id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
6,400
mcs07/ChemDataExtractor
chemdataextractor/biblio/bibtex.py
BibtexParser.parse_names
def parse_names(cls, names): """Parse a string of names separated by "and" like in a BibTeX authors field.""" names = [latex_to_unicode(n) for n in re.split(r'\sand\s(?=[^{}]*(?:\{|$))', names) if n] return names
python
def parse_names(cls, names): """Parse a string of names separated by "and" like in a BibTeX authors field.""" names = [latex_to_unicode(n) for n in re.split(r'\sand\s(?=[^{}]*(?:\{|$))', names) if n] return names
[ "def", "parse_names", "(", "cls", ",", "names", ")", ":", "names", "=", "[", "latex_to_unicode", "(", "n", ")", "for", "n", "in", "re", ".", "split", "(", "r'\\sand\\s(?=[^{}]*(?:\\{|$))'", ",", "names", ")", "if", "n", "]", "return", "names" ]
Parse a string of names separated by "and" like in a BibTeX authors field.
[ "Parse", "a", "string", "of", "names", "separated", "by", "and", "like", "in", "a", "BibTeX", "authors", "field", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/biblio/bibtex.py#L172-L175
6,401
mcs07/ChemDataExtractor
chemdataextractor/biblio/bibtex.py
BibtexParser.metadata
def metadata(self): """Return metadata for the parsed collection of records.""" auto = {u'records': self.size} auto.update(self.meta) return auto
python
def metadata(self): """Return metadata for the parsed collection of records.""" auto = {u'records': self.size} auto.update(self.meta) return auto
[ "def", "metadata", "(", "self", ")", ":", "auto", "=", "{", "u'records'", ":", "self", ".", "size", "}", "auto", ".", "update", "(", "self", ".", "meta", ")", "return", "auto" ]
Return metadata for the parsed collection of records.
[ "Return", "metadata", "for", "the", "parsed", "collection", "of", "records", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/biblio/bibtex.py#L188-L192
6,402
mcs07/ChemDataExtractor
chemdataextractor/biblio/bibtex.py
BibtexParser.json
def json(self): """Return a list of records as a JSON string. Follows the BibJSON convention.""" return json.dumps(OrderedDict([('metadata', self.metadata), ('records', self.records.values())]))
python
def json(self): """Return a list of records as a JSON string. Follows the BibJSON convention.""" return json.dumps(OrderedDict([('metadata', self.metadata), ('records', self.records.values())]))
[ "def", "json", "(", "self", ")", ":", "return", "json", ".", "dumps", "(", "OrderedDict", "(", "[", "(", "'metadata'", ",", "self", ".", "metadata", ")", ",", "(", "'records'", ",", "self", ".", "records", ".", "values", "(", ")", ")", "]", ")", ")" ]
Return a list of records as a JSON string. Follows the BibJSON convention.
[ "Return", "a", "list", "of", "records", "as", "a", "JSON", "string", ".", "Follows", "the", "BibJSON", "convention", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/biblio/bibtex.py#L195-L197
6,403
mcs07/ChemDataExtractor
chemdataextractor/config.py
Config._flush
def _flush(self): """Save the contents of data to the file on disk. You should not need to call this manually.""" d = os.path.dirname(self.path) if not os.path.isdir(d): os.makedirs(d) with io.open(self.path, 'w', encoding='utf8') as f: yaml.safe_dump(self._data, f, default_flow_style=False, encoding=None)
python
def _flush(self): """Save the contents of data to the file on disk. You should not need to call this manually.""" d = os.path.dirname(self.path) if not os.path.isdir(d): os.makedirs(d) with io.open(self.path, 'w', encoding='utf8') as f: yaml.safe_dump(self._data, f, default_flow_style=False, encoding=None)
[ "def", "_flush", "(", "self", ")", ":", "d", "=", "os", ".", "path", ".", "dirname", "(", "self", ".", "path", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "d", ")", ":", "os", ".", "makedirs", "(", "d", ")", "with", "io", ".", "open", "(", "self", ".", "path", ",", "'w'", ",", "encoding", "=", "'utf8'", ")", "as", "f", ":", "yaml", ".", "safe_dump", "(", "self", ".", "_data", ",", "f", ",", "default_flow_style", "=", "False", ",", "encoding", "=", "None", ")" ]
Save the contents of data to the file on disk. You should not need to call this manually.
[ "Save", "the", "contents", "of", "data", "to", "the", "file", "on", "disk", ".", "You", "should", "not", "need", "to", "call", "this", "manually", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/config.py#L79-L85
6,404
mcs07/ChemDataExtractor
chemdataextractor/nlp/abbrev.py
AbbreviationDetector._is_allowed_abbr
def _is_allowed_abbr(self, tokens): """Return True if text is an allowed abbreviation.""" if len(tokens) <= 2: abbr_text = ''.join(tokens) if self.abbr_min <= len(abbr_text) <= self.abbr_max and bracket_level(abbr_text) == 0: if abbr_text[0].isalnum() and any(c.isalpha() for c in abbr_text): # Disallow property values if re.match('^\d+(\.\d+)?(g|m[lL]|cm)$', abbr_text): return False return True return False
python
def _is_allowed_abbr(self, tokens): """Return True if text is an allowed abbreviation.""" if len(tokens) <= 2: abbr_text = ''.join(tokens) if self.abbr_min <= len(abbr_text) <= self.abbr_max and bracket_level(abbr_text) == 0: if abbr_text[0].isalnum() and any(c.isalpha() for c in abbr_text): # Disallow property values if re.match('^\d+(\.\d+)?(g|m[lL]|cm)$', abbr_text): return False return True return False
[ "def", "_is_allowed_abbr", "(", "self", ",", "tokens", ")", ":", "if", "len", "(", "tokens", ")", "<=", "2", ":", "abbr_text", "=", "''", ".", "join", "(", "tokens", ")", "if", "self", ".", "abbr_min", "<=", "len", "(", "abbr_text", ")", "<=", "self", ".", "abbr_max", "and", "bracket_level", "(", "abbr_text", ")", "==", "0", ":", "if", "abbr_text", "[", "0", "]", ".", "isalnum", "(", ")", "and", "any", "(", "c", ".", "isalpha", "(", ")", "for", "c", "in", "abbr_text", ")", ":", "# Disallow property values", "if", "re", ".", "match", "(", "'^\\d+(\\.\\d+)?(g|m[lL]|cm)$'", ",", "abbr_text", ")", ":", "return", "False", "return", "True", "return", "False" ]
Return True if text is an allowed abbreviation.
[ "Return", "True", "if", "text", "is", "an", "allowed", "abbreviation", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/abbrev.py#L43-L53
6,405
mcs07/ChemDataExtractor
chemdataextractor/scrape/base.py
BaseScraper.name
def name(self): """A unique name for this scraper.""" return ''.join('_%s' % c if c.isupper() else c for c in self.__class__.__name__).strip('_').lower()
python
def name(self): """A unique name for this scraper.""" return ''.join('_%s' % c if c.isupper() else c for c in self.__class__.__name__).strip('_').lower()
[ "def", "name", "(", "self", ")", ":", "return", "''", ".", "join", "(", "'_%s'", "%", "c", "if", "c", ".", "isupper", "(", ")", "else", "c", "for", "c", "in", "self", ".", "__class__", ".", "__name__", ")", ".", "strip", "(", "'_'", ")", ".", "lower", "(", ")" ]
A unique name for this scraper.
[ "A", "unique", "name", "for", "this", "scraper", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/base.py#L41-L43
6,406
mcs07/ChemDataExtractor
chemdataextractor/scrape/base.py
BaseField._post_scrape
def _post_scrape(self, value, processor=None): """Apply processing to the scraped value.""" # Pass each value through the field's clean method value = [self.process(v) for v in value] # Filter None values value = [v for v in value if v is not None] # Pass each value through processors defined on the entity if processor: value = [processor(v) for v in value] value = [v for v in value if v is not None] # Take first unless all is specified if not self.all: value = value[0] if value else None log.debug('Scraped %s: %s from %s' % (self.name, value, self.selection)) return value
python
def _post_scrape(self, value, processor=None): """Apply processing to the scraped value.""" # Pass each value through the field's clean method value = [self.process(v) for v in value] # Filter None values value = [v for v in value if v is not None] # Pass each value through processors defined on the entity if processor: value = [processor(v) for v in value] value = [v for v in value if v is not None] # Take first unless all is specified if not self.all: value = value[0] if value else None log.debug('Scraped %s: %s from %s' % (self.name, value, self.selection)) return value
[ "def", "_post_scrape", "(", "self", ",", "value", ",", "processor", "=", "None", ")", ":", "# Pass each value through the field's clean method", "value", "=", "[", "self", ".", "process", "(", "v", ")", "for", "v", "in", "value", "]", "# Filter None values", "value", "=", "[", "v", "for", "v", "in", "value", "if", "v", "is", "not", "None", "]", "# Pass each value through processors defined on the entity", "if", "processor", ":", "value", "=", "[", "processor", "(", "v", ")", "for", "v", "in", "value", "]", "value", "=", "[", "v", "for", "v", "in", "value", "if", "v", "is", "not", "None", "]", "# Take first unless all is specified", "if", "not", "self", ".", "all", ":", "value", "=", "value", "[", "0", "]", "if", "value", "else", "None", "log", ".", "debug", "(", "'Scraped %s: %s from %s'", "%", "(", "self", ".", "name", ",", "value", ",", "self", ".", "selection", ")", ")", "return", "value" ]
Apply processing to the scraped value.
[ "Apply", "processing", "to", "the", "scraped", "value", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/base.py#L197-L211
6,407
mcs07/ChemDataExtractor
chemdataextractor/scrape/entity.py
Entity.scrape
def scrape(cls, selector, root, xpath=False): """Return EntityList for the given selector.""" log.debug('Called scrape classmethod with root: %s' % root) roots = selector.xpath(root) if xpath else selector.css(root) results = [cls(r) for r in roots] return EntityList(*results)
python
def scrape(cls, selector, root, xpath=False): """Return EntityList for the given selector.""" log.debug('Called scrape classmethod with root: %s' % root) roots = selector.xpath(root) if xpath else selector.css(root) results = [cls(r) for r in roots] return EntityList(*results)
[ "def", "scrape", "(", "cls", ",", "selector", ",", "root", ",", "xpath", "=", "False", ")", ":", "log", ".", "debug", "(", "'Called scrape classmethod with root: %s'", "%", "root", ")", "roots", "=", "selector", ".", "xpath", "(", "root", ")", "if", "xpath", "else", "selector", ".", "css", "(", "root", ")", "results", "=", "[", "cls", "(", "r", ")", "for", "r", "in", "roots", "]", "return", "EntityList", "(", "*", "results", ")" ]
Return EntityList for the given selector.
[ "Return", "EntityList", "for", "the", "given", "selector", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/entity.py#L95-L100
6,408
mcs07/ChemDataExtractor
chemdataextractor/scrape/entity.py
Entity.serialize
def serialize(self): """Convert Entity to python dictionary.""" # Serialize fields to a dict data = {} for field_name in self: value = self._values.get(field_name) field = self.fields.get(field_name) if value is not None: if field.all: value = [field.serialize(v) for v in value] else: value = field.serialize(value) # Skip empty fields unless field.null if not field.null and ((field.all and value == []) or (not field.all and value in {None, ''})): continue data[field.name] = value return data
python
def serialize(self): """Convert Entity to python dictionary.""" # Serialize fields to a dict data = {} for field_name in self: value = self._values.get(field_name) field = self.fields.get(field_name) if value is not None: if field.all: value = [field.serialize(v) for v in value] else: value = field.serialize(value) # Skip empty fields unless field.null if not field.null and ((field.all and value == []) or (not field.all and value in {None, ''})): continue data[field.name] = value return data
[ "def", "serialize", "(", "self", ")", ":", "# Serialize fields to a dict", "data", "=", "{", "}", "for", "field_name", "in", "self", ":", "value", "=", "self", ".", "_values", ".", "get", "(", "field_name", ")", "field", "=", "self", ".", "fields", ".", "get", "(", "field_name", ")", "if", "value", "is", "not", "None", ":", "if", "field", ".", "all", ":", "value", "=", "[", "field", ".", "serialize", "(", "v", ")", "for", "v", "in", "value", "]", "else", ":", "value", "=", "field", ".", "serialize", "(", "value", ")", "# Skip empty fields unless field.null", "if", "not", "field", ".", "null", "and", "(", "(", "field", ".", "all", "and", "value", "==", "[", "]", ")", "or", "(", "not", "field", ".", "all", "and", "value", "in", "{", "None", ",", "''", "}", ")", ")", ":", "continue", "data", "[", "field", ".", "name", "]", "=", "value", "return", "data" ]
Convert Entity to python dictionary.
[ "Convert", "Entity", "to", "python", "dictionary", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/entity.py#L102-L118
6,409
mcs07/ChemDataExtractor
chemdataextractor/scrape/entity.py
Entity.to_json
def to_json(self, *args, **kwargs): """Convert Entity to JSON.""" return json.dumps(self.serialize(), *args, **kwargs)
python
def to_json(self, *args, **kwargs): """Convert Entity to JSON.""" return json.dumps(self.serialize(), *args, **kwargs)
[ "def", "to_json", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "json", ".", "dumps", "(", "self", ".", "serialize", "(", ")", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Convert Entity to JSON.
[ "Convert", "Entity", "to", "JSON", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/entity.py#L120-L122
6,410
mcs07/ChemDataExtractor
chemdataextractor/doc/document.py
Document.from_file
def from_file(cls, f, fname=None, readers=None): """Create a Document from a file. Usage:: with open('paper.html', 'rb') as f: doc = Document.from_file(f) .. note:: Always open files in binary mode by using the 'rb' parameter. :param file|string f: A file-like object or path to a file. :param string fname: (Optional) The filename. Used to help determine file format. :param list[chemdataextractor.reader.base.BaseReader] readers: (Optional) List of readers to use. """ if isinstance(f, six.string_types): f = io.open(f, 'rb') if not fname and hasattr(f, 'name'): fname = f.name return cls.from_string(f.read(), fname=fname, readers=readers)
python
def from_file(cls, f, fname=None, readers=None): """Create a Document from a file. Usage:: with open('paper.html', 'rb') as f: doc = Document.from_file(f) .. note:: Always open files in binary mode by using the 'rb' parameter. :param file|string f: A file-like object or path to a file. :param string fname: (Optional) The filename. Used to help determine file format. :param list[chemdataextractor.reader.base.BaseReader] readers: (Optional) List of readers to use. """ if isinstance(f, six.string_types): f = io.open(f, 'rb') if not fname and hasattr(f, 'name'): fname = f.name return cls.from_string(f.read(), fname=fname, readers=readers)
[ "def", "from_file", "(", "cls", ",", "f", ",", "fname", "=", "None", ",", "readers", "=", "None", ")", ":", "if", "isinstance", "(", "f", ",", "six", ".", "string_types", ")", ":", "f", "=", "io", ".", "open", "(", "f", ",", "'rb'", ")", "if", "not", "fname", "and", "hasattr", "(", "f", ",", "'name'", ")", ":", "fname", "=", "f", ".", "name", "return", "cls", ".", "from_string", "(", "f", ".", "read", "(", ")", ",", "fname", "=", "fname", ",", "readers", "=", "readers", ")" ]
Create a Document from a file. Usage:: with open('paper.html', 'rb') as f: doc = Document.from_file(f) .. note:: Always open files in binary mode by using the 'rb' parameter. :param file|string f: A file-like object or path to a file. :param string fname: (Optional) The filename. Used to help determine file format. :param list[chemdataextractor.reader.base.BaseReader] readers: (Optional) List of readers to use.
[ "Create", "a", "Document", "from", "a", "file", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/doc/document.py#L87-L107
6,411
mcs07/ChemDataExtractor
chemdataextractor/doc/document.py
Document.from_string
def from_string(cls, fstring, fname=None, readers=None): """Create a Document from a byte string containing the contents of a file. Usage:: contents = open('paper.html', 'rb').read() doc = Document.from_string(contents) .. note:: This method expects a byte string, not a unicode string (in contrast to most methods in ChemDataExtractor). :param bytes fstring: A byte string containing the contents of a file. :param string fname: (Optional) The filename. Used to help determine file format. :param list[chemdataextractor.reader.base.BaseReader] readers: (Optional) List of readers to use. """ if readers is None: from ..reader import DEFAULT_READERS readers = DEFAULT_READERS if isinstance(fstring, six.text_type): raise ReaderError('from_string expects a byte string, not a unicode string') for reader in readers: # Skip reader if we don't think it can read file if not reader.detect(fstring, fname=fname): continue try: d = reader.readstring(fstring) log.debug('Parsed document with %s' % reader.__class__.__name__) return d except ReaderError: pass raise ReaderError('Unable to read document')
python
def from_string(cls, fstring, fname=None, readers=None): """Create a Document from a byte string containing the contents of a file. Usage:: contents = open('paper.html', 'rb').read() doc = Document.from_string(contents) .. note:: This method expects a byte string, not a unicode string (in contrast to most methods in ChemDataExtractor). :param bytes fstring: A byte string containing the contents of a file. :param string fname: (Optional) The filename. Used to help determine file format. :param list[chemdataextractor.reader.base.BaseReader] readers: (Optional) List of readers to use. """ if readers is None: from ..reader import DEFAULT_READERS readers = DEFAULT_READERS if isinstance(fstring, six.text_type): raise ReaderError('from_string expects a byte string, not a unicode string') for reader in readers: # Skip reader if we don't think it can read file if not reader.detect(fstring, fname=fname): continue try: d = reader.readstring(fstring) log.debug('Parsed document with %s' % reader.__class__.__name__) return d except ReaderError: pass raise ReaderError('Unable to read document')
[ "def", "from_string", "(", "cls", ",", "fstring", ",", "fname", "=", "None", ",", "readers", "=", "None", ")", ":", "if", "readers", "is", "None", ":", "from", ".", ".", "reader", "import", "DEFAULT_READERS", "readers", "=", "DEFAULT_READERS", "if", "isinstance", "(", "fstring", ",", "six", ".", "text_type", ")", ":", "raise", "ReaderError", "(", "'from_string expects a byte string, not a unicode string'", ")", "for", "reader", "in", "readers", ":", "# Skip reader if we don't think it can read file", "if", "not", "reader", ".", "detect", "(", "fstring", ",", "fname", "=", "fname", ")", ":", "continue", "try", ":", "d", "=", "reader", ".", "readstring", "(", "fstring", ")", "log", ".", "debug", "(", "'Parsed document with %s'", "%", "reader", ".", "__class__", ".", "__name__", ")", "return", "d", "except", "ReaderError", ":", "pass", "raise", "ReaderError", "(", "'Unable to read document'", ")" ]
Create a Document from a byte string containing the contents of a file. Usage:: contents = open('paper.html', 'rb').read() doc = Document.from_string(contents) .. note:: This method expects a byte string, not a unicode string (in contrast to most methods in ChemDataExtractor). :param bytes fstring: A byte string containing the contents of a file. :param string fname: (Optional) The filename. Used to help determine file format. :param list[chemdataextractor.reader.base.BaseReader] readers: (Optional) List of readers to use.
[ "Create", "a", "Document", "from", "a", "byte", "string", "containing", "the", "contents", "of", "a", "file", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/doc/document.py#L110-L143
6,412
mcs07/ChemDataExtractor
chemdataextractor/doc/document.py
Document.get_element_with_id
def get_element_with_id(self, id): """Return the element with the specified ID.""" # Should we maintain a hashmap of ids to make this more efficient? Probably overkill. # TODO: Elements can contain nested elements (captions, footnotes, table cells, etc.) return next((el for el in self.elements if el.id == id), None)
python
def get_element_with_id(self, id): """Return the element with the specified ID.""" # Should we maintain a hashmap of ids to make this more efficient? Probably overkill. # TODO: Elements can contain nested elements (captions, footnotes, table cells, etc.) return next((el for el in self.elements if el.id == id), None)
[ "def", "get_element_with_id", "(", "self", ",", "id", ")", ":", "# Should we maintain a hashmap of ids to make this more efficient? Probably overkill.", "# TODO: Elements can contain nested elements (captions, footnotes, table cells, etc.)", "return", "next", "(", "(", "el", "for", "el", "in", "self", ".", "elements", "if", "el", ".", "id", "==", "id", ")", ",", "None", ")" ]
Return the element with the specified ID.
[ "Return", "the", "element", "with", "the", "specified", "ID", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/doc/document.py#L300-L304
6,413
mcs07/ChemDataExtractor
chemdataextractor/doc/document.py
Document.serialize
def serialize(self): """Convert Document to python dictionary.""" # Serialize fields to a dict elements = [] for element in self.elements: elements.append(element.serialize()) data = {'type': 'document', 'elements': elements} return data
python
def serialize(self): """Convert Document to python dictionary.""" # Serialize fields to a dict elements = [] for element in self.elements: elements.append(element.serialize()) data = {'type': 'document', 'elements': elements} return data
[ "def", "serialize", "(", "self", ")", ":", "# Serialize fields to a dict", "elements", "=", "[", "]", "for", "element", "in", "self", ".", "elements", ":", "elements", ".", "append", "(", "element", ".", "serialize", "(", ")", ")", "data", "=", "{", "'type'", ":", "'document'", ",", "'elements'", ":", "elements", "}", "return", "data" ]
Convert Document to python dictionary.
[ "Convert", "Document", "to", "python", "dictionary", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/doc/document.py#L357-L364
6,414
mcs07/ChemDataExtractor
chemdataextractor/biblio/xmp.py
XmpParser.parse
def parse(self, xmp): """Run parser and return a dictionary of all the parsed metadata.""" tree = etree.fromstring(xmp) rdf_tree = tree.find(RDF_NS + 'RDF') meta = defaultdict(dict) for desc in rdf_tree.findall(RDF_NS + 'Description'): for el in desc.getchildren(): ns, tag = self._parse_tag(el) value = self._parse_value(el) meta[ns][tag] = value return dict(meta)
python
def parse(self, xmp): """Run parser and return a dictionary of all the parsed metadata.""" tree = etree.fromstring(xmp) rdf_tree = tree.find(RDF_NS + 'RDF') meta = defaultdict(dict) for desc in rdf_tree.findall(RDF_NS + 'Description'): for el in desc.getchildren(): ns, tag = self._parse_tag(el) value = self._parse_value(el) meta[ns][tag] = value return dict(meta)
[ "def", "parse", "(", "self", ",", "xmp", ")", ":", "tree", "=", "etree", ".", "fromstring", "(", "xmp", ")", "rdf_tree", "=", "tree", ".", "find", "(", "RDF_NS", "+", "'RDF'", ")", "meta", "=", "defaultdict", "(", "dict", ")", "for", "desc", "in", "rdf_tree", ".", "findall", "(", "RDF_NS", "+", "'Description'", ")", ":", "for", "el", "in", "desc", ".", "getchildren", "(", ")", ":", "ns", ",", "tag", "=", "self", ".", "_parse_tag", "(", "el", ")", "value", "=", "self", ".", "_parse_value", "(", "el", ")", "meta", "[", "ns", "]", "[", "tag", "]", "=", "value", "return", "dict", "(", "meta", ")" ]
Run parser and return a dictionary of all the parsed metadata.
