id
int32 0
252k
| repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
sequence | docstring
stringlengths 3
17.3k
| docstring_tokens
sequence | sha
stringlengths 40
40
| url
stringlengths 87
242
|
---|---|---|---|---|---|---|---|---|---|---|---|
4,600 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyDiscontinuousCollection.interpolate_holes | def interpolate_holes(self):
"""Linearly interpolate over holes in this collection to make it continuous.
Returns:
continuous_collection: A HourlyContinuousCollection with the same data
as this collection but with missing data filled by means of a
linear interpolation.
"""
# validate analysis_period and use the resulting period to generate datetimes
assert self.validated_a_period is True, 'validated_a_period property must be' \
' True to use interpolate_holes(). Run validate_analysis_period().'
mins_per_step = int(60 / self.header.analysis_period.timestep)
new_datetimes = self.header.analysis_period.datetimes
new_values = []
# if the first steps are a hole, duplicate the first value.
i = 0
if new_datetimes[0] != self.datetimes[0]:
n_steps = int((self.datetimes[0].moy - new_datetimes[0].moy) / mins_per_step)
new_values.extend([self._values[0]] * n_steps)
i = n_steps - 1
# go through the values interpolating any holes.
for j in xrange(len(self._values)):
if new_datetimes[i] == self.datetimes[j]: # there is no hole.
new_values.append(self._values[j])
i += 1
else: # there is a hole between this step and the previous step.
n_steps = int((self.datetimes[j].moy - new_datetimes[i].moy)
/ mins_per_step)
intp_vals = self._xxrange(self._values[j - 1], self._values[j], n_steps)
new_values.extend(list(intp_vals)[1:] + [self._values[j]])
i += n_steps
# if the last steps are a hole duplicate the last value.
if len(new_values) != len(new_datetimes):
n_steps = len(new_datetimes) - len(new_values)
new_values.extend([self._values[-1]] * n_steps)
# build the new continuous data collection.
return HourlyContinuousCollection(self.header.duplicate(), new_values) | python | def interpolate_holes(self):
"""Linearly interpolate over holes in this collection to make it continuous.
Returns:
continuous_collection: A HourlyContinuousCollection with the same data
as this collection but with missing data filled by means of a
linear interpolation.
"""
# validate analysis_period and use the resulting period to generate datetimes
assert self.validated_a_period is True, 'validated_a_period property must be' \
' True to use interpolate_holes(). Run validate_analysis_period().'
mins_per_step = int(60 / self.header.analysis_period.timestep)
new_datetimes = self.header.analysis_period.datetimes
new_values = []
# if the first steps are a hole, duplicate the first value.
i = 0
if new_datetimes[0] != self.datetimes[0]:
n_steps = int((self.datetimes[0].moy - new_datetimes[0].moy) / mins_per_step)
new_values.extend([self._values[0]] * n_steps)
i = n_steps - 1
# go through the values interpolating any holes.
for j in xrange(len(self._values)):
if new_datetimes[i] == self.datetimes[j]: # there is no hole.
new_values.append(self._values[j])
i += 1
else: # there is a hole between this step and the previous step.
n_steps = int((self.datetimes[j].moy - new_datetimes[i].moy)
/ mins_per_step)
intp_vals = self._xxrange(self._values[j - 1], self._values[j], n_steps)
new_values.extend(list(intp_vals)[1:] + [self._values[j]])
i += n_steps
# if the last steps are a hole duplicate the last value.
if len(new_values) != len(new_datetimes):
n_steps = len(new_datetimes) - len(new_values)
new_values.extend([self._values[-1]] * n_steps)
# build the new continuous data collection.
return HourlyContinuousCollection(self.header.duplicate(), new_values) | [
"def",
"interpolate_holes",
"(",
"self",
")",
":",
"# validate analysis_period and use the resulting period to generate datetimes",
"assert",
"self",
".",
"validated_a_period",
"is",
"True",
",",
"'validated_a_period property must be'",
"' True to use interpolate_holes(). Run validate_analysis_period().'",
"mins_per_step",
"=",
"int",
"(",
"60",
"/",
"self",
".",
"header",
".",
"analysis_period",
".",
"timestep",
")",
"new_datetimes",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"datetimes",
"new_values",
"=",
"[",
"]",
"# if the first steps are a hole, duplicate the first value.",
"i",
"=",
"0",
"if",
"new_datetimes",
"[",
"0",
"]",
"!=",
"self",
".",
"datetimes",
"[",
"0",
"]",
":",
"n_steps",
"=",
"int",
"(",
"(",
"self",
".",
"datetimes",
"[",
"0",
"]",
".",
"moy",
"-",
"new_datetimes",
"[",
"0",
"]",
".",
"moy",
")",
"/",
"mins_per_step",
")",
"new_values",
".",
"extend",
"(",
"[",
"self",
".",
"_values",
"[",
"0",
"]",
"]",
"*",
"n_steps",
")",
"i",
"=",
"n_steps",
"-",
"1",
"# go through the values interpolating any holes.",
"for",
"j",
"in",
"xrange",
"(",
"len",
"(",
"self",
".",
"_values",
")",
")",
":",
"if",
"new_datetimes",
"[",
"i",
"]",
"==",
"self",
".",
"datetimes",
"[",
"j",
"]",
":",
"# there is no hole.",
"new_values",
".",
"append",
"(",
"self",
".",
"_values",
"[",
"j",
"]",
")",
"i",
"+=",
"1",
"else",
":",
"# there is a hole between this step and the previous step.",
"n_steps",
"=",
"int",
"(",
"(",
"self",
".",
"datetimes",
"[",
"j",
"]",
".",
"moy",
"-",
"new_datetimes",
"[",
"i",
"]",
".",
"moy",
")",
"/",
"mins_per_step",
")",
"intp_vals",
"=",
"self",
".",
"_xxrange",
"(",
"self",
".",
"_values",
"[",
"j",
"-",
"1",
"]",
",",
"self",
".",
"_values",
"[",
"j",
"]",
",",
"n_steps",
")",
"new_values",
".",
"extend",
"(",
"list",
"(",
"intp_vals",
")",
"[",
"1",
":",
"]",
"+",
"[",
"self",
".",
"_values",
"[",
"j",
"]",
"]",
")",
"i",
"+=",
"n_steps",
"# if the last steps are a hole duplicate the last value.",
"if",
"len",
"(",
"new_values",
")",
"!=",
"len",
"(",
"new_datetimes",
")",
":",
"n_steps",
"=",
"len",
"(",
"new_datetimes",
")",
"-",
"len",
"(",
"new_values",
")",
"new_values",
".",
"extend",
"(",
"[",
"self",
".",
"_values",
"[",
"-",
"1",
"]",
"]",
"*",
"n_steps",
")",
"# build the new continuous data collection.",
"return",
"HourlyContinuousCollection",
"(",
"self",
".",
"header",
".",
"duplicate",
"(",
")",
",",
"new_values",
")"
] | Linearly interpolate over holes in this collection to make it continuous.
Returns:
continuous_collection: A HourlyContinuousCollection with the same data
as this collection but with missing data filled by means of a
linear interpolation. | [
"Linearly",
"interpolate",
"over",
"holes",
"in",
"this",
"collection",
"to",
"make",
"it",
"continuous",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L247-L287 |
4,601 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyDiscontinuousCollection.cull_to_timestep | def cull_to_timestep(self, timestep=1):
"""Get a collection with only datetimes that fit a timestep."""
valid_s = self.header.analysis_period.VALIDTIMESTEPS.keys()
assert timestep in valid_s, \
'timestep {} is not valid. Choose from: {}'.format(timestep, valid_s)
new_ap, new_values, new_datetimes = self._timestep_cull(timestep)
new_header = self.header.duplicate()
new_header._analysis_period = new_ap
new_coll = HourlyDiscontinuousCollection(
new_header, new_values, new_datetimes)
new_coll._validated_a_period = True
return new_coll | python | def cull_to_timestep(self, timestep=1):
"""Get a collection with only datetimes that fit a timestep."""
valid_s = self.header.analysis_period.VALIDTIMESTEPS.keys()
assert timestep in valid_s, \
'timestep {} is not valid. Choose from: {}'.format(timestep, valid_s)
new_ap, new_values, new_datetimes = self._timestep_cull(timestep)
new_header = self.header.duplicate()
new_header._analysis_period = new_ap
new_coll = HourlyDiscontinuousCollection(
new_header, new_values, new_datetimes)
new_coll._validated_a_period = True
return new_coll | [
"def",
"cull_to_timestep",
"(",
"self",
",",
"timestep",
"=",
"1",
")",
":",
"valid_s",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"VALIDTIMESTEPS",
".",
"keys",
"(",
")",
"assert",
"timestep",
"in",
"valid_s",
",",
"'timestep {} is not valid. Choose from: {}'",
".",
"format",
"(",
"timestep",
",",
"valid_s",
")",
"new_ap",
",",
"new_values",
",",
"new_datetimes",
"=",
"self",
".",
"_timestep_cull",
"(",
"timestep",
")",
"new_header",
"=",
"self",
".",
"header",
".",
"duplicate",
"(",
")",
"new_header",
".",
"_analysis_period",
"=",
"new_ap",
"new_coll",
"=",
"HourlyDiscontinuousCollection",
"(",
"new_header",
",",
"new_values",
",",
"new_datetimes",
")",
"new_coll",
".",
"_validated_a_period",
"=",
"True",
"return",
"new_coll"
] | Get a collection with only datetimes that fit a timestep. | [
"Get",
"a",
"collection",
"with",
"only",
"datetimes",
"that",
"fit",
"a",
"timestep",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L289-L301 |
4,602 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyDiscontinuousCollection.convert_to_culled_timestep | def convert_to_culled_timestep(self, timestep=1):
"""Convert this collection to one that only has datetimes that fit a timestep."""
valid_s = self.header.analysis_period.VALIDTIMESTEPS.keys()
assert timestep in valid_s, \
'timestep {} is not valid. Choose from: {}'.format(timestep, valid_s)
new_ap, new_values, new_datetimes = self._timestep_cull(timestep)
self.header._analysis_period = new_ap
self._values = new_values
self._datetimes = new_datetimes | python | def convert_to_culled_timestep(self, timestep=1):
"""Convert this collection to one that only has datetimes that fit a timestep."""
valid_s = self.header.analysis_period.VALIDTIMESTEPS.keys()
assert timestep in valid_s, \
'timestep {} is not valid. Choose from: {}'.format(timestep, valid_s)
new_ap, new_values, new_datetimes = self._timestep_cull(timestep)
self.header._analysis_period = new_ap
self._values = new_values
self._datetimes = new_datetimes | [
"def",
"convert_to_culled_timestep",
"(",
"self",
",",
"timestep",
"=",
"1",
")",
":",
"valid_s",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"VALIDTIMESTEPS",
".",
"keys",
"(",
")",
"assert",
"timestep",
"in",
"valid_s",
",",
"'timestep {} is not valid. Choose from: {}'",
".",
"format",
"(",
"timestep",
",",
"valid_s",
")",
"new_ap",
",",
"new_values",
",",
"new_datetimes",
"=",
"self",
".",
"_timestep_cull",
"(",
"timestep",
")",
"self",
".",
"header",
".",
"_analysis_period",
"=",
"new_ap",
"self",
".",
"_values",
"=",
"new_values",
"self",
".",
"_datetimes",
"=",
"new_datetimes"
] | Convert this collection to one that only has datetimes that fit a timestep. | [
"Convert",
"this",
"collection",
"to",
"one",
"that",
"only",
"has",
"datetimes",
"that",
"fit",
"a",
"timestep",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L303-L312 |
4,603 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyDiscontinuousCollection._xxrange | def _xxrange(self, start, end, step_count):
"""Generate n values between start and end."""
_step = (end - start) / float(step_count)
return (start + (i * _step) for i in xrange(int(step_count))) | python | def _xxrange(self, start, end, step_count):
"""Generate n values between start and end."""
_step = (end - start) / float(step_count)
return (start + (i * _step) for i in xrange(int(step_count))) | [
"def",
"_xxrange",
"(",
"self",
",",
"start",
",",
"end",
",",
"step_count",
")",
":",
"_step",
"=",
"(",
"end",
"-",
"start",
")",
"/",
"float",
"(",
"step_count",
")",
"return",
"(",
"start",
"+",
"(",
"i",
"*",
"_step",
")",
"for",
"i",
"in",
"xrange",
"(",
"int",
"(",
"step_count",
")",
")",
")"
] | Generate n values between start and end. | [
"Generate",
"n",
"values",
"between",
"start",
"and",
"end",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L409-L412 |
4,604 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyDiscontinuousCollection._filter_by_moys_slow | def _filter_by_moys_slow(self, moys):
"""Filter the Data Collection with a slow method that always works."""
_filt_values = []
_filt_datetimes = []
for i, d in enumerate(self.datetimes):
if d.moy in moys:
_filt_datetimes.append(d)
_filt_values.append(self._values[i])
return _filt_values, _filt_datetimes | python | def _filter_by_moys_slow(self, moys):
"""Filter the Data Collection with a slow method that always works."""
_filt_values = []
_filt_datetimes = []
for i, d in enumerate(self.datetimes):
if d.moy in moys:
_filt_datetimes.append(d)
_filt_values.append(self._values[i])
return _filt_values, _filt_datetimes | [
"def",
"_filter_by_moys_slow",
"(",
"self",
",",
"moys",
")",
":",
"_filt_values",
"=",
"[",
"]",
"_filt_datetimes",
"=",
"[",
"]",
"for",
"i",
",",
"d",
"in",
"enumerate",
"(",
"self",
".",
"datetimes",
")",
":",
"if",
"d",
".",
"moy",
"in",
"moys",
":",
"_filt_datetimes",
".",
"append",
"(",
"d",
")",
"_filt_values",
".",
"append",
"(",
"self",
".",
"_values",
"[",
"i",
"]",
")",
"return",
"_filt_values",
",",
"_filt_datetimes"
] | Filter the Data Collection with a slow method that always works. | [
"Filter",
"the",
"Data",
"Collection",
"with",
"a",
"slow",
"method",
"that",
"always",
"works",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L414-L422 |
4,605 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyDiscontinuousCollection._timestep_cull | def _timestep_cull(self, timestep):
"""Cull out values that do not fit a timestep."""
new_values = []
new_datetimes = []
mins_per_step = int(60 / timestep)
for i, date_t in enumerate(self.datetimes):
if date_t.moy % mins_per_step == 0:
new_datetimes.append(date_t)
new_values.append(self.values[i])
a_per = self.header.analysis_period
new_ap = AnalysisPeriod(a_per.st_month, a_per.st_day, a_per.st_hour,
a_per.end_month, a_per.end_day, a_per.end_hour,
timestep, a_per.is_leap_year)
return new_ap, new_values, new_datetimes | python | def _timestep_cull(self, timestep):
"""Cull out values that do not fit a timestep."""
new_values = []
new_datetimes = []
mins_per_step = int(60 / timestep)
for i, date_t in enumerate(self.datetimes):
if date_t.moy % mins_per_step == 0:
new_datetimes.append(date_t)
new_values.append(self.values[i])
a_per = self.header.analysis_period
new_ap = AnalysisPeriod(a_per.st_month, a_per.st_day, a_per.st_hour,
a_per.end_month, a_per.end_day, a_per.end_hour,
timestep, a_per.is_leap_year)
return new_ap, new_values, new_datetimes | [
"def",
"_timestep_cull",
"(",
"self",
",",
"timestep",
")",
":",
"new_values",
"=",
"[",
"]",
"new_datetimes",
"=",
"[",
"]",
"mins_per_step",
"=",
"int",
"(",
"60",
"/",
"timestep",
")",
"for",
"i",
",",
"date_t",
"in",
"enumerate",
"(",
"self",
".",
"datetimes",
")",
":",
"if",
"date_t",
".",
"moy",
"%",
"mins_per_step",
"==",
"0",
":",
"new_datetimes",
".",
"append",
"(",
"date_t",
")",
"new_values",
".",
"append",
"(",
"self",
".",
"values",
"[",
"i",
"]",
")",
"a_per",
"=",
"self",
".",
"header",
".",
"analysis_period",
"new_ap",
"=",
"AnalysisPeriod",
"(",
"a_per",
".",
"st_month",
",",
"a_per",
".",
"st_day",
",",
"a_per",
".",
"st_hour",
",",
"a_per",
".",
"end_month",
",",
"a_per",
".",
"end_day",
",",
"a_per",
".",
"end_hour",
",",
"timestep",
",",
"a_per",
".",
"is_leap_year",
")",
"return",
"new_ap",
",",
"new_values",
",",
"new_datetimes"
] | Cull out values that do not fit a timestep. | [
"Cull",
"out",
"values",
"that",
"do",
"not",
"fit",
"a",
"timestep",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L424-L437 |
4,606 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyDiscontinuousCollection._time_interval_operation | def _time_interval_operation(self, interval, operation, percentile=0):
"""Get a collection of a certain time interval with a given math operation."""
# retrive the function that correctly describes the operation
if operation == 'average':
funct = self._average
elif operation == 'total':
funct = self._total
else:
assert 0 <= percentile <= 100, \
'percentile must be between 0 and 100. Got {}'.format(percentile)
funct = self._get_percentile_function(percentile)
# retrive the data that correctly describes the time interval
if interval == 'monthly':
data_dict = self.group_by_month()
dates = self.header.analysis_period.months_int
elif interval == 'daily':
data_dict = self.group_by_day()
dates = self.header.analysis_period.doys_int
elif interval == 'monthlyperhour':
data_dict = self.group_by_month_per_hour()
dates = self.header.analysis_period.months_per_hour
else:
raise ValueError('Invalid input value for interval: {}'.format(interval))
# get the data and header for the new collection
new_data, d_times = [], []
for i in dates:
vals = data_dict[i]
if vals != []:
new_data.append(funct(vals))
d_times.append(i)
new_header = self.header.duplicate()
if operation == 'percentile':
new_header.metadata['operation'] = '{} percentile'.format(percentile)
else:
new_header.metadata['operation'] = operation
# build the final data collection
if interval == 'monthly':
collection = MonthlyCollection(new_header, new_data, d_times)
elif interval == 'daily':
collection = DailyCollection(new_header, new_data, d_times)
elif interval == 'monthlyperhour':
collection = MonthlyPerHourCollection(new_header, new_data, d_times)
collection._validated_a_period = True
return collection | python | def _time_interval_operation(self, interval, operation, percentile=0):
"""Get a collection of a certain time interval with a given math operation."""
# retrive the function that correctly describes the operation
if operation == 'average':
funct = self._average
elif operation == 'total':
funct = self._total
else:
assert 0 <= percentile <= 100, \
'percentile must be between 0 and 100. Got {}'.format(percentile)
funct = self._get_percentile_function(percentile)
# retrive the data that correctly describes the time interval
if interval == 'monthly':
data_dict = self.group_by_month()
dates = self.header.analysis_period.months_int
elif interval == 'daily':
data_dict = self.group_by_day()
dates = self.header.analysis_period.doys_int
elif interval == 'monthlyperhour':
data_dict = self.group_by_month_per_hour()
dates = self.header.analysis_period.months_per_hour
else:
raise ValueError('Invalid input value for interval: {}'.format(interval))
# get the data and header for the new collection
new_data, d_times = [], []
for i in dates:
vals = data_dict[i]
if vals != []:
new_data.append(funct(vals))
d_times.append(i)
new_header = self.header.duplicate()
if operation == 'percentile':
new_header.metadata['operation'] = '{} percentile'.format(percentile)
else:
new_header.metadata['operation'] = operation
# build the final data collection
if interval == 'monthly':
collection = MonthlyCollection(new_header, new_data, d_times)
elif interval == 'daily':
collection = DailyCollection(new_header, new_data, d_times)
elif interval == 'monthlyperhour':
collection = MonthlyPerHourCollection(new_header, new_data, d_times)
collection._validated_a_period = True
return collection | [
"def",
"_time_interval_operation",
"(",
"self",
",",
"interval",
",",
"operation",
",",
"percentile",
"=",
"0",
")",
":",
"# retrive the function that correctly describes the operation",
"if",
"operation",
"==",
"'average'",
":",
"funct",
"=",
"self",
".",
"_average",
"elif",
"operation",
"==",
"'total'",
":",
"funct",
"=",
"self",
".",
"_total",
"else",
":",
"assert",
"0",
"<=",
"percentile",
"<=",
"100",
",",
"'percentile must be between 0 and 100. Got {}'",
".",
"format",
"(",
"percentile",
")",
"funct",
"=",
"self",
".",
"_get_percentile_function",
"(",
"percentile",
")",
"# retrive the data that correctly describes the time interval",
"if",
"interval",
"==",
"'monthly'",
":",
"data_dict",
"=",
"self",
".",
"group_by_month",
"(",
")",
"dates",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"months_int",
"elif",
"interval",
"==",
"'daily'",
":",
"data_dict",
"=",
"self",
".",
"group_by_day",
"(",
")",
"dates",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"doys_int",
"elif",
"interval",
"==",
"'monthlyperhour'",
":",
"data_dict",
"=",
"self",
".",
"group_by_month_per_hour",
"(",
")",
"dates",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"months_per_hour",
"else",
":",
"raise",
"ValueError",
"(",
"'Invalid input value for interval: {}'",
".",
"format",
"(",
"interval",
")",
")",
"# get the data and header for the new collection",
"new_data",
",",
"d_times",
"=",
"[",
"]",
",",
"[",
"]",
"for",
"i",
"in",
"dates",
":",
"vals",
"=",
"data_dict",
"[",
"i",
"]",
"if",
"vals",
"!=",
"[",
"]",
":",
"new_data",
".",
"append",
"(",
"funct",
"(",
"vals",
")",
")",
"d_times",
".",
"append",
"(",
"i",
")",
"new_header",
"=",
"self",
".",
"header",
".",
"duplicate",
"(",
")",
"if",
"operation",
"==",
"'percentile'",
":",
"new_header",
".",
"metadata",
"[",
"'operation'",
"]",
"=",
"'{} percentile'",
".",
"format",
"(",
"percentile",
")",
"else",
":",
"new_header",
".",
"metadata",
"[",
"'operation'",
"]",
"=",
"operation",
"# build the final data collection",
"if",
"interval",
"==",
"'monthly'",
":",
"collection",
"=",
"MonthlyCollection",
"(",
"new_header",
",",
"new_data",
",",
"d_times",
")",
"elif",
"interval",
"==",
"'daily'",
":",
"collection",
"=",
"DailyCollection",
"(",
"new_header",
",",
"new_data",
",",
"d_times",
")",
"elif",
"interval",
"==",
"'monthlyperhour'",
":",
"collection",
"=",
"MonthlyPerHourCollection",
"(",
"new_header",
",",
"new_data",
",",
"d_times",
")",
"collection",
".",
"_validated_a_period",
"=",
"True",
"return",
"collection"
] | Get a collection of a certain time interval with a given math operation. | [
"Get",
"a",
"collection",
"of",
"a",
"certain",
"time",
"interval",
"with",
"a",
"given",
"math",
"operation",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L449-L495 |
4,607 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyContinuousCollection.datetimes | def datetimes(self):
"""Return datetimes for this collection as a tuple."""
if self._datetimes is None:
self._datetimes = tuple(self.header.analysis_period.datetimes)
return self._datetimes | python | def datetimes(self):
"""Return datetimes for this collection as a tuple."""
if self._datetimes is None:
self._datetimes = tuple(self.header.analysis_period.datetimes)
return self._datetimes | [
"def",
"datetimes",
"(",
"self",
")",
":",
"if",
"self",
".",
"_datetimes",
"is",
"None",
":",
"self",
".",
"_datetimes",
"=",
"tuple",
"(",
"self",
".",
"header",
".",
"analysis_period",
".",
"datetimes",
")",
"return",
"self",
".",
"_datetimes"
] | Return datetimes for this collection as a tuple. | [
"Return",
"datetimes",
"for",
"this",
"collection",
"as",
"a",
"tuple",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L554-L558 |
4,608 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyContinuousCollection.interpolate_to_timestep | def interpolate_to_timestep(self, timestep, cumulative=None):
"""Interpolate data for a finer timestep using a linear interpolation.
Args:
timestep: Target timestep as an integer. Target timestep must be
divisable by current timestep.
cumulative: A boolean that sets whether the interpolation
should treat the data colection values as cumulative, in
which case the value at each timestep is the value over
that timestep (instead of over the hour). The default will
check the DataType to see if this type of data is typically
cumulative over time.
Return:
A continuous hourly data collection with data interpolated to
the input timestep.
"""
assert timestep % self.header.analysis_period.timestep == 0, \
'Target timestep({}) must be divisable by current timestep({})' \
.format(timestep, self.header.analysis_period.timestep)
if cumulative is not None:
assert isinstance(cumulative, bool), \
'Expected Boolean. Got {}'.format(type(cumulative))
# generate new data
_new_values = []
_data_length = len(self._values)
for d in xrange(_data_length):
for _v in self._xxrange(self[d], self[(d + 1) % _data_length], timestep):
_new_values.append(_v)
# divide cumulative values by the timestep
native_cumulative = self.header.data_type.cumulative
if cumulative is True or (cumulative is None and native_cumulative):
for i, d in enumerate(_new_values):
_new_values[i] = d / timestep
# shift data by a half-hour if data is averaged or cumulative over an hour
if self.header.data_type.point_in_time is False:
shift_dist = int(timestep / 2)
_new_values = _new_values[-shift_dist:] + _new_values[:-shift_dist]
# build a new header
a_per = self.header.analysis_period
_new_a_per = AnalysisPeriod(a_per.st_month, a_per.st_day, a_per.st_hour,
a_per.end_month, a_per.end_day, a_per.end_hour,
timestep, a_per.is_leap_year)
_new_header = self.header.duplicate()
_new_header._analysis_period = _new_a_per
return HourlyContinuousCollection(_new_header, _new_values) | python | def interpolate_to_timestep(self, timestep, cumulative=None):
"""Interpolate data for a finer timestep using a linear interpolation.
Args:
timestep: Target timestep as an integer. Target timestep must be
divisable by current timestep.
cumulative: A boolean that sets whether the interpolation
should treat the data colection values as cumulative, in
which case the value at each timestep is the value over
that timestep (instead of over the hour). The default will
check the DataType to see if this type of data is typically
cumulative over time.
Return:
A continuous hourly data collection with data interpolated to
the input timestep.
"""
assert timestep % self.header.analysis_period.timestep == 0, \
'Target timestep({}) must be divisable by current timestep({})' \
.format(timestep, self.header.analysis_period.timestep)
if cumulative is not None:
assert isinstance(cumulative, bool), \
'Expected Boolean. Got {}'.format(type(cumulative))
# generate new data
_new_values = []
_data_length = len(self._values)
for d in xrange(_data_length):
for _v in self._xxrange(self[d], self[(d + 1) % _data_length], timestep):
_new_values.append(_v)
# divide cumulative values by the timestep
native_cumulative = self.header.data_type.cumulative
if cumulative is True or (cumulative is None and native_cumulative):
for i, d in enumerate(_new_values):
_new_values[i] = d / timestep
# shift data by a half-hour if data is averaged or cumulative over an hour
if self.header.data_type.point_in_time is False:
shift_dist = int(timestep / 2)
_new_values = _new_values[-shift_dist:] + _new_values[:-shift_dist]
# build a new header
a_per = self.header.analysis_period
_new_a_per = AnalysisPeriod(a_per.st_month, a_per.st_day, a_per.st_hour,
a_per.end_month, a_per.end_day, a_per.end_hour,
timestep, a_per.is_leap_year)
_new_header = self.header.duplicate()
_new_header._analysis_period = _new_a_per
return HourlyContinuousCollection(_new_header, _new_values) | [
"def",
"interpolate_to_timestep",
"(",
"self",
",",
"timestep",
",",
"cumulative",
"=",
"None",
")",
":",
"assert",
"timestep",
"%",
"self",
".",
"header",
".",
"analysis_period",
".",
"timestep",
"==",
"0",
",",
"'Target timestep({}) must be divisable by current timestep({})'",
".",
"format",
"(",
"timestep",
",",
"self",
".",
"header",
".",
"analysis_period",
".",
"timestep",
")",
"if",
"cumulative",
"is",
"not",
"None",
":",
"assert",
"isinstance",
"(",
"cumulative",
",",
"bool",
")",
",",
"'Expected Boolean. Got {}'",
".",
"format",
"(",
"type",
"(",
"cumulative",
")",
")",
"# generate new data",
"_new_values",
"=",
"[",
"]",
"_data_length",
"=",
"len",
"(",
"self",
".",
"_values",
")",
"for",
"d",
"in",
"xrange",
"(",
"_data_length",
")",
":",
"for",
"_v",
"in",
"self",
".",
"_xxrange",
"(",
"self",
"[",
"d",
"]",
",",
"self",
"[",
"(",
"d",
"+",
"1",
")",
"%",
"_data_length",
"]",
",",
"timestep",
")",
":",
"_new_values",
".",
"append",
"(",
"_v",
")",
"# divide cumulative values by the timestep",
"native_cumulative",
"=",
"self",
".",
"header",
".",
"data_type",
".",
"cumulative",
"if",
"cumulative",
"is",
"True",
"or",
"(",
"cumulative",
"is",
"None",
"and",
"native_cumulative",
")",
":",
"for",
"i",
",",
"d",
"in",
"enumerate",
"(",
"_new_values",
")",
":",
"_new_values",
"[",
"i",
"]",
"=",
"d",
"/",
"timestep",
"# shift data by a half-hour if data is averaged or cumulative over an hour",
"if",
"self",
".",
"header",
".",
"data_type",
".",
"point_in_time",
"is",
"False",
":",
"shift_dist",
"=",
"int",
"(",
"timestep",
"/",
"2",
")",
"_new_values",
"=",
"_new_values",
"[",
"-",
"shift_dist",
":",
"]",
"+",
"_new_values",
"[",
":",
"-",
"shift_dist",
"]",
"# build a new header",
"a_per",
"=",
"self",
".",
"header",
".",
"analysis_period",
"_new_a_per",
"=",
"AnalysisPeriod",
"(",
"a_per",
".",
"st_month",
",",
"a_per",
".",
"st_day",
",",
"a_per",
".",
"st_hour",
",",
"a_per",
".",
"end_month",
",",
"a_per",
".",
"end_day",
",",
"a_per",
".",
"end_hour",
",",
"timestep",
",",
"a_per",
".",
"is_leap_year",
")",
"_new_header",
"=",
"self",
".",
"header",
".",
"duplicate",
"(",
")",
"_new_header",
".",
"_analysis_period",
"=",
"_new_a_per",
"return",
"HourlyContinuousCollection",
"(",
"_new_header",
",",
"_new_values",
")"
] | Interpolate data for a finer timestep using a linear interpolation.
Args:
timestep: Target timestep as an integer. Target timestep must be
divisable by current timestep.
cumulative: A boolean that sets whether the interpolation
should treat the data colection values as cumulative, in
which case the value at each timestep is the value over
that timestep (instead of over the hour). The default will
check the DataType to see if this type of data is typically
cumulative over time.
Return:
A continuous hourly data collection with data interpolated to
the input timestep. | [
"Interpolate",
"data",
"for",
"a",
"finer",
"timestep",
"using",
"a",
"linear",
"interpolation",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L567-L616 |
4,609 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyContinuousCollection.filter_by_hoys | def filter_by_hoys(self, hoys):
"""Filter the Data Collection based onva list of hoys.
Args:
hoys: A List of hours of the year 0..8759
Return:
A new Data Collection with filtered data
"""
existing_hoys = self.header.analysis_period.hoys
hoys = [h for h in hoys if h in existing_hoys]
_moys = tuple(int(hour * 60) for hour in hoys)
return self.filter_by_moys(_moys) | python | def filter_by_hoys(self, hoys):
"""Filter the Data Collection based onva list of hoys.
Args:
hoys: A List of hours of the year 0..8759
Return:
A new Data Collection with filtered data
"""
existing_hoys = self.header.analysis_period.hoys
hoys = [h for h in hoys if h in existing_hoys]
_moys = tuple(int(hour * 60) for hour in hoys)
return self.filter_by_moys(_moys) | [
"def",
"filter_by_hoys",
"(",
"self",
",",
"hoys",
")",
":",
"existing_hoys",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"hoys",
"hoys",
"=",
"[",
"h",
"for",
"h",
"in",
"hoys",
"if",
"h",
"in",
"existing_hoys",
"]",
"_moys",
"=",
"tuple",
"(",
"int",
"(",
"hour",
"*",
"60",
")",
"for",
"hour",
"in",
"hoys",
")",
"return",
"self",
".",
"filter_by_moys",
"(",
"_moys",
")"
] | Filter the Data Collection based onva list of hoys.
Args:
hoys: A List of hours of the year 0..8759
Return:
A new Data Collection with filtered data | [
"Filter",
"the",
"Data",
"Collection",
"based",
"onva",
"list",
"of",
"hoys",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L683-L695 |
4,610 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyContinuousCollection.to_immutable | def to_immutable(self):
"""Get an immutable version of this collection."""
if self._enumeration is None:
self._get_mutable_enumeration()
col_obj = self._enumeration['immutable'][self._collection_type]
return col_obj(self.header, self.values) | python | def to_immutable(self):
"""Get an immutable version of this collection."""
if self._enumeration is None:
self._get_mutable_enumeration()
col_obj = self._enumeration['immutable'][self._collection_type]
return col_obj(self.header, self.values) | [
"def",
"to_immutable",
"(",
"self",
")",
":",
"if",
"self",
".",
"_enumeration",
"is",
"None",
":",
"self",
".",
"_get_mutable_enumeration",
"(",
")",
"col_obj",
"=",
"self",
".",
"_enumeration",
"[",
"'immutable'",
"]",
"[",
"self",
".",
"_collection_type",
"]",
"return",
"col_obj",
"(",
"self",
".",
"header",
",",
"self",
".",
"values",
")"
] | Get an immutable version of this collection. | [
"Get",
"an",
"immutable",
"version",
"of",
"this",
"collection",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L782-L787 |
4,611 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyContinuousCollection.to_discontinuous | def to_discontinuous(self):
"""Return a discontinuous version of the current collection."""
collection = HourlyDiscontinuousCollection(self.header.duplicate(),
self.values, self.datetimes)
collection._validated_a_period = True
return collection | python | def to_discontinuous(self):
"""Return a discontinuous version of the current collection."""
collection = HourlyDiscontinuousCollection(self.header.duplicate(),
self.values, self.datetimes)
collection._validated_a_period = True
return collection | [
"def",
"to_discontinuous",
"(",
"self",
")",
":",
"collection",
"=",
"HourlyDiscontinuousCollection",
"(",
"self",
".",
"header",
".",
"duplicate",
"(",
")",
",",
"self",
".",
"values",
",",
"self",
".",
"datetimes",
")",
"collection",
".",
"_validated_a_period",
"=",
"True",
"return",
"collection"
] | Return a discontinuous version of the current collection. | [
"Return",
"a",
"discontinuous",
"version",
"of",
"the",
"current",
"collection",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L854-L859 |
4,612 | ladybug-tools/ladybug | ladybug/datacollection.py | HourlyContinuousCollection._get_analysis_period_subset | def _get_analysis_period_subset(self, a_per):
"""Return an analysis_period is always a subset of the Data Collection"""
if self.header.analysis_period.is_annual:
return a_per
new_needed = False
n_ap = [a_per.st_month, a_per.st_day, a_per.st_hour,
a_per.end_month, a_per.end_day, a_per.end_hour,
a_per.timestep, a_per.is_leap_year]
if a_per.st_hour < self.header.analysis_period.st_hour:
n_ap[2] = self.header.analysis_period.st_hour
new_needed = True
if a_per.end_hour > self.header.analysis_period.end_hour:
n_ap[5] = self.header.analysis_period.end_hour
new_needed = True
if a_per.st_time.doy < self.header.analysis_period.st_time.doy:
n_ap[0] = self.header.analysis_period.st_month
n_ap[1] = self.header.analysis_period.st_day
new_needed = True
if a_per.end_time.doy > self.header.analysis_period.end_time.doy:
n_ap[3] = self.header.analysis_period.end_month
n_ap[4] = self.header.analysis_period.end_day
new_needed = True
if new_needed is False:
return a_per
else:
return AnalysisPeriod(*n_ap) | python | def _get_analysis_period_subset(self, a_per):
"""Return an analysis_period is always a subset of the Data Collection"""
if self.header.analysis_period.is_annual:
return a_per
new_needed = False
n_ap = [a_per.st_month, a_per.st_day, a_per.st_hour,
a_per.end_month, a_per.end_day, a_per.end_hour,
a_per.timestep, a_per.is_leap_year]
if a_per.st_hour < self.header.analysis_period.st_hour:
n_ap[2] = self.header.analysis_period.st_hour
new_needed = True
if a_per.end_hour > self.header.analysis_period.end_hour:
n_ap[5] = self.header.analysis_period.end_hour
new_needed = True
if a_per.st_time.doy < self.header.analysis_period.st_time.doy:
n_ap[0] = self.header.analysis_period.st_month
n_ap[1] = self.header.analysis_period.st_day
new_needed = True
if a_per.end_time.doy > self.header.analysis_period.end_time.doy:
n_ap[3] = self.header.analysis_period.end_month
n_ap[4] = self.header.analysis_period.end_day
new_needed = True
if new_needed is False:
return a_per
else:
return AnalysisPeriod(*n_ap) | [
"def",
"_get_analysis_period_subset",
"(",
"self",
",",
"a_per",
")",
":",
"if",
"self",
".",
"header",
".",
"analysis_period",
".",
"is_annual",
":",
"return",
"a_per",
"new_needed",
"=",
"False",
"n_ap",
"=",
"[",
"a_per",
".",
"st_month",
",",
"a_per",
".",
"st_day",
",",
"a_per",
".",
"st_hour",
",",
"a_per",
".",
"end_month",
",",
"a_per",
".",
"end_day",
",",
"a_per",
".",
"end_hour",
",",
"a_per",
".",
"timestep",
",",
"a_per",
".",
"is_leap_year",
"]",
"if",
"a_per",
".",
"st_hour",
"<",
"self",
".",
"header",
".",
"analysis_period",
".",
"st_hour",
":",
"n_ap",
"[",
"2",
"]",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"st_hour",
"new_needed",
"=",
"True",
"if",
"a_per",
".",
"end_hour",
">",
"self",
".",
"header",
".",
"analysis_period",
".",
"end_hour",
":",
"n_ap",
"[",
"5",
"]",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"end_hour",
"new_needed",
"=",
"True",
"if",
"a_per",
".",
"st_time",
".",
"doy",
"<",
"self",
".",
"header",
".",
"analysis_period",
".",
"st_time",
".",
"doy",
":",
"n_ap",
"[",
"0",
"]",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"st_month",
"n_ap",
"[",
"1",
"]",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"st_day",
"new_needed",
"=",
"True",
"if",
"a_per",
".",
"end_time",
".",
"doy",
">",
"self",
".",
"header",
".",
"analysis_period",
".",
"end_time",
".",
"doy",
":",
"n_ap",
"[",
"3",
"]",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"end_month",
"n_ap",
"[",
"4",
"]",
"=",
"self",
".",
"header",
".",
"analysis_period",
".",
"end_day",
"new_needed",
"=",
"True",
"if",
"new_needed",
"is",
"False",
":",
"return",
"a_per",
"else",
":",
"return",
"AnalysisPeriod",
"(",
"*",
"n_ap",
")"
] | Return an analysis_period is always a subset of the Data Collection | [
"Return",
"an",
"analysis_period",
"is",
"always",
"a",
"subset",
"of",
"the",
"Data",
"Collection"
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L875-L901 |
4,613 | ladybug-tools/ladybug | ladybug/datacollection.py | DailyCollection._monthly_operation | def _monthly_operation(self, operation, percentile=0):
"""Get a MonthlyCollection given a certain operation."""
# Retrive the correct operation.
if operation == 'average':
funct = self._average
elif operation == 'total':
funct = self._total
else:
assert 0 <= percentile <= 100, \
'percentile must be between 0 and 100. Got {}'.format(percentile)
funct = self._get_percentile_function(percentile)
# Get the data for the new collection
data_dict = self.group_by_month()
new_data, d_times = [], []
for i in self.header.analysis_period.months_int:
vals = data_dict[i]
if vals != []:
new_data.append(funct(vals))
d_times.append(i)
# build the new monthly collection
new_header = self.header.duplicate()
if operation == 'percentile':
new_header.metadata['operation'] = '{} percentile'.format(percentile)
else:
new_header.metadata['operation'] = operation
collection = MonthlyCollection(new_header, new_data, d_times)
collection._validated_a_period = True
return collection | python | def _monthly_operation(self, operation, percentile=0):
"""Get a MonthlyCollection given a certain operation."""
