id
int32 0
252k
| repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
sequence | docstring
stringlengths 3
17.3k
| docstring_tokens
sequence | sha
stringlengths 40
40
| url
stringlengths 87
242
|
---|---|---|---|---|---|---|---|---|---|---|---|
700 | poppy-project/pypot | pypot/kinematics.py | Link.get_transformation_matrix | def get_transformation_matrix(self, theta):
""" Computes the homogeneous transformation matrix for this link. """
ct = numpy.cos(theta + self.theta)
st = numpy.sin(theta + self.theta)
ca = numpy.cos(self.alpha)
sa = numpy.sin(self.alpha)
return numpy.matrix(((ct, -st * ca, st * sa, self.a * ct),
(st, ct * ca, -ct * sa, self.a * st),
(0, sa, ca, self.d),
(0, 0, 0, 1))) | python | def get_transformation_matrix(self, theta):
""" Computes the homogeneous transformation matrix for this link. """
ct = numpy.cos(theta + self.theta)
st = numpy.sin(theta + self.theta)
ca = numpy.cos(self.alpha)
sa = numpy.sin(self.alpha)
return numpy.matrix(((ct, -st * ca, st * sa, self.a * ct),
(st, ct * ca, -ct * sa, self.a * st),
(0, sa, ca, self.d),
(0, 0, 0, 1))) | [
"def",
"get_transformation_matrix",
"(",
"self",
",",
"theta",
")",
":",
"ct",
"=",
"numpy",
".",
"cos",
"(",
"theta",
"+",
"self",
".",
"theta",
")",
"st",
"=",
"numpy",
".",
"sin",
"(",
"theta",
"+",
"self",
".",
"theta",
")",
"ca",
"=",
"numpy",
".",
"cos",
"(",
"self",
".",
"alpha",
")",
"sa",
"=",
"numpy",
".",
"sin",
"(",
"self",
".",
"alpha",
")",
"return",
"numpy",
".",
"matrix",
"(",
"(",
"(",
"ct",
",",
"-",
"st",
"*",
"ca",
",",
"st",
"*",
"sa",
",",
"self",
".",
"a",
"*",
"ct",
")",
",",
"(",
"st",
",",
"ct",
"*",
"ca",
",",
"-",
"ct",
"*",
"sa",
",",
"self",
".",
"a",
"*",
"st",
")",
",",
"(",
"0",
",",
"sa",
",",
"ca",
",",
"self",
".",
"d",
")",
",",
"(",
"0",
",",
"0",
",",
"0",
",",
"1",
")",
")",
")"
] | Computes the homogeneous transformation matrix for this link. | [
"Computes",
"the",
"homogeneous",
"transformation",
"matrix",
"for",
"this",
"link",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/kinematics.py#L27-L37 |
701 | poppy-project/pypot | pypot/kinematics.py | Chain.forward_kinematics | def forward_kinematics(self, q):
""" Computes the homogeneous transformation matrix of the end effector of the chain.
:param vector q: vector of the joint angles (theta 1, theta 2, ..., theta n)
"""
q = numpy.array(q).flatten()
if len(q) != len(self.links):
raise ValueError('q must contain as element as the number of links')
tr = self.base.copy()
l = []
for link, theta in zip(self.links, q):
tr = tr * link.get_transformation_matrix(theta)
l.append(tr)
tr = tr * self.tool
l.append(tr)
return tr, numpy.asarray(l) | python | def forward_kinematics(self, q):
""" Computes the homogeneous transformation matrix of the end effector of the chain.