[ "Run", "parser", "and", "return", "a", "dictionary", "of", "all", "the", "parsed", "metadata", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/biblio/xmp.py#L60-L70
6,415
mcs07/ChemDataExtractor
chemdataextractor/biblio/xmp.py
XmpParser._parse_tag
def _parse_tag(self, el): """Extract the namespace and tag from an element.""" ns = None tag = el.tag if tag[0] == '{': ns, tag = tag[1:].split('}', 1) if self.ns_map and ns in self.ns_map: ns = self.ns_map[ns] return ns, tag
python
def _parse_tag(self, el): """Extract the namespace and tag from an element.""" ns = None tag = el.tag if tag[0] == '{': ns, tag = tag[1:].split('}', 1) if self.ns_map and ns in self.ns_map: ns = self.ns_map[ns] return ns, tag
[ "def", "_parse_tag", "(", "self", ",", "el", ")", ":", "ns", "=", "None", "tag", "=", "el", ".", "tag", "if", "tag", "[", "0", "]", "==", "'{'", ":", "ns", ",", "tag", "=", "tag", "[", "1", ":", "]", ".", "split", "(", "'}'", ",", "1", ")", "if", "self", ".", "ns_map", "and", "ns", "in", "self", ".", "ns_map", ":", "ns", "=", "self", ".", "ns_map", "[", "ns", "]", "return", "ns", ",", "tag" ]
Extract the namespace and tag from an element.
[ "Extract", "the", "namespace", "and", "tag", "from", "an", "element", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/biblio/xmp.py#L72-L80
6,416
mcs07/ChemDataExtractor
chemdataextractor/biblio/xmp.py
XmpParser._parse_value
def _parse_value(self, el): """Extract the metadata value from an element.""" if el.find(RDF_NS + 'Bag') is not None: value = [] for li in el.findall(RDF_NS + 'Bag/' + RDF_NS + 'li'): value.append(li.text) elif el.find(RDF_NS + 'Seq') is not None: value = [] for li in el.findall(RDF_NS + 'Seq/' + RDF_NS + 'li'): value.append(li.text) elif el.find(RDF_NS + 'Alt') is not None: value = {} for li in el.findall(RDF_NS + 'Alt/' + RDF_NS + 'li'): value[li.get(XML_NS + 'lang')] = li.text else: value = el.text return value
python
def _parse_value(self, el): """Extract the metadata value from an element.""" if el.find(RDF_NS + 'Bag') is not None: value = [] for li in el.findall(RDF_NS + 'Bag/' + RDF_NS + 'li'): value.append(li.text) elif el.find(RDF_NS + 'Seq') is not None: value = [] for li in el.findall(RDF_NS + 'Seq/' + RDF_NS + 'li'): value.append(li.text) elif el.find(RDF_NS + 'Alt') is not None: value = {} for li in el.findall(RDF_NS + 'Alt/' + RDF_NS + 'li'): value[li.get(XML_NS + 'lang')] = li.text else: value = el.text return value
[ "def", "_parse_value", "(", "self", ",", "el", ")", ":", "if", "el", ".", "find", "(", "RDF_NS", "+", "'Bag'", ")", "is", "not", "None", ":", "value", "=", "[", "]", "for", "li", "in", "el", ".", "findall", "(", "RDF_NS", "+", "'Bag/'", "+", "RDF_NS", "+", "'li'", ")", ":", "value", ".", "append", "(", "li", ".", "text", ")", "elif", "el", ".", "find", "(", "RDF_NS", "+", "'Seq'", ")", "is", "not", "None", ":", "value", "=", "[", "]", "for", "li", "in", "el", ".", "findall", "(", "RDF_NS", "+", "'Seq/'", "+", "RDF_NS", "+", "'li'", ")", ":", "value", ".", "append", "(", "li", ".", "text", ")", "elif", "el", ".", "find", "(", "RDF_NS", "+", "'Alt'", ")", "is", "not", "None", ":", "value", "=", "{", "}", "for", "li", "in", "el", ".", "findall", "(", "RDF_NS", "+", "'Alt/'", "+", "RDF_NS", "+", "'li'", ")", ":", "value", "[", "li", ".", "get", "(", "XML_NS", "+", "'lang'", ")", "]", "=", "li", ".", "text", "else", ":", "value", "=", "el", ".", "text", "return", "value" ]
Extract the metadata value from an element.
[ "Extract", "the", "metadata", "value", "from", "an", "element", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/biblio/xmp.py#L82-L98
6,417
mcs07/ChemDataExtractor
chemdataextractor/scrape/pub/rsc.py
parse_rsc_html
def parse_rsc_html(htmlstring): """Messy RSC HTML needs this special parser to fix problems before creating selector.""" converted = UnicodeDammit(htmlstring) if not converted.unicode_markup: raise UnicodeDecodeError('Failed to detect encoding, tried [%s]') root = fromstring(htmlstring, parser=HTMLParser(recover=True, encoding=converted.original_encoding)) # Add p.otherpara tags around orphan text newp = None for child in root.get_element_by_id('wrapper'): if newp is not None: if child.tag in BLOCK_ELEMENTS or child.get('id', '').startswith('sect') or child.getnext() is None: child.addprevious(newp) newp = None else: newp.append(child) if newp is None and child.tag in BLOCK_ELEMENTS and child.tail and child.tail.strip(): newp = Element('p', **{'class': 'otherpara'}) newp.text = child.tail child.tail = '' return root
python
def parse_rsc_html(htmlstring): """Messy RSC HTML needs this special parser to fix problems before creating selector.""" converted = UnicodeDammit(htmlstring) if not converted.unicode_markup: raise UnicodeDecodeError('Failed to detect encoding, tried [%s]') root = fromstring(htmlstring, parser=HTMLParser(recover=True, encoding=converted.original_encoding)) # Add p.otherpara tags around orphan text newp = None for child in root.get_element_by_id('wrapper'): if newp is not None: if child.tag in BLOCK_ELEMENTS or child.get('id', '').startswith('sect') or child.getnext() is None: child.addprevious(newp) newp = None else: newp.append(child) if newp is None and child.tag in BLOCK_ELEMENTS and child.tail and child.tail.strip(): newp = Element('p', **{'class': 'otherpara'}) newp.text = child.tail child.tail = '' return root
[ "def", "parse_rsc_html", "(", "htmlstring", ")", ":", "converted", "=", "UnicodeDammit", "(", "htmlstring", ")", "if", "not", "converted", ".", "unicode_markup", ":", "raise", "UnicodeDecodeError", "(", "'Failed to detect encoding, tried [%s]'", ")", "root", "=", "fromstring", "(", "htmlstring", ",", "parser", "=", "HTMLParser", "(", "recover", "=", "True", ",", "encoding", "=", "converted", ".", "original_encoding", ")", ")", "# Add p.otherpara tags around orphan text", "newp", "=", "None", "for", "child", "in", "root", ".", "get_element_by_id", "(", "'wrapper'", ")", ":", "if", "newp", "is", "not", "None", ":", "if", "child", ".", "tag", "in", "BLOCK_ELEMENTS", "or", "child", ".", "get", "(", "'id'", ",", "''", ")", ".", "startswith", "(", "'sect'", ")", "or", "child", ".", "getnext", "(", ")", "is", "None", ":", "child", ".", "addprevious", "(", "newp", ")", "newp", "=", "None", "else", ":", "newp", ".", "append", "(", "child", ")", "if", "newp", "is", "None", "and", "child", ".", "tag", "in", "BLOCK_ELEMENTS", "and", "child", ".", "tail", "and", "child", ".", "tail", ".", "strip", "(", ")", ":", "newp", "=", "Element", "(", "'p'", ",", "*", "*", "{", "'class'", ":", "'otherpara'", "}", ")", "newp", ".", "text", "=", "child", ".", "tail", "child", ".", "tail", "=", "''", "return", "root" ]
Messy RSC HTML needs this special parser to fix problems before creating selector.
[ "Messy", "RSC", "HTML", "needs", "this", "special", "parser", "to", "fix", "problems", "before", "creating", "selector", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/pub/rsc.py#L242-L261
6,418
mcs07/ChemDataExtractor
chemdataextractor/scrape/pub/rsc.py
replace_rsc_img_chars
def replace_rsc_img_chars(document): """Replace image characters with unicode equivalents.""" image_re = re.compile('http://www.rsc.org/images/entities/(?:h[23]+_)?(?:[ib]+_)?char_([0-9a-f]{4})(?:_([0-9a-f]{4}))?\.gif') for img in document.xpath('.//img[starts-with(@src, "http://www.rsc.org/images/entities/")]'): m = image_re.match(img.get('src')) if m: u1, u2 = m.group(1), m.group(2) if not u2 and u1 in RSC_IMG_CHARS: rep = RSC_IMG_CHARS[u1] else: rep = ('\\u%s' % u1).encode('ascii').decode('unicode-escape') if u2: rep += ('\\u%s' % u2).encode('ascii').decode('unicode-escape') if img.tail is not None: rep += img.tail # Make sure we don't remove any tail text parent = img.getparent() if parent is not None: previous = img.getprevious() if previous is not None: previous.tail = (previous.tail or '') + rep else: parent.text = (parent.text or '') + rep parent.remove(img) return document
python
def replace_rsc_img_chars(document): """Replace image characters with unicode equivalents.""" image_re = re.compile('http://www.rsc.org/images/entities/(?:h[23]+_)?(?:[ib]+_)?char_([0-9a-f]{4})(?:_([0-9a-f]{4}))?\.gif') for img in document.xpath('.//img[starts-with(@src, "http://www.rsc.org/images/entities/")]'): m = image_re.match(img.get('src')) if m: u1, u2 = m.group(1), m.group(2) if not u2 and u1 in RSC_IMG_CHARS: rep = RSC_IMG_CHARS[u1] else: rep = ('\\u%s' % u1).encode('ascii').decode('unicode-escape') if u2: rep += ('\\u%s' % u2).encode('ascii').decode('unicode-escape') if img.tail is not None: rep += img.tail # Make sure we don't remove any tail text parent = img.getparent() if parent is not None: previous = img.getprevious() if previous is not None: previous.tail = (previous.tail or '') + rep else: parent.text = (parent.text or '') + rep parent.remove(img) return document
[ "def", "replace_rsc_img_chars", "(", "document", ")", ":", "image_re", "=", "re", ".", "compile", "(", "'http://www.rsc.org/images/entities/(?:h[23]+_)?(?:[ib]+_)?char_([0-9a-f]{4})(?:_([0-9a-f]{4}))?\\.gif'", ")", "for", "img", "in", "document", ".", "xpath", "(", "'.//img[starts-with(@src, \"http://www.rsc.org/images/entities/\")]'", ")", ":", "m", "=", "image_re", ".", "match", "(", "img", ".", "get", "(", "'src'", ")", ")", "if", "m", ":", "u1", ",", "u2", "=", "m", ".", "group", "(", "1", ")", ",", "m", ".", "group", "(", "2", ")", "if", "not", "u2", "and", "u1", "in", "RSC_IMG_CHARS", ":", "rep", "=", "RSC_IMG_CHARS", "[", "u1", "]", "else", ":", "rep", "=", "(", "'\\\\u%s'", "%", "u1", ")", ".", "encode", "(", "'ascii'", ")", ".", "decode", "(", "'unicode-escape'", ")", "if", "u2", ":", "rep", "+=", "(", "'\\\\u%s'", "%", "u2", ")", ".", "encode", "(", "'ascii'", ")", ".", "decode", "(", "'unicode-escape'", ")", "if", "img", ".", "tail", "is", "not", "None", ":", "rep", "+=", "img", ".", "tail", "# Make sure we don't remove any tail text", "parent", "=", "img", ".", "getparent", "(", ")", "if", "parent", "is", "not", "None", ":", "previous", "=", "img", ".", "getprevious", "(", ")", "if", "previous", "is", "not", "None", ":", "previous", ".", "tail", "=", "(", "previous", ".", "tail", "or", "''", ")", "+", "rep", "else", ":", "parent", ".", "text", "=", "(", "parent", ".", "text", "or", "''", ")", "+", "rep", "parent", ".", "remove", "(", "img", ")", "return", "document" ]
Replace image characters with unicode equivalents.
[ "Replace", "image", "characters", "with", "unicode", "equivalents", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/pub/rsc.py#L264-L287
6,419
mcs07/ChemDataExtractor
chemdataextractor/scrape/pub/rsc.py
space_references
def space_references(document): """Ensure a space around reference links, so there's a gap when they are removed.""" for ref in document.xpath('.//a/sup/span[@class="sup_ref"]'): a = ref.getparent().getparent() if a is not None: atail = a.tail or '' if not atail.startswith(')') and not atail.startswith(',') and not atail.startswith(' '): a.tail = ' ' + atail return document
python
def space_references(document): """Ensure a space around reference links, so there's a gap when they are removed.""" for ref in document.xpath('.//a/sup/span[@class="sup_ref"]'): a = ref.getparent().getparent() if a is not None: atail = a.tail or '' if not atail.startswith(')') and not atail.startswith(',') and not atail.startswith(' '): a.tail = ' ' + atail return document
[ "def", "space_references", "(", "document", ")", ":", "for", "ref", "in", "document", ".", "xpath", "(", "'.//a/sup/span[@class=\"sup_ref\"]'", ")", ":", "a", "=", "ref", ".", "getparent", "(", ")", ".", "getparent", "(", ")", "if", "a", "is", "not", "None", ":", "atail", "=", "a", ".", "tail", "or", "''", "if", "not", "atail", ".", "startswith", "(", "')'", ")", "and", "not", "atail", ".", "startswith", "(", "','", ")", "and", "not", "atail", ".", "startswith", "(", "' '", ")", ":", "a", ".", "tail", "=", "' '", "+", "atail", "return", "document" ]
Ensure a space around reference links, so there's a gap when they are removed.
[ "Ensure", "a", "space", "around", "reference", "links", "so", "there", "s", "a", "gap", "when", "they", "are", "removed", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/pub/rsc.py#L290-L298
6,420
mcs07/ChemDataExtractor
chemdataextractor/cli/cluster.py
load
def load(ctx, input, output): """Read clusters from file and save to model file.""" log.debug('chemdataextractor.cluster.load') import pickle click.echo('Reading %s' % input.name) clusters = {} for line in input.readlines(): cluster, word, freq = line.split() clusters[word] = cluster pickle.dump(clusters, output, protocol=pickle.HIGHEST_PROTOCOL)
python
def load(ctx, input, output): """Read clusters from file and save to model file.""" log.debug('chemdataextractor.cluster.load') import pickle click.echo('Reading %s' % input.name) clusters = {} for line in input.readlines(): cluster, word, freq = line.split() clusters[word] = cluster pickle.dump(clusters, output, protocol=pickle.HIGHEST_PROTOCOL)
[ "def", "load", "(", "ctx", ",", "input", ",", "output", ")", ":", "log", ".", "debug", "(", "'chemdataextractor.cluster.load'", ")", "import", "pickle", "click", ".", "echo", "(", "'Reading %s'", "%", "input", ".", "name", ")", "clusters", "=", "{", "}", "for", "line", "in", "input", ".", "readlines", "(", ")", ":", "cluster", ",", "word", ",", "freq", "=", "line", ".", "split", "(", ")", "clusters", "[", "word", "]", "=", "cluster", "pickle", ".", "dump", "(", "clusters", ",", "output", ",", "protocol", "=", "pickle", ".", "HIGHEST_PROTOCOL", ")" ]
Read clusters from file and save to model file.
[ "Read", "clusters", "from", "file", "and", "save", "to", "model", "file", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/cluster.py#L32-L41
6,421
mcs07/ChemDataExtractor
chemdataextractor/scrape/pub/nlm.py
space_labels
def space_labels(document): """Ensure space around bold compound labels.""" for label in document.xpath('.//bold'): # TODO: Make this more permissive to match chemical_label in parser if not label.text or not re.match('^\(L?\d\d?[a-z]?\):?$', label.text, re.I): continue parent = label.getparent() previous = label.getprevious() if previous is None: text = parent.text or '' if not text.endswith(' '): parent.text = text + ' ' else: text = previous.tail or '' if not text.endswith(' '): previous.tail = text + ' ' text = label.tail or '' if not text.endswith(' '): label.tail = text + ' ' return document
python
def space_labels(document): """Ensure space around bold compound labels.""" for label in document.xpath('.//bold'): # TODO: Make this more permissive to match chemical_label in parser if not label.text or not re.match('^\(L?\d\d?[a-z]?\):?$', label.text, re.I): continue parent = label.getparent() previous = label.getprevious() if previous is None: text = parent.text or '' if not text.endswith(' '): parent.text = text + ' ' else: text = previous.tail or '' if not text.endswith(' '): previous.tail = text + ' ' text = label.tail or '' if not text.endswith(' '): label.tail = text + ' ' return document
[ "def", "space_labels", "(", "document", ")", ":", "for", "label", "in", "document", ".", "xpath", "(", "'.//bold'", ")", ":", "# TODO: Make this more permissive to match chemical_label in parser", "if", "not", "label", ".", "text", "or", "not", "re", ".", "match", "(", "'^\\(L?\\d\\d?[a-z]?\\):?$'", ",", "label", ".", "text", ",", "re", ".", "I", ")", ":", "continue", "parent", "=", "label", ".", "getparent", "(", ")", "previous", "=", "label", ".", "getprevious", "(", ")", "if", "previous", "is", "None", ":", "text", "=", "parent", ".", "text", "or", "''", "if", "not", "text", ".", "endswith", "(", "' '", ")", ":", "parent", ".", "text", "=", "text", "+", "' '", "else", ":", "text", "=", "previous", ".", "tail", "or", "''", "if", "not", "text", ".", "endswith", "(", "' '", ")", ":", "previous", ".", "tail", "=", "text", "+", "' '", "text", "=", "label", ".", "tail", "or", "''", "if", "not", "text", ".", "endswith", "(", "' '", ")", ":", "label", ".", "tail", "=", "text", "+", "' '", "return", "document" ]
Ensure space around bold compound labels.
[ "Ensure", "space", "around", "bold", "compound", "labels", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/pub/nlm.py#L34-L53
6,422
mcs07/ChemDataExtractor
chemdataextractor/scrape/pub/nlm.py
tidy_nlm_references
def tidy_nlm_references(document): """Remove punctuation around references like brackets, commas, hyphens.""" def strip_preceding(text): stext = text.rstrip() if stext.endswith('[') or stext.endswith('('): #log.debug('%s -> %s' % (text, stext[:-1])) return stext[:-1] return text def strip_between(text): stext = text.strip() if stext in {',', '-', '\u2013', '\u2212'}: #log.debug('%s -> %s' % (text, '')) return '' return text def strip_following(text): stext = text.lstrip() if stext.startswith(']') or stext.startswith(')'): #log.debug('%s -> %s' % (text, stext[1:])) return stext[1:] return text for ref in document.xpath('.//xref[@ref-type="bibr"]'): parent = ref.getparent() previous = ref.getprevious() next = ref.getnext() if previous is None: parent.text = strip_preceding(parent.text or '') else: previous.tail = strip_preceding(previous.tail or '') if next is not None and next.tag == 'xref' and next.get('ref-type') == 'bibr': ref.tail = strip_between(ref.tail or '') ref.tail = strip_following(ref.tail or '') return document
python
def tidy_nlm_references(document): """Remove punctuation around references like brackets, commas, hyphens.""" def strip_preceding(text): stext = text.rstrip() if stext.endswith('[') or stext.endswith('('): #log.debug('%s -> %s' % (text, stext[:-1])) return stext[:-1] return text def strip_between(text): stext = text.strip() if stext in {',', '-', '\u2013', '\u2212'}: #log.debug('%s -> %s' % (text, '')) return '' return text def strip_following(text): stext = text.lstrip() if stext.startswith(']') or stext.startswith(')'): #log.debug('%s -> %s' % (text, stext[1:])) return stext[1:] return text for ref in document.xpath('.//xref[@ref-type="bibr"]'): parent = ref.getparent() previous = ref.getprevious() next = ref.getnext() if previous is None: parent.text = strip_preceding(parent.text or '') else: previous.tail = strip_preceding(previous.tail or '') if next is not None and next.tag == 'xref' and next.get('ref-type') == 'bibr': ref.tail = strip_between(ref.tail or '') ref.tail = strip_following(ref.tail or '') return document
[ "def", "tidy_nlm_references", "(", "document", ")", ":", "def", "strip_preceding", "(", "text", ")", ":", "stext", "=", "text", ".", "rstrip", "(", ")", "if", "stext", ".", "endswith", "(", "'['", ")", "or", "stext", ".", "endswith", "(", "'('", ")", ":", "#log.debug('%s -> %s' % (text, stext[:-1]))", "return", "stext", "[", ":", "-", "1", "]", "return", "text", "def", "strip_between", "(", "text", ")", ":", "stext", "=", "text", ".", "strip", "(", ")", "if", "stext", "in", "{", "','", ",", "'-'", ",", "'\\u2013'", ",", "'\\u2212'", "}", ":", "#log.debug('%s -> %s' % (text, ''))", "return", "''", "return", "text", "def", "strip_following", "(", "text", ")", ":", "stext", "=", "text", ".", "lstrip", "(", ")", "if", "stext", ".", "startswith", "(", "']'", ")", "or", "stext", ".", "startswith", "(", "')'", ")", ":", "#log.debug('%s -> %s' % (text, stext[1:]))", "return", "stext", "[", "1", ":", "]", "return", "text", "for", "ref", "in", "document", ".", "xpath", "(", "'.//xref[@ref-type=\"bibr\"]'", ")", ":", "parent", "=", "ref", ".", "getparent", "(", ")", "previous", "=", "ref", ".", "getprevious", "(", ")", "next", "=", "ref", ".", "getnext", "(", ")", "if", "previous", "is", "None", ":", "parent", ".", "text", "=", "strip_preceding", "(", "parent", ".", "text", "or", "''", ")", "else", ":", "previous", ".", "tail", "=", "strip_preceding", "(", "previous", ".", "tail", "or", "''", ")", "if", "next", "is", "not", "None", "and", "next", ".", "tag", "==", "'xref'", "and", "next", ".", "get", "(", "'ref-type'", ")", "==", "'bibr'", ":", "ref", ".", "tail", "=", "strip_between", "(", "ref", ".", "tail", "or", "''", ")", "ref", ".", "tail", "=", "strip_following", "(", "ref", ".", "tail", "or", "''", ")", "return", "document" ]
Remove punctuation around references like brackets, commas, hyphens.
[ "Remove", "punctuation", "around", "references", "like", "brackets", "commas", "hyphens", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/pub/nlm.py#L56-L91
6,423
mcs07/ChemDataExtractor
chemdataextractor/nlp/tokenize.py
regex_span_tokenize
def regex_span_tokenize(s, regex): """Return spans that identify tokens in s split using regex.""" left = 0 for m in re.finditer(regex, s, re.U): right, next = m.span() if right != 0: yield left, right left = next yield left, len(s)
python
def regex_span_tokenize(s, regex): """Return spans that identify tokens in s split using regex.""" left = 0 for m in re.finditer(regex, s, re.U): right, next = m.span() if right != 0: yield left, right left = next yield left, len(s)
[ "def", "regex_span_tokenize", "(", "s", ",", "regex", ")", ":", "left", "=", "0", "for", "m", "in", "re", ".", "finditer", "(", "regex", ",", "s", ",", "re", ".", "U", ")", ":", "right", ",", "next", "=", "m", ".", "span", "(", ")", "if", "right", "!=", "0", ":", "yield", "left", ",", "right", "left", "=", "next", "yield", "left", ",", "len", "(", "s", ")" ]
Return spans that identify tokens in s split using regex.
