id
int32 0
252k
| repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
sequence | docstring
stringlengths 3
17.3k
| docstring_tokens
sequence | sha
stringlengths 40
40
| url
stringlengths 87
242
|
---|---|---|---|---|---|---|---|---|---|---|---|
1,000 | ethereum/pyrlp | rlp/codec.py | decode | def decode(rlp, sedes=None, strict=True, recursive_cache=False, **kwargs):
"""Decode an RLP encoded object.
If the deserialized result `obj` has an attribute :attr:`_cached_rlp` (e.g. if `sedes` is a
subclass of :class:`rlp.Serializable`) it will be set to `rlp`, which will improve performance
on subsequent :func:`rlp.encode` calls. Bear in mind however that `obj` needs to make sure that
this value is updated whenever one of its fields changes or prevent such changes entirely
(:class:`rlp.sedes.Serializable` does the latter).
:param sedes: an object implementing a function ``deserialize(code)`` which will be applied
after decoding, or ``None`` if no deserialization should be performed
:param \*\*kwargs: additional keyword arguments that will be passed to the deserializer
:param strict: if false inputs that are longer than necessary don't cause an exception
:returns: the decoded and maybe deserialized Python object
:raises: :exc:`rlp.DecodingError` if the input string does not end after the root item and
`strict` is true
:raises: :exc:`rlp.DeserializationError` if the deserialization fails
"""
if not is_bytes(rlp):
raise DecodingError('Can only decode RLP bytes, got type %s' % type(rlp).__name__, rlp)
try:
item, per_item_rlp, end = consume_item(rlp, 0)
except IndexError:
raise DecodingError('RLP string too short', rlp)
if end != len(rlp) and strict:
msg = 'RLP string ends with {} superfluous bytes'.format(len(rlp) - end)
raise DecodingError(msg, rlp)
if sedes:
obj = sedes.deserialize(item, **kwargs)
if is_sequence(obj) or hasattr(obj, '_cached_rlp'):
_apply_rlp_cache(obj, per_item_rlp, recursive_cache)
return obj
else:
return item | python | def decode(rlp, sedes=None, strict=True, recursive_cache=False, **kwargs):
"""Decode an RLP encoded object.
If the deserialized result `obj` has an attribute :attr:`_cached_rlp` (e.g. if `sedes` is a
subclass of :class:`rlp.Serializable`) it will be set to `rlp`, which will improve performance
on subsequent :func:`rlp.encode` calls. Bear in mind however that `obj` needs to make sure that
this value is updated whenever one of its fields changes or prevent such changes entirely
(:class:`rlp.sedes.Serializable` does the latter).
:param sedes: an object implementing a function ``deserialize(code)`` which will be applied
after decoding, or ``None`` if no deserialization should be performed
:param \*\*kwargs: additional keyword arguments that will be passed to the deserializer
:param strict: if false inputs that are longer than necessary don't cause an exception
:returns: the decoded and maybe deserialized Python object
:raises: :exc:`rlp.DecodingError` if the input string does not end after the root item and
`strict` is true
:raises: :exc:`rlp.DeserializationError` if the deserialization fails
"""
if not is_bytes(rlp):
raise DecodingError('Can only decode RLP bytes, got type %s' % type(rlp).__name__, rlp)
try:
item, per_item_rlp, end = consume_item(rlp, 0)
except IndexError:
raise DecodingError('RLP string too short', rlp)
if end != len(rlp) and strict:
msg = 'RLP string ends with {} superfluous bytes'.format(len(rlp) - end)
raise DecodingError(msg, rlp)
if sedes:
obj = sedes.deserialize(item, **kwargs)
if is_sequence(obj) or hasattr(obj, '_cached_rlp'):
_apply_rlp_cache(obj, per_item_rlp, recursive_cache)
return obj
else:
return item | [
"def",
"decode",
"(",
"rlp",
",",
"sedes",
"=",
"None",
",",
"strict",
"=",
"True",
",",
"recursive_cache",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"is_bytes",
"(",
"rlp",
")",
":",
"raise",
"DecodingError",
"(",
"'Can only decode RLP bytes, got type %s'",
"%",
"type",
"(",
"rlp",
")",
".",
"__name__",
",",
"rlp",
")",
"try",
":",
"item",
",",
"per_item_rlp",
",",
"end",
"=",
"consume_item",
"(",
"rlp",
",",
"0",
")",
"except",
"IndexError",
":",
"raise",
"DecodingError",
"(",
"'RLP string too short'",
",",
"rlp",
")",
"if",
"end",
"!=",
"len",
"(",
"rlp",
")",
"and",
"strict",
":",
"msg",
"=",
"'RLP string ends with {} superfluous bytes'",
".",
"format",
"(",
"len",
"(",
"rlp",
")",
"-",
"end",
")",
"raise",
"DecodingError",
"(",
"msg",
",",
"rlp",
")",
"if",
"sedes",
":",
"obj",
"=",
"sedes",
".",
"deserialize",
"(",
"item",
",",
"*",
"*",
"kwargs",
")",
"if",
"is_sequence",
"(",
"obj",
")",
"or",
"hasattr",
"(",
"obj",
",",
"'_cached_rlp'",
")",
":",
"_apply_rlp_cache",
"(",
"obj",
",",
"per_item_rlp",
",",
"recursive_cache",
")",
"return",
"obj",
"else",
":",
"return",
"item"
] | Decode an RLP encoded object.
If the deserialized result `obj` has an attribute :attr:`_cached_rlp` (e.g. if `sedes` is a
subclass of :class:`rlp.Serializable`) it will be set to `rlp`, which will improve performance
on subsequent :func:`rlp.encode` calls. Bear in mind however that `obj` needs to make sure that
this value is updated whenever one of its fields changes or prevent such changes entirely
(:class:`rlp.sedes.Serializable` does the latter).
:param sedes: an object implementing a function ``deserialize(code)`` which will be applied
after decoding, or ``None`` if no deserialization should be performed
:param \*\*kwargs: additional keyword arguments that will be passed to the deserializer
:param strict: if false inputs that are longer than necessary don't cause an exception
:returns: the decoded and maybe deserialized Python object
:raises: :exc:`rlp.DecodingError` if the input string does not end after the root item and
`strict` is true
:raises: :exc:`rlp.DeserializationError` if the deserialization fails | [
"Decode",
"an",
"RLP",
"encoded",
"object",
"."
] | bb898f8056da3973204c699621350bf9565e43df | https://github.com/ethereum/pyrlp/blob/bb898f8056da3973204c699621350bf9565e43df/rlp/codec.py#L209-L242 |
1,001 | ethereum/pyrlp | rlp/codec.py | infer_sedes | def infer_sedes(obj):
"""Try to find a sedes objects suitable for a given Python object.
The sedes objects considered are `obj`'s class, `big_endian_int` and
`binary`. If `obj` is a sequence, a :class:`rlp.sedes.List` will be
constructed recursively.
:param obj: the python object for which to find a sedes object
:raises: :exc:`TypeError` if no appropriate sedes could be found
"""
if is_sedes(obj.__class__):
return obj.__class__
elif not isinstance(obj, bool) and isinstance(obj, int) and obj >= 0:
return big_endian_int
elif BinaryClass.is_valid_type(obj):
return binary
elif not isinstance(obj, str) and isinstance(obj, collections.Sequence):
return List(map(infer_sedes, obj))
elif isinstance(obj, bool):
return boolean
elif isinstance(obj, str):
return text
msg = 'Did not find sedes handling type {}'.format(type(obj).__name__)
raise TypeError(msg) | python | def infer_sedes(obj):
"""Try to find a sedes objects suitable for a given Python object.
The sedes objects considered are `obj`'s class, `big_endian_int` and
`binary`. If `obj` is a sequence, a :class:`rlp.sedes.List` will be
constructed recursively.
:param obj: the python object for which to find a sedes object
:raises: :exc:`TypeError` if no appropriate sedes could be found
"""
if is_sedes(obj.__class__):
return obj.__class__
elif not isinstance(obj, bool) and isinstance(obj, int) and obj >= 0:
return big_endian_int
elif BinaryClass.is_valid_type(obj):
return binary
elif not isinstance(obj, str) and isinstance(obj, collections.Sequence):
return List(map(infer_sedes, obj))
elif isinstance(obj, bool):
return boolean
elif isinstance(obj, str):
return text
msg = 'Did not find sedes handling type {}'.format(type(obj).__name__)
raise TypeError(msg) | [
"def",
"infer_sedes",
"(",
"obj",
")",
":",
"if",
"is_sedes",
"(",
"obj",
".",
"__class__",
")",
":",
"return",
"obj",
".",
"__class__",
"elif",
"not",
"isinstance",
"(",
"obj",
",",
"bool",
")",
"and",
"isinstance",
"(",
"obj",
",",
"int",
")",
"and",
"obj",
">=",
"0",
":",
"return",
"big_endian_int",
"elif",
"BinaryClass",
".",
"is_valid_type",
"(",
"obj",
")",
":",
"return",
"binary",
"elif",
"not",
"isinstance",
"(",
"obj",
",",
"str",
")",
"and",
"isinstance",
"(",
"obj",
",",
"collections",
".",
"Sequence",
")",
":",
"return",
"List",
"(",
"map",
"(",
"infer_sedes",
",",
"obj",
")",
")",
"elif",
"isinstance",
"(",
"obj",
",",
"bool",
")",
":",
"return",
"boolean",
"elif",
"isinstance",
"(",
"obj",
",",
"str",
")",
":",
"return",
"text",
"msg",
"=",
"'Did not find sedes handling type {}'",
".",
"format",
"(",
"type",
"(",
"obj",
")",
".",
"__name__",
")",
"raise",
"TypeError",
"(",
"msg",
")"
] | Try to find a sedes objects suitable for a given Python object.
The sedes objects considered are `obj`'s class, `big_endian_int` and
`binary`. If `obj` is a sequence, a :class:`rlp.sedes.List` will be
constructed recursively.
:param obj: the python object for which to find a sedes object
:raises: :exc:`TypeError` if no appropriate sedes could be found | [
"Try",
"to",
"find",
"a",
"sedes",
"objects",
"suitable",
"for",
"a",
"given",
"Python",
"object",
"."
] | bb898f8056da3973204c699621350bf9565e43df | https://github.com/ethereum/pyrlp/blob/bb898f8056da3973204c699621350bf9565e43df/rlp/codec.py#L261-L284 |
1,002 | graphite-project/carbonate | carbonate/config.py | Config.destinations | def destinations(self, cluster='main'):
"""Return a list of destinations for a cluster."""
if not self.config.has_section(cluster):
raise SystemExit("Cluster '%s' not defined in %s"
% (cluster, self.config_file))
destinations = self.config.get(cluster, 'destinations')
return destinations.replace(' ', '').split(',') | python | def destinations(self, cluster='main'):
"""Return a list of destinations for a cluster."""
if not self.config.has_section(cluster):
raise SystemExit("Cluster '%s' not defined in %s"
% (cluster, self.config_file))
destinations = self.config.get(cluster, 'destinations')
return destinations.replace(' ', '').split(',') | [
"def",
"destinations",
"(",
"self",
",",
"cluster",
"=",
"'main'",
")",
":",
"if",
"not",
"self",
".",
"config",
".",
"has_section",
"(",
"cluster",
")",
":",
"raise",
"SystemExit",
"(",
"\"Cluster '%s' not defined in %s\"",
"%",
"(",
"cluster",
",",
"self",
".",
"config_file",
")",
")",
"destinations",
"=",
"self",
".",
"config",
".",
"get",
"(",
"cluster",
",",
"'destinations'",
")",
"return",
"destinations",
".",
"replace",
"(",
"' '",
",",
"''",
")",
".",
"split",
"(",
"','",
")"
] | Return a list of destinations for a cluster. | [
"Return",
"a",
"list",
"of",
"destinations",
"for",
"a",
"cluster",
"."
] | b876a85b321fbd7c18a6721bed2e7807b79b4929 | https://github.com/graphite-project/carbonate/blob/b876a85b321fbd7c18a6721bed2e7807b79b4929/carbonate/config.py#L21-L27 |
1,003 | graphite-project/carbonate | carbonate/config.py | Config.replication_factor | def replication_factor(self, cluster='main'):
"""Return the replication factor for a cluster as an integer."""
if not self.config.has_section(cluster):
raise SystemExit("Cluster '%s' not defined in %s"
% (cluster, self.config_file))
return int(self.config.get(cluster, 'replication_factor')) | python | def replication_factor(self, cluster='main'):
"""Return the replication factor for a cluster as an integer."""
if not self.config.has_section(cluster):
raise SystemExit("Cluster '%s' not defined in %s"
% (cluster, self.config_file))
return int(self.config.get(cluster, 'replication_factor')) | [
"def",
"replication_factor",
"(",
"self",
",",
"cluster",
"=",
"'main'",
")",
":",
"if",
"not",
"self",
".",
"config",
".",
"has_section",
"(",
"cluster",
")",
":",
"raise",
"SystemExit",
"(",
"\"Cluster '%s' not defined in %s\"",
"%",
"(",
"cluster",
",",
"self",
".",
"config_file",
")",
")",
"return",
"int",
"(",
"self",
".",
"config",
".",
"get",
"(",
"cluster",
",",
"'replication_factor'",
")",
")"
] | Return the replication factor for a cluster as an integer. | [
"Return",
"the",
"replication",
"factor",
"for",
"a",
"cluster",
"as",
"an",
"integer",
"."
] | b876a85b321fbd7c18a6721bed2e7807b79b4929 | https://github.com/graphite-project/carbonate/blob/b876a85b321fbd7c18a6721bed2e7807b79b4929/carbonate/config.py#L29-L34 |
1,004 | graphite-project/carbonate | carbonate/config.py | Config.ssh_user | def ssh_user(self, cluster='main'):
"""Return the ssh user for a cluster or current user if undefined."""
if not self.config.has_section(cluster):
raise SystemExit("Cluster '%s' not defined in %s"
% (cluster, self.config_file))
try:
return self.config.get(cluster, 'ssh_user')
except NoOptionError:
return pwd.getpwuid(os.getuid()).pw_name | python | def ssh_user(self, cluster='main'):
"""Return the ssh user for a cluster or current user if undefined."""
if not self.config.has_section(cluster):
raise SystemExit("Cluster '%s' not defined in %s"
% (cluster, self.config_file))
try:
return self.config.get(cluster, 'ssh_user')
except NoOptionError:
return pwd.getpwuid(os.getuid()).pw_name | [
"def",
"ssh_user",
"(",
"self",
",",
"cluster",
"=",
"'main'",
")",
":",
"if",
"not",
"self",
".",
"config",
".",
"has_section",
"(",
"cluster",
")",
":",
"raise",
"SystemExit",
"(",
"\"Cluster '%s' not defined in %s\"",
"%",
"(",
"cluster",
",",
"self",
".",
"config_file",
")",
")",
"try",
":",
"return",
"self",
".",
"config",
".",
"get",
"(",
"cluster",
",",
"'ssh_user'",
")",
"except",
"NoOptionError",
":",
"return",
"pwd",
".",
"getpwuid",
"(",
"os",
".",
"getuid",
"(",
")",
")",
".",
"pw_name"
] | Return the ssh user for a cluster or current user if undefined. | [
"Return",
"the",
"ssh",
"user",
"for",
"a",
"cluster",
"or",
"current",
"user",
"if",
"undefined",
"."
] | b876a85b321fbd7c18a6721bed2e7807b79b4929 | https://github.com/graphite-project/carbonate/blob/b876a85b321fbd7c18a6721bed2e7807b79b4929/carbonate/config.py#L36-L44 |
1,005 | graphite-project/carbonate | carbonate/config.py | Config.whisper_lock_writes | def whisper_lock_writes(self, cluster='main'):
"""Lock whisper files during carbon-sync."""
if not self.config.has_section(cluster):
raise SystemExit("Cluster '%s' not defined in %s"
% (cluster, self.config_file))
try:
return bool(self.config.get(cluster, 'whisper_lock_writes'))
except NoOptionError:
return False | python | def whisper_lock_writes(self, cluster='main'):
"""Lock whisper files during carbon-sync."""
if not self.config.has_section(cluster):
raise SystemExit("Cluster '%s' not defined in %s"
% (cluster, self.config_file))
try:
return bool(self.config.get(cluster, 'whisper_lock_writes'))
except NoOptionError:
return False | [
"def",
"whisper_lock_writes",
"(",
"self",
",",
"cluster",
"=",
"'main'",
")",
":",
"if",
"not",
"self",
".",
"config",
".",
"has_section",
"(",
"cluster",
")",
":",
"raise",
"SystemExit",
"(",
"\"Cluster '%s' not defined in %s\"",
"%",
"(",
"cluster",
",",
"self",
".",
"config_file",
")",
")",
"try",
":",
"return",
"bool",
"(",
"self",
".",
"config",
".",
"get",
"(",
"cluster",
",",
"'whisper_lock_writes'",
")",
")",
"except",
"NoOptionError",
":",
"return",
"False"
] | Lock whisper files during carbon-sync. | [
"Lock",
"whisper",
"files",
"during",
"carbon",
"-",
"sync",
"."
] | b876a85b321fbd7c18a6721bed2e7807b79b4929 | https://github.com/graphite-project/carbonate/blob/b876a85b321fbd7c18a6721bed2e7807b79b4929/carbonate/config.py#L46-L54 |
1,006 | graphite-project/carbonate | carbonate/config.py | Config.hashing_type | def hashing_type(self, cluster='main'):
"""Hashing type of cluster."""
if not self.config.has_section(cluster):
raise SystemExit("Cluster '%s' not defined in %s"
% (cluster, self.config_file))
hashing_type = 'carbon_ch'
try:
return self.config.get(cluster, 'hashing_type')
except NoOptionError:
return hashing_type | python | def hashing_type(self, cluster='main'):
"""Hashing type of cluster."""
if not self.config.has_section(cluster):
raise SystemExit("Cluster '%s' not defined in %s"
% (cluster, self.config_file))
hashing_type = 'carbon_ch'
try:
return self.config.get(cluster, 'hashing_type')
except NoOptionError:
return hashing_type | [
"def",
"hashing_type",
"(",
"self",
",",
"cluster",
"=",
"'main'",
")",
":",
"if",
"not",
"self",
".",
"config",
".",
"has_section",
"(",
"cluster",
")",
":",
"raise",
"SystemExit",
"(",
"\"Cluster '%s' not defined in %s\"",
"%",
"(",
"cluster",
",",
"self",
".",
"config_file",
")",
")",
"hashing_type",
"=",
"'carbon_ch'",
"try",
":",
"return",
"self",
".",
"config",
".",
"get",
"(",
"cluster",
",",
"'hashing_type'",
")",
"except",
"NoOptionError",
":",
"return",
"hashing_type"
] | Hashing type of cluster. | [
"Hashing",
"type",
"of",
"cluster",
"."
] | b876a85b321fbd7c18a6721bed2e7807b79b4929 | https://github.com/graphite-project/carbonate/blob/b876a85b321fbd7c18a6721bed2e7807b79b4929/carbonate/config.py#L56-L65 |
1,007 | graphite-project/carbonate | carbonate/fill.py | fill_archives | def fill_archives(src, dst, startFrom, endAt=0, overwrite=False,
lock_writes=False):
"""
Fills gaps in dst using data from src.
src is the path as a string
dst is the path as a string
startFrom is the latest timestamp (archives are read backward)
endAt is the earliest timestamp (archives are read backward).
if absent, we take the earliest timestamp in the archive
overwrite will write all non null points from src dst.
lock using whisper lock if true
"""
if lock_writes is False:
whisper.LOCK = False
elif whisper.CAN_LOCK and lock_writes is True:
whisper.LOCK = True
header = whisper.info(dst)
archives = header['archives']
archives = sorted(archives, key=lambda t: t['retention'])
for archive in archives:
fromTime = max(endAt, time.time() - archive['retention'])
if fromTime >= startFrom:
continue
(timeInfo, values) = whisper.fetch(dst, fromTime, untilTime=startFrom)
(start, end, step) = timeInfo
gapstart = None
for value in values:
has_value = bool(value and not overwrite)
if not has_value and not gapstart:
gapstart = start
elif has_value and gapstart:
if (start - gapstart) >= archive['secondsPerPoint']:
fill(src, dst, gapstart - step, start)
gapstart = None
start += step
# fill if this gap continues to the end
if gapstart:
fill(src, dst, gapstart - step, end - step)
# The next archive only needs to be filled up to the latest point
# in time we updated.
startFrom = fromTime | python | def fill_archives(src, dst, startFrom, endAt=0, overwrite=False,
lock_writes=False):
"""
Fills gaps in dst using data from src.
src is the path as a string
dst is the path as a string
startFrom is the latest timestamp (archives are read backward)
endAt is the earliest timestamp (archives are read backward).
if absent, we take the earliest timestamp in the archive
overwrite will write all non null points from src dst.
lock using whisper lock if true
"""
if lock_writes is False:
whisper.LOCK = False
elif whisper.CAN_LOCK and lock_writes is True:
whisper.LOCK = True
header = whisper.info(dst)
archives = header['archives']
archives = sorted(archives, key=lambda t: t['retention'])
for archive in archives:
fromTime = max(endAt, time.time() - archive['retention'])
if fromTime >= startFrom:
continue
(timeInfo, values) = whisper.fetch(dst, fromTime, untilTime=startFrom)
(start, end, step) = timeInfo
gapstart = None
for value in values:
has_value = bool(value and not overwrite)
if not has_value and not gapstart:
gapstart = start
elif has_value and gapstart:
if (start - gapstart) >= archive['secondsPerPoint']:
fill(src, dst, gapstart - step, start)
gapstart = None
start += step
# fill if this gap continues to the end
if gapstart:
fill(src, dst, gapstart - step, end - step)
# The next archive only needs to be filled up to the latest point
# in time we updated.
startFrom = fromTime | [
"def",
"fill_archives",
"(",
"src",
",",
"dst",
",",
"startFrom",
",",
"endAt",
"=",
"0",
",",
"overwrite",
"=",
"False",
",",
"lock_writes",
"=",
"False",
")",
":",
"if",
"lock_writes",
"is",
"False",
":",
"whisper",
".",
"LOCK",
"=",
"False",
"elif",
"whisper",
".",
"CAN_LOCK",
"and",
"lock_writes",
"is",
"True",
":",
"whisper",
".",
"LOCK",
"=",
"True",
"header",
"=",
"whisper",
".",
"info",
"(",
"dst",
")",
"archives",
"=",
"header",
"[",
"'archives'",
"]",
"archives",
"=",
"sorted",
"(",
"archives",
",",
"key",
"=",
"lambda",
"t",
":",
"t",
"[",
"'retention'",
"]",
")",
"for",
"archive",
"in",
"archives",
":",
"fromTime",
"=",
"max",
"(",
"endAt",
",",
"time",
".",
"time",
"(",
")",
"-",
"archive",
"[",
"'retention'",
"]",
")",
"if",
"fromTime",
">=",
"startFrom",
":",
"continue",
"(",
"timeInfo",
",",
"values",
")",
"=",
"whisper",
".",
"fetch",
"(",
"dst",
",",
"fromTime",
",",
"untilTime",
"=",
"startFrom",
")",
"(",
"start",
",",
"end",
",",
"step",
")",
"=",
"timeInfo",
"gapstart",
"=",
"None",
"for",
"value",
"in",
"values",
":",
"has_value",
"=",
"bool",
"(",
"value",
"and",
"not",
"overwrite",
")",
"if",
"not",
"has_value",
"and",
"not",
"gapstart",
":",
"gapstart",
"=",
"start",
"elif",
"has_value",
"and",
"gapstart",
":",
"if",
"(",
"start",
"-",
"gapstart",
")",
">=",
"archive",
"[",
"'secondsPerPoint'",
"]",
":",
"fill",
"(",
"src",
",",
"dst",
",",
"gapstart",
"-",
"step",
",",
"start",
")",
"gapstart",
"=",
"None",
"start",
"+=",
"step",
"# fill if this gap continues to the end",
"if",
"gapstart",
":",
"fill",
"(",
"src",
",",
"dst",
",",
"gapstart",
"-",
"step",
",",
"end",
"-",
"step",
")",
"# The next archive only needs to be filled up to the latest point",
"# in time we updated.",
"startFrom",
"=",
"fromTime"
] | Fills gaps in dst using data from src.
src is the path as a string
dst is the path as a string
startFrom is the latest timestamp (archives are read backward)
endAt is the earliest timestamp (archives are read backward).
if absent, we take the earliest timestamp in the archive
overwrite will write all non null points from src dst.
lock using whisper lock if true | [
"Fills",
"gaps",
"in",
"dst",
"using",
"data",
"from",
"src",
"."
] | b876a85b321fbd7c18a6721bed2e7807b79b4929 | https://github.com/graphite-project/carbonate/blob/b876a85b321fbd7c18a6721bed2e7807b79b4929/carbonate/fill.py#L88-L133 |
1,008 | graphite-project/carbonate | carbonate/stale.py | data | def data(path, hours, offset=0):
"""
Does the metric at ``path`` have any whisper data newer than ``hours``?
If ``offset`` is not None, view the ``hours`` prior to ``offset`` hours
ago, instead of from right now.
"""
now = time.time()
end = now - _to_sec(offset) # Will default to now
start = end - _to_sec(hours)
_data = whisper.fetch(path, start, end)
return all(x is None for x in _data[-1]) | python | def data(path, hours, offset=0):
"""
Does the metric at ``path`` have any whisper data newer than ``hours``?
If ``offset`` is not None, view the ``hours`` prior to ``offset`` hours
ago, instead of from right now.
"""
now = time.time()
end = now - _to_sec(offset) # Will default to now
start = end - _to_sec(hours)
_data = whisper.fetch(path, start, end)
return all(x is None for x in _data[-1]) | [
"def",
"data",
"(",
"path",
",",
"hours",
",",
"offset",
"=",
"0",
")",
":",
"now",
"=",
"time",
".",
"time",
"(",
")",
"end",
"=",
"now",
"-",
"_to_sec",
"(",
"offset",
")",
"# Will default to now",
"start",
"=",
"end",
"-",
"_to_sec",
"(",
"hours",
")",
"_data",
"=",
"whisper",
".",
"fetch",
"(",
"path",
",",
"start",
",",
"end",
")",
"return",
"all",
"(",
"x",
"is",
"None",
"for",
"x",
"in",
"_data",
"[",
"-",
"1",
"]",
")"
] | Does the metric at ``path`` have any whisper data newer than ``hours``?
If ``offset`` is not None, view the ``hours`` prior to ``offset`` hours
ago, instead of from right now. | [
"Does",
"the",
"metric",
"at",
"path",
"have",
"any",
"whisper",
"data",
"newer",
"than",
"hours",
"?"
] | b876a85b321fbd7c18a6721bed2e7807b79b4929 | https://github.com/graphite-project/carbonate/blob/b876a85b321fbd7c18a6721bed2e7807b79b4929/carbonate/stale.py#L11-L22 |
1,009 | graphite-project/carbonate | carbonate/stale.py | stat | def stat(path, hours, offset=None):
"""
Has the metric file at ``path`` been modified since ``hours`` ago?
.. note::
``offset`` is only for compatibility with ``data()`` and is ignored.
"""
return os.stat(path).st_mtime < (time.time() - _to_sec(hours)) | python | def stat(path, hours, offset=None):
"""
Has the metric file at ``path`` been modified since ``hours`` ago?
.. note::
``offset`` is only for compatibility with ``data()`` and is ignored.
"""
return os.stat(path).st_mtime < (time.time() - _to_sec(hours)) | [
"def",
"stat",
"(",
"path",
",",
"hours",
",",
"offset",
"=",
"None",
")",
":",
"return",
"os",
".",
"stat",
"(",
"path",
")",
".",
"st_mtime",
"<",
"(",
"time",
".",
"time",
"(",
")",
"-",
"_to_sec",
"(",
"hours",
")",
")"
] | Has the metric file at ``path`` been modified since ``hours`` ago?
.. note::
``offset`` is only for compatibility with ``data()`` and is ignored. | [
"Has",
"the",
"metric",
"file",
"at",
"path",
"been",
"modified",
"since",
"hours",
"ago?"
] | b876a85b321fbd7c18a6721bed2e7807b79b4929 | https://github.com/graphite-project/carbonate/blob/b876a85b321fbd7c18a6721bed2e7807b79b4929/carbonate/stale.py#L25-L32 |
1,010 | holgern/pyedflib | util/refguide_check.py | short_path | def short_path(path, cwd=None):
"""
Return relative or absolute path name, whichever is shortest.
"""
if not isinstance(path, str):
return path
if cwd is None:
cwd = os.getcwd()
abspath = os.path.abspath(path)
relpath = os.path.relpath(path, cwd)
if len(abspath) <= len(relpath):
return abspath
return relpath | python | def short_path(path, cwd=None):
"""
Return relative or absolute path name, whichever is shortest.
"""
if not isinstance(path, str):
return path
if cwd is None:
cwd = os.getcwd()
abspath = os.path.abspath(path)
relpath = os.path.relpath(path, cwd)
if len(abspath) <= len(relpath):
return abspath
return relpath | [
"def",
"short_path",
"(",
"path",
",",
"cwd",
"=",
"None",
")",
":",
"if",
"not",
"isinstance",
"(",
"path",
",",
"str",
")",
":",
"return",
"path",
"if",
"cwd",
"is",
"None",
":",
"cwd",
"=",
"os",
".",
"getcwd",
"(",
")",
"abspath",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"path",
")",
"relpath",
"=",
"os",
".",
"path",
".",
"relpath",
"(",
"path",
",",
"cwd",
")",
"if",
"len",
"(",
"abspath",
")",
"<=",
"len",
"(",
"relpath",
")",
":",
"return",
"abspath",
"return",
"relpath"
] | Return relative or absolute path name, whichever is shortest. | [
"Return",
"relative",
"or",
"absolute",
"path",
"name",
"whichever",
"is",
"shortest",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/util/refguide_check.py#L74-L86 |
1,011 | holgern/pyedflib | util/refguide_check.py | check_rest | def check_rest(module, names, dots=True):
"""
Check reStructuredText formatting of docstrings
Returns: [(name, success_flag, output), ...]
"""
try:
skip_types = (dict, str, unicode, float, int)
except NameError:
# python 3
skip_types = (dict, str, float, int)
results = []
if module.__name__[6:] not in OTHER_MODULE_DOCS:
results += [(module.__name__,) +
validate_rst_syntax(inspect.getdoc(module),
module.__name__, dots=dots)]
for name in names:
full_name = module.__name__ + '.' + name
obj = getattr(module, name, None)
if obj is None:
results.append((full_name, False, "%s has no docstring" % (full_name,)))
continue
elif isinstance(obj, skip_types):
continue
if inspect.ismodule(obj):
text = inspect.getdoc(obj)
else:
try:
text = str(get_doc_object(obj))
except:
import traceback
results.append((full_name, False,
"Error in docstring format!\n" +
traceback.format_exc()))
continue
m = re.search("([\x00-\x09\x0b-\x1f])", text)
if m:
msg = ("Docstring contains a non-printable character %r! "
"Maybe forgot r\"\"\"?" % (m.group(1),))
results.append((full_name, False, msg))
continue
try:
src_file = short_path(inspect.getsourcefile(obj))
except TypeError:
src_file = None
if src_file:
file_full_name = src_file + ':' + full_name
else:
file_full_name = full_name
results.append((full_name,) +
validate_rst_syntax(text, file_full_name, dots=dots))
return results | python | def check_rest(module, names, dots=True):
"""
Check reStructuredText formatting of docstrings
Returns: [(name, success_flag, output), ...]
