dataset_info:
- config_name: 100M
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 368158357.95775706
num_examples: 235203
- name: test
num_bytes: 3717538.0422429685
num_examples: 2375
download_size: 224184711
dataset_size: 371875896
- config_name: 100k
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 365453.4653465347
num_examples: 300
- name: test
num_bytes: 3654.5346534653463
num_examples: 3
download_size: 212072
dataset_size: 369108
- config_name: 10B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 39904320962.76584
num_examples: 24564921
- name: test
num_bytes: 103964370.23416495
num_examples: 64000
download_size: 25249998174
dataset_size: 40008285333
- config_name: 10M
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 37059125.991965994
num_examples: 25385
- name: test
num_bytes: 373730.00803400803
num_examples: 256
download_size: 22486785
dataset_size: 37432856
- config_name: 10k
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 37658.21052631579
num_examples: 37
- name: test
num_bytes: 472
num_examples: 1
download_size: 30893
dataset_size: 38130.21052631579
- config_name: 15B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 60014708510.13879
num_examples: 36589903
- name: test
num_bytes: 104972711.86121707
num_examples: 64000
download_size: 37966833792
dataset_size: 60119681222
- config_name: 1B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 3805376695.1198378
num_examples: 2840541
- name: test
num_bytes: 38437701.880162396
num_examples: 28692
download_size: 2346974411
dataset_size: 3843814397
- config_name: 1M
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 3695065.7880235123
num_examples: 2695
- name: test
num_bytes: 37019.21197648787
num_examples: 27
download_size: 2183019
dataset_size: 3732085
- config_name: 20B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 80125589478.94254
num_examples: 48614883
- name: test
num_bytes: 105482877.0574707
num_examples: 64000
download_size: 50682523292
dataset_size: 80231072356
- config_name: 25B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 100236677321.01715
num_examples: 60639865
- name: test
num_bytes: 105790923.98284689
num_examples: 64000
download_size: 63397565382
dataset_size: 100342468245
- config_name: 30B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 120347862572.46747
num_examples: 72664846
- name: test
num_bytes: 105997103.53253783
num_examples: 64000
download_size: 76111936677
dataset_size: 120453859676
- config_name: 5B
features:
- name: text
dtype: string
- name: url
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 19795857463.09181
num_examples: 12539939
- name: test
num_bytes: 101031980.90819068
num_examples: 64000
download_size: 12526141470
dataset_size: 19896889444
configs:
- config_name: 100M
data_files:
- split: train
path: 100M/train-*
- split: test
path: 100M/test-*
- config_name: 100k
data_files:
- split: train
path: 100k/train-*
- split: test
path: 100k/test-*
- config_name: 10B
data_files:
- split: train
path: 10B/train-*
- split: test
path: 10B/test-*
- config_name: 10M
data_files:
- split: train
path: 10M/train-*
- split: test
path: 10M/test-*
- config_name: 10k
data_files:
- split: train
path: 10k/train-*
- split: test
path: 10k/test-*
- config_name: 15B
data_files:
- split: train
path: 15B/train-*
- split: test
path: 15B/test-*
- config_name: 1B
data_files:
- split: train
path: 1B/train-*
- split: test
path: 1B/test-*
- config_name: 1M
data_files:
- split: train
path: 1M/train-*
- split: test
path: 1M/test-*
- config_name: 20B
data_files:
- split: train
path: 20B/train-*
- split: test
path: 20B/test-*
- config_name: 25B
data_files:
- split: train
path: 25B/train-*
- split: test
path: 25B/test-*
- config_name: 30B
data_files:
- split: train
path: 30B/train-*
- split: test
path: 30B/test-*
- config_name: 5B
data_files:
- split: train
path: 5B/train-*
- split: test
path: 5B/test-*
task_categories:
- text-generation
- text2text-generation
Filtered CulturaX + Wikipedia for Dutch
This is a combined and filtered version of CulturaX and Wikipedia, only including Dutch. It is intended for the training of LLMs.
