id
int32 0
252k
| repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
sequence | docstring
stringlengths 3
17.3k
| docstring_tokens
sequence | sha
stringlengths 40
40
| url
stringlengths 87
242
|
---|---|---|---|---|---|---|---|---|---|---|---|
2,600 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_axon | def has_axon(neuron, treefun=_read_neurite_type):
'''Check if a neuron has an axon
Arguments:
neuron(Neuron): The neuron object to test
treefun: Optional function to calculate the tree type of
neuron's neurites
Returns:
CheckResult with result
'''
return CheckResult(NeuriteType.axon in (treefun(n) for n in neuron.neurites)) | python | def has_axon(neuron, treefun=_read_neurite_type):
'''Check if a neuron has an axon
Arguments:
neuron(Neuron): The neuron object to test
treefun: Optional function to calculate the tree type of
neuron's neurites
Returns:
CheckResult with result
'''
return CheckResult(NeuriteType.axon in (treefun(n) for n in neuron.neurites)) | [
"def",
"has_axon",
"(",
"neuron",
",",
"treefun",
"=",
"_read_neurite_type",
")",
":",
"return",
"CheckResult",
"(",
"NeuriteType",
".",
"axon",
"in",
"(",
"treefun",
"(",
"n",
")",
"for",
"n",
"in",
"neuron",
".",
"neurites",
")",
")"
] | Check if a neuron has an axon
Arguments:
neuron(Neuron): The neuron object to test
treefun: Optional function to calculate the tree type of
neuron's neurites
Returns:
CheckResult with result | [
"Check",
"if",
"a",
"neuron",
"has",
"an",
"axon"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L54-L65 |
2,601 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_apical_dendrite | def has_apical_dendrite(neuron, min_number=1, treefun=_read_neurite_type):
'''Check if a neuron has apical dendrites
Arguments:
neuron(Neuron): The neuron object to test
min_number: minimum number of apical dendrites required
treefun: Optional function to calculate the tree type of neuron's
neurites
Returns:
CheckResult with result
'''
types = [treefun(n) for n in neuron.neurites]
return CheckResult(types.count(NeuriteType.apical_dendrite) >= min_number) | python | def has_apical_dendrite(neuron, min_number=1, treefun=_read_neurite_type):
'''Check if a neuron has apical dendrites
Arguments:
neuron(Neuron): The neuron object to test
min_number: minimum number of apical dendrites required
treefun: Optional function to calculate the tree type of neuron's
neurites
Returns:
CheckResult with result
'''
types = [treefun(n) for n in neuron.neurites]
return CheckResult(types.count(NeuriteType.apical_dendrite) >= min_number) | [
"def",
"has_apical_dendrite",
"(",
"neuron",
",",
"min_number",
"=",
"1",
",",
"treefun",
"=",
"_read_neurite_type",
")",
":",
"types",
"=",
"[",
"treefun",
"(",
"n",
")",
"for",
"n",
"in",
"neuron",
".",
"neurites",
"]",
"return",
"CheckResult",
"(",
"types",
".",
"count",
"(",
"NeuriteType",
".",
"apical_dendrite",
")",
">=",
"min_number",
")"
] | Check if a neuron has apical dendrites
Arguments:
neuron(Neuron): The neuron object to test
min_number: minimum number of apical dendrites required
treefun: Optional function to calculate the tree type of neuron's
neurites
Returns:
CheckResult with result | [
"Check",
"if",
"a",
"neuron",
"has",
"apical",
"dendrites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L68-L81 |
2,602 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_basal_dendrite | def has_basal_dendrite(neuron, min_number=1, treefun=_read_neurite_type):
'''Check if a neuron has basal dendrites
Arguments:
neuron(Neuron): The neuron object to test
min_number: minimum number of basal dendrites required
treefun: Optional function to calculate the tree type of neuron's
neurites
Returns:
CheckResult with result
'''
types = [treefun(n) for n in neuron.neurites]
return CheckResult(types.count(NeuriteType.basal_dendrite) >= min_number) | python | def has_basal_dendrite(neuron, min_number=1, treefun=_read_neurite_type):
'''Check if a neuron has basal dendrites
Arguments:
neuron(Neuron): The neuron object to test
min_number: minimum number of basal dendrites required
treefun: Optional function to calculate the tree type of neuron's
neurites
Returns:
CheckResult with result
'''
types = [treefun(n) for n in neuron.neurites]
return CheckResult(types.count(NeuriteType.basal_dendrite) >= min_number) | [
"def",
"has_basal_dendrite",
"(",
"neuron",
",",
"min_number",
"=",
"1",
",",
"treefun",
"=",
"_read_neurite_type",
")",
":",
"types",
"=",
"[",
"treefun",
"(",
"n",
")",
"for",
"n",
"in",
"neuron",
".",
"neurites",
"]",
"return",
"CheckResult",
"(",
"types",
".",
"count",
"(",
"NeuriteType",
".",
"basal_dendrite",
")",
">=",
"min_number",
")"
] | Check if a neuron has basal dendrites
Arguments:
neuron(Neuron): The neuron object to test
min_number: minimum number of basal dendrites required
treefun: Optional function to calculate the tree type of neuron's
neurites
Returns:
CheckResult with result | [
"Check",
"if",
"a",
"neuron",
"has",
"basal",
"dendrites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L84-L97 |
2,603 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_no_flat_neurites | def has_no_flat_neurites(neuron, tol=0.1, method='ratio'):
'''Check that a neuron has no flat neurites
Arguments:
neuron(Neuron): The neuron object to test
tol(float): tolerance
method(string): way of determining flatness, 'tolerance', 'ratio' \
as described in :meth:`neurom.check.morphtree.get_flat_neurites`
Returns:
CheckResult with result
'''
return CheckResult(len(get_flat_neurites(neuron, tol, method)) == 0) | python | def has_no_flat_neurites(neuron, tol=0.1, method='ratio'):
'''Check that a neuron has no flat neurites
Arguments:
neuron(Neuron): The neuron object to test
tol(float): tolerance
method(string): way of determining flatness, 'tolerance', 'ratio' \
as described in :meth:`neurom.check.morphtree.get_flat_neurites`
Returns:
CheckResult with result
'''
return CheckResult(len(get_flat_neurites(neuron, tol, method)) == 0) | [
"def",
"has_no_flat_neurites",
"(",
"neuron",
",",
"tol",
"=",
"0.1",
",",
"method",
"=",
"'ratio'",
")",
":",
"return",
"CheckResult",
"(",
"len",
"(",
"get_flat_neurites",
"(",
"neuron",
",",
"tol",
",",
"method",
")",
")",
"==",
"0",
")"
] | Check that a neuron has no flat neurites
Arguments:
neuron(Neuron): The neuron object to test
tol(float): tolerance
method(string): way of determining flatness, 'tolerance', 'ratio' \
as described in :meth:`neurom.check.morphtree.get_flat_neurites`
Returns:
CheckResult with result | [
"Check",
"that",
"a",
"neuron",
"has",
"no",
"flat",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L100-L112 |
2,604 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_all_nonzero_segment_lengths | def has_all_nonzero_segment_lengths(neuron, threshold=0.0):
'''Check presence of neuron segments with length not above threshold
Arguments:
neuron(Neuron): The neuron object to test
threshold(float): value above which a segment length is considered to
be non-zero
Returns:
CheckResult with result including list of (section_id, segment_id)
of zero length segments
'''
bad_ids = []
for sec in _nf.iter_sections(neuron):
p = sec.points
for i, s in enumerate(zip(p[:-1], p[1:])):
if segment_length(s) <= threshold:
bad_ids.append((sec.id, i))
return CheckResult(len(bad_ids) == 0, bad_ids) | python | def has_all_nonzero_segment_lengths(neuron, threshold=0.0):
'''Check presence of neuron segments with length not above threshold
Arguments:
neuron(Neuron): The neuron object to test
threshold(float): value above which a segment length is considered to
be non-zero
Returns:
CheckResult with result including list of (section_id, segment_id)
of zero length segments
'''
bad_ids = []
for sec in _nf.iter_sections(neuron):
p = sec.points
for i, s in enumerate(zip(p[:-1], p[1:])):
if segment_length(s) <= threshold:
bad_ids.append((sec.id, i))
return CheckResult(len(bad_ids) == 0, bad_ids) | [
"def",
"has_all_nonzero_segment_lengths",
"(",
"neuron",
",",
"threshold",
"=",
"0.0",
")",
":",
"bad_ids",
"=",
"[",
"]",
"for",
"sec",
"in",
"_nf",
".",
"iter_sections",
"(",
"neuron",
")",
":",
"p",
"=",
"sec",
".",
"points",
"for",
"i",
",",
"s",
"in",
"enumerate",
"(",
"zip",
"(",
"p",
"[",
":",
"-",
"1",
"]",
",",
"p",
"[",
"1",
":",
"]",
")",
")",
":",
"if",
"segment_length",
"(",
"s",
")",
"<=",
"threshold",
":",
"bad_ids",
".",
"append",
"(",
"(",
"sec",
".",
"id",
",",
"i",
")",
")",
"return",
"CheckResult",
"(",
"len",
"(",
"bad_ids",
")",
"==",
"0",
",",
"bad_ids",
")"
] | Check presence of neuron segments with length not above threshold
Arguments:
neuron(Neuron): The neuron object to test
threshold(float): value above which a segment length is considered to
be non-zero
Returns:
CheckResult with result including list of (section_id, segment_id)
of zero length segments | [
"Check",
"presence",
"of",
"neuron",
"segments",
"with",
"length",
"not",
"above",
"threshold"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L128-L147 |
2,605 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_all_nonzero_section_lengths | def has_all_nonzero_section_lengths(neuron, threshold=0.0):
'''Check presence of neuron sections with length not above threshold
Arguments:
neuron(Neuron): The neuron object to test
threshold(float): value above which a section length is considered
to be non-zero
Returns:
CheckResult with result including list of ids of bad sections
'''
bad_ids = [s.id for s in _nf.iter_sections(neuron.neurites)
if section_length(s.points) <= threshold]
return CheckResult(len(bad_ids) == 0, bad_ids) | python | def has_all_nonzero_section_lengths(neuron, threshold=0.0):
'''Check presence of neuron sections with length not above threshold
Arguments:
neuron(Neuron): The neuron object to test
threshold(float): value above which a section length is considered
to be non-zero
Returns:
CheckResult with result including list of ids of bad sections
'''
bad_ids = [s.id for s in _nf.iter_sections(neuron.neurites)
if section_length(s.points) <= threshold]
return CheckResult(len(bad_ids) == 0, bad_ids) | [
"def",
"has_all_nonzero_section_lengths",
"(",
"neuron",
",",
"threshold",
"=",
"0.0",
")",
":",
"bad_ids",
"=",
"[",
"s",
".",
"id",
"for",
"s",
"in",
"_nf",
".",
"iter_sections",
"(",
"neuron",
".",
"neurites",
")",
"if",
"section_length",
"(",
"s",
".",
"points",
")",
"<=",
"threshold",
"]",
"return",
"CheckResult",
"(",
"len",
"(",
"bad_ids",
")",
"==",
"0",
",",
"bad_ids",
")"
] | Check presence of neuron sections with length not above threshold
Arguments:
neuron(Neuron): The neuron object to test
threshold(float): value above which a section length is considered
to be non-zero
Returns:
CheckResult with result including list of ids of bad sections | [
"Check",
"presence",
"of",
"neuron",
"sections",
"with",
"length",
"not",
"above",
"threshold"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L150-L164 |
2,606 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_all_nonzero_neurite_radii | def has_all_nonzero_neurite_radii(neuron, threshold=0.0):
'''Check presence of neurite points with radius not above threshold
Arguments:
neuron(Neuron): The neuron object to test
threshold: value above which a radius is considered to be non-zero
Returns:
CheckResult with result including list of (section ID, point ID) pairs
of zero-radius points
'''
bad_ids = []
seen_ids = set()
for s in _nf.iter_sections(neuron):
for i, p in enumerate(s.points):
info = (s.id, i)
if p[COLS.R] <= threshold and info not in seen_ids:
seen_ids.add(info)
bad_ids.append(info)
return CheckResult(len(bad_ids) == 0, bad_ids) | python | def has_all_nonzero_neurite_radii(neuron, threshold=0.0):
'''Check presence of neurite points with radius not above threshold
Arguments:
neuron(Neuron): The neuron object to test
threshold: value above which a radius is considered to be non-zero
Returns:
CheckResult with result including list of (section ID, point ID) pairs
of zero-radius points
'''
bad_ids = []
seen_ids = set()
for s in _nf.iter_sections(neuron):
for i, p in enumerate(s.points):
info = (s.id, i)
if p[COLS.R] <= threshold and info not in seen_ids:
seen_ids.add(info)
bad_ids.append(info)
return CheckResult(len(bad_ids) == 0, bad_ids) | [
"def",
"has_all_nonzero_neurite_radii",
"(",
"neuron",
",",
"threshold",
"=",
"0.0",
")",
":",
"bad_ids",
"=",
"[",
"]",
"seen_ids",
"=",
"set",
"(",
")",
"for",
"s",
"in",
"_nf",
".",
"iter_sections",
"(",
"neuron",
")",
":",
"for",
"i",
",",
"p",
"in",
"enumerate",
"(",
"s",
".",
"points",
")",
":",
"info",
"=",
"(",
"s",
".",
"id",
",",
"i",
")",
"if",
"p",
"[",
"COLS",
".",
"R",
"]",
"<=",
"threshold",
"and",
"info",
"not",
"in",
"seen_ids",
":",
"seen_ids",
".",
"add",
"(",
"info",
")",
"bad_ids",
".",
"append",
"(",
"info",
")",
"return",
"CheckResult",
"(",
"len",
"(",
"bad_ids",
")",
"==",
"0",
",",
"bad_ids",
")"
] | Check presence of neurite points with radius not above threshold
Arguments:
neuron(Neuron): The neuron object to test
threshold: value above which a radius is considered to be non-zero
Returns:
CheckResult with result including list of (section ID, point ID) pairs
of zero-radius points | [
"Check",
"presence",
"of",
"neurite",
"points",
"with",
"radius",
"not",
"above",
"threshold"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L167-L187 |
2,607 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_no_fat_ends | def has_no_fat_ends(neuron, multiple_of_mean=2.0, final_point_count=5):
'''Check if leaf points are too large
Arguments:
neuron(Neuron): The neuron object to test
multiple_of_mean(float): how many times larger the final radius
has to be compared to the mean of the final points
final_point_count(int): how many points to include in the mean
Returns:
CheckResult with result list of ids of bad sections
Note:
A fat end is defined as a leaf segment whose last point is larger
by a factor of `multiple_of_mean` than the mean of the points in
`final_point_count`
'''
bad_ids = []
for leaf in _nf.iter_sections(neuron.neurites, iterator_type=Tree.ileaf):
mean_radius = np.mean(leaf.points[1:][-final_point_count:, COLS.R])
if mean_radius * multiple_of_mean <= leaf.points[-1, COLS.R]:
bad_ids.append((leaf.id, leaf.points[-1:]))
return CheckResult(len(bad_ids) == 0, bad_ids) | python | def has_no_fat_ends(neuron, multiple_of_mean=2.0, final_point_count=5):
'''Check if leaf points are too large
Arguments:
neuron(Neuron): The neuron object to test
multiple_of_mean(float): how many times larger the final radius
has to be compared to the mean of the final points
final_point_count(int): how many points to include in the mean
Returns:
CheckResult with result list of ids of bad sections
Note:
A fat end is defined as a leaf segment whose last point is larger
by a factor of `multiple_of_mean` than the mean of the points in
`final_point_count`
'''
bad_ids = []
for leaf in _nf.iter_sections(neuron.neurites, iterator_type=Tree.ileaf):
mean_radius = np.mean(leaf.points[1:][-final_point_count:, COLS.R])
if mean_radius * multiple_of_mean <= leaf.points[-1, COLS.R]:
bad_ids.append((leaf.id, leaf.points[-1:]))
return CheckResult(len(bad_ids) == 0, bad_ids) | [
"def",
"has_no_fat_ends",
"(",
"neuron",
",",
"multiple_of_mean",
"=",
"2.0",
",",
"final_point_count",
"=",
"5",
")",
":",
"bad_ids",
"=",
"[",
"]",
"for",
"leaf",
"in",
"_nf",
".",
"iter_sections",
"(",
"neuron",
".",
"neurites",
",",
"iterator_type",
"=",
"Tree",
".",
"ileaf",
")",
":",
"mean_radius",
"=",
"np",
".",
"mean",
"(",
"leaf",
".",
"points",
"[",
"1",
":",
"]",
"[",
"-",
"final_point_count",
":",
",",
"COLS",
".",
"R",
"]",
")",
"if",
"mean_radius",
"*",
"multiple_of_mean",
"<=",
"leaf",
".",
"points",
"[",
"-",
"1",
",",
"COLS",
".",
"R",
"]",
":",
"bad_ids",
".",
"append",
"(",
"(",
"leaf",
".",
"id",
",",
"leaf",
".",
"points",
"[",
"-",
"1",
":",
"]",
")",
")",
"return",
"CheckResult",
"(",
"len",
"(",
"bad_ids",
")",
"==",
"0",
",",
"bad_ids",
")"
] | Check if leaf points are too large
Arguments:
neuron(Neuron): The neuron object to test
multiple_of_mean(float): how many times larger the final radius
has to be compared to the mean of the final points
final_point_count(int): how many points to include in the mean
Returns:
CheckResult with result list of ids of bad sections
Note:
A fat end is defined as a leaf segment whose last point is larger
by a factor of `multiple_of_mean` than the mean of the points in
`final_point_count` | [
"Check",
"if",
"leaf",
"points",
"are",
"too",
"large"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L226-L250 |
2,608 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_no_narrow_start | def has_no_narrow_start(neuron, frac=0.9):
'''Check if neurites have a narrow start
Arguments:
neuron(Neuron): The neuron object to test
frac(float): Ratio that the second point must be smaller than the first
Returns:
CheckResult with a list of all first segments of neurites with a narrow start
'''
bad_ids = [(neurite.root_node.id, [neurite.root_node.points[1]])
for neurite in neuron.neurites
if neurite.root_node.points[1][COLS.R] < frac * neurite.root_node.points[2][COLS.R]]
return CheckResult(len(bad_ids) == 0, bad_ids) | python | def has_no_narrow_start(neuron, frac=0.9):
'''Check if neurites have a narrow start
Arguments:
neuron(Neuron): The neuron object to test
frac(float): Ratio that the second point must be smaller than the first
Returns:
CheckResult with a list of all first segments of neurites with a narrow start
'''
bad_ids = [(neurite.root_node.id, [neurite.root_node.points[1]])
for neurite in neuron.neurites
if neurite.root_node.points[1][COLS.R] < frac * neurite.root_node.points[2][COLS.R]]
return CheckResult(len(bad_ids) == 0, bad_ids) | [
"def",
"has_no_narrow_start",
"(",
"neuron",
",",
"frac",
"=",
"0.9",
")",
":",
"bad_ids",
"=",
"[",
"(",
"neurite",
".",
"root_node",
".",
"id",
",",
"[",
"neurite",
".",
"root_node",
".",
"points",
"[",
"1",
"]",
"]",
")",
"for",
"neurite",
"in",
"neuron",
".",
"neurites",
"if",
"neurite",
".",
"root_node",
".",
"points",
"[",
"1",
"]",
"[",
"COLS",
".",
"R",
"]",
"<",
"frac",
"*",
"neurite",
".",
"root_node",
".",
"points",
"[",
"2",
"]",
"[",
"COLS",
".",
"R",
"]",
"]",
"return",
"CheckResult",
"(",
"len",
"(",
"bad_ids",
")",
"==",
"0",
",",
"bad_ids",
")"
] | Check if neurites have a narrow start
Arguments:
neuron(Neuron): The neuron object to test
frac(float): Ratio that the second point must be smaller than the first
Returns:
CheckResult with a list of all first segments of neurites with a narrow start | [
"Check",
"if",
"neurites",
"have",
"a",
"narrow",
"start"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L253-L266 |
2,609 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_no_dangling_branch | def has_no_dangling_branch(neuron):
'''Check if the neuron has dangling neurites'''
soma_center = neuron.soma.points[:, COLS.XYZ].mean(axis=0)
recentered_soma = neuron.soma.points[:, COLS.XYZ] - soma_center
radius = np.linalg.norm(recentered_soma, axis=1)
soma_max_radius = radius.max()
def is_dangling(neurite):
'''Is the neurite dangling ?'''
starting_point = neurite.points[1][COLS.XYZ]
if np.linalg.norm(starting_point - soma_center) - soma_max_radius <= 12.:
return False
if neurite.type != NeuriteType.axon:
return True
all_points = list(chain.from_iterable(n.points[1:]
for n in iter_neurites(neurite)
if n.type != NeuriteType.axon))
res = [np.linalg.norm(starting_point - p[COLS.XYZ]) >= 2 * p[COLS.R] + 2
for p in all_points]
return all(res)
bad_ids = [(n.root_node.id, [n.root_node.points[1]])
for n in iter_neurites(neuron) if is_dangling(n)]
return CheckResult(len(bad_ids) == 0, bad_ids) | python | def has_no_dangling_branch(neuron):
'''Check if the neuron has dangling neurites'''
soma_center = neuron.soma.points[:, COLS.XYZ].mean(axis=0)
recentered_soma = neuron.soma.points[:, COLS.XYZ] - soma_center
radius = np.linalg.norm(recentered_soma, axis=1)
soma_max_radius = radius.max()
def is_dangling(neurite):
'''Is the neurite dangling ?'''