[ "Return", "spans", "that", "identify", "tokens", "in", "s", "split", "using", "regex", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tokenize.py#L70-L78
6,424
mcs07/ChemDataExtractor
chemdataextractor/nlp/tokenize.py
BaseTokenizer.tokenize
def tokenize(self, s): """Return a list of token strings from the given sentence. :param string s: The sentence string to tokenize. :rtype: iter(str) """ return [s[start:end] for start, end in self.span_tokenize(s)]
python
def tokenize(self, s): """Return a list of token strings from the given sentence. :param string s: The sentence string to tokenize. :rtype: iter(str) """ return [s[start:end] for start, end in self.span_tokenize(s)]
[ "def", "tokenize", "(", "self", ",", "s", ")", ":", "return", "[", "s", "[", "start", ":", "end", "]", "for", "start", ",", "end", "in", "self", ".", "span_tokenize", "(", "s", ")", "]" ]
Return a list of token strings from the given sentence. :param string s: The sentence string to tokenize. :rtype: iter(str)
[ "Return", "a", "list", "of", "token", "strings", "from", "the", "given", "sentence", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tokenize.py#L35-L41
6,425
mcs07/ChemDataExtractor
chemdataextractor/nlp/tokenize.py
SentenceTokenizer.span_tokenize
def span_tokenize(self, s): """Return a list of integer offsets that identify sentences in the given text. :param string s: The text to tokenize into sentences. :rtype: iter(tuple(int, int)) """ if self._tokenizer is None: self._tokenizer = load_model(self.model) # for debug in tokenizer.debug_decisions(s): # log.debug(format_debug_decision(debug)) return self._tokenizer.span_tokenize(s)
python
def span_tokenize(self, s): """Return a list of integer offsets that identify sentences in the given text. :param string s: The text to tokenize into sentences. :rtype: iter(tuple(int, int)) """ if self._tokenizer is None: self._tokenizer = load_model(self.model) # for debug in tokenizer.debug_decisions(s): # log.debug(format_debug_decision(debug)) return self._tokenizer.span_tokenize(s)
[ "def", "span_tokenize", "(", "self", ",", "s", ")", ":", "if", "self", ".", "_tokenizer", "is", "None", ":", "self", ".", "_tokenizer", "=", "load_model", "(", "self", ".", "model", ")", "# for debug in tokenizer.debug_decisions(s):", "# log.debug(format_debug_decision(debug))", "return", "self", ".", "_tokenizer", ".", "span_tokenize", "(", "s", ")" ]
Return a list of integer offsets that identify sentences in the given text. :param string s: The text to tokenize into sentences. :rtype: iter(tuple(int, int))
[ "Return", "a", "list", "of", "integer", "offsets", "that", "identify", "sentences", "in", "the", "given", "text", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tokenize.py#L91-L101
6,426
mcs07/ChemDataExtractor
chemdataextractor/nlp/tokenize.py
WordTokenizer._split_span
def _split_span(self, span, index, length=0): """Split a span into two or three separate spans at certain indices.""" offset = span[1] + index if index < 0 else span[0] + index # log.debug([(span[0], offset), (offset, offset + length), (offset + length, span[1])]) return [(span[0], offset), (offset, offset + length), (offset + length, span[1])]
python
def _split_span(self, span, index, length=0): """Split a span into two or three separate spans at certain indices.""" offset = span[1] + index if index < 0 else span[0] + index # log.debug([(span[0], offset), (offset, offset + length), (offset + length, span[1])]) return [(span[0], offset), (offset, offset + length), (offset + length, span[1])]
[ "def", "_split_span", "(", "self", ",", "span", ",", "index", ",", "length", "=", "0", ")", ":", "offset", "=", "span", "[", "1", "]", "+", "index", "if", "index", "<", "0", "else", "span", "[", "0", "]", "+", "index", "# log.debug([(span[0], offset), (offset, offset + length), (offset + length, span[1])])", "return", "[", "(", "span", "[", "0", "]", ",", "offset", ")", ",", "(", "offset", ",", "offset", "+", "length", ")", ",", "(", "offset", "+", "length", ",", "span", "[", "1", "]", ")", "]" ]
Split a span into two or three separate spans at certain indices.
[ "Split", "a", "span", "into", "two", "or", "three", "separate", "spans", "at", "certain", "indices", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tokenize.py#L247-L251
6,427
mcs07/ChemDataExtractor
chemdataextractor/nlp/tokenize.py
ChemWordTokenizer._closing_bracket_index
def _closing_bracket_index(self, text, bpair=('(', ')')): """Return the index of the closing bracket that matches the opening bracket at the start of the text.""" level = 1 for i, char in enumerate(text[1:]): if char == bpair[0]: level += 1 elif char == bpair[1]: level -= 1 if level == 0: return i + 1
python
def _closing_bracket_index(self, text, bpair=('(', ')')): """Return the index of the closing bracket that matches the opening bracket at the start of the text.""" level = 1 for i, char in enumerate(text[1:]): if char == bpair[0]: level += 1 elif char == bpair[1]: level -= 1 if level == 0: return i + 1
[ "def", "_closing_bracket_index", "(", "self", ",", "text", ",", "bpair", "=", "(", "'('", ",", "')'", ")", ")", ":", "level", "=", "1", "for", "i", ",", "char", "in", "enumerate", "(", "text", "[", "1", ":", "]", ")", ":", "if", "char", "==", "bpair", "[", "0", "]", ":", "level", "+=", "1", "elif", "char", "==", "bpair", "[", "1", "]", ":", "level", "-=", "1", "if", "level", "==", "0", ":", "return", "i", "+", "1" ]
Return the index of the closing bracket that matches the opening bracket at the start of the text.
[ "Return", "the", "index", "of", "the", "closing", "bracket", "that", "matches", "the", "opening", "bracket", "at", "the", "start", "of", "the", "text", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tokenize.py#L535-L544
6,428
mcs07/ChemDataExtractor
chemdataextractor/nlp/tokenize.py
ChemWordTokenizer._opening_bracket_index
def _opening_bracket_index(self, text, bpair=('(', ')')): """Return the index of the opening bracket that matches the closing bracket at the end of the text.""" level = 1 for i, char in enumerate(reversed(text[:-1])): if char == bpair[1]: level += 1 elif char == bpair[0]: level -= 1 if level == 0: return len(text) - i - 2
python
def _opening_bracket_index(self, text, bpair=('(', ')')): """Return the index of the opening bracket that matches the closing bracket at the end of the text.""" level = 1 for i, char in enumerate(reversed(text[:-1])): if char == bpair[1]: level += 1 elif char == bpair[0]: level -= 1 if level == 0: return len(text) - i - 2
[ "def", "_opening_bracket_index", "(", "self", ",", "text", ",", "bpair", "=", "(", "'('", ",", "')'", ")", ")", ":", "level", "=", "1", "for", "i", ",", "char", "in", "enumerate", "(", "reversed", "(", "text", "[", ":", "-", "1", "]", ")", ")", ":", "if", "char", "==", "bpair", "[", "1", "]", ":", "level", "+=", "1", "elif", "char", "==", "bpair", "[", "0", "]", ":", "level", "-=", "1", "if", "level", "==", "0", ":", "return", "len", "(", "text", ")", "-", "i", "-", "2" ]
Return the index of the opening bracket that matches the closing bracket at the end of the text.
[ "Return", "the", "index", "of", "the", "opening", "bracket", "that", "matches", "the", "closing", "bracket", "at", "the", "end", "of", "the", "text", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tokenize.py#L546-L555
6,429
mcs07/ChemDataExtractor
chemdataextractor/nlp/tokenize.py
ChemWordTokenizer._is_saccharide_arrow
def _is_saccharide_arrow(self, before, after): """Return True if the arrow is in a chemical name.""" if (before and after and before[-1].isdigit() and after[0].isdigit() and before.rstrip('0123456789').endswith('(') and after.lstrip('0123456789').startswith(')-')): return True else: return False
python
def _is_saccharide_arrow(self, before, after): """Return True if the arrow is in a chemical name.""" if (before and after and before[-1].isdigit() and after[0].isdigit() and before.rstrip('0123456789').endswith('(') and after.lstrip('0123456789').startswith(')-')): return True else: return False
[ "def", "_is_saccharide_arrow", "(", "self", ",", "before", ",", "after", ")", ":", "if", "(", "before", "and", "after", "and", "before", "[", "-", "1", "]", ".", "isdigit", "(", ")", "and", "after", "[", "0", "]", ".", "isdigit", "(", ")", "and", "before", ".", "rstrip", "(", "'0123456789'", ")", ".", "endswith", "(", "'('", ")", "and", "after", ".", "lstrip", "(", "'0123456789'", ")", ".", "startswith", "(", "')-'", ")", ")", ":", "return", "True", "else", ":", "return", "False" ]
Return True if the arrow is in a chemical name.
[ "Return", "True", "if", "the", "arrow", "is", "in", "a", "chemical", "name", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tokenize.py#L565-L571
6,430
mcs07/ChemDataExtractor
chemdataextractor/cli/evaluate.py
get_names
def get_names(cs): """Return list of every name.""" records = [] for c in cs: records.extend(c.get('names', [])) return records
python
def get_names(cs): """Return list of every name.""" records = [] for c in cs: records.extend(c.get('names', [])) return records
[ "def", "get_names", "(", "cs", ")", ":", "records", "=", "[", "]", "for", "c", "in", "cs", ":", "records", ".", "extend", "(", "c", ".", "get", "(", "'names'", ",", "[", "]", ")", ")", "return", "records" ]
Return list of every name.
[ "Return", "list", "of", "every", "name", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/evaluate.py#L75-L80
6,431
mcs07/ChemDataExtractor
chemdataextractor/cli/evaluate.py
get_labels
def get_labels(cs): """Return list of every label.""" records = [] for c in cs: records.extend(c.get('labels', [])) return records
python
def get_labels(cs): """Return list of every label.""" records = [] for c in cs: records.extend(c.get('labels', [])) return records
[ "def", "get_labels", "(", "cs", ")", ":", "records", "=", "[", "]", "for", "c", "in", "cs", ":", "records", ".", "extend", "(", "c", ".", "get", "(", "'labels'", ",", "[", "]", ")", ")", "return", "records" ]
Return list of every label.
[ "Return", "list", "of", "every", "label", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/evaluate.py#L83-L88
6,432
mcs07/ChemDataExtractor
chemdataextractor/cli/evaluate.py
get_ids
def get_ids(cs): """Return chemical identifier records.""" records = [] for c in cs: records.append({k: c[k] for k in c if k in {'names', 'labels'}}) return records
python
def get_ids(cs): """Return chemical identifier records.""" records = [] for c in cs: records.append({k: c[k] for k in c if k in {'names', 'labels'}}) return records
[ "def", "get_ids", "(", "cs", ")", ":", "records", "=", "[", "]", "for", "c", "in", "cs", ":", "records", ".", "append", "(", "{", "k", ":", "c", "[", "k", "]", "for", "k", "in", "c", "if", "k", "in", "{", "'names'", ",", "'labels'", "}", "}", ")", "return", "records" ]
Return chemical identifier records.
[ "Return", "chemical", "identifier", "records", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/evaluate.py#L91-L96
6,433
mcs07/ChemDataExtractor
chemdataextractor/utils.py
memoized_property
def memoized_property(fget): """Decorator to create memoized properties.""" attr_name = '_{}'.format(fget.__name__) @functools.wraps(fget) def fget_memoized(self): if not hasattr(self, attr_name): setattr(self, attr_name, fget(self)) return getattr(self, attr_name) return property(fget_memoized)
python
def memoized_property(fget): """Decorator to create memoized properties.""" attr_name = '_{}'.format(fget.__name__) @functools.wraps(fget) def fget_memoized(self): if not hasattr(self, attr_name): setattr(self, attr_name, fget(self)) return getattr(self, attr_name) return property(fget_memoized)
[ "def", "memoized_property", "(", "fget", ")", ":", "attr_name", "=", "'_{}'", ".", "format", "(", "fget", ".", "__name__", ")", "@", "functools", ".", "wraps", "(", "fget", ")", "def", "fget_memoized", "(", "self", ")", ":", "if", "not", "hasattr", "(", "self", ",", "attr_name", ")", ":", "setattr", "(", "self", ",", "attr_name", ",", "fget", "(", "self", ")", ")", "return", "getattr", "(", "self", ",", "attr_name", ")", "return", "property", "(", "fget_memoized", ")" ]
Decorator to create memoized properties.
[ "Decorator", "to", "create", "memoized", "properties", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/utils.py#L25-L34
6,434
mcs07/ChemDataExtractor
chemdataextractor/utils.py
memoize
def memoize(obj): """Decorator to create memoized functions, methods or classes.""" cache = obj.cache = {} @functools.wraps(obj) def memoizer(*args, **kwargs): if args not in cache: cache[args] = obj(*args, **kwargs) return cache[args] return memoizer
python
def memoize(obj): """Decorator to create memoized functions, methods or classes.""" cache = obj.cache = {} @functools.wraps(obj) def memoizer(*args, **kwargs): if args not in cache: cache[args] = obj(*args, **kwargs) return cache[args] return memoizer
[ "def", "memoize", "(", "obj", ")", ":", "cache", "=", "obj", ".", "cache", "=", "{", "}", "@", "functools", ".", "wraps", "(", "obj", ")", "def", "memoizer", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "args", "not", "in", "cache", ":", "cache", "[", "args", "]", "=", "obj", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "cache", "[", "args", "]", "return", "memoizer" ]
Decorator to create memoized functions, methods or classes.
[ "Decorator", "to", "create", "memoized", "functions", "methods", "or", "classes", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/utils.py#L37-L46
6,435
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
BaseTagger.evaluate
def evaluate(self, gold): """Evaluate the accuracy of this tagger using a gold standard corpus. :param list(list(tuple(str, str))) gold: The list of tagged sentences to score the tagger on. :returns: Tagger accuracy value. :rtype: float """ tagged_sents = self.tag_sents([w for (w, t) in sent] for sent in gold) gold_tokens = sum(gold, []) test_tokens = sum(tagged_sents, []) accuracy = float(sum(x == y for x, y in six.moves.zip(gold_tokens, test_tokens))) / len(test_tokens) return accuracy
python
def evaluate(self, gold): """Evaluate the accuracy of this tagger using a gold standard corpus. :param list(list(tuple(str, str))) gold: The list of tagged sentences to score the tagger on. :returns: Tagger accuracy value. :rtype: float """ tagged_sents = self.tag_sents([w for (w, t) in sent] for sent in gold) gold_tokens = sum(gold, []) test_tokens = sum(tagged_sents, []) accuracy = float(sum(x == y for x, y in six.moves.zip(gold_tokens, test_tokens))) / len(test_tokens) return accuracy
[ "def", "evaluate", "(", "self", ",", "gold", ")", ":", "tagged_sents", "=", "self", ".", "tag_sents", "(", "[", "w", "for", "(", "w", ",", "t", ")", "in", "sent", "]", "for", "sent", "in", "gold", ")", "gold_tokens", "=", "sum", "(", "gold", ",", "[", "]", ")", "test_tokens", "=", "sum", "(", "tagged_sents", ",", "[", "]", ")", "accuracy", "=", "float", "(", "sum", "(", "x", "==", "y", "for", "x", ",", "y", "in", "six", ".", "moves", ".", "zip", "(", "gold_tokens", ",", "test_tokens", ")", ")", ")", "/", "len", "(", "test_tokens", ")", "return", "accuracy" ]
Evaluate the accuracy of this tagger using a gold standard corpus. :param list(list(tuple(str, str))) gold: The list of tagged sentences to score the tagger on. :returns: Tagger accuracy value. :rtype: float
[ "Evaluate", "the", "accuracy", "of", "this", "tagger", "using", "a", "gold", "standard", "corpus", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L51-L62
6,436
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
AveragedPerceptron.predict
def predict(self, features): """Dot-product the features and current weights and return the best label.""" scores = defaultdict(float) for feat in features: if feat not in self.weights: continue weights = self.weights[feat] for label, weight in weights.items(): scores[label] += weight # Do a secondary alphabetic sort, for stability return max(self.classes, key=lambda label: (scores[label], label))
python
def predict(self, features): """Dot-product the features and current weights and return the best label.""" scores = defaultdict(float) for feat in features: if feat not in self.weights: continue weights = self.weights[feat] for label, weight in weights.items(): scores[label] += weight # Do a secondary alphabetic sort, for stability return max(self.classes, key=lambda label: (scores[label], label))
[ "def", "predict", "(", "self", ",", "features", ")", ":", "scores", "=", "defaultdict", "(", "float", ")", "for", "feat", "in", "features", ":", "if", "feat", "not", "in", "self", ".", "weights", ":", "continue", "weights", "=", "self", ".", "weights", "[", "feat", "]", "for", "label", ",", "weight", "in", "weights", ".", "items", "(", ")", ":", "scores", "[", "label", "]", "+=", "weight", "# Do a secondary alphabetic sort, for stability", "return", "max", "(", "self", ".", "classes", ",", "key", "=", "lambda", "label", ":", "(", "scores", "[", "label", "]", ",", "label", ")", ")" ]
Dot-product the features and current weights and return the best label.
[ "Dot", "-", "product", "the", "features", "and", "current", "weights", "and", "return", "the", "best", "label", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L141-L151
6,437
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
AveragedPerceptron.update
def update(self, truth, guess, features): """Update the feature weights.""" def upd_feat(c, f, w, v): param = (f, c) self._totals[param] += (self.i - self._tstamps[param]) * w self._tstamps[param] = self.i self.weights[f][c] = w + v self.i += 1 if truth == guess: return None for f in features: weights = self.weights.setdefault(f, {}) upd_feat(truth, f, weights.get(truth, 0.0), 1.0) upd_feat(guess, f, weights.get(guess, 0.0), -1.0) return None
python
def update(self, truth, guess, features): """Update the feature weights.""" def upd_feat(c, f, w, v): param = (f, c) self._totals[param] += (self.i - self._tstamps[param]) * w self._tstamps[param] = self.i self.weights[f][c] = w + v self.i += 1 if truth == guess: return None for f in features: weights = self.weights.setdefault(f, {}) upd_feat(truth, f, weights.get(truth, 0.0), 1.0) upd_feat(guess, f, weights.get(guess, 0.0), -1.0) return None
[ "def", "update", "(", "self", ",", "truth", ",", "guess", ",", "features", ")", ":", "def", "upd_feat", "(", "c", ",", "f", ",", "w", ",", "v", ")", ":", "param", "=", "(", "f", ",", "c", ")", "self", ".", "_totals", "[", "param", "]", "+=", "(", "self", ".", "i", "-", "self", ".", "_tstamps", "[", "param", "]", ")", "*", "w", "self", ".", "_tstamps", "[", "param", "]", "=", "self", ".", "i", "self", ".", "weights", "[", "f", "]", "[", "c", "]", "=", "w", "+", "v", "self", ".", "i", "+=", "1", "if", "truth", "==", "guess", ":", "return", "None", "for", "f", "in", "features", ":", "weights", "=", "self", ".", "weights", ".", "setdefault", "(", "f", ",", "{", "}", ")", "upd_feat", "(", "truth", ",", "f", ",", "weights", ".", "get", "(", "truth", ",", "0.0", ")", ",", "1.0", ")", "upd_feat", "(", "guess", ",", "f", ",", "weights", ".", "get", "(", "guess", ",", "0.0", ")", ",", "-", "1.0", ")", "return", "None" ]
Update the feature weights.
[ "Update", "the", "feature", "weights", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L153-L168
6,438
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
AveragedPerceptron.average_weights
def average_weights(self): """Average weights from all iterations.""" for feat, weights in self.weights.items(): new_feat_weights = {} for clas, weight in weights.items(): param = (feat, clas) total = self._totals[param] total += (self.i - self._tstamps[param]) * weight averaged = round(total / float(self.i), 3) if averaged: new_feat_weights[clas] = averaged self.weights[feat] = new_feat_weights return None
python
def average_weights(self): """Average weights from all iterations.""" for feat, weights in self.weights.items(): new_feat_weights = {} for clas, weight in weights.items(): param = (feat, clas) total = self._totals[param] total += (self.i - self._tstamps[param]) * weight averaged = round(total / float(self.i), 3) if averaged: new_feat_weights[clas] = averaged self.weights[feat] = new_feat_weights return None
[ "def", "average_weights", "(", "self", ")", ":", "for", "feat", ",", "weights", "in", "self", ".", "weights", ".", "items", "(", ")", ":", "new_feat_weights", "=", "{", "}", "for", "clas", ",", "weight", "in", "weights", ".", "items", "(", ")", ":", "param", "=", "(", "feat", ",", "clas", ")", "total", "=", "self", ".", "_totals", "[", "param", "]", "total", "+=", "(", "self", ".", "i", "-", "self", ".", "_tstamps", "[", "param", "]", ")", "*", "weight", "averaged", "=", "round", "(", "total", "/", "float", "(", "self", ".", "i", ")", ",", "3", ")", "if", "averaged", ":", "new_feat_weights", "[", "clas", "]", "=", "averaged", "self", ".", "weights", "[", "feat", "]", "=", "new_feat_weights", "return", "None" ]
Average weights from all iterations.
[ "Average", "weights", "from", "all", "iterations", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L170-L182
6,439
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
AveragedPerceptron.save
def save(self, path): """Save the pickled model weights.""" with io.open(path, 'wb') as fout: return pickle.dump(dict(self.weights), fout)
python
def save(self, path): """Save the pickled model weights.""" with io.open(path, 'wb') as fout: return pickle.dump(dict(self.weights), fout)
[ "def", "save", "(", "self", ",", "path", ")", ":", "with", "io", ".", "open", "(", "path", ",", "'wb'", ")", "as", "fout", ":", "return", "pickle", ".", "dump", "(", "dict", "(", "self", ".", "weights", ")", ",", "fout", ")" ]
Save the pickled model weights.
[ "Save", "the", "pickled", "model", "weights", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L184-L187
6,440
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
AveragedPerceptron.load
def load(self, path): """Load the pickled model weights.""" with io.open(path, 'rb') as fin: self.weights = pickle.load(fin)
python
def load(self, path): """Load the pickled model weights.""" with io.open(path, 'rb') as fin: self.weights = pickle.load(fin)
[ "def", "load", "(", "self", ",", "path", ")", ":", "with", "io", ".", "open", "(", "path", ",", "'rb'", ")", "as", "fin", ":", "self", ".", "weights", "=", "pickle", ".", "load", "(", "fin", ")" ]
Load the pickled model weights.
