeared words print(fre_word_list.most_common(5)) # check the most common frequent words fre_word_list.plot(25) #create a plot for the output pos = nltk.pos_tag(filtered_words, tagset = 'universal') # applying parts of speech (pos) tag for further analysis p = [] y = ['NOUN'] # change the pos here to store them separately for j in pos: for l in y: if l in j: p.append(j) noun = nltk.FreqDist(p)# check the frequency of each pos noun.plot(20)# creating a plot for pos
8160b104778db2c44617989b4a58d2f9873fa57c
AYBUcode/CENG113fall2020
/Week3p.py
141
3.828125
4
a=3.556; b=4; c="abc" print('{0}+{1}={2}'.format(a,b,a+b)) print("the value of a:%10.0f!!"%(a)) x = int(input("Enter a value: ")) print(x*2)
24a70d398de181471d15d36d995c8585b1c35ea7
quentinb28/problem-solving-challenges
/codility/flags.py
1,694
3.6875
4
def solution(A): # initialize list of peaks indexes in between peaks peaks = [0] * len(A) # last item should be index outside of peaks length next_peak = len(A) peaks[-1] = next_peak # stops at 0 because we want to avoid index out of range within if statement for i in range(len(A) - 2, 0, -1): # if height greater than point before and after then save peak index if (A[i] > A[i - 1]) and (A[i] > A[i + 1]): next_peak = i # keep saving peak index until next peak occurs peaks[i] = next_peak # cannot be within loop for index out of bound reasons peaks[0] = next_peak current_guess = 0 next_guess = 0 # iterate through flags counts until it breaks while can_place_flags(peaks, next_guess): # saves last working flags count current_guess = next_guess next_guess += 1 return current_guess def can_place_flags(peaks, flags_to_place): # to land on index 1 after first iteration (cannot land on index 0) current_position = 1 - flags_to_place # iterates through each flag and add the relevant number of places to next position for i in range(flags_to_place): # if next flag falls outside of peaks index range if current_position + flags_to_place > len(peaks) - 1: return False # current position moves to current position + flags places current_position = peaks[current_position + flags_to_place] # if last current position within peaks size then return True return current_position < len(peaks) if __name__ == '__main__': A = [1, 5, 3, 4, 3, 4, 1, 2, 3, 4, 6, 2] solution(A)
4c22ce72238761ce47b68c340174df50866a6a35
quentinb28/problem-solving-challenges
/sherlock-and-anagrams/sherlock-and-anagrams-exercise.py
1,063
3.890625
4
from collections import Counter from itertools import combinations s = 'ifailuhkqq' def sherlockAndAnagrams(s): # Variable to store all possible combinations all_combinations = [] # Iterate through substrings starting points for i in range(0, len(s) + 1): # Iterate through substrings ending points for j in range(1, len(s) + 1): # Append substring to list of combinations all_combinations.append(s[i:j]) # Sort all substrings so the anagrams can be counted all_combinations = [''.join(sorted(c)) for c in all_combinations] # Filter out all empty strings all_combinations = list(filter(None, all_combinations)) result = 0 # Get the values from the counter and compute all the possible anagram pairs # (i.e. if v = 4 then the options are 1-2 1-3 1-4 2-3 2-4 3-4 = 6) for k, v in Counter(all_combinations).items(): result += len(list(combinations(range(v), 2))) return result if __name__ == '__main__': r = sherlockAndAnagrams(s) print(r)
39347b2b248bd565b8a1df9753681900855e88d0
quentinb28/problem-solving-challenges
/new-year-chaos/new-year-chaos-exercise.py
585
3.578125
4
q = [2, 1, 5, 3, 4] def minimumBribes(q): # Initiate total number of bribes total_bribes = 0 #  Iterate through each runner backward for i in range(len(q) - 1, -1, -1): # Stop execution if a runner bribes more than two runners if q[i] - (i + 1) > 2: print('Too chaotic') return # Add the number of runners behind current runner that were bribed else: total_bribes += len(list(filter(lambda x: x < q[i], q[i + 1:]))) print(total_bribes) if __name__ == '__main__': minimumBribes(q)
79fb67bd7592371aaf3861d4e0f9dc84f3a94fdd
y001003/PythonStudy
/_class/class_overriding_1.py
2,318
3.75
4
#일반 유닛 class Unit: # 부모 class def __init__(self, name, hp, speed): self.name = name self.hp = hp self.speed = speed print("{0} 유닛이 생성되었습니다.".format(self.name)) def move(self, location): print("[지상 유닛 이동") print("{0} : {1} 방향으로 이동합니다. [속도 {2}]"\ .format(self.name,location,self.speed)) #공격 유닛 class AttackUnit(Unit): # 자식 class def __init__(self, name, hp, speed, damage): Unit.__init__(self, name, hp, speed) self.damage = damage # method def attack(self, location): print("{0} : {1} 방향으로 적군을 공격 합니다. [공격력 {2}]"\ .format(self.name, location, self.damage)) def damaged(self, damage): print("{0} : {1} 데미지를 입었습니다."\ .format(self.name, damage)) self.hp -= damage print("{0} : 현재 남은 체력은 {1} 입니다."\ .format(self.name, self.hp)) if self.hp <= 0: print("{0} : 파괴되었습니다.".format(self.name)) # 드랍쉽 : 수송기, 공격 X, 공중유닛 class Flyable: def __init__(self, flying_speed): self.flying_speed = flying_speed def fly(self, name, location): print("{0} : {1} 방향으로 날아갑니다. [속도 {2}]"\ .format(name, location, self.flying_speed)) #공중 공격 유닛 클래스 #공격 유닛, 공중유닛 다중 상속 class FlayableAttackUnit(AttackUnit, Flyable): def __init__(self, name, hp, damage, flying_speed): AttackUnit.__init__(self, name, hp, 0, damage) # 지상 speed 0 Flyable.__init__(self, flying_speed) # 메서드 오버라이딩 move로 fly 기동하도록 메서드 move 재정의 def move(self, location): print("[공중 유닛 이동]") self.fly(self.name, location) # 벌쳐 : 지상 유닛, 기동성이 좋음 vulture = AttackUnit("벌쳐",80,10,20) # 배틀크루저 : 공중 유닛, 체력, 공격력 좋지만 느림 battlecruiser = FlayableAttackUnit("배틀크루저", 500, 25, 3) vulture.move("11시") #battlecruiser.fly(battlecruiser.name,"9시") battlecruiser.move("9시")
2c8446bcdebf09395972b1f4fc94eecc00a29fde
y001003/PythonStudy
/_class/class_super_1.py
2,233
3.75
4
#일반 유닛 class Unit: # 부모 class def __init__(self, name, hp, speed): self.name = name self.hp = hp self.speed = speed print("{0} 유닛이 생성되었습니다.".format(self.name)) def move(self, location): print("[지상 유닛 이동") print("{0} : {1} 방향으로 이동합니다. [속도 {2}]"\ .format(self.name,location,self.speed)) #공격 유닛 class AttackUnit(Unit): # 자식 class def __init__(self, name, hp, speed, damage): Unit.__init__(self, name, hp, speed) self.damage = damage # method def attack(self, location): print("{0} : {1} 방향으로 적군을 공격 합니다. [공격력 {2}]"\ .format(self.name, location, self.damage)) def damaged(self, damage): print("{0} : {1} 데미지를 입었습니다."\ .format(self.name, damage)) self.hp -= damage print("{0} : 현재 남은 체력은 {1} 입니다."\ .format(self.name, self.hp)) if self.hp <= 0: print("{0} : 파괴되었습니다.".format(self.name)) # 드랍쉽 : 수송기, 공격 X, 공중유닛 class Flyable: def __init__(self, flying_speed): self.flying_speed = flying_speed def fly(self, name, location): print("{0} : {1} 방향으로 날아갑니다. [속도 {2}]"\ .format(name, location, self.flying_speed)) #공중 공격 유닛 클래스 #공격 유닛, 공중유닛 다중 상속 class FlayableAttackUnit(AttackUnit, Flyable): def __init__(self, name, hp, damage, flying_speed): AttackUnit.__init__(self, name, hp, 0, damage) # 지상 speed 0 Flyable.__init__(self, flying_speed) # 메서드 오버라이딩 move로 fly 기동하도록 메서드 move 재정의 def move(self, location): print("[공중 유닛 이동]") self.fly(self.name, location) #건물 class BuildingUnit(Unit): def __init__(self, name, hp, location): #Unit.__init__(self, name, hp, 0) super().__init__(name, hp, 0) # 자신이 상속받는 부모클래스 초기화 self.location = location
36b67db6ed6e02eb188301bea8a878aa34166ad6
y001003/PythonStudy
/_file/input_output_1.py
856
3.765625
4
# print("Python","Java","JavaScript", sep=" vs ", end="?") # print("무엇이 더 재미있을까요?") # import sys # print("Python","Java", file=sys.stdout) # print("Python","Java", file=sys.stderr) # dictionary # scores = {"수학":0, "영어":50, "코딩":100} # for subject, score in scores.items():# items() : key와 value 쌍으로 보내줌 # #print(subject,score) # #왼쪽정렬 8공간 오른쪽 정렬 4개공간 # print(subject.ljust(8), str(score).rjust(4), sep=":") #은행 대기순번표 # 001, 002, 003, ... # for num in range(1,21): # print("대기번호 : " + str(num).zfill(3)) # 표준 입력 answer = input("아무 값이나 입력하세요 : ") print(type(answer)) # 무조건 String 문자열형태로 기억된다. # print("입력하신 값은 " + answer + "입니다.")
