id
int32
0
165k
repo
stringlengths
7
58
path
stringlengths
12
218
func_name
stringlengths
3
140
original_string
stringlengths
73
34.1k
language
stringclasses
1 value
code
stringlengths
73
34.1k
code_tokens
sequence
docstring
stringlengths
3
16k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
105
339
162,500
lessthanoptimal/ejml
main/ejml-simple/src/org/ejml/equation/Equation.java
Equation.parseOperationsLR
protected void parseOperationsLR(Symbol ops[], TokenList tokens, Sequence sequence) { if( tokens.size == 0 ) return; TokenList.Token token = tokens.first; if( token.getType() != Type.VARIABLE ) throw new ParseError("The first token in an equation needs to be a variable and not "+token); boolean hasLeft = false; while( token != null ) { if( token.getType() == Type.FUNCTION ) { throw new ParseError("Function encountered with no parentheses"); } else if( token.getType() == Type.VARIABLE ) { if( hasLeft ) { if( isTargetOp(token.previous,ops)) { token = createOp(token.previous.previous,token.previous,token,tokens,sequence); } } else { hasLeft = true; } } else { if( token.previous.getType() == Type.SYMBOL ) { throw new ParseError("Two symbols next to each other. "+token.previous+" and "+token); } } token = token.next; } }
java
protected void parseOperationsLR(Symbol ops[], TokenList tokens, Sequence sequence) { if( tokens.size == 0 ) return; TokenList.Token token = tokens.first; if( token.getType() != Type.VARIABLE ) throw new ParseError("The first token in an equation needs to be a variable and not "+token); boolean hasLeft = false; while( token != null ) { if( token.getType() == Type.FUNCTION ) { throw new ParseError("Function encountered with no parentheses"); } else if( token.getType() == Type.VARIABLE ) { if( hasLeft ) { if( isTargetOp(token.previous,ops)) { token = createOp(token.previous.previous,token.previous,token,tokens,sequence); } } else { hasLeft = true; } } else { if( token.previous.getType() == Type.SYMBOL ) { throw new ParseError("Two symbols next to each other. "+token.previous+" and "+token); } } token = token.next; } }
[ "protected", "void", "parseOperationsLR", "(", "Symbol", "ops", "[", "]", ",", "TokenList", "tokens", ",", "Sequence", "sequence", ")", "{", "if", "(", "tokens", ".", "size", "==", "0", ")", "return", ";", "TokenList", ".", "Token", "token", "=", "tokens", ".", "first", ";", "if", "(", "token", ".", "getType", "(", ")", "!=", "Type", ".", "VARIABLE", ")", "throw", "new", "ParseError", "(", "\"The first token in an equation needs to be a variable and not \"", "+", "token", ")", ";", "boolean", "hasLeft", "=", "false", ";", "while", "(", "token", "!=", "null", ")", "{", "if", "(", "token", ".", "getType", "(", ")", "==", "Type", ".", "FUNCTION", ")", "{", "throw", "new", "ParseError", "(", "\"Function encountered with no parentheses\"", ")", ";", "}", "else", "if", "(", "token", ".", "getType", "(", ")", "==", "Type", ".", "VARIABLE", ")", "{", "if", "(", "hasLeft", ")", "{", "if", "(", "isTargetOp", "(", "token", ".", "previous", ",", "ops", ")", ")", "{", "token", "=", "createOp", "(", "token", ".", "previous", ".", "previous", ",", "token", ".", "previous", ",", "token", ",", "tokens", ",", "sequence", ")", ";", "}", "}", "else", "{", "hasLeft", "=", "true", ";", "}", "}", "else", "{", "if", "(", "token", ".", "previous", ".", "getType", "(", ")", "==", "Type", ".", "SYMBOL", ")", "{", "throw", "new", "ParseError", "(", "\"Two symbols next to each other. \"", "+", "token", ".", "previous", "+", "\" and \"", "+", "token", ")", ";", "}", "}", "token", "=", "token", ".", "next", ";", "}", "}" ]
Parses operations where the input comes from variables to its left and right @param ops List of operations which should be parsed @param tokens List of all the tokens @param sequence List of operation sequence
[ "Parses", "operations", "where", "the", "input", "comes", "from", "variables", "to", "its", "left", "and", "right" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-simple/src/org/ejml/equation/Equation.java#L1257-L1286
162,501
lessthanoptimal/ejml
main/ejml-simple/src/org/ejml/equation/Equation.java
Equation.lookupVariable
public <T extends Variable> T lookupVariable(String token) { Variable result = variables.get(token); return (T)result; }
java
public <T extends Variable> T lookupVariable(String token) { Variable result = variables.get(token); return (T)result; }
[ "public", "<", "T", "extends", "Variable", ">", "T", "lookupVariable", "(", "String", "token", ")", "{", "Variable", "result", "=", "variables", ".", "get", "(", "token", ")", ";", "return", "(", "T", ")", "result", ";", "}" ]
Looks up a variable given its name. If none is found then return null.
[ "Looks", "up", "a", "variable", "given", "its", "name", ".", "If", "none", "is", "found", "then", "return", "null", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-simple/src/org/ejml/equation/Equation.java#L1358-L1361
162,502
lessthanoptimal/ejml
main/ejml-simple/src/org/ejml/equation/Equation.java
Equation.insertMacros
void insertMacros(TokenList tokens ) { TokenList.Token t = tokens.getFirst(); while( t != null ) { if( t.getType() == Type.WORD ) { Macro v = lookupMacro(t.word); if (v != null) { TokenList.Token before = t.previous; List<TokenList.Token> inputs = new ArrayList<TokenList.Token>(); t = parseMacroInput(inputs,t.next); TokenList sniplet = v.execute(inputs); tokens.extractSubList(before.next,t); tokens.insertAfter(before,sniplet); t = sniplet.last; } } t = t.next; } }
java
void insertMacros(TokenList tokens ) { TokenList.Token t = tokens.getFirst(); while( t != null ) { if( t.getType() == Type.WORD ) { Macro v = lookupMacro(t.word); if (v != null) { TokenList.Token before = t.previous; List<TokenList.Token> inputs = new ArrayList<TokenList.Token>(); t = parseMacroInput(inputs,t.next); TokenList sniplet = v.execute(inputs); tokens.extractSubList(before.next,t); tokens.insertAfter(before,sniplet); t = sniplet.last; } } t = t.next; } }
[ "void", "insertMacros", "(", "TokenList", "tokens", ")", "{", "TokenList", ".", "Token", "t", "=", "tokens", ".", "getFirst", "(", ")", ";", "while", "(", "t", "!=", "null", ")", "{", "if", "(", "t", ".", "getType", "(", ")", "==", "Type", ".", "WORD", ")", "{", "Macro", "v", "=", "lookupMacro", "(", "t", ".", "word", ")", ";", "if", "(", "v", "!=", "null", ")", "{", "TokenList", ".", "Token", "before", "=", "t", ".", "previous", ";", "List", "<", "TokenList", ".", "Token", ">", "inputs", "=", "new", "ArrayList", "<", "TokenList", ".", "Token", ">", "(", ")", ";", "t", "=", "parseMacroInput", "(", "inputs", ",", "t", ".", "next", ")", ";", "TokenList", "sniplet", "=", "v", ".", "execute", "(", "inputs", ")", ";", "tokens", ".", "extractSubList", "(", "before", ".", "next", ",", "t", ")", ";", "tokens", ".", "insertAfter", "(", "before", ",", "sniplet", ")", ";", "t", "=", "sniplet", ".", "last", ";", "}", "}", "t", "=", "t", ".", "next", ";", "}", "}" ]
Checks to see if a WORD matches the name of a macro. if it does it applies the macro at that location
[ "Checks", "to", "see", "if", "a", "WORD", "matches", "the", "name", "of", "a", "macro", ".", "if", "it", "does", "it", "applies", "the", "macro", "at", "that", "location" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-simple/src/org/ejml/equation/Equation.java#L1557-L1575
162,503
lessthanoptimal/ejml
main/ejml-simple/src/org/ejml/equation/Equation.java
Equation.isTargetOp
protected static boolean isTargetOp( TokenList.Token token , Symbol[] ops ) { Symbol c = token.symbol; for (int i = 0; i < ops.length; i++) { if( c == ops[i]) return true; } return false; }
java
protected static boolean isTargetOp( TokenList.Token token , Symbol[] ops ) { Symbol c = token.symbol; for (int i = 0; i < ops.length; i++) { if( c == ops[i]) return true; } return false; }
[ "protected", "static", "boolean", "isTargetOp", "(", "TokenList", ".", "Token", "token", ",", "Symbol", "[", "]", "ops", ")", "{", "Symbol", "c", "=", "token", ".", "symbol", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "ops", ".", "length", ";", "i", "++", ")", "{", "if", "(", "c", "==", "ops", "[", "i", "]", ")", "return", "true", ";", "}", "return", "false", ";", "}" ]
Checks to see if the token is in the list of allowed character operations. Used to apply order of operations @param token Token being checked @param ops List of allowed character operations @return true for it being in the list and false for it not being in the list
[ "Checks", "to", "see", "if", "the", "token", "is", "in", "the", "list", "of", "allowed", "character", "operations", ".", "Used", "to", "apply", "order", "of", "operations" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-simple/src/org/ejml/equation/Equation.java#L1596-L1603
162,504
lessthanoptimal/ejml
main/ejml-simple/src/org/ejml/equation/Equation.java
Equation.isOperatorLR
protected static boolean isOperatorLR( Symbol s ) { if( s == null ) return false; switch( s ) { case ELEMENT_DIVIDE: case ELEMENT_TIMES: case ELEMENT_POWER: case RDIVIDE: case LDIVIDE: case TIMES: case POWER: case PLUS: case MINUS: case ASSIGN: return true; } return false; }
java
protected static boolean isOperatorLR( Symbol s ) { if( s == null ) return false; switch( s ) { case ELEMENT_DIVIDE: case ELEMENT_TIMES: case ELEMENT_POWER: case RDIVIDE: case LDIVIDE: case TIMES: case POWER: case PLUS: case MINUS: case ASSIGN: return true; } return false; }
[ "protected", "static", "boolean", "isOperatorLR", "(", "Symbol", "s", ")", "{", "if", "(", "s", "==", "null", ")", "return", "false", ";", "switch", "(", "s", ")", "{", "case", "ELEMENT_DIVIDE", ":", "case", "ELEMENT_TIMES", ":", "case", "ELEMENT_POWER", ":", "case", "RDIVIDE", ":", "case", "LDIVIDE", ":", "case", "TIMES", ":", "case", "POWER", ":", "case", "PLUS", ":", "case", "MINUS", ":", "case", "ASSIGN", ":", "return", "true", ";", "}", "return", "false", ";", "}" ]
Operators which affect the variables to its left and right
[ "Operators", "which", "affect", "the", "variables", "to", "its", "left", "and", "right" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-simple/src/org/ejml/equation/Equation.java#L1613-L1631
162,505
lessthanoptimal/ejml
main/ejml-simple/src/org/ejml/equation/Equation.java
Equation.isReserved
protected boolean isReserved( String name ) { if( functions.isFunctionName(name)) return true; for (int i = 0; i < name.length(); i++) { if( !isLetter(name.charAt(i)) ) return true; } return false; }
java
protected boolean isReserved( String name ) { if( functions.isFunctionName(name)) return true; for (int i = 0; i < name.length(); i++) { if( !isLetter(name.charAt(i)) ) return true; } return false; }
[ "protected", "boolean", "isReserved", "(", "String", "name", ")", "{", "if", "(", "functions", ".", "isFunctionName", "(", "name", ")", ")", "return", "true", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "name", ".", "length", "(", ")", ";", "i", "++", ")", "{", "if", "(", "!", "isLetter", "(", "name", ".", "charAt", "(", "i", ")", ")", ")", "return", "true", ";", "}", "return", "false", ";", "}" ]
Returns true if the specified name is NOT allowed. It isn't allowed if it matches a built in operator or if it contains a restricted character.
[ "Returns", "true", "if", "the", "specified", "name", "is", "NOT", "allowed", ".", "It", "isn", "t", "allowed", "if", "it", "matches", "a", "built", "in", "operator", "or", "if", "it", "contains", "a", "restricted", "character", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-simple/src/org/ejml/equation/Equation.java#L1644-L1653
162,506
lessthanoptimal/ejml
main/ejml-simple/src/org/ejml/equation/Equation.java
Equation.process
public Equation process( String equation , boolean debug ) { compile(equation,true,debug).perform(); return this; }
java
public Equation process( String equation , boolean debug ) { compile(equation,true,debug).perform(); return this; }
[ "public", "Equation", "process", "(", "String", "equation", ",", "boolean", "debug", ")", "{", "compile", "(", "equation", ",", "true", ",", "debug", ")", ".", "perform", "(", ")", ";", "return", "this", ";", "}" ]
Compiles and performs the provided equation. @param equation String in simple equation format
[ "Compiles", "and", "performs", "the", "provided", "equation", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-simple/src/org/ejml/equation/Equation.java#L1670-L1673
162,507
lessthanoptimal/ejml
main/ejml-simple/src/org/ejml/equation/Equation.java
Equation.print
public void print( String equation ) { // first assume it's just a variable Variable v = lookupVariable(equation); if( v == null ) { Sequence sequence = compile(equation,false,false); sequence.perform(); v = sequence.output; } if( v instanceof VariableMatrix ) { ((VariableMatrix)v).matrix.print(); } else if(v instanceof VariableScalar ) { System.out.println("Scalar = "+((VariableScalar)v).getDouble() ); } else { System.out.println("Add support for "+v.getClass().getSimpleName()); } }
java
public void print( String equation ) { // first assume it's just a variable Variable v = lookupVariable(equation); if( v == null ) { Sequence sequence = compile(equation,false,false); sequence.perform(); v = sequence.output; } if( v instanceof VariableMatrix ) { ((VariableMatrix)v).matrix.print(); } else if(v instanceof VariableScalar ) { System.out.println("Scalar = "+((VariableScalar)v).getDouble() ); } else { System.out.println("Add support for "+v.getClass().getSimpleName()); } }
[ "public", "void", "print", "(", "String", "equation", ")", "{", "// first assume it's just a variable", "Variable", "v", "=", "lookupVariable", "(", "equation", ")", ";", "if", "(", "v", "==", "null", ")", "{", "Sequence", "sequence", "=", "compile", "(", "equation", ",", "false", ",", "false", ")", ";", "sequence", ".", "perform", "(", ")", ";", "v", "=", "sequence", ".", "output", ";", "}", "if", "(", "v", "instanceof", "VariableMatrix", ")", "{", "(", "(", "VariableMatrix", ")", "v", ")", ".", "matrix", ".", "print", "(", ")", ";", "}", "else", "if", "(", "v", "instanceof", "VariableScalar", ")", "{", "System", ".", "out", ".", "println", "(", "\"Scalar = \"", "+", "(", "(", "VariableScalar", ")", "v", ")", ".", "getDouble", "(", ")", ")", ";", "}", "else", "{", "System", ".", "out", ".", "println", "(", "\"Add support for \"", "+", "v", ".", "getClass", "(", ")", ".", "getSimpleName", "(", ")", ")", ";", "}", "}" ]
Prints the results of the equation to standard out. Useful for debugging
[ "Prints", "the", "results", "of", "the", "equation", "to", "standard", "out", ".", "Useful", "for", "debugging" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-simple/src/org/ejml/equation/Equation.java#L1678-L1694
162,508
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/qr/QrHelperFunctions_DDRM.java
QrHelperFunctions_DDRM.computeTauAndDivide
public static double computeTauAndDivide(final int j, final int numRows , final double[] u , final double max) { double tau = 0; // double div_max = 1.0/max; // if( Double.isInfinite(div_max)) { for( int i = j; i < numRows; i++ ) { double d = u[i] /= max; tau += d*d; } // } else { // for( int i = j; i < numRows; i++ ) { // double d = u[i] *= div_max; // tau += d*d; // } // } tau = Math.sqrt(tau); if( u[j] < 0 ) tau = -tau; return tau; }
java
public static double computeTauAndDivide(final int j, final int numRows , final double[] u , final double max) { double tau = 0; // double div_max = 1.0/max; // if( Double.isInfinite(div_max)) { for( int i = j; i < numRows; i++ ) { double d = u[i] /= max; tau += d*d; } // } else { // for( int i = j; i < numRows; i++ ) { // double d = u[i] *= div_max; // tau += d*d; // } // } tau = Math.sqrt(tau); if( u[j] < 0 ) tau = -tau; return tau; }
[ "public", "static", "double", "computeTauAndDivide", "(", "final", "int", "j", ",", "final", "int", "numRows", ",", "final", "double", "[", "]", "u", ",", "final", "double", "max", ")", "{", "double", "tau", "=", "0", ";", "// double div_max = 1.0/max;", "// if( Double.isInfinite(div_max)) {", "for", "(", "int", "i", "=", "j", ";", "i", "<", "numRows", ";", "i", "++", ")", "{", "double", "d", "=", "u", "[", "i", "]", "/=", "max", ";", "tau", "+=", "d", "*", "d", ";", "}", "// } else {", "// for( int i = j; i < numRows; i++ ) {", "// double d = u[i] *= div_max;", "// tau += d*d;", "// }", "// }", "tau", "=", "Math", ".", "sqrt", "(", "tau", ")", ";", "if", "(", "u", "[", "j", "]", "<", "0", ")", "tau", "=", "-", "tau", ";", "return", "tau", ";", "}" ]
Normalizes elements in 'u' by dividing by max and computes the norm2 of the normalized array u. Adjust the sign of the returned value depending on the size of the first element in 'u'. Normalization is done to avoid overflow. <pre> for i=j:numRows u[i] = u[i] / max tau = tau + u[i]*u[i] end tau = sqrt(tau) if( u[j] &lt; 0 ) tau = -tau; </pre> @param j Element in 'u' that it starts at. @param numRows Element in 'u' that it stops at. @param u Array @param max Max value in 'u' that is used to normalize it. @return norm2 of 'u'
[ "Normalizes", "elements", "in", "u", "by", "dividing", "by", "max", "and", "computes", "the", "norm2", "of", "the", "normalized", "array", "u", ".", "Adjust", "the", "sign", "of", "the", "returned", "value", "depending", "on", "the", "size", "of", "the", "first", "element", "in", "u", ".", "Normalization", "is", "done", "to", "avoid", "overflow", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/qr/QrHelperFunctions_DDRM.java#L173-L194
162,509
lessthanoptimal/ejml
main/ejml-dsparse/src/org/ejml/sparse/csc/MatrixFeatures_DSCC.java
MatrixFeatures_DSCC.isSameStructure
public static boolean isSameStructure(DMatrixSparseCSC a , DMatrixSparseCSC b) { if( a.numRows == b.numRows && a.numCols == b.numCols && a.nz_length == b.nz_length) { for (int i = 0; i <= a.numCols; i++) { if( a.col_idx[i] != b.col_idx[i] ) return false; } for (int i = 0; i < a.nz_length; i++) { if( a.nz_rows[i] != b.nz_rows[i] ) return false; } return true; } return false; }
java
public static boolean isSameStructure(DMatrixSparseCSC a , DMatrixSparseCSC b) { if( a.numRows == b.numRows && a.numCols == b.numCols && a.nz_length == b.nz_length) { for (int i = 0; i <= a.numCols; i++) { if( a.col_idx[i] != b.col_idx[i] ) return false; } for (int i = 0; i < a.nz_length; i++) { if( a.nz_rows[i] != b.nz_rows[i] ) return false; } return true; } return false; }
[ "public", "static", "boolean", "isSameStructure", "(", "DMatrixSparseCSC", "a", ",", "DMatrixSparseCSC", "b", ")", "{", "if", "(", "a", ".", "numRows", "==", "b", ".", "numRows", "&&", "a", ".", "numCols", "==", "b", ".", "numCols", "&&", "a", ".", "nz_length", "==", "b", ".", "nz_length", ")", "{", "for", "(", "int", "i", "=", "0", ";", "i", "<=", "a", ".", "numCols", ";", "i", "++", ")", "{", "if", "(", "a", ".", "col_idx", "[", "i", "]", "!=", "b", ".", "col_idx", "[", "i", "]", ")", "return", "false", ";", "}", "for", "(", "int", "i", "=", "0", ";", "i", "<", "a", ".", "nz_length", ";", "i", "++", ")", "{", "if", "(", "a", ".", "nz_rows", "[", "i", "]", "!=", "b", ".", "nz_rows", "[", "i", "]", ")", "return", "false", ";", "}", "return", "true", ";", "}", "return", "false", ";", "}" ]
Checks to see if the two matrices have the same shape and same pattern of non-zero elements @param a Matrix @param b Matrix @return true if the structure is the same
[ "Checks", "to", "see", "if", "the", "two", "matrices", "have", "the", "same", "shape", "and", "same", "pattern", "of", "non", "-", "zero", "elements" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-dsparse/src/org/ejml/sparse/csc/MatrixFeatures_DSCC.java#L97-L110
162,510
lessthanoptimal/ejml
main/ejml-dsparse/src/org/ejml/sparse/csc/MatrixFeatures_DSCC.java
MatrixFeatures_DSCC.isVector
public static boolean isVector(DMatrixSparseCSC a) { return (a.numCols == 1 && a.numRows > 1) || (a.numRows == 1 && a.numCols>1); }
java
public static boolean isVector(DMatrixSparseCSC a) { return (a.numCols == 1 && a.numRows > 1) || (a.numRows == 1 && a.numCols>1); }
[ "public", "static", "boolean", "isVector", "(", "DMatrixSparseCSC", "a", ")", "{", "return", "(", "a", ".", "numCols", "==", "1", "&&", "a", ".", "numRows", ">", "1", ")", "||", "(", "a", ".", "numRows", "==", "1", "&&", "a", ".", "numCols", ">", "1", ")", ";", "}" ]
Returns true if the input is a vector @param a A matrix or vector @return true if it's a vector. Column or row.
[ "Returns", "true", "if", "the", "input", "is", "a", "vector" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-dsparse/src/org/ejml/sparse/csc/MatrixFeatures_DSCC.java#L219-L221
162,511
lessthanoptimal/ejml
main/ejml-dsparse/src/org/ejml/sparse/csc/MatrixFeatures_DSCC.java
MatrixFeatures_DSCC.isSymmetric
public static boolean isSymmetric( DMatrixSparseCSC A , double tol ) { if( A.numRows != A.numCols ) return false; int N = A.numCols; for (int i = 0; i < N; i++) { int idx0 = A.col_idx[i]; int idx1 = A.col_idx[i+1]; for (int index = idx0; index < idx1; index++) { int j = A.nz_rows[index]; double value_ji = A.nz_values[index]; double value_ij = A.get(i,j); if( Math.abs(value_ij-value_ji) > tol ) return false; } } return true; }
java
public static boolean isSymmetric( DMatrixSparseCSC A , double tol ) { if( A.numRows != A.numCols ) return false; int N = A.numCols; for (int i = 0; i < N; i++) { int idx0 = A.col_idx[i]; int idx1 = A.col_idx[i+1]; for (int index = idx0; index < idx1; index++) { int j = A.nz_rows[index]; double value_ji = A.nz_values[index]; double value_ij = A.get(i,j); if( Math.abs(value_ij-value_ji) > tol ) return false; } } return true; }
[ "public", "static", "boolean", "isSymmetric", "(", "DMatrixSparseCSC", "A", ",", "double", "tol", ")", "{", "if", "(", "A", ".", "numRows", "!=", "A", ".", "numCols", ")", "return", "false", ";", "int", "N", "=", "A", ".", "numCols", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "N", ";", "i", "++", ")", "{", "int", "idx0", "=", "A", ".", "col_idx", "[", "i", "]", ";", "int", "idx1", "=", "A", ".", "col_idx", "[", "i", "+", "1", "]", ";", "for", "(", "int", "index", "=", "idx0", ";", "index", "<", "idx1", ";", "index", "++", ")", "{", "int", "j", "=", "A", ".", "nz_rows", "[", "index", "]", ";", "double", "value_ji", "=", "A", ".", "nz_values", "[", "index", "]", ";", "double", "value_ij", "=", "A", ".", "get", "(", "i", ",", "j", ")", ";", "if", "(", "Math", ".", "abs", "(", "value_ij", "-", "value_ji", ")", ">", "tol", ")", "return", "false", ";", "}", "}", "return", "true", ";", "}" ]
Checks to see if the matrix is symmetric to within tolerance. @param A Matrix being tested. Not modified. @param tol Tolerance that defines how similar two values must be to be considered identical @return true if symmetric or false if not
[ "Checks", "to", "see", "if", "the", "matrix", "is", "symmetric", "to", "within", "tolerance", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-dsparse/src/org/ejml/sparse/csc/MatrixFeatures_DSCC.java#L230-L251
162,512
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/watched/WatchedDoubleStepQREigen_DDRM.java
WatchedDoubleStepQREigen_DDRM.implicitDoubleStep
public void implicitDoubleStep( int x1 , int x2 ) { if( printHumps ) System.out.println("Performing implicit double step"); // compute the wilkinson shift double z11 = A.get(x2 - 1, x2 - 1); double z12 = A.get(x2 - 1, x2); double z21 = A.get(x2, x2 - 1); double z22 = A.get(x2, x2); double a11 = A.get(x1,x1); double a21 = A.get(x1+1,x1); double a12 = A.get(x1,x1+1); double a22 = A.get(x1+1,x1+1); double a32 = A.get(x1+2,x1+1); if( normalize ) { temp[0] = a11;temp[1] = a21;temp[2] = a12;temp[3] = a22;temp[4] = a32; temp[5] = z11;temp[6] = z22;temp[7] = z12;temp[8] = z21; double max = Math.abs(temp[0]); for( int j = 1; j < temp.length; j++ ) { if( Math.abs(temp[j]) > max ) max = Math.abs(temp[j]); } a11 /= max;a21 /= max;a12 /= max;a22 /= max;a32 /= max; z11 /= max;z22 /= max;z12 /= max;z21 /= max; } // these equations are derived when the eigenvalues are extracted from the lower right // 2 by 2 matrix. See page 388 of Fundamentals of Matrix Computations 2nd ed for details. double b11,b21,b31; if( useStandardEq ) { b11 = ((a11- z11)*(a11- z22)- z21 * z12)/a21 + a12; b21 = a11 + a22 - z11 - z22; b31 = a32; } else { // this is different from the version in the book and seems in my testing to be more resilient to // over flow issues b11 = ((a11- z11)*(a11- z22)- z21 * z12) + a12*a21; b21 = (a11 + a22 - z11 - z22)*a21; b31 = a32*a21; } performImplicitDoubleStep(x1, x2, b11 , b21 , b31 ); }
java
public void implicitDoubleStep( int x1 , int x2 ) { if( printHumps ) System.out.println("Performing implicit double step"); // compute the wilkinson shift double z11 = A.get(x2 - 1, x2 - 1); double z12 = A.get(x2 - 1, x2); double z21 = A.get(x2, x2 - 1); double z22 = A.get(x2, x2); double a11 = A.get(x1,x1); double a21 = A.get(x1+1,x1); double a12 = A.get(x1,x1+1); double a22 = A.get(x1+1,x1+1); double a32 = A.get(x1+2,x1+1); if( normalize ) { temp[0] = a11;temp[1] = a21;temp[2] = a12;temp[3] = a22;temp[4] = a32; temp[5] = z11;temp[6] = z22;temp[7] = z12;temp[8] = z21; double max = Math.abs(temp[0]); for( int j = 1; j < temp.length; j++ ) { if( Math.abs(temp[j]) > max ) max = Math.abs(temp[j]); } a11 /= max;a21 /= max;a12 /= max;a22 /= max;a32 /= max; z11 /= max;z22 /= max;z12 /= max;z21 /= max; } // these equations are derived when the eigenvalues are extracted from the lower right // 2 by 2 matrix. See page 388 of Fundamentals of Matrix Computations 2nd ed for details. double b11,b21,b31; if( useStandardEq ) { b11 = ((a11- z11)*(a11- z22)- z21 * z12)/a21 + a12; b21 = a11 + a22 - z11 - z22; b31 = a32; } else { // this is different from the version in the book and seems in my testing to be more resilient to // over flow issues b11 = ((a11- z11)*(a11- z22)- z21 * z12) + a12*a21; b21 = (a11 + a22 - z11 - z22)*a21; b31 = a32*a21; } performImplicitDoubleStep(x1, x2, b11 , b21 , b31 ); }
[ "public", "void", "implicitDoubleStep", "(", "int", "x1", ",", "int", "x2", ")", "{", "if", "(", "printHumps", ")", "System", ".", "out", ".", "println", "(", "\"Performing implicit double step\"", ")", ";", "// compute the wilkinson shift", "double", "z11", "=", "A", ".", "get", "(", "x2", "-", "1", ",", "x2", "-", "1", ")", ";", "double", "z12", "=", "A", ".", "get", "(", "x2", "-", "1", ",", "x2", ")", ";", "double", "z21", "=", "A", ".", "get", "(", "x2", ",", "x2", "-", "1", ")", ";", "double", "z22", "=", "A", ".", "get", "(", "x2", ",", "x2", ")", ";", "double", "a11", "=", "A", ".", "get", "(", "x1", ",", "x1", ")", ";", "double", "a21", "=", "A", ".", "get", "(", "x1", "+", "1", ",", "x1", ")", ";", "double", "a12", "=", "A", ".", "get", "(", "x1", ",", "x1", "+", "1", ")", ";", "double", "a22", "=", "A", ".", "get", "(", "x1", "+", "1", ",", "x1", "+", "1", ")", ";", "double", "a32", "=", "A", ".", "get", "(", "x1", "+", "2", ",", "x1", "+", "1", ")", ";", "if", "(", "normalize", ")", "{", "temp", "[", "0", "]", "=", "a11", ";", "temp", "[", "1", "]", "=", "a21", ";", "temp", "[", "2", "]", "=", "a12", ";", "temp", "[", "3", "]", "=", "a22", ";", "temp", "[", "4", "]", "=", "a32", ";", "temp", "[", "5", "]", "=", "z11", ";", "temp", "[", "6", "]", "=", "z22", ";", "temp", "[", "7", "]", "=", "z12", ";", "temp", "[", "8", "]", "=", "z21", ";", "double", "max", "=", "Math", ".", "abs", "(", "temp", "[", "0", "]", ")", ";", "for", "(", "int", "j", "=", "1", ";", "j", "<", "temp", ".", "length", ";", "j", "++", ")", "{", "if", "(", "Math", ".", "abs", "(", "temp", "[", "j", "]", ")", ">", "max", ")", "max", "=", "Math", ".", "abs", "(", "temp", "[", "j", "]", ")", ";", "}", "a11", "/=", "max", ";", "a21", "/=", "max", ";", "a12", "/=", "max", ";", "a22", "/=", "max", ";", "a32", "/=", "max", ";", "z11", "/=", "max", ";", "z22", "/=", "max", ";", "z12", "/=", "max", ";", "z21", "/=", "max", ";", "}", "// these equations are derived when the eigenvalues are extracted from the lower right", "// 2 by 2 matrix. See page 388 of Fundamentals of Matrix Computations 2nd ed for details.", "double", "b11", ",", "b21", ",", "b31", ";", "if", "(", "useStandardEq", ")", "{", "b11", "=", "(", "(", "a11", "-", "z11", ")", "*", "(", "a11", "-", "z22", ")", "-", "z21", "*", "z12", ")", "/", "a21", "+", "a12", ";", "b21", "=", "a11", "+", "a22", "-", "z11", "-", "z22", ";", "b31", "=", "a32", ";", "}", "else", "{", "// this is different from the version in the book and seems in my testing to be more resilient to", "// over flow issues", "b11", "=", "(", "(", "a11", "-", "z11", ")", "*", "(", "a11", "-", "z22", ")", "-", "z21", "*", "z12", ")", "+", "a12", "*", "a21", ";", "b21", "=", "(", "a11", "+", "a22", "-", "z11", "-", "z22", ")", "*", "a21", ";", "b31", "=", "a32", "*", "a21", ";", "}", "performImplicitDoubleStep", "(", "x1", ",", "x2", ",", "b11", ",", "b21", ",", "b31", ")", ";", "}" ]
Performs an implicit double step using the values contained in the lower right hand side of the submatrix for the estimated eigenvector values. @param x1 @param x2
[ "Performs", "an", "implicit", "double", "step", "using", "the", "values", "contained", "in", "the", "lower", "right", "hand", "side", "of", "the", "submatrix", "for", "the", "estimated", "eigenvector", "values", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/watched/WatchedDoubleStepQREigen_DDRM.java#L195-L240
162,513
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/watched/WatchedDoubleStepQREigen_DDRM.java
WatchedDoubleStepQREigen_DDRM.performImplicitDoubleStep
public void performImplicitDoubleStep(int x1, int x2 , double real , double img ) { double a11 = A.get(x1,x1); double a21 = A.get(x1+1,x1); double a12 = A.get(x1,x1+1); double a22 = A.get(x1+1,x1+1); double a32 = A.get(x1+2,x1+1); double p_plus_t = 2.0*real; double p_times_t = real*real + img*img; double b11,b21,b31; if( useStandardEq ) { b11 = (a11*a11 - p_plus_t*a11+p_times_t)/a21 + a12; b21 = a11+a22-p_plus_t; b31 = a32; } else { // this is different from the version in the book and seems in my testing to be more resilient to // over flow issues b11 = (a11*a11 - p_plus_t*a11+p_times_t) + a12*a21; b21 = (a11+a22-p_plus_t)*a21; b31 = a32*a21; } performImplicitDoubleStep(x1, x2, b11, b21, b31); }
java
public void performImplicitDoubleStep(int x1, int x2 , double real , double img ) { double a11 = A.get(x1,x1); double a21 = A.get(x1+1,x1); double a12 = A.get(x1,x1+1); double a22 = A.get(x1+1,x1+1); double a32 = A.get(x1+2,x1+1); double p_plus_t = 2.0*real; double p_times_t = real*real + img*img; double b11,b21,b31; if( useStandardEq ) { b11 = (a11*a11 - p_plus_t*a11+p_times_t)/a21 + a12; b21 = a11+a22-p_plus_t; b31 = a32; } else { // this is different from the version in the book and seems in my testing to be more resilient to // over flow issues b11 = (a11*a11 - p_plus_t*a11+p_times_t) + a12*a21; b21 = (a11+a22-p_plus_t)*a21; b31 = a32*a21; } performImplicitDoubleStep(x1, x2, b11, b21, b31); }
[ "public", "void", "performImplicitDoubleStep", "(", "int", "x1", ",", "int", "x2", ",", "double", "real", ",", "double", "img", ")", "{", "double", "a11", "=", "A", ".", "get", "(", "x1", ",", "x1", ")", ";", "double", "a21", "=", "A", ".", "get", "(", "x1", "+", "1", ",", "x1", ")", ";", "double", "a12", "=", "A", ".", "get", "(", "x1", ",", "x1", "+", "1", ")", ";", "double", "a22", "=", "A", ".", "get", "(", "x1", "+", "1", ",", "x1", "+", "1", ")", ";", "double", "a32", "=", "A", ".", "get", "(", "x1", "+", "2", ",", "x1", "+", "1", ")", ";", "double", "p_plus_t", "=", "2.0", "*", "real", ";", "double", "p_times_t", "=", "real", "*", "real", "+", "img", "*", "img", ";", "double", "b11", ",", "b21", ",", "b31", ";", "if", "(", "useStandardEq", ")", "{", "b11", "=", "(", "a11", "*", "a11", "-", "p_plus_t", "*", "a11", "+", "p_times_t", ")", "/", "a21", "+", "a12", ";", "b21", "=", "a11", "+", "a22", "-", "p_plus_t", ";", "b31", "=", "a32", ";", "}", "else", "{", "// this is different from the version in the book and seems in my testing to be more resilient to", "// over flow issues", "b11", "=", "(", "a11", "*", "a11", "-", "p_plus_t", "*", "a11", "+", "p_times_t", ")", "+", "a12", "*", "a21", ";", "b21", "=", "(", "a11", "+", "a22", "-", "p_plus_t", ")", "*", "a21", ";", "b31", "=", "a32", "*", "a21", ";", "}", "performImplicitDoubleStep", "(", "x1", ",", "x2", ",", "b11", ",", "b21", ",", "b31", ")", ";", "}" ]
Performs an implicit double step given the set of two imaginary eigenvalues provided. Since one eigenvalue is the complex conjugate of the other only one set of real and imaginary numbers is needed. @param x1 upper index of submatrix. @param x2 lower index of submatrix. @param real Real component of each of the eigenvalues. @param img Imaginary component of one of the eigenvalues.