[ "Load", "the", "pickled", "model", "weights", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L189-L192
6,441
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
ApTagger.train
def train(self, sentences, nr_iter=5): """Train a model from sentences. :param sentences: A list of sentences, each of which is a list of (token, tag) tuples. :param nr_iter: Number of training iterations. """ self._make_tagdict(sentences) self.perceptron.classes = self.classes for iter_ in range(nr_iter): c = 0 n = 0 for sentence in sentences: prev, prev2 = self.START context = [t[0] for t in sentence] for i, (token, tag) in enumerate(sentence): guess = self.tagdict.get(token) if not guess: feats = self._get_features(i, context, prev, prev2) guess = self.perceptron.predict(feats) self.perceptron.update(tag, guess, feats) prev2 = prev prev = guess c += guess == tag n += 1 random.shuffle(sentences) log.debug('Iter %s: %s/%s=%s' % (iter_, c, n, (float(c) / n) * 100)) self.perceptron.average_weights()
python
def train(self, sentences, nr_iter=5): """Train a model from sentences. :param sentences: A list of sentences, each of which is a list of (token, tag) tuples. :param nr_iter: Number of training iterations. """ self._make_tagdict(sentences) self.perceptron.classes = self.classes for iter_ in range(nr_iter): c = 0 n = 0 for sentence in sentences: prev, prev2 = self.START context = [t[0] for t in sentence] for i, (token, tag) in enumerate(sentence): guess = self.tagdict.get(token) if not guess: feats = self._get_features(i, context, prev, prev2) guess = self.perceptron.predict(feats) self.perceptron.update(tag, guess, feats) prev2 = prev prev = guess c += guess == tag n += 1 random.shuffle(sentences) log.debug('Iter %s: %s/%s=%s' % (iter_, c, n, (float(c) / n) * 100)) self.perceptron.average_weights()
[ "def", "train", "(", "self", ",", "sentences", ",", "nr_iter", "=", "5", ")", ":", "self", ".", "_make_tagdict", "(", "sentences", ")", "self", ".", "perceptron", ".", "classes", "=", "self", ".", "classes", "for", "iter_", "in", "range", "(", "nr_iter", ")", ":", "c", "=", "0", "n", "=", "0", "for", "sentence", "in", "sentences", ":", "prev", ",", "prev2", "=", "self", ".", "START", "context", "=", "[", "t", "[", "0", "]", "for", "t", "in", "sentence", "]", "for", "i", ",", "(", "token", ",", "tag", ")", "in", "enumerate", "(", "sentence", ")", ":", "guess", "=", "self", ".", "tagdict", ".", "get", "(", "token", ")", "if", "not", "guess", ":", "feats", "=", "self", ".", "_get_features", "(", "i", ",", "context", ",", "prev", ",", "prev2", ")", "guess", "=", "self", ".", "perceptron", ".", "predict", "(", "feats", ")", "self", ".", "perceptron", ".", "update", "(", "tag", ",", "guess", ",", "feats", ")", "prev2", "=", "prev", "prev", "=", "guess", "c", "+=", "guess", "==", "tag", "n", "+=", "1", "random", ".", "shuffle", "(", "sentences", ")", "log", ".", "debug", "(", "'Iter %s: %s/%s=%s'", "%", "(", "iter_", ",", "c", ",", "n", ",", "(", "float", "(", "c", ")", "/", "n", ")", "*", "100", ")", ")", "self", ".", "perceptron", ".", "average_weights", "(", ")" ]
Train a model from sentences. :param sentences: A list of sentences, each of which is a list of (token, tag) tuples. :param nr_iter: Number of training iterations.
[ "Train", "a", "model", "from", "sentences", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L235-L261
6,442
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
ApTagger.save
def save(self, f): """Save pickled model to file.""" return pickle.dump((self.perceptron.weights, self.tagdict, self.classes, self.clusters), f, protocol=pickle.HIGHEST_PROTOCOL)
python
def save(self, f): """Save pickled model to file.""" return pickle.dump((self.perceptron.weights, self.tagdict, self.classes, self.clusters), f, protocol=pickle.HIGHEST_PROTOCOL)
[ "def", "save", "(", "self", ",", "f", ")", ":", "return", "pickle", ".", "dump", "(", "(", "self", ".", "perceptron", ".", "weights", ",", "self", ".", "tagdict", ",", "self", ".", "classes", ",", "self", ".", "clusters", ")", ",", "f", ",", "protocol", "=", "pickle", ".", "HIGHEST_PROTOCOL", ")" ]
Save pickled model to file.
[ "Save", "pickled", "model", "to", "file", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L263-L265
6,443
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
ApTagger.load
def load(self, model): """Load pickled model.""" self.perceptron.weights, self.tagdict, self.classes, self.clusters = load_model(model) self.perceptron.classes = self.classes
python
def load(self, model): """Load pickled model.""" self.perceptron.weights, self.tagdict, self.classes, self.clusters = load_model(model) self.perceptron.classes = self.classes
[ "def", "load", "(", "self", ",", "model", ")", ":", "self", ".", "perceptron", ".", "weights", ",", "self", ".", "tagdict", ",", "self", ".", "classes", ",", "self", ".", "clusters", "=", "load_model", "(", "model", ")", "self", ".", "perceptron", ".", "classes", "=", "self", ".", "classes" ]
Load pickled model.
[ "Load", "pickled", "model", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L267-L270
6,444
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
CrfTagger.train
def train(self, sentences, model): """Train the CRF tagger using CRFSuite. :params sentences: Annotated sentences. :params model: Path to save pickled model. """ trainer = pycrfsuite.Trainer(verbose=True) trainer.set_params(self.params) for sentence in sentences: tokens, labels = zip(*sentence) features = [self._get_features(tokens, i) for i in range(len(tokens))] trainer.append(features, labels) trainer.train(model) self.load(model)
python
def train(self, sentences, model): """Train the CRF tagger using CRFSuite. :params sentences: Annotated sentences. :params model: Path to save pickled model. """ trainer = pycrfsuite.Trainer(verbose=True) trainer.set_params(self.params) for sentence in sentences: tokens, labels = zip(*sentence) features = [self._get_features(tokens, i) for i in range(len(tokens))] trainer.append(features, labels) trainer.train(model) self.load(model)
[ "def", "train", "(", "self", ",", "sentences", ",", "model", ")", ":", "trainer", "=", "pycrfsuite", ".", "Trainer", "(", "verbose", "=", "True", ")", "trainer", ".", "set_params", "(", "self", ".", "params", ")", "for", "sentence", "in", "sentences", ":", "tokens", ",", "labels", "=", "zip", "(", "*", "sentence", ")", "features", "=", "[", "self", ".", "_get_features", "(", "tokens", ",", "i", ")", "for", "i", "in", "range", "(", "len", "(", "tokens", ")", ")", "]", "trainer", ".", "append", "(", "features", ",", "labels", ")", "trainer", ".", "train", "(", "model", ")", "self", ".", "load", "(", "model", ")" ]
Train the CRF tagger using CRFSuite. :params sentences: Annotated sentences. :params model: Path to save pickled model.
[ "Train", "the", "CRF", "tagger", "using", "CRFSuite", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L335-L348
6,445
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
DictionaryTagger.load
def load(self, model): """Load pickled DAWG from disk.""" self._dawg.load(find_data(model)) self._loaded_model = True
python
def load(self, model): """Load pickled DAWG from disk.""" self._dawg.load(find_data(model)) self._loaded_model = True
[ "def", "load", "(", "self", ",", "model", ")", ":", "self", ".", "_dawg", ".", "load", "(", "find_data", "(", "model", ")", ")", "self", ".", "_loaded_model", "=", "True" ]
Load pickled DAWG from disk.
[ "Load", "pickled", "DAWG", "from", "disk", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L379-L382
6,446
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
DictionaryTagger.build
def build(self, words): """Construct dictionary DAWG from tokenized words.""" words = [self._normalize(tokens) for tokens in words] self._dawg = dawg.CompletionDAWG(words) self._loaded_model = True
python
def build(self, words): """Construct dictionary DAWG from tokenized words.""" words = [self._normalize(tokens) for tokens in words] self._dawg = dawg.CompletionDAWG(words) self._loaded_model = True
[ "def", "build", "(", "self", ",", "words", ")", ":", "words", "=", "[", "self", ".", "_normalize", "(", "tokens", ")", "for", "tokens", "in", "words", "]", "self", ".", "_dawg", "=", "dawg", ".", "CompletionDAWG", "(", "words", ")", "self", ".", "_loaded_model", "=", "True" ]
Construct dictionary DAWG from tokenized words.
[ "Construct", "dictionary", "DAWG", "from", "tokenized", "words", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L388-L392
6,447
mcs07/ChemDataExtractor
chemdataextractor/nlp/tag.py
DictionaryTagger._normalize
def _normalize(self, tokens): """Normalization transform to apply to both dictionary words and input tokens.""" if self.case_sensitive: return ' '.join(self.lexicon[t].normalized for t in tokens) else: return ' '.join(self.lexicon[t].lower for t in tokens)
python
def _normalize(self, tokens): """Normalization transform to apply to both dictionary words and input tokens.""" if self.case_sensitive: return ' '.join(self.lexicon[t].normalized for t in tokens) else: return ' '.join(self.lexicon[t].lower for t in tokens)
[ "def", "_normalize", "(", "self", ",", "tokens", ")", ":", "if", "self", ".", "case_sensitive", ":", "return", "' '", ".", "join", "(", "self", ".", "lexicon", "[", "t", "]", ".", "normalized", "for", "t", "in", "tokens", ")", "else", ":", "return", "' '", ".", "join", "(", "self", ".", "lexicon", "[", "t", "]", ".", "lower", "for", "t", "in", "tokens", ")" ]
Normalization transform to apply to both dictionary words and input tokens.
[ "Normalization", "transform", "to", "apply", "to", "both", "dictionary", "words", "and", "input", "tokens", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/tag.py#L394-L399
6,448
mcs07/ChemDataExtractor
chemdataextractor/parse/cem.py
standardize_role
def standardize_role(role): """Convert role text into standardized form.""" role = role.lower() if any(c in role for c in {'synthesis', 'give', 'yield', 'afford', 'product', 'preparation of'}): return 'product' return role
python
def standardize_role(role): """Convert role text into standardized form.""" role = role.lower() if any(c in role for c in {'synthesis', 'give', 'yield', 'afford', 'product', 'preparation of'}): return 'product' return role
[ "def", "standardize_role", "(", "role", ")", ":", "role", "=", "role", ".", "lower", "(", ")", "if", "any", "(", "c", "in", "role", "for", "c", "in", "{", "'synthesis'", ",", "'give'", ",", "'yield'", ",", "'afford'", ",", "'product'", ",", "'preparation of'", "}", ")", ":", "return", "'product'", "return", "role" ]
Convert role text into standardized form.
[ "Convert", "role", "text", "into", "standardized", "form", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/parse/cem.py#L279-L284
6,449
mcs07/ChemDataExtractor
chemdataextractor/cli/data.py
list
def list(ctx): """List active data packages.""" log.debug('chemdataextractor.data.list') click.echo('Downloaded\tPackage') for package in PACKAGES: click.echo('%s\t%s' % (package.local_exists(), package.path))
python
def list(ctx): """List active data packages.""" log.debug('chemdataextractor.data.list') click.echo('Downloaded\tPackage') for package in PACKAGES: click.echo('%s\t%s' % (package.local_exists(), package.path))
[ "def", "list", "(", "ctx", ")", ":", "log", ".", "debug", "(", "'chemdataextractor.data.list'", ")", "click", ".", "echo", "(", "'Downloaded\\tPackage'", ")", "for", "package", "in", "PACKAGES", ":", "click", ".", "echo", "(", "'%s\\t%s'", "%", "(", "package", ".", "local_exists", "(", ")", ",", "package", ".", "path", ")", ")" ]
List active data packages.
[ "List", "active", "data", "packages", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/data.py#L40-L45
6,450
mcs07/ChemDataExtractor
chemdataextractor/cli/data.py
download
def download(ctx): """Download data.""" log.debug('chemdataextractor.data.download') count = 0 for package in PACKAGES: success = package.download() if success: count += 1 click.echo('Successfully downloaded %s new data packages (%s existing)' % (count, len(PACKAGES) - count))
python
def download(ctx): """Download data.""" log.debug('chemdataextractor.data.download') count = 0 for package in PACKAGES: success = package.download() if success: count += 1 click.echo('Successfully downloaded %s new data packages (%s existing)' % (count, len(PACKAGES) - count))
[ "def", "download", "(", "ctx", ")", ":", "log", ".", "debug", "(", "'chemdataextractor.data.download'", ")", "count", "=", "0", "for", "package", "in", "PACKAGES", ":", "success", "=", "package", ".", "download", "(", ")", "if", "success", ":", "count", "+=", "1", "click", ".", "echo", "(", "'Successfully downloaded %s new data packages (%s existing)'", "%", "(", "count", ",", "len", "(", "PACKAGES", ")", "-", "count", ")", ")" ]
Download data.
[ "Download", "data", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/data.py#L50-L58
6,451
mcs07/ChemDataExtractor
chemdataextractor/data.py
find_data
def find_data(path, warn=True): """Return the absolute path to a data file within the data directory.""" full_path = os.path.join(get_data_dir(), path) if warn and not os.path.isfile(full_path): for package in PACKAGES: if path == package.path: log.warn('%s doesn\'t exist. Run `cde data download` to get it.' % path) break return full_path
python
def find_data(path, warn=True): """Return the absolute path to a data file within the data directory.""" full_path = os.path.join(get_data_dir(), path) if warn and not os.path.isfile(full_path): for package in PACKAGES: if path == package.path: log.warn('%s doesn\'t exist. Run `cde data download` to get it.' % path) break return full_path
[ "def", "find_data", "(", "path", ",", "warn", "=", "True", ")", ":", "full_path", "=", "os", ".", "path", ".", "join", "(", "get_data_dir", "(", ")", ",", "path", ")", "if", "warn", "and", "not", "os", ".", "path", ".", "isfile", "(", "full_path", ")", ":", "for", "package", "in", "PACKAGES", ":", "if", "path", "==", "package", ".", "path", ":", "log", ".", "warn", "(", "'%s doesn\\'t exist. Run `cde data download` to get it.'", "%", "path", ")", "break", "return", "full_path" ]
Return the absolute path to a data file within the data directory.
[ "Return", "the", "absolute", "path", "to", "a", "data", "file", "within", "the", "data", "directory", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/data.py#L119-L127
6,452
mcs07/ChemDataExtractor
chemdataextractor/data.py
load_model
def load_model(path): """Load a model from a pickle file in the data directory. Cached so model is only loaded once.""" abspath = find_data(path) cached = _model_cache.get(abspath) if cached is not None: log.debug('Using cached copy of %s' % path) return cached log.debug('Loading model %s' % path) try: with io.open(abspath, 'rb') as f: model = six.moves.cPickle.load(f) except IOError: raise ModelNotFoundError('Could not load %s. Have you run `cde data download`?' % path) _model_cache[abspath] = model return model
python
def load_model(path): """Load a model from a pickle file in the data directory. Cached so model is only loaded once.""" abspath = find_data(path) cached = _model_cache.get(abspath) if cached is not None: log.debug('Using cached copy of %s' % path) return cached log.debug('Loading model %s' % path) try: with io.open(abspath, 'rb') as f: model = six.moves.cPickle.load(f) except IOError: raise ModelNotFoundError('Could not load %s. Have you run `cde data download`?' % path) _model_cache[abspath] = model return model
[ "def", "load_model", "(", "path", ")", ":", "abspath", "=", "find_data", "(", "path", ")", "cached", "=", "_model_cache", ".", "get", "(", "abspath", ")", "if", "cached", "is", "not", "None", ":", "log", ".", "debug", "(", "'Using cached copy of %s'", "%", "path", ")", "return", "cached", "log", ".", "debug", "(", "'Loading model %s'", "%", "path", ")", "try", ":", "with", "io", ".", "open", "(", "abspath", ",", "'rb'", ")", "as", "f", ":", "model", "=", "six", ".", "moves", ".", "cPickle", ".", "load", "(", "f", ")", "except", "IOError", ":", "raise", "ModelNotFoundError", "(", "'Could not load %s. Have you run `cde data download`?'", "%", "path", ")", "_model_cache", "[", "abspath", "]", "=", "model", "return", "model" ]
Load a model from a pickle file in the data directory. Cached so model is only loaded once.
[ "Load", "a", "model", "from", "a", "pickle", "file", "in", "the", "data", "directory", ".", "Cached", "so", "model", "is", "only", "loaded", "once", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/data.py#L134-L148
6,453
mcs07/ChemDataExtractor
chemdataextractor/text/normalize.py
ChemNormalizer.normalize
def normalize(self, text): """Normalize unicode, hyphens, whitespace, and some chemistry terms and formatting.""" text = super(ChemNormalizer, self).normalize(text) # Normalize element spelling if self.chem_spell: text = re.sub(r'sulph', r'sulf', text, flags=re.I) text = re.sub(r'aluminum', r'aluminium', text, flags=re.I) text = re.sub(r'cesium', r'caesium', text, flags=re.I) return text
python
def normalize(self, text): """Normalize unicode, hyphens, whitespace, and some chemistry terms and formatting.""" text = super(ChemNormalizer, self).normalize(text) # Normalize element spelling if self.chem_spell: text = re.sub(r'sulph', r'sulf', text, flags=re.I) text = re.sub(r'aluminum', r'aluminium', text, flags=re.I) text = re.sub(r'cesium', r'caesium', text, flags=re.I) return text
[ "def", "normalize", "(", "self", ",", "text", ")", ":", "text", "=", "super", "(", "ChemNormalizer", ",", "self", ")", ".", "normalize", "(", "text", ")", "# Normalize element spelling", "if", "self", ".", "chem_spell", ":", "text", "=", "re", ".", "sub", "(", "r'sulph'", ",", "r'sulf'", ",", "text", ",", "flags", "=", "re", ".", "I", ")", "text", "=", "re", ".", "sub", "(", "r'aluminum'", ",", "r'aluminium'", ",", "text", ",", "flags", "=", "re", ".", "I", ")", "text", "=", "re", ".", "sub", "(", "r'cesium'", ",", "r'caesium'", ",", "text", ",", "flags", "=", "re", ".", "I", ")", "return", "text" ]
Normalize unicode, hyphens, whitespace, and some chemistry terms and formatting.
[ "Normalize", "unicode", "hyphens", "whitespace", "and", "some", "chemistry", "terms", "and", "formatting", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/text/normalize.py#L181-L189
6,454
mcs07/ChemDataExtractor
chemdataextractor/nlp/lexicon.py
Lexicon.add
def add(self, text): """Add text to the lexicon. :param string text: The text to add. """ # logging.debug('Adding to lexicon: %s' % text) if text not in self.lexemes: normalized = self.normalized(text) self.lexemes[text] = Lexeme( text=text, normalized=normalized, lower=self.lower(normalized), first=self.first(normalized), suffix=self.suffix(normalized), shape=self.shape(normalized), length=self.length(normalized), upper_count=self.upper_count(normalized), lower_count=self.lower_count(normalized), digit_count=self.digit_count(normalized), is_alpha=self.is_alpha(normalized), is_ascii=self.is_ascii(normalized), is_digit=self.is_digit(normalized), is_lower=self.is_lower(normalized), is_upper=self.is_upper(normalized), is_title=self.is_title(normalized), is_punct=self.is_punct(normalized), is_hyphenated=self.is_hyphenated(normalized), like_url=self.like_url(normalized), like_number=self.like_number(normalized), cluster=self.cluster(normalized) )
python
def add(self, text): """Add text to the lexicon. :param string text: The text to add. """ # logging.debug('Adding to lexicon: %s' % text) if text not in self.lexemes: normalized = self.normalized(text) self.lexemes[text] = Lexeme( text=text, normalized=normalized, lower=self.lower(normalized), first=self.first(normalized), suffix=self.suffix(normalized), shape=self.shape(normalized), length=self.length(normalized), upper_count=self.upper_count(normalized), lower_count=self.lower_count(normalized), digit_count=self.digit_count(normalized), is_alpha=self.is_alpha(normalized), is_ascii=self.is_ascii(normalized), is_digit=self.is_digit(normalized), is_lower=self.is_lower(normalized), is_upper=self.is_upper(normalized), is_title=self.is_title(normalized), is_punct=self.is_punct(normalized), is_hyphenated=self.is_hyphenated(normalized), like_url=self.like_url(normalized), like_number=self.like_number(normalized), cluster=self.cluster(normalized) )
[ "def", "add", "(", "self", ",", "text", ")", ":", "# logging.debug('Adding to lexicon: %s' % text)", "if", "text", "not", "in", "self", ".", "lexemes", ":", "normalized", "=", "self", ".", "normalized", "(", "text", ")", "self", ".", "lexemes", "[", "text", "]", "=", "Lexeme", "(", "text", "=", "text", ",", "normalized", "=", "normalized", ",", "lower", "=", "self", ".", "lower", "(", "normalized", ")", ",", "first", "=", "self", ".", "first", "(", "normalized", ")", ",", "suffix", "=", "self", ".", "suffix", "(", "normalized", ")", ",", "shape", "=", "self", ".", "shape", "(", "normalized", ")", ",", "length", "=", "self", ".", "length", "(", "normalized", ")", ",", "upper_count", "=", "self", ".", "upper_count", "(", "normalized", ")", ",", "lower_count", "=", "self", ".", "lower_count", "(", "normalized", ")", ",", "digit_count", "=", "self", ".", "digit_count", "(", "normalized", ")", ",", "is_alpha", "=", "self", ".", "is_alpha", "(", "normalized", ")", ",", "is_ascii", "=", "self", ".", "is_ascii", "(", "normalized", ")", ",", "is_digit", "=", "self", ".", "is_digit", "(", "normalized", ")", ",", "is_lower", "=", "self", ".", "is_lower", "(", "normalized", ")", ",", "is_upper", "=", "self", ".", "is_upper", "(", "normalized", ")", ",", "is_title", "=", "self", ".", "is_title", "(", "normalized", ")", ",", "is_punct", "=", "self", ".", "is_punct", "(", "normalized", ")", ",", "is_hyphenated", "=", "self", ".", "is_hyphenated", "(", "normalized", ")", ",", "like_url", "=", "self", ".", "like_url", "(", "normalized", ")", ",", "like_number", "=", "self", ".", "like_number", "(", "normalized", ")", ",", "cluster", "=", "self", ".", "cluster", "(", "normalized", ")", ")" ]
Add text to the lexicon. :param string text: The text to add.
[ "Add", "text", "to", "the", "lexicon", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/lexicon.py#L99-L129
6,455
mcs07/ChemDataExtractor
chemdataextractor/doc/table.py
Table.serialize
def serialize(self): """Convert Table element to python dictionary.""" data = { 'type': self.__class__.__name__, 'caption': self.caption.serialize(), 'headings': [[cell.serialize() for cell in hrow] for hrow in self.headings], 'rows': [[cell.serialize() for cell in row] for row in self.rows], } return data
python
def serialize(self): """Convert Table element to python dictionary.""" data = { 'type': self.__class__.__name__, 'caption': self.caption.serialize(), 'headings': [[cell.serialize() for cell in hrow] for hrow in self.headings], 'rows': [[cell.serialize() for cell in row] for row in self.rows], } return data
[ "def", "serialize", "(", "self", ")", ":", "data", "=", "{", "'type'", ":", "self", ".", "__class__", ".", "__name__", ",", "'caption'", ":", "self", ".", "caption", ".", "serialize", "(", ")", ",", "'headings'", ":", "[", "[", "cell", ".", "serialize", "(", ")", "for", "cell", "in", "hrow", "]", "for", "hrow", "in", "self", ".", "headings", "]", ",", "'rows'", ":", "[", "[", "cell", ".", "serialize", "(", ")", "for", "cell", "in", "row", "]", "for", "row", "in", "self", ".", "rows", "]", ",", "}", "return", "data" ]
Convert Table element to python dictionary.
[ "Convert", "Table", "element", "to", "python", "dictionary", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/doc/table.py#L78-L86
6,456
mcs07/ChemDataExtractor
chemdataextractor/model.py
Compound.merge
def merge(self, other): """Merge data from another Compound into this Compound.""" log.debug('Merging: %s and %s' % (self.serialize(), other.serialize())) for k in self.keys(): for new_item in other[k]: if new_item not in self[k]: self[k].append(new_item) log.debug('Result: %s' % self.serialize()) return self
python
def merge(self, other): """Merge data from another Compound into this Compound.""" log.debug('Merging: %s and %s' % (self.serialize(), other.serialize())) for k in self.keys(): for new_item in other[k]: if new_item not in self[k]: self[k].append(new_item) log.debug('Result: %s' % self.serialize()) return self
[ "def", "merge", "(", "self", ",", "other", ")", ":", "log", ".", "debug", "(", "'Merging: %s and %s'", "%", "(", "self", ".", "serialize", "(", ")", ",", "other", ".", "serialize", "(", ")", ")", ")", "for", "k", "in", "self", ".", "keys", "(", ")", ":", "for", "new_item", "in", "other", "[", "k", "]", ":", "if", "new_item", "not", "in", "self", "[", "k", "]", ":", "self", "[", "k", "]", ".", "append", "(", "new_item", ")", "log", ".", "debug", "(", "'Result: %s'", "%", "self", ".", "serialize", "(", ")", ")", "return", "self" ]
Merge data from another Compound into this Compound.