Different configs are available based on the number of tokens (see a section below with an overview). This can be useful if you want to know exactly how many tokens you have. Great for using as a streaming dataset, too. Tokenization is done with the big vocabulary of the google/gemma-2b
tokenizer so depending on your tokenizer these exact numbers may differ.
Every config also has a test set (for validation) of 1% the total size of the dataset, minimally 1 max. 64k samples (~26M tokens).
Wikipedia and CulturaX were suffled before merging and the teset set creation was also shuffled. Priority is given to Wikipedia to prioritize knowledge-content, so the smaller configs will consist exclusively of Wikipedia and for the larger configs we augment with CulturaX. Every config builds further on the previous, so this means that every config contains the same data as the smaller ones and more HOWEVER their train/test splits are not the same, so test set of one config may overlap with samples for another training set. This is usually not a problem but just be aware that you do not train on one config's training set and test with another config's test set.
Filtering
While CultruaX already has done a lot of filtering, some more filtering can be done to improve the quality of the corpus. These filters are described below.
The baseline ratios (punctuation, uppercase, digits) were calculated on the SONAR-500 corpus (excluding WRPEA WRPED WRUEA WRUED WRUEB).
CulturaX:
- removed documents that contain the text "rechten voorbehouden" or "rights reserved"
- remove document's whose URL contained "wikipedia.org" (because we include a cleaned version of Wikipedia ourselves)
- removed documents that contain a "bad word" (see the section below)
- removed documents that contain any non-latin characters. The idea is that "knowledge"-based information (e.g. original writing of a name) are allowed when the data comes from Wikipedia, but not from any other webcrawl, to avoid unsollicited noise.
CulturaX + Wikipedia:
- removed documents where ratio of punctuation marks vs. non-whitespace characters is higher than 0.2
- removed documents where ratio of uppercase vs. non-whitespace characters is higher than 0.22
- removed documents where ratio of digits vs. non-whitespace characters is higher than 0.16
- removed documents where the average token length is < 2 or > 20
Bad words
BAD_PHRASES_DOC_LEVEL = {
# https://en.wikipedia.org/wiki/Dutch_profanity
"achterlijk",
"debiel",
"downie",
"idioot",
"kankerlijer",
"klere",
"kolere",
"minkukel",
"pestkop",
"pleuris",
"pleuritis",
"teringlijer",
"tyfuslijer",
"gadver",
"getver",
"godver",
"godskolere",
"godverork",
"graftak",
"kopvod",
"verdomme",
"anaalgeneraal",
"bitch",
"dikzak",
"flikker",
"fok",
"fuck",
"hoer",
"klootzak",
"klote",
"kreng",
"kringspiermusketier",
"kut",
"lamzak",
"lul",
"manwijf",
"matennaai",
"neuken",
"neuker",
"ouwehoer",
"reet",
"reetkever",
"reetridder",
"rotzak",
"schijt",
"shit",
"slet",
"slijmbal",
"slons",
"sodemieter",
"stoephoer",
"swaffel",
"teef",
"trut",
"tut",
"zak",
"uilskuiken",
"zeik",
"bamivreter",
"bosneger",
"neger",
"fransoos",
"geitenneuker",
"kaaskop",
"kakker",
"koelie",
"lijp",
"medelander",
"mocro",
"mof",
"nikker",
"poepchinees",
"roetmop",
"spaghettivreter",