[ "Performs", "an", "implicit", "double", "step", "given", "the", "set", "of", "two", "imaginary", "eigenvalues", "provided", ".", "Since", "one", "eigenvalue", "is", "the", "complex", "conjugate", "of", "the", "other", "only", "one", "set", "of", "real", "and", "imaginary", "numbers", "is", "needed", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/watched/WatchedDoubleStepQREigen_DDRM.java#L252-L276
162,514
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/linsol/qr/SolveNullSpaceQRP_DDRM.java
SolveNullSpaceQRP_DDRM.process
public boolean process(DMatrixRMaj A , int numSingularValues, DMatrixRMaj nullspace ) { decomposition.decompose(A); if( A.numRows > A.numCols ) { Q.reshape(A.numCols,Math.min(A.numRows,A.numCols)); decomposition.getQ(Q, true); } else { Q.reshape(A.numCols, A.numCols); decomposition.getQ(Q, false); } nullspace.reshape(Q.numRows,numSingularValues); CommonOps_DDRM.extract(Q,0,Q.numRows,Q.numCols-numSingularValues,Q.numCols,nullspace,0,0); return true; }
java
public boolean process(DMatrixRMaj A , int numSingularValues, DMatrixRMaj nullspace ) { decomposition.decompose(A); if( A.numRows > A.numCols ) { Q.reshape(A.numCols,Math.min(A.numRows,A.numCols)); decomposition.getQ(Q, true); } else { Q.reshape(A.numCols, A.numCols); decomposition.getQ(Q, false); } nullspace.reshape(Q.numRows,numSingularValues); CommonOps_DDRM.extract(Q,0,Q.numRows,Q.numCols-numSingularValues,Q.numCols,nullspace,0,0); return true; }
[ "public", "boolean", "process", "(", "DMatrixRMaj", "A", ",", "int", "numSingularValues", ",", "DMatrixRMaj", "nullspace", ")", "{", "decomposition", ".", "decompose", "(", "A", ")", ";", "if", "(", "A", ".", "numRows", ">", "A", ".", "numCols", ")", "{", "Q", ".", "reshape", "(", "A", ".", "numCols", ",", "Math", ".", "min", "(", "A", ".", "numRows", ",", "A", ".", "numCols", ")", ")", ";", "decomposition", ".", "getQ", "(", "Q", ",", "true", ")", ";", "}", "else", "{", "Q", ".", "reshape", "(", "A", ".", "numCols", ",", "A", ".", "numCols", ")", ";", "decomposition", ".", "getQ", "(", "Q", ",", "false", ")", ";", "}", "nullspace", ".", "reshape", "(", "Q", ".", "numRows", ",", "numSingularValues", ")", ";", "CommonOps_DDRM", ".", "extract", "(", "Q", ",", "0", ",", "Q", ".", "numRows", ",", "Q", ".", "numCols", "-", "numSingularValues", ",", "Q", ".", "numCols", ",", "nullspace", ",", "0", ",", "0", ")", ";", "return", "true", ";", "}" ]
Finds the null space of A @param A (Input) Matrix. Modified @param numSingularValues Number of singular values @param nullspace Storage for null-space @return true if successful or false if it failed
[ "Finds", "the", "null", "space", "of", "A" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/linsol/qr/SolveNullSpaceQRP_DDRM.java#L48-L63
162,515
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java
MatrixFeatures_DDRM.isInverse
public static boolean isInverse(DMatrixRMaj a , DMatrixRMaj b , double tol ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } int numRows = a.numRows; int numCols = a.numCols; for( int i = 0; i < numRows; i++ ) { for( int j = 0; j < numCols; j++ ) { double total = 0; for( int k = 0; k < numCols; k++ ) { total += a.get(i,k)*b.get(k,j); } if( i == j ) { if( !(Math.abs(total-1) <= tol) ) return false; } else if( !(Math.abs(total) <= tol) ) return false; } } return true; }
java
public static boolean isInverse(DMatrixRMaj a , DMatrixRMaj b , double tol ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } int numRows = a.numRows; int numCols = a.numCols; for( int i = 0; i < numRows; i++ ) { for( int j = 0; j < numCols; j++ ) { double total = 0; for( int k = 0; k < numCols; k++ ) { total += a.get(i,k)*b.get(k,j); } if( i == j ) { if( !(Math.abs(total-1) <= tol) ) return false; } else if( !(Math.abs(total) <= tol) ) return false; } } return true; }
[ "public", "static", "boolean", "isInverse", "(", "DMatrixRMaj", "a", ",", "DMatrixRMaj", "b", ",", "double", "tol", ")", "{", "if", "(", "a", ".", "numRows", "!=", "b", ".", "numRows", "||", "a", ".", "numCols", "!=", "b", ".", "numCols", ")", "{", "return", "false", ";", "}", "int", "numRows", "=", "a", ".", "numRows", ";", "int", "numCols", "=", "a", ".", "numCols", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "numRows", ";", "i", "++", ")", "{", "for", "(", "int", "j", "=", "0", ";", "j", "<", "numCols", ";", "j", "++", ")", "{", "double", "total", "=", "0", ";", "for", "(", "int", "k", "=", "0", ";", "k", "<", "numCols", ";", "k", "++", ")", "{", "total", "+=", "a", ".", "get", "(", "i", ",", "k", ")", "*", "b", ".", "get", "(", "k", ",", "j", ")", ";", "}", "if", "(", "i", "==", "j", ")", "{", "if", "(", "!", "(", "Math", ".", "abs", "(", "total", "-", "1", ")", "<=", "tol", ")", ")", "return", "false", ";", "}", "else", "if", "(", "!", "(", "Math", ".", "abs", "(", "total", ")", "<=", "tol", ")", ")", "return", "false", ";", "}", "}", "return", "true", ";", "}" ]
Checks to see if the two matrices are inverses of each other. @param a A matrix. Not modified. @param b A matrix. Not modified.
[ "Checks", "to", "see", "if", "the", "two", "matrices", "are", "inverses", "of", "each", "other", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java#L265-L289
162,516
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java
MatrixFeatures_DDRM.isRowsLinearIndependent
public static boolean isRowsLinearIndependent( DMatrixRMaj A ) { // LU decomposition LUDecomposition<DMatrixRMaj> lu = DecompositionFactory_DDRM.lu(A.numRows,A.numCols); if( lu.inputModified() ) A = A.copy(); if( !lu.decompose(A)) throw new RuntimeException("Decompositon failed?"); // if they are linearly independent it should not be singular return !lu.isSingular(); }
java
public static boolean isRowsLinearIndependent( DMatrixRMaj A ) { // LU decomposition LUDecomposition<DMatrixRMaj> lu = DecompositionFactory_DDRM.lu(A.numRows,A.numCols); if( lu.inputModified() ) A = A.copy(); if( !lu.decompose(A)) throw new RuntimeException("Decompositon failed?"); // if they are linearly independent it should not be singular return !lu.isSingular(); }
[ "public", "static", "boolean", "isRowsLinearIndependent", "(", "DMatrixRMaj", "A", ")", "{", "// LU decomposition", "LUDecomposition", "<", "DMatrixRMaj", ">", "lu", "=", "DecompositionFactory_DDRM", ".", "lu", "(", "A", ".", "numRows", ",", "A", ".", "numCols", ")", ";", "if", "(", "lu", ".", "inputModified", "(", ")", ")", "A", "=", "A", ".", "copy", "(", ")", ";", "if", "(", "!", "lu", ".", "decompose", "(", "A", ")", ")", "throw", "new", "RuntimeException", "(", "\"Decompositon failed?\"", ")", ";", "// if they are linearly independent it should not be singular", "return", "!", "lu", ".", "isSingular", "(", ")", ";", "}" ]
Checks to see if the rows of the provided matrix are linearly independent. @param A Matrix whose rows are being tested for linear independence. @return true if linearly independent and false otherwise.
[ "Checks", "to", "see", "if", "the", "rows", "of", "the", "provided", "matrix", "are", "linearly", "independent", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java#L504-L516
162,517
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java
MatrixFeatures_DDRM.isConstantVal
public static boolean isConstantVal(DMatrixRMaj mat , double val , double tol ) { // see if the result is an identity matrix int index = 0; for( int i = 0; i < mat.numRows; i++ ) { for( int j = 0; j < mat.numCols; j++ ) { if( !(Math.abs(mat.get(index++)-val) <= tol) ) return false; } } return true; }
java
public static boolean isConstantVal(DMatrixRMaj mat , double val , double tol ) { // see if the result is an identity matrix int index = 0; for( int i = 0; i < mat.numRows; i++ ) { for( int j = 0; j < mat.numCols; j++ ) { if( !(Math.abs(mat.get(index++)-val) <= tol) ) return false; } } return true; }
[ "public", "static", "boolean", "isConstantVal", "(", "DMatrixRMaj", "mat", ",", "double", "val", ",", "double", "tol", ")", "{", "// see if the result is an identity matrix", "int", "index", "=", "0", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "mat", ".", "numRows", ";", "i", "++", ")", "{", "for", "(", "int", "j", "=", "0", ";", "j", "<", "mat", ".", "numCols", ";", "j", "++", ")", "{", "if", "(", "!", "(", "Math", ".", "abs", "(", "mat", ".", "get", "(", "index", "++", ")", "-", "val", ")", "<=", "tol", ")", ")", "return", "false", ";", "}", "}", "return", "true", ";", "}" ]
Checks to see if every value in the matrix is the specified value. @param mat The matrix being tested. Not modified. @param val Checks to see if every element in the matrix has this value. @param tol True if all the elements are within this tolerance. @return true if the test passes.
[ "Checks", "to", "see", "if", "every", "value", "in", "the", "matrix", "is", "the", "specified", "value", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java#L552-L565
162,518
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java
MatrixFeatures_DDRM.isDiagonalPositive
public static boolean isDiagonalPositive( DMatrixRMaj a ) { for( int i = 0; i < a.numRows; i++ ) { if( !(a.get(i,i) >= 0) ) return false; } return true; }
java
public static boolean isDiagonalPositive( DMatrixRMaj a ) { for( int i = 0; i < a.numRows; i++ ) { if( !(a.get(i,i) >= 0) ) return false; } return true; }
[ "public", "static", "boolean", "isDiagonalPositive", "(", "DMatrixRMaj", "a", ")", "{", "for", "(", "int", "i", "=", "0", ";", "i", "<", "a", ".", "numRows", ";", "i", "++", ")", "{", "if", "(", "!", "(", "a", ".", "get", "(", "i", ",", "i", ")", ">=", "0", ")", ")", "return", "false", ";", "}", "return", "true", ";", "}" ]
Checks to see if all the diagonal elements in the matrix are positive. @param a A matrix. Not modified. @return true if all the diagonal elements are positive, false otherwise.
[ "Checks", "to", "see", "if", "all", "the", "diagonal", "elements", "in", "the", "matrix", "are", "positive", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java#L573-L579
162,519
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java
MatrixFeatures_DDRM.rank
public static int rank(DMatrixRMaj A , double threshold ) { SingularValueDecomposition_F64<DMatrixRMaj> svd = DecompositionFactory_DDRM.svd(A.numRows,A.numCols,false,false,true); if( svd.inputModified() ) A = A.copy(); if( !svd.decompose(A) ) throw new RuntimeException("Decomposition failed"); return SingularOps_DDRM.rank(svd, threshold); }
java
public static int rank(DMatrixRMaj A , double threshold ) { SingularValueDecomposition_F64<DMatrixRMaj> svd = DecompositionFactory_DDRM.svd(A.numRows,A.numCols,false,false,true); if( svd.inputModified() ) A = A.copy(); if( !svd.decompose(A) ) throw new RuntimeException("Decomposition failed"); return SingularOps_DDRM.rank(svd, threshold); }
[ "public", "static", "int", "rank", "(", "DMatrixRMaj", "A", ",", "double", "threshold", ")", "{", "SingularValueDecomposition_F64", "<", "DMatrixRMaj", ">", "svd", "=", "DecompositionFactory_DDRM", ".", "svd", "(", "A", ".", "numRows", ",", "A", ".", "numCols", ",", "false", ",", "false", ",", "true", ")", ";", "if", "(", "svd", ".", "inputModified", "(", ")", ")", "A", "=", "A", ".", "copy", "(", ")", ";", "if", "(", "!", "svd", ".", "decompose", "(", "A", ")", ")", "throw", "new", "RuntimeException", "(", "\"Decomposition failed\"", ")", ";", "return", "SingularOps_DDRM", ".", "rank", "(", "svd", ",", "threshold", ")", ";", "}" ]
Computes the rank of a matrix using the specified tolerance. @param A Matrix whose rank is to be calculated. Not modified. @param threshold The numerical threshold used to determine a singular value. @return The matrix's rank.
[ "Computes", "the", "rank", "of", "a", "matrix", "using", "the", "specified", "tolerance", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java#L680-L690
162,520
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java
MatrixFeatures_DDRM.countNonZero
public static int countNonZero(DMatrixRMaj A){ int total = 0; for (int row = 0, index=0; row < A.numRows; row++) { for (int col = 0; col < A.numCols; col++,index++) { if( A.data[index] != 0 ) { total++; } } } return total; }
java
public static int countNonZero(DMatrixRMaj A){ int total = 0; for (int row = 0, index=0; row < A.numRows; row++) { for (int col = 0; col < A.numCols; col++,index++) { if( A.data[index] != 0 ) { total++; } } } return total; }
[ "public", "static", "int", "countNonZero", "(", "DMatrixRMaj", "A", ")", "{", "int", "total", "=", "0", ";", "for", "(", "int", "row", "=", "0", ",", "index", "=", "0", ";", "row", "<", "A", ".", "numRows", ";", "row", "++", ")", "{", "for", "(", "int", "col", "=", "0", ";", "col", "<", "A", ".", "numCols", ";", "col", "++", ",", "index", "++", ")", "{", "if", "(", "A", ".", "data", "[", "index", "]", "!=", "0", ")", "{", "total", "++", ";", "}", "}", "}", "return", "total", ";", "}" ]
Counts the number of elements in A which are not zero. @param A A matrix @return number of non-zero elements
[ "Counts", "the", "number", "of", "elements", "in", "A", "which", "are", "not", "zero", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/MatrixFeatures_DDRM.java#L726-L736
162,521
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.invertSPD
public static boolean invertSPD(DMatrixRMaj mat, DMatrixRMaj result ) { if( mat.numRows != mat.numCols ) throw new IllegalArgumentException("Must be a square matrix"); result.reshape(mat.numRows,mat.numRows); if( mat.numRows <= UnrolledCholesky_DDRM.MAX ) { // L*L' = A if( !UnrolledCholesky_DDRM.lower(mat,result) ) return false; // L = inv(L) TriangularSolver_DDRM.invertLower(result.data,result.numCols); // inv(A) = inv(L')*inv(L) SpecializedOps_DDRM.multLowerTranA(result); } else { LinearSolverDense<DMatrixRMaj> solver = LinearSolverFactory_DDRM.chol(mat.numCols); if( solver.modifiesA() ) mat = mat.copy(); if( !solver.setA(mat)) return false; solver.invert(result); } return true; }
java
public static boolean invertSPD(DMatrixRMaj mat, DMatrixRMaj result ) { if( mat.numRows != mat.numCols ) throw new IllegalArgumentException("Must be a square matrix"); result.reshape(mat.numRows,mat.numRows); if( mat.numRows <= UnrolledCholesky_DDRM.MAX ) { // L*L' = A if( !UnrolledCholesky_DDRM.lower(mat,result) ) return false; // L = inv(L) TriangularSolver_DDRM.invertLower(result.data,result.numCols); // inv(A) = inv(L')*inv(L) SpecializedOps_DDRM.multLowerTranA(result); } else { LinearSolverDense<DMatrixRMaj> solver = LinearSolverFactory_DDRM.chol(mat.numCols); if( solver.modifiesA() ) mat = mat.copy(); if( !solver.setA(mat)) return false; solver.invert(result); } return true; }
[ "public", "static", "boolean", "invertSPD", "(", "DMatrixRMaj", "mat", ",", "DMatrixRMaj", "result", ")", "{", "if", "(", "mat", ".", "numRows", "!=", "mat", ".", "numCols", ")", "throw", "new", "IllegalArgumentException", "(", "\"Must be a square matrix\"", ")", ";", "result", ".", "reshape", "(", "mat", ".", "numRows", ",", "mat", ".", "numRows", ")", ";", "if", "(", "mat", ".", "numRows", "<=", "UnrolledCholesky_DDRM", ".", "MAX", ")", "{", "// L*L' = A", "if", "(", "!", "UnrolledCholesky_DDRM", ".", "lower", "(", "mat", ",", "result", ")", ")", "return", "false", ";", "// L = inv(L)", "TriangularSolver_DDRM", ".", "invertLower", "(", "result", ".", "data", ",", "result", ".", "numCols", ")", ";", "// inv(A) = inv(L')*inv(L)", "SpecializedOps_DDRM", ".", "multLowerTranA", "(", "result", ")", ";", "}", "else", "{", "LinearSolverDense", "<", "DMatrixRMaj", ">", "solver", "=", "LinearSolverFactory_DDRM", ".", "chol", "(", "mat", ".", "numCols", ")", ";", "if", "(", "solver", ".", "modifiesA", "(", ")", ")", "mat", "=", "mat", ".", "copy", "(", ")", ";", "if", "(", "!", "solver", ".", "setA", "(", "mat", ")", ")", "return", "false", ";", "solver", ".", "invert", "(", "result", ")", ";", "}", "return", "true", ";", "}" ]
Matrix inverse for symmetric positive definite matrices. For small matrices an unrolled cholesky is used. Otherwise a standard decomposition. @see UnrolledCholesky_DDRM @see LinearSolverFactory_DDRM#chol(int) @param mat (Input) SPD matrix @param result (Output) Inverted matrix. @return true if it could invert the matrix false if it could not.
[ "Matrix", "inverse", "for", "symmetric", "positive", "definite", "matrices", ".", "For", "small", "matrices", "an", "unrolled", "cholesky", "is", "used", ".", "Otherwise", "a", "standard", "decomposition", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L818-L842
162,522
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.identity
public static DMatrixRMaj identity(int numRows , int numCols ) { DMatrixRMaj ret = new DMatrixRMaj(numRows,numCols); int small = numRows < numCols ? numRows : numCols; for( int i = 0; i < small; i++ ) { ret.set(i,i,1.0); } return ret; }
java
public static DMatrixRMaj identity(int numRows , int numCols ) { DMatrixRMaj ret = new DMatrixRMaj(numRows,numCols); int small = numRows < numCols ? numRows : numCols; for( int i = 0; i < small; i++ ) { ret.set(i,i,1.0); } return ret; }
[ "public", "static", "DMatrixRMaj", "identity", "(", "int", "numRows", ",", "int", "numCols", ")", "{", "DMatrixRMaj", "ret", "=", "new", "DMatrixRMaj", "(", "numRows", ",", "numCols", ")", ";", "int", "small", "=", "numRows", "<", "numCols", "?", "numRows", ":", "numCols", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "small", ";", "i", "++", ")", "{", "ret", ".", "set", "(", "i", ",", "i", ",", "1.0", ")", ";", "}", "return", "ret", ";", "}" ]
Creates a rectangular matrix which is zero except along the diagonals. @param numRows Number of rows in the matrix. @param numCols NUmber of columns in the matrix. @return A matrix with diagonal elements equal to one.
[ "Creates", "a", "rectangular", "matrix", "which", "is", "zero", "except", "along", "the", "diagonals", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L987-L998
162,523
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.extract
public static void extract( DMatrix src, int srcY0, int srcY1, int srcX0, int srcX1, DMatrix dst ) { ((ReshapeMatrix)dst).reshape(srcY1-srcY0,srcX1-srcX0); extract(src,srcY0,srcY1,srcX0,srcX1,dst,0,0); }
java
public static void extract( DMatrix src, int srcY0, int srcY1, int srcX0, int srcX1, DMatrix dst ) { ((ReshapeMatrix)dst).reshape(srcY1-srcY0,srcX1-srcX0); extract(src,srcY0,srcY1,srcX0,srcX1,dst,0,0); }
[ "public", "static", "void", "extract", "(", "DMatrix", "src", ",", "int", "srcY0", ",", "int", "srcY1", ",", "int", "srcX0", ",", "int", "srcX1", ",", "DMatrix", "dst", ")", "{", "(", "(", "ReshapeMatrix", ")", "dst", ")", ".", "reshape", "(", "srcY1", "-", "srcY0", ",", "srcX1", "-", "srcX0", ")", ";", "extract", "(", "src", ",", "srcY0", ",", "srcY1", ",", "srcX0", ",", "srcX1", ",", "dst", ",", "0", ",", "0", ")", ";", "}" ]
Extract where the destination is reshaped to match the extracted region @param src The original matrix which is to be copied. Not modified. @param srcX0 Start column. @param srcX1 Stop column+1. @param srcY0 Start row. @param srcY1 Stop row+1. @param dst Where the submatrix are stored. Modified.
[ "Extract", "where", "the", "destination", "is", "reshaped", "to", "match", "the", "extracted", "region" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L1163-L1169
162,524
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.extract
public static void extract( DMatrixRMaj src, int rows[] , int rowsSize , int cols[] , int colsSize , DMatrixRMaj dst ) { if( rowsSize != dst.numRows || colsSize != dst.numCols ) throw new MatrixDimensionException("Unexpected number of rows and/or columns in dst matrix"); int indexDst = 0; for (int i = 0; i < rowsSize; i++) { int indexSrcRow = src.numCols*rows[i]; for (int j = 0; j < colsSize; j++) { dst.data[indexDst++] = src.data[indexSrcRow + cols[j]]; } } }
java
public static void extract( DMatrixRMaj src, int rows[] , int rowsSize , int cols[] , int colsSize , DMatrixRMaj dst ) { if( rowsSize != dst.numRows || colsSize != dst.numCols ) throw new MatrixDimensionException("Unexpected number of rows and/or columns in dst matrix"); int indexDst = 0; for (int i = 0; i < rowsSize; i++) { int indexSrcRow = src.numCols*rows[i]; for (int j = 0; j < colsSize; j++) { dst.data[indexDst++] = src.data[indexSrcRow + cols[j]]; } } }
[ "public", "static", "void", "extract", "(", "DMatrixRMaj", "src", ",", "int", "rows", "[", "]", ",", "int", "rowsSize", ",", "int", "cols", "[", "]", ",", "int", "colsSize", ",", "DMatrixRMaj", "dst", ")", "{", "if", "(", "rowsSize", "!=", "dst", ".", "numRows", "||", "colsSize", "!=", "dst", ".", "numCols", ")", "throw", "new", "MatrixDimensionException", "(", "\"Unexpected number of rows and/or columns in dst matrix\"", ")", ";", "int", "indexDst", "=", "0", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "rowsSize", ";", "i", "++", ")", "{", "int", "indexSrcRow", "=", "src", ".", "numCols", "*", "rows", "[", "i", "]", ";", "for", "(", "int", "j", "=", "0", ";", "j", "<", "colsSize", ";", "j", "++", ")", "{", "dst", ".", "data", "[", "indexDst", "++", "]", "=", "src", ".", "data", "[", "indexSrcRow", "+", "cols", "[", "j", "]", "]", ";", "}", "}", "}" ]
Extracts out a matrix from source given a sub matrix with arbitrary rows and columns specified in two array lists @param src Source matrix. Not modified. @param rows array of row indexes @param rowsSize maximum element in row array @param cols array of column indexes @param colsSize maximum element in column array @param dst output matrix. Must be correct shape.
