BramVanroy's picture
Update README.md
8e81d3f verified
|
raw
history blame
12.8 kB
metadata
dataset_info:
  - config_name: 100M
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 368158357.95775706
        num_examples: 235203
      - name: test
        num_bytes: 3717538.0422429685
        num_examples: 2375
    download_size: 224184711
    dataset_size: 371875896
  - config_name: 100k
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 365453.4653465347
        num_examples: 300
      - name: test
        num_bytes: 3654.5346534653463
        num_examples: 3
    download_size: 212072
    dataset_size: 369108
  - config_name: 10B
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 39904320962.76584
        num_examples: 24564921
      - name: test
        num_bytes: 103964370.23416495
        num_examples: 64000
    download_size: 25249998174
    dataset_size: 40008285333
  - config_name: 10M
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 37059125.991965994
        num_examples: 25385
      - name: test
        num_bytes: 373730.00803400803
        num_examples: 256
    download_size: 22486785
    dataset_size: 37432856
  - config_name: 10k
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 37658.21052631579
        num_examples: 37
      - name: test
        num_bytes: 472
        num_examples: 1
    download_size: 30893
    dataset_size: 38130.21052631579
  - config_name: 15B
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 60014708510.13879
        num_examples: 36589903
      - name: test
        num_bytes: 104972711.86121707
        num_examples: 64000
    download_size: 37966833792
    dataset_size: 60119681222
  - config_name: 1B
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 3805376695.1198378
        num_examples: 2840541
      - name: test
        num_bytes: 38437701.880162396
        num_examples: 28692
    download_size: 2346974411
    dataset_size: 3843814397
  - config_name: 1M
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 3695065.7880235123
        num_examples: 2695
      - name: test
        num_bytes: 37019.21197648787
        num_examples: 27
    download_size: 2183019
    dataset_size: 3732085
  - config_name: 20B
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 80125589478.94254
        num_examples: 48614883
      - name: test
        num_bytes: 105482877.0574707
        num_examples: 64000
    download_size: 50682523292
    dataset_size: 80231072356
  - config_name: 25B
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 100236677321.01715
        num_examples: 60639865
      - name: test
        num_bytes: 105790923.98284689
        num_examples: 64000
    download_size: 63397565382
    dataset_size: 100342468245
  - config_name: 30B
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 120347862572.46747
        num_examples: 72664846
      - name: test
        num_bytes: 105997103.53253783
        num_examples: 64000
    download_size: 76111936677
    dataset_size: 120453859676
  - config_name: 5B
    features:
      - name: text
        dtype: string
      - name: url
        dtype: string
      - name: source
        dtype: string
    splits:
      - name: train
        num_bytes: 19795857463.09181
        num_examples: 12539939
      - name: test
        num_bytes: 101031980.90819068
        num_examples: 64000
    download_size: 12526141470
    dataset_size: 19896889444
configs:
  - config_name: 100M
    data_files:
      - split: train
        path: 100M/train-*
      - split: test
        path: 100M/test-*
  - config_name: 100k
    data_files:
      - split: train
        path: 100k/train-*
      - split: test
        path: 100k/test-*
  - config_name: 10B
    data_files:
      - split: train
        path: 10B/train-*
      - split: test
        path: 10B/test-*
  - config_name: 10M
    data_files:
      - split: train
        path: 10M/train-*
      - split: test
        path: 10M/test-*
  - config_name: 10k
    data_files:
      - split: train
        path: 10k/train-*
      - split: test
        path: 10k/test-*
  - config_name: 15B
    data_files:
      - split: train
        path: 15B/train-*
      - split: test
        path: 15B/test-*
  - config_name: 1B
    data_files:
      - split: train
        path: 1B/train-*
      - split: test
        path: 1B/test-*
  - config_name: 1M
    data_files:
      - split: train
        path: 1M/train-*
      - split: test
        path: 1M/test-*
  - config_name: 20B
    data_files:
      - split: train
        path: 20B/train-*
      - split: test
        path: 20B/test-*
  - config_name: 25B
    data_files:
      - split: train
        path: 25B/train-*
      - split: test
        path: 25B/test-*
  - config_name: 30B
    data_files:
      - split: train
        path: 30B/train-*
      - split: test
        path: 30B/test-*
  - config_name: 5B
    data_files:
      - split: train
        path: 5B/train-*
      - split: test
        path: 5B/test-*
task_categories:
  - text-generation
  - text2text-generation

Filtered CulturaX + Wikipedia for Dutch

This is a combined and filtered version of CulturaX and Wikipedia, only including Dutch. It is intended for the training of LLMs.