# Retrive the correct operation.
if operation == 'average':
funct = self._average
elif operation == 'total':
funct = self._total
else:
assert 0 <= percentile <= 100, \
'percentile must be between 0 and 100. Got {}'.format(percentile)
funct = self._get_percentile_function(percentile)
# Get the data for the new collection
data_dict = self.group_by_month()
new_data, d_times = [], []
for i in self.header.analysis_period.months_int:
vals = data_dict[i]
if vals != []:
new_data.append(funct(vals))
d_times.append(i)
# build the new monthly collection
new_header = self.header.duplicate()
if operation == 'percentile':
new_header.metadata['operation'] = '{} percentile'.format(percentile)
else:
new_header.metadata['operation'] = operation
collection = MonthlyCollection(new_header, new_data, d_times)
collection._validated_a_period = True
return collection | [
"def",
"_monthly_operation",
"(",
"self",
",",
"operation",
",",
"percentile",
"=",
"0",
")",
":",
"# Retrive the correct operation.",
"if",
"operation",
"==",
"'average'",
":",
"funct",
"=",
"self",
".",
"_average",
"elif",
"operation",
"==",
"'total'",
":",
"funct",
"=",
"self",
".",
"_total",
"else",
":",
"assert",
"0",
"<=",
"percentile",
"<=",
"100",
",",
"'percentile must be between 0 and 100. Got {}'",
".",
"format",
"(",
"percentile",
")",
"funct",
"=",
"self",
".",
"_get_percentile_function",
"(",
"percentile",
")",
"# Get the data for the new collection",
"data_dict",
"=",
"self",
".",
"group_by_month",
"(",
")",
"new_data",
",",
"d_times",
"=",
"[",
"]",
",",
"[",
"]",
"for",
"i",
"in",
"self",
".",
"header",
".",
"analysis_period",
".",
"months_int",
":",
"vals",
"=",
"data_dict",
"[",
"i",
"]",
"if",
"vals",
"!=",
"[",
"]",
":",
"new_data",
".",
"append",
"(",
"funct",
"(",
"vals",
")",
")",
"d_times",
".",
"append",
"(",
"i",
")",
"# build the new monthly collection",
"new_header",
"=",
"self",
".",
"header",
".",
"duplicate",
"(",
")",
"if",
"operation",
"==",
"'percentile'",
":",
"new_header",
".",
"metadata",
"[",
"'operation'",
"]",
"=",
"'{} percentile'",
".",
"format",
"(",
"percentile",
")",
"else",
":",
"new_header",
".",
"metadata",
"[",
"'operation'",
"]",
"=",
"operation",
"collection",
"=",
"MonthlyCollection",
"(",
"new_header",
",",
"new_data",
",",
"d_times",
")",
"collection",
".",
"_validated_a_period",
"=",
"True",
"return",
"collection"
] | Get a MonthlyCollection given a certain operation. | [
"Get",
"a",
"MonthlyCollection",
"given",
"a",
"certain",
"operation",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datacollection.py#L1095-L1124 |
4,614 | ladybug-tools/ladybug | ladybug/datatype/temperaturetime.py | TemperatureTime.to_unit | def to_unit(self, values, unit, from_unit):
"""Return values converted to the unit given the input from_unit."""
return self._to_unit_base('degC-days', values, unit, from_unit) | python | def to_unit(self, values, unit, from_unit):
"""Return values converted to the unit given the input from_unit."""
return self._to_unit_base('degC-days', values, unit, from_unit) | [
"def",
"to_unit",
"(",
"self",
",",
"values",
",",
"unit",
",",
"from_unit",
")",
":",
"return",
"self",
".",
"_to_unit_base",
"(",
"'degC-days'",
",",
"values",
",",
"unit",
",",
"from_unit",
")"
] | Return values converted to the unit given the input from_unit. | [
"Return",
"values",
"converted",
"to",
"the",
"unit",
"given",
"the",
"input",
"from_unit",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/datatype/temperaturetime.py#L33-L35 |
4,615 | ladybug-tools/ladybug | ladybug/rootfind.py | bisect | def bisect(a, b, fn, epsilon, target):
"""
The simplest root-finding algorithm.
It is extremely reliable. However, it converges slowly for this reason,
it is recommended that this only be used after the secant() method has
returned None.
Args:
a: A lower guess of the value you are tying to find.
b: A higher guess of the value you are tying to find.
fn: A function representing the relationship between the value you are
trying to find and the target condition you are trying to satisfy.
It should typically be structured in the following way:
`def fn(value_trying_to_find):
funct(value_trying_to_find) - target_desired_from_funct`
...but the subtraction should be swtiched if value_trying_to_find
has a negative relationship with the funct.
epsilon: The acceptable error in the target_desired_from_funct.
target: The target slope (typically 0 for a local minima or maxima).
Returns:
root: The value that gives the target_desired_from_funct.
References
----------
[1] Wikipedia contributors. (2018, December 29). Root-finding algorithm.
In Wikipedia, The Free Encyclopedia. Retrieved 18:16, December 30, 2018,
from https://en.wikipedia.org/wiki/Root-finding_algorithm#Bisection_method
"""
while (abs(b - a) > 2 * epsilon):
midpoint = (b + a) / 2
a_t = fn(a)
b_t = fn(b)
midpoint_t = fn(midpoint)
if (a_t - target) * (midpoint_t - target) < 0:
b = midpoint
elif (b_t - target) * (midpoint_t - target) < 0:
a = midpoint
else:
return -999
return midpoint | python | def bisect(a, b, fn, epsilon, target):
"""
The simplest root-finding algorithm.
It is extremely reliable. However, it converges slowly for this reason,
it is recommended that this only be used after the secant() method has
returned None.
Args:
a: A lower guess of the value you are tying to find.
b: A higher guess of the value you are tying to find.
fn: A function representing the relationship between the value you are
trying to find and the target condition you are trying to satisfy.
It should typically be structured in the following way:
`def fn(value_trying_to_find):
funct(value_trying_to_find) - target_desired_from_funct`
...but the subtraction should be swtiched if value_trying_to_find
has a negative relationship with the funct.
epsilon: The acceptable error in the target_desired_from_funct.
target: The target slope (typically 0 for a local minima or maxima).
Returns:
root: The value that gives the target_desired_from_funct.
References
----------
[1] Wikipedia contributors. (2018, December 29). Root-finding algorithm.
In Wikipedia, The Free Encyclopedia. Retrieved 18:16, December 30, 2018,
from https://en.wikipedia.org/wiki/Root-finding_algorithm#Bisection_method
"""
while (abs(b - a) > 2 * epsilon):
midpoint = (b + a) / 2
a_t = fn(a)
b_t = fn(b)
midpoint_t = fn(midpoint)
if (a_t - target) * (midpoint_t - target) < 0:
b = midpoint
elif (b_t - target) * (midpoint_t - target) < 0:
a = midpoint
else:
return -999
return midpoint | [
"def",
"bisect",
"(",
"a",
",",
"b",
",",
"fn",
",",
"epsilon",
",",
"target",
")",
":",
"while",
"(",
"abs",
"(",
"b",
"-",
"a",
")",
">",
"2",
"*",
"epsilon",
")",
":",
"midpoint",
"=",
"(",
"b",
"+",
"a",
")",
"/",
"2",
"a_t",
"=",
"fn",
"(",
"a",
")",
"b_t",
"=",
"fn",
"(",
"b",
")",
"midpoint_t",
"=",
"fn",
"(",
"midpoint",
")",
"if",
"(",
"a_t",
"-",
"target",
")",
"*",
"(",
"midpoint_t",
"-",
"target",
")",
"<",
"0",
":",
"b",
"=",
"midpoint",
"elif",
"(",
"b_t",
"-",
"target",
")",
"*",
"(",
"midpoint_t",
"-",
"target",
")",
"<",
"0",
":",
"a",
"=",
"midpoint",
"else",
":",
"return",
"-",
"999",
"return",
"midpoint"
] | The simplest root-finding algorithm.
It is extremely reliable. However, it converges slowly for this reason,
it is recommended that this only be used after the secant() method has
returned None.
Args:
a: A lower guess of the value you are tying to find.
b: A higher guess of the value you are tying to find.
fn: A function representing the relationship between the value you are
trying to find and the target condition you are trying to satisfy.
It should typically be structured in the following way:
`def fn(value_trying_to_find):
funct(value_trying_to_find) - target_desired_from_funct`
...but the subtraction should be swtiched if value_trying_to_find
has a negative relationship with the funct.
epsilon: The acceptable error in the target_desired_from_funct.
target: The target slope (typically 0 for a local minima or maxima).
Returns:
root: The value that gives the target_desired_from_funct.
References
----------
[1] Wikipedia contributors. (2018, December 29). Root-finding algorithm.
In Wikipedia, The Free Encyclopedia. Retrieved 18:16, December 30, 2018,
from https://en.wikipedia.org/wiki/Root-finding_algorithm#Bisection_method | [
"The",
"simplest",
"root",
"-",
"finding",
"algorithm",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/rootfind.py#L56-L98 |
4,616 | ladybug-tools/ladybug | ladybug/location.py | Location.from_json | def from_json(cls, data):
"""Create a location from a dictionary.
Args:
data: {
"city": "-",
"latitude": 0,
"longitude": 0,
"time_zone": 0,
"elevation": 0}
"""
optional_keys = ('city', 'state', 'country', 'latitude', 'longitude',
'time_zone', 'elevation', 'station_id', 'source')
for key in optional_keys:
if key not in data:
data[key] = None
return cls(data['city'], data['state'], data['country'], data['latitude'],
data['longitude'], data['time_zone'], data['elevation'],
data['station_id'], data['source']) | python | def from_json(cls, data):
"""Create a location from a dictionary.
Args:
data: {
"city": "-",
"latitude": 0,
"longitude": 0,
"time_zone": 0,
"elevation": 0}
"""
optional_keys = ('city', 'state', 'country', 'latitude', 'longitude',
'time_zone', 'elevation', 'station_id', 'source')
for key in optional_keys:
if key not in data:
data[key] = None
return cls(data['city'], data['state'], data['country'], data['latitude'],
data['longitude'], data['time_zone'], data['elevation'],
data['station_id'], data['source']) | [
"def",
"from_json",
"(",
"cls",
",",
"data",
")",
":",
"optional_keys",
"=",
"(",
"'city'",
",",
"'state'",
",",
"'country'",
",",
"'latitude'",
",",
"'longitude'",
",",
"'time_zone'",
",",
"'elevation'",
",",
"'station_id'",
",",
"'source'",
")",
"for",
"key",
"in",
"optional_keys",
":",
"if",
"key",
"not",
"in",
"data",
":",
"data",
"[",
"key",
"]",
"=",
"None",
"return",
"cls",
"(",
"data",
"[",
"'city'",
"]",
",",
"data",
"[",
"'state'",
"]",
",",
"data",
"[",
"'country'",
"]",
",",
"data",
"[",
"'latitude'",
"]",
",",
"data",
"[",
"'longitude'",
"]",
",",
"data",
"[",
"'time_zone'",
"]",
",",
"data",
"[",
"'elevation'",
"]",
",",
"data",
"[",
"'station_id'",
"]",
",",
"data",
"[",
"'source'",
"]",
")"
] | Create a location from a dictionary.
Args:
data: {
"city": "-",
"latitude": 0,
"longitude": 0,
"time_zone": 0,
"elevation": 0} | [
"Create",
"a",
"location",
"from",
"a",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/location.py#L40-L59 |
4,617 | ladybug-tools/ladybug | ladybug/location.py | Location.from_location | def from_location(cls, location):
"""Try to create a Ladybug location from a location string.
Args:
locationString: Location string
Usage:
l = Location.from_location(locationString)
"""
if not location:
return cls()
try:
if hasattr(location, 'isLocation'):
# Ladybug location
return location
elif hasattr(location, 'Latitude'):
# Revit's location
return cls(city=str(location.Name.replace(",", " ")),
latitude=location.Latitude,
longitude=location.Longitude)
elif location.startswith('Site:'):
loc, city, latitude, longitude, time_zone, elevation = \
[x.strip() for x in re.findall(r'\r*\n*([^\r\n]*)[,|;]',
location, re.DOTALL)]
else:
try:
city, latitude, longitude, time_zone, elevation = \
[key.split(":")[-1].strip()
for key in location.split(",")]
except ValueError:
# it's just the city name
return cls(city=location)
return cls(city=city, country=None, latitude=latitude,
longitude=longitude, time_zone=time_zone,
elevation=elevation)
except Exception as e:
raise ValueError(
"Failed to create a Location from %s!\n%s" % (location, e)) | python | def from_location(cls, location):
"""Try to create a Ladybug location from a location string.
Args:
locationString: Location string
Usage:
l = Location.from_location(locationString)
"""
if not location:
return cls()
try:
if hasattr(location, 'isLocation'):
# Ladybug location
return location
elif hasattr(location, 'Latitude'):
# Revit's location
return cls(city=str(location.Name.replace(",", " ")),
latitude=location.Latitude,
longitude=location.Longitude)
elif location.startswith('Site:'):
loc, city, latitude, longitude, time_zone, elevation = \
[x.strip() for x in re.findall(r'\r*\n*([^\r\n]*)[,|;]',
location, re.DOTALL)]
else:
try:
city, latitude, longitude, time_zone, elevation = \
[key.split(":")[-1].strip()
for key in location.split(",")]
except ValueError:
# it's just the city name
return cls(city=location)
return cls(city=city, country=None, latitude=latitude,
longitude=longitude, time_zone=time_zone,
elevation=elevation)
except Exception as e:
raise ValueError(
"Failed to create a Location from %s!\n%s" % (location, e)) | [
"def",
"from_location",
"(",
"cls",
",",
"location",
")",
":",
"if",
"not",
"location",
":",
"return",
"cls",
"(",
")",
"try",
":",
"if",
"hasattr",
"(",
"location",
",",
"'isLocation'",
")",
":",
"# Ladybug location",
"return",
"location",
"elif",
"hasattr",
"(",
"location",
",",
"'Latitude'",
")",
":",
"# Revit's location",
"return",
"cls",
"(",
"city",
"=",
"str",
"(",
"location",
".",
"Name",
".",
"replace",
"(",
"\",\"",
",",
"\" \"",
")",
")",
",",
"latitude",
"=",
"location",
".",
"Latitude",
",",
"longitude",
"=",
"location",
".",
"Longitude",
")",
"elif",
"location",
".",
"startswith",
"(",
"'Site:'",
")",
":",
"loc",
",",
"city",
",",
"latitude",
",",
"longitude",
",",
"time_zone",
",",
"elevation",
"=",
"[",
"x",
".",
"strip",
"(",
")",
"for",
"x",
"in",
"re",
".",
"findall",
"(",
"r'\\r*\\n*([^\\r\\n]*)[,|;]'",
",",
"location",
",",
"re",
".",
"DOTALL",
")",
"]",
"else",
":",
"try",
":",
"city",
",",
"latitude",
",",
"longitude",
",",
"time_zone",
",",
"elevation",
"=",
"[",
"key",
".",
"split",
"(",
"\":\"",
")",
"[",
"-",
"1",
"]",
".",
"strip",
"(",
")",
"for",
"key",
"in",
"location",
".",
"split",
"(",
"\",\"",
")",
"]",
"except",
"ValueError",
":",
"# it's just the city name",
"return",
"cls",
"(",
"city",
"=",
"location",
")",
"return",
"cls",
"(",
"city",
"=",
"city",
",",
"country",
"=",
"None",
",",
"latitude",
"=",
"latitude",
",",
"longitude",
"=",
"longitude",
",",
"time_zone",
"=",
"time_zone",
",",
"elevation",
"=",
"elevation",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"ValueError",
"(",
"\"Failed to create a Location from %s!\\n%s\"",
"%",
"(",
"location",
",",
"e",
")",
")"
] | Try to create a Ladybug location from a location string.
Args:
locationString: Location string
Usage:
l = Location.from_location(locationString) | [
"Try",
"to",
"create",
"a",
"Ladybug",
"location",
"from",
"a",
"location",
"string",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/location.py#L62-L104 |
4,618 | ladybug-tools/ladybug | ladybug/location.py | Location.duplicate | def duplicate(self):
"""Duplicate location."""
return Location(self.city, self.state, self.country,
self.latitude, self.longitude, self.time_zone, self.elevation,
self.station_id, self.source) | python | def duplicate(self):
"""Duplicate location."""
return Location(self.city, self.state, self.country,
self.latitude, self.longitude, self.time_zone, self.elevation,
self.station_id, self.source) | [
"def",
"duplicate",
"(",
"self",
")",
":",
"return",
"Location",
"(",
"self",
".",
"city",
",",
"self",
".",
"state",
",",
"self",
".",
"country",
",",
"self",
".",
"latitude",
",",
"self",
".",
"longitude",
",",
"self",
".",
"time_zone",
",",
"self",
".",
"elevation",
",",
"self",
".",
"station_id",
",",
"self",
".",
"source",
")"
] | Duplicate location. | [
"Duplicate",
"location",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/location.py#L158-L162 |
4,619 | ladybug-tools/ladybug | ladybug/location.py | Location.ep_style_location_string | def ep_style_location_string(self):
"""Return EnergyPlus's location string."""
return "Site:Location,\n " + \
self.city + ',\n ' + \
str(self.latitude) + ', !Latitude\n ' + \
str(self.longitude) + ', !Longitude\n ' + \
str(self.time_zone) + ', !Time Zone\n ' + \
str(self.elevation) + '; !Elevation' | python | def ep_style_location_string(self):
"""Return EnergyPlus's location string."""
return "Site:Location,\n " + \
self.city + ',\n ' + \
str(self.latitude) + ', !Latitude\n ' + \
str(self.longitude) + ', !Longitude\n ' + \
str(self.time_zone) + ', !Time Zone\n ' + \
str(self.elevation) + '; !Elevation' | [
"def",
"ep_style_location_string",
"(",
"self",
")",
":",
"return",
"\"Site:Location,\\n \"",
"+",
"self",
".",
"city",
"+",
"',\\n '",
"+",
"str",
"(",
"self",
".",
"latitude",
")",
"+",
"', !Latitude\\n '",
"+",
"str",
"(",
"self",
".",
"longitude",
")",
"+",
"', !Longitude\\n '",
"+",
"str",
"(",
"self",
".",
"time_zone",
")",
"+",
"', !Time Zone\\n '",
"+",
"str",
"(",
"self",
".",
"elevation",
")",
"+",
"'; !Elevation'"
] | Return EnergyPlus's location string. | [
"Return",
"EnergyPlus",
"s",
"location",
"string",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/location.py#L165-L172 |
4,620 | ladybug-tools/ladybug | ladybug/epw.py | EPW.from_missing_values | def from_missing_values(cls, is_leap_year=False):
"""Initalize an EPW object with all data missing or empty.
Note that this classmethod is intended for workflows where one plans
to set all of the data within the EPW object. The EPW file written
out from the use of this method is not simulate-abe or useful since
all hourly data slots just possess the missing value for that data
type. To obtain a EPW that is simulate-able in EnergyPlus, one must
at least set the following properties:
location
dry_bulb_temperature
dew_point_temperature
relative_humidity
atmospheric_station_pressure
direct_normal_radiation
diffuse_horizontal_radiation
wind_direction
wind_speed
total_sky_cover
opaque_sky_cover or horizontal_infrared_radiation_intensity
Args:
is_leap_year: A boolean to set whether the EPW object is for a leap year.
Usage:
from ladybug.epw import EPW
from ladybug.location import Location
epw = EPW.from_missing_values()
epw.location = Location('Denver Golden','CO','USA',39.74,-105.18,-7.0,1829.0)
epw.dry_bulb_temperature.values = [20] * 8760
"""
# Initialize the class with all data missing
epw_obj = cls(None)
epw_obj._is_leap_year = is_leap_year
epw_obj._location = Location()
# create an annual analysis period
analysis_period = AnalysisPeriod(is_leap_year=is_leap_year)
# create headers and an empty list for each field in epw file
headers = []
for field_number in xrange(epw_obj._num_of_fields):
field = EPWFields.field_by_number(field_number)
header = Header(data_type=field.name, unit=field.unit,
analysis_period=analysis_period)
headers.append(header)
epw_obj._data.append([])
# fill in missing datetime values and uncertainty flags.
uncertainty = '?9?9?9?9E0?9?9?9?9?9?9?9?9?9?9?9?9?9?9?9*9*9?9?9?9'
for dt in analysis_period.datetimes:
hr = dt.hour if dt.hour != 0 else 24
epw_obj._data[0].append(dt.year)
epw_obj._data[1].append(dt.month)
epw_obj._data[2].append(dt.day)
epw_obj._data[3].append(hr)
epw_obj._data[4].append(0)
epw_obj._data[5].append(uncertainty)
# generate missing hourly data
calc_length = len(analysis_period.datetimes)
for field_number in xrange(6, epw_obj._num_of_fields):
field = EPWFields.field_by_number(field_number)
mis_val = field.missing if field.missing is not None else 0
for dt in xrange(calc_length):
epw_obj._data[field_number].append(mis_val)
# finally, build the data collection objects from the headers and data
for i in xrange(epw_obj._num_of_fields):
epw_obj._data[i] = HourlyContinuousCollection(headers[i], epw_obj._data[i])
epw_obj._is_header_loaded = True
epw_obj._is_data_loaded = True
return epw_obj | python | def from_missing_values(cls, is_leap_year=False):
"""Initalize an EPW object with all data missing or empty.
Note that this classmethod is intended for workflows where one plans
to set all of the data within the EPW object. The EPW file written
out from the use of this method is not simulate-abe or useful since
all hourly data slots just possess the missing value for that data
type. To obtain a EPW that is simulate-able in EnergyPlus, one must
at least set the following properties:
location
dry_bulb_temperature
dew_point_temperature
relative_humidity
atmospheric_station_pressure
direct_normal_radiation
diffuse_horizontal_radiation
wind_direction
wind_speed
total_sky_cover
opaque_sky_cover or horizontal_infrared_radiation_intensity
Args:
is_leap_year: A boolean to set whether the EPW object is for a leap year.
Usage:
from ladybug.epw import EPW
from ladybug.location import Location
epw = EPW.from_missing_values()
epw.location = Location('Denver Golden','CO','USA',39.74,-105.18,-7.0,1829.0)
epw.dry_bulb_temperature.values = [20] * 8760
"""
# Initialize the class with all data missing
epw_obj = cls(None)
epw_obj._is_leap_year = is_leap_year
epw_obj._location = Location()
# create an annual analysis period
analysis_period = AnalysisPeriod(is_leap_year=is_leap_year)
# create headers and an empty list for each field in epw file
headers = []
for field_number in xrange(epw_obj._num_of_fields):
field = EPWFields.field_by_number(field_number)
header = Header(data_type=field.name, unit=field.unit,
analysis_period=analysis_period)
headers.append(header)
epw_obj._data.append([])
# fill in missing datetime values and uncertainty flags.
uncertainty = '?9?9?9?9E0?9?9?9?9?9?9?9?9?9?9?9?9?9?9?9*9*9?9?9?9'
for dt in analysis_period.datetimes:
hr = dt.hour if dt.hour != 0 else 24
epw_obj._data[0].append(dt.year)
epw_obj._data[1].append(dt.month)
epw_obj._data[2].append(dt.day)
epw_obj._data[3].append(hr)
epw_obj._data[4].append(0)
epw_obj._data[5].append(uncertainty)
# generate missing hourly data
calc_length = len(analysis_period.datetimes)
for field_number in xrange(6, epw_obj._num_of_fields):
field = EPWFields.field_by_number(field_number)
mis_val = field.missing if field.missing is not None else 0
for dt in xrange(calc_length):
epw_obj._data[field_number].append(mis_val)
# finally, build the data collection objects from the headers and data
for i in xrange(epw_obj._num_of_fields):
epw_obj._data[i] = HourlyContinuousCollection(headers[i], epw_obj._data[i])
epw_obj._is_header_loaded = True
epw_obj._is_data_loaded = True
return epw_obj | [
"def",
"from_missing_values",
"(",
"cls",
",",
"is_leap_year",
"=",
"False",
")",
":",
"# Initialize the class with all data missing",
"epw_obj",
"=",
"cls",
"(",
"None",
")",
"epw_obj",
".",
"_is_leap_year",
"=",
"is_leap_year",
"epw_obj",
".",
"_location",
"=",
"Location",
"(",
")",
"# create an annual analysis period",
"analysis_period",
"=",
"AnalysisPeriod",
"(",
"is_leap_year",
"=",
"is_leap_year",
")",
"# create headers and an empty list for each field in epw file",
"headers",
"=",
"[",
"]",
"for",
"field_number",
"in",
"xrange",
"(",
"epw_obj",
".",
"_num_of_fields",
")",
":",
"field",
"=",
"EPWFields",
".",
"field_by_number",
"(",
"field_number",
")",
"header",
"=",
"Header",
"(",
"data_type",
"=",
"field",
".",
"name",
",",
"unit",
"=",
"field",
".",
"unit",
",",
"analysis_period",
"=",
"analysis_period",
")",
"headers",
".",
"append",
"(",
"header",
")",
"epw_obj",
".",
"_data",
".",
"append",
"(",
"[",
"]",
")",
"# fill in missing datetime values and uncertainty flags.",
"uncertainty",
"=",
"'?9?9?9?9E0?9?9?9?9?9?9?9?9?9?9?9?9?9?9?9*9*9?9?9?9'",
"for",
"dt",
"in",
"analysis_period",
".",
"datetimes",
":",
"hr",
"=",
"dt",
".",
"hour",
"if",
"dt",
".",
"hour",
"!=",
"0",
"else",
"24",
"epw_obj",
".",
"_data",
"[",
"0",
"]",
".",
"append",
"(",
"dt",
".",
"year",
")",
"epw_obj",
".",
"_data",
"[",
"1",
"]",
".",
"append",
"(",
"dt",
".",
"month",
")",
"epw_obj",
".",
"_data",
"[",
"2",
"]",
".",
"append",
"(",
"dt",
".",
"day",
")",
"epw_obj",
".",
"_data",
"[",
"3",
"]",
".",
"append",
"(",
"hr",
")",
"epw_obj",
".",
"_data",
"[",
"4",
"]",
".",
"append",
"(",
"0",
")",
"epw_obj",
".",
"_data",
"[",
"5",
"]",
".",
"append",
"(",
"uncertainty",
")",
"# generate missing hourly data",
"calc_length",
"=",
"len",
"(",
"analysis_period",
".",
"datetimes",
")",
"for",
"field_number",
"in",
"xrange",
"(",
"6",
",",
"epw_obj",
".",
"_num_of_fields",
")",
":",
"field",
"=",
"EPWFields",
".",
"field_by_number",
"(",
"field_number",
")",
"mis_val",
"=",
"field",
".",
"missing",
"if",
"field",
".",
"missing",
"is",
"not",
"None",
"else",
"0",
"for",
"dt",
"in",
"xrange",
"(",
"calc_length",
")",
":",
"epw_obj",
".",
"_data",
"[",
"field_number",
"]",
".",
"append",
"(",
"mis_val",
")",
"# finally, build the data collection objects from the headers and data",
"for",
"i",
"in",
"xrange",
"(",
"epw_obj",
".",
"_num_of_fields",
")",
":",
"epw_obj",
".",
"_data",
"[",
"i",
"]",
"=",
"HourlyContinuousCollection",
"(",
"headers",
"[",
"i",
"]",
",",
"epw_obj",
".",
"_data",
"[",
"i",
"]",
")",
"epw_obj",
".",
"_is_header_loaded",
"=",
"True",
"epw_obj",
".",
"_is_data_loaded",
"=",
"True",
"return",
"epw_obj"
] | Initalize an EPW object with all data missing or empty.
Note that this classmethod is intended for workflows where one plans
to set all of the data within the EPW object. The EPW file written
out from the use of this method is not simulate-abe or useful since
all hourly data slots just possess the missing value for that data
type. To obtain a EPW that is simulate-able in EnergyPlus, one must
at least set the following properties:
location
dry_bulb_temperature
dew_point_temperature
relative_humidity
atmospheric_station_pressure
direct_normal_radiation
diffuse_horizontal_radiation
wind_direction
wind_speed
total_sky_cover
opaque_sky_cover or horizontal_infrared_radiation_intensity
Args:
is_leap_year: A boolean to set whether the EPW object is for a leap year.
Usage:
from ladybug.epw import EPW
from ladybug.location import Location
epw = EPW.from_missing_values()
epw.location = Location('Denver Golden','CO','USA',39.74,-105.18,-7.0,1829.0)
epw.dry_bulb_temperature.values = [20] * 8760 | [
"Initalize",
"an",
"EPW",
"object",
"with",
"all",
"data",
"missing",
"or",
"empty",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L105-L178 |
4,621 | ladybug-tools/ladybug | ladybug/epw.py | EPW.from_json | def from_json(cls, data):
""" Create EPW from json dictionary.
Args:
data: {
"location": {} , // ladybug location schema
"data_collections": [], // list of hourly annual hourly data collection
schemas for each of the 35 fields within the EPW file.
"metadata": {}, // dict of metadata assigned to all data collections
"heating_dict": {}, // dict containing heating design conditions
"cooling_dict": {}, // dict containing cooling design conditions
"extremes_dict": {}, // dict containing extreme design conditions
"extreme_hot_weeks": {}, // dict with values of week-long ladybug
analysis period schemas signifying extreme hot weeks.
"extreme_cold_weeks": {}, // dict with values of week-long ladybug
analysis period schemas signifying extreme cold weeks.
"typical_weeks": {}, // dict with values of week-long ladybug
analysis period schemas signifying typical weeks.
"monthly_ground_temps": {}, // dict with keys as floats signifying
depths in meters below ground and values of monthly collection schema
"is_ip": Boolean // denote whether the data is in IP units
"is_leap_year": Boolean, // denote whether data is for a leap year
"daylight_savings_start": 0, // signify when daylight savings starts
or 0 for no daylight savings
"daylight_savings_end" 0, // signify when daylight savings ends
or 0 for no daylight savings
"comments_1": String, // epw comments
"comments_2": String // epw comments
}
"""
# Initialize the class with all data missing
epw_obj = cls(None)
epw_obj._is_header_loaded = True
epw_obj._is_data_loaded = True
# Check required and optional keys
required_keys = ('location', 'data_collections')
option_keys_dict = ('metadata', 'heating_dict', 'cooling_dict',
'extremes_dict', 'extreme_hot_weeks', 'extreme_cold_weeks',
'typical_weeks', 'monthly_ground_temps')
for key in required_keys:
assert key in data, 'Required key "{}" is missing!'.format(key)
assert len(data['data_collections']) == epw_obj._num_of_fields, \
'The number of data_collections must be {}. Got {}.'.format(
epw_obj._num_of_fields, len(data['data_collections']))
for key in option_keys_dict:
if key not in data:
data[key] = {}
# Set the required properties of the EPW object.
epw_obj._location = Location.from_json(data['location'])
epw_obj._data = [HourlyContinuousCollection.from_json(dc)
for dc in data['data_collections']]
if 'is_leap_year' in data:
epw_obj._is_leap_year = data['is_leap_year']
if 'is_ip' in data:
epw_obj._is_ip = data['is_ip']
# Check that the required properties all make sense.
for dc in epw_obj._data:
assert isinstance(dc, HourlyContinuousCollection), 'data_collections must ' \
'be of HourlyContinuousCollection schema. Got {}'.format(type(dc))
assert dc.header.analysis_period.is_annual, 'data_collections ' \
'analysis_period must be annual.'
assert dc.header.analysis_period.is_leap_year == epw_obj._is_leap_year, \
'data_collections is_leap_year is not aligned with that of the EPW.'
# Set all of the header properties if they exist in the dictionary.
epw_obj._metadata = data['metadata']
epw_obj.heating_design_condition_dictionary = data['heating_dict']
epw_obj.cooling_design_condition_dictionary = data['cooling_dict']
epw_obj.extreme_design_condition_dictionary = data['extremes_dict']
def _dejson(parent_dict, obj):
new_dict = {}
for key, val in parent_dict.items():
new_dict[key] = obj.from_json(val)
return new_dict
epw_obj.extreme_hot_weeks = _dejson(data['extreme_hot_weeks'], AnalysisPeriod)
epw_obj.extreme_cold_weeks = _dejson(data['extreme_cold_weeks'], AnalysisPeriod)
epw_obj.typical_weeks = _dejson(data['typical_weeks'], AnalysisPeriod)
epw_obj.monthly_ground_temperature = _dejson(
data['monthly_ground_temps'], MonthlyCollection)
if 'daylight_savings_start' in data:
epw_obj.daylight_savings_start = data['daylight_savings_start']
if 'daylight_savings_end' in data:
epw_obj.daylight_savings_end = data['daylight_savings_end']
if 'comments_1' in data:
epw_obj.comments_1 = data['comments_1']
if 'comments_2' in data:
epw_obj.comments_2 = data['comments_2']
return epw_obj | python | def from_json(cls, data):
""" Create EPW from json dictionary.
Args:
data: {
"location": {} , // ladybug location schema
"data_collections": [], // list of hourly annual hourly data collection
schemas for each of the 35 fields within the EPW file.
"metadata": {}, // dict of metadata assigned to all data collections
"heating_dict": {}, // dict containing heating design conditions
"cooling_dict": {}, // dict containing cooling design conditions
"extremes_dict": {}, // dict containing extreme design conditions
"extreme_hot_weeks": {}, // dict with values of week-long ladybug
analysis period schemas signifying extreme hot weeks.
"extreme_cold_weeks": {}, // dict with values of week-long ladybug
analysis period schemas signifying extreme cold weeks.
"typical_weeks": {}, // dict with values of week-long ladybug
analysis period schemas signifying typical weeks.
"monthly_ground_temps": {}, // dict with keys as floats signifying
depths in meters below ground and values of monthly collection schema
"is_ip": Boolean // denote whether the data is in IP units
"is_leap_year": Boolean, // denote whether data is for a leap year
"daylight_savings_start": 0, // signify when daylight savings starts
or 0 for no daylight savings
"daylight_savings_end" 0, // signify when daylight savings ends
or 0 for no daylight savings
"comments_1": String, // epw comments
"comments_2": String // epw comments
}
"""
# Initialize the class with all data missing
epw_obj = cls(None)
epw_obj._is_header_loaded = True
epw_obj._is_data_loaded = True
# Check required and optional keys
required_keys = ('location', 'data_collections')
option_keys_dict = ('metadata', 'heating_dict', 'cooling_dict',
'extremes_dict', 'extreme_hot_weeks', 'extreme_cold_weeks',
'typical_weeks', 'monthly_ground_temps')
for key in required_keys:
assert key in data, 'Required key "{}" is missing!'.format(key)
assert len(data['data_collections']) == epw_obj._num_of_fields, \
'The number of data_collections must be {}. Got {}.'.format(
epw_obj._num_of_fields, len(data['data_collections']))
for key in option_keys_dict:
if key not in data:
data[key] = {}
# Set the required properties of the EPW object.
epw_obj._location = Location.from_json(data['location'])
epw_obj._data = [HourlyContinuousCollection.from_json(dc)
for dc in data['data_collections']]
if 'is_leap_year' in data:
epw_obj._is_leap_year = data['is_leap_year']
if 'is_ip' in data:
epw_obj._is_ip = data['is_ip']
# Check that the required properties all make sense.
for dc in epw_obj._data:
assert isinstance(dc, HourlyContinuousCollection), 'data_collections must ' \
'be of HourlyContinuousCollection schema. Got {}'.format(type(dc))
assert dc.header.analysis_period.is_annual, 'data_collections ' \
'analysis_period must be annual.'
assert dc.header.analysis_period.is_leap_year == epw_obj._is_leap_year, \
'data_collections is_leap_year is not aligned with that of the EPW.'
# Set all of the header properties if they exist in the dictionary.
epw_obj._metadata = data['metadata']
epw_obj.heating_design_condition_dictionary = data['heating_dict']
epw_obj.cooling_design_condition_dictionary = data['cooling_dict']
epw_obj.extreme_design_condition_dictionary = data['extremes_dict']
def _dejson(parent_dict, obj):
new_dict = {}
for key, val in parent_dict.items():
new_dict[key] = obj.from_json(val)
return new_dict
epw_obj.extreme_hot_weeks = _dejson(data['extreme_hot_weeks'], AnalysisPeriod)
epw_obj.extreme_cold_weeks = _dejson(data['extreme_cold_weeks'], AnalysisPeriod)
epw_obj.typical_weeks = _dejson(data['typical_weeks'], AnalysisPeriod)
epw_obj.monthly_ground_temperature = _dejson(
data['monthly_ground_temps'], MonthlyCollection)
if 'daylight_savings_start' in data:
epw_obj.daylight_savings_start = data['daylight_savings_start']
if 'daylight_savings_end' in data:
epw_obj.daylight_savings_end = data['daylight_savings_end']
if 'comments_1' in data:
epw_obj.comments_1 = data['comments_1']
if 'comments_2' in data:
epw_obj.comments_2 = data['comments_2']
return epw_obj | [
"def",
"from_json",
"(",
"cls",
",",
"data",
")",
":",
"# Initialize the class with all data missing",
"epw_obj",
"=",
"cls",
"(",
"None",
")",
"epw_obj",
".",
"_is_header_loaded",
"=",
"True",
"epw_obj",
".",
"_is_data_loaded",
"=",
"True",
"# Check required and optional keys",
"required_keys",
"=",
"(",
"'location'",
",",
"'data_collections'",
")",
"option_keys_dict",
"=",
"(",
"'metadata'",
",",
"'heating_dict'",
",",
"'cooling_dict'",
",",
"'extremes_dict'",
",",
"'extreme_hot_weeks'",
",",
"'extreme_cold_weeks'",
",",
"'typical_weeks'",
",",
"'monthly_ground_temps'",
")",
"for",
"key",
"in",
"required_keys",
":",
"assert",
"key",
"in",
"data",
",",
"'Required key \"{}\" is missing!'",
".",
"format",
"(",
"key",
")",
"assert",
"len",
"(",
"data",
"[",
"'data_collections'",
"]",
")",
"==",
"epw_obj",
".",
"_num_of_fields",
",",
"'The number of data_collections must be {}. Got {}.'",
".",
"format",
"(",
"epw_obj",
".",
"_num_of_fields",
",",
"len",
"(",
"data",
"[",
"'data_collections'",
"]",
")",
")",
"for",
"key",
"in",
"option_keys_dict",
":",
"if",
"key",
"not",
"in",
"data",
":",
"data",
"[",
"key",
"]",
"=",
"{",
"}",
"# Set the required properties of the EPW object.",
"epw_obj",
".",
"_location",
"=",
"Location",
".",
"from_json",
"(",
"data",
"[",
"'location'",
"]",
")",
"epw_obj",
".",
"_data",
"=",
"[",
"HourlyContinuousCollection",
".",
"from_json",
"(",
"dc",
")",
"for",
"dc",
"in",
"data",
"[",
"'data_collections'",
"]",
"]",
"if",
"'is_leap_year'",
"in",
"data",
":",
"epw_obj",
".",
"_is_leap_year",
"=",
"data",
"[",
"'is_leap_year'",
"]",
"if",
"'is_ip'",
"in",
"data",
":",
"epw_obj",
".",
"_is_ip",
"=",
"data",
"[",
"'is_ip'",
"]",
"# Check that the required properties all make sense.",
"for",
"dc",
"in",
"epw_obj",
".",
"_data",
":",
"assert",
"isinstance",
"(",
"dc",
",",
"HourlyContinuousCollection",
")",
",",
"'data_collections must '",
"'be of HourlyContinuousCollection schema. Got {}'",
".",
"format",
"(",
"type",
"(",
"dc",
")",
")",
"assert",
"dc",
".",
"header",
".",
"analysis_period",
".",
"is_annual",
",",
"'data_collections '",
"'analysis_period must be annual.'",
"assert",
"dc",
".",
"header",
".",
"analysis_period",
".",
"is_leap_year",
"==",
"epw_obj",
".",
"_is_leap_year",
",",
"'data_collections is_leap_year is not aligned with that of the EPW.'",
"# Set all of the header properties if they exist in the dictionary.",
"epw_obj",
".",
"_metadata",
"=",
"data",
"[",
"'metadata'",
"]",
"epw_obj",
".",
"heating_design_condition_dictionary",
"=",
"data",
"[",
"'heating_dict'",
"]",
"epw_obj",
".",
"cooling_design_condition_dictionary",
"=",
"data",
"[",
"'cooling_dict'",
"]",
"epw_obj",
".",
"extreme_design_condition_dictionary",
"=",
"data",
"[",
"'extremes_dict'",
"]",
"def",
"_dejson",
"(",
"parent_dict",
",",
"obj",
")",
":",
"new_dict",
"=",
"{",
"}",
"for",
"key",
",",
"val",
"in",
"parent_dict",
".",
"items",
"(",
")",
":",
"new_dict",
"[",
"key",
"]",
"=",
"obj",
".",
"from_json",
"(",
"val",
")",
"return",
"new_dict",
"epw_obj",
".",
"extreme_hot_weeks",
"=",
"_dejson",
"(",
"data",
"[",
"'extreme_hot_weeks'",
"]",
",",
"AnalysisPeriod",
")",
"epw_obj",
".",
"extreme_cold_weeks",
"=",
"_dejson",
"(",
"data",
"[",
"'extreme_cold_weeks'",
"]",
",",
"AnalysisPeriod",
")",
"epw_obj",
".",
"typical_weeks",
"=",
"_dejson",
"(",
"data",
"[",
"'typical_weeks'",
"]",
",",
"AnalysisPeriod",
")",
"epw_obj",
".",
"monthly_ground_temperature",
"=",
"_dejson",
"(",
"data",
"[",
"'monthly_ground_temps'",
"]",
",",
"MonthlyCollection",
")",
"if",
"'daylight_savings_start'",
"in",
"data",
":",
"epw_obj",
".",
"daylight_savings_start",
"=",
"data",
"[",
"'daylight_savings_start'",
"]",
"if",
"'daylight_savings_end'",
"in",
"data",
":",
"epw_obj",
".",
"daylight_savings_end",
"=",
"data",
"[",
"'daylight_savings_end'",
"]",
"if",
"'comments_1'",
"in",
"data",
":",
"epw_obj",
".",
"comments_1",
"=",
"data",
"[",
"'comments_1'",
"]",
"if",
"'comments_2'",
"in",
"data",
":",
"epw_obj",
".",
"comments_2",
"=",
"data",
"[",
"'comments_2'",
"]",
"return",
"epw_obj"
] | Create EPW from json dictionary.