[ "Extracts", "out", "a", "matrix", "from", "source", "given", "a", "sub", "matrix", "with", "arbitrary", "rows", "and", "columns", "specified", "in", "two", "array", "lists" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L1236-L1249
162,525
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.extract
public static void extract(DMatrixRMaj src, int indexes[] , int length , DMatrixRMaj dst ) { if( !MatrixFeatures_DDRM.isVector(dst)) throw new MatrixDimensionException("Dst must be a vector"); if( length != dst.getNumElements()) throw new MatrixDimensionException("Unexpected number of elements in dst vector"); for (int i = 0; i < length; i++) { dst.data[i] = src.data[indexes[i]]; } }
java
public static void extract(DMatrixRMaj src, int indexes[] , int length , DMatrixRMaj dst ) { if( !MatrixFeatures_DDRM.isVector(dst)) throw new MatrixDimensionException("Dst must be a vector"); if( length != dst.getNumElements()) throw new MatrixDimensionException("Unexpected number of elements in dst vector"); for (int i = 0; i < length; i++) { dst.data[i] = src.data[indexes[i]]; } }
[ "public", "static", "void", "extract", "(", "DMatrixRMaj", "src", ",", "int", "indexes", "[", "]", ",", "int", "length", ",", "DMatrixRMaj", "dst", ")", "{", "if", "(", "!", "MatrixFeatures_DDRM", ".", "isVector", "(", "dst", ")", ")", "throw", "new", "MatrixDimensionException", "(", "\"Dst must be a vector\"", ")", ";", "if", "(", "length", "!=", "dst", ".", "getNumElements", "(", ")", ")", "throw", "new", "MatrixDimensionException", "(", "\"Unexpected number of elements in dst vector\"", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "length", ";", "i", "++", ")", "{", "dst", ".", "data", "[", "i", "]", "=", "src", ".", "data", "[", "indexes", "[", "i", "]", "]", ";", "}", "}" ]
Extracts the elements from the source matrix by their 1D index. @param src Source matrix. Not modified. @param indexes array of row indexes @param length maximum element in row array @param dst output matrix. Must be a vector of the correct length.
[ "Extracts", "the", "elements", "from", "the", "source", "matrix", "by", "their", "1D", "index", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L1259-L1268
162,526
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.extractRow
public static DMatrixRMaj extractRow(DMatrixRMaj a , int row , DMatrixRMaj out ) { if( out == null) out = new DMatrixRMaj(1,a.numCols); else if( !MatrixFeatures_DDRM.isVector(out) || out.getNumElements() != a.numCols ) throw new MatrixDimensionException("Output must be a vector of length "+a.numCols); System.arraycopy(a.data,a.getIndex(row,0),out.data,0,a.numCols); return out; }
java
public static DMatrixRMaj extractRow(DMatrixRMaj a , int row , DMatrixRMaj out ) { if( out == null) out = new DMatrixRMaj(1,a.numCols); else if( !MatrixFeatures_DDRM.isVector(out) || out.getNumElements() != a.numCols ) throw new MatrixDimensionException("Output must be a vector of length "+a.numCols); System.arraycopy(a.data,a.getIndex(row,0),out.data,0,a.numCols); return out; }
[ "public", "static", "DMatrixRMaj", "extractRow", "(", "DMatrixRMaj", "a", ",", "int", "row", ",", "DMatrixRMaj", "out", ")", "{", "if", "(", "out", "==", "null", ")", "out", "=", "new", "DMatrixRMaj", "(", "1", ",", "a", ".", "numCols", ")", ";", "else", "if", "(", "!", "MatrixFeatures_DDRM", ".", "isVector", "(", "out", ")", "||", "out", ".", "getNumElements", "(", ")", "!=", "a", ".", "numCols", ")", "throw", "new", "MatrixDimensionException", "(", "\"Output must be a vector of length \"", "+", "a", ".", "numCols", ")", ";", "System", ".", "arraycopy", "(", "a", ".", "data", ",", "a", ".", "getIndex", "(", "row", ",", "0", ")", ",", "out", ".", "data", ",", "0", ",", "a", ".", "numCols", ")", ";", "return", "out", ";", "}" ]
Extracts the row from a matrix. @param a Input matrix @param row Which row is to be extracted @param out output. Storage for the extracted row. If null then a new vector will be returned. @return The extracted row.
[ "Extracts", "the", "row", "from", "a", "matrix", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L1330-L1339
162,527
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.extractColumn
public static DMatrixRMaj extractColumn(DMatrixRMaj a , int column , DMatrixRMaj out ) { if( out == null) out = new DMatrixRMaj(a.numRows,1); else if( !MatrixFeatures_DDRM.isVector(out) || out.getNumElements() != a.numRows ) throw new MatrixDimensionException("Output must be a vector of length "+a.numRows); int index = column; for (int i = 0; i < a.numRows; i++, index += a.numCols ) { out.data[i] = a.data[index]; } return out; }
java
public static DMatrixRMaj extractColumn(DMatrixRMaj a , int column , DMatrixRMaj out ) { if( out == null) out = new DMatrixRMaj(a.numRows,1); else if( !MatrixFeatures_DDRM.isVector(out) || out.getNumElements() != a.numRows ) throw new MatrixDimensionException("Output must be a vector of length "+a.numRows); int index = column; for (int i = 0; i < a.numRows; i++, index += a.numCols ) { out.data[i] = a.data[index]; } return out; }
[ "public", "static", "DMatrixRMaj", "extractColumn", "(", "DMatrixRMaj", "a", ",", "int", "column", ",", "DMatrixRMaj", "out", ")", "{", "if", "(", "out", "==", "null", ")", "out", "=", "new", "DMatrixRMaj", "(", "a", ".", "numRows", ",", "1", ")", ";", "else", "if", "(", "!", "MatrixFeatures_DDRM", ".", "isVector", "(", "out", ")", "||", "out", ".", "getNumElements", "(", ")", "!=", "a", ".", "numRows", ")", "throw", "new", "MatrixDimensionException", "(", "\"Output must be a vector of length \"", "+", "a", ".", "numRows", ")", ";", "int", "index", "=", "column", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "a", ".", "numRows", ";", "i", "++", ",", "index", "+=", "a", ".", "numCols", ")", "{", "out", ".", "data", "[", "i", "]", "=", "a", ".", "data", "[", "index", "]", ";", "}", "return", "out", ";", "}" ]
Extracts the column from a matrix. @param a Input matrix @param column Which column is to be extracted @param out output. Storage for the extracted column. If null then a new vector will be returned. @return The extracted column.
[ "Extracts", "the", "column", "from", "a", "matrix", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L1348-L1359
162,528
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.removeColumns
public static void removeColumns( DMatrixRMaj A , int col0 , int col1 ) { if( col1 < col0 ) { throw new IllegalArgumentException("col1 must be >= col0"); } else if( col0 >= A.numCols || col1 >= A.numCols ) { throw new IllegalArgumentException("Columns which are to be removed must be in bounds"); } int step = col1-col0+1; int offset = 0; for (int row = 0, idx=0; row < A.numRows; row++) { for (int i = 0; i < col0; i++,idx++) { A.data[idx] = A.data[idx+offset]; } offset += step; for (int i = col1+1; i < A.numCols; i++,idx++) { A.data[idx] = A.data[idx+offset]; } } A.numCols -= step; }
java
public static void removeColumns( DMatrixRMaj A , int col0 , int col1 ) { if( col1 < col0 ) { throw new IllegalArgumentException("col1 must be >= col0"); } else if( col0 >= A.numCols || col1 >= A.numCols ) { throw new IllegalArgumentException("Columns which are to be removed must be in bounds"); } int step = col1-col0+1; int offset = 0; for (int row = 0, idx=0; row < A.numRows; row++) { for (int i = 0; i < col0; i++,idx++) { A.data[idx] = A.data[idx+offset]; } offset += step; for (int i = col1+1; i < A.numCols; i++,idx++) { A.data[idx] = A.data[idx+offset]; } } A.numCols -= step; }
[ "public", "static", "void", "removeColumns", "(", "DMatrixRMaj", "A", ",", "int", "col0", ",", "int", "col1", ")", "{", "if", "(", "col1", "<", "col0", ")", "{", "throw", "new", "IllegalArgumentException", "(", "\"col1 must be >= col0\"", ")", ";", "}", "else", "if", "(", "col0", ">=", "A", ".", "numCols", "||", "col1", ">=", "A", ".", "numCols", ")", "{", "throw", "new", "IllegalArgumentException", "(", "\"Columns which are to be removed must be in bounds\"", ")", ";", "}", "int", "step", "=", "col1", "-", "col0", "+", "1", ";", "int", "offset", "=", "0", ";", "for", "(", "int", "row", "=", "0", ",", "idx", "=", "0", ";", "row", "<", "A", ".", "numRows", ";", "row", "++", ")", "{", "for", "(", "int", "i", "=", "0", ";", "i", "<", "col0", ";", "i", "++", ",", "idx", "++", ")", "{", "A", ".", "data", "[", "idx", "]", "=", "A", ".", "data", "[", "idx", "+", "offset", "]", ";", "}", "offset", "+=", "step", ";", "for", "(", "int", "i", "=", "col1", "+", "1", ";", "i", "<", "A", ".", "numCols", ";", "i", "++", ",", "idx", "++", ")", "{", "A", ".", "data", "[", "idx", "]", "=", "A", ".", "data", "[", "idx", "+", "offset", "]", ";", "}", "}", "A", ".", "numCols", "-=", "step", ";", "}" ]
Removes columns from the matrix. @param A Matrix. Modified @param col0 First column @param col1 Last column, inclusive.
[ "Removes", "columns", "from", "the", "matrix", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L1368-L1388
162,529
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.scaleRow
public static void scaleRow( double alpha , DMatrixRMaj A , int row ) { int idx = row*A.numCols; for (int col = 0; col < A.numCols; col++) { A.data[idx++] *= alpha; } }
java
public static void scaleRow( double alpha , DMatrixRMaj A , int row ) { int idx = row*A.numCols; for (int col = 0; col < A.numCols; col++) { A.data[idx++] *= alpha; } }
[ "public", "static", "void", "scaleRow", "(", "double", "alpha", ",", "DMatrixRMaj", "A", ",", "int", "row", ")", "{", "int", "idx", "=", "row", "*", "A", ".", "numCols", ";", "for", "(", "int", "col", "=", "0", ";", "col", "<", "A", ".", "numCols", ";", "col", "++", ")", "{", "A", ".", "data", "[", "idx", "++", "]", "*=", "alpha", ";", "}", "}" ]
In-place scaling of a row in A @param alpha scale factor @param A matrix @param row which row in A
[ "In", "-", "place", "scaling", "of", "a", "row", "in", "A" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L2398-L2403
162,530
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.scaleCol
public static void scaleCol( double alpha , DMatrixRMaj A , int col ) { int idx = col; for (int row = 0; row < A.numRows; row++, idx += A.numCols) { A.data[idx] *= alpha; } }
java
public static void scaleCol( double alpha , DMatrixRMaj A , int col ) { int idx = col; for (int row = 0; row < A.numRows; row++, idx += A.numCols) { A.data[idx] *= alpha; } }
[ "public", "static", "void", "scaleCol", "(", "double", "alpha", ",", "DMatrixRMaj", "A", ",", "int", "col", ")", "{", "int", "idx", "=", "col", ";", "for", "(", "int", "row", "=", "0", ";", "row", "<", "A", ".", "numRows", ";", "row", "++", ",", "idx", "+=", "A", ".", "numCols", ")", "{", "A", ".", "data", "[", "idx", "]", "*=", "alpha", ";", "}", "}" ]
In-place scaling of a column in A @param alpha scale factor @param A matrix @param col which row in A
[ "In", "-", "place", "scaling", "of", "a", "column", "in", "A" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L2412-L2417
162,531
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.elementLessThan
public static BMatrixRMaj elementLessThan(DMatrixRMaj A , double value , BMatrixRMaj output ) { if( output == null ) { output = new BMatrixRMaj(A.numRows,A.numCols); } output.reshape(A.numRows, A.numCols); int N = A.getNumElements(); for (int i = 0; i < N; i++) { output.data[i] = A.data[i] < value; } return output; }
java
public static BMatrixRMaj elementLessThan(DMatrixRMaj A , double value , BMatrixRMaj output ) { if( output == null ) { output = new BMatrixRMaj(A.numRows,A.numCols); } output.reshape(A.numRows, A.numCols); int N = A.getNumElements(); for (int i = 0; i < N; i++) { output.data[i] = A.data[i] < value; } return output; }
[ "public", "static", "BMatrixRMaj", "elementLessThan", "(", "DMatrixRMaj", "A", ",", "double", "value", ",", "BMatrixRMaj", "output", ")", "{", "if", "(", "output", "==", "null", ")", "{", "output", "=", "new", "BMatrixRMaj", "(", "A", ".", "numRows", ",", "A", ".", "numCols", ")", ";", "}", "output", ".", "reshape", "(", "A", ".", "numRows", ",", "A", ".", "numCols", ")", ";", "int", "N", "=", "A", ".", "getNumElements", "(", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "N", ";", "i", "++", ")", "{", "output", ".", "data", "[", "i", "]", "=", "A", ".", "data", "[", "i", "]", "<", "value", ";", "}", "return", "output", ";", "}" ]
Applies the &gt; operator to each element in A. Results are stored in a boolean matrix. @param A Input matrx @param value value each element is compared against @param output (Optional) Storage for results. Can be null. Is reshaped. @return Boolean matrix with results
[ "Applies", "the", "&gt", ";", "operator", "to", "each", "element", "in", "A", ".", "Results", "are", "stored", "in", "a", "boolean", "matrix", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L2604-L2619
162,532
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.elements
public static DMatrixRMaj elements(DMatrixRMaj A , BMatrixRMaj marked , DMatrixRMaj output ) { if( A.numRows != marked.numRows || A.numCols != marked.numCols ) throw new MatrixDimensionException("Input matrices must have the same shape"); if( output == null ) output = new DMatrixRMaj(1,1); output.reshape(countTrue(marked),1); int N = A.getNumElements(); int index = 0; for (int i = 0; i < N; i++) { if( marked.data[i] ) { output.data[index++] = A.data[i]; } } return output; }
java
public static DMatrixRMaj elements(DMatrixRMaj A , BMatrixRMaj marked , DMatrixRMaj output ) { if( A.numRows != marked.numRows || A.numCols != marked.numCols ) throw new MatrixDimensionException("Input matrices must have the same shape"); if( output == null ) output = new DMatrixRMaj(1,1); output.reshape(countTrue(marked),1); int N = A.getNumElements(); int index = 0; for (int i = 0; i < N; i++) { if( marked.data[i] ) { output.data[index++] = A.data[i]; } } return output; }
[ "public", "static", "DMatrixRMaj", "elements", "(", "DMatrixRMaj", "A", ",", "BMatrixRMaj", "marked", ",", "DMatrixRMaj", "output", ")", "{", "if", "(", "A", ".", "numRows", "!=", "marked", ".", "numRows", "||", "A", ".", "numCols", "!=", "marked", ".", "numCols", ")", "throw", "new", "MatrixDimensionException", "(", "\"Input matrices must have the same shape\"", ")", ";", "if", "(", "output", "==", "null", ")", "output", "=", "new", "DMatrixRMaj", "(", "1", ",", "1", ")", ";", "output", ".", "reshape", "(", "countTrue", "(", "marked", ")", ",", "1", ")", ";", "int", "N", "=", "A", ".", "getNumElements", "(", ")", ";", "int", "index", "=", "0", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "N", ";", "i", "++", ")", "{", "if", "(", "marked", ".", "data", "[", "i", "]", ")", "{", "output", ".", "data", "[", "index", "++", "]", "=", "A", ".", "data", "[", "i", "]", ";", "}", "}", "return", "output", ";", "}" ]
Returns a row matrix which contains all the elements in A which are flagged as true in 'marked' @param A Input matrix @param marked Input matrix marking elements in A @param output Storage for output row vector. Can be null. Will be reshaped. @return Row vector with marked elements
[ "Returns", "a", "row", "matrix", "which", "contains", "all", "the", "elements", "in", "A", "which", "are", "flagged", "as", "true", "in", "marked" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L2754-L2772
162,533
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.countTrue
public static int countTrue(BMatrixRMaj A) { int total = 0; int N = A.getNumElements(); for (int i = 0; i < N; i++) { if( A.data[i] ) total++; } return total; }
java
public static int countTrue(BMatrixRMaj A) { int total = 0; int N = A.getNumElements(); for (int i = 0; i < N; i++) { if( A.data[i] ) total++; } return total; }
[ "public", "static", "int", "countTrue", "(", "BMatrixRMaj", "A", ")", "{", "int", "total", "=", "0", ";", "int", "N", "=", "A", ".", "getNumElements", "(", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "N", ";", "i", "++", ")", "{", "if", "(", "A", ".", "data", "[", "i", "]", ")", "total", "++", ";", "}", "return", "total", ";", "}" ]
Counts the number of elements in A which are true @param A input matrix @return number of true elements
[ "Counts", "the", "number", "of", "elements", "in", "A", "which", "are", "true" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L2779-L2790
162,534
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java
CommonOps_DDRM.symmLowerToFull
public static void symmLowerToFull( DMatrixRMaj A ) { if( A.numRows != A.numCols ) throw new MatrixDimensionException("Must be a square matrix"); final int cols = A.numCols; for (int row = 0; row < A.numRows; row++) { for (int col = row+1; col < cols; col++) { A.data[row*cols+col] = A.data[col*cols+row]; } } }
java
public static void symmLowerToFull( DMatrixRMaj A ) { if( A.numRows != A.numCols ) throw new MatrixDimensionException("Must be a square matrix"); final int cols = A.numCols; for (int row = 0; row < A.numRows; row++) { for (int col = row+1; col < cols; col++) { A.data[row*cols+col] = A.data[col*cols+row]; } } }
[ "public", "static", "void", "symmLowerToFull", "(", "DMatrixRMaj", "A", ")", "{", "if", "(", "A", ".", "numRows", "!=", "A", ".", "numCols", ")", "throw", "new", "MatrixDimensionException", "(", "\"Must be a square matrix\"", ")", ";", "final", "int", "cols", "=", "A", ".", "numCols", ";", "for", "(", "int", "row", "=", "0", ";", "row", "<", "A", ".", "numRows", ";", "row", "++", ")", "{", "for", "(", "int", "col", "=", "row", "+", "1", ";", "col", "<", "cols", ";", "col", "++", ")", "{", "A", ".", "data", "[", "row", "*", "cols", "+", "col", "]", "=", "A", ".", "data", "[", "col", "*", "cols", "+", "row", "]", ";", "}", "}", "}" ]
Given a symmetric matrix which is represented by a lower triangular matrix convert it back into a full symmetric matrix. @param A (Input) Lower triangular matrix (Output) symmetric matrix
[ "Given", "a", "symmetric", "matrix", "which", "is", "represented", "by", "a", "lower", "triangular", "matrix", "convert", "it", "back", "into", "a", "full", "symmetric", "matrix", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CommonOps_DDRM.java#L2942-L2954
162,535
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/hessenberg/TridiagonalDecompositionHouseholderOrig_DDRM.java
TridiagonalDecompositionHouseholderOrig_DDRM.init
public void init( DMatrixRMaj A ) { if( A.numRows != A.numCols) throw new IllegalArgumentException("Must be square"); if( A.numCols != N ) { N = A.numCols; QT.reshape(N,N, false); if( w.length < N ) { w = new double[ N ]; gammas = new double[N]; b = new double[N]; } } // just copy the top right triangle QT.set(A); }
java
public void init( DMatrixRMaj A ) { if( A.numRows != A.numCols) throw new IllegalArgumentException("Must be square"); if( A.numCols != N ) { N = A.numCols; QT.reshape(N,N, false); if( w.length < N ) { w = new double[ N ]; gammas = new double[N]; b = new double[N]; } } // just copy the top right triangle QT.set(A); }
[ "public", "void", "init", "(", "DMatrixRMaj", "A", ")", "{", "if", "(", "A", ".", "numRows", "!=", "A", ".", "numCols", ")", "throw", "new", "IllegalArgumentException", "(", "\"Must be square\"", ")", ";", "if", "(", "A", ".", "numCols", "!=", "N", ")", "{", "N", "=", "A", ".", "numCols", ";", "QT", ".", "reshape", "(", "N", ",", "N", ",", "false", ")", ";", "if", "(", "w", ".", "length", "<", "N", ")", "{", "w", "=", "new", "double", "[", "N", "]", ";", "gammas", "=", "new", "double", "[", "N", "]", ";", "b", "=", "new", "double", "[", "N", "]", ";", "}", "}", "// just copy the top right triangle", "QT", ".", "set", "(", "A", ")", ";", "}" ]
If needed declares and sets up internal data structures. @param A Matrix being decomposed.
[ "If", "needed", "declares", "and", "sets", "up", "internal", "data", "structures", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/hessenberg/TridiagonalDecompositionHouseholderOrig_DDRM.java#L240-L257
162,536
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/mult/MatrixMultProduct_DDRM.java
MatrixMultProduct_DDRM.inner_reorder_lower
public static void inner_reorder_lower(DMatrix1Row A , DMatrix1Row B ) { final int cols = A.numCols; B.reshape(cols,cols); Arrays.fill(B.data,0); for (int i = 0; i <cols; i++) { for (int j = 0; j <=i; j++) { B.data[i*cols+j] += A.data[i]*A.data[j]; } for (int k = 1; k < A.numRows; k++) { int indexRow = k*cols; double valI = A.data[i+indexRow]; int indexB = i*cols; for (int j = 0; j <= i; j++) { B.data[indexB++] += valI*A.data[indexRow++]; } } } }
java
public static void inner_reorder_lower(DMatrix1Row A , DMatrix1Row B ) { final int cols = A.numCols; B.reshape(cols,cols); Arrays.fill(B.data,0); for (int i = 0; i <cols; i++) { for (int j = 0; j <=i; j++) { B.data[i*cols+j] += A.data[i]*A.data[j]; } for (int k = 1; k < A.numRows; k++) { int indexRow = k*cols; double valI = A.data[i+indexRow]; int indexB = i*cols; for (int j = 0; j <= i; j++) { B.data[indexB++] += valI*A.data[indexRow++]; } } } }
[ "public", "static", "void", "inner_reorder_lower", "(", "DMatrix1Row", "A", ",", "DMatrix1Row", "B", ")", "{", "final", "int", "cols", "=", "A", ".", "numCols", ";", "B", ".", "reshape", "(", "cols", ",", "cols", ")", ";", "Arrays", ".", "fill", "(", "B", ".", "data", ",", "0", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "cols", ";", "i", "++", ")", "{", "for", "(", "int", "j", "=", "0", ";", "j", "<=", "i", ";", "j", "++", ")", "{", "B", ".", "data", "[", "i", "*", "cols", "+", "j", "]", "+=", "A", ".", "data", "[", "i", "]", "*", "A", ".", "data", "[", "j", "]", ";", "}", "for", "(", "int", "k", "=", "1", ";", "k", "<", "A", ".", "numRows", ";", "k", "++", ")", "{", "int", "indexRow", "=", "k", "*", "cols", ";", "double", "valI", "=", "A", ".", "data", "[", "i", "+", "indexRow", "]", ";", "int", "indexB", "=", "i", "*", "cols", ";", "for", "(", "int", "j", "=", "0", ";", "j", "<=", "i", ";", "j", "++", ")", "{", "B", ".", "data", "[", "indexB", "++", "]", "+=", "valI", "*", "A", ".", "data", "[", "indexRow", "++", "]", ";", "}", "}", "}", "}" ]
Computes the inner product of A times A and stores the results in B. The inner product is symmetric and this function will only store the lower triangle. The value of the upper triangular matrix is undefined. <p>B = A<sup>T</sup>*A</sup> @param A (Input) Matrix @param B (Output) Storage for output.
[ "Computes", "the", "inner", "product", "of", "A", "times", "A", "and", "stores", "the", "results", "in", "B", ".", "The", "inner", "product", "is", "symmetric", "and", "this", "function", "will", "only", "store", "the", "lower", "triangle", ".", "The", "value", "of", "the", "upper", "triangular", "matrix", "is", "undefined", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/mult/MatrixMultProduct_DDRM.java#L162-L182
162,537
lessthanoptimal/ejml
main/ejml-core/src/org/ejml/ops/ComplexMath_F64.java
ComplexMath_F64.pow
public static void pow(ComplexPolar_F64 a , int N , ComplexPolar_F64 result ) { result.r = Math.pow(a.r,N); result.theta = N*a.theta; }
java
public static void pow(ComplexPolar_F64 a , int N , ComplexPolar_F64 result ) { result.r = Math.pow(a.r,N); result.theta = N*a.theta; }
[ "public", "static", "void", "pow", "(", "ComplexPolar_F64", "a", ",", "int", "N", ",", "ComplexPolar_F64", "result", ")", "{", "result", ".", "r", "=", "Math", ".", "pow", "(", "a", ".", "r", ",", "N", ")", ";", "result", ".", "theta", "=", "N", "*", "a", ".", "theta", ";", "}" ]
Computes the power of a complex number in polar notation @param a Complex number @param N Power it is to be multiplied by @param result Result
[ "Computes", "the", "power", "of", "a", "complex", "number", "in", "polar", "notation" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-core/src/org/ejml/ops/ComplexMath_F64.java#L159-L163
162,538
lessthanoptimal/ejml
main/ejml-core/src/org/ejml/ops/ComplexMath_F64.java
ComplexMath_F64.sqrt
public static void sqrt(Complex_F64 input, Complex_F64 root) { double r = input.getMagnitude(); double a = input.real; root.real = Math.sqrt((r+a)/2.0); root.imaginary = Math.sqrt((r-a)/2.0); if( input.imaginary < 0 ) root.imaginary = -root.imaginary; }
java
public static void sqrt(Complex_F64 input, Complex_F64 root) { double r = input.getMagnitude(); double a = input.real; root.real = Math.sqrt((r+a)/2.0); root.imaginary = Math.sqrt((r-a)/2.0); if( input.imaginary < 0 ) root.imaginary = -root.imaginary; }
[ "public", "static", "void", "sqrt", "(", "Complex_F64", "input", ",", "Complex_F64", "root", ")", "{", "double", "r", "=", "input", ".", "getMagnitude", "(", ")", ";", "double", "a", "=", "input", ".", "real", ";", "root", ".", "real", "=", "Math", ".", "sqrt", "(", "(", "r", "+", "a", ")", "/", "2.0", ")", ";", "root", ".", "imaginary", "=", "Math", ".", "sqrt", "(", "(", "r", "-", "a", ")", "/", "2.0", ")", ";", "if", "(", "input", ".", "imaginary", "<", "0", ")", "root", ".", "imaginary", "=", "-", "root", ".", "imaginary", ";", "}" ]
Computes the square root of the complex number. @param input Input complex number. @param root Output. The square root of the input
[ "Computes", "the", "square", "root", "of", "the", "complex", "number", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-core/src/org/ejml/ops/ComplexMath_F64.java#L207-L216
162,539
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/EigenPowerMethod_DDRM.java
EigenPowerMethod_DDRM.computeDirect
public boolean computeDirect( DMatrixRMaj A ) { initPower(A); boolean converged = false; for( int i = 0; i < maxIterations && !converged; i++ ) { // q0.print(); CommonOps_DDRM.mult(A,q0,q1); double s = NormOps_DDRM.normPInf(q1); CommonOps_DDRM.divide(q1,s,q2); converged = checkConverged(A); } return converged; }
java
public boolean computeDirect( DMatrixRMaj A ) { initPower(A); boolean converged = false; for( int i = 0; i < maxIterations && !converged; i++ ) { // q0.print(); CommonOps_DDRM.mult(A,q0,q1); double s = NormOps_DDRM.normPInf(q1); CommonOps_DDRM.divide(q1,s,q2); converged = checkConverged(A); } return converged; }
[ "public", "boolean", "computeDirect", "(", "DMatrixRMaj", "A", ")", "{", "initPower", "(", "A", ")", ";", "boolean", "converged", "=", "false", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "maxIterations", "&&", "!", "converged", ";", "i", "++", ")", "{", "// q0.print();", "CommonOps_DDRM", ".", "mult", "(", "A", ",", "q0", ",", "q1", ")", ";", "double", "s", "=", "NormOps_DDRM", ".", "normPInf", "(", "q1", ")", ";", "CommonOps_DDRM", ".", "divide", "(", "q1", ",", "s", ",", "q2", ")", ";", "converged", "=", "checkConverged", "(", "A", ")", ";", "}", "return", "converged", ";", "}" ]
This method computes the eigen vector with the largest eigen value by using the direct power method. This technique is the easiest to implement, but the slowest to converge. Works only if all the eigenvalues are real. @param A The matrix. Not modified. @return If it converged or not.
[ "This", "method", "computes", "the", "eigen", "vector", "with", "the", "largest", "eigen", "value", "by", "using", "the", "direct", "power", "method", ".", "This", "technique", "is", "the", "easiest", "to", "implement", "but", "the", "slowest", "to", "converge", ".", "Works", "only", "if", "all", "the", "eigenvalues", "are", "real", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/EigenPowerMethod_DDRM.java#L107-L124
162,540
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/EigenPowerMethod_DDRM.java
EigenPowerMethod_DDRM.checkConverged
private boolean checkConverged(DMatrixRMaj A) { double worst = 0; double worst2 = 0; for( int j = 0; j < A.numRows; j++ ) { double val = Math.abs(q2.data[j] - q0.data[j]); if( val > worst ) worst = val; val = Math.abs(q2.data[j] + q0.data[j]); if( val > worst2 ) worst2 = val; } // swap vectors DMatrixRMaj temp = q0; q0 = q2; q2 = temp; if( worst < tol ) return true; else if( worst2 < tol ) return true; else return false; }
java
private boolean checkConverged(DMatrixRMaj A) { double worst = 0; double worst2 = 0; for( int j = 0; j < A.numRows; j++ ) { double val = Math.abs(q2.data[j] - q0.data[j]); if( val > worst ) worst = val; val = Math.abs(q2.data[j] + q0.data[j]); if( val > worst2 ) worst2 = val; } // swap vectors DMatrixRMaj temp = q0; q0 = q2; q2 = temp; if( worst < tol ) return true; else if( worst2 < tol ) return true; else return false; }
[ "private", "boolean", "checkConverged", "(", "DMatrixRMaj", "A", ")", "{", "double", "worst", "=", "0", ";", "double", "worst2", "=", "0", ";", "for", "(", "int", "j", "=", "0", ";", "j", "<", "A", ".", "numRows", ";", "j", "++", ")", "{", "double", "val", "=", "Math", ".", "abs", "(", "q2", ".", "data", "[", "j", "]", "-", "q0", ".", "data", "[", "j", "]", ")", ";", "if", "(", "val", ">", "worst", ")", "worst", "=", "val", ";", "val", "=", "Math", ".", "abs", "(", "q2", ".", "data", "[", "j", "]", "+", "q0", ".", "data", "[", "j", "]", ")", ";", "if", "(", "val", ">", "worst2", ")", "worst2", "=", "val", ";", "}", "// swap vectors", "DMatrixRMaj", "temp", "=", "q0", ";", "q0", "=", "q2", ";", "q2", "=", "temp", ";", "if", "(", "worst", "<", "tol", ")", "return", "true", ";", "else", "if", "(", "worst2", "<", "tol", ")", "return", "true", ";", "else", "return", "false", ";", "}" ]
Test for convergence by seeing if the element with the largest change is smaller than the tolerance. In some test cases it alternated between the + and - values of the eigen vector. When this happens it seems to have "converged" to a non-dominant eigen vector. At least in the case I looked at. I haven't devoted a lot of time into this issue...