"""
try:
skip_types = (dict, str, unicode, float, int)
except NameError:
# python 3
skip_types = (dict, str, float, int)
results = []
if module.__name__[6:] not in OTHER_MODULE_DOCS:
results += [(module.__name__,) +
validate_rst_syntax(inspect.getdoc(module),
module.__name__, dots=dots)]
for name in names:
full_name = module.__name__ + '.' + name
obj = getattr(module, name, None)
if obj is None:
results.append((full_name, False, "%s has no docstring" % (full_name,)))
continue
elif isinstance(obj, skip_types):
continue
if inspect.ismodule(obj):
text = inspect.getdoc(obj)
else:
try:
text = str(get_doc_object(obj))
except:
import traceback
results.append((full_name, False,
"Error in docstring format!\n" +
traceback.format_exc()))
continue
m = re.search("([\x00-\x09\x0b-\x1f])", text)
if m:
msg = ("Docstring contains a non-printable character %r! "
"Maybe forgot r\"\"\"?" % (m.group(1),))
results.append((full_name, False, msg))
continue
try:
src_file = short_path(inspect.getsourcefile(obj))
except TypeError:
src_file = None
if src_file:
file_full_name = src_file + ':' + full_name
else:
file_full_name = full_name
results.append((full_name,) +
validate_rst_syntax(text, file_full_name, dots=dots))
return results | [
"def",
"check_rest",
"(",
"module",
",",
"names",
",",
"dots",
"=",
"True",
")",
":",
"try",
":",
"skip_types",
"=",
"(",
"dict",
",",
"str",
",",
"unicode",
",",
"float",
",",
"int",
")",
"except",
"NameError",
":",
"# python 3",
"skip_types",
"=",
"(",
"dict",
",",
"str",
",",
"float",
",",
"int",
")",
"results",
"=",
"[",
"]",
"if",
"module",
".",
"__name__",
"[",
"6",
":",
"]",
"not",
"in",
"OTHER_MODULE_DOCS",
":",
"results",
"+=",
"[",
"(",
"module",
".",
"__name__",
",",
")",
"+",
"validate_rst_syntax",
"(",
"inspect",
".",
"getdoc",
"(",
"module",
")",
",",
"module",
".",
"__name__",
",",
"dots",
"=",
"dots",
")",
"]",
"for",
"name",
"in",
"names",
":",
"full_name",
"=",
"module",
".",
"__name__",
"+",
"'.'",
"+",
"name",
"obj",
"=",
"getattr",
"(",
"module",
",",
"name",
",",
"None",
")",
"if",
"obj",
"is",
"None",
":",
"results",
".",
"append",
"(",
"(",
"full_name",
",",
"False",
",",
"\"%s has no docstring\"",
"%",
"(",
"full_name",
",",
")",
")",
")",
"continue",
"elif",
"isinstance",
"(",
"obj",
",",
"skip_types",
")",
":",
"continue",
"if",
"inspect",
".",
"ismodule",
"(",
"obj",
")",
":",
"text",
"=",
"inspect",
".",
"getdoc",
"(",
"obj",
")",
"else",
":",
"try",
":",
"text",
"=",
"str",
"(",
"get_doc_object",
"(",
"obj",
")",
")",
"except",
":",
"import",
"traceback",
"results",
".",
"append",
"(",
"(",
"full_name",
",",
"False",
",",
"\"Error in docstring format!\\n\"",
"+",
"traceback",
".",
"format_exc",
"(",
")",
")",
")",
"continue",
"m",
"=",
"re",
".",
"search",
"(",
"\"([\\x00-\\x09\\x0b-\\x1f])\"",
",",
"text",
")",
"if",
"m",
":",
"msg",
"=",
"(",
"\"Docstring contains a non-printable character %r! \"",
"\"Maybe forgot r\\\"\\\"\\\"?\"",
"%",
"(",
"m",
".",
"group",
"(",
"1",
")",
",",
")",
")",
"results",
".",
"append",
"(",
"(",
"full_name",
",",
"False",
",",
"msg",
")",
")",
"continue",
"try",
":",
"src_file",
"=",
"short_path",
"(",
"inspect",
".",
"getsourcefile",
"(",
"obj",
")",
")",
"except",
"TypeError",
":",
"src_file",
"=",
"None",
"if",
"src_file",
":",
"file_full_name",
"=",
"src_file",
"+",
"':'",
"+",
"full_name",
"else",
":",
"file_full_name",
"=",
"full_name",
"results",
".",
"append",
"(",
"(",
"full_name",
",",
")",
"+",
"validate_rst_syntax",
"(",
"text",
",",
"file_full_name",
",",
"dots",
"=",
"dots",
")",
")",
"return",
"results"
] | Check reStructuredText formatting of docstrings
Returns: [(name, success_flag, output), ...] | [
"Check",
"reStructuredText",
"formatting",
"of",
"docstrings"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/util/refguide_check.py#L310-L372 |
1,012 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.update_header | def update_header(self):
"""
Updates header to edffile struct
"""
set_technician(self.handle, du(self.technician))
set_recording_additional(self.handle, du(self.recording_additional))
set_patientname(self.handle, du(self.patient_name))
set_patientcode(self.handle, du(self.patient_code))
set_patient_additional(self.handle, du(self.patient_additional))
set_equipment(self.handle, du(self.equipment))
set_admincode(self.handle, du(self.admincode))
if isinstance(self.gender, int):
set_gender(self.handle, self.gender)
elif self.gender == "Male":
set_gender(self.handle, 0)
elif self.gender == "Female":
set_gender(self.handle, 1)
set_datarecord_duration(self.handle, self.duration)
set_number_of_annotation_signals(self.handle, self.number_of_annotations)
set_startdatetime(self.handle, self.recording_start_time.year, self.recording_start_time.month,
self.recording_start_time.day, self.recording_start_time.hour,
self.recording_start_time.minute, self.recording_start_time.second)
if isstr(self.birthdate):
if self.birthdate != '':
birthday = datetime.strptime(self.birthdate, '%d %b %Y').date()
set_birthdate(self.handle, birthday.year, birthday.month, birthday.day)
else:
set_birthdate(self.handle, self.birthdate.year, self.birthdate.month, self.birthdate.day)
for i in np.arange(self.n_channels):
set_samplefrequency(self.handle, i, self.channels[i]['sample_rate'])
set_physical_maximum(self.handle, i, self.channels[i]['physical_max'])
set_physical_minimum(self.handle, i, self.channels[i]['physical_min'])
set_digital_maximum(self.handle, i, self.channels[i]['digital_max'])
set_digital_minimum(self.handle, i, self.channels[i]['digital_min'])
set_label(self.handle, i, du(self.channels[i]['label']))
set_physical_dimension(self.handle, i, du(self.channels[i]['dimension']))
set_transducer(self.handle, i, du(self.channels[i]['transducer']))
set_prefilter(self.handle, i, du(self.channels[i]['prefilter'])) | python | def update_header(self):
"""
Updates header to edffile struct
"""
set_technician(self.handle, du(self.technician))
set_recording_additional(self.handle, du(self.recording_additional))
set_patientname(self.handle, du(self.patient_name))
set_patientcode(self.handle, du(self.patient_code))
set_patient_additional(self.handle, du(self.patient_additional))
set_equipment(self.handle, du(self.equipment))
set_admincode(self.handle, du(self.admincode))
if isinstance(self.gender, int):
set_gender(self.handle, self.gender)
elif self.gender == "Male":
set_gender(self.handle, 0)
elif self.gender == "Female":
set_gender(self.handle, 1)
set_datarecord_duration(self.handle, self.duration)
set_number_of_annotation_signals(self.handle, self.number_of_annotations)
set_startdatetime(self.handle, self.recording_start_time.year, self.recording_start_time.month,
self.recording_start_time.day, self.recording_start_time.hour,
self.recording_start_time.minute, self.recording_start_time.second)
if isstr(self.birthdate):
if self.birthdate != '':
birthday = datetime.strptime(self.birthdate, '%d %b %Y').date()
set_birthdate(self.handle, birthday.year, birthday.month, birthday.day)
else:
set_birthdate(self.handle, self.birthdate.year, self.birthdate.month, self.birthdate.day)
for i in np.arange(self.n_channels):
set_samplefrequency(self.handle, i, self.channels[i]['sample_rate'])
set_physical_maximum(self.handle, i, self.channels[i]['physical_max'])
set_physical_minimum(self.handle, i, self.channels[i]['physical_min'])
set_digital_maximum(self.handle, i, self.channels[i]['digital_max'])
set_digital_minimum(self.handle, i, self.channels[i]['digital_min'])
set_label(self.handle, i, du(self.channels[i]['label']))
set_physical_dimension(self.handle, i, du(self.channels[i]['dimension']))
set_transducer(self.handle, i, du(self.channels[i]['transducer']))
set_prefilter(self.handle, i, du(self.channels[i]['prefilter'])) | [
"def",
"update_header",
"(",
"self",
")",
":",
"set_technician",
"(",
"self",
".",
"handle",
",",
"du",
"(",
"self",
".",
"technician",
")",
")",
"set_recording_additional",
"(",
"self",
".",
"handle",
",",
"du",
"(",
"self",
".",
"recording_additional",
")",
")",
"set_patientname",
"(",
"self",
".",
"handle",
",",
"du",
"(",
"self",
".",
"patient_name",
")",
")",
"set_patientcode",
"(",
"self",
".",
"handle",
",",
"du",
"(",
"self",
".",
"patient_code",
")",
")",
"set_patient_additional",
"(",
"self",
".",
"handle",
",",
"du",
"(",
"self",
".",
"patient_additional",
")",
")",
"set_equipment",
"(",
"self",
".",
"handle",
",",
"du",
"(",
"self",
".",
"equipment",
")",
")",
"set_admincode",
"(",
"self",
".",
"handle",
",",
"du",
"(",
"self",
".",
"admincode",
")",
")",
"if",
"isinstance",
"(",
"self",
".",
"gender",
",",
"int",
")",
":",
"set_gender",
"(",
"self",
".",
"handle",
",",
"self",
".",
"gender",
")",
"elif",
"self",
".",
"gender",
"==",
"\"Male\"",
":",
"set_gender",
"(",
"self",
".",
"handle",
",",
"0",
")",
"elif",
"self",
".",
"gender",
"==",
"\"Female\"",
":",
"set_gender",
"(",
"self",
".",
"handle",
",",
"1",
")",
"set_datarecord_duration",
"(",
"self",
".",
"handle",
",",
"self",
".",
"duration",
")",
"set_number_of_annotation_signals",
"(",
"self",
".",
"handle",
",",
"self",
".",
"number_of_annotations",
")",
"set_startdatetime",
"(",
"self",
".",
"handle",
",",
"self",
".",
"recording_start_time",
".",
"year",
",",
"self",
".",
"recording_start_time",
".",
"month",
",",
"self",
".",
"recording_start_time",
".",
"day",
",",
"self",
".",
"recording_start_time",
".",
"hour",
",",
"self",
".",
"recording_start_time",
".",
"minute",
",",
"self",
".",
"recording_start_time",
".",
"second",
")",
"if",
"isstr",
"(",
"self",
".",
"birthdate",
")",
":",
"if",
"self",
".",
"birthdate",
"!=",
"''",
":",
"birthday",
"=",
"datetime",
".",
"strptime",
"(",
"self",
".",
"birthdate",
",",
"'%d %b %Y'",
")",
".",
"date",
"(",
")",
"set_birthdate",
"(",
"self",
".",
"handle",
",",
"birthday",
".",
"year",
",",
"birthday",
".",
"month",
",",
"birthday",
".",
"day",
")",
"else",
":",
"set_birthdate",
"(",
"self",
".",
"handle",
",",
"self",
".",
"birthdate",
".",
"year",
",",
"self",
".",
"birthdate",
".",
"month",
",",
"self",
".",
"birthdate",
".",
"day",
")",
"for",
"i",
"in",
"np",
".",
"arange",
"(",
"self",
".",
"n_channels",
")",
":",
"set_samplefrequency",
"(",
"self",
".",
"handle",
",",
"i",
",",
"self",
".",
"channels",
"[",
"i",
"]",
"[",
"'sample_rate'",
"]",
")",
"set_physical_maximum",
"(",
"self",
".",
"handle",
",",
"i",
",",
"self",
".",
"channels",
"[",
"i",
"]",
"[",
"'physical_max'",
"]",
")",
"set_physical_minimum",
"(",
"self",
".",
"handle",
",",
"i",
",",
"self",
".",
"channels",
"[",
"i",
"]",
"[",
"'physical_min'",
"]",
")",
"set_digital_maximum",
"(",
"self",
".",
"handle",
",",
"i",
",",
"self",
".",
"channels",
"[",
"i",
"]",
"[",
"'digital_max'",
"]",
")",
"set_digital_minimum",
"(",
"self",
".",
"handle",
",",
"i",
",",
"self",
".",
"channels",
"[",
"i",
"]",
"[",
"'digital_min'",
"]",
")",
"set_label",
"(",
"self",
".",
"handle",
",",
"i",
",",
"du",
"(",
"self",
".",
"channels",
"[",
"i",
"]",
"[",
"'label'",
"]",
")",
")",
"set_physical_dimension",
"(",
"self",
".",
"handle",
",",
"i",
",",
"du",
"(",
"self",
".",
"channels",
"[",
"i",
"]",
"[",
"'dimension'",
"]",
")",
")",
"set_transducer",
"(",
"self",
".",
"handle",
",",
"i",
",",
"du",
"(",
"self",
".",
"channels",
"[",
"i",
"]",
"[",
"'transducer'",
"]",
")",
")",
"set_prefilter",
"(",
"self",
".",
"handle",
",",
"i",
",",
"du",
"(",
"self",
".",
"channels",
"[",
"i",
"]",
"[",
"'prefilter'",
"]",
")",
")"
] | Updates header to edffile struct | [
"Updates",
"header",
"to",
"edffile",
"struct"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L137-L175 |
1,013 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.setHeader | def setHeader(self, fileHeader):
"""
Sets the file header
"""
self.technician = fileHeader["technician"]
self.recording_additional = fileHeader["recording_additional"]
self.patient_name = fileHeader["patientname"]
self.patient_additional = fileHeader["patient_additional"]
self.patient_code = fileHeader["patientcode"]
self.equipment = fileHeader["equipment"]
self.admincode = fileHeader["admincode"]
self.gender = fileHeader["gender"]
self.recording_start_time = fileHeader["startdate"]
self.birthdate = fileHeader["birthdate"]
self.update_header() | python | def setHeader(self, fileHeader):
"""
Sets the file header
"""
self.technician = fileHeader["technician"]
self.recording_additional = fileHeader["recording_additional"]
self.patient_name = fileHeader["patientname"]
self.patient_additional = fileHeader["patient_additional"]
self.patient_code = fileHeader["patientcode"]
self.equipment = fileHeader["equipment"]
self.admincode = fileHeader["admincode"]
self.gender = fileHeader["gender"]
self.recording_start_time = fileHeader["startdate"]
self.birthdate = fileHeader["birthdate"]
self.update_header() | [
"def",
"setHeader",
"(",
"self",
",",
"fileHeader",
")",
":",
"self",
".",
"technician",
"=",
"fileHeader",
"[",
"\"technician\"",
"]",
"self",
".",
"recording_additional",
"=",
"fileHeader",
"[",
"\"recording_additional\"",
"]",
"self",
".",
"patient_name",
"=",
"fileHeader",
"[",
"\"patientname\"",
"]",
"self",
".",
"patient_additional",
"=",
"fileHeader",
"[",
"\"patient_additional\"",
"]",
"self",
".",
"patient_code",
"=",
"fileHeader",
"[",
"\"patientcode\"",
"]",
"self",
".",
"equipment",
"=",
"fileHeader",
"[",
"\"equipment\"",
"]",
"self",
".",
"admincode",
"=",
"fileHeader",
"[",
"\"admincode\"",
"]",
"self",
".",
"gender",
"=",
"fileHeader",
"[",
"\"gender\"",
"]",
"self",
".",
"recording_start_time",
"=",
"fileHeader",
"[",
"\"startdate\"",
"]",
"self",
".",
"birthdate",
"=",
"fileHeader",
"[",
"\"birthdate\"",
"]",
"self",
".",
"update_header",
"(",
")"
] | Sets the file header | [
"Sets",
"the",
"file",
"header"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L177-L191 |
1,014 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.setSignalHeader | def setSignalHeader(self, edfsignal, channel_info):
"""
Sets the parameter for signal edfsignal.
channel_info should be a dict with
these values:
'label' : channel label (string, <= 16 characters, must be unique)
'dimension' : physical dimension (e.g., mV) (string, <= 8 characters)
'sample_rate' : sample frequency in hertz (int)
'physical_max' : maximum physical value (float)
'physical_min' : minimum physical value (float)
'digital_max' : maximum digital value (int, -2**15 <= x < 2**15)
'digital_min' : minimum digital value (int, -2**15 <= x < 2**15)
"""
if edfsignal < 0 or edfsignal > self.n_channels:
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal] = channel_info
self.update_header() | python | def setSignalHeader(self, edfsignal, channel_info):
"""
Sets the parameter for signal edfsignal.
channel_info should be a dict with
these values:
'label' : channel label (string, <= 16 characters, must be unique)
'dimension' : physical dimension (e.g., mV) (string, <= 8 characters)
'sample_rate' : sample frequency in hertz (int)
'physical_max' : maximum physical value (float)
'physical_min' : minimum physical value (float)
'digital_max' : maximum digital value (int, -2**15 <= x < 2**15)
'digital_min' : minimum digital value (int, -2**15 <= x < 2**15)
"""
if edfsignal < 0 or edfsignal > self.n_channels:
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal] = channel_info
self.update_header() | [
"def",
"setSignalHeader",
"(",
"self",
",",
"edfsignal",
",",
"channel_info",
")",
":",
"if",
"edfsignal",
"<",
"0",
"or",
"edfsignal",
">",
"self",
".",
"n_channels",
":",
"raise",
"ChannelDoesNotExist",
"(",
"edfsignal",
")",
"self",
".",
"channels",
"[",
"edfsignal",
"]",
"=",
"channel_info",
"self",
".",
"update_header",
"(",
")"
] | Sets the parameter for signal edfsignal.
channel_info should be a dict with
these values:
'label' : channel label (string, <= 16 characters, must be unique)
'dimension' : physical dimension (e.g., mV) (string, <= 8 characters)
'sample_rate' : sample frequency in hertz (int)
'physical_max' : maximum physical value (float)
'physical_min' : minimum physical value (float)
'digital_max' : maximum digital value (int, -2**15 <= x < 2**15)
'digital_min' : minimum digital value (int, -2**15 <= x < 2**15) | [
"Sets",
"the",
"parameter",
"for",
"signal",
"edfsignal",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L193-L211 |
1,015 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.setSignalHeaders | def setSignalHeaders(self, signalHeaders):
"""
Sets the parameter for all signals
Parameters
----------
signalHeaders : array_like
containing dict with
'label' : str
channel label (string, <= 16 characters, must be unique)
'dimension' : str
physical dimension (e.g., mV) (string, <= 8 characters)
'sample_rate' : int
sample frequency in hertz
'physical_max' : float
maximum physical value
'physical_min' : float
minimum physical value
'digital_max' : int
maximum digital value (-2**15 <= x < 2**15)
'digital_min' : int
minimum digital value (-2**15 <= x < 2**15)
"""
for edfsignal in np.arange(self.n_channels):
self.channels[edfsignal] = signalHeaders[edfsignal]
self.update_header() | python | def setSignalHeaders(self, signalHeaders):
"""
Sets the parameter for all signals
Parameters
----------
signalHeaders : array_like
containing dict with
'label' : str
channel label (string, <= 16 characters, must be unique)
'dimension' : str
physical dimension (e.g., mV) (string, <= 8 characters)
'sample_rate' : int
sample frequency in hertz
'physical_max' : float
maximum physical value
'physical_min' : float
minimum physical value
'digital_max' : int
maximum digital value (-2**15 <= x < 2**15)
'digital_min' : int
minimum digital value (-2**15 <= x < 2**15)
"""
for edfsignal in np.arange(self.n_channels):
self.channels[edfsignal] = signalHeaders[edfsignal]
self.update_header() | [
"def",
"setSignalHeaders",
"(",
"self",
",",
"signalHeaders",
")",
":",
"for",
"edfsignal",
"in",
"np",
".",
"arange",
"(",
"self",
".",
"n_channels",
")",
":",
"self",
".",
"channels",
"[",
"edfsignal",
"]",
"=",
"signalHeaders",
"[",
"edfsignal",
"]",
"self",
".",
"update_header",
"(",
")"
] | Sets the parameter for all signals
Parameters
----------
signalHeaders : array_like
containing dict with
'label' : str
channel label (string, <= 16 characters, must be unique)
'dimension' : str
physical dimension (e.g., mV) (string, <= 8 characters)
'sample_rate' : int
sample frequency in hertz
'physical_max' : float
maximum physical value
'physical_min' : float
minimum physical value
'digital_max' : int
maximum digital value (-2**15 <= x < 2**15)
'digital_min' : int
minimum digital value (-2**15 <= x < 2**15) | [
"Sets",
"the",
"parameter",
"for",
"all",
"signals"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L213-L238 |
1,016 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.set_number_of_annotation_signals | def set_number_of_annotation_signals(self, number_of_annotations):
"""
Sets the number of annotation signals. The default value is 1
This function is optional and can be called only after opening a file in writemode
and before the first sample write action
Normally you don't need to change the default value. Only when the number of annotations
you want to write is more than the number of seconds of the duration of the recording, you can use
this function to increase the storage space for annotations
Minimum is 1, maximum is 64
Parameters
----------
number_of_annotations : integer
Sets the number of annotation signals
"""
number_of_annotations = max((min((int(number_of_annotations), 64)), 1))
self.number_of_annotations = number_of_annotations
self.update_header() | python | def set_number_of_annotation_signals(self, number_of_annotations):
"""
Sets the number of annotation signals. The default value is 1
This function is optional and can be called only after opening a file in writemode
and before the first sample write action
Normally you don't need to change the default value. Only when the number of annotations
you want to write is more than the number of seconds of the duration of the recording, you can use
this function to increase the storage space for annotations
Minimum is 1, maximum is 64
Parameters
----------
number_of_annotations : integer
Sets the number of annotation signals
"""
number_of_annotations = max((min((int(number_of_annotations), 64)), 1))
self.number_of_annotations = number_of_annotations
self.update_header() | [
"def",
"set_number_of_annotation_signals",
"(",
"self",
",",
"number_of_annotations",
")",
":",
"number_of_annotations",
"=",
"max",
"(",
"(",
"min",
"(",
"(",
"int",
"(",
"number_of_annotations",
")",
",",
"64",
")",
")",
",",
"1",
")",
")",
"self",
".",
"number_of_annotations",
"=",
"number_of_annotations",
"self",
".",
"update_header",
"(",
")"
] | Sets the number of annotation signals. The default value is 1
This function is optional and can be called only after opening a file in writemode
and before the first sample write action
Normally you don't need to change the default value. Only when the number of annotations
you want to write is more than the number of seconds of the duration of the recording, you can use
this function to increase the storage space for annotations
Minimum is 1, maximum is 64
Parameters
----------
number_of_annotations : integer
Sets the number of annotation signals | [
"Sets",
"the",
"number",
"of",
"annotation",
"signals",
".",
"The",
"default",
"value",
"is",
"1",
"This",
"function",
"is",
"optional",
"and",
"can",
"be",
"called",
"only",
"after",
"opening",
"a",
"file",
"in",
"writemode",
"and",
"before",
"the",
"first",
"sample",
"write",
"action",
"Normally",
"you",
"don",
"t",
"need",
"to",
"change",
"the",
"default",
"value",
".",
"Only",
"when",
"the",
"number",
"of",
"annotations",
"you",
"want",
"to",
"write",
"is",
"more",
"than",
"the",
"number",
"of",
"seconds",
"of",
"the",
"duration",
"of",
"the",
"recording",
"you",
"can",
"use",
"this",
"function",
"to",
"increase",
"the",
"storage",
"space",
"for",
"annotations",
"Minimum",
"is",
"1",
"maximum",
"is",
"64"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L364-L381 |
1,017 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.setStartdatetime | def setStartdatetime(self, recording_start_time):
"""
Sets the recording start Time
Parameters
----------
recording_start_time: datetime object
Sets the recording start Time
"""
if isinstance(recording_start_time,datetime):
self.recording_start_time = recording_start_time
else:
self.recording_start_time = datetime.strptime(recording_start_time,"%d %b %Y %H:%M:%S")
self.update_header() | python | def setStartdatetime(self, recording_start_time):
"""
Sets the recording start Time
Parameters
----------
recording_start_time: datetime object
Sets the recording start Time
"""
if isinstance(recording_start_time,datetime):
self.recording_start_time = recording_start_time
else:
self.recording_start_time = datetime.strptime(recording_start_time,"%d %b %Y %H:%M:%S")
self.update_header() | [
"def",
"setStartdatetime",
"(",
"self",
",",
"recording_start_time",
")",
":",
"if",
"isinstance",
"(",
"recording_start_time",
",",
"datetime",
")",
":",
"self",
".",
"recording_start_time",
"=",
"recording_start_time",
"else",
":",
"self",
".",
"recording_start_time",
"=",
"datetime",
".",
"strptime",
"(",
"recording_start_time",
",",
"\"%d %b %Y %H:%M:%S\"",
")",
"self",
".",
"update_header",
"(",
")"
] | Sets the recording start Time
Parameters
----------
recording_start_time: datetime object
Sets the recording start Time | [
"Sets",
"the",
"recording",
"start",
"Time"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L383-L396 |
1,018 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.setSamplefrequency | def setSamplefrequency(self, edfsignal, samplefrequency):
"""
Sets the samplefrequency of signal edfsignal.
Notes
-----
This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action.
"""
if edfsignal < 0 or edfsignal > self.n_channels:
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal]['sample_rate'] = samplefrequency
self.update_header() | python | def setSamplefrequency(self, edfsignal, samplefrequency):
"""
Sets the samplefrequency of signal edfsignal.
Notes
-----
This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action.
"""
if edfsignal < 0 or edfsignal > self.n_channels:
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal]['sample_rate'] = samplefrequency
self.update_header() | [
"def",
"setSamplefrequency",
"(",
"self",
",",
"edfsignal",
",",
"samplefrequency",
")",
":",
"if",
"edfsignal",
"<",
"0",
"or",
"edfsignal",
">",
"self",
".",
"n_channels",
":",
"raise",
"ChannelDoesNotExist",
"(",
"edfsignal",
")",
"self",
".",
"channels",
"[",
"edfsignal",
"]",
"[",
"'sample_rate'",
"]",
"=",
"samplefrequency",
"self",
".",
"update_header",
"(",
")"
] | Sets the samplefrequency of signal edfsignal.
Notes
-----
This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action. | [
"Sets",
"the",
"samplefrequency",
"of",
"signal",
"edfsignal",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L421-L432 |
1,019 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.setPhysicalMaximum | def setPhysicalMaximum(self, edfsignal, physical_maximum):
"""
Sets the physical_maximum of signal edfsignal.
Parameters
----------
edfsignal: int
signal number
physical_maximum: float
Sets the physical maximum
Notes
-----
This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action.
"""
if edfsignal < 0 or edfsignal > self.n_channels:
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal]['physical_max'] = physical_maximum
self.update_header() | python | def setPhysicalMaximum(self, edfsignal, physical_maximum):
"""
Sets the physical_maximum of signal edfsignal.
Parameters
----------
edfsignal: int
signal number
physical_maximum: float
Sets the physical maximum
Notes
-----
This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action.
"""
if edfsignal < 0 or edfsignal > self.n_channels:
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal]['physical_max'] = physical_maximum
self.update_header() | [
"def",
"setPhysicalMaximum",
"(",
"self",
",",
"edfsignal",
",",
"physical_maximum",
")",
":",
"if",
"edfsignal",
"<",
"0",
"or",
"edfsignal",
">",
"self",
".",
"n_channels",
":",
"raise",
"ChannelDoesNotExist",
"(",
"edfsignal",
")",
"self",
".",
"channels",
"[",
"edfsignal",
"]",
"[",
"'physical_max'",
"]",
"=",
"physical_maximum",
"self",
".",
"update_header",
"(",
")"
] | Sets the physical_maximum of signal edfsignal.
Parameters
----------
edfsignal: int
signal number
physical_maximum: float
Sets the physical maximum
Notes
-----
This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action. | [
"Sets",
"the",
"physical_maximum",
"of",
"signal",
"edfsignal",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L434-L452 |
1,020 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.setPhysicalMinimum | def setPhysicalMinimum(self, edfsignal, physical_minimum):
"""
Sets the physical_minimum of signal edfsignal.
Parameters
----------
edfsignal: int
signal number
physical_minimum: float
Sets the physical minimum
Notes
-----
This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action.
"""
if (edfsignal < 0 or edfsignal > self.n_channels):
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal]['physical_min'] = physical_minimum
self.update_header() | python | def setPhysicalMinimum(self, edfsignal, physical_minimum):
"""
Sets the physical_minimum of signal edfsignal.
Parameters
----------
edfsignal: int
signal number
physical_minimum: float
Sets the physical minimum
Notes
-----
This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action.
"""
if (edfsignal < 0 or edfsignal > self.n_channels):
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal]['physical_min'] = physical_minimum
self.update_header() | [
"def",
"setPhysicalMinimum",
"(",
"self",
",",
"edfsignal",
",",
"physical_minimum",
")",
":",
"if",
"(",
"edfsignal",
"<",
"0",
"or",
"edfsignal",
">",
"self",
".",
"n_channels",
")",
":",
"raise",
"ChannelDoesNotExist",
"(",
"edfsignal",
")",
"self",
".",
"channels",
"[",
"edfsignal",
"]",
"[",
"'physical_min'",
"]",
"=",
"physical_minimum",
"self",
".",
"update_header",
"(",
")"
] | Sets the physical_minimum of signal edfsignal.
Parameters
----------
edfsignal: int
signal number
physical_minimum: float
Sets the physical minimum
Notes
-----
This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action. | [
"Sets",
"the",
"physical_minimum",
"of",
"signal",
"edfsignal",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L454-L472 |
1,021 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.setDigitalMaximum | def setDigitalMaximum(self, edfsignal, digital_maximum):
"""
Sets the samplefrequency of signal edfsignal.
Usually, the value 32767 is used for EDF+ and 8388607 for BDF+.
Parameters
----------
edfsignal : int
signal number
digital_maximum : int
Sets the maximum digital value
Notes
-----
This function is optional and can be called only after opening a file in writemode and before the first sample write action.
"""
if (edfsignal < 0 or edfsignal > self.n_channels):
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal]['digital_max'] = digital_maximum
self.update_header() | python | def setDigitalMaximum(self, edfsignal, digital_maximum):
"""
Sets the samplefrequency of signal edfsignal.
Usually, the value 32767 is used for EDF+ and 8388607 for BDF+.
Parameters
----------
edfsignal : int
signal number
digital_maximum : int
Sets the maximum digital value
Notes
-----
This function is optional and can be called only after opening a file in writemode and before the first sample write action.
"""
if (edfsignal < 0 or edfsignal > self.n_channels):
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal]['digital_max'] = digital_maximum
self.update_header() | [
"def",
"setDigitalMaximum",
"(",
"self",
",",
"edfsignal",
",",
"digital_maximum",
")",
":",
"if",
"(",
"edfsignal",
"<",
"0",
"or",
"edfsignal",
">",
"self",
".",
"n_channels",
")",
":",
"raise",
"ChannelDoesNotExist",
"(",
"edfsignal",
")",
"self",
".",
"channels",
"[",
"edfsignal",
"]",
"[",
"'digital_max'",
"]",
"=",
"digital_maximum",
"self",
".",
"update_header",
"(",
")"
] | Sets the samplefrequency of signal edfsignal.
Usually, the value 32767 is used for EDF+ and 8388607 for BDF+.
Parameters
----------
edfsignal : int
signal number
digital_maximum : int
Sets the maximum digital value
Notes
-----
This function is optional and can be called only after opening a file in writemode and before the first sample write action. | [
"Sets",
"the",
"samplefrequency",
"of",
"signal",
"edfsignal",
".",
"Usually",
"the",
"value",
"32767",
"is",
"used",
"for",
"EDF",
"+",
"and",
"8388607",
"for",
"BDF",
"+",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L474-L493 |
1,022 | holgern/pyedflib | pyedflib/edfwriter.py | EdfWriter.setTransducer | def setTransducer(self, edfsignal, transducer):
"""
Sets the transducer of signal edfsignal
:param edfsignal: int
:param transducer: str
Notes
-----
This function is optional for every signal and can be called only after opening a file in writemode and before the first sample write action.
"""
if (edfsignal < 0 or edfsignal > self.n_channels):
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal]['transducer'] = transducer
self.update_header() | python | def setTransducer(self, edfsignal, transducer):
"""
Sets the transducer of signal edfsignal
:param edfsignal: int
:param transducer: str
Notes
-----
This function is optional for every signal and can be called only after opening a file in writemode and before the first sample write action.