:param vector q: vector of the joint angles (theta 1, theta 2, ..., theta n)
"""
q = numpy.array(q).flatten()
if len(q) != len(self.links):
raise ValueError('q must contain as element as the number of links')
tr = self.base.copy()
l = []
for link, theta in zip(self.links, q):
tr = tr * link.get_transformation_matrix(theta)
l.append(tr)
tr = tr * self.tool
l.append(tr)
return tr, numpy.asarray(l) | [
"def",
"forward_kinematics",
"(",
"self",
",",
"q",
")",
":",
"q",
"=",
"numpy",
".",
"array",
"(",
"q",
")",
".",
"flatten",
"(",
")",
"if",
"len",
"(",
"q",
")",
"!=",
"len",
"(",
"self",
".",
"links",
")",
":",
"raise",
"ValueError",
"(",
"'q must contain as element as the number of links'",
")",
"tr",
"=",
"self",
".",
"base",
".",
"copy",
"(",
")",
"l",
"=",
"[",
"]",
"for",
"link",
",",
"theta",
"in",
"zip",
"(",
"self",
".",
"links",
",",
"q",
")",
":",
"tr",
"=",
"tr",
"*",
"link",
".",
"get_transformation_matrix",
"(",
"theta",
")",
"l",
".",
"append",
"(",
"tr",
")",
"tr",
"=",
"tr",
"*",
"self",
".",
"tool",
"l",
".",
"append",
"(",
"tr",
")",
"return",
"tr",
",",
"numpy",
".",
"asarray",
"(",
"l",
")"
] | Computes the homogeneous transformation matrix of the end effector of the chain.
:param vector q: vector of the joint angles (theta 1, theta 2, ..., theta n) | [
"Computes",
"the",
"homogeneous",
"transformation",
"matrix",
"of",
"the",
"end",
"effector",
"of",
"the",
"chain",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/kinematics.py#L51-L73 |
702 | poppy-project/pypot | pypot/kinematics.py | Chain.inverse_kinematics | def inverse_kinematics(self, end_effector_transformation,
q=None,
max_iter=1000, tolerance=0.05,
mask=numpy.ones(6),
use_pinv=False):
""" Computes the joint angles corresponding to the end effector transformation.
:param end_effector_transformation: the end effector homogeneous transformation matrix
:param vector q: initial estimate of the joint angles
:param int max_iter: maximum number of iteration
:param float tolerance: tolerance before convergence
:param mask: specify the cartesian DOF that will be ignore (in the case of a chain with less than 6 joints).
:rtype: vector of the joint angles (theta 1, theta 2, ..., theta n)
"""
if q is None:
q = numpy.zeros((len(self.links), 1))
q = numpy.matrix(q.reshape(-1, 1))
best_e = numpy.ones(6) * numpy.inf
best_q = None
alpha = 1.0
for _ in range(max_iter):
e = numpy.multiply(transform_difference(self.forward_kinematics(q)[0], end_effector_transformation), mask)
d = numpy.linalg.norm(e)
if d < numpy.linalg.norm(best_e):
best_e = e.copy()
best_q = q.copy()
alpha *= 2.0 ** (1.0 / 8.0)
else:
q = best_q.copy()
e = best_e.copy()
alpha *= 0.5
if use_pinv:
dq = numpy.linalg.pinv(self._jacob0(q)) * e.reshape((-1, 1))
else:
dq = self._jacob0(q).T * e.reshape((-1, 1))
q += alpha * dq
# d = numpy.linalg.norm(dq)
if d < tolerance:
return q
else:
raise ValueError('could not converge d={}'.format(numpy.linalg.norm(best_e))) | python | def inverse_kinematics(self, end_effector_transformation,
q=None,
max_iter=1000, tolerance=0.05,
mask=numpy.ones(6),
use_pinv=False):
""" Computes the joint angles corresponding to the end effector transformation.
:param end_effector_transformation: the end effector homogeneous transformation matrix
:param vector q: initial estimate of the joint angles
:param int max_iter: maximum number of iteration
:param float tolerance: tolerance before convergence
:param mask: specify the cartesian DOF that will be ignore (in the case of a chain with less than 6 joints).
