id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
3,000
UDST/urbansim
urbansim/models/regression.py
RegressionModel.predict
def predict(self, data): """ Predict a new data set based on an estimated model. Parameters ---------- data : pandas.DataFrame Data to use for prediction. Must contain all the columns referenced by the right-hand side of the `model_expression`. Returns ------- result : pandas.Series Predicted values as a pandas Series. Will have the index of `data` after applying filters. """ self.assert_fitted() with log_start_finish('predicting model {}'.format(self.name), logger): return predict( data, self.predict_filters, self.model_fit, self.ytransform)
python
def predict(self, data): """ Predict a new data set based on an estimated model. Parameters ---------- data : pandas.DataFrame Data to use for prediction. Must contain all the columns referenced by the right-hand side of the `model_expression`. Returns ------- result : pandas.Series Predicted values as a pandas Series. Will have the index of `data` after applying filters. """ self.assert_fitted() with log_start_finish('predicting model {}'.format(self.name), logger): return predict( data, self.predict_filters, self.model_fit, self.ytransform)
[ "def", "predict", "(", "self", ",", "data", ")", ":", "self", ".", "assert_fitted", "(", ")", "with", "log_start_finish", "(", "'predicting model {}'", ".", "format", "(", "self", ".", "name", ")", ",", "logger", ")", ":", "return", "predict", "(", "data", ",", "self", ".", "predict_filters", ",", "self", ".", "model_fit", ",", "self", ".", "ytransform", ")" ]
Predict a new data set based on an estimated model. Parameters ---------- data : pandas.DataFrame Data to use for prediction. Must contain all the columns referenced by the right-hand side of the `model_expression`. Returns ------- result : pandas.Series Predicted values as a pandas Series. Will have the index of `data` after applying filters.
[ "Predict", "a", "new", "data", "set", "based", "on", "an", "estimated", "model", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/regression.py#L390-L410
3,001
UDST/urbansim
urbansim/models/regression.py
RegressionModel.to_dict
def to_dict(self): """ Returns a dictionary representation of a RegressionModel instance. """ d = { 'model_type': 'regression', 'name': self.name, 'fit_filters': self.fit_filters, 'predict_filters': self.predict_filters, 'model_expression': self.model_expression, 'ytransform': YTRANSFORM_MAPPING[self.ytransform], 'fitted': self.fitted, 'fit_parameters': None, 'fit_rsquared': None, 'fit_rsquared_adj': None } if self.fitted: d['fit_parameters'] = yamlio.frame_to_yaml_safe( self.fit_parameters) d['fit_rsquared'] = float(self.model_fit.rsquared) d['fit_rsquared_adj'] = float(self.model_fit.rsquared_adj) return d
python
def to_dict(self): """ Returns a dictionary representation of a RegressionModel instance. """ d = { 'model_type': 'regression', 'name': self.name, 'fit_filters': self.fit_filters, 'predict_filters': self.predict_filters, 'model_expression': self.model_expression, 'ytransform': YTRANSFORM_MAPPING[self.ytransform], 'fitted': self.fitted, 'fit_parameters': None, 'fit_rsquared': None, 'fit_rsquared_adj': None } if self.fitted: d['fit_parameters'] = yamlio.frame_to_yaml_safe( self.fit_parameters) d['fit_rsquared'] = float(self.model_fit.rsquared) d['fit_rsquared_adj'] = float(self.model_fit.rsquared_adj) return d
[ "def", "to_dict", "(", "self", ")", ":", "d", "=", "{", "'model_type'", ":", "'regression'", ",", "'name'", ":", "self", ".", "name", ",", "'fit_filters'", ":", "self", ".", "fit_filters", ",", "'predict_filters'", ":", "self", ".", "predict_filters", ",", "'model_expression'", ":", "self", ".", "model_expression", ",", "'ytransform'", ":", "YTRANSFORM_MAPPING", "[", "self", ".", "ytransform", "]", ",", "'fitted'", ":", "self", ".", "fitted", ",", "'fit_parameters'", ":", "None", ",", "'fit_rsquared'", ":", "None", ",", "'fit_rsquared_adj'", ":", "None", "}", "if", "self", ".", "fitted", ":", "d", "[", "'fit_parameters'", "]", "=", "yamlio", ".", "frame_to_yaml_safe", "(", "self", ".", "fit_parameters", ")", "d", "[", "'fit_rsquared'", "]", "=", "float", "(", "self", ".", "model_fit", ".", "rsquared", ")", "d", "[", "'fit_rsquared_adj'", "]", "=", "float", "(", "self", ".", "model_fit", ".", "rsquared_adj", ")", "return", "d" ]
Returns a dictionary representation of a RegressionModel instance.
[ "Returns", "a", "dictionary", "representation", "of", "a", "RegressionModel", "instance", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/regression.py#L412-L436
3,002
UDST/urbansim
urbansim/models/regression.py
RegressionModel.columns_used
def columns_used(self): """ Returns all the columns used in this model for filtering and in the model expression. """ return list(tz.unique(tz.concatv( util.columns_in_filters(self.fit_filters), util.columns_in_filters(self.predict_filters), util.columns_in_formula(self.model_expression))))
python
def columns_used(self): """ Returns all the columns used in this model for filtering and in the model expression. """ return list(tz.unique(tz.concatv( util.columns_in_filters(self.fit_filters), util.columns_in_filters(self.predict_filters), util.columns_in_formula(self.model_expression))))
[ "def", "columns_used", "(", "self", ")", ":", "return", "list", "(", "tz", ".", "unique", "(", "tz", ".", "concatv", "(", "util", ".", "columns_in_filters", "(", "self", ".", "fit_filters", ")", ",", "util", ".", "columns_in_filters", "(", "self", ".", "predict_filters", ")", ",", "util", ".", "columns_in_formula", "(", "self", ".", "model_expression", ")", ")", ")", ")" ]
Returns all the columns used in this model for filtering and in the model expression.
[ "Returns", "all", "the", "columns", "used", "in", "this", "model", "for", "filtering", "and", "in", "the", "model", "expression", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/regression.py#L460-L469
3,003
UDST/urbansim
urbansim/models/regression.py
RegressionModelGroup.add_model
def add_model(self, model): """ Add a `RegressionModel` instance. Parameters ---------- model : `RegressionModel` Should have a ``.name`` attribute matching one of the groupby segments. """ logger.debug( 'adding model {} to group {}'.format(model.name, self.name)) self.models[model.name] = model
python
def add_model(self, model): """ Add a `RegressionModel` instance. Parameters ---------- model : `RegressionModel` Should have a ``.name`` attribute matching one of the groupby segments. """ logger.debug( 'adding model {} to group {}'.format(model.name, self.name)) self.models[model.name] = model
[ "def", "add_model", "(", "self", ",", "model", ")", ":", "logger", ".", "debug", "(", "'adding model {} to group {}'", ".", "format", "(", "model", ".", "name", ",", "self", ".", "name", ")", ")", "self", ".", "models", "[", "model", ".", "name", "]", "=", "model" ]
Add a `RegressionModel` instance. Parameters ---------- model : `RegressionModel` Should have a ``.name`` attribute matching one of the groupby segments.
[ "Add", "a", "RegressionModel", "instance", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/regression.py#L546-L559
3,004
UDST/urbansim
urbansim/models/regression.py
RegressionModelGroup.add_model_from_params
def add_model_from_params(self, name, fit_filters, predict_filters, model_expression, ytransform=None): """ Add a model by passing arguments through to `RegressionModel`. Parameters ---------- name : any Must match a groupby segment name. fit_filters : list of str Filters applied before fitting the model. predict_filters : list of str Filters applied before calculating new data points. model_expression : str A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. By default no transformation is applied. """ logger.debug( 'adding model {} to group {}'.format(name, self.name)) model = RegressionModel( fit_filters, predict_filters, model_expression, ytransform, name) self.models[name] = model
python
def add_model_from_params(self, name, fit_filters, predict_filters, model_expression, ytransform=None): """ Add a model by passing arguments through to `RegressionModel`. Parameters ---------- name : any Must match a groupby segment name. fit_filters : list of str Filters applied before fitting the model. predict_filters : list of str Filters applied before calculating new data points. model_expression : str A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. By default no transformation is applied. """ logger.debug( 'adding model {} to group {}'.format(name, self.name)) model = RegressionModel( fit_filters, predict_filters, model_expression, ytransform, name) self.models[name] = model
[ "def", "add_model_from_params", "(", "self", ",", "name", ",", "fit_filters", ",", "predict_filters", ",", "model_expression", ",", "ytransform", "=", "None", ")", ":", "logger", ".", "debug", "(", "'adding model {} to group {}'", ".", "format", "(", "name", ",", "self", ".", "name", ")", ")", "model", "=", "RegressionModel", "(", "fit_filters", ",", "predict_filters", ",", "model_expression", ",", "ytransform", ",", "name", ")", "self", ".", "models", "[", "name", "]", "=", "model" ]
Add a model by passing arguments through to `RegressionModel`. Parameters ---------- name : any Must match a groupby segment name. fit_filters : list of str Filters applied before fitting the model. predict_filters : list of str Filters applied before calculating new data points. model_expression : str A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. By default no transformation is applied.
[ "Add", "a", "model", "by", "passing", "arguments", "through", "to", "RegressionModel", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/regression.py#L561-L590
3,005
UDST/urbansim
urbansim/models/regression.py
RegressionModelGroup.fit
def fit(self, data, debug=False): """ Fit each of the models in the group. Parameters ---------- data : pandas.DataFrame Must have a column with the same name as `segmentation_col`. debug : bool If set to true (default false) will pass the debug parameter to model estimation. Returns ------- fits : dict of statsmodels.regression.linear_model.OLSResults Keys are the segment names. """ with log_start_finish( 'fitting models in group {}'.format(self.name), logger): return {name: self.models[name].fit(df, debug=debug) for name, df in self._iter_groups(data)}
python
def fit(self, data, debug=False): """ Fit each of the models in the group. Parameters ---------- data : pandas.DataFrame Must have a column with the same name as `segmentation_col`. debug : bool If set to true (default false) will pass the debug parameter to model estimation. Returns ------- fits : dict of statsmodels.regression.linear_model.OLSResults Keys are the segment names. """ with log_start_finish( 'fitting models in group {}'.format(self.name), logger): return {name: self.models[name].fit(df, debug=debug) for name, df in self._iter_groups(data)}
[ "def", "fit", "(", "self", ",", "data", ",", "debug", "=", "False", ")", ":", "with", "log_start_finish", "(", "'fitting models in group {}'", ".", "format", "(", "self", ".", "name", ")", ",", "logger", ")", ":", "return", "{", "name", ":", "self", ".", "models", "[", "name", "]", ".", "fit", "(", "df", ",", "debug", "=", "debug", ")", "for", "name", ",", "df", "in", "self", ".", "_iter_groups", "(", "data", ")", "}" ]
Fit each of the models in the group. Parameters ---------- data : pandas.DataFrame Must have a column with the same name as `segmentation_col`. debug : bool If set to true (default false) will pass the debug parameter to model estimation. Returns ------- fits : dict of statsmodels.regression.linear_model.OLSResults Keys are the segment names.
[ "Fit", "each", "of", "the", "models", "in", "the", "group", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/regression.py#L612-L633
3,006
UDST/urbansim
urbansim/models/regression.py
SegmentedRegressionModel.from_yaml
def from_yaml(cls, yaml_str=None, str_or_buffer=None): """ Create a SegmentedRegressionModel instance from a saved YAML configuration. Arguments are mutally exclusive. Parameters ---------- yaml_str : str, optional A YAML string from which to load model. str_or_buffer : str or file like, optional File name or buffer from which to load YAML. Returns ------- SegmentedRegressionModel """ cfg = yamlio.yaml_to_dict(yaml_str, str_or_buffer) default_model_expr = cfg['default_config']['model_expression'] default_ytransform = cfg['default_config']['ytransform'] seg = cls( cfg['segmentation_col'], cfg['fit_filters'], cfg['predict_filters'], default_model_expr, YTRANSFORM_MAPPING[default_ytransform], cfg['min_segment_size'], cfg['name']) if "models" not in cfg: cfg["models"] = {} for name, m in cfg['models'].items(): m['model_expression'] = m.get( 'model_expression', default_model_expr) m['ytransform'] = m.get('ytransform', default_ytransform) m['fit_filters'] = None m['predict_filters'] = None reg = RegressionModel.from_yaml(yamlio.convert_to_yaml(m, None)) seg._group.add_model(reg) logger.debug( 'loaded segmented regression model {} from yaml'.format(seg.name)) return seg
python
def from_yaml(cls, yaml_str=None, str_or_buffer=None): """ Create a SegmentedRegressionModel instance from a saved YAML configuration. Arguments are mutally exclusive. Parameters ---------- yaml_str : str, optional A YAML string from which to load model. str_or_buffer : str or file like, optional File name or buffer from which to load YAML. Returns ------- SegmentedRegressionModel """ cfg = yamlio.yaml_to_dict(yaml_str, str_or_buffer) default_model_expr = cfg['default_config']['model_expression'] default_ytransform = cfg['default_config']['ytransform'] seg = cls( cfg['segmentation_col'], cfg['fit_filters'], cfg['predict_filters'], default_model_expr, YTRANSFORM_MAPPING[default_ytransform], cfg['min_segment_size'], cfg['name']) if "models" not in cfg: cfg["models"] = {} for name, m in cfg['models'].items(): m['model_expression'] = m.get( 'model_expression', default_model_expr) m['ytransform'] = m.get('ytransform', default_ytransform) m['fit_filters'] = None m['predict_filters'] = None reg = RegressionModel.from_yaml(yamlio.convert_to_yaml(m, None)) seg._group.add_model(reg) logger.debug( 'loaded segmented regression model {} from yaml'.format(seg.name)) return seg
[ "def", "from_yaml", "(", "cls", ",", "yaml_str", "=", "None", ",", "str_or_buffer", "=", "None", ")", ":", "cfg", "=", "yamlio", ".", "yaml_to_dict", "(", "yaml_str", ",", "str_or_buffer", ")", "default_model_expr", "=", "cfg", "[", "'default_config'", "]", "[", "'model_expression'", "]", "default_ytransform", "=", "cfg", "[", "'default_config'", "]", "[", "'ytransform'", "]", "seg", "=", "cls", "(", "cfg", "[", "'segmentation_col'", "]", ",", "cfg", "[", "'fit_filters'", "]", ",", "cfg", "[", "'predict_filters'", "]", ",", "default_model_expr", ",", "YTRANSFORM_MAPPING", "[", "default_ytransform", "]", ",", "cfg", "[", "'min_segment_size'", "]", ",", "cfg", "[", "'name'", "]", ")", "if", "\"models\"", "not", "in", "cfg", ":", "cfg", "[", "\"models\"", "]", "=", "{", "}", "for", "name", ",", "m", "in", "cfg", "[", "'models'", "]", ".", "items", "(", ")", ":", "m", "[", "'model_expression'", "]", "=", "m", ".", "get", "(", "'model_expression'", ",", "default_model_expr", ")", "m", "[", "'ytransform'", "]", "=", "m", ".", "get", "(", "'ytransform'", ",", "default_ytransform", ")", "m", "[", "'fit_filters'", "]", "=", "None", "m", "[", "'predict_filters'", "]", "=", "None", "reg", "=", "RegressionModel", ".", "from_yaml", "(", "yamlio", ".", "convert_to_yaml", "(", "m", ",", "None", ")", ")", "seg", ".", "_group", ".", "add_model", "(", "reg", ")", "logger", ".", "debug", "(", "'loaded segmented regression model {} from yaml'", ".", "format", "(", "seg", ".", "name", ")", ")", "return", "seg" ]
Create a SegmentedRegressionModel instance from a saved YAML configuration. Arguments are mutally exclusive. Parameters ---------- yaml_str : str, optional A YAML string from which to load model. str_or_buffer : str or file like, optional File name or buffer from which to load YAML. Returns ------- SegmentedRegressionModel
[ "Create", "a", "SegmentedRegressionModel", "instance", "from", "a", "saved", "YAML", "configuration", ".", "Arguments", "are", "mutally", "exclusive", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/regression.py#L726-L768
3,007
UDST/urbansim
urbansim/models/regression.py
SegmentedRegressionModel.add_segment
def add_segment(self, name, model_expression=None, ytransform='default'): """ Add a new segment with its own model expression and ytransform. Parameters ---------- name : Segment name. Must match a segment in the groupby of the data. model_expression : str or dict, optional A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. If not given the default model will be used, which must not be None. ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. If not given the default ytransform will be used. """ if not model_expression: if self.default_model_expr is None: raise ValueError( 'No default model available, ' 'you must supply a model experssion.') model_expression = self.default_model_expr if ytransform == 'default': ytransform = self.default_ytransform # no fit or predict filters, we'll take care of that this side. self._group.add_model_from_params( name, None, None, model_expression, ytransform) logger.debug('added segment {} to model {}'.format(name, self.name))
python
def add_segment(self, name, model_expression=None, ytransform='default'): """ Add a new segment with its own model expression and ytransform. Parameters ---------- name : Segment name. Must match a segment in the groupby of the data. model_expression : str or dict, optional A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. If not given the default model will be used, which must not be None. ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. If not given the default ytransform will be used. """ if not model_expression: if self.default_model_expr is None: raise ValueError( 'No default model available, ' 'you must supply a model experssion.') model_expression = self.default_model_expr if ytransform == 'default': ytransform = self.default_ytransform # no fit or predict filters, we'll take care of that this side. self._group.add_model_from_params( name, None, None, model_expression, ytransform) logger.debug('added segment {} to model {}'.format(name, self.name))
[ "def", "add_segment", "(", "self", ",", "name", ",", "model_expression", "=", "None", ",", "ytransform", "=", "'default'", ")", ":", "if", "not", "model_expression", ":", "if", "self", ".", "default_model_expr", "is", "None", ":", "raise", "ValueError", "(", "'No default model available, '", "'you must supply a model experssion.'", ")", "model_expression", "=", "self", ".", "default_model_expr", "if", "ytransform", "==", "'default'", ":", "ytransform", "=", "self", ".", "default_ytransform", "# no fit or predict filters, we'll take care of that this side.", "self", ".", "_group", ".", "add_model_from_params", "(", "name", ",", "None", ",", "None", ",", "model_expression", ",", "ytransform", ")", "logger", ".", "debug", "(", "'added segment {} to model {}'", ".", "format", "(", "name", ",", "self", ".", "name", ")", ")" ]
Add a new segment with its own model expression and ytransform. Parameters ---------- name : Segment name. Must match a segment in the groupby of the data. model_expression : str or dict, optional A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. If not given the default model will be used, which must not be None. ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. If not given the default ytransform will be used.
[ "Add", "a", "new", "segment", "with", "its", "own", "model", "expression", "and", "ytransform", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/regression.py#L770-L806
3,008
UDST/urbansim
urbansim/models/regression.py
SegmentedRegressionModel.fit
def fit(self, data, debug=False): """ Fit each segment. Segments that have not already been explicitly added will be automatically added with default model and ytransform. Parameters ---------- data : pandas.DataFrame Must have a column with the same name as `segmentation_col`. debug : bool If set to true will pass debug to the fit method of each model. Returns ------- fits : dict of statsmodels.regression.linear_model.OLSResults Keys are the segment names. """ data = util.apply_filter_query(data, self.fit_filters) unique = data[self.segmentation_col].unique() value_counts = data[self.segmentation_col].value_counts() # Remove any existing segments that may no longer have counterparts # in the data. This can happen when loading a saved model and then # calling this method with data that no longer has segments that # were there the last time this was called. gone = set(self._group.models) - set(unique) for g in gone: del self._group.models[g] for x in unique: if x not in self._group.models and \ value_counts[x] > self.min_segment_size: self.add_segment(x) with log_start_finish( 'fitting models in segmented model {}'.format(self.name), logger): return self._group.fit(data, debug=debug)
python
def fit(self, data, debug=False): """ Fit each segment. Segments that have not already been explicitly added will be automatically added with default model and ytransform. Parameters ---------- data : pandas.DataFrame Must have a column with the same name as `segmentation_col`. debug : bool If set to true will pass debug to the fit method of each model. Returns ------- fits : dict of statsmodels.regression.linear_model.OLSResults Keys are the segment names. """ data = util.apply_filter_query(data, self.fit_filters) unique = data[self.segmentation_col].unique() value_counts = data[self.segmentation_col].value_counts() # Remove any existing segments that may no longer have counterparts # in the data. This can happen when loading a saved model and then # calling this method with data that no longer has segments that # were there the last time this was called. gone = set(self._group.models) - set(unique) for g in gone: del self._group.models[g] for x in unique: if x not in self._group.models and \ value_counts[x] > self.min_segment_size: self.add_segment(x) with log_start_finish( 'fitting models in segmented model {}'.format(self.name), logger): return self._group.fit(data, debug=debug)
[ "def", "fit", "(", "self", ",", "data", ",", "debug", "=", "False", ")", ":", "data", "=", "util", ".", "apply_filter_query", "(", "data", ",", "self", ".", "fit_filters", ")", "unique", "=", "data", "[", "self", ".", "segmentation_col", "]", ".", "unique", "(", ")", "value_counts", "=", "data", "[", "self", ".", "segmentation_col", "]", ".", "value_counts", "(", ")", "# Remove any existing segments that may no longer have counterparts", "# in the data. This can happen when loading a saved model and then", "# calling this method with data that no longer has segments that", "# were there the last time this was called.", "gone", "=", "set", "(", "self", ".", "_group", ".", "models", ")", "-", "set", "(", "unique", ")", "for", "g", "in", "gone", ":", "del", "self", ".", "_group", ".", "models", "[", "g", "]", "for", "x", "in", "unique", ":", "if", "x", "not", "in", "self", ".", "_group", ".", "models", "and", "value_counts", "[", "x", "]", ">", "self", ".", "min_segment_size", ":", "self", ".", "add_segment", "(", "x", ")", "with", "log_start_finish", "(", "'fitting models in segmented model {}'", ".", "format", "(", "self", ".", "name", ")", ",", "logger", ")", ":", "return", "self", ".", "_group", ".", "fit", "(", "data", ",", "debug", "=", "debug", ")" ]
Fit each segment. Segments that have not already been explicitly added will be automatically added with default model and ytransform. Parameters ---------- data : pandas.DataFrame Must have a column with the same name as `segmentation_col`. debug : bool If set to true will pass debug to the fit method of each model. Returns ------- fits : dict of statsmodels.regression.linear_model.OLSResults Keys are the segment names.
[ "Fit", "each", "segment", ".", "Segments", "that", "have", "not", "already", "been", "explicitly", "added", "will", "be", "automatically", "added", "with", "default", "model", "and", "ytransform", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/regression.py#L808-L847
3,009
UDST/urbansim
urbansim/models/regression.py
SegmentedRegressionModel.columns_used
def columns_used(self): """ Returns all the columns used across all models in the group for filtering and in the model expression. """ return list(tz.unique(tz.concatv( util.columns_in_filters(self.fit_filters), util.columns_in_filters(self.predict_filters), util.columns_in_formula(self.default_model_expr), self._group.columns_used(), [self.segmentation_col])))
python
def columns_used(self): """ Returns all the columns used across all models in the group for filtering and in the model expression. """ return list(tz.unique(tz.concatv( util.columns_in_filters(self.fit_filters), util.columns_in_filters(self.predict_filters), util.columns_in_formula(self.default_model_expr), self._group.columns_used(), [self.segmentation_col])))
[ "def", "columns_used", "(", "self", ")", ":", "return", "list", "(", "tz", ".", "unique", "(", "tz", ".", "concatv", "(", "util", ".", "columns_in_filters", "(", "self", ".", "fit_filters", ")", ",", "util", ".", "columns_in_filters", "(", "self", ".", "predict_filters", ")", ",", "util", ".", "columns_in_formula", "(", "self", ".", "default_model_expr", ")", ",", "self", ".", "_group", ".", "columns_used", "(", ")", ",", "[", "self", ".", "segmentation_col", "]", ")", ")", ")" ]
Returns all the columns used across all models in the group for filtering and in the model expression.
[ "Returns", "all", "the", "columns", "used", "across", "all", "models", "in", "the", "group", "for", "filtering", "and", "in", "the", "model", "expression", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/regression.py#L956-L967
3,010
UDST/urbansim
urbansim/models/relocation.py
find_movers
def find_movers(choosers, rates, rate_column): """ Returns an array of the indexes of the `choosers` that are slated to move. Parameters ---------- choosers : pandas.DataFrame Table of agents from which to find movers. rates : pandas.DataFrame Table of relocation rates. Index is unused. Other columns describe filters on the `choosers` table so that different segments can have different relocation rates. Columns that ends with '_max' will be used to create a "less than" filters, columns that end with '_min' will be used to create "greater than or equal to" filters. A column with no suffix will be used to make an 'equal to' filter. An example `rates` structure: age_of_head_max age_of_head_min nan 65 65 40 In this example the `choosers` table would need to have an 'age_of_head' column on which to filter. nan should be used to flag filters that do not apply in a given row. rate_column : object Name of column in `rates` table that has relocation rates. Returns ------- movers : pandas.Index Suitable for indexing `choosers` by index. """ logger.debug('start: find movers for relocation') relocation_rates = pd.Series( np.zeros(len(choosers)), index=choosers.index) for _, row in rates.iterrows(): indexes = util.filter_table(choosers, row, ignore={rate_column}).index relocation_rates.loc[indexes] = row[rate_column] movers = relocation_rates.index[ relocation_rates > np.random.random(len(choosers))] logger.debug('picked {} movers for relocation'.format(len(movers))) logger.debug('finish: find movers for relocation') return movers
python
def find_movers(choosers, rates, rate_column): """ Returns an array of the indexes of the `choosers` that are slated to move. Parameters ---------- choosers : pandas.DataFrame Table of agents from which to find movers. rates : pandas.DataFrame Table of relocation rates. Index is unused. Other columns describe filters on the `choosers` table so that different segments can have different relocation rates. Columns that ends with '_max' will be used to create a "less than" filters, columns that end with '_min' will be used to create "greater than or equal to" filters. A column with no suffix will be used to make an 'equal to' filter. An example `rates` structure: age_of_head_max age_of_head_min nan 65 65 40 In this example the `choosers` table would need to have an 'age_of_head' column on which to filter. nan should be used to flag filters that do not apply in a given row. rate_column : object Name of column in `rates` table that has relocation rates. Returns ------- movers : pandas.Index Suitable for indexing `choosers` by index. """ logger.debug('start: find movers for relocation') relocation_rates = pd.Series( np.zeros(len(choosers)), index=choosers.index) for _, row in rates.iterrows(): indexes = util.filter_table(choosers, row, ignore={rate_column}).index relocation_rates.loc[indexes] = row[rate_column] movers = relocation_rates.index[ relocation_rates > np.random.random(len(choosers))] logger.debug('picked {} movers for relocation'.format(len(movers))) logger.debug('finish: find movers for relocation') return movers
[ "def", "find_movers", "(", "choosers", ",", "rates", ",", "rate_column", ")", ":", "logger", ".", "debug", "(", "'start: find movers for relocation'", ")", "relocation_rates", "=", "pd", ".", "Series", "(", "np", ".", "zeros", "(", "len", "(", "choosers", ")", ")", ",", "index", "=", "choosers", ".", "index", ")", "for", "_", ",", "row", "in", "rates", ".", "iterrows", "(", ")", ":", "indexes", "=", "util", ".", "filter_table", "(", "choosers", ",", "row", ",", "ignore", "=", "{", "rate_column", "}", ")", ".", "index", "relocation_rates", ".", "loc", "[", "indexes", "]", "=", "row", "[", "rate_column", "]", "movers", "=", "relocation_rates", ".", "index", "[", "relocation_rates", ">", "np", ".", "random", ".", "random", "(", "len", "(", "choosers", ")", ")", "]", "logger", ".", "debug", "(", "'picked {} movers for relocation'", ".", "format", "(", "len", "(", "movers", ")", ")", ")", "logger", ".", "debug", "(", "'finish: find movers for relocation'", ")", "return", "movers" ]
Returns an array of the indexes of the `choosers` that are slated to move. Parameters ---------- choosers : pandas.DataFrame Table of agents from which to find movers. rates : pandas.DataFrame Table of relocation rates. Index is unused. Other columns describe filters on the `choosers` table so that different segments can have different relocation rates. Columns that ends with '_max' will be used to create a "less than" filters, columns that end with '_min' will be used to create "greater than or equal to" filters. A column with no suffix will be used to make an 'equal to' filter. An example `rates` structure: age_of_head_max age_of_head_min nan 65 65 40 In this example the `choosers` table would need to have an 'age_of_head' column on which to filter. nan should be used to flag filters that do not apply in a given row. rate_column : object Name of column in `rates` table that has relocation rates. Returns ------- movers : pandas.Index Suitable for indexing `choosers` by index.