3bdb316174a1c4996567dd5bb66fd25ab8891b57
y001003/PythonStudy
/_for,while/for_2.py
519
3.671875
4
# 출석번호가 1 2 3 4, 앞에 100을 붙이기로 함 -> 101, 102,103,104. # students = [1,2,3,4,5] # print(students) # students = [i+100 for i in students]#students 값을 i에 대입해서 각 i +100 # print(students) # 학생 이름을 길이로 변환 # students = ["Iron man", "Thor", "I am groot"] # students = [len(i) for i in students] # print(students) # 학생 이름을 대문자로 변환 students = ["Iron man", "Thor", "I am groot"] students = [i.upper() for i in students] print(students)
c0287f0659be8e9c8b945efbeb98e648caf565a9
y001003/PythonStudy
/_class/class_heritage_1.py
1,683
3.6875
4
#일반 유닛 class Unit: # 부모 class def __init__(self, name, hp): self.name = name self.hp = hp print("{0} 유닛이 생성되었습니다.".format(self.name)) #공격 유닛 class AttackUnit(Unit): # 자식 class def __init__(self, name, hp, damage): Unit.__init__(self, name, hp) self.damage = damage # method def attack(self, location): print("{0} : {1} 방향으로 적군을 공격 합니다. [공격력 {2}]"\ .format(self.name, location, self.damage)) def damaged(self, damage): print("{0} : {1} 데미지를 입었습니다."\ .format(self.name, damage)) self.hp -= damage print("{0} : 현재 남은 체력은 {1} 입니다."\ .format(self.name, self.hp)) if self.hp <= 0: print("{0} : 파괴되었습니다.".format(self.name)) # 드랍쉽 : 수송기, 공격 X, 공중유닛 class Flyable: def __init__(self, flying_speed): self.flying_speed = flying_speed def fly(self, name, location): print("{0} : {1} 방향으로 날아갑니다. [속도 {2}]"\ .format(name, location, self.flying_speed)) #공중 공격 유닛 클래스 #공격 유닛, 공중유닛 다중 상속 class FlayableAttackUnit(AttackUnit, Flyable): def __init__(self, name, hp, damage, flying_speed): AttackUnit.__init__(self, name, hp, damage) Flyable.__init__(self, flying_speed) # 발키리 : 공중 공격 유닛, 한번에 14발 미사일 발사 valkyrie = FlayableAttackUnit("발키리",200,6,5) valkyrie.fly(valkyrie.name,"3시")
c3a23f4391d29250c7ff9ee4fa0ad9cd133abbe7
priancho/nlp100
/05.py
900
4.3125
4
#usage example: #python3 05.py 2 "This is a pen." import re import sys # extract character n-grams and calculate n-gram frequency def char_n_gram(n, str): ngramList = {} n=int(n) str = str.lower() wordList=re.findall("[a-z]+",str) for word in wordList: if len(word) >= n: for i in range(len(word)-n+1): if word[i:i+n] in ngramList: ngramList[word[i:i+n]]+=1 else: ngramList[word[i:i+n]]=1 return ngramList # extract character n-grams and calculate n-gram frequency def word_n_gram(n, str): next if __name__ == '__main__': if len(sys.argv) != 3: print "Usage: %s <n> <sentence>" % (sys.argv[0]) print " <n>: n for n-gram." print " <sentence>: input sentence to generate n-grams" print "" print " e.g., %s 2 \"This is a pen.\"" % (sys.argv[0]) exit(1) print (char_n_gram(sys.argv[1],sys.argv[2])) print (word_n_gram(sys.argv[1],sys.argv[2]))
af416cceefc1c63424869b66e5fbbaccf9e1f4a5
silvaniodc/python
/Aulas Python/E_hoje.py
1,049
3.546875
4
# -*- coding: UTF-8 -*- # O que Silvanio vai fazer no Domingo? def hoje_e_o_dia(): from datetime import date hj = date.today() dias = ('Segunda-feira', 'Terça-feira', 'Quarta-feira', 'Quinta-feira', 'Sexta-feira', 'Sábado', 'Domingo') dia = int(hj.weekday()) if dia == 3 : print 'Hoje é %s e Silvânio vai continuar Estudando insanamente...!' % (dias[hj.weekday()]) if dia == 1 : print 'Hoje é %s e Silvânio vai na Ubercom ver se o HD SSD ja chegou!' % (dias[hj.weekday()]) if dia == 6 : print 'Hoje é %s e com certeza Silvânio vai pescar :) ' % (dias[hj.weekday()]) if dia == 5 : print 'Hoje é %s e Silvânio vai levar Janaina pra tomar Açai!' % (dias[hj.weekday()]) if dia == 2 : print 'Hoje é %s e Silvânio vai estudar Inglês igual um a louco!' % (dias[hj.weekday()]) if dia == 0 : print 'Hoje é %s e Silvânio vai faze um Churrasco de Picanha au au!' % (dias[hj.weekday()]) if dia == 4 : print 'Hoje é %s e Silvânio vai assistir Family Guy na Netflix!' % (dias[hj.weekday()]) hoje_e_o_dia()
fee0f545fe5e9ec8758ef45e2411e1a2e76801c4
rustikk/OpenCV-Basics
/opencv-getting-setting/gett_setting_code_along.py
1,990
3.546875
4
import argparse import cv2 #construct the argument parser ap = argparse.ArgumentParser() #if no argument is passed, "adrian.png" is used ap.add_argument("-i", "--image", type=str, default="adrian.png", help="path to input image") #vars stores the arguments in a dictionary args = vars(ap.parse_args()) #load the image, grab it spacial dimensions (width and height), #and then display the original image to our screen #reads the image from the argument passed at the command line, #the input path to the image being manipulated image = cv2.imread(args["image"]) #grabs the width and height (h, w) = image.shape[:2] #shows the image with a title of Original cv2.imshow("Original", image) #keeps the image open til a key is pressed, then it closes #cv2.waitKey(0) #rgb values at (0, 0) (b, g, r) = image[0, 0] print("Pixel at (0, 0) - Red: {}, Green: {}, Blue {}".format(r, g, b)) # access the pixel located at x=50, y=20 (b, g, r) = image[20, 50] print("Pixel at (50, 20) - Red: {}, Green: {}, Blue: {}".format(r, g, b)) # update the pixel at (50, 20) and set it to red image[20, 50] = (0, 0, 255) #y values first then x values as images are numpy arrays #and you access rows before columns in numpy arrays (b, g, r) = image[20, 50] print("Pixel at (50, 20) - Red: {}, Green: {}, Blue: {}".format(r, g, b)) # compute the center of the image, which is simply the width and height # divided by two cX, cY = (w // 2, h // 2) # since we are using NumPy arrays, we can apply array slicing to grab # large chunks/regions of interest from the image -- here we grab the # top-left corner of the image tl = image[0:cY, 0:cX] tr = image[0:cY, cX:w] br = image[cY:h, cX:w] bl = image[cY:h, 0:cX] cv2.imshow("Top-Left Corner", tl) cv2.imshow("Top-Right Corner", tr) cv2.imshow("Bottom-Right Corner", br) cv2.imshow("Bottom-left Corner", bl) #set the top left corner of the original image to be green image[0:cY, 0:cX] = (255, 0, 255) #show updated image cv2.imshow("Updated", image) cv2.waitKey(0)
bc44e991bdb4525bbca5a93fe4e6db50947fe225
kerroggu/AtCoderLibrary
/src/UnionFind.py
1,325
3.609375
4
## Tested by ABC264-E ## https://atcoder.jp/contests/abc264/tasks/abc264_e ## Tested by ABC120-D ## https://atcoder.jp/contests/abc120/tasks/abc120_d class UnionFind: def __init__(self,n): # 負 : 根であることを示す。絶対値はランクを示す # 非負: 根でないことを示す。値は親を示す self.parent=[-1]*n # 連結成分の個数を管理 self._size=[1]*n def root(self,x): if self.parent[x]<0: return x else: # 経路の圧縮 self.parent[x]=self.root(self.parent[x]) return self.parent[x] def same(self,x,y): return self.root(x)==self.root(y) def union(self,x,y): r1=self.root(x) r2=self.root(y) if r1==r2: return # ランクの取得 d1=self.parent[r1] d2=self.parent[r2] if d1<=d2: self.parent[r2]=r1 self._size[r1]+=self._size[r2] if d1==d2: self.parent[r1]-=1 else: self.parent[r1]=r2 self._size[r2]+=self._size[r1] def size(self,x): return self._size[self.root(x)] def __str__(self): rt=[i if j<0 else j for i,j in enumerate(self.parent)] return str(rt)
053d941b6d0539e9510961fd68a4a70123ff0cc7
DouglasCremonese/Uri
/1042.py
266
3.734375
4