Args:
data: {
"location": {} , // ladybug location schema
"data_collections": [], // list of hourly annual hourly data collection
schemas for each of the 35 fields within the EPW file.
"metadata": {}, // dict of metadata assigned to all data collections
"heating_dict": {}, // dict containing heating design conditions
"cooling_dict": {}, // dict containing cooling design conditions
"extremes_dict": {}, // dict containing extreme design conditions
"extreme_hot_weeks": {}, // dict with values of week-long ladybug
analysis period schemas signifying extreme hot weeks.
"extreme_cold_weeks": {}, // dict with values of week-long ladybug
analysis period schemas signifying extreme cold weeks.
"typical_weeks": {}, // dict with values of week-long ladybug
analysis period schemas signifying typical weeks.
"monthly_ground_temps": {}, // dict with keys as floats signifying
depths in meters below ground and values of monthly collection schema
"is_ip": Boolean // denote whether the data is in IP units
"is_leap_year": Boolean, // denote whether data is for a leap year
"daylight_savings_start": 0, // signify when daylight savings starts
or 0 for no daylight savings
"daylight_savings_end" 0, // signify when daylight savings ends
or 0 for no daylight savings
"comments_1": String, // epw comments
"comments_2": String // epw comments
} | [
"Create",
"EPW",
"from",
"json",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L181-L274 |
4,622 | ladybug-tools/ladybug | ladybug/epw.py | EPW.annual_cooling_design_day_010 | def annual_cooling_design_day_010(self):
"""A design day object representing the annual 1.0% cooling design day."""
self._load_header_check()
if bool(self._cooling_dict) is True:
avg_press = self.atmospheric_station_pressure.average
avg_press = None if avg_press == 999999 else avg_press
return DesignDay.from_ashrae_dict_cooling(
self._cooling_dict, self.location, True, avg_press)
else:
return None | python | def annual_cooling_design_day_010(self):
"""A design day object representing the annual 1.0% cooling design day."""
self._load_header_check()
if bool(self._cooling_dict) is True:
avg_press = self.atmospheric_station_pressure.average
avg_press = None if avg_press == 999999 else avg_press
return DesignDay.from_ashrae_dict_cooling(
self._cooling_dict, self.location, True, avg_press)
else:
return None | [
"def",
"annual_cooling_design_day_010",
"(",
"self",
")",
":",
"self",
".",
"_load_header_check",
"(",
")",
"if",
"bool",
"(",
"self",
".",
"_cooling_dict",
")",
"is",
"True",
":",
"avg_press",
"=",
"self",
".",
"atmospheric_station_pressure",
".",
"average",
"avg_press",
"=",
"None",
"if",
"avg_press",
"==",
"999999",
"else",
"avg_press",
"return",
"DesignDay",
".",
"from_ashrae_dict_cooling",
"(",
"self",
".",
"_cooling_dict",
",",
"self",
".",
"location",
",",
"True",
",",
"avg_press",
")",
"else",
":",
"return",
"None"
] | A design day object representing the annual 1.0% cooling design day. | [
"A",
"design",
"day",
"object",
"representing",
"the",
"annual",
"1",
".",
"0%",
"cooling",
"design",
"day",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L364-L373 |
4,623 | ladybug-tools/ladybug | ladybug/epw.py | EPW._des_dict_check | def _des_dict_check(self, des_dict, req_keys, cond_name):
"""Check if an input design condition dictionary is acceptable."""
assert isinstance(des_dict, dict), '{}' \
' must be a dictionary. Got {}.'.format(cond_name, type(des_dict))
if bool(des_dict) is True:
input_keys = list(des_dict.keys())
for key in req_keys:
assert key in input_keys, 'Required key "{}" was not found in ' \
'{}'.format(key, cond_name) | python | def _des_dict_check(self, des_dict, req_keys, cond_name):
"""Check if an input design condition dictionary is acceptable."""
assert isinstance(des_dict, dict), '{}' \
' must be a dictionary. Got {}.'.format(cond_name, type(des_dict))
if bool(des_dict) is True:
input_keys = list(des_dict.keys())
for key in req_keys:
assert key in input_keys, 'Required key "{}" was not found in ' \
'{}'.format(key, cond_name) | [
"def",
"_des_dict_check",
"(",
"self",
",",
"des_dict",
",",
"req_keys",
",",
"cond_name",
")",
":",
"assert",
"isinstance",
"(",
"des_dict",
",",
"dict",
")",
",",
"'{}'",
"' must be a dictionary. Got {}.'",
".",
"format",
"(",
"cond_name",
",",
"type",
"(",
"des_dict",
")",
")",
"if",
"bool",
"(",
"des_dict",
")",
"is",
"True",
":",
"input_keys",
"=",
"list",
"(",
"des_dict",
".",
"keys",
"(",
")",
")",
"for",
"key",
"in",
"req_keys",
":",
"assert",
"key",
"in",
"input_keys",
",",
"'Required key \"{}\" was not found in '",
"'{}'",
".",
"format",
"(",
"key",
",",
"cond_name",
")"
] | Check if an input design condition dictionary is acceptable. | [
"Check",
"if",
"an",
"input",
"design",
"condition",
"dictionary",
"is",
"acceptable",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L482-L490 |
4,624 | ladybug-tools/ladybug | ladybug/epw.py | EPW._format_week | def _format_week(self, name, type, a_per):
"""Format an AnalysisPeriod into string for the EPW header."""
return '{},{},{}/{},{}/{}'.format(name, type, a_per.st_month, a_per.st_day,
a_per.end_month, a_per.end_day) | python | def _format_week(self, name, type, a_per):
"""Format an AnalysisPeriod into string for the EPW header."""
return '{},{},{}/{},{}/{}'.format(name, type, a_per.st_month, a_per.st_day,
a_per.end_month, a_per.end_day) | [
"def",
"_format_week",
"(",
"self",
",",
"name",
",",
"type",
",",
"a_per",
")",
":",
"return",
"'{},{},{}/{},{}/{}'",
".",
"format",
"(",
"name",
",",
"type",
",",
"a_per",
".",
"st_month",
",",
"a_per",
".",
"st_day",
",",
"a_per",
".",
"end_month",
",",
"a_per",
".",
"end_day",
")"
] | Format an AnalysisPeriod into string for the EPW header. | [
"Format",
"an",
"AnalysisPeriod",
"into",
"string",
"for",
"the",
"EPW",
"header",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L709-L712 |
4,625 | ladybug-tools/ladybug | ladybug/epw.py | EPW._format_grndt | def _format_grndt(self, data_c):
"""Format monthly ground data collection into string for the EPW header."""
monthly_str = '{},{},{},{}'.format(
data_c.header.metadata['soil conductivity'],
data_c.header.metadata['soil density'],
data_c.header.metadata['soil specific heat'],
','.join(['%.2f' % x for x in data_c.values]))
return monthly_str | python | def _format_grndt(self, data_c):
"""Format monthly ground data collection into string for the EPW header."""
monthly_str = '{},{},{},{}'.format(
data_c.header.metadata['soil conductivity'],
data_c.header.metadata['soil density'],
data_c.header.metadata['soil specific heat'],
','.join(['%.2f' % x for x in data_c.values]))
return monthly_str | [
"def",
"_format_grndt",
"(",
"self",
",",
"data_c",
")",
":",
"monthly_str",
"=",
"'{},{},{},{}'",
".",
"format",
"(",
"data_c",
".",
"header",
".",
"metadata",
"[",
"'soil conductivity'",
"]",
",",
"data_c",
".",
"header",
".",
"metadata",
"[",
"'soil density'",
"]",
",",
"data_c",
".",
"header",
".",
"metadata",
"[",
"'soil specific heat'",
"]",
",",
"','",
".",
"join",
"(",
"[",
"'%.2f'",
"%",
"x",
"for",
"x",
"in",
"data_c",
".",
"values",
"]",
")",
")",
"return",
"monthly_str"
] | Format monthly ground data collection into string for the EPW header. | [
"Format",
"monthly",
"ground",
"data",
"collection",
"into",
"string",
"for",
"the",
"EPW",
"header",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L714-L721 |
4,626 | ladybug-tools/ladybug | ladybug/epw.py | EPW.save | def save(self, file_path):
"""Save epw object as an epw file.
args:
file_path: A string representing the path to write the epw file to.
"""
# load data if it's not loaded convert to SI if it is in IP
if not self.is_data_loaded:
self._import_data()
originally_ip = False
if self.is_ip is True:
self.convert_to_si()
originally_ip = True
# write the file
lines = self.header
try:
# if the first value is at 1AM, move first item to end position
for field in xrange(0, self._num_of_fields):
point_in_time = self._data[field].header.data_type.point_in_time
if point_in_time is True:
first_hour = self._data[field]._values.pop(0)
self._data[field]._values.append(first_hour)
annual_a_per = AnalysisPeriod(is_leap_year=self.is_leap_year)
for hour in xrange(0, len(annual_a_per.datetimes)):
line = []
for field in xrange(0, self._num_of_fields):
line.append(str(self._data[field]._values[hour]))
lines.append(",".join(line) + "\n")
except IndexError:
# cleaning up
length_error_msg = 'Data length is not for a full year and cannot be ' + \
'saved as an EPW file.'
raise ValueError(length_error_msg)
else:
file_data = ''.join(lines)
write_to_file(file_path, file_data, True)
finally:
del(lines)
# move last item to start position for fields on the hour
for field in xrange(0, self._num_of_fields):
point_in_time = self._data[field].header.data_type.point_in_time
if point_in_time is True:
last_hour = self._data[field]._values.pop()
self._data[field]._values.insert(0, last_hour)
if originally_ip is True:
self.convert_to_ip()
return file_path | python | def save(self, file_path):
"""Save epw object as an epw file.
args:
file_path: A string representing the path to write the epw file to.
"""
# load data if it's not loaded convert to SI if it is in IP
if not self.is_data_loaded:
self._import_data()
originally_ip = False
if self.is_ip is True:
self.convert_to_si()
originally_ip = True
# write the file
lines = self.header
try:
# if the first value is at 1AM, move first item to end position
for field in xrange(0, self._num_of_fields):
point_in_time = self._data[field].header.data_type.point_in_time
if point_in_time is True:
first_hour = self._data[field]._values.pop(0)
self._data[field]._values.append(first_hour)
annual_a_per = AnalysisPeriod(is_leap_year=self.is_leap_year)
for hour in xrange(0, len(annual_a_per.datetimes)):
line = []
for field in xrange(0, self._num_of_fields):
line.append(str(self._data[field]._values[hour]))
lines.append(",".join(line) + "\n")
except IndexError:
# cleaning up
length_error_msg = 'Data length is not for a full year and cannot be ' + \
'saved as an EPW file.'
raise ValueError(length_error_msg)
else:
file_data = ''.join(lines)
write_to_file(file_path, file_data, True)
finally:
del(lines)
# move last item to start position for fields on the hour
for field in xrange(0, self._num_of_fields):
point_in_time = self._data[field].header.data_type.point_in_time
if point_in_time is True:
last_hour = self._data[field]._values.pop()
self._data[field]._values.insert(0, last_hour)
if originally_ip is True:
self.convert_to_ip()
return file_path | [
"def",
"save",
"(",
"self",
",",
"file_path",
")",
":",
"# load data if it's not loaded convert to SI if it is in IP",
"if",
"not",
"self",
".",
"is_data_loaded",
":",
"self",
".",
"_import_data",
"(",
")",
"originally_ip",
"=",
"False",
"if",
"self",
".",
"is_ip",
"is",
"True",
":",
"self",
".",
"convert_to_si",
"(",
")",
"originally_ip",
"=",
"True",
"# write the file",
"lines",
"=",
"self",
".",
"header",
"try",
":",
"# if the first value is at 1AM, move first item to end position",
"for",
"field",
"in",
"xrange",
"(",
"0",
",",
"self",
".",
"_num_of_fields",
")",
":",
"point_in_time",
"=",
"self",
".",
"_data",
"[",
"field",
"]",
".",
"header",
".",
"data_type",
".",
"point_in_time",
"if",
"point_in_time",
"is",
"True",
":",
"first_hour",
"=",
"self",
".",
"_data",
"[",
"field",
"]",
".",
"_values",
".",
"pop",
"(",
"0",
")",
"self",
".",
"_data",
"[",
"field",
"]",
".",
"_values",
".",
"append",
"(",
"first_hour",
")",
"annual_a_per",
"=",
"AnalysisPeriod",
"(",
"is_leap_year",
"=",
"self",
".",
"is_leap_year",
")",
"for",
"hour",
"in",
"xrange",
"(",
"0",
",",
"len",
"(",
"annual_a_per",
".",
"datetimes",
")",
")",
":",
"line",
"=",
"[",
"]",
"for",
"field",
"in",
"xrange",
"(",
"0",
",",
"self",
".",
"_num_of_fields",
")",
":",
"line",
".",
"append",
"(",
"str",
"(",
"self",
".",
"_data",
"[",
"field",
"]",
".",
"_values",
"[",
"hour",
"]",
")",
")",
"lines",
".",
"append",
"(",
"\",\"",
".",
"join",
"(",
"line",
")",
"+",
"\"\\n\"",
")",
"except",
"IndexError",
":",
"# cleaning up",
"length_error_msg",
"=",
"'Data length is not for a full year and cannot be '",
"+",
"'saved as an EPW file.'",
"raise",
"ValueError",
"(",
"length_error_msg",
")",
"else",
":",
"file_data",
"=",
"''",
".",
"join",
"(",
"lines",
")",
"write_to_file",
"(",
"file_path",
",",
"file_data",
",",
"True",
")",
"finally",
":",
"del",
"(",
"lines",
")",
"# move last item to start position for fields on the hour",
"for",
"field",
"in",
"xrange",
"(",
"0",
",",
"self",
".",
"_num_of_fields",
")",
":",
"point_in_time",
"=",
"self",
".",
"_data",
"[",
"field",
"]",
".",
"header",
".",
"data_type",
".",
"point_in_time",
"if",
"point_in_time",
"is",
"True",
":",
"last_hour",
"=",
"self",
".",
"_data",
"[",
"field",
"]",
".",
"_values",
".",
"pop",
"(",
")",
"self",
".",
"_data",
"[",
"field",
"]",
".",
"_values",
".",
"insert",
"(",
"0",
",",
"last_hour",
")",
"if",
"originally_ip",
"is",
"True",
":",
"self",
".",
"convert_to_ip",
"(",
")",
"return",
"file_path"
] | Save epw object as an epw file.
args:
file_path: A string representing the path to write the epw file to. | [
"Save",
"epw",
"object",
"as",
"an",
"epw",
"file",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L723-L773 |
4,627 | ladybug-tools/ladybug | ladybug/epw.py | EPW.convert_to_ip | def convert_to_ip(self):
"""Convert all Data Collections of this EPW object to IP units.
This is useful when one knows that all graphics produced from this
EPW should be in Imperial units."""
if not self.is_data_loaded:
self._import_data()
if self.is_ip is False:
for coll in self._data:
coll.convert_to_ip()
self._is_ip = True | python | def convert_to_ip(self):
"""Convert all Data Collections of this EPW object to IP units.
This is useful when one knows that all graphics produced from this
EPW should be in Imperial units."""
if not self.is_data_loaded:
self._import_data()
if self.is_ip is False:
for coll in self._data:
coll.convert_to_ip()
self._is_ip = True | [
"def",
"convert_to_ip",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"is_data_loaded",
":",
"self",
".",
"_import_data",
"(",
")",
"if",
"self",
".",
"is_ip",
"is",
"False",
":",
"for",
"coll",
"in",
"self",
".",
"_data",
":",
"coll",
".",
"convert_to_ip",
"(",
")",
"self",
".",
"_is_ip",
"=",
"True"
] | Convert all Data Collections of this EPW object to IP units.
This is useful when one knows that all graphics produced from this
EPW should be in Imperial units. | [
"Convert",
"all",
"Data",
"Collections",
"of",
"this",
"EPW",
"object",
"to",
"IP",
"units",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L775-L785 |
4,628 | ladybug-tools/ladybug | ladybug/epw.py | EPW._get_data_by_field | def _get_data_by_field(self, field_number):
"""Return a data field by field number.
This is a useful method to get the values for fields that Ladybug
currently doesn't import by default. You can find list of fields by typing
EPWFields.fields
Args:
field_number: a value between 0 to 34 for different available epw fields.
Returns:
An annual Ladybug list
"""
if not self.is_data_loaded:
self._import_data()
# check input data
if not 0 <= field_number < self._num_of_fields:
raise ValueError("Field number should be between 0-%d" % self._num_of_fields)
return self._data[field_number] | python | def _get_data_by_field(self, field_number):
"""Return a data field by field number.
This is a useful method to get the values for fields that Ladybug
currently doesn't import by default. You can find list of fields by typing
EPWFields.fields
Args:
field_number: a value between 0 to 34 for different available epw fields.
Returns:
An annual Ladybug list
"""
if not self.is_data_loaded:
self._import_data()
# check input data
if not 0 <= field_number < self._num_of_fields:
raise ValueError("Field number should be between 0-%d" % self._num_of_fields)
return self._data[field_number] | [
"def",
"_get_data_by_field",
"(",
"self",
",",
"field_number",
")",
":",
"if",
"not",
"self",
".",
"is_data_loaded",
":",
"self",
".",
"_import_data",
"(",
")",
"# check input data",
"if",
"not",
"0",
"<=",
"field_number",
"<",
"self",
".",
"_num_of_fields",
":",
"raise",
"ValueError",
"(",
"\"Field number should be between 0-%d\"",
"%",
"self",
".",
"_num_of_fields",
")",
"return",
"self",
".",
"_data",
"[",
"field_number",
"]"
] | Return a data field by field number.
This is a useful method to get the values for fields that Ladybug
currently doesn't import by default. You can find list of fields by typing
EPWFields.fields
Args:
field_number: a value between 0 to 34 for different available epw fields.
Returns:
An annual Ladybug list | [
"Return",
"a",
"data",
"field",
"by",
"field",
"number",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L800-L820 |
4,629 | ladybug-tools/ladybug | ladybug/epw.py | EPW.sky_temperature | def sky_temperature(self):
"""Return annual Sky Temperature as a Ladybug Data Collection.
This value in degrees Celcius is derived from the Horizontal Infrared
Radiation Intensity in Wh/m2. It represents the long wave radiant
temperature of the sky
Read more at: https://bigladdersoftware.com/epx/docs/8-9/engineering-reference
/climate-calculations.html#energyplus-sky-temperature-calculation
"""
# create sky temperature header
sky_temp_header = Header(data_type=temperature.SkyTemperature(), unit='C',
analysis_period=AnalysisPeriod(),
metadata=self._metadata)
# calculate sy temperature for each hour
horiz_ir = self._get_data_by_field(12).values
sky_temp_data = [calc_sky_temperature(hir) for hir in horiz_ir]
return HourlyContinuousCollection(sky_temp_header, sky_temp_data) | python | def sky_temperature(self):
"""Return annual Sky Temperature as a Ladybug Data Collection.
This value in degrees Celcius is derived from the Horizontal Infrared
Radiation Intensity in Wh/m2. It represents the long wave radiant
temperature of the sky
Read more at: https://bigladdersoftware.com/epx/docs/8-9/engineering-reference
/climate-calculations.html#energyplus-sky-temperature-calculation
"""
# create sky temperature header
sky_temp_header = Header(data_type=temperature.SkyTemperature(), unit='C',
analysis_period=AnalysisPeriod(),
metadata=self._metadata)
# calculate sy temperature for each hour
horiz_ir = self._get_data_by_field(12).values
sky_temp_data = [calc_sky_temperature(hir) for hir in horiz_ir]
return HourlyContinuousCollection(sky_temp_header, sky_temp_data) | [
"def",
"sky_temperature",
"(",
"self",
")",
":",
"# create sky temperature header",
"sky_temp_header",
"=",
"Header",
"(",
"data_type",
"=",
"temperature",
".",
"SkyTemperature",
"(",
")",
",",
"unit",
"=",
"'C'",
",",
"analysis_period",
"=",
"AnalysisPeriod",
"(",
")",
",",
"metadata",
"=",
"self",
".",
"_metadata",
")",
"# calculate sy temperature for each hour",
"horiz_ir",
"=",
"self",
".",
"_get_data_by_field",
"(",
"12",
")",
".",
"values",
"sky_temp_data",
"=",
"[",
"calc_sky_temperature",
"(",
"hir",
")",
"for",
"hir",
"in",
"horiz_ir",
"]",
"return",
"HourlyContinuousCollection",
"(",
"sky_temp_header",
",",
"sky_temp_data",
")"
] | Return annual Sky Temperature as a Ladybug Data Collection.
This value in degrees Celcius is derived from the Horizontal Infrared
Radiation Intensity in Wh/m2. It represents the long wave radiant
temperature of the sky
Read more at: https://bigladdersoftware.com/epx/docs/8-9/engineering-reference
/climate-calculations.html#energyplus-sky-temperature-calculation | [
"Return",
"annual",
"Sky",
"Temperature",
"as",
"a",
"Ladybug",
"Data",
"Collection",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L1275-L1292 |
4,630 | ladybug-tools/ladybug | ladybug/epw.py | EPW.to_wea | def to_wea(self, file_path, hoys=None):
"""Write an wea file from the epw file.
WEA carries radiation values from epw. Gendaymtx uses these values to
generate the sky. For an annual analysis it is identical to using epw2wea.
args:
file_path: Full file path for output file.
hoys: List of hours of the year. Default is 0-8759.
"""
hoys = hoys or xrange(len(self.direct_normal_radiation.datetimes))
if not file_path.lower().endswith('.wea'):
file_path += '.wea'
originally_ip = False
if self.is_ip is True:
self.convert_to_si()
originally_ip = True
# write header
lines = [self._get_wea_header()]
# write values
datetimes = self.direct_normal_radiation.datetimes
for hoy in hoys:
dir_rad = self.direct_normal_radiation[hoy]
dif_rad = self.diffuse_horizontal_radiation[hoy]
line = "%d %d %.3f %d %d\n" \
% (datetimes[hoy].month,
datetimes[hoy].day,
datetimes[hoy].hour + 0.5,
dir_rad, dif_rad)
lines.append(line)
file_data = ''.join(lines)
write_to_file(file_path, file_data, True)
if originally_ip is True:
self.convert_to_ip()
return file_path | python | def to_wea(self, file_path, hoys=None):
"""Write an wea file from the epw file.
WEA carries radiation values from epw. Gendaymtx uses these values to
generate the sky. For an annual analysis it is identical to using epw2wea.
args:
file_path: Full file path for output file.
hoys: List of hours of the year. Default is 0-8759.
"""
hoys = hoys or xrange(len(self.direct_normal_radiation.datetimes))
if not file_path.lower().endswith('.wea'):
file_path += '.wea'
originally_ip = False
if self.is_ip is True:
self.convert_to_si()
originally_ip = True
# write header
lines = [self._get_wea_header()]
# write values
datetimes = self.direct_normal_radiation.datetimes
for hoy in hoys:
dir_rad = self.direct_normal_radiation[hoy]
dif_rad = self.diffuse_horizontal_radiation[hoy]
line = "%d %d %.3f %d %d\n" \
% (datetimes[hoy].month,
datetimes[hoy].day,
datetimes[hoy].hour + 0.5,
dir_rad, dif_rad)
lines.append(line)
file_data = ''.join(lines)
write_to_file(file_path, file_data, True)
if originally_ip is True:
self.convert_to_ip()
return file_path | [
"def",
"to_wea",
"(",
"self",
",",
"file_path",
",",
"hoys",
"=",
"None",
")",
":",
"hoys",
"=",
"hoys",
"or",
"xrange",
"(",
"len",
"(",
"self",
".",
"direct_normal_radiation",
".",
"datetimes",
")",
")",
"if",
"not",
"file_path",
".",
"lower",
"(",
")",
".",
"endswith",
"(",
"'.wea'",
")",
":",
"file_path",
"+=",
"'.wea'",
"originally_ip",
"=",
"False",
"if",
"self",
".",
"is_ip",
"is",
"True",
":",
"self",
".",
"convert_to_si",
"(",
")",
"originally_ip",
"=",
"True",
"# write header",
"lines",
"=",
"[",
"self",
".",
"_get_wea_header",
"(",
")",
"]",
"# write values",
"datetimes",
"=",
"self",
".",
"direct_normal_radiation",
".",
"datetimes",
"for",
"hoy",
"in",
"hoys",
":",
"dir_rad",
"=",
"self",
".",
"direct_normal_radiation",
"[",
"hoy",
"]",
"dif_rad",
"=",
"self",
".",
"diffuse_horizontal_radiation",
"[",
"hoy",
"]",
"line",
"=",
"\"%d %d %.3f %d %d\\n\"",
"%",
"(",
"datetimes",
"[",
"hoy",
"]",
".",
"month",
",",
"datetimes",
"[",
"hoy",
"]",
".",
"day",
",",
"datetimes",
"[",
"hoy",
"]",
".",
"hour",
"+",
"0.5",
",",
"dir_rad",
",",
"dif_rad",
")",
"lines",
".",
"append",
"(",
"line",
")",
"file_data",
"=",
"''",
".",
"join",
"(",
"lines",
")",
"write_to_file",
"(",
"file_path",
",",
"file_data",
",",
"True",
")",
"if",
"originally_ip",
"is",
"True",
":",
"self",
".",
"convert_to_ip",
"(",
")",
"return",
"file_path"
] | Write an wea file from the epw file.
WEA carries radiation values from epw. Gendaymtx uses these values to
generate the sky. For an annual analysis it is identical to using epw2wea.
args:
file_path: Full file path for output file.
hoys: List of hours of the year. Default is 0-8759. | [
"Write",
"an",
"wea",
"file",
"from",
"the",
"epw",
"file",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L1302-L1341 |
4,631 | ladybug-tools/ladybug | ladybug/epw.py | EPW.to_json | def to_json(self):
"""Convert the EPW to a dictionary."""
# load data if it's not loaded
if not self.is_data_loaded:
self._import_data()
def jsonify_dict(base_dict):
new_dict = {}
for key, val in base_dict.items():
new_dict[key] = val.to_json()
return new_dict
hot_wks = jsonify_dict(self.extreme_hot_weeks)
cold_wks = jsonify_dict(self.extreme_cold_weeks)
typ_wks = jsonify_dict(self.typical_weeks)
grnd_temps = jsonify_dict(self.monthly_ground_temperature)
return {
'location': self.location.to_json(),
'data_collections': [dc.to_json() for dc in self._data],
'metadata': self.metadata,
'heating_dict': self.heating_design_condition_dictionary,
'cooling_dict': self.cooling_design_condition_dictionary,
'extremes_dict': self.extreme_design_condition_dictionary,
'extreme_hot_weeks': hot_wks,
'extreme_cold_weeks': cold_wks,
'typical_weeks': typ_wks,
"monthly_ground_temps": grnd_temps,
"is_ip": self._is_ip,
"is_leap_year": self.is_leap_year,
"daylight_savings_start": self.daylight_savings_start,
"daylight_savings_end": self.daylight_savings_end,
"comments_1": self.comments_1,
"comments_2": self.comments_2
} | python | def to_json(self):
"""Convert the EPW to a dictionary."""
# load data if it's not loaded
if not self.is_data_loaded:
self._import_data()
def jsonify_dict(base_dict):
new_dict = {}
for key, val in base_dict.items():
new_dict[key] = val.to_json()
return new_dict
hot_wks = jsonify_dict(self.extreme_hot_weeks)
cold_wks = jsonify_dict(self.extreme_cold_weeks)
typ_wks = jsonify_dict(self.typical_weeks)
grnd_temps = jsonify_dict(self.monthly_ground_temperature)
return {
'location': self.location.to_json(),
'data_collections': [dc.to_json() for dc in self._data],
'metadata': self.metadata,
'heating_dict': self.heating_design_condition_dictionary,
'cooling_dict': self.cooling_design_condition_dictionary,
'extremes_dict': self.extreme_design_condition_dictionary,
'extreme_hot_weeks': hot_wks,
'extreme_cold_weeks': cold_wks,
'typical_weeks': typ_wks,
"monthly_ground_temps": grnd_temps,
"is_ip": self._is_ip,
"is_leap_year": self.is_leap_year,
"daylight_savings_start": self.daylight_savings_start,
"daylight_savings_end": self.daylight_savings_end,
"comments_1": self.comments_1,
"comments_2": self.comments_2
} | [
"def",
"to_json",
"(",
"self",
")",
":",
"# load data if it's not loaded",
"if",
"not",
"self",
".",
"is_data_loaded",
":",
"self",
".",
"_import_data",
"(",
")",
"def",
"jsonify_dict",
"(",
"base_dict",
")",
":",
"new_dict",
"=",
"{",
"}",
"for",
"key",
",",
"val",
"in",
"base_dict",
".",
"items",
"(",
")",
":",
"new_dict",
"[",
"key",
"]",
"=",
"val",
".",
"to_json",
"(",
")",
"return",
"new_dict",
"hot_wks",
"=",
"jsonify_dict",
"(",
"self",
".",
"extreme_hot_weeks",
")",
"cold_wks",
"=",
"jsonify_dict",
"(",
"self",
".",
"extreme_cold_weeks",
")",
"typ_wks",
"=",
"jsonify_dict",
"(",
"self",
".",
"typical_weeks",
")",
"grnd_temps",
"=",
"jsonify_dict",
"(",
"self",
".",
"monthly_ground_temperature",
")",
"return",
"{",
"'location'",
":",
"self",
".",
"location",
".",
"to_json",
"(",
")",
",",
"'data_collections'",
":",
"[",
"dc",
".",
"to_json",
"(",
")",
"for",
"dc",
"in",
"self",
".",
"_data",
"]",
",",
"'metadata'",
":",
"self",
".",
"metadata",
",",
"'heating_dict'",
":",
"self",
".",
"heating_design_condition_dictionary",
",",
"'cooling_dict'",
":",
"self",
".",
"cooling_design_condition_dictionary",
",",
"'extremes_dict'",
":",
"self",
".",
"extreme_design_condition_dictionary",
",",
"'extreme_hot_weeks'",
":",
"hot_wks",
",",
"'extreme_cold_weeks'",
":",
"cold_wks",
",",
"'typical_weeks'",
":",
"typ_wks",
",",
"\"monthly_ground_temps\"",
":",
"grnd_temps",
",",
"\"is_ip\"",
":",
"self",
".",
"_is_ip",
",",
"\"is_leap_year\"",
":",
"self",
".",
"is_leap_year",
",",
"\"daylight_savings_start\"",
":",
"self",
".",
"daylight_savings_start",
",",
"\"daylight_savings_end\"",
":",
"self",
".",
"daylight_savings_end",
",",
"\"comments_1\"",
":",
"self",
".",
"comments_1",
",",
"\"comments_2\"",
":",
"self",
".",
"comments_2",
"}"
] | Convert the EPW to a dictionary. | [
"Convert",
"the",
"EPW",
"to",
"a",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/epw.py#L1343-L1375 |
4,632 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.from_analysis_period | def from_analysis_period(cls, analysis_period=None):
"""Create and AnalysisPeriod from an analysis period.
This method is useful to be called from inside Grasshopper or Dynamo
"""
if not analysis_period:
return cls()
elif hasattr(analysis_period, 'isAnalysisPeriod'):
return analysis_period
elif isinstance(analysis_period, str):
try:
return cls.from_string(analysis_period)
except Exception as e:
raise ValueError(
"{} is not convertable to an AnalysisPeriod: {}".format(
analysis_period, e)
) | python | def from_analysis_period(cls, analysis_period=None):
"""Create and AnalysisPeriod from an analysis period.
This method is useful to be called from inside Grasshopper or Dynamo
"""
if not analysis_period:
return cls()
elif hasattr(analysis_period, 'isAnalysisPeriod'):
return analysis_period
elif isinstance(analysis_period, str):
try:
return cls.from_string(analysis_period)
except Exception as e:
raise ValueError(
"{} is not convertable to an AnalysisPeriod: {}".format(
analysis_period, e)
) | [
"def",
"from_analysis_period",
"(",
"cls",
",",
"analysis_period",
"=",
"None",
")",
":",
"if",
"not",
"analysis_period",
":",
"return",
"cls",
"(",
")",
"elif",
"hasattr",
"(",
"analysis_period",
",",
"'isAnalysisPeriod'",
")",
":",
"return",
"analysis_period",
"elif",
"isinstance",
"(",
"analysis_period",
",",
"str",
")",
":",
"try",
":",
"return",
"cls",
".",
"from_string",
"(",
"analysis_period",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"ValueError",
"(",
"\"{} is not convertable to an AnalysisPeriod: {}\"",
".",
"format",
"(",
"analysis_period",
",",
"e",
")",
")"
] | Create and AnalysisPeriod from an analysis period.
This method is useful to be called from inside Grasshopper or Dynamo | [
"Create",
"and",
"AnalysisPeriod",
"from",
"an",
"analysis",
"period",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L161-L177 |
4,633 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.from_string | def from_string(cls, analysis_period_string):
"""Create an Analysis Period object from an analysis period string.
%s/%s to %s/%s between %s and %s @%s
"""
# %s/%s to %s/%s between %s to %s @%s*
is_leap_year = True if analysis_period_string.strip()[-1] == '*' else False
ap = analysis_period_string.lower().replace(' ', '') \
.replace('to', ' ') \
.replace('and', ' ') \
.replace('/', ' ') \
.replace('between', ' ') \
.replace('@', ' ') \
.replace('*', '')
try:
st_month, st_day, end_month, end_day, \
st_hour, end_hour, timestep = ap.split(' ')
return cls(st_month, st_day, st_hour, end_month,
end_day, end_hour, int(timestep), is_leap_year)
except Exception as e:
raise ValueError(str(e)) | python | def from_string(cls, analysis_period_string):
"""Create an Analysis Period object from an analysis period string.
%s/%s to %s/%s between %s and %s @%s
"""
# %s/%s to %s/%s between %s to %s @%s*
is_leap_year = True if analysis_period_string.strip()[-1] == '*' else False
ap = analysis_period_string.lower().replace(' ', '') \
.replace('to', ' ') \
.replace('and', ' ') \
.replace('/', ' ') \
.replace('between', ' ') \
.replace('@', ' ') \
.replace('*', '')
try:
st_month, st_day, end_month, end_day, \
st_hour, end_hour, timestep = ap.split(' ')
return cls(st_month, st_day, st_hour, end_month,
end_day, end_hour, int(timestep), is_leap_year)
except Exception as e:
raise ValueError(str(e)) | [
"def",
"from_string",
"(",
"cls",
",",
"analysis_period_string",
")",
":",
"# %s/%s to %s/%s between %s to %s @%s*",
"is_leap_year",
"=",
"True",
"if",
"analysis_period_string",
".",
"strip",
"(",
")",
"[",
"-",
"1",
"]",
"==",
"'*'",
"else",
"False",
"ap",
"=",
"analysis_period_string",
".",
"lower",
"(",
")",
".",
"replace",
"(",
"' '",
",",
"''",
")",
".",
"replace",
"(",
"'to'",
",",
"' '",
")",
".",
"replace",
"(",
"'and'",
",",
"' '",
")",
".",
"replace",
"(",
"'/'",
",",
"' '",
")",
".",
"replace",
"(",
"'between'",
",",
"' '",
")",
".",
"replace",
"(",
"'@'",
",",
"' '",
")",
".",
"replace",
"(",
"'*'",
",",
"''",
")",
"try",
":",
"st_month",
",",
"st_day",
",",
"end_month",
",",
"end_day",
",",
"st_hour",
",",
"end_hour",
",",
"timestep",
"=",
"ap",
".",
"split",
"(",
"' '",
")",
"return",
"cls",
"(",
"st_month",
",",
"st_day",
",",
"st_hour",
",",
"end_month",
",",
"end_day",
",",
"end_hour",
",",
"int",
"(",
"timestep",
")",
",",
"is_leap_year",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"ValueError",
"(",
"str",
"(",
"e",
")",
")"
] | Create an Analysis Period object from an analysis period string.