[ "Returns", "an", "array", "of", "the", "indexes", "of", "the", "choosers", "that", "are", "slated", "to", "move", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/relocation.py#L16-L67
3,011
UDST/urbansim
urbansim/models/supplydemand.py
_calculate_adjustment
def _calculate_adjustment( lcm, choosers, alternatives, alt_segmenter, clip_change_low, clip_change_high, multiplier_func=None): """ Calculate adjustments to prices to compensate for supply and demand effects. Parameters ---------- lcm : LocationChoiceModel Used to calculate the probability of agents choosing among alternatives. Must be fully configured and fitted. choosers : pandas.DataFrame alternatives : pandas.DataFrame alt_segmenter : pandas.Series Will be used to segment alternatives and probabilities to do comparisons of supply and demand by submarket. clip_change_low : float The minimum amount by which to multiply prices each iteration. clip_change_high : float The maximum amount by which to multiply prices each iteration. multiplier_func : function (returns Series, boolean) A function which takes separate demand and supply Series and returns a tuple where the first item is a Series with the ratio of new price to old price (all indexes should be the same) - by default the ratio of demand to supply is the ratio of the new price to the old price. The second return value is a boolean which when True tells this module to stop looping (that convergence has been satisfied) Returns ------- alts_muliplier : pandas.Series Same index as `alternatives`, values clipped to `clip_change_low` and `clip_change_high`. submarkets_multiplier : pandas.Series Index is unique values from `alt_segmenter`, values are the ratio of demand / supply for each segment in `alt_segmenter`. finished : boolean boolean indicator that this adjustment should be considered the final adjustment (if True). If false, the iterative algorithm should continue. """ logger.debug('start: calculate supply and demand price adjustment ratio') # probabilities of agents choosing * number of agents = demand demand = lcm.summed_probabilities(choosers, alternatives) # group by submarket demand = demand.groupby(alt_segmenter.loc[demand.index].values).sum() # number of alternatives supply = alt_segmenter.value_counts() if multiplier_func is not None: multiplier, finished = multiplier_func(demand, supply) else: multiplier, finished = (demand / supply), False multiplier = multiplier.clip(clip_change_low, clip_change_high) # broadcast multiplier back to alternatives index alts_muliplier = multiplier.loc[alt_segmenter] alts_muliplier.index = alt_segmenter.index logger.debug( ('finish: calculate supply and demand price adjustment multiplier ' 'with mean multiplier {}').format(multiplier.mean())) return alts_muliplier, multiplier, finished
python
def _calculate_adjustment( lcm, choosers, alternatives, alt_segmenter, clip_change_low, clip_change_high, multiplier_func=None): """ Calculate adjustments to prices to compensate for supply and demand effects. Parameters ---------- lcm : LocationChoiceModel Used to calculate the probability of agents choosing among alternatives. Must be fully configured and fitted. choosers : pandas.DataFrame alternatives : pandas.DataFrame alt_segmenter : pandas.Series Will be used to segment alternatives and probabilities to do comparisons of supply and demand by submarket. clip_change_low : float The minimum amount by which to multiply prices each iteration. clip_change_high : float The maximum amount by which to multiply prices each iteration. multiplier_func : function (returns Series, boolean) A function which takes separate demand and supply Series and returns a tuple where the first item is a Series with the ratio of new price to old price (all indexes should be the same) - by default the ratio of demand to supply is the ratio of the new price to the old price. The second return value is a boolean which when True tells this module to stop looping (that convergence has been satisfied) Returns ------- alts_muliplier : pandas.Series Same index as `alternatives`, values clipped to `clip_change_low` and `clip_change_high`. submarkets_multiplier : pandas.Series Index is unique values from `alt_segmenter`, values are the ratio of demand / supply for each segment in `alt_segmenter`. finished : boolean boolean indicator that this adjustment should be considered the final adjustment (if True). If false, the iterative algorithm should continue. """ logger.debug('start: calculate supply and demand price adjustment ratio') # probabilities of agents choosing * number of agents = demand demand = lcm.summed_probabilities(choosers, alternatives) # group by submarket demand = demand.groupby(alt_segmenter.loc[demand.index].values).sum() # number of alternatives supply = alt_segmenter.value_counts() if multiplier_func is not None: multiplier, finished = multiplier_func(demand, supply) else: multiplier, finished = (demand / supply), False multiplier = multiplier.clip(clip_change_low, clip_change_high) # broadcast multiplier back to alternatives index alts_muliplier = multiplier.loc[alt_segmenter] alts_muliplier.index = alt_segmenter.index logger.debug( ('finish: calculate supply and demand price adjustment multiplier ' 'with mean multiplier {}').format(multiplier.mean())) return alts_muliplier, multiplier, finished
[ "def", "_calculate_adjustment", "(", "lcm", ",", "choosers", ",", "alternatives", ",", "alt_segmenter", ",", "clip_change_low", ",", "clip_change_high", ",", "multiplier_func", "=", "None", ")", ":", "logger", ".", "debug", "(", "'start: calculate supply and demand price adjustment ratio'", ")", "# probabilities of agents choosing * number of agents = demand", "demand", "=", "lcm", ".", "summed_probabilities", "(", "choosers", ",", "alternatives", ")", "# group by submarket", "demand", "=", "demand", ".", "groupby", "(", "alt_segmenter", ".", "loc", "[", "demand", ".", "index", "]", ".", "values", ")", ".", "sum", "(", ")", "# number of alternatives", "supply", "=", "alt_segmenter", ".", "value_counts", "(", ")", "if", "multiplier_func", "is", "not", "None", ":", "multiplier", ",", "finished", "=", "multiplier_func", "(", "demand", ",", "supply", ")", "else", ":", "multiplier", ",", "finished", "=", "(", "demand", "/", "supply", ")", ",", "False", "multiplier", "=", "multiplier", ".", "clip", "(", "clip_change_low", ",", "clip_change_high", ")", "# broadcast multiplier back to alternatives index", "alts_muliplier", "=", "multiplier", ".", "loc", "[", "alt_segmenter", "]", "alts_muliplier", ".", "index", "=", "alt_segmenter", ".", "index", "logger", ".", "debug", "(", "(", "'finish: calculate supply and demand price adjustment multiplier '", "'with mean multiplier {}'", ")", ".", "format", "(", "multiplier", ".", "mean", "(", ")", ")", ")", "return", "alts_muliplier", ",", "multiplier", ",", "finished" ]
Calculate adjustments to prices to compensate for supply and demand effects. Parameters ---------- lcm : LocationChoiceModel Used to calculate the probability of agents choosing among alternatives. Must be fully configured and fitted. choosers : pandas.DataFrame alternatives : pandas.DataFrame alt_segmenter : pandas.Series Will be used to segment alternatives and probabilities to do comparisons of supply and demand by submarket. clip_change_low : float The minimum amount by which to multiply prices each iteration. clip_change_high : float The maximum amount by which to multiply prices each iteration. multiplier_func : function (returns Series, boolean) A function which takes separate demand and supply Series and returns a tuple where the first item is a Series with the ratio of new price to old price (all indexes should be the same) - by default the ratio of demand to supply is the ratio of the new price to the old price. The second return value is a boolean which when True tells this module to stop looping (that convergence has been satisfied) Returns ------- alts_muliplier : pandas.Series Same index as `alternatives`, values clipped to `clip_change_low` and `clip_change_high`. submarkets_multiplier : pandas.Series Index is unique values from `alt_segmenter`, values are the ratio of demand / supply for each segment in `alt_segmenter`. finished : boolean boolean indicator that this adjustment should be considered the final adjustment (if True). If false, the iterative algorithm should continue.
[ "Calculate", "adjustments", "to", "prices", "to", "compensate", "for", "supply", "and", "demand", "effects", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/supplydemand.py#L15-L81
3,012
UDST/urbansim
urbansim/models/supplydemand.py
supply_and_demand
def supply_and_demand( lcm, choosers, alternatives, alt_segmenter, price_col, base_multiplier=None, clip_change_low=0.75, clip_change_high=1.25, iterations=5, multiplier_func=None): """ Adjust real estate prices to compensate for supply and demand effects. Parameters ---------- lcm : LocationChoiceModel Used to calculate the probability of agents choosing among alternatives. Must be fully configured and fitted. choosers : pandas.DataFrame alternatives : pandas.DataFrame alt_segmenter : str, array, or pandas.Series Will be used to segment alternatives and probabilities to do comparisons of supply and demand by submarket. If a string, it is expected to be the name of a column in `alternatives`. If a Series it should have the same index as `alternatives`. price_col : str The name of the column in `alternatives` that corresponds to price. This column is what is adjusted by this model. base_multiplier : pandas.Series, optional A series describing a starting multiplier for submarket prices. Index should be submarket IDs. clip_change_low : float, optional The minimum amount by which to multiply prices each iteration. clip_change_high : float, optional The maximum amount by which to multiply prices each iteration. iterations : int, optional Number of times to update prices based on supply/demand comparisons. multiplier_func : function (returns Series, boolean) A function which takes separate demand and supply Series and returns a tuple where the first item is a Series with the ratio of new price to old price (all indexes should be the same) - by default the ratio of demand to supply is the ratio of the new price to the old price. The second return value is a boolean which when True tells this module to stop looping (that convergence has been satisfied) Returns ------- new_prices : pandas.Series Equivalent of the `price_col` in `alternatives`. submarkets_ratios : pandas.Series Price adjustment ratio for each submarket. If `base_multiplier` is given this will be a cummulative multiplier including the `base_multiplier` and the multipliers calculated for this year. """ logger.debug('start: calculating supply and demand price adjustment') # copy alternatives so we don't modify the user's original alternatives = alternatives.copy() # if alt_segmenter is a string, get the actual column for segmenting demand if isinstance(alt_segmenter, str): alt_segmenter = alternatives[alt_segmenter] elif isinstance(alt_segmenter, np.array): alt_segmenter = pd.Series(alt_segmenter, index=alternatives.index) choosers, alternatives = lcm.apply_predict_filters(choosers, alternatives) alt_segmenter = alt_segmenter.loc[alternatives.index] # check base ratio and apply it to prices if given if base_multiplier is not None: bm = base_multiplier.loc[alt_segmenter] bm.index = alt_segmenter.index alternatives[price_col] = alternatives[price_col] * bm base_multiplier = base_multiplier.copy() for _ in range(iterations): alts_muliplier, submarkets_multiplier, finished = _calculate_adjustment( lcm, choosers, alternatives, alt_segmenter, clip_change_low, clip_change_high, multiplier_func=multiplier_func) alternatives[price_col] = alternatives[price_col] * alts_muliplier # might need to initialize this for holding cumulative multiplier if base_multiplier is None: base_multiplier = pd.Series( np.ones(len(submarkets_multiplier)), index=submarkets_multiplier.index) base_multiplier *= submarkets_multiplier if finished: break logger.debug('finish: calculating supply and demand price adjustment') return alternatives[price_col], base_multiplier
python
def supply_and_demand( lcm, choosers, alternatives, alt_segmenter, price_col, base_multiplier=None, clip_change_low=0.75, clip_change_high=1.25, iterations=5, multiplier_func=None): """ Adjust real estate prices to compensate for supply and demand effects. Parameters ---------- lcm : LocationChoiceModel Used to calculate the probability of agents choosing among alternatives. Must be fully configured and fitted. choosers : pandas.DataFrame alternatives : pandas.DataFrame alt_segmenter : str, array, or pandas.Series Will be used to segment alternatives and probabilities to do comparisons of supply and demand by submarket. If a string, it is expected to be the name of a column in `alternatives`. If a Series it should have the same index as `alternatives`. price_col : str The name of the column in `alternatives` that corresponds to price. This column is what is adjusted by this model. base_multiplier : pandas.Series, optional A series describing a starting multiplier for submarket prices. Index should be submarket IDs. clip_change_low : float, optional The minimum amount by which to multiply prices each iteration. clip_change_high : float, optional The maximum amount by which to multiply prices each iteration. iterations : int, optional Number of times to update prices based on supply/demand comparisons. multiplier_func : function (returns Series, boolean) A function which takes separate demand and supply Series and returns a tuple where the first item is a Series with the ratio of new price to old price (all indexes should be the same) - by default the ratio of demand to supply is the ratio of the new price to the old price. The second return value is a boolean which when True tells this module to stop looping (that convergence has been satisfied) Returns ------- new_prices : pandas.Series Equivalent of the `price_col` in `alternatives`. submarkets_ratios : pandas.Series Price adjustment ratio for each submarket. If `base_multiplier` is given this will be a cummulative multiplier including the `base_multiplier` and the multipliers calculated for this year. """ logger.debug('start: calculating supply and demand price adjustment') # copy alternatives so we don't modify the user's original alternatives = alternatives.copy() # if alt_segmenter is a string, get the actual column for segmenting demand if isinstance(alt_segmenter, str): alt_segmenter = alternatives[alt_segmenter] elif isinstance(alt_segmenter, np.array): alt_segmenter = pd.Series(alt_segmenter, index=alternatives.index) choosers, alternatives = lcm.apply_predict_filters(choosers, alternatives) alt_segmenter = alt_segmenter.loc[alternatives.index] # check base ratio and apply it to prices if given if base_multiplier is not None: bm = base_multiplier.loc[alt_segmenter] bm.index = alt_segmenter.index alternatives[price_col] = alternatives[price_col] * bm base_multiplier = base_multiplier.copy() for _ in range(iterations): alts_muliplier, submarkets_multiplier, finished = _calculate_adjustment( lcm, choosers, alternatives, alt_segmenter, clip_change_low, clip_change_high, multiplier_func=multiplier_func) alternatives[price_col] = alternatives[price_col] * alts_muliplier # might need to initialize this for holding cumulative multiplier if base_multiplier is None: base_multiplier = pd.Series( np.ones(len(submarkets_multiplier)), index=submarkets_multiplier.index) base_multiplier *= submarkets_multiplier if finished: break logger.debug('finish: calculating supply and demand price adjustment') return alternatives[price_col], base_multiplier
[ "def", "supply_and_demand", "(", "lcm", ",", "choosers", ",", "alternatives", ",", "alt_segmenter", ",", "price_col", ",", "base_multiplier", "=", "None", ",", "clip_change_low", "=", "0.75", ",", "clip_change_high", "=", "1.25", ",", "iterations", "=", "5", ",", "multiplier_func", "=", "None", ")", ":", "logger", ".", "debug", "(", "'start: calculating supply and demand price adjustment'", ")", "# copy alternatives so we don't modify the user's original", "alternatives", "=", "alternatives", ".", "copy", "(", ")", "# if alt_segmenter is a string, get the actual column for segmenting demand", "if", "isinstance", "(", "alt_segmenter", ",", "str", ")", ":", "alt_segmenter", "=", "alternatives", "[", "alt_segmenter", "]", "elif", "isinstance", "(", "alt_segmenter", ",", "np", ".", "array", ")", ":", "alt_segmenter", "=", "pd", ".", "Series", "(", "alt_segmenter", ",", "index", "=", "alternatives", ".", "index", ")", "choosers", ",", "alternatives", "=", "lcm", ".", "apply_predict_filters", "(", "choosers", ",", "alternatives", ")", "alt_segmenter", "=", "alt_segmenter", ".", "loc", "[", "alternatives", ".", "index", "]", "# check base ratio and apply it to prices if given", "if", "base_multiplier", "is", "not", "None", ":", "bm", "=", "base_multiplier", ".", "loc", "[", "alt_segmenter", "]", "bm", ".", "index", "=", "alt_segmenter", ".", "index", "alternatives", "[", "price_col", "]", "=", "alternatives", "[", "price_col", "]", "*", "bm", "base_multiplier", "=", "base_multiplier", ".", "copy", "(", ")", "for", "_", "in", "range", "(", "iterations", ")", ":", "alts_muliplier", ",", "submarkets_multiplier", ",", "finished", "=", "_calculate_adjustment", "(", "lcm", ",", "choosers", ",", "alternatives", ",", "alt_segmenter", ",", "clip_change_low", ",", "clip_change_high", ",", "multiplier_func", "=", "multiplier_func", ")", "alternatives", "[", "price_col", "]", "=", "alternatives", "[", "price_col", "]", "*", "alts_muliplier", "# might need to initialize this for holding cumulative multiplier", "if", "base_multiplier", "is", "None", ":", "base_multiplier", "=", "pd", ".", "Series", "(", "np", ".", "ones", "(", "len", "(", "submarkets_multiplier", ")", ")", ",", "index", "=", "submarkets_multiplier", ".", "index", ")", "base_multiplier", "*=", "submarkets_multiplier", "if", "finished", ":", "break", "logger", ".", "debug", "(", "'finish: calculating supply and demand price adjustment'", ")", "return", "alternatives", "[", "price_col", "]", ",", "base_multiplier" ]
Adjust real estate prices to compensate for supply and demand effects. Parameters ---------- lcm : LocationChoiceModel Used to calculate the probability of agents choosing among alternatives. Must be fully configured and fitted. choosers : pandas.DataFrame alternatives : pandas.DataFrame alt_segmenter : str, array, or pandas.Series Will be used to segment alternatives and probabilities to do comparisons of supply and demand by submarket. If a string, it is expected to be the name of a column in `alternatives`. If a Series it should have the same index as `alternatives`. price_col : str The name of the column in `alternatives` that corresponds to price. This column is what is adjusted by this model. base_multiplier : pandas.Series, optional A series describing a starting multiplier for submarket prices. Index should be submarket IDs. clip_change_low : float, optional The minimum amount by which to multiply prices each iteration. clip_change_high : float, optional The maximum amount by which to multiply prices each iteration. iterations : int, optional Number of times to update prices based on supply/demand comparisons. multiplier_func : function (returns Series, boolean) A function which takes separate demand and supply Series and returns a tuple where the first item is a Series with the ratio of new price to old price (all indexes should be the same) - by default the ratio of demand to supply is the ratio of the new price to the old price. The second return value is a boolean which when True tells this module to stop looping (that convergence has been satisfied) Returns ------- new_prices : pandas.Series Equivalent of the `price_col` in `alternatives`. submarkets_ratios : pandas.Series Price adjustment ratio for each submarket. If `base_multiplier` is given this will be a cummulative multiplier including the `base_multiplier` and the multipliers calculated for this year.
[ "Adjust", "real", "estate", "prices", "to", "compensate", "for", "supply", "and", "demand", "effects", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/models/supplydemand.py#L84-L173
3,013
UDST/urbansim
urbansim/developer/developer.py
Developer._max_form
def _max_form(f, colname): """ Assumes dataframe with hierarchical columns with first index equal to the use and second index equal to the attribute. e.g. f.columns equal to:: mixedoffice building_cost building_revenue building_size max_profit max_profit_far total_cost industrial building_cost building_revenue building_size max_profit max_profit_far total_cost """ df = f.stack(level=0)[[colname]].stack().unstack(level=1).reset_index(level=1, drop=True) return df.idxmax(axis=1)
python
def _max_form(f, colname): """ Assumes dataframe with hierarchical columns with first index equal to the use and second index equal to the attribute. e.g. f.columns equal to:: mixedoffice building_cost building_revenue building_size max_profit max_profit_far total_cost industrial building_cost building_revenue building_size max_profit max_profit_far total_cost """ df = f.stack(level=0)[[colname]].stack().unstack(level=1).reset_index(level=1, drop=True) return df.idxmax(axis=1)
[ "def", "_max_form", "(", "f", ",", "colname", ")", ":", "df", "=", "f", ".", "stack", "(", "level", "=", "0", ")", "[", "[", "colname", "]", "]", ".", "stack", "(", ")", ".", "unstack", "(", "level", "=", "1", ")", ".", "reset_index", "(", "level", "=", "1", ",", "drop", "=", "True", ")", "return", "df", ".", "idxmax", "(", "axis", "=", "1", ")" ]
Assumes dataframe with hierarchical columns with first index equal to the use and second index equal to the attribute. e.g. f.columns equal to:: mixedoffice building_cost building_revenue building_size max_profit max_profit_far total_cost industrial building_cost building_revenue building_size max_profit max_profit_far total_cost
[ "Assumes", "dataframe", "with", "hierarchical", "columns", "with", "first", "index", "equal", "to", "the", "use", "and", "second", "index", "equal", "to", "the", "attribute", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/developer/developer.py#L23-L44
3,014
UDST/urbansim
urbansim/developer/developer.py
Developer.keep_form_with_max_profit
def keep_form_with_max_profit(self, forms=None): """ This converts the dataframe, which shows all profitable forms, to the form with the greatest profit, so that more profitable forms outcompete less profitable forms. Parameters ---------- forms: list of strings List of forms which compete which other. Can leave some out. Returns ------- Nothing. Goes from a multi-index to a single index with only the most profitable form. """ f = self.feasibility if forms is not None: f = f[forms] if len(f) > 0: mu = self._max_form(f, "max_profit") indexes = [tuple(x) for x in mu.reset_index().values] else: indexes = [] df = f.stack(level=0).loc[indexes] df.index.names = ["parcel_id", "form"] df = df.reset_index(level=1) return df
python
def keep_form_with_max_profit(self, forms=None): """ This converts the dataframe, which shows all profitable forms, to the form with the greatest profit, so that more profitable forms outcompete less profitable forms. Parameters ---------- forms: list of strings List of forms which compete which other. Can leave some out. Returns ------- Nothing. Goes from a multi-index to a single index with only the most profitable form. """ f = self.feasibility if forms is not None: f = f[forms] if len(f) > 0: mu = self._max_form(f, "max_profit") indexes = [tuple(x) for x in mu.reset_index().values] else: indexes = [] df = f.stack(level=0).loc[indexes] df.index.names = ["parcel_id", "form"] df = df.reset_index(level=1) return df
[ "def", "keep_form_with_max_profit", "(", "self", ",", "forms", "=", "None", ")", ":", "f", "=", "self", ".", "feasibility", "if", "forms", "is", "not", "None", ":", "f", "=", "f", "[", "forms", "]", "if", "len", "(", "f", ")", ">", "0", ":", "mu", "=", "self", ".", "_max_form", "(", "f", ",", "\"max_profit\"", ")", "indexes", "=", "[", "tuple", "(", "x", ")", "for", "x", "in", "mu", ".", "reset_index", "(", ")", ".", "values", "]", "else", ":", "indexes", "=", "[", "]", "df", "=", "f", ".", "stack", "(", "level", "=", "0", ")", ".", "loc", "[", "indexes", "]", "df", ".", "index", ".", "names", "=", "[", "\"parcel_id\"", ",", "\"form\"", "]", "df", "=", "df", ".", "reset_index", "(", "level", "=", "1", ")", "return", "df" ]
This converts the dataframe, which shows all profitable forms, to the form with the greatest profit, so that more profitable forms outcompete less profitable forms. Parameters ---------- forms: list of strings List of forms which compete which other. Can leave some out. Returns ------- Nothing. Goes from a multi-index to a single index with only the most profitable form.
[ "This", "converts", "the", "dataframe", "which", "shows", "all", "profitable", "forms", "to", "the", "form", "with", "the", "greatest", "profit", "so", "that", "more", "profitable", "forms", "outcompete", "less", "profitable", "forms", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/developer/developer.py#L46-L75
3,015
UDST/urbansim
urbansim/developer/developer.py
Developer.compute_units_to_build
def compute_units_to_build(num_agents, num_units, target_vacancy): """ Compute number of units to build to match target vacancy. Parameters ---------- num_agents : int number of agents that need units in the region num_units : int number of units in buildings target_vacancy : float (0-1.0) target vacancy rate Returns ------- number_of_units : int the number of units that need to be built """ print("Number of agents: {:,}".format(num_agents)) print("Number of agent spaces: {:,}".format(int(num_units))) assert target_vacancy < 1.0 target_units = int(max(num_agents / (1 - target_vacancy) - num_units, 0)) print("Current vacancy = {:.2f}" .format(1 - num_agents / float(num_units))) print("Target vacancy = {:.2f}, target of new units = {:,}" .format(target_vacancy, target_units)) return target_units
python
def compute_units_to_build(num_agents, num_units, target_vacancy): """ Compute number of units to build to match target vacancy. Parameters ---------- num_agents : int number of agents that need units in the region num_units : int number of units in buildings target_vacancy : float (0-1.0) target vacancy rate Returns ------- number_of_units : int the number of units that need to be built """ print("Number of agents: {:,}".format(num_agents)) print("Number of agent spaces: {:,}".format(int(num_units))) assert target_vacancy < 1.0 target_units = int(max(num_agents / (1 - target_vacancy) - num_units, 0)) print("Current vacancy = {:.2f}" .format(1 - num_agents / float(num_units))) print("Target vacancy = {:.2f}, target of new units = {:,}" .format(target_vacancy, target_units)) return target_units
[ "def", "compute_units_to_build", "(", "num_agents", ",", "num_units", ",", "target_vacancy", ")", ":", "print", "(", "\"Number of agents: {:,}\"", ".", "format", "(", "num_agents", ")", ")", "print", "(", "\"Number of agent spaces: {:,}\"", ".", "format", "(", "int", "(", "num_units", ")", ")", ")", "assert", "target_vacancy", "<", "1.0", "target_units", "=", "int", "(", "max", "(", "num_agents", "/", "(", "1", "-", "target_vacancy", ")", "-", "num_units", ",", "0", ")", ")", "print", "(", "\"Current vacancy = {:.2f}\"", ".", "format", "(", "1", "-", "num_agents", "/", "float", "(", "num_units", ")", ")", ")", "print", "(", "\"Target vacancy = {:.2f}, target of new units = {:,}\"", ".", "format", "(", "target_vacancy", ",", "target_units", ")", ")", "return", "target_units" ]
Compute number of units to build to match target vacancy. Parameters ---------- num_agents : int number of agents that need units in the region num_units : int number of units in buildings target_vacancy : float (0-1.0) target vacancy rate Returns ------- number_of_units : int the number of units that need to be built
[ "Compute", "number", "of", "units", "to", "build", "to", "match", "target", "vacancy", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/developer/developer.py#L78-L104
3,016
UDST/urbansim
urbansim/developer/developer.py
Developer.pick
def pick(self, form, target_units, parcel_size, ave_unit_size, current_units, max_parcel_size=200000, min_unit_size=400, drop_after_build=True, residential=True, bldg_sqft_per_job=400.0, profit_to_prob_func=None): """ Choose the buildings from the list that are feasible to build in order to match the specified demand. Parameters ---------- form : string or list One or more of the building forms from the pro forma specification - e.g. "residential" or "mixedresidential" - these are configuration parameters passed previously to the pro forma. If more than one form is passed the forms compete with each other (based on profitability) for which one gets built in order to meet demand. target_units : int The number of units to build. For non-residential buildings this should be passed as the number of job spaces that need to be created. parcel_size : series The size of the parcels. This was passed to feasibility as well, but should be passed here as well. Index should be parcel_ids. ave_unit_size : series The average residential unit size around each parcel - this is indexed by parcel, but is usually a disaggregated version of a zonal or accessibility aggregation. bldg_sqft_per_job : float (default 400.0) The average square feet per job for this building form. min_unit_size : float Values less than this number in ave_unit_size will be set to this number. Deals with cases where units are currently not built. current_units : series The current number of units on the parcel. Is used to compute the net number of units produced by the developer model. Many times the developer model is redeveloping units (demolishing them) and is trying to meet a total number of net units produced. max_parcel_size : float Parcels larger than this size will not be considered for development - usually large parcels should be specified manually in a development projects table. drop_after_build : bool Whether or not to drop parcels from consideration after they have been chosen for development. Usually this is true so as to not develop the same parcel twice. residential: bool If creating non-residential buildings set this to false and developer will fill in job_spaces rather than residential_units profit_to_prob_func: function As there are so many ways to turn the development feasibility into a probability to select it for building, the user may pass a function which takes the feasibility dataframe and returns a series of probabilities. If no function is passed, the behavior of this method will not change Returns ------- None if thar are no feasible buildings new_buildings : dataframe DataFrame of buildings to add. These buildings are rows from the DataFrame that is returned from feasibility. """ if len(self.feasibility) == 0: # no feasible buildings, might as well bail return if form is None: df = self.feasibility elif isinstance(form, list): df = self.keep_form_with_max_profit(form) else: df = self.feasibility[form] # feasible buildings only for this building type df = df[df.max_profit_far > 0] ave_unit_size[ave_unit_size < min_unit_size] = min_unit_size df["ave_unit_size"] = ave_unit_size df["parcel_size"] = parcel_size df['current_units'] = current_units df = df[df.parcel_size < max_parcel_size] df['residential_units'] = (df.residential_sqft / df.ave_unit_size).round() df['job_spaces'] = (df.non_residential_sqft / bldg_sqft_per_job).round() if residential: df['net_units'] = df.residential_units - df.current_units else: df['net_units'] = df.job_spaces - df.current_units df = df[df.net_units > 0] if len(df) == 0: print("WARNING THERE ARE NO FEASIBLE BUILDING TO CHOOSE FROM") return # print "Describe of net units\n", df.net_units.describe() print("Sum of net units that are profitable: {:,}" .format(int(df.net_units.sum()))) if profit_to_prob_func: p = profit_to_prob_func(df) else: df['max_profit_per_size'] = df.max_profit / df.parcel_size p = df.max_profit_per_size.values / df.max_profit_per_size.sum() if df.net_units.sum() < target_units: print("WARNING THERE WERE NOT ENOUGH PROFITABLE UNITS TO", "MATCH DEMAND") build_idx = df.index.values elif target_units <= 0: build_idx = [] else: # we don't know how many developments we will need, as they differ in net_units. # If all developments have net_units of 1 than we need target_units of them. # So we choose the smaller of available developments and target_units. choices = np.random.choice(df.index.values, size=min(len(df.index), target_units), replace=False, p=p) tot_units = df.net_units.loc[choices].values.cumsum() ind = int(np.searchsorted(tot_units, target_units, side="left")) + 1 build_idx = choices[:ind] if drop_after_build: self.feasibility = self.feasibility.drop(build_idx) new_df = df.loc[build_idx] new_df.index.name = "parcel_id" return new_df.reset_index()
python
def pick(self, form, target_units, parcel_size, ave_unit_size, current_units, max_parcel_size=200000, min_unit_size=400, drop_after_build=True, residential=True, bldg_sqft_per_job=400.0, profit_to_prob_func=None): """ Choose the buildings from the list that are feasible to build in order to match the specified demand. Parameters ---------- form : string or list One or more of the building forms from the pro forma specification - e.g. "residential" or "mixedresidential" - these are configuration parameters passed previously to the pro forma. If more than one form is passed the forms compete with each other (based on profitability) for which one gets built in order to meet demand. target_units : int The number of units to build. For non-residential buildings this should be passed as the number of job spaces that need to be created. parcel_size : series The size of the parcels. This was passed to feasibility as well, but should be passed here as well. Index should be parcel_ids. ave_unit_size : series The average residential unit size around each parcel - this is indexed by parcel, but is usually a disaggregated version of a zonal or accessibility aggregation. bldg_sqft_per_job : float (default 400.0) The average square feet per job for this building form. min_unit_size : float Values less than this number in ave_unit_size will be set to this number. Deals with cases where units are currently not built. current_units : series The current number of units on the parcel. Is used to compute the net number of units produced by the developer model. Many times the developer model is redeveloping units (demolishing them) and is trying to meet a total number of net units produced. max_parcel_size : float Parcels larger than this size will not be considered for development - usually large parcels should be specified manually in a development projects table. drop_after_build : bool Whether or not to drop parcels from consideration after they have been chosen for development. Usually this is true so as to not develop the same parcel twice. residential: bool If creating non-residential buildings set this to false and developer will fill in job_spaces rather than residential_units profit_to_prob_func: function As there are so many ways to turn the development feasibility into a probability to select it for building, the user may pass a function which takes the feasibility dataframe and returns a series of probabilities. If no function is passed, the behavior of this method will not change Returns ------- None if thar are no feasible buildings new_buildings : dataframe DataFrame of buildings to add. These buildings are rows from the DataFrame that is returned from feasibility. """ if len(self.feasibility) == 0: # no feasible buildings, might as well bail return if form is None: df = self.feasibility elif isinstance(form, list): df = self.keep_form_with_max_profit(form) else: df = self.feasibility[form] # feasible buildings only for this building type df = df[df.max_profit_far > 0] ave_unit_size[ave_unit_size < min_unit_size] = min_unit_size df["ave_unit_size"] = ave_unit_size df["parcel_size"] = parcel_size df['current_units'] = current_units df = df[df.parcel_size < max_parcel_size] df['residential_units'] = (df.residential_sqft / df.ave_unit_size).round() df['job_spaces'] = (df.non_residential_sqft / bldg_sqft_per_job).round() if residential: df['net_units'] = df.residential_units - df.current_units else: df['net_units'] = df.job_spaces - df.current_units df = df[df.net_units > 0] if len(df) == 0: print("WARNING THERE ARE NO FEASIBLE BUILDING TO CHOOSE FROM") return # print "Describe of net units\n", df.net_units.describe() print("Sum of net units that are profitable: {:,}" .format(int(df.net_units.sum()))) if profit_to_prob_func: p = profit_to_prob_func(df) else: df['max_profit_per_size'] = df.max_profit / df.parcel_size p = df.max_profit_per_size.values / df.max_profit_per_size.sum() if df.net_units.sum() < target_units: print("WARNING THERE WERE NOT ENOUGH PROFITABLE UNITS TO", "MATCH DEMAND") build_idx = df.index.values elif target_units <= 0: build_idx = [] else: # we don't know how many developments we will need, as they differ in net_units. # If all developments have net_units of 1 than we need target_units of them. # So we choose the smaller of available developments and target_units. choices = np.random.choice(df.index.values, size=min(len(df.index), target_units), replace=False, p=p) tot_units = df.net_units.loc[choices].values.cumsum() ind = int(np.searchsorted(tot_units, target_units, side="left")) + 1 build_idx = choices[:ind] if drop_after_build: self.feasibility = self.feasibility.drop(build_idx) new_df = df.loc[build_idx] new_df.index.name = "parcel_id" return new_df.reset_index()
[ "def", "pick", "(", "self", ",", "form", ",", "target_units", ",", "parcel_size", ",", "ave_unit_size", ",", "current_units", ",", "max_parcel_size", "=", "200000", ",", "min_unit_size", "=", "400", ",", "drop_after_build", "=", "True", ",", "residential", "=", "True", ",", "bldg_sqft_per_job", "=", "400.0", ",", "profit_to_prob_func", "=", "None", ")", ":", "if", "len", "(", "self", ".", "feasibility", ")", "==", "0", ":", "# no feasible buildings, might as well bail", "return", "if", "form", "is", "None", ":", "df", "=", "self", ".", "feasibility", "elif", "isinstance", "(", "form", ",", "list", ")", ":", "df", "=", "self", ".", "keep_form_with_max_profit", "(", "form", ")", "else", ":", "df", "=", "self", ".", "feasibility", "[", "form", "]", "# feasible buildings only for this building type", "df", "=", "df", "[", "df", ".", "max_profit_far", ">", "0", "]", "ave_unit_size", "[", "ave_unit_size", "<", "min_unit_size", "]", "=", "min_unit_size", "df", "[", "\"ave_unit_size\"", "]", "=", "ave_unit_size", "df", "[", "\"parcel_size\"", "]", "=", "parcel_size", "df", "[", "'current_units'", "]", "=", "current_units", "df", "=", "df", "[", "df", ".", "parcel_size", "<", "max_parcel_size", "]", "df", "[", "'residential_units'", "]", "=", "(", "df", ".", "residential_sqft", "/", "df", ".", "ave_unit_size", ")", ".", "round", "(", ")", "df", "[", "'job_spaces'", "]", "=", "(", "df", ".", "non_residential_sqft", "/", "bldg_sqft_per_job", ")", ".", "round", "(", ")", "if", "residential", ":", "df", "[", "'net_units'", "]", "=", "df", ".", "residential_units", "-", "df", ".", "current_units", "else", ":", "df", "[", "'net_units'", "]", "=", "df", ".", "job_spaces", "-", "df", ".", "current_units", "df", "=", "df", "[", "df", ".", "net_units", ">", "0", "]", "if", "len", "(", "df", ")", "==", "0", ":", "print", "(", "\"WARNING THERE ARE NO FEASIBLE BUILDING TO CHOOSE FROM\"", ")", "return", "# print \"Describe of net units\\n\", df.net_units.describe()", "print", "(", "\"Sum of net units that are profitable: {:,}\"", ".", "format", "(", "int", "(", "df", ".", "net_units", ".", "sum", "(", ")", ")", ")", ")", "if", "profit_to_prob_func", ":", "p", "=", "profit_to_prob_func", "(", "df", ")", "else", ":", "df", "[", "'max_profit_per_size'", "]", "=", "df", ".", "max_profit", "/", "df", ".", "parcel_size", "p", "=", "df", ".", "max_profit_per_size", ".", "values", "/", "df", ".", "max_profit_per_size", ".", "sum", "(", ")", "if", "df", ".", "net_units", ".", "sum", "(", ")", "<", "target_units", ":", "print", "(", "\"WARNING THERE WERE NOT ENOUGH PROFITABLE UNITS TO\"", ",", "\"MATCH DEMAND\"", ")", "build_idx", "=", "df", ".", "index", ".", "values", "elif", "target_units", "<=", "0", ":", "build_idx", "=", "[", "]", "else", ":", "# we don't know how many developments we will need, as they differ in net_units.", "# If all developments have net_units of 1 than we need target_units of them.", "# So we choose the smaller of available developments and target_units.", "choices", "=", "np", ".", "random", ".", "choice", "(", "df", ".", "index", ".", "values", ",", "size", "=", "min", "(", "len", "(", "df", ".", "index", ")", ",", "target_units", ")", ",", "replace", "=", "False", ",", "p", "=", "p", ")", "tot_units", "=", "df", ".", "net_units", ".", "loc", "[", "choices", "]", ".", "values", ".", "cumsum", "(", ")", "ind", "=", "int", "(", "np", ".", "searchsorted", "(", "tot_units", ",", "target_units", ",", "side", "=", "\"left\"", ")", ")", "+", "1", "build_idx", "=", "choices", "[", ":", "ind", "]", "if", "drop_after_build", ":", "self", ".", "feasibility", "=", "self", ".", "feasibility", ".", "drop", "(", "build_idx", ")", "new_df", "=", "df", ".", "loc", "[", "build_idx", "]", "new_df", ".", "index", ".", "name", "=", "\"parcel_id\"", "return", "new_df", ".", "reset_index", "(", ")" ]
Choose the buildings from the list that are feasible to build in order to match the specified demand. Parameters ---------- form : string or list One or more of the building forms from the pro forma specification - e.g. "residential" or "mixedresidential" - these are configuration parameters passed previously to the pro forma. If more than one form is passed the forms compete with each other (based on profitability) for which one gets built in order to meet demand. target_units : int The number of units to build. For non-residential buildings this should be passed as the number of job spaces that need to be created. parcel_size : series The size of the parcels. This was passed to feasibility as well, but should be passed here as well. Index should be parcel_ids. ave_unit_size : series The average residential unit size around each parcel - this is indexed by parcel, but is usually a disaggregated version of a zonal or accessibility aggregation. bldg_sqft_per_job : float (default 400.0) The average square feet per job for this building form. min_unit_size : float Values less than this number in ave_unit_size will be set to this number. Deals with cases where units are currently not built. current_units : series The current number of units on the parcel. Is used to compute the net number of units produced by the developer model. Many times the developer model is redeveloping units (demolishing them) and is trying to meet a total number of net units produced. max_parcel_size : float Parcels larger than this size will not be considered for development - usually large parcels should be specified manually in a development projects table. drop_after_build : bool Whether or not to drop parcels from consideration after they have been chosen for development. Usually this is true so as to not develop the same parcel twice. residential: bool If creating non-residential buildings set this to false and developer will fill in job_spaces rather than residential_units profit_to_prob_func: function As there are so many ways to turn the development feasibility into a probability to select it for building, the user may pass a function which takes the feasibility dataframe and returns a series of probabilities. If no function is passed, the behavior of this method will not change Returns ------- None if thar are no feasible buildings new_buildings : dataframe DataFrame of buildings to add. These buildings are rows from the DataFrame that is returned from feasibility.