# Exercício 1042 Uri Online Judge # Programador: Douglas Garcia Cremonese lista = list() a, b, c = map(int, input().strip().split(" ")) lista.append(a) lista.append(b) lista.append(c) lista.sort() for i in range(3): print(lista[i]) print() print(a) print(b) print(c)
8a56d576c3c6be23f5fdbb3ad70965befbac04f7
juancebarberis/algo1
/practica/7-10.py
898
4.3125
4
#Ejercicio 7.10. Matrices. #a) Escribir una función que reciba dos matrices y devuelva la suma. #b) Escribir una función que reciba dos matrices y devuelva el producto. #c) ⋆ Escribir una función que opere sobre una matriz y mediante eliminación gaussiana de- #vuelva una matriz triangular superior. #d) ⋆ Escribir una función que indique si un grupo de vectores, recibidos mediante una #lista, son linealmente independientes o no. A = [(2,1), (4,1)] B = [(4,0), (2,8)] def sumarMatrices(A, B): """""" resultado = [] for i in range(len(A)): nuevaFila = [] for e in range(len(A[i])): nuevaFila.append(A[i][e] + B[i][e]) resultado.append(nuevaFila) return resultado print('A') for fila in A: print(fila) print('B') for fila in B: print(fila) print('Resultado!:') res = sumarMatrices(A, B) print(f"{res[0]}") print(f"{res[1]}")
49ff1527a9468412bde79ed0664bdbf5ebbdac99
juancebarberis/algo1
/tp2/modulos/input.py
2,558
3.625
4
#Este módulo contiene funciones del tipo input que intervienen en la jugabilidad #y el movimiento de Snake. from modulos.terminal import timed_input def inputJugada(movimiento, variables, _ESPECIALES, snake): """ Comprueba lo ingresado por el usuario desde el teclado. Evalúa si pertenece a un movimiento, un especial, o a un cierre del juego. """ entrada = timed_input(float(variables['SPEED'])) #Condicionales de 'salir del juego'. if entrada.isspace(): #Para salir del juego, presiona <SPACE> return False, variables, snake, _ESPECIALES #Condicionales de movimiento if entrada == 'w' and not movimiento == 's': return entrada, variables, snake, _ESPECIALES elif entrada == 'a' and not movimiento == 'd': return entrada, variables, snake, _ESPECIALES elif entrada == 's' and not movimiento == 'w': return entrada, variables, snake, _ESPECIALES elif entrada == 'd' and not movimiento == 'a': return entrada, variables, snake, _ESPECIALES #Condicionales de especiales especiales = variables['SPECIALS'] if especiales == [] or especiales[0] == '': return movimiento, variables, snake, _ESPECIALES for i in range(len(especiales)): if entrada == _ESPECIALES[especiales[i]]['E_KEY'] and int(_ESPECIALES[especiales[i]]['E_CANT']) > 0: if _ESPECIALES[especiales[i]]['E_TYPE'] == 'VELOCIDAD': velocidad = float(variables['SPEED']) velocidad += float(_ESPECIALES[especiales[i]]['E_VALUE']) variables['SPEED'] = str(velocidad) _ESPECIALES[especiales[i]]['E_CANT'] = int(_ESPECIALES[especiales[i]]['E_CANT'])-1 break if _ESPECIALES[especiales[i]]['E_TYPE'] == 'LARGO': if len(snake) == 1: break if int(_ESPECIALES[especiales[i]]['E_VALUE']) == -1: snake.pop(-1) if int(_ESPECIALES[especiales[i]]['E_VALUE']) == 1: if movimiento == 'w': snake.insert(0, (snake[0][0] - 1, snake[0][1])) if movimiento == 's': snake.insert(0, (snake[0][0] + 1, snake[0][1])) if movimiento == 'a': snake.insert(0, (snake[0][0], snake[0][1] - 1)) if movimiento == 'd': snake.insert(0, (snake[0][0], snake[0][1] + 1)) _ESPECIALES[especiales[i]]['E_CANT'] = int(_ESPECIALES[especiales[i]]['E_CANT'])-1 break return movimiento, variables, snake, _ESPECIALES
aa85396997537a23bda51f9247ef62426ba564a3
juancebarberis/algo1
/practica/mapEnClase.py
182
3.609375
4
def map(seq, funcion): res = [] for elem in seq: res.append(funcion(elem)) return res def por_2(n): return n * 2 seq = [1,2,3,4,5,6,7,8] print(map(seq, por_2))
51956c3e996f59440be71017a4160422f79b320b
juancebarberis/algo1
/pre-parcialito/parcialito_3.py
2,155
3.734375
4
''' 1. Escribir una funci´on reemplazar que tome una Pila, un valor nuevo y un valor viejo y reemplace en la Pila todas las ocurrencias de valor viejo por valor nuevo. Considerar que la Pila tiene las primitivas apilar(dato), desapilar() y esta vacia(). ''' def reemplazar(pila, nuevo, viejo): pilaAuxiliar = Pila() #Recorro pila hasta vaciarla while not pila.esta_vacia(): valor = pila.desapilar() if valor == viejo: valor = nuevo pilaAuxiliar.apilar(valor) #Muevo los valor de la pila auxiliar a la pila original while not pilaAuxiliar.esta_vacia(): pila.apilar(pilaAuxiliar.desapilar()) ''' 2. Escribir un m´etodo que invierta una ListaEnlazada utilizando una Pila como estructura auxiliar y considerando que lista solo tiene una referencia al primer nodo. ''' import enlazadas import pilas import colas def invertir_lista_enlazada(self): '''''' pila = Pila() #Apilo todos los elementos en pila actual = self.prim while actual: pila.apilar(actual) actual = self.prox #Vuelvo a enlistar los datos en la lista de manera invertida primero = self.prim proximo = self.prox while not pila.esta_vacia(): primero = pila.desapilar() proximo = None ''' 3. Escribir una funci´on que reciba una pila de n´umeros y elimine de la misma los elementos consecutivos que est´an repetidos. Se pueden usar estructuras auxiliares. La funci´on no devuelve nada, simplemente modifica los elementos de la pila que recibe por par´ametro. Por ejemplo: remover duplicados consecutivos(Pila([2, 8, 8, 8, 3, 3, 2, 3, 3, 3, 1, 7])) Genera: Pila([2, 8, 3, 2, 3, 1, 7]). ''' def limpiar_repetidos_pila(pila): '''''' pilaAuxiliar = Pila() while not pila.esta_vacia(): valor = pila.desencolar() if not pila.esta_vacia(): siguiente = pila.ver_tope() elif valor == siguiente: continue pilaAuxiliar.apilar(valor) while not pilaAuxiliar.esta_vacia(): pila.apilar(pilaAuxiliar.desapilar()) ''' 6. Escribir una funci´on que reciba una cola y la cantidad de elementos en la misma, y devuelva True si los elementos forman un pal´ındromo o False si no. Por ejemplo: es palindromo([n, e, u, q, u, e,n], 7) − > True '''
ef2adcd35cf3050024eaad85e20cfa17d87d6132
juancebarberis/algo1
/practica/6-1.py
1,072
4.03125
4
#Ejercicio 6.1. Escribir funciones que dada una cadena de caracteres: #a) Imprima los dos primeros caracteres. #b) Imprima los tres últimos caracteres. #c) Imprima dicha cadena cada dos caracteres. Ej.: 'recta' debería imprimir 'rca' #d) Dicha cadena en sentido inverso. Ej.: 'hola mundo!' debe imprimir '!odnum aloh' #e) Imprima la cadena en un sentido y en sentido inverso. Ej: 'reflejo' imprime #'reflejoojelfer' . def imprimirDosPrimerosCaracteres(s): print('Primeros dos: ' + s[:2]) def imprimirTresUltimosCaracteres(s): print('Tres ultimos caracteres: ' + s[-3:]) def imprimirCadaDosCaracteres(s): print('Cada dos caracteres: ' + s[::2]) def imprimirCadenaInversa(s): print('Inversa: ' + s[::-1]) def imprimirCadenaEInversa(s): print('Cadena e Inversa: ' + s + s[::-1]) entrada = input('Ingrese una secuencia: ') aReturn = imprimirDosPrimerosCaracteres(entrada) bReturn = imprimirTresUltimosCaracteres(entrada) cReturn = imprimirCadaDosCaracteres(entrada) dReturn = imprimirCadenaInversa(entrada) eReturn = imprimirCadenaEInversa(entrada)
