File size: 10,797 Bytes
4407432 044bfcc 62a6791 044bfcc 632580a b9ac8ca 632580a 7b5a593 632580a 044bfcc 632580a 48b0843 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 9ee0fca 044bfcc 9ee0fca 044bfcc 9ee0fca 044bfcc 9ee0fca 044bfcc 9ee0fca 044bfcc 9ee0fca 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc 632580a 044bfcc b6cc6b7 044bfcc b6cc6b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
license: cc-by-nc-4.0
language:
- en
tags:
- fluid dynamics
size_categories:
- 10K<n<100K
---
**Overview**
Simulating fluid flow around arbitrary shapes is key to solving various engineering problems. However, simulating flow physics across complex geometries remains numerically challenging and computationally resource-intensive, particularly when using conventional PDE solvers. Machine learning methods offer attractive opportunities to create fast and adaptable PDE solvers. However, benchmark datasets to measure the performance of such methods are scarce, especially for flow physics across complex geometries. We introduce FlowBench, a benchmark for neural simulators with over 10K samples, which is larger than any publicly available flow physics dataset. FlowBench contains flow simulation data across complex geometries (*parametric vs. non-parametric*), spanning a range of flow conditions (*Reynolds number and Grashoff number*), capturing a diverse array of flow phenomena (*steady vs. transient; forced vs. free convection*), and for both 2D and 3D. FlowBench contains over 10K data samples, with each sample the outcome of a fully resolved, direct numerical simulation using a well-validated simulator framework designed for modeling transport phenomena in complex geometries. For each sample, we include velocity, pressure, and temperature field data at 3 different resolutions and several summary statistics features of engineering relevance (such as coefficients of lift and drag, and Nusselt numbers).
We envision that FlowBench will enable evaluating the interplay between complex geometry, coupled flow phenomena, and data sufficiency on the performance of current, and future, neural PDE solvers. We enumerate several evaluation metrics to help rank order the performance of current (and future) neural PDE solvers. We benchmark the performance of three baseline methods: Fourier Neural Operators (FNO), Convolutional Neural Operators (CNO), and DeepONets. This dataset will be a valuable resource for evaluating neural PDE solvers that model complex fluid dynamics around 2D and 3D objects.
---
## **Changelog**
### **(2/2/2025)**
- **Removed** the `512x128` FPO dataset since the geometry is not properly resolved.
- **Updated** the `LDC 3D` dataset with 1000 samples at `[128,128,128]`.
---
**Dataset Information**
*FlowBench* exposes data for four families of datasets:
```
FPO - Flow Past an Object
Settings : Time dependent problem. We provide 242 snapshots per simulation.
Geometries : harmonics, nurbs, skelneton
Specification : Navier Stokes [2d, resolutions = 1024x256]
```
```
LDC - Lid Driven Cavity
Geometries : harmonics, nurbs, skelneton
Specification : Navier Stokes [2d, resolutions = 512x512, 256x256, 128x128]
```
```
LDC - Lid Driven Cavity
Geometries : ellipsoids, toroids, boxes, cylinders
Specification : Navier Stokes [3d, resolution = 128x128x128]
```
```
LDC - Lid Driven Cavity
Setting - Constant Reynolds Number
Geometries : harmonics, nurbs, skelneton
Specification : Navier Stokes + Heat Transfer [2d, resolutions = 512x512, 256x256, 128x128]
```
```
LDC - Lid Driven Cavity
Setting - Variable Reynolds Number
Geometries : harmonics, nurbs, skelneton
Specification : Navier Stokes + Heat Transfer [2d, resolutions = 512x512, 256x256, 128x128]
```
For all families of datasets, except FPO, we directly provide the ```numpy``` input and output tensors ```X,Y``` that can be used by SciML researchers to train their SciML models. Tensor formulae for both ```X,Y``` have been described in appendix (section B.2) of our main paper.
For FPO family of datasets, we adopt a slightly different approach. Because we are exposing the full 242 time steps of a simulation, it was more prudent to have the end users prepare their own input and output tensors depending on the time steps they choose. This allows the end users to control the size of the tensors going into their SciML models. Hence we recommend the following approach for accessing the data:
1. Go to the one of the FPO simulation folders, e.g. ```FPO_NS_2D_512x128```
2. Choose your geometry, e.g., harmonics
3. You would notice several directories - these represent the various geometries of the type harmonics.
4. Under each geometry, the user will find full simulations of three different flow conditions packaged as a *.npz file. Each of these files contains the full simulation across 242 time steps for each of the fields.
**License**
```
CC-BY-NC-4.0
```
**Downloading dataset from Huggingface**
To run the example code, you need to install the following package:
```bash
pip install huggingface_hub
```
The following script demonstrates how to download a directory from the Hugging Face Hub:
```python
from huggingface_hub import login, snapshot_download
# Hugging Face access token (replace with your token)
hf_token = ""
# Login to Hugging Face using the token
print("Logging into Hugging Face...")
login(token=hf_token)
# Specify repository and folder details
repo_id = "BGLab/FlowBench" # Repository ID on Hugging Face
dataset_path = "FPO_NS_2D_1024x256" # Folder path within the repository
output_dir = "./downloaded_folder" # Local directory to save the folder
# Download the entire repository or specific folder
print(f"Downloading folder '{dataset_path}' from repository '{repo_id}'...")
snapshot_download(repo_id, repo_type="dataset", local_dir=output_dir, allow_patterns=[f"{dataset_path}/*"])
print(f"Folder downloaded successfully to {output_dir}!")
```
**Directory Structure**
```
main/
βββ FPO_NS_2D_1024x256/
β βββ harmonics/
β β βββ 1/*.npz
β β βββ 2/*.npz
β β βββ 3/*.npz
β β βββ .