[ "Choose", "the", "buildings", "from", "the", "list", "that", "are", "feasible", "to", "build", "in", "order", "to", "match", "the", "specified", "demand", "." ]
79f815a6503e109f50be270cee92d0f4a34f49ef
https://github.com/UDST/urbansim/blob/79f815a6503e109f50be270cee92d0f4a34f49ef/urbansim/developer/developer.py#L106-L231
3,017
linkedin/luminol
src/luminol/__init__.py
Luminol._analyze_root_causes
def _analyze_root_causes(self): """ Conduct root cause analysis. The first metric of the list is taken as the root cause right now. """ causes = {} for a in self.anomalies: try: causes[a] = self.correlations[a][0] except IndexError: raise exceptions.InvalidDataFormat('luminol.luminol: dict correlations contains empty list.') self.causes = causes
python
def _analyze_root_causes(self): """ Conduct root cause analysis. The first metric of the list is taken as the root cause right now. """ causes = {} for a in self.anomalies: try: causes[a] = self.correlations[a][0] except IndexError: raise exceptions.InvalidDataFormat('luminol.luminol: dict correlations contains empty list.') self.causes = causes
[ "def", "_analyze_root_causes", "(", "self", ")", ":", "causes", "=", "{", "}", "for", "a", "in", "self", ".", "anomalies", ":", "try", ":", "causes", "[", "a", "]", "=", "self", ".", "correlations", "[", "a", "]", "[", "0", "]", "except", "IndexError", ":", "raise", "exceptions", ".", "InvalidDataFormat", "(", "'luminol.luminol: dict correlations contains empty list.'", ")", "self", ".", "causes", "=", "causes" ]
Conduct root cause analysis. The first metric of the list is taken as the root cause right now.
[ "Conduct", "root", "cause", "analysis", ".", "The", "first", "metric", "of", "the", "list", "is", "taken", "as", "the", "root", "cause", "right", "now", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/__init__.py#L32-L43
3,018
linkedin/luminol
src/luminol/correlator.py
Correlator._sanity_check
def _sanity_check(self): """ Check if the time series have more than two data points. """ if len(self.time_series_a) < 2 or len(self.time_series_b) < 2: raise exceptions.NotEnoughDataPoints('luminol.Correlator: Too few data points!')
python
def _sanity_check(self): """ Check if the time series have more than two data points. """ if len(self.time_series_a) < 2 or len(self.time_series_b) < 2: raise exceptions.NotEnoughDataPoints('luminol.Correlator: Too few data points!')
[ "def", "_sanity_check", "(", "self", ")", ":", "if", "len", "(", "self", ".", "time_series_a", ")", "<", "2", "or", "len", "(", "self", ".", "time_series_b", ")", "<", "2", ":", "raise", "exceptions", ".", "NotEnoughDataPoints", "(", "'luminol.Correlator: Too few data points!'", ")" ]
Check if the time series have more than two data points.
[ "Check", "if", "the", "time", "series", "have", "more", "than", "two", "data", "points", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/correlator.py#L92-L97
3,019
linkedin/luminol
src/luminol/correlator.py
Correlator._correlate
def _correlate(self): """ Run correlation algorithm. """ a = self.algorithm(**self.algorithm_params) self.correlation_result = a.run()
python
def _correlate(self): """ Run correlation algorithm. """ a = self.algorithm(**self.algorithm_params) self.correlation_result = a.run()
[ "def", "_correlate", "(", "self", ")", ":", "a", "=", "self", ".", "algorithm", "(", "*", "*", "self", ".", "algorithm_params", ")", "self", ".", "correlation_result", "=", "a", ".", "run", "(", ")" ]
Run correlation algorithm.
[ "Run", "correlation", "algorithm", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/correlator.py#L99-L104
3,020
linkedin/luminol
demo/src/rca.py
RCA._analyze
def _analyze(self): """ Analyzes if a matrix has anomalies. If any anomaly is found, determine if the matrix correlates with any other matrixes. To be implemented. """ output = defaultdict(list) output_by_name = defaultdict(list) scores = self.anomaly_detector.get_all_scores() if self.anomalies: for anomaly in self.anomalies: metrix_scores = scores start_t, end_t = anomaly.get_time_window() t = anomaly.exact_timestamp # Compute extended start timestamp and extended end timestamp. room = (end_t - start_t) / 2 if not room: room = 30 extended_start_t = start_t - room extended_end_t = end_t + room metrix_scores_cropped = metrix_scores.crop(extended_start_t, extended_end_t) # Adjust the two timestamps if not enough data points are included. while len(metrix_scores_cropped) < 2: extended_start_t = extended_start_t - room extended_end_t = extended_end_t + room metrix_scores_cropped = metrix_scores.crop(extended_start_t, extended_end_t) # Correlate with other metrics for entry in self.related_metrices: try: entry_correlation_result = Correlator(self.metrix, entry, time_period=(extended_start_t, extended_end_t), use_anomaly_score=True).get_correlation_result() record = extended_start_t, extended_end_t, entry_correlation_result.__dict__, entry record_by_name = extended_start_t, extended_end_t, entry_correlation_result.__dict__ output[t].append(record) output_by_name[entry].append(record_by_name) except exceptions.NotEnoughDataPoints: pass self.output = output self.output_by_name = output_by_name
python
def _analyze(self): """ Analyzes if a matrix has anomalies. If any anomaly is found, determine if the matrix correlates with any other matrixes. To be implemented. """ output = defaultdict(list) output_by_name = defaultdict(list) scores = self.anomaly_detector.get_all_scores() if self.anomalies: for anomaly in self.anomalies: metrix_scores = scores start_t, end_t = anomaly.get_time_window() t = anomaly.exact_timestamp # Compute extended start timestamp and extended end timestamp. room = (end_t - start_t) / 2 if not room: room = 30 extended_start_t = start_t - room extended_end_t = end_t + room metrix_scores_cropped = metrix_scores.crop(extended_start_t, extended_end_t) # Adjust the two timestamps if not enough data points are included. while len(metrix_scores_cropped) < 2: extended_start_t = extended_start_t - room extended_end_t = extended_end_t + room metrix_scores_cropped = metrix_scores.crop(extended_start_t, extended_end_t) # Correlate with other metrics for entry in self.related_metrices: try: entry_correlation_result = Correlator(self.metrix, entry, time_period=(extended_start_t, extended_end_t), use_anomaly_score=True).get_correlation_result() record = extended_start_t, extended_end_t, entry_correlation_result.__dict__, entry record_by_name = extended_start_t, extended_end_t, entry_correlation_result.__dict__ output[t].append(record) output_by_name[entry].append(record_by_name) except exceptions.NotEnoughDataPoints: pass self.output = output self.output_by_name = output_by_name
[ "def", "_analyze", "(", "self", ")", ":", "output", "=", "defaultdict", "(", "list", ")", "output_by_name", "=", "defaultdict", "(", "list", ")", "scores", "=", "self", ".", "anomaly_detector", ".", "get_all_scores", "(", ")", "if", "self", ".", "anomalies", ":", "for", "anomaly", "in", "self", ".", "anomalies", ":", "metrix_scores", "=", "scores", "start_t", ",", "end_t", "=", "anomaly", ".", "get_time_window", "(", ")", "t", "=", "anomaly", ".", "exact_timestamp", "# Compute extended start timestamp and extended end timestamp.", "room", "=", "(", "end_t", "-", "start_t", ")", "/", "2", "if", "not", "room", ":", "room", "=", "30", "extended_start_t", "=", "start_t", "-", "room", "extended_end_t", "=", "end_t", "+", "room", "metrix_scores_cropped", "=", "metrix_scores", ".", "crop", "(", "extended_start_t", ",", "extended_end_t", ")", "# Adjust the two timestamps if not enough data points are included.", "while", "len", "(", "metrix_scores_cropped", ")", "<", "2", ":", "extended_start_t", "=", "extended_start_t", "-", "room", "extended_end_t", "=", "extended_end_t", "+", "room", "metrix_scores_cropped", "=", "metrix_scores", ".", "crop", "(", "extended_start_t", ",", "extended_end_t", ")", "# Correlate with other metrics", "for", "entry", "in", "self", ".", "related_metrices", ":", "try", ":", "entry_correlation_result", "=", "Correlator", "(", "self", ".", "metrix", ",", "entry", ",", "time_period", "=", "(", "extended_start_t", ",", "extended_end_t", ")", ",", "use_anomaly_score", "=", "True", ")", ".", "get_correlation_result", "(", ")", "record", "=", "extended_start_t", ",", "extended_end_t", ",", "entry_correlation_result", ".", "__dict__", ",", "entry", "record_by_name", "=", "extended_start_t", ",", "extended_end_t", ",", "entry_correlation_result", ".", "__dict__", "output", "[", "t", "]", ".", "append", "(", "record", ")", "output_by_name", "[", "entry", "]", ".", "append", "(", "record_by_name", ")", "except", "exceptions", ".", "NotEnoughDataPoints", ":", "pass", "self", ".", "output", "=", "output", "self", ".", "output_by_name", "=", "output_by_name" ]
Analyzes if a matrix has anomalies. If any anomaly is found, determine if the matrix correlates with any other matrixes. To be implemented.
[ "Analyzes", "if", "a", "matrix", "has", "anomalies", ".", "If", "any", "anomaly", "is", "found", "determine", "if", "the", "matrix", "correlates", "with", "any", "other", "matrixes", ".", "To", "be", "implemented", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/demo/src/rca.py#L49-L92
3,021
linkedin/luminol
src/luminol/algorithms/anomaly_detector_algorithms/default_detector.py
DefaultDetector._set_scores
def _set_scores(self): """ Set anomaly scores using a weighted sum. """ anom_scores_ema = self.exp_avg_detector.run() anom_scores_deri = self.derivative_detector.run() anom_scores = {} for timestamp in anom_scores_ema.timestamps: # Compute a weighted anomaly score. anom_scores[timestamp] = max(anom_scores_ema[timestamp], anom_scores_ema[timestamp] * DEFAULT_DETECTOR_EMA_WEIGHT + anom_scores_deri[timestamp] * (1 - DEFAULT_DETECTOR_EMA_WEIGHT)) # If ema score is significant enough, take the bigger one of the weighted score and deri score. if anom_scores_ema[timestamp] > DEFAULT_DETECTOR_EMA_SIGNIFICANT: anom_scores[timestamp] = max(anom_scores[timestamp], anom_scores_deri[timestamp]) self.anom_scores = TimeSeries(self._denoise_scores(anom_scores))
python
def _set_scores(self): """ Set anomaly scores using a weighted sum. """ anom_scores_ema = self.exp_avg_detector.run() anom_scores_deri = self.derivative_detector.run() anom_scores = {} for timestamp in anom_scores_ema.timestamps: # Compute a weighted anomaly score. anom_scores[timestamp] = max(anom_scores_ema[timestamp], anom_scores_ema[timestamp] * DEFAULT_DETECTOR_EMA_WEIGHT + anom_scores_deri[timestamp] * (1 - DEFAULT_DETECTOR_EMA_WEIGHT)) # If ema score is significant enough, take the bigger one of the weighted score and deri score. if anom_scores_ema[timestamp] > DEFAULT_DETECTOR_EMA_SIGNIFICANT: anom_scores[timestamp] = max(anom_scores[timestamp], anom_scores_deri[timestamp]) self.anom_scores = TimeSeries(self._denoise_scores(anom_scores))
[ "def", "_set_scores", "(", "self", ")", ":", "anom_scores_ema", "=", "self", ".", "exp_avg_detector", ".", "run", "(", ")", "anom_scores_deri", "=", "self", ".", "derivative_detector", ".", "run", "(", ")", "anom_scores", "=", "{", "}", "for", "timestamp", "in", "anom_scores_ema", ".", "timestamps", ":", "# Compute a weighted anomaly score.", "anom_scores", "[", "timestamp", "]", "=", "max", "(", "anom_scores_ema", "[", "timestamp", "]", ",", "anom_scores_ema", "[", "timestamp", "]", "*", "DEFAULT_DETECTOR_EMA_WEIGHT", "+", "anom_scores_deri", "[", "timestamp", "]", "*", "(", "1", "-", "DEFAULT_DETECTOR_EMA_WEIGHT", ")", ")", "# If ema score is significant enough, take the bigger one of the weighted score and deri score.", "if", "anom_scores_ema", "[", "timestamp", "]", ">", "DEFAULT_DETECTOR_EMA_SIGNIFICANT", ":", "anom_scores", "[", "timestamp", "]", "=", "max", "(", "anom_scores", "[", "timestamp", "]", ",", "anom_scores_deri", "[", "timestamp", "]", ")", "self", ".", "anom_scores", "=", "TimeSeries", "(", "self", ".", "_denoise_scores", "(", "anom_scores", ")", ")" ]
Set anomaly scores using a weighted sum.
[ "Set", "anomaly", "scores", "using", "a", "weighted", "sum", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/algorithms/anomaly_detector_algorithms/default_detector.py#L35-L49
3,022
linkedin/luminol
src/luminol/algorithms/anomaly_detector_algorithms/derivative_detector.py
DerivativeDetector._compute_derivatives
def _compute_derivatives(self): """ Compute derivatives of the time series. """ derivatives = [] for i, (timestamp, value) in enumerate(self.time_series_items): if i > 0: pre_item = self.time_series_items[i - 1] pre_timestamp = pre_item[0] pre_value = pre_item[1] td = timestamp - pre_timestamp derivative = (value - pre_value) / td if td != 0 else value - pre_value derivative = abs(derivative) derivatives.append(derivative) # First timestamp is assigned the same derivative as the second timestamp. if derivatives: derivatives.insert(0, derivatives[0]) self.derivatives = derivatives
python
def _compute_derivatives(self): """ Compute derivatives of the time series. """ derivatives = [] for i, (timestamp, value) in enumerate(self.time_series_items): if i > 0: pre_item = self.time_series_items[i - 1] pre_timestamp = pre_item[0] pre_value = pre_item[1] td = timestamp - pre_timestamp derivative = (value - pre_value) / td if td != 0 else value - pre_value derivative = abs(derivative) derivatives.append(derivative) # First timestamp is assigned the same derivative as the second timestamp. if derivatives: derivatives.insert(0, derivatives[0]) self.derivatives = derivatives
[ "def", "_compute_derivatives", "(", "self", ")", ":", "derivatives", "=", "[", "]", "for", "i", ",", "(", "timestamp", ",", "value", ")", "in", "enumerate", "(", "self", ".", "time_series_items", ")", ":", "if", "i", ">", "0", ":", "pre_item", "=", "self", ".", "time_series_items", "[", "i", "-", "1", "]", "pre_timestamp", "=", "pre_item", "[", "0", "]", "pre_value", "=", "pre_item", "[", "1", "]", "td", "=", "timestamp", "-", "pre_timestamp", "derivative", "=", "(", "value", "-", "pre_value", ")", "/", "td", "if", "td", "!=", "0", "else", "value", "-", "pre_value", "derivative", "=", "abs", "(", "derivative", ")", "derivatives", ".", "append", "(", "derivative", ")", "# First timestamp is assigned the same derivative as the second timestamp.", "if", "derivatives", ":", "derivatives", ".", "insert", "(", "0", ",", "derivatives", "[", "0", "]", ")", "self", ".", "derivatives", "=", "derivatives" ]
Compute derivatives of the time series.
[ "Compute", "derivatives", "of", "the", "time", "series", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/algorithms/anomaly_detector_algorithms/derivative_detector.py#L38-L55
3,023
linkedin/luminol
src/luminol/algorithms/anomaly_detector_algorithms/bitmap_detector.py
BitmapDetector._sanity_check
def _sanity_check(self): """ Check if there are enough data points. """ windows = self.lag_window_size + self.future_window_size if (not self.lag_window_size or not self.future_window_size or self.time_series_length < windows or windows < DEFAULT_BITMAP_MINIMAL_POINTS_IN_WINDOWS): raise exceptions.NotEnoughDataPoints # If window size is too big, too many data points will be assigned a score of 0 in the first lag window # and the last future window. if self.lag_window_size > DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS: self.lag_window_size = DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS if self.future_window_size > DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS: self.future_window_size = DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS
python
def _sanity_check(self): """ Check if there are enough data points. """ windows = self.lag_window_size + self.future_window_size if (not self.lag_window_size or not self.future_window_size or self.time_series_length < windows or windows < DEFAULT_BITMAP_MINIMAL_POINTS_IN_WINDOWS): raise exceptions.NotEnoughDataPoints # If window size is too big, too many data points will be assigned a score of 0 in the first lag window # and the last future window. if self.lag_window_size > DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS: self.lag_window_size = DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS if self.future_window_size > DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS: self.future_window_size = DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS
[ "def", "_sanity_check", "(", "self", ")", ":", "windows", "=", "self", ".", "lag_window_size", "+", "self", ".", "future_window_size", "if", "(", "not", "self", ".", "lag_window_size", "or", "not", "self", ".", "future_window_size", "or", "self", ".", "time_series_length", "<", "windows", "or", "windows", "<", "DEFAULT_BITMAP_MINIMAL_POINTS_IN_WINDOWS", ")", ":", "raise", "exceptions", ".", "NotEnoughDataPoints", "# If window size is too big, too many data points will be assigned a score of 0 in the first lag window", "# and the last future window.", "if", "self", ".", "lag_window_size", ">", "DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS", ":", "self", ".", "lag_window_size", "=", "DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS", "if", "self", ".", "future_window_size", ">", "DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS", ":", "self", ".", "future_window_size", "=", "DEFAULT_BITMAP_MAXIMAL_POINTS_IN_WINDOWS" ]
Check if there are enough data points.
[ "Check", "if", "there", "are", "enough", "data", "points", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/algorithms/anomaly_detector_algorithms/bitmap_detector.py#L60-L73
3,024
linkedin/luminol
src/luminol/algorithms/anomaly_detector_algorithms/bitmap_detector.py
BitmapDetector._generate_SAX
def _generate_SAX(self): """ Generate SAX representation for all values of the time series. """ sections = {} self.value_min = self.time_series.min() self.value_max = self.time_series.max() # Break the whole value range into different sections. section_height = (self.value_max - self.value_min) / self.precision for section_number in range(self.precision): sections[section_number] = self.value_min + section_number * section_height # Generate SAX representation. self.sax = ''.join(self._generate_SAX_single(sections, value) for value in self.time_series.values)
python
def _generate_SAX(self): """ Generate SAX representation for all values of the time series. """ sections = {} self.value_min = self.time_series.min() self.value_max = self.time_series.max() # Break the whole value range into different sections. section_height = (self.value_max - self.value_min) / self.precision for section_number in range(self.precision): sections[section_number] = self.value_min + section_number * section_height # Generate SAX representation. self.sax = ''.join(self._generate_SAX_single(sections, value) for value in self.time_series.values)
[ "def", "_generate_SAX", "(", "self", ")", ":", "sections", "=", "{", "}", "self", ".", "value_min", "=", "self", ".", "time_series", ".", "min", "(", ")", "self", ".", "value_max", "=", "self", ".", "time_series", ".", "max", "(", ")", "# Break the whole value range into different sections.", "section_height", "=", "(", "self", ".", "value_max", "-", "self", ".", "value_min", ")", "/", "self", ".", "precision", "for", "section_number", "in", "range", "(", "self", ".", "precision", ")", ":", "sections", "[", "section_number", "]", "=", "self", ".", "value_min", "+", "section_number", "*", "section_height", "# Generate SAX representation.", "self", ".", "sax", "=", "''", ".", "join", "(", "self", ".", "_generate_SAX_single", "(", "sections", ",", "value", ")", "for", "value", "in", "self", ".", "time_series", ".", "values", ")" ]
Generate SAX representation for all values of the time series.
[ "Generate", "SAX", "representation", "for", "all", "values", "of", "the", "time", "series", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/algorithms/anomaly_detector_algorithms/bitmap_detector.py#L92-L104
3,025
linkedin/luminol
src/luminol/algorithms/anomaly_detector_algorithms/bitmap_detector.py
BitmapDetector._set_scores
def _set_scores(self): """ Compute anomaly scores for the time series by sliding both lagging window and future window. """ anom_scores = {} self._generate_SAX() self._construct_all_SAX_chunk_dict() length = self.time_series_length lws = self.lag_window_size fws = self.future_window_size for i, timestamp in enumerate(self.time_series.timestamps): if i < lws or i > length - fws: anom_scores[timestamp] = 0 else: anom_scores[timestamp] = self._compute_anom_score_between_two_windows(i) self.anom_scores = TimeSeries(self._denoise_scores(anom_scores))
python
def _set_scores(self): """ Compute anomaly scores for the time series by sliding both lagging window and future window. """ anom_scores = {} self._generate_SAX() self._construct_all_SAX_chunk_dict() length = self.time_series_length lws = self.lag_window_size fws = self.future_window_size for i, timestamp in enumerate(self.time_series.timestamps): if i < lws or i > length - fws: anom_scores[timestamp] = 0 else: anom_scores[timestamp] = self._compute_anom_score_between_two_windows(i) self.anom_scores = TimeSeries(self._denoise_scores(anom_scores))
[ "def", "_set_scores", "(", "self", ")", ":", "anom_scores", "=", "{", "}", "self", ".", "_generate_SAX", "(", ")", "self", ".", "_construct_all_SAX_chunk_dict", "(", ")", "length", "=", "self", ".", "time_series_length", "lws", "=", "self", ".", "lag_window_size", "fws", "=", "self", ".", "future_window_size", "for", "i", ",", "timestamp", "in", "enumerate", "(", "self", ".", "time_series", ".", "timestamps", ")", ":", "if", "i", "<", "lws", "or", "i", ">", "length", "-", "fws", ":", "anom_scores", "[", "timestamp", "]", "=", "0", "else", ":", "anom_scores", "[", "timestamp", "]", "=", "self", ".", "_compute_anom_score_between_two_windows", "(", "i", ")", "self", ".", "anom_scores", "=", "TimeSeries", "(", "self", ".", "_denoise_scores", "(", "anom_scores", ")", ")" ]
Compute anomaly scores for the time series by sliding both lagging window and future window.