"""
if (edfsignal < 0 or edfsignal > self.n_channels):
raise ChannelDoesNotExist(edfsignal)
self.channels[edfsignal]['transducer'] = transducer
self.update_header() | [
"def",
"setTransducer",
"(",
"self",
",",
"edfsignal",
",",
"transducer",
")",
":",
"if",
"(",
"edfsignal",
"<",
"0",
"or",
"edfsignal",
">",
"self",
".",
"n_channels",
")",
":",
"raise",
"ChannelDoesNotExist",
"(",
"edfsignal",
")",
"self",
".",
"channels",
"[",
"edfsignal",
"]",
"[",
"'transducer'",
"]",
"=",
"transducer",
"self",
".",
"update_header",
"(",
")"
] | Sets the transducer of signal edfsignal
:param edfsignal: int
:param transducer: str
Notes
-----
This function is optional for every signal and can be called only after opening a file in writemode and before the first sample write action. | [
"Sets",
"the",
"transducer",
"of",
"signal",
"edfsignal"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfwriter.py#L552-L566 |
1,023 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.readAnnotations | def readAnnotations(self):
"""
Annotations from a edf-file
Parameters
----------
None
"""
annot = self.read_annotation()
annot = np.array(annot)
if (annot.shape[0] == 0):
return np.array([]), np.array([]), np.array([])
ann_time = self._get_float(annot[:, 0])
ann_text = annot[:, 2]
ann_text_out = ["" for x in range(len(annot[:, 1]))]
for i in np.arange(len(annot[:, 1])):
ann_text_out[i] = self._convert_string(ann_text[i])
if annot[i, 1] == '':
annot[i, 1] = '-1'
ann_duration = self._get_float(annot[:, 1])
return ann_time/10000000, ann_duration, np.array(ann_text_out) | python | def readAnnotations(self):
"""
Annotations from a edf-file
Parameters
----------
None
"""
annot = self.read_annotation()
annot = np.array(annot)
if (annot.shape[0] == 0):
return np.array([]), np.array([]), np.array([])
ann_time = self._get_float(annot[:, 0])
ann_text = annot[:, 2]
ann_text_out = ["" for x in range(len(annot[:, 1]))]
for i in np.arange(len(annot[:, 1])):
ann_text_out[i] = self._convert_string(ann_text[i])
if annot[i, 1] == '':
annot[i, 1] = '-1'
ann_duration = self._get_float(annot[:, 1])
return ann_time/10000000, ann_duration, np.array(ann_text_out) | [
"def",
"readAnnotations",
"(",
"self",
")",
":",
"annot",
"=",
"self",
".",
"read_annotation",
"(",
")",
"annot",
"=",
"np",
".",
"array",
"(",
"annot",
")",
"if",
"(",
"annot",
".",
"shape",
"[",
"0",
"]",
"==",
"0",
")",
":",
"return",
"np",
".",
"array",
"(",
"[",
"]",
")",
",",
"np",
".",
"array",
"(",
"[",
"]",
")",
",",
"np",
".",
"array",
"(",
"[",
"]",
")",
"ann_time",
"=",
"self",
".",
"_get_float",
"(",
"annot",
"[",
":",
",",
"0",
"]",
")",
"ann_text",
"=",
"annot",
"[",
":",
",",
"2",
"]",
"ann_text_out",
"=",
"[",
"\"\"",
"for",
"x",
"in",
"range",
"(",
"len",
"(",
"annot",
"[",
":",
",",
"1",
"]",
")",
")",
"]",
"for",
"i",
"in",
"np",
".",
"arange",
"(",
"len",
"(",
"annot",
"[",
":",
",",
"1",
"]",
")",
")",
":",
"ann_text_out",
"[",
"i",
"]",
"=",
"self",
".",
"_convert_string",
"(",
"ann_text",
"[",
"i",
"]",
")",
"if",
"annot",
"[",
"i",
",",
"1",
"]",
"==",
"''",
":",
"annot",
"[",
"i",
",",
"1",
"]",
"=",
"'-1'",
"ann_duration",
"=",
"self",
".",
"_get_float",
"(",
"annot",
"[",
":",
",",
"1",
"]",
")",
"return",
"ann_time",
"/",
"10000000",
",",
"ann_duration",
",",
"np",
".",
"array",
"(",
"ann_text_out",
")"
] | Annotations from a edf-file
Parameters
----------
None | [
"Annotations",
"from",
"a",
"edf",
"-",
"file"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L44-L64 |
1,024 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getHeader | def getHeader(self):
"""
Returns the file header as dict
Parameters
----------
None
"""
return {"technician": self.getTechnician(), "recording_additional": self.getRecordingAdditional(),
"patientname": self.getPatientName(), "patient_additional": self.getPatientAdditional(),
"patientcode": self.getPatientCode(), "equipment": self.getEquipment(),
"admincode": self.getAdmincode(), "gender": self.getGender(), "startdate": self.getStartdatetime(),
"birthdate": self.getBirthdate()} | python | def getHeader(self):
"""
Returns the file header as dict
Parameters
----------
None
"""
return {"technician": self.getTechnician(), "recording_additional": self.getRecordingAdditional(),
"patientname": self.getPatientName(), "patient_additional": self.getPatientAdditional(),
"patientcode": self.getPatientCode(), "equipment": self.getEquipment(),
"admincode": self.getAdmincode(), "gender": self.getGender(), "startdate": self.getStartdatetime(),
"birthdate": self.getBirthdate()} | [
"def",
"getHeader",
"(",
"self",
")",
":",
"return",
"{",
"\"technician\"",
":",
"self",
".",
"getTechnician",
"(",
")",
",",
"\"recording_additional\"",
":",
"self",
".",
"getRecordingAdditional",
"(",
")",
",",
"\"patientname\"",
":",
"self",
".",
"getPatientName",
"(",
")",
",",
"\"patient_additional\"",
":",
"self",
".",
"getPatientAdditional",
"(",
")",
",",
"\"patientcode\"",
":",
"self",
".",
"getPatientCode",
"(",
")",
",",
"\"equipment\"",
":",
"self",
".",
"getEquipment",
"(",
")",
",",
"\"admincode\"",
":",
"self",
".",
"getAdmincode",
"(",
")",
",",
"\"gender\"",
":",
"self",
".",
"getGender",
"(",
")",
",",
"\"startdate\"",
":",
"self",
".",
"getStartdatetime",
"(",
")",
",",
"\"birthdate\"",
":",
"self",
".",
"getBirthdate",
"(",
")",
"}"
] | Returns the file header as dict
Parameters
----------
None | [
"Returns",
"the",
"file",
"header",
"as",
"dict"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L92-L104 |
1,025 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getSignalHeader | def getSignalHeader(self, chn):
"""
Returns the header of one signal as dicts
Parameters
----------
None
"""
return {'label': self.getLabel(chn),
'dimension': self.getPhysicalDimension(chn),
'sample_rate': self.getSampleFrequency(chn),
'physical_max':self.getPhysicalMaximum(chn),
'physical_min': self.getPhysicalMinimum(chn),
'digital_max': self.getDigitalMaximum(chn),
'digital_min': self.getDigitalMinimum(chn),
'prefilter':self.getPrefilter(chn),
'transducer': self.getTransducer(chn)} | python | def getSignalHeader(self, chn):
"""
Returns the header of one signal as dicts
Parameters
----------
None
"""
return {'label': self.getLabel(chn),
'dimension': self.getPhysicalDimension(chn),
'sample_rate': self.getSampleFrequency(chn),
'physical_max':self.getPhysicalMaximum(chn),
'physical_min': self.getPhysicalMinimum(chn),
'digital_max': self.getDigitalMaximum(chn),
'digital_min': self.getDigitalMinimum(chn),
'prefilter':self.getPrefilter(chn),
'transducer': self.getTransducer(chn)} | [
"def",
"getSignalHeader",
"(",
"self",
",",
"chn",
")",
":",
"return",
"{",
"'label'",
":",
"self",
".",
"getLabel",
"(",
"chn",
")",
",",
"'dimension'",
":",
"self",
".",
"getPhysicalDimension",
"(",
"chn",
")",
",",
"'sample_rate'",
":",
"self",
".",
"getSampleFrequency",
"(",
"chn",
")",
",",
"'physical_max'",
":",
"self",
".",
"getPhysicalMaximum",
"(",
"chn",
")",
",",
"'physical_min'",
":",
"self",
".",
"getPhysicalMinimum",
"(",
"chn",
")",
",",
"'digital_max'",
":",
"self",
".",
"getDigitalMaximum",
"(",
"chn",
")",
",",
"'digital_min'",
":",
"self",
".",
"getDigitalMinimum",
"(",
"chn",
")",
",",
"'prefilter'",
":",
"self",
".",
"getPrefilter",
"(",
"chn",
")",
",",
"'transducer'",
":",
"self",
".",
"getTransducer",
"(",
"chn",
")",
"}"
] | Returns the header of one signal as dicts
Parameters
----------
None | [
"Returns",
"the",
"header",
"of",
"one",
"signal",
"as",
"dicts"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L106-L122 |
1,026 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getSignalHeaders | def getSignalHeaders(self):
"""
Returns the header of all signals as array of dicts
Parameters
----------
None
"""
signalHeader = []
for chn in np.arange(self.signals_in_file):
signalHeader.append(self.getSignalHeader(chn))
return signalHeader | python | def getSignalHeaders(self):
"""
Returns the header of all signals as array of dicts
Parameters
----------
None
"""
signalHeader = []
for chn in np.arange(self.signals_in_file):
signalHeader.append(self.getSignalHeader(chn))
return signalHeader | [
"def",
"getSignalHeaders",
"(",
"self",
")",
":",
"signalHeader",
"=",
"[",
"]",
"for",
"chn",
"in",
"np",
".",
"arange",
"(",
"self",
".",
"signals_in_file",
")",
":",
"signalHeader",
".",
"append",
"(",
"self",
".",
"getSignalHeader",
"(",
"chn",
")",
")",
"return",
"signalHeader"
] | Returns the header of all signals as array of dicts
Parameters
----------
None | [
"Returns",
"the",
"header",
"of",
"all",
"signals",
"as",
"array",
"of",
"dicts"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L124-L135 |
1,027 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getStartdatetime | def getStartdatetime(self):
"""
Returns the date and starttime as datetime object
Parameters
----------
None
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getStartdatetime()
datetime.datetime(2011, 4, 4, 12, 57, 2)
>>> f._close()
>>> del f
"""
return datetime(self.startdate_year, self.startdate_month, self.startdate_day,
self.starttime_hour, self.starttime_minute, self.starttime_second) | python | def getStartdatetime(self):
"""
Returns the date and starttime as datetime object
Parameters
----------
None
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getStartdatetime()
datetime.datetime(2011, 4, 4, 12, 57, 2)
>>> f._close()
>>> del f
"""
return datetime(self.startdate_year, self.startdate_month, self.startdate_day,
self.starttime_hour, self.starttime_minute, self.starttime_second) | [
"def",
"getStartdatetime",
"(",
"self",
")",
":",
"return",
"datetime",
"(",
"self",
".",
"startdate_year",
",",
"self",
".",
"startdate_month",
",",
"self",
".",
"startdate_day",
",",
"self",
".",
"starttime_hour",
",",
"self",
".",
"starttime_minute",
",",
"self",
".",
"starttime_second",
")"
] | Returns the date and starttime as datetime object
Parameters
----------
None
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getStartdatetime()
datetime.datetime(2011, 4, 4, 12, 57, 2)
>>> f._close()
>>> del f | [
"Returns",
"the",
"date",
"and",
"starttime",
"as",
"datetime",
"object"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L317-L336 |
1,028 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getBirthdate | def getBirthdate(self, string=True):
"""
Returns the birthdate as string object
Parameters
----------
None
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getBirthdate()=='30 jun 1969'
True
>>> f._close()
>>> del f
"""
if string:
return self._convert_string(self.birthdate.rstrip())
else:
return datetime.strptime(self._convert_string(self.birthdate.rstrip()), "%d %b %Y") | python | def getBirthdate(self, string=True):
"""
Returns the birthdate as string object
Parameters
----------
None
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getBirthdate()=='30 jun 1969'
True
>>> f._close()
>>> del f
"""
if string:
return self._convert_string(self.birthdate.rstrip())
else:
return datetime.strptime(self._convert_string(self.birthdate.rstrip()), "%d %b %Y") | [
"def",
"getBirthdate",
"(",
"self",
",",
"string",
"=",
"True",
")",
":",
"if",
"string",
":",
"return",
"self",
".",
"_convert_string",
"(",
"self",
".",
"birthdate",
".",
"rstrip",
"(",
")",
")",
"else",
":",
"return",
"datetime",
".",
"strptime",
"(",
"self",
".",
"_convert_string",
"(",
"self",
".",
"birthdate",
".",
"rstrip",
"(",
")",
")",
",",
"\"%d %b %Y\"",
")"
] | Returns the birthdate as string object
Parameters
----------
None
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getBirthdate()=='30 jun 1969'
True
>>> f._close()
>>> del f | [
"Returns",
"the",
"birthdate",
"as",
"string",
"object"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L338-L360 |
1,029 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getSampleFrequencies | def getSampleFrequencies(self):
"""
Returns samplefrequencies of all signals.
Parameters
----------
None
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> all(f.getSampleFrequencies()==200.0)
True
>>> f._close()
>>> del f
"""
return np.array([round(self.samplefrequency(chn))
for chn in np.arange(self.signals_in_file)]) | python | def getSampleFrequencies(self):
"""
Returns samplefrequencies of all signals.
Parameters
----------
None
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> all(f.getSampleFrequencies()==200.0)
True
>>> f._close()
>>> del f
"""
return np.array([round(self.samplefrequency(chn))
for chn in np.arange(self.signals_in_file)]) | [
"def",
"getSampleFrequencies",
"(",
"self",
")",
":",
"return",
"np",
".",
"array",
"(",
"[",
"round",
"(",
"self",
".",
"samplefrequency",
"(",
"chn",
")",
")",
"for",
"chn",
"in",
"np",
".",
"arange",
"(",
"self",
".",
"signals_in_file",
")",
"]",
")"
] | Returns samplefrequencies of all signals.
Parameters
----------
None
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> all(f.getSampleFrequencies()==200.0)
True
>>> f._close()
>>> del f | [
"Returns",
"samplefrequencies",
"of",
"all",
"signals",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L362-L381 |
1,030 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getSampleFrequency | def getSampleFrequency(self,chn):
"""
Returns the samplefrequency of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getSampleFrequency(0)==200.0
True
>>> f._close()
>>> del f
"""
if 0 <= chn < self.signals_in_file:
return round(self.samplefrequency(chn))
else:
return 0 | python | def getSampleFrequency(self,chn):
"""
Returns the samplefrequency of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getSampleFrequency(0)==200.0
True
>>> f._close()
>>> del f
"""
if 0 <= chn < self.signals_in_file:
return round(self.samplefrequency(chn))
else:
return 0 | [
"def",
"getSampleFrequency",
"(",
"self",
",",
"chn",
")",
":",
"if",
"0",
"<=",
"chn",
"<",
"self",
".",
"signals_in_file",
":",
"return",
"round",
"(",
"self",
".",
"samplefrequency",
"(",
"chn",
")",
")",
"else",
":",
"return",
"0"
] | Returns the samplefrequency of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getSampleFrequency(0)==200.0
True
>>> f._close()
>>> del f | [
"Returns",
"the",
"samplefrequency",
"of",
"signal",
"edfsignal",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L383-L405 |
1,031 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getPhysicalMaximum | def getPhysicalMaximum(self,chn=None):
"""
Returns the maximum physical value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getPhysicalMaximum(0)==1000.0
True
>>> f._close()
>>> del f
"""
if chn is not None:
if 0 <= chn < self.signals_in_file:
return self.physical_max(chn)
else:
return 0
else:
physMax = np.zeros(self.signals_in_file)
for i in np.arange(self.signals_in_file):
physMax[i] = self.physical_max(i)
return physMax | python | def getPhysicalMaximum(self,chn=None):
"""
Returns the maximum physical value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getPhysicalMaximum(0)==1000.0
True
>>> f._close()
>>> del f
"""
if chn is not None:
if 0 <= chn < self.signals_in_file:
return self.physical_max(chn)
else:
return 0
else:
physMax = np.zeros(self.signals_in_file)
for i in np.arange(self.signals_in_file):
physMax[i] = self.physical_max(i)
return physMax | [
"def",
"getPhysicalMaximum",
"(",
"self",
",",
"chn",
"=",
"None",
")",
":",
"if",
"chn",
"is",
"not",
"None",
":",
"if",
"0",
"<=",
"chn",
"<",
"self",
".",
"signals_in_file",
":",
"return",
"self",
".",
"physical_max",
"(",
"chn",
")",
"else",
":",
"return",
"0",
"else",
":",
"physMax",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"signals_in_file",
")",
"for",
"i",
"in",
"np",
".",
"arange",
"(",
"self",
".",
"signals_in_file",
")",
":",
"physMax",
"[",
"i",
"]",
"=",
"self",
".",
"physical_max",
"(",
"i",
")",
"return",
"physMax"
] | Returns the maximum physical value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getPhysicalMaximum(0)==1000.0
True
>>> f._close()
>>> del f | [
"Returns",
"the",
"maximum",
"physical",
"value",
"of",
"signal",
"edfsignal",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L476-L504 |
1,032 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getPhysicalMinimum | def getPhysicalMinimum(self,chn=None):
"""
Returns the minimum physical value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getPhysicalMinimum(0)==-1000.0
True
>>> f._close()
>>> del f
"""
if chn is not None:
if 0 <= chn < self.signals_in_file:
return self.physical_min(chn)
else:
return 0
else:
physMin = np.zeros(self.signals_in_file)
for i in np.arange(self.signals_in_file):
physMin[i] = self.physical_min(i)
return physMin | python | def getPhysicalMinimum(self,chn=None):
"""
Returns the minimum physical value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getPhysicalMinimum(0)==-1000.0
True
>>> f._close()
>>> del f
"""
if chn is not None:
if 0 <= chn < self.signals_in_file:
return self.physical_min(chn)
else:
return 0
else:
physMin = np.zeros(self.signals_in_file)
for i in np.arange(self.signals_in_file):
physMin[i] = self.physical_min(i)
return physMin | [
"def",
"getPhysicalMinimum",
"(",
"self",
",",
"chn",
"=",
"None",
")",
":",
"if",
"chn",
"is",
"not",
"None",
":",
"if",
"0",
"<=",
"chn",
"<",
"self",
".",
"signals_in_file",
":",
"return",
"self",
".",
"physical_min",
"(",
"chn",
")",
"else",
":",
"return",
"0",
"else",
":",
"physMin",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"signals_in_file",
")",
"for",
"i",
"in",
"np",
".",
"arange",
"(",
"self",
".",
"signals_in_file",
")",
":",
"physMin",
"[",
"i",
"]",
"=",
"self",
".",
"physical_min",
"(",
"i",
")",
"return",
"physMin"
] | Returns the minimum physical value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getPhysicalMinimum(0)==-1000.0
True
>>> f._close()
>>> del f | [
"Returns",
"the",
"minimum",
"physical",
"value",
"of",
"signal",
"edfsignal",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L506-L534 |
1,033 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getDigitalMaximum | def getDigitalMaximum(self, chn=None):
"""
Returns the maximum digital value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getDigitalMaximum(0)
32767
>>> f._close()
>>> del f
"""
if chn is not None:
if 0 <= chn < self.signals_in_file:
return self.digital_max(chn)
else:
return 0
else:
digMax = np.zeros(self.signals_in_file)
for i in np.arange(self.signals_in_file):
digMax[i] = self.digital_max(i)
return digMax | python | def getDigitalMaximum(self, chn=None):
"""
Returns the maximum digital value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getDigitalMaximum(0)
32767
>>> f._close()
>>> del f
"""
if chn is not None:
if 0 <= chn < self.signals_in_file:
return self.digital_max(chn)
else:
return 0
else:
digMax = np.zeros(self.signals_in_file)
for i in np.arange(self.signals_in_file):
digMax[i] = self.digital_max(i)
return digMax | [
"def",
"getDigitalMaximum",
"(",
"self",
",",
"chn",
"=",
"None",
")",
":",
"if",
"chn",
"is",
"not",
"None",
":",
"if",
"0",
"<=",
"chn",
"<",
"self",
".",
"signals_in_file",
":",
"return",
"self",
".",
"digital_max",
"(",
"chn",
")",
"else",
":",
"return",
"0",
"else",
":",
"digMax",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"signals_in_file",
")",
"for",
"i",
"in",
"np",
".",
"arange",
"(",
"self",
".",
"signals_in_file",
")",
":",
"digMax",
"[",
"i",
"]",
"=",
"self",
".",
"digital_max",
"(",
"i",
")",
"return",
"digMax"
] | Returns the maximum digital value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getDigitalMaximum(0)
32767
>>> f._close()
>>> del f | [
"Returns",
"the",
"maximum",
"digital",
"value",
"of",
"signal",
"edfsignal",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L536-L564 |
1,034 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.getDigitalMinimum | def getDigitalMinimum(self, chn=None):
"""
Returns the minimum digital value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getDigitalMinimum(0)
-32768
>>> f._close()
>>> del f
"""
if chn is not None:
if 0 <= chn < self.signals_in_file:
return self.digital_min(chn)
else:
return 0
else:
digMin = np.zeros(self.signals_in_file)
for i in np.arange(self.signals_in_file):
digMin[i] = self.digital_min(i)
return digMin | python | def getDigitalMinimum(self, chn=None):
"""
Returns the minimum digital value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getDigitalMinimum(0)
-32768
>>> f._close()
>>> del f
"""
if chn is not None:
if 0 <= chn < self.signals_in_file:
return self.digital_min(chn)
else:
return 0
else:
digMin = np.zeros(self.signals_in_file)
for i in np.arange(self.signals_in_file):
digMin[i] = self.digital_min(i)
return digMin | [
"def",
"getDigitalMinimum",
"(",
"self",
",",
"chn",
"=",
"None",
")",
":",
"if",
"chn",
"is",
"not",
"None",
":",
"if",
"0",
"<=",
"chn",
"<",
"self",
".",
"signals_in_file",
":",
"return",
"self",
".",
"digital_min",
"(",
"chn",
")",
"else",
":",
"return",
"0",
"else",
":",
"digMin",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"signals_in_file",
")",
"for",
"i",
"in",
"np",
".",
"arange",
"(",
"self",
".",
"signals_in_file",
")",
":",
"digMin",
"[",
"i",
"]",
"=",
"self",
".",
"digital_min",
"(",
"i",
")",
"return",
"digMin"
] | Returns the minimum digital value of signal edfsignal.
Parameters
----------
chn : int
channel number
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> f.getDigitalMinimum(0)
-32768
>>> f._close()
>>> del f | [
"Returns",
"the",
"minimum",
"digital",
"value",
"of",
"signal",
"edfsignal",
"."
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L566-L594 |
1,035 | holgern/pyedflib | pyedflib/edfreader.py | EdfReader.readSignal | def readSignal(self, chn, start=0, n=None):
"""
Returns the physical data of signal chn. When start and n is set, a subset is returned
Parameters
----------
chn : int
channel number
start : int
start pointer (default is 0)
n : int
length of data to read (default is None, by which the complete data of the channel are returned)
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> x = f.readSignal(0,0,1000)
>>> int(x.shape[0])
1000
>>> x2 = f.readSignal(0)
>>> int(x2.shape[0])
120000
>>> f._close()
>>> del f
"""
if start < 0:
return np.array([])
if n is not None and n < 0:
return np.array([])
nsamples = self.getNSamples()
if chn < len(nsamples):
if n is None:
n = nsamples[chn]
elif n > nsamples[chn]:
return np.array([])
x = np.zeros(n, dtype=np.float64)
self.readsignal(chn, start, n, x)
return x
else:
return np.array([]) | python | def readSignal(self, chn, start=0, n=None):
"""
Returns the physical data of signal chn. When start and n is set, a subset is returned
Parameters
----------
chn : int
channel number
start : int
start pointer (default is 0)
n : int
length of data to read (default is None, by which the complete data of the channel are returned)
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> x = f.readSignal(0,0,1000)
>>> int(x.shape[0])
1000
>>> x2 = f.readSignal(0)
>>> int(x2.shape[0])
120000
>>> f._close()
>>> del f
"""
if start < 0:
return np.array([])
if n is not None and n < 0:
return np.array([])
nsamples = self.getNSamples()
if chn < len(nsamples):
if n is None:
n = nsamples[chn]
elif n > nsamples[chn]:
return np.array([])
x = np.zeros(n, dtype=np.float64)
self.readsignal(chn, start, n, x)
return x
else:
return np.array([]) | [
"def",
"readSignal",
"(",
"self",
",",
"chn",
",",
"start",
"=",
"0",
",",
"n",
"=",
"None",
")",
":",
"if",
"start",
"<",
"0",
":",
"return",
"np",
".",
"array",
"(",
"[",
"]",
")",
"if",
"n",
"is",
"not",
"None",
"and",
"n",
"<",
"0",
":",
"return",
"np",
".",
"array",
"(",
"[",
"]",
")",
"nsamples",
"=",
"self",
".",
"getNSamples",
"(",
")",
"if",
"chn",
"<",
"len",
"(",
"nsamples",
")",
":",
"if",
"n",
"is",
"None",
":",
"n",
"=",
"nsamples",
"[",
"chn",
"]",
"elif",
"n",
">",
"nsamples",
"[",
"chn",
"]",
":",
"return",
"np",
".",
"array",
"(",
"[",
"]",
")",
"x",
"=",
"np",
".",
"zeros",
"(",
"n",
",",
"dtype",
"=",
"np",
".",
"float64",
")",
"self",
".",
"readsignal",
"(",
"chn",
",",
"start",
",",
"n",
",",
"x",
")",
"return",
"x",
"else",
":",
"return",
"np",
".",
"array",
"(",
"[",
"]",
")"
] | Returns the physical data of signal chn. When start and n is set, a subset is returned
Parameters
----------
chn : int
channel number
start : int
start pointer (default is 0)
n : int
length of data to read (default is None, by which the complete data of the channel are returned)
Examples
--------
>>> import pyedflib
>>> f = pyedflib.data.test_generator()
>>> x = f.readSignal(0,0,1000)
>>> int(x.shape[0])
1000
>>> x2 = f.readSignal(0)
>>> int(x2.shape[0])
120000
>>> f._close()
>>> del f | [
"Returns",
"the",
"physical",
"data",
"of",
"signal",
"chn",
".",
"When",
"start",
"and",
"n",
"is",
"set",
"a",
"subset",
"is",
"returned"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/pyedflib/edfreader.py#L644-L685 |
1,036 | holgern/pyedflib | demo/stacklineplot.py | stackplot | def stackplot(marray, seconds=None, start_time=None, ylabels=None):
"""
will plot a stack of traces one above the other assuming
marray.shape = numRows, numSamples
"""
tarray = np.transpose(marray)
stackplot_t(tarray, seconds=seconds, start_time=start_time, ylabels=ylabels)
plt.show() | python | def stackplot(marray, seconds=None, start_time=None, ylabels=None):
"""
will plot a stack of traces one above the other assuming
marray.shape = numRows, numSamples
"""
tarray = np.transpose(marray)
stackplot_t(tarray, seconds=seconds, start_time=start_time, ylabels=ylabels)
plt.show() | [
"def",
"stackplot",
"(",
"marray",
",",
"seconds",
"=",
"None",
",",
"start_time",
"=",
"None",
",",
"ylabels",
"=",
"None",
")",
":",
"tarray",
"=",
"np",
".",
"transpose",
"(",
"marray",
")",
"stackplot_t",
"(",
"tarray",
",",
"seconds",
"=",
"seconds",
",",
"start_time",
"=",
"start_time",
",",
"ylabels",
"=",
"ylabels",
")",
"plt",
".",
"show",
"(",
")"
] | will plot a stack of traces one above the other assuming
marray.shape = numRows, numSamples | [
"will",
"plot",
"a",
"stack",
"of",
"traces",
"one",
"above",
"the",
"other",
"assuming",
"marray",
".",
"shape",
"=",
"numRows",
"numSamples"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/demo/stacklineplot.py#L10-L17 |
1,037 | holgern/pyedflib | demo/stacklineplot.py | stackplot_t | def stackplot_t(tarray, seconds=None, start_time=None, ylabels=None):
"""
will plot a stack of traces one above the other assuming
tarray.shape = numSamples, numRows
"""
data = tarray
numSamples, numRows = tarray.shape
# data = np.random.randn(numSamples,numRows) # test data
# data.shape = numSamples, numRows
if seconds:
t = seconds * np.arange(numSamples, dtype=float)/numSamples
# import pdb
# pdb.set_trace()
if start_time:
t = t+start_time
xlm = (start_time, start_time+seconds)
else:
xlm = (0,seconds)
else:
t = np.arange(numSamples, dtype=float)
xlm = (0,numSamples)
ticklocs = []
ax = plt.subplot(111)
plt.xlim(*xlm)
# xticks(np.linspace(xlm, 10))
dmin = data.min()
dmax = data.max()
dr = (dmax - dmin)*0.7 # Crowd them a bit.
y0 = dmin
y1 = (numRows-1) * dr + dmax
plt.ylim(y0, y1)
segs = []
for i in range(numRows):
segs.append(np.hstack((t[:,np.newaxis], data[:,i,np.newaxis])))
# print "segs[-1].shape:", segs[-1].shape
ticklocs.append(i*dr)
offsets = np.zeros((numRows,2), dtype=float)
offsets[:,1] = ticklocs
lines = LineCollection(segs, offsets=offsets,
transOffset=None,
)
ax.add_collection(lines)
# set the yticks to use axes coords on the y axis
ax.set_yticks(ticklocs)
# ax.set_yticklabels(['PG3', 'PG5', 'PG7', 'PG9'])
# if not plt.ylabels:
plt.ylabels = ["%d" % ii for ii in range(numRows)]
ax.set_yticklabels(ylabels)
plt.xlabel('time (s)') | python | def stackplot_t(tarray, seconds=None, start_time=None, ylabels=None):
"""
will plot a stack of traces one above the other assuming
tarray.shape = numSamples, numRows
"""
data = tarray
numSamples, numRows = tarray.shape
# data = np.random.randn(numSamples,numRows) # test data
# data.shape = numSamples, numRows
if seconds:
t = seconds * np.arange(numSamples, dtype=float)/numSamples
# import pdb
# pdb.set_trace()
if start_time:
t = t+start_time
xlm = (start_time, start_time+seconds)
else:
xlm = (0,seconds)
else:
t = np.arange(numSamples, dtype=float)
xlm = (0,numSamples)
ticklocs = []
ax = plt.subplot(111)
plt.xlim(*xlm)
# xticks(np.linspace(xlm, 10))
dmin = data.min()
dmax = data.max()
dr = (dmax - dmin)*0.7 # Crowd them a bit.
y0 = dmin
y1 = (numRows-1) * dr + dmax
plt.ylim(y0, y1)
segs = []
for i in range(numRows):
segs.append(np.hstack((t[:,np.newaxis], data[:,i,np.newaxis])))
# print "segs[-1].shape:", segs[-1].shape
ticklocs.append(i*dr)
offsets = np.zeros((numRows,2), dtype=float)
offsets[:,1] = ticklocs
lines = LineCollection(segs, offsets=offsets,
transOffset=None,
)
ax.add_collection(lines)
# set the yticks to use axes coords on the y axis
ax.set_yticks(ticklocs)
# ax.set_yticklabels(['PG3', 'PG5', 'PG7', 'PG9'])
# if not plt.ylabels:
plt.ylabels = ["%d" % ii for ii in range(numRows)]
ax.set_yticklabels(ylabels)
plt.xlabel('time (s)') | [
"def",
"stackplot_t",
"(",
"tarray",
",",
"seconds",
"=",
"None",
",",
"start_time",
"=",
"None",
",",
"ylabels",
"=",
"None",
")",
":",
"data",
"=",
"tarray",
"numSamples",
",",
"numRows",
"=",
"tarray",
".",
"shape",
"# data = np.random.randn(numSamples,numRows) # test data",
"# data.shape = numSamples, numRows",
"if",
"seconds",
":",
"t",
"=",
"seconds",
"*",
"np",
".",
"arange",
"(",
"numSamples",
",",
"dtype",
"=",
"float",
")",
"/",
"numSamples",
"# import pdb",
"# pdb.set_trace()",
"if",
"start_time",
":",
"t",
"=",
"t",
"+",
"start_time",
"xlm",
"=",
"(",
"start_time",
",",
"start_time",
"+",
"seconds",
")",
"else",
":",
"xlm",
"=",
"(",
"0",
",",
"seconds",
")",
"else",
":",
"t",
"=",
"np",
".",
"arange",
"(",
"numSamples",
",",
"dtype",
"=",
"float",
")",
"xlm",
"=",
"(",
"0",
",",
"numSamples",
")",
"ticklocs",
"=",
"[",
"]",
"ax",
"=",
"plt",
".",
"subplot",
"(",
"111",
")",
"plt",
".",
"xlim",
"(",
"*",
"xlm",
")",
"# xticks(np.linspace(xlm, 10))",
"dmin",
"=",
"data",
".",
"min",
"(",
")",
"dmax",
"=",
"data",
".",
"max",
"(",
")",
"dr",
"=",
"(",
"dmax",
"-",
"dmin",
")",
"*",
"0.7",
"# Crowd them a bit.",
"y0",
"=",
"dmin",
"y1",
"=",
"(",
"numRows",
"-",
"1",
")",
"*",
"dr",
"+",
"dmax",
"plt",
".",
"ylim",
"(",
"y0",
",",
"y1",
")",
"segs",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"numRows",
")",
":",
"segs",
".",
"append",
"(",
"np",
".",
"hstack",
"(",
"(",
"t",
"[",
":",
",",
"np",
".",
"newaxis",
"]",
",",
"data",
"[",
":",
",",
"i",
",",
"np",
".",
"newaxis",
"]",
")",
")",
")",
"# print \"segs[-1].shape:\", segs[-1].shape",
"ticklocs",
".",
"append",
"(",
"i",
"*",
"dr",
")",
"offsets",
"=",
"np",
".",
"zeros",
"(",
"(",
"numRows",
",",
"2",
")",
",",
"dtype",
"=",
"float",
")",
"offsets",
"[",
":",
",",
"1",
"]",
"=",
"ticklocs",
"lines",
"=",
"LineCollection",
"(",
"segs",
",",
"offsets",
"=",
"offsets",
",",
"transOffset",
"=",
"None",
",",
")",
"ax",
".",
"add_collection",
"(",
"lines",
")",
"# set the yticks to use axes coords on the y axis",
"ax",
".",
"set_yticks",
"(",
"ticklocs",
")",
"# ax.set_yticklabels(['PG3', 'PG5', 'PG7', 'PG9'])",
"# if not plt.ylabels:",
"plt",
".",
"ylabels",
"=",
"[",
"\"%d\"",
"%",
"ii",
"for",
"ii",
"in",
"range",
"(",
"numRows",
")",
"]",
"ax",
".",
"set_yticklabels",
"(",
"ylabels",
")",
"plt",
".",
"xlabel",
"(",
"'time (s)'",
")"
] | will plot a stack of traces one above the other assuming
tarray.shape = numSamples, numRows | [
"will",
"plot",
"a",
"stack",
"of",
"traces",
"one",
"above",
"the",
"other",
"assuming",
"tarray",
".",
"shape",
"=",
"numSamples",
"numRows"
] | 0f787fc1202b84a6f30d098296acf72666eaeeb4 | https://github.com/holgern/pyedflib/blob/0f787fc1202b84a6f30d098296acf72666eaeeb4/demo/stacklineplot.py#L20-L76 |
1,038 | jrialland/python-astar | src/astar/__init__.py | find_path | def find_path(start, goal, neighbors_fnct, reversePath=False, heuristic_cost_estimate_fnct=lambda a, b: Infinite, distance_between_fnct=lambda a, b: 1.0, is_goal_reached_fnct=lambda a, b: a == b):
"""A non-class version of the path finding algorithm"""
class FindPath(AStar):
def heuristic_cost_estimate(self, current, goal):
return heuristic_cost_estimate_fnct(current, goal)
def distance_between(self, n1, n2):
return distance_between_fnct(n1, n2)
def neighbors(self, node):
return neighbors_fnct(node)
def is_goal_reached(self, current, goal):
return is_goal_reached_fnct(current, goal)
return FindPath().astar(start, goal, reversePath) | python | def find_path(start, goal, neighbors_fnct, reversePath=False, heuristic_cost_estimate_fnct=lambda a, b: Infinite, distance_between_fnct=lambda a, b: 1.0, is_goal_reached_fnct=lambda a, b: a == b):
"""A non-class version of the path finding algorithm"""
class FindPath(AStar):
def heuristic_cost_estimate(self, current, goal):
return heuristic_cost_estimate_fnct(current, goal)
def distance_between(self, n1, n2):
return distance_between_fnct(n1, n2)
def neighbors(self, node):
return neighbors_fnct(node)
def is_goal_reached(self, current, goal):
return is_goal_reached_fnct(current, goal)
return FindPath().astar(start, goal, reversePath) | [
"def",
"find_path",
"(",
"start",
",",
"goal",
",",
"neighbors_fnct",
",",
"reversePath",
"=",
"False",
",",
"heuristic_cost_estimate_fnct",
"=",
"lambda",
"a",
",",
"b",
":",
"Infinite",
",",
"distance_between_fnct",
"=",
"lambda",
"a",
",",
"b",
":",
"1.0",
",",
"is_goal_reached_fnct",
"=",
"lambda",
"a",
",",
"b",
":",
"a",
"==",
"b",
")",
":",
"class",
"FindPath",
"(",
"AStar",
")",
":",
"def",
"heuristic_cost_estimate",
"(",
"self",
",",
"current",
",",
"goal",
")",
":",
"return",
"heuristic_cost_estimate_fnct",
"(",
"current",
",",
"goal",
")",
"def",
"distance_between",
"(",
"self",
",",
"n1",
",",
"n2",
")",
":",
"return",
"distance_between_fnct",
"(",
"n1",
",",
"n2",
")",
"def",
"neighbors",
"(",
"self",
",",
"node",
")",
":",
"return",
"neighbors_fnct",
"(",
"node",
")",
"def",
"is_goal_reached",
"(",
"self",
",",
"current",
",",
"goal",
")",
":",
"return",
"is_goal_reached_fnct",
"(",
"current",
",",
"goal",
")",
"return",
"FindPath",
"(",
")",
".",
"astar",
"(",
"start",
",",
"goal",
",",
"reversePath",
")"
] | A non-class version of the path finding algorithm | [
"A",
"non",
"-",
"class",
"version",
"of",
"the",
"path",
"finding",
"algorithm"
] | 7a3f5b33bedd03bd09792fe0d5b6fe28d50f9514 | https://github.com/jrialland/python-astar/blob/7a3f5b33bedd03bd09792fe0d5b6fe28d50f9514/src/astar/__init__.py#L109-L124 |
1,039 | frictionlessdata/goodtables-py | goodtables/validate.py | validate | def validate(source, **options):
"""Validates a source file and returns a report.
Args:
source (Union[str, Dict, List[Dict], IO]): The source to be validated.
It can be a local file path, URL, dict, list of dicts, or a
file-like object. If it's a list of dicts and the `preset` is
"nested", each of the dict key's will be used as if it was passed
as a keyword argument to this method.
The file can be a CSV, XLS, JSON, and any other format supported by
`tabulator`_.
Keyword Args:
checks (List[str]): List of checks names to be enabled. They can be
individual check names (e.g. `blank-headers`), or check types (e.g.
`structure`).
skip_checks (List[str]): List of checks names to be skipped. They can
be individual check names (e.g. `blank-headers`), or check types
(e.g. `structure`).
infer_schema (bool): Infer schema if one wasn't passed as an argument.
infer_fields (bool): Infer schema for columns not present in the received schema.
order_fields (bool): Order source columns based on schema fields order.
This is useful when you don't want to validate that the data
columns' order is the same as the schema's.
error_limit (int): Stop validation if the number of errors per table
exceeds this value.
table_limit (int): Maximum number of tables to validate.
row_limit (int): Maximum number of rows to validate.
preset (str): Dataset type could be `table` (default), `datapackage`,
`nested` or custom. Usually, the preset can be inferred from the
source, so you don't need to define it.
Any (Any): Any additional arguments not defined here will be passed on,
depending on the chosen `preset`. If the `preset` is `table`, the
extra arguments will be passed on to `tabulator`_, if it is
`datapackage`, they will be passed on to the `datapackage`_
constructor.