starting_point = neurite.points[1][COLS.XYZ]
if np.linalg.norm(starting_point - soma_center) - soma_max_radius <= 12.:
return False
if neurite.type != NeuriteType.axon:
return True
all_points = list(chain.from_iterable(n.points[1:]
for n in iter_neurites(neurite)
if n.type != NeuriteType.axon))
res = [np.linalg.norm(starting_point - p[COLS.XYZ]) >= 2 * p[COLS.R] + 2
for p in all_points]
return all(res)
bad_ids = [(n.root_node.id, [n.root_node.points[1]])
for n in iter_neurites(neuron) if is_dangling(n)]
return CheckResult(len(bad_ids) == 0, bad_ids) | [
"def",
"has_no_dangling_branch",
"(",
"neuron",
")",
":",
"soma_center",
"=",
"neuron",
".",
"soma",
".",
"points",
"[",
":",
",",
"COLS",
".",
"XYZ",
"]",
".",
"mean",
"(",
"axis",
"=",
"0",
")",
"recentered_soma",
"=",
"neuron",
".",
"soma",
".",
"points",
"[",
":",
",",
"COLS",
".",
"XYZ",
"]",
"-",
"soma_center",
"radius",
"=",
"np",
".",
"linalg",
".",
"norm",
"(",
"recentered_soma",
",",
"axis",
"=",
"1",
")",
"soma_max_radius",
"=",
"radius",
".",
"max",
"(",
")",
"def",
"is_dangling",
"(",
"neurite",
")",
":",
"'''Is the neurite dangling ?'''",
"starting_point",
"=",
"neurite",
".",
"points",
"[",
"1",
"]",
"[",
"COLS",
".",
"XYZ",
"]",
"if",
"np",
".",
"linalg",
".",
"norm",
"(",
"starting_point",
"-",
"soma_center",
")",
"-",
"soma_max_radius",
"<=",
"12.",
":",
"return",
"False",
"if",
"neurite",
".",
"type",
"!=",
"NeuriteType",
".",
"axon",
":",
"return",
"True",
"all_points",
"=",
"list",
"(",
"chain",
".",
"from_iterable",
"(",
"n",
".",
"points",
"[",
"1",
":",
"]",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurite",
")",
"if",
"n",
".",
"type",
"!=",
"NeuriteType",
".",
"axon",
")",
")",
"res",
"=",
"[",
"np",
".",
"linalg",
".",
"norm",
"(",
"starting_point",
"-",
"p",
"[",
"COLS",
".",
"XYZ",
"]",
")",
">=",
"2",
"*",
"p",
"[",
"COLS",
".",
"R",
"]",
"+",
"2",
"for",
"p",
"in",
"all_points",
"]",
"return",
"all",
"(",
"res",
")",
"bad_ids",
"=",
"[",
"(",
"n",
".",
"root_node",
".",
"id",
",",
"[",
"n",
".",
"root_node",
".",
"points",
"[",
"1",
"]",
"]",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neuron",
")",
"if",
"is_dangling",
"(",
"n",
")",
"]",
"return",
"CheckResult",
"(",
"len",
"(",
"bad_ids",
")",
"==",
"0",
",",
"bad_ids",
")"
] | Check if the neuron has dangling neurites | [
"Check",
"if",
"the",
"neuron",
"has",
"dangling",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L269-L295 |
2,610 | BlueBrain/NeuroM | neurom/check/neuron_checks.py | has_no_narrow_neurite_section | def has_no_narrow_neurite_section(neuron,
neurite_filter,
radius_threshold=0.05,
considered_section_min_length=50):
'''Check if the neuron has dendrites with narrow sections
Arguments:
neuron(Neuron): The neuron object to test
neurite_filter(callable): filter the neurites by this callable
radius_threshold(float): radii below this are considered narro
considered_section_min_length(float): sections with length below
this are not taken into account
Returns:
CheckResult with result. result.info contains the narrow section ids and their
first point
'''
considered_sections = (sec for sec in iter_sections(neuron, neurite_filter=neurite_filter)
if sec.length > considered_section_min_length)
def narrow_section(section):
'''Select narrow sections'''
return section.points[:, COLS.R].mean() < radius_threshold
bad_ids = [(section.id, section.points[1])
for section in considered_sections if narrow_section(section)]
return CheckResult(len(bad_ids) == 0, bad_ids) | python | def has_no_narrow_neurite_section(neuron,
neurite_filter,
radius_threshold=0.05,
considered_section_min_length=50):
'''Check if the neuron has dendrites with narrow sections
Arguments:
neuron(Neuron): The neuron object to test
neurite_filter(callable): filter the neurites by this callable
radius_threshold(float): radii below this are considered narro
considered_section_min_length(float): sections with length below
this are not taken into account
Returns:
CheckResult with result. result.info contains the narrow section ids and their
first point
'''
considered_sections = (sec for sec in iter_sections(neuron, neurite_filter=neurite_filter)
if sec.length > considered_section_min_length)
def narrow_section(section):
'''Select narrow sections'''
return section.points[:, COLS.R].mean() < radius_threshold
bad_ids = [(section.id, section.points[1])
for section in considered_sections if narrow_section(section)]
return CheckResult(len(bad_ids) == 0, bad_ids) | [
"def",
"has_no_narrow_neurite_section",
"(",
"neuron",
",",
"neurite_filter",
",",
"radius_threshold",
"=",
"0.05",
",",
"considered_section_min_length",
"=",
"50",
")",
":",
"considered_sections",
"=",
"(",
"sec",
"for",
"sec",
"in",
"iter_sections",
"(",
"neuron",
",",
"neurite_filter",
"=",
"neurite_filter",
")",
"if",
"sec",
".",
"length",
">",
"considered_section_min_length",
")",
"def",
"narrow_section",
"(",
"section",
")",
":",
"'''Select narrow sections'''",
"return",
"section",
".",
"points",
"[",
":",
",",
"COLS",
".",
"R",
"]",
".",
"mean",
"(",
")",
"<",
"radius_threshold",
"bad_ids",
"=",
"[",
"(",
"section",
".",
"id",
",",
"section",
".",
"points",
"[",
"1",
"]",
")",
"for",
"section",
"in",
"considered_sections",
"if",
"narrow_section",
"(",
"section",
")",
"]",
"return",
"CheckResult",
"(",
"len",
"(",
"bad_ids",
")",
"==",
"0",
",",
"bad_ids",
")"
] | Check if the neuron has dendrites with narrow sections
Arguments:
neuron(Neuron): The neuron object to test
neurite_filter(callable): filter the neurites by this callable
radius_threshold(float): radii below this are considered narro
considered_section_min_length(float): sections with length below
this are not taken into account
Returns:
CheckResult with result. result.info contains the narrow section ids and their
first point | [
"Check",
"if",
"the",
"neuron",
"has",
"dendrites",
"with",
"narrow",
"sections"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/neuron_checks.py#L298-L325 |
2,611 | BlueBrain/NeuroM | examples/synthesis_json.py | transform_header | def transform_header(mtype_name):
'''Add header to json output to wrap around distribution data.
'''
head_dict = OrderedDict()
head_dict["m-type"] = mtype_name
head_dict["components"] = defaultdict(OrderedDict)
return head_dict | python | def transform_header(mtype_name):
'''Add header to json output to wrap around distribution data.
'''
head_dict = OrderedDict()
head_dict["m-type"] = mtype_name
head_dict["components"] = defaultdict(OrderedDict)
return head_dict | [
"def",
"transform_header",
"(",
"mtype_name",
")",
":",
"head_dict",
"=",
"OrderedDict",
"(",
")",
"head_dict",
"[",
"\"m-type\"",
"]",
"=",
"mtype_name",
"head_dict",
"[",
"\"components\"",
"]",
"=",
"defaultdict",
"(",
"OrderedDict",
")",
"return",
"head_dict"
] | Add header to json output to wrap around distribution data. | [
"Add",
"header",
"to",
"json",
"output",
"to",
"wrap",
"around",
"distribution",
"data",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/synthesis_json.py#L92-L100 |
2,612 | BlueBrain/NeuroM | neurom/view/plotly.py | draw | def draw(obj, plane='3d', inline=False, **kwargs):
'''Draw the morphology using in the given plane
plane (str): a string representing the 2D plane (example: 'xy')
or '3d', '3D' for a 3D view
inline (bool): must be set to True for interactive ipython notebook plotting
'''
if plane.lower() == '3d':
return _plot_neuron3d(obj, inline, **kwargs)
return _plot_neuron(obj, plane, inline, **kwargs) | python | def draw(obj, plane='3d', inline=False, **kwargs):
'''Draw the morphology using in the given plane
plane (str): a string representing the 2D plane (example: 'xy')
or '3d', '3D' for a 3D view
inline (bool): must be set to True for interactive ipython notebook plotting
'''
if plane.lower() == '3d':
return _plot_neuron3d(obj, inline, **kwargs)
return _plot_neuron(obj, plane, inline, **kwargs) | [
"def",
"draw",
"(",
"obj",
",",
"plane",
"=",
"'3d'",
",",
"inline",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"plane",
".",
"lower",
"(",
")",
"==",
"'3d'",
":",
"return",
"_plot_neuron3d",
"(",
"obj",
",",
"inline",
",",
"*",
"*",
"kwargs",
")",
"return",
"_plot_neuron",
"(",
"obj",
",",
"plane",
",",
"inline",
",",
"*",
"*",
"kwargs",
")"
] | Draw the morphology using in the given plane
plane (str): a string representing the 2D plane (example: 'xy')
or '3d', '3D' for a 3D view
inline (bool): must be set to True for interactive ipython notebook plotting | [
"Draw",
"the",
"morphology",
"using",
"in",
"the",
"given",
"plane"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/plotly.py#L21-L31 |
2,613 | BlueBrain/NeuroM | neurom/view/plotly.py | _make_trace | def _make_trace(neuron, plane):
'''Create the trace to be plotted'''
for neurite in iter_neurites(neuron):
segments = list(iter_segments(neurite))
segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ]) for s in segments]
coords = dict(x=list(chain.from_iterable((p1[0], p2[0], None) for p1, p2 in segs)),
y=list(chain.from_iterable((p1[1], p2[1], None) for p1, p2 in segs)),
z=list(chain.from_iterable((p1[2], p2[2], None) for p1, p2 in segs)))
color = TREE_COLOR.get(neurite.root_node.type, 'black')
if plane.lower() == '3d':
plot_fun = go.Scatter3d
else:
plot_fun = go.Scatter
coords = dict(x=coords[plane[0]], y=coords[plane[1]])
yield plot_fun(
line=dict(color=color, width=2),
mode='lines',
**coords
) | python | def _make_trace(neuron, plane):
'''Create the trace to be plotted'''
for neurite in iter_neurites(neuron):
segments = list(iter_segments(neurite))
segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ]) for s in segments]
coords = dict(x=list(chain.from_iterable((p1[0], p2[0], None) for p1, p2 in segs)),
y=list(chain.from_iterable((p1[1], p2[1], None) for p1, p2 in segs)),
z=list(chain.from_iterable((p1[2], p2[2], None) for p1, p2 in segs)))
color = TREE_COLOR.get(neurite.root_node.type, 'black')
if plane.lower() == '3d':
plot_fun = go.Scatter3d
else:
plot_fun = go.Scatter
coords = dict(x=coords[plane[0]], y=coords[plane[1]])
yield plot_fun(
line=dict(color=color, width=2),
mode='lines',
**coords
) | [
"def",
"_make_trace",
"(",
"neuron",
",",
"plane",
")",
":",
"for",
"neurite",
"in",
"iter_neurites",
"(",
"neuron",
")",
":",
"segments",
"=",
"list",
"(",
"iter_segments",
"(",
"neurite",
")",
")",
"segs",
"=",
"[",
"(",
"s",
"[",
"0",
"]",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"s",
"[",
"1",
"]",
"[",
"COLS",
".",
"XYZ",
"]",
")",
"for",
"s",
"in",
"segments",
"]",
"coords",
"=",
"dict",
"(",
"x",
"=",
"list",
"(",
"chain",
".",
"from_iterable",
"(",
"(",
"p1",
"[",
"0",
"]",
",",
"p2",
"[",
"0",
"]",
",",
"None",
")",
"for",
"p1",
",",
"p2",
"in",
"segs",
")",
")",
",",
"y",
"=",
"list",
"(",
"chain",
".",
"from_iterable",
"(",
"(",
"p1",
"[",
"1",
"]",
",",
"p2",
"[",
"1",
"]",
",",
"None",
")",
"for",
"p1",
",",
"p2",
"in",
"segs",
")",
")",
",",
"z",
"=",
"list",
"(",
"chain",
".",
"from_iterable",
"(",
"(",
"p1",
"[",
"2",
"]",
",",
"p2",
"[",
"2",
"]",
",",
"None",
")",
"for",
"p1",
",",
"p2",
"in",
"segs",
")",
")",
")",
"color",
"=",
"TREE_COLOR",
".",
"get",
"(",
"neurite",
".",
"root_node",
".",
"type",
",",
"'black'",
")",
"if",
"plane",
".",
"lower",
"(",
")",
"==",
"'3d'",
":",
"plot_fun",
"=",
"go",
".",
"Scatter3d",
"else",
":",
"plot_fun",
"=",
"go",
".",
"Scatter",
"coords",
"=",
"dict",
"(",
"x",
"=",
"coords",
"[",
"plane",
"[",
"0",
"]",
"]",
",",
"y",
"=",
"coords",
"[",
"plane",
"[",
"1",
"]",
"]",
")",
"yield",
"plot_fun",
"(",
"line",
"=",
"dict",
"(",
"color",
"=",
"color",
",",
"width",
"=",
"2",
")",
",",
"mode",
"=",
"'lines'",
",",
"*",
"*",
"coords",
")"
] | Create the trace to be plotted | [
"Create",
"the",
"trace",
"to",
"be",
"plotted"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/plotly.py#L46-L67 |
2,614 | BlueBrain/NeuroM | neurom/view/plotly.py | get_figure | def get_figure(neuron, plane, title):
'''Returns the plotly figure containing the neuron'''
data = list(_make_trace(neuron, plane))
axis = dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
)
if plane != '3d':
soma_2d = [
# filled circle
{
'type': 'circle',
'xref': 'x',
'yref': 'y',
'fillcolor': 'rgba(50, 171, 96, 0.7)',
'x0': neuron.soma.center[0] - neuron.soma.radius,
'y0': neuron.soma.center[1] - neuron.soma.radius,
'x1': neuron.soma.center[0] + neuron.soma.radius,
'y1': neuron.soma.center[1] + neuron.soma.radius,
'line': {
'color': 'rgba(50, 171, 96, 1)',
},
},
]
else:
soma_2d = []
theta = np.linspace(0, 2 * np.pi, 100)
phi = np.linspace(0, np.pi, 100)
z = np.outer(np.ones(100), np.cos(phi)) + neuron.soma.center[2]
r = neuron.soma.radius
data.append(
go.Surface(
x=(np.outer(np.cos(theta), np.sin(phi)) + neuron.soma.center[0]) * r,
y=(np.outer(np.sin(theta), np.sin(phi)) + neuron.soma.center[1]) * r,
z=z * r,
cauto=False,
surfacecolor=['black'] * len(z),
showscale=False,
)
)
layout = dict(
autosize=True,
title=title,
scene=dict( # This is used for 3D plots
xaxis=axis, yaxis=axis, zaxis=axis,
camera=dict(up=dict(x=0, y=0, z=1), eye=dict(x=-1.7428, y=1.0707, z=0.7100,)),
aspectmode='data'
),
yaxis=dict(scaleanchor="x"), # This is used for 2D plots
shapes=soma_2d,
)
res = dict(data=data, layout=layout)
return res | python | def get_figure(neuron, plane, title):
'''Returns the plotly figure containing the neuron'''
data = list(_make_trace(neuron, plane))
axis = dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
)
if plane != '3d':
soma_2d = [
# filled circle
{
'type': 'circle',
'xref': 'x',
'yref': 'y',
'fillcolor': 'rgba(50, 171, 96, 0.7)',
'x0': neuron.soma.center[0] - neuron.soma.radius,
'y0': neuron.soma.center[1] - neuron.soma.radius,
'x1': neuron.soma.center[0] + neuron.soma.radius,
'y1': neuron.soma.center[1] + neuron.soma.radius,
'line': {
'color': 'rgba(50, 171, 96, 1)',
},
},
]
else:
soma_2d = []
theta = np.linspace(0, 2 * np.pi, 100)
phi = np.linspace(0, np.pi, 100)
z = np.outer(np.ones(100), np.cos(phi)) + neuron.soma.center[2]
r = neuron.soma.radius
data.append(
go.Surface(
x=(np.outer(np.cos(theta), np.sin(phi)) + neuron.soma.center[0]) * r,
y=(np.outer(np.sin(theta), np.sin(phi)) + neuron.soma.center[1]) * r,
z=z * r,
cauto=False,
surfacecolor=['black'] * len(z),
showscale=False,
)
)
layout = dict(
autosize=True,
title=title,
scene=dict( # This is used for 3D plots
xaxis=axis, yaxis=axis, zaxis=axis,
camera=dict(up=dict(x=0, y=0, z=1), eye=dict(x=-1.7428, y=1.0707, z=0.7100,)),
aspectmode='data'
),
yaxis=dict(scaleanchor="x"), # This is used for 2D plots
shapes=soma_2d,
)
res = dict(data=data, layout=layout)
return res | [
"def",
"get_figure",
"(",
"neuron",
",",
"plane",
",",
"title",
")",
":",
"data",
"=",
"list",
"(",
"_make_trace",
"(",
"neuron",
",",
"plane",
")",
")",
"axis",
"=",
"dict",
"(",
"gridcolor",
"=",
"'rgb(255, 255, 255)'",
",",
"zerolinecolor",
"=",
"'rgb(255, 255, 255)'",
",",
"showbackground",
"=",
"True",
",",
"backgroundcolor",
"=",
"'rgb(230, 230,230)'",
")",
"if",
"plane",
"!=",
"'3d'",
":",
"soma_2d",
"=",
"[",
"# filled circle",
"{",
"'type'",
":",
"'circle'",
",",
"'xref'",
":",
"'x'",
",",
"'yref'",
":",
"'y'",
",",
"'fillcolor'",
":",
"'rgba(50, 171, 96, 0.7)'",
",",
"'x0'",
":",
"neuron",
".",
"soma",
".",
"center",
"[",
"0",
"]",
"-",
"neuron",
".",
"soma",
".",
"radius",
",",
"'y0'",
":",
"neuron",
".",
"soma",
".",
"center",
"[",
"1",
"]",
"-",
"neuron",
".",
"soma",
".",
"radius",
",",
"'x1'",
":",
"neuron",
".",
"soma",
".",
"center",
"[",
"0",
"]",
"+",
"neuron",
".",
"soma",
".",
"radius",
",",
"'y1'",
":",
"neuron",
".",
"soma",
".",
"center",
"[",
"1",
"]",
"+",
"neuron",
".",
"soma",
".",
"radius",
",",
"'line'",
":",
"{",
"'color'",
":",
"'rgba(50, 171, 96, 1)'",
",",
"}",
",",
"}",
",",
"]",
"else",
":",
"soma_2d",
"=",
"[",
"]",
"theta",
"=",
"np",
".",
"linspace",
"(",
"0",
",",
"2",
"*",
"np",
".",
"pi",
",",
"100",
")",
"phi",
"=",
"np",
".",
"linspace",
"(",
"0",
",",
"np",
".",
"pi",
",",
"100",
")",
"z",
"=",
"np",
".",
"outer",
"(",
"np",
".",
"ones",
"(",
"100",
")",
",",
"np",
".",
"cos",
"(",
"phi",
")",
")",
"+",
"neuron",
".",
"soma",
".",
"center",
"[",
"2",
"]",
"r",
"=",
"neuron",
".",
"soma",
".",
"radius",
"data",
".",
"append",
"(",
"go",
".",
"Surface",
"(",
"x",
"=",
"(",
"np",
".",
"outer",
"(",
"np",
".",
"cos",
"(",
"theta",
")",
",",
"np",
".",
"sin",
"(",
"phi",
")",
")",
"+",
"neuron",
".",
"soma",
".",
"center",
"[",
"0",
"]",
")",
"*",
"r",
",",
"y",
"=",
"(",
"np",
".",
"outer",
"(",
"np",
".",
"sin",
"(",
"theta",
")",
",",
"np",
".",
"sin",
"(",
"phi",
")",
")",
"+",
"neuron",
".",
"soma",
".",
"center",
"[",
"1",
"]",
")",
"*",
"r",
",",
"z",
"=",
"z",
"*",
"r",
",",
"cauto",
"=",
"False",
",",
"surfacecolor",
"=",
"[",
"'black'",
"]",
"*",
"len",
"(",
"z",
")",
",",
"showscale",
"=",
"False",
",",
")",
")",
"layout",
"=",
"dict",
"(",
"autosize",
"=",
"True",
",",
"title",
"=",
"title",
",",
"scene",
"=",
"dict",
"(",
"# This is used for 3D plots",
"xaxis",
"=",
"axis",
",",
"yaxis",
"=",
"axis",
",",
"zaxis",
"=",
"axis",
",",
"camera",
"=",
"dict",
"(",
"up",
"=",
"dict",
"(",
"x",
"=",
"0",
",",
"y",
"=",
"0",
",",
"z",
"=",
"1",
")",
",",
"eye",
"=",
"dict",
"(",
"x",
"=",
"-",
"1.7428",
",",
"y",
"=",
"1.0707",
",",
"z",
"=",
"0.7100",
",",
")",
")",
",",
"aspectmode",
"=",
"'data'",
")",
",",
"yaxis",
"=",
"dict",
"(",
"scaleanchor",
"=",
"\"x\"",
")",
",",
"# This is used for 2D plots",
"shapes",
"=",
"soma_2d",
",",
")",
"res",
"=",
"dict",
"(",
"data",
"=",
"data",
",",
"layout",
"=",
"layout",
")",
"return",
"res"
] | Returns the plotly figure containing the neuron | [
"Returns",
"the",
"plotly",
"figure",
"containing",
"the",
"neuron"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/plotly.py#L70-L129 |
2,615 | BlueBrain/NeuroM | neurom/geom/transform.py | rotate | def rotate(obj, axis, angle, origin=None):
'''
Rotation around unit vector following the right hand rule
Parameters:
obj : obj to be rotated (e.g. neurite, neuron).
Must implement a transform method.
axis : unit vector for the axis of rotation
angle : rotation angle in rads
Returns:
A copy of the object with the applied translation.
'''
R = _rodrigues_to_dcm(axis, angle)
try:
return obj.transform(PivotRotation(R, origin))
except AttributeError:
raise NotImplementedError | python | def rotate(obj, axis, angle, origin=None):
'''
Rotation around unit vector following the right hand rule
Parameters:
obj : obj to be rotated (e.g. neurite, neuron).