[ "Compute", "anomaly", "scores", "for", "the", "time", "series", "by", "sliding", "both", "lagging", "window", "and", "future", "window", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/algorithms/anomaly_detector_algorithms/bitmap_detector.py#L196-L212
3,026
linkedin/luminol
src/luminol/algorithms/correlator_algorithms/cross_correlator.py
CrossCorrelator._detect_correlation
def _detect_correlation(self): """ Detect correlation by computing correlation coefficients for all allowed shift steps, then take the maximum. """ correlations = [] shifted_correlations = [] self.time_series_a.normalize() self.time_series_b.normalize() a, b = self.time_series_a.align(self.time_series_b) a_values, b_values = a.values, b.values a_avg, b_avg = a.average(), b.average() a_stdev, b_stdev = a.stdev(), b.stdev() n = len(a) denom = a_stdev * b_stdev * n # Find the maximal shift steps according to the maximal shift seconds. allowed_shift_step = self._find_allowed_shift(a.timestamps) if allowed_shift_step: shift_upper_bound = allowed_shift_step shift_lower_bound = -allowed_shift_step else: shift_upper_bound = 1 shift_lower_bound = 0 for delay in range(shift_lower_bound, shift_upper_bound): delay_in_seconds = a.timestamps[abs(delay)] - a.timestamps[0] if delay < 0: delay_in_seconds = -delay_in_seconds s = 0 for i in range(n): j = i + delay if j < 0 or j >= n: continue else: s += ((a_values[i] - a_avg) * (b_values[j] - b_avg)) r = s / denom if denom != 0 else s correlations.append([delay_in_seconds, r]) # Take shift into account to create a "shifted correlation coefficient". if self.max_shift_milliseconds: shifted_correlations.append(r * (1 + float(delay_in_seconds) / self.max_shift_milliseconds * self.shift_impact)) else: shifted_correlations.append(r) max_correlation = list(max(correlations, key=lambda k: k[1])) max_shifted_correlation = max(shifted_correlations) max_correlation.append(max_shifted_correlation) self.correlation_result = CorrelationResult(*max_correlation)
python
def _detect_correlation(self): """ Detect correlation by computing correlation coefficients for all allowed shift steps, then take the maximum. """ correlations = [] shifted_correlations = [] self.time_series_a.normalize() self.time_series_b.normalize() a, b = self.time_series_a.align(self.time_series_b) a_values, b_values = a.values, b.values a_avg, b_avg = a.average(), b.average() a_stdev, b_stdev = a.stdev(), b.stdev() n = len(a) denom = a_stdev * b_stdev * n # Find the maximal shift steps according to the maximal shift seconds. allowed_shift_step = self._find_allowed_shift(a.timestamps) if allowed_shift_step: shift_upper_bound = allowed_shift_step shift_lower_bound = -allowed_shift_step else: shift_upper_bound = 1 shift_lower_bound = 0 for delay in range(shift_lower_bound, shift_upper_bound): delay_in_seconds = a.timestamps[abs(delay)] - a.timestamps[0] if delay < 0: delay_in_seconds = -delay_in_seconds s = 0 for i in range(n): j = i + delay if j < 0 or j >= n: continue else: s += ((a_values[i] - a_avg) * (b_values[j] - b_avg)) r = s / denom if denom != 0 else s correlations.append([delay_in_seconds, r]) # Take shift into account to create a "shifted correlation coefficient". if self.max_shift_milliseconds: shifted_correlations.append(r * (1 + float(delay_in_seconds) / self.max_shift_milliseconds * self.shift_impact)) else: shifted_correlations.append(r) max_correlation = list(max(correlations, key=lambda k: k[1])) max_shifted_correlation = max(shifted_correlations) max_correlation.append(max_shifted_correlation) self.correlation_result = CorrelationResult(*max_correlation)
[ "def", "_detect_correlation", "(", "self", ")", ":", "correlations", "=", "[", "]", "shifted_correlations", "=", "[", "]", "self", ".", "time_series_a", ".", "normalize", "(", ")", "self", ".", "time_series_b", ".", "normalize", "(", ")", "a", ",", "b", "=", "self", ".", "time_series_a", ".", "align", "(", "self", ".", "time_series_b", ")", "a_values", ",", "b_values", "=", "a", ".", "values", ",", "b", ".", "values", "a_avg", ",", "b_avg", "=", "a", ".", "average", "(", ")", ",", "b", ".", "average", "(", ")", "a_stdev", ",", "b_stdev", "=", "a", ".", "stdev", "(", ")", ",", "b", ".", "stdev", "(", ")", "n", "=", "len", "(", "a", ")", "denom", "=", "a_stdev", "*", "b_stdev", "*", "n", "# Find the maximal shift steps according to the maximal shift seconds.", "allowed_shift_step", "=", "self", ".", "_find_allowed_shift", "(", "a", ".", "timestamps", ")", "if", "allowed_shift_step", ":", "shift_upper_bound", "=", "allowed_shift_step", "shift_lower_bound", "=", "-", "allowed_shift_step", "else", ":", "shift_upper_bound", "=", "1", "shift_lower_bound", "=", "0", "for", "delay", "in", "range", "(", "shift_lower_bound", ",", "shift_upper_bound", ")", ":", "delay_in_seconds", "=", "a", ".", "timestamps", "[", "abs", "(", "delay", ")", "]", "-", "a", ".", "timestamps", "[", "0", "]", "if", "delay", "<", "0", ":", "delay_in_seconds", "=", "-", "delay_in_seconds", "s", "=", "0", "for", "i", "in", "range", "(", "n", ")", ":", "j", "=", "i", "+", "delay", "if", "j", "<", "0", "or", "j", ">=", "n", ":", "continue", "else", ":", "s", "+=", "(", "(", "a_values", "[", "i", "]", "-", "a_avg", ")", "*", "(", "b_values", "[", "j", "]", "-", "b_avg", ")", ")", "r", "=", "s", "/", "denom", "if", "denom", "!=", "0", "else", "s", "correlations", ".", "append", "(", "[", "delay_in_seconds", ",", "r", "]", ")", "# Take shift into account to create a \"shifted correlation coefficient\".", "if", "self", ".", "max_shift_milliseconds", ":", "shifted_correlations", ".", "append", "(", "r", "*", "(", "1", "+", "float", "(", "delay_in_seconds", ")", "/", "self", ".", "max_shift_milliseconds", "*", "self", ".", "shift_impact", ")", ")", "else", ":", "shifted_correlations", ".", "append", "(", "r", ")", "max_correlation", "=", "list", "(", "max", "(", "correlations", ",", "key", "=", "lambda", "k", ":", "k", "[", "1", "]", ")", ")", "max_shifted_correlation", "=", "max", "(", "shifted_correlations", ")", "max_correlation", ".", "append", "(", "max_shifted_correlation", ")", "self", ".", "correlation_result", "=", "CorrelationResult", "(", "*", "max_correlation", ")" ]
Detect correlation by computing correlation coefficients for all allowed shift steps, then take the maximum.
[ "Detect", "correlation", "by", "computing", "correlation", "coefficients", "for", "all", "allowed", "shift", "steps", "then", "take", "the", "maximum", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/algorithms/correlator_algorithms/cross_correlator.py#L39-L83
3,027
linkedin/luminol
src/luminol/algorithms/anomaly_detector_algorithms/exp_avg_detector.py
ExpAvgDetector._compute_anom_data_using_window
def _compute_anom_data_using_window(self): """ Compute anomaly scores using a lagging window. """ anom_scores = {} values = self.time_series.values stdev = numpy.std(values) for i, (timestamp, value) in enumerate(self.time_series_items): if i < self.lag_window_size: anom_score = self._compute_anom_score(values[:i + 1], value) else: anom_score = self._compute_anom_score(values[i - self.lag_window_size: i + 1], value) if stdev: anom_scores[timestamp] = anom_score / stdev else: anom_scores[timestamp] = anom_score self.anom_scores = TimeSeries(self._denoise_scores(anom_scores))
python
def _compute_anom_data_using_window(self): """ Compute anomaly scores using a lagging window. """ anom_scores = {} values = self.time_series.values stdev = numpy.std(values) for i, (timestamp, value) in enumerate(self.time_series_items): if i < self.lag_window_size: anom_score = self._compute_anom_score(values[:i + 1], value) else: anom_score = self._compute_anom_score(values[i - self.lag_window_size: i + 1], value) if stdev: anom_scores[timestamp] = anom_score / stdev else: anom_scores[timestamp] = anom_score self.anom_scores = TimeSeries(self._denoise_scores(anom_scores))
[ "def", "_compute_anom_data_using_window", "(", "self", ")", ":", "anom_scores", "=", "{", "}", "values", "=", "self", ".", "time_series", ".", "values", "stdev", "=", "numpy", ".", "std", "(", "values", ")", "for", "i", ",", "(", "timestamp", ",", "value", ")", "in", "enumerate", "(", "self", ".", "time_series_items", ")", ":", "if", "i", "<", "self", ".", "lag_window_size", ":", "anom_score", "=", "self", ".", "_compute_anom_score", "(", "values", "[", ":", "i", "+", "1", "]", ",", "value", ")", "else", ":", "anom_score", "=", "self", ".", "_compute_anom_score", "(", "values", "[", "i", "-", "self", ".", "lag_window_size", ":", "i", "+", "1", "]", ",", "value", ")", "if", "stdev", ":", "anom_scores", "[", "timestamp", "]", "=", "anom_score", "/", "stdev", "else", ":", "anom_scores", "[", "timestamp", "]", "=", "anom_score", "self", ".", "anom_scores", "=", "TimeSeries", "(", "self", ".", "_denoise_scores", "(", "anom_scores", ")", ")" ]
Compute anomaly scores using a lagging window.
[ "Compute", "anomaly", "scores", "using", "a", "lagging", "window", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/algorithms/anomaly_detector_algorithms/exp_avg_detector.py#L53-L69
3,028
linkedin/luminol
src/luminol/algorithms/anomaly_detector_algorithms/exp_avg_detector.py
ExpAvgDetector._compute_anom_data_decay_all
def _compute_anom_data_decay_all(self): """ Compute anomaly scores using a lagging window covering all the data points before. """ anom_scores = {} values = self.time_series.values ema = utils.compute_ema(self.smoothing_factor, values) stdev = numpy.std(values) for i, (timestamp, value) in enumerate(self.time_series_items): anom_score = abs((value - ema[i]) / stdev) if stdev else value - ema[i] anom_scores[timestamp] = anom_score self.anom_scores = TimeSeries(self._denoise_scores(anom_scores))
python
def _compute_anom_data_decay_all(self): """ Compute anomaly scores using a lagging window covering all the data points before. """ anom_scores = {} values = self.time_series.values ema = utils.compute_ema(self.smoothing_factor, values) stdev = numpy.std(values) for i, (timestamp, value) in enumerate(self.time_series_items): anom_score = abs((value - ema[i]) / stdev) if stdev else value - ema[i] anom_scores[timestamp] = anom_score self.anom_scores = TimeSeries(self._denoise_scores(anom_scores))
[ "def", "_compute_anom_data_decay_all", "(", "self", ")", ":", "anom_scores", "=", "{", "}", "values", "=", "self", ".", "time_series", ".", "values", "ema", "=", "utils", ".", "compute_ema", "(", "self", ".", "smoothing_factor", ",", "values", ")", "stdev", "=", "numpy", ".", "std", "(", "values", ")", "for", "i", ",", "(", "timestamp", ",", "value", ")", "in", "enumerate", "(", "self", ".", "time_series_items", ")", ":", "anom_score", "=", "abs", "(", "(", "value", "-", "ema", "[", "i", "]", ")", "/", "stdev", ")", "if", "stdev", "else", "value", "-", "ema", "[", "i", "]", "anom_scores", "[", "timestamp", "]", "=", "anom_score", "self", ".", "anom_scores", "=", "TimeSeries", "(", "self", ".", "_denoise_scores", "(", "anom_scores", ")", ")" ]
Compute anomaly scores using a lagging window covering all the data points before.
[ "Compute", "anomaly", "scores", "using", "a", "lagging", "window", "covering", "all", "the", "data", "points", "before", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/algorithms/anomaly_detector_algorithms/exp_avg_detector.py#L71-L82
3,029
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries._generic_binary_op
def _generic_binary_op(self, other, op): """ Perform the method operation specified in the op parameter on the values within the instance's time series values and either another time series or a constant number value. :param other: Time series of values or a constant number to use in calculations with instance's time series. :param func op: The method to perform the calculation between the values. :return: :class:`TimeSeries` object. """ output = {} if isinstance(other, TimeSeries): for key, value in self.items(): if key in other: try: result = op(value, other[key]) if result is NotImplemented: other_type = type(other[key]) other_op = vars(other_type).get(op.__name__) if other_op: output[key] = other_op(other_type(value), other[key]) else: output[key] = result except ZeroDivisionError: continue else: for key, value in self.items(): try: result = op(value, other) if result is NotImplemented: other_type = type(other) other_op = vars(other_type).get(op.__name__) if other_op: output[key] = other_op(other_type(value), other) else: output[key] = result except ZeroDivisionError: continue if output: return TimeSeries(output) else: raise ValueError('TimeSeries data was empty or invalid.')
python
def _generic_binary_op(self, other, op): """ Perform the method operation specified in the op parameter on the values within the instance's time series values and either another time series or a constant number value. :param other: Time series of values or a constant number to use in calculations with instance's time series. :param func op: The method to perform the calculation between the values. :return: :class:`TimeSeries` object. """ output = {} if isinstance(other, TimeSeries): for key, value in self.items(): if key in other: try: result = op(value, other[key]) if result is NotImplemented: other_type = type(other[key]) other_op = vars(other_type).get(op.__name__) if other_op: output[key] = other_op(other_type(value), other[key]) else: output[key] = result except ZeroDivisionError: continue else: for key, value in self.items(): try: result = op(value, other) if result is NotImplemented: other_type = type(other) other_op = vars(other_type).get(op.__name__) if other_op: output[key] = other_op(other_type(value), other) else: output[key] = result except ZeroDivisionError: continue if output: return TimeSeries(output) else: raise ValueError('TimeSeries data was empty or invalid.')
[ "def", "_generic_binary_op", "(", "self", ",", "other", ",", "op", ")", ":", "output", "=", "{", "}", "if", "isinstance", "(", "other", ",", "TimeSeries", ")", ":", "for", "key", ",", "value", "in", "self", ".", "items", "(", ")", ":", "if", "key", "in", "other", ":", "try", ":", "result", "=", "op", "(", "value", ",", "other", "[", "key", "]", ")", "if", "result", "is", "NotImplemented", ":", "other_type", "=", "type", "(", "other", "[", "key", "]", ")", "other_op", "=", "vars", "(", "other_type", ")", ".", "get", "(", "op", ".", "__name__", ")", "if", "other_op", ":", "output", "[", "key", "]", "=", "other_op", "(", "other_type", "(", "value", ")", ",", "other", "[", "key", "]", ")", "else", ":", "output", "[", "key", "]", "=", "result", "except", "ZeroDivisionError", ":", "continue", "else", ":", "for", "key", ",", "value", "in", "self", ".", "items", "(", ")", ":", "try", ":", "result", "=", "op", "(", "value", ",", "other", ")", "if", "result", "is", "NotImplemented", ":", "other_type", "=", "type", "(", "other", ")", "other_op", "=", "vars", "(", "other_type", ")", ".", "get", "(", "op", ".", "__name__", ")", "if", "other_op", ":", "output", "[", "key", "]", "=", "other_op", "(", "other_type", "(", "value", ")", ",", "other", ")", "else", ":", "output", "[", "key", "]", "=", "result", "except", "ZeroDivisionError", ":", "continue", "if", "output", ":", "return", "TimeSeries", "(", "output", ")", "else", ":", "raise", "ValueError", "(", "'TimeSeries data was empty or invalid.'", ")" ]
Perform the method operation specified in the op parameter on the values within the instance's time series values and either another time series or a constant number value. :param other: Time series of values or a constant number to use in calculations with instance's time series. :param func op: The method to perform the calculation between the values. :return: :class:`TimeSeries` object.
[ "Perform", "the", "method", "operation", "specified", "in", "the", "op", "parameter", "on", "the", "values", "within", "the", "instance", "s", "time", "series", "values", "and", "either", "another", "time", "series", "or", "a", "constant", "number", "value", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L150-L192
3,030
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries._get_value_type
def _get_value_type(self, other): """ Get the object type of the value within the values portion of the time series. :return: `type` of object """ if self.values: return type(self.values[0]) elif isinstance(other, TimeSeries) and other.values: return type(other.values[0]) else: raise ValueError('Cannot perform arithmetic on empty time series.')
python
def _get_value_type(self, other): """ Get the object type of the value within the values portion of the time series. :return: `type` of object """ if self.values: return type(self.values[0]) elif isinstance(other, TimeSeries) and other.values: return type(other.values[0]) else: raise ValueError('Cannot perform arithmetic on empty time series.')
[ "def", "_get_value_type", "(", "self", ",", "other", ")", ":", "if", "self", ".", "values", ":", "return", "type", "(", "self", ".", "values", "[", "0", "]", ")", "elif", "isinstance", "(", "other", ",", "TimeSeries", ")", "and", "other", ".", "values", ":", "return", "type", "(", "other", ".", "values", "[", "0", "]", ")", "else", ":", "raise", "ValueError", "(", "'Cannot perform arithmetic on empty time series.'", ")" ]
Get the object type of the value within the values portion of the time series. :return: `type` of object
[ "Get", "the", "object", "type", "of", "the", "value", "within", "the", "values", "portion", "of", "the", "time", "series", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L194-L205
3,031
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.smooth
def smooth(self, smoothing_factor): """ return a new time series which is a exponential smoothed version of the original data series. soomth forward once, backward once, and then take the average. :param float smoothing_factor: smoothing factor :return: :class:`TimeSeries` object. """ forward_smooth = {} backward_smooth = {} output = {} if self: pre = self.values[0] next = self.values[-1] for key, value in self.items(): forward_smooth[key] = smoothing_factor * pre + (1 - smoothing_factor) * value pre = forward_smooth[key] for key, value in reversed(self.items()): backward_smooth[key] = smoothing_factor * next + (1 - smoothing_factor) * value next = backward_smooth[key] for key in forward_smooth.keys(): output[key] = (forward_smooth[key] + backward_smooth[key]) / 2 return TimeSeries(output)
python
def smooth(self, smoothing_factor): """ return a new time series which is a exponential smoothed version of the original data series. soomth forward once, backward once, and then take the average. :param float smoothing_factor: smoothing factor :return: :class:`TimeSeries` object. """ forward_smooth = {} backward_smooth = {} output = {} if self: pre = self.values[0] next = self.values[-1] for key, value in self.items(): forward_smooth[key] = smoothing_factor * pre + (1 - smoothing_factor) * value pre = forward_smooth[key] for key, value in reversed(self.items()): backward_smooth[key] = smoothing_factor * next + (1 - smoothing_factor) * value next = backward_smooth[key] for key in forward_smooth.keys(): output[key] = (forward_smooth[key] + backward_smooth[key]) / 2 return TimeSeries(output)
[ "def", "smooth", "(", "self", ",", "smoothing_factor", ")", ":", "forward_smooth", "=", "{", "}", "backward_smooth", "=", "{", "}", "output", "=", "{", "}", "if", "self", ":", "pre", "=", "self", ".", "values", "[", "0", "]", "next", "=", "self", ".", "values", "[", "-", "1", "]", "for", "key", ",", "value", "in", "self", ".", "items", "(", ")", ":", "forward_smooth", "[", "key", "]", "=", "smoothing_factor", "*", "pre", "+", "(", "1", "-", "smoothing_factor", ")", "*", "value", "pre", "=", "forward_smooth", "[", "key", "]", "for", "key", ",", "value", "in", "reversed", "(", "self", ".", "items", "(", ")", ")", ":", "backward_smooth", "[", "key", "]", "=", "smoothing_factor", "*", "next", "+", "(", "1", "-", "smoothing_factor", ")", "*", "value", "next", "=", "backward_smooth", "[", "key", "]", "for", "key", "in", "forward_smooth", ".", "keys", "(", ")", ":", "output", "[", "key", "]", "=", "(", "forward_smooth", "[", "key", "]", "+", "backward_smooth", "[", "key", "]", ")", "/", "2", "return", "TimeSeries", "(", "output", ")" ]
return a new time series which is a exponential smoothed version of the original data series. soomth forward once, backward once, and then take the average. :param float smoothing_factor: smoothing factor :return: :class:`TimeSeries` object.
[ "return", "a", "new", "time", "series", "which", "is", "a", "exponential", "smoothed", "version", "of", "the", "original", "data", "series", ".", "soomth", "forward", "once", "backward", "once", "and", "then", "take", "the", "average", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L248-L272
3,032
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.add_offset
def add_offset(self, offset): """ Return a new time series with all timestamps incremented by some offset. :param int offset: The number of seconds to offset the time series. :return: `None` """ self.timestamps = [ts + offset for ts in self.timestamps]
python
def add_offset(self, offset): """ Return a new time series with all timestamps incremented by some offset. :param int offset: The number of seconds to offset the time series. :return: `None` """ self.timestamps = [ts + offset for ts in self.timestamps]
[ "def", "add_offset", "(", "self", ",", "offset", ")", ":", "self", ".", "timestamps", "=", "[", "ts", "+", "offset", "for", "ts", "in", "self", ".", "timestamps", "]" ]
Return a new time series with all timestamps incremented by some offset. :param int offset: The number of seconds to offset the time series. :return: `None`
[ "Return", "a", "new", "time", "series", "with", "all", "timestamps", "incremented", "by", "some", "offset", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L274-L281
3,033
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.normalize
def normalize(self): """ Return a new time series with all values normalized to 0 to 1. :return: `None` """ maximum = self.max() if maximum: self.values = [value / maximum for value in self.values]
python
def normalize(self): """ Return a new time series with all values normalized to 0 to 1. :return: `None` """ maximum = self.max() if maximum: self.values = [value / maximum for value in self.values]
[ "def", "normalize", "(", "self", ")", ":", "maximum", "=", "self", ".", "max", "(", ")", "if", "maximum", ":", "self", ".", "values", "=", "[", "value", "/", "maximum", "for", "value", "in", "self", ".", "values", "]" ]
Return a new time series with all values normalized to 0 to 1. :return: `None`
[ "Return", "a", "new", "time", "series", "with", "all", "values", "normalized", "to", "0", "to", "1", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L283-L291
3,034
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.crop
def crop(self, start_timestamp, end_timestamp): """ Return a new TimeSeries object contains all the timstamps and values within the specified range. :param int start_timestamp: the start timestamp value :param int end_timestamp: the end timestamp value :return: :class:`TimeSeries` object. """ output = {} for key, value in self.items(): if key >= start_timestamp and key <= end_timestamp: output[key] = value if output: return TimeSeries(output) else: raise ValueError('TimeSeries data was empty or invalid.')
python
def crop(self, start_timestamp, end_timestamp): """ Return a new TimeSeries object contains all the timstamps and values within the specified range. :param int start_timestamp: the start timestamp value :param int end_timestamp: the end timestamp value :return: :class:`TimeSeries` object. """ output = {} for key, value in self.items(): if key >= start_timestamp and key <= end_timestamp: output[key] = value if output: return TimeSeries(output) else: raise ValueError('TimeSeries data was empty or invalid.')
[ "def", "crop", "(", "self", ",", "start_timestamp", ",", "end_timestamp", ")", ":", "output", "=", "{", "}", "for", "key", ",", "value", "in", "self", ".", "items", "(", ")", ":", "if", "key", ">=", "start_timestamp", "and", "key", "<=", "end_timestamp", ":", "output", "[", "key", "]", "=", "value", "if", "output", ":", "return", "TimeSeries", "(", "output", ")", "else", ":", "raise", "ValueError", "(", "'TimeSeries data was empty or invalid.'", ")" ]
Return a new TimeSeries object contains all the timstamps and values within the specified range. :param int start_timestamp: the start timestamp value :param int end_timestamp: the end timestamp value :return: :class:`TimeSeries` object.
[ "Return", "a", "new", "TimeSeries", "object", "contains", "all", "the", "timstamps", "and", "values", "within", "the", "specified", "range", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L293-L310
3,035
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.average
def average(self, default=None): """ Calculate the average value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the average value or `None`. """ return numpy.asscalar(numpy.average(self.values)) if self.values else default
python
def average(self, default=None): """ Calculate the average value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the average value or `None`. """ return numpy.asscalar(numpy.average(self.values)) if self.values else default
[ "def", "average", "(", "self", ",", "default", "=", "None", ")", ":", "return", "numpy", ".", "asscalar", "(", "numpy", ".", "average", "(", "self", ".", "values", ")", ")", "if", "self", ".", "values", "else", "default" ]
Calculate the average value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the average value or `None`.
[ "Calculate", "the", "average", "value", "over", "the", "time", "series", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L312-L319
3,036
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.median
def median(self, default=None): """ Calculate the median value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the median value or `None`. """ return numpy.asscalar(numpy.median(self.values)) if self.values else default
python
def median(self, default=None): """ Calculate the median value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the median value or `None`. """ return numpy.asscalar(numpy.median(self.values)) if self.values else default
[ "def", "median", "(", "self", ",", "default", "=", "None", ")", ":", "return", "numpy", ".", "asscalar", "(", "numpy", ".", "median", "(", "self", ".", "values", ")", ")", "if", "self", ".", "values", "else", "default" ]
Calculate the median value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the median value or `None`.
[ "Calculate", "the", "median", "value", "over", "the", "time", "series", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L321-L328
3,037
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.max
def max(self, default=None): """ Calculate the maximum value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the maximum value or `None`. """ return numpy.asscalar(numpy.max(self.values)) if self.values else default
python
def max(self, default=None): """ Calculate the maximum value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the maximum value or `None`. """ return numpy.asscalar(numpy.max(self.values)) if self.values else default
[ "def", "max", "(", "self", ",", "default", "=", "None", ")", ":", "return", "numpy", ".", "asscalar", "(", "numpy", ".", "max", "(", "self", ".", "values", ")", ")", "if", "self", ".", "values", "else", "default" ]
Calculate the maximum value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the maximum value or `None`.
[ "Calculate", "the", "maximum", "value", "over", "the", "time", "series", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L330-L337
3,038
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.min
def min(self, default=None): """ Calculate the minimum value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the maximum value or `None`. """ return numpy.asscalar(numpy.min(self.values)) if self.values else default
python
def min(self, default=None): """ Calculate the minimum value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the maximum value or `None`. """ return numpy.asscalar(numpy.min(self.values)) if self.values else default
[ "def", "min", "(", "self", ",", "default", "=", "None", ")", ":", "return", "numpy", ".", "asscalar", "(", "numpy", ".", "min", "(", "self", ".", "values", ")", ")", "if", "self", ".", "values", "else", "default" ]
Calculate the minimum value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the maximum value or `None`.
[ "Calculate", "the", "minimum", "value", "over", "the", "time", "series", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L339-L346
3,039
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.percentile
def percentile(self, n, default=None): """ Calculate the Nth Percentile value over the time series. :param int n: Integer value of the percentile to calculate. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the Nth percentile value or `None`. """ return numpy.asscalar(numpy.percentile(self.values, n)) if self.values else default
python
def percentile(self, n, default=None): """ Calculate the Nth Percentile value over the time series. :param int n: Integer value of the percentile to calculate. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the Nth percentile value or `None`. """ return numpy.asscalar(numpy.percentile(self.values, n)) if self.values else default
[ "def", "percentile", "(", "self", ",", "n", ",", "default", "=", "None", ")", ":", "return", "numpy", ".", "asscalar", "(", "numpy", ".", "percentile", "(", "self", ".", "values", ",", "n", ")", ")", "if", "self", ".", "values", "else", "default" ]
Calculate the Nth Percentile value over the time series. :param int n: Integer value of the percentile to calculate. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the Nth percentile value or `None`.
[ "Calculate", "the", "Nth", "Percentile", "value", "over", "the", "time", "series", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L348-L356
3,040
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.stdev
def stdev(self, default=None): """ Calculate the standard deviation of the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the standard deviation value or `None`. """ return numpy.asscalar(numpy.std(self.values)) if self.values else default
python
def stdev(self, default=None): """ Calculate the standard deviation of the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the standard deviation value or `None`. """ return numpy.asscalar(numpy.std(self.values)) if self.values else default
[ "def", "stdev", "(", "self", ",", "default", "=", "None", ")", ":", "return", "numpy", ".", "asscalar", "(", "numpy", ".", "std", "(", "self", ".", "values", ")", ")", "if", "self", ".", "values", "else", "default" ]
Calculate the standard deviation of the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the standard deviation value or `None`.
[ "Calculate", "the", "standard", "deviation", "of", "the", "time", "series", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L358-L365
3,041
linkedin/luminol
src/luminol/modules/time_series.py
TimeSeries.sum
def sum(self, default=None): """ Calculate the sum of all the values in the times series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the sum or `None`. """ return numpy.asscalar(numpy.sum(self.values)) if self.values else default
python
def sum(self, default=None): """ Calculate the sum of all the values in the times series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the sum or `None`. """ return numpy.asscalar(numpy.sum(self.values)) if self.values else default
[ "def", "sum", "(", "self", ",", "default", "=", "None", ")", ":", "return", "numpy", ".", "asscalar", "(", "numpy", ".", "sum", "(", "self", ".", "values", ")", ")", "if", "self", ".", "values", "else", "default" ]
Calculate the sum of all the values in the times series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the sum or `None`.
[ "Calculate", "the", "sum", "of", "all", "the", "values", "in", "the", "times", "series", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L367-L374
3,042
linkedin/luminol
src/luminol/anomaly_detector.py
AnomalyDetector._detect_anomalies
def _detect_anomalies(self): """ Detect anomalies using a threshold on anomaly scores. """ anom_scores = self.anom_scores max_anom_score = anom_scores.max() anomalies = [] if max_anom_score: threshold = self.threshold or max_anom_score * self.score_percent_threshold # Find all the anomaly intervals. intervals = [] start, end = None, None for timestamp, value in anom_scores.iteritems(): if value > threshold: end = timestamp if not start: start = timestamp elif start and end is not None: intervals.append([start, end]) start = None end = None if start is not None: intervals.append([start, end]) # Locate the exact anomaly point within each anomaly interval. for interval_start, interval_end in intervals: interval_series = anom_scores.crop(interval_start, interval_end) self.refine_algorithm_params['time_series'] = interval_series refine_algorithm = self.refine_algorithm(**self.refine_algorithm_params) scores = refine_algorithm.run() max_refine_score = scores.max() # Get the timestamp of the maximal score. max_refine_timestamp = scores.timestamps[scores.values.index(max_refine_score)] anomaly = Anomaly(interval_start, interval_end, interval_series.max(), max_refine_timestamp) anomalies.append(anomaly) self.anomalies = anomalies
python
def _detect_anomalies(self): """ Detect anomalies using a threshold on anomaly scores. """ anom_scores = self.anom_scores max_anom_score = anom_scores.max() anomalies = [] if max_anom_score: threshold = self.threshold or max_anom_score * self.score_percent_threshold # Find all the anomaly intervals. intervals = [] start, end = None, None for timestamp, value in anom_scores.iteritems(): if value > threshold: end = timestamp if not start: start = timestamp elif start and end is not None: intervals.append([start, end]) start = None end = None if start is not None: intervals.append([start, end]) # Locate the exact anomaly point within each anomaly interval. for interval_start, interval_end in intervals: interval_series = anom_scores.crop(interval_start, interval_end) self.refine_algorithm_params['time_series'] = interval_series refine_algorithm = self.refine_algorithm(**self.refine_algorithm_params) scores = refine_algorithm.run() max_refine_score = scores.max() # Get the timestamp of the maximal score. max_refine_timestamp = scores.timestamps[scores.values.index(max_refine_score)] anomaly = Anomaly(interval_start, interval_end, interval_series.max(), max_refine_timestamp) anomalies.append(anomaly) self.anomalies = anomalies
[ "def", "_detect_anomalies", "(", "self", ")", ":", "anom_scores", "=", "self", ".", "anom_scores", "max_anom_score", "=", "anom_scores", ".", "max", "(", ")", "anomalies", "=", "[", "]", "if", "max_anom_score", ":", "threshold", "=", "self", ".", "threshold", "or", "max_anom_score", "*", "self", ".", "score_percent_threshold", "# Find all the anomaly intervals.", "intervals", "=", "[", "]", "start", ",", "end", "=", "None", ",", "None", "for", "timestamp", ",", "value", "in", "anom_scores", ".", "iteritems", "(", ")", ":", "if", "value", ">", "threshold", ":", "end", "=", "timestamp", "if", "not", "start", ":", "start", "=", "timestamp", "elif", "start", "and", "end", "is", "not", "None", ":", "intervals", ".", "append", "(", "[", "start", ",", "end", "]", ")", "start", "=", "None", "end", "=", "None", "if", "start", "is", "not", "None", ":", "intervals", ".", "append", "(", "[", "start", ",", "end", "]", ")", "# Locate the exact anomaly point within each anomaly interval.", "for", "interval_start", ",", "interval_end", "in", "intervals", ":", "interval_series", "=", "anom_scores", ".", "crop", "(", "interval_start", ",", "interval_end", ")", "self", ".", "refine_algorithm_params", "[", "'time_series'", "]", "=", "interval_series", "refine_algorithm", "=", "self", ".", "refine_algorithm", "(", "*", "*", "self", ".", "refine_algorithm_params", ")", "scores", "=", "refine_algorithm", ".", "run", "(", ")", "max_refine_score", "=", "scores", ".", "max", "(", ")", "# Get the timestamp of the maximal score.", "max_refine_timestamp", "=", "scores", ".", "timestamps", "[", "scores", ".", "values", ".", "index", "(", "max_refine_score", ")", "]", "anomaly", "=", "Anomaly", "(", "interval_start", ",", "interval_end", ",", "interval_series", ".", "max", "(", ")", ",", "max_refine_timestamp", ")", "anomalies", ".", "append", "(", "anomaly", ")", "self", ".", "anomalies", "=", "anomalies" ]
Detect anomalies using a threshold on anomaly scores.