Different configs are available based on the number of tokens (see a section below with an overview). This can be useful if you want to know exactly how many tokens you have. Great for using as a streaming dataset, too. Tokenization is done with the big vocabulary of the google/gemma-2b tokenizer so depending on your tokenizer these exact numbers may differ.

Every config also has a test set (for validation) of 1% the total size of the dataset, minimally 1 max. 64k samples (~26M tokens).

Wikipedia and CulturaX were suffled before merging and the teset set creation was also shuffled. Priority is given to Wikipedia to prioritize knowledge-content, so the smaller configs will consist exclusively of Wikipedia and for the larger configs we augment with CulturaX. Every config builds further on the previous, so this means that every config contains the same data as the smaller ones and more HOWEVER their train/test splits are not the same, so test set of one config may overlap with samples for another training set. This is usually not a problem but just be aware that you do not train on one config's training set and test with another config's test set.

Filtering

While CultruaX already has done a lot of filtering, some more filtering can be done to improve the quality of the corpus. These filters are described below.

The baseline ratios (punctuation, uppercase, digits) were calculated on the SONAR-500 corpus (excluding WRPEA WRPED WRUEA WRUED WRUEB).

CulturaX:

  • removed documents that contain the text "rechten voorbehouden" or "rights reserved"
  • remove document's whose URL contained "wikipedia.org" (because we include a cleaned version of Wikipedia ourselves)
  • removed documents that contain a "bad word" (see the section below)
  • removed documents that contain any non-latin characters. The idea is that "knowledge"-based information (e.g. original writing of a name) are allowed when the data comes from Wikipedia, but not from any other webcrawl, to avoid unsollicited noise.

CulturaX + Wikipedia:

  • removed documents where ratio of punctuation marks vs. non-whitespace characters is higher than 0.2
  • removed documents where ratio of uppercase vs. non-whitespace characters is higher than 0.22
  • removed documents where ratio of digits vs. non-whitespace characters is higher than 0.16
  • removed documents where the average token length is < 2 or > 20

Bad words

BAD_PHRASES_DOC_LEVEL = {
    # https://en.wikipedia.org/wiki/Dutch_profanity
    "achterlijk",
    "debiel",
    "downie",
    "idioot",
    "kankerlijer",
    "klere",
    "kolere",
    "minkukel",
    "pestkop",
    "pleuris",
    "pleuritis",
    "teringlijer",
    "tyfuslijer",
    "gadver",
    "getver",
    "godver",
    "godskolere",
    "godverork",
    "graftak",
    "kopvod",
    "verdomme",
    "anaalgeneraal",
    "bitch",
    "dikzak",
    "flikker",
    "fok",
    "fuck",
    "hoer",
    "klootzak",
    "klote",
    "kreng",
    "kringspiermusketier",
    "kut",
    "lamzak",
    "lul",
    "manwijf",
    "matennaai",
    "neuken",
    "neuker",
    "ouwehoer",
    "reet",
    "reetkever",
    "reetridder",
    "rotzak",
    "schijt",
    "shit",
    "slet",
    "slijmbal",
    "slons",
    "sodemieter",
    "stoephoer",
    "swaffel",
    "teef",
    "trut",
    "tut",
    "zak",
    "uilskuiken",
    "zeik",
    "bamivreter",
    "bosneger",
    "neger",
    "fransoos",
    "geitenneuker",
    "kaaskop",
    "kakker",
    "koelie",
    "lijp",
    "medelander",
    "mocro",
    "mof",
    "nikker",
    "poepchinees",
    "roetmop",
    "spaghettivreter",
    "loempiavouwer",
    "spanjool",
    "spleetoog",
    "tatta",
    "tokkie",
    "zandneger",
    "zwartzak",
    "halvezool",
    "kenau",
    "klootviool",
    "knuppel",
    "koekert",
    "koekwaus",
    "oelewapper",
    "smeerlap",
    "sukkel",
    "sul",
    "wappie",
    "wijf",
    "zooi",
    # xxx (a.o. https://gitlab.com/yhavinga/c4nlpreproc/-/blob/master/clean/badwords_ennl.py?ref_type=heads)
    "xxx",
    "anal",
    "blowjob",
    "buttplug",
    "cock",
    "cunt",
    "geil",
    "sex",  # Standaardnederlands = seks, maybe we catch some porn or socialmedia sites with this misspelling
    "porn",
    # extra
    "nigger",
    "nigga",
    "hoerig",
    "klojo",
}