Must implement a transform method.
axis : unit vector for the axis of rotation
angle : rotation angle in rads
Returns:
A copy of the object with the applied translation.
'''
R = _rodrigues_to_dcm(axis, angle)
try:
return obj.transform(PivotRotation(R, origin))
except AttributeError:
raise NotImplementedError | [
"def",
"rotate",
"(",
"obj",
",",
"axis",
",",
"angle",
",",
"origin",
"=",
"None",
")",
":",
"R",
"=",
"_rodrigues_to_dcm",
"(",
"axis",
",",
"angle",
")",
"try",
":",
"return",
"obj",
".",
"transform",
"(",
"PivotRotation",
"(",
"R",
",",
"origin",
")",
")",
"except",
"AttributeError",
":",
"raise",
"NotImplementedError"
] | Rotation around unit vector following the right hand rule
Parameters:
obj : obj to be rotated (e.g. neurite, neuron).
Must implement a transform method.
axis : unit vector for the axis of rotation
angle : rotation angle in rads
Returns:
A copy of the object with the applied translation. | [
"Rotation",
"around",
"unit",
"vector",
"following",
"the",
"right",
"hand",
"rule"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/geom/transform.py#L128-L146 |
2,616 | BlueBrain/NeuroM | neurom/geom/transform.py | _sin | def _sin(x):
'''sine with case for pi multiples'''
return 0. if np.isclose(np.mod(x, np.pi), 0.) else np.sin(x) | python | def _sin(x):
'''sine with case for pi multiples'''
return 0. if np.isclose(np.mod(x, np.pi), 0.) else np.sin(x) | [
"def",
"_sin",
"(",
"x",
")",
":",
"return",
"0.",
"if",
"np",
".",
"isclose",
"(",
"np",
".",
"mod",
"(",
"x",
",",
"np",
".",
"pi",
")",
",",
"0.",
")",
"else",
"np",
".",
"sin",
"(",
"x",
")"
] | sine with case for pi multiples | [
"sine",
"with",
"case",
"for",
"pi",
"multiples"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/geom/transform.py#L149-L151 |
2,617 | BlueBrain/NeuroM | neurom/geom/transform.py | _rodrigues_to_dcm | def _rodrigues_to_dcm(axis, angle):
'''
Generates transformation matrix from unit vector
and rotation angle. The rotation is applied in the direction
of the axis which is a unit vector following the right hand rule.
Inputs :
axis : unit vector of the direction of the rotation
angle : angle of rotation in rads
Returns : 3x3 Rotation matrix
'''
ux, uy, uz = axis / np.linalg.norm(axis)
uxx = ux * ux
uyy = uy * uy
uzz = uz * uz
uxy = ux * uy
uxz = ux * uz
uyz = uy * uz
sn = _sin(angle)
cs = _sin(np.pi / 2. - angle)
cs1 = 1. - cs
R = np.zeros([3, 3])
R[0, 0] = cs + uxx * cs1
R[0, 1] = uxy * cs1 - uz * sn
R[0, 2] = uxz * cs1 + uy * sn
R[1, 0] = uxy * cs1 + uz * sn
R[1, 1] = cs + uyy * cs1
R[1, 2] = uyz * cs1 - ux * sn
R[2, 0] = uxz * cs1 - uy * sn
R[2, 1] = uyz * cs1 + ux * sn
R[2, 2] = cs + uzz * cs1
return R | python | def _rodrigues_to_dcm(axis, angle):
'''
Generates transformation matrix from unit vector
and rotation angle. The rotation is applied in the direction
of the axis which is a unit vector following the right hand rule.
Inputs :
axis : unit vector of the direction of the rotation
angle : angle of rotation in rads
Returns : 3x3 Rotation matrix
'''
ux, uy, uz = axis / np.linalg.norm(axis)
uxx = ux * ux
uyy = uy * uy
uzz = uz * uz
uxy = ux * uy
uxz = ux * uz
uyz = uy * uz
sn = _sin(angle)
cs = _sin(np.pi / 2. - angle)
cs1 = 1. - cs
R = np.zeros([3, 3])
R[0, 0] = cs + uxx * cs1
R[0, 1] = uxy * cs1 - uz * sn
R[0, 2] = uxz * cs1 + uy * sn
R[1, 0] = uxy * cs1 + uz * sn
R[1, 1] = cs + uyy * cs1
R[1, 2] = uyz * cs1 - ux * sn
R[2, 0] = uxz * cs1 - uy * sn
R[2, 1] = uyz * cs1 + ux * sn
R[2, 2] = cs + uzz * cs1
return R | [
"def",
"_rodrigues_to_dcm",
"(",
"axis",
",",
"angle",
")",
":",
"ux",
",",
"uy",
",",
"uz",
"=",
"axis",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"axis",
")",
"uxx",
"=",
"ux",
"*",
"ux",
"uyy",
"=",
"uy",
"*",
"uy",
"uzz",
"=",
"uz",
"*",
"uz",
"uxy",
"=",
"ux",
"*",
"uy",
"uxz",
"=",
"ux",
"*",
"uz",
"uyz",
"=",
"uy",
"*",
"uz",
"sn",
"=",
"_sin",
"(",
"angle",
")",
"cs",
"=",
"_sin",
"(",
"np",
".",
"pi",
"/",
"2.",
"-",
"angle",
")",
"cs1",
"=",
"1.",
"-",
"cs",
"R",
"=",
"np",
".",
"zeros",
"(",
"[",
"3",
",",
"3",
"]",
")",
"R",
"[",
"0",
",",
"0",
"]",
"=",
"cs",
"+",
"uxx",
"*",
"cs1",
"R",
"[",
"0",
",",
"1",
"]",
"=",
"uxy",
"*",
"cs1",
"-",
"uz",
"*",
"sn",
"R",
"[",
"0",
",",
"2",
"]",
"=",
"uxz",
"*",
"cs1",
"+",
"uy",
"*",
"sn",
"R",
"[",
"1",
",",
"0",
"]",
"=",
"uxy",
"*",
"cs1",
"+",
"uz",
"*",
"sn",
"R",
"[",
"1",
",",
"1",
"]",
"=",
"cs",
"+",
"uyy",
"*",
"cs1",
"R",
"[",
"1",
",",
"2",
"]",
"=",
"uyz",
"*",
"cs1",
"-",
"ux",
"*",
"sn",
"R",
"[",
"2",
",",
"0",
"]",
"=",
"uxz",
"*",
"cs1",
"-",
"uy",
"*",
"sn",
"R",
"[",
"2",
",",
"1",
"]",
"=",
"uyz",
"*",
"cs1",
"+",
"ux",
"*",
"sn",
"R",
"[",
"2",
",",
"2",
"]",
"=",
"cs",
"+",
"uzz",
"*",
"cs1",
"return",
"R"
] | Generates transformation matrix from unit vector
and rotation angle. The rotation is applied in the direction
of the axis which is a unit vector following the right hand rule.
Inputs :
axis : unit vector of the direction of the rotation
angle : angle of rotation in rads
Returns : 3x3 Rotation matrix | [
"Generates",
"transformation",
"matrix",
"from",
"unit",
"vector",
"and",
"rotation",
"angle",
".",
"The",
"rotation",
"is",
"applied",
"in",
"the",
"direction",
"of",
"the",
"axis",
"which",
"is",
"a",
"unit",
"vector",
"following",
"the",
"right",
"hand",
"rule",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/geom/transform.py#L154-L194 |
2,618 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | total_length | def total_length(nrn_pop, neurite_type=NeuriteType.all):
'''Get the total length of all sections in the group of neurons or neurites'''
nrns = _neuronfunc.neuron_population(nrn_pop)
return list(sum(section_lengths(n, neurite_type=neurite_type)) for n in nrns) | python | def total_length(nrn_pop, neurite_type=NeuriteType.all):
'''Get the total length of all sections in the group of neurons or neurites'''
nrns = _neuronfunc.neuron_population(nrn_pop)
return list(sum(section_lengths(n, neurite_type=neurite_type)) for n in nrns) | [
"def",
"total_length",
"(",
"nrn_pop",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"nrns",
"=",
"_neuronfunc",
".",
"neuron_population",
"(",
"nrn_pop",
")",
"return",
"list",
"(",
"sum",
"(",
"section_lengths",
"(",
"n",
",",
"neurite_type",
"=",
"neurite_type",
")",
")",
"for",
"n",
"in",
"nrns",
")"
] | Get the total length of all sections in the group of neurons or neurites | [
"Get",
"the",
"total",
"length",
"of",
"all",
"sections",
"in",
"the",
"group",
"of",
"neurons",
"or",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L45-L48 |
2,619 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | n_segments | def n_segments(neurites, neurite_type=NeuriteType.all):
'''Number of segments in a collection of neurites'''
return sum(len(s.points) - 1
for s in iter_sections(neurites, neurite_filter=is_type(neurite_type))) | python | def n_segments(neurites, neurite_type=NeuriteType.all):
'''Number of segments in a collection of neurites'''
return sum(len(s.points) - 1
for s in iter_sections(neurites, neurite_filter=is_type(neurite_type))) | [
"def",
"n_segments",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"sum",
"(",
"len",
"(",
"s",
".",
"points",
")",
"-",
"1",
"for",
"s",
"in",
"iter_sections",
"(",
"neurites",
",",
"neurite_filter",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Number of segments in a collection of neurites | [
"Number",
"of",
"segments",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L51-L54 |
2,620 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | n_neurites | def n_neurites(neurites, neurite_type=NeuriteType.all):
'''Number of neurites in a collection of neurites'''
return sum(1 for _ in iter_neurites(neurites, filt=is_type(neurite_type))) | python | def n_neurites(neurites, neurite_type=NeuriteType.all):
'''Number of neurites in a collection of neurites'''
return sum(1 for _ in iter_neurites(neurites, filt=is_type(neurite_type))) | [
"def",
"n_neurites",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"sum",
"(",
"1",
"for",
"_",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Number of neurites in a collection of neurites | [
"Number",
"of",
"neurites",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L57-L59 |
2,621 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | n_sections | def n_sections(neurites, neurite_type=NeuriteType.all, iterator_type=Tree.ipreorder):
'''Number of sections in a collection of neurites'''
return sum(1 for _ in iter_sections(neurites,
iterator_type=iterator_type,
neurite_filter=is_type(neurite_type))) | python | def n_sections(neurites, neurite_type=NeuriteType.all, iterator_type=Tree.ipreorder):
'''Number of sections in a collection of neurites'''
return sum(1 for _ in iter_sections(neurites,
iterator_type=iterator_type,
neurite_filter=is_type(neurite_type))) | [
"def",
"n_sections",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"iterator_type",
"=",
"Tree",
".",
"ipreorder",
")",
":",
"return",
"sum",
"(",
"1",
"for",
"_",
"in",
"iter_sections",
"(",
"neurites",
",",
"iterator_type",
"=",
"iterator_type",
",",
"neurite_filter",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Number of sections in a collection of neurites | [
"Number",
"of",
"sections",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L62-L66 |
2,622 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | n_bifurcation_points | def n_bifurcation_points(neurites, neurite_type=NeuriteType.all):
'''number of bifurcation points in a collection of neurites'''
return n_sections(neurites, neurite_type=neurite_type, iterator_type=Tree.ibifurcation_point) | python | def n_bifurcation_points(neurites, neurite_type=NeuriteType.all):
'''number of bifurcation points in a collection of neurites'''
return n_sections(neurites, neurite_type=neurite_type, iterator_type=Tree.ibifurcation_point) | [
"def",
"n_bifurcation_points",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"n_sections",
"(",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"iterator_type",
"=",
"Tree",
".",
"ibifurcation_point",
")"
] | number of bifurcation points in a collection of neurites | [
"number",
"of",
"bifurcation",
"points",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L69-L71 |
2,623 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | n_forking_points | def n_forking_points(neurites, neurite_type=NeuriteType.all):
'''number of forking points in a collection of neurites'''
return n_sections(neurites, neurite_type=neurite_type, iterator_type=Tree.iforking_point) | python | def n_forking_points(neurites, neurite_type=NeuriteType.all):
'''number of forking points in a collection of neurites'''
return n_sections(neurites, neurite_type=neurite_type, iterator_type=Tree.iforking_point) | [
"def",
"n_forking_points",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"n_sections",
"(",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"iterator_type",
"=",
"Tree",
".",
"iforking_point",
")"
] | number of forking points in a collection of neurites | [
"number",
"of",
"forking",
"points",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L74-L76 |
2,624 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | n_leaves | def n_leaves(neurites, neurite_type=NeuriteType.all):
'''number of leaves points in a collection of neurites'''
return n_sections(neurites, neurite_type=neurite_type, iterator_type=Tree.ileaf) | python | def n_leaves(neurites, neurite_type=NeuriteType.all):
'''number of leaves points in a collection of neurites'''
return n_sections(neurites, neurite_type=neurite_type, iterator_type=Tree.ileaf) | [
"def",
"n_leaves",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"n_sections",
"(",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"iterator_type",
"=",
"Tree",
".",
"ileaf",
")"
] | number of leaves points in a collection of neurites | [
"number",
"of",
"leaves",
"points",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L79-L81 |
2,625 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | total_area_per_neurite | def total_area_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Surface area in a collection of neurites.
The area is defined as the sum of the area of the sections.
'''
return [neurite.area for neurite in iter_neurites(neurites, filt=is_type(neurite_type))] | python | def total_area_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Surface area in a collection of neurites.
The area is defined as the sum of the area of the sections.
'''
return [neurite.area for neurite in iter_neurites(neurites, filt=is_type(neurite_type))] | [
"def",
"total_area_per_neurite",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"[",
"neurite",
".",
"area",
"for",
"neurite",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
"]"
] | Surface area in a collection of neurites.
The area is defined as the sum of the area of the sections. | [
"Surface",
"area",
"in",
"a",
"collection",
"of",
"neurites",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L84-L89 |
2,626 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | map_sections | def map_sections(fun, neurites, neurite_type=NeuriteType.all, iterator_type=Tree.ipreorder):
'''Map `fun` to all the sections in a collection of neurites'''
return map(fun, iter_sections(neurites,
iterator_type=iterator_type,
neurite_filter=is_type(neurite_type))) | python | def map_sections(fun, neurites, neurite_type=NeuriteType.all, iterator_type=Tree.ipreorder):
'''Map `fun` to all the sections in a collection of neurites'''
return map(fun, iter_sections(neurites,
iterator_type=iterator_type,
neurite_filter=is_type(neurite_type))) | [
"def",
"map_sections",
"(",
"fun",
",",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"iterator_type",
"=",
"Tree",
".",
"ipreorder",
")",
":",
"return",
"map",
"(",
"fun",
",",
"iter_sections",
"(",
"neurites",
",",
"iterator_type",
"=",
"iterator_type",
",",
"neurite_filter",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Map `fun` to all the sections in a collection of neurites | [
"Map",
"fun",
"to",
"all",
"the",
"sections",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L92-L96 |
2,627 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_lengths | def section_lengths(neurites, neurite_type=NeuriteType.all):
'''section lengths in a collection of neurites'''
return map_sections(_section_length, neurites, neurite_type=neurite_type) | python | def section_lengths(neurites, neurite_type=NeuriteType.all):
'''section lengths in a collection of neurites'''
return map_sections(_section_length, neurites, neurite_type=neurite_type) | [
"def",
"section_lengths",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"_section_length",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] | section lengths in a collection of neurites | [
"section",
"lengths",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L104-L106 |
2,628 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_term_lengths | def section_term_lengths(neurites, neurite_type=NeuriteType.all):
'''Termination section lengths in a collection of neurites'''
return map_sections(_section_length, neurites, neurite_type=neurite_type,
iterator_type=Tree.ileaf) | python | def section_term_lengths(neurites, neurite_type=NeuriteType.all):
'''Termination section lengths in a collection of neurites'''
return map_sections(_section_length, neurites, neurite_type=neurite_type,
iterator_type=Tree.ileaf) | [
"def",
"section_term_lengths",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"_section_length",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"iterator_type",
"=",
"Tree",
".",
"ileaf",
")"
] | Termination section lengths in a collection of neurites | [
"Termination",
"section",
"lengths",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L109-L112 |
2,629 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_bif_lengths | def section_bif_lengths(neurites, neurite_type=NeuriteType.all):
'''Bifurcation section lengths in a collection of neurites'''
return map_sections(_section_length, neurites, neurite_type=neurite_type,
iterator_type=Tree.ibifurcation_point) | python | def section_bif_lengths(neurites, neurite_type=NeuriteType.all):
'''Bifurcation section lengths in a collection of neurites'''
return map_sections(_section_length, neurites, neurite_type=neurite_type,
iterator_type=Tree.ibifurcation_point) | [
"def",
"section_bif_lengths",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"_section_length",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"iterator_type",
"=",
"Tree",
".",
"ibifurcation_point",
")"
] | Bifurcation section lengths in a collection of neurites | [
"Bifurcation",
"section",
"lengths",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L115-L118 |
2,630 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_branch_orders | def section_branch_orders(neurites, neurite_type=NeuriteType.all):
'''section branch orders in a collection of neurites'''
return map_sections(sectionfunc.branch_order, neurites, neurite_type=neurite_type) | python | def section_branch_orders(neurites, neurite_type=NeuriteType.all):
'''section branch orders in a collection of neurites'''
return map_sections(sectionfunc.branch_order, neurites, neurite_type=neurite_type) | [
"def",
"section_branch_orders",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"branch_order",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] | section branch orders in a collection of neurites | [
"section",
"branch",
"orders",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L121-L123 |
2,631 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_bif_branch_orders | def section_bif_branch_orders(neurites, neurite_type=NeuriteType.all):
'''Bifurcation section branch orders in a collection of neurites'''
return map_sections(sectionfunc.branch_order, neurites, neurite_type=neurite_type,
iterator_type=Tree.ibifurcation_point) | python | def section_bif_branch_orders(neurites, neurite_type=NeuriteType.all):
'''Bifurcation section branch orders in a collection of neurites'''
return map_sections(sectionfunc.branch_order, neurites, neurite_type=neurite_type,
iterator_type=Tree.ibifurcation_point) | [
"def",
"section_bif_branch_orders",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"branch_order",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"iterator_type",
"=",
"Tree",
".",
"ibifurcation_point",
")"
] | Bifurcation section branch orders in a collection of neurites | [
"Bifurcation",
"section",
"branch",
"orders",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L126-L129 |
2,632 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_term_branch_orders | def section_term_branch_orders(neurites, neurite_type=NeuriteType.all):
'''Termination section branch orders in a collection of neurites'''
return map_sections(sectionfunc.branch_order, neurites, neurite_type=neurite_type,
iterator_type=Tree.ileaf) | python | def section_term_branch_orders(neurites, neurite_type=NeuriteType.all):
'''Termination section branch orders in a collection of neurites'''
return map_sections(sectionfunc.branch_order, neurites, neurite_type=neurite_type,
iterator_type=Tree.ileaf) | [
"def",
"section_term_branch_orders",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"branch_order",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"iterator_type",
"=",
"Tree",
".",
"ileaf",
")"
] | Termination section branch orders in a collection of neurites | [
"Termination",
"section",
"branch",
"orders",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L132-L135 |
2,633 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_path_lengths | def section_path_lengths(neurites, neurite_type=NeuriteType.all):
'''Path lengths of a collection of neurites '''
# Calculates and stores the section lengths in one pass,
# then queries the lengths in the path length iterations.
# This avoids repeatedly calculating the lengths of the
# same sections.
dist = {}
neurite_filter = is_type(neurite_type)
for s in iter_sections(neurites, neurite_filter=neurite_filter):
dist[s] = s.length
def pl2(node):
'''Calculate the path length using cached section lengths'''
return sum(dist[n] for n in node.iupstream())
return map_sections(pl2, neurites, neurite_type=neurite_type) | python | def section_path_lengths(neurites, neurite_type=NeuriteType.all):
'''Path lengths of a collection of neurites '''
# Calculates and stores the section lengths in one pass,
# then queries the lengths in the path length iterations.
# This avoids repeatedly calculating the lengths of the
# same sections.
dist = {}
neurite_filter = is_type(neurite_type)
for s in iter_sections(neurites, neurite_filter=neurite_filter):
dist[s] = s.length
def pl2(node):
'''Calculate the path length using cached section lengths'''
return sum(dist[n] for n in node.iupstream())
return map_sections(pl2, neurites, neurite_type=neurite_type) | [
"def",
"section_path_lengths",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"# Calculates and stores the section lengths in one pass,",
"# then queries the lengths in the path length iterations.",
"# This avoids repeatedly calculating the lengths of the",
"# same sections.",
"dist",
"=",
"{",
"}",
"neurite_filter",
"=",
"is_type",
"(",
"neurite_type",
")",
"for",
"s",
"in",
"iter_sections",
"(",
"neurites",
",",
"neurite_filter",
"=",
"neurite_filter",
")",
":",
"dist",
"[",
"s",
"]",
"=",
"s",
".",
"length",
"def",
"pl2",
"(",
"node",
")",
":",
"'''Calculate the path length using cached section lengths'''",
"return",
"sum",
"(",
"dist",
"[",
"n",
"]",
"for",
"n",
"in",
"node",
".",
"iupstream",
"(",
")",
")",
"return",
"map_sections",
"(",
"pl2",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] | Path lengths of a collection of neurites | [
"Path",
"lengths",
"of",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L138-L154 |
2,634 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | map_neurons | def map_neurons(fun, neurites, neurite_type):
'''Map `fun` to all the neurites in a single or collection of neurons'''
nrns = _neuronfunc.neuron_population(neurites)
return [fun(n, neurite_type=neurite_type) for n in nrns] | python | def map_neurons(fun, neurites, neurite_type):
'''Map `fun` to all the neurites in a single or collection of neurons'''
nrns = _neuronfunc.neuron_population(neurites)
return [fun(n, neurite_type=neurite_type) for n in nrns] | [
"def",
"map_neurons",
"(",
"fun",
",",
"neurites",
",",
"neurite_type",
")",
":",
"nrns",
"=",
"_neuronfunc",
".",
"neuron_population",
"(",
"neurites",
")",
"return",
"[",
"fun",
"(",
"n",
",",
"neurite_type",
"=",
"neurite_type",
")",
"for",
"n",
"in",
"nrns",
"]"
] | Map `fun` to all the neurites in a single or collection of neurons | [
"Map",
"fun",
"to",
"all",
"the",
"neurites",
"in",
"a",
"single",
"or",
"collection",
"of",
"neurons"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L157-L160 |
2,635 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | map_segments | def map_segments(func, neurites, neurite_type):
''' Map `func` to all the segments in a collection of neurites
`func` accepts a section and returns list of values corresponding to each segment.