[ "Test", "for", "convergence", "by", "seeing", "if", "the", "element", "with", "the", "largest", "change", "is", "smaller", "than", "the", "tolerance", ".", "In", "some", "test", "cases", "it", "alternated", "between", "the", "+", "and", "-", "values", "of", "the", "eigen", "vector", ".", "When", "this", "happens", "it", "seems", "to", "have", "converged", "to", "a", "non", "-", "dominant", "eigen", "vector", ".", "At", "least", "in", "the", "case", "I", "looked", "at", ".", "I", "haven", "t", "devoted", "a", "lot", "of", "time", "into", "this", "issue", "..." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/EigenPowerMethod_DDRM.java#L147-L168
162,541
lessthanoptimal/ejml
examples/src/org/ejml/example/PrincipalComponentAnalysis.java
PrincipalComponentAnalysis.setup
public void setup( int numSamples , int sampleSize ) { mean = new double[ sampleSize ]; A.reshape(numSamples,sampleSize,false); sampleIndex = 0; numComponents = -1; }
java
public void setup( int numSamples , int sampleSize ) { mean = new double[ sampleSize ]; A.reshape(numSamples,sampleSize,false); sampleIndex = 0; numComponents = -1; }
[ "public", "void", "setup", "(", "int", "numSamples", ",", "int", "sampleSize", ")", "{", "mean", "=", "new", "double", "[", "sampleSize", "]", ";", "A", ".", "reshape", "(", "numSamples", ",", "sampleSize", ",", "false", ")", ";", "sampleIndex", "=", "0", ";", "numComponents", "=", "-", "1", ";", "}" ]
Must be called before any other functions. Declares and sets up internal data structures. @param numSamples Number of samples that will be processed. @param sampleSize Number of elements in each sample.
[ "Must", "be", "called", "before", "any", "other", "functions", ".", "Declares", "and", "sets", "up", "internal", "data", "structures", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/examples/src/org/ejml/example/PrincipalComponentAnalysis.java#L80-L85
162,542
lessthanoptimal/ejml
examples/src/org/ejml/example/PrincipalComponentAnalysis.java
PrincipalComponentAnalysis.getBasisVector
public double[] getBasisVector( int which ) { if( which < 0 || which >= numComponents ) throw new IllegalArgumentException("Invalid component"); DMatrixRMaj v = new DMatrixRMaj(1,A.numCols); CommonOps_DDRM.extract(V_t,which,which+1,0,A.numCols,v,0,0); return v.data; }
java
public double[] getBasisVector( int which ) { if( which < 0 || which >= numComponents ) throw new IllegalArgumentException("Invalid component"); DMatrixRMaj v = new DMatrixRMaj(1,A.numCols); CommonOps_DDRM.extract(V_t,which,which+1,0,A.numCols,v,0,0); return v.data; }
[ "public", "double", "[", "]", "getBasisVector", "(", "int", "which", ")", "{", "if", "(", "which", "<", "0", "||", "which", ">=", "numComponents", ")", "throw", "new", "IllegalArgumentException", "(", "\"Invalid component\"", ")", ";", "DMatrixRMaj", "v", "=", "new", "DMatrixRMaj", "(", "1", ",", "A", ".", "numCols", ")", ";", "CommonOps_DDRM", ".", "extract", "(", "V_t", ",", "which", ",", "which", "+", "1", ",", "0", ",", "A", ".", "numCols", ",", "v", ",", "0", ",", "0", ")", ";", "return", "v", ".", "data", ";", "}" ]
Returns a vector from the PCA's basis. @param which Which component's vector is to be returned. @return Vector from the PCA basis.
[ "Returns", "a", "vector", "from", "the", "PCA", "s", "basis", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/examples/src/org/ejml/example/PrincipalComponentAnalysis.java#L160-L168
162,543
lessthanoptimal/ejml
examples/src/org/ejml/example/PrincipalComponentAnalysis.java
PrincipalComponentAnalysis.sampleToEigenSpace
public double[] sampleToEigenSpace( double[] sampleData ) { if( sampleData.length != A.getNumCols() ) throw new IllegalArgumentException("Unexpected sample length"); DMatrixRMaj mean = DMatrixRMaj.wrap(A.getNumCols(),1,this.mean); DMatrixRMaj s = new DMatrixRMaj(A.getNumCols(),1,true,sampleData); DMatrixRMaj r = new DMatrixRMaj(numComponents,1); CommonOps_DDRM.subtract(s, mean, s); CommonOps_DDRM.mult(V_t,s,r); return r.data; }
java
public double[] sampleToEigenSpace( double[] sampleData ) { if( sampleData.length != A.getNumCols() ) throw new IllegalArgumentException("Unexpected sample length"); DMatrixRMaj mean = DMatrixRMaj.wrap(A.getNumCols(),1,this.mean); DMatrixRMaj s = new DMatrixRMaj(A.getNumCols(),1,true,sampleData); DMatrixRMaj r = new DMatrixRMaj(numComponents,1); CommonOps_DDRM.subtract(s, mean, s); CommonOps_DDRM.mult(V_t,s,r); return r.data; }
[ "public", "double", "[", "]", "sampleToEigenSpace", "(", "double", "[", "]", "sampleData", ")", "{", "if", "(", "sampleData", ".", "length", "!=", "A", ".", "getNumCols", "(", ")", ")", "throw", "new", "IllegalArgumentException", "(", "\"Unexpected sample length\"", ")", ";", "DMatrixRMaj", "mean", "=", "DMatrixRMaj", ".", "wrap", "(", "A", ".", "getNumCols", "(", ")", ",", "1", ",", "this", ".", "mean", ")", ";", "DMatrixRMaj", "s", "=", "new", "DMatrixRMaj", "(", "A", ".", "getNumCols", "(", ")", ",", "1", ",", "true", ",", "sampleData", ")", ";", "DMatrixRMaj", "r", "=", "new", "DMatrixRMaj", "(", "numComponents", ",", "1", ")", ";", "CommonOps_DDRM", ".", "subtract", "(", "s", ",", "mean", ",", "s", ")", ";", "CommonOps_DDRM", ".", "mult", "(", "V_t", ",", "s", ",", "r", ")", ";", "return", "r", ".", "data", ";", "}" ]
Converts a vector from sample space into eigen space. @param sampleData Sample space data. @return Eigen space projection.
[ "Converts", "a", "vector", "from", "sample", "space", "into", "eigen", "space", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/examples/src/org/ejml/example/PrincipalComponentAnalysis.java#L176-L189
162,544
lessthanoptimal/ejml
examples/src/org/ejml/example/PrincipalComponentAnalysis.java
PrincipalComponentAnalysis.eigenToSampleSpace
public double[] eigenToSampleSpace( double[] eigenData ) { if( eigenData.length != numComponents ) throw new IllegalArgumentException("Unexpected sample length"); DMatrixRMaj s = new DMatrixRMaj(A.getNumCols(),1); DMatrixRMaj r = DMatrixRMaj.wrap(numComponents,1,eigenData); CommonOps_DDRM.multTransA(V_t,r,s); DMatrixRMaj mean = DMatrixRMaj.wrap(A.getNumCols(),1,this.mean); CommonOps_DDRM.add(s,mean,s); return s.data; }
java
public double[] eigenToSampleSpace( double[] eigenData ) { if( eigenData.length != numComponents ) throw new IllegalArgumentException("Unexpected sample length"); DMatrixRMaj s = new DMatrixRMaj(A.getNumCols(),1); DMatrixRMaj r = DMatrixRMaj.wrap(numComponents,1,eigenData); CommonOps_DDRM.multTransA(V_t,r,s); DMatrixRMaj mean = DMatrixRMaj.wrap(A.getNumCols(),1,this.mean); CommonOps_DDRM.add(s,mean,s); return s.data; }
[ "public", "double", "[", "]", "eigenToSampleSpace", "(", "double", "[", "]", "eigenData", ")", "{", "if", "(", "eigenData", ".", "length", "!=", "numComponents", ")", "throw", "new", "IllegalArgumentException", "(", "\"Unexpected sample length\"", ")", ";", "DMatrixRMaj", "s", "=", "new", "DMatrixRMaj", "(", "A", ".", "getNumCols", "(", ")", ",", "1", ")", ";", "DMatrixRMaj", "r", "=", "DMatrixRMaj", ".", "wrap", "(", "numComponents", ",", "1", ",", "eigenData", ")", ";", "CommonOps_DDRM", ".", "multTransA", "(", "V_t", ",", "r", ",", "s", ")", ";", "DMatrixRMaj", "mean", "=", "DMatrixRMaj", ".", "wrap", "(", "A", ".", "getNumCols", "(", ")", ",", "1", ",", "this", ".", "mean", ")", ";", "CommonOps_DDRM", ".", "add", "(", "s", ",", "mean", ",", "s", ")", ";", "return", "s", ".", "data", ";", "}" ]
Converts a vector from eigen space into sample space. @param eigenData Eigen space data. @return Sample space projection.
[ "Converts", "a", "vector", "from", "eigen", "space", "into", "sample", "space", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/examples/src/org/ejml/example/PrincipalComponentAnalysis.java#L197-L210
162,545
lessthanoptimal/ejml
examples/src/org/ejml/example/PrincipalComponentAnalysis.java
PrincipalComponentAnalysis.response
public double response( double[] sample ) { if( sample.length != A.numCols ) throw new IllegalArgumentException("Expected input vector to be in sample space"); DMatrixRMaj dots = new DMatrixRMaj(numComponents,1); DMatrixRMaj s = DMatrixRMaj.wrap(A.numCols,1,sample); CommonOps_DDRM.mult(V_t,s,dots); return NormOps_DDRM.normF(dots); }
java
public double response( double[] sample ) { if( sample.length != A.numCols ) throw new IllegalArgumentException("Expected input vector to be in sample space"); DMatrixRMaj dots = new DMatrixRMaj(numComponents,1); DMatrixRMaj s = DMatrixRMaj.wrap(A.numCols,1,sample); CommonOps_DDRM.mult(V_t,s,dots); return NormOps_DDRM.normF(dots); }
[ "public", "double", "response", "(", "double", "[", "]", "sample", ")", "{", "if", "(", "sample", ".", "length", "!=", "A", ".", "numCols", ")", "throw", "new", "IllegalArgumentException", "(", "\"Expected input vector to be in sample space\"", ")", ";", "DMatrixRMaj", "dots", "=", "new", "DMatrixRMaj", "(", "numComponents", ",", "1", ")", ";", "DMatrixRMaj", "s", "=", "DMatrixRMaj", ".", "wrap", "(", "A", ".", "numCols", ",", "1", ",", "sample", ")", ";", "CommonOps_DDRM", ".", "mult", "(", "V_t", ",", "s", ",", "dots", ")", ";", "return", "NormOps_DDRM", ".", "normF", "(", "dots", ")", ";", "}" ]
Computes the dot product of each basis vector against the sample. Can be used as a measure for membership in the training sample set. High values correspond to a better fit. @param sample Sample of original data. @return Higher value indicates it is more likely to be a member of input dataset.
[ "Computes", "the", "dot", "product", "of", "each", "basis", "vector", "against", "the", "sample", ".", "Can", "be", "used", "as", "a", "measure", "for", "membership", "in", "the", "training", "sample", "set", ".", "High", "values", "correspond", "to", "a", "better", "fit", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/examples/src/org/ejml/example/PrincipalComponentAnalysis.java#L247-L257
162,546
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/factory/DecompositionFactory_DDRM.java
DecompositionFactory_DDRM.decomposeSafe
public static <T extends DMatrix> boolean decomposeSafe(DecompositionInterface<T> decomp, T M ) { if( decomp.inputModified() ) { return decomp.decompose(M.<T>copy()); } else { return decomp.decompose(M); } }
java
public static <T extends DMatrix> boolean decomposeSafe(DecompositionInterface<T> decomp, T M ) { if( decomp.inputModified() ) { return decomp.decompose(M.<T>copy()); } else { return decomp.decompose(M); } }
[ "public", "static", "<", "T", "extends", "DMatrix", ">", "boolean", "decomposeSafe", "(", "DecompositionInterface", "<", "T", ">", "decomp", ",", "T", "M", ")", "{", "if", "(", "decomp", ".", "inputModified", "(", ")", ")", "{", "return", "decomp", ".", "decompose", "(", "M", ".", "<", "T", ">", "copy", "(", ")", ")", ";", "}", "else", "{", "return", "decomp", ".", "decompose", "(", "M", ")", ";", "}", "}" ]
A simple convinience function that decomposes the matrix but automatically checks the input ti make sure is not being modified. @param decomp Decomposition which is being wrapped @param M THe matrix being decomposed. @param <T> Matrix type. @return If the decomposition was successful or not.
[ "A", "simple", "convinience", "function", "that", "decomposes", "the", "matrix", "but", "automatically", "checks", "the", "input", "ti", "make", "sure", "is", "not", "being", "modified", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/factory/DecompositionFactory_DDRM.java#L331-L337
162,547
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/fixed/CommonOps_DDF2.java
CommonOps_DDF2.extractColumn
public static DMatrix2 extractColumn( DMatrix2x2 a , int column , DMatrix2 out ) { if( out == null) out = new DMatrix2(); switch( column ) { case 0: out.a1 = a.a11; out.a2 = a.a21; break; case 1: out.a1 = a.a12; out.a2 = a.a22; break; default: throw new IllegalArgumentException("Out of bounds column. column = "+column); } return out; }
java
public static DMatrix2 extractColumn( DMatrix2x2 a , int column , DMatrix2 out ) { if( out == null) out = new DMatrix2(); switch( column ) { case 0: out.a1 = a.a11; out.a2 = a.a21; break; case 1: out.a1 = a.a12; out.a2 = a.a22; break; default: throw new IllegalArgumentException("Out of bounds column. column = "+column); } return out; }
[ "public", "static", "DMatrix2", "extractColumn", "(", "DMatrix2x2", "a", ",", "int", "column", ",", "DMatrix2", "out", ")", "{", "if", "(", "out", "==", "null", ")", "out", "=", "new", "DMatrix2", "(", ")", ";", "switch", "(", "column", ")", "{", "case", "0", ":", "out", ".", "a1", "=", "a", ".", "a11", ";", "out", ".", "a2", "=", "a", ".", "a21", ";", "break", ";", "case", "1", ":", "out", ".", "a1", "=", "a", ".", "a12", ";", "out", ".", "a2", "=", "a", ".", "a22", ";", "break", ";", "default", ":", "throw", "new", "IllegalArgumentException", "(", "\"Out of bounds column. column = \"", "+", "column", ")", ";", "}", "return", "out", ";", "}" ]
Extracts the column from the matrix a. @param a Input matrix @param column Which column is to be extracted @param out output. Storage for the extracted column. If null then a new vector will be returned. @return The extracted column.
[ "Extracts", "the", "column", "from", "the", "matrix", "a", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/fixed/CommonOps_DDF2.java#L1181-L1196
162,548
lessthanoptimal/ejml
main/ejml-zdense/src/org/ejml/dense/row/factory/DecompositionFactory_ZDRM.java
DecompositionFactory_ZDRM.decomposeSafe
public static boolean decomposeSafe(DecompositionInterface<ZMatrixRMaj> decomposition, ZMatrixRMaj a) { if( decomposition.inputModified() ) { a = a.copy(); } return decomposition.decompose(a); }
java
public static boolean decomposeSafe(DecompositionInterface<ZMatrixRMaj> decomposition, ZMatrixRMaj a) { if( decomposition.inputModified() ) { a = a.copy(); } return decomposition.decompose(a); }
[ "public", "static", "boolean", "decomposeSafe", "(", "DecompositionInterface", "<", "ZMatrixRMaj", ">", "decomposition", ",", "ZMatrixRMaj", "a", ")", "{", "if", "(", "decomposition", ".", "inputModified", "(", ")", ")", "{", "a", "=", "a", ".", "copy", "(", ")", ";", "}", "return", "decomposition", ".", "decompose", "(", "a", ")", ";", "}" ]
Decomposes the input matrix 'a' and makes sure it isn't modified.
[ "Decomposes", "the", "input", "matrix", "a", "and", "makes", "sure", "it", "isn", "t", "modified", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-zdense/src/org/ejml/dense/row/factory/DecompositionFactory_ZDRM.java#L83-L89
162,549
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/block/TriangularSolver_DDRB.java
TriangularSolver_DDRB.invert
public static void invert( final int blockLength , final boolean upper , final DSubmatrixD1 T , final DSubmatrixD1 T_inv , final double temp[] ) { if( upper ) throw new IllegalArgumentException("Upper triangular matrices not supported yet"); if( temp.length < blockLength*blockLength ) throw new IllegalArgumentException("Temp must be at least blockLength*blockLength long."); if( T.row0 != T_inv.row0 || T.row1 != T_inv.row1 || T.col0 != T_inv.col0 || T.col1 != T_inv.col1) throw new IllegalArgumentException("T and T_inv must be at the same elements in the matrix"); final int M = T.row1-T.row0; final double dataT[] = T.original.data; final double dataX[] = T_inv.original.data; final int offsetT = T.row0*T.original.numCols+M*T.col0; for( int i = 0; i < M; i += blockLength ) { int heightT = Math.min(T.row1-(i+T.row0),blockLength); int indexII = offsetT + T.original.numCols*(i+T.row0) + heightT*(i+T.col0); for( int j = 0; j < i; j += blockLength ) { int widthX = Math.min(T.col1-(j+T.col0),blockLength); for( int w = 0; w < temp.length; w++ ) { temp[w] = 0; } for( int k = j; k < i; k += blockLength ) { int widthT = Math.min(T.col1-(k+T.col0),blockLength); int indexL = offsetT + T.original.numCols*(i+T.row0) + heightT*(k+T.col0); int indexX = offsetT + T.original.numCols*(k+T.row0) + widthT*(j+T.col0); blockMultMinus(dataT,dataX,temp,indexL,indexX,0,heightT,widthT,widthX); } int indexX = offsetT + T.original.numCols*(i+T.row0) + heightT*(j+T.col0); InnerTriangularSolver_DDRB.solveL(dataT,temp,heightT,widthX,heightT,indexII,0); System.arraycopy(temp,0,dataX,indexX,widthX*heightT); } InnerTriangularSolver_DDRB.invertLower(dataT,dataX,heightT,indexII,indexII); } }
java
public static void invert( final int blockLength , final boolean upper , final DSubmatrixD1 T , final DSubmatrixD1 T_inv , final double temp[] ) { if( upper ) throw new IllegalArgumentException("Upper triangular matrices not supported yet"); if( temp.length < blockLength*blockLength ) throw new IllegalArgumentException("Temp must be at least blockLength*blockLength long."); if( T.row0 != T_inv.row0 || T.row1 != T_inv.row1 || T.col0 != T_inv.col0 || T.col1 != T_inv.col1) throw new IllegalArgumentException("T and T_inv must be at the same elements in the matrix"); final int M = T.row1-T.row0; final double dataT[] = T.original.data; final double dataX[] = T_inv.original.data; final int offsetT = T.row0*T.original.numCols+M*T.col0; for( int i = 0; i < M; i += blockLength ) { int heightT = Math.min(T.row1-(i+T.row0),blockLength); int indexII = offsetT + T.original.numCols*(i+T.row0) + heightT*(i+T.col0); for( int j = 0; j < i; j += blockLength ) { int widthX = Math.min(T.col1-(j+T.col0),blockLength); for( int w = 0; w < temp.length; w++ ) { temp[w] = 0; } for( int k = j; k < i; k += blockLength ) { int widthT = Math.min(T.col1-(k+T.col0),blockLength); int indexL = offsetT + T.original.numCols*(i+T.row0) + heightT*(k+T.col0); int indexX = offsetT + T.original.numCols*(k+T.row0) + widthT*(j+T.col0); blockMultMinus(dataT,dataX,temp,indexL,indexX,0,heightT,widthT,widthX); } int indexX = offsetT + T.original.numCols*(i+T.row0) + heightT*(j+T.col0); InnerTriangularSolver_DDRB.solveL(dataT,temp,heightT,widthX,heightT,indexII,0); System.arraycopy(temp,0,dataX,indexX,widthX*heightT); } InnerTriangularSolver_DDRB.invertLower(dataT,dataX,heightT,indexII,indexII); } }
[ "public", "static", "void", "invert", "(", "final", "int", "blockLength", ",", "final", "boolean", "upper", ",", "final", "DSubmatrixD1", "T", ",", "final", "DSubmatrixD1", "T_inv", ",", "final", "double", "temp", "[", "]", ")", "{", "if", "(", "upper", ")", "throw", "new", "IllegalArgumentException", "(", "\"Upper triangular matrices not supported yet\"", ")", ";", "if", "(", "temp", ".", "length", "<", "blockLength", "*", "blockLength", ")", "throw", "new", "IllegalArgumentException", "(", "\"Temp must be at least blockLength*blockLength long.\"", ")", ";", "if", "(", "T", ".", "row0", "!=", "T_inv", ".", "row0", "||", "T", ".", "row1", "!=", "T_inv", ".", "row1", "||", "T", ".", "col0", "!=", "T_inv", ".", "col0", "||", "T", ".", "col1", "!=", "T_inv", ".", "col1", ")", "throw", "new", "IllegalArgumentException", "(", "\"T and T_inv must be at the same elements in the matrix\"", ")", ";", "final", "int", "M", "=", "T", ".", "row1", "-", "T", ".", "row0", ";", "final", "double", "dataT", "[", "]", "=", "T", ".", "original", ".", "data", ";", "final", "double", "dataX", "[", "]", "=", "T_inv", ".", "original", ".", "data", ";", "final", "int", "offsetT", "=", "T", ".", "row0", "*", "T", ".", "original", ".", "numCols", "+", "M", "*", "T", ".", "col0", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "M", ";", "i", "+=", "blockLength", ")", "{", "int", "heightT", "=", "Math", ".", "min", "(", "T", ".", "row1", "-", "(", "i", "+", "T", ".", "row0", ")", ",", "blockLength", ")", ";", "int", "indexII", "=", "offsetT", "+", "T", ".", "original", ".", "numCols", "*", "(", "i", "+", "T", ".", "row0", ")", "+", "heightT", "*", "(", "i", "+", "T", ".", "col0", ")", ";", "for", "(", "int", "j", "=", "0", ";", "j", "<", "i", ";", "j", "+=", "blockLength", ")", "{", "int", "widthX", "=", "Math", ".", "min", "(", "T", ".", "col1", "-", "(", "j", "+", "T", ".", "col0", ")", ",", "blockLength", ")", ";", "for", "(", "int", "w", "=", "0", ";", "w", "<", "temp", ".", "length", ";", "w", "++", ")", "{", "temp", "[", "w", "]", "=", "0", ";", "}", "for", "(", "int", "k", "=", "j", ";", "k", "<", "i", ";", "k", "+=", "blockLength", ")", "{", "int", "widthT", "=", "Math", ".", "min", "(", "T", ".", "col1", "-", "(", "k", "+", "T", ".", "col0", ")", ",", "blockLength", ")", ";", "int", "indexL", "=", "offsetT", "+", "T", ".", "original", ".", "numCols", "*", "(", "i", "+", "T", ".", "row0", ")", "+", "heightT", "*", "(", "k", "+", "T", ".", "col0", ")", ";", "int", "indexX", "=", "offsetT", "+", "T", ".", "original", ".", "numCols", "*", "(", "k", "+", "T", ".", "row0", ")", "+", "widthT", "*", "(", "j", "+", "T", ".", "col0", ")", ";", "blockMultMinus", "(", "dataT", ",", "dataX", ",", "temp", ",", "indexL", ",", "indexX", ",", "0", ",", "heightT", ",", "widthT", ",", "widthX", ")", ";", "}", "int", "indexX", "=", "offsetT", "+", "T", ".", "original", ".", "numCols", "*", "(", "i", "+", "T", ".", "row0", ")", "+", "heightT", "*", "(", "j", "+", "T", ".", "col0", ")", ";", "InnerTriangularSolver_DDRB", ".", "solveL", "(", "dataT", ",", "temp", ",", "heightT", ",", "widthX", ",", "heightT", ",", "indexII", ",", "0", ")", ";", "System", ".", "arraycopy", "(", "temp", ",", "0", ",", "dataX", ",", "indexX", ",", "widthX", "*", "heightT", ")", ";", "}", "InnerTriangularSolver_DDRB", ".", "invertLower", "(", "dataT", ",", "dataX", ",", "heightT", ",", "indexII", ",", "indexII", ")", ";", "}", "}" ]
Inverts an upper or lower triangular block submatrix. @param blockLength @param upper Is it upper or lower triangular. @param T Triangular matrix that is to be inverted. Must be block aligned. Not Modified. @param T_inv Where the inverse is stored. This can be the same as T. Modified. @param temp Work space variable that is size blockLength*blockLength.
[ "Inverts", "an", "upper", "or", "lower", "triangular", "block", "submatrix", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/block/TriangularSolver_DDRB.java#L51-L101
162,550
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java
RandomMatrices_DDRM.span
public static DMatrixRMaj[] span(int dimen, int numVectors , Random rand ) { if( dimen < numVectors ) throw new IllegalArgumentException("The number of vectors must be less than or equal to the dimension"); DMatrixRMaj u[] = new DMatrixRMaj[numVectors]; u[0] = RandomMatrices_DDRM.rectangle(dimen,1,-1,1,rand); NormOps_DDRM.normalizeF(u[0]); for( int i = 1; i < numVectors; i++ ) { // System.out.println(" i = "+i); DMatrixRMaj a = new DMatrixRMaj(dimen,1); DMatrixRMaj r=null; for( int j = 0; j < i; j++ ) { // System.out.println("j = "+j); if( j == 0 ) r = RandomMatrices_DDRM.rectangle(dimen,1,-1,1,rand); // find a vector that is normal to vector j // u[i] = (1/2)*(r + Q[j]*r) a.set(r); VectorVectorMult_DDRM.householder(-2.0,u[j],r,a); CommonOps_DDRM.add(r,a,a); CommonOps_DDRM.scale(0.5,a); // UtilEjml.print(a); DMatrixRMaj t = a; a = r; r = t; // normalize it so it doesn't get too small double val = NormOps_DDRM.normF(r); if( val == 0 || Double.isNaN(val) || Double.isInfinite(val)) throw new RuntimeException("Failed sanity check"); CommonOps_DDRM.divide(r,val); } u[i] = r; } return u; }
java
public static DMatrixRMaj[] span(int dimen, int numVectors , Random rand ) { if( dimen < numVectors ) throw new IllegalArgumentException("The number of vectors must be less than or equal to the dimension"); DMatrixRMaj u[] = new DMatrixRMaj[numVectors]; u[0] = RandomMatrices_DDRM.rectangle(dimen,1,-1,1,rand); NormOps_DDRM.normalizeF(u[0]); for( int i = 1; i < numVectors; i++ ) { // System.out.println(" i = "+i); DMatrixRMaj a = new DMatrixRMaj(dimen,1); DMatrixRMaj r=null; for( int j = 0; j < i; j++ ) { // System.out.println("j = "+j); if( j == 0 ) r = RandomMatrices_DDRM.rectangle(dimen,1,-1,1,rand); // find a vector that is normal to vector j // u[i] = (1/2)*(r + Q[j]*r) a.set(r); VectorVectorMult_DDRM.householder(-2.0,u[j],r,a); CommonOps_DDRM.add(r,a,a); CommonOps_DDRM.scale(0.5,a); // UtilEjml.print(a); DMatrixRMaj t = a; a = r; r = t; // normalize it so it doesn't get too small double val = NormOps_DDRM.normF(r); if( val == 0 || Double.isNaN(val) || Double.isInfinite(val)) throw new RuntimeException("Failed sanity check"); CommonOps_DDRM.divide(r,val); } u[i] = r; } return u; }
[ "public", "static", "DMatrixRMaj", "[", "]", "span", "(", "int", "dimen", ",", "int", "numVectors", ",", "Random", "rand", ")", "{", "if", "(", "dimen", "<", "numVectors", ")", "throw", "new", "IllegalArgumentException", "(", "\"The number of vectors must be less than or equal to the dimension\"", ")", ";", "DMatrixRMaj", "u", "[", "]", "=", "new", "DMatrixRMaj", "[", "numVectors", "]", ";", "u", "[", "0", "]", "=", "RandomMatrices_DDRM", ".", "rectangle", "(", "dimen", ",", "1", ",", "-", "1", ",", "1", ",", "rand", ")", ";", "NormOps_DDRM", ".", "normalizeF", "(", "u", "[", "0", "]", ")", ";", "for", "(", "int", "i", "=", "1", ";", "i", "<", "numVectors", ";", "i", "++", ")", "{", "// System.out.println(\" i = \"+i);", "DMatrixRMaj", "a", "=", "new", "DMatrixRMaj", "(", "dimen", ",", "1", ")", ";", "DMatrixRMaj", "r", "=", "null", ";", "for", "(", "int", "j", "=", "0", ";", "j", "<", "i", ";", "j", "++", ")", "{", "// System.out.println(\"j = \"+j);", "if", "(", "j", "==", "0", ")", "r", "=", "RandomMatrices_DDRM", ".", "rectangle", "(", "dimen", ",", "1", ",", "-", "1", ",", "1", ",", "rand", ")", ";", "// find a vector that is normal to vector j", "// u[i] = (1/2)*(r + Q[j]*r)", "a", ".", "set", "(", "r", ")", ";", "VectorVectorMult_DDRM", ".", "householder", "(", "-", "2.0", ",", "u", "[", "j", "]", ",", "r", ",", "a", ")", ";", "CommonOps_DDRM", ".", "add", "(", "r", ",", "a", ",", "a", ")", ";", "CommonOps_DDRM", ".", "scale", "(", "0.5", ",", "a", ")", ";", "// UtilEjml.print(a);", "DMatrixRMaj", "t", "=", "a", ";", "a", "=", "r", ";", "r", "=", "t", ";", "// normalize it so it doesn't get too small", "double", "val", "=", "NormOps_DDRM", ".", "normF", "(", "r", ")", ";", "if", "(", "val", "==", "0", "||", "Double", ".", "isNaN", "(", "val", ")", "||", "Double", ".", "isInfinite", "(", "val", ")", ")", "throw", "new", "RuntimeException", "(", "\"Failed sanity check\"", ")", ";", "CommonOps_DDRM", ".", "divide", "(", "r", ",", "val", ")", ";", "}", "u", "[", "i", "]", "=", "r", ";", "}", "return", "u", ";", "}" ]
is there a faster algorithm out there? This one is a bit sluggish
[ "is", "there", "a", "faster", "algorithm", "out", "there?", "This", "one", "is", "a", "bit", "sluggish" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java#L58-L101
162,551
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java
RandomMatrices_DDRM.insideSpan
public static DMatrixRMaj insideSpan(DMatrixRMaj[] span , double min , double max , Random rand ) { DMatrixRMaj A = new DMatrixRMaj(span.length,1); DMatrixRMaj B = new DMatrixRMaj(span[0].getNumElements(),1); for( int i = 0; i < span.length; i++ ) { B.set(span[i]); double val = rand.nextDouble()*(max-min)+min; CommonOps_DDRM.scale(val,B); CommonOps_DDRM.add(A,B,A); } return A; }
java
public static DMatrixRMaj insideSpan(DMatrixRMaj[] span , double min , double max , Random rand ) { DMatrixRMaj A = new DMatrixRMaj(span.length,1); DMatrixRMaj B = new DMatrixRMaj(span[0].getNumElements(),1); for( int i = 0; i < span.length; i++ ) { B.set(span[i]); double val = rand.nextDouble()*(max-min)+min; CommonOps_DDRM.scale(val,B); CommonOps_DDRM.add(A,B,A); } return A; }
[ "public", "static", "DMatrixRMaj", "insideSpan", "(", "DMatrixRMaj", "[", "]", "span", ",", "double", "min", ",", "double", "max", ",", "Random", "rand", ")", "{", "DMatrixRMaj", "A", "=", "new", "DMatrixRMaj", "(", "span", ".", "length", ",", "1", ")", ";", "DMatrixRMaj", "B", "=", "new", "DMatrixRMaj", "(", "span", "[", "0", "]", ".", "getNumElements", "(", ")", ",", "1", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "span", ".", "length", ";", "i", "++", ")", "{", "B", ".", "set", "(", "span", "[", "i", "]", ")", ";", "double", "val", "=", "rand", ".", "nextDouble", "(", ")", "*", "(", "max", "-", "min", ")", "+", "min", ";", "CommonOps_DDRM", ".", "scale", "(", "val", ",", "B", ")", ";", "CommonOps_DDRM", ".", "add", "(", "A", ",", "B", ",", "A", ")", ";", "}", "return", "A", ";", "}" ]
Creates a random vector that is inside the specified span. @param span The span the random vector belongs in. @param rand RNG @return A random vector within the specified span.