[ "Detect", "anomalies", "using", "a", "threshold", "on", "anomaly", "scores", "." ]
42e4ab969b774ff98f902d064cb041556017f635
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/anomaly_detector.py#L106-L145
3,043
jpoullet2000/atlasclient
atlasclient/exceptions.py
handle_response
def handle_response(response): """ Given a requests.Response object, throw the appropriate exception, if applicable. """ # ignore valid responses if response.status_code < 400: return cls = _status_to_exception_type.get(response.status_code, HttpError) kwargs = { 'code': response.status_code, 'method': response.request.method, 'url': response.request.url, 'details': response.text, } if response.headers and 'retry-after' in response.headers: kwargs['retry_after'] = response.headers.get('retry-after') raise cls(**kwargs)
python
def handle_response(response): """ Given a requests.Response object, throw the appropriate exception, if applicable. """ # ignore valid responses if response.status_code < 400: return cls = _status_to_exception_type.get(response.status_code, HttpError) kwargs = { 'code': response.status_code, 'method': response.request.method, 'url': response.request.url, 'details': response.text, } if response.headers and 'retry-after' in response.headers: kwargs['retry_after'] = response.headers.get('retry-after') raise cls(**kwargs)
[ "def", "handle_response", "(", "response", ")", ":", "# ignore valid responses", "if", "response", ".", "status_code", "<", "400", ":", "return", "cls", "=", "_status_to_exception_type", ".", "get", "(", "response", ".", "status_code", ",", "HttpError", ")", "kwargs", "=", "{", "'code'", ":", "response", ".", "status_code", ",", "'method'", ":", "response", ".", "request", ".", "method", ",", "'url'", ":", "response", ".", "request", ".", "url", ",", "'details'", ":", "response", ".", "text", ",", "}", "if", "response", ".", "headers", "and", "'retry-after'", "in", "response", ".", "headers", ":", "kwargs", "[", "'retry_after'", "]", "=", "response", ".", "headers", ".", "get", "(", "'retry-after'", ")", "raise", "cls", "(", "*", "*", "kwargs", ")" ]
Given a requests.Response object, throw the appropriate exception, if applicable.
[ "Given", "a", "requests", ".", "Response", "object", "throw", "the", "appropriate", "exception", "if", "applicable", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/exceptions.py#L178-L199
3,044
jpoullet2000/atlasclient
atlasclient/models.py
EntityBulkCollection.create
def create(self, data, **kwargs): """ Create classifitions for specific entity """ self.client.post(self.url, data=data)
python
def create(self, data, **kwargs): """ Create classifitions for specific entity """ self.client.post(self.url, data=data)
[ "def", "create", "(", "self", ",", "data", ",", "*", "*", "kwargs", ")", ":", "self", ".", "client", ".", "post", "(", "self", ".", "url", ",", "data", "=", "data", ")" ]
Create classifitions for specific entity
[ "Create", "classifitions", "for", "specific", "entity" ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/models.py#L259-L263
3,045
jpoullet2000/atlasclient
atlasclient/models.py
RelationshipGuid.create
def create(self, **kwargs): """Raise error since guid cannot be duplicated """ raise exceptions.MethodNotImplemented(method=self.create, url=self.url, details='GUID cannot be duplicated, to create a new GUID use the relationship resource')
python
def create(self, **kwargs): """Raise error since guid cannot be duplicated """ raise exceptions.MethodNotImplemented(method=self.create, url=self.url, details='GUID cannot be duplicated, to create a new GUID use the relationship resource')
[ "def", "create", "(", "self", ",", "*", "*", "kwargs", ")", ":", "raise", "exceptions", ".", "MethodNotImplemented", "(", "method", "=", "self", ".", "create", ",", "url", "=", "self", ".", "url", ",", "details", "=", "'GUID cannot be duplicated, to create a new GUID use the relationship resource'", ")" ]
Raise error since guid cannot be duplicated
[ "Raise", "error", "since", "guid", "cannot", "be", "duplicated" ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/models.py#L706-L709
3,046
jpoullet2000/atlasclient
atlasclient/utils.py
normalize_underscore_case
def normalize_underscore_case(name): """Normalize an underscore-separated descriptor to something more readable. i.e. 'NAGIOS_SERVER' becomes 'Nagios Server', and 'host_components' becomes 'Host Components' """ normalized = name.lower() normalized = re.sub(r'_(\w)', lambda match: ' ' + match.group(1).upper(), normalized) return normalized[0].upper() + normalized[1:]
python
def normalize_underscore_case(name): """Normalize an underscore-separated descriptor to something more readable. i.e. 'NAGIOS_SERVER' becomes 'Nagios Server', and 'host_components' becomes 'Host Components' """ normalized = name.lower() normalized = re.sub(r'_(\w)', lambda match: ' ' + match.group(1).upper(), normalized) return normalized[0].upper() + normalized[1:]
[ "def", "normalize_underscore_case", "(", "name", ")", ":", "normalized", "=", "name", ".", "lower", "(", ")", "normalized", "=", "re", ".", "sub", "(", "r'_(\\w)'", ",", "lambda", "match", ":", "' '", "+", "match", ".", "group", "(", "1", ")", ".", "upper", "(", ")", ",", "normalized", ")", "return", "normalized", "[", "0", "]", ".", "upper", "(", ")", "+", "normalized", "[", "1", ":", "]" ]
Normalize an underscore-separated descriptor to something more readable. i.e. 'NAGIOS_SERVER' becomes 'Nagios Server', and 'host_components' becomes 'Host Components'
[ "Normalize", "an", "underscore", "-", "separated", "descriptor", "to", "something", "more", "readable", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/utils.py#L32-L42
3,047
jpoullet2000/atlasclient
atlasclient/utils.py
normalize_camel_case
def normalize_camel_case(name): """Normalize a camelCase descriptor to something more readable. i.e. 'camelCase' or 'CamelCase' becomes 'Camel Case' """ normalized = re.sub('([a-z])([A-Z])', lambda match: ' '.join([match.group(1), match.group(2)]), name) return normalized[0].upper() + normalized[1:]
python
def normalize_camel_case(name): """Normalize a camelCase descriptor to something more readable. i.e. 'camelCase' or 'CamelCase' becomes 'Camel Case' """ normalized = re.sub('([a-z])([A-Z])', lambda match: ' '.join([match.group(1), match.group(2)]), name) return normalized[0].upper() + normalized[1:]
[ "def", "normalize_camel_case", "(", "name", ")", ":", "normalized", "=", "re", ".", "sub", "(", "'([a-z])([A-Z])'", ",", "lambda", "match", ":", "' '", ".", "join", "(", "[", "match", ".", "group", "(", "1", ")", ",", "match", ".", "group", "(", "2", ")", "]", ")", ",", "name", ")", "return", "normalized", "[", "0", "]", ".", "upper", "(", ")", "+", "normalized", "[", "1", ":", "]" ]
Normalize a camelCase descriptor to something more readable. i.e. 'camelCase' or 'CamelCase' becomes 'Camel Case'
[ "Normalize", "a", "camelCase", "descriptor", "to", "something", "more", "readable", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/utils.py#L45-L53
3,048
jpoullet2000/atlasclient
atlasclient/utils.py
version_tuple
def version_tuple(version): """Convert a version string or tuple to a tuple. Should be returned in the form: (major, minor, release). """ if isinstance(version, str): return tuple(int(x) for x in version.split('.')) elif isinstance(version, tuple): return version else: raise ValueError("Invalid version: %s" % version)
python
def version_tuple(version): """Convert a version string or tuple to a tuple. Should be returned in the form: (major, minor, release). """ if isinstance(version, str): return tuple(int(x) for x in version.split('.')) elif isinstance(version, tuple): return version else: raise ValueError("Invalid version: %s" % version)
[ "def", "version_tuple", "(", "version", ")", ":", "if", "isinstance", "(", "version", ",", "str", ")", ":", "return", "tuple", "(", "int", "(", "x", ")", "for", "x", "in", "version", ".", "split", "(", "'.'", ")", ")", "elif", "isinstance", "(", "version", ",", "tuple", ")", ":", "return", "version", "else", ":", "raise", "ValueError", "(", "\"Invalid version: %s\"", "%", "version", ")" ]
Convert a version string or tuple to a tuple. Should be returned in the form: (major, minor, release).
[ "Convert", "a", "version", "string", "or", "tuple", "to", "a", "tuple", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/utils.py#L56-L66
3,049
jpoullet2000/atlasclient
atlasclient/utils.py
version_str
def version_str(version): """Convert a version tuple or string to a string. Should be returned in the form: major.minor.release """ if isinstance(version, str): return version elif isinstance(version, tuple): return '.'.join([str(int(x)) for x in version]) else: raise ValueError("Invalid version: %s" % version)
python
def version_str(version): """Convert a version tuple or string to a string. Should be returned in the form: major.minor.release """ if isinstance(version, str): return version elif isinstance(version, tuple): return '.'.join([str(int(x)) for x in version]) else: raise ValueError("Invalid version: %s" % version)
[ "def", "version_str", "(", "version", ")", ":", "if", "isinstance", "(", "version", ",", "str", ")", ":", "return", "version", "elif", "isinstance", "(", "version", ",", "tuple", ")", ":", "return", "'.'", ".", "join", "(", "[", "str", "(", "int", "(", "x", ")", ")", "for", "x", "in", "version", "]", ")", "else", ":", "raise", "ValueError", "(", "\"Invalid version: %s\"", "%", "version", ")" ]
Convert a version tuple or string to a string. Should be returned in the form: major.minor.release
[ "Convert", "a", "version", "tuple", "or", "string", "to", "a", "string", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/utils.py#L69-L79
3,050
jpoullet2000/atlasclient
atlasclient/utils.py
generate_http_basic_token
def generate_http_basic_token(username, password): """ Generates a HTTP basic token from username and password Returns a token string (not a byte) """ token = base64.b64encode('{}:{}'.format(username, password).encode('utf-8')).decode('utf-8') return token
python
def generate_http_basic_token(username, password): """ Generates a HTTP basic token from username and password Returns a token string (not a byte) """ token = base64.b64encode('{}:{}'.format(username, password).encode('utf-8')).decode('utf-8') return token
[ "def", "generate_http_basic_token", "(", "username", ",", "password", ")", ":", "token", "=", "base64", ".", "b64encode", "(", "'{}:{}'", ".", "format", "(", "username", ",", "password", ")", ".", "encode", "(", "'utf-8'", ")", ")", ".", "decode", "(", "'utf-8'", ")", "return", "token" ]
Generates a HTTP basic token from username and password Returns a token string (not a byte)
[ "Generates", "a", "HTTP", "basic", "token", "from", "username", "and", "password" ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/utils.py#L81-L88
3,051
jpoullet2000/atlasclient
atlasclient/base.py
GeneratedIdentifierMixin.identifier
def identifier(self): """These models have server-generated identifiers. If we don't already have it in memory, then assume that it has not yet been generated. """ if self.primary_key not in self._data: return 'Unknown' return str(self._data[self.primary_key])
python
def identifier(self): """These models have server-generated identifiers. If we don't already have it in memory, then assume that it has not yet been generated. """ if self.primary_key not in self._data: return 'Unknown' return str(self._data[self.primary_key])
[ "def", "identifier", "(", "self", ")", ":", "if", "self", ".", "primary_key", "not", "in", "self", ".", "_data", ":", "return", "'Unknown'", "return", "str", "(", "self", ".", "_data", "[", "self", ".", "primary_key", "]", ")" ]
These models have server-generated identifiers. If we don't already have it in memory, then assume that it has not yet been generated.
[ "These", "models", "have", "server", "-", "generated", "identifiers", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L79-L87
3,052
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModelCollection.url
def url(self): """The url for this collection.""" if self.parent is None: # TODO: differing API Versions? pieces = [self.client.base_url, 'api', 'atlas', 'v2'] else: pieces = [self.parent.url] pieces.append(self.model_class.path) return '/'.join(pieces)
python
def url(self): """The url for this collection.""" if self.parent is None: # TODO: differing API Versions? pieces = [self.client.base_url, 'api', 'atlas', 'v2'] else: pieces = [self.parent.url] pieces.append(self.model_class.path) return '/'.join(pieces)
[ "def", "url", "(", "self", ")", ":", "if", "self", ".", "parent", "is", "None", ":", "# TODO: differing API Versions?", "pieces", "=", "[", "self", ".", "client", ".", "base_url", ",", "'api'", ",", "'atlas'", ",", "'v2'", "]", "else", ":", "pieces", "=", "[", "self", ".", "parent", ".", "url", "]", "pieces", ".", "append", "(", "self", ".", "model_class", ".", "path", ")", "return", "'/'", ".", "join", "(", "pieces", ")" ]
The url for this collection.
[ "The", "url", "for", "this", "collection", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L230-L239
3,053
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModelCollection.inflate
def inflate(self): """Load the collection from the server, if necessary.""" if not self._is_inflated: self.check_version() for k, v in self._filter.items(): if '[' in v: self._filter[k] = ast.literal_eval(v) self.load(self.client.get(self.url, params=self._filter)) self._is_inflated = True return self
python
def inflate(self): """Load the collection from the server, if necessary.""" if not self._is_inflated: self.check_version() for k, v in self._filter.items(): if '[' in v: self._filter[k] = ast.literal_eval(v) self.load(self.client.get(self.url, params=self._filter)) self._is_inflated = True return self
[ "def", "inflate", "(", "self", ")", ":", "if", "not", "self", ".", "_is_inflated", ":", "self", ".", "check_version", "(", ")", "for", "k", ",", "v", "in", "self", ".", "_filter", ".", "items", "(", ")", ":", "if", "'['", "in", "v", ":", "self", ".", "_filter", "[", "k", "]", "=", "ast", ".", "literal_eval", "(", "v", ")", "self", ".", "load", "(", "self", ".", "client", ".", "get", "(", "self", ".", "url", ",", "params", "=", "self", ".", "_filter", ")", ")", "self", ".", "_is_inflated", "=", "True", "return", "self" ]
Load the collection from the server, if necessary.
[ "Load", "the", "collection", "from", "the", "server", "if", "necessary", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L241-L251
3,054
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModelCollection.load
def load(self, response): """Parse the GET response for the collection. This operates as a lazy-loader, meaning that the data are only downloaded from the server if there are not already loaded. Collection items are loaded sequentially. In some rare cases, a collection can have an asynchronous request triggered. For those cases, we handle it here. """ self._models = [] if isinstance(response, dict): for key in response.keys(): model = self.model_class(self, href='') model.load(response[key]) self._models.append(model) else: for item in response: model = self.model_class(self, href=item.get('href')) model.load(item) self._models.append(model)
python
def load(self, response): """Parse the GET response for the collection. This operates as a lazy-loader, meaning that the data are only downloaded from the server if there are not already loaded. Collection items are loaded sequentially. In some rare cases, a collection can have an asynchronous request triggered. For those cases, we handle it here. """ self._models = [] if isinstance(response, dict): for key in response.keys(): model = self.model_class(self, href='') model.load(response[key]) self._models.append(model) else: for item in response: model = self.model_class(self, href=item.get('href')) model.load(item) self._models.append(model)
[ "def", "load", "(", "self", ",", "response", ")", ":", "self", ".", "_models", "=", "[", "]", "if", "isinstance", "(", "response", ",", "dict", ")", ":", "for", "key", "in", "response", ".", "keys", "(", ")", ":", "model", "=", "self", ".", "model_class", "(", "self", ",", "href", "=", "''", ")", "model", ".", "load", "(", "response", "[", "key", "]", ")", "self", ".", "_models", ".", "append", "(", "model", ")", "else", ":", "for", "item", "in", "response", ":", "model", "=", "self", ".", "model_class", "(", "self", ",", "href", "=", "item", ".", "get", "(", "'href'", ")", ")", "model", ".", "load", "(", "item", ")", "self", ".", "_models", ".", "append", "(", "model", ")" ]
Parse the GET response for the collection. This operates as a lazy-loader, meaning that the data are only downloaded from the server if there are not already loaded. Collection items are loaded sequentially. In some rare cases, a collection can have an asynchronous request triggered. For those cases, we handle it here.
[ "Parse", "the", "GET", "response", "for", "the", "collection", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L254-L275
3,055
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModelCollection.create
def create(self, *args, **kwargs): """Add a resource to this collection.""" href = self.url if len(args) == 1: kwargs[self.model_class.primary_key] = args[0] href = '/'.join([href, args[0]]) model = self.model_class(self, href=href.replace('classifications/', 'classification/'), data=kwargs) model.create(**kwargs) self._models.append(model) return model
python
def create(self, *args, **kwargs): """Add a resource to this collection.""" href = self.url if len(args) == 1: kwargs[self.model_class.primary_key] = args[0] href = '/'.join([href, args[0]]) model = self.model_class(self, href=href.replace('classifications/', 'classification/'), data=kwargs) model.create(**kwargs) self._models.append(model) return model
[ "def", "create", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "href", "=", "self", ".", "url", "if", "len", "(", "args", ")", "==", "1", ":", "kwargs", "[", "self", ".", "model_class", ".", "primary_key", "]", "=", "args", "[", "0", "]", "href", "=", "'/'", ".", "join", "(", "[", "href", ",", "args", "[", "0", "]", "]", ")", "model", "=", "self", ".", "model_class", "(", "self", ",", "href", "=", "href", ".", "replace", "(", "'classifications/'", ",", "'classification/'", ")", ",", "data", "=", "kwargs", ")", "model", ".", "create", "(", "*", "*", "kwargs", ")", "self", ".", "_models", ".", "append", "(", "model", ")", "return", "model" ]
Add a resource to this collection.
[ "Add", "a", "resource", "to", "this", "collection", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L277-L288
3,056
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModelCollection.update
def update(self, **kwargs): """Update all resources in this collection.""" self.inflate() for model in self._models: model.update(**kwargs) return self
python
def update(self, **kwargs): """Update all resources in this collection.""" self.inflate() for model in self._models: model.update(**kwargs) return self
[ "def", "update", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "inflate", "(", ")", "for", "model", "in", "self", ".", "_models", ":", "model", ".", "update", "(", "*", "*", "kwargs", ")", "return", "self" ]
Update all resources in this collection.
[ "Update", "all", "resources", "in", "this", "collection", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L290-L295
3,057
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModelCollection.delete
def delete(self, **kwargs): """Delete all resources in this collection.""" self.inflate() for model in self._models: model.delete(**kwargs) return
python
def delete(self, **kwargs): """Delete all resources in this collection.""" self.inflate() for model in self._models: model.delete(**kwargs) return
[ "def", "delete", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "inflate", "(", ")", "for", "model", "in", "self", ".", "_models", ":", "model", ".", "delete", "(", "*", "*", "kwargs", ")", "return" ]
Delete all resources in this collection.
[ "Delete", "all", "resources", "in", "this", "collection", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L297-L302
3,058
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModelCollection.wait
def wait(self, **kwargs): """Wait until any pending asynchronous requests are finished for this collection.""" if self.request: self.request.wait(**kwargs) self.request = None return self.inflate()
python
def wait(self, **kwargs): """Wait until any pending asynchronous requests are finished for this collection.""" if self.request: self.request.wait(**kwargs) self.request = None return self.inflate()
[ "def", "wait", "(", "self", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "request", ":", "self", ".", "request", ".", "wait", "(", "*", "*", "kwargs", ")", "self", ".", "request", "=", "None", "return", "self", ".", "inflate", "(", ")" ]
Wait until any pending asynchronous requests are finished for this collection.
[ "Wait", "until", "any", "pending", "asynchronous", "requests", "are", "finished", "for", "this", "collection", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L305-L310
3,059
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModel.url
def url(self): """Gets the url for the resource this model represents. It will just use the 'href' passed in to the constructor if that exists. Otherwise, it will generated it based on the collection's url and the model's identifier. """ if self._href is not None: return self._href if self.identifier: # for some reason atlas does not use classifications here in the path when considering one classification path = '/'.join([self.parent.url.replace('classifications/', 'classficiation/'), self.identifier]) return path raise exceptions.ClientError("Not able to determine object URL")
python
def url(self): """Gets the url for the resource this model represents. It will just use the 'href' passed in to the constructor if that exists. Otherwise, it will generated it based on the collection's url and the model's identifier. """ if self._href is not None: return self._href if self.identifier: # for some reason atlas does not use classifications here in the path when considering one classification path = '/'.join([self.parent.url.replace('classifications/', 'classficiation/'), self.identifier]) return path raise exceptions.ClientError("Not able to determine object URL")
[ "def", "url", "(", "self", ")", ":", "if", "self", ".", "_href", "is", "not", "None", ":", "return", "self", ".", "_href", "if", "self", ".", "identifier", ":", "# for some reason atlas does not use classifications here in the path when considering one classification", "path", "=", "'/'", ".", "join", "(", "[", "self", ".", "parent", ".", "url", ".", "replace", "(", "'classifications/'", ",", "'classficiation/'", ")", ",", "self", ".", "identifier", "]", ")", "return", "path", "raise", "exceptions", ".", "ClientError", "(", "\"Not able to determine object URL\"", ")" ]
Gets the url for the resource this model represents. It will just use the 'href' passed in to the constructor if that exists. Otherwise, it will generated it based on the collection's url and the model's identifier.
[ "Gets", "the", "url", "for", "the", "resource", "this", "model", "represents", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L568-L581
3,060
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModel.inflate
def inflate(self): """Load the resource from the server, if not already loaded.""" if not self._is_inflated: if self._is_inflating: # catch infinite recursion when attempting to inflate # an object that doesn't have enough data to inflate msg = ("There is not enough data to inflate this object. " "Need either an href: {} or a {}: {}") msg = msg.format(self._href, self.primary_key, self._data.get(self.primary_key)) raise exceptions.ClientError(msg) self._is_inflating = True try: params = self.searchParameters if hasattr(self, 'searchParameters') else {} # To keep the method same as the original request. The default is GET self.load(self.client.request(self.method, self.url, **params)) except Exception: self.load(self._data) self._is_inflated = True self._is_inflating = False return self
python
def inflate(self): """Load the resource from the server, if not already loaded.""" if not self._is_inflated: if self._is_inflating: # catch infinite recursion when attempting to inflate # an object that doesn't have enough data to inflate msg = ("There is not enough data to inflate this object. " "Need either an href: {} or a {}: {}") msg = msg.format(self._href, self.primary_key, self._data.get(self.primary_key)) raise exceptions.ClientError(msg) self._is_inflating = True try: params = self.searchParameters if hasattr(self, 'searchParameters') else {} # To keep the method same as the original request. The default is GET self.load(self.client.request(self.method, self.url, **params)) except Exception: self.load(self._data) self._is_inflated = True self._is_inflating = False return self
[ "def", "inflate", "(", "self", ")", ":", "if", "not", "self", ".", "_is_inflated", ":", "if", "self", ".", "_is_inflating", ":", "# catch infinite recursion when attempting to inflate", "# an object that doesn't have enough data to inflate", "msg", "=", "(", "\"There is not enough data to inflate this object. \"", "\"Need either an href: {} or a {}: {}\"", ")", "msg", "=", "msg", ".", "format", "(", "self", ".", "_href", ",", "self", ".", "primary_key", ",", "self", ".", "_data", ".", "get", "(", "self", ".", "primary_key", ")", ")", "raise", "exceptions", ".", "ClientError", "(", "msg", ")", "self", ".", "_is_inflating", "=", "True", "try", ":", "params", "=", "self", ".", "searchParameters", "if", "hasattr", "(", "self", ",", "'searchParameters'", ")", "else", "{", "}", "# To keep the method same as the original request. The default is GET", "self", ".", "load", "(", "self", ".", "client", ".", "request", "(", "self", ".", "method", ",", "self", ".", "url", ",", "*", "*", "params", ")", ")", "except", "Exception", ":", "self", ".", "load", "(", "self", ".", "_data", ")", "self", ".", "_is_inflated", "=", "True", "self", ".", "_is_inflating", "=", "False", "return", "self" ]
Load the resource from the server, if not already loaded.
[ "Load", "the", "resource", "from", "the", "server", "if", "not", "already", "loaded", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L583-L605
3,061
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModel.load
def load(self, response): """The load method parses the raw JSON response from the server. Most models are not returned in the main response body, but in a key such as 'entity', defined by the 'data_key' attribute on the class. Also, related objects are often returned and can be used to pre-cache related model objects without having to contact the server again. This method handles all of those cases. Also, if a request has triggered a background operation, the request details are returned in a 'Requests' section. We need to store that request object so we can poll it until completion. """ if 'href' in response: self._href = response.pop('href') if self.data_key and self.data_key in response: self._data.update(response.pop(self.data_key)) # preload related object collections, if received for rel in [x for x in self.relationships if x in response and response[x]]: rel_class = self.relationships[rel] collection = rel_class.collection_class( self.client, rel_class, parent=self ) self._relationship_cache[rel] = collection(response[rel]) else: self._data.update(response)
python
def load(self, response): """The load method parses the raw JSON response from the server. Most models are not returned in the main response body, but in a key such as 'entity', defined by the 'data_key' attribute on the class. Also, related objects are often returned and can be used to pre-cache related model objects without having to contact the server again. This method handles all of those cases. Also, if a request has triggered a background operation, the request details are returned in a 'Requests' section. We need to store that request object so we can poll it until completion. """ if 'href' in response: self._href = response.pop('href') if self.data_key and self.data_key in response: self._data.update(response.pop(self.data_key)) # preload related object collections, if received for rel in [x for x in self.relationships if x in response and response[x]]: rel_class = self.relationships[rel] collection = rel_class.collection_class( self.client, rel_class, parent=self ) self._relationship_cache[rel] = collection(response[rel]) else: self._data.update(response)
[ "def", "load", "(", "self", ",", "response", ")", ":", "if", "'href'", "in", "response", ":", "self", ".", "_href", "=", "response", ".", "pop", "(", "'href'", ")", "if", "self", ".", "data_key", "and", "self", ".", "data_key", "in", "response", ":", "self", ".", "_data", ".", "update", "(", "response", ".", "pop", "(", "self", ".", "data_key", ")", ")", "# preload related object collections, if received", "for", "rel", "in", "[", "x", "for", "x", "in", "self", ".", "relationships", "if", "x", "in", "response", "and", "response", "[", "x", "]", "]", ":", "rel_class", "=", "self", ".", "relationships", "[", "rel", "]", "collection", "=", "rel_class", ".", "collection_class", "(", "self", ".", "client", ",", "rel_class", ",", "parent", "=", "self", ")", "self", ".", "_relationship_cache", "[", "rel", "]", "=", "collection", "(", "response", "[", "rel", "]", ")", "else", ":", "self", ".", "_data", ".", "update", "(", "response", ")" ]
The load method parses the raw JSON response from the server. Most models are not returned in the main response body, but in a key such as 'entity', defined by the 'data_key' attribute on the class. Also, related objects are often returned and can be used to pre-cache related model objects without having to contact the server again. This method handles all of those cases. Also, if a request has triggered a background operation, the request details are returned in a 'Requests' section. We need to store that request object so we can poll it until completion.
[ "The", "load", "method", "parses", "the", "raw", "JSON", "response", "from", "the", "server", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L623-L648
3,062
jpoullet2000/atlasclient
atlasclient/base.py
QueryableModel.delete
def delete(self, **kwargs): """Delete a resource by issuing a DELETE http request against it.""" self.method = 'delete' if len(kwargs) > 0: self.load(self.client.delete(self.url, params=kwargs)) else: self.load(self.client.delete(self.url)) self.parent.remove(self) return
python
def delete(self, **kwargs): """Delete a resource by issuing a DELETE http request against it.""" self.method = 'delete' if len(kwargs) > 0: self.load(self.client.delete(self.url, params=kwargs)) else: self.load(self.client.delete(self.url)) self.parent.remove(self) return
[ "def", "delete", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "method", "=", "'delete'", "if", "len", "(", "kwargs", ")", ">", "0", ":", "self", ".", "load", "(", "self", ".", "client", ".", "delete", "(", "self", ".", "url", ",", "params", "=", "kwargs", ")", ")", "else", ":", "self", ".", "load", "(", "self", ".", "client", ".", "delete", "(", "self", ".", "url", ")", ")", "self", ".", "parent", ".", "remove", "(", "self", ")", "return" ]
Delete a resource by issuing a DELETE http request against it.
[ "Delete", "a", "resource", "by", "issuing", "a", "DELETE", "http", "request", "against", "it", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/base.py#L686-L694
3,063
jpoullet2000/atlasclient
atlasclient/events.py
publish
def publish(obj, event, event_state, **kwargs): """Publish an event from an object. This is a really basic pub-sub event system to allow for tracking progress on methods externally. It fires the events for the first match it finds in the object hierarchy, going most specific to least. If no match is found for the exact event+event_state, the most specific event+ANY is fired instead. Multiple callbacks can be bound to the event+event_state if desired. All will be fired in the order they were registered. """ # short-circuit if nothing is listening if len(EVENT_HANDLERS) == 0: return if inspect.isclass(obj): pub_cls = obj else: pub_cls = obj.__class__ potential = [x.__name__ for x in inspect.getmro(pub_cls)] # if we don't find a match for this event/event_state we fire the events # for this event/ANY instead for the closest match fallbacks = None callbacks = [] for cls in potential: event_key = '.'.join([cls, event, event_state]) backup_key = '.'.join([cls, event, states.ANY]) if event_key in EVENT_HANDLERS: callbacks = EVENT_HANDLERS[event_key] break elif fallbacks is None and backup_key in EVENT_HANDLERS: fallbacks = EVENT_HANDLERS[backup_key] if fallbacks is not None: callbacks = fallbacks for callback in callbacks: callback(obj, **kwargs) return
python
def publish(obj, event, event_state, **kwargs): """Publish an event from an object. This is a really basic pub-sub event system to allow for tracking progress on methods externally. It fires the events for the first match it finds in the object hierarchy, going most specific to least. If no match is found for the exact event+event_state, the most specific event+ANY is fired instead. Multiple callbacks can be bound to the event+event_state if desired. All will be fired in the order they were registered. """ # short-circuit if nothing is listening if len(EVENT_HANDLERS) == 0: return if inspect.isclass(obj): pub_cls = obj else: pub_cls = obj.__class__ potential = [x.__name__ for x in inspect.getmro(pub_cls)] # if we don't find a match for this event/event_state we fire the events # for this event/ANY instead for the closest match fallbacks = None callbacks = [] for cls in potential: event_key = '.'.join([cls, event, event_state]) backup_key = '.'.join([cls, event, states.ANY]) if event_key in EVENT_HANDLERS: callbacks = EVENT_HANDLERS[event_key] break elif fallbacks is None and backup_key in EVENT_HANDLERS: fallbacks = EVENT_HANDLERS[backup_key] if fallbacks is not None: callbacks = fallbacks for callback in callbacks: callback(obj, **kwargs) return
[ "def", "publish", "(", "obj", ",", "event", ",", "event_state", ",", "*", "*", "kwargs", ")", ":", "# short-circuit if nothing is listening", "if", "len", "(", "EVENT_HANDLERS", ")", "==", "0", ":", "return", "if", "inspect", ".", "isclass", "(", "obj", ")", ":", "pub_cls", "=", "obj", "else", ":", "pub_cls", "=", "obj", ".", "__class__", "potential", "=", "[", "x", ".", "__name__", "for", "x", "in", "inspect", ".", "getmro", "(", "pub_cls", ")", "]", "# if we don't find a match for this event/event_state we fire the events", "# for this event/ANY instead for the closest match", "fallbacks", "=", "None", "callbacks", "=", "[", "]", "for", "cls", "in", "potential", ":", "event_key", "=", "'.'", ".", "join", "(", "[", "cls", ",", "event", ",", "event_state", "]", ")", "backup_key", "=", "'.'", ".", "join", "(", "[", "cls", ",", "event", ",", "states", ".", "ANY", "]", ")", "if", "event_key", "in", "EVENT_HANDLERS", ":", "callbacks", "=", "EVENT_HANDLERS", "[", "event_key", "]", "break", "elif", "fallbacks", "is", "None", "and", "backup_key", "in", "EVENT_HANDLERS", ":", "fallbacks", "=", "EVENT_HANDLERS", "[", "backup_key", "]", "if", "fallbacks", "is", "not", "None", ":", "callbacks", "=", "fallbacks", "for", "callback", "in", "callbacks", ":", "callback", "(", "obj", ",", "*", "*", "kwargs", ")", "return" ]
Publish an event from an object. This is a really basic pub-sub event system to allow for tracking progress on methods externally. It fires the events for the first match it finds in the object hierarchy, going most specific to least. If no match is found for the exact event+event_state, the most specific event+ANY is fired instead. Multiple callbacks can be bound to the event+event_state if desired. All will be fired in the order they were registered.