'''
neurite_filter = is_type(neurite_type)
return [
s for ss in iter_sections(neurites, neurite_filter=neurite_filter) for s in func(ss)
] | python | def map_segments(func, neurites, neurite_type):
''' Map `func` to all the segments in a collection of neurites
`func` accepts a section and returns list of values corresponding to each segment.
'''
neurite_filter = is_type(neurite_type)
return [
s for ss in iter_sections(neurites, neurite_filter=neurite_filter) for s in func(ss)
] | [
"def",
"map_segments",
"(",
"func",
",",
"neurites",
",",
"neurite_type",
")",
":",
"neurite_filter",
"=",
"is_type",
"(",
"neurite_type",
")",
"return",
"[",
"s",
"for",
"ss",
"in",
"iter_sections",
"(",
"neurites",
",",
"neurite_filter",
"=",
"neurite_filter",
")",
"for",
"s",
"in",
"func",
"(",
"ss",
")",
"]"
] | Map `func` to all the segments in a collection of neurites
`func` accepts a section and returns list of values corresponding to each segment. | [
"Map",
"func",
"to",
"all",
"the",
"segments",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L193-L201 |
2,636 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | segment_volumes | def segment_volumes(neurites, neurite_type=NeuriteType.all):
'''Volumes of the segments in a collection of neurites'''
def _func(sec):
'''list of segment volumes of a section'''
return [morphmath.segment_volume(seg) for seg in zip(sec.points[:-1], sec.points[1:])]
return map_segments(_func, neurites, neurite_type) | python | def segment_volumes(neurites, neurite_type=NeuriteType.all):
'''Volumes of the segments in a collection of neurites'''
def _func(sec):
'''list of segment volumes of a section'''
return [morphmath.segment_volume(seg) for seg in zip(sec.points[:-1], sec.points[1:])]
return map_segments(_func, neurites, neurite_type) | [
"def",
"segment_volumes",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"def",
"_func",
"(",
"sec",
")",
":",
"'''list of segment volumes of a section'''",
"return",
"[",
"morphmath",
".",
"segment_volume",
"(",
"seg",
")",
"for",
"seg",
"in",
"zip",
"(",
"sec",
".",
"points",
"[",
":",
"-",
"1",
"]",
",",
"sec",
".",
"points",
"[",
"1",
":",
"]",
")",
"]",
"return",
"map_segments",
"(",
"_func",
",",
"neurites",
",",
"neurite_type",
")"
] | Volumes of the segments in a collection of neurites | [
"Volumes",
"of",
"the",
"segments",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L213-L219 |
2,637 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | segment_radii | def segment_radii(neurites, neurite_type=NeuriteType.all):
'''arithmetic mean of the radii of the points in segments in a collection of neurites'''
def _seg_radii(sec):
'''vectorized mean radii'''
pts = sec.points[:, COLS.R]
return np.divide(np.add(pts[:-1], pts[1:]), 2.0)
return map_segments(_seg_radii, neurites, neurite_type) | python | def segment_radii(neurites, neurite_type=NeuriteType.all):
'''arithmetic mean of the radii of the points in segments in a collection of neurites'''
def _seg_radii(sec):
'''vectorized mean radii'''
pts = sec.points[:, COLS.R]
return np.divide(np.add(pts[:-1], pts[1:]), 2.0)
return map_segments(_seg_radii, neurites, neurite_type) | [
"def",
"segment_radii",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"def",
"_seg_radii",
"(",
"sec",
")",
":",
"'''vectorized mean radii'''",
"pts",
"=",
"sec",
".",
"points",
"[",
":",
",",
"COLS",
".",
"R",
"]",
"return",
"np",
".",
"divide",
"(",
"np",
".",
"add",
"(",
"pts",
"[",
":",
"-",
"1",
"]",
",",
"pts",
"[",
"1",
":",
"]",
")",
",",
"2.0",
")",
"return",
"map_segments",
"(",
"_seg_radii",
",",
"neurites",
",",
"neurite_type",
")"
] | arithmetic mean of the radii of the points in segments in a collection of neurites | [
"arithmetic",
"mean",
"of",
"the",
"radii",
"of",
"the",
"points",
"in",
"segments",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L222-L229 |
2,638 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | segment_taper_rates | def segment_taper_rates(neurites, neurite_type=NeuriteType.all):
'''taper rates of the segments in a collection of neurites
The taper rate is defined as the absolute radii differences divided by length of the section
'''
def _seg_taper_rates(sec):
'''vectorized taper rates'''
pts = sec.points[:, COLS.XYZR]
diff = np.diff(pts, axis=0)
distance = np.linalg.norm(diff[:, COLS.XYZ], axis=1)
return np.divide(2 * np.abs(diff[:, COLS.R]), distance)
return map_segments(_seg_taper_rates, neurites, neurite_type) | python | def segment_taper_rates(neurites, neurite_type=NeuriteType.all):
'''taper rates of the segments in a collection of neurites
The taper rate is defined as the absolute radii differences divided by length of the section
'''
def _seg_taper_rates(sec):
'''vectorized taper rates'''
pts = sec.points[:, COLS.XYZR]
diff = np.diff(pts, axis=0)
distance = np.linalg.norm(diff[:, COLS.XYZ], axis=1)
return np.divide(2 * np.abs(diff[:, COLS.R]), distance)
return map_segments(_seg_taper_rates, neurites, neurite_type) | [
"def",
"segment_taper_rates",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"def",
"_seg_taper_rates",
"(",
"sec",
")",
":",
"'''vectorized taper rates'''",
"pts",
"=",
"sec",
".",
"points",
"[",
":",
",",
"COLS",
".",
"XYZR",
"]",
"diff",
"=",
"np",
".",
"diff",
"(",
"pts",
",",
"axis",
"=",
"0",
")",
"distance",
"=",
"np",
".",
"linalg",
".",
"norm",
"(",
"diff",
"[",
":",
",",
"COLS",
".",
"XYZ",
"]",
",",
"axis",
"=",
"1",
")",
"return",
"np",
".",
"divide",
"(",
"2",
"*",
"np",
".",
"abs",
"(",
"diff",
"[",
":",
",",
"COLS",
".",
"R",
"]",
")",
",",
"distance",
")",
"return",
"map_segments",
"(",
"_seg_taper_rates",
",",
"neurites",
",",
"neurite_type",
")"
] | taper rates of the segments in a collection of neurites
The taper rate is defined as the absolute radii differences divided by length of the section | [
"taper",
"rates",
"of",
"the",
"segments",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L232-L244 |
2,639 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | segment_midpoints | def segment_midpoints(neurites, neurite_type=NeuriteType.all):
'''Return a list of segment mid-points in a collection of neurites'''
def _seg_midpoint(sec):
'''Return the mid-points of segments in a section'''
pts = sec.points[:, COLS.XYZ]
return np.divide(np.add(pts[:-1], pts[1:]), 2.0)
return map_segments(_seg_midpoint, neurites, neurite_type) | python | def segment_midpoints(neurites, neurite_type=NeuriteType.all):
'''Return a list of segment mid-points in a collection of neurites'''
def _seg_midpoint(sec):
'''Return the mid-points of segments in a section'''
pts = sec.points[:, COLS.XYZ]
return np.divide(np.add(pts[:-1], pts[1:]), 2.0)
return map_segments(_seg_midpoint, neurites, neurite_type) | [
"def",
"segment_midpoints",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"def",
"_seg_midpoint",
"(",
"sec",
")",
":",
"'''Return the mid-points of segments in a section'''",
"pts",
"=",
"sec",
".",
"points",
"[",
":",
",",
"COLS",
".",
"XYZ",
"]",
"return",
"np",
".",
"divide",
"(",
"np",
".",
"add",
"(",
"pts",
"[",
":",
"-",
"1",
"]",
",",
"pts",
"[",
"1",
":",
"]",
")",
",",
"2.0",
")",
"return",
"map_segments",
"(",
"_seg_midpoint",
",",
"neurites",
",",
"neurite_type",
")"
] | Return a list of segment mid-points in a collection of neurites | [
"Return",
"a",
"list",
"of",
"segment",
"mid",
"-",
"points",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L253-L260 |
2,640 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | local_bifurcation_angles | def local_bifurcation_angles(neurites, neurite_type=NeuriteType.all):
'''Get a list of local bifurcation angles in a collection of neurites'''
return map_sections(_bifurcationfunc.local_bifurcation_angle,
neurites,
neurite_type=neurite_type,
iterator_type=Tree.ibifurcation_point) | python | def local_bifurcation_angles(neurites, neurite_type=NeuriteType.all):
'''Get a list of local bifurcation angles in a collection of neurites'''
return map_sections(_bifurcationfunc.local_bifurcation_angle,
neurites,
neurite_type=neurite_type,
iterator_type=Tree.ibifurcation_point) | [
"def",
"local_bifurcation_angles",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"_bifurcationfunc",
".",
"local_bifurcation_angle",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"iterator_type",
"=",
"Tree",
".",
"ibifurcation_point",
")"
] | Get a list of local bifurcation angles in a collection of neurites | [
"Get",
"a",
"list",
"of",
"local",
"bifurcation",
"angles",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L280-L285 |
2,641 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | remote_bifurcation_angles | def remote_bifurcation_angles(neurites, neurite_type=NeuriteType.all):
'''Get a list of remote bifurcation angles in a collection of neurites'''
return map_sections(_bifurcationfunc.remote_bifurcation_angle,
neurites,
neurite_type=neurite_type,
iterator_type=Tree.ibifurcation_point) | python | def remote_bifurcation_angles(neurites, neurite_type=NeuriteType.all):
'''Get a list of remote bifurcation angles in a collection of neurites'''
return map_sections(_bifurcationfunc.remote_bifurcation_angle,
neurites,
neurite_type=neurite_type,
iterator_type=Tree.ibifurcation_point) | [
"def",
"remote_bifurcation_angles",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"_bifurcationfunc",
".",
"remote_bifurcation_angle",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"iterator_type",
"=",
"Tree",
".",
"ibifurcation_point",
")"
] | Get a list of remote bifurcation angles in a collection of neurites | [
"Get",
"a",
"list",
"of",
"remote",
"bifurcation",
"angles",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L288-L293 |
2,642 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | bifurcation_partitions | def bifurcation_partitions(neurites, neurite_type=NeuriteType.all):
'''Partition at bifurcation points of a collection of neurites'''
return map(_bifurcationfunc.bifurcation_partition,
iter_sections(neurites,
iterator_type=Tree.ibifurcation_point,
neurite_filter=is_type(neurite_type))) | python | def bifurcation_partitions(neurites, neurite_type=NeuriteType.all):
'''Partition at bifurcation points of a collection of neurites'''
return map(_bifurcationfunc.bifurcation_partition,
iter_sections(neurites,
iterator_type=Tree.ibifurcation_point,
neurite_filter=is_type(neurite_type))) | [
"def",
"bifurcation_partitions",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map",
"(",
"_bifurcationfunc",
".",
"bifurcation_partition",
",",
"iter_sections",
"(",
"neurites",
",",
"iterator_type",
"=",
"Tree",
".",
"ibifurcation_point",
",",
"neurite_filter",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Partition at bifurcation points of a collection of neurites | [
"Partition",
"at",
"bifurcation",
"points",
"of",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L296-L301 |
2,643 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | partition_asymmetries | def partition_asymmetries(neurites, neurite_type=NeuriteType.all):
'''Partition asymmetry at bifurcation points of a collection of neurites'''
return map(_bifurcationfunc.partition_asymmetry,
iter_sections(neurites,
iterator_type=Tree.ibifurcation_point,
neurite_filter=is_type(neurite_type))) | python | def partition_asymmetries(neurites, neurite_type=NeuriteType.all):
'''Partition asymmetry at bifurcation points of a collection of neurites'''
return map(_bifurcationfunc.partition_asymmetry,
iter_sections(neurites,
iterator_type=Tree.ibifurcation_point,
neurite_filter=is_type(neurite_type))) | [
"def",
"partition_asymmetries",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map",
"(",
"_bifurcationfunc",
".",
"partition_asymmetry",
",",
"iter_sections",
"(",
"neurites",
",",
"iterator_type",
"=",
"Tree",
".",
"ibifurcation_point",
",",
"neurite_filter",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Partition asymmetry at bifurcation points of a collection of neurites | [
"Partition",
"asymmetry",
"at",
"bifurcation",
"points",
"of",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L304-L309 |
2,644 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | partition_pairs | def partition_pairs(neurites, neurite_type=NeuriteType.all):
'''Partition pairs at bifurcation points of a collection of neurites.
Partition pait is defined as the number of bifurcations at the two
daughters of the bifurcating section'''
return map(_bifurcationfunc.partition_pair,
iter_sections(neurites,
iterator_type=Tree.ibifurcation_point,
neurite_filter=is_type(neurite_type))) | python | def partition_pairs(neurites, neurite_type=NeuriteType.all):
'''Partition pairs at bifurcation points of a collection of neurites.
Partition pait is defined as the number of bifurcations at the two
daughters of the bifurcating section'''
return map(_bifurcationfunc.partition_pair,
iter_sections(neurites,
iterator_type=Tree.ibifurcation_point,
neurite_filter=is_type(neurite_type))) | [
"def",
"partition_pairs",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map",
"(",
"_bifurcationfunc",
".",
"partition_pair",
",",
"iter_sections",
"(",
"neurites",
",",
"iterator_type",
"=",
"Tree",
".",
"ibifurcation_point",
",",
"neurite_filter",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Partition pairs at bifurcation points of a collection of neurites.
Partition pait is defined as the number of bifurcations at the two
daughters of the bifurcating section | [
"Partition",
"pairs",
"at",
"bifurcation",
"points",
"of",
"a",
"collection",
"of",
"neurites",
".",
"Partition",
"pait",
"is",
"defined",
"as",
"the",
"number",
"of",
"bifurcations",
"at",
"the",
"two",
"daughters",
"of",
"the",
"bifurcating",
"section"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L312-L319 |
2,645 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_term_radial_distances | def section_term_radial_distances(neurites, neurite_type=NeuriteType.all, origin=None):
'''Get the radial distances of the termination sections for a collection of neurites'''
return section_radial_distances(neurites, neurite_type=neurite_type, origin=origin,
iterator_type=Tree.ileaf) | python | def section_term_radial_distances(neurites, neurite_type=NeuriteType.all, origin=None):
'''Get the radial distances of the termination sections for a collection of neurites'''
return section_radial_distances(neurites, neurite_type=neurite_type, origin=origin,
iterator_type=Tree.ileaf) | [
"def",
"section_term_radial_distances",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"origin",
"=",
"None",
")",
":",
"return",
"section_radial_distances",
"(",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"origin",
"=",
"origin",
",",
"iterator_type",
"=",
"Tree",
".",
"ileaf",
")"
] | Get the radial distances of the termination sections for a collection of neurites | [
"Get",
"the",
"radial",
"distances",
"of",
"the",
"termination",
"sections",
"for",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L336-L339 |
2,646 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_bif_radial_distances | def section_bif_radial_distances(neurites, neurite_type=NeuriteType.all, origin=None):
'''Get the radial distances of the bifurcation sections for a collection of neurites'''
return section_radial_distances(neurites, neurite_type=neurite_type, origin=origin,
iterator_type=Tree.ibifurcation_point) | python | def section_bif_radial_distances(neurites, neurite_type=NeuriteType.all, origin=None):
'''Get the radial distances of the bifurcation sections for a collection of neurites'''
return section_radial_distances(neurites, neurite_type=neurite_type, origin=origin,
iterator_type=Tree.ibifurcation_point) | [
"def",
"section_bif_radial_distances",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"origin",
"=",
"None",
")",
":",
"return",
"section_radial_distances",
"(",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
",",
"origin",
"=",
"origin",
",",
"iterator_type",
"=",
"Tree",
".",
"ibifurcation_point",
")"
] | Get the radial distances of the bifurcation sections for a collection of neurites | [
"Get",
"the",
"radial",
"distances",
"of",
"the",
"bifurcation",
"sections",
"for",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L342-L345 |
2,647 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | number_of_sections_per_neurite | def number_of_sections_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the number of sections per neurite in a collection of neurites'''
return list(sum(1 for _ in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type))) | python | def number_of_sections_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the number of sections per neurite in a collection of neurites'''
return list(sum(1 for _ in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type))) | [
"def",
"number_of_sections_per_neurite",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"list",
"(",
"sum",
"(",
"1",
"for",
"_",
"in",
"n",
".",
"iter_sections",
"(",
")",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Get the number of sections per neurite in a collection of neurites | [
"Get",
"the",
"number",
"of",
"sections",
"per",
"neurite",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L348-L351 |
2,648 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | total_length_per_neurite | def total_length_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the path length per neurite in a collection'''
return list(sum(s.length for s in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type))) | python | def total_length_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the path length per neurite in a collection'''
return list(sum(s.length for s in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type))) | [
"def",
"total_length_per_neurite",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"list",
"(",
"sum",
"(",
"s",
".",
"length",
"for",
"s",
"in",
"n",
".",
"iter_sections",
"(",
")",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Get the path length per neurite in a collection | [
"Get",
"the",
"path",
"length",
"per",
"neurite",
"in",
"a",
"collection"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L354-L357 |
2,649 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | terminal_path_lengths_per_neurite | def terminal_path_lengths_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the path lengths to each terminal point per neurite in a collection'''
return list(sectionfunc.section_path_length(s)
for n in iter_neurites(neurites, filt=is_type(neurite_type))
for s in iter_sections(n, iterator_type=Tree.ileaf)) | python | def terminal_path_lengths_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the path lengths to each terminal point per neurite in a collection'''
return list(sectionfunc.section_path_length(s)
for n in iter_neurites(neurites, filt=is_type(neurite_type))
for s in iter_sections(n, iterator_type=Tree.ileaf)) | [
"def",
"terminal_path_lengths_per_neurite",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"list",
"(",
"sectionfunc",
".",
"section_path_length",
"(",
"s",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
"for",
"s",
"in",
"iter_sections",
"(",
"n",
",",
"iterator_type",
"=",
"Tree",
".",
"ileaf",
")",
")"
] | Get the path lengths to each terminal point per neurite in a collection | [
"Get",
"the",
"path",
"lengths",
"to",
"each",
"terminal",
"point",
"per",
"neurite",
"in",
"a",
"collection"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L360-L364 |
2,650 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | total_volume_per_neurite | def total_volume_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the volume per neurite in a collection'''
return list(sum(s.volume for s in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type))) | python | def total_volume_per_neurite(neurites, neurite_type=NeuriteType.all):
'''Get the volume per neurite in a collection'''
return list(sum(s.volume for s in n.iter_sections())
for n in iter_neurites(neurites, filt=is_type(neurite_type))) | [
"def",
"total_volume_per_neurite",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"list",
"(",
"sum",
"(",
"s",
".",
"volume",
"for",
"s",
"in",
"n",
".",
"iter_sections",
"(",
")",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Get the volume per neurite in a collection | [
"Get",
"the",
"volume",
"per",
"neurite",
"in",
"a",
"collection"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L367-L370 |
2,651 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | neurite_volume_density | def neurite_volume_density(neurites, neurite_type=NeuriteType.all):
'''Get the volume density per neurite
The volume density is defined as the ratio of the neurite volume and
the volume of the neurite's enclosing convex hull
'''
def vol_density(neurite):
'''volume density of a single neurite'''
return neurite.volume / convex_hull(neurite).volume
return list(vol_density(n)
for n in iter_neurites(neurites, filt=is_type(neurite_type))) | python | def neurite_volume_density(neurites, neurite_type=NeuriteType.all):
'''Get the volume density per neurite
The volume density is defined as the ratio of the neurite volume and
the volume of the neurite's enclosing convex hull
'''
def vol_density(neurite):
'''volume density of a single neurite'''
return neurite.volume / convex_hull(neurite).volume
return list(vol_density(n)
for n in iter_neurites(neurites, filt=is_type(neurite_type))) | [
"def",
"neurite_volume_density",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"def",
"vol_density",
"(",
"neurite",
")",
":",
"'''volume density of a single neurite'''",
"return",
"neurite",
".",
"volume",
"/",
"convex_hull",
"(",
"neurite",
")",
".",
"volume",
"return",
"list",
"(",
"vol_density",
"(",
"n",
")",
"for",
"n",
"in",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Get the volume density per neurite
The volume density is defined as the ratio of the neurite volume and
the volume of the neurite's enclosing convex hull | [
"Get",
"the",
"volume",
"density",
"per",
"neurite"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L373-L384 |
2,652 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_volumes | def section_volumes(neurites, neurite_type=NeuriteType.all):
'''section volumes in a collection of neurites'''
return map_sections(sectionfunc.section_volume, neurites, neurite_type=neurite_type) | python | def section_volumes(neurites, neurite_type=NeuriteType.all):
'''section volumes in a collection of neurites'''
return map_sections(sectionfunc.section_volume, neurites, neurite_type=neurite_type) | [
"def",
"section_volumes",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"section_volume",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] | section volumes in a collection of neurites | [
"section",
"volumes",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L387-L389 |
2,653 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_areas | def section_areas(neurites, neurite_type=NeuriteType.all):
'''section areas in a collection of neurites'''
return map_sections(sectionfunc.section_area, neurites, neurite_type=neurite_type) | python | def section_areas(neurites, neurite_type=NeuriteType.all):
'''section areas in a collection of neurites'''
return map_sections(sectionfunc.section_area, neurites, neurite_type=neurite_type) | [
"def",
"section_areas",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"section_area",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] | section areas in a collection of neurites | [
"section",
"areas",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L392-L394 |
2,654 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_tortuosity | def section_tortuosity(neurites, neurite_type=NeuriteType.all):
'''section tortuosities in a collection of neurites'''
return map_sections(sectionfunc.section_tortuosity, neurites, neurite_type=neurite_type) | python | def section_tortuosity(neurites, neurite_type=NeuriteType.all):
'''section tortuosities in a collection of neurites'''
return map_sections(sectionfunc.section_tortuosity, neurites, neurite_type=neurite_type) | [
"def",
"section_tortuosity",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"section_tortuosity",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] | section tortuosities in a collection of neurites | [
"section",
"tortuosities",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L397-L399 |
2,655 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | section_end_distances | def section_end_distances(neurites, neurite_type=NeuriteType.all):
'''section end to end distances in a collection of neurites'''
return map_sections(sectionfunc.section_end_distance, neurites, neurite_type=neurite_type) | python | def section_end_distances(neurites, neurite_type=NeuriteType.all):
'''section end to end distances in a collection of neurites'''
return map_sections(sectionfunc.section_end_distance, neurites, neurite_type=neurite_type) | [
"def",
"section_end_distances",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
")",
":",
"return",
"map_sections",
"(",
"sectionfunc",
".",
"section_end_distance",
",",
"neurites",
",",
"neurite_type",
"=",
"neurite_type",
")"
] | section end to end distances in a collection of neurites | [
"section",
"end",
"to",
"end",
"distances",
"in",
"a",
"collection",
"of",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L402-L404 |
2,656 | BlueBrain/NeuroM | neurom/fst/_neuritefunc.py | principal_direction_extents | def principal_direction_extents(neurites, neurite_type=NeuriteType.all, direction=0):
'''Principal direction extent of neurites in neurons'''
def _pde(neurite):
'''Get the PDE of a single neurite'''
# Get the X, Y,Z coordinates of the points in each section
points = neurite.points[:, :3]
return morphmath.principal_direction_extent(points)[direction]
return map(_pde, iter_neurites(neurites, filt=is_type(neurite_type))) | python | def principal_direction_extents(neurites, neurite_type=NeuriteType.all, direction=0):
'''Principal direction extent of neurites in neurons'''
def _pde(neurite):
'''Get the PDE of a single neurite'''
# Get the X, Y,Z coordinates of the points in each section
points = neurite.points[:, :3]
return morphmath.principal_direction_extent(points)[direction]
return map(_pde, iter_neurites(neurites, filt=is_type(neurite_type))) | [
"def",
"principal_direction_extents",
"(",
"neurites",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"direction",
"=",
"0",
")",
":",
"def",
"_pde",
"(",
"neurite",
")",
":",
"'''Get the PDE of a single neurite'''",
"# Get the X, Y,Z coordinates of the points in each section",
"points",
"=",
"neurite",
".",
"points",
"[",
":",
",",
":",
"3",
"]",
"return",
"morphmath",
".",
"principal_direction_extent",
"(",
"points",
")",
"[",
"direction",
"]",
"return",
"map",
"(",
"_pde",
",",
"iter_neurites",
"(",
"neurites",
",",
"filt",
"=",
"is_type",
"(",
"neurite_type",
")",
")",
")"
] | Principal direction extent of neurites in neurons | [
"Principal",
"direction",
"extent",
"of",
"neurites",
"in",
"neurons"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_neuritefunc.py#L407-L415 |
2,657 | BlueBrain/NeuroM | neurom/view/view.py | _get_linewidth | def _get_linewidth(tree, linewidth, diameter_scale):
'''calculate the desired linewidth based on tree contents
If diameter_scale exists, it is used to scale the diameter of each of the segments
in the tree
If diameter_scale is None, the linewidth is used.