[ "Creates", "a", "random", "vector", "that", "is", "inside", "the", "specified", "span", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java#L110-L125
162,552
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java
RandomMatrices_DDRM.diagonal
public static DMatrixRMaj diagonal(int N , double min , double max , Random rand ) { return diagonal(N,N,min,max,rand); }
java
public static DMatrixRMaj diagonal(int N , double min , double max , Random rand ) { return diagonal(N,N,min,max,rand); }
[ "public", "static", "DMatrixRMaj", "diagonal", "(", "int", "N", ",", "double", "min", ",", "double", "max", ",", "Random", "rand", ")", "{", "return", "diagonal", "(", "N", ",", "N", ",", "min", ",", "max", ",", "rand", ")", ";", "}" ]
Creates a random diagonal matrix where the diagonal elements are selected from a uniform distribution that goes from min to max. @param N Dimension of the matrix. @param min Minimum value of a diagonal element. @param max Maximum value of a diagonal element. @param rand Random number generator. @return A random diagonal matrix.
[ "Creates", "a", "random", "diagonal", "matrix", "where", "the", "diagonal", "elements", "are", "selected", "from", "a", "uniform", "distribution", "that", "goes", "from", "min", "to", "max", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java#L163-L165
162,553
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java
RandomMatrices_DDRM.diagonal
public static DMatrixRMaj diagonal(int numRows , int numCols , double min , double max , Random rand ) { if( max < min ) throw new IllegalArgumentException("The max must be >= the min"); DMatrixRMaj ret = new DMatrixRMaj(numRows,numCols); int N = Math.min(numRows,numCols); double r = max-min; for( int i = 0; i < N; i++ ) { ret.set(i,i, rand.nextDouble()*r+min); } return ret; }
java
public static DMatrixRMaj diagonal(int numRows , int numCols , double min , double max , Random rand ) { if( max < min ) throw new IllegalArgumentException("The max must be >= the min"); DMatrixRMaj ret = new DMatrixRMaj(numRows,numCols); int N = Math.min(numRows,numCols); double r = max-min; for( int i = 0; i < N; i++ ) { ret.set(i,i, rand.nextDouble()*r+min); } return ret; }
[ "public", "static", "DMatrixRMaj", "diagonal", "(", "int", "numRows", ",", "int", "numCols", ",", "double", "min", ",", "double", "max", ",", "Random", "rand", ")", "{", "if", "(", "max", "<", "min", ")", "throw", "new", "IllegalArgumentException", "(", "\"The max must be >= the min\"", ")", ";", "DMatrixRMaj", "ret", "=", "new", "DMatrixRMaj", "(", "numRows", ",", "numCols", ")", ";", "int", "N", "=", "Math", ".", "min", "(", "numRows", ",", "numCols", ")", ";", "double", "r", "=", "max", "-", "min", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "N", ";", "i", "++", ")", "{", "ret", ".", "set", "(", "i", ",", "i", ",", "rand", ".", "nextDouble", "(", ")", "*", "r", "+", "min", ")", ";", "}", "return", "ret", ";", "}" ]
Creates a random matrix where all elements are zero but diagonal elements. Diagonal elements randomly drawn from a uniform distribution from min to max, inclusive. @param numRows Number of rows in the returned matrix.. @param numCols Number of columns in the returned matrix. @param min Minimum value of a diagonal element. @param max Maximum value of a diagonal element. @param rand Random number generator. @return A random diagonal matrix.
[ "Creates", "a", "random", "matrix", "where", "all", "elements", "are", "zero", "but", "diagonal", "elements", ".", "Diagonal", "elements", "randomly", "drawn", "from", "a", "uniform", "distribution", "from", "min", "to", "max", "inclusive", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java#L178-L193
162,554
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java
RandomMatrices_DDRM.symmetricWithEigenvalues
public static DMatrixRMaj symmetricWithEigenvalues(int num, Random rand , double ...eigenvalues ) { DMatrixRMaj V = RandomMatrices_DDRM.orthogonal(num,num,rand); DMatrixRMaj D = CommonOps_DDRM.diag(eigenvalues); DMatrixRMaj temp = new DMatrixRMaj(num,num); CommonOps_DDRM.mult(V,D,temp); CommonOps_DDRM.multTransB(temp,V,D); return D; }
java
public static DMatrixRMaj symmetricWithEigenvalues(int num, Random rand , double ...eigenvalues ) { DMatrixRMaj V = RandomMatrices_DDRM.orthogonal(num,num,rand); DMatrixRMaj D = CommonOps_DDRM.diag(eigenvalues); DMatrixRMaj temp = new DMatrixRMaj(num,num); CommonOps_DDRM.mult(V,D,temp); CommonOps_DDRM.multTransB(temp,V,D); return D; }
[ "public", "static", "DMatrixRMaj", "symmetricWithEigenvalues", "(", "int", "num", ",", "Random", "rand", ",", "double", "...", "eigenvalues", ")", "{", "DMatrixRMaj", "V", "=", "RandomMatrices_DDRM", ".", "orthogonal", "(", "num", ",", "num", ",", "rand", ")", ";", "DMatrixRMaj", "D", "=", "CommonOps_DDRM", ".", "diag", "(", "eigenvalues", ")", ";", "DMatrixRMaj", "temp", "=", "new", "DMatrixRMaj", "(", "num", ",", "num", ")", ";", "CommonOps_DDRM", ".", "mult", "(", "V", ",", "D", ",", "temp", ")", ";", "CommonOps_DDRM", ".", "multTransB", "(", "temp", ",", "V", ",", "D", ")", ";", "return", "D", ";", "}" ]
Creates a new random symmetric matrix that will have the specified real eigenvalues. @param num Dimension of the resulting matrix. @param rand Random number generator. @param eigenvalues Set of real eigenvalues that the matrix will have. @return A random matrix with the specified eigenvalues.
[ "Creates", "a", "new", "random", "symmetric", "matrix", "that", "will", "have", "the", "specified", "real", "eigenvalues", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java#L247-L257
162,555
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java
RandomMatrices_DDRM.randomBinary
public static BMatrixRMaj randomBinary(int numRow , int numCol , Random rand ) { BMatrixRMaj mat = new BMatrixRMaj(numRow,numCol); setRandomB(mat, rand); return mat; }
java
public static BMatrixRMaj randomBinary(int numRow , int numCol , Random rand ) { BMatrixRMaj mat = new BMatrixRMaj(numRow,numCol); setRandomB(mat, rand); return mat; }
[ "public", "static", "BMatrixRMaj", "randomBinary", "(", "int", "numRow", ",", "int", "numCol", ",", "Random", "rand", ")", "{", "BMatrixRMaj", "mat", "=", "new", "BMatrixRMaj", "(", "numRow", ",", "numCol", ")", ";", "setRandomB", "(", "mat", ",", "rand", ")", ";", "return", "mat", ";", "}" ]
Returns new boolean matrix with true or false values selected with equal probability. @param numRow Number of rows in the new matrix. @param numCol Number of columns in the new matrix. @param rand Random number generator used to fill the matrix. @return The randomly generated matrix.
[ "Returns", "new", "boolean", "matrix", "with", "true", "or", "false", "values", "selected", "with", "equal", "probability", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java#L284-L290
162,556
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java
RandomMatrices_DDRM.symmetric
public static DMatrixRMaj symmetric(int length, double min, double max, Random rand) { DMatrixRMaj A = new DMatrixRMaj(length,length); symmetric(A,min,max,rand); return A; }
java
public static DMatrixRMaj symmetric(int length, double min, double max, Random rand) { DMatrixRMaj A = new DMatrixRMaj(length,length); symmetric(A,min,max,rand); return A; }
[ "public", "static", "DMatrixRMaj", "symmetric", "(", "int", "length", ",", "double", "min", ",", "double", "max", ",", "Random", "rand", ")", "{", "DMatrixRMaj", "A", "=", "new", "DMatrixRMaj", "(", "length", ",", "length", ")", ";", "symmetric", "(", "A", ",", "min", ",", "max", ",", "rand", ")", ";", "return", "A", ";", "}" ]
Creates a random symmetric matrix whose values are selected from an uniform distribution from min to max, inclusive. @param length Width and height of the matrix. @param min Minimum value an element can have. @param max Maximum value an element can have. @param rand Random number generator. @return A symmetric matrix.
[ "Creates", "a", "random", "symmetric", "matrix", "whose", "values", "are", "selected", "from", "an", "uniform", "distribution", "from", "min", "to", "max", "inclusive", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java#L467-L473
162,557
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java
RandomMatrices_DDRM.symmetric
public static void symmetric(DMatrixRMaj A, double min, double max, Random rand) { if( A.numRows != A.numCols ) throw new IllegalArgumentException("A must be a square matrix"); double range = max-min; int length = A.numRows; for( int i = 0; i < length; i++ ) { for( int j = i; j < length; j++ ) { double val = rand.nextDouble()*range + min; A.set(i,j,val); A.set(j,i,val); } } }
java
public static void symmetric(DMatrixRMaj A, double min, double max, Random rand) { if( A.numRows != A.numCols ) throw new IllegalArgumentException("A must be a square matrix"); double range = max-min; int length = A.numRows; for( int i = 0; i < length; i++ ) { for( int j = i; j < length; j++ ) { double val = rand.nextDouble()*range + min; A.set(i,j,val); A.set(j,i,val); } } }
[ "public", "static", "void", "symmetric", "(", "DMatrixRMaj", "A", ",", "double", "min", ",", "double", "max", ",", "Random", "rand", ")", "{", "if", "(", "A", ".", "numRows", "!=", "A", ".", "numCols", ")", "throw", "new", "IllegalArgumentException", "(", "\"A must be a square matrix\"", ")", ";", "double", "range", "=", "max", "-", "min", ";", "int", "length", "=", "A", ".", "numRows", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "length", ";", "i", "++", ")", "{", "for", "(", "int", "j", "=", "i", ";", "j", "<", "length", ";", "j", "++", ")", "{", "double", "val", "=", "rand", ".", "nextDouble", "(", ")", "*", "range", "+", "min", ";", "A", ".", "set", "(", "i", ",", "j", ",", "val", ")", ";", "A", ".", "set", "(", "j", ",", "i", ",", "val", ")", ";", "}", "}", "}" ]
Sets the provided square matrix to be a random symmetric matrix whose values are selected from an uniform distribution from min to max, inclusive. @param A The matrix that is to be modified. Must be square. Modified. @param min Minimum value an element can have. @param max Maximum value an element can have. @param rand Random number generator.
[ "Sets", "the", "provided", "square", "matrix", "to", "be", "a", "random", "symmetric", "matrix", "whose", "values", "are", "selected", "from", "an", "uniform", "distribution", "from", "min", "to", "max", "inclusive", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java#L484-L499
162,558
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java
RandomMatrices_DDRM.triangularUpper
public static DMatrixRMaj triangularUpper(int dimen , int hessenberg , double min , double max , Random rand ) { if( hessenberg < 0 ) throw new RuntimeException("hessenberg must be more than or equal to 0"); double range = max-min; DMatrixRMaj A = new DMatrixRMaj(dimen,dimen); for( int i = 0; i < dimen; i++ ) { int start = i <= hessenberg ? 0 : i-hessenberg; for( int j = start; j < dimen; j++ ) { A.set(i,j, rand.nextDouble()*range+min); } } return A; }
java
public static DMatrixRMaj triangularUpper(int dimen , int hessenberg , double min , double max , Random rand ) { if( hessenberg < 0 ) throw new RuntimeException("hessenberg must be more than or equal to 0"); double range = max-min; DMatrixRMaj A = new DMatrixRMaj(dimen,dimen); for( int i = 0; i < dimen; i++ ) { int start = i <= hessenberg ? 0 : i-hessenberg; for( int j = start; j < dimen; j++ ) { A.set(i,j, rand.nextDouble()*range+min); } } return A; }
[ "public", "static", "DMatrixRMaj", "triangularUpper", "(", "int", "dimen", ",", "int", "hessenberg", ",", "double", "min", ",", "double", "max", ",", "Random", "rand", ")", "{", "if", "(", "hessenberg", "<", "0", ")", "throw", "new", "RuntimeException", "(", "\"hessenberg must be more than or equal to 0\"", ")", ";", "double", "range", "=", "max", "-", "min", ";", "DMatrixRMaj", "A", "=", "new", "DMatrixRMaj", "(", "dimen", ",", "dimen", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "dimen", ";", "i", "++", ")", "{", "int", "start", "=", "i", "<=", "hessenberg", "?", "0", ":", "i", "-", "hessenberg", ";", "for", "(", "int", "j", "=", "start", ";", "j", "<", "dimen", ";", "j", "++", ")", "{", "A", ".", "set", "(", "i", ",", "j", ",", "rand", ".", "nextDouble", "(", ")", "*", "range", "+", "min", ")", ";", "}", "}", "return", "A", ";", "}" ]
Creates an upper triangular matrix whose values are selected from a uniform distribution. If hessenberg is greater than zero then a hessenberg matrix of the specified degree is created instead. @param dimen Number of rows and columns in the matrix.. @param hessenberg 0 for triangular matrix and &gt; 0 for hessenberg matrix. @param min minimum value an element can be. @param max maximum value an element can be. @param rand random number generator used. @return The randomly generated matrix.
[ "Creates", "an", "upper", "triangular", "matrix", "whose", "values", "are", "selected", "from", "a", "uniform", "distribution", ".", "If", "hessenberg", "is", "greater", "than", "zero", "then", "a", "hessenberg", "matrix", "of", "the", "specified", "degree", "is", "created", "instead", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/RandomMatrices_DDRM.java#L512-L531
162,559
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/CovarianceRandomDraw_DDRM.java
CovarianceRandomDraw_DDRM.computeLikelihoodP
public double computeLikelihoodP() { double ret = 1.0; for( int i = 0; i < r.numRows; i++ ) { double a = r.get(i,0); ret *= Math.exp(-a*a/2.0); } return ret; }
java
public double computeLikelihoodP() { double ret = 1.0; for( int i = 0; i < r.numRows; i++ ) { double a = r.get(i,0); ret *= Math.exp(-a*a/2.0); } return ret; }
[ "public", "double", "computeLikelihoodP", "(", ")", "{", "double", "ret", "=", "1.0", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "r", ".", "numRows", ";", "i", "++", ")", "{", "double", "a", "=", "r", ".", "get", "(", "i", ",", "0", ")", ";", "ret", "*=", "Math", ".", "exp", "(", "-", "a", "*", "a", "/", "2.0", ")", ";", "}", "return", "ret", ";", "}" ]
Computes the likelihood of the random draw @return The likelihood.
[ "Computes", "the", "likelihood", "of", "the", "random", "draw" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/CovarianceRandomDraw_DDRM.java#L73-L83
162,560
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/SymmetricQRAlgorithmDecomposition_DDRM.java
SymmetricQRAlgorithmDecomposition_DDRM.decompose
@Override public boolean decompose(DMatrixRMaj orig) { if( orig.numCols != orig.numRows ) throw new IllegalArgumentException("Matrix must be square."); if( orig.numCols <= 0 ) return false; int N = orig.numRows; // compute a similar tridiagonal matrix if( !decomp.decompose(orig) ) return false; if( diag == null || diag.length < N) { diag = new double[N]; off = new double[N-1]; } decomp.getDiagonal(diag,off); // Tell the helper to work with this matrix helper.init(diag,off,N); if( computeVectors ) { if( computeVectorsWithValues ) { return extractTogether(); } else { return extractSeparate(N); } } else { return computeEigenValues(); } }
java
@Override public boolean decompose(DMatrixRMaj orig) { if( orig.numCols != orig.numRows ) throw new IllegalArgumentException("Matrix must be square."); if( orig.numCols <= 0 ) return false; int N = orig.numRows; // compute a similar tridiagonal matrix if( !decomp.decompose(orig) ) return false; if( diag == null || diag.length < N) { diag = new double[N]; off = new double[N-1]; } decomp.getDiagonal(diag,off); // Tell the helper to work with this matrix helper.init(diag,off,N); if( computeVectors ) { if( computeVectorsWithValues ) { return extractTogether(); } else { return extractSeparate(N); } } else { return computeEigenValues(); } }
[ "@", "Override", "public", "boolean", "decompose", "(", "DMatrixRMaj", "orig", ")", "{", "if", "(", "orig", ".", "numCols", "!=", "orig", ".", "numRows", ")", "throw", "new", "IllegalArgumentException", "(", "\"Matrix must be square.\"", ")", ";", "if", "(", "orig", ".", "numCols", "<=", "0", ")", "return", "false", ";", "int", "N", "=", "orig", ".", "numRows", ";", "// compute a similar tridiagonal matrix", "if", "(", "!", "decomp", ".", "decompose", "(", "orig", ")", ")", "return", "false", ";", "if", "(", "diag", "==", "null", "||", "diag", ".", "length", "<", "N", ")", "{", "diag", "=", "new", "double", "[", "N", "]", ";", "off", "=", "new", "double", "[", "N", "-", "1", "]", ";", "}", "decomp", ".", "getDiagonal", "(", "diag", ",", "off", ")", ";", "// Tell the helper to work with this matrix", "helper", ".", "init", "(", "diag", ",", "off", ",", "N", ")", ";", "if", "(", "computeVectors", ")", "{", "if", "(", "computeVectorsWithValues", ")", "{", "return", "extractTogether", "(", ")", ";", "}", "else", "{", "return", "extractSeparate", "(", "N", ")", ";", "}", "}", "else", "{", "return", "computeEigenValues", "(", ")", ";", "}", "}" ]
Decomposes the matrix using the QR algorithm. Care was taken to minimize unnecessary memory copying and cache skipping. @param orig The matrix which is being decomposed. Not modified. @return true if it decomposed the matrix or false if an error was detected. This will not catch all errors.
[ "Decomposes", "the", "matrix", "using", "the", "QR", "algorithm", ".", "Care", "was", "taken", "to", "minimize", "unnecessary", "memory", "copying", "and", "cache", "skipping", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/SymmetricQRAlgorithmDecomposition_DDRM.java#L133-L164
162,561
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/SymmetricQRAlgorithmDecomposition_DDRM.java
SymmetricQRAlgorithmDecomposition_DDRM.computeEigenValues
private boolean computeEigenValues() { // make a copy of the internal tridiagonal matrix data for later use diagSaved = helper.copyDiag(diagSaved); offSaved = helper.copyOff(offSaved); vector.setQ(null); vector.setFastEigenvalues(true); // extract the eigenvalues if( !vector.process(-1,null,null) ) return false; // save a copy of them since this data structure will be recycled next values = helper.copyEigenvalues(values); return true; }
java
private boolean computeEigenValues() { // make a copy of the internal tridiagonal matrix data for later use diagSaved = helper.copyDiag(diagSaved); offSaved = helper.copyOff(offSaved); vector.setQ(null); vector.setFastEigenvalues(true); // extract the eigenvalues if( !vector.process(-1,null,null) ) return false; // save a copy of them since this data structure will be recycled next values = helper.copyEigenvalues(values); return true; }
[ "private", "boolean", "computeEigenValues", "(", ")", "{", "// make a copy of the internal tridiagonal matrix data for later use", "diagSaved", "=", "helper", ".", "copyDiag", "(", "diagSaved", ")", ";", "offSaved", "=", "helper", ".", "copyOff", "(", "offSaved", ")", ";", "vector", ".", "setQ", "(", "null", ")", ";", "vector", ".", "setFastEigenvalues", "(", "true", ")", ";", "// extract the eigenvalues", "if", "(", "!", "vector", ".", "process", "(", "-", "1", ",", "null", ",", "null", ")", ")", "return", "false", ";", "// save a copy of them since this data structure will be recycled next", "values", "=", "helper", ".", "copyEigenvalues", "(", "values", ")", ";", "return", "true", ";", "}" ]
Computes eigenvalues only @return
[ "Computes", "eigenvalues", "only" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/SymmetricQRAlgorithmDecomposition_DDRM.java#L226-L241
162,562
lessthanoptimal/ejml
main/ejml-zdense/src/org/ejml/dense/row/decompose/lu/LUDecompositionBase_ZDRM.java
LUDecompositionBase_ZDRM.solveL
protected void solveL(double[] vv) { int ii = 0; for( int i = 0; i < n; i++ ) { int ip = indx[i]; double sumReal = vv[ip*2]; double sumImg = vv[ip*2+1]; vv[ip*2] = vv[i*2]; vv[ip*2+1] = vv[i*2+1]; if( ii != 0 ) { // for( int j = ii-1; j < i; j++ ) // sum -= dataLU[i* n +j]*vv[j]; int index = i*stride + (ii-1)*2; for( int j = ii-1; j < i; j++ ){ double luReal = dataLU[index++]; double luImg = dataLU[index++]; double vvReal = vv[j*2]; double vvImg = vv[j*2+1]; sumReal -= luReal*vvReal - luImg*vvImg; sumImg -= luReal*vvImg + luImg*vvReal; } } else if( sumReal*sumReal + sumImg*sumImg != 0.0 ) { ii=i+1; } vv[i*2] = sumReal; vv[i*2+1] = sumImg; } }
java
protected void solveL(double[] vv) { int ii = 0; for( int i = 0; i < n; i++ ) { int ip = indx[i]; double sumReal = vv[ip*2]; double sumImg = vv[ip*2+1]; vv[ip*2] = vv[i*2]; vv[ip*2+1] = vv[i*2+1]; if( ii != 0 ) { // for( int j = ii-1; j < i; j++ ) // sum -= dataLU[i* n +j]*vv[j]; int index = i*stride + (ii-1)*2; for( int j = ii-1; j < i; j++ ){ double luReal = dataLU[index++]; double luImg = dataLU[index++]; double vvReal = vv[j*2]; double vvImg = vv[j*2+1]; sumReal -= luReal*vvReal - luImg*vvImg; sumImg -= luReal*vvImg + luImg*vvReal; } } else if( sumReal*sumReal + sumImg*sumImg != 0.0 ) { ii=i+1; } vv[i*2] = sumReal; vv[i*2+1] = sumImg; } }
[ "protected", "void", "solveL", "(", "double", "[", "]", "vv", ")", "{", "int", "ii", "=", "0", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "n", ";", "i", "++", ")", "{", "int", "ip", "=", "indx", "[", "i", "]", ";", "double", "sumReal", "=", "vv", "[", "ip", "*", "2", "]", ";", "double", "sumImg", "=", "vv", "[", "ip", "*", "2", "+", "1", "]", ";", "vv", "[", "ip", "*", "2", "]", "=", "vv", "[", "i", "*", "2", "]", ";", "vv", "[", "ip", "*", "2", "+", "1", "]", "=", "vv", "[", "i", "*", "2", "+", "1", "]", ";", "if", "(", "ii", "!=", "0", ")", "{", "// for( int j = ii-1; j < i; j++ )", "// sum -= dataLU[i* n +j]*vv[j];", "int", "index", "=", "i", "*", "stride", "+", "(", "ii", "-", "1", ")", "*", "2", ";", "for", "(", "int", "j", "=", "ii", "-", "1", ";", "j", "<", "i", ";", "j", "++", ")", "{", "double", "luReal", "=", "dataLU", "[", "index", "++", "]", ";", "double", "luImg", "=", "dataLU", "[", "index", "++", "]", ";", "double", "vvReal", "=", "vv", "[", "j", "*", "2", "]", ";", "double", "vvImg", "=", "vv", "[", "j", "*", "2", "+", "1", "]", ";", "sumReal", "-=", "luReal", "*", "vvReal", "-", "luImg", "*", "vvImg", ";", "sumImg", "-=", "luReal", "*", "vvImg", "+", "luImg", "*", "vvReal", ";", "}", "}", "else", "if", "(", "sumReal", "*", "sumReal", "+", "sumImg", "*", "sumImg", "!=", "0.0", ")", "{", "ii", "=", "i", "+", "1", ";", "}", "vv", "[", "i", "*", "2", "]", "=", "sumReal", ";", "vv", "[", "i", "*", "2", "+", "1", "]", "=", "sumImg", ";", "}", "}" ]
Solve the using the lower triangular matrix in LU. Diagonal elements are assumed to be 1
[ "Solve", "the", "using", "the", "lower", "triangular", "matrix", "in", "LU", ".", "Diagonal", "elements", "are", "assumed", "to", "be", "1" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-zdense/src/org/ejml/dense/row/decompose/lu/LUDecompositionBase_ZDRM.java#L259-L291
162,563
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/chol/CholeskyBlockHelper_DDRM.java
CholeskyBlockHelper_DDRM.decompose
public boolean decompose(DMatrixRMaj mat , int indexStart , int n ) { double m[] = mat.data; double el_ii; double div_el_ii=0; for( int i = 0; i < n; i++ ) { for( int j = i; j < n; j++ ) { double sum = m[indexStart+i*mat.numCols+j]; int iEl = i*n; int jEl = j*n; int end = iEl+i; // k = 0:i-1 for( ; iEl<end; iEl++,jEl++ ) { // sum -= el[i*n+k]*el[j*n+k]; sum -= el[iEl]*el[jEl]; } if( i == j ) { // is it positive-definate? if( sum <= 0.0 ) return false; el_ii = Math.sqrt(sum); el[i*n+i] = el_ii; m[indexStart+i*mat.numCols+i] = el_ii; div_el_ii = 1.0/el_ii; } else { double v = sum*div_el_ii; el[j*n+i] = v; m[indexStart+j*mat.numCols+i] = v; } } } return true; }
java
public boolean decompose(DMatrixRMaj mat , int indexStart , int n ) { double m[] = mat.data; double el_ii; double div_el_ii=0; for( int i = 0; i < n; i++ ) { for( int j = i; j < n; j++ ) { double sum = m[indexStart+i*mat.numCols+j]; int iEl = i*n; int jEl = j*n; int end = iEl+i; // k = 0:i-1 for( ; iEl<end; iEl++,jEl++ ) { // sum -= el[i*n+k]*el[j*n+k]; sum -= el[iEl]*el[jEl]; } if( i == j ) { // is it positive-definate? if( sum <= 0.0 ) return false; el_ii = Math.sqrt(sum); el[i*n+i] = el_ii; m[indexStart+i*mat.numCols+i] = el_ii; div_el_ii = 1.0/el_ii; } else { double v = sum*div_el_ii; el[j*n+i] = v; m[indexStart+j*mat.numCols+i] = v; } } } return true; }
[ "public", "boolean", "decompose", "(", "DMatrixRMaj", "mat", ",", "int", "indexStart", ",", "int", "n", ")", "{", "double", "m", "[", "]", "=", "mat", ".", "data", ";", "double", "el_ii", ";", "double", "div_el_ii", "=", "0", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "n", ";", "i", "++", ")", "{", "for", "(", "int", "j", "=", "i", ";", "j", "<", "n", ";", "j", "++", ")", "{", "double", "sum", "=", "m", "[", "indexStart", "+", "i", "*", "mat", ".", "numCols", "+", "j", "]", ";", "int", "iEl", "=", "i", "*", "n", ";", "int", "jEl", "=", "j", "*", "n", ";", "int", "end", "=", "iEl", "+", "i", ";", "// k = 0:i-1", "for", "(", ";", "iEl", "<", "end", ";", "iEl", "++", ",", "jEl", "++", ")", "{", "// sum -= el[i*n+k]*el[j*n+k];", "sum", "-=", "el", "[", "iEl", "]", "*", "el", "[", "jEl", "]", ";", "}", "if", "(", "i", "==", "j", ")", "{", "// is it positive-definate?", "if", "(", "sum", "<=", "0.0", ")", "return", "false", ";", "el_ii", "=", "Math", ".", "sqrt", "(", "sum", ")", ";", "el", "[", "i", "*", "n", "+", "i", "]", "=", "el_ii", ";", "m", "[", "indexStart", "+", "i", "*", "mat", ".", "numCols", "+", "i", "]", "=", "el_ii", ";", "div_el_ii", "=", "1.0", "/", "el_ii", ";", "}", "else", "{", "double", "v", "=", "sum", "*", "div_el_ii", ";", "el", "[", "j", "*", "n", "+", "i", "]", "=", "v", ";", "m", "[", "indexStart", "+", "j", "*", "mat", ".", "numCols", "+", "i", "]", "=", "v", ";", "}", "}", "}", "return", "true", ";", "}" ]
Decomposes a submatrix. The results are written to the submatrix and to its internal matrix L. @param mat A matrix which has a submatrix that needs to be inverted @param indexStart the first index of the submatrix @param n The width of the submatrix that is to be inverted. @return True if it was able to finish the decomposition.