%s/%s to %s/%s between %s and %s @%s | [
"Create",
"an",
"Analysis",
"Period",
"object",
"from",
"an",
"analysis",
"period",
"string",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L180-L200 |
4,634 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.datetimes | def datetimes(self):
"""A sorted list of datetimes in this analysis period."""
if self._timestamps_data is None:
self._calculate_timestamps()
return tuple(DateTime.from_moy(moy, self.is_leap_year)
for moy in self._timestamps_data) | python | def datetimes(self):
"""A sorted list of datetimes in this analysis period."""
if self._timestamps_data is None:
self._calculate_timestamps()
return tuple(DateTime.from_moy(moy, self.is_leap_year)
for moy in self._timestamps_data) | [
"def",
"datetimes",
"(",
"self",
")",
":",
"if",
"self",
".",
"_timestamps_data",
"is",
"None",
":",
"self",
".",
"_calculate_timestamps",
"(",
")",
"return",
"tuple",
"(",
"DateTime",
".",
"from_moy",
"(",
"moy",
",",
"self",
".",
"is_leap_year",
")",
"for",
"moy",
"in",
"self",
".",
"_timestamps_data",
")"
] | A sorted list of datetimes in this analysis period. | [
"A",
"sorted",
"list",
"of",
"datetimes",
"in",
"this",
"analysis",
"period",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L258-L263 |
4,635 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.hoys | def hoys(self):
"""A sorted list of hours of year in this analysis period."""
if self._timestamps_data is None:
self._calculate_timestamps()
return tuple(moy / 60.0 for moy in self._timestamps_data) | python | def hoys(self):
"""A sorted list of hours of year in this analysis period."""
if self._timestamps_data is None:
self._calculate_timestamps()
return tuple(moy / 60.0 for moy in self._timestamps_data) | [
"def",
"hoys",
"(",
"self",
")",
":",
"if",
"self",
".",
"_timestamps_data",
"is",
"None",
":",
"self",
".",
"_calculate_timestamps",
"(",
")",
"return",
"tuple",
"(",
"moy",
"/",
"60.0",
"for",
"moy",
"in",
"self",
".",
"_timestamps_data",
")"
] | A sorted list of hours of year in this analysis period. | [
"A",
"sorted",
"list",
"of",
"hours",
"of",
"year",
"in",
"this",
"analysis",
"period",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L273-L277 |
4,636 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.hoys_int | def hoys_int(self):
"""A sorted list of hours of year in this analysis period as integers."""
if self._timestamps_data is None:
self._calculate_timestamps()
return tuple(int(moy / 60.0) for moy in self._timestamps_data) | python | def hoys_int(self):
"""A sorted list of hours of year in this analysis period as integers."""
if self._timestamps_data is None:
self._calculate_timestamps()
return tuple(int(moy / 60.0) for moy in self._timestamps_data) | [
"def",
"hoys_int",
"(",
"self",
")",
":",
"if",
"self",
".",
"_timestamps_data",
"is",
"None",
":",
"self",
".",
"_calculate_timestamps",
"(",
")",
"return",
"tuple",
"(",
"int",
"(",
"moy",
"/",
"60.0",
")",
"for",
"moy",
"in",
"self",
".",
"_timestamps_data",
")"
] | A sorted list of hours of year in this analysis period as integers. | [
"A",
"sorted",
"list",
"of",
"hours",
"of",
"year",
"in",
"this",
"analysis",
"period",
"as",
"integers",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L280-L284 |
4,637 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.doys_int | def doys_int(self):
"""A sorted list of days of the year in this analysis period as integers."""
if not self._is_reversed:
return self._calc_daystamps(self.st_time, self.end_time)
else:
doys_st = self._calc_daystamps(self.st_time, DateTime.from_hoy(8759))
doys_end = self._calc_daystamps(DateTime.from_hoy(0), self.end_time)
return doys_st + doys_end | python | def doys_int(self):
"""A sorted list of days of the year in this analysis period as integers."""
if not self._is_reversed:
return self._calc_daystamps(self.st_time, self.end_time)
else:
doys_st = self._calc_daystamps(self.st_time, DateTime.from_hoy(8759))
doys_end = self._calc_daystamps(DateTime.from_hoy(0), self.end_time)
return doys_st + doys_end | [
"def",
"doys_int",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"_is_reversed",
":",
"return",
"self",
".",
"_calc_daystamps",
"(",
"self",
".",
"st_time",
",",
"self",
".",
"end_time",
")",
"else",
":",
"doys_st",
"=",
"self",
".",
"_calc_daystamps",
"(",
"self",
".",
"st_time",
",",
"DateTime",
".",
"from_hoy",
"(",
"8759",
")",
")",
"doys_end",
"=",
"self",
".",
"_calc_daystamps",
"(",
"DateTime",
".",
"from_hoy",
"(",
"0",
")",
",",
"self",
".",
"end_time",
")",
"return",
"doys_st",
"+",
"doys_end"
] | A sorted list of days of the year in this analysis period as integers. | [
"A",
"sorted",
"list",
"of",
"days",
"of",
"the",
"year",
"in",
"this",
"analysis",
"period",
"as",
"integers",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L287-L294 |
4,638 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.months_int | def months_int(self):
"""A sorted list of months of the year in this analysis period as integers."""
if not self._is_reversed:
return list(xrange(self.st_time.month, self.end_time.month + 1))
else:
months_st = list(xrange(self.st_time.month, 13))
months_end = list(xrange(1, self.end_time.month + 1))
return months_st + months_end | python | def months_int(self):
"""A sorted list of months of the year in this analysis period as integers."""
if not self._is_reversed:
return list(xrange(self.st_time.month, self.end_time.month + 1))
else:
months_st = list(xrange(self.st_time.month, 13))
months_end = list(xrange(1, self.end_time.month + 1))
return months_st + months_end | [
"def",
"months_int",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"_is_reversed",
":",
"return",
"list",
"(",
"xrange",
"(",
"self",
".",
"st_time",
".",
"month",
",",
"self",
".",
"end_time",
".",
"month",
"+",
"1",
")",
")",
"else",
":",
"months_st",
"=",
"list",
"(",
"xrange",
"(",
"self",
".",
"st_time",
".",
"month",
",",
"13",
")",
")",
"months_end",
"=",
"list",
"(",
"xrange",
"(",
"1",
",",
"self",
".",
"end_time",
".",
"month",
"+",
"1",
")",
")",
"return",
"months_st",
"+",
"months_end"
] | A sorted list of months of the year in this analysis period as integers. | [
"A",
"sorted",
"list",
"of",
"months",
"of",
"the",
"year",
"in",
"this",
"analysis",
"period",
"as",
"integers",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L297-L304 |
4,639 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.months_per_hour | def months_per_hour(self):
"""A list of tuples representing months per hour in this analysis period."""
month_hour = []
hour_range = xrange(self.st_hour, self.end_hour + 1)
for month in self.months_int:
month_hour.extend([(month, hr) for hr in hour_range])
return month_hour | python | def months_per_hour(self):
"""A list of tuples representing months per hour in this analysis period."""
month_hour = []
hour_range = xrange(self.st_hour, self.end_hour + 1)
for month in self.months_int:
month_hour.extend([(month, hr) for hr in hour_range])
return month_hour | [
"def",
"months_per_hour",
"(",
"self",
")",
":",
"month_hour",
"=",
"[",
"]",
"hour_range",
"=",
"xrange",
"(",
"self",
".",
"st_hour",
",",
"self",
".",
"end_hour",
"+",
"1",
")",
"for",
"month",
"in",
"self",
".",
"months_int",
":",
"month_hour",
".",
"extend",
"(",
"[",
"(",
"month",
",",
"hr",
")",
"for",
"hr",
"in",
"hour_range",
"]",
")",
"return",
"month_hour"
] | A list of tuples representing months per hour in this analysis period. | [
"A",
"list",
"of",
"tuples",
"representing",
"months",
"per",
"hour",
"in",
"this",
"analysis",
"period",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L307-L313 |
4,640 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.is_annual | def is_annual(self):
"""Check if an analysis period is annual."""
if (self.st_month, self.st_day, self.st_hour, self.end_month,
self.end_day, self.end_hour) == (1, 1, 0, 12, 31, 23):
return True
else:
return False | python | def is_annual(self):
"""Check if an analysis period is annual."""
if (self.st_month, self.st_day, self.st_hour, self.end_month,
self.end_day, self.end_hour) == (1, 1, 0, 12, 31, 23):
return True
else:
return False | [
"def",
"is_annual",
"(",
"self",
")",
":",
"if",
"(",
"self",
".",
"st_month",
",",
"self",
".",
"st_day",
",",
"self",
".",
"st_hour",
",",
"self",
".",
"end_month",
",",
"self",
".",
"end_day",
",",
"self",
".",
"end_hour",
")",
"==",
"(",
"1",
",",
"1",
",",
"0",
",",
"12",
",",
"31",
",",
"23",
")",
":",
"return",
"True",
"else",
":",
"return",
"False"
] | Check if an analysis period is annual. | [
"Check",
"if",
"an",
"analysis",
"period",
"is",
"annual",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L321-L327 |
4,641 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.is_possible_hour | def is_possible_hour(self, hour):
"""Check if a float hour is a possible hour for this analysis period."""
if hour > 23 and self.is_possible_hour(0):
hour = int(hour)
if not self._is_overnight:
return self.st_time.hour <= hour <= self.end_time.hour
else:
return self.st_time.hour <= hour <= 23 or \
0 <= hour <= self.end_time.hour | python | def is_possible_hour(self, hour):
"""Check if a float hour is a possible hour for this analysis period."""
if hour > 23 and self.is_possible_hour(0):
hour = int(hour)
if not self._is_overnight:
return self.st_time.hour <= hour <= self.end_time.hour
else:
return self.st_time.hour <= hour <= 23 or \
0 <= hour <= self.end_time.hour | [
"def",
"is_possible_hour",
"(",
"self",
",",
"hour",
")",
":",
"if",
"hour",
">",
"23",
"and",
"self",
".",
"is_possible_hour",
"(",
"0",
")",
":",
"hour",
"=",
"int",
"(",
"hour",
")",
"if",
"not",
"self",
".",
"_is_overnight",
":",
"return",
"self",
".",
"st_time",
".",
"hour",
"<=",
"hour",
"<=",
"self",
".",
"end_time",
".",
"hour",
"else",
":",
"return",
"self",
".",
"st_time",
".",
"hour",
"<=",
"hour",
"<=",
"23",
"or",
"0",
"<=",
"hour",
"<=",
"self",
".",
"end_time",
".",
"hour"
] | Check if a float hour is a possible hour for this analysis period. | [
"Check",
"if",
"a",
"float",
"hour",
"is",
"a",
"possible",
"hour",
"for",
"this",
"analysis",
"period",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L347-L355 |
4,642 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.is_time_included | def is_time_included(self, time):
"""Check if time is included in analysis period.
Return True if time is inside this analysis period,
otherwise return False
Args:
time: A DateTime to be tested
Returns:
A boolean. True if time is included in analysis period
"""
if self._timestamps_data is None:
self._calculate_timestamps()
# time filtering in Ladybug Tools is slightly different than "normal"
# filtering since start hour and end hour will be applied for every day.
# For instance 2/20 9am to 2/22 5pm means hour between 9-17
# during 20, 21 and 22 of Feb.
return time.moy in self._timestamps_data | python | def is_time_included(self, time):
"""Check if time is included in analysis period.
Return True if time is inside this analysis period,
otherwise return False
Args:
time: A DateTime to be tested
Returns:
A boolean. True if time is included in analysis period
"""
if self._timestamps_data is None:
self._calculate_timestamps()
# time filtering in Ladybug Tools is slightly different than "normal"
# filtering since start hour and end hour will be applied for every day.
# For instance 2/20 9am to 2/22 5pm means hour between 9-17
# during 20, 21 and 22 of Feb.
return time.moy in self._timestamps_data | [
"def",
"is_time_included",
"(",
"self",
",",
"time",
")",
":",
"if",
"self",
".",
"_timestamps_data",
"is",
"None",
":",
"self",
".",
"_calculate_timestamps",
"(",
")",
"# time filtering in Ladybug Tools is slightly different than \"normal\"",
"# filtering since start hour and end hour will be applied for every day.",
"# For instance 2/20 9am to 2/22 5pm means hour between 9-17",
"# during 20, 21 and 22 of Feb.",
"return",
"time",
".",
"moy",
"in",
"self",
".",
"_timestamps_data"
] | Check if time is included in analysis period.
Return True if time is inside this analysis period,
otherwise return False
Args:
time: A DateTime to be tested
Returns:
A boolean. True if time is included in analysis period | [
"Check",
"if",
"time",
"is",
"included",
"in",
"analysis",
"period",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L357-L375 |
4,643 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.duplicate | def duplicate(self):
"""Return a copy of the analysis period."""
return AnalysisPeriod(self.st_month, self.st_day, self.st_hour,
self.end_month, self.end_day, self.end_hour,
self.timestep, self.is_leap_year) | python | def duplicate(self):
"""Return a copy of the analysis period."""
return AnalysisPeriod(self.st_month, self.st_day, self.st_hour,
self.end_month, self.end_day, self.end_hour,
self.timestep, self.is_leap_year) | [
"def",
"duplicate",
"(",
"self",
")",
":",
"return",
"AnalysisPeriod",
"(",
"self",
".",
"st_month",
",",
"self",
".",
"st_day",
",",
"self",
".",
"st_hour",
",",
"self",
".",
"end_month",
",",
"self",
".",
"end_day",
",",
"self",
".",
"end_hour",
",",
"self",
".",
"timestep",
",",
"self",
".",
"is_leap_year",
")"
] | Return a copy of the analysis period. | [
"Return",
"a",
"copy",
"of",
"the",
"analysis",
"period",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L377-L381 |
4,644 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod.to_json | def to_json(self):
"""Convert the analysis period to a dictionary."""
return {
'st_month': self.st_month,
'st_day': self.st_day,
'st_hour': self.st_hour,
'end_month': self.end_month,
'end_day': self.end_day,
'end_hour': self.end_hour,
'timestep': self.timestep,
'is_leap_year': self.is_leap_year
} | python | def to_json(self):
"""Convert the analysis period to a dictionary."""
return {
'st_month': self.st_month,
'st_day': self.st_day,
'st_hour': self.st_hour,
'end_month': self.end_month,
'end_day': self.end_day,
'end_hour': self.end_hour,
'timestep': self.timestep,
'is_leap_year': self.is_leap_year
} | [
"def",
"to_json",
"(",
"self",
")",
":",
"return",
"{",
"'st_month'",
":",
"self",
".",
"st_month",
",",
"'st_day'",
":",
"self",
".",
"st_day",
",",
"'st_hour'",
":",
"self",
".",
"st_hour",
",",
"'end_month'",
":",
"self",
".",
"end_month",
",",
"'end_day'",
":",
"self",
".",
"end_day",
",",
"'end_hour'",
":",
"self",
".",
"end_hour",
",",
"'timestep'",
":",
"self",
".",
"timestep",
",",
"'is_leap_year'",
":",
"self",
".",
"is_leap_year",
"}"
] | Convert the analysis period to a dictionary. | [
"Convert",
"the",
"analysis",
"period",
"to",
"a",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L383-L394 |
4,645 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod._calc_timestamps | def _calc_timestamps(self, st_time, end_time):
"""Calculate timesteps between start time and end time.
Use this method only when start time month is before end time month.
"""
# calculate based on minutes
# I have to convert the object to DateTime because of how Dynamo
# works: https://github.com/DynamoDS/Dynamo/issues/6683
# Do not modify this line to datetime
curr = datetime(st_time.year, st_time.month, st_time.day, st_time.hour,
st_time.minute, self.is_leap_year)
end_time = datetime(end_time.year, end_time.month, end_time.day,
end_time.hour, end_time.minute, self.is_leap_year)
while curr <= end_time:
if self.is_possible_hour(curr.hour + (curr.minute / 60.0)):
time = DateTime(curr.month, curr.day, curr.hour, curr.minute,
self.is_leap_year)
self._timestamps_data.append(time.moy)
curr += self.minute_intervals
if self.timestep != 1 and curr.hour == 23 and self.is_possible_hour(0):
# This is for cases that timestep is more than one
# and last hour of the day is part of the calculation
curr = end_time
for i in list(xrange(self.timestep))[1:]:
curr += self.minute_intervals
time = DateTime(curr.month, curr.day, curr.hour, curr.minute,
self.is_leap_year)
self._timestamps_data.append(time.moy) | python | def _calc_timestamps(self, st_time, end_time):
"""Calculate timesteps between start time and end time.
Use this method only when start time month is before end time month.
"""
# calculate based on minutes
# I have to convert the object to DateTime because of how Dynamo
# works: https://github.com/DynamoDS/Dynamo/issues/6683
# Do not modify this line to datetime
curr = datetime(st_time.year, st_time.month, st_time.day, st_time.hour,
st_time.minute, self.is_leap_year)
end_time = datetime(end_time.year, end_time.month, end_time.day,
end_time.hour, end_time.minute, self.is_leap_year)
while curr <= end_time:
if self.is_possible_hour(curr.hour + (curr.minute / 60.0)):
time = DateTime(curr.month, curr.day, curr.hour, curr.minute,
self.is_leap_year)
self._timestamps_data.append(time.moy)
curr += self.minute_intervals
if self.timestep != 1 and curr.hour == 23 and self.is_possible_hour(0):
# This is for cases that timestep is more than one
# and last hour of the day is part of the calculation
curr = end_time
for i in list(xrange(self.timestep))[1:]:
curr += self.minute_intervals
time = DateTime(curr.month, curr.day, curr.hour, curr.minute,
self.is_leap_year)
self._timestamps_data.append(time.moy) | [
"def",
"_calc_timestamps",
"(",
"self",
",",
"st_time",
",",
"end_time",
")",
":",
"# calculate based on minutes",
"# I have to convert the object to DateTime because of how Dynamo",
"# works: https://github.com/DynamoDS/Dynamo/issues/6683",
"# Do not modify this line to datetime",
"curr",
"=",
"datetime",
"(",
"st_time",
".",
"year",
",",
"st_time",
".",
"month",
",",
"st_time",
".",
"day",
",",
"st_time",
".",
"hour",
",",
"st_time",
".",
"minute",
",",
"self",
".",
"is_leap_year",
")",
"end_time",
"=",
"datetime",
"(",
"end_time",
".",
"year",
",",
"end_time",
".",
"month",
",",
"end_time",
".",
"day",
",",
"end_time",
".",
"hour",
",",
"end_time",
".",
"minute",
",",
"self",
".",
"is_leap_year",
")",
"while",
"curr",
"<=",
"end_time",
":",
"if",
"self",
".",
"is_possible_hour",
"(",
"curr",
".",
"hour",
"+",
"(",
"curr",
".",
"minute",
"/",
"60.0",
")",
")",
":",
"time",
"=",
"DateTime",
"(",
"curr",
".",
"month",
",",
"curr",
".",
"day",
",",
"curr",
".",
"hour",
",",
"curr",
".",
"minute",
",",
"self",
".",
"is_leap_year",
")",
"self",
".",
"_timestamps_data",
".",
"append",
"(",
"time",
".",
"moy",
")",
"curr",
"+=",
"self",
".",
"minute_intervals",
"if",
"self",
".",
"timestep",
"!=",
"1",
"and",
"curr",
".",
"hour",
"==",
"23",
"and",
"self",
".",
"is_possible_hour",
"(",
"0",
")",
":",
"# This is for cases that timestep is more than one",
"# and last hour of the day is part of the calculation",
"curr",
"=",
"end_time",
"for",
"i",
"in",
"list",
"(",
"xrange",
"(",
"self",
".",
"timestep",
")",
")",
"[",
"1",
":",
"]",
":",
"curr",
"+=",
"self",
".",
"minute_intervals",
"time",
"=",
"DateTime",
"(",
"curr",
".",
"month",
",",
"curr",
".",
"day",
",",
"curr",
".",
"hour",
",",
"curr",
".",
"minute",
",",
"self",
".",
"is_leap_year",
")",
"self",
".",
"_timestamps_data",
".",
"append",
"(",
"time",
".",
"moy",
")"
] | Calculate timesteps between start time and end time.
Use this method only when start time month is before end time month. | [
"Calculate",
"timesteps",
"between",
"start",
"time",
"and",
"end",
"time",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L396-L425 |
4,646 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod._calculate_timestamps | def _calculate_timestamps(self):
"""Return a list of Ladybug DateTime in this analysis period."""
self._timestamps_data = []
if not self._is_reversed:
self._calc_timestamps(self.st_time, self.end_time)
else:
self._calc_timestamps(self.st_time, DateTime.from_hoy(8759))
self._calc_timestamps(DateTime.from_hoy(0), self.end_time) | python | def _calculate_timestamps(self):
"""Return a list of Ladybug DateTime in this analysis period."""
self._timestamps_data = []
if not self._is_reversed:
self._calc_timestamps(self.st_time, self.end_time)
else:
self._calc_timestamps(self.st_time, DateTime.from_hoy(8759))
self._calc_timestamps(DateTime.from_hoy(0), self.end_time) | [
"def",
"_calculate_timestamps",
"(",
"self",
")",
":",
"self",
".",
"_timestamps_data",
"=",
"[",
"]",
"if",
"not",
"self",
".",
"_is_reversed",
":",
"self",
".",
"_calc_timestamps",
"(",
"self",
".",
"st_time",
",",
"self",
".",
"end_time",
")",
"else",
":",
"self",
".",
"_calc_timestamps",
"(",
"self",
".",
"st_time",
",",
"DateTime",
".",
"from_hoy",
"(",
"8759",
")",
")",
"self",
".",
"_calc_timestamps",
"(",
"DateTime",
".",
"from_hoy",
"(",
"0",
")",
",",
"self",
".",
"end_time",
")"
] | Return a list of Ladybug DateTime in this analysis period. | [
"Return",
"a",
"list",
"of",
"Ladybug",
"DateTime",
"in",
"this",
"analysis",
"period",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L427-L434 |
4,647 | ladybug-tools/ladybug | ladybug/analysisperiod.py | AnalysisPeriod._calc_daystamps | def _calc_daystamps(self, st_time, end_time):
"""Calculate days of the year between start time and end time.
Use this method only when start time month is before end time month.
"""
start_doy = sum(self._num_of_days_each_month[:st_time.month-1]) + st_time.day
end_doy = sum(self._num_of_days_each_month[:end_time.month-1]) + end_time.day + 1
return list(range(start_doy, end_doy)) | python | def _calc_daystamps(self, st_time, end_time):
"""Calculate days of the year between start time and end time.
Use this method only when start time month is before end time month.
"""
start_doy = sum(self._num_of_days_each_month[:st_time.month-1]) + st_time.day
end_doy = sum(self._num_of_days_each_month[:end_time.month-1]) + end_time.day + 1
return list(range(start_doy, end_doy)) | [
"def",
"_calc_daystamps",
"(",
"self",
",",
"st_time",
",",
"end_time",
")",
":",
"start_doy",
"=",
"sum",
"(",
"self",
".",
"_num_of_days_each_month",
"[",
":",
"st_time",
".",
"month",
"-",
"1",
"]",
")",
"+",
"st_time",
".",
"day",
"end_doy",
"=",
"sum",
"(",
"self",
".",
"_num_of_days_each_month",
"[",
":",
"end_time",
".",
"month",
"-",
"1",
"]",
")",
"+",
"end_time",
".",
"day",
"+",
"1",
"return",
"list",
"(",
"range",
"(",
"start_doy",
",",
"end_doy",
")",
")"
] | Calculate days of the year between start time and end time.
Use this method only when start time month is before end time month. | [
"Calculate",
"days",
"of",
"the",
"year",
"between",
"start",
"time",
"and",
"end",
"time",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/analysisperiod.py#L436-L443 |
4,648 | ladybug-tools/ladybug | ladybug/wea.py | Wea.from_values | def from_values(cls, location, direct_normal_irradiance,
diffuse_horizontal_irradiance, timestep=1, is_leap_year=False):
"""Create wea from a list of irradiance values.
This method converts input lists to data collection.
"""
err_message = 'For timestep %d, %d number of data for %s is expected. ' \
'%d is provided.'
if len(direct_normal_irradiance) % cls.hour_count(is_leap_year) == 0:
# add extra information to err_message
err_message = err_message + ' Did you forget to set the timestep to %d?' \
% (len(direct_normal_irradiance) / cls.hour_count(is_leap_year))
assert len(direct_normal_irradiance) / \
timestep == cls.hour_count(is_leap_year), \
err_message % (timestep, timestep * cls.hour_count(is_leap_year),
'direct normal irradiance', len(
direct_normal_irradiance))
assert len(diffuse_horizontal_irradiance) / timestep == \
cls.hour_count(is_leap_year), \
err_message % (timestep, timestep * cls.hour_count(is_leap_year),
'diffuse_horizontal_irradiance', len(
direct_normal_irradiance))
metadata = {'source': location.source, 'country': location.country,
'city': location.city}
dnr, dhr = cls._get_data_collections(
direct_normal_irradiance, diffuse_horizontal_irradiance,
metadata, timestep, is_leap_year)
return cls(location, dnr, dhr, timestep, is_leap_year) | python | def from_values(cls, location, direct_normal_irradiance,
diffuse_horizontal_irradiance, timestep=1, is_leap_year=False):
"""Create wea from a list of irradiance values.
This method converts input lists to data collection.
"""
err_message = 'For timestep %d, %d number of data for %s is expected. ' \
'%d is provided.'
if len(direct_normal_irradiance) % cls.hour_count(is_leap_year) == 0:
# add extra information to err_message
err_message = err_message + ' Did you forget to set the timestep to %d?' \
% (len(direct_normal_irradiance) / cls.hour_count(is_leap_year))
assert len(direct_normal_irradiance) / \
timestep == cls.hour_count(is_leap_year), \
err_message % (timestep, timestep * cls.hour_count(is_leap_year),
'direct normal irradiance', len(
direct_normal_irradiance))
assert len(diffuse_horizontal_irradiance) / timestep == \
cls.hour_count(is_leap_year), \
err_message % (timestep, timestep * cls.hour_count(is_leap_year),
'diffuse_horizontal_irradiance', len(
direct_normal_irradiance))
metadata = {'source': location.source, 'country': location.country,
'city': location.city}
dnr, dhr = cls._get_data_collections(
direct_normal_irradiance, diffuse_horizontal_irradiance,
metadata, timestep, is_leap_year)
return cls(location, dnr, dhr, timestep, is_leap_year) | [
"def",
"from_values",
"(",
"cls",
",",
"location",
",",
"direct_normal_irradiance",
",",
"diffuse_horizontal_irradiance",
",",
"timestep",
"=",
"1",
",",
"is_leap_year",
"=",
"False",
")",
":",
"err_message",
"=",
"'For timestep %d, %d number of data for %s is expected. '",
"'%d is provided.'",
"if",
"len",
"(",
"direct_normal_irradiance",
")",
"%",
"cls",
".",
"hour_count",
"(",
"is_leap_year",
")",
"==",
"0",
":",
"# add extra information to err_message",
"err_message",
"=",
"err_message",
"+",
"' Did you forget to set the timestep to %d?'",
"%",
"(",
"len",
"(",
"direct_normal_irradiance",
")",
"/",
"cls",
".",
"hour_count",
"(",
"is_leap_year",
")",
")",
"assert",
"len",
"(",
"direct_normal_irradiance",
")",
"/",
"timestep",
"==",
"cls",
".",
"hour_count",
"(",
"is_leap_year",
")",
",",
"err_message",
"%",
"(",
"timestep",
",",
"timestep",
"*",
"cls",
".",
"hour_count",
"(",
"is_leap_year",
")",
",",
"'direct normal irradiance'",
",",
"len",
"(",
"direct_normal_irradiance",
")",
")",
"assert",
"len",
"(",
"diffuse_horizontal_irradiance",
")",
"/",
"timestep",
"==",
"cls",
".",
"hour_count",
"(",
"is_leap_year",
")",
",",
"err_message",
"%",
"(",
"timestep",
",",
"timestep",
"*",
"cls",
".",
"hour_count",
"(",
"is_leap_year",
")",
",",
"'diffuse_horizontal_irradiance'",
",",
"len",
"(",
"direct_normal_irradiance",
")",
")",
"metadata",
"=",
"{",
"'source'",
":",
"location",
".",
"source",
",",
"'country'",
":",
"location",
".",
"country",
",",
"'city'",
":",
"location",
".",
"city",
"}",
"dnr",
",",
"dhr",
"=",
"cls",
".",
"_get_data_collections",
"(",
"direct_normal_irradiance",
",",
"diffuse_horizontal_irradiance",
",",
"metadata",
",",
"timestep",
",",
"is_leap_year",
")",
"return",
"cls",
"(",
"location",
",",
"dnr",
",",
"dhr",
",",
"timestep",
",",
"is_leap_year",
")"
] | Create wea from a list of irradiance values.
This method converts input lists to data collection. | [
"Create",
"wea",
"from",
"a",
"list",
"of",
"irradiance",
"values",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L69-L99 |
4,649 | ladybug-tools/ladybug | ladybug/wea.py | Wea.from_file | def from_file(cls, weafile, timestep=1, is_leap_year=False):
"""Create wea object from a wea file.
Args:
weafile:Full path to wea file.
timestep: An optional integer to set the number of time steps per hour.
Default is 1 for one value per hour. If the wea file has a time step
smaller than an hour adjust this input accordingly.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False.
"""
assert os.path.isfile(weafile), 'Failed to find {}'.format(weafile)
location = Location()
with open(weafile, readmode) as weaf:
first_line = weaf.readline()
assert first_line.startswith('place'), \
'Failed to find place in header. ' \
'{} is not a valid wea file.'.format(weafile)
location.city = ' '.join(first_line.split()[1:])
# parse header
location.latitude = float(weaf.readline().split()[-1])
location.longitude = -float(weaf.readline().split()[-1])
location.time_zone = -int(weaf.readline().split()[-1]) / 15
location.elevation = float(weaf.readline().split()[-1])
weaf.readline() # pass line for weather data units
# parse irradiance values
direct_normal_irradiance = []
diffuse_horizontal_irradiance = []
for line in weaf:
dirn, difh = [int(v) for v in line.split()[-2:]]
direct_normal_irradiance.append(dirn)
diffuse_horizontal_irradiance.append(difh)
return cls.from_values(location, direct_normal_irradiance,
diffuse_horizontal_irradiance, timestep, is_leap_year) | python | def from_file(cls, weafile, timestep=1, is_leap_year=False):
"""Create wea object from a wea file.
Args:
weafile:Full path to wea file.
timestep: An optional integer to set the number of time steps per hour.
Default is 1 for one value per hour. If the wea file has a time step
smaller than an hour adjust this input accordingly.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False.
"""
assert os.path.isfile(weafile), 'Failed to find {}'.format(weafile)
location = Location()
with open(weafile, readmode) as weaf:
first_line = weaf.readline()
assert first_line.startswith('place'), \
'Failed to find place in header. ' \
'{} is not a valid wea file.'.format(weafile)
location.city = ' '.join(first_line.split()[1:])
# parse header
location.latitude = float(weaf.readline().split()[-1])
location.longitude = -float(weaf.readline().split()[-1])
location.time_zone = -int(weaf.readline().split()[-1]) / 15
location.elevation = float(weaf.readline().split()[-1])
weaf.readline() # pass line for weather data units
# parse irradiance values
direct_normal_irradiance = []
diffuse_horizontal_irradiance = []
for line in weaf:
dirn, difh = [int(v) for v in line.split()[-2:]]
direct_normal_irradiance.append(dirn)
diffuse_horizontal_irradiance.append(difh)
return cls.from_values(location, direct_normal_irradiance,
diffuse_horizontal_irradiance, timestep, is_leap_year) | [
"def",
"from_file",
"(",
"cls",
",",
"weafile",
",",
"timestep",
"=",
"1",
",",
"is_leap_year",
"=",
"False",
")",
":",
"assert",
"os",
".",
"path",
".",
"isfile",
"(",
"weafile",
")",
",",
"'Failed to find {}'",
".",
"format",
"(",
"weafile",
")",
"location",
"=",
"Location",
"(",
")",
"with",
"open",
"(",
"weafile",
",",
"readmode",
")",
"as",
"weaf",
":",
"first_line",
"=",
"weaf",
".",
"readline",
"(",
")",
"assert",
"first_line",
".",
"startswith",
"(",
"'place'",
")",
",",
"'Failed to find place in header. '",
"'{} is not a valid wea file.'",
".",
"format",
"(",
"weafile",
")",
"location",
".",
"city",
"=",
"' '",
".",
"join",
"(",
"first_line",
".",
"split",
"(",
")",
"[",
"1",
":",
"]",
")",
"# parse header",
"location",
".",
"latitude",
"=",
"float",
"(",
"weaf",
".",
"readline",
"(",
")",
".",
"split",
"(",
")",
"[",
"-",
"1",
"]",
")",
"location",
".",
"longitude",
"=",
"-",
"float",
"(",
"weaf",
".",
"readline",
"(",
")",
".",
"split",
"(",
")",
"[",
"-",
"1",
"]",
")",
"location",
".",
"time_zone",
"=",
"-",
"int",
"(",
"weaf",
".",
"readline",
"(",
")",
".",
"split",
"(",
")",
"[",
"-",
"1",
"]",
")",
"/",
"15",
"location",
".",
"elevation",
"=",
"float",
"(",
"weaf",
".",
"readline",
"(",
")",
".",
"split",
"(",
")",
"[",
"-",
"1",
"]",
")",
"weaf",
".",
"readline",
"(",
")",
"# pass line for weather data units",
"# parse irradiance values",
"direct_normal_irradiance",
"=",
"[",
"]",
"diffuse_horizontal_irradiance",
"=",
"[",
"]",
"for",
"line",
"in",
"weaf",
":",
"dirn",
",",
"difh",
"=",
"[",
"int",
"(",
"v",
")",
"for",
"v",
"in",
"line",
".",
"split",
"(",
")",
"[",
"-",
"2",
":",
"]",
"]",
"direct_normal_irradiance",
".",
"append",
"(",
"dirn",
")",
"diffuse_horizontal_irradiance",
".",
"append",
"(",
"difh",
")",
"return",
"cls",
".",
"from_values",
"(",
"location",
",",
"direct_normal_irradiance",
",",
"diffuse_horizontal_irradiance",
",",
"timestep",
",",
"is_leap_year",
")"
] | Create wea object from a wea file.
Args:
weafile:Full path to wea file.
timestep: An optional integer to set the number of time steps per hour.
Default is 1 for one value per hour. If the wea file has a time step
smaller than an hour adjust this input accordingly.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False. | [
"Create",
"wea",
"object",
"from",
"a",
"wea",
"file",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L139-L174 |
4,650 | ladybug-tools/ladybug | ladybug/wea.py | Wea.from_epw_file | def from_epw_file(cls, epwfile, timestep=1):
"""Create a wea object using the solar irradiance values in an epw file.
Args:
epwfile: Full path to epw weather file.
timestep: An optional integer to set the number of time steps per hour.
Default is 1 for one value per hour. Note that this input
will only do a linear interpolation over the data in the EPW
file. While such linear interpolations are suitable for most
thermal simulations, where thermal lag "smooths over" the effect
of momentary increases in solar energy, it is not recommended
for daylight simulations, where momentary increases in solar
energy can mean the difference between glare and visual comfort.
"""
is_leap_year = False # epw file is always for 8760 hours
epw = EPW(epwfile)
direct_normal, diffuse_horizontal = \
cls._get_data_collections(epw.direct_normal_radiation.values,
epw.diffuse_horizontal_radiation.values,
epw.metadata, 1, is_leap_year)
if timestep != 1:
print ("Note: timesteps greater than 1 on epw-generated Wea's \n" +
"are suitable for thermal models but are not recommended \n" +
"for daylight models.")
# interpolate the data
direct_normal = direct_normal.interpolate_to_timestep(timestep)
diffuse_horizontal = diffuse_horizontal.interpolate_to_timestep(timestep)
# create sunpath to check if the sun is up at a given timestep
sp = Sunpath.from_location(epw.location)
# add correct values to the emply data collection
for i, dt in enumerate(cls._get_datetimes(timestep, is_leap_year)):
# set irradiance values to 0 when the sun is not up
sun = sp.calculate_sun_from_date_time(dt)
if sun.altitude < 0:
direct_normal[i] = 0
diffuse_horizontal[i] = 0
return cls(epw.location, direct_normal, diffuse_horizontal,
timestep, is_leap_year) | python | def from_epw_file(cls, epwfile, timestep=1):
"""Create a wea object using the solar irradiance values in an epw file.
Args:
epwfile: Full path to epw weather file.
timestep: An optional integer to set the number of time steps per hour.
Default is 1 for one value per hour. Note that this input
will only do a linear interpolation over the data in the EPW
file. While such linear interpolations are suitable for most
thermal simulations, where thermal lag "smooths over" the effect
of momentary increases in solar energy, it is not recommended
for daylight simulations, where momentary increases in solar
energy can mean the difference between glare and visual comfort.
"""
is_leap_year = False # epw file is always for 8760 hours
epw = EPW(epwfile)
direct_normal, diffuse_horizontal = \
cls._get_data_collections(epw.direct_normal_radiation.values,
epw.diffuse_horizontal_radiation.values,
epw.metadata, 1, is_leap_year)
if timestep != 1:
print ("Note: timesteps greater than 1 on epw-generated Wea's \n" +
"are suitable for thermal models but are not recommended \n" +
"for daylight models.")
# interpolate the data
direct_normal = direct_normal.interpolate_to_timestep(timestep)
diffuse_horizontal = diffuse_horizontal.interpolate_to_timestep(timestep)
# create sunpath to check if the sun is up at a given timestep
sp = Sunpath.from_location(epw.location)
# add correct values to the emply data collection
for i, dt in enumerate(cls._get_datetimes(timestep, is_leap_year)):
# set irradiance values to 0 when the sun is not up
sun = sp.calculate_sun_from_date_time(dt)
if sun.altitude < 0:
direct_normal[i] = 0
diffuse_horizontal[i] = 0
return cls(epw.location, direct_normal, diffuse_horizontal,
timestep, is_leap_year) | [
"def",
"from_epw_file",
"(",
"cls",
",",
"epwfile",
",",
"timestep",
"=",
"1",
")",
":",
"is_leap_year",
"=",
"False",
"# epw file is always for 8760 hours",
"epw",
"=",
"EPW",
"(",
"epwfile",
")",
"direct_normal",
",",
"diffuse_horizontal",
"=",
"cls",
".",
"_get_data_collections",
"(",
"epw",
".",
"direct_normal_radiation",
".",
"values",
",",
"epw",
".",
"diffuse_horizontal_radiation",
".",
"values",
",",
"epw",
".",
"metadata",
",",
"1",
",",
"is_leap_year",
")",
"if",
"timestep",
"!=",
"1",
":",
"print",
"(",
"\"Note: timesteps greater than 1 on epw-generated Wea's \\n\"",
"+",
"\"are suitable for thermal models but are not recommended \\n\"",
"+",
"\"for daylight models.\"",
")",
"# interpolate the data",
"direct_normal",
"=",
"direct_normal",
".",
"interpolate_to_timestep",
"(",
"timestep",
")",
"diffuse_horizontal",
"=",
"diffuse_horizontal",
".",
"interpolate_to_timestep",
"(",
"timestep",
")",
"# create sunpath to check if the sun is up at a given timestep",
"sp",
"=",
"Sunpath",
".",
"from_location",
"(",
"epw",
".",
"location",
")",
"# add correct values to the emply data collection",
"for",
"i",
",",
"dt",
"in",
"enumerate",
"(",
"cls",
".",
"_get_datetimes",
"(",
"timestep",
",",
"is_leap_year",
")",
")",
":",
"# set irradiance values to 0 when the sun is not up",
"sun",
"=",
"sp",
".",
"calculate_sun_from_date_time",
"(",
"dt",
")",
"if",
"sun",
".",
"altitude",
"<",
"0",
":",
"direct_normal",
"[",
"i",
"]",
"=",
"0",
"diffuse_horizontal",
"[",
"i",
"]",
"=",
"0",
"return",
"cls",
"(",
"epw",
".",
"location",
",",
"direct_normal",
",",
"diffuse_horizontal",
",",
"timestep",
",",
"is_leap_year",
")"
] | Create a wea object using the solar irradiance values in an epw file.
Args:
epwfile: Full path to epw weather file.
timestep: An optional integer to set the number of time steps per hour.
Default is 1 for one value per hour. Note that this input
will only do a linear interpolation over the data in the EPW
file. While such linear interpolations are suitable for most
thermal simulations, where thermal lag "smooths over" the effect
of momentary increases in solar energy, it is not recommended
for daylight simulations, where momentary increases in solar
energy can mean the difference between glare and visual comfort. | [
"Create",
"a",
"wea",
"object",
"using",
"the",
"solar",
"irradiance",
"values",
"in",
"an",
"epw",
"file",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L177-L216 |
4,651 | ladybug-tools/ladybug | ladybug/wea.py | Wea.from_stat_file | def from_stat_file(cls, statfile, timestep=1, is_leap_year=False):
"""Create an ASHRAE Revised Clear Sky wea object from the monthly sky
optical depths in a .stat file.
Args:
statfile: Full path to the .stat file.
timestep: An optional integer to set the number of time steps per
hour. Default is 1 for one value per hour.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False.
"""
stat = STAT(statfile)
# check to be sure the stat file does not have missing tau values
def check_missing(opt_data, data_name):
if opt_data == []:
raise ValueError('Stat file contains no optical data.')
for i, x in enumerate(opt_data):
if x is None:
raise ValueError(
'Missing optical depth data for {} at month {}'.format(
data_name, i)
)
check_missing(stat.monthly_tau_beam, 'monthly_tau_beam')
check_missing(stat.monthly_tau_diffuse, 'monthly_tau_diffuse')
return cls.from_ashrae_revised_clear_sky(stat.location, stat.monthly_tau_beam,
stat.monthly_tau_diffuse, timestep,
is_leap_year) | python | def from_stat_file(cls, statfile, timestep=1, is_leap_year=False):
"""Create an ASHRAE Revised Clear Sky wea object from the monthly sky
optical depths in a .stat file.
Args:
statfile: Full path to the .stat file.
timestep: An optional integer to set the number of time steps per
hour. Default is 1 for one value per hour.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False.