:rtype: vector of the joint angles (theta 1, theta 2, ..., theta n)
"""
if q is None:
q = numpy.zeros((len(self.links), 1))
q = numpy.matrix(q.reshape(-1, 1))
best_e = numpy.ones(6) * numpy.inf
best_q = None
alpha = 1.0
for _ in range(max_iter):
e = numpy.multiply(transform_difference(self.forward_kinematics(q)[0], end_effector_transformation), mask)
d = numpy.linalg.norm(e)
if d < numpy.linalg.norm(best_e):
best_e = e.copy()
best_q = q.copy()
alpha *= 2.0 ** (1.0 / 8.0)
else:
q = best_q.copy()
e = best_e.copy()
alpha *= 0.5
if use_pinv:
dq = numpy.linalg.pinv(self._jacob0(q)) * e.reshape((-1, 1))
else:
dq = self._jacob0(q).T * e.reshape((-1, 1))
q += alpha * dq
# d = numpy.linalg.norm(dq)
if d < tolerance:
return q
else:
raise ValueError('could not converge d={}'.format(numpy.linalg.norm(best_e))) | [
"def",
"inverse_kinematics",
"(",
"self",
",",
"end_effector_transformation",
",",
"q",
"=",
"None",
",",
"max_iter",
"=",
"1000",
",",
"tolerance",
"=",
"0.05",
",",
"mask",
"=",
"numpy",
".",
"ones",
"(",
"6",
")",
",",
"use_pinv",
"=",
"False",
")",
":",
"if",
"q",
"is",
"None",
":",
"q",
"=",
"numpy",
".",
"zeros",
"(",
"(",
"len",
"(",
"self",
".",
"links",
")",
",",
"1",
")",
")",
"q",
"=",
"numpy",
".",
"matrix",
"(",
"q",
".",
"reshape",
"(",
"-",
"1",
",",
"1",
")",
")",
"best_e",
"=",
"numpy",
".",
"ones",
"(",
"6",
")",
"*",
"numpy",
".",
"inf",
"best_q",
"=",
"None",
"alpha",
"=",
"1.0",
"for",
"_",
"in",
"range",
"(",
"max_iter",
")",
":",
"e",
"=",
"numpy",
".",
"multiply",
"(",
"transform_difference",
"(",
"self",
".",
"forward_kinematics",
"(",
"q",
")",
"[",
"0",
"]",
",",
"end_effector_transformation",
")",
",",
"mask",
")",
"d",
"=",
"numpy",
".",
"linalg",
".",
"norm",
"(",
"e",
")",
"if",
"d",
"<",
"numpy",
".",
"linalg",
".",
"norm",
"(",
"best_e",
")",
":",
"best_e",
"=",
"e",
".",
"copy",
"(",
")",
"best_q",
"=",
"q",
".",
"copy",
"(",
")",
"alpha",
"*=",
"2.0",
"**",
"(",
"1.0",
"/",
"8.0",
")",
"else",
":",
"q",
"=",
"best_q",
".",
"copy",
"(",
")",
"e",
"=",
"best_e",
".",
"copy",
"(",
")",
"alpha",
"*=",
"0.5",
"if",
"use_pinv",
":",
"dq",
"=",
"numpy",
".",
"linalg",
".",
"pinv",
"(",
"self",
".",
"_jacob0",
"(",
"q",
")",
")",
"*",
"e",
".",
"reshape",
"(",
"(",
"-",
"1",
",",
"1",
")",
")",
"else",
":",
"dq",
"=",
"self",
".",
"_jacob0",
"(",
"q",
")",
".",
"T",
"*",
"e",
".",
"reshape",
"(",
"(",
"-",
"1",
",",
"1",
")",
")",
"q",
"+=",
"alpha",
"*",
"dq",
"# d = numpy.linalg.norm(dq)",
"if",
"d",
"<",
"tolerance",
":",
"return",
"q",
"else",
":",
"raise",
"ValueError",
"(",
"'could not converge d={}'",
".",
"format",
"(",
"numpy",
".",
"linalg",
".",
"norm",
"(",
"best_e",
")",
")",
")"
] | Computes the joint angles corresponding to the end effector transformation.