'''
if diameter_scale is not None and tree:
linewidth = [2 * segment_radius(s) * diameter_scale
for s in iter_segments(tree)]
return linewidth | python | def _get_linewidth(tree, linewidth, diameter_scale):
'''calculate the desired linewidth based on tree contents
If diameter_scale exists, it is used to scale the diameter of each of the segments
in the tree
If diameter_scale is None, the linewidth is used.
'''
if diameter_scale is not None and tree:
linewidth = [2 * segment_radius(s) * diameter_scale
for s in iter_segments(tree)]
return linewidth | [
"def",
"_get_linewidth",
"(",
"tree",
",",
"linewidth",
",",
"diameter_scale",
")",
":",
"if",
"diameter_scale",
"is",
"not",
"None",
"and",
"tree",
":",
"linewidth",
"=",
"[",
"2",
"*",
"segment_radius",
"(",
"s",
")",
"*",
"diameter_scale",
"for",
"s",
"in",
"iter_segments",
"(",
"tree",
")",
"]",
"return",
"linewidth"
] | calculate the desired linewidth based on tree contents
If diameter_scale exists, it is used to scale the diameter of each of the segments
in the tree
If diameter_scale is None, the linewidth is used. | [
"calculate",
"the",
"desired",
"linewidth",
"based",
"on",
"tree",
"contents"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L65-L75 |
2,658 | BlueBrain/NeuroM | neurom/view/view.py | plot_tree | def plot_tree(ax, tree, plane='xy',
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Plots a 2d figure of the tree's segments
Args:
ax(matplotlib axes): on what to plot
tree(neurom.core.Tree or neurom.core.Neurite): plotted tree
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
Note:
If the tree contains one single point the plot will be empty
since no segments can be constructed.
'''
plane0, plane1 = _plane2col(plane)
segs = [((s[0][plane0], s[0][plane1]),
(s[1][plane0], s[1][plane1]))
for s in iter_segments(tree)]
linewidth = _get_linewidth(tree, diameter_scale=diameter_scale, linewidth=linewidth)
color = _get_color(color, tree.type)
collection = LineCollection(segs, color=color, linewidth=linewidth, alpha=alpha)
ax.add_collection(collection) | python | def plot_tree(ax, tree, plane='xy',
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Plots a 2d figure of the tree's segments
Args:
ax(matplotlib axes): on what to plot
tree(neurom.core.Tree or neurom.core.Neurite): plotted tree
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
Note:
If the tree contains one single point the plot will be empty
since no segments can be constructed.
'''
plane0, plane1 = _plane2col(plane)
segs = [((s[0][plane0], s[0][plane1]),
(s[1][plane0], s[1][plane1]))
for s in iter_segments(tree)]
linewidth = _get_linewidth(tree, diameter_scale=diameter_scale, linewidth=linewidth)
color = _get_color(color, tree.type)
collection = LineCollection(segs, color=color, linewidth=linewidth, alpha=alpha)
ax.add_collection(collection) | [
"def",
"plot_tree",
"(",
"ax",
",",
"tree",
",",
"plane",
"=",
"'xy'",
",",
"diameter_scale",
"=",
"_DIAMETER_SCALE",
",",
"linewidth",
"=",
"_LINEWIDTH",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"plane0",
",",
"plane1",
"=",
"_plane2col",
"(",
"plane",
")",
"segs",
"=",
"[",
"(",
"(",
"s",
"[",
"0",
"]",
"[",
"plane0",
"]",
",",
"s",
"[",
"0",
"]",
"[",
"plane1",
"]",
")",
",",
"(",
"s",
"[",
"1",
"]",
"[",
"plane0",
"]",
",",
"s",
"[",
"1",
"]",
"[",
"plane1",
"]",
")",
")",
"for",
"s",
"in",
"iter_segments",
"(",
"tree",
")",
"]",
"linewidth",
"=",
"_get_linewidth",
"(",
"tree",
",",
"diameter_scale",
"=",
"diameter_scale",
",",
"linewidth",
"=",
"linewidth",
")",
"color",
"=",
"_get_color",
"(",
"color",
",",
"tree",
".",
"type",
")",
"collection",
"=",
"LineCollection",
"(",
"segs",
",",
"color",
"=",
"color",
",",
"linewidth",
"=",
"linewidth",
",",
"alpha",
"=",
"alpha",
")",
"ax",
".",
"add_collection",
"(",
"collection",
")"
] | Plots a 2d figure of the tree's segments
Args:
ax(matplotlib axes): on what to plot
tree(neurom.core.Tree or neurom.core.Neurite): plotted tree
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
Note:
If the tree contains one single point the plot will be empty
since no segments can be constructed. | [
"Plots",
"a",
"2d",
"figure",
"of",
"the",
"tree",
"s",
"segments"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L85-L112 |
2,659 | BlueBrain/NeuroM | neurom/view/view.py | plot_soma | def plot_soma(ax, soma, plane='xy',
soma_outline=True,
linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Generates a 2d figure of the soma.
Args:
ax(matplotlib axes): on what to plot
soma(neurom.core.Soma): plotted soma
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
plane0, plane1 = _plane2col(plane)
color = _get_color(color, tree_type=NeuriteType.soma)
if isinstance(soma, SomaCylinders):
plane0, plane1 = _plane2col(plane)
for start, end in zip(soma.points, soma.points[1:]):
common.project_cylinder_onto_2d(ax, (plane0, plane1),
start=start[COLS.XYZ], end=end[COLS.XYZ],
start_radius=start[COLS.R], end_radius=end[COLS.R],
color=color, alpha=alpha)
else:
if soma_outline:
ax.add_artist(Circle(soma.center[[plane0, plane1]], soma.radius,
color=color, alpha=alpha))
else:
plane0, plane1 = _plane2col(plane)
points = [(p[plane0], p[plane1]) for p in soma.iter()]
if points:
points.append(points[0]) # close the loop
ax.plot(points, color=color, alpha=alpha, linewidth=linewidth)
ax.set_xlabel(plane[0])
ax.set_ylabel(plane[1])
bounding_box = geom.bounding_box(soma)
ax.dataLim.update_from_data_xy(np.vstack(([bounding_box[0][plane0], bounding_box[0][plane1]],
[bounding_box[1][plane0], bounding_box[1][plane1]])),
ignore=False) | python | def plot_soma(ax, soma, plane='xy',
soma_outline=True,
linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Generates a 2d figure of the soma.
Args:
ax(matplotlib axes): on what to plot
soma(neurom.core.Soma): plotted soma
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
plane0, plane1 = _plane2col(plane)
color = _get_color(color, tree_type=NeuriteType.soma)
if isinstance(soma, SomaCylinders):
plane0, plane1 = _plane2col(plane)
for start, end in zip(soma.points, soma.points[1:]):
common.project_cylinder_onto_2d(ax, (plane0, plane1),
start=start[COLS.XYZ], end=end[COLS.XYZ],
start_radius=start[COLS.R], end_radius=end[COLS.R],
color=color, alpha=alpha)
else:
if soma_outline:
ax.add_artist(Circle(soma.center[[plane0, plane1]], soma.radius,
color=color, alpha=alpha))
else:
plane0, plane1 = _plane2col(plane)
points = [(p[plane0], p[plane1]) for p in soma.iter()]
if points:
points.append(points[0]) # close the loop
ax.plot(points, color=color, alpha=alpha, linewidth=linewidth)
ax.set_xlabel(plane[0])
ax.set_ylabel(plane[1])
bounding_box = geom.bounding_box(soma)
ax.dataLim.update_from_data_xy(np.vstack(([bounding_box[0][plane0], bounding_box[0][plane1]],
[bounding_box[1][plane0], bounding_box[1][plane1]])),
ignore=False) | [
"def",
"plot_soma",
"(",
"ax",
",",
"soma",
",",
"plane",
"=",
"'xy'",
",",
"soma_outline",
"=",
"True",
",",
"linewidth",
"=",
"_LINEWIDTH",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"plane0",
",",
"plane1",
"=",
"_plane2col",
"(",
"plane",
")",
"color",
"=",
"_get_color",
"(",
"color",
",",
"tree_type",
"=",
"NeuriteType",
".",
"soma",
")",
"if",
"isinstance",
"(",
"soma",
",",
"SomaCylinders",
")",
":",
"plane0",
",",
"plane1",
"=",
"_plane2col",
"(",
"plane",
")",
"for",
"start",
",",
"end",
"in",
"zip",
"(",
"soma",
".",
"points",
",",
"soma",
".",
"points",
"[",
"1",
":",
"]",
")",
":",
"common",
".",
"project_cylinder_onto_2d",
"(",
"ax",
",",
"(",
"plane0",
",",
"plane1",
")",
",",
"start",
"=",
"start",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"end",
"=",
"end",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"start_radius",
"=",
"start",
"[",
"COLS",
".",
"R",
"]",
",",
"end_radius",
"=",
"end",
"[",
"COLS",
".",
"R",
"]",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"else",
":",
"if",
"soma_outline",
":",
"ax",
".",
"add_artist",
"(",
"Circle",
"(",
"soma",
".",
"center",
"[",
"[",
"plane0",
",",
"plane1",
"]",
"]",
",",
"soma",
".",
"radius",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
")",
"else",
":",
"plane0",
",",
"plane1",
"=",
"_plane2col",
"(",
"plane",
")",
"points",
"=",
"[",
"(",
"p",
"[",
"plane0",
"]",
",",
"p",
"[",
"plane1",
"]",
")",
"for",
"p",
"in",
"soma",
".",
"iter",
"(",
")",
"]",
"if",
"points",
":",
"points",
".",
"append",
"(",
"points",
"[",
"0",
"]",
")",
"# close the loop",
"ax",
".",
"plot",
"(",
"points",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
",",
"linewidth",
"=",
"linewidth",
")",
"ax",
".",
"set_xlabel",
"(",
"plane",
"[",
"0",
"]",
")",
"ax",
".",
"set_ylabel",
"(",
"plane",
"[",
"1",
"]",
")",
"bounding_box",
"=",
"geom",
".",
"bounding_box",
"(",
"soma",
")",
"ax",
".",
"dataLim",
".",
"update_from_data_xy",
"(",
"np",
".",
"vstack",
"(",
"(",
"[",
"bounding_box",
"[",
"0",
"]",
"[",
"plane0",
"]",
",",
"bounding_box",
"[",
"0",
"]",
"[",
"plane1",
"]",
"]",
",",
"[",
"bounding_box",
"[",
"1",
"]",
"[",
"plane0",
"]",
",",
"bounding_box",
"[",
"1",
"]",
"[",
"plane1",
"]",
"]",
")",
")",
",",
"ignore",
"=",
"False",
")"
] | Generates a 2d figure of the soma.
Args:
ax(matplotlib axes): on what to plot
soma(neurom.core.Soma): plotted soma
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values | [
"Generates",
"a",
"2d",
"figure",
"of",
"the",
"soma",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L115-L158 |
2,660 | BlueBrain/NeuroM | neurom/view/view.py | plot_neuron | def plot_neuron(ax, nrn,
neurite_type=NeuriteType.all,
plane='xy',
soma_outline=True,
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Plots a 2D figure of the neuron, that contains a soma and the neurites
Args:
ax(matplotlib axes): on what to plot
neurite_type(NeuriteType): an optional filter on the neurite type
nrn(neuron): neuron to be plotted
soma_outline(bool): should the soma be drawn as an outline
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
plot_soma(ax, nrn.soma, plane=plane, soma_outline=soma_outline, linewidth=linewidth,
color=color, alpha=alpha)
for neurite in iter_neurites(nrn, filt=tree_type_checker(neurite_type)):
plot_tree(ax, neurite, plane=plane,
diameter_scale=diameter_scale, linewidth=linewidth,
color=color, alpha=alpha)
ax.set_title(nrn.name)
ax.set_xlabel(plane[0])
ax.set_ylabel(plane[1]) | python | def plot_neuron(ax, nrn,
neurite_type=NeuriteType.all,
plane='xy',
soma_outline=True,
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Plots a 2D figure of the neuron, that contains a soma and the neurites
Args:
ax(matplotlib axes): on what to plot
neurite_type(NeuriteType): an optional filter on the neurite type
nrn(neuron): neuron to be plotted
soma_outline(bool): should the soma be drawn as an outline
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
plot_soma(ax, nrn.soma, plane=plane, soma_outline=soma_outline, linewidth=linewidth,
color=color, alpha=alpha)
for neurite in iter_neurites(nrn, filt=tree_type_checker(neurite_type)):
plot_tree(ax, neurite, plane=plane,
diameter_scale=diameter_scale, linewidth=linewidth,
color=color, alpha=alpha)
ax.set_title(nrn.name)
ax.set_xlabel(plane[0])
ax.set_ylabel(plane[1]) | [
"def",
"plot_neuron",
"(",
"ax",
",",
"nrn",
",",
"neurite_type",
"=",
"NeuriteType",
".",
"all",
",",
"plane",
"=",
"'xy'",
",",
"soma_outline",
"=",
"True",
",",
"diameter_scale",
"=",
"_DIAMETER_SCALE",
",",
"linewidth",
"=",
"_LINEWIDTH",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"plot_soma",
"(",
"ax",
",",
"nrn",
".",
"soma",
",",
"plane",
"=",
"plane",
",",
"soma_outline",
"=",
"soma_outline",
",",
"linewidth",
"=",
"linewidth",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"for",
"neurite",
"in",
"iter_neurites",
"(",
"nrn",
",",
"filt",
"=",
"tree_type_checker",
"(",
"neurite_type",
")",
")",
":",
"plot_tree",
"(",
"ax",
",",
"neurite",
",",
"plane",
"=",
"plane",
",",
"diameter_scale",
"=",
"diameter_scale",
",",
"linewidth",
"=",
"linewidth",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"ax",
".",
"set_title",
"(",
"nrn",
".",
"name",
")",
"ax",
".",
"set_xlabel",
"(",
"plane",
"[",
"0",
"]",
")",
"ax",
".",
"set_ylabel",
"(",
"plane",
"[",
"1",
"]",
")"
] | Plots a 2D figure of the neuron, that contains a soma and the neurites
Args:
ax(matplotlib axes): on what to plot
neurite_type(NeuriteType): an optional filter on the neurite type
nrn(neuron): neuron to be plotted
soma_outline(bool): should the soma be drawn as an outline
plane(str): Any pair of 'xyz'
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values | [
"Plots",
"a",
"2D",
"figure",
"of",
"the",
"neuron",
"that",
"contains",
"a",
"soma",
"and",
"the",
"neurites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L162-L191 |
2,661 | BlueBrain/NeuroM | neurom/view/view.py | plot_tree3d | def plot_tree3d(ax, tree,
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Generates a figure of the tree in 3d.
If the tree contains one single point the plot will be empty \
since no segments can be constructed.
Args:
ax(matplotlib axes): on what to plot
tree(neurom.core.Tree or neurom.core.Neurite): plotted tree
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ]) for s in iter_segments(tree)]
linewidth = _get_linewidth(tree, diameter_scale=diameter_scale, linewidth=linewidth)
color = _get_color(color, tree.type)
collection = Line3DCollection(segs, color=color, linewidth=linewidth, alpha=alpha)
ax.add_collection3d(collection)
_update_3d_datalim(ax, tree) | python | def plot_tree3d(ax, tree,
diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH,
color=None, alpha=_ALPHA):
'''Generates a figure of the tree in 3d.
If the tree contains one single point the plot will be empty \
since no segments can be constructed.
Args:
ax(matplotlib axes): on what to plot
tree(neurom.core.Tree or neurom.core.Neurite): plotted tree
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ]) for s in iter_segments(tree)]
linewidth = _get_linewidth(tree, diameter_scale=diameter_scale, linewidth=linewidth)
color = _get_color(color, tree.type)
collection = Line3DCollection(segs, color=color, linewidth=linewidth, alpha=alpha)
ax.add_collection3d(collection)
_update_3d_datalim(ax, tree) | [
"def",
"plot_tree3d",
"(",
"ax",
",",
"tree",
",",
"diameter_scale",
"=",
"_DIAMETER_SCALE",
",",
"linewidth",
"=",
"_LINEWIDTH",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"segs",
"=",
"[",
"(",
"s",
"[",
"0",
"]",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"s",
"[",
"1",
"]",
"[",
"COLS",
".",
"XYZ",
"]",
")",
"for",
"s",
"in",
"iter_segments",
"(",
"tree",
")",
"]",
"linewidth",
"=",
"_get_linewidth",
"(",
"tree",
",",
"diameter_scale",
"=",
"diameter_scale",
",",
"linewidth",
"=",
"linewidth",
")",
"color",
"=",
"_get_color",
"(",
"color",
",",
"tree",
".",
"type",
")",
"collection",
"=",
"Line3DCollection",
"(",
"segs",
",",
"color",
"=",
"color",
",",
"linewidth",
"=",
"linewidth",
",",
"alpha",
"=",
"alpha",
")",
"ax",
".",
"add_collection3d",
"(",
"collection",
")",
"_update_3d_datalim",
"(",
"ax",
",",
"tree",
")"
] | Generates a figure of the tree in 3d.
If the tree contains one single point the plot will be empty \
since no segments can be constructed.
Args:
ax(matplotlib axes): on what to plot
tree(neurom.core.Tree or neurom.core.Neurite): plotted tree
diameter_scale(float): Scale factor multiplied with segment diameters before plotting
linewidth(float): all segments are plotted with this width, but only if diameter_scale=None
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values | [
"Generates",
"a",
"figure",
"of",
"the",
"tree",
"in",
"3d",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L206-L230 |
2,662 | BlueBrain/NeuroM | neurom/view/view.py | plot_soma3d | def plot_soma3d(ax, soma, color=None, alpha=_ALPHA):
'''Generates a 3d figure of the soma.
Args:
ax(matplotlib axes): on what to plot
soma(neurom.core.Soma): plotted soma
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
color = _get_color(color, tree_type=NeuriteType.soma)
if isinstance(soma, SomaCylinders):
for start, end in zip(soma.points, soma.points[1:]):
common.plot_cylinder(ax,
start=start[COLS.XYZ], end=end[COLS.XYZ],
start_radius=start[COLS.R], end_radius=end[COLS.R],
color=color, alpha=alpha)
else:
common.plot_sphere(ax, center=soma.center[COLS.XYZ], radius=soma.radius,
color=color, alpha=alpha)
# unlike w/ 2d Axes, the dataLim isn't set by collections, so it has to be updated manually
_update_3d_datalim(ax, soma) | python | def plot_soma3d(ax, soma, color=None, alpha=_ALPHA):
'''Generates a 3d figure of the soma.