04dcc88ad0fb461fa9aafe3e290ab9addb03c08e
juancebarberis/algo1
/practica/5-4.py
1,135
4.125
4
#Ejercicio 5.4. Utilizando la función randrange del módulo random , escribir un programa que #obtenga un número aleatorio secreto, y luego permita al usuario ingresar números y le indique #si son menores o mayores que el número a adivinar, hasta que el usuario ingrese el número #correcto. from random import randrange def adivinarNumeroAleatorio(): """""" numeroSecreto = randrange(start= 0, stop=100) print('Adivine el número entre 0 y 100.') while True: entrada = input('Ingrese el candidato:') if not entrada.isnumeric(): print('Por favor, ingrese un número válido.') continue else: entrada = int(entrada) if entrada == numeroSecreto: break if entrada > numeroSecreto: print(f'El número {entrada} es mayor que el número a adivinar.') continue if entrada < numeroSecreto: print(f'El número {entrada} es menor que el número a adivinar.') continue print('¡Genial, adivinaste! El número era ' + str(numeroSecreto)) adivinarNumeroAleatorio()
e08f787de4a2297aa6884dbb013e92f612423cc5
juancebarberis/algo1
/practica/7-7.py
877
4.21875
4
#Ejercicio 7.7. Escribir una función que reciba una lista de tuplas (Apellido, Nombre, Ini- #cial_segundo_nombre) y devuelva una lista de cadenas donde cada una contenga primero el #nombre, luego la inicial con un punto, y luego el apellido. data = [ ('Viviana', 'Tupac', 'R'), ('Francisco', 'Tupac', 'M'), ('Raquel', 'Barquez', 'H'), ('Mocca', 'Tupac Barquez', 'D'), ('Lara', 'Tupac Barquez', 'P') ] def tuplaACadena(lista): """ Esta función recibe una lista de tuplas con (Nombre, Apellido, Inicial segundo nombre) y devuelve una lista con cadenas, donde cada una representa "Nombre Inicial. Apellido). """ resultante = [] for persona in lista: cadenaIndividual = "" cadenaIndividual += f"{persona[1]} {persona[2]}. {persona[0]}" resultante.append(cadenaIndividual) return resultante print(tuplaACadena(data))
f9209f14d346695a6956bdc5180624ca6144b176
juancebarberis/algo1
/ej1/norma.py
694
3.515625
4
# NOMBRE_Y_APELLIDO = JUAN CELESTINO BARBERIS # PADRÓN = 105147 # MATERIA = 7540 Algoritmos y Programación 1, curso Essaya # Ejercicio 1 de entrega obligatoria def norma(x, y, z): """Recibe un vector en R3 y devuelve su norma""" return (x**2 + y**2 + z**2) ** 0.5 assert norma(-60, -60, -70) == 110.0 assert norma(26, 94, -17) == 99.0 assert norma(34, 18, -69) == 79.0 assert norma(-34, 63, -42) == 83.0 assert norma(0, 35, 84) == 91.0 assert norma(6, -7, 6) == 11.0 assert norma(94, -3, -42) == 103.0 assert norma(0, 42, -40) == 58.0 assert norma(48, -33, 24) == 63.0 assert norma(0, 0, 0) == 0 #Con z = 85, la igualdad de cumple. (Vale también para -85). z = 85 assert norma(-70, 14, z) == 111.0
ce044a40bf93a96235b26cbd956382cbdb23c054
stavanmehta/image-test
/image_helper/shortest_sequence.py
458
3.75
4
def solution(N): # write your code in Python 3.6 commands = list() L = 0 R = 1 def getL(): return 2 * L - R def getR(): return 2 * R - L print L if N < 0: L = getL() commands.append(L) while L >= N: L = getL() if L + R - N == 0: R = getR() commands.append(L) print commands if __name__ == '__main__': solution(-11)
52bd4fcad10f017b48d79ab42a97e75fa9c7b7f4
AshleySetter/LearningTravis
/UnecessaryMath.py
139
3.71875
4
def multiply(a, b): """ multiplies 2 python objects, a and b and returns the result """ result = a*b return result
7926f12749d7c6331283b2b5c7006ecddd3a88e0
frollo/AdvancedProgramming
/Lab-7/es1.py
783
3.609375
4
import sys from re import sub def isMinor(word): return (word == "the") or (word == "and") or (len(word) <= 2) if __name__ == '__main__': kwicindex = list() counter = 0 titles = dict() with open(sys.argv[1], "r") as file: for line in file: counter += 1 line = sub("[^a-zA-Z0-9\s]", " ", line) line = sub("\s+", " ", line.strip()) kwicindex += [(x, counter) for x in line.lower().split() if not isMinor(x)] titles[counter] = line for (kwic, c ) in sorted(kwicindex, key = lambda x: x[0]): title = titles[c] position = title.lower().find(kwic) print("{0:>5d}\t{1:>33s}{2:<40s}.".format(c, title[0:position if position < 33 else 33], title[position:40 + position:]))
d5a5865ba7093b98233327b3f159751422511629
frollo/AdvancedProgramming
/Lab-4/es2.py
1,097
3.6875
4
class SocialNode(object): def __init__(self, name): self.name = name self.connections = list() def addConnection(self, tag, other): self.connections.append((tag, other)) other.connections.append((tag, self)) def __visit__(self, visited=None): if visited is None: visited = set() visited.add(self) toVisit = [x[1] for x in self.connections if x[1] not in visited] for friend in toVisit: if friend not in visited: visited = visited.union(friend.__visit__(visited)) return visited def __str__(self): visited = self.__visit__() string = "" for v in visited: friends = ["\t{0} with {1}\n".format(x[0], x[1].name) for x in v.connections] string = string + v.name + ":\n" + "".join(friends) return string if __name__ == '__main__': lollo = SocialNode("Lorenzo Rossi") marco = SocialNode("Marco Odore") luca = SocialNode("Luca Rossi") lollo.addConnection("works", marco) lollo.addConnection("friend", luca) print(lollo)
67fcb010226731a071c51b6b0e59f254eaf7a106
frollo/AdvancedProgramming
/exams/2015-06-16/quickrecursion.py
903
3.875
4
def memoization(fun): past_values = dict() def wrapper (*args): if args in past_values: print ("### cached value for {0} --> {1}".format(args, past_values[args])) else: past_values[args] = fun(*args) return past_values[args] return wrapper @memoization def fibo(n): if n < 3: return 1 return fibo(n - 1) + fibo(n-2) @memoization def fact(n): if n < 2: return 1 return n * fact(n-1) @memoization def sum(n,m): if n == 0: return m return sum(n - 1, m + 1) if __name__ == '__main__': print("fibo({0}) --> {1}".format(25, fibo(25))) for x in range(1,25): print("fact({0}) --> {1}".format(x, fact(x))) print("sum({0}, {1}) --> {2}".format(5, 9, sum(5,9))) print("sum({0}, {1}) --> {2}".format(4, 10, sum(4,10))) print("sum({0}, {1}) --> {2}".format(13,1, sum(13,1)))
97fbde95357d10d54ef0533a0a2ea5b8ac4086e7
ninnin92/Pyworks
/auto_analysis/days to age.py
3,286
3.78125
4