# Table preset
schema (Union[str, Dict, IO]): The Table Schema for the
source.
headers (Union[int, List[str]): Either the row number that contains
the headers, or a list with them. If the row number is given, ?????
scheme (str): The scheme used to access the source (e.g. `file`,
`http`). This is usually inferred correctly from the source. See
the `tabulator`_ documentation for the list of supported schemes.
format (str): Format of the source data (`csv`, `datapackage`, ...).
This is usually inferred correctly from the source. See the
the `tabulator`_ documentation for the list of supported formats.
encoding (str): Encoding of the source.
skip_rows (Union[int, List[Union[int, str]]]): Row numbers or a
string. Rows beginning with the string will be ignored (e.g. '#',
'//').
Raises:
GoodtablesException: Raised on any non-tabular error.
Returns:
dict: The validation report.
.. _tabulator:
https://github.com/frictionlessdata/tabulator-py
.. _tabulator_schemes:
https://github.com/frictionlessdata/tabulator-py
.. _tabulator:
https://github.com/frictionlessdata/datapackage-py
"""
source, options, inspector_settings = _parse_arguments(source, **options)
# Validate
inspector = Inspector(**inspector_settings)
report = inspector.inspect(source, **options)
return report | python | def validate(source, **options):
"""Validates a source file and returns a report.
Args:
source (Union[str, Dict, List[Dict], IO]): The source to be validated.
It can be a local file path, URL, dict, list of dicts, or a
file-like object. If it's a list of dicts and the `preset` is
"nested", each of the dict key's will be used as if it was passed
as a keyword argument to this method.
The file can be a CSV, XLS, JSON, and any other format supported by
`tabulator`_.
Keyword Args:
checks (List[str]): List of checks names to be enabled. They can be
individual check names (e.g. `blank-headers`), or check types (e.g.
`structure`).
skip_checks (List[str]): List of checks names to be skipped. They can
be individual check names (e.g. `blank-headers`), or check types
(e.g. `structure`).
infer_schema (bool): Infer schema if one wasn't passed as an argument.
infer_fields (bool): Infer schema for columns not present in the received schema.
order_fields (bool): Order source columns based on schema fields order.
This is useful when you don't want to validate that the data
columns' order is the same as the schema's.
error_limit (int): Stop validation if the number of errors per table
exceeds this value.
table_limit (int): Maximum number of tables to validate.
row_limit (int): Maximum number of rows to validate.
preset (str): Dataset type could be `table` (default), `datapackage`,
`nested` or custom. Usually, the preset can be inferred from the
source, so you don't need to define it.
Any (Any): Any additional arguments not defined here will be passed on,
depending on the chosen `preset`. If the `preset` is `table`, the
extra arguments will be passed on to `tabulator`_, if it is
`datapackage`, they will be passed on to the `datapackage`_
constructor.
# Table preset
schema (Union[str, Dict, IO]): The Table Schema for the
source.
headers (Union[int, List[str]): Either the row number that contains
the headers, or a list with them. If the row number is given, ?????
scheme (str): The scheme used to access the source (e.g. `file`,
`http`). This is usually inferred correctly from the source. See
the `tabulator`_ documentation for the list of supported schemes.
format (str): Format of the source data (`csv`, `datapackage`, ...).
This is usually inferred correctly from the source. See the
the `tabulator`_ documentation for the list of supported formats.
encoding (str): Encoding of the source.
skip_rows (Union[int, List[Union[int, str]]]): Row numbers or a
string. Rows beginning with the string will be ignored (e.g. '#',
'//').
Raises:
GoodtablesException: Raised on any non-tabular error.
Returns:
dict: The validation report.
.. _tabulator:
https://github.com/frictionlessdata/tabulator-py
.. _tabulator_schemes:
https://github.com/frictionlessdata/tabulator-py
.. _tabulator:
https://github.com/frictionlessdata/datapackage-py
"""
source, options, inspector_settings = _parse_arguments(source, **options)
# Validate
inspector = Inspector(**inspector_settings)
report = inspector.inspect(source, **options)
return report | [
"def",
"validate",
"(",
"source",
",",
"*",
"*",
"options",
")",
":",
"source",
",",
"options",
",",
"inspector_settings",
"=",
"_parse_arguments",
"(",
"source",
",",
"*",
"*",
"options",
")",
"# Validate",
"inspector",
"=",
"Inspector",
"(",
"*",
"*",
"inspector_settings",
")",
"report",
"=",
"inspector",
".",
"inspect",
"(",
"source",
",",
"*",
"*",
"options",
")",
"return",
"report"
] | Validates a source file and returns a report.
Args:
source (Union[str, Dict, List[Dict], IO]): The source to be validated.
It can be a local file path, URL, dict, list of dicts, or a
file-like object. If it's a list of dicts and the `preset` is
"nested", each of the dict key's will be used as if it was passed
as a keyword argument to this method.
The file can be a CSV, XLS, JSON, and any other format supported by
`tabulator`_.
Keyword Args:
checks (List[str]): List of checks names to be enabled. They can be
individual check names (e.g. `blank-headers`), or check types (e.g.
`structure`).
skip_checks (List[str]): List of checks names to be skipped. They can
be individual check names (e.g. `blank-headers`), or check types
(e.g. `structure`).
infer_schema (bool): Infer schema if one wasn't passed as an argument.
infer_fields (bool): Infer schema for columns not present in the received schema.
order_fields (bool): Order source columns based on schema fields order.
This is useful when you don't want to validate that the data
columns' order is the same as the schema's.
error_limit (int): Stop validation if the number of errors per table
exceeds this value.
table_limit (int): Maximum number of tables to validate.
row_limit (int): Maximum number of rows to validate.
preset (str): Dataset type could be `table` (default), `datapackage`,
`nested` or custom. Usually, the preset can be inferred from the
source, so you don't need to define it.
Any (Any): Any additional arguments not defined here will be passed on,
depending on the chosen `preset`. If the `preset` is `table`, the
extra arguments will be passed on to `tabulator`_, if it is
`datapackage`, they will be passed on to the `datapackage`_
constructor.
# Table preset
schema (Union[str, Dict, IO]): The Table Schema for the
source.
headers (Union[int, List[str]): Either the row number that contains
the headers, or a list with them. If the row number is given, ?????
scheme (str): The scheme used to access the source (e.g. `file`,
`http`). This is usually inferred correctly from the source. See
the `tabulator`_ documentation for the list of supported schemes.
format (str): Format of the source data (`csv`, `datapackage`, ...).
This is usually inferred correctly from the source. See the
the `tabulator`_ documentation for the list of supported formats.
encoding (str): Encoding of the source.
skip_rows (Union[int, List[Union[int, str]]]): Row numbers or a
string. Rows beginning with the string will be ignored (e.g. '#',
'//').
Raises:
GoodtablesException: Raised on any non-tabular error.
Returns:
dict: The validation report.
.. _tabulator:
https://github.com/frictionlessdata/tabulator-py
.. _tabulator_schemes:
https://github.com/frictionlessdata/tabulator-py
.. _tabulator:
https://github.com/frictionlessdata/datapackage-py | [
"Validates",
"a",
"source",
"file",
"and",
"returns",
"a",
"report",
"."
] | 3e7d6891d2f4e342dfafbe0e951e204ccc252a44 | https://github.com/frictionlessdata/goodtables-py/blob/3e7d6891d2f4e342dfafbe0e951e204ccc252a44/goodtables/validate.py#L13-L87 |
1,040 | frictionlessdata/goodtables-py | goodtables/validate.py | init_datapackage | def init_datapackage(resource_paths):
"""Create tabular data package with resources.
It will also infer the tabular resources' schemas.
Args:
resource_paths (List[str]): Paths to the data package resources.
Returns:
datapackage.Package: The data package.
"""
dp = datapackage.Package({
'name': 'change-me',
'schema': 'tabular-data-package',
})
for path in resource_paths:
dp.infer(path)
return dp | python | def init_datapackage(resource_paths):
"""Create tabular data package with resources.
It will also infer the tabular resources' schemas.
Args:
resource_paths (List[str]): Paths to the data package resources.
Returns:
datapackage.Package: The data package.
"""
dp = datapackage.Package({
'name': 'change-me',
'schema': 'tabular-data-package',
})
for path in resource_paths:
dp.infer(path)
return dp | [
"def",
"init_datapackage",
"(",
"resource_paths",
")",
":",
"dp",
"=",
"datapackage",
".",
"Package",
"(",
"{",
"'name'",
":",
"'change-me'",
",",
"'schema'",
":",
"'tabular-data-package'",
",",
"}",
")",
"for",
"path",
"in",
"resource_paths",
":",
"dp",
".",
"infer",
"(",
"path",
")",
"return",
"dp"
] | Create tabular data package with resources.
It will also infer the tabular resources' schemas.
Args:
resource_paths (List[str]): Paths to the data package resources.
Returns:
datapackage.Package: The data package. | [
"Create",
"tabular",
"data",
"package",
"with",
"resources",
"."
] | 3e7d6891d2f4e342dfafbe0e951e204ccc252a44 | https://github.com/frictionlessdata/goodtables-py/blob/3e7d6891d2f4e342dfafbe0e951e204ccc252a44/goodtables/validate.py#L90-L109 |
1,041 | frictionlessdata/goodtables-py | goodtables/cli.py | init | def init(paths, output, **kwargs):
"""Init data package from list of files.
It will also infer tabular data's schemas from their contents.
"""
dp = goodtables.init_datapackage(paths)
click.secho(
json_module.dumps(dp.descriptor, indent=4),
file=output
)
exit(dp.valid) | python | def init(paths, output, **kwargs):
"""Init data package from list of files.
It will also infer tabular data's schemas from their contents.
"""
dp = goodtables.init_datapackage(paths)
click.secho(
json_module.dumps(dp.descriptor, indent=4),
file=output
)
exit(dp.valid) | [
"def",
"init",
"(",
"paths",
",",
"output",
",",
"*",
"*",
"kwargs",
")",
":",
"dp",
"=",
"goodtables",
".",
"init_datapackage",
"(",
"paths",
")",
"click",
".",
"secho",
"(",
"json_module",
".",
"dumps",
"(",
"dp",
".",
"descriptor",
",",
"indent",
"=",
"4",
")",
",",
"file",
"=",
"output",
")",
"exit",
"(",
"dp",
".",
"valid",
")"
] | Init data package from list of files.
It will also infer tabular data's schemas from their contents. | [
"Init",
"data",
"package",
"from",
"list",
"of",
"files",
"."
] | 3e7d6891d2f4e342dfafbe0e951e204ccc252a44 | https://github.com/frictionlessdata/goodtables-py/blob/3e7d6891d2f4e342dfafbe0e951e204ccc252a44/goodtables/cli.py#L121-L133 |
1,042 | frictionlessdata/goodtables-py | goodtables/inspector.py | _clean_empty | def _clean_empty(d):
"""Remove None values from a dict."""
if not isinstance(d, (dict, list)):
return d
if isinstance(d, list):
return [v for v in (_clean_empty(v) for v in d) if v is not None]
return {
k: v for k, v in
((k, _clean_empty(v)) for k, v in d.items())
if v is not None
} | python | def _clean_empty(d):
"""Remove None values from a dict."""
if not isinstance(d, (dict, list)):
return d
if isinstance(d, list):
return [v for v in (_clean_empty(v) for v in d) if v is not None]
return {
k: v for k, v in
((k, _clean_empty(v)) for k, v in d.items())
if v is not None
} | [
"def",
"_clean_empty",
"(",
"d",
")",
":",
"if",
"not",
"isinstance",
"(",
"d",
",",
"(",
"dict",
",",
"list",
")",
")",
":",
"return",
"d",
"if",
"isinstance",
"(",
"d",
",",
"list",
")",
":",
"return",
"[",
"v",
"for",
"v",
"in",
"(",
"_clean_empty",
"(",
"v",
")",
"for",
"v",
"in",
"d",
")",
"if",
"v",
"is",
"not",
"None",
"]",
"return",
"{",
"k",
":",
"v",
"for",
"k",
",",
"v",
"in",
"(",
"(",
"k",
",",
"_clean_empty",
"(",
"v",
")",
")",
"for",
"k",
",",
"v",
"in",
"d",
".",
"items",
"(",
")",
")",
"if",
"v",
"is",
"not",
"None",
"}"
] | Remove None values from a dict. | [
"Remove",
"None",
"values",
"from",
"a",
"dict",
"."
] | 3e7d6891d2f4e342dfafbe0e951e204ccc252a44 | https://github.com/frictionlessdata/goodtables-py/blob/3e7d6891d2f4e342dfafbe0e951e204ccc252a44/goodtables/inspector.py#L330-L340 |
1,043 | frictionlessdata/goodtables-py | goodtables/cells.py | create_cells | def create_cells(headers, schema_fields, values=None, row_number=None):
"""Create list of cells from headers, fields and values.
Args:
headers (List[str]): The headers values.
schema_fields (List[tableschema.field.Field]): The tableschema
fields.
values (List[Any], optional): The cells values. If not specified,
the created cells will have the same values as their
corresponding headers. This is useful for specifying headers
cells.
If the list has any `None` values, as is the case on empty
cells, the resulting Cell will have an empty string value. If
the `values` list has a different length than the `headers`,
the resulting Cell will have value `None`.
row_number (int, optional): The row number.
Returns:
List[dict]: List of cells.
"""
fillvalue = '_fillvalue'
is_header_row = (values is None)
cells = []
iterator = zip_longest(headers, schema_fields, values or [], fillvalue=fillvalue)
for column_number, (header, field, value) in enumerate(iterator, start=1):
if header == fillvalue:
header = None
elif is_header_row:
value = header
if field == fillvalue:
field = None
if value == fillvalue:
value = None
elif value is None:
value = ''
cell = create_cell(header, value, field, column_number, row_number)
cells.append(cell)
return cells | python | def create_cells(headers, schema_fields, values=None, row_number=None):
"""Create list of cells from headers, fields and values.
Args:
headers (List[str]): The headers values.
schema_fields (List[tableschema.field.Field]): The tableschema
fields.
values (List[Any], optional): The cells values. If not specified,
the created cells will have the same values as their
corresponding headers. This is useful for specifying headers
cells.
If the list has any `None` values, as is the case on empty
cells, the resulting Cell will have an empty string value. If
the `values` list has a different length than the `headers`,
the resulting Cell will have value `None`.
row_number (int, optional): The row number.
Returns:
List[dict]: List of cells.
"""
fillvalue = '_fillvalue'
is_header_row = (values is None)
cells = []
iterator = zip_longest(headers, schema_fields, values or [], fillvalue=fillvalue)
for column_number, (header, field, value) in enumerate(iterator, start=1):
if header == fillvalue:
header = None
elif is_header_row:
value = header
if field == fillvalue:
field = None
if value == fillvalue:
value = None
elif value is None:
value = ''
cell = create_cell(header, value, field, column_number, row_number)
cells.append(cell)
return cells | [
"def",
"create_cells",
"(",
"headers",
",",
"schema_fields",
",",
"values",
"=",
"None",
",",
"row_number",
"=",
"None",
")",
":",
"fillvalue",
"=",
"'_fillvalue'",
"is_header_row",
"=",
"(",
"values",
"is",
"None",
")",
"cells",
"=",
"[",
"]",
"iterator",
"=",
"zip_longest",
"(",
"headers",
",",
"schema_fields",
",",
"values",
"or",
"[",
"]",
",",
"fillvalue",
"=",
"fillvalue",
")",
"for",
"column_number",
",",
"(",
"header",
",",
"field",
",",
"value",
")",
"in",
"enumerate",
"(",
"iterator",
",",
"start",
"=",
"1",
")",
":",
"if",
"header",
"==",
"fillvalue",
":",
"header",
"=",
"None",
"elif",
"is_header_row",
":",
"value",
"=",
"header",
"if",
"field",
"==",
"fillvalue",
":",
"field",
"=",
"None",
"if",
"value",
"==",
"fillvalue",
":",
"value",
"=",
"None",
"elif",
"value",
"is",
"None",
":",
"value",
"=",
"''",
"cell",
"=",
"create_cell",
"(",
"header",
",",
"value",
",",
"field",
",",
"column_number",
",",
"row_number",
")",
"cells",
".",
"append",
"(",
"cell",
")",
"return",
"cells"
] | Create list of cells from headers, fields and values.
Args:
headers (List[str]): The headers values.
schema_fields (List[tableschema.field.Field]): The tableschema
fields.
values (List[Any], optional): The cells values. If not specified,
the created cells will have the same values as their
corresponding headers. This is useful for specifying headers
cells.
If the list has any `None` values, as is the case on empty
cells, the resulting Cell will have an empty string value. If
the `values` list has a different length than the `headers`,
the resulting Cell will have value `None`.
row_number (int, optional): The row number.
Returns:
List[dict]: List of cells. | [
"Create",
"list",
"of",
"cells",
"from",
"headers",
"fields",
"and",
"values",
"."
] | 3e7d6891d2f4e342dfafbe0e951e204ccc252a44 | https://github.com/frictionlessdata/goodtables-py/blob/3e7d6891d2f4e342dfafbe0e951e204ccc252a44/goodtables/cells.py#L4-L44 |
1,044 | unixfreak0037/officeparser | officeparser.py | CompoundBinaryFile.__impl_read_chain | def __impl_read_chain(self, start, read_sector_f, read_fat_f):
"""Returns the entire contents of a chain starting at the given sector."""
sector = start
check = [ sector ] # keep a list of sectors we've already read
buffer = StringIO()
while sector != ENDOFCHAIN:
buffer.write(read_sector_f(sector))
next = read_fat_f(sector)
if next in check:
logging.error('infinite loop detected at {0} to {1} starting at {2}'.format(
sector, next, sector_start))
return buffer.getvalue()
check.append(next)
sector = next
return buffer.getvalue() | python | def __impl_read_chain(self, start, read_sector_f, read_fat_f):
"""Returns the entire contents of a chain starting at the given sector."""
sector = start
check = [ sector ] # keep a list of sectors we've already read
buffer = StringIO()
while sector != ENDOFCHAIN:
buffer.write(read_sector_f(sector))
next = read_fat_f(sector)
if next in check:
logging.error('infinite loop detected at {0} to {1} starting at {2}'.format(
sector, next, sector_start))
return buffer.getvalue()
check.append(next)
sector = next
return buffer.getvalue() | [
"def",
"__impl_read_chain",
"(",
"self",
",",
"start",
",",
"read_sector_f",
",",
"read_fat_f",
")",
":",
"sector",
"=",
"start",
"check",
"=",
"[",
"sector",
"]",
"# keep a list of sectors we've already read",
"buffer",
"=",
"StringIO",
"(",
")",
"while",
"sector",
"!=",
"ENDOFCHAIN",
":",
"buffer",
".",
"write",
"(",
"read_sector_f",
"(",
"sector",
")",
")",
"next",
"=",
"read_fat_f",
"(",
"sector",
")",
"if",
"next",
"in",
"check",
":",
"logging",
".",
"error",
"(",
"'infinite loop detected at {0} to {1} starting at {2}'",
".",
"format",
"(",
"sector",
",",
"next",
",",
"sector_start",
")",
")",
"return",
"buffer",
".",
"getvalue",
"(",
")",
"check",
".",
"append",
"(",
"next",
")",
"sector",
"=",
"next",
"return",
"buffer",
".",
"getvalue",
"(",
")"
] | Returns the entire contents of a chain starting at the given sector. | [
"Returns",
"the",
"entire",
"contents",
"of",
"a",
"chain",
"starting",
"at",
"the",
"given",
"sector",
"."
] | 42c2d40372fe271f2039ca1adc145d2aef8c9545 | https://github.com/unixfreak0037/officeparser/blob/42c2d40372fe271f2039ca1adc145d2aef8c9545/officeparser.py#L247-L261 |
1,045 | billy-yoyo/RainbowSixSiege-Python-API | r6sapi/r6sapi.py | Rank.get_charm_url | def get_charm_url(self):
"""Get charm URL for the bracket this rank is in
Returns
-------
:class:`str`
the URL for the charm
"""
if self.rank_id <= 4: return self.RANK_CHARMS[0]
if self.rank_id <= 8: return self.RANK_CHARMS[1]
if self.rank_id <= 12: return self.RANK_CHARMS[2]
if self.rank_id <= 16: return self.RANK_CHARMS[3]
if self.rank_id <= 19: return self.RANK_CHARMS[4]
return self.RANK_CHARMS[5] | python | def get_charm_url(self):
"""Get charm URL for the bracket this rank is in
Returns
-------
:class:`str`
the URL for the charm
"""
if self.rank_id <= 4: return self.RANK_CHARMS[0]
if self.rank_id <= 8: return self.RANK_CHARMS[1]
if self.rank_id <= 12: return self.RANK_CHARMS[2]
if self.rank_id <= 16: return self.RANK_CHARMS[3]
if self.rank_id <= 19: return self.RANK_CHARMS[4]
return self.RANK_CHARMS[5] | [
"def",
"get_charm_url",
"(",
"self",
")",
":",
"if",
"self",
".",
"rank_id",
"<=",
"4",
":",
"return",
"self",
".",
"RANK_CHARMS",
"[",
"0",
"]",
"if",
"self",
".",
"rank_id",
"<=",
"8",
":",
"return",
"self",
".",
"RANK_CHARMS",
"[",
"1",
"]",
"if",
"self",
".",
"rank_id",
"<=",
"12",
":",
"return",
"self",
".",
"RANK_CHARMS",
"[",
"2",
"]",
"if",
"self",
".",
"rank_id",
"<=",
"16",
":",
"return",
"self",
".",
"RANK_CHARMS",
"[",
"3",
"]",
"if",
"self",
".",
"rank_id",
"<=",
"19",
":",
"return",
"self",
".",
"RANK_CHARMS",
"[",
"4",
"]",
"return",
"self",
".",
"RANK_CHARMS",
"[",
"5",
"]"
] | Get charm URL for the bracket this rank is in
Returns
-------
:class:`str`
the URL for the charm | [
"Get",
"charm",
"URL",
"for",
"the",
"bracket",
"this",
"rank",
"is",
"in"
] | 9860fdfd9a78aabd977eaa71b0a4ab4ed69e94d0 | https://github.com/billy-yoyo/RainbowSixSiege-Python-API/blob/9860fdfd9a78aabd977eaa71b0a4ab4ed69e94d0/r6sapi/r6sapi.py#L808-L822 |
1,046 | billy-yoyo/RainbowSixSiege-Python-API | r6sapi/r6sapi.py | Player.load_rank | def load_rank(self, region, season=-1):
"""|coro|
Loads the players rank for this region and season
Parameters
----------
region : str
the name of the region you want to get the rank for
season : Optional[int]
the season you want to get the rank for (defaults to -1, latest season)
Returns
-------
:class:`Rank`
the players rank for this region and season"""
data = yield from self.auth.get("https://public-ubiservices.ubi.com/v1/spaces/%s/sandboxes/%s/r6karma/players?board_id=pvp_ranked&profile_ids=%s®ion_id=%s&season_id=%s" % (self.spaceid, self.platform_url, self.id, region, season))
if "players" in data and self.id in data["players"]:
regionkey = "%s:%s" % (region, season)
self.ranks[regionkey] = Rank(data["players"][self.id])
return self.ranks[regionkey]
else:
raise InvalidRequest("Missing players key in returned JSON object %s" % str(data)) | python | def load_rank(self, region, season=-1):
"""|coro|
Loads the players rank for this region and season
Parameters
----------
region : str
the name of the region you want to get the rank for
season : Optional[int]
the season you want to get the rank for (defaults to -1, latest season)
Returns
-------
:class:`Rank`
the players rank for this region and season"""
data = yield from self.auth.get("https://public-ubiservices.ubi.com/v1/spaces/%s/sandboxes/%s/r6karma/players?board_id=pvp_ranked&profile_ids=%s®ion_id=%s&season_id=%s" % (self.spaceid, self.platform_url, self.id, region, season))
if "players" in data and self.id in data["players"]:
regionkey = "%s:%s" % (region, season)
self.ranks[regionkey] = Rank(data["players"][self.id])
return self.ranks[regionkey]
else:
raise InvalidRequest("Missing players key in returned JSON object %s" % str(data)) | [
"def",
"load_rank",
"(",
"self",
",",
"region",
",",
"season",
"=",
"-",
"1",
")",
":",
"data",
"=",
"yield",
"from",
"self",
".",
"auth",
".",
"get",
"(",
"\"https://public-ubiservices.ubi.com/v1/spaces/%s/sandboxes/%s/r6karma/players?board_id=pvp_ranked&profile_ids=%s®ion_id=%s&season_id=%s\"",
"%",
"(",
"self",
".",
"spaceid",
",",
"self",
".",
"platform_url",
",",
"self",
".",
"id",
",",
"region",
",",
"season",
")",
")",
"if",
"\"players\"",
"in",
"data",
"and",
"self",
".",
"id",
"in",
"data",
"[",
"\"players\"",
"]",
":",
"regionkey",
"=",
"\"%s:%s\"",
"%",
"(",
"region",
",",
"season",
")",
"self",
".",
"ranks",
"[",
"regionkey",
"]",
"=",
"Rank",
"(",
"data",
"[",
"\"players\"",
"]",
"[",
"self",
".",
"id",
"]",
")",
"return",
"self",
".",
"ranks",
"[",
"regionkey",
"]",
"else",
":",
"raise",
"InvalidRequest",
"(",
"\"Missing players key in returned JSON object %s\"",
"%",
"str",
"(",
"data",
")",
")"
] | |coro|
Loads the players rank for this region and season
Parameters
----------
region : str
the name of the region you want to get the rank for
season : Optional[int]
the season you want to get the rank for (defaults to -1, latest season)
Returns
-------
:class:`Rank`
the players rank for this region and season | [
"|coro|",
"Loads",
"the",
"players",
"rank",
"for",
"this",
"region",
"and",
"season"
] | 9860fdfd9a78aabd977eaa71b0a4ab4ed69e94d0 | https://github.com/billy-yoyo/RainbowSixSiege-Python-API/blob/9860fdfd9a78aabd977eaa71b0a4ab4ed69e94d0/r6sapi/r6sapi.py#L1114-L1136 |
1,047 | NaturalHistoryMuseum/pylibdmtx | pylibdmtx/wrapper.py | libdmtx_function | def libdmtx_function(fname, restype, *args):
"""Returns a foreign function exported by `libdmtx`.
Args:
fname (:obj:`str`): Name of the exported function as string.
restype (:obj:): Return type - one of the `ctypes` primitive C data
types.
*args: Arguments - a sequence of `ctypes` primitive C data types.
Returns:
cddl.CFunctionType: A wrapper around the function.
"""
prototype = CFUNCTYPE(restype, *args)
return prototype((fname, load_libdmtx())) | python | def libdmtx_function(fname, restype, *args):
"""Returns a foreign function exported by `libdmtx`.
Args:
fname (:obj:`str`): Name of the exported function as string.
restype (:obj:): Return type - one of the `ctypes` primitive C data
types.
*args: Arguments - a sequence of `ctypes` primitive C data types.
Returns:
cddl.CFunctionType: A wrapper around the function.
"""
prototype = CFUNCTYPE(restype, *args)
return prototype((fname, load_libdmtx())) | [
"def",
"libdmtx_function",
"(",
"fname",
",",
"restype",
",",
"*",
"args",
")",
":",
"prototype",
"=",
"CFUNCTYPE",
"(",
"restype",
",",
"*",
"args",
")",
"return",
"prototype",
"(",
"(",
"fname",
",",
"load_libdmtx",
"(",
")",
")",
")"
] | Returns a foreign function exported by `libdmtx`.
Args:
fname (:obj:`str`): Name of the exported function as string.
restype (:obj:): Return type - one of the `ctypes` primitive C data
types.
*args: Arguments - a sequence of `ctypes` primitive C data types.
Returns:
cddl.CFunctionType: A wrapper around the function. | [
"Returns",
"a",
"foreign",
"function",
"exported",
"by",
"libdmtx",
"."
] | a425ec36050500af4875bf94eda02feb26ea62ad | https://github.com/NaturalHistoryMuseum/pylibdmtx/blob/a425ec36050500af4875bf94eda02feb26ea62ad/pylibdmtx/wrapper.py#L46-L59 |
1,048 | NaturalHistoryMuseum/pylibdmtx | pylibdmtx/pylibdmtx.py | _image | def _image(pixels, width, height, pack):
"""A context manager for `DmtxImage`, created and destroyed by
`dmtxImageCreate` and `dmtxImageDestroy`.
Args:
pixels (:obj:):
width (int):
height (int):
pack (int):
Yields:
DmtxImage: The created image
Raises:
PyLibDMTXError: If the image could not be created.
"""
image = dmtxImageCreate(pixels, width, height, pack)
if not image:
raise PyLibDMTXError('Could not create image')
else:
try:
yield image
finally:
dmtxImageDestroy(byref(image)) | python | def _image(pixels, width, height, pack):
"""A context manager for `DmtxImage`, created and destroyed by
`dmtxImageCreate` and `dmtxImageDestroy`.
Args:
pixels (:obj:):
width (int):
height (int):
pack (int):
Yields:
DmtxImage: The created image
Raises:
PyLibDMTXError: If the image could not be created.
"""
image = dmtxImageCreate(pixels, width, height, pack)
if not image:
raise PyLibDMTXError('Could not create image')
else:
try:
yield image
finally:
dmtxImageDestroy(byref(image)) | [
"def",
"_image",
"(",
"pixels",
",",
"width",
",",
"height",
",",
"pack",
")",
":",
"image",
"=",
"dmtxImageCreate",
"(",
"pixels",
",",
"width",
",",
"height",
",",
"pack",
")",
"if",
"not",
"image",
":",
"raise",
"PyLibDMTXError",
"(",
"'Could not create image'",
")",
"else",
":",
"try",
":",
"yield",
"image",
"finally",
":",
"dmtxImageDestroy",
"(",
"byref",
"(",
"image",
")",
")"
] | A context manager for `DmtxImage`, created and destroyed by
`dmtxImageCreate` and `dmtxImageDestroy`.
Args:
pixels (:obj:):
width (int):
height (int):
pack (int):
Yields:
DmtxImage: The created image
Raises:
PyLibDMTXError: If the image could not be created. | [
"A",
"context",
"manager",
"for",
"DmtxImage",
"created",
"and",
"destroyed",
"by",
"dmtxImageCreate",
"and",
"dmtxImageDestroy",
"."
] | a425ec36050500af4875bf94eda02feb26ea62ad | https://github.com/NaturalHistoryMuseum/pylibdmtx/blob/a425ec36050500af4875bf94eda02feb26ea62ad/pylibdmtx/pylibdmtx.py#L57-L80 |
1,049 | NaturalHistoryMuseum/pylibdmtx | pylibdmtx/pylibdmtx.py | _decoder | def _decoder(image, shrink):
"""A context manager for `DmtxDecode`, created and destroyed by
`dmtxDecodeCreate` and `dmtxDecodeDestroy`.
Args:
image (POINTER(DmtxImage)):
shrink (int):
Yields:
POINTER(DmtxDecode): The created decoder
Raises:
PyLibDMTXError: If the decoder could not be created.
"""
decoder = dmtxDecodeCreate(image, shrink)
if not decoder:
raise PyLibDMTXError('Could not create decoder')
else:
try:
yield decoder
finally:
dmtxDecodeDestroy(byref(decoder)) | python | def _decoder(image, shrink):
"""A context manager for `DmtxDecode`, created and destroyed by
`dmtxDecodeCreate` and `dmtxDecodeDestroy`.
Args:
image (POINTER(DmtxImage)):
shrink (int):
Yields:
POINTER(DmtxDecode): The created decoder
Raises:
PyLibDMTXError: If the decoder could not be created.
"""
decoder = dmtxDecodeCreate(image, shrink)
if not decoder:
raise PyLibDMTXError('Could not create decoder')
else:
try:
yield decoder
finally:
dmtxDecodeDestroy(byref(decoder)) | [
"def",
"_decoder",
"(",
"image",
",",
"shrink",
")",
":",
"decoder",
"=",
"dmtxDecodeCreate",
"(",
"image",
",",
"shrink",
")",
"if",
"not",
"decoder",
":",
"raise",
"PyLibDMTXError",
"(",
"'Could not create decoder'",
")",
"else",
":",
"try",
":",
"yield",
"decoder",
"finally",
":",
"dmtxDecodeDestroy",
"(",
"byref",
"(",
"decoder",
")",
")"
] | A context manager for `DmtxDecode`, created and destroyed by
`dmtxDecodeCreate` and `dmtxDecodeDestroy`.
Args:
image (POINTER(DmtxImage)):
shrink (int):
Yields:
POINTER(DmtxDecode): The created decoder
Raises:
PyLibDMTXError: If the decoder could not be created. | [
"A",
"context",
"manager",
"for",
"DmtxDecode",
"created",
"and",
"destroyed",
"by",
"dmtxDecodeCreate",
"and",
"dmtxDecodeDestroy",
"."
] | a425ec36050500af4875bf94eda02feb26ea62ad | https://github.com/NaturalHistoryMuseum/pylibdmtx/blob/a425ec36050500af4875bf94eda02feb26ea62ad/pylibdmtx/pylibdmtx.py#L84-L105 |
1,050 | NaturalHistoryMuseum/pylibdmtx | pylibdmtx/pylibdmtx.py | _region | def _region(decoder, timeout):
"""A context manager for `DmtxRegion`, created and destroyed by
`dmtxRegionFindNext` and `dmtxRegionDestroy`.
Args:
decoder (POINTER(DmtxDecode)):
timeout (int or None):
Yields:
DmtxRegion: The next region or None, if all regions have been found.
"""
region = dmtxRegionFindNext(decoder, timeout)
try:
yield region
finally:
if region:
dmtxRegionDestroy(byref(region)) | python | def _region(decoder, timeout):
"""A context manager for `DmtxRegion`, created and destroyed by
`dmtxRegionFindNext` and `dmtxRegionDestroy`.
Args:
decoder (POINTER(DmtxDecode)):
timeout (int or None):
Yields:
DmtxRegion: The next region or None, if all regions have been found.
"""
region = dmtxRegionFindNext(decoder, timeout)
try:
yield region
finally:
if region:
dmtxRegionDestroy(byref(region)) | [
"def",
"_region",
"(",
"decoder",
",",
"timeout",
")",
":",
"region",
"=",
"dmtxRegionFindNext",
"(",
"decoder",
",",
"timeout",
")",
"try",
":",
"yield",
"region",
"finally",
":",
"if",
"region",
":",
"dmtxRegionDestroy",
"(",
"byref",
"(",
"region",
")",
")"
] | A context manager for `DmtxRegion`, created and destroyed by
`dmtxRegionFindNext` and `dmtxRegionDestroy`.
Args:
decoder (POINTER(DmtxDecode)):
timeout (int or None):
Yields:
DmtxRegion: The next region or None, if all regions have been found. | [
"A",
"context",
"manager",
"for",
"DmtxRegion",
"created",
"and",
"destroyed",
"by",
"dmtxRegionFindNext",
"and",
"dmtxRegionDestroy",
"."