Args:
ax(matplotlib axes): on what to plot
soma(neurom.core.Soma): plotted soma
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values
'''
color = _get_color(color, tree_type=NeuriteType.soma)
if isinstance(soma, SomaCylinders):
for start, end in zip(soma.points, soma.points[1:]):
common.plot_cylinder(ax,
start=start[COLS.XYZ], end=end[COLS.XYZ],
start_radius=start[COLS.R], end_radius=end[COLS.R],
color=color, alpha=alpha)
else:
common.plot_sphere(ax, center=soma.center[COLS.XYZ], radius=soma.radius,
color=color, alpha=alpha)
# unlike w/ 2d Axes, the dataLim isn't set by collections, so it has to be updated manually
_update_3d_datalim(ax, soma) | [
"def",
"plot_soma3d",
"(",
"ax",
",",
"soma",
",",
"color",
"=",
"None",
",",
"alpha",
"=",
"_ALPHA",
")",
":",
"color",
"=",
"_get_color",
"(",
"color",
",",
"tree_type",
"=",
"NeuriteType",
".",
"soma",
")",
"if",
"isinstance",
"(",
"soma",
",",
"SomaCylinders",
")",
":",
"for",
"start",
",",
"end",
"in",
"zip",
"(",
"soma",
".",
"points",
",",
"soma",
".",
"points",
"[",
"1",
":",
"]",
")",
":",
"common",
".",
"plot_cylinder",
"(",
"ax",
",",
"start",
"=",
"start",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"end",
"=",
"end",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"start_radius",
"=",
"start",
"[",
"COLS",
".",
"R",
"]",
",",
"end_radius",
"=",
"end",
"[",
"COLS",
".",
"R",
"]",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"else",
":",
"common",
".",
"plot_sphere",
"(",
"ax",
",",
"center",
"=",
"soma",
".",
"center",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"radius",
"=",
"soma",
".",
"radius",
",",
"color",
"=",
"color",
",",
"alpha",
"=",
"alpha",
")",
"# unlike w/ 2d Axes, the dataLim isn't set by collections, so it has to be updated manually",
"_update_3d_datalim",
"(",
"ax",
",",
"soma",
")"
] | Generates a 3d figure of the soma.
Args:
ax(matplotlib axes): on what to plot
soma(neurom.core.Soma): plotted soma
color(str or None): Color of plotted values, None corresponds to default choice
alpha(float): Transparency of plotted values | [
"Generates",
"a",
"3d",
"figure",
"of",
"the",
"soma",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L233-L255 |
2,663 | BlueBrain/NeuroM | neurom/view/view.py | _generate_collection | def _generate_collection(group, ax, ctype, colors):
'''Render rectangle collection'''
color = TREE_COLOR[ctype]
# generate segment collection
collection = PolyCollection(group, closed=False, antialiaseds=True,
edgecolors='face', facecolors=color)
# add it to the axes
ax.add_collection(collection)
# dummy plot for the legend
if color not in colors:
label = str(ctype).replace('NeuriteType.', '').replace('_', ' ').capitalize()
ax.plot((0., 0.), (0., 0.), c=color, label=label)
colors.add(color) | python | def _generate_collection(group, ax, ctype, colors):
'''Render rectangle collection'''
color = TREE_COLOR[ctype]
# generate segment collection
collection = PolyCollection(group, closed=False, antialiaseds=True,
edgecolors='face', facecolors=color)
# add it to the axes
ax.add_collection(collection)
# dummy plot for the legend
if color not in colors:
label = str(ctype).replace('NeuriteType.', '').replace('_', ' ').capitalize()
ax.plot((0., 0.), (0., 0.), c=color, label=label)
colors.add(color) | [
"def",
"_generate_collection",
"(",
"group",
",",
"ax",
",",
"ctype",
",",
"colors",
")",
":",
"color",
"=",
"TREE_COLOR",
"[",
"ctype",
"]",
"# generate segment collection",
"collection",
"=",
"PolyCollection",
"(",
"group",
",",
"closed",
"=",
"False",
",",
"antialiaseds",
"=",
"True",
",",
"edgecolors",
"=",
"'face'",
",",
"facecolors",
"=",
"color",
")",
"# add it to the axes",
"ax",
".",
"add_collection",
"(",
"collection",
")",
"# dummy plot for the legend",
"if",
"color",
"not",
"in",
"colors",
":",
"label",
"=",
"str",
"(",
"ctype",
")",
".",
"replace",
"(",
"'NeuriteType.'",
",",
"''",
")",
".",
"replace",
"(",
"'_'",
",",
"' '",
")",
".",
"capitalize",
"(",
")",
"ax",
".",
"plot",
"(",
"(",
"0.",
",",
"0.",
")",
",",
"(",
"0.",
",",
"0.",
")",
",",
"c",
"=",
"color",
",",
"label",
"=",
"label",
")",
"colors",
".",
"add",
"(",
"color",
")"
] | Render rectangle collection | [
"Render",
"rectangle",
"collection"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L284-L299 |
2,664 | BlueBrain/NeuroM | neurom/view/view.py | plot_dendrogram | def plot_dendrogram(ax, obj, show_diameters=True):
'''Dendrogram of `obj`
Args:
obj: Neuron or tree \
neurom.Neuron, neurom.Tree
show_diameters : boolean \
Determines if node diameters will \
be show or not.
'''
# create dendrogram and generate rectangle collection
dnd = Dendrogram(obj, show_diameters=show_diameters)
dnd.generate()
# render dendrogram and take into account neurite displacement which
# starts as zero. It is important to avoid overlapping of neurites
# and to determine tha limits of the figure.
_render_dendrogram(dnd, ax, 0.)
ax.set_title('Morphology Dendrogram')
ax.set_xlabel('micrometers (um)')
ax.set_ylabel('micrometers (um)')
ax.set_aspect('auto')
ax.legend() | python | def plot_dendrogram(ax, obj, show_diameters=True):
'''Dendrogram of `obj`
Args:
obj: Neuron or tree \
neurom.Neuron, neurom.Tree
show_diameters : boolean \
Determines if node diameters will \
be show or not.
'''
# create dendrogram and generate rectangle collection
dnd = Dendrogram(obj, show_diameters=show_diameters)
dnd.generate()
# render dendrogram and take into account neurite displacement which
# starts as zero. It is important to avoid overlapping of neurites
# and to determine tha limits of the figure.
_render_dendrogram(dnd, ax, 0.)
ax.set_title('Morphology Dendrogram')
ax.set_xlabel('micrometers (um)')
ax.set_ylabel('micrometers (um)')
ax.set_aspect('auto')
ax.legend() | [
"def",
"plot_dendrogram",
"(",
"ax",
",",
"obj",
",",
"show_diameters",
"=",
"True",
")",
":",
"# create dendrogram and generate rectangle collection",
"dnd",
"=",
"Dendrogram",
"(",
"obj",
",",
"show_diameters",
"=",
"show_diameters",
")",
"dnd",
".",
"generate",
"(",
")",
"# render dendrogram and take into account neurite displacement which",
"# starts as zero. It is important to avoid overlapping of neurites",
"# and to determine tha limits of the figure.",
"_render_dendrogram",
"(",
"dnd",
",",
"ax",
",",
"0.",
")",
"ax",
".",
"set_title",
"(",
"'Morphology Dendrogram'",
")",
"ax",
".",
"set_xlabel",
"(",
"'micrometers (um)'",
")",
"ax",
".",
"set_ylabel",
"(",
"'micrometers (um)'",
")",
"ax",
".",
"set_aspect",
"(",
"'auto'",
")",
"ax",
".",
"legend",
"(",
")"
] | Dendrogram of `obj`
Args:
obj: Neuron or tree \
neurom.Neuron, neurom.Tree
show_diameters : boolean \
Determines if node diameters will \
be show or not. | [
"Dendrogram",
"of",
"obj"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/view.py#L335-L360 |
2,665 | BlueBrain/NeuroM | neurom/fst/_core.py | make_neurites | def make_neurites(rdw):
'''Build neurite trees from a raw data wrapper'''
post_action = _NEURITE_ACTION[rdw.fmt]
trunks = rdw.neurite_root_section_ids()
if not trunks:
return [], []
# One pass over sections to build nodes
nodes = tuple(Section(section_id=i,
points=rdw.data_block[sec.ids],
section_type=_TREE_TYPES[sec.ntype])
for i, sec in enumerate(rdw.sections))
# One pass over nodes to connect children to parents
for i, node in enumerate(nodes):
parent_id = rdw.sections[i].pid
parent_type = nodes[parent_id].type
# only connect neurites
if parent_id != ROOT_ID and parent_type != NeuriteType.soma:
nodes[parent_id].add_child(node)
neurites = tuple(Neurite(nodes[i]) for i in trunks)
if post_action is not None:
for n in neurites:
post_action(n.root_node)
return neurites, nodes | python | def make_neurites(rdw):
'''Build neurite trees from a raw data wrapper'''
post_action = _NEURITE_ACTION[rdw.fmt]
trunks = rdw.neurite_root_section_ids()
if not trunks:
return [], []
# One pass over sections to build nodes
nodes = tuple(Section(section_id=i,
points=rdw.data_block[sec.ids],
section_type=_TREE_TYPES[sec.ntype])
for i, sec in enumerate(rdw.sections))
# One pass over nodes to connect children to parents
for i, node in enumerate(nodes):
parent_id = rdw.sections[i].pid
parent_type = nodes[parent_id].type
# only connect neurites
if parent_id != ROOT_ID and parent_type != NeuriteType.soma:
nodes[parent_id].add_child(node)
neurites = tuple(Neurite(nodes[i]) for i in trunks)
if post_action is not None:
for n in neurites:
post_action(n.root_node)
return neurites, nodes | [
"def",
"make_neurites",
"(",
"rdw",
")",
":",
"post_action",
"=",
"_NEURITE_ACTION",
"[",
"rdw",
".",
"fmt",
"]",
"trunks",
"=",
"rdw",
".",
"neurite_root_section_ids",
"(",
")",
"if",
"not",
"trunks",
":",
"return",
"[",
"]",
",",
"[",
"]",
"# One pass over sections to build nodes",
"nodes",
"=",
"tuple",
"(",
"Section",
"(",
"section_id",
"=",
"i",
",",
"points",
"=",
"rdw",
".",
"data_block",
"[",
"sec",
".",
"ids",
"]",
",",
"section_type",
"=",
"_TREE_TYPES",
"[",
"sec",
".",
"ntype",
"]",
")",
"for",
"i",
",",
"sec",
"in",
"enumerate",
"(",
"rdw",
".",
"sections",
")",
")",
"# One pass over nodes to connect children to parents",
"for",
"i",
",",
"node",
"in",
"enumerate",
"(",
"nodes",
")",
":",
"parent_id",
"=",
"rdw",
".",
"sections",
"[",
"i",
"]",
".",
"pid",
"parent_type",
"=",
"nodes",
"[",
"parent_id",
"]",
".",
"type",
"# only connect neurites",
"if",
"parent_id",
"!=",
"ROOT_ID",
"and",
"parent_type",
"!=",
"NeuriteType",
".",
"soma",
":",
"nodes",
"[",
"parent_id",
"]",
".",
"add_child",
"(",
"node",
")",
"neurites",
"=",
"tuple",
"(",
"Neurite",
"(",
"nodes",
"[",
"i",
"]",
")",
"for",
"i",
"in",
"trunks",
")",
"if",
"post_action",
"is",
"not",
"None",
":",
"for",
"n",
"in",
"neurites",
":",
"post_action",
"(",
"n",
".",
"root_node",
")",
"return",
"neurites",
",",
"nodes"
] | Build neurite trees from a raw data wrapper | [
"Build",
"neurite",
"trees",
"from",
"a",
"raw",
"data",
"wrapper"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_core.py#L78-L105 |
2,666 | BlueBrain/NeuroM | neurom/fst/_core.py | _remove_soma_initial_point | def _remove_soma_initial_point(tree):
'''Remove tree's initial point if soma'''
if tree.points[0][COLS.TYPE] == POINT_TYPE.SOMA:
tree.points = tree.points[1:] | python | def _remove_soma_initial_point(tree):
'''Remove tree's initial point if soma'''
if tree.points[0][COLS.TYPE] == POINT_TYPE.SOMA:
tree.points = tree.points[1:] | [
"def",
"_remove_soma_initial_point",
"(",
"tree",
")",
":",
"if",
"tree",
".",
"points",
"[",
"0",
"]",
"[",
"COLS",
".",
"TYPE",
"]",
"==",
"POINT_TYPE",
".",
"SOMA",
":",
"tree",
".",
"points",
"=",
"tree",
".",
"points",
"[",
"1",
":",
"]"
] | Remove tree's initial point if soma | [
"Remove",
"tree",
"s",
"initial",
"point",
"if",
"soma"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_core.py#L108-L111 |
2,667 | BlueBrain/NeuroM | neurom/fst/_core.py | _check_soma_topology_swc | def _check_soma_topology_swc(points):
'''check if points form valid soma
Currently checks if there are bifurcations within a soma
with more than three points.
'''
if len(points) == 3:
return
parents = tuple(p[COLS.P] for p in points if p[COLS.P] != ROOT_ID)
if len(parents) > len(set(parents)):
raise SomaError("Bifurcating soma") | python | def _check_soma_topology_swc(points):
'''check if points form valid soma
Currently checks if there are bifurcations within a soma
with more than three points.
'''
if len(points) == 3:
return
parents = tuple(p[COLS.P] for p in points if p[COLS.P] != ROOT_ID)
if len(parents) > len(set(parents)):
raise SomaError("Bifurcating soma") | [
"def",
"_check_soma_topology_swc",
"(",
"points",
")",
":",
"if",
"len",
"(",
"points",
")",
"==",
"3",
":",
"return",
"parents",
"=",
"tuple",
"(",
"p",
"[",
"COLS",
".",
"P",
"]",
"for",
"p",
"in",
"points",
"if",
"p",
"[",
"COLS",
".",
"P",
"]",
"!=",
"ROOT_ID",
")",
"if",
"len",
"(",
"parents",
")",
">",
"len",
"(",
"set",
"(",
"parents",
")",
")",
":",
"raise",
"SomaError",
"(",
"\"Bifurcating soma\"",
")"
] | check if points form valid soma
Currently checks if there are bifurcations within a soma
with more than three points. | [
"check",
"if",
"points",
"form",
"valid",
"soma"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_core.py#L114-L125 |
2,668 | BlueBrain/NeuroM | neurom/fst/_core.py | FstNeuron.points | def points(self):
'''Return unordered array with all the points in this neuron'''
if self._points is None:
_points = self.soma.points.tolist()
for n in self.neurites:
_points.extend(n.points.tolist())
self._points = np.array(_points)
return self._points | python | def points(self):
'''Return unordered array with all the points in this neuron'''
if self._points is None:
_points = self.soma.points.tolist()
for n in self.neurites:
_points.extend(n.points.tolist())
self._points = np.array(_points)
return self._points | [
"def",
"points",
"(",
"self",
")",
":",
"if",
"self",
".",
"_points",
"is",
"None",
":",
"_points",
"=",
"self",
".",
"soma",
".",
"points",
".",
"tolist",
"(",
")",
"for",
"n",
"in",
"self",
".",
"neurites",
":",
"_points",
".",
"extend",
"(",
"n",
".",
"points",
".",
"tolist",
"(",
")",
")",
"self",
".",
"_points",
"=",
"np",
".",
"array",
"(",
"_points",
")",
"return",
"self",
".",
"_points"
] | Return unordered array with all the points in this neuron | [
"Return",
"unordered",
"array",
"with",
"all",
"the",
"points",
"in",
"this",
"neuron"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_core.py#L52-L60 |
2,669 | BlueBrain/NeuroM | neurom/fst/_core.py | FstNeuron.transform | def transform(self, trans):
'''Return a copy of this neuron with a 3D transformation applied'''
_data = deepcopy(self._data)
_data.data_block[:, 0:3] = trans(_data.data_block[:, 0:3])
return FstNeuron(_data, self.name) | python | def transform(self, trans):
'''Return a copy of this neuron with a 3D transformation applied'''
_data = deepcopy(self._data)
_data.data_block[:, 0:3] = trans(_data.data_block[:, 0:3])
return FstNeuron(_data, self.name) | [
"def",
"transform",
"(",
"self",
",",
"trans",
")",
":",
"_data",
"=",
"deepcopy",
"(",
"self",
".",
"_data",
")",
"_data",
".",
"data_block",
"[",
":",
",",
"0",
":",
"3",
"]",
"=",
"trans",
"(",
"_data",
".",
"data_block",
"[",
":",
",",
"0",
":",
"3",
"]",
")",
"return",
"FstNeuron",
"(",
"_data",
",",
"self",
".",
"name",
")"
] | Return a copy of this neuron with a 3D transformation applied | [
"Return",
"a",
"copy",
"of",
"this",
"neuron",
"with",
"a",
"3D",
"transformation",
"applied"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/fst/_core.py#L62-L66 |
2,670 | BlueBrain/NeuroM | neurom/morphmath.py | vector | def vector(p1, p2):
'''compute vector between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
3-vector from p1 - p2
'''
return np.subtract(p1[COLS.XYZ], p2[COLS.XYZ]) | python | def vector(p1, p2):
'''compute vector between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
3-vector from p1 - p2
'''
return np.subtract(p1[COLS.XYZ], p2[COLS.XYZ]) | [
"def",
"vector",
"(",
"p1",
",",
"p2",
")",
":",
"return",
"np",
".",
"subtract",
"(",
"p1",
"[",
"COLS",
".",
"XYZ",
"]",
",",
"p2",
"[",
"COLS",
".",
"XYZ",
"]",
")"
] | compute vector between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
3-vector from p1 - p2 | [
"compute",
"vector",
"between",
"two",
"3D",
"points"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L38-L48 |
2,671 | BlueBrain/NeuroM | neurom/morphmath.py | interpolate_radius | def interpolate_radius(r1, r2, fraction):
'''Calculate the radius that corresponds to a point P that lies at a fraction of the length
of a cut cone P1P2 where P1, P2 are the centers of the circles that bound the shape with radii
r1 and r2 respectively.
Args:
r1: float
Radius of the first node of the segment.
r2: float
Radius of the second node of the segment
fraction: float
The fraction at which the interpolated radius is calculated.
Returns: float
The interpolated radius.
Note: The fraction is assumed from point P1, not from point P2.
'''
def f(a, b, c):
''' Returns the length of the interpolated radius calculated
using similar triangles.
'''
return a + c * (b - a)
return f(r2, r1, 1. - fraction) if r1 > r2 else f(r1, r2, fraction) | python | def interpolate_radius(r1, r2, fraction):
'''Calculate the radius that corresponds to a point P that lies at a fraction of the length
of a cut cone P1P2 where P1, P2 are the centers of the circles that bound the shape with radii
r1 and r2 respectively.
Args:
r1: float
Radius of the first node of the segment.
r2: float
Radius of the second node of the segment
fraction: float
The fraction at which the interpolated radius is calculated.
Returns: float
The interpolated radius.
Note: The fraction is assumed from point P1, not from point P2.
'''
def f(a, b, c):
''' Returns the length of the interpolated radius calculated
using similar triangles.
'''
return a + c * (b - a)
return f(r2, r1, 1. - fraction) if r1 > r2 else f(r1, r2, fraction) | [
"def",
"interpolate_radius",
"(",
"r1",
",",
"r2",
",",
"fraction",
")",
":",
"def",
"f",
"(",
"a",
",",
"b",
",",
"c",
")",
":",
"''' Returns the length of the interpolated radius calculated\n using similar triangles.\n '''",
"return",
"a",
"+",
"c",
"*",
"(",
"b",
"-",
"a",
")",
"return",
"f",
"(",
"r2",
",",
"r1",
",",
"1.",
"-",
"fraction",
")",
"if",
"r1",
">",
"r2",
"else",
"f",
"(",
"r1",
",",
"r2",
",",
"fraction",
")"
] | Calculate the radius that corresponds to a point P that lies at a fraction of the length
of a cut cone P1P2 where P1, P2 are the centers of the circles that bound the shape with radii
r1 and r2 respectively.
Args:
r1: float
Radius of the first node of the segment.
r2: float
Radius of the second node of the segment
fraction: float
The fraction at which the interpolated radius is calculated.
Returns: float
The interpolated radius.
Note: The fraction is assumed from point P1, not from point P2. | [
"Calculate",
"the",
"radius",
"that",
"corresponds",
"to",
"a",
"point",
"P",
"that",
"lies",
"at",
"a",
"fraction",
"of",
"the",
"length",
"of",
"a",
"cut",
"cone",
"P1P2",
"where",
"P1",
"P2",
"are",
"the",
"centers",
"of",
"the",
"circles",
"that",
"bound",
"the",
"shape",
"with",
"radii",
"r1",
"and",
"r2",
"respectively",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L58-L81 |
2,672 | BlueBrain/NeuroM | neurom/morphmath.py | path_fraction_id_offset | def path_fraction_id_offset(points, fraction, relative_offset=False):
'''Find the segment which corresponds to the fraction
of the path length along the piecewise linear curve which
is constructed from the set of points.
Args:
points: an iterable of indexable objects with indices
0, 1, 2 correspoding to 3D cartesian coordinates
fraction: path length fraction (0.0 <= fraction <= 1.0)
relative_offset: return absolute or relative segment distance
Returns:
(segment ID, segment offset) pair.
'''
if not (0. <= fraction <= 1.0):
raise ValueError("Invalid fraction: %.3f" % fraction)
pts = np.array(points)[:, COLS.XYZ]
lengths = np.linalg.norm(np.diff(pts, axis=0), axis=1)
cum_lengths = np.cumsum(lengths)
offset = cum_lengths[-1] * fraction
seg_id = np.argmin(cum_lengths < offset)
if seg_id > 0:
offset -= cum_lengths[seg_id - 1]
if relative_offset:
offset /= lengths[seg_id]
return seg_id, offset | python | def path_fraction_id_offset(points, fraction, relative_offset=False):
'''Find the segment which corresponds to the fraction
of the path length along the piecewise linear curve which
is constructed from the set of points.
Args:
points: an iterable of indexable objects with indices
0, 1, 2 correspoding to 3D cartesian coordinates
fraction: path length fraction (0.0 <= fraction <= 1.0)
relative_offset: return absolute or relative segment distance
Returns:
(segment ID, segment offset) pair.