:param end_effector_transformation: the end effector homogeneous transformation matrix
:param vector q: initial estimate of the joint angles
:param int max_iter: maximum number of iteration
:param float tolerance: tolerance before convergence
:param mask: specify the cartesian DOF that will be ignore (in the case of a chain with less than 6 joints).
:rtype: vector of the joint angles (theta 1, theta 2, ..., theta n) | [
"Computes",
"the",
"joint",
"angles",
"corresponding",
"to",
"the",
"end",
"effector",
"transformation",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/kinematics.py#L75-L122 |
703 | poppy-project/pypot | pypot/dynamixel/__init__.py | _get_available_ports | def _get_available_ports():
""" Tries to find the available serial ports on your system. """
if platform.system() == 'Darwin':
return glob.glob('/dev/tty.usb*')
elif platform.system() == 'Linux':
return glob.glob('/dev/ttyACM*') + glob.glob('/dev/ttyUSB*') + glob.glob('/dev/ttyAMA*')
elif sys.platform.lower() == 'cygwin':
return glob.glob('/dev/com*')
elif platform.system() == 'Windows':
import _winreg
import itertools
ports = []
path = 'HARDWARE\\DEVICEMAP\\SERIALCOMM'
key = _winreg.OpenKey(_winreg.HKEY_LOCAL_MACHINE, path)
for i in itertools.count():
try:
ports.append(str(_winreg.EnumValue(key, i)[1]))
except WindowsError:
return ports
else:
raise EnvironmentError('{} is an unsupported platform, cannot find serial ports !'.format(platform.system()))
return [] | python | def _get_available_ports():
""" Tries to find the available serial ports on your system. """
if platform.system() == 'Darwin':
return glob.glob('/dev/tty.usb*')
elif platform.system() == 'Linux':
return glob.glob('/dev/ttyACM*') + glob.glob('/dev/ttyUSB*') + glob.glob('/dev/ttyAMA*')
elif sys.platform.lower() == 'cygwin':
return glob.glob('/dev/com*')
elif platform.system() == 'Windows':
import _winreg
import itertools
ports = []
path = 'HARDWARE\\DEVICEMAP\\SERIALCOMM'
key = _winreg.OpenKey(_winreg.HKEY_LOCAL_MACHINE, path)
for i in itertools.count():
try:
ports.append(str(_winreg.EnumValue(key, i)[1]))
except WindowsError:
return ports
else:
raise EnvironmentError('{} is an unsupported platform, cannot find serial ports !'.format(platform.system()))
return [] | [
"def",
"_get_available_ports",
"(",
")",
":",
"if",
"platform",
".",
"system",
"(",
")",
"==",
"'Darwin'",
":",
"return",
"glob",
".",
"glob",
"(",
"'/dev/tty.usb*'",
")",
"elif",
"platform",
".",
"system",
"(",
")",
"==",
"'Linux'",
":",
"return",
"glob",
".",
"glob",
"(",
"'/dev/ttyACM*'",
")",
"+",
"glob",
".",
"glob",
"(",
"'/dev/ttyUSB*'",
")",
"+",
"glob",
".",
"glob",
"(",
"'/dev/ttyAMA*'",
")",
"elif",
"sys",
".",
"platform",
".",
"lower",
"(",
")",
"==",
"'cygwin'",
":",
"return",
"glob",
".",
"glob",
"(",
"'/dev/com*'",
")",
"elif",
"platform",
".",
"system",
"(",
")",
"==",
"'Windows'",
":",
"import",
"_winreg",
"import",
"itertools",
"ports",
"=",
"[",
"]",
"path",
"=",
"'HARDWARE\\\\DEVICEMAP\\\\SERIALCOMM'",
"key",
"=",
"_winreg",
".",
"OpenKey",
"(",
"_winreg",
".",
"HKEY_LOCAL_MACHINE",
",",
"path",
")",
"for",
"i",
"in",
"itertools",
".",
"count",
"(",
")",
":",
"try",
":",
"ports",
".",
"append",
"(",
"str",
"(",
"_winreg",
".",
"EnumValue",
"(",
"key",
",",
"i",
")",
"[",
"1",
"]",
")",
")",
"except",
"WindowsError",
":",
"return",
"ports",
"else",
":",
"raise",
"EnvironmentError",
"(",
"'{} is an unsupported platform, cannot find serial ports !'",
".",
"format",
"(",
"platform",
".",
"system",
"(",
")",
")",
")",
"return",
"[",
"]"
] | Tries to find the available serial ports on your system. | [
"Tries",
"to",
"find",
"the",
"available",
"serial",
"ports",
"on",
"your",
"system",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/__init__.py#L20-L46 |
704 | poppy-project/pypot | pypot/dynamixel/__init__.py | find_port | def find_port(ids, strict=True):
""" Find the port with the specified attached motor ids.