] | a425ec36050500af4875bf94eda02feb26ea62ad | https://github.com/NaturalHistoryMuseum/pylibdmtx/blob/a425ec36050500af4875bf94eda02feb26ea62ad/pylibdmtx/pylibdmtx.py#L109-L125 |
1,051 | NaturalHistoryMuseum/pylibdmtx | pylibdmtx/pylibdmtx.py | _decoded_matrix_region | def _decoded_matrix_region(decoder, region, corrections):
"""A context manager for `DmtxMessage`, created and destoyed by
`dmtxDecodeMatrixRegion` and `dmtxMessageDestroy`.
Args:
decoder (POINTER(DmtxDecode)):
region (POINTER(DmtxRegion)):
corrections (int):
Yields:
DmtxMessage: The message.
"""
message = dmtxDecodeMatrixRegion(decoder, region, corrections)
try:
yield message
finally:
if message:
dmtxMessageDestroy(byref(message)) | python | def _decoded_matrix_region(decoder, region, corrections):
"""A context manager for `DmtxMessage`, created and destoyed by
`dmtxDecodeMatrixRegion` and `dmtxMessageDestroy`.
Args:
decoder (POINTER(DmtxDecode)):
region (POINTER(DmtxRegion)):
corrections (int):
Yields:
DmtxMessage: The message.
"""
message = dmtxDecodeMatrixRegion(decoder, region, corrections)
try:
yield message
finally:
if message:
dmtxMessageDestroy(byref(message)) | [
"def",
"_decoded_matrix_region",
"(",
"decoder",
",",
"region",
",",
"corrections",
")",
":",
"message",
"=",
"dmtxDecodeMatrixRegion",
"(",
"decoder",
",",
"region",
",",
"corrections",
")",
"try",
":",
"yield",
"message",
"finally",
":",
"if",
"message",
":",
"dmtxMessageDestroy",
"(",
"byref",
"(",
"message",
")",
")"
] | A context manager for `DmtxMessage`, created and destoyed by
`dmtxDecodeMatrixRegion` and `dmtxMessageDestroy`.
Args:
decoder (POINTER(DmtxDecode)):
region (POINTER(DmtxRegion)):
corrections (int):
Yields:
DmtxMessage: The message. | [
"A",
"context",
"manager",
"for",
"DmtxMessage",
"created",
"and",
"destoyed",
"by",
"dmtxDecodeMatrixRegion",
"and",
"dmtxMessageDestroy",
"."
] | a425ec36050500af4875bf94eda02feb26ea62ad | https://github.com/NaturalHistoryMuseum/pylibdmtx/blob/a425ec36050500af4875bf94eda02feb26ea62ad/pylibdmtx/pylibdmtx.py#L129-L146 |
1,052 | NaturalHistoryMuseum/pylibdmtx | pylibdmtx/pylibdmtx.py | _decode_region | def _decode_region(decoder, region, corrections, shrink):
"""Decodes and returns the value in a region.
Args:
region (DmtxRegion):
Yields:
Decoded or None: The decoded value.
"""
with _decoded_matrix_region(decoder, region, corrections) as msg:
if msg:
# Coordinates
p00 = DmtxVector2()
p11 = DmtxVector2(1.0, 1.0)
dmtxMatrix3VMultiplyBy(
p00,
region.contents.fit2raw
)
dmtxMatrix3VMultiplyBy(p11, region.contents.fit2raw)
x0 = int((shrink * p00.X) + 0.5)
y0 = int((shrink * p00.Y) + 0.5)
x1 = int((shrink * p11.X) + 0.5)
y1 = int((shrink * p11.Y) + 0.5)
return Decoded(
string_at(msg.contents.output),
Rect(x0, y0, x1 - x0, y1 - y0)
)
else:
return None | python | def _decode_region(decoder, region, corrections, shrink):
"""Decodes and returns the value in a region.
Args:
region (DmtxRegion):
Yields:
Decoded or None: The decoded value.
"""
with _decoded_matrix_region(decoder, region, corrections) as msg:
if msg:
# Coordinates
p00 = DmtxVector2()
p11 = DmtxVector2(1.0, 1.0)
dmtxMatrix3VMultiplyBy(
p00,
region.contents.fit2raw
)
dmtxMatrix3VMultiplyBy(p11, region.contents.fit2raw)
x0 = int((shrink * p00.X) + 0.5)
y0 = int((shrink * p00.Y) + 0.5)
x1 = int((shrink * p11.X) + 0.5)
y1 = int((shrink * p11.Y) + 0.5)
return Decoded(
string_at(msg.contents.output),
Rect(x0, y0, x1 - x0, y1 - y0)
)
else:
return None | [
"def",
"_decode_region",
"(",
"decoder",
",",
"region",
",",
"corrections",
",",
"shrink",
")",
":",
"with",
"_decoded_matrix_region",
"(",
"decoder",
",",
"region",
",",
"corrections",
")",
"as",
"msg",
":",
"if",
"msg",
":",
"# Coordinates",
"p00",
"=",
"DmtxVector2",
"(",
")",
"p11",
"=",
"DmtxVector2",
"(",
"1.0",
",",
"1.0",
")",
"dmtxMatrix3VMultiplyBy",
"(",
"p00",
",",
"region",
".",
"contents",
".",
"fit2raw",
")",
"dmtxMatrix3VMultiplyBy",
"(",
"p11",
",",
"region",
".",
"contents",
".",
"fit2raw",
")",
"x0",
"=",
"int",
"(",
"(",
"shrink",
"*",
"p00",
".",
"X",
")",
"+",
"0.5",
")",
"y0",
"=",
"int",
"(",
"(",
"shrink",
"*",
"p00",
".",
"Y",
")",
"+",
"0.5",
")",
"x1",
"=",
"int",
"(",
"(",
"shrink",
"*",
"p11",
".",
"X",
")",
"+",
"0.5",
")",
"y1",
"=",
"int",
"(",
"(",
"shrink",
"*",
"p11",
".",
"Y",
")",
"+",
"0.5",
")",
"return",
"Decoded",
"(",
"string_at",
"(",
"msg",
".",
"contents",
".",
"output",
")",
",",
"Rect",
"(",
"x0",
",",
"y0",
",",
"x1",
"-",
"x0",
",",
"y1",
"-",
"y0",
")",
")",
"else",
":",
"return",
"None"
] | Decodes and returns the value in a region.
Args:
region (DmtxRegion):
Yields:
Decoded or None: The decoded value. | [
"Decodes",
"and",
"returns",
"the",
"value",
"in",
"a",
"region",
"."
] | a425ec36050500af4875bf94eda02feb26ea62ad | https://github.com/NaturalHistoryMuseum/pylibdmtx/blob/a425ec36050500af4875bf94eda02feb26ea62ad/pylibdmtx/pylibdmtx.py#L149-L177 |
1,053 | NaturalHistoryMuseum/pylibdmtx | pylibdmtx/pylibdmtx.py | encode | def encode(data, scheme=None, size=None):
"""
Encodes `data` in a DataMatrix image.
For now bpp is the libdmtx default which is 24
Args:
data: bytes instance
scheme: encoding scheme - one of `ENCODING_SCHEME_NAMES`, or `None`.
If `None`, defaults to 'Ascii'.
size: image dimensions - one of `ENCODING_SIZE_NAMES`, or `None`.
If `None`, defaults to 'ShapeAuto'.
Returns:
Encoded: with properties `(width, height, bpp, pixels)`.
You can use that result to build a PIL image:
Image.frombytes('RGB', (width, height), pixels)
"""
size = size if size else 'ShapeAuto'
size_name = '{0}{1}'.format(ENCODING_SIZE_PREFIX, size)
if not hasattr(DmtxSymbolSize, size_name):
raise PyLibDMTXError(
'Invalid size [{0}]: should be one of {1}'.format(
size, ENCODING_SIZE_NAMES
)
)
size = getattr(DmtxSymbolSize, size_name)
scheme = scheme if scheme else 'Ascii'
scheme_name = '{0}{1}'.format(
ENCODING_SCHEME_PREFIX, scheme.capitalize()
)
if not hasattr(DmtxScheme, scheme_name):
raise PyLibDMTXError(
'Invalid scheme [{0}]: should be one of {1}'.format(
scheme, ENCODING_SCHEME_NAMES
)
)
scheme = getattr(DmtxScheme, scheme_name)
with _encoder() as encoder:
dmtxEncodeSetProp(encoder, DmtxProperty.DmtxPropScheme, scheme)
dmtxEncodeSetProp(encoder, DmtxProperty.DmtxPropSizeRequest, size)
if dmtxEncodeDataMatrix(encoder, len(data), cast(data, c_ubyte_p)) == 0:
raise PyLibDMTXError(
'Could not encode data, possibly because the image is not '
'large enough to contain the data'
)
w, h, bpp = map(
partial(dmtxImageGetProp, encoder[0].image),
(
DmtxProperty.DmtxPropWidth, DmtxProperty.DmtxPropHeight,
DmtxProperty.DmtxPropBitsPerPixel
)
)
size = w * h * bpp // 8
pixels = cast(
encoder[0].image[0].pxl, ctypes.POINTER(ctypes.c_ubyte * size)
)
return Encoded(
width=w, height=h, bpp=bpp, pixels=ctypes.string_at(pixels, size)
) | python | def encode(data, scheme=None, size=None):
"""
Encodes `data` in a DataMatrix image.
For now bpp is the libdmtx default which is 24
Args:
data: bytes instance
scheme: encoding scheme - one of `ENCODING_SCHEME_NAMES`, or `None`.
If `None`, defaults to 'Ascii'.
size: image dimensions - one of `ENCODING_SIZE_NAMES`, or `None`.
If `None`, defaults to 'ShapeAuto'.
Returns:
Encoded: with properties `(width, height, bpp, pixels)`.
You can use that result to build a PIL image:
Image.frombytes('RGB', (width, height), pixels)
"""
size = size if size else 'ShapeAuto'
size_name = '{0}{1}'.format(ENCODING_SIZE_PREFIX, size)
if not hasattr(DmtxSymbolSize, size_name):
raise PyLibDMTXError(
'Invalid size [{0}]: should be one of {1}'.format(
size, ENCODING_SIZE_NAMES
)
)
size = getattr(DmtxSymbolSize, size_name)
scheme = scheme if scheme else 'Ascii'
scheme_name = '{0}{1}'.format(
ENCODING_SCHEME_PREFIX, scheme.capitalize()
)
if not hasattr(DmtxScheme, scheme_name):
raise PyLibDMTXError(
'Invalid scheme [{0}]: should be one of {1}'.format(
scheme, ENCODING_SCHEME_NAMES
)
)
scheme = getattr(DmtxScheme, scheme_name)
with _encoder() as encoder:
dmtxEncodeSetProp(encoder, DmtxProperty.DmtxPropScheme, scheme)
dmtxEncodeSetProp(encoder, DmtxProperty.DmtxPropSizeRequest, size)
if dmtxEncodeDataMatrix(encoder, len(data), cast(data, c_ubyte_p)) == 0:
raise PyLibDMTXError(
'Could not encode data, possibly because the image is not '
'large enough to contain the data'
)
w, h, bpp = map(
partial(dmtxImageGetProp, encoder[0].image),
(
DmtxProperty.DmtxPropWidth, DmtxProperty.DmtxPropHeight,
DmtxProperty.DmtxPropBitsPerPixel
)
)
size = w * h * bpp // 8
pixels = cast(
encoder[0].image[0].pxl, ctypes.POINTER(ctypes.c_ubyte * size)
)
return Encoded(
width=w, height=h, bpp=bpp, pixels=ctypes.string_at(pixels, size)
) | [
"def",
"encode",
"(",
"data",
",",
"scheme",
"=",
"None",
",",
"size",
"=",
"None",
")",
":",
"size",
"=",
"size",
"if",
"size",
"else",
"'ShapeAuto'",
"size_name",
"=",
"'{0}{1}'",
".",
"format",
"(",
"ENCODING_SIZE_PREFIX",
",",
"size",
")",
"if",
"not",
"hasattr",
"(",
"DmtxSymbolSize",
",",
"size_name",
")",
":",
"raise",
"PyLibDMTXError",
"(",
"'Invalid size [{0}]: should be one of {1}'",
".",
"format",
"(",
"size",
",",
"ENCODING_SIZE_NAMES",
")",
")",
"size",
"=",
"getattr",
"(",
"DmtxSymbolSize",
",",
"size_name",
")",
"scheme",
"=",
"scheme",
"if",
"scheme",
"else",
"'Ascii'",
"scheme_name",
"=",
"'{0}{1}'",
".",
"format",
"(",
"ENCODING_SCHEME_PREFIX",
",",
"scheme",
".",
"capitalize",
"(",
")",
")",
"if",
"not",
"hasattr",
"(",
"DmtxScheme",
",",
"scheme_name",
")",
":",
"raise",
"PyLibDMTXError",
"(",
"'Invalid scheme [{0}]: should be one of {1}'",
".",
"format",
"(",
"scheme",
",",
"ENCODING_SCHEME_NAMES",
")",
")",
"scheme",
"=",
"getattr",
"(",
"DmtxScheme",
",",
"scheme_name",
")",
"with",
"_encoder",
"(",
")",
"as",
"encoder",
":",
"dmtxEncodeSetProp",
"(",
"encoder",
",",
"DmtxProperty",
".",
"DmtxPropScheme",
",",
"scheme",
")",
"dmtxEncodeSetProp",
"(",
"encoder",
",",
"DmtxProperty",
".",
"DmtxPropSizeRequest",
",",
"size",
")",
"if",
"dmtxEncodeDataMatrix",
"(",
"encoder",
",",
"len",
"(",
"data",
")",
",",
"cast",
"(",
"data",
",",
"c_ubyte_p",
")",
")",
"==",
"0",
":",
"raise",
"PyLibDMTXError",
"(",
"'Could not encode data, possibly because the image is not '",
"'large enough to contain the data'",
")",
"w",
",",
"h",
",",
"bpp",
"=",
"map",
"(",
"partial",
"(",
"dmtxImageGetProp",
",",
"encoder",
"[",
"0",
"]",
".",
"image",
")",
",",
"(",
"DmtxProperty",
".",
"DmtxPropWidth",
",",
"DmtxProperty",
".",
"DmtxPropHeight",
",",
"DmtxProperty",
".",
"DmtxPropBitsPerPixel",
")",
")",
"size",
"=",
"w",
"*",
"h",
"*",
"bpp",
"//",
"8",
"pixels",
"=",
"cast",
"(",
"encoder",
"[",
"0",
"]",
".",
"image",
"[",
"0",
"]",
".",
"pxl",
",",
"ctypes",
".",
"POINTER",
"(",
"ctypes",
".",
"c_ubyte",
"*",
"size",
")",
")",
"return",
"Encoded",
"(",
"width",
"=",
"w",
",",
"height",
"=",
"h",
",",
"bpp",
"=",
"bpp",
",",
"pixels",
"=",
"ctypes",
".",
"string_at",
"(",
"pixels",
",",
"size",
")",
")"
] | Encodes `data` in a DataMatrix image.
For now bpp is the libdmtx default which is 24
Args:
data: bytes instance
scheme: encoding scheme - one of `ENCODING_SCHEME_NAMES`, or `None`.
If `None`, defaults to 'Ascii'.
size: image dimensions - one of `ENCODING_SIZE_NAMES`, or `None`.
If `None`, defaults to 'ShapeAuto'.
Returns:
Encoded: with properties `(width, height, bpp, pixels)`.
You can use that result to build a PIL image:
Image.frombytes('RGB', (width, height), pixels) | [
"Encodes",
"data",
"in",
"a",
"DataMatrix",
"image",
"."
] | a425ec36050500af4875bf94eda02feb26ea62ad | https://github.com/NaturalHistoryMuseum/pylibdmtx/blob/a425ec36050500af4875bf94eda02feb26ea62ad/pylibdmtx/pylibdmtx.py#L312-L378 |
1,054 | GeoPyTool/GeoPyTool | Experimental/Alpah_Shape_2D.py | add_edge | def add_edge(edges, edge_points, coords, i, j):
"""
Add a line between the i-th and j-th points,
if not in the list already
"""
if (i, j) in edges or (j, i) in edges:
# already added
return( edges.add((i, j)), edge_points.append(coords[[i, j]])) | python | def add_edge(edges, edge_points, coords, i, j):
"""
Add a line between the i-th and j-th points,
if not in the list already
"""
if (i, j) in edges or (j, i) in edges:
# already added
return( edges.add((i, j)), edge_points.append(coords[[i, j]])) | [
"def",
"add_edge",
"(",
"edges",
",",
"edge_points",
",",
"coords",
",",
"i",
",",
"j",
")",
":",
"if",
"(",
"i",
",",
"j",
")",
"in",
"edges",
"or",
"(",
"j",
",",
"i",
")",
"in",
"edges",
":",
"# already added",
"return",
"(",
"edges",
".",
"add",
"(",
"(",
"i",
",",
"j",
")",
")",
",",
"edge_points",
".",
"append",
"(",
"coords",
"[",
"[",
"i",
",",
"j",
"]",
"]",
")",
")"
] | Add a line between the i-th and j-th points,
if not in the list already | [
"Add",
"a",
"line",
"between",
"the",
"i",
"-",
"th",
"and",
"j",
"-",
"th",
"points",
"if",
"not",
"in",
"the",
"list",
"already"
] | 8c198aa42e4fbdf62fac05d40cbf4d1086328da3 | https://github.com/GeoPyTool/GeoPyTool/blob/8c198aa42e4fbdf62fac05d40cbf4d1086328da3/Experimental/Alpah_Shape_2D.py#L28-L35 |
1,055 | GeoPyTool/GeoPyTool | geopytool/CustomClass.py | Line.sequence | def sequence(self):
'''
sort the points in the line with given option
'''
if (len(self.Points[0]) == 2):
if (self.Sort == 'X' or self.Sort == 'x'):
self.Points.sort(key=lambda x: x[0])
self.order(self.Points)
elif (self.Sort == 'Y' or self.Sort == 'y'):
self.Points.sort(key=lambda x: x[1])
self.order(self.Points)
else:
self.order(self.Points)
if (len(self.Points[0]) == 3):
if (self.Sort == 'X' or self.Sort == 'x'):
self.Points.sort(key=lambda x: x[0])
self.order(self.Points)
elif (self.Sort == 'Y' or self.Sort == 'y'):
self.Points.sort(key=lambda x: x[1])
self.order(self.Points)
elif (self.Sort == 'Z' or self.Sort == 'Z'):
self.Points.sort(key=lambda x: x[2])
self.order(self.Points)
else:
self.order(self.Points) | python | def sequence(self):
'''
sort the points in the line with given option
'''
if (len(self.Points[0]) == 2):
if (self.Sort == 'X' or self.Sort == 'x'):
self.Points.sort(key=lambda x: x[0])
self.order(self.Points)
elif (self.Sort == 'Y' or self.Sort == 'y'):
self.Points.sort(key=lambda x: x[1])
self.order(self.Points)
else:
self.order(self.Points)
if (len(self.Points[0]) == 3):
if (self.Sort == 'X' or self.Sort == 'x'):
self.Points.sort(key=lambda x: x[0])
self.order(self.Points)
elif (self.Sort == 'Y' or self.Sort == 'y'):
self.Points.sort(key=lambda x: x[1])
self.order(self.Points)
elif (self.Sort == 'Z' or self.Sort == 'Z'):
self.Points.sort(key=lambda x: x[2])
self.order(self.Points)
else:
self.order(self.Points) | [
"def",
"sequence",
"(",
"self",
")",
":",
"if",
"(",
"len",
"(",
"self",
".",
"Points",
"[",
"0",
"]",
")",
"==",
"2",
")",
":",
"if",
"(",
"self",
".",
"Sort",
"==",
"'X'",
"or",
"self",
".",
"Sort",
"==",
"'x'",
")",
":",
"self",
".",
"Points",
".",
"sort",
"(",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"0",
"]",
")",
"self",
".",
"order",
"(",
"self",
".",
"Points",
")",
"elif",
"(",
"self",
".",
"Sort",
"==",
"'Y'",
"or",
"self",
".",
"Sort",
"==",
"'y'",
")",
":",
"self",
".",
"Points",
".",
"sort",
"(",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"1",
"]",
")",
"self",
".",
"order",
"(",
"self",
".",
"Points",
")",
"else",
":",
"self",
".",
"order",
"(",
"self",
".",
"Points",
")",
"if",
"(",
"len",
"(",
"self",
".",
"Points",
"[",
"0",
"]",
")",
"==",
"3",
")",
":",
"if",
"(",
"self",
".",
"Sort",
"==",
"'X'",
"or",
"self",
".",
"Sort",
"==",
"'x'",
")",
":",
"self",
".",
"Points",
".",
"sort",
"(",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"0",
"]",
")",
"self",
".",
"order",
"(",
"self",
".",
"Points",
")",
"elif",
"(",
"self",
".",
"Sort",
"==",
"'Y'",
"or",
"self",
".",
"Sort",
"==",
"'y'",
")",
":",
"self",
".",
"Points",
".",
"sort",
"(",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"1",
"]",
")",
"self",
".",
"order",
"(",
"self",
".",
"Points",
")",
"elif",
"(",
"self",
".",
"Sort",
"==",
"'Z'",
"or",
"self",
".",
"Sort",
"==",
"'Z'",
")",
":",
"self",
".",
"Points",
".",
"sort",
"(",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"2",
"]",
")",
"self",
".",
"order",
"(",
"self",
".",
"Points",
")",
"else",
":",
"self",
".",
"order",
"(",
"self",
".",
"Points",
")"
] | sort the points in the line with given option | [
"sort",
"the",
"points",
"in",
"the",
"line",
"with",
"given",
"option"
] | 8c198aa42e4fbdf62fac05d40cbf4d1086328da3 | https://github.com/GeoPyTool/GeoPyTool/blob/8c198aa42e4fbdf62fac05d40cbf4d1086328da3/geopytool/CustomClass.py#L367-L394 |
1,056 | HDI-Project/MLPrimitives | mlprimitives/adapters/pandas.py | resample | def resample(df, rule, time_index, groupby=None, aggregation='mean'):
"""pd.DataFrame.resample adapter.
Call the `df.resample` method on the given time_index
and afterwards call the indicated aggregation.
Optionally group the dataframe by the indicated columns before
performing the resampling.
If groupby option is used, the result is a multi-index datagrame.
Args:
df (pandas.DataFrame): DataFrame to resample.
rule (str): The offset string or object representing target conversion.
groupby (list): Optional list of columns to group by.
time_index (str): Name of the column to use as the time index.
aggregation (str): Name of the aggregation function to use.
Returns:
pandas.Dataframe: resampled dataframe
"""
if groupby:
df = df.groupby(groupby)
df = df.resample(rule, on=time_index)
df = getattr(df, aggregation)()
for column in groupby:
del df[column]
return df | python | def resample(df, rule, time_index, groupby=None, aggregation='mean'):
"""pd.DataFrame.resample adapter.
Call the `df.resample` method on the given time_index
and afterwards call the indicated aggregation.
Optionally group the dataframe by the indicated columns before
performing the resampling.
If groupby option is used, the result is a multi-index datagrame.
Args:
df (pandas.DataFrame): DataFrame to resample.
rule (str): The offset string or object representing target conversion.
groupby (list): Optional list of columns to group by.
time_index (str): Name of the column to use as the time index.
aggregation (str): Name of the aggregation function to use.
Returns:
pandas.Dataframe: resampled dataframe
"""
if groupby:
df = df.groupby(groupby)
df = df.resample(rule, on=time_index)
df = getattr(df, aggregation)()
for column in groupby:
del df[column]
return df | [
"def",
"resample",
"(",
"df",
",",
"rule",
",",
"time_index",
",",
"groupby",
"=",
"None",
",",
"aggregation",
"=",
"'mean'",
")",
":",
"if",
"groupby",
":",
"df",
"=",
"df",
".",
"groupby",
"(",
"groupby",
")",
"df",
"=",
"df",
".",
"resample",
"(",
"rule",
",",
"on",
"=",
"time_index",
")",
"df",
"=",
"getattr",
"(",
"df",
",",
"aggregation",
")",
"(",
")",
"for",
"column",
"in",
"groupby",
":",
"del",
"df",
"[",
"column",
"]",
"return",
"df"
] | pd.DataFrame.resample adapter.
Call the `df.resample` method on the given time_index
and afterwards call the indicated aggregation.
Optionally group the dataframe by the indicated columns before
performing the resampling.
If groupby option is used, the result is a multi-index datagrame.
Args:
df (pandas.DataFrame): DataFrame to resample.
rule (str): The offset string or object representing target conversion.
groupby (list): Optional list of columns to group by.
time_index (str): Name of the column to use as the time index.
aggregation (str): Name of the aggregation function to use.
Returns:
pandas.Dataframe: resampled dataframe | [
"pd",
".",
"DataFrame",
".",
"resample",
"adapter",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/adapters/pandas.py#L1-L30 |
1,057 | HDI-Project/MLPrimitives | mlprimitives/adapters/pandas.py | _join_names | def _join_names(names):
"""Join the names of a multi-level index with an underscore."""
levels = (str(name) for name in names if name != '')
return '_'.join(levels) | python | def _join_names(names):
"""Join the names of a multi-level index with an underscore."""
levels = (str(name) for name in names if name != '')
return '_'.join(levels) | [
"def",
"_join_names",
"(",
"names",
")",
":",
"levels",
"=",
"(",
"str",
"(",
"name",
")",
"for",
"name",
"in",
"names",
"if",
"name",
"!=",
"''",
")",
"return",
"'_'",
".",
"join",
"(",
"levels",
")"
] | Join the names of a multi-level index with an underscore. | [
"Join",
"the",
"names",
"of",
"a",
"multi",
"-",
"level",
"index",
"with",
"an",
"underscore",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/adapters/pandas.py#L33-L37 |
1,058 | HDI-Project/MLPrimitives | mlprimitives/adapters/pandas.py | unstack | def unstack(df, level=-1, reset_index=True):
"""pd.DataFrame.unstack adapter.
Call the `df.unstack` method using the indicated level and afterwards
join the column names using an underscore.
Args:
df (pandas.DataFrame): DataFrame to unstack.
level (str, int or list): Level(s) of index to unstack, can pass level name
reset_index (bool): Whether to reset the index after unstacking
Returns:
pandas.Dataframe: unstacked dataframe
"""
df = df.unstack(level=level)
if reset_index:
df = df.reset_index()
df.columns = df.columns.map(_join_names)
return df | python | def unstack(df, level=-1, reset_index=True):
"""pd.DataFrame.unstack adapter.
Call the `df.unstack` method using the indicated level and afterwards
join the column names using an underscore.
Args:
df (pandas.DataFrame): DataFrame to unstack.
level (str, int or list): Level(s) of index to unstack, can pass level name
reset_index (bool): Whether to reset the index after unstacking
Returns:
pandas.Dataframe: unstacked dataframe
"""
df = df.unstack(level=level)
if reset_index:
df = df.reset_index()
df.columns = df.columns.map(_join_names)
return df | [
"def",
"unstack",
"(",
"df",
",",
"level",
"=",
"-",
"1",
",",
"reset_index",
"=",
"True",
")",
":",
"df",
"=",
"df",
".",
"unstack",
"(",
"level",
"=",
"level",
")",
"if",
"reset_index",
":",
"df",
"=",
"df",
".",
"reset_index",
"(",
")",
"df",
".",
"columns",
"=",
"df",
".",
"columns",
".",
"map",
"(",
"_join_names",
")",
"return",
"df"
] | pd.DataFrame.unstack adapter.
Call the `df.unstack` method using the indicated level and afterwards
join the column names using an underscore.
Args:
df (pandas.DataFrame): DataFrame to unstack.
level (str, int or list): Level(s) of index to unstack, can pass level name
reset_index (bool): Whether to reset the index after unstacking
Returns:
pandas.Dataframe: unstacked dataframe | [
"pd",
".",
"DataFrame",
".",
"unstack",
"adapter",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/adapters/pandas.py#L40-L59 |
1,059 | HDI-Project/MLPrimitives | mlprimitives/datasets.py | load_boston_multitask | def load_boston_multitask():
"""Boston House Prices Dataset with a synthetic multitask output.
The multitask output is obtained by applying a linear transformation
to the original y and adding it as a second output column.
"""
dataset = datasets.load_boston()
y = dataset.target
target = np.column_stack([y, 2 * y + 5])
return Dataset(load_boston.__doc__, dataset.data, target, r2_score) | python | def load_boston_multitask():
"""Boston House Prices Dataset with a synthetic multitask output.
The multitask output is obtained by applying a linear transformation
to the original y and adding it as a second output column.
"""
dataset = datasets.load_boston()
y = dataset.target
target = np.column_stack([y, 2 * y + 5])
return Dataset(load_boston.__doc__, dataset.data, target, r2_score) | [
"def",
"load_boston_multitask",
"(",
")",
":",
"dataset",
"=",
"datasets",
".",
"load_boston",
"(",
")",
"y",
"=",
"dataset",
".",
"target",
"target",
"=",
"np",
".",
"column_stack",
"(",
"[",
"y",
",",
"2",
"*",
"y",
"+",
"5",
"]",
")",
"return",
"Dataset",
"(",
"load_boston",
".",
"__doc__",
",",
"dataset",
".",
"data",
",",
"target",
",",
"r2_score",
")"
] | Boston House Prices Dataset with a synthetic multitask output.
The multitask output is obtained by applying a linear transformation
to the original y and adding it as a second output column. | [
"Boston",
"House",
"Prices",
"Dataset",
"with",
"a",
"synthetic",
"multitask",
"output",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/datasets.py#L482-L491 |
1,060 | HDI-Project/MLPrimitives | mlprimitives/candidates/audio_featurization.py | energy | def energy(data):
"""Computes signal energy of data"""
data = np.mean(data, axis=1)
return np.sum(data ** 2) / np.float64(len(data)) | python | def energy(data):
"""Computes signal energy of data"""
data = np.mean(data, axis=1)
return np.sum(data ** 2) / np.float64(len(data)) | [
"def",
"energy",
"(",
"data",
")",
":",
"data",
"=",
"np",
".",
"mean",
"(",
"data",
",",
"axis",
"=",
"1",
")",
"return",
"np",
".",
"sum",
"(",
"data",
"**",
"2",
")",
"/",
"np",
".",
"float64",
"(",
"len",
"(",
"data",
")",
")"
] | Computes signal energy of data | [
"Computes",
"signal",
"energy",
"of",
"data"
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/candidates/audio_featurization.py#L10-L13 |
1,061 | HDI-Project/MLPrimitives | mlprimitives/candidates/audio_featurization.py | zcr | def zcr(data):
"""Computes zero crossing rate of segment"""
data = np.mean(data, axis=1)
count = len(data)
countZ = np.sum(np.abs(np.diff(np.sign(data)))) / 2
return (np.float64(countZ) / np.float64(count - 1.0)) | python | def zcr(data):
"""Computes zero crossing rate of segment"""
data = np.mean(data, axis=1)
count = len(data)
countZ = np.sum(np.abs(np.diff(np.sign(data)))) / 2
return (np.float64(countZ) / np.float64(count - 1.0)) | [
"def",
"zcr",
"(",
"data",
")",
":",
"data",
"=",
"np",
".",
"mean",
"(",
"data",
",",
"axis",
"=",
"1",
")",
"count",
"=",
"len",
"(",
"data",
")",
"countZ",
"=",
"np",
".",
"sum",
"(",
"np",
".",
"abs",
"(",
"np",
".",
"diff",
"(",
"np",
".",
"sign",
"(",
"data",
")",
")",
")",
")",
"/",
"2",
"return",
"(",
"np",
".",
"float64",
"(",
"countZ",
")",
"/",
"np",
".",
"float64",
"(",
"count",
"-",
"1.0",
")",
")"
] | Computes zero crossing rate of segment | [
"Computes",
"zero",
"crossing",
"rate",
"of",
"segment"
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/candidates/audio_featurization.py#L51-L57 |
1,062 | HDI-Project/MLPrimitives | mlprimitives/candidates/audio_featurization.py | spectral_flux | def spectral_flux(d0, d1):
"""
Computes the spectral flux feature of the current frame
"""
# compute the spectral flux as the sum of square distances:
d0 = np.mean(d0, axis=1)
d1 = np.mean(d1, axis=1)
nFFT = min(len(d0) // 2, len(d1) // 2)
X = FFT(d0, nFFT)
Xprev = FFT(d1, nFFT)
# L = min(len(X), len(Xprev))
sumX = np.sum(X + EPSILON)
sumPrevX = np.sum(Xprev + EPSILON)
return np.sum((X / sumX - Xprev / sumPrevX) ** 2) | python | def spectral_flux(d0, d1):
"""
Computes the spectral flux feature of the current frame
"""
# compute the spectral flux as the sum of square distances:
d0 = np.mean(d0, axis=1)
d1 = np.mean(d1, axis=1)
nFFT = min(len(d0) // 2, len(d1) // 2)
X = FFT(d0, nFFT)
Xprev = FFT(d1, nFFT)
# L = min(len(X), len(Xprev))
sumX = np.sum(X + EPSILON)
sumPrevX = np.sum(Xprev + EPSILON)
return np.sum((X / sumX - Xprev / sumPrevX) ** 2) | [
"def",
"spectral_flux",
"(",
"d0",
",",
"d1",
")",
":",
"# compute the spectral flux as the sum of square distances:",
"d0",
"=",
"np",
".",
"mean",
"(",
"d0",
",",
"axis",
"=",
"1",
")",
"d1",
"=",
"np",
".",
"mean",
"(",
"d1",
",",
"axis",
"=",
"1",
")",
"nFFT",
"=",
"min",
"(",
"len",
"(",
"d0",
")",
"//",
"2",
",",
"len",
"(",
"d1",
")",
"//",
"2",
")",
"X",
"=",
"FFT",
"(",
"d0",
",",
"nFFT",
")",
"Xprev",
"=",
"FFT",
"(",
"d1",
",",
"nFFT",
")",
"# L = min(len(X), len(Xprev))",
"sumX",
"=",
"np",
".",
"sum",
"(",
"X",
"+",
"EPSILON",
")",
"sumPrevX",
"=",
"np",
".",
"sum",
"(",
"Xprev",
"+",
"EPSILON",
")",
"return",
"np",
".",
"sum",
"(",
"(",
"X",
"/",
"sumX",
"-",
"Xprev",
"/",
"sumPrevX",
")",
"**",
"2",
")"
] | Computes the spectral flux feature of the current frame | [
"Computes",
"the",
"spectral",
"flux",
"feature",
"of",
"the",
"current",
"frame"
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/candidates/audio_featurization.py#L60-L75 |
1,063 | HDI-Project/MLPrimitives | mlprimitives/custom/timeseries_preprocessing.py | rolling_window_sequences | def rolling_window_sequences(X, index, window_size, target_size, target_column):
"""Create rolling window sequences out of timeseries data."""