[ "Publish", "an", "event", "from", "an", "object", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/events.py#L41-L81
3,064
jpoullet2000/atlasclient
atlasclient/events.py
subscribe
def subscribe(obj, event, callback, event_state=None): """Subscribe an event from an class. Subclasses of the class/object will also fire events for this class, unless a more specific event exists. """ if inspect.isclass(obj): cls = obj.__name__ else: cls = obj.__class__.__name__ if event_state is None: event_state = states.ANY event_key = '.'.join([cls, event, event_state]) if event_key not in EVENT_HANDLERS: EVENT_HANDLERS[event_key] = [] EVENT_HANDLERS[event_key].append(callback) return
python
def subscribe(obj, event, callback, event_state=None): """Subscribe an event from an class. Subclasses of the class/object will also fire events for this class, unless a more specific event exists. """ if inspect.isclass(obj): cls = obj.__name__ else: cls = obj.__class__.__name__ if event_state is None: event_state = states.ANY event_key = '.'.join([cls, event, event_state]) if event_key not in EVENT_HANDLERS: EVENT_HANDLERS[event_key] = [] EVENT_HANDLERS[event_key].append(callback) return
[ "def", "subscribe", "(", "obj", ",", "event", ",", "callback", ",", "event_state", "=", "None", ")", ":", "if", "inspect", ".", "isclass", "(", "obj", ")", ":", "cls", "=", "obj", ".", "__name__", "else", ":", "cls", "=", "obj", ".", "__class__", ".", "__name__", "if", "event_state", "is", "None", ":", "event_state", "=", "states", ".", "ANY", "event_key", "=", "'.'", ".", "join", "(", "[", "cls", ",", "event", ",", "event_state", "]", ")", "if", "event_key", "not", "in", "EVENT_HANDLERS", ":", "EVENT_HANDLERS", "[", "event_key", "]", "=", "[", "]", "EVENT_HANDLERS", "[", "event_key", "]", ".", "append", "(", "callback", ")", "return" ]
Subscribe an event from an class. Subclasses of the class/object will also fire events for this class, unless a more specific event exists.
[ "Subscribe", "an", "event", "from", "an", "class", "." ]
4548b441143ebf7fc4075d113db5ca5a23e0eed2
https://github.com/jpoullet2000/atlasclient/blob/4548b441143ebf7fc4075d113db5ca5a23e0eed2/atlasclient/events.py#L84-L103
3,065
psolin/cleanco
cleanco.py
cleanco.clean_name
def clean_name(self, suffix=True, prefix=False, middle=False, multi=False): "return cleared version of the business name" name = self.business_name # Run it through the string_stripper once more name = self.string_stripper(name) loname = name.lower() # return name without suffixed/prefixed/middle type term(s) for item in suffix_sort: if suffix: if loname.endswith(" " + item): start = loname.find(item) end = len(item) name = name[0:-end-1] name = self.string_stripper(name) if multi==False: break if prefix: if loname.startswith(item+' '): name = name[len(item)+1:] if multi==False: break if middle: term = ' ' + item + ' ' if term in loname: start = loname.find(term) end = start + len(term) name = name[:start] + " " + name[end:] if multi==False: break return self.string_stripper(name)
python
def clean_name(self, suffix=True, prefix=False, middle=False, multi=False): "return cleared version of the business name" name = self.business_name # Run it through the string_stripper once more name = self.string_stripper(name) loname = name.lower() # return name without suffixed/prefixed/middle type term(s) for item in suffix_sort: if suffix: if loname.endswith(" " + item): start = loname.find(item) end = len(item) name = name[0:-end-1] name = self.string_stripper(name) if multi==False: break if prefix: if loname.startswith(item+' '): name = name[len(item)+1:] if multi==False: break if middle: term = ' ' + item + ' ' if term in loname: start = loname.find(term) end = start + len(term) name = name[:start] + " " + name[end:] if multi==False: break return self.string_stripper(name)
[ "def", "clean_name", "(", "self", ",", "suffix", "=", "True", ",", "prefix", "=", "False", ",", "middle", "=", "False", ",", "multi", "=", "False", ")", ":", "name", "=", "self", ".", "business_name", "# Run it through the string_stripper once more", "name", "=", "self", ".", "string_stripper", "(", "name", ")", "loname", "=", "name", ".", "lower", "(", ")", "# return name without suffixed/prefixed/middle type term(s)", "for", "item", "in", "suffix_sort", ":", "if", "suffix", ":", "if", "loname", ".", "endswith", "(", "\" \"", "+", "item", ")", ":", "start", "=", "loname", ".", "find", "(", "item", ")", "end", "=", "len", "(", "item", ")", "name", "=", "name", "[", "0", ":", "-", "end", "-", "1", "]", "name", "=", "self", ".", "string_stripper", "(", "name", ")", "if", "multi", "==", "False", ":", "break", "if", "prefix", ":", "if", "loname", ".", "startswith", "(", "item", "+", "' '", ")", ":", "name", "=", "name", "[", "len", "(", "item", ")", "+", "1", ":", "]", "if", "multi", "==", "False", ":", "break", "if", "middle", ":", "term", "=", "' '", "+", "item", "+", "' '", "if", "term", "in", "loname", ":", "start", "=", "loname", ".", "find", "(", "term", ")", "end", "=", "start", "+", "len", "(", "term", ")", "name", "=", "name", "[", ":", "start", "]", "+", "\" \"", "+", "name", "[", "end", ":", "]", "if", "multi", "==", "False", ":", "break", "return", "self", ".", "string_stripper", "(", "name", ")" ]
return cleared version of the business name
[ "return", "cleared", "version", "of", "the", "business", "name" ]
56ff6542c339df625adcaf7f4ed4c81035fd575a
https://github.com/psolin/cleanco/blob/56ff6542c339df625adcaf7f4ed4c81035fd575a/cleanco.py#L70-L104
3,066
mosdef-hub/foyer
foyer/smarts_graph.py
SMARTSGraph._add_nodes
def _add_nodes(self): """Add all atoms in the SMARTS string as nodes in the graph.""" for n, atom in enumerate(self.ast.select('atom')): self.add_node(n, atom=atom) self._atom_indices[id(atom)] = n
python
def _add_nodes(self): """Add all atoms in the SMARTS string as nodes in the graph.""" for n, atom in enumerate(self.ast.select('atom')): self.add_node(n, atom=atom) self._atom_indices[id(atom)] = n
[ "def", "_add_nodes", "(", "self", ")", ":", "for", "n", ",", "atom", "in", "enumerate", "(", "self", ".", "ast", ".", "select", "(", "'atom'", ")", ")", ":", "self", ".", "add_node", "(", "n", ",", "atom", "=", "atom", ")", "self", ".", "_atom_indices", "[", "id", "(", "atom", ")", "]", "=", "n" ]
Add all atoms in the SMARTS string as nodes in the graph.
[ "Add", "all", "atoms", "in", "the", "SMARTS", "string", "as", "nodes", "in", "the", "graph", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/smarts_graph.py#L51-L55
3,067
mosdef-hub/foyer
foyer/smarts_graph.py
SMARTSGraph._add_edges
def _add_edges(self, ast_node, trunk=None): """"Add all bonds in the SMARTS string as edges in the graph.""" atom_indices = self._atom_indices for atom in ast_node.tail: if atom.head == 'atom': atom_idx = atom_indices[id(atom)] if atom.is_first_kid and atom.parent().head == 'branch': trunk_idx = atom_indices[id(trunk)] self.add_edge(atom_idx, trunk_idx) if not atom.is_last_kid: if atom.next_kid.head == 'atom': next_idx = atom_indices[id(atom.next_kid)] self.add_edge(atom_idx, next_idx) elif atom.next_kid.head == 'branch': trunk = atom else: # We traveled through the whole branch. return elif atom.head == 'branch': self._add_edges(atom, trunk)
python
def _add_edges(self, ast_node, trunk=None): """"Add all bonds in the SMARTS string as edges in the graph.""" atom_indices = self._atom_indices for atom in ast_node.tail: if atom.head == 'atom': atom_idx = atom_indices[id(atom)] if atom.is_first_kid and atom.parent().head == 'branch': trunk_idx = atom_indices[id(trunk)] self.add_edge(atom_idx, trunk_idx) if not atom.is_last_kid: if atom.next_kid.head == 'atom': next_idx = atom_indices[id(atom.next_kid)] self.add_edge(atom_idx, next_idx) elif atom.next_kid.head == 'branch': trunk = atom else: # We traveled through the whole branch. return elif atom.head == 'branch': self._add_edges(atom, trunk)
[ "def", "_add_edges", "(", "self", ",", "ast_node", ",", "trunk", "=", "None", ")", ":", "atom_indices", "=", "self", ".", "_atom_indices", "for", "atom", "in", "ast_node", ".", "tail", ":", "if", "atom", ".", "head", "==", "'atom'", ":", "atom_idx", "=", "atom_indices", "[", "id", "(", "atom", ")", "]", "if", "atom", ".", "is_first_kid", "and", "atom", ".", "parent", "(", ")", ".", "head", "==", "'branch'", ":", "trunk_idx", "=", "atom_indices", "[", "id", "(", "trunk", ")", "]", "self", ".", "add_edge", "(", "atom_idx", ",", "trunk_idx", ")", "if", "not", "atom", ".", "is_last_kid", ":", "if", "atom", ".", "next_kid", ".", "head", "==", "'atom'", ":", "next_idx", "=", "atom_indices", "[", "id", "(", "atom", ".", "next_kid", ")", "]", "self", ".", "add_edge", "(", "atom_idx", ",", "next_idx", ")", "elif", "atom", ".", "next_kid", ".", "head", "==", "'branch'", ":", "trunk", "=", "atom", "else", ":", "# We traveled through the whole branch.", "return", "elif", "atom", ".", "head", "==", "'branch'", ":", "self", ".", "_add_edges", "(", "atom", ",", "trunk", ")" ]
Add all bonds in the SMARTS string as edges in the graph.
[ "Add", "all", "bonds", "in", "the", "SMARTS", "string", "as", "edges", "in", "the", "graph", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/smarts_graph.py#L57-L75
3,068
mosdef-hub/foyer
foyer/smarts_graph.py
SMARTSGraph._add_label_edges
def _add_label_edges(self): """Add edges between all atoms with the same atom_label in rings.""" labels = self.ast.select('atom_label') if not labels: return # We need each individual label and atoms with multiple ring labels # would yield e.g. the string '12' so split those up. label_digits = defaultdict(list) for label in labels: digits = list(label.tail[0]) for digit in digits: label_digits[digit].append(label.parent()) for label, (atom1, atom2) in label_digits.items(): atom1_idx = self._atom_indices[id(atom1)] atom2_idx = self._atom_indices[id(atom2)] self.add_edge(atom1_idx, atom2_idx)
python
def _add_label_edges(self): """Add edges between all atoms with the same atom_label in rings.""" labels = self.ast.select('atom_label') if not labels: return # We need each individual label and atoms with multiple ring labels # would yield e.g. the string '12' so split those up. label_digits = defaultdict(list) for label in labels: digits = list(label.tail[0]) for digit in digits: label_digits[digit].append(label.parent()) for label, (atom1, atom2) in label_digits.items(): atom1_idx = self._atom_indices[id(atom1)] atom2_idx = self._atom_indices[id(atom2)] self.add_edge(atom1_idx, atom2_idx)
[ "def", "_add_label_edges", "(", "self", ")", ":", "labels", "=", "self", ".", "ast", ".", "select", "(", "'atom_label'", ")", "if", "not", "labels", ":", "return", "# We need each individual label and atoms with multiple ring labels", "# would yield e.g. the string '12' so split those up.", "label_digits", "=", "defaultdict", "(", "list", ")", "for", "label", "in", "labels", ":", "digits", "=", "list", "(", "label", ".", "tail", "[", "0", "]", ")", "for", "digit", "in", "digits", ":", "label_digits", "[", "digit", "]", ".", "append", "(", "label", ".", "parent", "(", ")", ")", "for", "label", ",", "(", "atom1", ",", "atom2", ")", "in", "label_digits", ".", "items", "(", ")", ":", "atom1_idx", "=", "self", ".", "_atom_indices", "[", "id", "(", "atom1", ")", "]", "atom2_idx", "=", "self", ".", "_atom_indices", "[", "id", "(", "atom2", ")", "]", "self", ".", "add_edge", "(", "atom1_idx", ",", "atom2_idx", ")" ]
Add edges between all atoms with the same atom_label in rings.
[ "Add", "edges", "between", "all", "atoms", "with", "the", "same", "atom_label", "in", "rings", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/smarts_graph.py#L77-L94
3,069
mosdef-hub/foyer
foyer/smarts_graph.py
SMARTSGraph.find_matches
def find_matches(self, topology): """Return sets of atoms that match this SMARTS pattern in a topology. Notes: ------ When this function gets used in atomtyper.py, we actively modify the white- and blacklists of the atoms in `topology` after finding a match. This means that between every successive call of `subgraph_isomorphisms_iter()`, the topology against which we are matching may have actually changed. Currently, we take advantage of this behavior in some edges cases (e.g. see `test_hexa_coordinated` in `test_smarts.py`). """ # Note: Needs to be updated in sync with the grammar in `smarts.py`. ring_tokens = ['ring_size', 'ring_count'] has_ring_rules = any(self.ast.select(token) for token in ring_tokens) _prepare_atoms(topology, compute_cycles=has_ring_rules) top_graph = nx.Graph() top_graph.add_nodes_from(((a.index, {'atom': a}) for a in topology.atoms())) top_graph.add_edges_from(((b[0].index, b[1].index) for b in topology.bonds())) if self._graph_matcher is None: atom = nx.get_node_attributes(self, name='atom')[0] if len(atom.select('atom_symbol')) == 1 and not atom.select('not_expression'): try: element = atom.select('atom_symbol').strees[0].tail[0] except IndexError: try: atomic_num = atom.select('atomic_num').strees[0].tail[0] element = pt.Element[int(atomic_num)] except IndexError: element = None else: element = None self._graph_matcher = SMARTSMatcher(top_graph, self, node_match=self._node_match, element=element) matched_atoms = set() for mapping in self._graph_matcher.subgraph_isomorphisms_iter(): mapping = {node_id: atom_id for atom_id, node_id in mapping.items()} # The first node in the smarts graph always corresponds to the atom # that we are trying to match. atom_index = mapping[0] # Don't yield duplicate matches found via matching the pattern in a # different order. if atom_index not in matched_atoms: matched_atoms.add(atom_index) yield atom_index
python
def find_matches(self, topology): """Return sets of atoms that match this SMARTS pattern in a topology. Notes: ------ When this function gets used in atomtyper.py, we actively modify the white- and blacklists of the atoms in `topology` after finding a match. This means that between every successive call of `subgraph_isomorphisms_iter()`, the topology against which we are matching may have actually changed. Currently, we take advantage of this behavior in some edges cases (e.g. see `test_hexa_coordinated` in `test_smarts.py`). """ # Note: Needs to be updated in sync with the grammar in `smarts.py`. ring_tokens = ['ring_size', 'ring_count'] has_ring_rules = any(self.ast.select(token) for token in ring_tokens) _prepare_atoms(topology, compute_cycles=has_ring_rules) top_graph = nx.Graph() top_graph.add_nodes_from(((a.index, {'atom': a}) for a in topology.atoms())) top_graph.add_edges_from(((b[0].index, b[1].index) for b in topology.bonds())) if self._graph_matcher is None: atom = nx.get_node_attributes(self, name='atom')[0] if len(atom.select('atom_symbol')) == 1 and not atom.select('not_expression'): try: element = atom.select('atom_symbol').strees[0].tail[0] except IndexError: try: atomic_num = atom.select('atomic_num').strees[0].tail[0] element = pt.Element[int(atomic_num)] except IndexError: element = None else: element = None self._graph_matcher = SMARTSMatcher(top_graph, self, node_match=self._node_match, element=element) matched_atoms = set() for mapping in self._graph_matcher.subgraph_isomorphisms_iter(): mapping = {node_id: atom_id for atom_id, node_id in mapping.items()} # The first node in the smarts graph always corresponds to the atom # that we are trying to match. atom_index = mapping[0] # Don't yield duplicate matches found via matching the pattern in a # different order. if atom_index not in matched_atoms: matched_atoms.add(atom_index) yield atom_index
[ "def", "find_matches", "(", "self", ",", "topology", ")", ":", "# Note: Needs to be updated in sync with the grammar in `smarts.py`.", "ring_tokens", "=", "[", "'ring_size'", ",", "'ring_count'", "]", "has_ring_rules", "=", "any", "(", "self", ".", "ast", ".", "select", "(", "token", ")", "for", "token", "in", "ring_tokens", ")", "_prepare_atoms", "(", "topology", ",", "compute_cycles", "=", "has_ring_rules", ")", "top_graph", "=", "nx", ".", "Graph", "(", ")", "top_graph", ".", "add_nodes_from", "(", "(", "(", "a", ".", "index", ",", "{", "'atom'", ":", "a", "}", ")", "for", "a", "in", "topology", ".", "atoms", "(", ")", ")", ")", "top_graph", ".", "add_edges_from", "(", "(", "(", "b", "[", "0", "]", ".", "index", ",", "b", "[", "1", "]", ".", "index", ")", "for", "b", "in", "topology", ".", "bonds", "(", ")", ")", ")", "if", "self", ".", "_graph_matcher", "is", "None", ":", "atom", "=", "nx", ".", "get_node_attributes", "(", "self", ",", "name", "=", "'atom'", ")", "[", "0", "]", "if", "len", "(", "atom", ".", "select", "(", "'atom_symbol'", ")", ")", "==", "1", "and", "not", "atom", ".", "select", "(", "'not_expression'", ")", ":", "try", ":", "element", "=", "atom", ".", "select", "(", "'atom_symbol'", ")", ".", "strees", "[", "0", "]", ".", "tail", "[", "0", "]", "except", "IndexError", ":", "try", ":", "atomic_num", "=", "atom", ".", "select", "(", "'atomic_num'", ")", ".", "strees", "[", "0", "]", ".", "tail", "[", "0", "]", "element", "=", "pt", ".", "Element", "[", "int", "(", "atomic_num", ")", "]", "except", "IndexError", ":", "element", "=", "None", "else", ":", "element", "=", "None", "self", ".", "_graph_matcher", "=", "SMARTSMatcher", "(", "top_graph", ",", "self", ",", "node_match", "=", "self", ".", "_node_match", ",", "element", "=", "element", ")", "matched_atoms", "=", "set", "(", ")", "for", "mapping", "in", "self", ".", "_graph_matcher", ".", "subgraph_isomorphisms_iter", "(", ")", ":", "mapping", "=", "{", "node_id", ":", "atom_id", "for", "atom_id", ",", "node_id", "in", "mapping", ".", "items", "(", ")", "}", "# The first node in the smarts graph always corresponds to the atom", "# that we are trying to match.", "atom_index", "=", "mapping", "[", "0", "]", "# Don't yield duplicate matches found via matching the pattern in a", "# different order.", "if", "atom_index", "not", "in", "matched_atoms", ":", "matched_atoms", ".", "add", "(", "atom_index", ")", "yield", "atom_index" ]
Return sets of atoms that match this SMARTS pattern in a topology. Notes: ------ When this function gets used in atomtyper.py, we actively modify the white- and blacklists of the atoms in `topology` after finding a match. This means that between every successive call of `subgraph_isomorphisms_iter()`, the topology against which we are matching may have actually changed. Currently, we take advantage of this behavior in some edges cases (e.g. see `test_hexa_coordinated` in `test_smarts.py`).
[ "Return", "sets", "of", "atoms", "that", "match", "this", "SMARTS", "pattern", "in", "a", "topology", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/smarts_graph.py#L150-L203
3,070
mosdef-hub/foyer
foyer/smarts_graph.py
SMARTSMatcher.candidate_pairs_iter
def candidate_pairs_iter(self): """Iterator over candidate pairs of nodes in G1 and G2.""" # All computations are done using the current state! G2_nodes = self.G2_nodes # First we compute the inout-terminal sets. T1_inout = set(self.inout_1.keys()) - set(self.core_1.keys()) T2_inout = set(self.inout_2.keys()) - set(self.core_2.keys()) # If T1_inout and T2_inout are both nonempty. # P(s) = T1_inout x {min T2_inout} if T1_inout and T2_inout: for node in T1_inout: yield node, min(T2_inout) else: # First we determine the candidate node for G2 other_node = min(G2_nodes - set(self.core_2)) host_nodes = self.valid_nodes if other_node == 0 else self.G1.nodes() for node in host_nodes: if node not in self.core_1: yield node, other_node
python
def candidate_pairs_iter(self): """Iterator over candidate pairs of nodes in G1 and G2.""" # All computations are done using the current state! G2_nodes = self.G2_nodes # First we compute the inout-terminal sets. T1_inout = set(self.inout_1.keys()) - set(self.core_1.keys()) T2_inout = set(self.inout_2.keys()) - set(self.core_2.keys()) # If T1_inout and T2_inout are both nonempty. # P(s) = T1_inout x {min T2_inout} if T1_inout and T2_inout: for node in T1_inout: yield node, min(T2_inout) else: # First we determine the candidate node for G2 other_node = min(G2_nodes - set(self.core_2)) host_nodes = self.valid_nodes if other_node == 0 else self.G1.nodes() for node in host_nodes: if node not in self.core_1: yield node, other_node
[ "def", "candidate_pairs_iter", "(", "self", ")", ":", "# All computations are done using the current state!", "G2_nodes", "=", "self", ".", "G2_nodes", "# First we compute the inout-terminal sets.", "T1_inout", "=", "set", "(", "self", ".", "inout_1", ".", "keys", "(", ")", ")", "-", "set", "(", "self", ".", "core_1", ".", "keys", "(", ")", ")", "T2_inout", "=", "set", "(", "self", ".", "inout_2", ".", "keys", "(", ")", ")", "-", "set", "(", "self", ".", "core_2", ".", "keys", "(", ")", ")", "# If T1_inout and T2_inout are both nonempty.", "# P(s) = T1_inout x {min T2_inout}", "if", "T1_inout", "and", "T2_inout", ":", "for", "node", "in", "T1_inout", ":", "yield", "node", ",", "min", "(", "T2_inout", ")", "else", ":", "# First we determine the candidate node for G2", "other_node", "=", "min", "(", "G2_nodes", "-", "set", "(", "self", ".", "core_2", ")", ")", "host_nodes", "=", "self", ".", "valid_nodes", "if", "other_node", "==", "0", "else", "self", ".", "G1", ".", "nodes", "(", ")", "for", "node", "in", "host_nodes", ":", "if", "node", "not", "in", "self", ".", "core_1", ":", "yield", "node", ",", "other_node" ]
Iterator over candidate pairs of nodes in G1 and G2.
[ "Iterator", "over", "candidate", "pairs", "of", "nodes", "in", "G1", "and", "G2", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/smarts_graph.py#L216-L236
3,071
mosdef-hub/foyer
foyer/atomtyper.py
find_atomtypes
def find_atomtypes(topology, forcefield, max_iter=10): """Determine atomtypes for all atoms. Parameters ---------- topology : simtk.openmm.app.Topology The topology that we are trying to atomtype. forcefield : foyer.Forcefield The forcefield object. max_iter : int, optional, default=10 The maximum number of iterations. """ rules = _load_rules(forcefield) # Only consider rules for elements found in topology subrules = dict() system_elements = {a.element.symbol for a in topology.atoms()} for key,val in rules.items(): atom = val.node[0]['atom'] if len(atom.select('atom_symbol')) == 1 and not atom.select('not_expression'): try: element = atom.select('atom_symbol').strees[0].tail[0] except IndexError: try: atomic_num = atom.select('atomic_num').strees[0].tail[0] element = pt.Element[int(atomic_num)] except IndexError: element = None else: element = None if element is None or element in system_elements: subrules[key] = val rules = subrules _iterate_rules(rules, topology, max_iter=max_iter) _resolve_atomtypes(topology)
python
def find_atomtypes(topology, forcefield, max_iter=10): """Determine atomtypes for all atoms. Parameters ---------- topology : simtk.openmm.app.Topology The topology that we are trying to atomtype. forcefield : foyer.Forcefield The forcefield object. max_iter : int, optional, default=10 The maximum number of iterations. """ rules = _load_rules(forcefield) # Only consider rules for elements found in topology subrules = dict() system_elements = {a.element.symbol for a in topology.atoms()} for key,val in rules.items(): atom = val.node[0]['atom'] if len(atom.select('atom_symbol')) == 1 and not atom.select('not_expression'): try: element = atom.select('atom_symbol').strees[0].tail[0] except IndexError: try: atomic_num = atom.select('atomic_num').strees[0].tail[0] element = pt.Element[int(atomic_num)] except IndexError: element = None else: element = None if element is None or element in system_elements: subrules[key] = val rules = subrules _iterate_rules(rules, topology, max_iter=max_iter) _resolve_atomtypes(topology)
[ "def", "find_atomtypes", "(", "topology", ",", "forcefield", ",", "max_iter", "=", "10", ")", ":", "rules", "=", "_load_rules", "(", "forcefield", ")", "# Only consider rules for elements found in topology", "subrules", "=", "dict", "(", ")", "system_elements", "=", "{", "a", ".", "element", ".", "symbol", "for", "a", "in", "topology", ".", "atoms", "(", ")", "}", "for", "key", ",", "val", "in", "rules", ".", "items", "(", ")", ":", "atom", "=", "val", ".", "node", "[", "0", "]", "[", "'atom'", "]", "if", "len", "(", "atom", ".", "select", "(", "'atom_symbol'", ")", ")", "==", "1", "and", "not", "atom", ".", "select", "(", "'not_expression'", ")", ":", "try", ":", "element", "=", "atom", ".", "select", "(", "'atom_symbol'", ")", ".", "strees", "[", "0", "]", ".", "tail", "[", "0", "]", "except", "IndexError", ":", "try", ":", "atomic_num", "=", "atom", ".", "select", "(", "'atomic_num'", ")", ".", "strees", "[", "0", "]", ".", "tail", "[", "0", "]", "element", "=", "pt", ".", "Element", "[", "int", "(", "atomic_num", ")", "]", "except", "IndexError", ":", "element", "=", "None", "else", ":", "element", "=", "None", "if", "element", "is", "None", "or", "element", "in", "system_elements", ":", "subrules", "[", "key", "]", "=", "val", "rules", "=", "subrules", "_iterate_rules", "(", "rules", ",", "topology", ",", "max_iter", "=", "max_iter", ")", "_resolve_atomtypes", "(", "topology", ")" ]
Determine atomtypes for all atoms. Parameters ---------- topology : simtk.openmm.app.Topology The topology that we are trying to atomtype. forcefield : foyer.Forcefield The forcefield object. max_iter : int, optional, default=10 The maximum number of iterations.
[ "Determine", "atomtypes", "for", "all", "atoms", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/atomtyper.py#L7-L43
3,072
mosdef-hub/foyer
foyer/atomtyper.py
_load_rules
def _load_rules(forcefield): """Load atomtyping rules from a forcefield into SMARTSGraphs. """ rules = dict() for rule_name, smarts in forcefield.atomTypeDefinitions.items(): overrides = forcefield.atomTypeOverrides.get(rule_name) if overrides is not None: overrides = set(overrides) else: overrides = set() rules[rule_name] = SMARTSGraph(smarts_string=smarts, parser=forcefield.parser, name=rule_name, overrides=overrides) return rules
python
def _load_rules(forcefield): """Load atomtyping rules from a forcefield into SMARTSGraphs. """ rules = dict() for rule_name, smarts in forcefield.atomTypeDefinitions.items(): overrides = forcefield.atomTypeOverrides.get(rule_name) if overrides is not None: overrides = set(overrides) else: overrides = set() rules[rule_name] = SMARTSGraph(smarts_string=smarts, parser=forcefield.parser, name=rule_name, overrides=overrides) return rules
[ "def", "_load_rules", "(", "forcefield", ")", ":", "rules", "=", "dict", "(", ")", "for", "rule_name", ",", "smarts", "in", "forcefield", ".", "atomTypeDefinitions", ".", "items", "(", ")", ":", "overrides", "=", "forcefield", ".", "atomTypeOverrides", ".", "get", "(", "rule_name", ")", "if", "overrides", "is", "not", "None", ":", "overrides", "=", "set", "(", "overrides", ")", "else", ":", "overrides", "=", "set", "(", ")", "rules", "[", "rule_name", "]", "=", "SMARTSGraph", "(", "smarts_string", "=", "smarts", ",", "parser", "=", "forcefield", ".", "parser", ",", "name", "=", "rule_name", ",", "overrides", "=", "overrides", ")", "return", "rules" ]
Load atomtyping rules from a forcefield into SMARTSGraphs.
[ "Load", "atomtyping", "rules", "from", "a", "forcefield", "into", "SMARTSGraphs", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/atomtyper.py#L46-L59
3,073
mosdef-hub/foyer
foyer/atomtyper.py
_iterate_rules
def _iterate_rules(rules, topology, max_iter): """Iteratively run all the rules until the white- and backlists converge. Parameters ---------- rules : dict A dictionary mapping rule names (typically atomtype names) to SMARTSGraphs that evaluate those rules. topology : simtk.openmm.app.Topology The topology that we are trying to atomtype. max_iter : int The maximum number of iterations. """ atoms = list(topology.atoms()) for _ in range(max_iter): max_iter -= 1 found_something = False for rule in rules.values(): for match_index in rule.find_matches(topology): atom = atoms[match_index] if rule.name not in atom.whitelist: atom.whitelist.add(rule.name) atom.blacklist |= rule.overrides found_something = True if not found_something: break else: warn("Reached maximum iterations. Something probably went wrong.")
python
def _iterate_rules(rules, topology, max_iter): """Iteratively run all the rules until the white- and backlists converge. Parameters ---------- rules : dict A dictionary mapping rule names (typically atomtype names) to SMARTSGraphs that evaluate those rules. topology : simtk.openmm.app.Topology The topology that we are trying to atomtype. max_iter : int The maximum number of iterations. """ atoms = list(topology.atoms()) for _ in range(max_iter): max_iter -= 1 found_something = False for rule in rules.values(): for match_index in rule.find_matches(topology): atom = atoms[match_index] if rule.name not in atom.whitelist: atom.whitelist.add(rule.name) atom.blacklist |= rule.overrides found_something = True if not found_something: break else: warn("Reached maximum iterations. Something probably went wrong.")