β β βββ .
β β βββ 100/*.npz
β βββ nurbs/
β β βββ 1/*.npz
β β βββ 2/*.npz
β β βββ 3/*.npz
β β βββ .
β β βββ .
β β βββ 100/*.npz
β βββ skelneton/
β β βββ 1/*.npz
β β βββ 2/*.npz
β β βββ 3/*.npz
β β βββ .
β β βββ .
β β βββ 100/*.npz
βββ FPO_NS_2D_1024x256/
β βββ harmonics/
β β βββ 1/*.npz
β β βββ 2/*.npz
β β βββ 3/*.npz
β β βββ .
β β βββ .
β β βββ 100/*.npz
β βββ nurbs/
β β βββ 1/*.npz
β β βββ 2/*.npz
β β βββ 3/*.npz
β β βββ .
β β βββ .
β β βββ 100/*.npz
β βββ skelneton/
β β βββ 1/*.npz
β β βββ 2/*.npz
β β βββ 3/*.npz
β β βββ .
β β βββ .
β β βββ 100/*.npz
βββ LDC_NSHT_2D_constant-Re/
β βββ 128x128/
β β βββ harmonics_lid_driven_cavity_X.npz
β β βββ harmonics_lid_driven_cavity_Y.npz
β β βββ nurbs_lid_driven_cavity_X.npz
β β βββ nurbs_lid_driven_cavity_Y.npz
β β βββ skelneton_lid_driven_cavity_X.npz
β β βββ skelneton_lid_driven_cavity_Y.npz
β βββ 256x256/
β β βββ harmonics_lid_driven_cavity_X.npz
β β βββ harmonics_lid_driven_cavity_Y.npz
β β βββ nurbs_lid_driven_cavity_X.npz
β β βββ nurbs_lid_driven_cavity_Y.npz
β β βββ skelneton_lid_driven_cavity_X.npz
β β βββ skelneton_lid_driven_cavity_Y.npz
β βββ 512x512/
β β βββ harmonics_lid_driven_cavity_X.npz
β β βββ harmonics_lid_driven_cavity_Y.npz
β β βββ nurbs_lid_driven_cavity_X.npz
β β βββ nurbs_lid_driven_cavity_Y.npz
β β βββ skelneton_lid_driven_cavity_X.npz
β β βββ skelneton_lid_driven_cavity_Y.npz
βββ LDC_NSHT_2D_variable-Re/
β βββ 128x128/
β β βββ harmonics_lid_driven_cavity_X.npz
β β βββ harmonics_lid_driven_cavity_Y.npz
β β βββ nurbs_lid_driven_cavity_X.npz
β β βββ nurbs_lid_driven_cavity_Y.npz
β β βββ skelneton_lid_driven_cavity_X.npz
β β βββ skelneton_lid_driven_cavity_Y.npz
β βββ 256x256/
β β βββ harmonics_lid_driven_cavity_X.npz
β β βββ harmonics_lid_driven_cavity_Y.npz
β β βββ nurbs_lid_driven_cavity_X.npz
β β βββ nurbs_lid_driven_cavity_Y.npz
β β βββ skelneton_lid_driven_cavity_X.npz
β β βββ skelneton_lid_driven_cavity_Y.npz
β βββ 512x512/
β β βββ harmonics_lid_driven_cavity_X.npz
β β βββ harmonics_lid_driven_cavity_Y.npz
β β βββ nurbs_lid_driven_cavity_X.npz
β β βββ nurbs_lid_driven_cavity_Y.npz
β β βββ skelneton_lid_driven_cavity_X.npz
β β βββ skelneton_lid_driven_cavity_Y.npz
βββ LDC_NS_2D/
β βββ 128x128/
β β βββ harmonics_lid_driven_cavity_X.npz
β β βββ harmonics_lid_driven_cavity_Y.npz
β β βββ nurbs_lid_driven_cavity_X.npz
β β βββ nurbs_lid_driven_cavity_Y.npz
β β βββ skelneton_lid_driven_cavity_X.npz
β β βββ skelneton_lid_driven_cavity_Y.npz
β βββ 256x256/
β β βββ harmonics_lid_driven_cavity_X.npz
β β βββ harmonics_lid_driven_cavity_Y.npz
β β βββ nurbs_lid_driven_cavity_X.npz
β β βββ nurbs_lid_driven_cavity_Y.npz
β β βββ skelneton_lid_driven_cavity_X.npz
β β βββ skelneton_lid_driven_cavity_Y.npz
β βββ 512x512/
β β βββ harmonics_lid_driven_cavity_X.npz
β β βββ harmonics_lid_driven_cavity_Y.npz
β β βββ nurbs_lid_driven_cavity_X.npz
β β βββ nurbs_lid_driven_cavity_Y.npz
β β βββ skelneton_lid_driven_cavity_X.npz
β β βββ skelneton_lid_driven_cavity_Y.npz
βββ LDC_NS_3D/
β βββ LDC_3D_X.npz
β βββ LDC_3D_Y.npz
βββ README.md
βββ .gitattributes
βββ croissant.json
βββ info.txt
```
**Citation**
If you find this dataset useful in your research, please consider citing our paper as follows:
```
@article{tali2024flowBench,
title = "FlowBench: A Large Scale Benchmark for Flow Simulation over Complex Geometries",
author = "Tali, Ronak and Rabeh, Ali and Yang, Cheng-Hau and Shadkhah, Mehdi and Karki, Samundra and Upadhyaya, Abhisek and Dhakshinamoorthy, Suriya and Saadati, Marjan and Sarkar, Soumik and Krishnamurthy, Adarsh and Hegde, Chinmay and Balu, Aditya and Ganapathysubramanian, Baskar"
year = "2024"
}
```
|