out_X = list()
out_y = list()
X_index = list()
y_index = list()
target = X[:, target_column]
for start in range(len(X) - window_size - target_size + 1):
end = start + window_size
out_X.append(X[start:end])
out_y.append(target[end:end + target_size])
X_index.append(index[start])
y_index.append(index[end])
return np.asarray(out_X), np.asarray(out_y), np.asarray(X_index), np.asarray(y_index) | python | def rolling_window_sequences(X, index, window_size, target_size, target_column):
"""Create rolling window sequences out of timeseries data."""
out_X = list()
out_y = list()
X_index = list()
y_index = list()
target = X[:, target_column]
for start in range(len(X) - window_size - target_size + 1):
end = start + window_size
out_X.append(X[start:end])
out_y.append(target[end:end + target_size])
X_index.append(index[start])
y_index.append(index[end])
return np.asarray(out_X), np.asarray(out_y), np.asarray(X_index), np.asarray(y_index) | [
"def",
"rolling_window_sequences",
"(",
"X",
",",
"index",
",",
"window_size",
",",
"target_size",
",",
"target_column",
")",
":",
"out_X",
"=",
"list",
"(",
")",
"out_y",
"=",
"list",
"(",
")",
"X_index",
"=",
"list",
"(",
")",
"y_index",
"=",
"list",
"(",
")",
"target",
"=",
"X",
"[",
":",
",",
"target_column",
"]",
"for",
"start",
"in",
"range",
"(",
"len",
"(",
"X",
")",
"-",
"window_size",
"-",
"target_size",
"+",
"1",
")",
":",
"end",
"=",
"start",
"+",
"window_size",
"out_X",
".",
"append",
"(",
"X",
"[",
"start",
":",
"end",
"]",
")",
"out_y",
".",
"append",
"(",
"target",
"[",
"end",
":",
"end",
"+",
"target_size",
"]",
")",
"X_index",
".",
"append",
"(",
"index",
"[",
"start",
"]",
")",
"y_index",
".",
"append",
"(",
"index",
"[",
"end",
"]",
")",
"return",
"np",
".",
"asarray",
"(",
"out_X",
")",
",",
"np",
".",
"asarray",
"(",
"out_y",
")",
",",
"np",
".",
"asarray",
"(",
"X_index",
")",
",",
"np",
".",
"asarray",
"(",
"y_index",
")"
] | Create rolling window sequences out of timeseries data. | [
"Create",
"rolling",
"window",
"sequences",
"out",
"of",
"timeseries",
"data",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/custom/timeseries_preprocessing.py#L7-L23 |
1,064 | HDI-Project/MLPrimitives | mlprimitives/custom/timeseries_preprocessing.py | time_segments_average | def time_segments_average(X, interval, time_column):
"""Compute average of values over fixed length time segments."""
warnings.warn(_TIME_SEGMENTS_AVERAGE_DEPRECATION_WARNING, DeprecationWarning)
if isinstance(X, np.ndarray):
X = pd.DataFrame(X)
X = X.sort_values(time_column).set_index(time_column)
start_ts = X.index.values[0]
max_ts = X.index.values[-1]
values = list()
index = list()
while start_ts <= max_ts:
end_ts = start_ts + interval
subset = X.loc[start_ts:end_ts - 1]
means = subset.mean(skipna=True).values
values.append(means)
index.append(start_ts)
start_ts = end_ts
return np.asarray(values), np.asarray(index) | python | def time_segments_average(X, interval, time_column):
"""Compute average of values over fixed length time segments."""
warnings.warn(_TIME_SEGMENTS_AVERAGE_DEPRECATION_WARNING, DeprecationWarning)
if isinstance(X, np.ndarray):
X = pd.DataFrame(X)
X = X.sort_values(time_column).set_index(time_column)
start_ts = X.index.values[0]
max_ts = X.index.values[-1]
values = list()
index = list()
while start_ts <= max_ts:
end_ts = start_ts + interval
subset = X.loc[start_ts:end_ts - 1]
means = subset.mean(skipna=True).values
values.append(means)
index.append(start_ts)
start_ts = end_ts
return np.asarray(values), np.asarray(index) | [
"def",
"time_segments_average",
"(",
"X",
",",
"interval",
",",
"time_column",
")",
":",
"warnings",
".",
"warn",
"(",
"_TIME_SEGMENTS_AVERAGE_DEPRECATION_WARNING",
",",
"DeprecationWarning",
")",
"if",
"isinstance",
"(",
"X",
",",
"np",
".",
"ndarray",
")",
":",
"X",
"=",
"pd",
".",
"DataFrame",
"(",
"X",
")",
"X",
"=",
"X",
".",
"sort_values",
"(",
"time_column",
")",
".",
"set_index",
"(",
"time_column",
")",
"start_ts",
"=",
"X",
".",
"index",
".",
"values",
"[",
"0",
"]",
"max_ts",
"=",
"X",
".",
"index",
".",
"values",
"[",
"-",
"1",
"]",
"values",
"=",
"list",
"(",
")",
"index",
"=",
"list",
"(",
")",
"while",
"start_ts",
"<=",
"max_ts",
":",
"end_ts",
"=",
"start_ts",
"+",
"interval",
"subset",
"=",
"X",
".",
"loc",
"[",
"start_ts",
":",
"end_ts",
"-",
"1",
"]",
"means",
"=",
"subset",
".",
"mean",
"(",
"skipna",
"=",
"True",
")",
".",
"values",
"values",
".",
"append",
"(",
"means",
")",
"index",
".",
"append",
"(",
"start_ts",
")",
"start_ts",
"=",
"end_ts",
"return",
"np",
".",
"asarray",
"(",
"values",
")",
",",
"np",
".",
"asarray",
"(",
"index",
")"
] | Compute average of values over fixed length time segments. | [
"Compute",
"average",
"of",
"values",
"over",
"fixed",
"length",
"time",
"segments",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/custom/timeseries_preprocessing.py#L33-L55 |
1,065 | HDI-Project/MLPrimitives | mlprimitives/custom/timeseries_preprocessing.py | time_segments_aggregate | def time_segments_aggregate(X, interval, time_column, method=['mean']):
"""Aggregate values over fixed length time segments."""
if isinstance(X, np.ndarray):
X = pd.DataFrame(X)
X = X.sort_values(time_column).set_index(time_column)
if isinstance(method, str):
method = [method]
start_ts = X.index.values[0]
max_ts = X.index.values[-1]
values = list()
index = list()
while start_ts <= max_ts:
end_ts = start_ts + interval
subset = X.loc[start_ts:end_ts - 1]
aggregated = [
getattr(subset, agg)(skipna=True).values
for agg in method
]
values.append(np.concatenate(aggregated))
index.append(start_ts)
start_ts = end_ts
return np.asarray(values), np.asarray(index) | python | def time_segments_aggregate(X, interval, time_column, method=['mean']):
"""Aggregate values over fixed length time segments."""
if isinstance(X, np.ndarray):
X = pd.DataFrame(X)
X = X.sort_values(time_column).set_index(time_column)
if isinstance(method, str):
method = [method]
start_ts = X.index.values[0]
max_ts = X.index.values[-1]
values = list()
index = list()
while start_ts <= max_ts:
end_ts = start_ts + interval
subset = X.loc[start_ts:end_ts - 1]
aggregated = [
getattr(subset, agg)(skipna=True).values
for agg in method
]
values.append(np.concatenate(aggregated))
index.append(start_ts)
start_ts = end_ts
return np.asarray(values), np.asarray(index) | [
"def",
"time_segments_aggregate",
"(",
"X",
",",
"interval",
",",
"time_column",
",",
"method",
"=",
"[",
"'mean'",
"]",
")",
":",
"if",
"isinstance",
"(",
"X",
",",
"np",
".",
"ndarray",
")",
":",
"X",
"=",
"pd",
".",
"DataFrame",
"(",
"X",
")",
"X",
"=",
"X",
".",
"sort_values",
"(",
"time_column",
")",
".",
"set_index",
"(",
"time_column",
")",
"if",
"isinstance",
"(",
"method",
",",
"str",
")",
":",
"method",
"=",
"[",
"method",
"]",
"start_ts",
"=",
"X",
".",
"index",
".",
"values",
"[",
"0",
"]",
"max_ts",
"=",
"X",
".",
"index",
".",
"values",
"[",
"-",
"1",
"]",
"values",
"=",
"list",
"(",
")",
"index",
"=",
"list",
"(",
")",
"while",
"start_ts",
"<=",
"max_ts",
":",
"end_ts",
"=",
"start_ts",
"+",
"interval",
"subset",
"=",
"X",
".",
"loc",
"[",
"start_ts",
":",
"end_ts",
"-",
"1",
"]",
"aggregated",
"=",
"[",
"getattr",
"(",
"subset",
",",
"agg",
")",
"(",
"skipna",
"=",
"True",
")",
".",
"values",
"for",
"agg",
"in",
"method",
"]",
"values",
".",
"append",
"(",
"np",
".",
"concatenate",
"(",
"aggregated",
")",
")",
"index",
".",
"append",
"(",
"start_ts",
")",
"start_ts",
"=",
"end_ts",
"return",
"np",
".",
"asarray",
"(",
"values",
")",
",",
"np",
".",
"asarray",
"(",
"index",
")"
] | Aggregate values over fixed length time segments. | [
"Aggregate",
"values",
"over",
"fixed",
"length",
"time",
"segments",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/custom/timeseries_preprocessing.py#L58-L84 |
1,066 | HDI-Project/MLPrimitives | mlprimitives/utils.py | image_transform | def image_transform(X, function, reshape_before=False, reshape_after=False,
width=None, height=None, **kwargs):
"""Apply a function image by image.
Args:
reshape_before: whether 1d array needs to be reshaped to a 2d image
reshape_after: whether the returned values need to be reshaped back to a 1d array
width: image width used to rebuild the 2d images. Required if the image is not square.
height: image height used to rebuild the 2d images. Required if the image is not square.
"""
if not callable(function):
function = import_object(function)
elif not callable(function):
raise ValueError("function must be a str or a callable")
flat_image = len(X[0].shape) == 1
if reshape_before and flat_image:
if not (width and height):
side_length = math.sqrt(X.shape[1])
if side_length.is_integer():
side_length = int(side_length)
width = side_length
height = side_length
else:
raise ValueError("Image sizes must be given for non-square images")
else:
reshape_before = False
new_X = []
for image in X:
if reshape_before:
image = image.reshape((width, height))
features = function(
image,
**kwargs
)
if reshape_after:
features = np.reshape(features, X.shape[1])
new_X.append(features)
return np.array(new_X) | python | def image_transform(X, function, reshape_before=False, reshape_after=False,
width=None, height=None, **kwargs):
"""Apply a function image by image.
Args:
reshape_before: whether 1d array needs to be reshaped to a 2d image
reshape_after: whether the returned values need to be reshaped back to a 1d array
width: image width used to rebuild the 2d images. Required if the image is not square.
height: image height used to rebuild the 2d images. Required if the image is not square.
"""
if not callable(function):
function = import_object(function)
elif not callable(function):
raise ValueError("function must be a str or a callable")
flat_image = len(X[0].shape) == 1
if reshape_before and flat_image:
if not (width and height):
side_length = math.sqrt(X.shape[1])
if side_length.is_integer():
side_length = int(side_length)
width = side_length
height = side_length
else:
raise ValueError("Image sizes must be given for non-square images")
else:
reshape_before = False
new_X = []
for image in X:
if reshape_before:
image = image.reshape((width, height))
features = function(
image,
**kwargs
)
if reshape_after:
features = np.reshape(features, X.shape[1])
new_X.append(features)
return np.array(new_X) | [
"def",
"image_transform",
"(",
"X",
",",
"function",
",",
"reshape_before",
"=",
"False",
",",
"reshape_after",
"=",
"False",
",",
"width",
"=",
"None",
",",
"height",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"callable",
"(",
"function",
")",
":",
"function",
"=",
"import_object",
"(",
"function",
")",
"elif",
"not",
"callable",
"(",
"function",
")",
":",
"raise",
"ValueError",
"(",
"\"function must be a str or a callable\"",
")",
"flat_image",
"=",
"len",
"(",
"X",
"[",
"0",
"]",
".",
"shape",
")",
"==",
"1",
"if",
"reshape_before",
"and",
"flat_image",
":",
"if",
"not",
"(",
"width",
"and",
"height",
")",
":",
"side_length",
"=",
"math",
".",
"sqrt",
"(",
"X",
".",
"shape",
"[",
"1",
"]",
")",
"if",
"side_length",
".",
"is_integer",
"(",
")",
":",
"side_length",
"=",
"int",
"(",
"side_length",
")",
"width",
"=",
"side_length",
"height",
"=",
"side_length",
"else",
":",
"raise",
"ValueError",
"(",
"\"Image sizes must be given for non-square images\"",
")",
"else",
":",
"reshape_before",
"=",
"False",
"new_X",
"=",
"[",
"]",
"for",
"image",
"in",
"X",
":",
"if",
"reshape_before",
":",
"image",
"=",
"image",
".",
"reshape",
"(",
"(",
"width",
",",
"height",
")",
")",
"features",
"=",
"function",
"(",
"image",
",",
"*",
"*",
"kwargs",
")",
"if",
"reshape_after",
":",
"features",
"=",
"np",
".",
"reshape",
"(",
"features",
",",
"X",
".",
"shape",
"[",
"1",
"]",
")",
"new_X",
".",
"append",
"(",
"features",
")",
"return",
"np",
".",
"array",
"(",
"new_X",
")"
] | Apply a function image by image.
Args:
reshape_before: whether 1d array needs to be reshaped to a 2d image
reshape_after: whether the returned values need to be reshaped back to a 1d array
width: image width used to rebuild the 2d images. Required if the image is not square.
height: image height used to rebuild the 2d images. Required if the image is not square. | [
"Apply",
"a",
"function",
"image",
"by",
"image",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/utils.py#L18-L65 |
1,067 | HDI-Project/MLPrimitives | mlprimitives/custom/timeseries_anomalies.py | regression_errors | def regression_errors(y, y_hat, smoothing_window=0.01, smooth=True):
"""Compute an array of absolute errors comparing predictions and expected output.
If smooth is True, apply EWMA to the resulting array of errors.
Args:
y (array): Ground truth.
y_hat (array): Predictions array.
smoothing_window (float): Size of the smoothing window, expressed as a proportion
of the total length of y.
smooth (bool): whether the returned errors should be smoothed with EWMA.
Returns:
(array): errors
"""
errors = np.abs(y - y_hat)[:, 0]
if not smooth:
return errors
smoothing_window = int(smoothing_window * len(y))
return pd.Series(errors).ewm(span=smoothing_window).mean().values | python | def regression_errors(y, y_hat, smoothing_window=0.01, smooth=True):
"""Compute an array of absolute errors comparing predictions and expected output.
If smooth is True, apply EWMA to the resulting array of errors.
Args:
y (array): Ground truth.
y_hat (array): Predictions array.
smoothing_window (float): Size of the smoothing window, expressed as a proportion
of the total length of y.
smooth (bool): whether the returned errors should be smoothed with EWMA.
Returns:
(array): errors
"""
errors = np.abs(y - y_hat)[:, 0]
if not smooth:
return errors
smoothing_window = int(smoothing_window * len(y))
return pd.Series(errors).ewm(span=smoothing_window).mean().values | [
"def",
"regression_errors",
"(",
"y",
",",
"y_hat",
",",
"smoothing_window",
"=",
"0.01",
",",
"smooth",
"=",
"True",
")",
":",
"errors",
"=",
"np",
".",
"abs",
"(",
"y",
"-",
"y_hat",
")",
"[",
":",
",",
"0",
"]",
"if",
"not",
"smooth",
":",
"return",
"errors",
"smoothing_window",
"=",
"int",
"(",
"smoothing_window",
"*",
"len",
"(",
"y",
")",
")",
"return",
"pd",
".",
"Series",
"(",
"errors",
")",
".",
"ewm",
"(",
"span",
"=",
"smoothing_window",
")",
".",
"mean",
"(",
")",
".",
"values"
] | Compute an array of absolute errors comparing predictions and expected output.
If smooth is True, apply EWMA to the resulting array of errors.
Args:
y (array): Ground truth.
y_hat (array): Predictions array.
smoothing_window (float): Size of the smoothing window, expressed as a proportion
of the total length of y.
smooth (bool): whether the returned errors should be smoothed with EWMA.
Returns:
(array): errors | [
"Compute",
"an",
"array",
"of",
"absolute",
"errors",
"comparing",
"predictions",
"and",
"expected",
"output",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/custom/timeseries_anomalies.py#L11-L33 |
1,068 | HDI-Project/MLPrimitives | mlprimitives/custom/timeseries_anomalies.py | deltas | def deltas(errors, epsilon, mean, std):
"""Compute mean and std deltas.
delta_mean = mean(errors) - mean(all errors below epsilon)
delta_std = std(errors) - std(all errors below epsilon)
"""
below = errors[errors <= epsilon]
if not len(below):
return 0, 0
return mean - below.mean(), std - below.std() | python | def deltas(errors, epsilon, mean, std):
"""Compute mean and std deltas.
delta_mean = mean(errors) - mean(all errors below epsilon)
delta_std = std(errors) - std(all errors below epsilon)
"""
below = errors[errors <= epsilon]
if not len(below):
return 0, 0
return mean - below.mean(), std - below.std() | [
"def",
"deltas",
"(",
"errors",
",",
"epsilon",
",",
"mean",
",",
"std",
")",
":",
"below",
"=",
"errors",
"[",
"errors",
"<=",
"epsilon",
"]",
"if",
"not",
"len",
"(",
"below",
")",
":",
"return",
"0",
",",
"0",
"return",
"mean",
"-",
"below",
".",
"mean",
"(",
")",
",",
"std",
"-",
"below",
".",
"std",
"(",
")"
] | Compute mean and std deltas.
delta_mean = mean(errors) - mean(all errors below epsilon)
delta_std = std(errors) - std(all errors below epsilon) | [
"Compute",
"mean",
"and",
"std",
"deltas",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/custom/timeseries_anomalies.py#L36-L46 |
1,069 | HDI-Project/MLPrimitives | mlprimitives/custom/timeseries_anomalies.py | count_above | def count_above(errors, epsilon):
"""Count number of errors and continuous sequences above epsilon.
Continuous sequences are counted by shifting and counting the number
of positions where there was a change and the original value was true,
which means that a sequence started at that position.
"""
above = errors > epsilon
total_above = len(errors[above])
above = pd.Series(above)
shift = above.shift(1)
change = above != shift
total_consecutive = sum(above & change)
return total_above, total_consecutive | python | def count_above(errors, epsilon):
"""Count number of errors and continuous sequences above epsilon.
Continuous sequences are counted by shifting and counting the number
of positions where there was a change and the original value was true,
which means that a sequence started at that position.
"""
above = errors > epsilon
total_above = len(errors[above])
above = pd.Series(above)
shift = above.shift(1)
change = above != shift
total_consecutive = sum(above & change)
return total_above, total_consecutive | [
"def",
"count_above",
"(",
"errors",
",",
"epsilon",
")",
":",
"above",
"=",
"errors",
">",
"epsilon",
"total_above",
"=",
"len",
"(",
"errors",
"[",
"above",
"]",
")",
"above",
"=",
"pd",
".",
"Series",
"(",
"above",
")",
"shift",
"=",
"above",
".",
"shift",
"(",
"1",
")",
"change",
"=",
"above",
"!=",
"shift",
"total_consecutive",
"=",
"sum",
"(",
"above",
"&",
"change",
")",
"return",
"total_above",
",",
"total_consecutive"
] | Count number of errors and continuous sequences above epsilon.
Continuous sequences are counted by shifting and counting the number
of positions where there was a change and the original value was true,
which means that a sequence started at that position. | [
"Count",
"number",
"of",
"errors",
"and",
"continuous",
"sequences",
"above",
"epsilon",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/custom/timeseries_anomalies.py#L49-L65 |
1,070 | HDI-Project/MLPrimitives | mlprimitives/custom/timeseries_anomalies.py | z_cost | def z_cost(z, errors, mean, std):
"""Compute how bad a z value is.
The original formula is::
(delta_mean/mean) + (delta_std/std)
------------------------------------------------------
number of errors above + (number of sequences above)^2
which computes the "goodness" of `z`, meaning that the higher the value
the better the `z`.
In this case, we return this value inverted (we make it negative), to convert
it into a cost function, as later on we will use scipy to minimize it.
"""
epsilon = mean + z * std
delta_mean, delta_std = deltas(errors, epsilon, mean, std)
above, consecutive = count_above(errors, epsilon)
numerator = -(delta_mean / mean + delta_std / std)
denominator = above + consecutive ** 2
if denominator == 0:
return np.inf
return numerator / denominator | python | def z_cost(z, errors, mean, std):
"""Compute how bad a z value is.
The original formula is::
(delta_mean/mean) + (delta_std/std)
------------------------------------------------------
number of errors above + (number of sequences above)^2
which computes the "goodness" of `z`, meaning that the higher the value
the better the `z`.
In this case, we return this value inverted (we make it negative), to convert
it into a cost function, as later on we will use scipy to minimize it.
"""
epsilon = mean + z * std
delta_mean, delta_std = deltas(errors, epsilon, mean, std)
above, consecutive = count_above(errors, epsilon)
numerator = -(delta_mean / mean + delta_std / std)
denominator = above + consecutive ** 2
if denominator == 0:
return np.inf
return numerator / denominator | [
"def",
"z_cost",
"(",
"z",
",",
"errors",
",",
"mean",
",",
"std",
")",
":",
"epsilon",
"=",
"mean",
"+",
"z",
"*",
"std",
"delta_mean",
",",
"delta_std",
"=",
"deltas",
"(",
"errors",
",",
"epsilon",
",",
"mean",
",",
"std",
")",
"above",
",",
"consecutive",
"=",
"count_above",
"(",
"errors",
",",
"epsilon",
")",
"numerator",
"=",
"-",
"(",
"delta_mean",
"/",
"mean",
"+",
"delta_std",
"/",
"std",
")",
"denominator",
"=",
"above",
"+",
"consecutive",
"**",
"2",
"if",
"denominator",
"==",
"0",
":",
"return",
"np",
".",
"inf",
"return",
"numerator",
"/",
"denominator"
] | Compute how bad a z value is.
The original formula is::
(delta_mean/mean) + (delta_std/std)
------------------------------------------------------
number of errors above + (number of sequences above)^2
which computes the "goodness" of `z`, meaning that the higher the value
the better the `z`.
In this case, we return this value inverted (we make it negative), to convert
it into a cost function, as later on we will use scipy to minimize it. | [
"Compute",
"how",
"bad",
"a",
"z",
"value",
"is",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/custom/timeseries_anomalies.py#L68-L95 |
1,071 | HDI-Project/MLPrimitives | mlprimitives/custom/timeseries_anomalies.py | find_threshold | def find_threshold(errors, z_range=(0, 10)):
"""Find the ideal threshold.
The ideal threshold is the one that minimizes the z_cost function.
"""
mean = errors.mean()
std = errors.std()
min_z, max_z = z_range
best_z = min_z
best_cost = np.inf
for z in range(min_z, max_z):
best = fmin(z_cost, z, args=(errors, mean, std), full_output=True, disp=False)
z, cost = best[0:2]
if cost < best_cost:
best_z = z[0]
return mean + best_z * std | python | def find_threshold(errors, z_range=(0, 10)):
"""Find the ideal threshold.
The ideal threshold is the one that minimizes the z_cost function.
"""
mean = errors.mean()
std = errors.std()
min_z, max_z = z_range
best_z = min_z
best_cost = np.inf
for z in range(min_z, max_z):
best = fmin(z_cost, z, args=(errors, mean, std), full_output=True, disp=False)
z, cost = best[0:2]
if cost < best_cost:
best_z = z[0]
return mean + best_z * std | [
"def",
"find_threshold",
"(",
"errors",
",",
"z_range",
"=",
"(",
"0",
",",
"10",
")",
")",
":",
"mean",
"=",
"errors",
".",
"mean",
"(",
")",
"std",
"=",
"errors",
".",
"std",
"(",
")",
"min_z",
",",
"max_z",
"=",
"z_range",
"best_z",
"=",
"min_z",
"best_cost",
"=",
"np",
".",
"inf",
"for",
"z",
"in",
"range",
"(",
"min_z",
",",
"max_z",
")",
":",
"best",
"=",
"fmin",
"(",
"z_cost",
",",
"z",
",",
"args",
"=",
"(",
"errors",
",",
"mean",
",",
"std",
")",
",",
"full_output",
"=",
"True",
",",
"disp",
"=",
"False",
")",
"z",
",",
"cost",
"=",
"best",
"[",
"0",
":",
"2",
"]",
"if",
"cost",
"<",
"best_cost",
":",
"best_z",
"=",
"z",
"[",
"0",
"]",
"return",
"mean",
"+",
"best_z",
"*",
"std"
] | Find the ideal threshold.
The ideal threshold is the one that minimizes the z_cost function. | [
"Find",
"the",
"ideal",
"threshold",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/custom/timeseries_anomalies.py#L98-L116 |
1,072 | HDI-Project/MLPrimitives | mlprimitives/custom/timeseries_anomalies.py | find_sequences | def find_sequences(errors, epsilon):
"""Find sequences of values that are above epsilon.
This is done following this steps:
* create a boolean mask that indicates which value are above epsilon.
* shift this mask by one place, filing the empty gap with a False
* compare the shifted mask with the original one to see if there are changes.
* Consider a sequence start any point which was true and has changed
* Consider a sequence end any point which was false and has changed
"""
above = pd.Series(errors > epsilon)
shift = above.shift(1).fillna(False)
change = above != shift
index = above.index
starts = index[above & change].tolist()
ends = (index[~above & change] - 1).tolist()
if len(ends) == len(starts) - 1:
ends.append(len(above) - 1)
return list(zip(starts, ends)) | python | def find_sequences(errors, epsilon):
"""Find sequences of values that are above epsilon.
This is done following this steps:
* create a boolean mask that indicates which value are above epsilon.
* shift this mask by one place, filing the empty gap with a False
* compare the shifted mask with the original one to see if there are changes.
* Consider a sequence start any point which was true and has changed
* Consider a sequence end any point which was false and has changed
"""
above = pd.Series(errors > epsilon)
shift = above.shift(1).fillna(False)
change = above != shift
index = above.index
starts = index[above & change].tolist()
ends = (index[~above & change] - 1).tolist()
if len(ends) == len(starts) - 1:
ends.append(len(above) - 1)
return list(zip(starts, ends)) | [
"def",
"find_sequences",
"(",
"errors",
",",
"epsilon",
")",
":",
"above",
"=",
"pd",
".",
"Series",
"(",
"errors",
">",
"epsilon",
")",
"shift",
"=",
"above",
".",
"shift",
"(",
"1",
")",
".",
"fillna",
"(",
"False",
")",
"change",
"=",
"above",
"!=",
"shift",
"index",
"=",
"above",
".",
"index",
"starts",
"=",
"index",
"[",
"above",
"&",
"change",
"]",
".",
"tolist",
"(",
")",
"ends",
"=",
"(",
"index",
"[",
"~",
"above",
"&",
"change",
"]",
"-",
"1",
")",
".",
"tolist",
"(",
")",
"if",
"len",
"(",
"ends",
")",
"==",
"len",
"(",
"starts",
")",
"-",
"1",
":",
"ends",
".",
"append",
"(",
"len",
"(",
"above",
")",
"-",
"1",
")",
"return",
"list",
"(",
"zip",
"(",
"starts",
",",
"ends",
")",
")"
] | Find sequences of values that are above epsilon.
This is done following this steps:
* create a boolean mask that indicates which value are above epsilon.
* shift this mask by one place, filing the empty gap with a False
* compare the shifted mask with the original one to see if there are changes.
* Consider a sequence start any point which was true and has changed
* Consider a sequence end any point which was false and has changed | [
"Find",
"sequences",
"of",
"values",
"that",
"are",
"above",
"epsilon",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/custom/timeseries_anomalies.py#L119-L140 |
1,073 | HDI-Project/MLPrimitives | mlprimitives/custom/timeseries_anomalies.py | find_anomalies | def find_anomalies(errors, index, z_range=(0, 10)):
"""Find sequences of values that are anomalous.
We first find the ideal threshold for the set of errors that we have,
and then find the sequences of values that are above this threshold.
Lastly, we compute a score proportional to the maximum error in the
sequence, and finally return the index pairs that correspond to
each sequence, along with its score.
"""
threshold = find_threshold(errors, z_range)
sequences = find_sequences(errors, threshold)
anomalies = list()
denominator = errors.mean() + errors.std()
for start, stop in sequences:
max_error = errors[start:stop + 1].max()
score = (max_error - threshold) / denominator
anomalies.append([index[start], index[stop], score])
return np.asarray(anomalies) | python | def find_anomalies(errors, index, z_range=(0, 10)):
"""Find sequences of values that are anomalous.
We first find the ideal threshold for the set of errors that we have,
and then find the sequences of values that are above this threshold.
Lastly, we compute a score proportional to the maximum error in the
sequence, and finally return the index pairs that correspond to
each sequence, along with its score.
"""
threshold = find_threshold(errors, z_range)
sequences = find_sequences(errors, threshold)
anomalies = list()
denominator = errors.mean() + errors.std()
for start, stop in sequences:
max_error = errors[start:stop + 1].max()
score = (max_error - threshold) / denominator
anomalies.append([index[start], index[stop], score])
return np.asarray(anomalies) | [
"def",
"find_anomalies",
"(",
"errors",
",",
"index",
",",
"z_range",
"=",
"(",
"0",
",",
"10",
")",
")",
":",
"threshold",
"=",
"find_threshold",
"(",
"errors",
",",
"z_range",
")",
"sequences",
"=",
"find_sequences",
"(",
"errors",
",",
"threshold",
")",
"anomalies",
"=",
"list",
"(",
")",
"denominator",
"=",
"errors",
".",
"mean",
"(",
")",
"+",
"errors",
".",
"std",
"(",
")",
"for",
"start",
",",
"stop",
"in",
"sequences",
":",
"max_error",
"=",
"errors",
"[",
"start",
":",
"stop",
"+",
"1",
"]",
".",
"max",
"(",
")",
"score",
"=",
"(",
"max_error",
"-",
"threshold",
")",
"/",
"denominator",
"anomalies",
".",
"append",
"(",
"[",
"index",
"[",
"start",
"]",
",",
"index",
"[",
"stop",
"]",
",",
"score",
"]",
")",
"return",
"np",
".",
"asarray",
"(",
"anomalies",
")"
] | Find sequences of values that are anomalous.
We first find the ideal threshold for the set of errors that we have,
and then find the sequences of values that are above this threshold.
Lastly, we compute a score proportional to the maximum error in the
sequence, and finally return the index pairs that correspond to
each sequence, along with its score. | [
"Find",
"sequences",
"of",
"values",
"that",
"are",
"anomalous",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/custom/timeseries_anomalies.py#L143-L164 |
1,074 | HDI-Project/MLPrimitives | mlprimitives/adapters/cv2.py | GaussianBlur | def GaussianBlur(X, ksize_width, ksize_height, sigma_x, sigma_y):
"""Apply Gaussian blur to the given data.
Args:
X: data to blur
kernel_size: Gaussian kernel size
stddev: Gaussian kernel standard deviation (in both X and Y directions)
"""
return image_transform(
X,
cv2.GaussianBlur,
ksize=(ksize_width, ksize_height),
sigmaX=sigma_x,
sigmaY=sigma_y
) | python | def GaussianBlur(X, ksize_width, ksize_height, sigma_x, sigma_y):
"""Apply Gaussian blur to the given data.
Args:
X: data to blur
kernel_size: Gaussian kernel size
stddev: Gaussian kernel standard deviation (in both X and Y directions)
"""
return image_transform(
X,
cv2.GaussianBlur,
ksize=(ksize_width, ksize_height),
sigmaX=sigma_x,
sigmaY=sigma_y
) | [
"def",
"GaussianBlur",
"(",
"X",
",",
"ksize_width",
",",
"ksize_height",
",",
"sigma_x",
",",
"sigma_y",
")",
":",
"return",
"image_transform",
"(",
"X",
",",
"cv2",
".",
"GaussianBlur",
",",
"ksize",
"=",
"(",
"ksize_width",
",",
"ksize_height",
")",
",",
"sigmaX",
"=",
"sigma_x",
",",
"sigmaY",
"=",
"sigma_y",
")"
] | Apply Gaussian blur to the given data.
Args:
X: data to blur
kernel_size: Gaussian kernel size
stddev: Gaussian kernel standard deviation (in both X and Y directions) | [
"Apply",
"Gaussian",
"blur",
"to",
"the",
"given",
"data",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/adapters/cv2.py#L8-L22 |
1,075 | HDI-Project/MLPrimitives | mlprimitives/candidates/timeseries_errors.py | get_anomalies | def get_anomalies(smoothed_errors, y_true, z, window, all_anomalies, error_buffer):
"""
Helper method to get anomalies.
"""
mu = np.mean(smoothed_errors)
sigma = np.std(smoothed_errors)
epsilon = mu + (z * sigma)
# compare to epsilon
errors_seq, anomaly_indices, max_error_below_e = group_consecutive_anomalies(
smoothed_errors,
epsilon,
y_true,
error_buffer,
window,
all_anomalies
)
if len(errors_seq) > 0:
anomaly_indices = prune_anomalies(
errors_seq,
smoothed_errors,
max_error_below_e,
anomaly_indices
)
return anomaly_indices | python | def get_anomalies(smoothed_errors, y_true, z, window, all_anomalies, error_buffer):
"""
Helper method to get anomalies.
"""
mu = np.mean(smoothed_errors)
sigma = np.std(smoothed_errors)
epsilon = mu + (z * sigma)
# compare to epsilon
errors_seq, anomaly_indices, max_error_below_e = group_consecutive_anomalies(
smoothed_errors,
epsilon,
y_true,
error_buffer,
window,
all_anomalies
)
if len(errors_seq) > 0:
anomaly_indices = prune_anomalies(
errors_seq,
smoothed_errors,
max_error_below_e,
anomaly_indices
)
return anomaly_indices | [
"def",
"get_anomalies",
"(",
"smoothed_errors",
",",
"y_true",
",",
"z",
",",
"window",
",",
"all_anomalies",
",",
"error_buffer",
")",
":",
"mu",
"=",
"np",
".",
"mean",
"(",
"smoothed_errors",
")",
"sigma",
"=",
"np",
".",
"std",
"(",
"smoothed_errors",
")",
"epsilon",
"=",
"mu",
"+",
"(",
"z",
"*",
"sigma",
")",
"# compare to epsilon",
"errors_seq",
",",
"anomaly_indices",
",",
"max_error_below_e",
"=",
"group_consecutive_anomalies",
"(",
"smoothed_errors",
",",
"epsilon",
",",
"y_true",
",",
"error_buffer",
",",
"window",
",",
"all_anomalies",
")",
"if",
"len",
"(",
"errors_seq",
")",
">",
"0",
":",
"anomaly_indices",
"=",
"prune_anomalies",
"(",
"errors_seq",
",",
"smoothed_errors",
",",
"max_error_below_e",
",",
"anomaly_indices",
")",
"return",
"anomaly_indices"
] | Helper method to get anomalies. | [
"Helper",
"method",
"to",
"get",
"anomalies",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/candidates/timeseries_errors.py#L186-L214 |
1,076 | HDI-Project/MLPrimitives | mlprimitives/candidates/timeseries_errors.py | prune_anomalies | def prune_anomalies(e_seq, smoothed_errors, max_error_below_e, anomaly_indices):
""" Helper method that removes anomalies which don't meet
a minimum separation from next anomaly.