[ "def", "_iterate_rules", "(", "rules", ",", "topology", ",", "max_iter", ")", ":", "atoms", "=", "list", "(", "topology", ".", "atoms", "(", ")", ")", "for", "_", "in", "range", "(", "max_iter", ")", ":", "max_iter", "-=", "1", "found_something", "=", "False", "for", "rule", "in", "rules", ".", "values", "(", ")", ":", "for", "match_index", "in", "rule", ".", "find_matches", "(", "topology", ")", ":", "atom", "=", "atoms", "[", "match_index", "]", "if", "rule", ".", "name", "not", "in", "atom", ".", "whitelist", ":", "atom", ".", "whitelist", ".", "add", "(", "rule", ".", "name", ")", "atom", ".", "blacklist", "|=", "rule", ".", "overrides", "found_something", "=", "True", "if", "not", "found_something", ":", "break", "else", ":", "warn", "(", "\"Reached maximum iterations. Something probably went wrong.\"", ")" ]
Iteratively run all the rules until the white- and backlists converge. Parameters ---------- rules : dict A dictionary mapping rule names (typically atomtype names) to SMARTSGraphs that evaluate those rules. topology : simtk.openmm.app.Topology The topology that we are trying to atomtype. max_iter : int The maximum number of iterations.
[ "Iteratively", "run", "all", "the", "rules", "until", "the", "white", "-", "and", "backlists", "converge", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/atomtyper.py#L62-L90
3,074
mosdef-hub/foyer
foyer/atomtyper.py
_resolve_atomtypes
def _resolve_atomtypes(topology): """Determine the final atomtypes from the white- and blacklists. """ for atom in topology.atoms(): atomtype = [rule_name for rule_name in atom.whitelist - atom.blacklist] if len(atomtype) == 1: atom.id = atomtype[0] elif len(atomtype) > 1: raise FoyerError("Found multiple types for atom {} ({}): {}.".format( atom.index, atom.element.name, atomtype)) else: raise FoyerError("Found no types for atom {} ({}).".format( atom.index, atom.element.name))
python
def _resolve_atomtypes(topology): """Determine the final atomtypes from the white- and blacklists. """ for atom in topology.atoms(): atomtype = [rule_name for rule_name in atom.whitelist - atom.blacklist] if len(atomtype) == 1: atom.id = atomtype[0] elif len(atomtype) > 1: raise FoyerError("Found multiple types for atom {} ({}): {}.".format( atom.index, atom.element.name, atomtype)) else: raise FoyerError("Found no types for atom {} ({}).".format( atom.index, atom.element.name))
[ "def", "_resolve_atomtypes", "(", "topology", ")", ":", "for", "atom", "in", "topology", ".", "atoms", "(", ")", ":", "atomtype", "=", "[", "rule_name", "for", "rule_name", "in", "atom", ".", "whitelist", "-", "atom", ".", "blacklist", "]", "if", "len", "(", "atomtype", ")", "==", "1", ":", "atom", ".", "id", "=", "atomtype", "[", "0", "]", "elif", "len", "(", "atomtype", ")", ">", "1", ":", "raise", "FoyerError", "(", "\"Found multiple types for atom {} ({}): {}.\"", ".", "format", "(", "atom", ".", "index", ",", "atom", ".", "element", ".", "name", ",", "atomtype", ")", ")", "else", ":", "raise", "FoyerError", "(", "\"Found no types for atom {} ({}).\"", ".", "format", "(", "atom", ".", "index", ",", "atom", ".", "element", ".", "name", ")", ")" ]
Determine the final atomtypes from the white- and blacklists.
[ "Determine", "the", "final", "atomtypes", "from", "the", "white", "-", "and", "blacklists", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/atomtyper.py#L93-L104
3,075
mosdef-hub/foyer
foyer/forcefield.py
generate_topology
def generate_topology(non_omm_topology, non_element_types=None, residues=None): """Create an OpenMM Topology from another supported topology structure.""" if non_element_types is None: non_element_types = set() if isinstance(non_omm_topology, pmd.Structure): return _topology_from_parmed(non_omm_topology, non_element_types) elif has_mbuild: mb = import_('mbuild') if (non_omm_topology, mb.Compound): pmdCompoundStructure = non_omm_topology.to_parmed(residues=residues) return _topology_from_parmed(pmdCompoundStructure, non_element_types) else: raise FoyerError('Unknown topology format: {}\n' 'Supported formats are: ' '"parmed.Structure", ' '"mbuild.Compound", ' '"openmm.app.Topology"'.format(non_omm_topology))
python
def generate_topology(non_omm_topology, non_element_types=None, residues=None): """Create an OpenMM Topology from another supported topology structure.""" if non_element_types is None: non_element_types = set() if isinstance(non_omm_topology, pmd.Structure): return _topology_from_parmed(non_omm_topology, non_element_types) elif has_mbuild: mb = import_('mbuild') if (non_omm_topology, mb.Compound): pmdCompoundStructure = non_omm_topology.to_parmed(residues=residues) return _topology_from_parmed(pmdCompoundStructure, non_element_types) else: raise FoyerError('Unknown topology format: {}\n' 'Supported formats are: ' '"parmed.Structure", ' '"mbuild.Compound", ' '"openmm.app.Topology"'.format(non_omm_topology))
[ "def", "generate_topology", "(", "non_omm_topology", ",", "non_element_types", "=", "None", ",", "residues", "=", "None", ")", ":", "if", "non_element_types", "is", "None", ":", "non_element_types", "=", "set", "(", ")", "if", "isinstance", "(", "non_omm_topology", ",", "pmd", ".", "Structure", ")", ":", "return", "_topology_from_parmed", "(", "non_omm_topology", ",", "non_element_types", ")", "elif", "has_mbuild", ":", "mb", "=", "import_", "(", "'mbuild'", ")", "if", "(", "non_omm_topology", ",", "mb", ".", "Compound", ")", ":", "pmdCompoundStructure", "=", "non_omm_topology", ".", "to_parmed", "(", "residues", "=", "residues", ")", "return", "_topology_from_parmed", "(", "pmdCompoundStructure", ",", "non_element_types", ")", "else", ":", "raise", "FoyerError", "(", "'Unknown topology format: {}\\n'", "'Supported formats are: '", "'\"parmed.Structure\", '", "'\"mbuild.Compound\", '", "'\"openmm.app.Topology\"'", ".", "format", "(", "non_omm_topology", ")", ")" ]
Create an OpenMM Topology from another supported topology structure.
[ "Create", "an", "OpenMM", "Topology", "from", "another", "supported", "topology", "structure", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/forcefield.py#L87-L105
3,076
mosdef-hub/foyer
foyer/forcefield.py
_topology_from_parmed
def _topology_from_parmed(structure, non_element_types): """Convert a ParmEd Structure to an OpenMM Topology.""" topology = app.Topology() residues = dict() for pmd_residue in structure.residues: chain = topology.addChain() omm_residue = topology.addResidue(pmd_residue.name, chain) residues[pmd_residue] = omm_residue atoms = dict() # pmd.Atom: omm.Atom for pmd_atom in structure.atoms: name = pmd_atom.name if pmd_atom.name in non_element_types: element = non_element_types[pmd_atom.name] else: if (isinstance(pmd_atom.atomic_number, int) and pmd_atom.atomic_number != 0): element = elem.Element.getByAtomicNumber(pmd_atom.atomic_number) else: element = elem.Element.getBySymbol(pmd_atom.name) omm_atom = topology.addAtom(name, element, residues[pmd_atom.residue]) atoms[pmd_atom] = omm_atom omm_atom.bond_partners = [] for bond in structure.bonds: atom1 = atoms[bond.atom1] atom2 = atoms[bond.atom2] topology.addBond(atom1, atom2) atom1.bond_partners.append(atom2) atom2.bond_partners.append(atom1) if structure.box_vectors and np.any([x._value for x in structure.box_vectors]): topology.setPeriodicBoxVectors(structure.box_vectors) positions = structure.positions return topology, positions
python
def _topology_from_parmed(structure, non_element_types): """Convert a ParmEd Structure to an OpenMM Topology.""" topology = app.Topology() residues = dict() for pmd_residue in structure.residues: chain = topology.addChain() omm_residue = topology.addResidue(pmd_residue.name, chain) residues[pmd_residue] = omm_residue atoms = dict() # pmd.Atom: omm.Atom for pmd_atom in structure.atoms: name = pmd_atom.name if pmd_atom.name in non_element_types: element = non_element_types[pmd_atom.name] else: if (isinstance(pmd_atom.atomic_number, int) and pmd_atom.atomic_number != 0): element = elem.Element.getByAtomicNumber(pmd_atom.atomic_number) else: element = elem.Element.getBySymbol(pmd_atom.name) omm_atom = topology.addAtom(name, element, residues[pmd_atom.residue]) atoms[pmd_atom] = omm_atom omm_atom.bond_partners = [] for bond in structure.bonds: atom1 = atoms[bond.atom1] atom2 = atoms[bond.atom2] topology.addBond(atom1, atom2) atom1.bond_partners.append(atom2) atom2.bond_partners.append(atom1) if structure.box_vectors and np.any([x._value for x in structure.box_vectors]): topology.setPeriodicBoxVectors(structure.box_vectors) positions = structure.positions return topology, positions
[ "def", "_topology_from_parmed", "(", "structure", ",", "non_element_types", ")", ":", "topology", "=", "app", ".", "Topology", "(", ")", "residues", "=", "dict", "(", ")", "for", "pmd_residue", "in", "structure", ".", "residues", ":", "chain", "=", "topology", ".", "addChain", "(", ")", "omm_residue", "=", "topology", ".", "addResidue", "(", "pmd_residue", ".", "name", ",", "chain", ")", "residues", "[", "pmd_residue", "]", "=", "omm_residue", "atoms", "=", "dict", "(", ")", "# pmd.Atom: omm.Atom", "for", "pmd_atom", "in", "structure", ".", "atoms", ":", "name", "=", "pmd_atom", ".", "name", "if", "pmd_atom", ".", "name", "in", "non_element_types", ":", "element", "=", "non_element_types", "[", "pmd_atom", ".", "name", "]", "else", ":", "if", "(", "isinstance", "(", "pmd_atom", ".", "atomic_number", ",", "int", ")", "and", "pmd_atom", ".", "atomic_number", "!=", "0", ")", ":", "element", "=", "elem", ".", "Element", ".", "getByAtomicNumber", "(", "pmd_atom", ".", "atomic_number", ")", "else", ":", "element", "=", "elem", ".", "Element", ".", "getBySymbol", "(", "pmd_atom", ".", "name", ")", "omm_atom", "=", "topology", ".", "addAtom", "(", "name", ",", "element", ",", "residues", "[", "pmd_atom", ".", "residue", "]", ")", "atoms", "[", "pmd_atom", "]", "=", "omm_atom", "omm_atom", ".", "bond_partners", "=", "[", "]", "for", "bond", "in", "structure", ".", "bonds", ":", "atom1", "=", "atoms", "[", "bond", ".", "atom1", "]", "atom2", "=", "atoms", "[", "bond", ".", "atom2", "]", "topology", ".", "addBond", "(", "atom1", ",", "atom2", ")", "atom1", ".", "bond_partners", ".", "append", "(", "atom2", ")", "atom2", ".", "bond_partners", ".", "append", "(", "atom1", ")", "if", "structure", ".", "box_vectors", "and", "np", ".", "any", "(", "[", "x", ".", "_value", "for", "x", "in", "structure", ".", "box_vectors", "]", ")", ":", "topology", ".", "setPeriodicBoxVectors", "(", "structure", ".", "box_vectors", ")", "positions", "=", "structure", ".", "positions", "return", "topology", ",", "positions" ]
Convert a ParmEd Structure to an OpenMM Topology.
[ "Convert", "a", "ParmEd", "Structure", "to", "an", "OpenMM", "Topology", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/forcefield.py#L108-L143
3,077
mosdef-hub/foyer
foyer/forcefield.py
_topology_from_residue
def _topology_from_residue(res): """Converts a openmm.app.Topology.Residue to openmm.app.Topology. Parameters ---------- res : openmm.app.Topology.Residue An individual residue in an openmm.app.Topology Returns ------- topology : openmm.app.Topology The generated topology """ topology = app.Topology() chain = topology.addChain() new_res = topology.addResidue(res.name, chain) atoms = dict() # { omm.Atom in res : omm.Atom in *new* topology } for res_atom in res.atoms(): topology_atom = topology.addAtom(name=res_atom.name, element=res_atom.element, residue=new_res) atoms[res_atom] = topology_atom topology_atom.bond_partners = [] for bond in res.bonds(): atom1 = atoms[bond.atom1] atom2 = atoms[bond.atom2] topology.addBond(atom1, atom2) atom1.bond_partners.append(atom2) atom2.bond_partners.append(atom1) return topology
python
def _topology_from_residue(res): """Converts a openmm.app.Topology.Residue to openmm.app.Topology. Parameters ---------- res : openmm.app.Topology.Residue An individual residue in an openmm.app.Topology Returns ------- topology : openmm.app.Topology The generated topology """ topology = app.Topology() chain = topology.addChain() new_res = topology.addResidue(res.name, chain) atoms = dict() # { omm.Atom in res : omm.Atom in *new* topology } for res_atom in res.atoms(): topology_atom = topology.addAtom(name=res_atom.name, element=res_atom.element, residue=new_res) atoms[res_atom] = topology_atom topology_atom.bond_partners = [] for bond in res.bonds(): atom1 = atoms[bond.atom1] atom2 = atoms[bond.atom2] topology.addBond(atom1, atom2) atom1.bond_partners.append(atom2) atom2.bond_partners.append(atom1) return topology
[ "def", "_topology_from_residue", "(", "res", ")", ":", "topology", "=", "app", ".", "Topology", "(", ")", "chain", "=", "topology", ".", "addChain", "(", ")", "new_res", "=", "topology", ".", "addResidue", "(", "res", ".", "name", ",", "chain", ")", "atoms", "=", "dict", "(", ")", "# { omm.Atom in res : omm.Atom in *new* topology }", "for", "res_atom", "in", "res", ".", "atoms", "(", ")", ":", "topology_atom", "=", "topology", ".", "addAtom", "(", "name", "=", "res_atom", ".", "name", ",", "element", "=", "res_atom", ".", "element", ",", "residue", "=", "new_res", ")", "atoms", "[", "res_atom", "]", "=", "topology_atom", "topology_atom", ".", "bond_partners", "=", "[", "]", "for", "bond", "in", "res", ".", "bonds", "(", ")", ":", "atom1", "=", "atoms", "[", "bond", ".", "atom1", "]", "atom2", "=", "atoms", "[", "bond", ".", "atom2", "]", "topology", ".", "addBond", "(", "atom1", ",", "atom2", ")", "atom1", ".", "bond_partners", ".", "append", "(", "atom2", ")", "atom2", ".", "bond_partners", ".", "append", "(", "atom1", ")", "return", "topology" ]
Converts a openmm.app.Topology.Residue to openmm.app.Topology. Parameters ---------- res : openmm.app.Topology.Residue An individual residue in an openmm.app.Topology Returns ------- topology : openmm.app.Topology The generated topology
[ "Converts", "a", "openmm", ".", "app", ".", "Topology", ".", "Residue", "to", "openmm", ".", "app", ".", "Topology", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/forcefield.py#L146-L180
3,078
mosdef-hub/foyer
foyer/forcefield.py
_check_independent_residues
def _check_independent_residues(topology): """Check to see if residues will constitute independent graphs.""" for res in topology.residues(): atoms_in_residue = set([atom for atom in res.atoms()]) bond_partners_in_residue = [item for sublist in [atom.bond_partners for atom in res.atoms()] for item in sublist] # Handle the case of a 'residue' with no neighbors if not bond_partners_in_residue: continue if set(atoms_in_residue) != set(bond_partners_in_residue): return False return True
python
def _check_independent_residues(topology): """Check to see if residues will constitute independent graphs.""" for res in topology.residues(): atoms_in_residue = set([atom for atom in res.atoms()]) bond_partners_in_residue = [item for sublist in [atom.bond_partners for atom in res.atoms()] for item in sublist] # Handle the case of a 'residue' with no neighbors if not bond_partners_in_residue: continue if set(atoms_in_residue) != set(bond_partners_in_residue): return False return True
[ "def", "_check_independent_residues", "(", "topology", ")", ":", "for", "res", "in", "topology", ".", "residues", "(", ")", ":", "atoms_in_residue", "=", "set", "(", "[", "atom", "for", "atom", "in", "res", ".", "atoms", "(", ")", "]", ")", "bond_partners_in_residue", "=", "[", "item", "for", "sublist", "in", "[", "atom", ".", "bond_partners", "for", "atom", "in", "res", ".", "atoms", "(", ")", "]", "for", "item", "in", "sublist", "]", "# Handle the case of a 'residue' with no neighbors", "if", "not", "bond_partners_in_residue", ":", "continue", "if", "set", "(", "atoms_in_residue", ")", "!=", "set", "(", "bond_partners_in_residue", ")", ":", "return", "False", "return", "True" ]
Check to see if residues will constitute independent graphs.
[ "Check", "to", "see", "if", "residues", "will", "constitute", "independent", "graphs", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/forcefield.py#L183-L193
3,079
mosdef-hub/foyer
foyer/forcefield.py
_update_atomtypes
def _update_atomtypes(unatomtyped_topology, res_name, prototype): """Update atomtypes in residues in a topology using a prototype topology. Atomtypes are updated when residues in each topology have matching names. Parameters ---------- unatomtyped_topology : openmm.app.Topology Topology lacking atomtypes defined by `find_atomtypes`. prototype : openmm.app.Topology Prototype topology with atomtypes defined by `find_atomtypes`. """ for res in unatomtyped_topology.residues(): if res.name == res_name: for old_atom, new_atom_id in zip([atom for atom in res.atoms()], [atom.id for atom in prototype.atoms()]): old_atom.id = new_atom_id
python
def _update_atomtypes(unatomtyped_topology, res_name, prototype): """Update atomtypes in residues in a topology using a prototype topology. Atomtypes are updated when residues in each topology have matching names. Parameters ---------- unatomtyped_topology : openmm.app.Topology Topology lacking atomtypes defined by `find_atomtypes`. prototype : openmm.app.Topology Prototype topology with atomtypes defined by `find_atomtypes`. """ for res in unatomtyped_topology.residues(): if res.name == res_name: for old_atom, new_atom_id in zip([atom for atom in res.atoms()], [atom.id for atom in prototype.atoms()]): old_atom.id = new_atom_id
[ "def", "_update_atomtypes", "(", "unatomtyped_topology", ",", "res_name", ",", "prototype", ")", ":", "for", "res", "in", "unatomtyped_topology", ".", "residues", "(", ")", ":", "if", "res", ".", "name", "==", "res_name", ":", "for", "old_atom", ",", "new_atom_id", "in", "zip", "(", "[", "atom", "for", "atom", "in", "res", ".", "atoms", "(", ")", "]", ",", "[", "atom", ".", "id", "for", "atom", "in", "prototype", ".", "atoms", "(", ")", "]", ")", ":", "old_atom", ".", "id", "=", "new_atom_id" ]
Update atomtypes in residues in a topology using a prototype topology. Atomtypes are updated when residues in each topology have matching names. Parameters ---------- unatomtyped_topology : openmm.app.Topology Topology lacking atomtypes defined by `find_atomtypes`. prototype : openmm.app.Topology Prototype topology with atomtypes defined by `find_atomtypes`.
[ "Update", "atomtypes", "in", "residues", "in", "a", "topology", "using", "a", "prototype", "topology", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/forcefield.py#L196-L212
3,080
mosdef-hub/foyer
foyer/forcefield.py
Forcefield.registerAtomType
def registerAtomType(self, parameters): """Register a new atom type. """ name = parameters['name'] if name in self._atomTypes: raise ValueError('Found multiple definitions for atom type: ' + name) atom_class = parameters['class'] mass = _convertParameterToNumber(parameters['mass']) element = None if 'element' in parameters: element, custom = self._create_element(parameters['element'], mass) if custom: self.non_element_types[element.symbol] = element self._atomTypes[name] = self.__class__._AtomType(name, atom_class, mass, element) if atom_class in self._atomClasses: type_set = self._atomClasses[atom_class] else: type_set = set() self._atomClasses[atom_class] = type_set type_set.add(name) self._atomClasses[''].add(name) name = parameters['name'] if 'def' in parameters: self.atomTypeDefinitions[name] = parameters['def'] if 'overrides' in parameters: overrides = set(atype.strip() for atype in parameters['overrides'].split(",")) if overrides: self.atomTypeOverrides[name] = overrides if 'des' in parameters: self.atomTypeDesc[name] = parameters['desc'] if 'doi' in parameters: dois = set(doi.strip() for doi in parameters['doi'].split(',')) self.atomTypeRefs[name] = dois
python
def registerAtomType(self, parameters): """Register a new atom type. """ name = parameters['name'] if name in self._atomTypes: raise ValueError('Found multiple definitions for atom type: ' + name) atom_class = parameters['class'] mass = _convertParameterToNumber(parameters['mass']) element = None if 'element' in parameters: element, custom = self._create_element(parameters['element'], mass) if custom: self.non_element_types[element.symbol] = element self._atomTypes[name] = self.__class__._AtomType(name, atom_class, mass, element) if atom_class in self._atomClasses: type_set = self._atomClasses[atom_class] else: type_set = set() self._atomClasses[atom_class] = type_set type_set.add(name) self._atomClasses[''].add(name) name = parameters['name'] if 'def' in parameters: self.atomTypeDefinitions[name] = parameters['def'] if 'overrides' in parameters: overrides = set(atype.strip() for atype in parameters['overrides'].split(",")) if overrides: self.atomTypeOverrides[name] = overrides if 'des' in parameters: self.atomTypeDesc[name] = parameters['desc'] if 'doi' in parameters: dois = set(doi.strip() for doi in parameters['doi'].split(',')) self.atomTypeRefs[name] = dois
[ "def", "registerAtomType", "(", "self", ",", "parameters", ")", ":", "name", "=", "parameters", "[", "'name'", "]", "if", "name", "in", "self", ".", "_atomTypes", ":", "raise", "ValueError", "(", "'Found multiple definitions for atom type: '", "+", "name", ")", "atom_class", "=", "parameters", "[", "'class'", "]", "mass", "=", "_convertParameterToNumber", "(", "parameters", "[", "'mass'", "]", ")", "element", "=", "None", "if", "'element'", "in", "parameters", ":", "element", ",", "custom", "=", "self", ".", "_create_element", "(", "parameters", "[", "'element'", "]", ",", "mass", ")", "if", "custom", ":", "self", ".", "non_element_types", "[", "element", ".", "symbol", "]", "=", "element", "self", ".", "_atomTypes", "[", "name", "]", "=", "self", ".", "__class__", ".", "_AtomType", "(", "name", ",", "atom_class", ",", "mass", ",", "element", ")", "if", "atom_class", "in", "self", ".", "_atomClasses", ":", "type_set", "=", "self", ".", "_atomClasses", "[", "atom_class", "]", "else", ":", "type_set", "=", "set", "(", ")", "self", ".", "_atomClasses", "[", "atom_class", "]", "=", "type_set", "type_set", ".", "add", "(", "name", ")", "self", ".", "_atomClasses", "[", "''", "]", ".", "add", "(", "name", ")", "name", "=", "parameters", "[", "'name'", "]", "if", "'def'", "in", "parameters", ":", "self", ".", "atomTypeDefinitions", "[", "name", "]", "=", "parameters", "[", "'def'", "]", "if", "'overrides'", "in", "parameters", ":", "overrides", "=", "set", "(", "atype", ".", "strip", "(", ")", "for", "atype", "in", "parameters", "[", "'overrides'", "]", ".", "split", "(", "\",\"", ")", ")", "if", "overrides", ":", "self", ".", "atomTypeOverrides", "[", "name", "]", "=", "overrides", "if", "'des'", "in", "parameters", ":", "self", ".", "atomTypeDesc", "[", "name", "]", "=", "parameters", "[", "'desc'", "]", "if", "'doi'", "in", "parameters", ":", "dois", "=", "set", "(", "doi", ".", "strip", "(", ")", "for", "doi", "in", "parameters", "[", "'doi'", "]", ".", "split", "(", "','", ")", ")", "self", ".", "atomTypeRefs", "[", "name", "]", "=", "dois" ]
Register a new atom type.
[ "Register", "a", "new", "atom", "type", "." ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/forcefield.py#L307-L341
3,081
mosdef-hub/foyer
foyer/forcefield.py
Forcefield.run_atomtyping
def run_atomtyping(self, topology, use_residue_map=True): """Atomtype the topology Parameters ---------- topology : openmm.app.Topology Molecular structure to find atom types of use_residue_map : boolean, optional, default=True Store atomtyped topologies of residues to a dictionary that maps them to residue names. Each topology, including atomtypes, will be copied to other residues with the same name. This avoids repeatedly calling the subgraph isomorphism on idential residues and should result in better performance for systems with many identical residues, i.e. a box of water. Note that for this to be applied to independent molecules, they must each be saved as different residues in the topology. """ if use_residue_map: independent_residues = _check_independent_residues(topology) if independent_residues: residue_map = dict() for res in topology.residues(): if res.name not in residue_map.keys(): residue = _topology_from_residue(res) find_atomtypes(residue, forcefield=self) residue_map[res.name] = residue for key, val in residue_map.items(): _update_atomtypes(topology, key, val) else: find_atomtypes(topology, forcefield=self) else: find_atomtypes(topology, forcefield=self) if not all([a.id for a in topology.atoms()][0]): raise ValueError('Not all atoms in topology have atom types') return topology
python
def run_atomtyping(self, topology, use_residue_map=True): """Atomtype the topology Parameters ---------- topology : openmm.app.Topology Molecular structure to find atom types of use_residue_map : boolean, optional, default=True Store atomtyped topologies of residues to a dictionary that maps them to residue names. Each topology, including atomtypes, will be copied to other residues with the same name. This avoids repeatedly calling the subgraph isomorphism on idential residues and should result in better performance for systems with many identical residues, i.e. a box of water. Note that for this to be applied to independent molecules, they must each be saved as different residues in the topology. """ if use_residue_map: independent_residues = _check_independent_residues(topology) if independent_residues: residue_map = dict() for res in topology.residues(): if res.name not in residue_map.keys(): residue = _topology_from_residue(res) find_atomtypes(residue, forcefield=self) residue_map[res.name] = residue for key, val in residue_map.items(): _update_atomtypes(topology, key, val) else: find_atomtypes(topology, forcefield=self) else: find_atomtypes(topology, forcefield=self) if not all([a.id for a in topology.atoms()][0]): raise ValueError('Not all atoms in topology have atom types') return topology
[ "def", "run_atomtyping", "(", "self", ",", "topology", ",", "use_residue_map", "=", "True", ")", ":", "if", "use_residue_map", ":", "independent_residues", "=", "_check_independent_residues", "(", "topology", ")", "if", "independent_residues", ":", "residue_map", "=", "dict", "(", ")", "for", "res", "in", "topology", ".", "residues", "(", ")", ":", "if", "res", ".", "name", "not", "in", "residue_map", ".", "keys", "(", ")", ":", "residue", "=", "_topology_from_residue", "(", "res", ")", "find_atomtypes", "(", "residue", ",", "forcefield", "=", "self", ")", "residue_map", "[", "res", ".", "name", "]", "=", "residue", "for", "key", ",", "val", "in", "residue_map", ".", "items", "(", ")", ":", "_update_atomtypes", "(", "topology", ",", "key", ",", "val", ")", "else", ":", "find_atomtypes", "(", "topology", ",", "forcefield", "=", "self", ")", "else", ":", "find_atomtypes", "(", "topology", ",", "forcefield", "=", "self", ")", "if", "not", "all", "(", "[", "a", ".", "id", "for", "a", "in", "topology", ".", "atoms", "(", ")", "]", "[", "0", "]", ")", ":", "raise", "ValueError", "(", "'Not all atoms in topology have atom types'", ")", "return", "topology" ]
Atomtype the topology Parameters ---------- topology : openmm.app.Topology Molecular structure to find atom types of use_residue_map : boolean, optional, default=True Store atomtyped topologies of residues to a dictionary that maps them to residue names. Each topology, including atomtypes, will be copied to other residues with the same name. This avoids repeatedly calling the subgraph isomorphism on idential residues and should result in better performance for systems with many identical residues, i.e. a box of water. Note that for this to be applied to independent molecules, they must each be saved as different residues in the topology.
[ "Atomtype", "the", "topology" ]
9e39c71208fc01a6cc7b7cbe5a533c56830681d3
https://github.com/mosdef-hub/foyer/blob/9e39c71208fc01a6cc7b7cbe5a533c56830681d3/foyer/forcefield.py#L452-L493
3,082
mgedmin/check-manifest
check_manifest.py
cd
def cd(directory): """Change the current working directory, temporarily. Use as a context manager: with cd(d): ... """ old_dir = os.getcwd() try: os.chdir(directory) yield finally: os.chdir(old_dir)
python
def cd(directory): """Change the current working directory, temporarily. Use as a context manager: with cd(d): ... """ old_dir = os.getcwd() try: os.chdir(directory) yield finally: os.chdir(old_dir)
[ "def", "cd", "(", "directory", ")", ":", "old_dir", "=", "os", ".", "getcwd", "(", ")", "try", ":", "os", ".", "chdir", "(", "directory", ")", "yield", "finally", ":", "os", ".", "chdir", "(", "old_dir", ")" ]
Change the current working directory, temporarily. Use as a context manager: with cd(d): ...
[ "Change", "the", "current", "working", "directory", "temporarily", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L164-L174
3,083
mgedmin/check-manifest
check_manifest.py
mkdtemp
def mkdtemp(hint=''): """Create a temporary directory, then clean it up. Use as a context manager: with mkdtemp('-purpose'): ... """ dirname = tempfile.mkdtemp(prefix='check-manifest-', suffix=hint) try: yield dirname finally: rmtree(dirname)
python
def mkdtemp(hint=''): """Create a temporary directory, then clean it up. Use as a context manager: with mkdtemp('-purpose'): ... """ dirname = tempfile.mkdtemp(prefix='check-manifest-', suffix=hint) try: yield dirname finally: rmtree(dirname)
[ "def", "mkdtemp", "(", "hint", "=", "''", ")", ":", "dirname", "=", "tempfile", ".", "mkdtemp", "(", "prefix", "=", "'check-manifest-'", ",", "suffix", "=", "hint", ")", "try", ":", "yield", "dirname", "finally", ":", "rmtree", "(", "dirname", ")" ]
Create a temporary directory, then clean it up. Use as a context manager: with mkdtemp('-purpose'): ...