[ "Merge", "data", "from", "another", "Compound", "into", "this", "Compound", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/model.py#L451-L459
6,457
mcs07/ChemDataExtractor
chemdataextractor/model.py
Compound.merge_contextual
def merge_contextual(self, other): """Merge in contextual info from a template Compound.""" # TODO: This is currently dependent on our data model? Make more robust to schema changes # Currently we assume all lists at Compound level, with 1 further potential nested level of lists for k in self.keys(): # print('key: %s' % k) for item in self[k]: # print('item: %s' % item) for other_item in other.get(k, []): # Skip text properties (don't merge names, labels, roles) if isinstance(other_item, six.text_type): continue for otherk in other_item.keys(): if isinstance(other_item[otherk], list): if len(other_item[otherk]) > 0 and len(item[otherk]) > 0: other_nested_item = other_item[otherk][0] for othernestedk in other_nested_item.keys(): for nested_item in item[otherk]: if not nested_item[othernestedk]: nested_item[othernestedk] = other_nested_item[othernestedk] elif not item[otherk]: item[otherk] = other_item[otherk] log.debug('Result: %s' % self.serialize()) return self
python
def merge_contextual(self, other): """Merge in contextual info from a template Compound.""" # TODO: This is currently dependent on our data model? Make more robust to schema changes # Currently we assume all lists at Compound level, with 1 further potential nested level of lists for k in self.keys(): # print('key: %s' % k) for item in self[k]: # print('item: %s' % item) for other_item in other.get(k, []): # Skip text properties (don't merge names, labels, roles) if isinstance(other_item, six.text_type): continue for otherk in other_item.keys(): if isinstance(other_item[otherk], list): if len(other_item[otherk]) > 0 and len(item[otherk]) > 0: other_nested_item = other_item[otherk][0] for othernestedk in other_nested_item.keys(): for nested_item in item[otherk]: if not nested_item[othernestedk]: nested_item[othernestedk] = other_nested_item[othernestedk] elif not item[otherk]: item[otherk] = other_item[otherk] log.debug('Result: %s' % self.serialize()) return self
[ "def", "merge_contextual", "(", "self", ",", "other", ")", ":", "# TODO: This is currently dependent on our data model? Make more robust to schema changes", "# Currently we assume all lists at Compound level, with 1 further potential nested level of lists", "for", "k", "in", "self", ".", "keys", "(", ")", ":", "# print('key: %s' % k)", "for", "item", "in", "self", "[", "k", "]", ":", "# print('item: %s' % item)", "for", "other_item", "in", "other", ".", "get", "(", "k", ",", "[", "]", ")", ":", "# Skip text properties (don't merge names, labels, roles)", "if", "isinstance", "(", "other_item", ",", "six", ".", "text_type", ")", ":", "continue", "for", "otherk", "in", "other_item", ".", "keys", "(", ")", ":", "if", "isinstance", "(", "other_item", "[", "otherk", "]", ",", "list", ")", ":", "if", "len", "(", "other_item", "[", "otherk", "]", ")", ">", "0", "and", "len", "(", "item", "[", "otherk", "]", ")", ">", "0", ":", "other_nested_item", "=", "other_item", "[", "otherk", "]", "[", "0", "]", "for", "othernestedk", "in", "other_nested_item", ".", "keys", "(", ")", ":", "for", "nested_item", "in", "item", "[", "otherk", "]", ":", "if", "not", "nested_item", "[", "othernestedk", "]", ":", "nested_item", "[", "othernestedk", "]", "=", "other_nested_item", "[", "othernestedk", "]", "elif", "not", "item", "[", "otherk", "]", ":", "item", "[", "otherk", "]", "=", "other_item", "[", "otherk", "]", "log", ".", "debug", "(", "'Result: %s'", "%", "self", ".", "serialize", "(", ")", ")", "return", "self" ]
Merge in contextual info from a template Compound.
[ "Merge", "in", "contextual", "info", "from", "a", "template", "Compound", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/model.py#L461-L484
6,458
mcs07/ChemDataExtractor
chemdataextractor/model.py
Compound.is_id_only
def is_id_only(self): """Return True if identifier information only.""" for key, value in self.items(): if key not in {'names', 'labels', 'roles'} and value: return False if self.names or self.labels: return True return False
python
def is_id_only(self): """Return True if identifier information only.""" for key, value in self.items(): if key not in {'names', 'labels', 'roles'} and value: return False if self.names or self.labels: return True return False
[ "def", "is_id_only", "(", "self", ")", ":", "for", "key", ",", "value", "in", "self", ".", "items", "(", ")", ":", "if", "key", "not", "in", "{", "'names'", ",", "'labels'", ",", "'roles'", "}", "and", "value", ":", "return", "False", "if", "self", ".", "names", "or", "self", ".", "labels", ":", "return", "True", "return", "False" ]
Return True if identifier information only.
[ "Return", "True", "if", "identifier", "information", "only", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/model.py#L502-L509
6,459
mcs07/ChemDataExtractor
chemdataextractor/parse/actions.py
join
def join(tokens, start, result): """Join tokens into a single string with spaces between.""" texts = [] if len(result) > 0: for e in result: for child in e.iter(): if child.text is not None: texts.append(child.text) return [E(result[0].tag, ' '.join(texts))]
python
def join(tokens, start, result): """Join tokens into a single string with spaces between.""" texts = [] if len(result) > 0: for e in result: for child in e.iter(): if child.text is not None: texts.append(child.text) return [E(result[0].tag, ' '.join(texts))]
[ "def", "join", "(", "tokens", ",", "start", ",", "result", ")", ":", "texts", "=", "[", "]", "if", "len", "(", "result", ")", ">", "0", ":", "for", "e", "in", "result", ":", "for", "child", "in", "e", ".", "iter", "(", ")", ":", "if", "child", ".", "text", "is", "not", "None", ":", "texts", ".", "append", "(", "child", ".", "text", ")", "return", "[", "E", "(", "result", "[", "0", "]", ".", "tag", ",", "' '", ".", "join", "(", "texts", ")", ")", "]" ]
Join tokens into a single string with spaces between.
[ "Join", "tokens", "into", "a", "single", "string", "with", "spaces", "between", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/parse/actions.py#L33-L41
6,460
mcs07/ChemDataExtractor
chemdataextractor/parse/actions.py
strip_stop
def strip_stop(tokens, start, result): """Remove trailing full stop from tokens.""" for e in result: for child in e.iter(): if child.text.endswith('.'): child.text = child.text[:-1] return result
python
def strip_stop(tokens, start, result): """Remove trailing full stop from tokens.""" for e in result: for child in e.iter(): if child.text.endswith('.'): child.text = child.text[:-1] return result
[ "def", "strip_stop", "(", "tokens", ",", "start", ",", "result", ")", ":", "for", "e", "in", "result", ":", "for", "child", "in", "e", ".", "iter", "(", ")", ":", "if", "child", ".", "text", ".", "endswith", "(", "'.'", ")", ":", "child", ".", "text", "=", "child", ".", "text", "[", ":", "-", "1", "]", "return", "result" ]
Remove trailing full stop from tokens.
[ "Remove", "trailing", "full", "stop", "from", "tokens", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/parse/actions.py#L55-L61
6,461
mcs07/ChemDataExtractor
chemdataextractor/parse/actions.py
fix_whitespace
def fix_whitespace(tokens, start, result): """Fix whitespace around hyphens and commas. Can be used to remove whitespace tokenization artefacts.""" for e in result: for child in e.iter(): child.text = child.text.replace(' , ', ', ') for hyphen in HYPHENS: child.text = child.text.replace(' %s ' % hyphen, '%s' % hyphen) child.text = re.sub(r'- (.) -', r'-\1-', child.text) return result
python
def fix_whitespace(tokens, start, result): """Fix whitespace around hyphens and commas. Can be used to remove whitespace tokenization artefacts.""" for e in result: for child in e.iter(): child.text = child.text.replace(' , ', ', ') for hyphen in HYPHENS: child.text = child.text.replace(' %s ' % hyphen, '%s' % hyphen) child.text = re.sub(r'- (.) -', r'-\1-', child.text) return result
[ "def", "fix_whitespace", "(", "tokens", ",", "start", ",", "result", ")", ":", "for", "e", "in", "result", ":", "for", "child", "in", "e", ".", "iter", "(", ")", ":", "child", ".", "text", "=", "child", ".", "text", ".", "replace", "(", "' , '", ",", "', '", ")", "for", "hyphen", "in", "HYPHENS", ":", "child", ".", "text", "=", "child", ".", "text", ".", "replace", "(", "' %s '", "%", "hyphen", ",", "'%s'", "%", "hyphen", ")", "child", ".", "text", "=", "re", ".", "sub", "(", "r'- (.) -'", ",", "r'-\\1-'", ",", "child", ".", "text", ")", "return", "result" ]
Fix whitespace around hyphens and commas. Can be used to remove whitespace tokenization artefacts.
[ "Fix", "whitespace", "around", "hyphens", "and", "commas", ".", "Can", "be", "used", "to", "remove", "whitespace", "tokenization", "artefacts", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/parse/actions.py#L64-L72
6,462
mcs07/ChemDataExtractor
chemdataextractor/reader/plaintext.py
PlainTextReader.detect
def detect(self, fstring, fname=None): """Have a stab at most files.""" if fname is not None and '.' in fname: extension = fname.rsplit('.', 1)[1] if extension in {'pdf', 'html', 'xml'}: return False return True
python
def detect(self, fstring, fname=None): """Have a stab at most files.""" if fname is not None and '.' in fname: extension = fname.rsplit('.', 1)[1] if extension in {'pdf', 'html', 'xml'}: return False return True
[ "def", "detect", "(", "self", ",", "fstring", ",", "fname", "=", "None", ")", ":", "if", "fname", "is", "not", "None", "and", "'.'", "in", "fname", ":", "extension", "=", "fname", ".", "rsplit", "(", "'.'", ",", "1", ")", "[", "1", "]", "if", "extension", "in", "{", "'pdf'", ",", "'html'", ",", "'xml'", "}", ":", "return", "False", "return", "True" ]
Have a stab at most files.
[ "Have", "a", "stab", "at", "most", "files", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/reader/plaintext.py#L26-L32
6,463
mcs07/ChemDataExtractor
chemdataextractor/reader/pdf.py
PdfReader._process_layout
def _process_layout(self, layout): """Process an LTPage layout and return a list of elements.""" # Here we just group text into paragraphs elements = [] for lt_obj in layout: if isinstance(lt_obj, LTTextBox) or isinstance(lt_obj, LTTextLine): elements.append(Paragraph(lt_obj.get_text().strip())) elif isinstance(lt_obj, LTFigure): # Recursive... elements.extend(self._process_layout(lt_obj)) return elements
python
def _process_layout(self, layout): """Process an LTPage layout and return a list of elements.""" # Here we just group text into paragraphs elements = [] for lt_obj in layout: if isinstance(lt_obj, LTTextBox) or isinstance(lt_obj, LTTextLine): elements.append(Paragraph(lt_obj.get_text().strip())) elif isinstance(lt_obj, LTFigure): # Recursive... elements.extend(self._process_layout(lt_obj)) return elements
[ "def", "_process_layout", "(", "self", ",", "layout", ")", ":", "# Here we just group text into paragraphs", "elements", "=", "[", "]", "for", "lt_obj", "in", "layout", ":", "if", "isinstance", "(", "lt_obj", ",", "LTTextBox", ")", "or", "isinstance", "(", "lt_obj", ",", "LTTextLine", ")", ":", "elements", ".", "append", "(", "Paragraph", "(", "lt_obj", ".", "get_text", "(", ")", ".", "strip", "(", ")", ")", ")", "elif", "isinstance", "(", "lt_obj", ",", "LTFigure", ")", ":", "# Recursive...", "elements", ".", "extend", "(", "self", ".", "_process_layout", "(", "lt_obj", ")", ")", "return", "elements" ]
Process an LTPage layout and return a list of elements.
[ "Process", "an", "LTPage", "layout", "and", "return", "a", "list", "of", "elements", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/reader/pdf.py#L38-L48
6,464
mcs07/ChemDataExtractor
chemdataextractor/text/__init__.py
get_encoding
def get_encoding(input_string, guesses=None, is_html=False): """Return the encoding of a byte string. Uses bs4 UnicodeDammit. :param string input_string: Encoded byte string. :param list[string] guesses: (Optional) List of encoding guesses to prioritize. :param bool is_html: Whether the input is HTML. """ converted = UnicodeDammit(input_string, override_encodings=[guesses] if guesses else [], is_html=is_html) return converted.original_encoding
python
def get_encoding(input_string, guesses=None, is_html=False): """Return the encoding of a byte string. Uses bs4 UnicodeDammit. :param string input_string: Encoded byte string. :param list[string] guesses: (Optional) List of encoding guesses to prioritize. :param bool is_html: Whether the input is HTML. """ converted = UnicodeDammit(input_string, override_encodings=[guesses] if guesses else [], is_html=is_html) return converted.original_encoding
[ "def", "get_encoding", "(", "input_string", ",", "guesses", "=", "None", ",", "is_html", "=", "False", ")", ":", "converted", "=", "UnicodeDammit", "(", "input_string", ",", "override_encodings", "=", "[", "guesses", "]", "if", "guesses", "else", "[", "]", ",", "is_html", "=", "is_html", ")", "return", "converted", ".", "original_encoding" ]
Return the encoding of a byte string. Uses bs4 UnicodeDammit. :param string input_string: Encoded byte string. :param list[string] guesses: (Optional) List of encoding guesses to prioritize. :param bool is_html: Whether the input is HTML.
[ "Return", "the", "encoding", "of", "a", "byte", "string", ".", "Uses", "bs4", "UnicodeDammit", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/text/__init__.py#L221-L229
6,465
mcs07/ChemDataExtractor
chemdataextractor/text/__init__.py
levenshtein
def levenshtein(s1, s2, allow_substring=False): """Return the Levenshtein distance between two strings. The Levenshtein distance (a.k.a "edit difference") is the number of characters that need to be substituted, inserted or deleted to transform s1 into s2. Setting the `allow_substring` parameter to True allows s1 to be a substring of s2, so that, for example, "hello" and "hello there" would have a distance of zero. :param string s1: The first string :param string s2: The second string :param bool allow_substring: Whether to allow s1 to be a substring of s2 :returns: Levenshtein distance. :rtype int """ len1, len2 = len(s1), len(s2) lev = [] for i in range(len1 + 1): lev.append([0] * (len2 + 1)) for i in range(len1 + 1): lev[i][0] = i for j in range(len2 + 1): lev[0][j] = 0 if allow_substring else j for i in range(len1): for j in range(len2): lev[i + 1][j + 1] = min(lev[i][j + 1] + 1, lev[i + 1][j] + 1, lev[i][j] + (s1[i] != s2[j])) return min(lev[len1]) if allow_substring else lev[len1][len2]
python
def levenshtein(s1, s2, allow_substring=False): """Return the Levenshtein distance between two strings. The Levenshtein distance (a.k.a "edit difference") is the number of characters that need to be substituted, inserted or deleted to transform s1 into s2. Setting the `allow_substring` parameter to True allows s1 to be a substring of s2, so that, for example, "hello" and "hello there" would have a distance of zero. :param string s1: The first string :param string s2: The second string :param bool allow_substring: Whether to allow s1 to be a substring of s2 :returns: Levenshtein distance. :rtype int """ len1, len2 = len(s1), len(s2) lev = [] for i in range(len1 + 1): lev.append([0] * (len2 + 1)) for i in range(len1 + 1): lev[i][0] = i for j in range(len2 + 1): lev[0][j] = 0 if allow_substring else j for i in range(len1): for j in range(len2): lev[i + 1][j + 1] = min(lev[i][j + 1] + 1, lev[i + 1][j] + 1, lev[i][j] + (s1[i] != s2[j])) return min(lev[len1]) if allow_substring else lev[len1][len2]
[ "def", "levenshtein", "(", "s1", ",", "s2", ",", "allow_substring", "=", "False", ")", ":", "len1", ",", "len2", "=", "len", "(", "s1", ")", ",", "len", "(", "s2", ")", "lev", "=", "[", "]", "for", "i", "in", "range", "(", "len1", "+", "1", ")", ":", "lev", ".", "append", "(", "[", "0", "]", "*", "(", "len2", "+", "1", ")", ")", "for", "i", "in", "range", "(", "len1", "+", "1", ")", ":", "lev", "[", "i", "]", "[", "0", "]", "=", "i", "for", "j", "in", "range", "(", "len2", "+", "1", ")", ":", "lev", "[", "0", "]", "[", "j", "]", "=", "0", "if", "allow_substring", "else", "j", "for", "i", "in", "range", "(", "len1", ")", ":", "for", "j", "in", "range", "(", "len2", ")", ":", "lev", "[", "i", "+", "1", "]", "[", "j", "+", "1", "]", "=", "min", "(", "lev", "[", "i", "]", "[", "j", "+", "1", "]", "+", "1", ",", "lev", "[", "i", "+", "1", "]", "[", "j", "]", "+", "1", ",", "lev", "[", "i", "]", "[", "j", "]", "+", "(", "s1", "[", "i", "]", "!=", "s2", "[", "j", "]", ")", ")", "return", "min", "(", "lev", "[", "len1", "]", ")", "if", "allow_substring", "else", "lev", "[", "len1", "]", "[", "len2", "]" ]
Return the Levenshtein distance between two strings. The Levenshtein distance (a.k.a "edit difference") is the number of characters that need to be substituted, inserted or deleted to transform s1 into s2. Setting the `allow_substring` parameter to True allows s1 to be a substring of s2, so that, for example, "hello" and "hello there" would have a distance of zero. :param string s1: The first string :param string s2: The second string :param bool allow_substring: Whether to allow s1 to be a substring of s2 :returns: Levenshtein distance. :rtype int
[ "Return", "the", "Levenshtein", "distance", "between", "two", "strings", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/text/__init__.py#L232-L258
6,466
mcs07/ChemDataExtractor
chemdataextractor/text/__init__.py
bracket_level
def bracket_level(text, open={'(', '[', '{'}, close={')', ']', '}'}): """Return 0 if string contains balanced brackets or no brackets.""" level = 0 for c in text: if c in open: level += 1 elif c in close: level -= 1 return level
python
def bracket_level(text, open={'(', '[', '{'}, close={')', ']', '}'}): """Return 0 if string contains balanced brackets or no brackets.""" level = 0 for c in text: if c in open: level += 1 elif c in close: level -= 1 return level
[ "def", "bracket_level", "(", "text", ",", "open", "=", "{", "'('", ",", "'['", ",", "'{'", "}", ",", "close", "=", "{", "')'", ",", "']'", ",", "'}'", "}", ")", ":", "level", "=", "0", "for", "c", "in", "text", ":", "if", "c", "in", "open", ":", "level", "+=", "1", "elif", "c", "in", "close", ":", "level", "-=", "1", "return", "level" ]
Return 0 if string contains balanced brackets or no brackets.
[ "Return", "0", "if", "string", "contains", "balanced", "brackets", "or", "no", "brackets", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/text/__init__.py#L261-L269
6,467
mcs07/ChemDataExtractor
chemdataextractor/cli/config.py
list
def list(ctx): """List all config values.""" log.debug('chemdataextractor.config.list') for k in config: click.echo('%s : %s' % (k, config[k]))
python
def list(ctx): """List all config values.""" log.debug('chemdataextractor.config.list') for k in config: click.echo('%s : %s' % (k, config[k]))
[ "def", "list", "(", "ctx", ")", ":", "log", ".", "debug", "(", "'chemdataextractor.config.list'", ")", "for", "k", "in", "config", ":", "click", ".", "echo", "(", "'%s : %s'", "%", "(", "k", ",", "config", "[", "k", "]", ")", ")" ]
List all config values.
[ "List", "all", "config", "values", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/config.py#L33-L37
6,468
mcs07/ChemDataExtractor
chemdataextractor/cli/cem.py
train_crf
def train_crf(ctx, input, output, clusters): """Train CRF CEM recognizer.""" click.echo('chemdataextractor.crf.train') sentences = [] for line in input: sentence = [] for t in line.split(): token, tag, iob = t.rsplit('/', 2) sentence.append(((token, tag), iob)) if sentence: sentences.append(sentence) tagger = CrfCemTagger(clusters=clusters) tagger.train(sentences, output)
python
def train_crf(ctx, input, output, clusters): """Train CRF CEM recognizer.""" click.echo('chemdataextractor.crf.train') sentences = [] for line in input: sentence = [] for t in line.split(): token, tag, iob = t.rsplit('/', 2) sentence.append(((token, tag), iob)) if sentence: sentences.append(sentence) tagger = CrfCemTagger(clusters=clusters) tagger.train(sentences, output)
[ "def", "train_crf", "(", "ctx", ",", "input", ",", "output", ",", "clusters", ")", ":", "click", ".", "echo", "(", "'chemdataextractor.crf.train'", ")", "sentences", "=", "[", "]", "for", "line", "in", "input", ":", "sentence", "=", "[", "]", "for", "t", "in", "line", ".", "split", "(", ")", ":", "token", ",", "tag", ",", "iob", "=", "t", ".", "rsplit", "(", "'/'", ",", "2", ")", "sentence", ".", "append", "(", "(", "(", "token", ",", "tag", ")", ",", "iob", ")", ")", "if", "sentence", ":", "sentences", ".", "append", "(", "sentence", ")", "tagger", "=", "CrfCemTagger", "(", "clusters", "=", "clusters", ")", "tagger", ".", "train", "(", "sentences", ",", "output", ")" ]
Train CRF CEM recognizer.
[ "Train", "CRF", "CEM", "recognizer", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/cem.py#L31-L44
6,469
mcs07/ChemDataExtractor
chemdataextractor/doc/text.py
Text.sentences
def sentences(self): """Return a list of Sentences that make up this text passage.""" sents = [] spans = self.sentence_tokenizer.span_tokenize(self.text) for span in spans: sent = Sentence( text=self.text[span[0]:span[1]], start=span[0], end=span[1], word_tokenizer=self.word_tokenizer, lexicon=self.lexicon, abbreviation_detector=self.abbreviation_detector, pos_tagger=self.pos_tagger, ner_tagger=self.ner_tagger, parsers=self.parsers, document=self.document ) sents.append(sent) return sents
python
def sentences(self): """Return a list of Sentences that make up this text passage.""" sents = [] spans = self.sentence_tokenizer.span_tokenize(self.text) for span in spans: sent = Sentence( text=self.text[span[0]:span[1]], start=span[0], end=span[1], word_tokenizer=self.word_tokenizer, lexicon=self.lexicon, abbreviation_detector=self.abbreviation_detector, pos_tagger=self.pos_tagger, ner_tagger=self.ner_tagger, parsers=self.parsers, document=self.document ) sents.append(sent) return sents
[ "def", "sentences", "(", "self", ")", ":", "sents", "=", "[", "]", "spans", "=", "self", ".", "sentence_tokenizer", ".", "span_tokenize", "(", "self", ".", "text", ")", "for", "span", "in", "spans", ":", "sent", "=", "Sentence", "(", "text", "=", "self", ".", "text", "[", "span", "[", "0", "]", ":", "span", "[", "1", "]", "]", ",", "start", "=", "span", "[", "0", "]", ",", "end", "=", "span", "[", "1", "]", ",", "word_tokenizer", "=", "self", ".", "word_tokenizer", ",", "lexicon", "=", "self", ".", "lexicon", ",", "abbreviation_detector", "=", "self", ".", "abbreviation_detector", ",", "pos_tagger", "=", "self", ".", "pos_tagger", ",", "ner_tagger", "=", "self", ".", "ner_tagger", ",", "parsers", "=", "self", ".", "parsers", ",", "document", "=", "self", ".", "document", ")", "sents", ".", "append", "(", "sent", ")", "return", "sents" ]
Return a list of Sentences that make up this text passage.