#!/usr/bin/env # -*- coding: utf-8 -*- import pandas as pd from datetime import date, timedelta, datetime ################################################ # 宣言 ################################################ s_data = pd.read_csv("subject_age.csv") ################################################ # 処理関数 ################################################ # 年齢の計算(閏日補正含む) :今何歳何ヶ月なのか? def count_years(b, s): try: this_year = b.replace(year=s.year) except ValueError: b += timedelta(days=1) this_year = b.replace(year=s.year) age = s.year - b.year if s < this_year: age -= 1 # 何歳”何ヶ月”を計算 if (s.day - b.day) >= 0: year_months = (s.year - b.year) * 12 - age * 12 + (s.month - b.month) else: year_months = (s.year - b.year) * 12 - age * 12 + (s.month - b.month) - 1 # 誕生日が来るまでは月齢も-1 return age, year_months # 月齢の計算 def count_months(b, s): if (s.day - b.day) >= 0: months = (s.year - b.year) * 12 + (s.month - b.month) else: months = (s.year - b.year) * 12 + (s.month - b.month) - 1 # 誕生日が来るまでは月齢も-1 return months # 月齢および何歳何ヶ月の余り日数(何歳何ヶ月”何日”) def count_days(b, s): if (s.day - b.day) >= 0: days = s.day - b.day else: try: before = s.replace(month=s.month - 1, day=b.day) days = (s - before).days except ValueError: days = s.day # 2月は1ヶ月バックするとエラーになる時がある(誕生日が29-31日の時) # なのでそうなった場合は、すでに前月の誕生日を迎えたことにする(setされた日が日数とイコールになる) return days ################################################ # メイン処理 ################################################ if __name__ == '__main__': a_months = [] a_days = [] a_details = [] for i in range(0, len(s_data)): try: base = s_data.iloc[i, :]["days"] base = datetime.strptime(str(base), "%Y/%m/%d") base_day = date(base.year, base.month, base.day) birth = s_data.iloc[i, :]["birthday"] birth = datetime.strptime(str(birth), "%Y/%m/%d") bir_day = date(birth.year, birth.month, birth.day) print(base_day, bir_day) age = str(count_years(bir_day, base_day)[0]) age_year_months = str(count_years(bir_day, base_day)[1]) age_days = str(count_days(bir_day, base_day)) age_months = str(count_months(bir_day, base_day)) age_in_days = str((base_day - bir_day).days) age_details = age + "y " + age_year_months + "m " + age_days + "d" except: age_months = "NA" age_in_days = "NA" age_details = "NA" a_months.append(age_months) a_days.append(age_in_days) a_details.append(age_details) s_data = s_data.assign(age_days=a_days, age_months=a_months, age_details=a_details) s_data.to_csv("result_subjects_age.csv", index=False)
6d16dd48bab98affcb0df5e64cd1158e846b1e57
foundjem/COMP551-Applied-Machine-Learning
/Project 3/Code/train_test_LR_SVM_NN_raw_pixels.py
1,872
3.53125
4
# -*- coding: utf-8 -*- ''' Perform Logistic Regression, SVM and feed-forward neural network using raw pixel values on the test data ''' import sklearn import numpy as np import scipy.misc # to visualize only from scipy import stats from sklearn.decomposition import PCA as sklearnPCA from sklearn.feature_selection import SelectKBest from sklearn.neural_network import MLPClassifier from sklearn.feature_selection import chi2 from sklearn import svm, linear_model, naive_bayes from sklearn import metrics import math x = np.fromfile('train_x.bin', dtype='uint8') x = x.reshape((100000,60,60)) y = np.genfromtxt("train_y.csv", delimiter=",", dtype= np.float64) y = y[1:100001,1] unfolded_data = x.reshape(100000,3600) test = np.fromfile('test_x.bin', dtype='uint8') test = test.reshape((20000,60,60)) x_flat = x.reshape(100000,3600) test_flat = test.reshape(20000,3600) x_train = unfolded_data y_train = y x_test = test_flat """ Logistic Regression """ logreg = linear_model.LogisticRegression(C=1e5) print "Training Logistic Regression" logreg.fit(x_train,y_train) print "Testing Logistic Regression" predicted_logreg = logreg.predict(x_test) np.savetxt("predicted_logreg_raw_pixels.csv",predicted_logreg, delimiter =",") """ SVM """ sv = svm.SVC() print "Training SVM" sv.fit(x_train,y_train) print "Testing SVM" predicted_svm = sv.predict(x_test) np.savetxt("predicted_svm_raw_pixels.csv",predicted_svm, delimiter =",") """ Neural Network """ print "Training Neural Network" clf = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(10,10), random_state=1, tol=0.0000000001, max_iter=100000) clf.fit(x_train,y_train) print "Testing Neural Network" predicted_nn = clf.predict(x_test) np.savetxt("predicted_nn_raw_pixels.csv",predicted_nn, delimiter =",")
e0a5afb486454fc6def28ed6c5bb593528bcd246
foundjem/COMP551-Applied-Machine-Learning
/Project 3/Code/train_test_LR_SVM_NN_Daisy.py
2,580
3.5
4
# -*- coding: utf-8 -*- ''' Perform Logistic Regression, SVM and feed-forward neural network using Daisy features on the test data ''' import sklearn import numpy as np import scipy.misc # to visualize only from scipy import stats from sklearn.decomposition import PCA as sklearnPCA from sklearn.feature_selection import SelectKBest from sklearn.neural_network import MLPClassifier from sklearn.feature_selection import chi2 from sklearn import svm, linear_model, naive_bayes from sklearn import metrics import math import matplotlib.pyplot as plt import skimage from skimage.feature import hog from skimage import data, color, exposure from skimage.feature import daisy x = np.fromfile('train_x.bin', dtype='uint8') x = x.reshape((100000,60,60)) y = np.genfromtxt("train_y.csv", delimiter=",", dtype= np.float64) y = y[1:100001,1] test = np.fromfile('test_x.bin', dtype='uint8') test = test.reshape((20000,60,60)) print "Daisy: Saving features' loop for train" daisy_features_train_set = np.zeros((len(x),104)) for i in range(len(x)): descs, descs_img = daisy(x[i], step=180, radius=20, rings=2, histograms=6, orientations=8, visualize=True) daisy_features_train_set[i] = descs.reshape((1,104)) print "Daisy: Saving features' loop for test" daisy_features_test_set = np.zeros((len(test),104)) for i in range(len(test)): descs, descs_img = daisy(test[i], step=180, radius=20, rings=2, histograms=6, orientations=8, visualize=True) daisy_features_test_set[i] = descs.reshape((1,104)) x_train = daisy_features_train_set y_train = y x_test = daisy_features_test_set """ Logistic Regression """ logreg = linear_model.LogisticRegression(C=1e5) print "Training Logistic Regression" logreg.fit(x_train,y_train) print "Testing Logistic Regression" predicted_logreg = logreg.predict(x_test) np.savetxt("predicted_logreg_daisy.csv",predicted_logreg, delimiter =",") """ SVM """ sv = svm.SVC() print "Training SVM" sv.fit(x_train,y_train) print "Testing SVM" predicted_svm = sv.predict(x_test) savetxt("predicted_logreg_daisy.csv",predicted_svm, delimiter =",") """ Neural Network """ print "Training Neural Network" clf = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(10,10), random_state=1, tol=0.0000000001, max_iter=10000) clf.fit(x_train,y_train) print "Testing Neural Network" predicted_nn = clf.predict(x_test) savetxt("predicted_logreg_daisy.csv",predicted_nn, delimiter =",")
2c4ac0b414a5644612b8c956b253d40c6329b94b
PeterPZhang/CrossRiver
/CrossRiver.py
6,117
3.53125
4