'''
if not (0. <= fraction <= 1.0):
raise ValueError("Invalid fraction: %.3f" % fraction)
pts = np.array(points)[:, COLS.XYZ]
lengths = np.linalg.norm(np.diff(pts, axis=0), axis=1)
cum_lengths = np.cumsum(lengths)
offset = cum_lengths[-1] * fraction
seg_id = np.argmin(cum_lengths < offset)
if seg_id > 0:
offset -= cum_lengths[seg_id - 1]
if relative_offset:
offset /= lengths[seg_id]
return seg_id, offset | [
"def",
"path_fraction_id_offset",
"(",
"points",
",",
"fraction",
",",
"relative_offset",
"=",
"False",
")",
":",
"if",
"not",
"(",
"0.",
"<=",
"fraction",
"<=",
"1.0",
")",
":",
"raise",
"ValueError",
"(",
"\"Invalid fraction: %.3f\"",
"%",
"fraction",
")",
"pts",
"=",
"np",
".",
"array",
"(",
"points",
")",
"[",
":",
",",
"COLS",
".",
"XYZ",
"]",
"lengths",
"=",
"np",
".",
"linalg",
".",
"norm",
"(",
"np",
".",
"diff",
"(",
"pts",
",",
"axis",
"=",
"0",
")",
",",
"axis",
"=",
"1",
")",
"cum_lengths",
"=",
"np",
".",
"cumsum",
"(",
"lengths",
")",
"offset",
"=",
"cum_lengths",
"[",
"-",
"1",
"]",
"*",
"fraction",
"seg_id",
"=",
"np",
".",
"argmin",
"(",
"cum_lengths",
"<",
"offset",
")",
"if",
"seg_id",
">",
"0",
":",
"offset",
"-=",
"cum_lengths",
"[",
"seg_id",
"-",
"1",
"]",
"if",
"relative_offset",
":",
"offset",
"/=",
"lengths",
"[",
"seg_id",
"]",
"return",
"seg_id",
",",
"offset"
] | Find the segment which corresponds to the fraction
of the path length along the piecewise linear curve which
is constructed from the set of points.
Args:
points: an iterable of indexable objects with indices
0, 1, 2 correspoding to 3D cartesian coordinates
fraction: path length fraction (0.0 <= fraction <= 1.0)
relative_offset: return absolute or relative segment distance
Returns:
(segment ID, segment offset) pair. | [
"Find",
"the",
"segment",
"which",
"corresponds",
"to",
"the",
"fraction",
"of",
"the",
"path",
"length",
"along",
"the",
"piecewise",
"linear",
"curve",
"which",
"is",
"constructed",
"from",
"the",
"set",
"of",
"points",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L84-L109 |
2,673 | BlueBrain/NeuroM | neurom/morphmath.py | path_fraction_point | def path_fraction_point(points, fraction):
'''Computes the point which corresponds to the fraction
of the path length along the piecewise linear curve which
is constructed from the set of points.
Args:
points: an iterable of indexable objects with indices
0, 1, 2 correspoding to 3D cartesian coordinates
fraction: path length fraction (0 <= fraction <= 1)
Returns:
The 3D coordinates of the aforementioned point
'''
seg_id, offset = path_fraction_id_offset(points, fraction, relative_offset=True)
return linear_interpolate(points[seg_id], points[seg_id + 1], offset) | python | def path_fraction_point(points, fraction):
'''Computes the point which corresponds to the fraction
of the path length along the piecewise linear curve which
is constructed from the set of points.
Args:
points: an iterable of indexable objects with indices
0, 1, 2 correspoding to 3D cartesian coordinates
fraction: path length fraction (0 <= fraction <= 1)
Returns:
The 3D coordinates of the aforementioned point
'''
seg_id, offset = path_fraction_id_offset(points, fraction, relative_offset=True)
return linear_interpolate(points[seg_id], points[seg_id + 1], offset) | [
"def",
"path_fraction_point",
"(",
"points",
",",
"fraction",
")",
":",
"seg_id",
",",
"offset",
"=",
"path_fraction_id_offset",
"(",
"points",
",",
"fraction",
",",
"relative_offset",
"=",
"True",
")",
"return",
"linear_interpolate",
"(",
"points",
"[",
"seg_id",
"]",
",",
"points",
"[",
"seg_id",
"+",
"1",
"]",
",",
"offset",
")"
] | Computes the point which corresponds to the fraction
of the path length along the piecewise linear curve which
is constructed from the set of points.
Args:
points: an iterable of indexable objects with indices
0, 1, 2 correspoding to 3D cartesian coordinates
fraction: path length fraction (0 <= fraction <= 1)
Returns:
The 3D coordinates of the aforementioned point | [
"Computes",
"the",
"point",
"which",
"corresponds",
"to",
"the",
"fraction",
"of",
"the",
"path",
"length",
"along",
"the",
"piecewise",
"linear",
"curve",
"which",
"is",
"constructed",
"from",
"the",
"set",
"of",
"points",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L112-L126 |
2,674 | BlueBrain/NeuroM | neurom/morphmath.py | scalar_projection | def scalar_projection(v1, v2):
'''compute the scalar projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v
'''
return np.dot(v1, v2) / np.linalg.norm(v2) | python | def scalar_projection(v1, v2):
'''compute the scalar projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v
'''
return np.dot(v1, v2) / np.linalg.norm(v2) | [
"def",
"scalar_projection",
"(",
"v1",
",",
"v2",
")",
":",
"return",
"np",
".",
"dot",
"(",
"v1",
",",
"v2",
")",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"v2",
")"
] | compute the scalar projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v | [
"compute",
"the",
"scalar",
"projection",
"of",
"v1",
"upon",
"v2"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L129-L139 |
2,675 | BlueBrain/NeuroM | neurom/morphmath.py | vector_projection | def vector_projection(v1, v2):
'''compute the vector projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v
'''
return scalar_projection(v1, v2) * v2 / np.linalg.norm(v2) | python | def vector_projection(v1, v2):
'''compute the vector projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v
'''
return scalar_projection(v1, v2) * v2 / np.linalg.norm(v2) | [
"def",
"vector_projection",
"(",
"v1",
",",
"v2",
")",
":",
"return",
"scalar_projection",
"(",
"v1",
",",
"v2",
")",
"*",
"v2",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"v2",
")"
] | compute the vector projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v | [
"compute",
"the",
"vector",
"projection",
"of",
"v1",
"upon",
"v2"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L142-L152 |
2,676 | BlueBrain/NeuroM | neurom/morphmath.py | dist_point_line | def dist_point_line(p, l1, l2):
'''compute the orthogonal distance between from the line that goes through
the points l1, l2 and the point p
Args:
p, l1, l2 : iterable
point
indices 0, 1, 2 corresponding to cartesian coordinates
'''
cross_prod = np.cross(l2 - l1, p - l1)
return np.linalg.norm(cross_prod) / np.linalg.norm(l2 - l1) | python | def dist_point_line(p, l1, l2):
'''compute the orthogonal distance between from the line that goes through
the points l1, l2 and the point p
Args:
p, l1, l2 : iterable
point
indices 0, 1, 2 corresponding to cartesian coordinates
'''
cross_prod = np.cross(l2 - l1, p - l1)
return np.linalg.norm(cross_prod) / np.linalg.norm(l2 - l1) | [
"def",
"dist_point_line",
"(",
"p",
",",
"l1",
",",
"l2",
")",
":",
"cross_prod",
"=",
"np",
".",
"cross",
"(",
"l2",
"-",
"l1",
",",
"p",
"-",
"l1",
")",
"return",
"np",
".",
"linalg",
".",
"norm",
"(",
"cross_prod",
")",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"l2",
"-",
"l1",
")"
] | compute the orthogonal distance between from the line that goes through
the points l1, l2 and the point p
Args:
p, l1, l2 : iterable
point
indices 0, 1, 2 corresponding to cartesian coordinates | [
"compute",
"the",
"orthogonal",
"distance",
"between",
"from",
"the",
"line",
"that",
"goes",
"through",
"the",
"points",
"l1",
"l2",
"and",
"the",
"point",
"p"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L155-L165 |
2,677 | BlueBrain/NeuroM | neurom/morphmath.py | point_dist2 | def point_dist2(p1, p2):
'''compute the square of the euclidian distance between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
The square of the euclidian distance between the points.
'''
v = vector(p1, p2)
return np.dot(v, v) | python | def point_dist2(p1, p2):
'''compute the square of the euclidian distance between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
The square of the euclidian distance between the points.
'''
v = vector(p1, p2)
return np.dot(v, v) | [
"def",
"point_dist2",
"(",
"p1",
",",
"p2",
")",
":",
"v",
"=",
"vector",
"(",
"p1",
",",
"p2",
")",
"return",
"np",
".",
"dot",
"(",
"v",
",",
"v",
")"
] | compute the square of the euclidian distance between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
The square of the euclidian distance between the points. | [
"compute",
"the",
"square",
"of",
"the",
"euclidian",
"distance",
"between",
"two",
"3D",
"points"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L168-L178 |
2,678 | BlueBrain/NeuroM | neurom/morphmath.py | angle_3points | def angle_3points(p0, p1, p2):
''' compute the angle in radians between three 3D points
Calculated as the angle between p1-p0 and p2-p0.
Args:
p0, p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
Angle in radians between (p1-p0) and (p2-p0).
0.0 if p0==p1 or p0==p2.
'''
vec1 = vector(p1, p0)
vec2 = vector(p2, p0)
return math.atan2(np.linalg.norm(np.cross(vec1, vec2)),
np.dot(vec1, vec2)) | python | def angle_3points(p0, p1, p2):
''' compute the angle in radians between three 3D points
Calculated as the angle between p1-p0 and p2-p0.
Args:
p0, p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
Angle in radians between (p1-p0) and (p2-p0).
0.0 if p0==p1 or p0==p2.
'''
vec1 = vector(p1, p0)
vec2 = vector(p2, p0)
return math.atan2(np.linalg.norm(np.cross(vec1, vec2)),
np.dot(vec1, vec2)) | [
"def",
"angle_3points",
"(",
"p0",
",",
"p1",
",",
"p2",
")",
":",
"vec1",
"=",
"vector",
"(",
"p1",
",",
"p0",
")",
"vec2",
"=",
"vector",
"(",
"p2",
",",
"p0",
")",
"return",
"math",
".",
"atan2",
"(",
"np",
".",
"linalg",
".",
"norm",
"(",
"np",
".",
"cross",
"(",
"vec1",
",",
"vec2",
")",
")",
",",
"np",
".",
"dot",
"(",
"vec1",
",",
"vec2",
")",
")"
] | compute the angle in radians between three 3D points
Calculated as the angle between p1-p0 and p2-p0.
Args:
p0, p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
Angle in radians between (p1-p0) and (p2-p0).
0.0 if p0==p1 or p0==p2. | [
"compute",
"the",
"angle",
"in",
"radians",
"between",
"three",
"3D",
"points"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L193-L209 |
2,679 | BlueBrain/NeuroM | neurom/morphmath.py | angle_between_vectors | def angle_between_vectors(p1, p2):
""" Computes the angle in radians between vectors 'p1' and 'p2'
Normalizes the input vectors and computes the relative angle
between them.
>>> angle_between((1, 0), (0, 1))
1.5707963267948966
>>> angle_between((1, 0), (1, 0))
0.0
>>> angle_between((1, 0), (-1, 0))
3.141592653589793
"""
v1 = p1 / np.linalg.norm(p1)
v2 = p2 / np.linalg.norm(p2)
return np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0)) | python | def angle_between_vectors(p1, p2):
""" Computes the angle in radians between vectors 'p1' and 'p2'
Normalizes the input vectors and computes the relative angle
between them.
>>> angle_between((1, 0), (0, 1))
1.5707963267948966
>>> angle_between((1, 0), (1, 0))
0.0
>>> angle_between((1, 0), (-1, 0))
3.141592653589793
"""
v1 = p1 / np.linalg.norm(p1)
v2 = p2 / np.linalg.norm(p2)
return np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0)) | [
"def",
"angle_between_vectors",
"(",
"p1",
",",
"p2",
")",
":",
"v1",
"=",
"p1",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"p1",
")",
"v2",
"=",
"p2",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"p2",
")",
"return",
"np",
".",
"arccos",
"(",
"np",
".",
"clip",
"(",
"np",
".",
"dot",
"(",
"v1",
",",
"v2",
")",
",",
"-",
"1.0",
",",
"1.0",
")",
")"
] | Computes the angle in radians between vectors 'p1' and 'p2'
Normalizes the input vectors and computes the relative angle
between them.
>>> angle_between((1, 0), (0, 1))
1.5707963267948966
>>> angle_between((1, 0), (1, 0))
0.0
>>> angle_between((1, 0), (-1, 0))
3.141592653589793 | [
"Computes",
"the",
"angle",
"in",
"radians",
"between",
"vectors",
"p1",
"and",
"p2",
"Normalizes",
"the",
"input",
"vectors",
"and",
"computes",
"the",
"relative",
"angle",
"between",
"them",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L212-L226 |
2,680 | BlueBrain/NeuroM | neurom/morphmath.py | polygon_diameter | def polygon_diameter(points):
''' Compute the maximun euclidian distance between any two points
in a list of points
'''
return max(point_dist(p0, p1) for (p0, p1) in combinations(points, 2)) | python | def polygon_diameter(points):
''' Compute the maximun euclidian distance between any two points
in a list of points
'''
return max(point_dist(p0, p1) for (p0, p1) in combinations(points, 2)) | [
"def",
"polygon_diameter",
"(",
"points",
")",
":",
"return",
"max",
"(",
"point_dist",
"(",
"p0",
",",
"p1",
")",
"for",
"(",
"p0",
",",
"p1",
")",
"in",
"combinations",
"(",
"points",
",",
"2",
")",
")"
] | Compute the maximun euclidian distance between any two points
in a list of points | [
"Compute",
"the",
"maximun",
"euclidian",
"distance",
"between",
"any",
"two",
"points",
"in",
"a",
"list",
"of",
"points"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L229-L233 |
2,681 | BlueBrain/NeuroM | neurom/morphmath.py | average_points_dist | def average_points_dist(p0, p_list):
"""
Computes the average distance between a list of points
and a given point p0.
"""
return np.mean(list(point_dist(p0, p1) for p1 in p_list)) | python | def average_points_dist(p0, p_list):
"""
Computes the average distance between a list of points
and a given point p0.
"""
return np.mean(list(point_dist(p0, p1) for p1 in p_list)) | [
"def",
"average_points_dist",
"(",
"p0",
",",
"p_list",
")",
":",
"return",
"np",
".",
"mean",
"(",
"list",
"(",
"point_dist",
"(",
"p0",
",",
"p1",
")",
"for",
"p1",
"in",
"p_list",
")",
")"
] | Computes the average distance between a list of points
and a given point p0. | [
"Computes",
"the",
"average",
"distance",
"between",
"a",
"list",
"of",
"points",
"and",
"a",
"given",
"point",
"p0",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L236-L241 |
2,682 | BlueBrain/NeuroM | neurom/morphmath.py | path_distance | def path_distance(points):
"""
Compute the path distance from given set of points
"""
vecs = np.diff(points, axis=0)[:, :3]
d2 = [np.dot(p, p) for p in vecs]
return np.sum(np.sqrt(d2)) | python | def path_distance(points):
"""
Compute the path distance from given set of points
"""
vecs = np.diff(points, axis=0)[:, :3]
d2 = [np.dot(p, p) for p in vecs]
return np.sum(np.sqrt(d2)) | [
"def",
"path_distance",
"(",
"points",
")",
":",
"vecs",
"=",
"np",
".",
"diff",
"(",
"points",
",",
"axis",
"=",
"0",
")",
"[",
":",
",",
":",
"3",
"]",
"d2",
"=",
"[",
"np",
".",
"dot",
"(",
"p",
",",
"p",
")",
"for",
"p",
"in",
"vecs",
"]",
"return",
"np",
".",
"sum",
"(",
"np",
".",
"sqrt",
"(",
"d2",
")",
")"
] | Compute the path distance from given set of points | [
"Compute",
"the",
"path",
"distance",
"from",
"given",
"set",
"of",
"points"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L244-L250 |
2,683 | BlueBrain/NeuroM | neurom/morphmath.py | segment_radial_dist | def segment_radial_dist(seg, pos):
'''Return the radial distance of a tree segment to a given point
The radial distance is the euclidian distance between the mid-point of
the segment and the point in question.
Parameters:
seg: tree segment
pos: origin to which distances are measured. It must have at lease 3
components. The first 3 components are (x, y, z).
'''
return point_dist(pos, np.divide(np.add(seg[0], seg[1]), 2.0)) | python | def segment_radial_dist(seg, pos):
'''Return the radial distance of a tree segment to a given point
The radial distance is the euclidian distance between the mid-point of
the segment and the point in question.
Parameters:
seg: tree segment
pos: origin to which distances are measured. It must have at lease 3
components. The first 3 components are (x, y, z).
'''
return point_dist(pos, np.divide(np.add(seg[0], seg[1]), 2.0)) | [
"def",
"segment_radial_dist",
"(",
"seg",
",",
"pos",
")",
":",
"return",
"point_dist",
"(",
"pos",
",",
"np",
".",
"divide",
"(",
"np",
".",
"add",
"(",
"seg",
"[",
"0",
"]",
",",
"seg",
"[",
"1",
"]",
")",
",",
"2.0",
")",
")"
] | Return the radial distance of a tree segment to a given point
The radial distance is the euclidian distance between the mid-point of
the segment and the point in question.
Parameters:
seg: tree segment
pos: origin to which distances are measured. It must have at lease 3
components. The first 3 components are (x, y, z). | [
"Return",
"the",
"radial",
"distance",
"of",
"a",
"tree",
"segment",
"to",
"a",
"given",
"point"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L301-L313 |
2,684 | BlueBrain/NeuroM | neurom/morphmath.py | segment_area | def segment_area(seg):
'''Compute the surface area of a segment.
Approximated as a conical frustum. Does not include the surface area
of the bounding circles.
'''
r0 = seg[0][COLS.R]
r1 = seg[1][COLS.R]
h2 = point_dist2(seg[0], seg[1])
return math.pi * (r0 + r1) * math.sqrt((r0 - r1) ** 2 + h2) | python | def segment_area(seg):
'''Compute the surface area of a segment.
Approximated as a conical frustum. Does not include the surface area
of the bounding circles.
'''
r0 = seg[0][COLS.R]
r1 = seg[1][COLS.R]
h2 = point_dist2(seg[0], seg[1])
return math.pi * (r0 + r1) * math.sqrt((r0 - r1) ** 2 + h2) | [
"def",
"segment_area",
"(",
"seg",
")",
":",
"r0",
"=",
"seg",
"[",
"0",
"]",
"[",
"COLS",
".",
"R",
"]",
"r1",
"=",
"seg",
"[",
"1",
"]",
"[",
"COLS",
".",
"R",
"]",
"h2",
"=",
"point_dist2",
"(",
"seg",
"[",
"0",
"]",
",",
"seg",
"[",
"1",
"]",
")",
"return",
"math",
".",
"pi",
"*",
"(",
"r0",
"+",
"r1",
")",
"*",
"math",
".",
"sqrt",
"(",
"(",
"r0",
"-",
"r1",
")",
"**",
"2",
"+",
"h2",
")"
] | Compute the surface area of a segment.
Approximated as a conical frustum. Does not include the surface area
of the bounding circles. | [
"Compute",
"the",
"surface",
"area",
"of",
"a",
"segment",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L316-L325 |
2,685 | BlueBrain/NeuroM | neurom/morphmath.py | segment_volume | def segment_volume(seg):
'''Compute the volume of a segment.
Approximated as a conical frustum.
'''
r0 = seg[0][COLS.R]
r1 = seg[1][COLS.R]
h = point_dist(seg[0], seg[1])
return math.pi * h * ((r0 * r0) + (r0 * r1) + (r1 * r1)) / 3.0 | python | def segment_volume(seg):
'''Compute the volume of a segment.
Approximated as a conical frustum.
'''
r0 = seg[0][COLS.R]
r1 = seg[1][COLS.R]
h = point_dist(seg[0], seg[1])
return math.pi * h * ((r0 * r0) + (r0 * r1) + (r1 * r1)) / 3.0 | [
"def",
"segment_volume",
"(",
"seg",
")",
":",
"r0",
"=",
"seg",
"[",
"0",
"]",
"[",
"COLS",
".",
"R",
"]",
"r1",
"=",
"seg",
"[",
"1",
"]",
"[",
"COLS",
".",
"R",
"]",
"h",
"=",
"point_dist",
"(",
"seg",
"[",
"0",
"]",
",",
"seg",
"[",
"1",
"]",
")",
"return",
"math",
".",
"pi",
"*",
"h",
"*",
"(",
"(",
"r0",
"*",
"r0",
")",
"+",
"(",
"r0",
"*",
"r1",
")",
"+",
"(",
"r1",
"*",
"r1",
")",
")",
"/",
"3.0"
] | Compute the volume of a segment.
Approximated as a conical frustum. | [
"Compute",
"the",
"volume",
"of",
"a",
"segment",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L328-L336 |
2,686 | BlueBrain/NeuroM | neurom/morphmath.py | taper_rate | def taper_rate(p0, p1):
'''Compute the taper rate between points p0 and p1
Args:
p0, p1: iterables with first 4 components containing (x, y, z, r)
Returns:
The taper rate, defined as the absolute value of the difference in
the diameters of p0 and p1 divided by the euclidian distance
between them.
'''
return 2 * abs(p0[COLS.R] - p1[COLS.R]) / point_dist(p0, p1) | python | def taper_rate(p0, p1):
'''Compute the taper rate between points p0 and p1
Args:
p0, p1: iterables with first 4 components containing (x, y, z, r)
Returns:
The taper rate, defined as the absolute value of the difference in
the diameters of p0 and p1 divided by the euclidian distance
between them.
'''
return 2 * abs(p0[COLS.R] - p1[COLS.R]) / point_dist(p0, p1) | [
"def",
"taper_rate",
"(",
"p0",
",",
"p1",
")",
":",
"return",
"2",
"*",
"abs",
"(",
"p0",
"[",
"COLS",
".",
"R",
"]",
"-",
"p1",
"[",
"COLS",
".",
"R",
"]",
")",
"/",
"point_dist",
"(",
"p0",
",",
"p1",
")"
] | Compute the taper rate between points p0 and p1
Args:
p0, p1: iterables with first 4 components containing (x, y, z, r)
Returns:
The taper rate, defined as the absolute value of the difference in
the diameters of p0 and p1 divided by the euclidian distance
between them. | [
"Compute",
"the",
"taper",
"rate",
"between",
"points",
"p0",
"and",
"p1"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L339-L350 |
2,687 | BlueBrain/NeuroM | neurom/morphmath.py | principal_direction_extent | def principal_direction_extent(points):
'''Calculate the extent of a set of 3D points.