"""
stat = STAT(statfile)
# check to be sure the stat file does not have missing tau values
def check_missing(opt_data, data_name):
if opt_data == []:
raise ValueError('Stat file contains no optical data.')
for i, x in enumerate(opt_data):
if x is None:
raise ValueError(
'Missing optical depth data for {} at month {}'.format(
data_name, i)
)
check_missing(stat.monthly_tau_beam, 'monthly_tau_beam')
check_missing(stat.monthly_tau_diffuse, 'monthly_tau_diffuse')
return cls.from_ashrae_revised_clear_sky(stat.location, stat.monthly_tau_beam,
stat.monthly_tau_diffuse, timestep,
is_leap_year) | [
"def",
"from_stat_file",
"(",
"cls",
",",
"statfile",
",",
"timestep",
"=",
"1",
",",
"is_leap_year",
"=",
"False",
")",
":",
"stat",
"=",
"STAT",
"(",
"statfile",
")",
"# check to be sure the stat file does not have missing tau values",
"def",
"check_missing",
"(",
"opt_data",
",",
"data_name",
")",
":",
"if",
"opt_data",
"==",
"[",
"]",
":",
"raise",
"ValueError",
"(",
"'Stat file contains no optical data.'",
")",
"for",
"i",
",",
"x",
"in",
"enumerate",
"(",
"opt_data",
")",
":",
"if",
"x",
"is",
"None",
":",
"raise",
"ValueError",
"(",
"'Missing optical depth data for {} at month {}'",
".",
"format",
"(",
"data_name",
",",
"i",
")",
")",
"check_missing",
"(",
"stat",
".",
"monthly_tau_beam",
",",
"'monthly_tau_beam'",
")",
"check_missing",
"(",
"stat",
".",
"monthly_tau_diffuse",
",",
"'monthly_tau_diffuse'",
")",
"return",
"cls",
".",
"from_ashrae_revised_clear_sky",
"(",
"stat",
".",
"location",
",",
"stat",
".",
"monthly_tau_beam",
",",
"stat",
".",
"monthly_tau_diffuse",
",",
"timestep",
",",
"is_leap_year",
")"
] | Create an ASHRAE Revised Clear Sky wea object from the monthly sky
optical depths in a .stat file.
Args:
statfile: Full path to the .stat file.
timestep: An optional integer to set the number of time steps per
hour. Default is 1 for one value per hour.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False. | [
"Create",
"an",
"ASHRAE",
"Revised",
"Clear",
"Sky",
"wea",
"object",
"from",
"the",
"monthly",
"sky",
"optical",
"depths",
"in",
"a",
".",
"stat",
"file",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L219-L247 |
4,652 | ladybug-tools/ladybug | ladybug/wea.py | Wea.from_zhang_huang_solar | def from_zhang_huang_solar(cls, location, cloud_cover,
relative_humidity, dry_bulb_temperature,
wind_speed, atmospheric_pressure=None,
timestep=1, is_leap_year=False, use_disc=False):
"""Create a wea object from climate data using the Zhang-Huang model.
The Zhang-Huang solar model was developed to estimate solar
irradiance for weather stations that lack such values, which are
typically colleted with a pyranometer. Using total cloud cover,
dry-bulb temperature, relative humidity, and wind speed as
inputs the Zhang-Huang estimates global horizontal irradiance
by means of a regression model across these variables.
For more information on the Zhang-Huang model, see the
EnergyPlus Engineering Reference:
https://bigladdersoftware.com/epx/docs/8-7/engineering-reference/climate-calculations.html#zhang-huang-solar-model
Args:
location: Ladybug location object.
cloud_cover: A list of annual float values between 0 and 1
that represent the fraction of the sky dome covered
in clouds (0 = clear; 1 = completely overcast)
relative_humidity: A list of annual float values between
0 and 100 that represent the relative humidity in percent.
dry_bulb_temperature: A list of annual float values that
represent the dry bulb temperature in degrees Celcius.
wind_speed: A list of annual float values that
represent the wind speed in meters per second.
atmospheric_pressure: An optional list of float values that
represent the atmospheric pressure in Pa. If None or
left blank, pressure at sea level will be used (101325 Pa).
timestep: An optional integer to set the number of time steps per
hour. Default is 1 for one value per hour.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False.
use_disc: Set to True to use the original DISC model as opposed to the
newer and more accurate DIRINT model. Default is False.
"""
# check input data
assert len(cloud_cover) == len(relative_humidity) == \
len(dry_bulb_temperature) == len(wind_speed), \
'lengths of input climate data must match.'
assert len(cloud_cover) / timestep == cls.hour_count(is_leap_year), \
'input climate data must be annual.'
assert isinstance(timestep, int), 'timestep must be an' \
' integer. Got {}'.format(type(timestep))
if atmospheric_pressure is not None:
assert len(atmospheric_pressure) == len(cloud_cover), \
'length pf atmospheric_pressure must match the other input lists.'
else:
atmospheric_pressure = [101325] * cls.hour_count(is_leap_year) * timestep
# initiate sunpath based on location
sp = Sunpath.from_location(location)
sp.is_leap_year = is_leap_year
# calculate parameters needed for zhang-huang irradiance
date_times = []
altitudes = []
doys = []
dry_bulb_t3_hrs = []
for count, t_date in enumerate(cls._get_datetimes(timestep, is_leap_year)):
date_times.append(t_date)
sun = sp.calculate_sun_from_date_time(t_date)
altitudes.append(sun.altitude)
doys.append(sun.datetime.doy)
dry_bulb_t3_hrs.append(dry_bulb_temperature[count - (3 * timestep)])
# calculate zhang-huang irradiance
dir_ir, diff_ir = zhang_huang_solar_split(altitudes, doys, cloud_cover,
relative_humidity,
dry_bulb_temperature,
dry_bulb_t3_hrs, wind_speed,
atmospheric_pressure, use_disc)
# assemble the results into DataCollections
metadata = {'source': location.source, 'country': location.country,
'city': location.city}
direct_norm_rad, diffuse_horiz_rad = \
cls._get_data_collections(dir_ir, diff_ir, metadata, timestep, is_leap_year)
return cls(location, direct_norm_rad, diffuse_horiz_rad, timestep, is_leap_year) | python | def from_zhang_huang_solar(cls, location, cloud_cover,
relative_humidity, dry_bulb_temperature,
wind_speed, atmospheric_pressure=None,
timestep=1, is_leap_year=False, use_disc=False):
"""Create a wea object from climate data using the Zhang-Huang model.
The Zhang-Huang solar model was developed to estimate solar
irradiance for weather stations that lack such values, which are
typically colleted with a pyranometer. Using total cloud cover,
dry-bulb temperature, relative humidity, and wind speed as
inputs the Zhang-Huang estimates global horizontal irradiance
by means of a regression model across these variables.
For more information on the Zhang-Huang model, see the
EnergyPlus Engineering Reference:
https://bigladdersoftware.com/epx/docs/8-7/engineering-reference/climate-calculations.html#zhang-huang-solar-model
Args:
location: Ladybug location object.
cloud_cover: A list of annual float values between 0 and 1
that represent the fraction of the sky dome covered
in clouds (0 = clear; 1 = completely overcast)
relative_humidity: A list of annual float values between
0 and 100 that represent the relative humidity in percent.
dry_bulb_temperature: A list of annual float values that
represent the dry bulb temperature in degrees Celcius.
wind_speed: A list of annual float values that
represent the wind speed in meters per second.
atmospheric_pressure: An optional list of float values that
represent the atmospheric pressure in Pa. If None or
left blank, pressure at sea level will be used (101325 Pa).
timestep: An optional integer to set the number of time steps per
hour. Default is 1 for one value per hour.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False.
use_disc: Set to True to use the original DISC model as opposed to the
newer and more accurate DIRINT model. Default is False.
"""
# check input data
assert len(cloud_cover) == len(relative_humidity) == \
len(dry_bulb_temperature) == len(wind_speed), \
'lengths of input climate data must match.'
assert len(cloud_cover) / timestep == cls.hour_count(is_leap_year), \
'input climate data must be annual.'
assert isinstance(timestep, int), 'timestep must be an' \
' integer. Got {}'.format(type(timestep))
if atmospheric_pressure is not None:
assert len(atmospheric_pressure) == len(cloud_cover), \
'length pf atmospheric_pressure must match the other input lists.'
else:
atmospheric_pressure = [101325] * cls.hour_count(is_leap_year) * timestep
# initiate sunpath based on location
sp = Sunpath.from_location(location)
sp.is_leap_year = is_leap_year
# calculate parameters needed for zhang-huang irradiance
date_times = []
altitudes = []
doys = []
dry_bulb_t3_hrs = []
for count, t_date in enumerate(cls._get_datetimes(timestep, is_leap_year)):
date_times.append(t_date)
sun = sp.calculate_sun_from_date_time(t_date)
altitudes.append(sun.altitude)
doys.append(sun.datetime.doy)
dry_bulb_t3_hrs.append(dry_bulb_temperature[count - (3 * timestep)])
# calculate zhang-huang irradiance
dir_ir, diff_ir = zhang_huang_solar_split(altitudes, doys, cloud_cover,
relative_humidity,
dry_bulb_temperature,
dry_bulb_t3_hrs, wind_speed,
atmospheric_pressure, use_disc)
# assemble the results into DataCollections
metadata = {'source': location.source, 'country': location.country,
'city': location.city}
direct_norm_rad, diffuse_horiz_rad = \
cls._get_data_collections(dir_ir, diff_ir, metadata, timestep, is_leap_year)
return cls(location, direct_norm_rad, diffuse_horiz_rad, timestep, is_leap_year) | [
"def",
"from_zhang_huang_solar",
"(",
"cls",
",",
"location",
",",
"cloud_cover",
",",
"relative_humidity",
",",
"dry_bulb_temperature",
",",
"wind_speed",
",",
"atmospheric_pressure",
"=",
"None",
",",
"timestep",
"=",
"1",
",",
"is_leap_year",
"=",
"False",
",",
"use_disc",
"=",
"False",
")",
":",
"# check input data",
"assert",
"len",
"(",
"cloud_cover",
")",
"==",
"len",
"(",
"relative_humidity",
")",
"==",
"len",
"(",
"dry_bulb_temperature",
")",
"==",
"len",
"(",
"wind_speed",
")",
",",
"'lengths of input climate data must match.'",
"assert",
"len",
"(",
"cloud_cover",
")",
"/",
"timestep",
"==",
"cls",
".",
"hour_count",
"(",
"is_leap_year",
")",
",",
"'input climate data must be annual.'",
"assert",
"isinstance",
"(",
"timestep",
",",
"int",
")",
",",
"'timestep must be an'",
"' integer. Got {}'",
".",
"format",
"(",
"type",
"(",
"timestep",
")",
")",
"if",
"atmospheric_pressure",
"is",
"not",
"None",
":",
"assert",
"len",
"(",
"atmospheric_pressure",
")",
"==",
"len",
"(",
"cloud_cover",
")",
",",
"'length pf atmospheric_pressure must match the other input lists.'",
"else",
":",
"atmospheric_pressure",
"=",
"[",
"101325",
"]",
"*",
"cls",
".",
"hour_count",
"(",
"is_leap_year",
")",
"*",
"timestep",
"# initiate sunpath based on location",
"sp",
"=",
"Sunpath",
".",
"from_location",
"(",
"location",
")",
"sp",
".",
"is_leap_year",
"=",
"is_leap_year",
"# calculate parameters needed for zhang-huang irradiance",
"date_times",
"=",
"[",
"]",
"altitudes",
"=",
"[",
"]",
"doys",
"=",
"[",
"]",
"dry_bulb_t3_hrs",
"=",
"[",
"]",
"for",
"count",
",",
"t_date",
"in",
"enumerate",
"(",
"cls",
".",
"_get_datetimes",
"(",
"timestep",
",",
"is_leap_year",
")",
")",
":",
"date_times",
".",
"append",
"(",
"t_date",
")",
"sun",
"=",
"sp",
".",
"calculate_sun_from_date_time",
"(",
"t_date",
")",
"altitudes",
".",
"append",
"(",
"sun",
".",
"altitude",
")",
"doys",
".",
"append",
"(",
"sun",
".",
"datetime",
".",
"doy",
")",
"dry_bulb_t3_hrs",
".",
"append",
"(",
"dry_bulb_temperature",
"[",
"count",
"-",
"(",
"3",
"*",
"timestep",
")",
"]",
")",
"# calculate zhang-huang irradiance",
"dir_ir",
",",
"diff_ir",
"=",
"zhang_huang_solar_split",
"(",
"altitudes",
",",
"doys",
",",
"cloud_cover",
",",
"relative_humidity",
",",
"dry_bulb_temperature",
",",
"dry_bulb_t3_hrs",
",",
"wind_speed",
",",
"atmospheric_pressure",
",",
"use_disc",
")",
"# assemble the results into DataCollections",
"metadata",
"=",
"{",
"'source'",
":",
"location",
".",
"source",
",",
"'country'",
":",
"location",
".",
"country",
",",
"'city'",
":",
"location",
".",
"city",
"}",
"direct_norm_rad",
",",
"diffuse_horiz_rad",
"=",
"cls",
".",
"_get_data_collections",
"(",
"dir_ir",
",",
"diff_ir",
",",
"metadata",
",",
"timestep",
",",
"is_leap_year",
")",
"return",
"cls",
"(",
"location",
",",
"direct_norm_rad",
",",
"diffuse_horiz_rad",
",",
"timestep",
",",
"is_leap_year",
")"
] | Create a wea object from climate data using the Zhang-Huang model.
The Zhang-Huang solar model was developed to estimate solar
irradiance for weather stations that lack such values, which are
typically colleted with a pyranometer. Using total cloud cover,
dry-bulb temperature, relative humidity, and wind speed as
inputs the Zhang-Huang estimates global horizontal irradiance
by means of a regression model across these variables.
For more information on the Zhang-Huang model, see the
EnergyPlus Engineering Reference:
https://bigladdersoftware.com/epx/docs/8-7/engineering-reference/climate-calculations.html#zhang-huang-solar-model
Args:
location: Ladybug location object.
cloud_cover: A list of annual float values between 0 and 1
that represent the fraction of the sky dome covered
in clouds (0 = clear; 1 = completely overcast)
relative_humidity: A list of annual float values between
0 and 100 that represent the relative humidity in percent.
dry_bulb_temperature: A list of annual float values that
represent the dry bulb temperature in degrees Celcius.
wind_speed: A list of annual float values that
represent the wind speed in meters per second.
atmospheric_pressure: An optional list of float values that
represent the atmospheric pressure in Pa. If None or
left blank, pressure at sea level will be used (101325 Pa).
timestep: An optional integer to set the number of time steps per
hour. Default is 1 for one value per hour.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False.
use_disc: Set to True to use the original DISC model as opposed to the
newer and more accurate DIRINT model. Default is False. | [
"Create",
"a",
"wea",
"object",
"from",
"climate",
"data",
"using",
"the",
"Zhang",
"-",
"Huang",
"model",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L357-L437 |
4,653 | ladybug-tools/ladybug | ladybug/wea.py | Wea.datetimes | def datetimes(self):
"""Datetimes in wea file."""
if self.timestep == 1:
return tuple(dt.add_minute(30) for dt in
self.direct_normal_irradiance.datetimes)
else:
return self.direct_normal_irradiance.datetimes | python | def datetimes(self):
"""Datetimes in wea file."""
if self.timestep == 1:
return tuple(dt.add_minute(30) for dt in
self.direct_normal_irradiance.datetimes)
else:
return self.direct_normal_irradiance.datetimes | [
"def",
"datetimes",
"(",
"self",
")",
":",
"if",
"self",
".",
"timestep",
"==",
"1",
":",
"return",
"tuple",
"(",
"dt",
".",
"add_minute",
"(",
"30",
")",
"for",
"dt",
"in",
"self",
".",
"direct_normal_irradiance",
".",
"datetimes",
")",
"else",
":",
"return",
"self",
".",
"direct_normal_irradiance",
".",
"datetimes"
] | Datetimes in wea file. | [
"Datetimes",
"in",
"wea",
"file",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L450-L456 |
4,654 | ladybug-tools/ladybug | ladybug/wea.py | Wea.global_horizontal_irradiance | def global_horizontal_irradiance(self):
"""Returns the global horizontal irradiance at each timestep."""
analysis_period = AnalysisPeriod(timestep=self.timestep,
is_leap_year=self.is_leap_year)
header_ghr = Header(data_type=GlobalHorizontalIrradiance(),
unit='W/m2',
analysis_period=analysis_period,
metadata=self.metadata)
glob_horiz = []
sp = Sunpath.from_location(self.location)
sp.is_leap_year = self.is_leap_year
for dt, dnr, dhr in zip(self.datetimes, self.direct_normal_irradiance,
self.diffuse_horizontal_irradiance):
sun = sp.calculate_sun_from_date_time(dt)
glob_horiz.append(dhr + dnr * math.sin(math.radians(sun.altitude)))
return HourlyContinuousCollection(header_ghr, glob_horiz) | python | def global_horizontal_irradiance(self):
"""Returns the global horizontal irradiance at each timestep."""
analysis_period = AnalysisPeriod(timestep=self.timestep,
is_leap_year=self.is_leap_year)
header_ghr = Header(data_type=GlobalHorizontalIrradiance(),
unit='W/m2',
analysis_period=analysis_period,
metadata=self.metadata)
glob_horiz = []
sp = Sunpath.from_location(self.location)
sp.is_leap_year = self.is_leap_year
for dt, dnr, dhr in zip(self.datetimes, self.direct_normal_irradiance,
self.diffuse_horizontal_irradiance):
sun = sp.calculate_sun_from_date_time(dt)
glob_horiz.append(dhr + dnr * math.sin(math.radians(sun.altitude)))
return HourlyContinuousCollection(header_ghr, glob_horiz) | [
"def",
"global_horizontal_irradiance",
"(",
"self",
")",
":",
"analysis_period",
"=",
"AnalysisPeriod",
"(",
"timestep",
"=",
"self",
".",
"timestep",
",",
"is_leap_year",
"=",
"self",
".",
"is_leap_year",
")",
"header_ghr",
"=",
"Header",
"(",
"data_type",
"=",
"GlobalHorizontalIrradiance",
"(",
")",
",",
"unit",
"=",
"'W/m2'",
",",
"analysis_period",
"=",
"analysis_period",
",",
"metadata",
"=",
"self",
".",
"metadata",
")",
"glob_horiz",
"=",
"[",
"]",
"sp",
"=",
"Sunpath",
".",
"from_location",
"(",
"self",
".",
"location",
")",
"sp",
".",
"is_leap_year",
"=",
"self",
".",
"is_leap_year",
"for",
"dt",
",",
"dnr",
",",
"dhr",
"in",
"zip",
"(",
"self",
".",
"datetimes",
",",
"self",
".",
"direct_normal_irradiance",
",",
"self",
".",
"diffuse_horizontal_irradiance",
")",
":",
"sun",
"=",
"sp",
".",
"calculate_sun_from_date_time",
"(",
"dt",
")",
"glob_horiz",
".",
"append",
"(",
"dhr",
"+",
"dnr",
"*",
"math",
".",
"sin",
"(",
"math",
".",
"radians",
"(",
"sun",
".",
"altitude",
")",
")",
")",
"return",
"HourlyContinuousCollection",
"(",
"header_ghr",
",",
"glob_horiz",
")"
] | Returns the global horizontal irradiance at each timestep. | [
"Returns",
"the",
"global",
"horizontal",
"irradiance",
"at",
"each",
"timestep",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L498-L513 |
4,655 | ladybug-tools/ladybug | ladybug/wea.py | Wea.direct_horizontal_irradiance | def direct_horizontal_irradiance(self):
"""Returns the direct irradiance on a horizontal surface at each timestep.
Note that this is different from the direct_normal_irradiance needed
to construct a Wea, which is NORMAL and not HORIZONTAL."""
analysis_period = AnalysisPeriod(timestep=self.timestep,
is_leap_year=self.is_leap_year)
header_dhr = Header(data_type=DirectHorizontalIrradiance(),
unit='W/m2',
analysis_period=analysis_period,
metadata=self.metadata)
direct_horiz = []
sp = Sunpath.from_location(self.location)
sp.is_leap_year = self.is_leap_year
for dt, dnr in zip(self.datetimes, self.direct_normal_irradiance):
sun = sp.calculate_sun_from_date_time(dt)
direct_horiz.append(dnr * math.sin(math.radians(sun.altitude)))
return HourlyContinuousCollection(header_dhr, direct_horiz) | python | def direct_horizontal_irradiance(self):
"""Returns the direct irradiance on a horizontal surface at each timestep.
Note that this is different from the direct_normal_irradiance needed
to construct a Wea, which is NORMAL and not HORIZONTAL."""
analysis_period = AnalysisPeriod(timestep=self.timestep,
is_leap_year=self.is_leap_year)
header_dhr = Header(data_type=DirectHorizontalIrradiance(),
unit='W/m2',
analysis_period=analysis_period,
metadata=self.metadata)
direct_horiz = []
sp = Sunpath.from_location(self.location)
sp.is_leap_year = self.is_leap_year
for dt, dnr in zip(self.datetimes, self.direct_normal_irradiance):
sun = sp.calculate_sun_from_date_time(dt)
direct_horiz.append(dnr * math.sin(math.radians(sun.altitude)))
return HourlyContinuousCollection(header_dhr, direct_horiz) | [
"def",
"direct_horizontal_irradiance",
"(",
"self",
")",
":",
"analysis_period",
"=",
"AnalysisPeriod",
"(",
"timestep",
"=",
"self",
".",
"timestep",
",",
"is_leap_year",
"=",
"self",
".",
"is_leap_year",
")",
"header_dhr",
"=",
"Header",
"(",
"data_type",
"=",
"DirectHorizontalIrradiance",
"(",
")",
",",
"unit",
"=",
"'W/m2'",
",",
"analysis_period",
"=",
"analysis_period",
",",
"metadata",
"=",
"self",
".",
"metadata",
")",
"direct_horiz",
"=",
"[",
"]",
"sp",
"=",
"Sunpath",
".",
"from_location",
"(",
"self",
".",
"location",
")",
"sp",
".",
"is_leap_year",
"=",
"self",
".",
"is_leap_year",
"for",
"dt",
",",
"dnr",
"in",
"zip",
"(",
"self",
".",
"datetimes",
",",
"self",
".",
"direct_normal_irradiance",
")",
":",
"sun",
"=",
"sp",
".",
"calculate_sun_from_date_time",
"(",
"dt",
")",
"direct_horiz",
".",
"append",
"(",
"dnr",
"*",
"math",
".",
"sin",
"(",
"math",
".",
"radians",
"(",
"sun",
".",
"altitude",
")",
")",
")",
"return",
"HourlyContinuousCollection",
"(",
"header_dhr",
",",
"direct_horiz",
")"
] | Returns the direct irradiance on a horizontal surface at each timestep.
Note that this is different from the direct_normal_irradiance needed
to construct a Wea, which is NORMAL and not HORIZONTAL. | [
"Returns",
"the",
"direct",
"irradiance",
"on",
"a",
"horizontal",
"surface",
"at",
"each",
"timestep",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L516-L533 |
4,656 | ladybug-tools/ladybug | ladybug/wea.py | Wea._get_datetimes | def _get_datetimes(timestep, is_leap_year):
"""List of datetimes based on timestep.
This method should only be used for classmethods. For datetimes use datetiems or
hoys methods.
"""
hour_count = 8760 + 24 if is_leap_year else 8760
adjust_time = 30 if timestep == 1 else 0
return tuple(
DateTime.from_moy(60.0 * count / timestep + adjust_time, is_leap_year)
for count in xrange(hour_count * timestep)
) | python | def _get_datetimes(timestep, is_leap_year):
"""List of datetimes based on timestep.
This method should only be used for classmethods. For datetimes use datetiems or
hoys methods.
"""
hour_count = 8760 + 24 if is_leap_year else 8760
adjust_time = 30 if timestep == 1 else 0
return tuple(
DateTime.from_moy(60.0 * count / timestep + adjust_time, is_leap_year)
for count in xrange(hour_count * timestep)
) | [
"def",
"_get_datetimes",
"(",
"timestep",
",",
"is_leap_year",
")",
":",
"hour_count",
"=",
"8760",
"+",
"24",
"if",
"is_leap_year",
"else",
"8760",
"adjust_time",
"=",
"30",
"if",
"timestep",
"==",
"1",
"else",
"0",
"return",
"tuple",
"(",
"DateTime",
".",
"from_moy",
"(",
"60.0",
"*",
"count",
"/",
"timestep",
"+",
"adjust_time",
",",
"is_leap_year",
")",
"for",
"count",
"in",
"xrange",
"(",
"hour_count",
"*",
"timestep",
")",
")"
] | List of datetimes based on timestep.
This method should only be used for classmethods. For datetimes use datetiems or
hoys methods. | [
"List",
"of",
"datetimes",
"based",
"on",
"timestep",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L550-L561 |
4,657 | ladybug-tools/ladybug | ladybug/wea.py | Wea._get_data_collections | def _get_data_collections(dnr_values, dhr_values, metadata, timestep, is_leap_year):
"""Return two data collections for Direct Normal , Diffuse Horizontal
"""
analysis_period = AnalysisPeriod(timestep=timestep, is_leap_year=is_leap_year)
dnr_header = Header(data_type=DirectNormalIrradiance(),
unit='W/m2',
analysis_period=analysis_period,
metadata=metadata)
direct_norm_rad = HourlyContinuousCollection(dnr_header, dnr_values)
dhr_header = Header(data_type=DiffuseHorizontalIrradiance(),
unit='W/m2',
analysis_period=analysis_period,
metadata=metadata)
diffuse_horiz_rad = HourlyContinuousCollection(dhr_header, dhr_values)
return direct_norm_rad, diffuse_horiz_rad | python | def _get_data_collections(dnr_values, dhr_values, metadata, timestep, is_leap_year):
"""Return two data collections for Direct Normal , Diffuse Horizontal
"""
analysis_period = AnalysisPeriod(timestep=timestep, is_leap_year=is_leap_year)
dnr_header = Header(data_type=DirectNormalIrradiance(),
unit='W/m2',
analysis_period=analysis_period,
metadata=metadata)
direct_norm_rad = HourlyContinuousCollection(dnr_header, dnr_values)
dhr_header = Header(data_type=DiffuseHorizontalIrradiance(),
unit='W/m2',
analysis_period=analysis_period,
metadata=metadata)
diffuse_horiz_rad = HourlyContinuousCollection(dhr_header, dhr_values)
return direct_norm_rad, diffuse_horiz_rad | [
"def",
"_get_data_collections",
"(",
"dnr_values",
",",
"dhr_values",
",",
"metadata",
",",
"timestep",
",",
"is_leap_year",
")",
":",
"analysis_period",
"=",
"AnalysisPeriod",
"(",
"timestep",
"=",
"timestep",
",",
"is_leap_year",
"=",
"is_leap_year",
")",
"dnr_header",
"=",
"Header",
"(",
"data_type",
"=",
"DirectNormalIrradiance",
"(",
")",
",",
"unit",
"=",
"'W/m2'",
",",
"analysis_period",
"=",
"analysis_period",
",",
"metadata",
"=",
"metadata",
")",
"direct_norm_rad",
"=",
"HourlyContinuousCollection",
"(",
"dnr_header",
",",
"dnr_values",
")",
"dhr_header",
"=",
"Header",
"(",
"data_type",
"=",
"DiffuseHorizontalIrradiance",
"(",
")",
",",
"unit",
"=",
"'W/m2'",
",",
"analysis_period",
"=",
"analysis_period",
",",
"metadata",
"=",
"metadata",
")",
"diffuse_horiz_rad",
"=",
"HourlyContinuousCollection",
"(",
"dhr_header",
",",
"dhr_values",
")",
"return",
"direct_norm_rad",
",",
"diffuse_horiz_rad"
] | Return two data collections for Direct Normal , Diffuse Horizontal | [
"Return",
"two",
"data",
"collections",
"for",
"Direct",
"Normal",
"Diffuse",
"Horizontal"
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L564-L579 |
4,658 | ladybug-tools/ladybug | ladybug/wea.py | Wea.get_irradiance_value | def get_irradiance_value(self, month, day, hour):
"""Get direct and diffuse irradiance values for a point in time."""
dt = DateTime(month, day, hour, leap_year=self.is_leap_year)
count = int(dt.hoy * self.timestep)
return self.direct_normal_irradiance[count], \
self.diffuse_horizontal_irradiance[count] | python | def get_irradiance_value(self, month, day, hour):
"""Get direct and diffuse irradiance values for a point in time."""
dt = DateTime(month, day, hour, leap_year=self.is_leap_year)
count = int(dt.hoy * self.timestep)
return self.direct_normal_irradiance[count], \
self.diffuse_horizontal_irradiance[count] | [
"def",
"get_irradiance_value",
"(",
"self",
",",
"month",
",",
"day",
",",
"hour",
")",
":",
"dt",
"=",
"DateTime",
"(",
"month",
",",
"day",
",",
"hour",
",",
"leap_year",
"=",
"self",
".",
"is_leap_year",
")",
"count",
"=",
"int",
"(",
"dt",
".",
"hoy",
"*",
"self",
".",
"timestep",
")",
"return",
"self",
".",
"direct_normal_irradiance",
"[",
"count",
"]",
",",
"self",
".",
"diffuse_horizontal_irradiance",
"[",
"count",
"]"
] | Get direct and diffuse irradiance values for a point in time. | [
"Get",
"direct",
"and",
"diffuse",
"irradiance",
"values",
"for",
"a",
"point",
"in",
"time",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L581-L586 |
4,659 | ladybug-tools/ladybug | ladybug/wea.py | Wea.get_irradiance_value_for_hoy | def get_irradiance_value_for_hoy(self, hoy):
"""Get direct and diffuse irradiance values for an hoy."""
count = int(hoy * self.timestep)
return self.direct_normal_irradiance[count], \
self.diffuse_horizontal_irradiance[count] | python | def get_irradiance_value_for_hoy(self, hoy):
"""Get direct and diffuse irradiance values for an hoy."""
count = int(hoy * self.timestep)
return self.direct_normal_irradiance[count], \
self.diffuse_horizontal_irradiance[count] | [
"def",
"get_irradiance_value_for_hoy",
"(",
"self",
",",
"hoy",
")",
":",
"count",
"=",
"int",
"(",
"hoy",
"*",
"self",
".",
"timestep",
")",
"return",
"self",
".",
"direct_normal_irradiance",
"[",
"count",
"]",
",",
"self",
".",
"diffuse_horizontal_irradiance",
"[",
"count",
"]"
] | Get direct and diffuse irradiance values for an hoy. | [
"Get",
"direct",
"and",
"diffuse",
"irradiance",
"values",
"for",
"an",
"hoy",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L588-L592 |
4,660 | ladybug-tools/ladybug | ladybug/wea.py | Wea.directional_irradiance | def directional_irradiance(self, altitude=90, azimuth=180,
ground_reflectance=0.2, isotrophic=True):
"""Returns the irradiance components facing a given altitude and azimuth.
This method computes unobstructed solar flux facing a given
altitude and azimuth. The default is set to return the golbal horizontal
irradiance, assuming an altitude facing straight up (90 degrees).
Args:
altitude: A number between -90 and 90 that represents the
altitude at which irradiance is being evaluated in degrees.
azimuth: A number between 0 and 360 that represents the
azimuth at wich irradiance is being evaluated in degrees.
ground_reflectance: A number between 0 and 1 that represents the
reflectance of the ground. Default is set to 0.2. Some
common ground reflectances are:
urban: 0.18
grass: 0.20
fresh grass: 0.26
soil: 0.17
sand: 0.40
snow: 0.65
fresh_snow: 0.75
asphalt: 0.12
concrete: 0.30
sea: 0.06
isotrophic: A boolean value that sets whether an istotrophic sky is
used (as opposed to an anisotrophic sky). An isotrophic sky
assummes an even distribution of diffuse irradiance across the
sky while an anisotrophic sky places more diffuse irradiance
near the solar disc. Default is set to True for isotrophic
Returns:
total_irradiance: A data collection of total solar irradiance.
direct_irradiance: A data collection of direct solar irradiance.
diffuse_irradiance: A data collection of diffuse sky solar irradiance.
reflected_irradiance: A data collection of ground reflected solar irradiance.
"""
# function to convert polar coordinates to xyz.
def pol2cart(phi, theta):
mult = math.cos(theta)
x = math.sin(phi) * mult
y = math.cos(phi) * mult
z = math.sin(theta)
return Vector3(x, y, z)
# convert the altitude and azimuth to a normal vector
normal = pol2cart(math.radians(azimuth), math.radians(altitude))
# create sunpath and get altitude at every timestep of the year
direct_irr, diffuse_irr, reflected_irr, total_irr = [], [], [], []
sp = Sunpath.from_location(self.location)
sp.is_leap_year = self.is_leap_year
for dt, dnr, dhr in zip(self.datetimes, self.direct_normal_irradiance,
self.diffuse_horizontal_irradiance):
sun = sp.calculate_sun_from_date_time(dt)
sun_vec = pol2cart(math.radians(sun.azimuth),
math.radians(sun.altitude))
vec_angle = sun_vec.angle(normal)
# direct irradiance on surface
srf_dir = 0
if sun.altitude > 0 and vec_angle < math.pi / 2:
srf_dir = dnr * math.cos(vec_angle)
# diffuse irradiance on surface
if isotrophic is True:
srf_dif = dhr * ((math.sin(math.radians(altitude)) / 2) + 0.5)
else:
y = max(0.45, 0.55 + (0.437 * math.cos(vec_angle)) + 0.313 *
math.cos(vec_angle) * 0.313 * math.cos(vec_angle))
srf_dif = self.dhr * (y * (
math.sin(math.radians(abs(90 - altitude)))) +
math.cos(math.radians(abs(90 - altitude))))
# reflected irradiance on surface.
e_glob = dhr + dnr * math.cos(math.radians(90 - sun.altitude))
srf_ref = e_glob * ground_reflectance * (0.5 - (math.sin(
math.radians(altitude)) / 2))
# add it all together
direct_irr.append(srf_dir)
diffuse_irr.append(srf_dif)
reflected_irr.append(srf_ref)
total_irr.append(srf_dir + srf_dif + srf_ref)
# create the headers
a_per = AnalysisPeriod(timestep=self.timestep, is_leap_year=self.is_leap_year)
direct_hea = diffuse_hea = reflected_hea = total_hea = \
Header(Irradiance(), 'W/m2', a_per, self.metadata)
# create the data collections
direct_irradiance = HourlyContinuousCollection(direct_hea, direct_irr)
diffuse_irradiance = HourlyContinuousCollection(diffuse_hea, diffuse_irr)
reflected_irradiance = HourlyContinuousCollection(reflected_hea, reflected_irr)
total_irradiance = HourlyContinuousCollection(total_hea, total_irr)
return total_irradiance, direct_irradiance, \
diffuse_irradiance, reflected_irradiance | python | def directional_irradiance(self, altitude=90, azimuth=180,
ground_reflectance=0.2, isotrophic=True):
"""Returns the irradiance components facing a given altitude and azimuth.
This method computes unobstructed solar flux facing a given
altitude and azimuth. The default is set to return the golbal horizontal
irradiance, assuming an altitude facing straight up (90 degrees).
Args:
altitude: A number between -90 and 90 that represents the
altitude at which irradiance is being evaluated in degrees.
azimuth: A number between 0 and 360 that represents the
azimuth at wich irradiance is being evaluated in degrees.
ground_reflectance: A number between 0 and 1 that represents the
reflectance of the ground. Default is set to 0.2. Some
common ground reflectances are:
urban: 0.18
grass: 0.20
fresh grass: 0.26
soil: 0.17
sand: 0.40
snow: 0.65
fresh_snow: 0.75
asphalt: 0.12
concrete: 0.30
sea: 0.06
isotrophic: A boolean value that sets whether an istotrophic sky is
used (as opposed to an anisotrophic sky). An isotrophic sky
assummes an even distribution of diffuse irradiance across the
sky while an anisotrophic sky places more diffuse irradiance
near the solar disc. Default is set to True for isotrophic
Returns:
total_irradiance: A data collection of total solar irradiance.
direct_irradiance: A data collection of direct solar irradiance.
diffuse_irradiance: A data collection of diffuse sky solar irradiance.
reflected_irradiance: A data collection of ground reflected solar irradiance.
"""
# function to convert polar coordinates to xyz.
def pol2cart(phi, theta):
mult = math.cos(theta)
x = math.sin(phi) * mult
y = math.cos(phi) * mult
z = math.sin(theta)
return Vector3(x, y, z)
# convert the altitude and azimuth to a normal vector
normal = pol2cart(math.radians(azimuth), math.radians(altitude))
# create sunpath and get altitude at every timestep of the year
direct_irr, diffuse_irr, reflected_irr, total_irr = [], [], [], []
sp = Sunpath.from_location(self.location)
sp.is_leap_year = self.is_leap_year
for dt, dnr, dhr in zip(self.datetimes, self.direct_normal_irradiance,
self.diffuse_horizontal_irradiance):
sun = sp.calculate_sun_from_date_time(dt)
sun_vec = pol2cart(math.radians(sun.azimuth),
math.radians(sun.altitude))
vec_angle = sun_vec.angle(normal)
# direct irradiance on surface
srf_dir = 0
if sun.altitude > 0 and vec_angle < math.pi / 2:
srf_dir = dnr * math.cos(vec_angle)
# diffuse irradiance on surface
if isotrophic is True:
srf_dif = dhr * ((math.sin(math.radians(altitude)) / 2) + 0.5)
else:
y = max(0.45, 0.55 + (0.437 * math.cos(vec_angle)) + 0.313 *
math.cos(vec_angle) * 0.313 * math.cos(vec_angle))
srf_dif = self.dhr * (y * (
math.sin(math.radians(abs(90 - altitude)))) +
math.cos(math.radians(abs(90 - altitude))))
# reflected irradiance on surface.
e_glob = dhr + dnr * math.cos(math.radians(90 - sun.altitude))
srf_ref = e_glob * ground_reflectance * (0.5 - (math.sin(
math.radians(altitude)) / 2))
# add it all together
direct_irr.append(srf_dir)
diffuse_irr.append(srf_dif)
reflected_irr.append(srf_ref)
total_irr.append(srf_dir + srf_dif + srf_ref)
# create the headers
a_per = AnalysisPeriod(timestep=self.timestep, is_leap_year=self.is_leap_year)
direct_hea = diffuse_hea = reflected_hea = total_hea = \
Header(Irradiance(), 'W/m2', a_per, self.metadata)
# create the data collections
direct_irradiance = HourlyContinuousCollection(direct_hea, direct_irr)
diffuse_irradiance = HourlyContinuousCollection(diffuse_hea, diffuse_irr)
reflected_irradiance = HourlyContinuousCollection(reflected_hea, reflected_irr)
total_irradiance = HourlyContinuousCollection(total_hea, total_irr)
return total_irradiance, direct_irradiance, \
diffuse_irradiance, reflected_irradiance | [
"def",
"directional_irradiance",
"(",
"self",
",",
"altitude",
"=",
"90",
",",
"azimuth",
"=",
"180",
",",
"ground_reflectance",
"=",
"0.2",
",",
"isotrophic",
"=",
"True",
")",
":",
"# function to convert polar coordinates to xyz.",
"def",
"pol2cart",
"(",
"phi",
",",
"theta",
")",
":",
"mult",
"=",
"math",
".",
"cos",
"(",
"theta",
")",
"x",
"=",
"math",
".",
"sin",
"(",
"phi",
")",
"*",
"mult",
"y",
"=",
"math",
".",
"cos",
"(",
"phi",
")",
"*",
"mult",
"z",
"=",
"math",
".",
"sin",
"(",
"theta",
")",
"return",
"Vector3",
"(",
"x",
",",
"y",
",",
"z",
")",
"# convert the altitude and azimuth to a normal vector",
"normal",
"=",
"pol2cart",
"(",
"math",
".",
"radians",
"(",
"azimuth",
")",
",",
"math",
".",
"radians",
"(",
"altitude",
")",
")",
"# create sunpath and get altitude at every timestep of the year",
"direct_irr",
",",
"diffuse_irr",
",",
"reflected_irr",
",",
"total_irr",
"=",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
"sp",
"=",
"Sunpath",
".",
"from_location",
"(",
"self",
".",
"location",
")",
"sp",
".",
"is_leap_year",
"=",
"self",
".",
"is_leap_year",
"for",
"dt",
",",
"dnr",
",",
"dhr",
"in",
"zip",
"(",
"self",
".",
"datetimes",
",",
"self",
".",
"direct_normal_irradiance",
",",
"self",
".",
"diffuse_horizontal_irradiance",
")",
":",
"sun",
"=",
"sp",
".",
"calculate_sun_from_date_time",
"(",
"dt",
")",
"sun_vec",
"=",
"pol2cart",
"(",
"math",
".",
"radians",
"(",
"sun",
".",
"azimuth",
")",
",",
"math",
".",
"radians",
"(",
"sun",
".",
"altitude",
")",
")",
"vec_angle",
"=",
"sun_vec",
".",
"angle",
"(",
"normal",
")",
"# direct irradiance on surface",
"srf_dir",
"=",
"0",
"if",
"sun",
".",
"altitude",
">",
"0",
"and",
"vec_angle",
"<",
"math",
".",
"pi",
"/",
"2",
":",
"srf_dir",
"=",
"dnr",
"*",
"math",
".",
"cos",
"(",
"vec_angle",
")",
"# diffuse irradiance on surface",
"if",
"isotrophic",
"is",
"True",
":",
"srf_dif",
"=",
"dhr",
"*",
"(",
"(",
"math",
".",
"sin",
"(",
"math",
".",
"radians",
"(",
"altitude",
")",
")",
"/",
"2",
")",
"+",
"0.5",
")",
"else",
":",
"y",
"=",
"max",
"(",
"0.45",
",",
"0.55",
"+",
"(",
"0.437",
"*",
"math",
".",
"cos",
"(",
"vec_angle",
")",
")",
"+",
"0.313",
"*",
"math",
".",
"cos",
"(",
"vec_angle",
")",
"*",
"0.313",
"*",
"math",
".",
"cos",
"(",
"vec_angle",
")",
")",
"srf_dif",
"=",
"self",
".",
"dhr",
"*",
"(",
"y",
"*",
"(",
"math",
".",
"sin",
"(",
"math",
".",
"radians",
"(",
"abs",
"(",
"90",
"-",
"altitude",
")",
")",
")",
")",
"+",
"math",
".",
"cos",
"(",
"math",
".",
"radians",
"(",
"abs",
"(",
"90",
"-",
"altitude",
")",
")",
")",
")",
"# reflected irradiance on surface.",
"e_glob",
"=",
"dhr",
"+",
"dnr",
"*",
"math",
".",
"cos",
"(",
"math",
".",
"radians",
"(",
"90",
"-",
"sun",
".",
"altitude",
")",
")",
"srf_ref",
"=",
"e_glob",
"*",
"ground_reflectance",
"*",
"(",
"0.5",
"-",
"(",
"math",
".",
"sin",
"(",
"math",
".",
"radians",
"(",
"altitude",
")",
")",
"/",
"2",
")",
")",
"# add it all together",
"direct_irr",
".",
"append",
"(",
"srf_dir",
")",
"diffuse_irr",
".",
"append",
"(",
"srf_dif",
")",
"reflected_irr",
".",
"append",
"(",
"srf_ref",
")",
"total_irr",
".",
"append",
"(",
"srf_dir",
"+",
"srf_dif",
"+",
"srf_ref",
")",
"# create the headers",
"a_per",
"=",
"AnalysisPeriod",
"(",
"timestep",
"=",
"self",
".",
"timestep",
",",
"is_leap_year",
"=",
"self",
".",
"is_leap_year",
")",
"direct_hea",
"=",
"diffuse_hea",
"=",
"reflected_hea",
"=",
"total_hea",
"=",
"Header",
"(",
"Irradiance",
"(",
")",
",",
"'W/m2'",
",",
"a_per",
",",
"self",
".",
"metadata",
")",
"# create the data collections",
"direct_irradiance",
"=",
"HourlyContinuousCollection",
"(",
"direct_hea",
",",
"direct_irr",
")",
"diffuse_irradiance",
"=",
"HourlyContinuousCollection",
"(",
"diffuse_hea",
",",
"diffuse_irr",
")",
"reflected_irradiance",
"=",
"HourlyContinuousCollection",
"(",
"reflected_hea",
",",
"reflected_irr",
")",
"total_irradiance",
"=",
"HourlyContinuousCollection",
"(",
"total_hea",
",",
"total_irr",
")",
"return",
"total_irradiance",
",",
"direct_irradiance",
",",
"diffuse_irradiance",
",",
"reflected_irradiance"
] | Returns the irradiance components facing a given altitude and azimuth.