[ "Decomposes", "a", "submatrix", ".", "The", "results", "are", "written", "to", "the", "submatrix", "and", "to", "its", "internal", "matrix", "L", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/chol/CholeskyBlockHelper_DDRM.java#L59-L96
162,564
lessthanoptimal/ejml
main/ejml-experimental/src/org/ejml/dense/row/misc/PermuteArray.java
PermuteArray.createList
public static List<int[]> createList( int N ) { int data[] = new int[ N ]; for( int i = 0; i < data.length; i++ ) { data[i] = -1; } List<int[]> ret = new ArrayList<int[]>(); createList(data,0,-1,ret); return ret; }
java
public static List<int[]> createList( int N ) { int data[] = new int[ N ]; for( int i = 0; i < data.length; i++ ) { data[i] = -1; } List<int[]> ret = new ArrayList<int[]>(); createList(data,0,-1,ret); return ret; }
[ "public", "static", "List", "<", "int", "[", "]", ">", "createList", "(", "int", "N", ")", "{", "int", "data", "[", "]", "=", "new", "int", "[", "N", "]", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "data", ".", "length", ";", "i", "++", ")", "{", "data", "[", "i", "]", "=", "-", "1", ";", "}", "List", "<", "int", "[", "]", ">", "ret", "=", "new", "ArrayList", "<", "int", "[", "]", ">", "(", ")", ";", "createList", "(", "data", ",", "0", ",", "-", "1", ",", "ret", ")", ";", "return", "ret", ";", "}" ]
Creates a list of all permutations for a set with N elements. @param N Number of elements in the list being permuted. @return A list containing all the permutations.
[ "Creates", "a", "list", "of", "all", "permutations", "for", "a", "set", "with", "N", "elements", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-experimental/src/org/ejml/dense/row/misc/PermuteArray.java#L107-L119
162,565
lessthanoptimal/ejml
main/ejml-experimental/src/org/ejml/dense/row/misc/PermuteArray.java
PermuteArray.createList
private static void createList( int data[], int k , int level , List<int[]> ret ) { data[k] = level; if( level < data.length-1 ) { for( int i = 0; i < data.length; i++ ) { if( data[i] == -1 ) { createList(data,i,level+1,ret); } } } else { int []copy = new int[data.length]; System.arraycopy(data,0,copy,0,data.length); ret.add(copy); } data[k] = -1; }
java
private static void createList( int data[], int k , int level , List<int[]> ret ) { data[k] = level; if( level < data.length-1 ) { for( int i = 0; i < data.length; i++ ) { if( data[i] == -1 ) { createList(data,i,level+1,ret); } } } else { int []copy = new int[data.length]; System.arraycopy(data,0,copy,0,data.length); ret.add(copy); } data[k] = -1; }
[ "private", "static", "void", "createList", "(", "int", "data", "[", "]", ",", "int", "k", ",", "int", "level", ",", "List", "<", "int", "[", "]", ">", "ret", ")", "{", "data", "[", "k", "]", "=", "level", ";", "if", "(", "level", "<", "data", ".", "length", "-", "1", ")", "{", "for", "(", "int", "i", "=", "0", ";", "i", "<", "data", ".", "length", ";", "i", "++", ")", "{", "if", "(", "data", "[", "i", "]", "==", "-", "1", ")", "{", "createList", "(", "data", ",", "i", ",", "level", "+", "1", ",", "ret", ")", ";", "}", "}", "}", "else", "{", "int", "[", "]", "copy", "=", "new", "int", "[", "data", ".", "length", "]", ";", "System", ".", "arraycopy", "(", "data", ",", "0", ",", "copy", ",", "0", ",", "data", ".", "length", ")", ";", "ret", ".", "add", "(", "copy", ")", ";", "}", "data", "[", "k", "]", "=", "-", "1", ";", "}" ]
Internal function that uses recursion to create the list
[ "Internal", "function", "that", "uses", "recursion", "to", "create", "the", "list" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-experimental/src/org/ejml/dense/row/misc/PermuteArray.java#L125-L141
162,566
lessthanoptimal/ejml
main/ejml-experimental/src/org/ejml/dense/row/misc/PermuteArray.java
PermuteArray.next
public int[] next() { boolean hasNewPerm = false; escape:while( level >= 0) { // boolean foundZero = false; for( int i = iter[level]; i < data.length; i = iter[level] ) { iter[level]++; if( data[i] == -1 ) { level++; data[i] = level-1; if( level >= data.length ) { // a new permutation has been created return the results. hasNewPerm = true; System.arraycopy(data,0,ret,0,ret.length); level = level-1; data[i] = -1; break escape; } else { valk[level] = i; } } } data[valk[level]] = -1; iter[level] = 0; level = level-1; } if( hasNewPerm ) return ret; return null; }
java
public int[] next() { boolean hasNewPerm = false; escape:while( level >= 0) { // boolean foundZero = false; for( int i = iter[level]; i < data.length; i = iter[level] ) { iter[level]++; if( data[i] == -1 ) { level++; data[i] = level-1; if( level >= data.length ) { // a new permutation has been created return the results. hasNewPerm = true; System.arraycopy(data,0,ret,0,ret.length); level = level-1; data[i] = -1; break escape; } else { valk[level] = i; } } } data[valk[level]] = -1; iter[level] = 0; level = level-1; } if( hasNewPerm ) return ret; return null; }
[ "public", "int", "[", "]", "next", "(", ")", "{", "boolean", "hasNewPerm", "=", "false", ";", "escape", ":", "while", "(", "level", ">=", "0", ")", "{", "// boolean foundZero = false;", "for", "(", "int", "i", "=", "iter", "[", "level", "]", ";", "i", "<", "data", ".", "length", ";", "i", "=", "iter", "[", "level", "]", ")", "{", "iter", "[", "level", "]", "++", ";", "if", "(", "data", "[", "i", "]", "==", "-", "1", ")", "{", "level", "++", ";", "data", "[", "i", "]", "=", "level", "-", "1", ";", "if", "(", "level", ">=", "data", ".", "length", ")", "{", "// a new permutation has been created return the results.", "hasNewPerm", "=", "true", ";", "System", ".", "arraycopy", "(", "data", ",", "0", ",", "ret", ",", "0", ",", "ret", ".", "length", ")", ";", "level", "=", "level", "-", "1", ";", "data", "[", "i", "]", "=", "-", "1", ";", "break", "escape", ";", "}", "else", "{", "valk", "[", "level", "]", "=", "i", ";", "}", "}", "}", "data", "[", "valk", "[", "level", "]", "]", "=", "-", "1", ";", "iter", "[", "level", "]", "=", "0", ";", "level", "=", "level", "-", "1", ";", "}", "if", "(", "hasNewPerm", ")", "return", "ret", ";", "return", "null", ";", "}" ]
Creates the next permutation in the sequence. @return An array containing the permutation. The returned array is modified each time this function is called.
[ "Creates", "the", "next", "permutation", "in", "the", "sequence", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-experimental/src/org/ejml/dense/row/misc/PermuteArray.java#L148-L183
162,567
lessthanoptimal/ejml
main/ejml-dsparse/src/org/ejml/sparse/triplet/RandomMatrices_DSTL.java
RandomMatrices_DSTL.uniform
public static DMatrixSparseTriplet uniform(int numRows , int numCols , int nz_total , double min , double max , Random rand ) { // Create a list of all the possible element values int N = numCols*numRows; if( N < 0 ) throw new IllegalArgumentException("matrix size is too large"); nz_total = Math.min(N,nz_total); int selected[] = new int[N]; for (int i = 0; i < N; i++) { selected[i] = i; } for (int i = 0; i < nz_total; i++) { int s = rand.nextInt(N); int tmp = selected[s]; selected[s] = selected[i]; selected[i] = tmp; } // Create a sparse matrix DMatrixSparseTriplet ret = new DMatrixSparseTriplet(numRows,numCols,nz_total); for (int i = 0; i < nz_total; i++) { int row = selected[i]/numCols; int col = selected[i]%numCols; double value = rand.nextDouble()*(max-min)+min; ret.addItem(row,col, value); } return ret; }
java
public static DMatrixSparseTriplet uniform(int numRows , int numCols , int nz_total , double min , double max , Random rand ) { // Create a list of all the possible element values int N = numCols*numRows; if( N < 0 ) throw new IllegalArgumentException("matrix size is too large"); nz_total = Math.min(N,nz_total); int selected[] = new int[N]; for (int i = 0; i < N; i++) { selected[i] = i; } for (int i = 0; i < nz_total; i++) { int s = rand.nextInt(N); int tmp = selected[s]; selected[s] = selected[i]; selected[i] = tmp; } // Create a sparse matrix DMatrixSparseTriplet ret = new DMatrixSparseTriplet(numRows,numCols,nz_total); for (int i = 0; i < nz_total; i++) { int row = selected[i]/numCols; int col = selected[i]%numCols; double value = rand.nextDouble()*(max-min)+min; ret.addItem(row,col, value); } return ret; }
[ "public", "static", "DMatrixSparseTriplet", "uniform", "(", "int", "numRows", ",", "int", "numCols", ",", "int", "nz_total", ",", "double", "min", ",", "double", "max", ",", "Random", "rand", ")", "{", "// Create a list of all the possible element values", "int", "N", "=", "numCols", "*", "numRows", ";", "if", "(", "N", "<", "0", ")", "throw", "new", "IllegalArgumentException", "(", "\"matrix size is too large\"", ")", ";", "nz_total", "=", "Math", ".", "min", "(", "N", ",", "nz_total", ")", ";", "int", "selected", "[", "]", "=", "new", "int", "[", "N", "]", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "N", ";", "i", "++", ")", "{", "selected", "[", "i", "]", "=", "i", ";", "}", "for", "(", "int", "i", "=", "0", ";", "i", "<", "nz_total", ";", "i", "++", ")", "{", "int", "s", "=", "rand", ".", "nextInt", "(", "N", ")", ";", "int", "tmp", "=", "selected", "[", "s", "]", ";", "selected", "[", "s", "]", "=", "selected", "[", "i", "]", ";", "selected", "[", "i", "]", "=", "tmp", ";", "}", "// Create a sparse matrix", "DMatrixSparseTriplet", "ret", "=", "new", "DMatrixSparseTriplet", "(", "numRows", ",", "numCols", ",", "nz_total", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "nz_total", ";", "i", "++", ")", "{", "int", "row", "=", "selected", "[", "i", "]", "/", "numCols", ";", "int", "col", "=", "selected", "[", "i", "]", "%", "numCols", ";", "double", "value", "=", "rand", ".", "nextDouble", "(", ")", "*", "(", "max", "-", "min", ")", "+", "min", ";", "ret", ".", "addItem", "(", "row", ",", "col", ",", "value", ")", ";", "}", "return", "ret", ";", "}" ]
Randomly generates matrix with the specified number of matrix elements filled with values from min to max. @param numRows Number of rows @param numCols Number of columns @param nz_total Total number of non-zero elements in the matrix @param min Minimum value @param max maximum value @param rand Random number generated @return Randomly generated matrix
[ "Randomly", "generates", "matrix", "with", "the", "specified", "number", "of", "matrix", "elements", "filled", "with", "values", "from", "min", "to", "max", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-dsparse/src/org/ejml/sparse/triplet/RandomMatrices_DSTL.java#L40-L73
162,568
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/block/decomposition/qr/BlockHouseHolder_DDRB.java
BlockHouseHolder_DDRB.decomposeQR_block_col
public static boolean decomposeQR_block_col( final int blockLength , final DSubmatrixD1 Y , final double gamma[] ) { int width = Y.col1-Y.col0; int height = Y.row1-Y.row0; int min = Math.min(width,height); for( int i = 0; i < min; i++ ) { // compute the householder vector if (!computeHouseHolderCol(blockLength, Y, gamma, i)) return false; // apply to rest of the columns in the block rank1UpdateMultR_Col(blockLength,Y,i,gamma[Y.col0+i]); } return true; }
java
public static boolean decomposeQR_block_col( final int blockLength , final DSubmatrixD1 Y , final double gamma[] ) { int width = Y.col1-Y.col0; int height = Y.row1-Y.row0; int min = Math.min(width,height); for( int i = 0; i < min; i++ ) { // compute the householder vector if (!computeHouseHolderCol(blockLength, Y, gamma, i)) return false; // apply to rest of the columns in the block rank1UpdateMultR_Col(blockLength,Y,i,gamma[Y.col0+i]); } return true; }
[ "public", "static", "boolean", "decomposeQR_block_col", "(", "final", "int", "blockLength", ",", "final", "DSubmatrixD1", "Y", ",", "final", "double", "gamma", "[", "]", ")", "{", "int", "width", "=", "Y", ".", "col1", "-", "Y", ".", "col0", ";", "int", "height", "=", "Y", ".", "row1", "-", "Y", ".", "row0", ";", "int", "min", "=", "Math", ".", "min", "(", "width", ",", "height", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "min", ";", "i", "++", ")", "{", "// compute the householder vector", "if", "(", "!", "computeHouseHolderCol", "(", "blockLength", ",", "Y", ",", "gamma", ",", "i", ")", ")", "return", "false", ";", "// apply to rest of the columns in the block", "rank1UpdateMultR_Col", "(", "blockLength", ",", "Y", ",", "i", ",", "gamma", "[", "Y", ".", "col0", "+", "i", "]", ")", ";", "}", "return", "true", ";", "}" ]
Performs a standard QR decomposition on the specified submatrix that is one block wide. @param blockLength @param Y @param gamma
[ "Performs", "a", "standard", "QR", "decomposition", "on", "the", "specified", "submatrix", "that", "is", "one", "block", "wide", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/block/decomposition/qr/BlockHouseHolder_DDRB.java#L50-L67
162,569
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/block/decomposition/qr/BlockHouseHolder_DDRB.java
BlockHouseHolder_DDRB.divideElementsCol
public static void divideElementsCol(final int blockLength , final DSubmatrixD1 Y , final int col , final double val ) { final int width = Math.min(blockLength,Y.col1-Y.col0); final double dataY[] = Y.original.data; for( int i = Y.row0; i < Y.row1; i += blockLength ) { int height = Math.min( blockLength , Y.row1 - i ); int index = i*Y.original.numCols + height*Y.col0 + col; if( i == Y.row0 ) { index += width*(col+1); for( int k = col+1; k < height; k++ , index += width ) { dataY[index] /= val; } } else { int endIndex = index + width*height; //for( int k = 0; k < height; k++ for( ; index != endIndex; index += width ) { dataY[index] /= val; } } } }
java
public static void divideElementsCol(final int blockLength , final DSubmatrixD1 Y , final int col , final double val ) { final int width = Math.min(blockLength,Y.col1-Y.col0); final double dataY[] = Y.original.data; for( int i = Y.row0; i < Y.row1; i += blockLength ) { int height = Math.min( blockLength , Y.row1 - i ); int index = i*Y.original.numCols + height*Y.col0 + col; if( i == Y.row0 ) { index += width*(col+1); for( int k = col+1; k < height; k++ , index += width ) { dataY[index] /= val; } } else { int endIndex = index + width*height; //for( int k = 0; k < height; k++ for( ; index != endIndex; index += width ) { dataY[index] /= val; } } } }
[ "public", "static", "void", "divideElementsCol", "(", "final", "int", "blockLength", ",", "final", "DSubmatrixD1", "Y", ",", "final", "int", "col", ",", "final", "double", "val", ")", "{", "final", "int", "width", "=", "Math", ".", "min", "(", "blockLength", ",", "Y", ".", "col1", "-", "Y", ".", "col0", ")", ";", "final", "double", "dataY", "[", "]", "=", "Y", ".", "original", ".", "data", ";", "for", "(", "int", "i", "=", "Y", ".", "row0", ";", "i", "<", "Y", ".", "row1", ";", "i", "+=", "blockLength", ")", "{", "int", "height", "=", "Math", ".", "min", "(", "blockLength", ",", "Y", ".", "row1", "-", "i", ")", ";", "int", "index", "=", "i", "*", "Y", ".", "original", ".", "numCols", "+", "height", "*", "Y", ".", "col0", "+", "col", ";", "if", "(", "i", "==", "Y", ".", "row0", ")", "{", "index", "+=", "width", "*", "(", "col", "+", "1", ")", ";", "for", "(", "int", "k", "=", "col", "+", "1", ";", "k", "<", "height", ";", "k", "++", ",", "index", "+=", "width", ")", "{", "dataY", "[", "index", "]", "/=", "val", ";", "}", "}", "else", "{", "int", "endIndex", "=", "index", "+", "width", "*", "height", ";", "//for( int k = 0; k < height; k++", "for", "(", ";", "index", "!=", "endIndex", ";", "index", "+=", "width", ")", "{", "dataY", "[", "index", "]", "/=", "val", ";", "}", "}", "}", "}" ]
Divides the elements at the specified column by 'val'. Takes in account leading zeros and one.
[ "Divides", "the", "elements", "at", "the", "specified", "column", "by", "val", ".", "Takes", "in", "account", "leading", "zeros", "and", "one", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/block/decomposition/qr/BlockHouseHolder_DDRB.java#L478-L503
162,570
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/block/decomposition/qr/BlockHouseHolder_DDRB.java
BlockHouseHolder_DDRB.multAdd_zeros
public static void multAdd_zeros(final int blockLength , final DSubmatrixD1 Y , final DSubmatrixD1 B , final DSubmatrixD1 C ) { int widthY = Y.col1 - Y.col0; for( int i = Y.row0; i < Y.row1; i += blockLength ) { int heightY = Math.min( blockLength , Y.row1 - i ); for( int j = B.col0; j < B.col1; j += blockLength ) { int widthB = Math.min( blockLength , B.col1 - j ); int indexC = (i-Y.row0+C.row0)*C.original.numCols + (j-B.col0+C.col0)*heightY; for( int k = Y.col0; k < Y.col1; k += blockLength ) { int indexY = i*Y.original.numCols + k*heightY; int indexB = (k-Y.col0+B.row0)*B.original.numCols + j*widthY; if( i == Y.row0 ) { multBlockAdd_zerosone(Y.original.data,B.original.data,C.original.data, indexY,indexB,indexC,heightY,widthY,widthB); } else { InnerMultiplication_DDRB.blockMultPlus(Y.original.data,B.original.data,C.original.data, indexY,indexB,indexC,heightY,widthY,widthB); } } } } }
java
public static void multAdd_zeros(final int blockLength , final DSubmatrixD1 Y , final DSubmatrixD1 B , final DSubmatrixD1 C ) { int widthY = Y.col1 - Y.col0; for( int i = Y.row0; i < Y.row1; i += blockLength ) { int heightY = Math.min( blockLength , Y.row1 - i ); for( int j = B.col0; j < B.col1; j += blockLength ) { int widthB = Math.min( blockLength , B.col1 - j ); int indexC = (i-Y.row0+C.row0)*C.original.numCols + (j-B.col0+C.col0)*heightY; for( int k = Y.col0; k < Y.col1; k += blockLength ) { int indexY = i*Y.original.numCols + k*heightY; int indexB = (k-Y.col0+B.row0)*B.original.numCols + j*widthY; if( i == Y.row0 ) { multBlockAdd_zerosone(Y.original.data,B.original.data,C.original.data, indexY,indexB,indexC,heightY,widthY,widthB); } else { InnerMultiplication_DDRB.blockMultPlus(Y.original.data,B.original.data,C.original.data, indexY,indexB,indexC,heightY,widthY,widthB); } } } } }
[ "public", "static", "void", "multAdd_zeros", "(", "final", "int", "blockLength", ",", "final", "DSubmatrixD1", "Y", ",", "final", "DSubmatrixD1", "B", ",", "final", "DSubmatrixD1", "C", ")", "{", "int", "widthY", "=", "Y", ".", "col1", "-", "Y", ".", "col0", ";", "for", "(", "int", "i", "=", "Y", ".", "row0", ";", "i", "<", "Y", ".", "row1", ";", "i", "+=", "blockLength", ")", "{", "int", "heightY", "=", "Math", ".", "min", "(", "blockLength", ",", "Y", ".", "row1", "-", "i", ")", ";", "for", "(", "int", "j", "=", "B", ".", "col0", ";", "j", "<", "B", ".", "col1", ";", "j", "+=", "blockLength", ")", "{", "int", "widthB", "=", "Math", ".", "min", "(", "blockLength", ",", "B", ".", "col1", "-", "j", ")", ";", "int", "indexC", "=", "(", "i", "-", "Y", ".", "row0", "+", "C", ".", "row0", ")", "*", "C", ".", "original", ".", "numCols", "+", "(", "j", "-", "B", ".", "col0", "+", "C", ".", "col0", ")", "*", "heightY", ";", "for", "(", "int", "k", "=", "Y", ".", "col0", ";", "k", "<", "Y", ".", "col1", ";", "k", "+=", "blockLength", ")", "{", "int", "indexY", "=", "i", "*", "Y", ".", "original", ".", "numCols", "+", "k", "*", "heightY", ";", "int", "indexB", "=", "(", "k", "-", "Y", ".", "col0", "+", "B", ".", "row0", ")", "*", "B", ".", "original", ".", "numCols", "+", "j", "*", "widthY", ";", "if", "(", "i", "==", "Y", ".", "row0", ")", "{", "multBlockAdd_zerosone", "(", "Y", ".", "original", ".", "data", ",", "B", ".", "original", ".", "data", ",", "C", ".", "original", ".", "data", ",", "indexY", ",", "indexB", ",", "indexC", ",", "heightY", ",", "widthY", ",", "widthB", ")", ";", "}", "else", "{", "InnerMultiplication_DDRB", ".", "blockMultPlus", "(", "Y", ".", "original", ".", "data", ",", "B", ".", "original", ".", "data", ",", "C", ".", "original", ".", "data", ",", "indexY", ",", "indexB", ",", "indexC", ",", "heightY", ",", "widthY", ",", "widthB", ")", ";", "}", "}", "}", "}", "}" ]
Special multiplication that takes in account the zeros and one in Y, which is the matrix that stores the householder vectors.
[ "Special", "multiplication", "that", "takes", "in", "account", "the", "zeros", "and", "one", "in", "Y", "which", "is", "the", "matrix", "that", "stores", "the", "householder", "vectors", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/block/decomposition/qr/BlockHouseHolder_DDRB.java#L919-L947
162,571
lessthanoptimal/ejml
examples/src/org/ejml/example/EquationCustomFunction.java
EquationCustomFunction.createMultTransA
public static ManagerFunctions.InputN createMultTransA() { return (inputs, manager) -> { if( inputs.size() != 2 ) throw new RuntimeException("Two inputs required"); final Variable varA = inputs.get(0); final Variable varB = inputs.get(1); Operation.Info ret = new Operation.Info(); if( varA instanceof VariableMatrix && varB instanceof VariableMatrix ) { // The output matrix or scalar variable must be created with the provided manager final VariableMatrix output = manager.createMatrix(); ret.output = output; ret.op = new Operation("multTransA-mm") { @Override public void process() { DMatrixRMaj mA = ((VariableMatrix)varA).matrix; DMatrixRMaj mB = ((VariableMatrix)varB).matrix; CommonOps_DDRM.multTransA(mA,mB,output.matrix); } }; } else { throw new IllegalArgumentException("Expected both inputs to be a matrix"); } return ret; }; }
java
public static ManagerFunctions.InputN createMultTransA() { return (inputs, manager) -> { if( inputs.size() != 2 ) throw new RuntimeException("Two inputs required"); final Variable varA = inputs.get(0); final Variable varB = inputs.get(1); Operation.Info ret = new Operation.Info(); if( varA instanceof VariableMatrix && varB instanceof VariableMatrix ) { // The output matrix or scalar variable must be created with the provided manager final VariableMatrix output = manager.createMatrix(); ret.output = output; ret.op = new Operation("multTransA-mm") { @Override public void process() { DMatrixRMaj mA = ((VariableMatrix)varA).matrix; DMatrixRMaj mB = ((VariableMatrix)varB).matrix; CommonOps_DDRM.multTransA(mA,mB,output.matrix); } }; } else { throw new IllegalArgumentException("Expected both inputs to be a matrix"); } return ret; }; }
[ "public", "static", "ManagerFunctions", ".", "InputN", "createMultTransA", "(", ")", "{", "return", "(", "inputs", ",", "manager", ")", "->", "{", "if", "(", "inputs", ".", "size", "(", ")", "!=", "2", ")", "throw", "new", "RuntimeException", "(", "\"Two inputs required\"", ")", ";", "final", "Variable", "varA", "=", "inputs", ".", "get", "(", "0", ")", ";", "final", "Variable", "varB", "=", "inputs", ".", "get", "(", "1", ")", ";", "Operation", ".", "Info", "ret", "=", "new", "Operation", ".", "Info", "(", ")", ";", "if", "(", "varA", "instanceof", "VariableMatrix", "&&", "varB", "instanceof", "VariableMatrix", ")", "{", "// The output matrix or scalar variable must be created with the provided manager", "final", "VariableMatrix", "output", "=", "manager", ".", "createMatrix", "(", ")", ";", "ret", ".", "output", "=", "output", ";", "ret", ".", "op", "=", "new", "Operation", "(", "\"multTransA-mm\"", ")", "{", "@", "Override", "public", "void", "process", "(", ")", "{", "DMatrixRMaj", "mA", "=", "(", "(", "VariableMatrix", ")", "varA", ")", ".", "matrix", ";", "DMatrixRMaj", "mB", "=", "(", "(", "VariableMatrix", ")", "varB", ")", ".", "matrix", ";", "CommonOps_DDRM", ".", "multTransA", "(", "mA", ",", "mB", ",", "output", ".", "matrix", ")", ";", "}", "}", ";", "}", "else", "{", "throw", "new", "IllegalArgumentException", "(", "\"Expected both inputs to be a matrix\"", ")", ";", "}", "return", "ret", ";", "}", ";", "}" ]
Create the function. Be sure to handle all possible input types and combinations correctly and provide meaningful error messages. The output matrix should be resized to fit the inputs.
[ "Create", "the", "function", ".", "Be", "sure", "to", "handle", "all", "possible", "input", "types", "and", "combinations", "correctly", "and", "provide", "meaningful", "error", "messages", ".", "The", "output", "matrix", "should", "be", "resized", "to", "fit", "the", "inputs", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/examples/src/org/ejml/example/EquationCustomFunction.java#L60-L90
162,572
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/SpecializedOps_DDRM.java
SpecializedOps_DDRM.copyChangeRow
public static DMatrixRMaj copyChangeRow(int order[] , DMatrixRMaj src , DMatrixRMaj dst ) { if( dst == null ) { dst = new DMatrixRMaj(src.numRows,src.numCols); } else if( src.numRows != dst.numRows || src.numCols != dst.numCols ) { throw new IllegalArgumentException("src and dst must have the same dimensions."); } for( int i = 0; i < src.numRows; i++ ) { int indexDst = i*src.numCols; int indexSrc = order[i]*src.numCols; System.arraycopy(src.data,indexSrc,dst.data,indexDst,src.numCols); } return dst; }
java
public static DMatrixRMaj copyChangeRow(int order[] , DMatrixRMaj src , DMatrixRMaj dst ) { if( dst == null ) { dst = new DMatrixRMaj(src.numRows,src.numCols); } else if( src.numRows != dst.numRows || src.numCols != dst.numCols ) { throw new IllegalArgumentException("src and dst must have the same dimensions."); } for( int i = 0; i < src.numRows; i++ ) { int indexDst = i*src.numCols; int indexSrc = order[i]*src.numCols; System.arraycopy(src.data,indexSrc,dst.data,indexDst,src.numCols); } return dst; }
[ "public", "static", "DMatrixRMaj", "copyChangeRow", "(", "int", "order", "[", "]", ",", "DMatrixRMaj", "src", ",", "DMatrixRMaj", "dst", ")", "{", "if", "(", "dst", "==", "null", ")", "{", "dst", "=", "new", "DMatrixRMaj", "(", "src", ".", "numRows", ",", "src", ".", "numCols", ")", ";", "}", "else", "if", "(", "src", ".", "numRows", "!=", "dst", ".", "numRows", "||", "src", ".", "numCols", "!=", "dst", ".", "numCols", ")", "{", "throw", "new", "IllegalArgumentException", "(", "\"src and dst must have the same dimensions.\"", ")", ";", "}", "for", "(", "int", "i", "=", "0", ";", "i", "<", "src", ".", "numRows", ";", "i", "++", ")", "{", "int", "indexDst", "=", "i", "*", "src", ".", "numCols", ";", "int", "indexSrc", "=", "order", "[", "i", "]", "*", "src", ".", "numCols", ";", "System", ".", "arraycopy", "(", "src", ".", "data", ",", "indexSrc", ",", "dst", ".", "data", ",", "indexDst", ",", "src", ".", "numCols", ")", ";", "}", "return", "dst", ";", "}" ]
Creates a copy of a matrix but swaps the rows as specified by the order array. @param order Specifies which row in the dest corresponds to a row in the src. Not modified. @param src The original matrix. Not modified. @param dst A Matrix that is a row swapped copy of src. Modified.