The extent is defined as the maximum distance between
the projections on the principal directions of the covariance matrix
of the points.
Parameter:
points : a 2D numpy array of points
Returns:
extents : the extents for each of the eigenvectors of the cov matrix
eigs : eigenvalues of the covariance matrix
eigv : respective eigenvectors of the covariance matrix
'''
# center the points around 0.0
points = np.copy(points)
points -= np.mean(points, axis=0)
# principal components
_, eigv = pca(points)
extent = np.zeros(3)
for i in range(eigv.shape[1]):
# orthogonal projection onto the direction of the v component
scalar_projs = np.sort(np.array([np.dot(p, eigv[:, i]) for p in points]))
extent[i] = scalar_projs[-1]
if scalar_projs[0] < 0.:
extent -= scalar_projs[0]
return extent | python | def principal_direction_extent(points):
'''Calculate the extent of a set of 3D points.
The extent is defined as the maximum distance between
the projections on the principal directions of the covariance matrix
of the points.
Parameter:
points : a 2D numpy array of points
Returns:
extents : the extents for each of the eigenvectors of the cov matrix
eigs : eigenvalues of the covariance matrix
eigv : respective eigenvectors of the covariance matrix
'''
# center the points around 0.0
points = np.copy(points)
points -= np.mean(points, axis=0)
# principal components
_, eigv = pca(points)
extent = np.zeros(3)
for i in range(eigv.shape[1]):
# orthogonal projection onto the direction of the v component
scalar_projs = np.sort(np.array([np.dot(p, eigv[:, i]) for p in points]))
extent[i] = scalar_projs[-1]
if scalar_projs[0] < 0.:
extent -= scalar_projs[0]
return extent | [
"def",
"principal_direction_extent",
"(",
"points",
")",
":",
"# center the points around 0.0",
"points",
"=",
"np",
".",
"copy",
"(",
"points",
")",
"points",
"-=",
"np",
".",
"mean",
"(",
"points",
",",
"axis",
"=",
"0",
")",
"# principal components",
"_",
",",
"eigv",
"=",
"pca",
"(",
"points",
")",
"extent",
"=",
"np",
".",
"zeros",
"(",
"3",
")",
"for",
"i",
"in",
"range",
"(",
"eigv",
".",
"shape",
"[",
"1",
"]",
")",
":",
"# orthogonal projection onto the direction of the v component",
"scalar_projs",
"=",
"np",
".",
"sort",
"(",
"np",
".",
"array",
"(",
"[",
"np",
".",
"dot",
"(",
"p",
",",
"eigv",
"[",
":",
",",
"i",
"]",
")",
"for",
"p",
"in",
"points",
"]",
")",
")",
"extent",
"[",
"i",
"]",
"=",
"scalar_projs",
"[",
"-",
"1",
"]",
"if",
"scalar_projs",
"[",
"0",
"]",
"<",
"0.",
":",
"extent",
"-=",
"scalar_projs",
"[",
"0",
"]",
"return",
"extent"
] | Calculate the extent of a set of 3D points.
The extent is defined as the maximum distance between
the projections on the principal directions of the covariance matrix
of the points.
Parameter:
points : a 2D numpy array of points
Returns:
extents : the extents for each of the eigenvectors of the cov matrix
eigs : eigenvalues of the covariance matrix
eigv : respective eigenvectors of the covariance matrix | [
"Calculate",
"the",
"extent",
"of",
"a",
"set",
"of",
"3D",
"points",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/morphmath.py#L387-L419 |
2,688 | BlueBrain/NeuroM | examples/features_graph_table.py | stylize | def stylize(ax, name, feature):
'''Stylization modifications to the plots
'''
ax.set_ylabel(feature)
ax.set_title(name, fontsize='small') | python | def stylize(ax, name, feature):
'''Stylization modifications to the plots
'''
ax.set_ylabel(feature)
ax.set_title(name, fontsize='small') | [
"def",
"stylize",
"(",
"ax",
",",
"name",
",",
"feature",
")",
":",
"ax",
".",
"set_ylabel",
"(",
"feature",
")",
"ax",
".",
"set_title",
"(",
"name",
",",
"fontsize",
"=",
"'small'",
")"
] | Stylization modifications to the plots | [
"Stylization",
"modifications",
"to",
"the",
"plots"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/features_graph_table.py#L60-L64 |
2,689 | BlueBrain/NeuroM | examples/features_graph_table.py | plot_feature | def plot_feature(feature, cell):
'''Plot a feature
'''
fig = pl.figure()
ax = fig.add_subplot(111)
if cell is not None:
try:
histogram(cell, feature, ax)
except ValueError:
pass
stylize(ax, cell.name, feature)
return fig | python | def plot_feature(feature, cell):
'''Plot a feature
'''
fig = pl.figure()
ax = fig.add_subplot(111)
if cell is not None:
try:
histogram(cell, feature, ax)
except ValueError:
pass
stylize(ax, cell.name, feature)
return fig | [
"def",
"plot_feature",
"(",
"feature",
",",
"cell",
")",
":",
"fig",
"=",
"pl",
".",
"figure",
"(",
")",
"ax",
"=",
"fig",
".",
"add_subplot",
"(",
"111",
")",
"if",
"cell",
"is",
"not",
"None",
":",
"try",
":",
"histogram",
"(",
"cell",
",",
"feature",
",",
"ax",
")",
"except",
"ValueError",
":",
"pass",
"stylize",
"(",
"ax",
",",
"cell",
".",
"name",
",",
"feature",
")",
"return",
"fig"
] | Plot a feature | [
"Plot",
"a",
"feature"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/features_graph_table.py#L94-L106 |
2,690 | BlueBrain/NeuroM | examples/end_to_end_distance.py | path_end_to_end_distance | def path_end_to_end_distance(neurite):
'''Calculate and return end-to-end-distance of a given neurite.'''
trunk = neurite.root_node.points[0]
return max(morphmath.point_dist(l.points[-1], trunk)
for l in neurite.root_node.ileaf()) | python | def path_end_to_end_distance(neurite):
'''Calculate and return end-to-end-distance of a given neurite.'''
trunk = neurite.root_node.points[0]
return max(morphmath.point_dist(l.points[-1], trunk)
for l in neurite.root_node.ileaf()) | [
"def",
"path_end_to_end_distance",
"(",
"neurite",
")",
":",
"trunk",
"=",
"neurite",
".",
"root_node",
".",
"points",
"[",
"0",
"]",
"return",
"max",
"(",
"morphmath",
".",
"point_dist",
"(",
"l",
".",
"points",
"[",
"-",
"1",
"]",
",",
"trunk",
")",
"for",
"l",
"in",
"neurite",
".",
"root_node",
".",
"ileaf",
"(",
")",
")"
] | Calculate and return end-to-end-distance of a given neurite. | [
"Calculate",
"and",
"return",
"end",
"-",
"to",
"-",
"end",
"-",
"distance",
"of",
"a",
"given",
"neurite",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/end_to_end_distance.py#L38-L42 |
2,691 | BlueBrain/NeuroM | examples/end_to_end_distance.py | make_end_to_end_distance_plot | def make_end_to_end_distance_plot(nb_segments, end_to_end_distance, neurite_type):
'''Plot end-to-end distance vs number of segments'''
plt.figure()
plt.plot(nb_segments, end_to_end_distance)
plt.title(neurite_type)
plt.xlabel('Number of segments')
plt.ylabel('End-to-end distance')
plt.show() | python | def make_end_to_end_distance_plot(nb_segments, end_to_end_distance, neurite_type):
'''Plot end-to-end distance vs number of segments'''
plt.figure()
plt.plot(nb_segments, end_to_end_distance)
plt.title(neurite_type)
plt.xlabel('Number of segments')
plt.ylabel('End-to-end distance')
plt.show() | [
"def",
"make_end_to_end_distance_plot",
"(",
"nb_segments",
",",
"end_to_end_distance",
",",
"neurite_type",
")",
":",
"plt",
".",
"figure",
"(",
")",
"plt",
".",
"plot",
"(",
"nb_segments",
",",
"end_to_end_distance",
")",
"plt",
".",
"title",
"(",
"neurite_type",
")",
"plt",
".",
"xlabel",
"(",
"'Number of segments'",
")",
"plt",
".",
"ylabel",
"(",
"'End-to-end distance'",
")",
"plt",
".",
"show",
"(",
")"
] | Plot end-to-end distance vs number of segments | [
"Plot",
"end",
"-",
"to",
"-",
"end",
"distance",
"vs",
"number",
"of",
"segments"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/end_to_end_distance.py#L50-L57 |
2,692 | BlueBrain/NeuroM | examples/end_to_end_distance.py | calculate_and_plot_end_to_end_distance | def calculate_and_plot_end_to_end_distance(neurite):
'''Calculate and plot the end-to-end distance vs the number of segments for
an increasingly larger part of a given neurite.
Note that the plots are not very meaningful for bifurcating trees.'''
def _dist(seg):
'''Distance between segmenr end and trunk'''
return morphmath.point_dist(seg[1], neurite.root_node.points[0])
end_to_end_distance = [_dist(s) for s in nm.iter_segments(neurite)]
make_end_to_end_distance_plot(np.arange(len(end_to_end_distance)) + 1,
end_to_end_distance, neurite.type) | python | def calculate_and_plot_end_to_end_distance(neurite):
'''Calculate and plot the end-to-end distance vs the number of segments for
an increasingly larger part of a given neurite.
Note that the plots are not very meaningful for bifurcating trees.'''
def _dist(seg):
'''Distance between segmenr end and trunk'''
return morphmath.point_dist(seg[1], neurite.root_node.points[0])
end_to_end_distance = [_dist(s) for s in nm.iter_segments(neurite)]
make_end_to_end_distance_plot(np.arange(len(end_to_end_distance)) + 1,
end_to_end_distance, neurite.type) | [
"def",
"calculate_and_plot_end_to_end_distance",
"(",
"neurite",
")",
":",
"def",
"_dist",
"(",
"seg",
")",
":",
"'''Distance between segmenr end and trunk'''",
"return",
"morphmath",
".",
"point_dist",
"(",
"seg",
"[",
"1",
"]",
",",
"neurite",
".",
"root_node",
".",
"points",
"[",
"0",
"]",
")",
"end_to_end_distance",
"=",
"[",
"_dist",
"(",
"s",
")",
"for",
"s",
"in",
"nm",
".",
"iter_segments",
"(",
"neurite",
")",
"]",
"make_end_to_end_distance_plot",
"(",
"np",
".",
"arange",
"(",
"len",
"(",
"end_to_end_distance",
")",
")",
"+",
"1",
",",
"end_to_end_distance",
",",
"neurite",
".",
"type",
")"
] | Calculate and plot the end-to-end distance vs the number of segments for
an increasingly larger part of a given neurite.
Note that the plots are not very meaningful for bifurcating trees. | [
"Calculate",
"and",
"plot",
"the",
"end",
"-",
"to",
"-",
"end",
"distance",
"vs",
"the",
"number",
"of",
"segments",
"for",
"an",
"increasingly",
"larger",
"part",
"of",
"a",
"given",
"neurite",
"."
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/end_to_end_distance.py#L60-L71 |
2,693 | BlueBrain/NeuroM | neurom/core/types.py | tree_type_checker | def tree_type_checker(*ref):
'''Tree type checker functor
Returns:
Functor that takes a tree, and returns true if that tree matches any of
NeuriteTypes in ref
Ex:
>>> from neurom.core.types import NeuriteType, tree_type_checker
>>> tree_filter = tree_type_checker(NeuriteType.axon, NeuriteType.basal_dendrite)
>>> nrn.i_neurites(tree.isegment, tree_filter=tree_filter)
'''
ref = tuple(ref)
if NeuriteType.all in ref:
def check_tree_type(_):
'''Always returns true'''
return True
else:
def check_tree_type(tree):
'''Check whether tree has the same type as ref
Returns:
True if ref in the same type as tree.type or ref is NeuriteType.all
'''
return tree.type in ref
return check_tree_type | python | def tree_type_checker(*ref):
'''Tree type checker functor
Returns:
Functor that takes a tree, and returns true if that tree matches any of
NeuriteTypes in ref
Ex:
>>> from neurom.core.types import NeuriteType, tree_type_checker
>>> tree_filter = tree_type_checker(NeuriteType.axon, NeuriteType.basal_dendrite)
>>> nrn.i_neurites(tree.isegment, tree_filter=tree_filter)
'''
ref = tuple(ref)
if NeuriteType.all in ref:
def check_tree_type(_):
'''Always returns true'''
return True
else:
def check_tree_type(tree):
'''Check whether tree has the same type as ref
Returns:
True if ref in the same type as tree.type or ref is NeuriteType.all
'''
return tree.type in ref
return check_tree_type | [
"def",
"tree_type_checker",
"(",
"*",
"ref",
")",
":",
"ref",
"=",
"tuple",
"(",
"ref",
")",
"if",
"NeuriteType",
".",
"all",
"in",
"ref",
":",
"def",
"check_tree_type",
"(",
"_",
")",
":",
"'''Always returns true'''",
"return",
"True",
"else",
":",
"def",
"check_tree_type",
"(",
"tree",
")",
":",
"'''Check whether tree has the same type as ref\n\n Returns:\n True if ref in the same type as tree.type or ref is NeuriteType.all\n '''",
"return",
"tree",
".",
"type",
"in",
"ref",
"return",
"check_tree_type"
] | Tree type checker functor
Returns:
Functor that takes a tree, and returns true if that tree matches any of
NeuriteTypes in ref
Ex:
>>> from neurom.core.types import NeuriteType, tree_type_checker
>>> tree_filter = tree_type_checker(NeuriteType.axon, NeuriteType.basal_dendrite)
>>> nrn.i_neurites(tree.isegment, tree_filter=tree_filter) | [
"Tree",
"type",
"checker",
"functor"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/types.py#L66-L92 |
2,694 | BlueBrain/NeuroM | neurom/core/types.py | dendrite_filter | def dendrite_filter(n):
'''Select only dendrites'''
return n.type == NeuriteType.basal_dendrite or n.type == NeuriteType.apical_dendrite | python | def dendrite_filter(n):
'''Select only dendrites'''
return n.type == NeuriteType.basal_dendrite or n.type == NeuriteType.apical_dendrite | [
"def",
"dendrite_filter",
"(",
"n",
")",
":",
"return",
"n",
".",
"type",
"==",
"NeuriteType",
".",
"basal_dendrite",
"or",
"n",
".",
"type",
"==",
"NeuriteType",
".",
"apical_dendrite"
] | Select only dendrites | [
"Select",
"only",
"dendrites"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/core/types.py#L95-L97 |
2,695 | BlueBrain/NeuroM | examples/plot_somas.py | plot_somas | def plot_somas(somas):
'''Plot set of somas on same figure as spheres, each with different color'''
_, ax = common.get_figure(new_fig=True, subplot=111,
params={'projection': '3d', 'aspect': 'equal'})
for s in somas:
common.plot_sphere(ax, s.center, s.radius, color=random_color(), alpha=1)
plt.show() | python | def plot_somas(somas):
'''Plot set of somas on same figure as spheres, each with different color'''
_, ax = common.get_figure(new_fig=True, subplot=111,
params={'projection': '3d', 'aspect': 'equal'})
for s in somas:
common.plot_sphere(ax, s.center, s.radius, color=random_color(), alpha=1)
plt.show() | [
"def",
"plot_somas",
"(",
"somas",
")",
":",
"_",
",",
"ax",
"=",
"common",
".",
"get_figure",
"(",
"new_fig",
"=",
"True",
",",
"subplot",
"=",
"111",
",",
"params",
"=",
"{",
"'projection'",
":",
"'3d'",
",",
"'aspect'",
":",
"'equal'",
"}",
")",
"for",
"s",
"in",
"somas",
":",
"common",
".",
"plot_sphere",
"(",
"ax",
",",
"s",
".",
"center",
",",
"s",
".",
"radius",
",",
"color",
"=",
"random_color",
"(",
")",
",",
"alpha",
"=",
"1",
")",
"plt",
".",
"show",
"(",
")"
] | Plot set of somas on same figure as spheres, each with different color | [
"Plot",
"set",
"of",
"somas",
"on",
"same",
"figure",
"as",
"spheres",
"each",
"with",
"different",
"color"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/examples/plot_somas.py#L48-L54 |
2,696 | BlueBrain/NeuroM | neurom/view/_dendrogram.py | _max_recursion_depth | def _max_recursion_depth(obj):
''' Estimate recursion depth, which is defined as the number of nodes in a tree
'''
neurites = obj.neurites if hasattr(obj, 'neurites') else [obj]
return max(sum(1 for _ in neu.iter_sections()) for neu in neurites) | python | def _max_recursion_depth(obj):
''' Estimate recursion depth, which is defined as the number of nodes in a tree
'''
neurites = obj.neurites if hasattr(obj, 'neurites') else [obj]
return max(sum(1 for _ in neu.iter_sections()) for neu in neurites) | [
"def",
"_max_recursion_depth",
"(",
"obj",
")",
":",
"neurites",
"=",
"obj",
".",
"neurites",
"if",
"hasattr",
"(",
"obj",
",",
"'neurites'",
")",
"else",
"[",
"obj",
"]",
"return",
"max",
"(",
"sum",
"(",
"1",
"for",
"_",
"in",
"neu",
".",
"iter_sections",
"(",
")",
")",
"for",
"neu",
"in",
"neurites",
")"
] | Estimate recursion depth, which is defined as the number of nodes in a tree | [
"Estimate",
"recursion",
"depth",
"which",
"is",
"defined",
"as",
"the",
"number",
"of",
"nodes",
"in",
"a",
"tree"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L44-L49 |
2,697 | BlueBrain/NeuroM | neurom/view/_dendrogram.py | _total_rectangles | def _total_rectangles(tree):
'''
Calculate the total number of segments that are required
for the dendrogram. There is a vertical line for each segment
and two horizontal line at each branching point
'''
return sum(len(sec.children) + sec.points.shape[0] - 1
for sec in tree.iter_sections()) | python | def _total_rectangles(tree):
'''
Calculate the total number of segments that are required
for the dendrogram. There is a vertical line for each segment
and two horizontal line at each branching point
'''
return sum(len(sec.children) + sec.points.shape[0] - 1
for sec in tree.iter_sections()) | [
"def",
"_total_rectangles",
"(",
"tree",
")",
":",
"return",
"sum",
"(",
"len",
"(",
"sec",
".",
"children",
")",
"+",
"sec",
".",
"points",
".",
"shape",
"[",
"0",
"]",
"-",
"1",
"for",
"sec",
"in",
"tree",
".",
"iter_sections",
"(",
")",
")"
] | Calculate the total number of segments that are required
for the dendrogram. There is a vertical line for each segment
and two horizontal line at each branching point | [
"Calculate",
"the",
"total",
"number",
"of",
"segments",
"that",
"are",
"required",
"for",
"the",
"dendrogram",
".",
"There",
"is",
"a",
"vertical",
"line",
"for",
"each",
"segment",
"and",
"two",
"horizontal",
"line",
"at",
"each",
"branching",
"point"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L52-L59 |
2,698 | BlueBrain/NeuroM | neurom/view/_dendrogram.py | _n_rectangles | def _n_rectangles(obj):
'''
Calculate the total number of rectangles with respect to
the type of the object
'''
return sum(_total_rectangles(neu) for neu in obj.neurites) \
if hasattr(obj, 'neurites') else _total_rectangles(obj) | python | def _n_rectangles(obj):
'''
Calculate the total number of rectangles with respect to
the type of the object
'''
return sum(_total_rectangles(neu) for neu in obj.neurites) \
if hasattr(obj, 'neurites') else _total_rectangles(obj) | [
"def",
"_n_rectangles",
"(",
"obj",
")",
":",
"return",
"sum",
"(",
"_total_rectangles",
"(",
"neu",
")",
"for",
"neu",
"in",
"obj",
".",
"neurites",
")",
"if",
"hasattr",
"(",
"obj",
",",
"'neurites'",
")",
"else",
"_total_rectangles",
"(",
"obj",
")"
] | Calculate the total number of rectangles with respect to
the type of the object | [
"Calculate",
"the",
"total",
"number",
"of",
"rectangles",
"with",
"respect",
"to",
"the",
"type",
"of",
"the",
"object"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L62-L68 |
2,699 | BlueBrain/NeuroM | neurom/view/_dendrogram.py | _square_segment | def _square_segment(radius, origin):
'''Vertices for a square
'''
return np.array(((origin[0] - radius, origin[1] - radius),
(origin[0] - radius, origin[1] + radius),
(origin[0] + radius, origin[1] + radius),
(origin[0] + radius, origin[1] - radius))) | python | def _square_segment(radius, origin):
'''Vertices for a square
'''
return np.array(((origin[0] - radius, origin[1] - radius),
(origin[0] - radius, origin[1] + radius),
(origin[0] + radius, origin[1] + radius),
(origin[0] + radius, origin[1] - radius))) | [
"def",
"_square_segment",
"(",
"radius",
",",
"origin",
")",
":",
"return",
"np",
".",
"array",
"(",
"(",
"(",
"origin",
"[",
"0",
"]",
"-",
"radius",
",",
"origin",
"[",
"1",
"]",
"-",
"radius",
")",
",",
"(",
"origin",
"[",
"0",
"]",
"-",
"radius",
",",
"origin",
"[",
"1",
"]",
"+",
"radius",
")",
",",
"(",
"origin",
"[",
"0",
"]",
"+",
"radius",
",",
"origin",
"[",
"1",
"]",
"+",
"radius",
")",
",",
"(",
"origin",
"[",
"0",
"]",
"+",
"radius",
",",
"origin",
"[",
"1",
"]",
"-",
"radius",
")",
")",
")"
] | Vertices for a square | [
"Vertices",
"for",
"a",
"square"
] | 254bb73535b20053d175bc4725bade662177d12b | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/view/_dendrogram.py#L71-L77 |
Subsets and Splits