[ "Create", "a", "temporary", "directory", "then", "clean", "it", "up", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L178-L187
3,084
mgedmin/check-manifest
check_manifest.py
chmod_plus
def chmod_plus(path, add_bits=stat.S_IWUSR): """Change a file's mode by adding a few bits. Like chmod +<bits> <path> in a Unix shell. """ try: os.chmod(path, stat.S_IMODE(os.stat(path).st_mode) | add_bits) except OSError: # pragma: nocover pass
python
def chmod_plus(path, add_bits=stat.S_IWUSR): """Change a file's mode by adding a few bits. Like chmod +<bits> <path> in a Unix shell. """ try: os.chmod(path, stat.S_IMODE(os.stat(path).st_mode) | add_bits) except OSError: # pragma: nocover pass
[ "def", "chmod_plus", "(", "path", ",", "add_bits", "=", "stat", ".", "S_IWUSR", ")", ":", "try", ":", "os", ".", "chmod", "(", "path", ",", "stat", ".", "S_IMODE", "(", "os", ".", "stat", "(", "path", ")", ".", "st_mode", ")", "|", "add_bits", ")", "except", "OSError", ":", "# pragma: nocover", "pass" ]
Change a file's mode by adding a few bits. Like chmod +<bits> <path> in a Unix shell.
[ "Change", "a", "file", "s", "mode", "by", "adding", "a", "few", "bits", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L190-L198
3,085
mgedmin/check-manifest
check_manifest.py
rmtree
def rmtree(path): """A version of rmtree that can deal with read-only files and directories. Needed because the stock shutil.rmtree() fails with an access error when there are read-only files in the directory on Windows, or when the directory itself is read-only on Unix. """ def onerror(func, path, exc_info): # Did you know what on Python 3.3 on Windows os.remove() and # os.unlink() are distinct functions? if func is os.remove or func is os.unlink or func is os.rmdir: if sys.platform != 'win32': chmod_plus(os.path.dirname(path), stat.S_IWUSR | stat.S_IXUSR) chmod_plus(path) func(path) else: raise shutil.rmtree(path, onerror=onerror)
python
def rmtree(path): """A version of rmtree that can deal with read-only files and directories. Needed because the stock shutil.rmtree() fails with an access error when there are read-only files in the directory on Windows, or when the directory itself is read-only on Unix. """ def onerror(func, path, exc_info): # Did you know what on Python 3.3 on Windows os.remove() and # os.unlink() are distinct functions? if func is os.remove or func is os.unlink or func is os.rmdir: if sys.platform != 'win32': chmod_plus(os.path.dirname(path), stat.S_IWUSR | stat.S_IXUSR) chmod_plus(path) func(path) else: raise shutil.rmtree(path, onerror=onerror)
[ "def", "rmtree", "(", "path", ")", ":", "def", "onerror", "(", "func", ",", "path", ",", "exc_info", ")", ":", "# Did you know what on Python 3.3 on Windows os.remove() and", "# os.unlink() are distinct functions?", "if", "func", "is", "os", ".", "remove", "or", "func", "is", "os", ".", "unlink", "or", "func", "is", "os", ".", "rmdir", ":", "if", "sys", ".", "platform", "!=", "'win32'", ":", "chmod_plus", "(", "os", ".", "path", ".", "dirname", "(", "path", ")", ",", "stat", ".", "S_IWUSR", "|", "stat", ".", "S_IXUSR", ")", "chmod_plus", "(", "path", ")", "func", "(", "path", ")", "else", ":", "raise", "shutil", ".", "rmtree", "(", "path", ",", "onerror", "=", "onerror", ")" ]
A version of rmtree that can deal with read-only files and directories. Needed because the stock shutil.rmtree() fails with an access error when there are read-only files in the directory on Windows, or when the directory itself is read-only on Unix.
[ "A", "version", "of", "rmtree", "that", "can", "deal", "with", "read", "-", "only", "files", "and", "directories", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L201-L218
3,086
mgedmin/check-manifest
check_manifest.py
copy_files
def copy_files(filelist, destdir): """Copy a list of files to destdir, preserving directory structure. File names should be relative to the current working directory. """ for filename in filelist: destfile = os.path.join(destdir, filename) # filename should not be absolute, but let's double-check assert destfile.startswith(destdir + os.path.sep) destfiledir = os.path.dirname(destfile) if not os.path.isdir(destfiledir): os.makedirs(destfiledir) if os.path.isdir(filename): os.mkdir(destfile) else: shutil.copy2(filename, destfile)
python
def copy_files(filelist, destdir): """Copy a list of files to destdir, preserving directory structure. File names should be relative to the current working directory. """ for filename in filelist: destfile = os.path.join(destdir, filename) # filename should not be absolute, but let's double-check assert destfile.startswith(destdir + os.path.sep) destfiledir = os.path.dirname(destfile) if not os.path.isdir(destfiledir): os.makedirs(destfiledir) if os.path.isdir(filename): os.mkdir(destfile) else: shutil.copy2(filename, destfile)
[ "def", "copy_files", "(", "filelist", ",", "destdir", ")", ":", "for", "filename", "in", "filelist", ":", "destfile", "=", "os", ".", "path", ".", "join", "(", "destdir", ",", "filename", ")", "# filename should not be absolute, but let's double-check", "assert", "destfile", ".", "startswith", "(", "destdir", "+", "os", ".", "path", ".", "sep", ")", "destfiledir", "=", "os", ".", "path", ".", "dirname", "(", "destfile", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "destfiledir", ")", ":", "os", ".", "makedirs", "(", "destfiledir", ")", "if", "os", ".", "path", ".", "isdir", "(", "filename", ")", ":", "os", ".", "mkdir", "(", "destfile", ")", "else", ":", "shutil", ".", "copy2", "(", "filename", ",", "destfile", ")" ]
Copy a list of files to destdir, preserving directory structure. File names should be relative to the current working directory.
[ "Copy", "a", "list", "of", "files", "to", "destdir", "preserving", "directory", "structure", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L221-L236
3,087
mgedmin/check-manifest
check_manifest.py
get_one_file_in
def get_one_file_in(dirname): """Return the pathname of the one file in a directory. Raises if the directory has no files or more than one file. """ files = os.listdir(dirname) if len(files) > 1: raise Failure('More than one file exists in %s:\n%s' % (dirname, '\n'.join(sorted(files)))) elif not files: raise Failure('No files found in %s' % dirname) return os.path.join(dirname, files[0])
python
def get_one_file_in(dirname): """Return the pathname of the one file in a directory. Raises if the directory has no files or more than one file. """ files = os.listdir(dirname) if len(files) > 1: raise Failure('More than one file exists in %s:\n%s' % (dirname, '\n'.join(sorted(files)))) elif not files: raise Failure('No files found in %s' % dirname) return os.path.join(dirname, files[0])
[ "def", "get_one_file_in", "(", "dirname", ")", ":", "files", "=", "os", ".", "listdir", "(", "dirname", ")", "if", "len", "(", "files", ")", ">", "1", ":", "raise", "Failure", "(", "'More than one file exists in %s:\\n%s'", "%", "(", "dirname", ",", "'\\n'", ".", "join", "(", "sorted", "(", "files", ")", ")", ")", ")", "elif", "not", "files", ":", "raise", "Failure", "(", "'No files found in %s'", "%", "dirname", ")", "return", "os", ".", "path", ".", "join", "(", "dirname", ",", "files", "[", "0", "]", ")" ]
Return the pathname of the one file in a directory. Raises if the directory has no files or more than one file.
[ "Return", "the", "pathname", "of", "the", "one", "file", "in", "a", "directory", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L239-L250
3,088
mgedmin/check-manifest
check_manifest.py
unicodify
def unicodify(filename): """Make sure filename is Unicode. Because the tarfile module on Python 2 doesn't return Unicode. """ if isinstance(filename, bytes): return filename.decode(locale.getpreferredencoding()) else: return filename
python
def unicodify(filename): """Make sure filename is Unicode. Because the tarfile module on Python 2 doesn't return Unicode. """ if isinstance(filename, bytes): return filename.decode(locale.getpreferredencoding()) else: return filename
[ "def", "unicodify", "(", "filename", ")", ":", "if", "isinstance", "(", "filename", ",", "bytes", ")", ":", "return", "filename", ".", "decode", "(", "locale", ".", "getpreferredencoding", "(", ")", ")", "else", ":", "return", "filename" ]
Make sure filename is Unicode. Because the tarfile module on Python 2 doesn't return Unicode.
[ "Make", "sure", "filename", "is", "Unicode", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L253-L261
3,089
mgedmin/check-manifest
check_manifest.py
get_archive_file_list
def get_archive_file_list(archive_filename): """Return the list of files in an archive. Supports .tar.gz and .zip. """ if archive_filename.endswith('.zip'): with closing(zipfile.ZipFile(archive_filename)) as zf: return add_directories(zf.namelist()) elif archive_filename.endswith(('.tar.gz', '.tar.bz2', '.tar')): with closing(tarfile.open(archive_filename)) as tf: return add_directories(list(map(unicodify, tf.getnames()))) else: ext = os.path.splitext(archive_filename)[-1] raise Failure('Unrecognized archive type: %s' % ext)
python
def get_archive_file_list(archive_filename): """Return the list of files in an archive. Supports .tar.gz and .zip. """ if archive_filename.endswith('.zip'): with closing(zipfile.ZipFile(archive_filename)) as zf: return add_directories(zf.namelist()) elif archive_filename.endswith(('.tar.gz', '.tar.bz2', '.tar')): with closing(tarfile.open(archive_filename)) as tf: return add_directories(list(map(unicodify, tf.getnames()))) else: ext = os.path.splitext(archive_filename)[-1] raise Failure('Unrecognized archive type: %s' % ext)
[ "def", "get_archive_file_list", "(", "archive_filename", ")", ":", "if", "archive_filename", ".", "endswith", "(", "'.zip'", ")", ":", "with", "closing", "(", "zipfile", ".", "ZipFile", "(", "archive_filename", ")", ")", "as", "zf", ":", "return", "add_directories", "(", "zf", ".", "namelist", "(", ")", ")", "elif", "archive_filename", ".", "endswith", "(", "(", "'.tar.gz'", ",", "'.tar.bz2'", ",", "'.tar'", ")", ")", ":", "with", "closing", "(", "tarfile", ".", "open", "(", "archive_filename", ")", ")", "as", "tf", ":", "return", "add_directories", "(", "list", "(", "map", "(", "unicodify", ",", "tf", ".", "getnames", "(", ")", ")", ")", ")", "else", ":", "ext", "=", "os", ".", "path", ".", "splitext", "(", "archive_filename", ")", "[", "-", "1", "]", "raise", "Failure", "(", "'Unrecognized archive type: %s'", "%", "ext", ")" ]
Return the list of files in an archive. Supports .tar.gz and .zip.
[ "Return", "the", "list", "of", "files", "in", "an", "archive", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L264-L277
3,090
mgedmin/check-manifest
check_manifest.py
strip_toplevel_name
def strip_toplevel_name(filelist): """Strip toplevel name from a file list. >>> strip_toplevel_name(['a', 'a/b', 'a/c', 'a/c/d']) ['b', 'c', 'c/d'] >>> strip_toplevel_name(['a/b', 'a/c', 'a/c/d']) ['b', 'c', 'c/d'] """ if not filelist: return filelist prefix = filelist[0] if '/' in prefix: prefix = prefix.partition('/')[0] + '/' names = filelist else: prefix = prefix + '/' names = filelist[1:] for name in names: if not name.startswith(prefix): raise Failure("File doesn't have the common prefix (%s): %s" % (name, prefix)) return [name[len(prefix):] for name in names]
python
def strip_toplevel_name(filelist): """Strip toplevel name from a file list. >>> strip_toplevel_name(['a', 'a/b', 'a/c', 'a/c/d']) ['b', 'c', 'c/d'] >>> strip_toplevel_name(['a/b', 'a/c', 'a/c/d']) ['b', 'c', 'c/d'] """ if not filelist: return filelist prefix = filelist[0] if '/' in prefix: prefix = prefix.partition('/')[0] + '/' names = filelist else: prefix = prefix + '/' names = filelist[1:] for name in names: if not name.startswith(prefix): raise Failure("File doesn't have the common prefix (%s): %s" % (name, prefix)) return [name[len(prefix):] for name in names]
[ "def", "strip_toplevel_name", "(", "filelist", ")", ":", "if", "not", "filelist", ":", "return", "filelist", "prefix", "=", "filelist", "[", "0", "]", "if", "'/'", "in", "prefix", ":", "prefix", "=", "prefix", ".", "partition", "(", "'/'", ")", "[", "0", "]", "+", "'/'", "names", "=", "filelist", "else", ":", "prefix", "=", "prefix", "+", "'/'", "names", "=", "filelist", "[", "1", ":", "]", "for", "name", "in", "names", ":", "if", "not", "name", ".", "startswith", "(", "prefix", ")", ":", "raise", "Failure", "(", "\"File doesn't have the common prefix (%s): %s\"", "%", "(", "name", ",", "prefix", ")", ")", "return", "[", "name", "[", "len", "(", "prefix", ")", ":", "]", "for", "name", "in", "names", "]" ]
Strip toplevel name from a file list. >>> strip_toplevel_name(['a', 'a/b', 'a/c', 'a/c/d']) ['b', 'c', 'c/d'] >>> strip_toplevel_name(['a/b', 'a/c', 'a/c/d']) ['b', 'c', 'c/d']
[ "Strip", "toplevel", "name", "from", "a", "file", "list", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L280-L303
3,091
mgedmin/check-manifest
check_manifest.py
detect_vcs
def detect_vcs(): """Detect the version control system used for the current directory.""" location = os.path.abspath('.') while True: for vcs in Git, Mercurial, Bazaar, Subversion: if vcs.detect(location): return vcs parent = os.path.dirname(location) if parent == location: raise Failure("Couldn't find version control data" " (git/hg/bzr/svn supported)") location = parent
python
def detect_vcs(): """Detect the version control system used for the current directory.""" location = os.path.abspath('.') while True: for vcs in Git, Mercurial, Bazaar, Subversion: if vcs.detect(location): return vcs parent = os.path.dirname(location) if parent == location: raise Failure("Couldn't find version control data" " (git/hg/bzr/svn supported)") location = parent
[ "def", "detect_vcs", "(", ")", ":", "location", "=", "os", ".", "path", ".", "abspath", "(", "'.'", ")", "while", "True", ":", "for", "vcs", "in", "Git", ",", "Mercurial", ",", "Bazaar", ",", "Subversion", ":", "if", "vcs", ".", "detect", "(", "location", ")", ":", "return", "vcs", "parent", "=", "os", ".", "path", ".", "dirname", "(", "location", ")", "if", "parent", "==", "location", ":", "raise", "Failure", "(", "\"Couldn't find version control data\"", "\" (git/hg/bzr/svn supported)\"", ")", "location", "=", "parent" ]
Detect the version control system used for the current directory.
[ "Detect", "the", "version", "control", "system", "used", "for", "the", "current", "directory", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L465-L476
3,092
mgedmin/check-manifest
check_manifest.py
normalize_name
def normalize_name(name): """Some VCS print directory names with trailing slashes. Strip them. Easiest is to normalize the path. And encodings may trip us up too, especially when comparing lists of files. Plus maybe lowercase versus uppercase. """ name = os.path.normpath(name) name = unicodify(name) if sys.platform == 'darwin': # Mac OSX may have problems comparing non-ascii filenames, so # we convert them. name = unicodedata.normalize('NFC', name) return name
python
def normalize_name(name): """Some VCS print directory names with trailing slashes. Strip them. Easiest is to normalize the path. And encodings may trip us up too, especially when comparing lists of files. Plus maybe lowercase versus uppercase. """ name = os.path.normpath(name) name = unicodify(name) if sys.platform == 'darwin': # Mac OSX may have problems comparing non-ascii filenames, so # we convert them. name = unicodedata.normalize('NFC', name) return name
[ "def", "normalize_name", "(", "name", ")", ":", "name", "=", "os", ".", "path", ".", "normpath", "(", "name", ")", "name", "=", "unicodify", "(", "name", ")", "if", "sys", ".", "platform", "==", "'darwin'", ":", "# Mac OSX may have problems comparing non-ascii filenames, so", "# we convert them.", "name", "=", "unicodedata", ".", "normalize", "(", "'NFC'", ",", "name", ")", "return", "name" ]
Some VCS print directory names with trailing slashes. Strip them. Easiest is to normalize the path. And encodings may trip us up too, especially when comparing lists of files. Plus maybe lowercase versus uppercase.
[ "Some", "VCS", "print", "directory", "names", "with", "trailing", "slashes", ".", "Strip", "them", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L490-L504
3,093
mgedmin/check-manifest
check_manifest.py
read_config
def read_config(): """Read configuration from file if possible.""" # XXX modifies global state, which is kind of evil config = _load_config() if config.get(CFG_IGNORE_DEFAULT_RULES[1], False): del IGNORE[:] if CFG_IGNORE[1] in config: IGNORE.extend(p for p in config[CFG_IGNORE[1]] if p) if CFG_IGNORE_BAD_IDEAS[1] in config: IGNORE_BAD_IDEAS.extend(p for p in config[CFG_IGNORE_BAD_IDEAS[1]] if p)
python
def read_config(): """Read configuration from file if possible.""" # XXX modifies global state, which is kind of evil config = _load_config() if config.get(CFG_IGNORE_DEFAULT_RULES[1], False): del IGNORE[:] if CFG_IGNORE[1] in config: IGNORE.extend(p for p in config[CFG_IGNORE[1]] if p) if CFG_IGNORE_BAD_IDEAS[1] in config: IGNORE_BAD_IDEAS.extend(p for p in config[CFG_IGNORE_BAD_IDEAS[1]] if p)
[ "def", "read_config", "(", ")", ":", "# XXX modifies global state, which is kind of evil", "config", "=", "_load_config", "(", ")", "if", "config", ".", "get", "(", "CFG_IGNORE_DEFAULT_RULES", "[", "1", "]", ",", "False", ")", ":", "del", "IGNORE", "[", ":", "]", "if", "CFG_IGNORE", "[", "1", "]", "in", "config", ":", "IGNORE", ".", "extend", "(", "p", "for", "p", "in", "config", "[", "CFG_IGNORE", "[", "1", "]", "]", "if", "p", ")", "if", "CFG_IGNORE_BAD_IDEAS", "[", "1", "]", "in", "config", ":", "IGNORE_BAD_IDEAS", ".", "extend", "(", "p", "for", "p", "in", "config", "[", "CFG_IGNORE_BAD_IDEAS", "[", "1", "]", "]", "if", "p", ")" ]
Read configuration from file if possible.
[ "Read", "configuration", "from", "file", "if", "possible", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L593-L602
3,094
mgedmin/check-manifest
check_manifest.py
_load_config
def _load_config(): """Searches for config files, reads them and returns a dictionary Looks for a ``check-manifest`` section in ``pyproject.toml``, ``setup.cfg``, and ``tox.ini``, in that order. The first file that exists and has that section will be loaded and returned as a dictionary. """ if os.path.exists("pyproject.toml"): config = toml.load("pyproject.toml") if CFG_SECTION_CHECK_MANIFEST in config.get("tool", {}): return config["tool"][CFG_SECTION_CHECK_MANIFEST] search_files = ['setup.cfg', 'tox.ini'] config_parser = ConfigParser.ConfigParser() for filename in search_files: if (config_parser.read([filename]) and config_parser.has_section(CFG_SECTION_CHECK_MANIFEST)): config = {} if config_parser.has_option(*CFG_IGNORE_DEFAULT_RULES): ignore_defaults = config_parser.getboolean(*CFG_IGNORE_DEFAULT_RULES) config[CFG_IGNORE_DEFAULT_RULES[1]] = ignore_defaults if config_parser.has_option(*CFG_IGNORE): patterns = [ p.strip() for p in config_parser.get(*CFG_IGNORE).splitlines() ] config[CFG_IGNORE[1]] = patterns if config_parser.has_option(*CFG_IGNORE_BAD_IDEAS): patterns = [ p.strip() for p in config_parser.get(*CFG_IGNORE_BAD_IDEAS).splitlines() ] config[CFG_IGNORE_BAD_IDEAS[1]] = patterns return config return {}
python
def _load_config(): """Searches for config files, reads them and returns a dictionary Looks for a ``check-manifest`` section in ``pyproject.toml``, ``setup.cfg``, and ``tox.ini``, in that order. The first file that exists and has that section will be loaded and returned as a dictionary. """ if os.path.exists("pyproject.toml"): config = toml.load("pyproject.toml") if CFG_SECTION_CHECK_MANIFEST in config.get("tool", {}): return config["tool"][CFG_SECTION_CHECK_MANIFEST] search_files = ['setup.cfg', 'tox.ini'] config_parser = ConfigParser.ConfigParser() for filename in search_files: if (config_parser.read([filename]) and config_parser.has_section(CFG_SECTION_CHECK_MANIFEST)): config = {} if config_parser.has_option(*CFG_IGNORE_DEFAULT_RULES): ignore_defaults = config_parser.getboolean(*CFG_IGNORE_DEFAULT_RULES) config[CFG_IGNORE_DEFAULT_RULES[1]] = ignore_defaults if config_parser.has_option(*CFG_IGNORE): patterns = [ p.strip() for p in config_parser.get(*CFG_IGNORE).splitlines() ] config[CFG_IGNORE[1]] = patterns if config_parser.has_option(*CFG_IGNORE_BAD_IDEAS): patterns = [ p.strip() for p in config_parser.get(*CFG_IGNORE_BAD_IDEAS).splitlines() ] config[CFG_IGNORE_BAD_IDEAS[1]] = patterns return config return {}
[ "def", "_load_config", "(", ")", ":", "if", "os", ".", "path", ".", "exists", "(", "\"pyproject.toml\"", ")", ":", "config", "=", "toml", ".", "load", "(", "\"pyproject.toml\"", ")", "if", "CFG_SECTION_CHECK_MANIFEST", "in", "config", ".", "get", "(", "\"tool\"", ",", "{", "}", ")", ":", "return", "config", "[", "\"tool\"", "]", "[", "CFG_SECTION_CHECK_MANIFEST", "]", "search_files", "=", "[", "'setup.cfg'", ",", "'tox.ini'", "]", "config_parser", "=", "ConfigParser", ".", "ConfigParser", "(", ")", "for", "filename", "in", "search_files", ":", "if", "(", "config_parser", ".", "read", "(", "[", "filename", "]", ")", "and", "config_parser", ".", "has_section", "(", "CFG_SECTION_CHECK_MANIFEST", ")", ")", ":", "config", "=", "{", "}", "if", "config_parser", ".", "has_option", "(", "*", "CFG_IGNORE_DEFAULT_RULES", ")", ":", "ignore_defaults", "=", "config_parser", ".", "getboolean", "(", "*", "CFG_IGNORE_DEFAULT_RULES", ")", "config", "[", "CFG_IGNORE_DEFAULT_RULES", "[", "1", "]", "]", "=", "ignore_defaults", "if", "config_parser", ".", "has_option", "(", "*", "CFG_IGNORE", ")", ":", "patterns", "=", "[", "p", ".", "strip", "(", ")", "for", "p", "in", "config_parser", ".", "get", "(", "*", "CFG_IGNORE", ")", ".", "splitlines", "(", ")", "]", "config", "[", "CFG_IGNORE", "[", "1", "]", "]", "=", "patterns", "if", "config_parser", ".", "has_option", "(", "*", "CFG_IGNORE_BAD_IDEAS", ")", ":", "patterns", "=", "[", "p", ".", "strip", "(", ")", "for", "p", "in", "config_parser", ".", "get", "(", "*", "CFG_IGNORE_BAD_IDEAS", ")", ".", "splitlines", "(", ")", "]", "config", "[", "CFG_IGNORE_BAD_IDEAS", "[", "1", "]", "]", "=", "patterns", "return", "config", "return", "{", "}" ]
Searches for config files, reads them and returns a dictionary Looks for a ``check-manifest`` section in ``pyproject.toml``, ``setup.cfg``, and ``tox.ini``, in that order. The first file that exists and has that section will be loaded and returned as a dictionary.
[ "Searches", "for", "config", "files", "reads", "them", "and", "returns", "a", "dictionary" ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L605-L646
3,095
mgedmin/check-manifest
check_manifest.py
read_manifest
def read_manifest(): """Read existing configuration from MANIFEST.in. We use that to ignore anything the MANIFEST.in ignores. """ # XXX modifies global state, which is kind of evil if not os.path.isfile('MANIFEST.in'): return ignore, ignore_regexps = _get_ignore_from_manifest('MANIFEST.in') IGNORE.extend(ignore) IGNORE_REGEXPS.extend(ignore_regexps)
python
def read_manifest(): """Read existing configuration from MANIFEST.in. We use that to ignore anything the MANIFEST.in ignores. """ # XXX modifies global state, which is kind of evil if not os.path.isfile('MANIFEST.in'): return ignore, ignore_regexps = _get_ignore_from_manifest('MANIFEST.in') IGNORE.extend(ignore) IGNORE_REGEXPS.extend(ignore_regexps)
[ "def", "read_manifest", "(", ")", ":", "# XXX modifies global state, which is kind of evil", "if", "not", "os", ".", "path", ".", "isfile", "(", "'MANIFEST.in'", ")", ":", "return", "ignore", ",", "ignore_regexps", "=", "_get_ignore_from_manifest", "(", "'MANIFEST.in'", ")", "IGNORE", ".", "extend", "(", "ignore", ")", "IGNORE_REGEXPS", ".", "extend", "(", "ignore_regexps", ")" ]
Read existing configuration from MANIFEST.in. We use that to ignore anything the MANIFEST.in ignores.
[ "Read", "existing", "configuration", "from", "MANIFEST", ".", "in", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L649-L659
3,096
mgedmin/check-manifest
check_manifest.py
file_matches
def file_matches(filename, patterns): """Does this filename match any of the patterns?""" return any(fnmatch.fnmatch(filename, pat) or fnmatch.fnmatch(os.path.basename(filename), pat) for pat in patterns)
python
def file_matches(filename, patterns): """Does this filename match any of the patterns?""" return any(fnmatch.fnmatch(filename, pat) or fnmatch.fnmatch(os.path.basename(filename), pat) for pat in patterns)
[ "def", "file_matches", "(", "filename", ",", "patterns", ")", ":", "return", "any", "(", "fnmatch", ".", "fnmatch", "(", "filename", ",", "pat", ")", "or", "fnmatch", ".", "fnmatch", "(", "os", ".", "path", ".", "basename", "(", "filename", ")", ",", "pat", ")", "for", "pat", "in", "patterns", ")" ]
Does this filename match any of the patterns?
[ "Does", "this", "filename", "match", "any", "of", "the", "patterns?" ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L774-L778
3,097
mgedmin/check-manifest
check_manifest.py
file_matches_regexps
def file_matches_regexps(filename, patterns): """Does this filename match any of the regular expressions?""" return any(re.match(pat, filename) for pat in patterns)
python
def file_matches_regexps(filename, patterns): """Does this filename match any of the regular expressions?""" return any(re.match(pat, filename) for pat in patterns)
[ "def", "file_matches_regexps", "(", "filename", ",", "patterns", ")", ":", "return", "any", "(", "re", ".", "match", "(", "pat", ",", "filename", ")", "for", "pat", "in", "patterns", ")" ]
Does this filename match any of the regular expressions?
[ "Does", "this", "filename", "match", "any", "of", "the", "regular", "expressions?" ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L781-L783
3,098
mgedmin/check-manifest
check_manifest.py
strip_sdist_extras
def strip_sdist_extras(filelist): """Strip generated files that are only present in source distributions. We also strip files that are ignored for other reasons, like command line arguments, setup.cfg rules or MANIFEST.in rules. """ return [name for name in filelist if not file_matches(name, IGNORE) and not file_matches_regexps(name, IGNORE_REGEXPS)]
python
def strip_sdist_extras(filelist): """Strip generated files that are only present in source distributions. We also strip files that are ignored for other reasons, like command line arguments, setup.cfg rules or MANIFEST.in rules. """ return [name for name in filelist if not file_matches(name, IGNORE) and not file_matches_regexps(name, IGNORE_REGEXPS)]
[ "def", "strip_sdist_extras", "(", "filelist", ")", ":", "return", "[", "name", "for", "name", "in", "filelist", "if", "not", "file_matches", "(", "name", ",", "IGNORE", ")", "and", "not", "file_matches_regexps", "(", "name", ",", "IGNORE_REGEXPS", ")", "]" ]
Strip generated files that are only present in source distributions. We also strip files that are ignored for other reasons, like command line arguments, setup.cfg rules or MANIFEST.in rules.
[ "Strip", "generated", "files", "that", "are", "only", "present", "in", "source", "distributions", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L786-L794
3,099
mgedmin/check-manifest
check_manifest.py
find_suggestions
def find_suggestions(filelist): """Suggest MANIFEST.in patterns for missing files.""" suggestions = set() unknowns = [] for filename in filelist: if os.path.isdir(filename): # it's impossible to add empty directories via MANIFEST.in anyway, # and non-empty directories will be added automatically when we # specify patterns for files inside them continue for pattern, suggestion in SUGGESTIONS: m = pattern.match(filename) if m is not None: suggestions.add(pattern.sub(suggestion, filename)) break else: unknowns.append(filename) return sorted(suggestions), unknowns
python
def find_suggestions(filelist): """Suggest MANIFEST.in patterns for missing files.""" suggestions = set() unknowns = [] for filename in filelist: if os.path.isdir(filename): # it's impossible to add empty directories via MANIFEST.in anyway, # and non-empty directories will be added automatically when we # specify patterns for files inside them continue for pattern, suggestion in SUGGESTIONS: m = pattern.match(filename) if m is not None: suggestions.add(pattern.sub(suggestion, filename)) break else: unknowns.append(filename) return sorted(suggestions), unknowns
[ "def", "find_suggestions", "(", "filelist", ")", ":", "suggestions", "=", "set", "(", ")", "unknowns", "=", "[", "]", "for", "filename", "in", "filelist", ":", "if", "os", ".", "path", ".", "isdir", "(", "filename", ")", ":", "# it's impossible to add empty directories via MANIFEST.in anyway,", "# and non-empty directories will be added automatically when we", "# specify patterns for files inside them", "continue", "for", "pattern", ",", "suggestion", "in", "SUGGESTIONS", ":", "m", "=", "pattern", ".", "match", "(", "filename", ")", "if", "m", "is", "not", "None", ":", "suggestions", ".", "add", "(", "pattern", ".", "sub", "(", "suggestion", ",", "filename", ")", ")", "break", "else", ":", "unknowns", ".", "append", "(", "filename", ")", "return", "sorted", "(", "suggestions", ")", ",", "unknowns" ]
Suggest MANIFEST.in patterns for missing files.
[ "Suggest", "MANIFEST", ".", "in", "patterns", "for", "missing", "files", "." ]
7f787e8272f56c5750670bfb3223509e0df72708
https://github.com/mgedmin/check-manifest/blob/7f787e8272f56c5750670bfb3223509e0df72708/check_manifest.py#L803-L820