This method computes unobstructed solar flux facing a given
altitude and azimuth. The default is set to return the golbal horizontal
irradiance, assuming an altitude facing straight up (90 degrees).
Args:
altitude: A number between -90 and 90 that represents the
altitude at which irradiance is being evaluated in degrees.
azimuth: A number between 0 and 360 that represents the
azimuth at wich irradiance is being evaluated in degrees.
ground_reflectance: A number between 0 and 1 that represents the
reflectance of the ground. Default is set to 0.2. Some
common ground reflectances are:
urban: 0.18
grass: 0.20
fresh grass: 0.26
soil: 0.17
sand: 0.40
snow: 0.65
fresh_snow: 0.75
asphalt: 0.12
concrete: 0.30
sea: 0.06
isotrophic: A boolean value that sets whether an istotrophic sky is
used (as opposed to an anisotrophic sky). An isotrophic sky
assummes an even distribution of diffuse irradiance across the
sky while an anisotrophic sky places more diffuse irradiance
near the solar disc. Default is set to True for isotrophic
Returns:
total_irradiance: A data collection of total solar irradiance.
direct_irradiance: A data collection of direct solar irradiance.
diffuse_irradiance: A data collection of diffuse sky solar irradiance.
reflected_irradiance: A data collection of ground reflected solar irradiance. | [
"Returns",
"the",
"irradiance",
"components",
"facing",
"a",
"given",
"altitude",
"and",
"azimuth",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L594-L692 |
4,661 | ladybug-tools/ladybug | ladybug/wea.py | Wea.header | def header(self):
"""Wea header."""
return "place %s\n" % self.location.city + \
"latitude %.2f\n" % self.location.latitude + \
"longitude %.2f\n" % -self.location.longitude + \
"time_zone %d\n" % (-self.location.time_zone * 15) + \
"site_elevation %.1f\n" % self.location.elevation + \
"weather_data_file_units 1\n" | python | def header(self):
"""Wea header."""
return "place %s\n" % self.location.city + \
"latitude %.2f\n" % self.location.latitude + \
"longitude %.2f\n" % -self.location.longitude + \
"time_zone %d\n" % (-self.location.time_zone * 15) + \
"site_elevation %.1f\n" % self.location.elevation + \
"weather_data_file_units 1\n" | [
"def",
"header",
"(",
"self",
")",
":",
"return",
"\"place %s\\n\"",
"%",
"self",
".",
"location",
".",
"city",
"+",
"\"latitude %.2f\\n\"",
"%",
"self",
".",
"location",
".",
"latitude",
"+",
"\"longitude %.2f\\n\"",
"%",
"-",
"self",
".",
"location",
".",
"longitude",
"+",
"\"time_zone %d\\n\"",
"%",
"(",
"-",
"self",
".",
"location",
".",
"time_zone",
"*",
"15",
")",
"+",
"\"site_elevation %.1f\\n\"",
"%",
"self",
".",
"location",
".",
"elevation",
"+",
"\"weather_data_file_units 1\\n\""
] | Wea header. | [
"Wea",
"header",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L695-L702 |
4,662 | ladybug-tools/ladybug | ladybug/wea.py | Wea.write | def write(self, file_path, hoys=None, write_hours=False):
"""Write the wea file.
WEA carries irradiance values from epw and is what gendaymtx uses to
generate the sky.
"""
if not file_path.lower().endswith('.wea'):
file_path += '.wea'
# generate hoys in wea file based on timestep
full_wea = False
if not hoys:
hoys = self.hoys
full_wea = True
# write header
lines = [self.header]
if full_wea:
# there is no user input for hoys, write it for all the hours
for dir_rad, dif_rad, dt in zip(self.direct_normal_irradiance,
self.diffuse_horizontal_irradiance,
self.datetimes):
line = "%d %d %.3f %d %d\n" \
% (dt.month, dt.day, dt.float_hour, dir_rad, dif_rad)
lines.append(line)
else:
# output wea based on user request
for hoy in hoys:
try:
dir_rad, dif_rad = self.get_irradiance_value_for_hoy(hoy)
except IndexError:
print('Warn: Wea data for {} is not available!'.format(dt))
continue
dt = DateTime.from_hoy(hoy)
dt = dt.add_minute(30) if self.timestep == 1 else dt
line = "%d %d %.3f %d %d\n" \
% (dt.month, dt.day, dt.float_hour, dir_rad, dif_rad)
lines.append(line)
file_data = ''.join(lines)
write_to_file(file_path, file_data, True)
if write_hours:
hrs_file_path = file_path[:-4] + '.hrs'
hrs_data = ','.join(str(h) for h in hoys) + '\n'
write_to_file(hrs_file_path, hrs_data, True)
return file_path | python | def write(self, file_path, hoys=None, write_hours=False):
"""Write the wea file.
WEA carries irradiance values from epw and is what gendaymtx uses to
generate the sky.
"""
if not file_path.lower().endswith('.wea'):
file_path += '.wea'
# generate hoys in wea file based on timestep
full_wea = False
if not hoys:
hoys = self.hoys
full_wea = True
# write header
lines = [self.header]
if full_wea:
# there is no user input for hoys, write it for all the hours
for dir_rad, dif_rad, dt in zip(self.direct_normal_irradiance,
self.diffuse_horizontal_irradiance,
self.datetimes):
line = "%d %d %.3f %d %d\n" \
% (dt.month, dt.day, dt.float_hour, dir_rad, dif_rad)
lines.append(line)
else:
# output wea based on user request
for hoy in hoys:
try:
dir_rad, dif_rad = self.get_irradiance_value_for_hoy(hoy)
except IndexError:
print('Warn: Wea data for {} is not available!'.format(dt))
continue
dt = DateTime.from_hoy(hoy)
dt = dt.add_minute(30) if self.timestep == 1 else dt
line = "%d %d %.3f %d %d\n" \
% (dt.month, dt.day, dt.float_hour, dir_rad, dif_rad)
lines.append(line)
file_data = ''.join(lines)
write_to_file(file_path, file_data, True)
if write_hours:
hrs_file_path = file_path[:-4] + '.hrs'
hrs_data = ','.join(str(h) for h in hoys) + '\n'
write_to_file(hrs_file_path, hrs_data, True)
return file_path | [
"def",
"write",
"(",
"self",
",",
"file_path",
",",
"hoys",
"=",
"None",
",",
"write_hours",
"=",
"False",
")",
":",
"if",
"not",
"file_path",
".",
"lower",
"(",
")",
".",
"endswith",
"(",
"'.wea'",
")",
":",
"file_path",
"+=",
"'.wea'",
"# generate hoys in wea file based on timestep",
"full_wea",
"=",
"False",
"if",
"not",
"hoys",
":",
"hoys",
"=",
"self",
".",
"hoys",
"full_wea",
"=",
"True",
"# write header",
"lines",
"=",
"[",
"self",
".",
"header",
"]",
"if",
"full_wea",
":",
"# there is no user input for hoys, write it for all the hours",
"for",
"dir_rad",
",",
"dif_rad",
",",
"dt",
"in",
"zip",
"(",
"self",
".",
"direct_normal_irradiance",
",",
"self",
".",
"diffuse_horizontal_irradiance",
",",
"self",
".",
"datetimes",
")",
":",
"line",
"=",
"\"%d %d %.3f %d %d\\n\"",
"%",
"(",
"dt",
".",
"month",
",",
"dt",
".",
"day",
",",
"dt",
".",
"float_hour",
",",
"dir_rad",
",",
"dif_rad",
")",
"lines",
".",
"append",
"(",
"line",
")",
"else",
":",
"# output wea based on user request",
"for",
"hoy",
"in",
"hoys",
":",
"try",
":",
"dir_rad",
",",
"dif_rad",
"=",
"self",
".",
"get_irradiance_value_for_hoy",
"(",
"hoy",
")",
"except",
"IndexError",
":",
"print",
"(",
"'Warn: Wea data for {} is not available!'",
".",
"format",
"(",
"dt",
")",
")",
"continue",
"dt",
"=",
"DateTime",
".",
"from_hoy",
"(",
"hoy",
")",
"dt",
"=",
"dt",
".",
"add_minute",
"(",
"30",
")",
"if",
"self",
".",
"timestep",
"==",
"1",
"else",
"dt",
"line",
"=",
"\"%d %d %.3f %d %d\\n\"",
"%",
"(",
"dt",
".",
"month",
",",
"dt",
".",
"day",
",",
"dt",
".",
"float_hour",
",",
"dir_rad",
",",
"dif_rad",
")",
"lines",
".",
"append",
"(",
"line",
")",
"file_data",
"=",
"''",
".",
"join",
"(",
"lines",
")",
"write_to_file",
"(",
"file_path",
",",
"file_data",
",",
"True",
")",
"if",
"write_hours",
":",
"hrs_file_path",
"=",
"file_path",
"[",
":",
"-",
"4",
"]",
"+",
"'.hrs'",
"hrs_data",
"=",
"','",
".",
"join",
"(",
"str",
"(",
"h",
")",
"for",
"h",
"in",
"hoys",
")",
"+",
"'\\n'",
"write_to_file",
"(",
"hrs_file_path",
",",
"hrs_data",
",",
"True",
")",
"return",
"file_path"
] | Write the wea file.
WEA carries irradiance values from epw and is what gendaymtx uses to
generate the sky. | [
"Write",
"the",
"wea",
"file",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/wea.py#L725-L773 |
4,663 | ladybug-tools/ladybug | ladybug/listoperations.py | flatten | def flatten(input_list):
"""Return a flattened genertor from an input list.
Usage:
input_list = [['a'], ['b', 'c', 'd'], [['e']], ['f']]
list(flatten(input_list))
>> ['a', 'b', 'c', 'd', 'e', 'f']
"""
for el in input_list:
if isinstance(el, collections.Iterable) \
and not isinstance(el, basestring):
for sub in flatten(el):
yield sub
else:
yield el | python | def flatten(input_list):
"""Return a flattened genertor from an input list.
Usage:
input_list = [['a'], ['b', 'c', 'd'], [['e']], ['f']]
list(flatten(input_list))
>> ['a', 'b', 'c', 'd', 'e', 'f']
"""
for el in input_list:
if isinstance(el, collections.Iterable) \
and not isinstance(el, basestring):
for sub in flatten(el):
yield sub
else:
yield el | [
"def",
"flatten",
"(",
"input_list",
")",
":",
"for",
"el",
"in",
"input_list",
":",
"if",
"isinstance",
"(",
"el",
",",
"collections",
".",
"Iterable",
")",
"and",
"not",
"isinstance",
"(",
"el",
",",
"basestring",
")",
":",
"for",
"sub",
"in",
"flatten",
"(",
"el",
")",
":",
"yield",
"sub",
"else",
":",
"yield",
"el"
] | Return a flattened genertor from an input list.
Usage:
input_list = [['a'], ['b', 'c', 'd'], [['e']], ['f']]
list(flatten(input_list))
>> ['a', 'b', 'c', 'd', 'e', 'f'] | [
"Return",
"a",
"flattened",
"genertor",
"from",
"an",
"input",
"list",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/listoperations.py#L8-L23 |
4,664 | ladybug-tools/ladybug | ladybug/listoperations.py | unflatten | def unflatten(guide, falttened_input):
"""Unflatten a falttened generator.
Args:
guide: A guide list to follow the structure
falttened_input: A flattened iterator object
Usage:
guide = [["a"], ["b","c","d"], [["e"]], ["f"]]
input_list = [0, 1, 2, 3, 4, 5, 6, 7]
unflatten(guide, iter(input_list))
>> [[0], [1, 2, 3], [[4]], [5]]
"""
return [unflatten(sub_list, falttened_input) if isinstance(sub_list, list)
else next(falttened_input) for sub_list in guide] | python | def unflatten(guide, falttened_input):
"""Unflatten a falttened generator.
Args:
guide: A guide list to follow the structure
falttened_input: A flattened iterator object
Usage:
guide = [["a"], ["b","c","d"], [["e"]], ["f"]]
input_list = [0, 1, 2, 3, 4, 5, 6, 7]
unflatten(guide, iter(input_list))
>> [[0], [1, 2, 3], [[4]], [5]]
"""
return [unflatten(sub_list, falttened_input) if isinstance(sub_list, list)
else next(falttened_input) for sub_list in guide] | [
"def",
"unflatten",
"(",
"guide",
",",
"falttened_input",
")",
":",
"return",
"[",
"unflatten",
"(",
"sub_list",
",",
"falttened_input",
")",
"if",
"isinstance",
"(",
"sub_list",
",",
"list",
")",
"else",
"next",
"(",
"falttened_input",
")",
"for",
"sub_list",
"in",
"guide",
"]"
] | Unflatten a falttened generator.
Args:
guide: A guide list to follow the structure
falttened_input: A flattened iterator object
Usage:
guide = [["a"], ["b","c","d"], [["e"]], ["f"]]
input_list = [0, 1, 2, 3, 4, 5, 6, 7]
unflatten(guide, iter(input_list))
>> [[0], [1, 2, 3], [[4]], [5]] | [
"Unflatten",
"a",
"falttened",
"generator",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/listoperations.py#L26-L41 |
4,665 | ladybug-tools/ladybug | ladybug/color.py | ColorRange.color | def color(self, value):
"""Return color for an input value."""
assert self._is_domain_set, \
"Domain is not set. Use self.domain to set the domain."
if self._ctype == 2:
# if ordinal map the value and color
try:
return self._colors[self._domain.index(value)]
except ValueError:
raise ValueError(
"%s is not a valid input for ordinal type.\n" % str(value) +
"List of valid values are %s" % ";".join(map(str, self._domain))
)
if value < self._domain[0]:
return self._colors[0]
if value > self._domain[-1]:
return self._colors[-1]
# find the index of the value in domain
for count, d in enumerate(self._domain):
if d <= value <= self._domain[count + 1]:
if self._ctype == 0:
return self._cal_color(value, count)
if self._ctype == 1:
return self._colors[count + 1] | python | def color(self, value):
"""Return color for an input value."""
assert self._is_domain_set, \
"Domain is not set. Use self.domain to set the domain."
if self._ctype == 2:
# if ordinal map the value and color
try:
return self._colors[self._domain.index(value)]
except ValueError:
raise ValueError(
"%s is not a valid input for ordinal type.\n" % str(value) +
"List of valid values are %s" % ";".join(map(str, self._domain))
)
if value < self._domain[0]:
return self._colors[0]
if value > self._domain[-1]:
return self._colors[-1]
# find the index of the value in domain
for count, d in enumerate(self._domain):
if d <= value <= self._domain[count + 1]:
if self._ctype == 0:
return self._cal_color(value, count)
if self._ctype == 1:
return self._colors[count + 1] | [
"def",
"color",
"(",
"self",
",",
"value",
")",
":",
"assert",
"self",
".",
"_is_domain_set",
",",
"\"Domain is not set. Use self.domain to set the domain.\"",
"if",
"self",
".",
"_ctype",
"==",
"2",
":",
"# if ordinal map the value and color",
"try",
":",
"return",
"self",
".",
"_colors",
"[",
"self",
".",
"_domain",
".",
"index",
"(",
"value",
")",
"]",
"except",
"ValueError",
":",
"raise",
"ValueError",
"(",
"\"%s is not a valid input for ordinal type.\\n\"",
"%",
"str",
"(",
"value",
")",
"+",
"\"List of valid values are %s\"",
"%",
"\";\"",
".",
"join",
"(",
"map",
"(",
"str",
",",
"self",
".",
"_domain",
")",
")",
")",
"if",
"value",
"<",
"self",
".",
"_domain",
"[",
"0",
"]",
":",
"return",
"self",
".",
"_colors",
"[",
"0",
"]",
"if",
"value",
">",
"self",
".",
"_domain",
"[",
"-",
"1",
"]",
":",
"return",
"self",
".",
"_colors",
"[",
"-",
"1",
"]",
"# find the index of the value in domain",
"for",
"count",
",",
"d",
"in",
"enumerate",
"(",
"self",
".",
"_domain",
")",
":",
"if",
"d",
"<=",
"value",
"<=",
"self",
".",
"_domain",
"[",
"count",
"+",
"1",
"]",
":",
"if",
"self",
".",
"_ctype",
"==",
"0",
":",
"return",
"self",
".",
"_cal_color",
"(",
"value",
",",
"count",
")",
"if",
"self",
".",
"_ctype",
"==",
"1",
":",
"return",
"self",
".",
"_colors",
"[",
"count",
"+",
"1",
"]"
] | Return color for an input value. | [
"Return",
"color",
"for",
"an",
"input",
"value",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/color.py#L436-L462 |
4,666 | ladybug-tools/ladybug | ladybug/color.py | ColorRange._cal_color | def _cal_color(self, value, color_index):
"""Blend between two colors based on input value."""
range_min_p = self._domain[color_index]
range_p = self._domain[color_index + 1] - range_min_p
try:
factor = (value - range_min_p) / range_p
except ZeroDivisionError:
factor = 0
min_color = self.colors[color_index]
max_color = self.colors[color_index + 1]
red = round(factor * (max_color.r - min_color.r) + min_color.r)
green = round(factor * (max_color.g - min_color.g) + min_color.g)
blue = round(factor * (max_color.b - min_color.b) + min_color.b)
return Color(red, green, blue) | python | def _cal_color(self, value, color_index):
"""Blend between two colors based on input value."""
range_min_p = self._domain[color_index]
range_p = self._domain[color_index + 1] - range_min_p
try:
factor = (value - range_min_p) / range_p
except ZeroDivisionError:
factor = 0
min_color = self.colors[color_index]
max_color = self.colors[color_index + 1]
red = round(factor * (max_color.r - min_color.r) + min_color.r)
green = round(factor * (max_color.g - min_color.g) + min_color.g)
blue = round(factor * (max_color.b - min_color.b) + min_color.b)
return Color(red, green, blue) | [
"def",
"_cal_color",
"(",
"self",
",",
"value",
",",
"color_index",
")",
":",
"range_min_p",
"=",
"self",
".",
"_domain",
"[",
"color_index",
"]",
"range_p",
"=",
"self",
".",
"_domain",
"[",
"color_index",
"+",
"1",
"]",
"-",
"range_min_p",
"try",
":",
"factor",
"=",
"(",
"value",
"-",
"range_min_p",
")",
"/",
"range_p",
"except",
"ZeroDivisionError",
":",
"factor",
"=",
"0",
"min_color",
"=",
"self",
".",
"colors",
"[",
"color_index",
"]",
"max_color",
"=",
"self",
".",
"colors",
"[",
"color_index",
"+",
"1",
"]",
"red",
"=",
"round",
"(",
"factor",
"*",
"(",
"max_color",
".",
"r",
"-",
"min_color",
".",
"r",
")",
"+",
"min_color",
".",
"r",
")",
"green",
"=",
"round",
"(",
"factor",
"*",
"(",
"max_color",
".",
"g",
"-",
"min_color",
".",
"g",
")",
"+",
"min_color",
".",
"g",
")",
"blue",
"=",
"round",
"(",
"factor",
"*",
"(",
"max_color",
".",
"b",
"-",
"min_color",
".",
"b",
")",
"+",
"min_color",
".",
"b",
")",
"return",
"Color",
"(",
"red",
",",
"green",
",",
"blue",
")"
] | Blend between two colors based on input value. | [
"Blend",
"between",
"two",
"colors",
"based",
"on",
"input",
"value",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/color.py#L464-L479 |
4,667 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath.from_location | def from_location(cls, location, north_angle=0, daylight_saving_period=None):
"""Create a sun path from a LBlocation."""
location = Location.from_location(location)
return cls(location.latitude, location.longitude,
location.time_zone, north_angle, daylight_saving_period) | python | def from_location(cls, location, north_angle=0, daylight_saving_period=None):
"""Create a sun path from a LBlocation."""
location = Location.from_location(location)
return cls(location.latitude, location.longitude,
location.time_zone, north_angle, daylight_saving_period) | [
"def",
"from_location",
"(",
"cls",
",",
"location",
",",
"north_angle",
"=",
"0",
",",
"daylight_saving_period",
"=",
"None",
")",
":",
"location",
"=",
"Location",
".",
"from_location",
"(",
"location",
")",
"return",
"cls",
"(",
"location",
".",
"latitude",
",",
"location",
".",
"longitude",
",",
"location",
".",
"time_zone",
",",
"north_angle",
",",
"daylight_saving_period",
")"
] | Create a sun path from a LBlocation. | [
"Create",
"a",
"sun",
"path",
"from",
"a",
"LBlocation",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L84-L88 |
4,668 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath.latitude | def latitude(self, value):
"""Set latitude value."""
self._latitude = math.radians(float(value))
assert -self.PI / 2 <= self._latitude <= self.PI / 2, \
"latitude value should be between -90..90." | python | def latitude(self, value):
"""Set latitude value."""
self._latitude = math.radians(float(value))
assert -self.PI / 2 <= self._latitude <= self.PI / 2, \
"latitude value should be between -90..90." | [
"def",
"latitude",
"(",
"self",
",",
"value",
")",
":",
"self",
".",
"_latitude",
"=",
"math",
".",
"radians",
"(",
"float",
"(",
"value",
")",
")",
"assert",
"-",
"self",
".",
"PI",
"/",
"2",
"<=",
"self",
".",
"_latitude",
"<=",
"self",
".",
"PI",
"/",
"2",
",",
"\"latitude value should be between -90..90.\""
] | Set latitude value. | [
"Set",
"latitude",
"value",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L96-L100 |
4,669 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath.longitude | def longitude(self, value):
"""Set longitude value in degrees."""
self._longitude = math.radians(float(value))
# update time_zone
if abs((value / 15.0) - self.time_zone) > 1:
# if time_zone doesn't match the longitude update the time_zone
self.time_zone = value / 15.0 | python | def longitude(self, value):
"""Set longitude value in degrees."""
self._longitude = math.radians(float(value))
# update time_zone
if abs((value / 15.0) - self.time_zone) > 1:
# if time_zone doesn't match the longitude update the time_zone
self.time_zone = value / 15.0 | [
"def",
"longitude",
"(",
"self",
",",
"value",
")",
":",
"self",
".",
"_longitude",
"=",
"math",
".",
"radians",
"(",
"float",
"(",
"value",
")",
")",
"# update time_zone",
"if",
"abs",
"(",
"(",
"value",
"/",
"15.0",
")",
"-",
"self",
".",
"time_zone",
")",
">",
"1",
":",
"# if time_zone doesn't match the longitude update the time_zone",
"self",
".",
"time_zone",
"=",
"value",
"/",
"15.0"
] | Set longitude value in degrees. | [
"Set",
"longitude",
"value",
"in",
"degrees",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L108-L115 |
4,670 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath.is_daylight_saving_hour | def is_daylight_saving_hour(self, datetime):
"""Check if a datetime is a daylight saving time."""
if not self.daylight_saving_period:
return False
return self.daylight_saving_period.isTimeIncluded(datetime.hoy) | python | def is_daylight_saving_hour(self, datetime):
"""Check if a datetime is a daylight saving time."""
if not self.daylight_saving_period:
return False
return self.daylight_saving_period.isTimeIncluded(datetime.hoy) | [
"def",
"is_daylight_saving_hour",
"(",
"self",
",",
"datetime",
")",
":",
"if",
"not",
"self",
".",
"daylight_saving_period",
":",
"return",
"False",
"return",
"self",
".",
"daylight_saving_period",
".",
"isTimeIncluded",
"(",
"datetime",
".",
"hoy",
")"
] | Check if a datetime is a daylight saving time. | [
"Check",
"if",
"a",
"datetime",
"is",
"a",
"daylight",
"saving",
"time",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L127-L131 |
4,671 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath.calculate_sun_from_date_time | def calculate_sun_from_date_time(self, datetime, is_solar_time=False):
"""Get Sun for an hour of the year.
This code is originally written by Trygve Wastvedt \
([email protected])
based on (NOAA) and modified by Chris Mackey and Mostapha Roudsari
Args:
datetime: Ladybug datetime
is_solar_time: A boolean to indicate if the input hour is solar time.
(Default: False)
Returns:
A sun object for this particular time
"""
# TODO(mostapha): This should be more generic and based on a method
if datetime.year != 2016 and self.is_leap_year:
datetime = DateTime(datetime.month, datetime.day, datetime.hour,
datetime.minute, True)
sol_dec, eq_of_time = self._calculate_solar_geometry(datetime)
hour = datetime.float_hour
is_daylight_saving = self.is_daylight_saving_hour(datetime.hoy)
hour = hour + 1 if self.is_daylight_saving_hour(datetime.hoy) else hour
# minutes
sol_time = self._calculate_solar_time(hour, eq_of_time, is_solar_time) * 60
# degrees
if sol_time / 4 < 0:
hour_angle = sol_time / 4 + 180
else:
hour_angle = sol_time / 4 - 180
# Degrees
zenith = math.degrees(math.acos
(math.sin(self._latitude) *
math.sin(math.radians(sol_dec)) +
math.cos(self._latitude) *
math.cos(math.radians(sol_dec)) *
math.cos(math.radians(hour_angle))))
altitude = 90 - zenith
# Approx Atmospheric Refraction
if altitude > 85:
atmos_refraction = 0
else:
if altitude > 5:
atmos_refraction = 58.1 / math.tan(math.radians(altitude))
- 0.07 / (math.tan(math.radians(altitude)))**3
+ 0.000086 / (math.tan(math.radians(altitude)))**5
else:
if altitude > -0.575:
atmos_refraction = 1735
+ altitude * (-518.2 + altitude *
(103.4 + altitude *
(-12.79 + altitude * 0.711)))
else:
atmos_refraction = -20.772 / math.tan(
math.radians(altitude))
atmos_refraction /= 3600
altitude += atmos_refraction
# Degrees
if hour_angle > 0:
azimuth = (math.degrees(
math.acos(
(
(math.sin(self._latitude) *
math.cos(math.radians(zenith))) -
math.sin(math.radians(sol_dec))) /
(math.cos(self._latitude) *
math.sin(math.radians(zenith)))
)
) + 180) % 360
else:
azimuth = (540 - math.degrees(math.acos((
(math.sin(self._latitude) *
math.cos(math.radians(zenith))) -
math.sin(math.radians(sol_dec))) /
(math.cos(self._latitude) *
math.sin(math.radians(zenith))))
)) % 360
altitude = math.radians(altitude)
azimuth = math.radians(azimuth)
# create the sun for this hour
return Sun(datetime, altitude, azimuth, is_solar_time, is_daylight_saving,
self.north_angle) | python | def calculate_sun_from_date_time(self, datetime, is_solar_time=False):
"""Get Sun for an hour of the year.
This code is originally written by Trygve Wastvedt \
([email protected])
based on (NOAA) and modified by Chris Mackey and Mostapha Roudsari
Args:
datetime: Ladybug datetime
is_solar_time: A boolean to indicate if the input hour is solar time.
(Default: False)
Returns:
A sun object for this particular time
"""
# TODO(mostapha): This should be more generic and based on a method
if datetime.year != 2016 and self.is_leap_year:
datetime = DateTime(datetime.month, datetime.day, datetime.hour,
datetime.minute, True)
sol_dec, eq_of_time = self._calculate_solar_geometry(datetime)
hour = datetime.float_hour
is_daylight_saving = self.is_daylight_saving_hour(datetime.hoy)
hour = hour + 1 if self.is_daylight_saving_hour(datetime.hoy) else hour
# minutes
sol_time = self._calculate_solar_time(hour, eq_of_time, is_solar_time) * 60
# degrees
if sol_time / 4 < 0:
hour_angle = sol_time / 4 + 180
else:
hour_angle = sol_time / 4 - 180
# Degrees
zenith = math.degrees(math.acos
(math.sin(self._latitude) *
math.sin(math.radians(sol_dec)) +
math.cos(self._latitude) *
math.cos(math.radians(sol_dec)) *
math.cos(math.radians(hour_angle))))
altitude = 90 - zenith
# Approx Atmospheric Refraction
if altitude > 85:
atmos_refraction = 0
else:
if altitude > 5:
atmos_refraction = 58.1 / math.tan(math.radians(altitude))
- 0.07 / (math.tan(math.radians(altitude)))**3
+ 0.000086 / (math.tan(math.radians(altitude)))**5
else:
if altitude > -0.575:
atmos_refraction = 1735
+ altitude * (-518.2 + altitude *
(103.4 + altitude *
(-12.79 + altitude * 0.711)))
else:
atmos_refraction = -20.772 / math.tan(
math.radians(altitude))
atmos_refraction /= 3600
altitude += atmos_refraction
# Degrees
if hour_angle > 0:
azimuth = (math.degrees(
math.acos(
(
(math.sin(self._latitude) *
math.cos(math.radians(zenith))) -
math.sin(math.radians(sol_dec))) /
(math.cos(self._latitude) *
math.sin(math.radians(zenith)))
)
) + 180) % 360
else:
azimuth = (540 - math.degrees(math.acos((
(math.sin(self._latitude) *
math.cos(math.radians(zenith))) -
math.sin(math.radians(sol_dec))) /
(math.cos(self._latitude) *
math.sin(math.radians(zenith))))
)) % 360
altitude = math.radians(altitude)
azimuth = math.radians(azimuth)
# create the sun for this hour
return Sun(datetime, altitude, azimuth, is_solar_time, is_daylight_saving,
self.north_angle) | [
"def",
"calculate_sun_from_date_time",
"(",
"self",
",",
"datetime",
",",
"is_solar_time",
"=",
"False",
")",
":",
"# TODO(mostapha): This should be more generic and based on a method",
"if",
"datetime",
".",
"year",
"!=",
"2016",
"and",
"self",
".",
"is_leap_year",
":",
"datetime",
"=",
"DateTime",
"(",
"datetime",
".",
"month",
",",
"datetime",
".",
"day",
",",
"datetime",
".",
"hour",
",",
"datetime",
".",
"minute",
",",
"True",
")",
"sol_dec",
",",
"eq_of_time",
"=",
"self",
".",
"_calculate_solar_geometry",
"(",
"datetime",
")",
"hour",
"=",
"datetime",
".",
"float_hour",
"is_daylight_saving",
"=",
"self",
".",
"is_daylight_saving_hour",
"(",
"datetime",
".",
"hoy",
")",
"hour",
"=",
"hour",
"+",
"1",
"if",
"self",
".",
"is_daylight_saving_hour",
"(",
"datetime",
".",
"hoy",
")",
"else",
"hour",
"# minutes",
"sol_time",
"=",
"self",
".",
"_calculate_solar_time",
"(",
"hour",
",",
"eq_of_time",
",",
"is_solar_time",
")",
"*",
"60",
"# degrees",
"if",
"sol_time",
"/",
"4",
"<",
"0",
":",
"hour_angle",
"=",
"sol_time",
"/",
"4",
"+",
"180",
"else",
":",
"hour_angle",
"=",
"sol_time",
"/",
"4",
"-",
"180",
"# Degrees",
"zenith",
"=",
"math",
".",
"degrees",
"(",
"math",
".",
"acos",
"(",
"math",
".",
"sin",
"(",
"self",
".",
"_latitude",
")",
"*",
"math",
".",
"sin",
"(",
"math",
".",
"radians",
"(",
"sol_dec",
")",
")",
"+",
"math",
".",
"cos",
"(",
"self",
".",
"_latitude",
")",
"*",
"math",
".",
"cos",
"(",
"math",
".",
"radians",
"(",
"sol_dec",
")",
")",
"*",
"math",
".",
"cos",
"(",
"math",
".",
"radians",
"(",
"hour_angle",
")",
")",
")",
")",
"altitude",
"=",
"90",
"-",
"zenith",
"# Approx Atmospheric Refraction",
"if",
"altitude",
">",
"85",
":",
"atmos_refraction",
"=",
"0",
"else",
":",
"if",
"altitude",
">",
"5",
":",
"atmos_refraction",
"=",
"58.1",
"/",
"math",
".",
"tan",
"(",
"math",
".",
"radians",
"(",
"altitude",
")",
")",
"-",
"0.07",
"/",
"(",
"math",
".",
"tan",
"(",
"math",
".",
"radians",
"(",
"altitude",
")",
")",
")",
"**",
"3",
"+",
"0.000086",
"/",
"(",
"math",
".",
"tan",
"(",
"math",
".",
"radians",
"(",
"altitude",
")",
")",
")",
"**",
"5",
"else",
":",
"if",
"altitude",
">",
"-",
"0.575",
":",
"atmos_refraction",
"=",
"1735",
"+",
"altitude",
"*",
"(",
"-",
"518.2",
"+",
"altitude",
"*",
"(",
"103.4",
"+",
"altitude",
"*",
"(",
"-",
"12.79",
"+",
"altitude",
"*",
"0.711",
")",
")",
")",
"else",
":",
"atmos_refraction",
"=",
"-",
"20.772",
"/",
"math",
".",
"tan",
"(",
"math",
".",
"radians",
"(",
"altitude",
")",
")",
"atmos_refraction",
"/=",
"3600",
"altitude",
"+=",
"atmos_refraction",
"# Degrees",
"if",
"hour_angle",
">",
"0",
":",
"azimuth",
"=",
"(",
"math",
".",
"degrees",
"(",
"math",
".",
"acos",
"(",
"(",
"(",
"math",
".",
"sin",
"(",
"self",
".",
"_latitude",
")",
"*",
"math",
".",
"cos",
"(",
"math",
".",
"radians",
"(",
"zenith",
")",
")",
")",
"-",
"math",
".",
"sin",
"(",
"math",
".",
"radians",
"(",
"sol_dec",
")",
")",
")",
"/",
"(",
"math",
".",
"cos",
"(",
"self",
".",
"_latitude",
")",
"*",
"math",
".",
"sin",
"(",
"math",
".",
"radians",
"(",
"zenith",
")",
")",
")",
")",
")",
"+",
"180",
")",
"%",
"360",
"else",
":",
"azimuth",
"=",
"(",
"540",
"-",
"math",
".",
"degrees",
"(",
"math",
".",
"acos",
"(",
"(",
"(",
"math",
".",
"sin",
"(",
"self",
".",
"_latitude",
")",
"*",
"math",
".",
"cos",
"(",
"math",
".",
"radians",
"(",
"zenith",
")",
")",
")",
"-",
"math",
".",
"sin",
"(",
"math",
".",
"radians",
"(",
"sol_dec",
")",
")",
")",
"/",
"(",
"math",
".",
"cos",
"(",
"self",
".",
"_latitude",
")",
"*",
"math",
".",
"sin",
"(",
"math",
".",
"radians",
"(",
"zenith",
")",
")",
")",
")",
")",
")",
"%",
"360",
"altitude",
"=",
"math",
".",
"radians",
"(",
"altitude",
")",
"azimuth",
"=",
"math",
".",
"radians",
"(",
"azimuth",
")",
"# create the sun for this hour",
"return",
"Sun",
"(",
"datetime",
",",
"altitude",
",",
"azimuth",
",",
"is_solar_time",
",",
"is_daylight_saving",
",",
"self",
".",
"north_angle",
")"
] | Get Sun for an hour of the year.
This code is originally written by Trygve Wastvedt \
([email protected])
based on (NOAA) and modified by Chris Mackey and Mostapha Roudsari
Args:
datetime: Ladybug datetime
is_solar_time: A boolean to indicate if the input hour is solar time.
(Default: False)
Returns:
A sun object for this particular time | [
"Get",
"Sun",
"for",
"an",
"hour",
"of",
"the",
"year",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L164-L261 |
4,672 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath.calculate_sunrise_sunset | def calculate_sunrise_sunset(self, month, day, depression=0.833,
is_solar_time=False):
"""Calculate sunrise, noon and sunset.
Return:
A dictionary. Keys are ("sunrise", "noon", "sunset")
"""
datetime = DateTime(month, day, hour=12, leap_year=self.is_leap_year)
return self.calculate_sunrise_sunset_from_datetime(datetime,
depression,
is_solar_time) | python | def calculate_sunrise_sunset(self, month, day, depression=0.833,
is_solar_time=False):
"""Calculate sunrise, noon and sunset.
Return:
A dictionary. Keys are ("sunrise", "noon", "sunset")
"""
datetime = DateTime(month, day, hour=12, leap_year=self.is_leap_year)
return self.calculate_sunrise_sunset_from_datetime(datetime,
depression,
is_solar_time) | [
"def",
"calculate_sunrise_sunset",
"(",
"self",
",",
"month",
",",
"day",
",",
"depression",
"=",
"0.833",
",",
"is_solar_time",
"=",
"False",
")",
":",
"datetime",
"=",
"DateTime",
"(",
"month",
",",
"day",
",",
"hour",
"=",
"12",
",",
"leap_year",
"=",
"self",
".",
"is_leap_year",
")",
"return",
"self",
".",
"calculate_sunrise_sunset_from_datetime",
"(",
"datetime",
",",
"depression",
",",
"is_solar_time",
")"
] | Calculate sunrise, noon and sunset.