edgeFlag1=True #河岸标识符现在在A岸 edgeFlag2=False#河岸标识符 与上面一样 用这两个就可以表示船 sheep1=[1,1,1]#河岸A的羊 sheep2=[]#河岸B的狼 wolf1=[1,1,1]#河岸A的狼 wolf2=[]#河岸B的狼 GameFlag=True#游戏开始标志 edge1="A"#用来识别A岸 edge2="B"#用来识别B岸 step=0 winner_list=[] winner={} def oprate(SheepA, SheepB, WolfA, WolfB,EdgeFlag1,EdgeFlag2):#键入操作进行游戏 global edgeFlag1,edgeFlag2,step for i in range(2): op=input("请输入你的操作:") push(op,SheepA,SheepB,WolfA,WolfB)#对当前操作进行操作 # judge(EdgeFlag1,SheepA,SheepB,WolfA,WolfB)#判断对岸状态 # EdgeFlag1=False #判断完置反 表示船走了 # EdgeFlag2=True edgeFlag1 = not EdgeFlag1 edgeFlag2 = not EdgeFlag2 step += 1 return def push (Op,SheepA,SheepB,WolfA,WolfB): if Op =="S": #输入S进行操作 SheepA.pop() #当前河岸S-1 SheepB.append(1)#对岸+1 return elif Op=="W": WolfA.pop() WolfB.append(1) return elif Op=="N":#可以不上元素返回 return def judge(SheepA,WolfA,SheepB,WolfB): global GameFlag if (len(SheepA)<len(WolfA) or len(SheepB)<len(WolfB)) and len(SheepA)!=0 and len(SheepB)!=0 : print("你输了") GameFlag=False elif len(SheepA)==0 and len(WolfA)==0: print("你赢了") fo = open("winners.txt", "a", encoding="UTF-8") winner["姓名:"]=input("请输入你的姓名:") winner["步数"]=step fo.write(winner) fo.close() fo = open("winners.txt","r+",encoding="UTF-8") winner_list=fo.readlines() winner_list.sort(key="步数") for onewinner in winner_list: fo.write(onewinner) fo.close() GameFlag=False else: print("请继续") return # def iscontinue(edge,list): # if edege # if list.length==0: # print("此岸已没有可操作的了") # else: # return def show(EdgeFlag1,EdgeFlag2,Edge1,Edge2,Sheep1,Sheep2,Wolf1,Wolf2): print("当前状态是:") for wolf in wolf1: print(""" * * * * ** * ** * ** *********** ** **************** ****************** * * * * * * * * * * * * * * * * * * """) for sheep in sheep1: print(""" * * ************ **** ******************* ** *** ********************** ** *** ************************* ********************** ****************** * * *********** * * * * * * """) print("河岸%s有%d只羊%d只狼" % (Edge1, len(Sheep1), len(Wolf1))) print("______________________________________________________") for wolf in wolf2: print(""" * * * * ** * ** * ** *********** ** **************** ****************** * * * * * * * * * * * * * * * * * * """) for sheep in sheep2: print(""" * * ************ **** ******************* ** *** ********************** ** *** ************************* ********************** ****************** * * *********** * * * * * * """) print("河岸%s有%d只羊%d只狼" % (Edge2, len(Sheep2), len(Wolf2))) if(EdgeFlag1==True): print("""现在船在 A岸""") elif (EdgeFlag2==True): print("""现在船在 B岸""") def main(): print("""欢迎进入狼羊过河游戏 游戏规则:现在在河岸A有3只羊和3只狼要都过河,但是河岸边只有一艘小船,小船自多只能承载两个单位,且必须至少有一个单位在船上时小船才会开动。 当船两岸任意一岸的羊的数量小于狼的数量时,羊就会被吃掉游戏失败。怎样做才能让所有的羊和狼都过河呢? 操作提示: S:让此岸的羊上船 W:让此岸的狼上船 N:不上船""") fo = open("winners.txt", "ab+") fo.close() show(edgeFlag1, edgeFlag2, edge1, edge2, sheep1, sheep2, wolf1, wolf2) while GameFlag == True: print("步数:%d"%step) if edgeFlag1==True: oprate(sheep1, sheep2, wolf1, wolf2,edgeFlag1,edgeFlag2) judge(sheep1,wolf1,sheep2,wolf2) elif edgeFlag2==True: oprate(sheep2, sheep1, wolf2, wolf1,edgeFlag1,edgeFlag2) judge(sheep1,wolf1,sheep2,wolf2) show(edgeFlag1,edgeFlag2,edge1, edge2, sheep1, sheep2, wolf1, wolf2) main() print(edgeFlag1)
b32fa0aa5cf1525a58af1887b5616554f97b767f
atanasbozhinov/simple_2d_array_operations
/core/matrix_operations.py
480
3.546875
4
import numpy as np def append(input_x, input_y): try: output = np.append(input_x, input_y, axis=0) except ValueError: return None return output def combine(input_x, input_y): try: output = np.append(input_x, input_y, axis=1) except ValueError: return None return output def sum(input_x, input_y): if not (input_x.shape == input_y.shape): return None output = np.add(input_x, input_y) return output
dec49accb05722be663a3b935e948db291948826
lerrigatto/algo2
/src/lesson7/bfs.py
1,014
3.6875
4
# Implement DFS algorithm import networkx as nx import random def bfs(G,u): """ Breath First Search """ visited = [] visited_edges = [] walk = [] visited.append(u) walk.insert(0,u) while len(walk) > 0: v = walk.pop() adj = G.successors(v) print(f"v:{v}, adj:{list(G.successors(v))}") if adj: for w in adj: if w not in visited: visited.append(w) visited_edges.append((v,w)) walk.insert(0,w) else: print(f"else") walk.pop() return visited_edges def main(): nodes = [0, 1, 2, 3] edges = [(0, 1), (1, 0), (0, 2), (2, 1), (3, 0), (3, 1)] #G = nx.DiGraph(edges) # Generate random complete graph G = nx.gn_graph(100) root = random.randint(0,100) my_visit = bfs(G, root) good_visit = list(nx.bfs_edges(G,source=root)) print(f"My visit: {my_visit}") print(f"Good visit: {good_visit}") main()
77b80551538eb2521a2244e396b166336b6bff7d
lerrigatto/algo2
/src/es07-bt/es0708.py
1,277
3.75
4
# Dato n, si stampino tutte le matrici di interi n x n tali che # le righe e le colonne della matrice siano in ordine crescente def print_matr(M): for line in M: print(''.join(str(line))) print("---") def stampa_bt(n, M, i=0, j=0, c=0): if i == n: print_matr(M) return else: if c>0: M[i][j] = c # Controllo se sono a fine riga if j < n -1: stampa_bt(n,M,i,j+1) else: stampa_bt(n,M,i+1,0) else: for x in range(1,n+2): # Nella posizione 0,0 non ho vicini da controllare if i==0 and j==0: stampa_bt(n,M,i,j,x) order = True # Controllo prima riga, ogni colonna if i == 0 and j>0: order &= M[i][j-1] <= x # Controllo riga e colonna centrali if i>0 and j>0: order &= M[i-1][j] <= x and M[i][j-1] <= x # Controllo prima colonna if i>0 and j==0: order &= M[i-1][j] <= x and M[i][j+1] <= x if order: stampa_bt(n,M,i,j,x) n=2 M = [[0] * n for _ in range(n)] stampa_bt(n, M)
9ce0934bfba140a3fef6e1f11dba2817a7d120f0
SwapnaSubbagari/python-challenge
/PyBank/main.py
1,793
3.625
4
import os import csv import pandas as pd datapath = os.path.join('Resources','budget_data.csv') #Opening the file with open(datapath) as budget_data_file: df = pd.read_csv(datapath, usecols = ['Date','Profit/Losses']) #Calculating unique list of Months and count of Months unique_TotalMonths = df['Date'].unique() Number_Total_Months= pd.value_counts(unique_TotalMonths).count() #Calculating Total Amount of Profits/Losses Net_Total_Amount= df['Profit/Losses'].sum() PL_Amount = df['Profit/Losses'] #Calculating the difference in Profit and Loss Amount Change = df['Profit/Losses'].diff() result={"Date":unique_TotalMonths,"Profit/Losses":PL_Amount, "Difference/Change":Change} result_df=pd.DataFrame(result) result_df = result_df.set_index("Difference/Change") #Calculating values using functions Max,Min,Mean and retreiving the dates using loc. Max_Change=Change.max().__round__() Min_Change=Change.min().__round__() Average_Change=Change.mean().__round__(2) Greatest_Increase_Month=result_df.loc[Max_Change,"Date"] Greatest_Decrease_Month=result_df.loc[Min_Change,"Date"] #Writing Output to text file and terminal with open("Analysis\PyBank_Output_textfile.txt", 'x') as f: f.write("Financial Analysis"+'\n') f.write("----------------------------------"+'\n') f.write("Total Months: " +str(Number_Total_Months)+'\n') f.write("Total: $" +str(Net_Total_Amount)+'\n') f.write("Average Change: $" +str(Average_Change)+'\n') f.write("Greatest Increase in Profits: " +Greatest_Increase_Month+ " ($"+str(Max_Change)+")"'\n') f.write("Greatest Decrease in Profits: " +Greatest_Decrease_Month+ " ($"+str(Min_Change)+")"'\n') f.close() #Reading Output from text file with open("Analysis\PyBank_Output_textfile.txt", "r") as f: print(f.read())
fa3cf86e4519a406c8de6544c9acac1c0e6a3813
tahabroachwala/lists
/DigitsReturn.py
256
4.03125
4
# Write a function that takes a number and returns a list of its digits. # So for 2342 it should return [2,3,4,2]. def returnDigits(num): num_string = str(num) num_list = [int(i) for i in num_string] return num_list print(returnDigits(2432))
f4890460ff11e22734a6fbd86de168a5c28f5ba9
tahabroachwala/lists
/BubbleSort.py
314
4.03125
4