"loempiavouwer",
"spanjool",
"spleetoog",
"tatta",
"tokkie",
"zandneger",
"zwartzak",
"halvezool",
"kenau",
"klootviool",
"knuppel",
"koekert",
"koekwaus",
"oelewapper",
"smeerlap",
"sukkel",
"sul",
"wappie",
"wijf",
"zooi",
# xxx (a.o. https://gitlab.com/yhavinga/c4nlpreproc/-/blob/master/clean/badwords_ennl.py?ref_type=heads)
"xxx",
"anal",
"blowjob",
"buttplug",
"cock",
"cunt",
"geil",
"sex", # Standaardnederlands = seks, maybe we catch some porn or socialmedia sites with this misspelling
"porn",
# extra
"nigger",
"nigga",
"hoerig",
"klojo",
}
Config details
10k
- ratio_wikipedia: 100.00%
- total_num_tokens: 10,078
- train_num_tokens: 9,957
- test_num_tokens: 121
- total_num_samples: 38
- train_num_samples: 37
- test_num_samples: 1
100k
- ratio_wikipedia: 100.00%
- total_num_tokens: 100,099
- train_num_tokens: 99,537
- test_num_tokens: 562
- total_num_samples: 303
- train_num_samples: 300
- test_num_samples: 3
1M
- ratio_wikipedia: 100.00%
- total_num_tokens: 1,000,104
- train_num_tokens: 987,432
- test_num_tokens: 12,672
- total_num_samples: 2,722
- train_num_samples: 2,695
- test_num_samples: 27
10M
- ratio_wikipedia: 100.00%
- total_num_tokens: 10,000,692
- train_num_tokens: 9,905,387
- test_num_tokens: 95,305
- total_num_samples: 25,641
- train_num_samples: 25,385
- test_num_samples: 256
100M
- ratio_wikipedia: 100.00%
- total_num_tokens: 100,000,049
- train_num_tokens: 99,022,731
- test_num_tokens: 977,318
- total_num_samples: 237,578
- train_num_samples: 235,203
- test_num_samples: 2,375
1B
- ratio_wikipedia: 82.38%
- total_num_tokens: 1,000,000,003
- train_num_tokens: 990,064,856
- test_num_tokens: 9,935,147
- total_num_samples: 2,869,233
- train_num_samples: 2,840,541
- test_num_samples: 28,692
5B
- ratio_wikipedia: 35.62%
- total_num_tokens: 5,000,000,224
- train_num_tokens: 4,974,586,006
- test_num_tokens: 25,414,218
- total_num_samples: 12,603,939
- train_num_samples: 12,539,939
- test_num_samples: 64,000
10B
- ratio_wikipedia: 26.86%
- total_num_tokens: 10,000,000,658
- train_num_tokens: 9,973,803,589
- test_num_tokens: 26,197,069
- total_num_samples: 24,628,921
- train_num_samples: 24,564,921
- test_num_samples: 64,000
15B
- ratio_wikipedia: 23.85%
- total_num_tokens: 15,000,001,092
- train_num_tokens: 14,973,654,717
- test_num_tokens: 26,346,375
- total_num_samples: 36,653,903
- train_num_samples: 36,589,903
- test_num_samples: 64,000
20B
- ratio_wikipedia: 22.32%
- total_num_tokens: 20,000,000,303
- train_num_tokens: 19,973,764,973
- test_num_tokens: 26,235,330
- total_num_samples: 48,678,883
- train_num_samples: 48,614,883
- test_num_samples: 64,000
25B
- ratio_wikipedia: 21.40%
- total_num_tokens: 25,000,000,737
- train_num_tokens: 24,973,747,815
- test_num_tokens: 26,252,922
- total_num_samples: 60,703,865
- train_num_samples: 60,639,865
- test_num_samples: 64,000
30B
- ratio_wikipedia: 20.79%
- total_num_tokens: 30,000,000,034
- train_num_tokens: 29,973,830,841
- test_num_tokens: 26,169,193
- total_num_samples: 72,728,846
- train_num_samples: 72,664,846
- test_num_samples: 64,000
35B
- ratio_wikipedia: 20.35%
- total_num_tokens: 35,000,000,468
- train_num_tokens: 34,973,480,399
- test_num_tokens: 26,520,069
- total_num_samples: 84,753,828
- train_num_samples: 84,689,828
- test_num_samples: 64,000