Return:
A dictionary. Keys are ("sunrise", "noon", "sunset") | [
"Calculate",
"sunrise",
"noon",
"and",
"sunset",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L263-L274 |
4,673 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath.calculate_sunrise_sunset_from_datetime | def calculate_sunrise_sunset_from_datetime(self, datetime, depression=0.833,
is_solar_time=False):
"""Calculate sunrise, sunset and noon for a day of year."""
# TODO(mostapha): This should be more generic and based on a method
if datetime.year != 2016 and self.is_leap_year:
datetime = DateTime(datetime.month, datetime.day, datetime.hour,
datetime.minute, True)
sol_dec, eq_of_time = self._calculate_solar_geometry(datetime)
# calculate sunrise and sunset hour
if is_solar_time:
noon = .5
else:
noon = (720 -
4 * math.degrees(self._longitude) -
eq_of_time +
self.time_zone * 60
) / 1440.0
try:
sunrise_hour_angle = self._calculate_sunrise_hour_angle(
sol_dec, depression)
except ValueError:
# no sun rise and sunset at this hour
noon = 24 * noon
return {
"sunrise": None,
"noon": DateTime(datetime.month, datetime.day,
*self._calculate_hour_and_minute(noon),
leap_year=self.is_leap_year),
"sunset": None
}
else:
sunrise = noon - sunrise_hour_angle * 4 / 1440.0
sunset = noon + sunrise_hour_angle * 4 / 1440.0
noon = 24 * noon
sunrise = 24 * sunrise
sunset = 24 * sunset
return {
"sunrise": DateTime(datetime.month, datetime.day,
*self._calculate_hour_and_minute(sunrise),
leap_year=self.is_leap_year),
"noon": DateTime(datetime.month, datetime.day,
*self._calculate_hour_and_minute(noon),
leap_year=self.is_leap_year),
"sunset": DateTime(datetime.month, datetime.day,
*self._calculate_hour_and_minute(sunset),
leap_year=self.is_leap_year)
} | python | def calculate_sunrise_sunset_from_datetime(self, datetime, depression=0.833,
is_solar_time=False):
"""Calculate sunrise, sunset and noon for a day of year."""
# TODO(mostapha): This should be more generic and based on a method
if datetime.year != 2016 and self.is_leap_year:
datetime = DateTime(datetime.month, datetime.day, datetime.hour,
datetime.minute, True)
sol_dec, eq_of_time = self._calculate_solar_geometry(datetime)
# calculate sunrise and sunset hour
if is_solar_time:
noon = .5
else:
noon = (720 -
4 * math.degrees(self._longitude) -
eq_of_time +
self.time_zone * 60
) / 1440.0
try:
sunrise_hour_angle = self._calculate_sunrise_hour_angle(
sol_dec, depression)
except ValueError:
# no sun rise and sunset at this hour
noon = 24 * noon
return {
"sunrise": None,
"noon": DateTime(datetime.month, datetime.day,
*self._calculate_hour_and_minute(noon),
leap_year=self.is_leap_year),
"sunset": None
}
else:
sunrise = noon - sunrise_hour_angle * 4 / 1440.0
sunset = noon + sunrise_hour_angle * 4 / 1440.0
noon = 24 * noon
sunrise = 24 * sunrise
sunset = 24 * sunset
return {
"sunrise": DateTime(datetime.month, datetime.day,
*self._calculate_hour_and_minute(sunrise),
leap_year=self.is_leap_year),
"noon": DateTime(datetime.month, datetime.day,
*self._calculate_hour_and_minute(noon),
leap_year=self.is_leap_year),
"sunset": DateTime(datetime.month, datetime.day,
*self._calculate_hour_and_minute(sunset),
leap_year=self.is_leap_year)
} | [
"def",
"calculate_sunrise_sunset_from_datetime",
"(",
"self",
",",
"datetime",
",",
"depression",
"=",
"0.833",
",",
"is_solar_time",
"=",
"False",
")",
":",
"# TODO(mostapha): This should be more generic and based on a method",
"if",
"datetime",
".",
"year",
"!=",
"2016",
"and",
"self",
".",
"is_leap_year",
":",
"datetime",
"=",
"DateTime",
"(",
"datetime",
".",
"month",
",",
"datetime",
".",
"day",
",",
"datetime",
".",
"hour",
",",
"datetime",
".",
"minute",
",",
"True",
")",
"sol_dec",
",",
"eq_of_time",
"=",
"self",
".",
"_calculate_solar_geometry",
"(",
"datetime",
")",
"# calculate sunrise and sunset hour",
"if",
"is_solar_time",
":",
"noon",
"=",
".5",
"else",
":",
"noon",
"=",
"(",
"720",
"-",
"4",
"*",
"math",
".",
"degrees",
"(",
"self",
".",
"_longitude",
")",
"-",
"eq_of_time",
"+",
"self",
".",
"time_zone",
"*",
"60",
")",
"/",
"1440.0",
"try",
":",
"sunrise_hour_angle",
"=",
"self",
".",
"_calculate_sunrise_hour_angle",
"(",
"sol_dec",
",",
"depression",
")",
"except",
"ValueError",
":",
"# no sun rise and sunset at this hour",
"noon",
"=",
"24",
"*",
"noon",
"return",
"{",
"\"sunrise\"",
":",
"None",
",",
"\"noon\"",
":",
"DateTime",
"(",
"datetime",
".",
"month",
",",
"datetime",
".",
"day",
",",
"*",
"self",
".",
"_calculate_hour_and_minute",
"(",
"noon",
")",
",",
"leap_year",
"=",
"self",
".",
"is_leap_year",
")",
",",
"\"sunset\"",
":",
"None",
"}",
"else",
":",
"sunrise",
"=",
"noon",
"-",
"sunrise_hour_angle",
"*",
"4",
"/",
"1440.0",
"sunset",
"=",
"noon",
"+",
"sunrise_hour_angle",
"*",
"4",
"/",
"1440.0",
"noon",
"=",
"24",
"*",
"noon",
"sunrise",
"=",
"24",
"*",
"sunrise",
"sunset",
"=",
"24",
"*",
"sunset",
"return",
"{",
"\"sunrise\"",
":",
"DateTime",
"(",
"datetime",
".",
"month",
",",
"datetime",
".",
"day",
",",
"*",
"self",
".",
"_calculate_hour_and_minute",
"(",
"sunrise",
")",
",",
"leap_year",
"=",
"self",
".",
"is_leap_year",
")",
",",
"\"noon\"",
":",
"DateTime",
"(",
"datetime",
".",
"month",
",",
"datetime",
".",
"day",
",",
"*",
"self",
".",
"_calculate_hour_and_minute",
"(",
"noon",
")",
",",
"leap_year",
"=",
"self",
".",
"is_leap_year",
")",
",",
"\"sunset\"",
":",
"DateTime",
"(",
"datetime",
".",
"month",
",",
"datetime",
".",
"day",
",",
"*",
"self",
".",
"_calculate_hour_and_minute",
"(",
"sunset",
")",
",",
"leap_year",
"=",
"self",
".",
"is_leap_year",
")",
"}"
] | Calculate sunrise, sunset and noon for a day of year. | [
"Calculate",
"sunrise",
"sunset",
"and",
"noon",
"for",
"a",
"day",
"of",
"year",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L277-L325 |
4,674 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath._calculate_sunrise_hour_angle | def _calculate_sunrise_hour_angle(self, solar_dec, depression=0.833):
"""Calculate hour angle for sunrise time in degrees."""
hour_angle_arg = math.degrees(math.acos(
math.cos(math.radians(90 + depression)) /
(math.cos(math.radians(self.latitude)) * math.cos(
math.radians(solar_dec))) -
math.tan(math.radians(self.latitude)) *
math.tan(math.radians(solar_dec))
))
return hour_angle_arg | python | def _calculate_sunrise_hour_angle(self, solar_dec, depression=0.833):
"""Calculate hour angle for sunrise time in degrees."""
hour_angle_arg = math.degrees(math.acos(
math.cos(math.radians(90 + depression)) /
(math.cos(math.radians(self.latitude)) * math.cos(
math.radians(solar_dec))) -
math.tan(math.radians(self.latitude)) *
math.tan(math.radians(solar_dec))
))
return hour_angle_arg | [
"def",
"_calculate_sunrise_hour_angle",
"(",
"self",
",",
"solar_dec",
",",
"depression",
"=",
"0.833",
")",
":",
"hour_angle_arg",
"=",
"math",
".",
"degrees",
"(",
"math",
".",
"acos",
"(",
"math",
".",
"cos",
"(",
"math",
".",
"radians",
"(",
"90",
"+",
"depression",
")",
")",
"/",
"(",
"math",
".",
"cos",
"(",
"math",
".",
"radians",
"(",
"self",
".",
"latitude",
")",
")",
"*",
"math",
".",
"cos",
"(",
"math",
".",
"radians",
"(",
"solar_dec",
")",
")",
")",
"-",
"math",
".",
"tan",
"(",
"math",
".",
"radians",
"(",
"self",
".",
"latitude",
")",
")",
"*",
"math",
".",
"tan",
"(",
"math",
".",
"radians",
"(",
"solar_dec",
")",
")",
")",
")",
"return",
"hour_angle_arg"
] | Calculate hour angle for sunrise time in degrees. | [
"Calculate",
"hour",
"angle",
"for",
"sunrise",
"time",
"in",
"degrees",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L468-L479 |
4,675 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath._calculate_solar_time | def _calculate_solar_time(self, hour, eq_of_time, is_solar_time):
"""Calculate Solar time for an hour."""
if is_solar_time:
return hour
return (
(hour * 60 + eq_of_time + 4 * math.degrees(self._longitude) -
60 * self.time_zone) % 1440) / 60 | python | def _calculate_solar_time(self, hour, eq_of_time, is_solar_time):
"""Calculate Solar time for an hour."""
if is_solar_time:
return hour
return (
(hour * 60 + eq_of_time + 4 * math.degrees(self._longitude) -
60 * self.time_zone) % 1440) / 60 | [
"def",
"_calculate_solar_time",
"(",
"self",
",",
"hour",
",",
"eq_of_time",
",",
"is_solar_time",
")",
":",
"if",
"is_solar_time",
":",
"return",
"hour",
"return",
"(",
"(",
"hour",
"*",
"60",
"+",
"eq_of_time",
"+",
"4",
"*",
"math",
".",
"degrees",
"(",
"self",
".",
"_longitude",
")",
"-",
"60",
"*",
"self",
".",
"time_zone",
")",
"%",
"1440",
")",
"/",
"60"
] | Calculate Solar time for an hour. | [
"Calculate",
"Solar",
"time",
"for",
"an",
"hour",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L481-L488 |
4,676 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath._calculate_solar_time_by_doy | def _calculate_solar_time_by_doy(self, hour, doy):
"""This is how radiance calculates solar time.
This is a place holder and \
need to be validated against calculateSolarTime.
"""
raise NotImplementedError()
return (0.170 * math.sin((4 * math.pi / 373) * (doy - 80)) -
0.129 * math.sin((2 * math.pi / 355) * (doy - 8)) +
12 * (-(15 * self.time_zone) - self.longitude) / math.pi) | python | def _calculate_solar_time_by_doy(self, hour, doy):
"""This is how radiance calculates solar time.
This is a place holder and \
need to be validated against calculateSolarTime.
"""
raise NotImplementedError()
return (0.170 * math.sin((4 * math.pi / 373) * (doy - 80)) -
0.129 * math.sin((2 * math.pi / 355) * (doy - 8)) +
12 * (-(15 * self.time_zone) - self.longitude) / math.pi) | [
"def",
"_calculate_solar_time_by_doy",
"(",
"self",
",",
"hour",
",",
"doy",
")",
":",
"raise",
"NotImplementedError",
"(",
")",
"return",
"(",
"0.170",
"*",
"math",
".",
"sin",
"(",
"(",
"4",
"*",
"math",
".",
"pi",
"/",
"373",
")",
"*",
"(",
"doy",
"-",
"80",
")",
")",
"-",
"0.129",
"*",
"math",
".",
"sin",
"(",
"(",
"2",
"*",
"math",
".",
"pi",
"/",
"355",
")",
"*",
"(",
"doy",
"-",
"8",
")",
")",
"+",
"12",
"*",
"(",
"-",
"(",
"15",
"*",
"self",
".",
"time_zone",
")",
"-",
"self",
".",
"longitude",
")",
"/",
"math",
".",
"pi",
")"
] | This is how radiance calculates solar time.
This is a place holder and \
need to be validated against calculateSolarTime. | [
"This",
"is",
"how",
"radiance",
"calculates",
"solar",
"time",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L490-L499 |
4,677 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath.draw_sunpath | def draw_sunpath(self,
hoys=None,
origin=None,
scale=1, sun_scale=1, annual=True, rem_night=True):
"""Create sunpath geometry. \
This method should only be used from the + libraries.
Args:
hoys: An optional list of hours of the year(default: None).
origin: Sunpath origin(default: (0, 0, 0)).
scale: Sunpath scale(default: 1).
sun_scale: Scale for the sun spheres(default: 1).
annual: Set to True to draw an annual sunpath.
Otherwise a daily sunpath is drawn.
rem_night: Remove suns which are under the horizon(night!).
Returns:
base_curves: A collection of curves for base plot.
analemma_curves: A collection of analemma_curves.
daily_curves: A collection of daily_curves.
suns: A list of suns.
"""
# check and make sure the call is coming from inside a plus library
assert ladybug.isplus, \
'"draw_sunpath" method can only be used in the [+] libraries.'
hoys = hoys or ()
origin = origin or (0, 0, 0)
try:
origin = tuple(origin)
except TypeError as e:
# dynamo
try:
origin = origin.X, origin.Y, origin.Z
except AttributeError:
raise TypeError(str(e))
scale = scale or 1
sun_scale = sun_scale or 1
assert annual or hoys, 'For daily sunpath you need to provide at least one hour.'
radius = 200 * scale
# draw base circles and lines
base_curves = plus.base_curves(origin, radius, self.north_angle)
# draw analemma
# calculate date times for analemma curves
if annual:
asuns = self._analemma_suns()
analemma_curves = plus.analemma_curves(asuns, origin, radius)
else:
analemma_curves = ()
# add sun spheres
if hoys:
suns = tuple(self.calculate_sun_from_hoy(hour) for hour in hoys)
else:
suns = ()
if rem_night:
suns = tuple(sun for sun in suns if sun.is_during_day)
sun_geos = plus.sun_geometry(suns, origin, radius)
# draw daily sunpath
if annual:
dts = (DateTime(m, 21) for m in xrange(1, 13))
else:
dts = (sun.datetime for sun in suns)
dsuns = self._daily_suns(dts)
daily_curves = plus.daily_curves(dsuns, origin, radius)
SPGeo = namedtuple(
'SunpathGeo',
('compass_curves',
'analemma_curves',
'daily_curves',
'suns',
'sun_geos'))
# return outputs
return SPGeo(base_curves, analemma_curves, daily_curves, suns, sun_geos) | python | def draw_sunpath(self,
hoys=None,
origin=None,
scale=1, sun_scale=1, annual=True, rem_night=True):
"""Create sunpath geometry. \
This method should only be used from the + libraries.
Args:
hoys: An optional list of hours of the year(default: None).
origin: Sunpath origin(default: (0, 0, 0)).
scale: Sunpath scale(default: 1).
sun_scale: Scale for the sun spheres(default: 1).
annual: Set to True to draw an annual sunpath.
Otherwise a daily sunpath is drawn.
rem_night: Remove suns which are under the horizon(night!).
Returns:
base_curves: A collection of curves for base plot.
analemma_curves: A collection of analemma_curves.
daily_curves: A collection of daily_curves.
suns: A list of suns.
"""
# check and make sure the call is coming from inside a plus library
assert ladybug.isplus, \
'"draw_sunpath" method can only be used in the [+] libraries.'
hoys = hoys or ()
origin = origin or (0, 0, 0)
try:
origin = tuple(origin)
except TypeError as e:
# dynamo
try:
origin = origin.X, origin.Y, origin.Z
except AttributeError:
raise TypeError(str(e))
scale = scale or 1
sun_scale = sun_scale or 1
assert annual or hoys, 'For daily sunpath you need to provide at least one hour.'
radius = 200 * scale
# draw base circles and lines
base_curves = plus.base_curves(origin, radius, self.north_angle)
# draw analemma
# calculate date times for analemma curves
if annual:
asuns = self._analemma_suns()
analemma_curves = plus.analemma_curves(asuns, origin, radius)
else:
analemma_curves = ()
# add sun spheres
if hoys:
suns = tuple(self.calculate_sun_from_hoy(hour) for hour in hoys)
else:
suns = ()
if rem_night:
suns = tuple(sun for sun in suns if sun.is_during_day)
sun_geos = plus.sun_geometry(suns, origin, radius)
# draw daily sunpath
if annual:
dts = (DateTime(m, 21) for m in xrange(1, 13))
else:
dts = (sun.datetime for sun in suns)
dsuns = self._daily_suns(dts)
daily_curves = plus.daily_curves(dsuns, origin, radius)
SPGeo = namedtuple(
'SunpathGeo',
('compass_curves',
'analemma_curves',
'daily_curves',
'suns',
'sun_geos'))
# return outputs
return SPGeo(base_curves, analemma_curves, daily_curves, suns, sun_geos) | [
"def",
"draw_sunpath",
"(",
"self",
",",
"hoys",
"=",
"None",
",",
"origin",
"=",
"None",
",",
"scale",
"=",
"1",
",",
"sun_scale",
"=",
"1",
",",
"annual",
"=",
"True",
",",
"rem_night",
"=",
"True",
")",
":",
"# check and make sure the call is coming from inside a plus library",
"assert",
"ladybug",
".",
"isplus",
",",
"'\"draw_sunpath\" method can only be used in the [+] libraries.'",
"hoys",
"=",
"hoys",
"or",
"(",
")",
"origin",
"=",
"origin",
"or",
"(",
"0",
",",
"0",
",",
"0",
")",
"try",
":",
"origin",
"=",
"tuple",
"(",
"origin",
")",
"except",
"TypeError",
"as",
"e",
":",
"# dynamo",
"try",
":",
"origin",
"=",
"origin",
".",
"X",
",",
"origin",
".",
"Y",
",",
"origin",
".",
"Z",
"except",
"AttributeError",
":",
"raise",
"TypeError",
"(",
"str",
"(",
"e",
")",
")",
"scale",
"=",
"scale",
"or",
"1",
"sun_scale",
"=",
"sun_scale",
"or",
"1",
"assert",
"annual",
"or",
"hoys",
",",
"'For daily sunpath you need to provide at least one hour.'",
"radius",
"=",
"200",
"*",
"scale",
"# draw base circles and lines",
"base_curves",
"=",
"plus",
".",
"base_curves",
"(",
"origin",
",",
"radius",
",",
"self",
".",
"north_angle",
")",
"# draw analemma",
"# calculate date times for analemma curves",
"if",
"annual",
":",
"asuns",
"=",
"self",
".",
"_analemma_suns",
"(",
")",
"analemma_curves",
"=",
"plus",
".",
"analemma_curves",
"(",
"asuns",
",",
"origin",
",",
"radius",
")",
"else",
":",
"analemma_curves",
"=",
"(",
")",
"# add sun spheres",
"if",
"hoys",
":",
"suns",
"=",
"tuple",
"(",
"self",
".",
"calculate_sun_from_hoy",
"(",
"hour",
")",
"for",
"hour",
"in",
"hoys",
")",
"else",
":",
"suns",
"=",
"(",
")",
"if",
"rem_night",
":",
"suns",
"=",
"tuple",
"(",
"sun",
"for",
"sun",
"in",
"suns",
"if",
"sun",
".",
"is_during_day",
")",
"sun_geos",
"=",
"plus",
".",
"sun_geometry",
"(",
"suns",
",",
"origin",
",",
"radius",
")",
"# draw daily sunpath",
"if",
"annual",
":",
"dts",
"=",
"(",
"DateTime",
"(",
"m",
",",
"21",
")",
"for",
"m",
"in",
"xrange",
"(",
"1",
",",
"13",
")",
")",
"else",
":",
"dts",
"=",
"(",
"sun",
".",
"datetime",
"for",
"sun",
"in",
"suns",
")",
"dsuns",
"=",
"self",
".",
"_daily_suns",
"(",
"dts",
")",
"daily_curves",
"=",
"plus",
".",
"daily_curves",
"(",
"dsuns",
",",
"origin",
",",
"radius",
")",
"SPGeo",
"=",
"namedtuple",
"(",
"'SunpathGeo'",
",",
"(",
"'compass_curves'",
",",
"'analemma_curves'",
",",
"'daily_curves'",
",",
"'suns'",
",",
"'sun_geos'",
")",
")",
"# return outputs",
"return",
"SPGeo",
"(",
"base_curves",
",",
"analemma_curves",
",",
"daily_curves",
",",
"suns",
",",
"sun_geos",
")"
] | Create sunpath geometry. \
This method should only be used from the + libraries.
Args:
hoys: An optional list of hours of the year(default: None).
origin: Sunpath origin(default: (0, 0, 0)).
scale: Sunpath scale(default: 1).
sun_scale: Scale for the sun spheres(default: 1).
annual: Set to True to draw an annual sunpath.
Otherwise a daily sunpath is drawn.
rem_night: Remove suns which are under the horizon(night!).
Returns:
base_curves: A collection of curves for base plot.
analemma_curves: A collection of analemma_curves.
daily_curves: A collection of daily_curves.
suns: A list of suns. | [
"Create",
"sunpath",
"geometry",
".",
"\\",
"This",
"method",
"should",
"only",
"be",
"used",
"from",
"the",
"+",
"libraries",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L512-L592 |
4,678 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath._analemma_position | def _analemma_position(self, hour):
"""Check what the analemma position is for an hour.
This is useful for calculating hours of analemma curves.
Returns:
-1 if always night,
0 if both day and night,
1 if always day.
"""
# check for 21 dec and 21 jun
low = self.calculate_sun(12, 21, hour).is_during_day
high = self.calculate_sun(6, 21, hour).is_during_day
if low and high:
return 1
elif low or high:
return 0
else:
return -1 | python | def _analemma_position(self, hour):
"""Check what the analemma position is for an hour.
This is useful for calculating hours of analemma curves.
Returns:
-1 if always night,
0 if both day and night,
1 if always day.
"""
# check for 21 dec and 21 jun
low = self.calculate_sun(12, 21, hour).is_during_day
high = self.calculate_sun(6, 21, hour).is_during_day
if low and high:
return 1
elif low or high:
return 0
else:
return -1 | [
"def",
"_analemma_position",
"(",
"self",
",",
"hour",
")",
":",
"# check for 21 dec and 21 jun",
"low",
"=",
"self",
".",
"calculate_sun",
"(",
"12",
",",
"21",
",",
"hour",
")",
".",
"is_during_day",
"high",
"=",
"self",
".",
"calculate_sun",
"(",
"6",
",",
"21",
",",
"hour",
")",
".",
"is_during_day",
"if",
"low",
"and",
"high",
":",
"return",
"1",
"elif",
"low",
"or",
"high",
":",
"return",
"0",
"else",
":",
"return",
"-",
"1"
] | Check what the analemma position is for an hour.
This is useful for calculating hours of analemma curves.
Returns:
-1 if always night,
0 if both day and night,
1 if always day. | [
"Check",
"what",
"the",
"analemma",
"position",
"is",
"for",
"an",
"hour",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L594-L613 |
4,679 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath._analemma_suns | def _analemma_suns(self):
"""Calculate times that should be used for drawing analemma_curves.
Returns:
A list of list of analemma suns.
"""
for h in xrange(0, 24):
if self._analemma_position(h) < 0:
continue
elif self._analemma_position(h) == 0:
chours = []
# this is an hour that not all the hours are day or night
prevhour = self.latitude <= 0
num_of_days = 8760 if not self.is_leap_year else 8760 + 24
for hoy in xrange(h, num_of_days, 24):
thishour = self.calculate_sun_from_hoy(hoy).is_during_day
if thishour != prevhour:
if not thishour:
hoy -= 24
dt = DateTime.from_hoy(hoy, self.is_leap_year)
chours.append((dt.month, dt.day, dt.hour))
prevhour = thishour
tt = []
for hcount in range(int(len(chours) / 2)):
st = chours[2 * hcount]
en = chours[2 * hcount + 1]
if self.latitude >= 0:
tt = [self.calculate_sun(*st)] + \
[self.calculate_sun(st[0], d, h)
for d in xrange(st[1] + 1, 29, 7)] + \
[self.calculate_sun(m, d, h)
for m in xrange(st[0] + 1, en[0])
for d in xrange(3, 29, 7)] + \
[self.calculate_sun(en[0], d, h)
for d in xrange(3, en[1], 7)] + \
[self.calculate_sun(*en)]
else:
tt = [self.calculate_sun(*en)] + \
[self.calculate_sun(en[0], d, h)
for d in xrange(en[1] + 1, 29, 7)] + \
[self.calculate_sun(m, d, h) for m in xrange(en[0] +
1, 13)
for d in xrange(3, 29, 7)] + \
[self.calculate_sun(m, d, h) for m in xrange(1, st[0])
for d in xrange(3, 29, 7)] + \
[self.calculate_sun(st[0], d, h)
for d in xrange(3, st[1], 7)] + \
[self.calculate_sun(*st)]
yield tt
else:
yield tuple(self.calculate_sun((m % 12) + 1, d, h)
for m in xrange(0, 13) for d in (7, 14, 21))[:-2] | python | def _analemma_suns(self):
"""Calculate times that should be used for drawing analemma_curves.
Returns:
A list of list of analemma suns.
"""
for h in xrange(0, 24):
if self._analemma_position(h) < 0:
continue
elif self._analemma_position(h) == 0:
chours = []
# this is an hour that not all the hours are day or night
prevhour = self.latitude <= 0
num_of_days = 8760 if not self.is_leap_year else 8760 + 24
for hoy in xrange(h, num_of_days, 24):
thishour = self.calculate_sun_from_hoy(hoy).is_during_day
if thishour != prevhour:
if not thishour:
hoy -= 24
dt = DateTime.from_hoy(hoy, self.is_leap_year)
chours.append((dt.month, dt.day, dt.hour))
prevhour = thishour
tt = []
for hcount in range(int(len(chours) / 2)):
st = chours[2 * hcount]
en = chours[2 * hcount + 1]
if self.latitude >= 0:
tt = [self.calculate_sun(*st)] + \
[self.calculate_sun(st[0], d, h)
for d in xrange(st[1] + 1, 29, 7)] + \
[self.calculate_sun(m, d, h)
for m in xrange(st[0] + 1, en[0])
for d in xrange(3, 29, 7)] + \
[self.calculate_sun(en[0], d, h)
for d in xrange(3, en[1], 7)] + \
[self.calculate_sun(*en)]
else:
tt = [self.calculate_sun(*en)] + \
[self.calculate_sun(en[0], d, h)
for d in xrange(en[1] + 1, 29, 7)] + \
[self.calculate_sun(m, d, h) for m in xrange(en[0] +
1, 13)
for d in xrange(3, 29, 7)] + \
[self.calculate_sun(m, d, h) for m in xrange(1, st[0])
for d in xrange(3, 29, 7)] + \
[self.calculate_sun(st[0], d, h)
for d in xrange(3, st[1], 7)] + \
[self.calculate_sun(*st)]
yield tt
else:
yield tuple(self.calculate_sun((m % 12) + 1, d, h)
for m in xrange(0, 13) for d in (7, 14, 21))[:-2] | [
"def",
"_analemma_suns",
"(",
"self",
")",
":",
"for",
"h",
"in",
"xrange",
"(",
"0",
",",
"24",
")",
":",
"if",
"self",
".",
"_analemma_position",
"(",
"h",
")",
"<",
"0",
":",
"continue",
"elif",
"self",
".",
"_analemma_position",
"(",
"h",
")",
"==",
"0",
":",
"chours",
"=",
"[",
"]",
"# this is an hour that not all the hours are day or night",
"prevhour",
"=",
"self",
".",
"latitude",
"<=",
"0",
"num_of_days",
"=",
"8760",
"if",
"not",
"self",
".",
"is_leap_year",
"else",
"8760",
"+",
"24",
"for",
"hoy",
"in",
"xrange",
"(",
"h",
",",
"num_of_days",
",",
"24",
")",
":",
"thishour",
"=",
"self",
".",
"calculate_sun_from_hoy",
"(",
"hoy",
")",
".",
"is_during_day",
"if",
"thishour",
"!=",
"prevhour",
":",
"if",
"not",
"thishour",
":",
"hoy",
"-=",
"24",
"dt",
"=",
"DateTime",
".",
"from_hoy",
"(",
"hoy",
",",
"self",
".",
"is_leap_year",
")",
"chours",
".",
"append",
"(",
"(",
"dt",
".",
"month",
",",
"dt",
".",
"day",
",",
"dt",
".",
"hour",
")",
")",
"prevhour",
"=",
"thishour",
"tt",
"=",
"[",
"]",
"for",
"hcount",
"in",
"range",
"(",
"int",
"(",
"len",
"(",
"chours",
")",
"/",
"2",
")",
")",
":",
"st",
"=",
"chours",
"[",
"2",
"*",
"hcount",
"]",
"en",
"=",
"chours",
"[",
"2",
"*",
"hcount",
"+",
"1",
"]",
"if",
"self",
".",
"latitude",
">=",
"0",
":",
"tt",
"=",
"[",
"self",
".",
"calculate_sun",
"(",
"*",
"st",
")",
"]",
"+",
"[",
"self",
".",
"calculate_sun",
"(",
"st",
"[",
"0",
"]",
",",
"d",
",",
"h",
")",
"for",
"d",
"in",
"xrange",
"(",
"st",
"[",
"1",
"]",
"+",
"1",
",",
"29",
",",
"7",
")",
"]",
"+",
"[",
"self",
".",
"calculate_sun",
"(",
"m",
",",
"d",
",",
"h",
")",
"for",
"m",
"in",
"xrange",
"(",
"st",
"[",
"0",
"]",
"+",
"1",
",",
"en",
"[",
"0",
"]",
")",
"for",
"d",
"in",
"xrange",
"(",
"3",
",",
"29",
",",
"7",
")",
"]",
"+",
"[",
"self",
".",
"calculate_sun",
"(",
"en",
"[",
"0",
"]",
",",
"d",
",",
"h",
")",
"for",
"d",
"in",
"xrange",
"(",
"3",
",",
"en",
"[",
"1",
"]",
",",
"7",
")",
"]",
"+",
"[",
"self",
".",
"calculate_sun",
"(",
"*",
"en",
")",
"]",
"else",
":",
"tt",
"=",
"[",
"self",
".",
"calculate_sun",
"(",
"*",
"en",
")",
"]",
"+",
"[",
"self",
".",
"calculate_sun",
"(",
"en",
"[",
"0",
"]",
",",
"d",
",",
"h",
")",
"for",
"d",
"in",
"xrange",
"(",
"en",
"[",
"1",
"]",
"+",
"1",
",",
"29",
",",
"7",
")",
"]",
"+",
"[",
"self",
".",
"calculate_sun",
"(",
"m",
",",
"d",
",",
"h",
")",
"for",
"m",
"in",
"xrange",
"(",
"en",
"[",
"0",
"]",
"+",
"1",
",",
"13",
")",
"for",
"d",
"in",
"xrange",
"(",
"3",
",",
"29",
",",
"7",
")",
"]",
"+",
"[",
"self",
".",
"calculate_sun",
"(",
"m",
",",
"d",
",",
"h",
")",
"for",
"m",
"in",
"xrange",
"(",
"1",
",",
"st",
"[",
"0",
"]",
")",
"for",
"d",
"in",
"xrange",
"(",
"3",
",",
"29",
",",
"7",
")",
"]",
"+",
"[",
"self",
".",
"calculate_sun",
"(",
"st",
"[",
"0",
"]",
",",
"d",
",",
"h",
")",
"for",
"d",
"in",
"xrange",
"(",
"3",
",",
"st",
"[",
"1",
"]",
",",
"7",
")",
"]",
"+",
"[",
"self",
".",
"calculate_sun",
"(",
"*",
"st",
")",
"]",
"yield",
"tt",
"else",
":",
"yield",
"tuple",
"(",
"self",
".",
"calculate_sun",
"(",
"(",
"m",
"%",
"12",
")",
"+",
"1",
",",
"d",
",",
"h",
")",
"for",
"m",
"in",
"xrange",
"(",
"0",
",",
"13",
")",
"for",
"d",
"in",
"(",
"7",
",",
"14",
",",
"21",
")",
")",
"[",
":",
"-",
"2",
"]"
] | Calculate times that should be used for drawing analemma_curves.
Returns:
A list of list of analemma suns. | [
"Calculate",
"times",
"that",
"should",
"be",
"used",
"for",
"drawing",
"analemma_curves",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L615-L666 |
4,680 | ladybug-tools/ladybug | ladybug/sunpath.py | Sunpath._daily_suns | def _daily_suns(self, datetimes):
"""Get sun curve for multiple days of the year."""
for dt in datetimes:
# calculate sunrise sunset and noon
nss = self.calculate_sunrise_sunset(dt.month, dt.day)
dts = tuple(nss[k] for k in ('sunrise', 'noon', 'sunset'))
if dts[0] is None:
# circle
yield (self.calculate_sun(dt.month, dt.day, h) for h in (0, 12,
15)), \
False
else:
# Arc
yield (self.calculate_sun_from_date_time(dt) for dt in dts), True | python | def _daily_suns(self, datetimes):
"""Get sun curve for multiple days of the year."""
for dt in datetimes:
# calculate sunrise sunset and noon
nss = self.calculate_sunrise_sunset(dt.month, dt.day)
dts = tuple(nss[k] for k in ('sunrise', 'noon', 'sunset'))
if dts[0] is None:
# circle
yield (self.calculate_sun(dt.month, dt.day, h) for h in (0, 12,
15)), \
False
else:
# Arc
yield (self.calculate_sun_from_date_time(dt) for dt in dts), True | [
"def",
"_daily_suns",
"(",
"self",
",",
"datetimes",
")",
":",
"for",
"dt",
"in",
"datetimes",
":",
"# calculate sunrise sunset and noon",
"nss",
"=",
"self",
".",
"calculate_sunrise_sunset",
"(",
"dt",
".",
"month",
",",
"dt",
".",
"day",
")",
"dts",
"=",
"tuple",
"(",
"nss",
"[",
"k",
"]",
"for",
"k",
"in",
"(",
"'sunrise'",
",",
"'noon'",
",",
"'sunset'",
")",
")",
"if",
"dts",
"[",
"0",
"]",
"is",
"None",
":",
"# circle",
"yield",
"(",
"self",
".",
"calculate_sun",
"(",
"dt",
".",
"month",
",",
"dt",
".",
"day",
",",
"h",
")",
"for",
"h",
"in",
"(",
"0",
",",
"12",
",",
"15",
")",
")",
",",
"False",
"else",
":",
"# Arc",
"yield",
"(",
"self",
".",
"calculate_sun_from_date_time",
"(",
"dt",
")",
"for",
"dt",
"in",
"dts",
")",
",",
"True"
] | Get sun curve for multiple days of the year. | [
"Get",
"sun",
"curve",
"for",
"multiple",
"days",
"of",
"the",
"year",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L668-L681 |
4,681 | ladybug-tools/ladybug | ladybug/sunpath.py | Sun._calculate_sun_vector | def _calculate_sun_vector(self):
"""Calculate sun vector for this sun."""
z_axis = Vector3(0., 0., -1.)
x_axis = Vector3(1., 0., 0.)
north_vector = Vector3(0., 1., 0.)
# rotate north vector based on azimuth, altitude, and north
_sun_vector = north_vector \
.rotate_around(x_axis, self.altitude_in_radians) \
.rotate_around(z_axis, self.azimuth_in_radians) \
.rotate_around(z_axis, math.radians(-1 * self.north_angle))
_sun_vector.normalize()
try:
_sun_vector.flip()
except AttributeError:
# euclid3
_sun_vector = Vector3(-1 * _sun_vector.x,
-1 * _sun_vector.y,
-1 * _sun_vector.z)
self._sun_vector = _sun_vector | python | def _calculate_sun_vector(self):
"""Calculate sun vector for this sun."""
z_axis = Vector3(0., 0., -1.)
x_axis = Vector3(1., 0., 0.)
north_vector = Vector3(0., 1., 0.)
# rotate north vector based on azimuth, altitude, and north
_sun_vector = north_vector \
.rotate_around(x_axis, self.altitude_in_radians) \
.rotate_around(z_axis, self.azimuth_in_radians) \
.rotate_around(z_axis, math.radians(-1 * self.north_angle))
_sun_vector.normalize()
try:
_sun_vector.flip()
except AttributeError:
# euclid3
_sun_vector = Vector3(-1 * _sun_vector.x,
-1 * _sun_vector.y,
-1 * _sun_vector.z)
self._sun_vector = _sun_vector | [
"def",
"_calculate_sun_vector",
"(",
"self",
")",
":",
"z_axis",
"=",
"Vector3",
"(",
"0.",
",",
"0.",
",",
"-",
"1.",
")",
"x_axis",
"=",
"Vector3",
"(",
"1.",
",",
"0.",
",",
"0.",
")",
"north_vector",
"=",
"Vector3",
"(",
"0.",
",",
"1.",
",",
"0.",
")",
"# rotate north vector based on azimuth, altitude, and north",
"_sun_vector",
"=",
"north_vector",
".",
"rotate_around",
"(",
"x_axis",
",",
"self",
".",
"altitude_in_radians",
")",
".",
"rotate_around",
"(",
"z_axis",
",",
"self",
".",
"azimuth_in_radians",
")",
".",
"rotate_around",
"(",
"z_axis",
",",
"math",
".",
"radians",
"(",
"-",
"1",
"*",
"self",
".",
"north_angle",
")",
")",
"_sun_vector",
".",
"normalize",
"(",
")",
"try",
":",
"_sun_vector",
".",
"flip",
"(",
")",
"except",
"AttributeError",
":",
"# euclid3",
"_sun_vector",
"=",
"Vector3",
"(",
"-",
"1",
"*",
"_sun_vector",
".",
"x",
",",
"-",
"1",
"*",
"_sun_vector",
".",
"y",
",",
"-",
"1",
"*",
"_sun_vector",
".",
"z",
")",
"self",
".",
"_sun_vector",
"=",
"_sun_vector"
] | Calculate sun vector for this sun. | [
"Calculate",
"sun",
"vector",
"for",
"this",
"sun",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/sunpath.py#L798-L819 |
4,682 | ladybug-tools/ladybug | ladybug/designday.py | DDY.from_json | def from_json(cls, data):
"""Create a DDY from a dictionary.
Args:
data = {
"location": ladybug Location schema,
"design_days": [] // list of ladybug DesignDay schemas}
"""
required_keys = ('location', 'design_days')
for key in required_keys:
assert key in data, 'Required key "{}" is missing!'.format(key)
return cls(Location.from_json(data['location']),
[DesignDay.from_json(des_day) for des_day in data['design_days']]) | python | def from_json(cls, data):
"""Create a DDY from a dictionary.
Args:
data = {
"location": ladybug Location schema,
"design_days": [] // list of ladybug DesignDay schemas}
"""
required_keys = ('location', 'design_days')
for key in required_keys:
assert key in data, 'Required key "{}" is missing!'.format(key)
return cls(Location.from_json(data['location']),
[DesignDay.from_json(des_day) for des_day in data['design_days']]) | [
"def",
"from_json",
"(",
"cls",
",",
"data",
")",
":",
"required_keys",
"=",
"(",
"'location'",
",",
"'design_days'",
")",
"for",
"key",
"in",
"required_keys",
":",
"assert",
"key",
"in",
"data",
",",
"'Required key \"{}\" is missing!'",
".",
"format",
"(",
"key",
")",
"return",
"cls",
"(",
"Location",
".",
"from_json",
"(",
"data",
"[",
"'location'",
"]",
")",
",",
"[",
"DesignDay",
".",
"from_json",
"(",
"des_day",
")",
"for",
"des_day",
"in",
"data",
"[",
"'design_days'",
"]",
"]",
")"
] | Create a DDY from a dictionary.