def bubbleSort(list1): for passnum in range(len(list1) - 1, 0, -1): for i in range(passnum): if list1[i] > list1[i+1]: list1[i], list1[i+1] = list1[i+1], list1[i] else: continue list1 = [54,26,93,17,77,31,44,55,20] bubbleSort(list1) print(list1)
e7c0cc03577d1dee49c6618f998312af4d18aa84
abbeychrystal/CodingDojo_PythonRepo
/pythonFeb2021/python_fundamentals/for_loop_basic1.py
1,159
4.09375
4
# Basic - Print all integers of 5 from 5-1000 for i in range(0, 151, 1): print(i) # Multiples of Five - Print all the multiples of 5 from 5 to 1,000 for i in range(5, 1001, 5): print(i) # Counting, the Dojo Way - Print integers 1 to 100. If divisible by 5, print "Coding" instead. If divisible by 10, print "Coding Dojo". for i in range( 1, 101, 1): if i%5 == 0: print("Coding") else: print(i) # Whoa. That Sucker's Huge - Add odd integers from 0 to 500,000, and print the final sum. count = 0 for i in range(1, 500001): if i%2 != 0: count = count + i print(count) # Countdown by Fours - Print positive numbers starting at 2018, counting down by fours. for i in range (2018, -1, -4): print(i) # Flexible Counter - Set three variables: lowNum, highNum, mult. Starting at lowNum and going through highNum, print only the integers that are a multiple of mult. For example, if lowNum=2, highNum=9, and mult=3, the loop should print 3, 6, 9 (on successive lines) def flexCount(lowNum, highNum, mult): for i in range(lowNum, highNum+1): if i%mult ==0: print(i) flexCount(2,9,3)
4e1a29434d93da6c303babfbfb477f5cd0ac6ecf
abbeychrystal/CodingDojo_PythonRepo
/_python/OOP/INtroOOPnotes.py
5,581
4.6875
5
# As almost all applications revolve around users, almost all applications define a User class. Say we have been contracted to build a banking application. The information we need about a user for a banking application would be different than what we would need if we were building a social media application. If we allowed each user to decide what information they wanted to provide to us, you can imagine how difficult it would be to sift through and utilize that information. Instead, we design a class on the backend that will dictate what information the user is required to provide. This ensures consistent creation of User instances. # Here's the syntax for creating a class that we want to call User: class User: pass # we'll fill this in shortly # And here's how we create a new instance of our class: michael = User() anna = User() # We can flesh out the User class with: # Attributes: Characteristics shared by all instances of the class type. # Methods: Actions that an object can perform. A user, for example, should be able to make a deposit or a withdrawal, or maybe send money to another user. # Let's start building our User class by adding attributes. Again, attributes are characteristics of an object. For example, in our banking application, we may be interested in their name, email, and account balance. Attributes are defined in a "magic method" called __init__, which method is called when a new object is instantiated. class User: # declare a class and give it name User def __init__(self): #First and required parameter is always 'self' self.name = "Michael" # add in whatever attributes are required/desired self.email = "[email protected]" self.account_balance = 0 # The first parameter of every method within a class will be self, and the class's attribute names are also indicated by self.. We'll talk more about self later, but for now just follow this pattern: self.<<attribute_name_of_your_choosing>>. # Then to instantiate a couple of new users: guido = User() monty = User() # If we want to access our instance's attributes, we can refer to them from our instances by name: print(guido.name) # output: Michael print(monty.name) # output: Michael # While we definitely want every user to have a name, email, and account balance, we don't want all of our users to have the same name and email address upon creation. How will we know what the name should be? # With the __init__ method's parameters, we indicate what needs to be provided (i.e. arguments) when the class is instantiated. (self is always passed in implicitly.) # In our example, even though we have 3 attributes, we only require input for 2 of them. When the User instance is created, we should expect to receive specific values for the name and email address. We'll assume, however, that everyone starts with $0 in their account. Let's adjust our code to allow arguments to be passed in upon instantiation: class User: def __init__(self, username, email_address):# now our method has 2 parameters! self.name = username # and we use the values passed in to set the name attribute self.email = email_address # and the email attribute self.account_balance = 0 # the account balance is set to $0, so no need for a third parameter # Now when we want to create users, we must send in the 2 required arguments: guido = User("Guido van Rossum", "[email protected]") monty = User("Monty Python", "[email protected]") print(guido.name) # output: Guido van Rossum print(monty.name) # output: Monty Python # Now it's time to add some functionality to our class. Methods are just functions that belong to a class. This means that we can't call them independently as we have called functions previously; rather, methods must be called from an instance of a class. For example, if a user wanted to make a deposit, we'd want to be able to call the method from the user instance; because a specific user is making a deposit, it should only affect that user's balance. Making such a call would look something like this: guido.make_deposit(100) # To be able to call on this method, it needs to exist. Let's make it! class User: # here's what we have so far def __init__(self, name, email): self.name = name self.email = email self.account_balance = 0 # adding the deposit method def make_deposit(self, amount): # takes an argument that is the amount of the deposit self.account_balance += amount # the specific user's account increases by the amount of the value received # Don't forget that the first parameter of every method within a class should be self. Notice that, in addition to whatever arguments are passed in as a traditional function, methods also have access to the class's attributes. # Now that our method is written, we can call it: guido.make_deposit(100) guido.make_deposit(200) monty.make_deposit(50) print(guido.account_balance) # output: 300 print(monty.account_balance) # output: 50 # Self # It's probably time to talk about self. The self parameter includes all the information about the individual object that has called the method. But how does it get passed in? Based on the signature for the deposit method or the __init__ method, they require 2 and 3 arguments, respectively. However, when we call on them, we pass in only 1 and 2. What's happening here? Because we are calling on the method from the instance, this is known as implicit passage of self. When we call on a method from an instance, that instance, along with all of its information (name, email, balance), is passed in as self.