[ "Return", "a", "list", "of", "Sentences", "that", "make", "up", "this", "text", "passage", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/doc/text.py#L139-L157
6,470
mcs07/ChemDataExtractor
chemdataextractor/doc/text.py
Text.records
def records(self): """Return a list of records for this text passage.""" return ModelList(*[r for sent in self.sentences for r in sent.records])
python
def records(self): """Return a list of records for this text passage.""" return ModelList(*[r for sent in self.sentences for r in sent.records])
[ "def", "records", "(", "self", ")", ":", "return", "ModelList", "(", "*", "[", "r", "for", "sent", "in", "self", ".", "sentences", "for", "r", "in", "sent", ".", "records", "]", ")" ]
Return a list of records for this text passage.
[ "Return", "a", "list", "of", "records", "for", "this", "text", "passage", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/doc/text.py#L231-L233
6,471
mcs07/ChemDataExtractor
chemdataextractor/doc/text.py
Sentence.tokens
def tokens(self): """Return a list of token Spans for this sentence.""" spans = self.word_tokenizer.span_tokenize(self.text) toks = [Token( text=self.text[span[0]:span[1]], start=span[0] + self.start, end=span[1] + self.start, lexicon=self.lexicon ) for span in spans] return toks
python
def tokens(self): """Return a list of token Spans for this sentence.""" spans = self.word_tokenizer.span_tokenize(self.text) toks = [Token( text=self.text[span[0]:span[1]], start=span[0] + self.start, end=span[1] + self.start, lexicon=self.lexicon ) for span in spans] return toks
[ "def", "tokens", "(", "self", ")", ":", "spans", "=", "self", ".", "word_tokenizer", ".", "span_tokenize", "(", "self", ".", "text", ")", "toks", "=", "[", "Token", "(", "text", "=", "self", ".", "text", "[", "span", "[", "0", "]", ":", "span", "[", "1", "]", "]", ",", "start", "=", "span", "[", "0", "]", "+", "self", ".", "start", ",", "end", "=", "span", "[", "1", "]", "+", "self", ".", "start", ",", "lexicon", "=", "self", ".", "lexicon", ")", "for", "span", "in", "spans", "]", "return", "toks" ]
Return a list of token Spans for this sentence.
[ "Return", "a", "list", "of", "token", "Spans", "for", "this", "sentence", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/doc/text.py#L322-L331
6,472
mcs07/ChemDataExtractor
chemdataextractor/doc/text.py
Sentence.tags
def tags(self): """Return combined POS and NER tags.""" tags = self.pos_tags for i, tag in enumerate(self.ner_tags): if tag is not None: tags[i] = tag return tags
python
def tags(self): """Return combined POS and NER tags.""" tags = self.pos_tags for i, tag in enumerate(self.ner_tags): if tag is not None: tags[i] = tag return tags
[ "def", "tags", "(", "self", ")", ":", "tags", "=", "self", ".", "pos_tags", "for", "i", ",", "tag", "in", "enumerate", "(", "self", ".", "ner_tags", ")", ":", "if", "tag", "is", "not", "None", ":", "tags", "[", "i", "]", "=", "tag", "return", "tags" ]
Return combined POS and NER tags.
[ "Return", "combined", "POS", "and", "NER", "tags", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/doc/text.py#L492-L498
6,473
mcs07/ChemDataExtractor
chemdataextractor/doc/text.py
Sentence.records
def records(self): """Return a list of records for this sentence.""" compounds = ModelList() seen_labels = set() # Ensure no control characters are sent to a parser (need to be XML compatible) tagged_tokens = [(CONTROL_RE.sub('', token), tag) for token, tag in self.tagged_tokens] for parser in self.parsers: for record in parser.parse(tagged_tokens): p = record.serialize() if not p: # TODO: Potential performance issues? continue # Skip duplicate records if record in compounds: continue # Skip just labels that have already been seen (bit of a hack) if all(k in {'labels', 'roles'} for k in p.keys()) and set(record.labels).issubset(seen_labels): continue seen_labels.update(record.labels) compounds.append(record) return compounds
python
def records(self): """Return a list of records for this sentence.""" compounds = ModelList() seen_labels = set() # Ensure no control characters are sent to a parser (need to be XML compatible) tagged_tokens = [(CONTROL_RE.sub('', token), tag) for token, tag in self.tagged_tokens] for parser in self.parsers: for record in parser.parse(tagged_tokens): p = record.serialize() if not p: # TODO: Potential performance issues? continue # Skip duplicate records if record in compounds: continue # Skip just labels that have already been seen (bit of a hack) if all(k in {'labels', 'roles'} for k in p.keys()) and set(record.labels).issubset(seen_labels): continue seen_labels.update(record.labels) compounds.append(record) return compounds
[ "def", "records", "(", "self", ")", ":", "compounds", "=", "ModelList", "(", ")", "seen_labels", "=", "set", "(", ")", "# Ensure no control characters are sent to a parser (need to be XML compatible)", "tagged_tokens", "=", "[", "(", "CONTROL_RE", ".", "sub", "(", "''", ",", "token", ")", ",", "tag", ")", "for", "token", ",", "tag", "in", "self", ".", "tagged_tokens", "]", "for", "parser", "in", "self", ".", "parsers", ":", "for", "record", "in", "parser", ".", "parse", "(", "tagged_tokens", ")", ":", "p", "=", "record", ".", "serialize", "(", ")", "if", "not", "p", ":", "# TODO: Potential performance issues?", "continue", "# Skip duplicate records", "if", "record", "in", "compounds", ":", "continue", "# Skip just labels that have already been seen (bit of a hack)", "if", "all", "(", "k", "in", "{", "'labels'", ",", "'roles'", "}", "for", "k", "in", "p", ".", "keys", "(", ")", ")", "and", "set", "(", "record", ".", "labels", ")", ".", "issubset", "(", "seen_labels", ")", ":", "continue", "seen_labels", ".", "update", "(", "record", ".", "labels", ")", "compounds", ".", "append", "(", "record", ")", "return", "compounds" ]
Return a list of records for this sentence.
[ "Return", "a", "list", "of", "records", "for", "this", "sentence", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/doc/text.py#L505-L524
6,474
mcs07/ChemDataExtractor
chemdataextractor/cli/chemdner.py
prepare_gold
def prepare_gold(ctx, annotations, gout): """Prepare bc-evaluate gold file from annotations supplied by CHEMDNER.""" click.echo('chemdataextractor.chemdner.prepare_gold') for line in annotations: pmid, ta, start, end, text, category = line.strip().split('\t') gout.write('%s\t%s:%s:%s\n' % (pmid, ta, start, end))
python
def prepare_gold(ctx, annotations, gout): """Prepare bc-evaluate gold file from annotations supplied by CHEMDNER.""" click.echo('chemdataextractor.chemdner.prepare_gold') for line in annotations: pmid, ta, start, end, text, category = line.strip().split('\t') gout.write('%s\t%s:%s:%s\n' % (pmid, ta, start, end))
[ "def", "prepare_gold", "(", "ctx", ",", "annotations", ",", "gout", ")", ":", "click", ".", "echo", "(", "'chemdataextractor.chemdner.prepare_gold'", ")", "for", "line", "in", "annotations", ":", "pmid", ",", "ta", ",", "start", ",", "end", ",", "text", ",", "category", "=", "line", ".", "strip", "(", ")", ".", "split", "(", "'\\t'", ")", "gout", ".", "write", "(", "'%s\\t%s:%s:%s\\n'", "%", "(", "pmid", ",", "ta", ",", "start", ",", "end", ")", ")" ]
Prepare bc-evaluate gold file from annotations supplied by CHEMDNER.
[ "Prepare", "bc", "-", "evaluate", "gold", "file", "from", "annotations", "supplied", "by", "CHEMDNER", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/chemdner.py#L33-L38
6,475
mcs07/ChemDataExtractor
chemdataextractor/cli/chemdner.py
prepare_tokens
def prepare_tokens(ctx, input, annotations, tout, lout): """Prepare tokenized and tagged corpus file from those supplied by CHEMDNER.""" click.echo('chemdataextractor.chemdner.prepare_tokens') # Collect the annotations into a dict anndict = defaultdict(list) for line in annotations: pmid, ta, start, end, text, category = line.strip().split('\t') anndict[(pmid, ta)].append((int(start), int(end), text)) # Process the corpus for line in input: pmid, title, abstract = line.strip().split(u'\t') for t, section, anns in [(Title(title), 'T', anndict.get((pmid, u'T'), [])), (Paragraph(abstract), u'A', anndict.get((pmid, u'A'), []))]: # Write our tokens with POS and IOB tags tagged = _prep_tags(t, anns) for i, sentence in enumerate(tagged): tout.write(u' '.join([u'/'.join([token, tag, label]) for token, tag, label in sentence])) lout.write(u' '.join([u'/'.join([token, label]) for token, tag, label in sentence])) tout.write(u'\n') lout.write(u'\n') tout.write(u'\n') lout.write(u'\n')
python
def prepare_tokens(ctx, input, annotations, tout, lout): """Prepare tokenized and tagged corpus file from those supplied by CHEMDNER.""" click.echo('chemdataextractor.chemdner.prepare_tokens') # Collect the annotations into a dict anndict = defaultdict(list) for line in annotations: pmid, ta, start, end, text, category = line.strip().split('\t') anndict[(pmid, ta)].append((int(start), int(end), text)) # Process the corpus for line in input: pmid, title, abstract = line.strip().split(u'\t') for t, section, anns in [(Title(title), 'T', anndict.get((pmid, u'T'), [])), (Paragraph(abstract), u'A', anndict.get((pmid, u'A'), []))]: # Write our tokens with POS and IOB tags tagged = _prep_tags(t, anns) for i, sentence in enumerate(tagged): tout.write(u' '.join([u'/'.join([token, tag, label]) for token, tag, label in sentence])) lout.write(u' '.join([u'/'.join([token, label]) for token, tag, label in sentence])) tout.write(u'\n') lout.write(u'\n') tout.write(u'\n') lout.write(u'\n')
[ "def", "prepare_tokens", "(", "ctx", ",", "input", ",", "annotations", ",", "tout", ",", "lout", ")", ":", "click", ".", "echo", "(", "'chemdataextractor.chemdner.prepare_tokens'", ")", "# Collect the annotations into a dict", "anndict", "=", "defaultdict", "(", "list", ")", "for", "line", "in", "annotations", ":", "pmid", ",", "ta", ",", "start", ",", "end", ",", "text", ",", "category", "=", "line", ".", "strip", "(", ")", ".", "split", "(", "'\\t'", ")", "anndict", "[", "(", "pmid", ",", "ta", ")", "]", ".", "append", "(", "(", "int", "(", "start", ")", ",", "int", "(", "end", ")", ",", "text", ")", ")", "# Process the corpus", "for", "line", "in", "input", ":", "pmid", ",", "title", ",", "abstract", "=", "line", ".", "strip", "(", ")", ".", "split", "(", "u'\\t'", ")", "for", "t", ",", "section", ",", "anns", "in", "[", "(", "Title", "(", "title", ")", ",", "'T'", ",", "anndict", ".", "get", "(", "(", "pmid", ",", "u'T'", ")", ",", "[", "]", ")", ")", ",", "(", "Paragraph", "(", "abstract", ")", ",", "u'A'", ",", "anndict", ".", "get", "(", "(", "pmid", ",", "u'A'", ")", ",", "[", "]", ")", ")", "]", ":", "# Write our tokens with POS and IOB tags", "tagged", "=", "_prep_tags", "(", "t", ",", "anns", ")", "for", "i", ",", "sentence", "in", "enumerate", "(", "tagged", ")", ":", "tout", ".", "write", "(", "u' '", ".", "join", "(", "[", "u'/'", ".", "join", "(", "[", "token", ",", "tag", ",", "label", "]", ")", "for", "token", ",", "tag", ",", "label", "in", "sentence", "]", ")", ")", "lout", ".", "write", "(", "u' '", ".", "join", "(", "[", "u'/'", ".", "join", "(", "[", "token", ",", "label", "]", ")", "for", "token", ",", "tag", ",", "label", "in", "sentence", "]", ")", ")", "tout", ".", "write", "(", "u'\\n'", ")", "lout", ".", "write", "(", "u'\\n'", ")", "tout", ".", "write", "(", "u'\\n'", ")", "lout", ".", "write", "(", "u'\\n'", ")" ]
Prepare tokenized and tagged corpus file from those supplied by CHEMDNER.
[ "Prepare", "tokenized", "and", "tagged", "corpus", "file", "from", "those", "supplied", "by", "CHEMDNER", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/chemdner.py#L47-L67
6,476
mcs07/ChemDataExtractor
chemdataextractor/cli/chemdner.py
_prep_tags
def _prep_tags(t, annotations): """Apply IOB chemical entity tags and POS tags to text.""" tags = [['O' for _ in sent.tokens] for sent in t.sentences] for start, end, text in annotations: done_first = False for i, sent in enumerate(t.sentences): for j, token in enumerate(sent.tokens): if start <= token.start < end or start < token.end <= end: # Token start or end occurs within the annotation tags[i][j] = 'I-CM' if done_first else 'B-CM' done_first = True tagged = [[(token[0], token[1], tags[i][j]) for j, token in enumerate(sentence.pos_tagged_tokens)] for i, sentence in enumerate(t.sentences)] return tagged
python
def _prep_tags(t, annotations): """Apply IOB chemical entity tags and POS tags to text.""" tags = [['O' for _ in sent.tokens] for sent in t.sentences] for start, end, text in annotations: done_first = False for i, sent in enumerate(t.sentences): for j, token in enumerate(sent.tokens): if start <= token.start < end or start < token.end <= end: # Token start or end occurs within the annotation tags[i][j] = 'I-CM' if done_first else 'B-CM' done_first = True tagged = [[(token[0], token[1], tags[i][j]) for j, token in enumerate(sentence.pos_tagged_tokens)] for i, sentence in enumerate(t.sentences)] return tagged
[ "def", "_prep_tags", "(", "t", ",", "annotations", ")", ":", "tags", "=", "[", "[", "'O'", "for", "_", "in", "sent", ".", "tokens", "]", "for", "sent", "in", "t", ".", "sentences", "]", "for", "start", ",", "end", ",", "text", "in", "annotations", ":", "done_first", "=", "False", "for", "i", ",", "sent", "in", "enumerate", "(", "t", ".", "sentences", ")", ":", "for", "j", ",", "token", "in", "enumerate", "(", "sent", ".", "tokens", ")", ":", "if", "start", "<=", "token", ".", "start", "<", "end", "or", "start", "<", "token", ".", "end", "<=", "end", ":", "# Token start or end occurs within the annotation", "tags", "[", "i", "]", "[", "j", "]", "=", "'I-CM'", "if", "done_first", "else", "'B-CM'", "done_first", "=", "True", "tagged", "=", "[", "[", "(", "token", "[", "0", "]", ",", "token", "[", "1", "]", ",", "tags", "[", "i", "]", "[", "j", "]", ")", "for", "j", ",", "token", "in", "enumerate", "(", "sentence", ".", "pos_tagged_tokens", ")", "]", "for", "i", ",", "sentence", "in", "enumerate", "(", "t", ".", "sentences", ")", "]", "return", "tagged" ]
Apply IOB chemical entity tags and POS tags to text.
[ "Apply", "IOB", "chemical", "entity", "tags", "and", "POS", "tags", "to", "text", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/chemdner.py#L70-L82
6,477
mcs07/ChemDataExtractor
chemdataextractor/cli/pos.py
train_all
def train_all(ctx, output): """Train POS tagger on WSJ, GENIA, and both. With and without cluster features.""" click.echo('chemdataextractor.pos.train_all') click.echo('Output: %s' % output) ctx.invoke(train, output='%s_wsj_nocluster.pickle' % output, corpus='wsj', clusters=False) ctx.invoke(train, output='%s_wsj.pickle' % output, corpus='wsj', clusters=True) ctx.invoke(train, output='%s_genia_nocluster.pickle' % output, corpus='genia', clusters=False) ctx.invoke(train, output='%s_genia.pickle' % output, corpus='genia', clusters=True) ctx.invoke(train, output='%s_wsj_genia_nocluster.pickle' % output, corpus='wsj+genia', clusters=False) ctx.invoke(train, output='%s_wsj_genia.pickle' % output, corpus='wsj+genia', clusters=True)
python
def train_all(ctx, output): """Train POS tagger on WSJ, GENIA, and both. With and without cluster features.""" click.echo('chemdataextractor.pos.train_all') click.echo('Output: %s' % output) ctx.invoke(train, output='%s_wsj_nocluster.pickle' % output, corpus='wsj', clusters=False) ctx.invoke(train, output='%s_wsj.pickle' % output, corpus='wsj', clusters=True) ctx.invoke(train, output='%s_genia_nocluster.pickle' % output, corpus='genia', clusters=False) ctx.invoke(train, output='%s_genia.pickle' % output, corpus='genia', clusters=True) ctx.invoke(train, output='%s_wsj_genia_nocluster.pickle' % output, corpus='wsj+genia', clusters=False) ctx.invoke(train, output='%s_wsj_genia.pickle' % output, corpus='wsj+genia', clusters=True)
[ "def", "train_all", "(", "ctx", ",", "output", ")", ":", "click", ".", "echo", "(", "'chemdataextractor.pos.train_all'", ")", "click", ".", "echo", "(", "'Output: %s'", "%", "output", ")", "ctx", ".", "invoke", "(", "train", ",", "output", "=", "'%s_wsj_nocluster.pickle'", "%", "output", ",", "corpus", "=", "'wsj'", ",", "clusters", "=", "False", ")", "ctx", ".", "invoke", "(", "train", ",", "output", "=", "'%s_wsj.pickle'", "%", "output", ",", "corpus", "=", "'wsj'", ",", "clusters", "=", "True", ")", "ctx", ".", "invoke", "(", "train", ",", "output", "=", "'%s_genia_nocluster.pickle'", "%", "output", ",", "corpus", "=", "'genia'", ",", "clusters", "=", "False", ")", "ctx", ".", "invoke", "(", "train", ",", "output", "=", "'%s_genia.pickle'", "%", "output", ",", "corpus", "=", "'genia'", ",", "clusters", "=", "True", ")", "ctx", ".", "invoke", "(", "train", ",", "output", "=", "'%s_wsj_genia_nocluster.pickle'", "%", "output", ",", "corpus", "=", "'wsj+genia'", ",", "clusters", "=", "False", ")", "ctx", ".", "invoke", "(", "train", ",", "output", "=", "'%s_wsj_genia.pickle'", "%", "output", ",", "corpus", "=", "'wsj+genia'", ",", "clusters", "=", "True", ")" ]
Train POS tagger on WSJ, GENIA, and both. With and without cluster features.
[ "Train", "POS", "tagger", "on", "WSJ", "GENIA", "and", "both", ".", "With", "and", "without", "cluster", "features", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/pos.py#L35-L44
6,478
mcs07/ChemDataExtractor
chemdataextractor/cli/pos.py
evaluate_all
def evaluate_all(ctx, model): """Evaluate POS taggers on WSJ and GENIA.""" click.echo('chemdataextractor.pos.evaluate_all') click.echo('Model: %s' % model) ctx.invoke(evaluate, model='%s_wsj_nocluster.pickle' % model, corpus='wsj', clusters=False) ctx.invoke(evaluate, model='%s_wsj_nocluster.pickle' % model, corpus='genia', clusters=False) ctx.invoke(evaluate, model='%s_wsj.pickle' % model, corpus='wsj', clusters=True) ctx.invoke(evaluate, model='%s_wsj.pickle' % model, corpus='genia', clusters=True) ctx.invoke(evaluate, model='%s_genia_nocluster.pickle' % model, corpus='wsj', clusters=False) ctx.invoke(evaluate, model='%s_genia_nocluster.pickle' % model, corpus='genia', clusters=False) ctx.invoke(evaluate, model='%s_genia.pickle' % model, corpus='wsj', clusters=True) ctx.invoke(evaluate, model='%s_genia.pickle' % model, corpus='genia', clusters=True) ctx.invoke(evaluate, model='%s_wsj_genia_nocluster.pickle' % model, corpus='wsj', clusters=False) ctx.invoke(evaluate, model='%s_wsj_genia_nocluster.pickle' % model, corpus='genia', clusters=False) ctx.invoke(evaluate, model='%s_wsj_genia.pickle' % model, corpus='wsj', clusters=True) ctx.invoke(evaluate, model='%s_wsj_genia.pickle' % model, corpus='genia', clusters=True)
python
def evaluate_all(ctx, model): """Evaluate POS taggers on WSJ and GENIA.""" click.echo('chemdataextractor.pos.evaluate_all') click.echo('Model: %s' % model) ctx.invoke(evaluate, model='%s_wsj_nocluster.pickle' % model, corpus='wsj', clusters=False) ctx.invoke(evaluate, model='%s_wsj_nocluster.pickle' % model, corpus='genia', clusters=False) ctx.invoke(evaluate, model='%s_wsj.pickle' % model, corpus='wsj', clusters=True) ctx.invoke(evaluate, model='%s_wsj.pickle' % model, corpus='genia', clusters=True) ctx.invoke(evaluate, model='%s_genia_nocluster.pickle' % model, corpus='wsj', clusters=False) ctx.invoke(evaluate, model='%s_genia_nocluster.pickle' % model, corpus='genia', clusters=False) ctx.invoke(evaluate, model='%s_genia.pickle' % model, corpus='wsj', clusters=True) ctx.invoke(evaluate, model='%s_genia.pickle' % model, corpus='genia', clusters=True) ctx.invoke(evaluate, model='%s_wsj_genia_nocluster.pickle' % model, corpus='wsj', clusters=False) ctx.invoke(evaluate, model='%s_wsj_genia_nocluster.pickle' % model, corpus='genia', clusters=False) ctx.invoke(evaluate, model='%s_wsj_genia.pickle' % model, corpus='wsj', clusters=True) ctx.invoke(evaluate, model='%s_wsj_genia.pickle' % model, corpus='genia', clusters=True)
[ "def", "evaluate_all", "(", "ctx", ",", "model", ")", ":", "click", ".", "echo", "(", "'chemdataextractor.pos.evaluate_all'", ")", "click", ".", "echo", "(", "'Model: %s'", "%", "model", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_wsj_nocluster.pickle'", "%", "model", ",", "corpus", "=", "'wsj'", ",", "clusters", "=", "False", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_wsj_nocluster.pickle'", "%", "model", ",", "corpus", "=", "'genia'", ",", "clusters", "=", "False", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_wsj.pickle'", "%", "model", ",", "corpus", "=", "'wsj'", ",", "clusters", "=", "True", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_wsj.pickle'", "%", "model", ",", "corpus", "=", "'genia'", ",", "clusters", "=", "True", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_genia_nocluster.pickle'", "%", "model", ",", "corpus", "=", "'wsj'", ",", "clusters", "=", "False", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_genia_nocluster.pickle'", "%", "model", ",", "corpus", "=", "'genia'", ",", "clusters", "=", "False", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_genia.pickle'", "%", "model", ",", "corpus", "=", "'wsj'", ",", "clusters", "=", "True", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_genia.pickle'", "%", "model", ",", "corpus", "=", "'genia'", ",", "clusters", "=", "True", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_wsj_genia_nocluster.pickle'", "%", "model", ",", "corpus", "=", "'wsj'", ",", "clusters", "=", "False", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_wsj_genia_nocluster.pickle'", "%", "model", ",", "corpus", "=", "'genia'", ",", "clusters", "=", "False", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_wsj_genia.pickle'", "%", "model", ",", "corpus", "=", "'wsj'", ",", "clusters", "=", "True", ")", "ctx", ".", "invoke", "(", "evaluate", ",", "model", "=", "'%s_wsj_genia.pickle'", "%", "model", ",", "corpus", "=", "'genia'", ",", "clusters", "=", "True", ")" ]
Evaluate POS taggers on WSJ and GENIA.