Args:
data = {
"location": ladybug Location schema,
"design_days": [] // list of ladybug DesignDay schemas} | [
"Create",
"a",
"DDY",
"from",
"a",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L48-L61 |
4,683 | ladybug-tools/ladybug | ladybug/designday.py | DDY.from_ddy_file | def from_ddy_file(cls, file_path):
"""Initalize from a ddy file object from an existing ddy file.
args:
file_path: A string representing a complete path to the .ddy file.
"""
# check that the file is there
if not os.path.isfile(file_path):
raise ValueError(
'Cannot find a .ddy file at {}'.format(file_path))
if not file_path.lower().endswith('.ddy'):
raise ValueError(
'DDY file does not have a .ddy extension.')
# check the python version and open the file
try:
iron_python = True if platform.python_implementation() == 'IronPython' \
else False
except Exception:
iron_python = True
if iron_python:
ddywin = codecs.open(file_path, 'r')
else:
ddywin = codecs.open(file_path, 'r', encoding='utf-8', errors='ignore')
try:
ddytxt = ddywin.read()
location_format = re.compile(
r"(Site:Location,(.|\n)*?((;\s*!)|(;\s*\n)|(;\n)))")
design_day_format = re.compile(
r"(SizingPeriod:DesignDay,(.|\n)*?((;\s*!)|(;\s*\n)|(;\n)))")
location_matches = location_format.findall(ddytxt)
des_day_matches = design_day_format.findall(ddytxt)
except Exception as e:
import traceback
raise Exception('{}\n{}'.format(e, traceback.format_exc()))
else:
# check to be sure location was found
assert len(location_matches) > 0, 'No location objects found ' \
'in .ddy file.'
# build design day and location objects
location = Location.from_location(location_matches[0][0])
design_days = [DesignDay.from_ep_string(
match[0], location) for match in des_day_matches]
finally:
ddywin.close()
cls_ = cls(location, design_days)
cls_._file_path = os.path.normpath(file_path)
return cls_ | python | def from_ddy_file(cls, file_path):
"""Initalize from a ddy file object from an existing ddy file.
args:
file_path: A string representing a complete path to the .ddy file.
"""
# check that the file is there
if not os.path.isfile(file_path):
raise ValueError(
'Cannot find a .ddy file at {}'.format(file_path))
if not file_path.lower().endswith('.ddy'):
raise ValueError(
'DDY file does not have a .ddy extension.')
# check the python version and open the file
try:
iron_python = True if platform.python_implementation() == 'IronPython' \
else False
except Exception:
iron_python = True
if iron_python:
ddywin = codecs.open(file_path, 'r')
else:
ddywin = codecs.open(file_path, 'r', encoding='utf-8', errors='ignore')
try:
ddytxt = ddywin.read()
location_format = re.compile(
r"(Site:Location,(.|\n)*?((;\s*!)|(;\s*\n)|(;\n)))")
design_day_format = re.compile(
r"(SizingPeriod:DesignDay,(.|\n)*?((;\s*!)|(;\s*\n)|(;\n)))")
location_matches = location_format.findall(ddytxt)
des_day_matches = design_day_format.findall(ddytxt)
except Exception as e:
import traceback
raise Exception('{}\n{}'.format(e, traceback.format_exc()))
else:
# check to be sure location was found
assert len(location_matches) > 0, 'No location objects found ' \
'in .ddy file.'
# build design day and location objects
location = Location.from_location(location_matches[0][0])
design_days = [DesignDay.from_ep_string(
match[0], location) for match in des_day_matches]
finally:
ddywin.close()
cls_ = cls(location, design_days)
cls_._file_path = os.path.normpath(file_path)
return cls_ | [
"def",
"from_ddy_file",
"(",
"cls",
",",
"file_path",
")",
":",
"# check that the file is there",
"if",
"not",
"os",
".",
"path",
".",
"isfile",
"(",
"file_path",
")",
":",
"raise",
"ValueError",
"(",
"'Cannot find a .ddy file at {}'",
".",
"format",
"(",
"file_path",
")",
")",
"if",
"not",
"file_path",
".",
"lower",
"(",
")",
".",
"endswith",
"(",
"'.ddy'",
")",
":",
"raise",
"ValueError",
"(",
"'DDY file does not have a .ddy extension.'",
")",
"# check the python version and open the file",
"try",
":",
"iron_python",
"=",
"True",
"if",
"platform",
".",
"python_implementation",
"(",
")",
"==",
"'IronPython'",
"else",
"False",
"except",
"Exception",
":",
"iron_python",
"=",
"True",
"if",
"iron_python",
":",
"ddywin",
"=",
"codecs",
".",
"open",
"(",
"file_path",
",",
"'r'",
")",
"else",
":",
"ddywin",
"=",
"codecs",
".",
"open",
"(",
"file_path",
",",
"'r'",
",",
"encoding",
"=",
"'utf-8'",
",",
"errors",
"=",
"'ignore'",
")",
"try",
":",
"ddytxt",
"=",
"ddywin",
".",
"read",
"(",
")",
"location_format",
"=",
"re",
".",
"compile",
"(",
"r\"(Site:Location,(.|\\n)*?((;\\s*!)|(;\\s*\\n)|(;\\n)))\"",
")",
"design_day_format",
"=",
"re",
".",
"compile",
"(",
"r\"(SizingPeriod:DesignDay,(.|\\n)*?((;\\s*!)|(;\\s*\\n)|(;\\n)))\"",
")",
"location_matches",
"=",
"location_format",
".",
"findall",
"(",
"ddytxt",
")",
"des_day_matches",
"=",
"design_day_format",
".",
"findall",
"(",
"ddytxt",
")",
"except",
"Exception",
"as",
"e",
":",
"import",
"traceback",
"raise",
"Exception",
"(",
"'{}\\n{}'",
".",
"format",
"(",
"e",
",",
"traceback",
".",
"format_exc",
"(",
")",
")",
")",
"else",
":",
"# check to be sure location was found",
"assert",
"len",
"(",
"location_matches",
")",
">",
"0",
",",
"'No location objects found '",
"'in .ddy file.'",
"# build design day and location objects",
"location",
"=",
"Location",
".",
"from_location",
"(",
"location_matches",
"[",
"0",
"]",
"[",
"0",
"]",
")",
"design_days",
"=",
"[",
"DesignDay",
".",
"from_ep_string",
"(",
"match",
"[",
"0",
"]",
",",
"location",
")",
"for",
"match",
"in",
"des_day_matches",
"]",
"finally",
":",
"ddywin",
".",
"close",
"(",
")",
"cls_",
"=",
"cls",
"(",
"location",
",",
"design_days",
")",
"cls_",
".",
"_file_path",
"=",
"os",
".",
"path",
".",
"normpath",
"(",
"file_path",
")",
"return",
"cls_"
] | Initalize from a ddy file object from an existing ddy file.
args:
file_path: A string representing a complete path to the .ddy file. | [
"Initalize",
"from",
"a",
"ddy",
"file",
"object",
"from",
"an",
"existing",
"ddy",
"file",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L64-L115 |
4,684 | ladybug-tools/ladybug | ladybug/designday.py | DDY.save | def save(self, file_path):
"""Save ddy object as a .ddy file.
args:
file_path: A string representing the path to write the ddy file to.
"""
# write all data into the file
# write the file
data = self.location.ep_style_location_string + '\n\n'
for d_day in self.design_days:
data = data + d_day.ep_style_string + '\n\n'
write_to_file(file_path, data, True) | python | def save(self, file_path):
"""Save ddy object as a .ddy file.
args:
file_path: A string representing the path to write the ddy file to.
"""
# write all data into the file
# write the file
data = self.location.ep_style_location_string + '\n\n'
for d_day in self.design_days:
data = data + d_day.ep_style_string + '\n\n'
write_to_file(file_path, data, True) | [
"def",
"save",
"(",
"self",
",",
"file_path",
")",
":",
"# write all data into the file",
"# write the file",
"data",
"=",
"self",
".",
"location",
".",
"ep_style_location_string",
"+",
"'\\n\\n'",
"for",
"d_day",
"in",
"self",
".",
"design_days",
":",
"data",
"=",
"data",
"+",
"d_day",
".",
"ep_style_string",
"+",
"'\\n\\n'",
"write_to_file",
"(",
"file_path",
",",
"data",
",",
"True",
")"
] | Save ddy object as a .ddy file.
args:
file_path: A string representing the path to write the ddy file to. | [
"Save",
"ddy",
"object",
"as",
"a",
".",
"ddy",
"file",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L126-L137 |
4,685 | ladybug-tools/ladybug | ladybug/designday.py | DDY.filter_by_keyword | def filter_by_keyword(self, keyword):
"""Return a list of ddys that have a certain keyword in their name.
This is useful for selecting out design days from a ddy file that are
for a specific type of condition (for example, .4% cooling design days)
"""
filtered_days = []
for des_day in self.design_days:
if keyword in des_day.name:
filtered_days.append(des_day)
return filtered_days | python | def filter_by_keyword(self, keyword):
"""Return a list of ddys that have a certain keyword in their name.
This is useful for selecting out design days from a ddy file that are
for a specific type of condition (for example, .4% cooling design days)
"""
filtered_days = []
for des_day in self.design_days:
if keyword in des_day.name:
filtered_days.append(des_day)
return filtered_days | [
"def",
"filter_by_keyword",
"(",
"self",
",",
"keyword",
")",
":",
"filtered_days",
"=",
"[",
"]",
"for",
"des_day",
"in",
"self",
".",
"design_days",
":",
"if",
"keyword",
"in",
"des_day",
".",
"name",
":",
"filtered_days",
".",
"append",
"(",
"des_day",
")",
"return",
"filtered_days"
] | Return a list of ddys that have a certain keyword in their name.
This is useful for selecting out design days from a ddy file that are
for a specific type of condition (for example, .4% cooling design days) | [
"Return",
"a",
"list",
"of",
"ddys",
"that",
"have",
"a",
"certain",
"keyword",
"in",
"their",
"name",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L139-L149 |
4,686 | ladybug-tools/ladybug | ladybug/designday.py | DesignDay.from_json | def from_json(cls, data):
"""Create a Design Day from a dictionary.
Args:
data = {
"name": string,
"day_type": string,
"location": ladybug Location schema,
"dry_bulb_condition": ladybug DryBulbCondition schema,
"humidity_condition": ladybug HumidityCondition schema,
"wind_condition": ladybug WindCondition schema,
"sky_condition": ladybug SkyCondition schema}
"""
required_keys = ('name', 'day_type', 'location', 'dry_bulb_condition',
'humidity_condition', 'wind_condition', 'sky_condition')
for key in required_keys:
assert key in data, 'Required key "{}" is missing!'.format(key)
return cls(data['name'], data['day_type'], Location.from_json(data['location']),
DryBulbCondition.from_json(data['dry_bulb_condition']),
HumidityCondition.from_json(data['humidity_condition']),
WindCondition.from_json(data['wind_condition']),
SkyCondition.from_json(data['sky_condition'])) | python | def from_json(cls, data):
"""Create a Design Day from a dictionary.
Args:
data = {
"name": string,
"day_type": string,
"location": ladybug Location schema,
"dry_bulb_condition": ladybug DryBulbCondition schema,
"humidity_condition": ladybug HumidityCondition schema,
"wind_condition": ladybug WindCondition schema,
"sky_condition": ladybug SkyCondition schema}
"""
required_keys = ('name', 'day_type', 'location', 'dry_bulb_condition',
'humidity_condition', 'wind_condition', 'sky_condition')
for key in required_keys:
assert key in data, 'Required key "{}" is missing!'.format(key)
return cls(data['name'], data['day_type'], Location.from_json(data['location']),
DryBulbCondition.from_json(data['dry_bulb_condition']),
HumidityCondition.from_json(data['humidity_condition']),
WindCondition.from_json(data['wind_condition']),
SkyCondition.from_json(data['sky_condition'])) | [
"def",
"from_json",
"(",
"cls",
",",
"data",
")",
":",
"required_keys",
"=",
"(",
"'name'",
",",
"'day_type'",
",",
"'location'",
",",
"'dry_bulb_condition'",
",",
"'humidity_condition'",
",",
"'wind_condition'",
",",
"'sky_condition'",
")",
"for",
"key",
"in",
"required_keys",
":",
"assert",
"key",
"in",
"data",
",",
"'Required key \"{}\" is missing!'",
".",
"format",
"(",
"key",
")",
"return",
"cls",
"(",
"data",
"[",
"'name'",
"]",
",",
"data",
"[",
"'day_type'",
"]",
",",
"Location",
".",
"from_json",
"(",
"data",
"[",
"'location'",
"]",
")",
",",
"DryBulbCondition",
".",
"from_json",
"(",
"data",
"[",
"'dry_bulb_condition'",
"]",
")",
",",
"HumidityCondition",
".",
"from_json",
"(",
"data",
"[",
"'humidity_condition'",
"]",
")",
",",
"WindCondition",
".",
"from_json",
"(",
"data",
"[",
"'wind_condition'",
"]",
")",
",",
"SkyCondition",
".",
"from_json",
"(",
"data",
"[",
"'sky_condition'",
"]",
")",
")"
] | Create a Design Day from a dictionary.
Args:
data = {
"name": string,
"day_type": string,
"location": ladybug Location schema,
"dry_bulb_condition": ladybug DryBulbCondition schema,
"humidity_condition": ladybug HumidityCondition schema,
"wind_condition": ladybug WindCondition schema,
"sky_condition": ladybug SkyCondition schema} | [
"Create",
"a",
"Design",
"Day",
"from",
"a",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L298-L320 |
4,687 | ladybug-tools/ladybug | ladybug/designday.py | DesignDay.from_design_day_properties | def from_design_day_properties(cls, name, day_type, location, analysis_period,
dry_bulb_max, dry_bulb_range, humidity_type,
humidity_value, barometric_p, wind_speed, wind_dir,
sky_model, sky_properties):
"""Create a design day object from various key properties.
Args:
name: A text string to set the name of the design day
day_type: Choose from 'SummerDesignDay', 'WinterDesignDay' or other
EnergyPlus days
location: Location for the design day
analysis_period: Analysis period for the design day
dry_bulb_max: Maximum dry bulb temperature over the design day (in C).
dry_bulb_range: Dry bulb range over the design day (in C).
humidity_type: Type of humidity to use. Choose from
Wetbulb, Dewpoint, HumidityRatio, Enthalpy
humidity_value: The value of the condition above.
barometric_p: Barometric pressure in Pa.
wind_speed: Wind speed over the design day in m/s.
wind_dir: Wind direction over the design day in degrees.
sky_model: Type of solar model to use. Choose from
ASHRAEClearSky, ASHRAETau
sky_properties: A list of properties describing the sky above.
For ASHRAEClearSky this is a single value for clearness
For ASHRAETau, this is the tau_beam and tau_diffuse
"""
dry_bulb_condition = DryBulbCondition(
dry_bulb_max, dry_bulb_range)
humidity_condition = HumidityCondition(
humidity_type, humidity_value, barometric_p)
wind_condition = WindCondition(
wind_speed, wind_dir)
if sky_model == 'ASHRAEClearSky':
sky_condition = OriginalClearSkyCondition.from_analysis_period(
analysis_period, sky_properties[0])
elif sky_model == 'ASHRAETau':
sky_condition = RevisedClearSkyCondition.from_analysis_period(
analysis_period, sky_properties[0], sky_properties[-1])
return cls(name, day_type, location, dry_bulb_condition,
humidity_condition, wind_condition, sky_condition) | python | def from_design_day_properties(cls, name, day_type, location, analysis_period,
dry_bulb_max, dry_bulb_range, humidity_type,
humidity_value, barometric_p, wind_speed, wind_dir,
sky_model, sky_properties):
"""Create a design day object from various key properties.
Args:
name: A text string to set the name of the design day
day_type: Choose from 'SummerDesignDay', 'WinterDesignDay' or other
EnergyPlus days
location: Location for the design day
analysis_period: Analysis period for the design day
dry_bulb_max: Maximum dry bulb temperature over the design day (in C).
dry_bulb_range: Dry bulb range over the design day (in C).
humidity_type: Type of humidity to use. Choose from
Wetbulb, Dewpoint, HumidityRatio, Enthalpy
humidity_value: The value of the condition above.
barometric_p: Barometric pressure in Pa.
wind_speed: Wind speed over the design day in m/s.
wind_dir: Wind direction over the design day in degrees.
sky_model: Type of solar model to use. Choose from
ASHRAEClearSky, ASHRAETau
sky_properties: A list of properties describing the sky above.
For ASHRAEClearSky this is a single value for clearness
For ASHRAETau, this is the tau_beam and tau_diffuse
"""
dry_bulb_condition = DryBulbCondition(
dry_bulb_max, dry_bulb_range)
humidity_condition = HumidityCondition(
humidity_type, humidity_value, barometric_p)
wind_condition = WindCondition(
wind_speed, wind_dir)
if sky_model == 'ASHRAEClearSky':
sky_condition = OriginalClearSkyCondition.from_analysis_period(
analysis_period, sky_properties[0])
elif sky_model == 'ASHRAETau':
sky_condition = RevisedClearSkyCondition.from_analysis_period(
analysis_period, sky_properties[0], sky_properties[-1])
return cls(name, day_type, location, dry_bulb_condition,
humidity_condition, wind_condition, sky_condition) | [
"def",
"from_design_day_properties",
"(",
"cls",
",",
"name",
",",
"day_type",
",",
"location",
",",
"analysis_period",
",",
"dry_bulb_max",
",",
"dry_bulb_range",
",",
"humidity_type",
",",
"humidity_value",
",",
"barometric_p",
",",
"wind_speed",
",",
"wind_dir",
",",
"sky_model",
",",
"sky_properties",
")",
":",
"dry_bulb_condition",
"=",
"DryBulbCondition",
"(",
"dry_bulb_max",
",",
"dry_bulb_range",
")",
"humidity_condition",
"=",
"HumidityCondition",
"(",
"humidity_type",
",",
"humidity_value",
",",
"barometric_p",
")",
"wind_condition",
"=",
"WindCondition",
"(",
"wind_speed",
",",
"wind_dir",
")",
"if",
"sky_model",
"==",
"'ASHRAEClearSky'",
":",
"sky_condition",
"=",
"OriginalClearSkyCondition",
".",
"from_analysis_period",
"(",
"analysis_period",
",",
"sky_properties",
"[",
"0",
"]",
")",
"elif",
"sky_model",
"==",
"'ASHRAETau'",
":",
"sky_condition",
"=",
"RevisedClearSkyCondition",
".",
"from_analysis_period",
"(",
"analysis_period",
",",
"sky_properties",
"[",
"0",
"]",
",",
"sky_properties",
"[",
"-",
"1",
"]",
")",
"return",
"cls",
"(",
"name",
",",
"day_type",
",",
"location",
",",
"dry_bulb_condition",
",",
"humidity_condition",
",",
"wind_condition",
",",
"sky_condition",
")"
] | Create a design day object from various key properties.
Args:
name: A text string to set the name of the design day
day_type: Choose from 'SummerDesignDay', 'WinterDesignDay' or other
EnergyPlus days
location: Location for the design day
analysis_period: Analysis period for the design day
dry_bulb_max: Maximum dry bulb temperature over the design day (in C).
dry_bulb_range: Dry bulb range over the design day (in C).
humidity_type: Type of humidity to use. Choose from
Wetbulb, Dewpoint, HumidityRatio, Enthalpy
humidity_value: The value of the condition above.
barometric_p: Barometric pressure in Pa.
wind_speed: Wind speed over the design day in m/s.
wind_dir: Wind direction over the design day in degrees.
sky_model: Type of solar model to use. Choose from
ASHRAEClearSky, ASHRAETau
sky_properties: A list of properties describing the sky above.
For ASHRAEClearSky this is a single value for clearness
For ASHRAETau, this is the tau_beam and tau_diffuse | [
"Create",
"a",
"design",
"day",
"object",
"from",
"various",
"key",
"properties",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L386-L425 |
4,688 | ladybug-tools/ladybug | ladybug/designday.py | DesignDay.analysis_period | def analysis_period(self):
"""The analysisperiod of the design day."""
return AnalysisPeriod(
self.sky_condition.month,
self.sky_condition.day_of_month,
0,
self.sky_condition.month,
self.sky_condition.day_of_month,
23) | python | def analysis_period(self):
"""The analysisperiod of the design day."""
return AnalysisPeriod(
self.sky_condition.month,
self.sky_condition.day_of_month,
0,
self.sky_condition.month,
self.sky_condition.day_of_month,
23) | [
"def",
"analysis_period",
"(",
"self",
")",
":",
"return",
"AnalysisPeriod",
"(",
"self",
".",
"sky_condition",
".",
"month",
",",
"self",
".",
"sky_condition",
".",
"day_of_month",
",",
"0",
",",
"self",
".",
"sky_condition",
".",
"month",
",",
"self",
".",
"sky_condition",
".",
"day_of_month",
",",
"23",
")"
] | The analysisperiod of the design day. | [
"The",
"analysisperiod",
"of",
"the",
"design",
"day",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L629-L637 |
4,689 | ladybug-tools/ladybug | ladybug/designday.py | DesignDay.hourly_dew_point | def hourly_dew_point(self):
"""A data collection containing hourly dew points over they day."""
dpt_data = self._humidity_condition.hourly_dew_point_values(
self._dry_bulb_condition)
return self._get_daily_data_collections(
temperature.DewPointTemperature(), 'C', dpt_data) | python | def hourly_dew_point(self):
"""A data collection containing hourly dew points over they day."""
dpt_data = self._humidity_condition.hourly_dew_point_values(
self._dry_bulb_condition)
return self._get_daily_data_collections(
temperature.DewPointTemperature(), 'C', dpt_data) | [
"def",
"hourly_dew_point",
"(",
"self",
")",
":",
"dpt_data",
"=",
"self",
".",
"_humidity_condition",
".",
"hourly_dew_point_values",
"(",
"self",
".",
"_dry_bulb_condition",
")",
"return",
"self",
".",
"_get_daily_data_collections",
"(",
"temperature",
".",
"DewPointTemperature",
"(",
")",
",",
"'C'",
",",
"dpt_data",
")"
] | A data collection containing hourly dew points over they day. | [
"A",
"data",
"collection",
"containing",
"hourly",
"dew",
"points",
"over",
"they",
"day",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L651-L656 |
4,690 | ladybug-tools/ladybug | ladybug/designday.py | DesignDay.hourly_relative_humidity | def hourly_relative_humidity(self):
"""A data collection containing hourly relative humidity over they day."""
dpt_data = self._humidity_condition.hourly_dew_point_values(
self._dry_bulb_condition)
rh_data = [rel_humid_from_db_dpt(x, y) for x, y in zip(
self._dry_bulb_condition.hourly_values, dpt_data)]
return self._get_daily_data_collections(
fraction.RelativeHumidity(), '%', rh_data) | python | def hourly_relative_humidity(self):
"""A data collection containing hourly relative humidity over they day."""
dpt_data = self._humidity_condition.hourly_dew_point_values(
self._dry_bulb_condition)
rh_data = [rel_humid_from_db_dpt(x, y) for x, y in zip(
self._dry_bulb_condition.hourly_values, dpt_data)]
return self._get_daily_data_collections(
fraction.RelativeHumidity(), '%', rh_data) | [
"def",
"hourly_relative_humidity",
"(",
"self",
")",
":",
"dpt_data",
"=",
"self",
".",
"_humidity_condition",
".",
"hourly_dew_point_values",
"(",
"self",
".",
"_dry_bulb_condition",
")",
"rh_data",
"=",
"[",
"rel_humid_from_db_dpt",
"(",
"x",
",",
"y",
")",
"for",
"x",
",",
"y",
"in",
"zip",
"(",
"self",
".",
"_dry_bulb_condition",
".",
"hourly_values",
",",
"dpt_data",
")",
"]",
"return",
"self",
".",
"_get_daily_data_collections",
"(",
"fraction",
".",
"RelativeHumidity",
"(",
")",
",",
"'%'",
",",
"rh_data",
")"
] | A data collection containing hourly relative humidity over they day. | [
"A",
"data",
"collection",
"containing",
"hourly",
"relative",
"humidity",
"over",
"they",
"day",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L659-L666 |
4,691 | ladybug-tools/ladybug | ladybug/designday.py | DesignDay.hourly_solar_radiation | def hourly_solar_radiation(self):
"""Three data collections containing hourly direct normal, diffuse horizontal,
and global horizontal radiation.
"""
dir_norm, diff_horiz, glob_horiz = \
self._sky_condition.radiation_values(self._location)
dir_norm_data = self._get_daily_data_collections(
energyintensity.DirectNormalRadiation(), 'Wh/m2', dir_norm)
diff_horiz_data = self._get_daily_data_collections(
energyintensity.DiffuseHorizontalRadiation(), 'Wh/m2', diff_horiz)
glob_horiz_data = self._get_daily_data_collections(
energyintensity.GlobalHorizontalRadiation(), 'Wh/m2', glob_horiz)
return dir_norm_data, diff_horiz_data, glob_horiz_data | python | def hourly_solar_radiation(self):
"""Three data collections containing hourly direct normal, diffuse horizontal,
and global horizontal radiation.
"""
dir_norm, diff_horiz, glob_horiz = \
self._sky_condition.radiation_values(self._location)
dir_norm_data = self._get_daily_data_collections(
energyintensity.DirectNormalRadiation(), 'Wh/m2', dir_norm)
diff_horiz_data = self._get_daily_data_collections(
energyintensity.DiffuseHorizontalRadiation(), 'Wh/m2', diff_horiz)
glob_horiz_data = self._get_daily_data_collections(
energyintensity.GlobalHorizontalRadiation(), 'Wh/m2', glob_horiz)
return dir_norm_data, diff_horiz_data, glob_horiz_data | [
"def",
"hourly_solar_radiation",
"(",
"self",
")",
":",
"dir_norm",
",",
"diff_horiz",
",",
"glob_horiz",
"=",
"self",
".",
"_sky_condition",
".",
"radiation_values",
"(",
"self",
".",
"_location",
")",
"dir_norm_data",
"=",
"self",
".",
"_get_daily_data_collections",
"(",
"energyintensity",
".",
"DirectNormalRadiation",
"(",
")",
",",
"'Wh/m2'",
",",
"dir_norm",
")",
"diff_horiz_data",
"=",
"self",
".",
"_get_daily_data_collections",
"(",
"energyintensity",
".",
"DiffuseHorizontalRadiation",
"(",
")",
",",
"'Wh/m2'",
",",
"diff_horiz",
")",
"glob_horiz_data",
"=",
"self",
".",
"_get_daily_data_collections",
"(",
"energyintensity",
".",
"GlobalHorizontalRadiation",
"(",
")",
",",
"'Wh/m2'",
",",
"glob_horiz",
")",
"return",
"dir_norm_data",
",",
"diff_horiz_data",
",",
"glob_horiz_data"
] | Three data collections containing hourly direct normal, diffuse horizontal,
and global horizontal radiation. | [
"Three",
"data",
"collections",
"containing",
"hourly",
"direct",
"normal",
"diffuse",
"horizontal",
"and",
"global",
"horizontal",
"radiation",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L688-L702 |
4,692 | ladybug-tools/ladybug | ladybug/designday.py | DesignDay._get_daily_data_collections | def _get_daily_data_collections(self, data_type, unit, values):
"""Return an empty data collection."""
data_header = Header(data_type=data_type, unit=unit,
analysis_period=self.analysis_period,
metadata={'source': self._location.source,
'country': self._location.country,
'city': self._location.city})
return HourlyContinuousCollection(data_header, values) | python | def _get_daily_data_collections(self, data_type, unit, values):
"""Return an empty data collection."""
data_header = Header(data_type=data_type, unit=unit,
analysis_period=self.analysis_period,
metadata={'source': self._location.source,
'country': self._location.country,
'city': self._location.city})
return HourlyContinuousCollection(data_header, values) | [
"def",
"_get_daily_data_collections",
"(",
"self",
",",
"data_type",
",",
"unit",
",",
"values",
")",
":",
"data_header",
"=",
"Header",
"(",
"data_type",
"=",
"data_type",
",",
"unit",
"=",
"unit",
",",
"analysis_period",
"=",
"self",
".",
"analysis_period",
",",
"metadata",
"=",
"{",
"'source'",
":",
"self",
".",
"_location",
".",
"source",
",",
"'country'",
":",
"self",
".",
"_location",
".",
"country",
",",
"'city'",
":",
"self",
".",
"_location",
".",
"city",
"}",
")",
"return",
"HourlyContinuousCollection",
"(",
"data_header",
",",
"values",
")"
] | Return an empty data collection. | [
"Return",
"an",
"empty",
"data",
"collection",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L727-L734 |
4,693 | ladybug-tools/ladybug | ladybug/designday.py | DryBulbCondition.hourly_values | def hourly_values(self):
"""A list of temperature values for each hour over the design day."""
return [self._dry_bulb_max - self._dry_bulb_range * x for
x in self.temp_multipliers] | python | def hourly_values(self):
"""A list of temperature values for each hour over the design day."""
return [self._dry_bulb_max - self._dry_bulb_range * x for
x in self.temp_multipliers] | [
"def",
"hourly_values",
"(",
"self",
")",
":",
"return",
"[",
"self",
".",
"_dry_bulb_max",
"-",
"self",
".",
"_dry_bulb_range",
"*",
"x",
"for",
"x",
"in",
"self",
".",
"temp_multipliers",
"]"
] | A list of temperature values for each hour over the design day. | [
"A",
"list",
"of",
"temperature",
"values",
"for",
"each",
"hour",
"over",
"the",
"design",
"day",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L805-L808 |
4,694 | ladybug-tools/ladybug | ladybug/designday.py | DryBulbCondition.to_json | def to_json(self):
"""Convert the Dry Bulb Condition to a dictionary."""
return {
'dry_bulb_max': self.dry_bulb_max,
'dry_bulb_range': self.dry_bulb_range,
'modifier_type': self.modifier_type,
'modifier_schedule': self.modifier_schedule
} | python | def to_json(self):
"""Convert the Dry Bulb Condition to a dictionary."""
return {
'dry_bulb_max': self.dry_bulb_max,
'dry_bulb_range': self.dry_bulb_range,
'modifier_type': self.modifier_type,
'modifier_schedule': self.modifier_schedule
} | [
"def",
"to_json",
"(",
"self",
")",
":",
"return",
"{",
"'dry_bulb_max'",
":",
"self",
".",
"dry_bulb_max",
",",
"'dry_bulb_range'",
":",
"self",
".",
"dry_bulb_range",
",",
"'modifier_type'",
":",
"self",
".",
"modifier_type",
",",
"'modifier_schedule'",
":",
"self",
".",
"modifier_schedule",
"}"
] | Convert the Dry Bulb Condition to a dictionary. | [
"Convert",
"the",
"Dry",
"Bulb",
"Condition",
"to",
"a",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L846-L853 |
4,695 | ladybug-tools/ladybug | ladybug/designday.py | HumidityCondition.from_json | def from_json(cls, data):
"""Create a Humidity Condition from a dictionary.
Args:
data = {
"hum_type": string,
"hum_value": float,
"barometric_pressure": float,
"schedule": string,
"wet_bulb_range": string}
"""
# Check required and optional keys
required_keys = ('hum_type', 'hum_value')
optional_keys = {'barometric_pressure': 101325,
'schedule': '', 'wet_bulb_range': ''}
for key in required_keys:
assert key in data, 'Required key "{}" is missing!'.format(key)
for key, val in optional_keys.items():
if key not in data:
data[key] = val
return cls(data['hum_type'], data['hum_value'], data['barometric_pressure'],
data['schedule'], data['wet_bulb_range']) | python | def from_json(cls, data):
"""Create a Humidity Condition from a dictionary.
Args:
data = {
"hum_type": string,
"hum_value": float,
"barometric_pressure": float,
"schedule": string,
"wet_bulb_range": string}
"""
# Check required and optional keys
required_keys = ('hum_type', 'hum_value')
optional_keys = {'barometric_pressure': 101325,
'schedule': '', 'wet_bulb_range': ''}
for key in required_keys:
assert key in data, 'Required key "{}" is missing!'.format(key)
for key, val in optional_keys.items():
if key not in data:
data[key] = val
return cls(data['hum_type'], data['hum_value'], data['barometric_pressure'],
data['schedule'], data['wet_bulb_range']) | [
"def",
"from_json",
"(",
"cls",
",",
"data",
")",
":",
"# Check required and optional keys",
"required_keys",
"=",
"(",
"'hum_type'",
",",
"'hum_value'",
")",
"optional_keys",
"=",
"{",
"'barometric_pressure'",
":",
"101325",
",",
"'schedule'",
":",
"''",
",",
"'wet_bulb_range'",
":",
"''",
"}",
"for",
"key",
"in",
"required_keys",
":",
"assert",
"key",
"in",
"data",
",",
"'Required key \"{}\" is missing!'",
".",
"format",
"(",
"key",
")",
"for",
"key",
",",
"val",
"in",
"optional_keys",
".",
"items",
"(",
")",
":",
"if",
"key",
"not",
"in",
"data",
":",
"data",
"[",
"key",
"]",
"=",
"val",
"return",
"cls",
"(",
"data",
"[",
"'hum_type'",
"]",
",",
"data",
"[",
"'hum_value'",
"]",
",",
"data",
"[",
"'barometric_pressure'",
"]",
",",
"data",
"[",
"'schedule'",
"]",
",",
"data",
"[",
"'wet_bulb_range'",
"]",
")"
] | Create a Humidity Condition from a dictionary.
Args:
data = {
"hum_type": string,
"hum_value": float,
"barometric_pressure": float,
"schedule": string,
"wet_bulb_range": string} | [
"Create",
"a",
"Humidity",
"Condition",
"from",
"a",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L886-L908 |
4,696 | ladybug-tools/ladybug | ladybug/designday.py | HumidityCondition.to_json | def to_json(self):
"""Convert the Humidity Condition to a dictionary."""
return {
'hum_type': self.hum_type,
'hum_value': self.hum_value,
'barometric_pressure': self.barometric_pressure,
'schedule': self.schedule,
'wet_bulb_range': self.wet_bulb_range,
} | python | def to_json(self):
"""Convert the Humidity Condition to a dictionary."""
return {
'hum_type': self.hum_type,
'hum_value': self.hum_value,
'barometric_pressure': self.barometric_pressure,
'schedule': self.schedule,
'wet_bulb_range': self.wet_bulb_range,
} | [
"def",
"to_json",
"(",
"self",
")",
":",
"return",
"{",
"'hum_type'",
":",
"self",
".",
"hum_type",
",",
"'hum_value'",
":",
"self",
".",
"hum_value",
",",
"'barometric_pressure'",
":",
"self",
".",
"barometric_pressure",
",",
"'schedule'",
":",
"self",
".",
"schedule",
",",
"'wet_bulb_range'",
":",
"self",
".",
"wet_bulb_range",
",",
"}"
] | Convert the Humidity Condition to a dictionary. | [
"Convert",
"the",
"Humidity",
"Condition",
"to",
"a",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L991-L999 |
4,697 | ladybug-tools/ladybug | ladybug/designday.py | WindCondition.from_json | def from_json(cls, data):
"""Create a Wind Condition from a dictionary.
Args:
data = {
"wind_speed": float,
"wind_direction": float,
"rain": bool,
"snow_on_ground": bool}
"""
# Check required and optional keys
optional_keys = {'wind_direction': 0, 'rain': False, 'snow_on_ground': False}
assert 'wind_speed' in data, 'Required key "wind_speed" is missing!'
for key, val in optional_keys.items():
if key not in data:
data[key] = val
return cls(data['wind_speed'], data['wind_direction'], data['rain'],
data['snow_on_ground']) | python | def from_json(cls, data):
"""Create a Wind Condition from a dictionary.
Args:
data = {
"wind_speed": float,
"wind_direction": float,
"rain": bool,
"snow_on_ground": bool}
"""
# Check required and optional keys
optional_keys = {'wind_direction': 0, 'rain': False, 'snow_on_ground': False}
assert 'wind_speed' in data, 'Required key "wind_speed" is missing!'
for key, val in optional_keys.items():
if key not in data:
data[key] = val
return cls(data['wind_speed'], data['wind_direction'], data['rain'],
data['snow_on_ground']) | [
"def",
"from_json",
"(",
"cls",
",",
"data",
")",
":",
"# Check required and optional keys",
"optional_keys",
"=",
"{",
"'wind_direction'",
":",
"0",
",",
"'rain'",
":",
"False",
",",
"'snow_on_ground'",
":",
"False",
"}",
"assert",
"'wind_speed'",
"in",
"data",
",",
"'Required key \"wind_speed\" is missing!'",
"for",
"key",
",",
"val",
"in",
"optional_keys",
".",
"items",
"(",
")",
":",
"if",
"key",
"not",
"in",
"data",
":",
"data",
"[",
"key",
"]",
"=",
"val",
"return",
"cls",
"(",
"data",
"[",
"'wind_speed'",
"]",
",",
"data",
"[",
"'wind_direction'",
"]",
",",
"data",
"[",
"'rain'",
"]",
",",
"data",
"[",
"'snow_on_ground'",
"]",
")"
] | Create a Wind Condition from a dictionary.
Args:
data = {
"wind_speed": float,
"wind_direction": float,
"rain": bool,
"snow_on_ground": bool} | [
"Create",
"a",
"Wind",
"Condition",
"from",
"a",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L1029-L1047 |
4,698 | ladybug-tools/ladybug | ladybug/designday.py | WindCondition.to_json | def to_json(self):
"""Convert the Wind Condition to a dictionary."""
return {
'wind_speed': self.wind_speed,
'wind_direction': self.wind_direction,
'rain': self.rain,
'snow_on_ground': self.snow_on_ground
} | python | def to_json(self):
"""Convert the Wind Condition to a dictionary."""
return {
'wind_speed': self.wind_speed,
'wind_direction': self.wind_direction,
'rain': self.rain,
'snow_on_ground': self.snow_on_ground
} | [
"def",
"to_json",
"(",
"self",
")",
":",
"return",
"{",
"'wind_speed'",
":",
"self",
".",
"wind_speed",
",",
"'wind_direction'",
":",
"self",
".",
"wind_direction",
",",
"'rain'",
":",
"self",
".",
"rain",
",",
"'snow_on_ground'",
":",
"self",
".",
"snow_on_ground",
"}"
] | Convert the Wind Condition to a dictionary. | [
"Convert",
"the",
"Wind",
"Condition",
"to",
"a",
"dictionary",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L1116-L1123 |
4,699 | ladybug-tools/ladybug | ladybug/designday.py | SkyCondition._get_datetimes | def _get_datetimes(self, timestep=1):
"""List of datetimes based on design day date and timestep."""
start_moy = DateTime(self._month, self._day_of_month).moy
if timestep == 1:
start_moy = start_moy + 30
num_moys = 24 * timestep
return tuple(
DateTime.from_moy(start_moy + (i * (1 / timestep) * 60))
for i in xrange(num_moys)
) | python | def _get_datetimes(self, timestep=1):
"""List of datetimes based on design day date and timestep."""
start_moy = DateTime(self._month, self._day_of_month).moy
if timestep == 1:
start_moy = start_moy + 30
num_moys = 24 * timestep
return tuple(
DateTime.from_moy(start_moy + (i * (1 / timestep) * 60))
for i in xrange(num_moys)
) | [
"def",
"_get_datetimes",
"(",
"self",
",",
"timestep",
"=",
"1",
")",
":",
"start_moy",
"=",
"DateTime",
"(",
"self",
".",
"_month",
",",
"self",
".",
"_day_of_month",
")",
".",
"moy",
"if",
"timestep",
"==",
"1",
":",
"start_moy",
"=",
"start_moy",
"+",
"30",
"num_moys",
"=",
"24",
"*",
"timestep",
"return",
"tuple",
"(",
"DateTime",
".",
"from_moy",
"(",
"start_moy",
"+",
"(",
"i",
"*",
"(",
"1",
"/",
"timestep",
")",
"*",
"60",
")",
")",
"for",
"i",
"in",
"xrange",
"(",
"num_moys",
")",
")"
] | List of datetimes based on design day date and timestep. | [
"List",
"of",
"datetimes",
"based",
"on",
"design",
"day",
"date",
"and",
"timestep",
"."
] | c08b7308077a48d5612f644943f92d5b5dade583 | https://github.com/ladybug-tools/ladybug/blob/c08b7308077a48d5612f644943f92d5b5dade583/ladybug/designday.py#L1230-L1239 |
Subsets and Splits