afce4efaa47e3addf871f4a1df08c4f620a292da
willwburdick/Shared_Class_Work
/Assignment_05.py
3,627
4.3125
4
# ---------------------------------------------------------------------------------------------------------------------- # Title: Assignment 05 # Dev: William Burdick # Date: 04/30/2018 # Description: Read and write a text file # This project is like to the last one, but this time The To Do file will contain two columns of data (Task, Priority) # which you store in a Python dictionary. Each Dictionary will represent one row of data and these rows of data # are added to a Python List to create a table of data. # ---------------------------------------------------------------------------------------------------------------------- # When the program starts, load each row of data from the To Do.txt text file into a Python dictionary. # You can use a for loop to read a single line of text from the file and then place the data # into a new dictionary object. print("Hello, this program keeps track of the To Do items for your household") #ToDoList = open("D:\UW_Python_Class\Assignment05\ToDo.txt", "r") # Open the file To Do.txt #print (ToDoList) # for line in ToDoList: # Task1 = ToDoList.readline(0) # Task2 = ToDoList.readline(1) # print (Task1) # print (Task2) print("Here are the items in your list:") ToDoRow1 = {"ID": 1, "Task": "Clean House", "Priority": "Low"} ToDoRow2 = {"ID": 2, "Task": "Pay Bills", "Priority": "High"} ToDoDictionary = [ToDoRow1, ToDoRow2] print(ToDoDictionary) # ToDoList.close() TableHeader = ["ID", "Task", "Priority"] NewRow = "\n" # Add the new dictionary row into a Python list object TaskList = [TableHeader + ToDoDictionary] # Now the data will be managed as a table). # Allow the user to Add or Remove tasks from the list using numbered choices. # Menu of Options Menu1 = "#1 Show current data" Menu2 = "#2 Add a new item" Menu3 = "#3 Remove an existing item" Menu4 = "#4 Save Data to File" Menu5 = "#5 Exit Program" print (Menu1) print (Menu2) print (Menu3) print (Menu4) print (Menu5) ItemId = 2 UserChoice = 0 while UserChoice != 5: # If boolean is not equal to 5 loop will continue UserChoice = int(input("Please choose from the Menu:")) if UserChoice == 1: print ("Current list:") print(TaskList) elif UserChoice == 2: NewId = (ItemId + 1) ItemName = raw_input("Please enter the New Item:") ItemPriority = raw_input("Please enter the Priority:") NewRow = [NewId, ItemName, ItemPriority] TaskList.append(NewRow) ItemId = NewId print (Menu1) print (Menu2) print (Menu3) print (Menu4) print (Menu5) elif UserChoice == 3: #print(TaskList) #RowToRemove = int(input("Please enter the ID of the Task to remove:")) #for line in TaskList: #TaskList.remove([RowToRemove]) #print (TaskList) print (Menu1) print (Menu2) print (Menu3) print (Menu4) print (Menu5) continue elif UserChoice == 4: File = open("D:\UW_Python_Class\Assignment05\ToDo.txt", "w") # Open/write file named To Do.txt File.write(str(TaskList)) # Write the Dictionary to the file File.close() # Close the file print ("File saved") print (Menu1) print (Menu2) print (Menu3) print (Menu4) print (Menu5) continue elif UserChoice == 5: # User enters n to end loop break # Close loop print ("Program Closed") print("---------------------------------------------------------------------------------------------------------------")
6575a721c66f1f75f16f6662c2cca21dc3bb03c8
EricB2745/Data_Analytics_and_Visualizations
/Numpy/CreatingArrays.py
808
3.515625
4
import numpy as np # Create an array by converting a list my_list1 = [1,2,3,4] my_array1 = np.array(my_list1) print my_array1 my_list2 = [11,22,33,44] my_lists = [my_list1,my_list2] my_array2 = np.array(my_lists) print my_array2 print 'Shape of array: ' + str(my_array2.shape) print 'Type of array: ' + str(my_array2.dtype) zero_array = np.zeros(5) print zero_array print 'Shape of array: ' + str(zero_array.shape) print 'Type of array: ' + str(zero_array.dtype) ones_array = np.ones([5,25]) print ones_array print 'Shape of array: ' + str(ones_array.shape) print 'Type of array: ' + str(ones_array.dtype) identity_array = np.eye(5) print identity_array print 'Shape of array: ' + str(identity_array.shape) print 'Type of array: ' + str(identity_array.dtype) print np.arange(5) print np.arange(5,50,2)
541bd87f9ff8191ea2b7758fad6d4af7206024d2
BeginnerA234/codewars
/задача_35_7kyu.py
306
3.546875
4
# https://www.codewars.com/kata/5667e8f4e3f572a8f2000039/train/python def accum(string): res = '' for i, s in enumerate(string): if i == 0: res = res + s.capitalize() else: res = res + '-' + (s * i).capitalize() return res print(accum('ZpglnRxqenU'))
173c8cb3559bb0b12cb3b93339ab0d69df5b9d8f
BeginnerA234/codewars
/задача_30_6kyu.py
483
3.71875
4
# https://www.codewars.com/kata/54da539698b8a2ad76000228/train/python def is_valid_walk(walk): print(walk) res = 0 random_name = '' for i in walk: if i in random_name or len(random_name) == 0: random_name += i res += 1 else: res -= 1 if len(walk) == 10 and res == 0: return True else: return False print(is_valid_walk(['s', 'e', 's', 's', 'n', 's', 'e', 'n', 'n', 's']))
8c93f27cd772c1b1dc179921157c51eb5419b32a
BeginnerA234/codewars
/задача_24_6kyu.py
301
3.75
4
# https://www.codewars.com/kata/54bf1c2cd5b56cc47f0007a1/train/python def duplicate_count(text): res = 0 text = text.lower() for i in text: if text.count(i)>1: res+=1 text = text.replace(i,'') return res print(duplicate_count("abcdabcd"))
83bdc36e4e00b6aa0b7afcd4dee64707c1b3faf1
mpwesthuizen/eng57_factory
/general_functions.py
868
3.90625
4
# recap function # define a function def say_hello(name): return (f'Hello {name}' ) # #BAD! # def return_formatted_name(name): # print(name.title().strip()) def return_formatted_name(name): return name.title().strip() # print the return of the function outside - NOT print inside the function. If you do all argument will return none (because return is already set to none) f_name = (return_formatted_name("marcus ")) print(say_hello((f_name))) # # Basis of a test # # def return_formatted_name(name): # return name.title().strip() # test setup print("Testingfunction return formatted name() with 'filipe '--> Filipe") know_input = 'filipe ' expected_out = 'Filipe' #test execution print("Testingfunction return formatted name() with 'filipe '--> Filipe") print(return_formatted_name() == expected_out) # testing say_hello()