|
--- |
|
annotations_creators: |
|
- no-annotation |
|
language_creators: |
|
- crowdsourced |
|
language: |
|
- ko |
|
license: |
|
- cc-by-4.0 |
|
multilinguality: |
|
- monolingual |
|
pretty_name: laion2B-multi-korean-subset |
|
size_categories: |
|
- 10M<n<100M |
|
task_categories: |
|
- feature-extraction |
|
--- |
|
# laion2B-multi-korean-subset |
|
|
|
## Dataset Description |
|
- **Homepage:** [laion-5b](https://laion.ai/blog/laion-5b/) |
|
- **Huggingface:** [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi) |
|
|
|
## About dataset |
|
Data organized by extracting only Korean data from [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi) |
|
|
|
### Lisence |
|
CC-BY-4.0 |
|
## Data Structure |
|
|
|
### Data Instance |
|
|
|
```pycon |
|
>>> from datasets import load_dataset |
|
>>> dataset = load_dataset("Bingsu/laion2B-multi-korean-subset") |
|
>>> dataset |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['SAMPLE_ID', 'URL', 'TEXT', 'HEIGHT', 'WIDTH', 'LICENSE', 'LANGUAGE', 'NSFW', 'similarity'], |
|
num_rows: 11376263 |
|
}) |
|
}) |
|
``` |
|
|
|
```pycon |
|
>>> dataset["train"].features |
|
{'SAMPLE_ID': Value(dtype='int64', id=None), |
|
'URL': Value(dtype='string', id=None), |
|
'TEXT': Value(dtype='string', id=None), |
|
'HEIGHT': Value(dtype='int32', id=None), |
|
'WIDTH': Value(dtype='int32', id=None), |
|
'LICENSE': Value(dtype='string', id=None), |
|
'LANGUAGE': Value(dtype='string', id=None), |
|
'NSFW': Value(dtype='string', id=None), |
|
'similarity': Value(dtype='float32', id=None)} |
|
``` |
|
|
|
### Data Size |
|
|
|
download: 1.56 GiB<br> |
|
generated: 2.37 GiB<br> |
|
total: 3.93 GiB |
|
|
|
### Data Field |
|
|
|
- 'SAMPLE_ID': `int` |
|
- 'URL': `string` |
|
- 'TEXT': `string` |
|
- 'HEIGHT': `int` |
|
- 'WIDTH': `int` |
|
- 'LICENSE': `string` |
|
- 'LANGUAGE': `string` |
|
- 'NSFW': `string` |
|
- 'similarity': `float` |
|
|
|
### Data Splits |
|
|
|
| | train | |
|
| ---------- | -------- | |
|
| # of texts | 11376263 | |
|
|
|
|
|
## Note |
|
|
|
### Height, Width |
|
|
|
λͺ¨λ λ°μ΄ν°λ₯Ό μ΄ν΄λ³Έ κ²μ μλμ§λ§, μ΄λ―Έμ§μ κ°λ‘κ° `HEIGHT`λ‘, μΈλ‘κ° `WIDTH`λ‘ λμ΄μλ κ² κ°μ΅λλ€. |
|
|
|
```pycon |
|
>>> dataset["train"][98] |
|
{'SAMPLE_ID': 2937471001780, |
|
'URL': 'https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png', |
|
'TEXT': 'μΈμ²μκ΅μ‘μ², μΈμ² μꡰꡬλ°μ νμν μμμ§κ³Όμ κ°λ΄ν κ°μ΅', |
|
'HEIGHT': 640, |
|
'WIDTH': 321, |
|
'LICENSE': '?', |
|
'LANGUAGE': 'ko', |
|
'NSFW': 'UNLIKELY', |
|
'similarity': 0.33347243070602417} |
|
``` |
|
|
|
![image](https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png) |
|
|
|
### Code used to generate |
|
|
|
```py |
|
import csv |
|
import re |
|
|
|
from datasets import load_dataset |
|
from tqdm import tqdm |
|
|
|
|
|
pattern = re.compile(r"[κ°-ν£]") |
|
|
|
|
|
def quote(s: str) -> str: |
|
s = s.replace('"""', "") |
|
return s |
|
|
|
|
|
def filter_func(example) -> bool: |
|
lang = example.get("LANGUAGE") |
|
text = example.get("TEXT") |
|
if not isinstance(lang, str) or not isinstance(text, str): |
|
return False |
|
return lang == "ko" or pattern.search(text) is not None |
|
|
|
|
|
file = open("./laion2B-mulit_korean_subset.csv", "w", encoding="utf-8", newline="") |
|
|
|
ds = load_dataset("laion/laion2B-multi", split="train", streaming=True) |
|
dsf = ds.filter(filter_func) |
|
header = [ |
|
"SAMPLE_ID", |
|
"URL", |
|
"TEXT", |
|
"HEIGHT", |
|
"WIDTH", |
|
"LICENSE", |
|
"LANGUAGE", |
|
"NSFW", |
|
"similarity", |
|
] |
|
writer = csv.DictWriter(file, fieldnames=header, delimiter="\t") |
|
writer.writeheader() |
|
|
|
try: |
|
for data in tqdm(dsf): |
|
data["TEXT"] = quote(data.get("TEXT", "")) |
|
if data["TEXT"]: |
|
writer.writerow(data) |
|
finally: |
|
file.close() |
|
|
|
print("Done!") |
|
``` |
|
|
|
μ΄νμ `HEIGHT`λ `WIDTH`κ° NoneμΈ λ°μ΄ν°λ₯Ό μ κ±°νκ³ μ
λ‘λνμμ΅λλ€. |
|
|
|
### img2dataset |
|
|
|
[img2dataset](https://github.com/rom1504/img2dataset)μ μ¬μ©νμ¬ URLλ‘λ μ΄λ―Έμ§λ€μ λ°μ΄ν°μ
ννλ‘ λ§λ€ μ μμ΅λλ€. |
|
|