[ "Evaluate", "POS", "taggers", "on", "WSJ", "and", "GENIA", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/pos.py#L50-L65
6,479
mcs07/ChemDataExtractor
chemdataextractor/cli/pos.py
train
def train(ctx, output, corpus, clusters): """Train POS Tagger.""" click.echo('chemdataextractor.pos.train') click.echo('Output: %s' % output) click.echo('Corpus: %s' % corpus) click.echo('Clusters: %s' % clusters) wsj_sents = [] genia_sents = [] if corpus == 'wsj' or corpus == 'wsj+genia': wsj_sents = list(wsj_training.tagged_sents()) # For WSJ, remove all tokens with -NONE- tag for i, wsj_sent in enumerate(wsj_sents): wsj_sents[i] = [t for t in wsj_sent if not t[1] == '-NONE-'] if corpus == 'genia' or corpus == 'wsj+genia': genia_sents = list(genia_training.tagged_sents()) # Translate GENIA for i, genia_sent in enumerate(genia_sents): for j, (token, tag) in enumerate(genia_sent): if tag == '(': genia_sents[i][j] = (token, '-LRB-') # ( to -RLB- (also do for evaluation) elif tag == ')': genia_sents[i][j] = (token, '-RRB-') # ) to -RRB- (also do for evaluation) elif tag == 'CT': genia_sents[i][j] = (token, 'DT') # Typo? elif tag == 'XT': genia_sents[i][j] = (token, 'DT') # Typo? elif tag == '-': genia_sents[i][j] = (token, ':') # Single hyphen character for dash elif tag == 'N': genia_sents[i][j] = (token, 'NN') # Typo? elif tag == 'PP': genia_sents[i][j] = (token, 'PRP') # Typo? elif tag == '' and token == ')': genia_sents[i][j] = (token, '-RRB-') # Typo? elif tag == '' and token == 'IFN-gamma': genia_sents[i][j] = (token, 'NN') # Typo? elif '|' in tag: genia_sents[i][j] = (token, tag.split('|')[0]) # If contains |, choose first part # Filter any tags not in the allowed tagset (Shouldn't be any left anyway) genia_sents[i] = [t for t in genia_sent if t[1] in TAGS] if corpus == 'wsj': training_corpus = wsj_sents elif corpus == 'genia': training_corpus = genia_sents elif corpus == 'wsj+genia': training_corpus = wsj_sents + genia_sents else: raise click.ClickException('Invalid corpus') tagger = ChemCrfPosTagger(clusters=clusters) tagger.train(training_corpus, output)
python
def train(ctx, output, corpus, clusters): """Train POS Tagger.""" click.echo('chemdataextractor.pos.train') click.echo('Output: %s' % output) click.echo('Corpus: %s' % corpus) click.echo('Clusters: %s' % clusters) wsj_sents = [] genia_sents = [] if corpus == 'wsj' or corpus == 'wsj+genia': wsj_sents = list(wsj_training.tagged_sents()) # For WSJ, remove all tokens with -NONE- tag for i, wsj_sent in enumerate(wsj_sents): wsj_sents[i] = [t for t in wsj_sent if not t[1] == '-NONE-'] if corpus == 'genia' or corpus == 'wsj+genia': genia_sents = list(genia_training.tagged_sents()) # Translate GENIA for i, genia_sent in enumerate(genia_sents): for j, (token, tag) in enumerate(genia_sent): if tag == '(': genia_sents[i][j] = (token, '-LRB-') # ( to -RLB- (also do for evaluation) elif tag == ')': genia_sents[i][j] = (token, '-RRB-') # ) to -RRB- (also do for evaluation) elif tag == 'CT': genia_sents[i][j] = (token, 'DT') # Typo? elif tag == 'XT': genia_sents[i][j] = (token, 'DT') # Typo? elif tag == '-': genia_sents[i][j] = (token, ':') # Single hyphen character for dash elif tag == 'N': genia_sents[i][j] = (token, 'NN') # Typo? elif tag == 'PP': genia_sents[i][j] = (token, 'PRP') # Typo? elif tag == '' and token == ')': genia_sents[i][j] = (token, '-RRB-') # Typo? elif tag == '' and token == 'IFN-gamma': genia_sents[i][j] = (token, 'NN') # Typo? elif '|' in tag: genia_sents[i][j] = (token, tag.split('|')[0]) # If contains |, choose first part # Filter any tags not in the allowed tagset (Shouldn't be any left anyway) genia_sents[i] = [t for t in genia_sent if t[1] in TAGS] if corpus == 'wsj': training_corpus = wsj_sents elif corpus == 'genia': training_corpus = genia_sents elif corpus == 'wsj+genia': training_corpus = wsj_sents + genia_sents else: raise click.ClickException('Invalid corpus') tagger = ChemCrfPosTagger(clusters=clusters) tagger.train(training_corpus, output)
[ "def", "train", "(", "ctx", ",", "output", ",", "corpus", ",", "clusters", ")", ":", "click", ".", "echo", "(", "'chemdataextractor.pos.train'", ")", "click", ".", "echo", "(", "'Output: %s'", "%", "output", ")", "click", ".", "echo", "(", "'Corpus: %s'", "%", "corpus", ")", "click", ".", "echo", "(", "'Clusters: %s'", "%", "clusters", ")", "wsj_sents", "=", "[", "]", "genia_sents", "=", "[", "]", "if", "corpus", "==", "'wsj'", "or", "corpus", "==", "'wsj+genia'", ":", "wsj_sents", "=", "list", "(", "wsj_training", ".", "tagged_sents", "(", ")", ")", "# For WSJ, remove all tokens with -NONE- tag", "for", "i", ",", "wsj_sent", "in", "enumerate", "(", "wsj_sents", ")", ":", "wsj_sents", "[", "i", "]", "=", "[", "t", "for", "t", "in", "wsj_sent", "if", "not", "t", "[", "1", "]", "==", "'-NONE-'", "]", "if", "corpus", "==", "'genia'", "or", "corpus", "==", "'wsj+genia'", ":", "genia_sents", "=", "list", "(", "genia_training", ".", "tagged_sents", "(", ")", ")", "# Translate GENIA", "for", "i", ",", "genia_sent", "in", "enumerate", "(", "genia_sents", ")", ":", "for", "j", ",", "(", "token", ",", "tag", ")", "in", "enumerate", "(", "genia_sent", ")", ":", "if", "tag", "==", "'('", ":", "genia_sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "'-LRB-'", ")", "# ( to -RLB- (also do for evaluation)", "elif", "tag", "==", "')'", ":", "genia_sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "'-RRB-'", ")", "# ) to -RRB- (also do for evaluation)", "elif", "tag", "==", "'CT'", ":", "genia_sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "'DT'", ")", "# Typo?", "elif", "tag", "==", "'XT'", ":", "genia_sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "'DT'", ")", "# Typo?", "elif", "tag", "==", "'-'", ":", "genia_sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "':'", ")", "# Single hyphen character for dash", "elif", "tag", "==", "'N'", ":", "genia_sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "'NN'", ")", "# Typo?", "elif", "tag", "==", "'PP'", ":", "genia_sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "'PRP'", ")", "# Typo?", "elif", "tag", "==", "''", "and", "token", "==", "')'", ":", "genia_sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "'-RRB-'", ")", "# Typo?", "elif", "tag", "==", "''", "and", "token", "==", "'IFN-gamma'", ":", "genia_sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "'NN'", ")", "# Typo?", "elif", "'|'", "in", "tag", ":", "genia_sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "tag", ".", "split", "(", "'|'", ")", "[", "0", "]", ")", "# If contains |, choose first part", "# Filter any tags not in the allowed tagset (Shouldn't be any left anyway)", "genia_sents", "[", "i", "]", "=", "[", "t", "for", "t", "in", "genia_sent", "if", "t", "[", "1", "]", "in", "TAGS", "]", "if", "corpus", "==", "'wsj'", ":", "training_corpus", "=", "wsj_sents", "elif", "corpus", "==", "'genia'", ":", "training_corpus", "=", "genia_sents", "elif", "corpus", "==", "'wsj+genia'", ":", "training_corpus", "=", "wsj_sents", "+", "genia_sents", "else", ":", "raise", "click", ".", "ClickException", "(", "'Invalid corpus'", ")", "tagger", "=", "ChemCrfPosTagger", "(", "clusters", "=", "clusters", ")", "tagger", ".", "train", "(", "training_corpus", ",", "output", ")" ]
Train POS Tagger.
[ "Train", "POS", "Tagger", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/pos.py#L73-L127
6,480
mcs07/ChemDataExtractor
chemdataextractor/cli/pos.py
evaluate
def evaluate(ctx, model, corpus, clusters): """Evaluate performance of POS Tagger.""" click.echo('chemdataextractor.pos.evaluate') if corpus == 'wsj': evaluation = wsj_evaluation sents = list(evaluation.tagged_sents()) for i, wsj_sent in enumerate(sents): sents[i] = [t for t in wsj_sent if not t[1] == '-NONE-'] elif corpus == 'genia': evaluation = genia_evaluation sents = list(evaluation.tagged_sents()) # Translate GENIA bracket tags for i, genia_sent in enumerate(sents): for j, (token, tag) in enumerate(genia_sent): if tag == '(': sents[i][j] = (token, '-LRB-') elif tag == ')': sents[i][j] = (token, '-RRB-') else: raise click.ClickException('Invalid corpus') tagger = ChemCrfPosTagger(model=model, clusters=clusters) accuracy = tagger.evaluate(sents) click.echo('%s on %s: %s' % (model, evaluation, accuracy))
python
def evaluate(ctx, model, corpus, clusters): """Evaluate performance of POS Tagger.""" click.echo('chemdataextractor.pos.evaluate') if corpus == 'wsj': evaluation = wsj_evaluation sents = list(evaluation.tagged_sents()) for i, wsj_sent in enumerate(sents): sents[i] = [t for t in wsj_sent if not t[1] == '-NONE-'] elif corpus == 'genia': evaluation = genia_evaluation sents = list(evaluation.tagged_sents()) # Translate GENIA bracket tags for i, genia_sent in enumerate(sents): for j, (token, tag) in enumerate(genia_sent): if tag == '(': sents[i][j] = (token, '-LRB-') elif tag == ')': sents[i][j] = (token, '-RRB-') else: raise click.ClickException('Invalid corpus') tagger = ChemCrfPosTagger(model=model, clusters=clusters) accuracy = tagger.evaluate(sents) click.echo('%s on %s: %s' % (model, evaluation, accuracy))
[ "def", "evaluate", "(", "ctx", ",", "model", ",", "corpus", ",", "clusters", ")", ":", "click", ".", "echo", "(", "'chemdataextractor.pos.evaluate'", ")", "if", "corpus", "==", "'wsj'", ":", "evaluation", "=", "wsj_evaluation", "sents", "=", "list", "(", "evaluation", ".", "tagged_sents", "(", ")", ")", "for", "i", ",", "wsj_sent", "in", "enumerate", "(", "sents", ")", ":", "sents", "[", "i", "]", "=", "[", "t", "for", "t", "in", "wsj_sent", "if", "not", "t", "[", "1", "]", "==", "'-NONE-'", "]", "elif", "corpus", "==", "'genia'", ":", "evaluation", "=", "genia_evaluation", "sents", "=", "list", "(", "evaluation", ".", "tagged_sents", "(", ")", ")", "# Translate GENIA bracket tags", "for", "i", ",", "genia_sent", "in", "enumerate", "(", "sents", ")", ":", "for", "j", ",", "(", "token", ",", "tag", ")", "in", "enumerate", "(", "genia_sent", ")", ":", "if", "tag", "==", "'('", ":", "sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "'-LRB-'", ")", "elif", "tag", "==", "')'", ":", "sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "'-RRB-'", ")", "else", ":", "raise", "click", ".", "ClickException", "(", "'Invalid corpus'", ")", "tagger", "=", "ChemCrfPosTagger", "(", "model", "=", "model", ",", "clusters", "=", "clusters", ")", "accuracy", "=", "tagger", ".", "evaluate", "(", "sents", ")", "click", ".", "echo", "(", "'%s on %s: %s'", "%", "(", "model", ",", "evaluation", ",", "accuracy", ")", ")" ]
Evaluate performance of POS Tagger.
[ "Evaluate", "performance", "of", "POS", "Tagger", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/pos.py#L135-L157
6,481
mcs07/ChemDataExtractor
chemdataextractor/cli/pos.py
evaluate_perceptron
def evaluate_perceptron(ctx, model, corpus): """Evaluate performance of Averaged Perceptron POS Tagger.""" click.echo('chemdataextractor.pos.evaluate') if corpus == 'wsj': evaluation = wsj_evaluation sents = list(evaluation.tagged_sents()) for i, wsj_sent in enumerate(sents): sents[i] = [t for t in wsj_sent if not t[1] == u'-NONE-'] elif corpus == 'genia': evaluation = genia_evaluation sents = list(evaluation.tagged_sents()) # Translate GENIA bracket tags for i, genia_sent in enumerate(sents): for j, (token, tag) in enumerate(genia_sent): if tag == u'(': sents[i][j] = (token, u'-LRB-') elif tag == u')': sents[i][j] = (token, u'-RRB-') else: raise click.ClickException('Invalid corpus') tagger = ChemApPosTagger(model=model) accuracy = tagger.evaluate(sents) click.echo('%s on %s: %s' % (model, evaluation, accuracy))
python
def evaluate_perceptron(ctx, model, corpus): """Evaluate performance of Averaged Perceptron POS Tagger.""" click.echo('chemdataextractor.pos.evaluate') if corpus == 'wsj': evaluation = wsj_evaluation sents = list(evaluation.tagged_sents()) for i, wsj_sent in enumerate(sents): sents[i] = [t for t in wsj_sent if not t[1] == u'-NONE-'] elif corpus == 'genia': evaluation = genia_evaluation sents = list(evaluation.tagged_sents()) # Translate GENIA bracket tags for i, genia_sent in enumerate(sents): for j, (token, tag) in enumerate(genia_sent): if tag == u'(': sents[i][j] = (token, u'-LRB-') elif tag == u')': sents[i][j] = (token, u'-RRB-') else: raise click.ClickException('Invalid corpus') tagger = ChemApPosTagger(model=model) accuracy = tagger.evaluate(sents) click.echo('%s on %s: %s' % (model, evaluation, accuracy))
[ "def", "evaluate_perceptron", "(", "ctx", ",", "model", ",", "corpus", ")", ":", "click", ".", "echo", "(", "'chemdataextractor.pos.evaluate'", ")", "if", "corpus", "==", "'wsj'", ":", "evaluation", "=", "wsj_evaluation", "sents", "=", "list", "(", "evaluation", ".", "tagged_sents", "(", ")", ")", "for", "i", ",", "wsj_sent", "in", "enumerate", "(", "sents", ")", ":", "sents", "[", "i", "]", "=", "[", "t", "for", "t", "in", "wsj_sent", "if", "not", "t", "[", "1", "]", "==", "u'-NONE-'", "]", "elif", "corpus", "==", "'genia'", ":", "evaluation", "=", "genia_evaluation", "sents", "=", "list", "(", "evaluation", ".", "tagged_sents", "(", ")", ")", "# Translate GENIA bracket tags", "for", "i", ",", "genia_sent", "in", "enumerate", "(", "sents", ")", ":", "for", "j", ",", "(", "token", ",", "tag", ")", "in", "enumerate", "(", "genia_sent", ")", ":", "if", "tag", "==", "u'('", ":", "sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "u'-LRB-'", ")", "elif", "tag", "==", "u')'", ":", "sents", "[", "i", "]", "[", "j", "]", "=", "(", "token", ",", "u'-RRB-'", ")", "else", ":", "raise", "click", ".", "ClickException", "(", "'Invalid corpus'", ")", "tagger", "=", "ChemApPosTagger", "(", "model", "=", "model", ")", "accuracy", "=", "tagger", ".", "evaluate", "(", "sents", ")", "click", ".", "echo", "(", "'%s on %s: %s'", "%", "(", "model", ",", "evaluation", ",", "accuracy", ")", ")" ]
Evaluate performance of Averaged Perceptron POS Tagger.
[ "Evaluate", "performance", "of", "Averaged", "Perceptron", "POS", "Tagger", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/pos.py#L227-L249
6,482
mcs07/ChemDataExtractor
chemdataextractor/cli/pos.py
tag
def tag(ctx, input, output): """Output POS-tagged tokens.""" log.info('chemdataextractor.pos.tag') log.info('Reading %s' % input.name) doc = Document.from_file(input) for element in doc.elements: if isinstance(element, Text): for sentence in element.sentences: output.write(u' '.join(u'/'.join([token, tag]) for token, tag in sentence.pos_tagged_tokens)) output.write(u'\n')
python
def tag(ctx, input, output): """Output POS-tagged tokens.""" log.info('chemdataextractor.pos.tag') log.info('Reading %s' % input.name) doc = Document.from_file(input) for element in doc.elements: if isinstance(element, Text): for sentence in element.sentences: output.write(u' '.join(u'/'.join([token, tag]) for token, tag in sentence.pos_tagged_tokens)) output.write(u'\n')
[ "def", "tag", "(", "ctx", ",", "input", ",", "output", ")", ":", "log", ".", "info", "(", "'chemdataextractor.pos.tag'", ")", "log", ".", "info", "(", "'Reading %s'", "%", "input", ".", "name", ")", "doc", "=", "Document", ".", "from_file", "(", "input", ")", "for", "element", "in", "doc", ".", "elements", ":", "if", "isinstance", "(", "element", ",", "Text", ")", ":", "for", "sentence", "in", "element", ".", "sentences", ":", "output", ".", "write", "(", "u' '", ".", "join", "(", "u'/'", ".", "join", "(", "[", "token", ",", "tag", "]", ")", "for", "token", ",", "tag", "in", "sentence", ".", "pos_tagged_tokens", ")", ")", "output", ".", "write", "(", "u'\\n'", ")" ]
Output POS-tagged tokens.
[ "Output", "POS", "-", "tagged", "tokens", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/pos.py#L256-L265
6,483
mcs07/ChemDataExtractor
chemdataextractor/scrape/scraper.py
GetRequester.make_request
def make_request(self, session, url, **kwargs): """Make a HTTP GET request. :param url: The URL to get. :returns: The response to the request. :rtype: requests.Response """ log.debug('Making request: GET %s %s' % (url, kwargs)) return session.get(url, **kwargs)
python
def make_request(self, session, url, **kwargs): """Make a HTTP GET request. :param url: The URL to get. :returns: The response to the request. :rtype: requests.Response """ log.debug('Making request: GET %s %s' % (url, kwargs)) return session.get(url, **kwargs)
[ "def", "make_request", "(", "self", ",", "session", ",", "url", ",", "*", "*", "kwargs", ")", ":", "log", ".", "debug", "(", "'Making request: GET %s %s'", "%", "(", "url", ",", "kwargs", ")", ")", "return", "session", ".", "get", "(", "url", ",", "*", "*", "kwargs", ")" ]
Make a HTTP GET request. :param url: The URL to get. :returns: The response to the request. :rtype: requests.Response
[ "Make", "a", "HTTP", "GET", "request", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/scraper.py#L45-L53
6,484
mcs07/ChemDataExtractor
chemdataextractor/scrape/scraper.py
PostRequester.make_request
def make_request(self, session, url, **kwargs): """Make a HTTP POST request. :param url: The URL to post to. :param data: The data to post. :returns: The response to the request. :rtype: requests.Response """ log.debug('Making request: POST %s %s' % (url, kwargs)) return session.post(url, **kwargs)
python
def make_request(self, session, url, **kwargs): """Make a HTTP POST request. :param url: The URL to post to. :param data: The data to post. :returns: The response to the request. :rtype: requests.Response """ log.debug('Making request: POST %s %s' % (url, kwargs)) return session.post(url, **kwargs)
[ "def", "make_request", "(", "self", ",", "session", ",", "url", ",", "*", "*", "kwargs", ")", ":", "log", ".", "debug", "(", "'Making request: POST %s %s'", "%", "(", "url", ",", "kwargs", ")", ")", "return", "session", ".", "post", "(", "url", ",", "*", "*", "kwargs", ")" ]
Make a HTTP POST request. :param url: The URL to post to. :param data: The data to post. :returns: The response to the request. :rtype: requests.Response
[ "Make", "a", "HTTP", "POST", "request", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/scraper.py#L58-L67
6,485
mcs07/ChemDataExtractor
chemdataextractor/scrape/scraper.py
UrlScraper.run
def run(self, url): """Request URL, scrape response and return an EntityList.""" url = self.process_url(url) if not url: return response = self.make_request(self.http, url) selector = self.process_response(response) entities = [] for root in self.get_roots(selector): entity = self.entity(root) entity = self.process_entity(entity) if entity: entities.append(entity) return EntityList(*entities)
python
def run(self, url): """Request URL, scrape response and return an EntityList.""" url = self.process_url(url) if not url: return response = self.make_request(self.http, url) selector = self.process_response(response) entities = [] for root in self.get_roots(selector): entity = self.entity(root) entity = self.process_entity(entity) if entity: entities.append(entity) return EntityList(*entities)
[ "def", "run", "(", "self", ",", "url", ")", ":", "url", "=", "self", ".", "process_url", "(", "url", ")", "if", "not", "url", ":", "return", "response", "=", "self", ".", "make_request", "(", "self", ".", "http", ",", "url", ")", "selector", "=", "self", ".", "process_response", "(", "response", ")", "entities", "=", "[", "]", "for", "root", "in", "self", ".", "get_roots", "(", "selector", ")", ":", "entity", "=", "self", ".", "entity", "(", "root", ")", "entity", "=", "self", ".", "process_entity", "(", "entity", ")", "if", "entity", ":", "entities", ".", "append", "(", "entity", ")", "return", "EntityList", "(", "*", "entities", ")" ]
Request URL, scrape response and return an EntityList.