[ "Creates", "a", "copy", "of", "a", "matrix", "but", "swaps", "the", "rows", "as", "specified", "by", "the", "order", "array", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/SpecializedOps_DDRM.java#L97-L113
162,573
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/SpecializedOps_DDRM.java
SpecializedOps_DDRM.copyTriangle
public static DMatrixRMaj copyTriangle(DMatrixRMaj src , DMatrixRMaj dst , boolean upper ) { if( dst == null ) { dst = new DMatrixRMaj(src.numRows,src.numCols); } else if( src.numRows != dst.numRows || src.numCols != dst.numCols ) { throw new IllegalArgumentException("src and dst must have the same dimensions."); } if( upper ) { int N = Math.min(src.numRows,src.numCols); for( int i = 0; i < N; i++ ) { int index = i*src.numCols+i; System.arraycopy(src.data,index,dst.data,index,src.numCols-i); } } else { for( int i = 0; i < src.numRows; i++ ) { int length = Math.min(i+1,src.numCols); int index = i*src.numCols; System.arraycopy(src.data,index,dst.data,index,length); } } return dst; }
java
public static DMatrixRMaj copyTriangle(DMatrixRMaj src , DMatrixRMaj dst , boolean upper ) { if( dst == null ) { dst = new DMatrixRMaj(src.numRows,src.numCols); } else if( src.numRows != dst.numRows || src.numCols != dst.numCols ) { throw new IllegalArgumentException("src and dst must have the same dimensions."); } if( upper ) { int N = Math.min(src.numRows,src.numCols); for( int i = 0; i < N; i++ ) { int index = i*src.numCols+i; System.arraycopy(src.data,index,dst.data,index,src.numCols-i); } } else { for( int i = 0; i < src.numRows; i++ ) { int length = Math.min(i+1,src.numCols); int index = i*src.numCols; System.arraycopy(src.data,index,dst.data,index,length); } } return dst; }
[ "public", "static", "DMatrixRMaj", "copyTriangle", "(", "DMatrixRMaj", "src", ",", "DMatrixRMaj", "dst", ",", "boolean", "upper", ")", "{", "if", "(", "dst", "==", "null", ")", "{", "dst", "=", "new", "DMatrixRMaj", "(", "src", ".", "numRows", ",", "src", ".", "numCols", ")", ";", "}", "else", "if", "(", "src", ".", "numRows", "!=", "dst", ".", "numRows", "||", "src", ".", "numCols", "!=", "dst", ".", "numCols", ")", "{", "throw", "new", "IllegalArgumentException", "(", "\"src and dst must have the same dimensions.\"", ")", ";", "}", "if", "(", "upper", ")", "{", "int", "N", "=", "Math", ".", "min", "(", "src", ".", "numRows", ",", "src", ".", "numCols", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "N", ";", "i", "++", ")", "{", "int", "index", "=", "i", "*", "src", ".", "numCols", "+", "i", ";", "System", ".", "arraycopy", "(", "src", ".", "data", ",", "index", ",", "dst", ".", "data", ",", "index", ",", "src", ".", "numCols", "-", "i", ")", ";", "}", "}", "else", "{", "for", "(", "int", "i", "=", "0", ";", "i", "<", "src", ".", "numRows", ";", "i", "++", ")", "{", "int", "length", "=", "Math", ".", "min", "(", "i", "+", "1", ",", "src", ".", "numCols", ")", ";", "int", "index", "=", "i", "*", "src", ".", "numCols", ";", "System", ".", "arraycopy", "(", "src", ".", "data", ",", "index", ",", "dst", ".", "data", ",", "index", ",", "length", ")", ";", "}", "}", "return", "dst", ";", "}" ]
Copies just the upper or lower triangular portion of a matrix. @param src Matrix being copied. Not modified. @param dst Where just a triangle from src is copied. If null a new one will be created. Modified. @param upper If the upper or lower triangle should be copied. @return The copied matrix.
[ "Copies", "just", "the", "upper", "or", "lower", "triangular", "portion", "of", "a", "matrix", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/SpecializedOps_DDRM.java#L123-L145
162,574
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/SpecializedOps_DDRM.java
SpecializedOps_DDRM.splitIntoVectors
public static DMatrixRMaj[] splitIntoVectors(DMatrix1Row A , boolean column ) { int w = column ? A.numCols : A.numRows; int M = column ? A.numRows : 1; int N = column ? 1 : A.numCols; int o = Math.max(M,N); DMatrixRMaj[] ret = new DMatrixRMaj[w]; for( int i = 0; i < w; i++ ) { DMatrixRMaj a = new DMatrixRMaj(M,N); if( column ) subvector(A,0,i,o,false,0,a); else subvector(A,i,0,o,true,0,a); ret[i] = a; } return ret; }
java
public static DMatrixRMaj[] splitIntoVectors(DMatrix1Row A , boolean column ) { int w = column ? A.numCols : A.numRows; int M = column ? A.numRows : 1; int N = column ? 1 : A.numCols; int o = Math.max(M,N); DMatrixRMaj[] ret = new DMatrixRMaj[w]; for( int i = 0; i < w; i++ ) { DMatrixRMaj a = new DMatrixRMaj(M,N); if( column ) subvector(A,0,i,o,false,0,a); else subvector(A,i,0,o,true,0,a); ret[i] = a; } return ret; }
[ "public", "static", "DMatrixRMaj", "[", "]", "splitIntoVectors", "(", "DMatrix1Row", "A", ",", "boolean", "column", ")", "{", "int", "w", "=", "column", "?", "A", ".", "numCols", ":", "A", ".", "numRows", ";", "int", "M", "=", "column", "?", "A", ".", "numRows", ":", "1", ";", "int", "N", "=", "column", "?", "1", ":", "A", ".", "numCols", ";", "int", "o", "=", "Math", ".", "max", "(", "M", ",", "N", ")", ";", "DMatrixRMaj", "[", "]", "ret", "=", "new", "DMatrixRMaj", "[", "w", "]", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "w", ";", "i", "++", ")", "{", "DMatrixRMaj", "a", "=", "new", "DMatrixRMaj", "(", "M", ",", "N", ")", ";", "if", "(", "column", ")", "subvector", "(", "A", ",", "0", ",", "i", ",", "o", ",", "false", ",", "0", ",", "a", ")", ";", "else", "subvector", "(", "A", ",", "i", ",", "0", ",", "o", ",", "true", ",", "0", ",", "a", ")", ";", "ret", "[", "i", "]", "=", "a", ";", "}", "return", "ret", ";", "}" ]
Takes a matrix and splits it into a set of row or column vectors. @param A original matrix. @param column If true then column vectors will be created. @return Set of vectors.
[ "Takes", "a", "matrix", "and", "splits", "it", "into", "a", "set", "of", "row", "or", "column", "vectors", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/SpecializedOps_DDRM.java#L339-L362
162,575
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/SpecializedOps_DDRM.java
SpecializedOps_DDRM.diagProd
public static double diagProd( DMatrix1Row T ) { double prod = 1.0; int N = Math.min(T.numRows,T.numCols); for( int i = 0; i < N; i++ ) { prod *= T.unsafe_get(i,i); } return prod; }
java
public static double diagProd( DMatrix1Row T ) { double prod = 1.0; int N = Math.min(T.numRows,T.numCols); for( int i = 0; i < N; i++ ) { prod *= T.unsafe_get(i,i); } return prod; }
[ "public", "static", "double", "diagProd", "(", "DMatrix1Row", "T", ")", "{", "double", "prod", "=", "1.0", ";", "int", "N", "=", "Math", ".", "min", "(", "T", ".", "numRows", ",", "T", ".", "numCols", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "N", ";", "i", "++", ")", "{", "prod", "*=", "T", ".", "unsafe_get", "(", "i", ",", "i", ")", ";", "}", "return", "prod", ";", "}" ]
Computes the product of the diagonal elements. For a diagonal or triangular matrix this is the determinant. @param T A matrix. @return product of the diagonal elements.
[ "Computes", "the", "product", "of", "the", "diagonal", "elements", ".", "For", "a", "diagonal", "or", "triangular", "matrix", "this", "is", "the", "determinant", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/SpecializedOps_DDRM.java#L410-L419
162,576
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/SpecializedOps_DDRM.java
SpecializedOps_DDRM.elementSumSq
public static double elementSumSq( DMatrixD1 m ) { // minimize round off error double maxAbs = CommonOps_DDRM.elementMaxAbs(m); if( maxAbs == 0) return 0; double total = 0; int N = m.getNumElements(); for( int i = 0; i < N; i++ ) { double d = m.data[i]/maxAbs; total += d*d; } return maxAbs*total*maxAbs; }
java
public static double elementSumSq( DMatrixD1 m ) { // minimize round off error double maxAbs = CommonOps_DDRM.elementMaxAbs(m); if( maxAbs == 0) return 0; double total = 0; int N = m.getNumElements(); for( int i = 0; i < N; i++ ) { double d = m.data[i]/maxAbs; total += d*d; } return maxAbs*total*maxAbs; }
[ "public", "static", "double", "elementSumSq", "(", "DMatrixD1", "m", ")", "{", "// minimize round off error", "double", "maxAbs", "=", "CommonOps_DDRM", ".", "elementMaxAbs", "(", "m", ")", ";", "if", "(", "maxAbs", "==", "0", ")", "return", "0", ";", "double", "total", "=", "0", ";", "int", "N", "=", "m", ".", "getNumElements", "(", ")", ";", "for", "(", "int", "i", "=", "0", ";", "i", "<", "N", ";", "i", "++", ")", "{", "double", "d", "=", "m", ".", "data", "[", "i", "]", "/", "maxAbs", ";", "total", "+=", "d", "*", "d", ";", "}", "return", "maxAbs", "*", "total", "*", "maxAbs", ";", "}" ]
Sums up the square of each element in the matrix. This is equivalent to the Frobenius norm squared. @param m Matrix. @return Sum of elements squared.
[ "Sums", "up", "the", "square", "of", "each", "element", "in", "the", "matrix", ".", "This", "is", "equivalent", "to", "the", "Frobenius", "norm", "squared", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/SpecializedOps_DDRM.java#L480-L496
162,577
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/symm/SymmetricQREigenHelper_DDRM.java
SymmetricQREigenHelper_DDRM.init
public void init( double diag[] , double off[], int numCols ) { reset(numCols); this.diag = diag; this.off = off; }
java
public void init( double diag[] , double off[], int numCols ) { reset(numCols); this.diag = diag; this.off = off; }
[ "public", "void", "init", "(", "double", "diag", "[", "]", ",", "double", "off", "[", "]", ",", "int", "numCols", ")", "{", "reset", "(", "numCols", ")", ";", "this", ".", "diag", "=", "diag", ";", "this", ".", "off", "=", "off", ";", "}" ]
Sets up and declares internal data structures. @param diag Diagonal elements from tridiagonal matrix. Modified. @param off Off diagonal elements from tridiagonal matrix. Modified. @param numCols number of columns (and rows) in the matrix.
[ "Sets", "up", "and", "declares", "internal", "data", "structures", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/symm/SymmetricQREigenHelper_DDRM.java#L106-L113
162,578
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/symm/SymmetricQREigenHelper_DDRM.java
SymmetricQREigenHelper_DDRM.reset
public void reset( int N ) { this.N = N; this.diag = null; this.off = null; if( splits.length < N ) { splits = new int[N]; } numSplits = 0; x1 = 0; x2 = N-1; steps = numExceptional = lastExceptional = 0; this.Q = null; }
java
public void reset( int N ) { this.N = N; this.diag = null; this.off = null; if( splits.length < N ) { splits = new int[N]; } numSplits = 0; x1 = 0; x2 = N-1; steps = numExceptional = lastExceptional = 0; this.Q = null; }
[ "public", "void", "reset", "(", "int", "N", ")", "{", "this", ".", "N", "=", "N", ";", "this", ".", "diag", "=", "null", ";", "this", ".", "off", "=", "null", ";", "if", "(", "splits", ".", "length", "<", "N", ")", "{", "splits", "=", "new", "int", "[", "N", "]", ";", "}", "numSplits", "=", "0", ";", "x1", "=", "0", ";", "x2", "=", "N", "-", "1", ";", "steps", "=", "numExceptional", "=", "lastExceptional", "=", "0", ";", "this", ".", "Q", "=", "null", ";", "}" ]
Sets the size of the matrix being decomposed, declares new memory if needed, and sets all helper functions to their initial value.
[ "Sets", "the", "size", "of", "the", "matrix", "being", "decomposed", "declares", "new", "memory", "if", "needed", "and", "sets", "all", "helper", "functions", "to", "their", "initial", "value", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/symm/SymmetricQREigenHelper_DDRM.java#L139-L157
162,579
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/symm/SymmetricQREigenHelper_DDRM.java
SymmetricQREigenHelper_DDRM.isZero
protected boolean isZero( int index ) { double bottom = Math.abs(diag[index])+Math.abs(diag[index+1]); return( Math.abs(off[index]) <= bottom*UtilEjml.EPS); }
java
protected boolean isZero( int index ) { double bottom = Math.abs(diag[index])+Math.abs(diag[index+1]); return( Math.abs(off[index]) <= bottom*UtilEjml.EPS); }
[ "protected", "boolean", "isZero", "(", "int", "index", ")", "{", "double", "bottom", "=", "Math", ".", "abs", "(", "diag", "[", "index", "]", ")", "+", "Math", ".", "abs", "(", "diag", "[", "index", "+", "1", "]", ")", ";", "return", "(", "Math", ".", "abs", "(", "off", "[", "index", "]", ")", "<=", "bottom", "*", "UtilEjml", ".", "EPS", ")", ";", "}" ]
Checks to see if the specified off diagonal element is zero using a relative metric.
[ "Checks", "to", "see", "if", "the", "specified", "off", "diagonal", "element", "is", "zero", "using", "a", "relative", "metric", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/symm/SymmetricQREigenHelper_DDRM.java#L202-L206
162,580
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/symm/SymmetricQREigenHelper_DDRM.java
SymmetricQREigenHelper_DDRM.createBulge
protected void createBulge( int x1 , double p , boolean byAngle ) { double a11 = diag[x1]; double a22 = diag[x1+1]; double a12 = off[x1]; double a23 = off[x1+1]; if( byAngle ) { c = Math.cos(p); s = Math.sin(p); c2 = c*c; s2 = s*s; cs = c*s; } else { computeRotation(a11-p, a12); } // multiply the rotator on the top left. diag[x1] = c2*a11 + 2.0*cs*a12 + s2*a22; diag[x1+1] = c2*a22 - 2.0*cs*a12 + s2*a11; off[x1] = a12*(c2-s2) + cs*(a22 - a11); off[x1+1] = c*a23; bulge = s*a23; if( Q != null ) updateQ(x1,x1+1,c,s); }
java
protected void createBulge( int x1 , double p , boolean byAngle ) { double a11 = diag[x1]; double a22 = diag[x1+1]; double a12 = off[x1]; double a23 = off[x1+1]; if( byAngle ) { c = Math.cos(p); s = Math.sin(p); c2 = c*c; s2 = s*s; cs = c*s; } else { computeRotation(a11-p, a12); } // multiply the rotator on the top left. diag[x1] = c2*a11 + 2.0*cs*a12 + s2*a22; diag[x1+1] = c2*a22 - 2.0*cs*a12 + s2*a11; off[x1] = a12*(c2-s2) + cs*(a22 - a11); off[x1+1] = c*a23; bulge = s*a23; if( Q != null ) updateQ(x1,x1+1,c,s); }
[ "protected", "void", "createBulge", "(", "int", "x1", ",", "double", "p", ",", "boolean", "byAngle", ")", "{", "double", "a11", "=", "diag", "[", "x1", "]", ";", "double", "a22", "=", "diag", "[", "x1", "+", "1", "]", ";", "double", "a12", "=", "off", "[", "x1", "]", ";", "double", "a23", "=", "off", "[", "x1", "+", "1", "]", ";", "if", "(", "byAngle", ")", "{", "c", "=", "Math", ".", "cos", "(", "p", ")", ";", "s", "=", "Math", ".", "sin", "(", "p", ")", ";", "c2", "=", "c", "*", "c", ";", "s2", "=", "s", "*", "s", ";", "cs", "=", "c", "*", "s", ";", "}", "else", "{", "computeRotation", "(", "a11", "-", "p", ",", "a12", ")", ";", "}", "// multiply the rotator on the top left.", "diag", "[", "x1", "]", "=", "c2", "*", "a11", "+", "2.0", "*", "cs", "*", "a12", "+", "s2", "*", "a22", ";", "diag", "[", "x1", "+", "1", "]", "=", "c2", "*", "a22", "-", "2.0", "*", "cs", "*", "a12", "+", "s2", "*", "a11", ";", "off", "[", "x1", "]", "=", "a12", "*", "(", "c2", "-", "s2", ")", "+", "cs", "*", "(", "a22", "-", "a11", ")", ";", "off", "[", "x1", "+", "1", "]", "=", "c", "*", "a23", ";", "bulge", "=", "s", "*", "a23", ";", "if", "(", "Q", "!=", "null", ")", "updateQ", "(", "x1", ",", "x1", "+", "1", ",", "c", ",", "s", ")", ";", "}" ]
Performs a similar transform on A-pI
[ "Performs", "a", "similar", "transform", "on", "A", "-", "pI" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/symm/SymmetricQREigenHelper_DDRM.java#L247-L273
162,581
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/symm/SymmetricQREigenHelper_DDRM.java
SymmetricQREigenHelper_DDRM.eigenvalue2by2
protected void eigenvalue2by2( int x1 ) { double a = diag[x1]; double b = off[x1]; double c = diag[x1+1]; // normalize to reduce overflow double absA = Math.abs(a); double absB = Math.abs(b); double absC = Math.abs(c); double scale = absA > absB ? absA : absB; if( absC > scale ) scale = absC; // see if it is a pathological case. the diagonal must already be zero // and the eigenvalues are all zero. so just return if( scale == 0 ) { off[x1] = 0; diag[x1] = 0; diag[x1+1] = 0; return; } a /= scale; b /= scale; c /= scale; eigenSmall.symm2x2_fast(a,b,c); off[x1] = 0; diag[x1] = scale*eigenSmall.value0.real; diag[x1+1] = scale*eigenSmall.value1.real; }
java
protected void eigenvalue2by2( int x1 ) { double a = diag[x1]; double b = off[x1]; double c = diag[x1+1]; // normalize to reduce overflow double absA = Math.abs(a); double absB = Math.abs(b); double absC = Math.abs(c); double scale = absA > absB ? absA : absB; if( absC > scale ) scale = absC; // see if it is a pathological case. the diagonal must already be zero // and the eigenvalues are all zero. so just return if( scale == 0 ) { off[x1] = 0; diag[x1] = 0; diag[x1+1] = 0; return; } a /= scale; b /= scale; c /= scale; eigenSmall.symm2x2_fast(a,b,c); off[x1] = 0; diag[x1] = scale*eigenSmall.value0.real; diag[x1+1] = scale*eigenSmall.value1.real; }
[ "protected", "void", "eigenvalue2by2", "(", "int", "x1", ")", "{", "double", "a", "=", "diag", "[", "x1", "]", ";", "double", "b", "=", "off", "[", "x1", "]", ";", "double", "c", "=", "diag", "[", "x1", "+", "1", "]", ";", "// normalize to reduce overflow", "double", "absA", "=", "Math", ".", "abs", "(", "a", ")", ";", "double", "absB", "=", "Math", ".", "abs", "(", "b", ")", ";", "double", "absC", "=", "Math", ".", "abs", "(", "c", ")", ";", "double", "scale", "=", "absA", ">", "absB", "?", "absA", ":", "absB", ";", "if", "(", "absC", ">", "scale", ")", "scale", "=", "absC", ";", "// see if it is a pathological case. the diagonal must already be zero", "// and the eigenvalues are all zero. so just return", "if", "(", "scale", "==", "0", ")", "{", "off", "[", "x1", "]", "=", "0", ";", "diag", "[", "x1", "]", "=", "0", ";", "diag", "[", "x1", "+", "1", "]", "=", "0", ";", "return", ";", "}", "a", "/=", "scale", ";", "b", "/=", "scale", ";", "c", "/=", "scale", ";", "eigenSmall", ".", "symm2x2_fast", "(", "a", ",", "b", ",", "c", ")", ";", "off", "[", "x1", "]", "=", "0", ";", "diag", "[", "x1", "]", "=", "scale", "*", "eigenSmall", ".", "value0", ".", "real", ";", "diag", "[", "x1", "+", "1", "]", "=", "scale", "*", "eigenSmall", ".", "value1", ".", "real", ";", "}" ]
Computes the eigenvalue of the 2 by 2 matrix.
[ "Computes", "the", "eigenvalue", "of", "the", "2", "by", "2", "matrix", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/eig/symm/SymmetricQREigenHelper_DDRM.java#L378-L409
162,582
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/linsol/LinearSolver_DDRB_to_DDRM.java
LinearSolver_DDRB_to_DDRM.solve
@Override public void solve(DMatrixRMaj B, DMatrixRMaj X) { X.reshape(blockA.numCols,B.numCols); blockB.reshape(B.numRows,B.numCols,false); blockX.reshape(X.numRows,X.numCols,false); MatrixOps_DDRB.convert(B,blockB); alg.solve(blockB,blockX); MatrixOps_DDRB.convert(blockX,X); }
java
@Override public void solve(DMatrixRMaj B, DMatrixRMaj X) { X.reshape(blockA.numCols,B.numCols); blockB.reshape(B.numRows,B.numCols,false); blockX.reshape(X.numRows,X.numCols,false); MatrixOps_DDRB.convert(B,blockB); alg.solve(blockB,blockX); MatrixOps_DDRB.convert(blockX,X); }
[ "@", "Override", "public", "void", "solve", "(", "DMatrixRMaj", "B", ",", "DMatrixRMaj", "X", ")", "{", "X", ".", "reshape", "(", "blockA", ".", "numCols", ",", "B", ".", "numCols", ")", ";", "blockB", ".", "reshape", "(", "B", ".", "numRows", ",", "B", ".", "numCols", ",", "false", ")", ";", "blockX", ".", "reshape", "(", "X", ".", "numRows", ",", "X", ".", "numCols", ",", "false", ")", ";", "MatrixOps_DDRB", ".", "convert", "(", "B", ",", "blockB", ")", ";", "alg", ".", "solve", "(", "blockB", ",", "blockX", ")", ";", "MatrixOps_DDRB", ".", "convert", "(", "blockX", ",", "X", ")", ";", "}" ]
Converts B and X into block matrices and calls the block matrix solve routine. @param B A matrix &real; <sup>m &times; p</sup>. Not modified. @param X A matrix &real; <sup>n &times; p</sup>, where the solution is written to. Modified.
[ "Converts", "B", "and", "X", "into", "block", "matrices", "and", "calls", "the", "block", "matrix", "solve", "routine", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/linsol/LinearSolver_DDRB_to_DDRM.java#L75-L85
162,583
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/linsol/LinearSolver_DDRB_to_DDRM.java
LinearSolver_DDRB_to_DDRM.invert
@Override public void invert(DMatrixRMaj A_inv) { blockB.reshape(A_inv.numRows,A_inv.numCols,false); alg.invert(blockB); MatrixOps_DDRB.convert(blockB,A_inv); }
java
@Override public void invert(DMatrixRMaj A_inv) { blockB.reshape(A_inv.numRows,A_inv.numCols,false); alg.invert(blockB); MatrixOps_DDRB.convert(blockB,A_inv); }
[ "@", "Override", "public", "void", "invert", "(", "DMatrixRMaj", "A_inv", ")", "{", "blockB", ".", "reshape", "(", "A_inv", ".", "numRows", ",", "A_inv", ".", "numCols", ",", "false", ")", ";", "alg", ".", "invert", "(", "blockB", ")", ";", "MatrixOps_DDRB", ".", "convert", "(", "blockB", ",", "A_inv", ")", ";", "}" ]
Creates a block matrix the same size as A_inv, inverts the matrix and copies the results back onto A_inv. @param A_inv Where the inverted matrix saved. Modified.
[ "Creates", "a", "block", "matrix", "the", "same", "size", "as", "A_inv", "inverts", "the", "matrix", "and", "copies", "the", "results", "back", "onto", "A_inv", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/linsol/LinearSolver_DDRB_to_DDRM.java#L93-L100
162,584
lessthanoptimal/ejml
main/ejml-ddense/generate/org/ejml/dense/row/misc/GenerateInverseFromMinor.java
GenerateInverseFromMinor.printMinors
public void printMinors(int matrix[], int N, PrintStream stream) { this.N = N; this.stream = stream; // compute all the minors int index = 0; for( int i = 1; i <= N; i++ ) { for( int j = 1; j <= N; j++ , index++) { stream.print(" double m"+i+""+j+" = "); if( (i+j) % 2 == 1 ) stream.print("-( "); printTopMinor(matrix,i-1,j-1,N); if( (i+j) % 2 == 1 ) stream.print(")"); stream.print(";\n"); } } stream.println(); // compute the determinant stream.print(" double det = (a11*m11"); for( int i = 2; i <= N; i++ ) { stream.print(" + "+a(i-1)+"*m"+1+""+i); } stream.println(")/scale;"); }
java
public void printMinors(int matrix[], int N, PrintStream stream) { this.N = N; this.stream = stream; // compute all the minors int index = 0; for( int i = 1; i <= N; i++ ) { for( int j = 1; j <= N; j++ , index++) { stream.print(" double m"+i+""+j+" = "); if( (i+j) % 2 == 1 ) stream.print("-( "); printTopMinor(matrix,i-1,j-1,N); if( (i+j) % 2 == 1 ) stream.print(")"); stream.print(";\n"); } } stream.println(); // compute the determinant stream.print(" double det = (a11*m11"); for( int i = 2; i <= N; i++ ) { stream.print(" + "+a(i-1)+"*m"+1+""+i); } stream.println(")/scale;"); }
[ "public", "void", "printMinors", "(", "int", "matrix", "[", "]", ",", "int", "N", ",", "PrintStream", "stream", ")", "{", "this", ".", "N", "=", "N", ";", "this", ".", "stream", "=", "stream", ";", "// compute all the minors", "int", "index", "=", "0", ";", "for", "(", "int", "i", "=", "1", ";", "i", "<=", "N", ";", "i", "++", ")", "{", "for", "(", "int", "j", "=", "1", ";", "j", "<=", "N", ";", "j", "++", ",", "index", "++", ")", "{", "stream", ".", "print", "(", "\" double m\"", "+", "i", "+", "\"\"", "+", "j", "+", "\" = \"", ")", ";", "if", "(", "(", "i", "+", "j", ")", "%", "2", "==", "1", ")", "stream", ".", "print", "(", "\"-( \"", ")", ";", "printTopMinor", "(", "matrix", ",", "i", "-", "1", ",", "j", "-", "1", ",", "N", ")", ";", "if", "(", "(", "i", "+", "j", ")", "%", "2", "==", "1", ")", "stream", ".", "print", "(", "\")\"", ")", ";", "stream", ".", "print", "(", "\";\\n\"", ")", ";", "}", "}", "stream", ".", "println", "(", ")", ";", "// compute the determinant", "stream", ".", "print", "(", "\" double det = (a11*m11\"", ")", ";", "for", "(", "int", "i", "=", "2", ";", "i", "<=", "N", ";", "i", "++", ")", "{", "stream", ".", "print", "(", "\" + \"", "+", "a", "(", "i", "-", "1", ")", "+", "\"*m\"", "+", "1", "+", "\"\"", "+", "i", ")", ";", "}", "stream", ".", "println", "(", "\")/scale;\"", ")", ";", "}" ]
Put the core auto-code algorithm here so an external class can call it
[ "Put", "the", "core", "auto", "-", "code", "algorithm", "here", "so", "an", "external", "class", "can", "call", "it" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/generate/org/ejml/dense/row/misc/GenerateInverseFromMinor.java#L147-L173
162,585
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/block/linsol/qr/QrHouseHolderSolver_DDRB.java
QrHouseHolderSolver_DDRB.setA
@Override public boolean setA(DMatrixRBlock A) { if( A.numRows < A.numCols ) throw new IllegalArgumentException("Number of rows must be more than or equal to the number of columns. " + "Can't solve an underdetermined system."); if( !decomposer.decompose(A)) return false; this.QR = decomposer.getQR(); return true; }
java
@Override public boolean setA(DMatrixRBlock A) { if( A.numRows < A.numCols ) throw new IllegalArgumentException("Number of rows must be more than or equal to the number of columns. " + "Can't solve an underdetermined system."); if( !decomposer.decompose(A)) return false; this.QR = decomposer.getQR(); return true; }
[ "@", "Override", "public", "boolean", "setA", "(", "DMatrixRBlock", "A", ")", "{", "if", "(", "A", ".", "numRows", "<", "A", ".", "numCols", ")", "throw", "new", "IllegalArgumentException", "(", "\"Number of rows must be more than or equal to the number of columns. \"", "+", "\"Can't solve an underdetermined system.\"", ")", ";", "if", "(", "!", "decomposer", ".", "decompose", "(", "A", ")", ")", "return", "false", ";", "this", ".", "QR", "=", "decomposer", ".", "getQR", "(", ")", ";", "return", "true", ";", "}" ]
Computes the QR decomposition of A and store the results in A. @param A The A matrix in the linear equation. Modified. Reference saved. @return true if the decomposition was successful.
[ "Computes", "the", "QR", "decomposition", "of", "A", "and", "store", "the", "results", "in", "A", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/block/linsol/qr/QrHouseHolderSolver_DDRB.java#L68-L80
162,586
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/block/linsol/qr/QrHouseHolderSolver_DDRB.java
QrHouseHolderSolver_DDRB.invert
@Override public void invert(DMatrixRBlock A_inv) { int M = Math.min(QR.numRows,QR.numCols); if( A_inv.numRows != M || A_inv.numCols != M ) throw new IllegalArgumentException("A_inv must be square an have dimension "+M); // Solve for A^-1 // Q*R*A^-1 = I // Apply householder reflectors to the identity matrix // y = Q^T*I = Q^T MatrixOps_DDRB.setIdentity(A_inv); decomposer.applyQTran(A_inv); // Solve using upper triangular R matrix // R*A^-1 = y // A^-1 = R^-1*y TriangularSolver_DDRB.solve(QR.blockLength,true, new DSubmatrixD1(QR,0,M,0,M),new DSubmatrixD1(A_inv),false); }
java
@Override public void invert(DMatrixRBlock A_inv) { int M = Math.min(QR.numRows,QR.numCols); if( A_inv.numRows != M || A_inv.numCols != M ) throw new IllegalArgumentException("A_inv must be square an have dimension "+M); // Solve for A^-1 // Q*R*A^-1 = I // Apply householder reflectors to the identity matrix // y = Q^T*I = Q^T MatrixOps_DDRB.setIdentity(A_inv); decomposer.applyQTran(A_inv); // Solve using upper triangular R matrix // R*A^-1 = y // A^-1 = R^-1*y TriangularSolver_DDRB.solve(QR.blockLength,true, new DSubmatrixD1(QR,0,M,0,M),new DSubmatrixD1(A_inv),false); }
[ "@", "Override", "public", "void", "invert", "(", "DMatrixRBlock", "A_inv", ")", "{", "int", "M", "=", "Math", ".", "min", "(", "QR", ".", "numRows", ",", "QR", ".", "numCols", ")", ";", "if", "(", "A_inv", ".", "numRows", "!=", "M", "||", "A_inv", ".", "numCols", "!=", "M", ")", "throw", "new", "IllegalArgumentException", "(", "\"A_inv must be square an have dimension \"", "+", "M", ")", ";", "// Solve for A^-1", "// Q*R*A^-1 = I", "// Apply householder reflectors to the identity matrix", "// y = Q^T*I = Q^T", "MatrixOps_DDRB", ".", "setIdentity", "(", "A_inv", ")", ";", "decomposer", ".", "applyQTran", "(", "A_inv", ")", ";", "// Solve using upper triangular R matrix", "// R*A^-1 = y", "// A^-1 = R^-1*y", "TriangularSolver_DDRB", ".", "solve", "(", "QR", ".", "blockLength", ",", "true", ",", "new", "DSubmatrixD1", "(", "QR", ",", "0", ",", "M", ",", "0", ",", "M", ")", ",", "new", "DSubmatrixD1", "(", "A_inv", ")", ",", "false", ")", ";", "}" ]
Invert by solving for against an identity matrix. @param A_inv Where the inverted matrix saved. Modified.