"""
# min accepted perc decrease btwn max errors in anomalous sequences
MIN_PERCENT_DECREASE = 0.05
e_seq_max, smoothed_errors_max = [], []
for error_seq in e_seq:
if len(smoothed_errors[error_seq[0]:error_seq[1]]) > 0:
sliced_errors = smoothed_errors[error_seq[0]:error_seq[1]]
e_seq_max.append(max(sliced_errors))
smoothed_errors_max.append(max(sliced_errors))
smoothed_errors_max.sort(reverse=True)
if max_error_below_e > 0:
smoothed_errors_max.append(max_error_below_e)
indices_remove = []
for i in range(len(smoothed_errors_max)):
if i < len(smoothed_errors_max) - 1:
delta = smoothed_errors_max[i] - smoothed_errors_max[i + 1]
perc_change = delta / smoothed_errors_max[i]
if perc_change < MIN_PERCENT_DECREASE:
indices_remove.append(e_seq_max.index(smoothed_errors_max[i]))
for index in sorted(indices_remove, reverse=True):
del e_seq[index]
pruned_indices = []
for i in anomaly_indices:
for error_seq in e_seq:
if i >= error_seq[0] and i <= error_seq[1]:
pruned_indices.append(i)
return pruned_indices | python | def prune_anomalies(e_seq, smoothed_errors, max_error_below_e, anomaly_indices):
""" Helper method that removes anomalies which don't meet
a minimum separation from next anomaly.
"""
# min accepted perc decrease btwn max errors in anomalous sequences
MIN_PERCENT_DECREASE = 0.05
e_seq_max, smoothed_errors_max = [], []
for error_seq in e_seq:
if len(smoothed_errors[error_seq[0]:error_seq[1]]) > 0:
sliced_errors = smoothed_errors[error_seq[0]:error_seq[1]]
e_seq_max.append(max(sliced_errors))
smoothed_errors_max.append(max(sliced_errors))
smoothed_errors_max.sort(reverse=True)
if max_error_below_e > 0:
smoothed_errors_max.append(max_error_below_e)
indices_remove = []
for i in range(len(smoothed_errors_max)):
if i < len(smoothed_errors_max) - 1:
delta = smoothed_errors_max[i] - smoothed_errors_max[i + 1]
perc_change = delta / smoothed_errors_max[i]
if perc_change < MIN_PERCENT_DECREASE:
indices_remove.append(e_seq_max.index(smoothed_errors_max[i]))
for index in sorted(indices_remove, reverse=True):
del e_seq[index]
pruned_indices = []
for i in anomaly_indices:
for error_seq in e_seq:
if i >= error_seq[0] and i <= error_seq[1]:
pruned_indices.append(i)
return pruned_indices | [
"def",
"prune_anomalies",
"(",
"e_seq",
",",
"smoothed_errors",
",",
"max_error_below_e",
",",
"anomaly_indices",
")",
":",
"# min accepted perc decrease btwn max errors in anomalous sequences",
"MIN_PERCENT_DECREASE",
"=",
"0.05",
"e_seq_max",
",",
"smoothed_errors_max",
"=",
"[",
"]",
",",
"[",
"]",
"for",
"error_seq",
"in",
"e_seq",
":",
"if",
"len",
"(",
"smoothed_errors",
"[",
"error_seq",
"[",
"0",
"]",
":",
"error_seq",
"[",
"1",
"]",
"]",
")",
">",
"0",
":",
"sliced_errors",
"=",
"smoothed_errors",
"[",
"error_seq",
"[",
"0",
"]",
":",
"error_seq",
"[",
"1",
"]",
"]",
"e_seq_max",
".",
"append",
"(",
"max",
"(",
"sliced_errors",
")",
")",
"smoothed_errors_max",
".",
"append",
"(",
"max",
"(",
"sliced_errors",
")",
")",
"smoothed_errors_max",
".",
"sort",
"(",
"reverse",
"=",
"True",
")",
"if",
"max_error_below_e",
">",
"0",
":",
"smoothed_errors_max",
".",
"append",
"(",
"max_error_below_e",
")",
"indices_remove",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"smoothed_errors_max",
")",
")",
":",
"if",
"i",
"<",
"len",
"(",
"smoothed_errors_max",
")",
"-",
"1",
":",
"delta",
"=",
"smoothed_errors_max",
"[",
"i",
"]",
"-",
"smoothed_errors_max",
"[",
"i",
"+",
"1",
"]",
"perc_change",
"=",
"delta",
"/",
"smoothed_errors_max",
"[",
"i",
"]",
"if",
"perc_change",
"<",
"MIN_PERCENT_DECREASE",
":",
"indices_remove",
".",
"append",
"(",
"e_seq_max",
".",
"index",
"(",
"smoothed_errors_max",
"[",
"i",
"]",
")",
")",
"for",
"index",
"in",
"sorted",
"(",
"indices_remove",
",",
"reverse",
"=",
"True",
")",
":",
"del",
"e_seq",
"[",
"index",
"]",
"pruned_indices",
"=",
"[",
"]",
"for",
"i",
"in",
"anomaly_indices",
":",
"for",
"error_seq",
"in",
"e_seq",
":",
"if",
"i",
">=",
"error_seq",
"[",
"0",
"]",
"and",
"i",
"<=",
"error_seq",
"[",
"1",
"]",
":",
"pruned_indices",
".",
"append",
"(",
"i",
")",
"return",
"pruned_indices"
] | Helper method that removes anomalies which don't meet
a minimum separation from next anomaly. | [
"Helper",
"method",
"that",
"removes",
"anomalies",
"which",
"don",
"t",
"meet",
"a",
"minimum",
"separation",
"from",
"next",
"anomaly",
"."
] | bf415f9f751724ff545a1156ddfd7524e320f469 | https://github.com/HDI-Project/MLPrimitives/blob/bf415f9f751724ff545a1156ddfd7524e320f469/mlprimitives/candidates/timeseries_errors.py#L262-L299 |
1,077 | ultrabug/uhashring | uhashring/ring.py | HashRing._configure_nodes | def _configure_nodes(self, nodes):
"""Parse and set up the given nodes.
:param nodes: nodes used to create the continuum (see doc for format).
"""
if isinstance(nodes, str):
nodes = [nodes]
elif not isinstance(nodes, (dict, list)):
raise ValueError(
'nodes configuration should be a list or a dict,'
' got {}'.format(type(nodes)))
conf_changed = False
for node in nodes:
conf = {
'hostname': node,
'instance': None,
'nodename': node,
'port': None,
'vnodes': self._default_vnodes,
'weight': 1
}
current_conf = self.runtime._nodes.get(node, {})
nodename = node
# new node, trigger a ring update
if not current_conf:
conf_changed = True
# complex config
if isinstance(nodes, dict):
node_conf = nodes[node]
if isinstance(node_conf, int):
conf['weight'] = node_conf
elif isinstance(node_conf, dict):
for k, v in node_conf.items():
if k in conf:
conf[k] = v
# changing those config trigger a ring update
if k in ['nodename', 'vnodes', 'weight']:
if current_conf.get(k) != v:
conf_changed = True
else:
raise ValueError(
'node configuration should be a dict or an int,'
' got {}'.format(type(node_conf)))
if self._weight_fn:
conf['weight'] = self._weight_fn(**conf)
# changing the weight of a node trigger a ring update
if current_conf.get('weight') != conf['weight']:
conf_changed = True
self.runtime._nodes[nodename] = conf
return conf_changed | python | def _configure_nodes(self, nodes):
"""Parse and set up the given nodes.
:param nodes: nodes used to create the continuum (see doc for format).
"""
if isinstance(nodes, str):
nodes = [nodes]
elif not isinstance(nodes, (dict, list)):
raise ValueError(
'nodes configuration should be a list or a dict,'
' got {}'.format(type(nodes)))
conf_changed = False
for node in nodes:
conf = {
'hostname': node,
'instance': None,
'nodename': node,
'port': None,
'vnodes': self._default_vnodes,
'weight': 1
}
current_conf = self.runtime._nodes.get(node, {})
nodename = node
# new node, trigger a ring update
if not current_conf:
conf_changed = True
# complex config
if isinstance(nodes, dict):
node_conf = nodes[node]
if isinstance(node_conf, int):
conf['weight'] = node_conf
elif isinstance(node_conf, dict):
for k, v in node_conf.items():
if k in conf:
conf[k] = v
# changing those config trigger a ring update
if k in ['nodename', 'vnodes', 'weight']:
if current_conf.get(k) != v:
conf_changed = True
else:
raise ValueError(
'node configuration should be a dict or an int,'
' got {}'.format(type(node_conf)))
if self._weight_fn:
conf['weight'] = self._weight_fn(**conf)
# changing the weight of a node trigger a ring update
if current_conf.get('weight') != conf['weight']:
conf_changed = True
self.runtime._nodes[nodename] = conf
return conf_changed | [
"def",
"_configure_nodes",
"(",
"self",
",",
"nodes",
")",
":",
"if",
"isinstance",
"(",
"nodes",
",",
"str",
")",
":",
"nodes",
"=",
"[",
"nodes",
"]",
"elif",
"not",
"isinstance",
"(",
"nodes",
",",
"(",
"dict",
",",
"list",
")",
")",
":",
"raise",
"ValueError",
"(",
"'nodes configuration should be a list or a dict,'",
"' got {}'",
".",
"format",
"(",
"type",
"(",
"nodes",
")",
")",
")",
"conf_changed",
"=",
"False",
"for",
"node",
"in",
"nodes",
":",
"conf",
"=",
"{",
"'hostname'",
":",
"node",
",",
"'instance'",
":",
"None",
",",
"'nodename'",
":",
"node",
",",
"'port'",
":",
"None",
",",
"'vnodes'",
":",
"self",
".",
"_default_vnodes",
",",
"'weight'",
":",
"1",
"}",
"current_conf",
"=",
"self",
".",
"runtime",
".",
"_nodes",
".",
"get",
"(",
"node",
",",
"{",
"}",
")",
"nodename",
"=",
"node",
"# new node, trigger a ring update",
"if",
"not",
"current_conf",
":",
"conf_changed",
"=",
"True",
"# complex config",
"if",
"isinstance",
"(",
"nodes",
",",
"dict",
")",
":",
"node_conf",
"=",
"nodes",
"[",
"node",
"]",
"if",
"isinstance",
"(",
"node_conf",
",",
"int",
")",
":",
"conf",
"[",
"'weight'",
"]",
"=",
"node_conf",
"elif",
"isinstance",
"(",
"node_conf",
",",
"dict",
")",
":",
"for",
"k",
",",
"v",
"in",
"node_conf",
".",
"items",
"(",
")",
":",
"if",
"k",
"in",
"conf",
":",
"conf",
"[",
"k",
"]",
"=",
"v",
"# changing those config trigger a ring update",
"if",
"k",
"in",
"[",
"'nodename'",
",",
"'vnodes'",
",",
"'weight'",
"]",
":",
"if",
"current_conf",
".",
"get",
"(",
"k",
")",
"!=",
"v",
":",
"conf_changed",
"=",
"True",
"else",
":",
"raise",
"ValueError",
"(",
"'node configuration should be a dict or an int,'",
"' got {}'",
".",
"format",
"(",
"type",
"(",
"node_conf",
")",
")",
")",
"if",
"self",
".",
"_weight_fn",
":",
"conf",
"[",
"'weight'",
"]",
"=",
"self",
".",
"_weight_fn",
"(",
"*",
"*",
"conf",
")",
"# changing the weight of a node trigger a ring update",
"if",
"current_conf",
".",
"get",
"(",
"'weight'",
")",
"!=",
"conf",
"[",
"'weight'",
"]",
":",
"conf_changed",
"=",
"True",
"self",
".",
"runtime",
".",
"_nodes",
"[",
"nodename",
"]",
"=",
"conf",
"return",
"conf_changed"
] | Parse and set up the given nodes.
:param nodes: nodes used to create the continuum (see doc for format). | [
"Parse",
"and",
"set",
"up",
"the",
"given",
"nodes",
"."
] | 2297471a392e28ed913b3276c2f48d0c01523375 | https://github.com/ultrabug/uhashring/blob/2297471a392e28ed913b3276c2f48d0c01523375/uhashring/ring.py#L44-L94 |
1,078 | ultrabug/uhashring | uhashring/ring.py | HashRing._get_pos | def _get_pos(self, key):
"""Get the index of the given key in the sorted key list.
We return the position with the nearest hash based on
the provided key unless we reach the end of the continuum/ring
in which case we return the 0 (beginning) index position.
:param key: the key to hash and look for.
"""
p = bisect(self.runtime._keys, self.hashi(key))
if p == len(self.runtime._keys):
return 0
else:
return p | python | def _get_pos(self, key):
"""Get the index of the given key in the sorted key list.
We return the position with the nearest hash based on
the provided key unless we reach the end of the continuum/ring
in which case we return the 0 (beginning) index position.
:param key: the key to hash and look for.
"""
p = bisect(self.runtime._keys, self.hashi(key))
if p == len(self.runtime._keys):
return 0
else:
return p | [
"def",
"_get_pos",
"(",
"self",
",",
"key",
")",
":",
"p",
"=",
"bisect",
"(",
"self",
".",
"runtime",
".",
"_keys",
",",
"self",
".",
"hashi",
"(",
"key",
")",
")",
"if",
"p",
"==",
"len",
"(",
"self",
".",
"runtime",
".",
"_keys",
")",
":",
"return",
"0",
"else",
":",
"return",
"p"
] | Get the index of the given key in the sorted key list.
We return the position with the nearest hash based on
the provided key unless we reach the end of the continuum/ring
in which case we return the 0 (beginning) index position.
:param key: the key to hash and look for. | [
"Get",
"the",
"index",
"of",
"the",
"given",
"key",
"in",
"the",
"sorted",
"key",
"list",
"."
] | 2297471a392e28ed913b3276c2f48d0c01523375 | https://github.com/ultrabug/uhashring/blob/2297471a392e28ed913b3276c2f48d0c01523375/uhashring/ring.py#L125-L138 |
1,079 | ultrabug/uhashring | uhashring/ring.py | HashRing._get | def _get(self, key, what):
"""Generic getter magic method.
The node with the nearest but not less hash value is returned.
:param key: the key to look for.
:param what: the information to look for in, allowed values:
- instance (default): associated node instance
- nodename: node name
- pos: index of the given key in the ring
- tuple: ketama compatible (pos, name) tuple
- weight: node weight
"""
if not self.runtime._ring:
return None
pos = self._get_pos(key)
if what == 'pos':
return pos
nodename = self.runtime._ring[self.runtime._keys[pos]]
if what in ['hostname', 'instance', 'port', 'weight']:
return self.runtime._nodes[nodename][what]
elif what == 'dict':
return self.runtime._nodes[nodename]
elif what == 'nodename':
return nodename
elif what == 'tuple':
return (self.runtime._keys[pos], nodename) | python | def _get(self, key, what):
"""Generic getter magic method.
The node with the nearest but not less hash value is returned.
:param key: the key to look for.
:param what: the information to look for in, allowed values:
- instance (default): associated node instance
- nodename: node name
- pos: index of the given key in the ring
- tuple: ketama compatible (pos, name) tuple
- weight: node weight
"""
if not self.runtime._ring:
return None
pos = self._get_pos(key)
if what == 'pos':
return pos
nodename = self.runtime._ring[self.runtime._keys[pos]]
if what in ['hostname', 'instance', 'port', 'weight']:
return self.runtime._nodes[nodename][what]
elif what == 'dict':
return self.runtime._nodes[nodename]
elif what == 'nodename':
return nodename
elif what == 'tuple':
return (self.runtime._keys[pos], nodename) | [
"def",
"_get",
"(",
"self",
",",
"key",
",",
"what",
")",
":",
"if",
"not",
"self",
".",
"runtime",
".",
"_ring",
":",
"return",
"None",
"pos",
"=",
"self",
".",
"_get_pos",
"(",
"key",
")",
"if",
"what",
"==",
"'pos'",
":",
"return",
"pos",
"nodename",
"=",
"self",
".",
"runtime",
".",
"_ring",
"[",
"self",
".",
"runtime",
".",
"_keys",
"[",
"pos",
"]",
"]",
"if",
"what",
"in",
"[",
"'hostname'",
",",
"'instance'",
",",
"'port'",
",",
"'weight'",
"]",
":",
"return",
"self",
".",
"runtime",
".",
"_nodes",
"[",
"nodename",
"]",
"[",
"what",
"]",
"elif",
"what",
"==",
"'dict'",
":",
"return",
"self",
".",
"runtime",
".",
"_nodes",
"[",
"nodename",
"]",
"elif",
"what",
"==",
"'nodename'",
":",
"return",
"nodename",
"elif",
"what",
"==",
"'tuple'",
":",
"return",
"(",
"self",
".",
"runtime",
".",
"_keys",
"[",
"pos",
"]",
",",
"nodename",
")"
] | Generic getter magic method.
The node with the nearest but not less hash value is returned.
:param key: the key to look for.
:param what: the information to look for in, allowed values:
- instance (default): associated node instance
- nodename: node name
- pos: index of the given key in the ring
- tuple: ketama compatible (pos, name) tuple
- weight: node weight | [
"Generic",
"getter",
"magic",
"method",
"."
] | 2297471a392e28ed913b3276c2f48d0c01523375 | https://github.com/ultrabug/uhashring/blob/2297471a392e28ed913b3276c2f48d0c01523375/uhashring/ring.py#L140-L168 |
1,080 | ultrabug/uhashring | uhashring/ring.py | HashRing.get_instances | def get_instances(self):
"""Returns a list of the instances of all the configured nodes.
"""
return [c.get('instance') for c in self.runtime._nodes.values()
if c.get('instance')] | python | def get_instances(self):
"""Returns a list of the instances of all the configured nodes.
"""
return [c.get('instance') for c in self.runtime._nodes.values()
if c.get('instance')] | [
"def",
"get_instances",
"(",
"self",
")",
":",
"return",
"[",
"c",
".",
"get",
"(",
"'instance'",
")",
"for",
"c",
"in",
"self",
".",
"runtime",
".",
"_nodes",
".",
"values",
"(",
")",
"if",
"c",
".",
"get",
"(",
"'instance'",
")",
"]"
] | Returns a list of the instances of all the configured nodes. | [
"Returns",
"a",
"list",
"of",
"the",
"instances",
"of",
"all",
"the",
"configured",
"nodes",
"."
] | 2297471a392e28ed913b3276c2f48d0c01523375 | https://github.com/ultrabug/uhashring/blob/2297471a392e28ed913b3276c2f48d0c01523375/uhashring/ring.py#L177-L181 |
1,081 | ultrabug/uhashring | uhashring/ring.py | HashRing.iterate_nodes | def iterate_nodes(self, key, distinct=True):
"""hash_ring compatibility implementation.
Given a string key it returns the nodes as a generator that
can hold the key.
The generator iterates one time through the ring
starting at the correct position.
if `distinct` is set, then the nodes returned will be unique,
i.e. no virtual copies will be returned.
"""
if not self.runtime._ring:
yield None
else:
for node in self.range(key, unique=distinct):
yield node['nodename'] | python | def iterate_nodes(self, key, distinct=True):
"""hash_ring compatibility implementation.
Given a string key it returns the nodes as a generator that
can hold the key.
The generator iterates one time through the ring
starting at the correct position.
if `distinct` is set, then the nodes returned will be unique,
i.e. no virtual copies will be returned.
"""
if not self.runtime._ring:
yield None
else:
for node in self.range(key, unique=distinct):
yield node['nodename'] | [
"def",
"iterate_nodes",
"(",
"self",
",",
"key",
",",
"distinct",
"=",
"True",
")",
":",
"if",
"not",
"self",
".",
"runtime",
".",
"_ring",
":",
"yield",
"None",
"else",
":",
"for",
"node",
"in",
"self",
".",
"range",
"(",
"key",
",",
"unique",
"=",
"distinct",
")",
":",
"yield",
"node",
"[",
"'nodename'",
"]"
] | hash_ring compatibility implementation.
Given a string key it returns the nodes as a generator that
can hold the key.
The generator iterates one time through the ring
starting at the correct position.
if `distinct` is set, then the nodes returned will be unique,
i.e. no virtual copies will be returned. | [
"hash_ring",
"compatibility",
"implementation",
"."
] | 2297471a392e28ed913b3276c2f48d0c01523375 | https://github.com/ultrabug/uhashring/blob/2297471a392e28ed913b3276c2f48d0c01523375/uhashring/ring.py#L244-L258 |
1,082 | ultrabug/uhashring | uhashring/ring.py | HashRing.print_continuum | def print_continuum(self):
"""Prints a ketama compatible continuum report.
"""
numpoints = len(self.runtime._keys)
if numpoints:
print('Numpoints in continuum: {}'.format(numpoints))
else:
print('Continuum empty')
for p in self.get_points():
point, node = p
print('{} ({})'.format(node, point)) | python | def print_continuum(self):
"""Prints a ketama compatible continuum report.
"""
numpoints = len(self.runtime._keys)
if numpoints:
print('Numpoints in continuum: {}'.format(numpoints))
else:
print('Continuum empty')
for p in self.get_points():
point, node = p
print('{} ({})'.format(node, point)) | [
"def",
"print_continuum",
"(",
"self",
")",
":",
"numpoints",
"=",
"len",
"(",
"self",
".",
"runtime",
".",
"_keys",
")",
"if",
"numpoints",
":",
"print",
"(",
"'Numpoints in continuum: {}'",
".",
"format",
"(",
"numpoints",
")",
")",
"else",
":",
"print",
"(",
"'Continuum empty'",
")",
"for",
"p",
"in",
"self",
".",
"get_points",
"(",
")",
":",
"point",
",",
"node",
"=",
"p",
"print",
"(",
"'{} ({})'",
".",
"format",
"(",
"node",
",",
"point",
")",
")"
] | Prints a ketama compatible continuum report. | [
"Prints",
"a",
"ketama",
"compatible",
"continuum",
"report",
"."
] | 2297471a392e28ed913b3276c2f48d0c01523375 | https://github.com/ultrabug/uhashring/blob/2297471a392e28ed913b3276c2f48d0c01523375/uhashring/ring.py#L260-L270 |
1,083 | ultrabug/uhashring | uhashring/monkey.py | patch_memcache | def patch_memcache():
"""Monkey patch python-memcached to implement our consistent hashring
in its node selection and operations.
"""
def _init(self, servers, *k, **kw):
self._old_init(servers, *k, **kw)
nodes = {}
for server in self.servers:
conf = {
'hostname': server.ip,
'instance': server,
'port': server.port,
'weight': server.weight
}
nodes[server.ip] = conf
self.uhashring = HashRing(nodes)
def _get_server(self, key):
if isinstance(key, tuple):
return self._old_get_server(key)
for i in range(self._SERVER_RETRIES):
for node in self.uhashring.range(key):
if node['instance'].connect():
return node['instance'], key
return None, None
memcache = __import__('memcache')
memcache.Client._old_get_server = memcache.Client._get_server
memcache.Client._old_init = memcache.Client.__init__
memcache.Client.__init__ = _init
memcache.Client._get_server = _get_server | python | def patch_memcache():
"""Monkey patch python-memcached to implement our consistent hashring
in its node selection and operations.
"""
def _init(self, servers, *k, **kw):
self._old_init(servers, *k, **kw)
nodes = {}
for server in self.servers:
conf = {
'hostname': server.ip,
'instance': server,
'port': server.port,
'weight': server.weight
}
nodes[server.ip] = conf
self.uhashring = HashRing(nodes)
def _get_server(self, key):
if isinstance(key, tuple):
return self._old_get_server(key)
for i in range(self._SERVER_RETRIES):
for node in self.uhashring.range(key):
if node['instance'].connect():
return node['instance'], key
return None, None
memcache = __import__('memcache')
memcache.Client._old_get_server = memcache.Client._get_server
memcache.Client._old_init = memcache.Client.__init__
memcache.Client.__init__ = _init
memcache.Client._get_server = _get_server | [
"def",
"patch_memcache",
"(",
")",
":",
"def",
"_init",
"(",
"self",
",",
"servers",
",",
"*",
"k",
",",
"*",
"*",
"kw",
")",
":",
"self",
".",
"_old_init",
"(",
"servers",
",",
"*",
"k",
",",
"*",
"*",
"kw",
")",
"nodes",
"=",
"{",
"}",
"for",
"server",
"in",
"self",
".",
"servers",
":",
"conf",
"=",
"{",
"'hostname'",
":",
"server",
".",
"ip",
",",
"'instance'",
":",
"server",
",",
"'port'",
":",
"server",
".",
"port",
",",
"'weight'",
":",
"server",
".",
"weight",
"}",
"nodes",
"[",
"server",
".",
"ip",
"]",
"=",
"conf",
"self",
".",
"uhashring",
"=",
"HashRing",
"(",
"nodes",
")",
"def",
"_get_server",
"(",
"self",
",",
"key",
")",
":",
"if",
"isinstance",
"(",
"key",
",",
"tuple",
")",
":",
"return",
"self",
".",
"_old_get_server",
"(",
"key",
")",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"_SERVER_RETRIES",
")",
":",
"for",
"node",
"in",
"self",
".",
"uhashring",
".",
"range",
"(",
"key",
")",
":",
"if",
"node",
"[",
"'instance'",
"]",
".",
"connect",
"(",
")",
":",
"return",
"node",
"[",
"'instance'",
"]",
",",
"key",
"return",
"None",
",",
"None",
"memcache",
"=",
"__import__",
"(",
"'memcache'",
")",
"memcache",
".",
"Client",
".",
"_old_get_server",
"=",
"memcache",
".",
"Client",
".",
"_get_server",
"memcache",
".",
"Client",
".",
"_old_init",
"=",
"memcache",
".",
"Client",
".",
"__init__",
"memcache",
".",
"Client",
".",
"__init__",
"=",
"_init",
"memcache",
".",
"Client",
".",
"_get_server",
"=",
"_get_server"
] | Monkey patch python-memcached to implement our consistent hashring
in its node selection and operations. | [
"Monkey",
"patch",
"python",
"-",
"memcached",
"to",
"implement",
"our",
"consistent",
"hashring",
"in",
"its",
"node",
"selection",
"and",
"operations",
"."
] | 2297471a392e28ed913b3276c2f48d0c01523375 | https://github.com/ultrabug/uhashring/blob/2297471a392e28ed913b3276c2f48d0c01523375/uhashring/monkey.py#L8-L42 |
1,084 | ultrabug/uhashring | uhashring/ring_ketama.py | KetamaRing.hashi | def hashi(self, key, replica=0):
"""Returns a ketama compatible hash from the given key.
"""
dh = self._listbytes(md5(str(key).encode('utf-8')).digest())
rd = replica * 4
return (
(dh[3 + rd] << 24) | (dh[2 + rd] << 16) |
(dh[1 + rd] << 8) | dh[0 + rd]) | python | def hashi(self, key, replica=0):
"""Returns a ketama compatible hash from the given key.
"""
dh = self._listbytes(md5(str(key).encode('utf-8')).digest())
rd = replica * 4
return (
(dh[3 + rd] << 24) | (dh[2 + rd] << 16) |
(dh[1 + rd] << 8) | dh[0 + rd]) | [
"def",
"hashi",
"(",
"self",
",",
"key",
",",
"replica",
"=",
"0",
")",
":",
"dh",
"=",
"self",
".",
"_listbytes",
"(",
"md5",
"(",
"str",
"(",
"key",
")",
".",
"encode",
"(",
"'utf-8'",
")",
")",
".",
"digest",
"(",
")",
")",
"rd",
"=",
"replica",
"*",
"4",
"return",
"(",
"(",
"dh",
"[",
"3",
"+",
"rd",
"]",
"<<",
"24",
")",
"|",
"(",
"dh",
"[",
"2",
"+",
"rd",
"]",
"<<",
"16",
")",
"|",
"(",
"dh",
"[",
"1",
"+",
"rd",
"]",
"<<",
"8",
")",
"|",
"dh",
"[",
"0",
"+",
"rd",
"]",
")"
] | Returns a ketama compatible hash from the given key. | [
"Returns",
"a",
"ketama",
"compatible",
"hash",
"from",
"the",
"given",
"key",
"."
] | 2297471a392e28ed913b3276c2f48d0c01523375 | https://github.com/ultrabug/uhashring/blob/2297471a392e28ed913b3276c2f48d0c01523375/uhashring/ring_ketama.py#L24-L31 |
1,085 | ultrabug/uhashring | uhashring/ring_ketama.py | KetamaRing._hashi_weight_generator | def _hashi_weight_generator(self, node_name, node_conf):
"""Calculate the weight factor of the given node and
yield its hash key for every configured replica.
:param node_name: the node name.
"""
ks = (node_conf['vnodes'] * len(self._nodes) *
node_conf['weight']) // self._weight_sum
for w in range(0, ks):
w_node_name = '%s-%s' % (node_name, w)
for i in range(0, self._replicas):
yield self.hashi(w_node_name, replica=i) | python | def _hashi_weight_generator(self, node_name, node_conf):
"""Calculate the weight factor of the given node and
yield its hash key for every configured replica.
:param node_name: the node name.
"""
ks = (node_conf['vnodes'] * len(self._nodes) *
node_conf['weight']) // self._weight_sum
for w in range(0, ks):
w_node_name = '%s-%s' % (node_name, w)
for i in range(0, self._replicas):
yield self.hashi(w_node_name, replica=i) | [
"def",
"_hashi_weight_generator",
"(",
"self",
",",
"node_name",
",",
"node_conf",
")",
":",
"ks",
"=",
"(",
"node_conf",
"[",
"'vnodes'",
"]",
"*",
"len",
"(",
"self",
".",
"_nodes",
")",
"*",
"node_conf",
"[",
"'weight'",
"]",
")",
"//",
"self",
".",
"_weight_sum",
"for",
"w",
"in",
"range",
"(",
"0",
",",
"ks",
")",
":",
"w_node_name",
"=",
"'%s-%s'",
"%",
"(",
"node_name",
",",
"w",
")",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"self",
".",
"_replicas",
")",
":",
"yield",
"self",
".",
"hashi",
"(",
"w_node_name",
",",
"replica",
"=",
"i",
")"
] | Calculate the weight factor of the given node and
yield its hash key for every configured replica.
:param node_name: the node name. | [
"Calculate",
"the",
"weight",
"factor",
"of",
"the",
"given",
"node",
"and",
"yield",
"its",
"hash",
"key",
"for",
"every",
"configured",
"replica",
"."
] | 2297471a392e28ed913b3276c2f48d0c01523375 | https://github.com/ultrabug/uhashring/blob/2297471a392e28ed913b3276c2f48d0c01523375/uhashring/ring_ketama.py#L33-L44 |
1,086 | gatagat/lap | lap/lapmod.py | lapmod | def lapmod(n, cc, ii, kk, fast=True, return_cost=True,
fp_version=FP_DYNAMIC):
"""Solve sparse linear assignment problem using Jonker-Volgenant algorithm.
n: number of rows of the assignment cost matrix
cc: 1D array of all finite elements of the assignement cost matrix
ii: 1D array of indices of the row starts in cc. The following must hold:
ii[0] = 0 and ii[n+1] = len(cc).
kk: 1D array of the column indices so that:
cost[i, kk[ii[i] + k]] == cc[ii[i] + k].
Indices within one row must be sorted.
extend_cost: whether or not extend a non-square matrix [default: False]
cost_limit: an upper limit for a cost of a single assignment
[default: np.inf]
return_cost: whether or not to return the assignment cost
Returns (opt, x, y) where:
opt: cost of the assignment
x: vector of columns assigned to rows
y: vector of rows assigned to columns
or (x, y) if return_cost is not True.
When extend_cost and/or cost_limit is set, all unmatched entries will be
marked by -1 in x/y.
"""
# log = logging.getLogger('lapmod')
check_cost(n, cc, ii, kk)
if fast is True:
# log.debug('[----CR & RT & ARR & augmentation ----]')
x, y = _lapmod(n, cc, ii, kk, fp_version=fp_version)
else:
cc = np.ascontiguousarray(cc, dtype=np.float64)
ii = np.ascontiguousarray(ii, dtype=np.int32)
kk = np.ascontiguousarray(kk, dtype=np.int32)
x = np.empty((n,), dtype=np.int32)
y = np.empty((n,), dtype=np.int32)
v = np.empty((n,), dtype=np.float64)
free_rows = np.empty((n,), dtype=np.int32)
# log.debug('[----Column reduction & reduction transfer----]')
n_free_rows = _pycrrt(n, cc, ii, kk, free_rows, x, y, v)
# log.debug(
# 'free, x, y, v: %s %s %s %s', free_rows[:n_free_rows], x, y, v)
if n_free_rows == 0:
# log.info('Reduction solved it.')
if return_cost is True:
return get_cost(n, cc, ii, kk, x), x, y
else:
return x, y
for it in range(2):
# log.debug('[---Augmenting row reduction (iteration: %d)---]', it)
n_free_rows = _pyarr(
n, cc, ii, kk, n_free_rows, free_rows, x, y, v)
# log.debug(
# 'free, x, y, v: %s %s %s %s', free_rows[:n_free_rows], x, y, v)
if n_free_rows == 0:
# log.info('Augmenting row reduction solved it.')
if return_cost is True:
return get_cost(n, cc, ii, kk, x), x, y
else:
return x, y
# log.info('[----Augmentation----]')
_pya(n, cc, ii, kk, n_free_rows, free_rows, x, y, v)
# log.debug('x, y, v: %s %s %s', x, y, v)
if return_cost is True:
return get_cost(n, cc, ii, kk, x), x, y
else:
return x, y | python | def lapmod(n, cc, ii, kk, fast=True, return_cost=True,
fp_version=FP_DYNAMIC):
"""Solve sparse linear assignment problem using Jonker-Volgenant algorithm.
n: number of rows of the assignment cost matrix
cc: 1D array of all finite elements of the assignement cost matrix
ii: 1D array of indices of the row starts in cc. The following must hold:
ii[0] = 0 and ii[n+1] = len(cc).
kk: 1D array of the column indices so that:
cost[i, kk[ii[i] + k]] == cc[ii[i] + k].
Indices within one row must be sorted.
extend_cost: whether or not extend a non-square matrix [default: False]
cost_limit: an upper limit for a cost of a single assignment
[default: np.inf]
return_cost: whether or not to return the assignment cost
Returns (opt, x, y) where:
opt: cost of the assignment
x: vector of columns assigned to rows
y: vector of rows assigned to columns
or (x, y) if return_cost is not True.
When extend_cost and/or cost_limit is set, all unmatched entries will be
marked by -1 in x/y.