[ "Request", "URL", "scrape", "response", "and", "return", "an", "EntityList", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/scraper.py#L77-L90
6,486
mcs07/ChemDataExtractor
chemdataextractor/scrape/clean.py
Cleaner.clean_html
def clean_html(self, html): """Apply ``Cleaner`` to HTML string or document and return a cleaned string or document.""" result_type = type(html) if isinstance(html, six.string_types): doc = html_fromstring(html) else: doc = copy.deepcopy(html) self(doc) if issubclass(result_type, six.binary_type): return tostring(doc, encoding='utf-8') elif issubclass(result_type, six.text_type): return tostring(doc, encoding='unicode') else: return doc
python
def clean_html(self, html): """Apply ``Cleaner`` to HTML string or document and return a cleaned string or document.""" result_type = type(html) if isinstance(html, six.string_types): doc = html_fromstring(html) else: doc = copy.deepcopy(html) self(doc) if issubclass(result_type, six.binary_type): return tostring(doc, encoding='utf-8') elif issubclass(result_type, six.text_type): return tostring(doc, encoding='unicode') else: return doc
[ "def", "clean_html", "(", "self", ",", "html", ")", ":", "result_type", "=", "type", "(", "html", ")", "if", "isinstance", "(", "html", ",", "six", ".", "string_types", ")", ":", "doc", "=", "html_fromstring", "(", "html", ")", "else", ":", "doc", "=", "copy", ".", "deepcopy", "(", "html", ")", "self", "(", "doc", ")", "if", "issubclass", "(", "result_type", ",", "six", ".", "binary_type", ")", ":", "return", "tostring", "(", "doc", ",", "encoding", "=", "'utf-8'", ")", "elif", "issubclass", "(", "result_type", ",", "six", ".", "text_type", ")", ":", "return", "tostring", "(", "doc", ",", "encoding", "=", "'unicode'", ")", "else", ":", "return", "doc" ]
Apply ``Cleaner`` to HTML string or document and return a cleaned string or document.
[ "Apply", "Cleaner", "to", "HTML", "string", "or", "document", "and", "return", "a", "cleaned", "string", "or", "document", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/clean.py#L159-L172
6,487
mcs07/ChemDataExtractor
chemdataextractor/scrape/clean.py
Cleaner.clean_markup
def clean_markup(self, markup, parser=None): """Apply ``Cleaner`` to markup string or document and return a cleaned string or document.""" result_type = type(markup) if isinstance(markup, six.string_types): doc = fromstring(markup, parser=parser) else: doc = copy.deepcopy(markup) self(doc) if issubclass(result_type, six.binary_type): return tostring(doc, encoding='utf-8') elif issubclass(result_type, six.text_type): return tostring(doc, encoding='unicode') else: return doc
python
def clean_markup(self, markup, parser=None): """Apply ``Cleaner`` to markup string or document and return a cleaned string or document.""" result_type = type(markup) if isinstance(markup, six.string_types): doc = fromstring(markup, parser=parser) else: doc = copy.deepcopy(markup) self(doc) if issubclass(result_type, six.binary_type): return tostring(doc, encoding='utf-8') elif issubclass(result_type, six.text_type): return tostring(doc, encoding='unicode') else: return doc
[ "def", "clean_markup", "(", "self", ",", "markup", ",", "parser", "=", "None", ")", ":", "result_type", "=", "type", "(", "markup", ")", "if", "isinstance", "(", "markup", ",", "six", ".", "string_types", ")", ":", "doc", "=", "fromstring", "(", "markup", ",", "parser", "=", "parser", ")", "else", ":", "doc", "=", "copy", ".", "deepcopy", "(", "markup", ")", "self", "(", "doc", ")", "if", "issubclass", "(", "result_type", ",", "six", ".", "binary_type", ")", ":", "return", "tostring", "(", "doc", ",", "encoding", "=", "'utf-8'", ")", "elif", "issubclass", "(", "result_type", ",", "six", ".", "text_type", ")", ":", "return", "tostring", "(", "doc", ",", "encoding", "=", "'unicode'", ")", "else", ":", "return", "doc" ]
Apply ``Cleaner`` to markup string or document and return a cleaned string or document.
[ "Apply", "Cleaner", "to", "markup", "string", "or", "document", "and", "return", "a", "cleaned", "string", "or", "document", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/clean.py#L174-L187
6,488
mcs07/ChemDataExtractor
chemdataextractor/text/processors.py
floats
def floats(s): """Convert string to float. Handles more string formats that the standard python conversion.""" try: return float(s) except ValueError: s = re.sub(r'(\d)\s*\(\d+(\.\d+)?\)', r'\1', s) # Remove bracketed numbers from end s = re.sub(r'(\d)\s*±\s*\d+(\.\d+)?', r'\1', s) # Remove uncertainties from end s = s.rstrip('\'"+-=<>/,.:;!?)]}…∼~≈×*_≥≤') # Remove trailing punctuation s = s.lstrip('\'"+=<>/([{∼~≈×*_≥≤£$€#§') # Remove leading punctuation s = s.replace(',', '') # Remove commas s = ''.join(s.split()) # Strip whitespace s = re.sub(r'(\d)\s*[×x]\s*10\^?(-?\d)', r'\1e\2', s) # Convert scientific notation return float(s)
python
def floats(s): """Convert string to float. Handles more string formats that the standard python conversion.""" try: return float(s) except ValueError: s = re.sub(r'(\d)\s*\(\d+(\.\d+)?\)', r'\1', s) # Remove bracketed numbers from end s = re.sub(r'(\d)\s*±\s*\d+(\.\d+)?', r'\1', s) # Remove uncertainties from end s = s.rstrip('\'"+-=<>/,.:;!?)]}…∼~≈×*_≥≤') # Remove trailing punctuation s = s.lstrip('\'"+=<>/([{∼~≈×*_≥≤£$€#§') # Remove leading punctuation s = s.replace(',', '') # Remove commas s = ''.join(s.split()) # Strip whitespace s = re.sub(r'(\d)\s*[×x]\s*10\^?(-?\d)', r'\1e\2', s) # Convert scientific notation return float(s)
[ "def", "floats", "(", "s", ")", ":", "try", ":", "return", "float", "(", "s", ")", "except", "ValueError", ":", "s", "=", "re", ".", "sub", "(", "r'(\\d)\\s*\\(\\d+(\\.\\d+)?\\)'", ",", "r'\\1'", ",", "s", ")", "# Remove bracketed numbers from end", "s", "=", "re", ".", "sub", "(", "r'(\\d)\\s*±\\s*\\d+(\\.\\d+)?',", " ", "'\\1',", " ", ")", " ", " Remove uncertainties from end", "s", "=", "s", ".", "rstrip", "(", "'\\'\"+-=<>/,.:;!?)]}…∼~≈×*_≥≤') ", " ", "ailing punctuation", "s", "=", "s", ".", "lstrip", "(", "'\\'\"+=<>/([{∼~≈×*_≥≤£$€#§') ", " ", "ing punctuation", "s", "=", "s", ".", "replace", "(", "','", ",", "''", ")", "# Remove commas", "s", "=", "''", ".", "join", "(", "s", ".", "split", "(", ")", ")", "# Strip whitespace", "s", "=", "re", ".", "sub", "(", "r'(\\d)\\s*[×x]\\s*10\\^?(-?\\d)',", " ", "'\\1e\\2',", " ", ")", " ", " Convert scientific notation", "return", "float", "(", "s", ")" ]
Convert string to float. Handles more string formats that the standard python conversion.
[ "Convert", "string", "to", "float", ".", "Handles", "more", "string", "formats", "that", "the", "standard", "python", "conversion", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/text/processors.py#L111-L123
6,489
mcs07/ChemDataExtractor
chemdataextractor/text/processors.py
strip_querystring
def strip_querystring(url): """Remove the querystring from the end of a URL.""" p = six.moves.urllib.parse.urlparse(url) return p.scheme + "://" + p.netloc + p.path
python
def strip_querystring(url): """Remove the querystring from the end of a URL.""" p = six.moves.urllib.parse.urlparse(url) return p.scheme + "://" + p.netloc + p.path
[ "def", "strip_querystring", "(", "url", ")", ":", "p", "=", "six", ".", "moves", ".", "urllib", ".", "parse", ".", "urlparse", "(", "url", ")", "return", "p", ".", "scheme", "+", "\"://\"", "+", "p", ".", "netloc", "+", "p", ".", "path" ]
Remove the querystring from the end of a URL.
[ "Remove", "the", "querystring", "from", "the", "end", "of", "a", "URL", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/text/processors.py#L126-L129
6,490
mcs07/ChemDataExtractor
chemdataextractor/text/processors.py
extract_emails
def extract_emails(text): """Return a list of email addresses extracted from the string.""" text = text.replace(u'\u2024', '.') emails = [] for m in EMAIL_RE.findall(text): emails.append(m[0]) return emails
python
def extract_emails(text): """Return a list of email addresses extracted from the string.""" text = text.replace(u'\u2024', '.') emails = [] for m in EMAIL_RE.findall(text): emails.append(m[0]) return emails
[ "def", "extract_emails", "(", "text", ")", ":", "text", "=", "text", ".", "replace", "(", "u'\\u2024'", ",", "'.'", ")", "emails", "=", "[", "]", "for", "m", "in", "EMAIL_RE", ".", "findall", "(", "text", ")", ":", "emails", ".", "append", "(", "m", "[", "0", "]", ")", "return", "emails" ]
Return a list of email addresses extracted from the string.
[ "Return", "a", "list", "of", "email", "addresses", "extracted", "from", "the", "string", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/text/processors.py#L159-L165
6,491
mcs07/ChemDataExtractor
chemdataextractor/text/processors.py
unapostrophe
def unapostrophe(text): """Strip apostrophe and 's' from the end of a string.""" text = re.sub(r'[%s]s?$' % ''.join(APOSTROPHES), '', text) return text
python
def unapostrophe(text): """Strip apostrophe and 's' from the end of a string.""" text = re.sub(r'[%s]s?$' % ''.join(APOSTROPHES), '', text) return text
[ "def", "unapostrophe", "(", "text", ")", ":", "text", "=", "re", ".", "sub", "(", "r'[%s]s?$'", "%", "''", ".", "join", "(", "APOSTROPHES", ")", ",", "''", ",", "text", ")", "return", "text" ]
Strip apostrophe and 's' from the end of a string.
[ "Strip", "apostrophe", "and", "s", "from", "the", "end", "of", "a", "string", "." ]
349a3bea965f2073141d62043b89319222e46af1
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/text/processors.py#L168-L171
6,492
linuxsoftware/ls.joyous
ls/joyous/utils/telltime.py
getLocalTime
def getLocalTime(date, time, *args, **kwargs): """ Get the time in the local timezone from date and time """ if time is not None: return getLocalDateAndTime(date, time, *args, **kwargs)[1]
python
def getLocalTime(date, time, *args, **kwargs): """ Get the time in the local timezone from date and time """ if time is not None: return getLocalDateAndTime(date, time, *args, **kwargs)[1]
[ "def", "getLocalTime", "(", "date", ",", "time", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "time", "is", "not", "None", ":", "return", "getLocalDateAndTime", "(", "date", ",", "time", ",", "*", "args", ",", "*", "*", "kwargs", ")", "[", "1", "]" ]
Get the time in the local timezone from date and time
[ "Get", "the", "time", "in", "the", "local", "timezone", "from", "date", "and", "time" ]
316283140ca5171a68ad3170a5964fdc89be0b56
https://github.com/linuxsoftware/ls.joyous/blob/316283140ca5171a68ad3170a5964fdc89be0b56/ls/joyous/utils/telltime.py#L19-L24
6,493
linuxsoftware/ls.joyous
ls/joyous/utils/telltime.py
getLocalDateAndTime
def getLocalDateAndTime(date, time, *args, **kwargs): """ Get the date and time in the local timezone from date and optionally time """ localDt = getLocalDatetime(date, time, *args, **kwargs) if time is not None: return (localDt.date(), localDt.timetz()) else: return (localDt.date(), None)
python
def getLocalDateAndTime(date, time, *args, **kwargs): """ Get the date and time in the local timezone from date and optionally time """ localDt = getLocalDatetime(date, time, *args, **kwargs) if time is not None: return (localDt.date(), localDt.timetz()) else: return (localDt.date(), None)
[ "def", "getLocalDateAndTime", "(", "date", ",", "time", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "localDt", "=", "getLocalDatetime", "(", "date", ",", "time", ",", "*", "args", ",", "*", "*", "kwargs", ")", "if", "time", "is", "not", "None", ":", "return", "(", "localDt", ".", "date", "(", ")", ",", "localDt", ".", "timetz", "(", ")", ")", "else", ":", "return", "(", "localDt", ".", "date", "(", ")", ",", "None", ")" ]
Get the date and time in the local timezone from date and optionally time
[ "Get", "the", "date", "and", "time", "in", "the", "local", "timezone", "from", "date", "and", "optionally", "time" ]
316283140ca5171a68ad3170a5964fdc89be0b56
https://github.com/linuxsoftware/ls.joyous/blob/316283140ca5171a68ad3170a5964fdc89be0b56/ls/joyous/utils/telltime.py#L26-L34
6,494
linuxsoftware/ls.joyous
ls/joyous/utils/telltime.py
getLocalDatetime
def getLocalDatetime(date, time, tz=None, timeDefault=dt.time.max): """ Get a datetime in the local timezone from date and optionally time """ localTZ = timezone.get_current_timezone() if tz is None or tz == localTZ: localDt = getAwareDatetime(date, time, tz, timeDefault) else: # create in event's time zone eventDt = getAwareDatetime(date, time, tz, timeDefault) # convert to local time zone localDt = eventDt.astimezone(localTZ) if time is None: localDt = getAwareDatetime(localDt.date(), None, localTZ, timeDefault) return localDt
python
def getLocalDatetime(date, time, tz=None, timeDefault=dt.time.max): """ Get a datetime in the local timezone from date and optionally time """ localTZ = timezone.get_current_timezone() if tz is None or tz == localTZ: localDt = getAwareDatetime(date, time, tz, timeDefault) else: # create in event's time zone eventDt = getAwareDatetime(date, time, tz, timeDefault) # convert to local time zone localDt = eventDt.astimezone(localTZ) if time is None: localDt = getAwareDatetime(localDt.date(), None, localTZ, timeDefault) return localDt
[ "def", "getLocalDatetime", "(", "date", ",", "time", ",", "tz", "=", "None", ",", "timeDefault", "=", "dt", ".", "time", ".", "max", ")", ":", "localTZ", "=", "timezone", ".", "get_current_timezone", "(", ")", "if", "tz", "is", "None", "or", "tz", "==", "localTZ", ":", "localDt", "=", "getAwareDatetime", "(", "date", ",", "time", ",", "tz", ",", "timeDefault", ")", "else", ":", "# create in event's time zone", "eventDt", "=", "getAwareDatetime", "(", "date", ",", "time", ",", "tz", ",", "timeDefault", ")", "# convert to local time zone", "localDt", "=", "eventDt", ".", "astimezone", "(", "localTZ", ")", "if", "time", "is", "None", ":", "localDt", "=", "getAwareDatetime", "(", "localDt", ".", "date", "(", ")", ",", "None", ",", "localTZ", ",", "timeDefault", ")", "return", "localDt" ]
Get a datetime in the local timezone from date and optionally time
[ "Get", "a", "datetime", "in", "the", "local", "timezone", "from", "date", "and", "optionally", "time" ]
316283140ca5171a68ad3170a5964fdc89be0b56
https://github.com/linuxsoftware/ls.joyous/blob/316283140ca5171a68ad3170a5964fdc89be0b56/ls/joyous/utils/telltime.py#L36-L50
6,495
linuxsoftware/ls.joyous
ls/joyous/utils/telltime.py
getAwareDatetime
def getAwareDatetime(date, time, tz, timeDefault=dt.time.max): """ Get a datetime in the given timezone from date and optionally time. If time is not given it will default to timeDefault if that is given or if not then to the end of the day. """ if time is None: time = timeDefault datetime = dt.datetime.combine(date, time) # arbitary rule to handle DST transitions: # if daylight savings causes an error then use standard time datetime = timezone.make_aware(datetime, tz, is_dst=False) return datetime
python
def getAwareDatetime(date, time, tz, timeDefault=dt.time.max): """ Get a datetime in the given timezone from date and optionally time. If time is not given it will default to timeDefault if that is given or if not then to the end of the day. """ if time is None: time = timeDefault datetime = dt.datetime.combine(date, time) # arbitary rule to handle DST transitions: # if daylight savings causes an error then use standard time datetime = timezone.make_aware(datetime, tz, is_dst=False) return datetime
[ "def", "getAwareDatetime", "(", "date", ",", "time", ",", "tz", ",", "timeDefault", "=", "dt", ".", "time", ".", "max", ")", ":", "if", "time", "is", "None", ":", "time", "=", "timeDefault", "datetime", "=", "dt", ".", "datetime", ".", "combine", "(", "date", ",", "time", ")", "# arbitary rule to handle DST transitions:", "# if daylight savings causes an error then use standard time", "datetime", "=", "timezone", ".", "make_aware", "(", "datetime", ",", "tz", ",", "is_dst", "=", "False", ")", "return", "datetime" ]
Get a datetime in the given timezone from date and optionally time. If time is not given it will default to timeDefault if that is given or if not then to the end of the day.
[ "Get", "a", "datetime", "in", "the", "given", "timezone", "from", "date", "and", "optionally", "time", ".", "If", "time", "is", "not", "given", "it", "will", "default", "to", "timeDefault", "if", "that", "is", "given", "or", "if", "not", "then", "to", "the", "end", "of", "the", "day", "." ]
316283140ca5171a68ad3170a5964fdc89be0b56
https://github.com/linuxsoftware/ls.joyous/blob/316283140ca5171a68ad3170a5964fdc89be0b56/ls/joyous/utils/telltime.py#L52-L64
6,496
linuxsoftware/ls.joyous
ls/joyous/utils/weeks.py
_iso_num_weeks
def _iso_num_weeks(iso_year): "Get the number of ISO-weeks in this year" year_start = _iso_year_start(iso_year) next_year_start = _iso_year_start(iso_year+1) year_num_weeks = ((next_year_start - year_start).days) // 7 return year_num_weeks
python
def _iso_num_weeks(iso_year): "Get the number of ISO-weeks in this year" year_start = _iso_year_start(iso_year) next_year_start = _iso_year_start(iso_year+1) year_num_weeks = ((next_year_start - year_start).days) // 7 return year_num_weeks
[ "def", "_iso_num_weeks", "(", "iso_year", ")", ":", "year_start", "=", "_iso_year_start", "(", "iso_year", ")", "next_year_start", "=", "_iso_year_start", "(", "iso_year", "+", "1", ")", "year_num_weeks", "=", "(", "(", "next_year_start", "-", "year_start", ")", ".", "days", ")", "//", "7", "return", "year_num_weeks" ]
Get the number of ISO-weeks in this year
[ "Get", "the", "number", "of", "ISO", "-", "weeks", "in", "this", "year" ]
316283140ca5171a68ad3170a5964fdc89be0b56
https://github.com/linuxsoftware/ls.joyous/blob/316283140ca5171a68ad3170a5964fdc89be0b56/ls/joyous/utils/weeks.py#L31-L36
6,497
linuxsoftware/ls.joyous
ls/joyous/utils/weeks.py
_iso_info
def _iso_info(iso_year, iso_week): "Give all the iso info we need from one calculation" prev_year_start = _iso_year_start(iso_year-1) year_start = _iso_year_start(iso_year) next_year_start = _iso_year_start(iso_year+1) first_day = year_start + dt.timedelta(weeks=iso_week-1) last_day = first_day + dt.timedelta(days=6) prev_year_num_weeks = ((year_start - prev_year_start).days) // 7 year_num_weeks = ((next_year_start - year_start).days) // 7 return (first_day, last_day, prev_year_num_weeks, year_num_weeks)
python
def _iso_info(iso_year, iso_week): "Give all the iso info we need from one calculation" prev_year_start = _iso_year_start(iso_year-1) year_start = _iso_year_start(iso_year) next_year_start = _iso_year_start(iso_year+1) first_day = year_start + dt.timedelta(weeks=iso_week-1) last_day = first_day + dt.timedelta(days=6) prev_year_num_weeks = ((year_start - prev_year_start).days) // 7 year_num_weeks = ((next_year_start - year_start).days) // 7 return (first_day, last_day, prev_year_num_weeks, year_num_weeks)
[ "def", "_iso_info", "(", "iso_year", ",", "iso_week", ")", ":", "prev_year_start", "=", "_iso_year_start", "(", "iso_year", "-", "1", ")", "year_start", "=", "_iso_year_start", "(", "iso_year", ")", "next_year_start", "=", "_iso_year_start", "(", "iso_year", "+", "1", ")", "first_day", "=", "year_start", "+", "dt", ".", "timedelta", "(", "weeks", "=", "iso_week", "-", "1", ")", "last_day", "=", "first_day", "+", "dt", ".", "timedelta", "(", "days", "=", "6", ")", "prev_year_num_weeks", "=", "(", "(", "year_start", "-", "prev_year_start", ")", ".", "days", ")", "//", "7", "year_num_weeks", "=", "(", "(", "next_year_start", "-", "year_start", ")", ".", "days", ")", "//", "7", "return", "(", "first_day", ",", "last_day", ",", "prev_year_num_weeks", ",", "year_num_weeks", ")" ]
Give all the iso info we need from one calculation
[ "Give", "all", "the", "iso", "info", "we", "need", "from", "one", "calculation" ]
316283140ca5171a68ad3170a5964fdc89be0b56
https://github.com/linuxsoftware/ls.joyous/blob/316283140ca5171a68ad3170a5964fdc89be0b56/ls/joyous/utils/weeks.py#L38-L47
6,498
linuxsoftware/ls.joyous
ls/joyous/utils/weeks.py
_iso_week_of_month
def _iso_week_of_month(date_value): "0-starting index which ISO-week in the month this date is" weekday_of_first = date_value.replace(day=1).weekday() return (date_value.day + weekday_of_first - 1) // 7
python
def _iso_week_of_month(date_value): "0-starting index which ISO-week in the month this date is" weekday_of_first = date_value.replace(day=1).weekday() return (date_value.day + weekday_of_first - 1) // 7
[ "def", "_iso_week_of_month", "(", "date_value", ")", ":", "weekday_of_first", "=", "date_value", ".", "replace", "(", "day", "=", "1", ")", ".", "weekday", "(", ")", "return", "(", "date_value", ".", "day", "+", "weekday_of_first", "-", "1", ")", "//", "7" ]
0-starting index which ISO-week in the month this date is
[ "0", "-", "starting", "index", "which", "ISO", "-", "week", "in", "the", "month", "this", "date", "is" ]
316283140ca5171a68ad3170a5964fdc89be0b56
https://github.com/linuxsoftware/ls.joyous/blob/316283140ca5171a68ad3170a5964fdc89be0b56/ls/joyous/utils/weeks.py#L53-L56
6,499
linuxsoftware/ls.joyous
ls/joyous/utils/weeks.py
_ssweek_year_start
def _ssweek_year_start(ssweek_year): "The gregorian calendar date of the first day of the given Sundaystarting-week year" fifth_jan = dt.date(ssweek_year, 1, 5) delta = dt.timedelta(fifth_jan.weekday()+1) return fifth_jan - delta
python
def _ssweek_year_start(ssweek_year): "The gregorian calendar date of the first day of the given Sundaystarting-week year" fifth_jan = dt.date(ssweek_year, 1, 5) delta = dt.timedelta(fifth_jan.weekday()+1) return fifth_jan - delta
[ "def", "_ssweek_year_start", "(", "ssweek_year", ")", ":", "fifth_jan", "=", "dt", ".", "date", "(", "ssweek_year", ",", "1", ",", "5", ")", "delta", "=", "dt", ".", "timedelta", "(", "fifth_jan", ".", "weekday", "(", ")", "+", "1", ")", "return", "fifth_jan", "-", "delta" ]
The gregorian calendar date of the first day of the given Sundaystarting-week year
[ "The", "gregorian", "calendar", "date", "of", "the", "first", "day", "of", "the", "given", "Sundaystarting", "-", "week", "year" ]
316283140ca5171a68ad3170a5964fdc89be0b56
https://github.com/linuxsoftware/ls.joyous/blob/316283140ca5171a68ad3170a5964fdc89be0b56/ls/joyous/utils/weeks.py#L60-L64