[ "Invert", "by", "solving", "for", "against", "an", "identity", "matrix", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/block/linsol/qr/QrHouseHolderSolver_DDRB.java#L124-L144
162,587
lessthanoptimal/ejml
main/ejml-simple/src/org/ejml/equation/Sequence.java
Sequence.perform
public void perform() { for (int i = 0; i < operations.size(); i++) { operations.get(i).process(); } }
java
public void perform() { for (int i = 0; i < operations.size(); i++) { operations.get(i).process(); } }
[ "public", "void", "perform", "(", ")", "{", "for", "(", "int", "i", "=", "0", ";", "i", "<", "operations", ".", "size", "(", ")", ";", "i", "++", ")", "{", "operations", ".", "get", "(", "i", ")", ".", "process", "(", ")", ";", "}", "}" ]
Executes the sequence of operations
[ "Executes", "the", "sequence", "of", "operations" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-simple/src/org/ejml/equation/Sequence.java#L44-L48
162,588
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/chol/CholeskyDecompositionBlock_DDRM.java
CholeskyDecompositionBlock_DDRM.setExpectedMaxSize
@Override public void setExpectedMaxSize( int numRows , int numCols ) { super.setExpectedMaxSize(numRows,numCols); // if the matrix that is being decomposed is smaller than the block we really don't // see the B matrix. if( numRows < blockWidth) B = new DMatrixRMaj(0,0); else B = new DMatrixRMaj(blockWidth,maxWidth); chol = new CholeskyBlockHelper_DDRM(blockWidth); }
java
@Override public void setExpectedMaxSize( int numRows , int numCols ) { super.setExpectedMaxSize(numRows,numCols); // if the matrix that is being decomposed is smaller than the block we really don't // see the B matrix. if( numRows < blockWidth) B = new DMatrixRMaj(0,0); else B = new DMatrixRMaj(blockWidth,maxWidth); chol = new CholeskyBlockHelper_DDRM(blockWidth); }
[ "@", "Override", "public", "void", "setExpectedMaxSize", "(", "int", "numRows", ",", "int", "numCols", ")", "{", "super", ".", "setExpectedMaxSize", "(", "numRows", ",", "numCols", ")", ";", "// if the matrix that is being decomposed is smaller than the block we really don't", "// see the B matrix.", "if", "(", "numRows", "<", "blockWidth", ")", "B", "=", "new", "DMatrixRMaj", "(", "0", ",", "0", ")", ";", "else", "B", "=", "new", "DMatrixRMaj", "(", "blockWidth", ",", "maxWidth", ")", ";", "chol", "=", "new", "CholeskyBlockHelper_DDRM", "(", "blockWidth", ")", ";", "}" ]
Declares additional internal data structures.
[ "Declares", "additional", "internal", "data", "structures", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/chol/CholeskyDecompositionBlock_DDRM.java#L54-L66
162,589
lessthanoptimal/ejml
main/ejml-core/src/org/ejml/ops/ConvertDMatrixStruct.java
ConvertDMatrixStruct.convert
public static DMatrixSparseCSC convert(DMatrixSparseTriplet src , DMatrixSparseCSC dst , int hist[] ) { if( dst == null ) dst = new DMatrixSparseCSC(src.numRows, src.numCols , src.nz_length); else dst.reshape(src.numRows, src.numCols, src.nz_length); if( hist == null ) hist = new int[ src.numCols ]; else if( hist.length >= src.numCols ) Arrays.fill(hist,0,src.numCols, 0); else throw new IllegalArgumentException("Length of hist must be at least numCols"); // compute the number of elements in each columns for (int i = 0; i < src.nz_length; i++) { hist[src.nz_rowcol.data[i*2+1]]++; } // define col_idx dst.histogramToStructure(hist); System.arraycopy(dst.col_idx,0,hist,0,dst.numCols); // now write the row indexes and the values for (int i = 0; i < src.nz_length; i++) { int row = src.nz_rowcol.data[i*2]; int col = src.nz_rowcol.data[i*2+1]; double value = src.nz_value.data[i]; int index = hist[col]++; dst.nz_rows[index] = row; dst.nz_values[index] = value; } dst.indicesSorted = false; return dst; }
java
public static DMatrixSparseCSC convert(DMatrixSparseTriplet src , DMatrixSparseCSC dst , int hist[] ) { if( dst == null ) dst = new DMatrixSparseCSC(src.numRows, src.numCols , src.nz_length); else dst.reshape(src.numRows, src.numCols, src.nz_length); if( hist == null ) hist = new int[ src.numCols ]; else if( hist.length >= src.numCols ) Arrays.fill(hist,0,src.numCols, 0); else throw new IllegalArgumentException("Length of hist must be at least numCols"); // compute the number of elements in each columns for (int i = 0; i < src.nz_length; i++) { hist[src.nz_rowcol.data[i*2+1]]++; } // define col_idx dst.histogramToStructure(hist); System.arraycopy(dst.col_idx,0,hist,0,dst.numCols); // now write the row indexes and the values for (int i = 0; i < src.nz_length; i++) { int row = src.nz_rowcol.data[i*2]; int col = src.nz_rowcol.data[i*2+1]; double value = src.nz_value.data[i]; int index = hist[col]++; dst.nz_rows[index] = row; dst.nz_values[index] = value; } dst.indicesSorted = false; return dst; }
[ "public", "static", "DMatrixSparseCSC", "convert", "(", "DMatrixSparseTriplet", "src", ",", "DMatrixSparseCSC", "dst", ",", "int", "hist", "[", "]", ")", "{", "if", "(", "dst", "==", "null", ")", "dst", "=", "new", "DMatrixSparseCSC", "(", "src", ".", "numRows", ",", "src", ".", "numCols", ",", "src", ".", "nz_length", ")", ";", "else", "dst", ".", "reshape", "(", "src", ".", "numRows", ",", "src", ".", "numCols", ",", "src", ".", "nz_length", ")", ";", "if", "(", "hist", "==", "null", ")", "hist", "=", "new", "int", "[", "src", ".", "numCols", "]", ";", "else", "if", "(", "hist", ".", "length", ">=", "src", ".", "numCols", ")", "Arrays", ".", "fill", "(", "hist", ",", "0", ",", "src", ".", "numCols", ",", "0", ")", ";", "else", "throw", "new", "IllegalArgumentException", "(", "\"Length of hist must be at least numCols\"", ")", ";", "// compute the number of elements in each columns", "for", "(", "int", "i", "=", "0", ";", "i", "<", "src", ".", "nz_length", ";", "i", "++", ")", "{", "hist", "[", "src", ".", "nz_rowcol", ".", "data", "[", "i", "*", "2", "+", "1", "]", "]", "++", ";", "}", "// define col_idx", "dst", ".", "histogramToStructure", "(", "hist", ")", ";", "System", ".", "arraycopy", "(", "dst", ".", "col_idx", ",", "0", ",", "hist", ",", "0", ",", "dst", ".", "numCols", ")", ";", "// now write the row indexes and the values", "for", "(", "int", "i", "=", "0", ";", "i", "<", "src", ".", "nz_length", ";", "i", "++", ")", "{", "int", "row", "=", "src", ".", "nz_rowcol", ".", "data", "[", "i", "*", "2", "]", ";", "int", "col", "=", "src", ".", "nz_rowcol", ".", "data", "[", "i", "*", "2", "+", "1", "]", ";", "double", "value", "=", "src", ".", "nz_value", ".", "data", "[", "i", "]", ";", "int", "index", "=", "hist", "[", "col", "]", "++", ";", "dst", ".", "nz_rows", "[", "index", "]", "=", "row", ";", "dst", ".", "nz_values", "[", "index", "]", "=", "value", ";", "}", "dst", ".", "indicesSorted", "=", "false", ";", "return", "dst", ";", "}" ]
Converts SMatrixTriplet_64 into a SMatrixCC_64. @param src Original matrix which is to be copied. Not modified. @param dst Destination. Will be a copy. Modified. @param hist Workspace. Should be at least as long as the number of columns. Can be null.
[ "Converts", "SMatrixTriplet_64", "into", "a", "SMatrixCC_64", "." ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-core/src/org/ejml/ops/ConvertDMatrixStruct.java#L858-L893
162,590
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/qr/QRColPivDecompositionHouseholderColumn_DDRM.java
QRColPivDecompositionHouseholderColumn_DDRM.setupPivotInfo
protected void setupPivotInfo() { for( int col = 0; col < numCols; col++ ) { pivots[col] = col; double c[] = dataQR[col]; double norm = 0; for( int row = 0; row < numRows; row++ ) { double element = c[row]; norm += element*element; } normsCol[col] = norm; } }
java
protected void setupPivotInfo() { for( int col = 0; col < numCols; col++ ) { pivots[col] = col; double c[] = dataQR[col]; double norm = 0; for( int row = 0; row < numRows; row++ ) { double element = c[row]; norm += element*element; } normsCol[col] = norm; } }
[ "protected", "void", "setupPivotInfo", "(", ")", "{", "for", "(", "int", "col", "=", "0", ";", "col", "<", "numCols", ";", "col", "++", ")", "{", "pivots", "[", "col", "]", "=", "col", ";", "double", "c", "[", "]", "=", "dataQR", "[", "col", "]", ";", "double", "norm", "=", "0", ";", "for", "(", "int", "row", "=", "0", ";", "row", "<", "numRows", ";", "row", "++", ")", "{", "double", "element", "=", "c", "[", "row", "]", ";", "norm", "+=", "element", "*", "element", ";", "}", "normsCol", "[", "col", "]", "=", "norm", ";", "}", "}" ]
Sets the initial pivot ordering and compute the F-norm squared for each column
[ "Sets", "the", "initial", "pivot", "ordering", "and", "compute", "the", "F", "-", "norm", "squared", "for", "each", "column" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/qr/QRColPivDecompositionHouseholderColumn_DDRM.java#L173-L184
162,591
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/qr/QRColPivDecompositionHouseholderColumn_DDRM.java
QRColPivDecompositionHouseholderColumn_DDRM.updateNorms
protected void updateNorms( int j ) { boolean foundNegative = false; for( int col = j; col < numCols; col++ ) { double e = dataQR[col][j-1]; double v = normsCol[col] -= e*e; if( v < 0 ) { foundNegative = true; break; } } // if a negative sum has been found then clearly too much precision has been lost // and it should recompute the column norms from scratch if( foundNegative ) { for( int col = j; col < numCols; col++ ) { double u[] = dataQR[col]; double actual = 0; for( int i=j; i < numRows; i++ ) { double v = u[i]; actual += v*v; } normsCol[col] = actual; } } }
java
protected void updateNorms( int j ) { boolean foundNegative = false; for( int col = j; col < numCols; col++ ) { double e = dataQR[col][j-1]; double v = normsCol[col] -= e*e; if( v < 0 ) { foundNegative = true; break; } } // if a negative sum has been found then clearly too much precision has been lost // and it should recompute the column norms from scratch if( foundNegative ) { for( int col = j; col < numCols; col++ ) { double u[] = dataQR[col]; double actual = 0; for( int i=j; i < numRows; i++ ) { double v = u[i]; actual += v*v; } normsCol[col] = actual; } } }
[ "protected", "void", "updateNorms", "(", "int", "j", ")", "{", "boolean", "foundNegative", "=", "false", ";", "for", "(", "int", "col", "=", "j", ";", "col", "<", "numCols", ";", "col", "++", ")", "{", "double", "e", "=", "dataQR", "[", "col", "]", "[", "j", "-", "1", "]", ";", "double", "v", "=", "normsCol", "[", "col", "]", "-=", "e", "*", "e", ";", "if", "(", "v", "<", "0", ")", "{", "foundNegative", "=", "true", ";", "break", ";", "}", "}", "// if a negative sum has been found then clearly too much precision has been lost", "// and it should recompute the column norms from scratch", "if", "(", "foundNegative", ")", "{", "for", "(", "int", "col", "=", "j", ";", "col", "<", "numCols", ";", "col", "++", ")", "{", "double", "u", "[", "]", "=", "dataQR", "[", "col", "]", ";", "double", "actual", "=", "0", ";", "for", "(", "int", "i", "=", "j", ";", "i", "<", "numRows", ";", "i", "++", ")", "{", "double", "v", "=", "u", "[", "i", "]", ";", "actual", "+=", "v", "*", "v", ";", "}", "normsCol", "[", "col", "]", "=", "actual", ";", "}", "}", "}" ]
Performs an efficient update of each columns' norm
[ "Performs", "an", "efficient", "update", "of", "each", "columns", "norm" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/qr/QRColPivDecompositionHouseholderColumn_DDRM.java#L190-L215
162,592
lessthanoptimal/ejml
main/ejml-ddense/src/org/ejml/dense/row/decomposition/qr/QRColPivDecompositionHouseholderColumn_DDRM.java
QRColPivDecompositionHouseholderColumn_DDRM.swapColumns
protected void swapColumns( int j ) { // find the column with the largest norm int largestIndex = j; double largestNorm = normsCol[j]; for( int col = j+1; col < numCols; col++ ) { double n = normsCol[col]; if( n > largestNorm ) { largestNorm = n; largestIndex = col; } } // swap the columns double []tempC = dataQR[j]; dataQR[j] = dataQR[largestIndex]; dataQR[largestIndex] = tempC; double tempN = normsCol[j]; normsCol[j] = normsCol[largestIndex]; normsCol[largestIndex] = tempN; int tempP = pivots[j]; pivots[j] = pivots[largestIndex]; pivots[largestIndex] = tempP; }
java
protected void swapColumns( int j ) { // find the column with the largest norm int largestIndex = j; double largestNorm = normsCol[j]; for( int col = j+1; col < numCols; col++ ) { double n = normsCol[col]; if( n > largestNorm ) { largestNorm = n; largestIndex = col; } } // swap the columns double []tempC = dataQR[j]; dataQR[j] = dataQR[largestIndex]; dataQR[largestIndex] = tempC; double tempN = normsCol[j]; normsCol[j] = normsCol[largestIndex]; normsCol[largestIndex] = tempN; int tempP = pivots[j]; pivots[j] = pivots[largestIndex]; pivots[largestIndex] = tempP; }
[ "protected", "void", "swapColumns", "(", "int", "j", ")", "{", "// find the column with the largest norm", "int", "largestIndex", "=", "j", ";", "double", "largestNorm", "=", "normsCol", "[", "j", "]", ";", "for", "(", "int", "col", "=", "j", "+", "1", ";", "col", "<", "numCols", ";", "col", "++", ")", "{", "double", "n", "=", "normsCol", "[", "col", "]", ";", "if", "(", "n", ">", "largestNorm", ")", "{", "largestNorm", "=", "n", ";", "largestIndex", "=", "col", ";", "}", "}", "// swap the columns", "double", "[", "]", "tempC", "=", "dataQR", "[", "j", "]", ";", "dataQR", "[", "j", "]", "=", "dataQR", "[", "largestIndex", "]", ";", "dataQR", "[", "largestIndex", "]", "=", "tempC", ";", "double", "tempN", "=", "normsCol", "[", "j", "]", ";", "normsCol", "[", "j", "]", "=", "normsCol", "[", "largestIndex", "]", ";", "normsCol", "[", "largestIndex", "]", "=", "tempN", ";", "int", "tempP", "=", "pivots", "[", "j", "]", ";", "pivots", "[", "j", "]", "=", "pivots", "[", "largestIndex", "]", ";", "pivots", "[", "largestIndex", "]", "=", "tempP", ";", "}" ]
Finds the column with the largest normal and makes that the first column @param j Current column being inspected
[ "Finds", "the", "column", "with", "the", "largest", "normal", "and", "makes", "that", "the", "first", "column" ]
1444680cc487af5e866730e62f48f5f9636850d9
https://github.com/lessthanoptimal/ejml/blob/1444680cc487af5e866730e62f48f5f9636850d9/main/ejml-ddense/src/org/ejml/dense/row/decomposition/qr/QRColPivDecompositionHouseholderColumn_DDRM.java#L222-L244
162,593
klarna/HiveRunner
src/main/java/com/klarna/hiverunner/config/HiveRunnerConfig.java
HiveRunnerConfig.getHiveExecutionEngine
public String getHiveExecutionEngine() { String executionEngine = hiveConfSystemOverride.get(HiveConf.ConfVars.HIVE_EXECUTION_ENGINE.varname); return executionEngine == null ? HiveConf.ConfVars.HIVE_EXECUTION_ENGINE.getDefaultValue() : executionEngine; }
java
public String getHiveExecutionEngine() { String executionEngine = hiveConfSystemOverride.get(HiveConf.ConfVars.HIVE_EXECUTION_ENGINE.varname); return executionEngine == null ? HiveConf.ConfVars.HIVE_EXECUTION_ENGINE.getDefaultValue() : executionEngine; }
[ "public", "String", "getHiveExecutionEngine", "(", ")", "{", "String", "executionEngine", "=", "hiveConfSystemOverride", ".", "get", "(", "HiveConf", ".", "ConfVars", ".", "HIVE_EXECUTION_ENGINE", ".", "varname", ")", ";", "return", "executionEngine", "==", "null", "?", "HiveConf", ".", "ConfVars", ".", "HIVE_EXECUTION_ENGINE", ".", "getDefaultValue", "(", ")", ":", "executionEngine", ";", "}" ]
Get the configured hive.execution.engine. If not set it will default to the default value of HiveConf
[ "Get", "the", "configured", "hive", ".", "execution", ".", "engine", ".", "If", "not", "set", "it", "will", "default", "to", "the", "default", "value", "of", "HiveConf" ]
c8899237db6122127f16e3d8a740c1f8657c2ae3
https://github.com/klarna/HiveRunner/blob/c8899237db6122127f16e3d8a740c1f8657c2ae3/src/main/java/com/klarna/hiverunner/config/HiveRunnerConfig.java#L145-L148
162,594
klarna/HiveRunner
src/main/java/com/klarna/hiverunner/config/HiveRunnerConfig.java
HiveRunnerConfig.override
public void override(HiveRunnerConfig hiveRunnerConfig) { config.putAll(hiveRunnerConfig.config); hiveConfSystemOverride.putAll(hiveRunnerConfig.hiveConfSystemOverride); }
java
public void override(HiveRunnerConfig hiveRunnerConfig) { config.putAll(hiveRunnerConfig.config); hiveConfSystemOverride.putAll(hiveRunnerConfig.hiveConfSystemOverride); }
[ "public", "void", "override", "(", "HiveRunnerConfig", "hiveRunnerConfig", ")", "{", "config", ".", "putAll", "(", "hiveRunnerConfig", ".", "config", ")", ";", "hiveConfSystemOverride", ".", "putAll", "(", "hiveRunnerConfig", ".", "hiveConfSystemOverride", ")", ";", "}" ]
Copy values from the inserted config to this config. Note that if properties has not been explicitly set, the defaults will apply.
[ "Copy", "values", "from", "the", "inserted", "config", "to", "this", "config", ".", "Note", "that", "if", "properties", "has", "not", "been", "explicitly", "set", "the", "defaults", "will", "apply", "." ]
c8899237db6122127f16e3d8a740c1f8657c2ae3
https://github.com/klarna/HiveRunner/blob/c8899237db6122127f16e3d8a740c1f8657c2ae3/src/main/java/com/klarna/hiverunner/config/HiveRunnerConfig.java#L186-L189
162,595
klarna/HiveRunner
src/main/java/com/klarna/reflection/ReflectionUtils.java
ReflectionUtils.getField
public static Optional<Field> getField(Class<?> type, final String fieldName) { Optional<Field> field = Iterables.tryFind(newArrayList(type.getDeclaredFields()), havingFieldName(fieldName)); if (!field.isPresent() && type.getSuperclass() != null){ field = getField(type.getSuperclass(), fieldName); } return field; }
java
public static Optional<Field> getField(Class<?> type, final String fieldName) { Optional<Field> field = Iterables.tryFind(newArrayList(type.getDeclaredFields()), havingFieldName(fieldName)); if (!field.isPresent() && type.getSuperclass() != null){ field = getField(type.getSuperclass(), fieldName); } return field; }
[ "public", "static", "Optional", "<", "Field", ">", "getField", "(", "Class", "<", "?", ">", "type", ",", "final", "String", "fieldName", ")", "{", "Optional", "<", "Field", ">", "field", "=", "Iterables", ".", "tryFind", "(", "newArrayList", "(", "type", ".", "getDeclaredFields", "(", ")", ")", ",", "havingFieldName", "(", "fieldName", ")", ")", ";", "if", "(", "!", "field", ".", "isPresent", "(", ")", "&&", "type", ".", "getSuperclass", "(", ")", "!=", "null", ")", "{", "field", "=", "getField", "(", "type", ".", "getSuperclass", "(", ")", ",", "fieldName", ")", ";", "}", "return", "field", ";", "}" ]
Finds the first Field with given field name in the Class and in its super classes. @param type The Class type @param fieldName The field name to get @return an {@code Optional}. Use isPresent() to find out if the field name was found.
[ "Finds", "the", "first", "Field", "with", "given", "field", "name", "in", "the", "Class", "and", "in", "its", "super", "classes", "." ]
c8899237db6122127f16e3d8a740c1f8657c2ae3
https://github.com/klarna/HiveRunner/blob/c8899237db6122127f16e3d8a740c1f8657c2ae3/src/main/java/com/klarna/reflection/ReflectionUtils.java#L72-L80
162,596
klarna/HiveRunner
src/main/java/com/klarna/hiverunner/HiveServerContainer.java
HiveServerContainer.init
public void init(Map<String, String> testConfig, Map<String, String> hiveVars) { context.init(); HiveConf hiveConf = context.getHiveConf(); // merge test case properties with hive conf before HiveServer is started. for (Map.Entry<String, String> property : testConfig.entrySet()) { hiveConf.set(property.getKey(), property.getValue()); } try { hiveServer2 = new HiveServer2(); hiveServer2.init(hiveConf); // Locate the ClIService in the HiveServer2 for (Service service : hiveServer2.getServices()) { if (service instanceof CLIService) { client = (CLIService) service; } } Preconditions.checkNotNull(client, "ClIService was not initialized by HiveServer2"); sessionHandle = client.openSession("noUser", "noPassword", null); SessionState sessionState = client.getSessionManager().getSession(sessionHandle).getSessionState(); currentSessionState = sessionState; currentSessionState.setHiveVariables(hiveVars); } catch (Exception e) { throw new IllegalStateException("Failed to create HiveServer :" + e.getMessage(), e); } // Ping hive server before we do anything more with it! If validation // is switched on, this will fail if metastorage is not set up properly pingHiveServer(); }
java
public void init(Map<String, String> testConfig, Map<String, String> hiveVars) { context.init(); HiveConf hiveConf = context.getHiveConf(); // merge test case properties with hive conf before HiveServer is started. for (Map.Entry<String, String> property : testConfig.entrySet()) { hiveConf.set(property.getKey(), property.getValue()); } try { hiveServer2 = new HiveServer2(); hiveServer2.init(hiveConf); // Locate the ClIService in the HiveServer2 for (Service service : hiveServer2.getServices()) { if (service instanceof CLIService) { client = (CLIService) service; } } Preconditions.checkNotNull(client, "ClIService was not initialized by HiveServer2"); sessionHandle = client.openSession("noUser", "noPassword", null); SessionState sessionState = client.getSessionManager().getSession(sessionHandle).getSessionState(); currentSessionState = sessionState; currentSessionState.setHiveVariables(hiveVars); } catch (Exception e) { throw new IllegalStateException("Failed to create HiveServer :" + e.getMessage(), e); } // Ping hive server before we do anything more with it! If validation // is switched on, this will fail if metastorage is not set up properly pingHiveServer(); }
[ "public", "void", "init", "(", "Map", "<", "String", ",", "String", ">", "testConfig", ",", "Map", "<", "String", ",", "String", ">", "hiveVars", ")", "{", "context", ".", "init", "(", ")", ";", "HiveConf", "hiveConf", "=", "context", ".", "getHiveConf", "(", ")", ";", "// merge test case properties with hive conf before HiveServer is started.", "for", "(", "Map", ".", "Entry", "<", "String", ",", "String", ">", "property", ":", "testConfig", ".", "entrySet", "(", ")", ")", "{", "hiveConf", ".", "set", "(", "property", ".", "getKey", "(", ")", ",", "property", ".", "getValue", "(", ")", ")", ";", "}", "try", "{", "hiveServer2", "=", "new", "HiveServer2", "(", ")", ";", "hiveServer2", ".", "init", "(", "hiveConf", ")", ";", "// Locate the ClIService in the HiveServer2", "for", "(", "Service", "service", ":", "hiveServer2", ".", "getServices", "(", ")", ")", "{", "if", "(", "service", "instanceof", "CLIService", ")", "{", "client", "=", "(", "CLIService", ")", "service", ";", "}", "}", "Preconditions", ".", "checkNotNull", "(", "client", ",", "\"ClIService was not initialized by HiveServer2\"", ")", ";", "sessionHandle", "=", "client", ".", "openSession", "(", "\"noUser\"", ",", "\"noPassword\"", ",", "null", ")", ";", "SessionState", "sessionState", "=", "client", ".", "getSessionManager", "(", ")", ".", "getSession", "(", "sessionHandle", ")", ".", "getSessionState", "(", ")", ";", "currentSessionState", "=", "sessionState", ";", "currentSessionState", ".", "setHiveVariables", "(", "hiveVars", ")", ";", "}", "catch", "(", "Exception", "e", ")", "{", "throw", "new", "IllegalStateException", "(", "\"Failed to create HiveServer :\"", "+", "e", ".", "getMessage", "(", ")", ",", "e", ")", ";", "}", "// Ping hive server before we do anything more with it! If validation", "// is switched on, this will fail if metastorage is not set up properly", "pingHiveServer", "(", ")", ";", "}" ]
Will start the HiveServer. @param testConfig Specific test case properties. Will be merged with the HiveConf of the context @param hiveVars HiveVars to pass on to the HiveServer for this session
[ "Will", "start", "the", "HiveServer", "." ]
c8899237db6122127f16e3d8a740c1f8657c2ae3
https://github.com/klarna/HiveRunner/blob/c8899237db6122127f16e3d8a740c1f8657c2ae3/src/main/java/com/klarna/hiverunner/HiveServerContainer.java#L72-L108
162,597
klarna/HiveRunner
src/main/java/com/klarna/hiverunner/data/InsertIntoTable.java
InsertIntoTable.addRowsFromDelimited
public InsertIntoTable addRowsFromDelimited(File file, String delimiter, Object nullValue) { builder.addRowsFromDelimited(file, delimiter, nullValue); return this; }
java
public InsertIntoTable addRowsFromDelimited(File file, String delimiter, Object nullValue) { builder.addRowsFromDelimited(file, delimiter, nullValue); return this; }
[ "public", "InsertIntoTable", "addRowsFromDelimited", "(", "File", "file", ",", "String", "delimiter", ",", "Object", "nullValue", ")", "{", "builder", ".", "addRowsFromDelimited", "(", "file", ",", "delimiter", ",", "nullValue", ")", ";", "return", "this", ";", "}" ]
Adds all rows from the TSV file specified, using the provided delimiter and null value. @param file The file to read the data from. @param delimiter A column delimiter. @param nullValue Value to be treated as null in the source data. @return {@code this}
[ "Adds", "all", "rows", "from", "the", "TSV", "file", "specified", "using", "the", "provided", "delimiter", "and", "null", "value", "." ]
c8899237db6122127f16e3d8a740c1f8657c2ae3
https://github.com/klarna/HiveRunner/blob/c8899237db6122127f16e3d8a740c1f8657c2ae3/src/main/java/com/klarna/hiverunner/data/InsertIntoTable.java#L160-L163
162,598
klarna/HiveRunner
src/main/java/com/klarna/hiverunner/data/InsertIntoTable.java
InsertIntoTable.addRowsFrom
public InsertIntoTable addRowsFrom(File file, FileParser fileParser) { builder.addRowsFrom(file, fileParser); return this; }
java
public InsertIntoTable addRowsFrom(File file, FileParser fileParser) { builder.addRowsFrom(file, fileParser); return this; }
[ "public", "InsertIntoTable", "addRowsFrom", "(", "File", "file", ",", "FileParser", "fileParser", ")", "{", "builder", ".", "addRowsFrom", "(", "file", ",", "fileParser", ")", ";", "return", "this", ";", "}" ]
Adds all rows from the file specified, using the provided parser. @param file File to read the data from. @param fileParser Parser to be used to parse the file. @return {@code this}
[ "Adds", "all", "rows", "from", "the", "file", "specified", "using", "the", "provided", "parser", "." ]
c8899237db6122127f16e3d8a740c1f8657c2ae3
https://github.com/klarna/HiveRunner/blob/c8899237db6122127f16e3d8a740c1f8657c2ae3/src/main/java/com/klarna/hiverunner/data/InsertIntoTable.java#L172-L175
162,599
klarna/HiveRunner
src/main/java/com/klarna/hiverunner/data/InsertIntoTable.java
InsertIntoTable.set
public InsertIntoTable set(String name, Object value) { builder.set(name, value); return this; }
java
public InsertIntoTable set(String name, Object value) { builder.set(name, value); return this; }
[ "public", "InsertIntoTable", "set", "(", "String", "name", ",", "Object", "value", ")", "{", "builder", ".", "set", "(", "name", ",", "value", ")", ";", "return", "this", ";", "}" ]
Set the given column name to the given value. @param name The column name to set. @param value the value to set. @return {@code this} @throws IllegalArgumentException if a column name does not exist in the table.
[ "Set", "the", "given", "column", "name", "to", "the", "given", "value", "." ]
c8899237db6122127f16e3d8a740c1f8657c2ae3
https://github.com/klarna/HiveRunner/blob/c8899237db6122127f16e3d8a740c1f8657c2ae3/src/main/java/com/klarna/hiverunner/data/InsertIntoTable.java#L195-L198