"""
# log = logging.getLogger('lapmod')
check_cost(n, cc, ii, kk)
if fast is True:
# log.debug('[----CR & RT & ARR & augmentation ----]')
x, y = _lapmod(n, cc, ii, kk, fp_version=fp_version)
else:
cc = np.ascontiguousarray(cc, dtype=np.float64)
ii = np.ascontiguousarray(ii, dtype=np.int32)
kk = np.ascontiguousarray(kk, dtype=np.int32)
x = np.empty((n,), dtype=np.int32)
y = np.empty((n,), dtype=np.int32)
v = np.empty((n,), dtype=np.float64)
free_rows = np.empty((n,), dtype=np.int32)
# log.debug('[----Column reduction & reduction transfer----]')
n_free_rows = _pycrrt(n, cc, ii, kk, free_rows, x, y, v)
# log.debug(
# 'free, x, y, v: %s %s %s %s', free_rows[:n_free_rows], x, y, v)
if n_free_rows == 0:
# log.info('Reduction solved it.')
if return_cost is True:
return get_cost(n, cc, ii, kk, x), x, y
else:
return x, y
for it in range(2):
# log.debug('[---Augmenting row reduction (iteration: %d)---]', it)
n_free_rows = _pyarr(
n, cc, ii, kk, n_free_rows, free_rows, x, y, v)
# log.debug(
# 'free, x, y, v: %s %s %s %s', free_rows[:n_free_rows], x, y, v)
if n_free_rows == 0:
# log.info('Augmenting row reduction solved it.')
if return_cost is True:
return get_cost(n, cc, ii, kk, x), x, y
else:
return x, y
# log.info('[----Augmentation----]')
_pya(n, cc, ii, kk, n_free_rows, free_rows, x, y, v)
# log.debug('x, y, v: %s %s %s', x, y, v)
if return_cost is True:
return get_cost(n, cc, ii, kk, x), x, y
else:
return x, y | [
"def",
"lapmod",
"(",
"n",
",",
"cc",
",",
"ii",
",",
"kk",
",",
"fast",
"=",
"True",
",",
"return_cost",
"=",
"True",
",",
"fp_version",
"=",
"FP_DYNAMIC",
")",
":",
"# log = logging.getLogger('lapmod')",
"check_cost",
"(",
"n",
",",
"cc",
",",
"ii",
",",
"kk",
")",
"if",
"fast",
"is",
"True",
":",
"# log.debug('[----CR & RT & ARR & augmentation ----]')",
"x",
",",
"y",
"=",
"_lapmod",
"(",
"n",
",",
"cc",
",",
"ii",
",",
"kk",
",",
"fp_version",
"=",
"fp_version",
")",
"else",
":",
"cc",
"=",
"np",
".",
"ascontiguousarray",
"(",
"cc",
",",
"dtype",
"=",
"np",
".",
"float64",
")",
"ii",
"=",
"np",
".",
"ascontiguousarray",
"(",
"ii",
",",
"dtype",
"=",
"np",
".",
"int32",
")",
"kk",
"=",
"np",
".",
"ascontiguousarray",
"(",
"kk",
",",
"dtype",
"=",
"np",
".",
"int32",
")",
"x",
"=",
"np",
".",
"empty",
"(",
"(",
"n",
",",
")",
",",
"dtype",
"=",
"np",
".",
"int32",
")",
"y",
"=",
"np",
".",
"empty",
"(",
"(",
"n",
",",
")",
",",
"dtype",
"=",
"np",
".",
"int32",
")",
"v",
"=",
"np",
".",
"empty",
"(",
"(",
"n",
",",
")",
",",
"dtype",
"=",
"np",
".",
"float64",
")",
"free_rows",
"=",
"np",
".",
"empty",
"(",
"(",
"n",
",",
")",
",",
"dtype",
"=",
"np",
".",
"int32",
")",
"# log.debug('[----Column reduction & reduction transfer----]')",
"n_free_rows",
"=",
"_pycrrt",
"(",
"n",
",",
"cc",
",",
"ii",
",",
"kk",
",",
"free_rows",
",",
"x",
",",
"y",
",",
"v",
")",
"# log.debug(",
"# 'free, x, y, v: %s %s %s %s', free_rows[:n_free_rows], x, y, v)",
"if",
"n_free_rows",
"==",
"0",
":",
"# log.info('Reduction solved it.')",
"if",
"return_cost",
"is",
"True",
":",
"return",
"get_cost",
"(",
"n",
",",
"cc",
",",
"ii",
",",
"kk",
",",
"x",
")",
",",
"x",
",",
"y",
"else",
":",
"return",
"x",
",",
"y",
"for",
"it",
"in",
"range",
"(",
"2",
")",
":",
"# log.debug('[---Augmenting row reduction (iteration: %d)---]', it)",
"n_free_rows",
"=",
"_pyarr",
"(",
"n",
",",
"cc",
",",
"ii",
",",
"kk",
",",
"n_free_rows",
",",
"free_rows",
",",
"x",
",",
"y",
",",
"v",
")",
"# log.debug(",
"# 'free, x, y, v: %s %s %s %s', free_rows[:n_free_rows], x, y, v)",
"if",
"n_free_rows",
"==",
"0",
":",
"# log.info('Augmenting row reduction solved it.')",
"if",
"return_cost",
"is",
"True",
":",
"return",
"get_cost",
"(",
"n",
",",
"cc",
",",
"ii",
",",
"kk",
",",
"x",
")",
",",
"x",
",",
"y",
"else",
":",
"return",
"x",
",",
"y",
"# log.info('[----Augmentation----]')",
"_pya",
"(",
"n",
",",
"cc",
",",
"ii",
",",
"kk",
",",
"n_free_rows",
",",
"free_rows",
",",
"x",
",",
"y",
",",
"v",
")",
"# log.debug('x, y, v: %s %s %s', x, y, v)",
"if",
"return_cost",
"is",
"True",
":",
"return",
"get_cost",
"(",
"n",
",",
"cc",
",",
"ii",
",",
"kk",
",",
"x",
")",
",",
"x",
",",
"y",
"else",
":",
"return",
"x",
",",
"y"
] | Solve sparse linear assignment problem using Jonker-Volgenant algorithm.
n: number of rows of the assignment cost matrix
cc: 1D array of all finite elements of the assignement cost matrix
ii: 1D array of indices of the row starts in cc. The following must hold:
ii[0] = 0 and ii[n+1] = len(cc).
kk: 1D array of the column indices so that:
cost[i, kk[ii[i] + k]] == cc[ii[i] + k].
Indices within one row must be sorted.
extend_cost: whether or not extend a non-square matrix [default: False]
cost_limit: an upper limit for a cost of a single assignment
[default: np.inf]
return_cost: whether or not to return the assignment cost
Returns (opt, x, y) where:
opt: cost of the assignment
x: vector of columns assigned to rows
y: vector of rows assigned to columns
or (x, y) if return_cost is not True.
When extend_cost and/or cost_limit is set, all unmatched entries will be
marked by -1 in x/y. | [
"Solve",
"sparse",
"linear",
"assignment",
"problem",
"using",
"Jonker",
"-",
"Volgenant",
"algorithm",
"."
] | c2b6309ba246d18205a71228cdaea67210e1a039 | https://github.com/gatagat/lap/blob/c2b6309ba246d18205a71228cdaea67210e1a039/lap/lapmod.py#L273-L341 |
1,087 | simonvh/genomepy | genomepy/provider.py | ProviderBase.register_provider | def register_provider(cls, provider):
"""Register method to keep list of providers."""
def decorator(subclass):
"""Register as decorator function."""
cls._providers[provider] = subclass
subclass.name = provider
return subclass
return decorator | python | def register_provider(cls, provider):
"""Register method to keep list of providers."""
def decorator(subclass):
"""Register as decorator function."""
cls._providers[provider] = subclass
subclass.name = provider
return subclass
return decorator | [
"def",
"register_provider",
"(",
"cls",
",",
"provider",
")",
":",
"def",
"decorator",
"(",
"subclass",
")",
":",
"\"\"\"Register as decorator function.\"\"\"",
"cls",
".",
"_providers",
"[",
"provider",
"]",
"=",
"subclass",
"subclass",
".",
"name",
"=",
"provider",
"return",
"subclass",
"return",
"decorator"
] | Register method to keep list of providers. | [
"Register",
"method",
"to",
"keep",
"list",
"of",
"providers",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/provider.py#L73-L80 |
1,088 | simonvh/genomepy | genomepy/provider.py | ProviderBase.tar_to_bigfile | def tar_to_bigfile(self, fname, outfile):
"""Convert tar of multiple FASTAs to one file."""
fnames = []
tmpdir = mkdtemp()
# Extract files to temporary directory
with tarfile.open(fname) as tar:
tar.extractall(path=tmpdir)
for root, _, files in os.walk(tmpdir):
fnames += [os.path.join(root, fname) for fname in files]
# Concatenate
with open(outfile, "w") as out:
for infile in fnames:
for line in open(infile):
out.write(line)
os.unlink(infile)
# Remove temp dir
shutil.rmtree(tmpdir) | python | def tar_to_bigfile(self, fname, outfile):
"""Convert tar of multiple FASTAs to one file."""
fnames = []
tmpdir = mkdtemp()
# Extract files to temporary directory
with tarfile.open(fname) as tar:
tar.extractall(path=tmpdir)
for root, _, files in os.walk(tmpdir):
fnames += [os.path.join(root, fname) for fname in files]
# Concatenate
with open(outfile, "w") as out:
for infile in fnames:
for line in open(infile):
out.write(line)
os.unlink(infile)
# Remove temp dir
shutil.rmtree(tmpdir) | [
"def",
"tar_to_bigfile",
"(",
"self",
",",
"fname",
",",
"outfile",
")",
":",
"fnames",
"=",
"[",
"]",
"tmpdir",
"=",
"mkdtemp",
"(",
")",
"# Extract files to temporary directory",
"with",
"tarfile",
".",
"open",
"(",
"fname",
")",
"as",
"tar",
":",
"tar",
".",
"extractall",
"(",
"path",
"=",
"tmpdir",
")",
"for",
"root",
",",
"_",
",",
"files",
"in",
"os",
".",
"walk",
"(",
"tmpdir",
")",
":",
"fnames",
"+=",
"[",
"os",
".",
"path",
".",
"join",
"(",
"root",
",",
"fname",
")",
"for",
"fname",
"in",
"files",
"]",
"# Concatenate",
"with",
"open",
"(",
"outfile",
",",
"\"w\"",
")",
"as",
"out",
":",
"for",
"infile",
"in",
"fnames",
":",
"for",
"line",
"in",
"open",
"(",
"infile",
")",
":",
"out",
".",
"write",
"(",
"line",
")",
"os",
".",
"unlink",
"(",
"infile",
")",
"# Remove temp dir",
"shutil",
".",
"rmtree",
"(",
"tmpdir",
")"
] | Convert tar of multiple FASTAs to one file. | [
"Convert",
"tar",
"of",
"multiple",
"FASTAs",
"to",
"one",
"file",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/provider.py#L90-L109 |
1,089 | simonvh/genomepy | genomepy/plugin.py | find_plugins | def find_plugins():
"""Locate and initialize all available plugins.
"""
plugin_dir = os.path.dirname(os.path.realpath(__file__))
plugin_dir = os.path.join(plugin_dir, "plugins")
plugin_files = [x[:-3] for x in os.listdir(plugin_dir) if x.endswith(".py")]
sys.path.insert(0, plugin_dir)
for plugin in plugin_files:
__import__(plugin) | python | def find_plugins():
"""Locate and initialize all available plugins.
"""
plugin_dir = os.path.dirname(os.path.realpath(__file__))
plugin_dir = os.path.join(plugin_dir, "plugins")
plugin_files = [x[:-3] for x in os.listdir(plugin_dir) if x.endswith(".py")]
sys.path.insert(0, plugin_dir)
for plugin in plugin_files:
__import__(plugin) | [
"def",
"find_plugins",
"(",
")",
":",
"plugin_dir",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"os",
".",
"path",
".",
"realpath",
"(",
"__file__",
")",
")",
"plugin_dir",
"=",
"os",
".",
"path",
".",
"join",
"(",
"plugin_dir",
",",
"\"plugins\"",
")",
"plugin_files",
"=",
"[",
"x",
"[",
":",
"-",
"3",
"]",
"for",
"x",
"in",
"os",
".",
"listdir",
"(",
"plugin_dir",
")",
"if",
"x",
".",
"endswith",
"(",
"\".py\"",
")",
"]",
"sys",
".",
"path",
".",
"insert",
"(",
"0",
",",
"plugin_dir",
")",
"for",
"plugin",
"in",
"plugin_files",
":",
"__import__",
"(",
"plugin",
")"
] | Locate and initialize all available plugins. | [
"Locate",
"and",
"initialize",
"all",
"available",
"plugins",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/plugin.py#L30-L38 |
1,090 | simonvh/genomepy | genomepy/plugin.py | convert | def convert(name):
"""Convert CamelCase to underscore
Parameters
----------
name : str
Camelcase string
Returns
-------
name : str
Converted name
"""
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() | python | def convert(name):
"""Convert CamelCase to underscore
Parameters
----------
name : str
Camelcase string
Returns
-------
name : str
Converted name
"""
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() | [
"def",
"convert",
"(",
"name",
")",
":",
"s1",
"=",
"re",
".",
"sub",
"(",
"'(.)([A-Z][a-z]+)'",
",",
"r'\\1_\\2'",
",",
"name",
")",
"return",
"re",
".",
"sub",
"(",
"'([a-z0-9])([A-Z])'",
",",
"r'\\1_\\2'",
",",
"s1",
")",
".",
"lower",
"(",
")"
] | Convert CamelCase to underscore
Parameters
----------
name : str
Camelcase string
Returns
-------
name : str
Converted name | [
"Convert",
"CamelCase",
"to",
"underscore"
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/plugin.py#L40-L54 |
1,091 | simonvh/genomepy | genomepy/plugin.py | init_plugins | def init_plugins():
"""Return dictionary of available plugins
Returns
-------
plugins : dictionary
key is plugin name, value Plugin object
"""
find_plugins()
d = {}
for c in Plugin.__subclasses__():
ins = c()
if ins.name() in config.get("plugin", []):
ins.activate()
d[ins.name()] = ins
return d | python | def init_plugins():
"""Return dictionary of available plugins
Returns
-------
plugins : dictionary
key is plugin name, value Plugin object
"""
find_plugins()
d = {}
for c in Plugin.__subclasses__():
ins = c()
if ins.name() in config.get("plugin", []):
ins.activate()
d[ins.name()] = ins
return d | [
"def",
"init_plugins",
"(",
")",
":",
"find_plugins",
"(",
")",
"d",
"=",
"{",
"}",
"for",
"c",
"in",
"Plugin",
".",
"__subclasses__",
"(",
")",
":",
"ins",
"=",
"c",
"(",
")",
"if",
"ins",
".",
"name",
"(",
")",
"in",
"config",
".",
"get",
"(",
"\"plugin\"",
",",
"[",
"]",
")",
":",
"ins",
".",
"activate",
"(",
")",
"d",
"[",
"ins",
".",
"name",
"(",
")",
"]",
"=",
"ins",
"return",
"d"
] | Return dictionary of available plugins
Returns
-------
plugins : dictionary
key is plugin name, value Plugin object | [
"Return",
"dictionary",
"of",
"available",
"plugins"
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/plugin.py#L56-L74 |
1,092 | simonvh/genomepy | genomepy/plugin.py | activate | def activate(name):
"""Activate plugin.
Parameters
----------
name : str
Plugin name.
"""
if name in plugins:
plugins[name].activate()
else:
raise Exception("plugin {} not found".format(name)) | python | def activate(name):
"""Activate plugin.
Parameters
----------
name : str
Plugin name.
"""
if name in plugins:
plugins[name].activate()
else:
raise Exception("plugin {} not found".format(name)) | [
"def",
"activate",
"(",
"name",
")",
":",
"if",
"name",
"in",
"plugins",
":",
"plugins",
"[",
"name",
"]",
".",
"activate",
"(",
")",
"else",
":",
"raise",
"Exception",
"(",
"\"plugin {} not found\"",
".",
"format",
"(",
"name",
")",
")"
] | Activate plugin.
Parameters
----------
name : str
Plugin name. | [
"Activate",
"plugin",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/plugin.py#L76-L87 |
1,093 | simonvh/genomepy | genomepy/plugin.py | deactivate | def deactivate(name):
"""Deactivate plugin.
Parameters
----------
name : str
Plugin name.
"""
if name in plugins:
plugins[name].deactivate()
else:
raise Exception("plugin {} not found".format(name)) | python | def deactivate(name):
"""Deactivate plugin.
Parameters
----------
name : str
Plugin name.
"""
if name in plugins:
plugins[name].deactivate()
else:
raise Exception("plugin {} not found".format(name)) | [
"def",
"deactivate",
"(",
"name",
")",
":",
"if",
"name",
"in",
"plugins",
":",
"plugins",
"[",
"name",
"]",
".",
"deactivate",
"(",
")",
"else",
":",
"raise",
"Exception",
"(",
"\"plugin {} not found\"",
".",
"format",
"(",
"name",
")",
")"
] | Deactivate plugin.
Parameters
----------
name : str
Plugin name. | [
"Deactivate",
"plugin",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/plugin.py#L89-L100 |
1,094 | simonvh/genomepy | genomepy/functions.py | manage_config | def manage_config(cmd, *args):
"""Manage genomepy config file."""
if cmd == "file":
print(config.config_file)
elif cmd == "show":
with open(config.config_file) as f:
print(f.read())
elif cmd == "generate":
fname = os.path.join(
user_config_dir("genomepy"), "{}.yaml".format("genomepy")
)
if not os.path.exists(user_config_dir("genomepy")):
os.makedirs(user_config_dir("genomepy"))
with open(fname, "w") as fout:
with open(config.config_file) as fin:
fout.write(fin.read())
print("Created config file {}".format(fname)) | python | def manage_config(cmd, *args):
"""Manage genomepy config file."""
if cmd == "file":
print(config.config_file)
elif cmd == "show":
with open(config.config_file) as f:
print(f.read())
elif cmd == "generate":
fname = os.path.join(
user_config_dir("genomepy"), "{}.yaml".format("genomepy")
)
if not os.path.exists(user_config_dir("genomepy")):
os.makedirs(user_config_dir("genomepy"))
with open(fname, "w") as fout:
with open(config.config_file) as fin:
fout.write(fin.read())
print("Created config file {}".format(fname)) | [
"def",
"manage_config",
"(",
"cmd",
",",
"*",
"args",
")",
":",
"if",
"cmd",
"==",
"\"file\"",
":",
"print",
"(",
"config",
".",
"config_file",
")",
"elif",
"cmd",
"==",
"\"show\"",
":",
"with",
"open",
"(",
"config",
".",
"config_file",
")",
"as",
"f",
":",
"print",
"(",
"f",
".",
"read",
"(",
")",
")",
"elif",
"cmd",
"==",
"\"generate\"",
":",
"fname",
"=",
"os",
".",
"path",
".",
"join",
"(",
"user_config_dir",
"(",
"\"genomepy\"",
")",
",",
"\"{}.yaml\"",
".",
"format",
"(",
"\"genomepy\"",
")",
")",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"user_config_dir",
"(",
"\"genomepy\"",
")",
")",
":",
"os",
".",
"makedirs",
"(",
"user_config_dir",
"(",
"\"genomepy\"",
")",
")",
"with",
"open",
"(",
"fname",
",",
"\"w\"",
")",
"as",
"fout",
":",
"with",
"open",
"(",
"config",
".",
"config_file",
")",
"as",
"fin",
":",
"fout",
".",
"write",
"(",
"fin",
".",
"read",
"(",
")",
")",
"print",
"(",
"\"Created config file {}\"",
".",
"format",
"(",
"fname",
")",
")"
] | Manage genomepy config file. | [
"Manage",
"genomepy",
"config",
"file",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/functions.py#L26-L44 |
1,095 | simonvh/genomepy | genomepy/functions.py | search | def search(term, provider=None):
"""
Search for a genome.
If provider is specified, search only that specific provider, else
search all providers. Both the name and description are used for the
search. Seacrch term is case-insensitive.
Parameters
----------
term : str
Search term, case-insensitive.
provider : str , optional
Provider name
Yields
------
tuple
genome information (name/identfier and description)
"""
if provider:
providers = [ProviderBase.create(provider)]
else:
# if provider is not specified search all providers
providers = [ProviderBase.create(p) for
p in ProviderBase.list_providers()]
for p in providers:
for row in p.search(term):
yield [x.encode('latin-1') for x in [p.name] + list(row)] | python | def search(term, provider=None):
"""
Search for a genome.
If provider is specified, search only that specific provider, else
search all providers. Both the name and description are used for the
search. Seacrch term is case-insensitive.
Parameters
----------
term : str
Search term, case-insensitive.
provider : str , optional
Provider name
Yields
------
tuple
genome information (name/identfier and description)
"""
if provider:
providers = [ProviderBase.create(provider)]
else:
# if provider is not specified search all providers
providers = [ProviderBase.create(p) for
p in ProviderBase.list_providers()]
for p in providers:
for row in p.search(term):
yield [x.encode('latin-1') for x in [p.name] + list(row)] | [
"def",
"search",
"(",
"term",
",",
"provider",
"=",
"None",
")",
":",
"if",
"provider",
":",
"providers",
"=",
"[",
"ProviderBase",
".",
"create",
"(",
"provider",
")",
"]",
"else",
":",
"# if provider is not specified search all providers",
"providers",
"=",
"[",
"ProviderBase",
".",
"create",
"(",
"p",
")",
"for",
"p",
"in",
"ProviderBase",
".",
"list_providers",
"(",
")",
"]",
"for",
"p",
"in",
"providers",
":",
"for",
"row",
"in",
"p",
".",
"search",
"(",
"term",
")",
":",
"yield",
"[",
"x",
".",
"encode",
"(",
"'latin-1'",
")",
"for",
"x",
"in",
"[",
"p",
".",
"name",
"]",
"+",
"list",
"(",
"row",
")",
"]"
] | Search for a genome.
If provider is specified, search only that specific provider, else
search all providers. Both the name and description are used for the
search. Seacrch term is case-insensitive.
Parameters
----------
term : str
Search term, case-insensitive.
provider : str , optional
Provider name
Yields
------
tuple
genome information (name/identfier and description) | [
"Search",
"for",
"a",
"genome",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/functions.py#L117-L147 |
1,096 | simonvh/genomepy | genomepy/functions.py | install_genome | def install_genome(name, provider, version=None, genome_dir=None, localname=None, mask="soft", regex=None, invert_match=False, annotation=False):
"""
Install a genome.
Parameters
----------
name : str
Genome name
provider : str
Provider name
version : str
Version (only for Ensembl)
genome_dir : str , optional
Where to store the fasta files
localname : str , optional
Custom name for this genome.
mask : str , optional
Default is 'soft', specify 'hard' for hard masking.
regex : str , optional
Regular expression to select specific chromosome / scaffold names.
invert_match : bool , optional
Set to True to select all chromosomes that don't match the regex.
annotation : bool , optional
If set to True, download gene annotation in BED and GTF format.
"""
if not genome_dir:
genome_dir = config.get("genome_dir", None)
if not genome_dir:
raise norns.exceptions.ConfigError("Please provide or configure a genome_dir")
genome_dir = os.path.expanduser(genome_dir)
localname = get_localname(name, localname)
# Download genome from provider
p = ProviderBase.create(provider)
p.download_genome(
name,
genome_dir,
version=version,
mask=mask,
localname=localname,
regex=regex,
invert_match=invert_match)
if annotation:
# Download annotation from provider
p.download_annotation(name, genome_dir, localname=localname, version=version)
g = Genome(localname, genome_dir=genome_dir)
for plugin in get_active_plugins():
plugin.after_genome_download(g)
generate_env() | python | def install_genome(name, provider, version=None, genome_dir=None, localname=None, mask="soft", regex=None, invert_match=False, annotation=False):
"""
Install a genome.
Parameters
----------
name : str
Genome name
provider : str
Provider name
version : str
Version (only for Ensembl)
genome_dir : str , optional
Where to store the fasta files
localname : str , optional
Custom name for this genome.
mask : str , optional
Default is 'soft', specify 'hard' for hard masking.
regex : str , optional
Regular expression to select specific chromosome / scaffold names.
invert_match : bool , optional
Set to True to select all chromosomes that don't match the regex.
annotation : bool , optional
If set to True, download gene annotation in BED and GTF format.
"""
if not genome_dir:
genome_dir = config.get("genome_dir", None)
if not genome_dir:
raise norns.exceptions.ConfigError("Please provide or configure a genome_dir")
genome_dir = os.path.expanduser(genome_dir)
localname = get_localname(name, localname)
# Download genome from provider
p = ProviderBase.create(provider)
p.download_genome(
name,
genome_dir,
version=version,
mask=mask,
localname=localname,
regex=regex,
invert_match=invert_match)
if annotation:
# Download annotation from provider
p.download_annotation(name, genome_dir, localname=localname, version=version)
g = Genome(localname, genome_dir=genome_dir)
for plugin in get_active_plugins():
plugin.after_genome_download(g)
generate_env() | [
"def",
"install_genome",
"(",
"name",
",",
"provider",
",",
"version",
"=",
"None",
",",
"genome_dir",
"=",
"None",
",",
"localname",
"=",
"None",
",",
"mask",
"=",
"\"soft\"",
",",
"regex",
"=",
"None",
",",
"invert_match",
"=",
"False",
",",
"annotation",
"=",
"False",
")",
":",
"if",
"not",
"genome_dir",
":",
"genome_dir",
"=",
"config",
".",
"get",
"(",
"\"genome_dir\"",
",",
"None",
")",
"if",
"not",
"genome_dir",
":",
"raise",
"norns",
".",
"exceptions",
".",
"ConfigError",
"(",
"\"Please provide or configure a genome_dir\"",
")",
"genome_dir",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"genome_dir",
")",
"localname",
"=",
"get_localname",
"(",
"name",
",",
"localname",
")",
"# Download genome from provider",
"p",
"=",
"ProviderBase",
".",
"create",
"(",
"provider",
")",
"p",
".",
"download_genome",
"(",
"name",
",",
"genome_dir",
",",
"version",
"=",
"version",
",",
"mask",
"=",
"mask",
",",
"localname",
"=",
"localname",
",",
"regex",
"=",
"regex",
",",
"invert_match",
"=",
"invert_match",
")",
"if",
"annotation",
":",
"# Download annotation from provider",
"p",
".",
"download_annotation",
"(",
"name",
",",
"genome_dir",
",",
"localname",
"=",
"localname",
",",
"version",
"=",
"version",
")",
"g",
"=",
"Genome",
"(",
"localname",
",",
"genome_dir",
"=",
"genome_dir",
")",
"for",
"plugin",
"in",
"get_active_plugins",
"(",
")",
":",
"plugin",
".",
"after_genome_download",
"(",
"g",
")",
"generate_env",
"(",
")"
] | Install a genome.
Parameters
----------
name : str
Genome name
provider : str
Provider name
version : str
Version (only for Ensembl)
genome_dir : str , optional
Where to store the fasta files
localname : str , optional
Custom name for this genome.
mask : str , optional
Default is 'soft', specify 'hard' for hard masking.
regex : str , optional
Regular expression to select specific chromosome / scaffold names.
invert_match : bool , optional
Set to True to select all chromosomes that don't match the regex.
annotation : bool , optional
If set to True, download gene annotation in BED and GTF format. | [
"Install",
"a",
"genome",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/functions.py#L149-L209 |
1,097 | simonvh/genomepy | genomepy/functions.py | generate_exports | def generate_exports():
"""Print export commands for setting environment variables.
"""
env = []
for name in list_installed_genomes():
try:
g = Genome(name)
env_name = re.sub(r'[^\w]+', "_", name).upper()
env.append("export {}={}".format(env_name, g.filename))
except:
pass
return env | python | def generate_exports():
"""Print export commands for setting environment variables.
"""
env = []
for name in list_installed_genomes():
try:
g = Genome(name)
env_name = re.sub(r'[^\w]+', "_", name).upper()
env.append("export {}={}".format(env_name, g.filename))
except:
pass
return env | [
"def",
"generate_exports",
"(",
")",
":",
"env",
"=",
"[",
"]",
"for",
"name",
"in",
"list_installed_genomes",
"(",
")",
":",
"try",
":",
"g",
"=",
"Genome",
"(",
"name",
")",
"env_name",
"=",
"re",
".",
"sub",
"(",
"r'[^\\w]+'",
",",
"\"_\"",
",",
"name",
")",
".",
"upper",
"(",
")",
"env",
".",
"append",
"(",
"\"export {}={}\"",
".",
"format",
"(",
"env_name",
",",
"g",
".",
"filename",
")",
")",
"except",
":",
"pass",
"return",
"env"
] | Print export commands for setting environment variables. | [
"Print",
"export",
"commands",
"for",
"setting",
"environment",
"variables",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/functions.py#L238-L249 |
1,098 | simonvh/genomepy | genomepy/functions.py | generate_env | def generate_env(fname=None):
"""Generate file with exports.
By default this is in .config/genomepy/exports.txt.
Parameters
----------
fname: strs, optional
Name of the output file.
"""
config_dir = user_config_dir("genomepy")
if os.path.exists(config_dir):
fname = os.path.join(config_dir, "exports.txt")
with open(fname, "w") as fout:
for env in generate_exports():
fout.write("{}\n".format(env)) | python | def generate_env(fname=None):
"""Generate file with exports.
By default this is in .config/genomepy/exports.txt.
Parameters
----------
fname: strs, optional
Name of the output file.
"""
config_dir = user_config_dir("genomepy")
if os.path.exists(config_dir):
fname = os.path.join(config_dir, "exports.txt")
with open(fname, "w") as fout:
for env in generate_exports():
fout.write("{}\n".format(env)) | [
"def",
"generate_env",
"(",
"fname",
"=",
"None",
")",
":",
"config_dir",
"=",
"user_config_dir",
"(",
"\"genomepy\"",
")",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"config_dir",
")",
":",
"fname",
"=",
"os",
".",
"path",
".",
"join",
"(",
"config_dir",
",",
"\"exports.txt\"",
")",
"with",
"open",
"(",
"fname",
",",
"\"w\"",
")",
"as",
"fout",
":",
"for",
"env",
"in",
"generate_exports",
"(",
")",
":",
"fout",
".",
"write",
"(",
"\"{}\\n\"",
".",
"format",
"(",
"env",
")",
")"
] | Generate file with exports.
By default this is in .config/genomepy/exports.txt.
Parameters
----------
fname: strs, optional
Name of the output file. | [
"Generate",
"file",
"with",
"exports",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/functions.py#L251-L266 |
1,099 | simonvh/genomepy | genomepy/functions.py | manage_plugins | def manage_plugins(command, plugin_names=None):
"""Enable or disable plugins.
"""
if plugin_names is None:
plugin_names = []
active_plugins = config.get("plugin", [])
plugins = init_plugins()
if command == "enable":
for name in plugin_names:
if name not in plugins:
raise ValueError("Unknown plugin: {}".format(name))
if name not in active_plugins:
active_plugins.append(name)
elif command == "disable":
for name in plugin_names:
if name in active_plugins:
active_plugins.remove(name)
elif command == "list":
print("{:20}{}".format("plugin", "enabled"))
for plugin in sorted(plugins):
print("{:20}{}".format(plugin, {False:"", True:"*"}[plugin in active_plugins]))
else:
raise ValueError("Invalid plugin command")
config["plugin"] = active_plugins
config.save()
if command in ["enable", "disable"]:
print("Enabled plugins: {}".format(", ".join(sorted(active_plugins)))) | python | def manage_plugins(command, plugin_names=None):
"""Enable or disable plugins.
"""
if plugin_names is None:
plugin_names = []
active_plugins = config.get("plugin", [])
plugins = init_plugins()
if command == "enable":
for name in plugin_names:
if name not in plugins:
raise ValueError("Unknown plugin: {}".format(name))
if name not in active_plugins:
active_plugins.append(name)
elif command == "disable":
for name in plugin_names:
if name in active_plugins:
active_plugins.remove(name)
elif command == "list":
print("{:20}{}".format("plugin", "enabled"))
for plugin in sorted(plugins):
print("{:20}{}".format(plugin, {False:"", True:"*"}[plugin in active_plugins]))
else:
raise ValueError("Invalid plugin command")
config["plugin"] = active_plugins
config.save()
if command in ["enable", "disable"]:
print("Enabled plugins: {}".format(", ".join(sorted(active_plugins)))) | [
"def",
"manage_plugins",
"(",
"command",
",",
"plugin_names",
"=",
"None",
")",
":",
"if",
"plugin_names",
"is",
"None",
":",
"plugin_names",
"=",
"[",
"]",
"active_plugins",
"=",
"config",
".",
"get",
"(",
"\"plugin\"",
",",
"[",
"]",
")",
"plugins",
"=",
"init_plugins",
"(",
")",
"if",
"command",
"==",
"\"enable\"",
":",
"for",
"name",
"in",
"plugin_names",
":",
"if",
"name",
"not",
"in",
"plugins",
":",
"raise",
"ValueError",
"(",
"\"Unknown plugin: {}\"",
".",
"format",
"(",
"name",
")",
")",
"if",
"name",
"not",
"in",
"active_plugins",
":",
"active_plugins",
".",
"append",
"(",
"name",
")",
"elif",
"command",
"==",
"\"disable\"",
":",
"for",
"name",
"in",
"plugin_names",
":",
"if",
"name",
"in",
"active_plugins",
":",
"active_plugins",
".",
"remove",
"(",
"name",
")",
"elif",
"command",
"==",
"\"list\"",
":",
"print",
"(",
"\"{:20}{}\"",
".",
"format",
"(",
"\"plugin\"",
",",
"\"enabled\"",
")",
")",
"for",
"plugin",
"in",
"sorted",
"(",
"plugins",
")",
":",
"print",
"(",
"\"{:20}{}\"",
".",
"format",
"(",
"plugin",
",",
"{",
"False",
":",
"\"\"",
",",
"True",
":",
"\"*\"",
"}",
"[",
"plugin",
"in",
"active_plugins",
"]",
")",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"Invalid plugin command\"",
")",
"config",
"[",
"\"plugin\"",
"]",
"=",
"active_plugins",
"config",
".",
"save",
"(",
")",
"if",
"command",
"in",
"[",
"\"enable\"",
",",
"\"disable\"",
"]",
":",
"print",
"(",
"\"Enabled plugins: {}\"",
".",
"format",
"(",
"\", \"",
".",
"join",
"(",
"sorted",
"(",
"active_plugins",
")",
")",
")",
")"
] | Enable or disable plugins. | [
"Enable",
"or",
"disable",
"plugins",
"."
] | abace2366511dbe855fe1430b1f7d9ec4cbf6d29 | https://github.com/simonvh/genomepy/blob/abace2366511dbe855fe1430b1f7d9ec4cbf6d29/genomepy/functions.py#L514-L541 |
Subsets and Splits