Config details

10k

  • ratio_wikipedia: 100.00%
  • total_num_tokens: 10,078
  • train_num_tokens: 9,957
  • test_num_tokens: 121
  • total_num_samples: 38
  • train_num_samples: 37
  • test_num_samples: 1

100k

  • ratio_wikipedia: 100.00%
  • total_num_tokens: 100,099
  • train_num_tokens: 99,537
  • test_num_tokens: 562
  • total_num_samples: 303
  • train_num_samples: 300
  • test_num_samples: 3

1M

  • ratio_wikipedia: 100.00%
  • total_num_tokens: 1,000,104
  • train_num_tokens: 987,432
  • test_num_tokens: 12,672
  • total_num_samples: 2,722
  • train_num_samples: 2,695
  • test_num_samples: 27

10M

  • ratio_wikipedia: 100.00%
  • total_num_tokens: 10,000,692
  • train_num_tokens: 9,905,387
  • test_num_tokens: 95,305
  • total_num_samples: 25,641
  • train_num_samples: 25,385
  • test_num_samples: 256

100M

  • ratio_wikipedia: 100.00%
  • total_num_tokens: 100,000,049
  • train_num_tokens: 99,022,731
  • test_num_tokens: 977,318
  • total_num_samples: 237,578
  • train_num_samples: 235,203
  • test_num_samples: 2,375

1B

  • ratio_wikipedia: 82.38%
  • total_num_tokens: 1,000,000,003
  • train_num_tokens: 990,064,856
  • test_num_tokens: 9,935,147
  • total_num_samples: 2,869,233
  • train_num_samples: 2,840,541
  • test_num_samples: 28,692

5B

  • ratio_wikipedia: 35.62%
  • total_num_tokens: 5,000,000,224
  • train_num_tokens: 4,974,586,006
  • test_num_tokens: 25,414,218
  • total_num_samples: 12,603,939
  • train_num_samples: 12,539,939
  • test_num_samples: 64,000

10B

  • ratio_wikipedia: 26.86%
  • total_num_tokens: 10,000,000,658
  • train_num_tokens: 9,973,803,589
  • test_num_tokens: 26,197,069
  • total_num_samples: 24,628,921
  • train_num_samples: 24,564,921
  • test_num_samples: 64,000

15B

  • ratio_wikipedia: 23.85%
  • total_num_tokens: 15,000,001,092
  • train_num_tokens: 14,973,654,717
  • test_num_tokens: 26,346,375
  • total_num_samples: 36,653,903
  • train_num_samples: 36,589,903
  • test_num_samples: 64,000

20B

  • ratio_wikipedia: 22.32%
  • total_num_tokens: 20,000,000,303
  • train_num_tokens: 19,973,764,973
  • test_num_tokens: 26,235,330
  • total_num_samples: 48,678,883
  • train_num_samples: 48,614,883
  • test_num_samples: 64,000

25B

  • ratio_wikipedia: 21.40%
  • total_num_tokens: 25,000,000,737
  • train_num_tokens: 24,973,747,815
  • test_num_tokens: 26,252,922
  • total_num_samples: 60,703,865
  • train_num_samples: 60,639,865
  • test_num_samples: 64,000

30B

  • ratio_wikipedia: 20.79%
  • total_num_tokens: 30,000,000,034
  • train_num_tokens: 29,973,830,841
  • test_num_tokens: 26,169,193
  • total_num_samples: 72,728,846
  • train_num_samples: 72,664,846
  • test_num_samples: 64,000

35B

  • ratio_wikipedia: 20.35%
  • total_num_tokens: 35,000,000,468
  • train_num_tokens: 34,973,480,399
  • test_num_tokens: 26,520,069
  • total_num_samples: 84,753,828
  • train_num_samples: 84,689,828
  • test_num_samples: 64,000