:param list ids: list of motor ids to find
:param bool strict: specify if all ids should be find (when set to False, only half motor must be found)
.. warning:: If two (or more) ports are attached to the same list of motor ids the first match will be returned.
"""
ids_founds = []
for port in get_available_ports():
for DxlIOCls in (DxlIO, Dxl320IO):
try:
with DxlIOCls(port) as dxl:
_ids_founds = dxl.scan(ids)
ids_founds += _ids_founds
if strict and len(_ids_founds) == len(ids):
return port
if not strict and len(_ids_founds) >= len(ids) / 2:
logger.warning('Missing ids: {}'.format(ids, list(set(ids) - set(_ids_founds))))
return port
if len(ids_founds) > 0:
logger.warning('Port:{} ids found:{}'.format(port, _ids_founds))
except DxlError:
logger.warning('DxlError on port {}'.format(port))
continue
raise IndexError('No suitable port found for ids {}. These ids are missing {} !'.format(
ids, list(set(ids) - set(ids_founds)))) | python | def find_port(ids, strict=True):
""" Find the port with the specified attached motor ids.
:param list ids: list of motor ids to find
:param bool strict: specify if all ids should be find (when set to False, only half motor must be found)
.. warning:: If two (or more) ports are attached to the same list of motor ids the first match will be returned.
"""
ids_founds = []
for port in get_available_ports():
for DxlIOCls in (DxlIO, Dxl320IO):
try:
with DxlIOCls(port) as dxl:
_ids_founds = dxl.scan(ids)
ids_founds += _ids_founds
if strict and len(_ids_founds) == len(ids):
return port
if not strict and len(_ids_founds) >= len(ids) / 2:
logger.warning('Missing ids: {}'.format(ids, list(set(ids) - set(_ids_founds))))
return port
if len(ids_founds) > 0:
logger.warning('Port:{} ids found:{}'.format(port, _ids_founds))
except DxlError:
logger.warning('DxlError on port {}'.format(port))
continue
raise IndexError('No suitable port found for ids {}. These ids are missing {} !'.format(
ids, list(set(ids) - set(ids_founds)))) | [
"def",
"find_port",
"(",
"ids",
",",
"strict",
"=",
"True",
")",
":",
"ids_founds",
"=",
"[",
"]",
"for",
"port",
"in",
"get_available_ports",
"(",
")",
":",
"for",
"DxlIOCls",
"in",
"(",
"DxlIO",
",",
"Dxl320IO",
")",
":",
"try",
":",
"with",
"DxlIOCls",
"(",
"port",
")",
"as",
"dxl",
":",
"_ids_founds",
"=",
"dxl",
".",
"scan",
"(",
"ids",
")",
"ids_founds",
"+=",
"_ids_founds",
"if",
"strict",
"and",
"len",
"(",
"_ids_founds",
")",
"==",
"len",
"(",
"ids",
")",
":",
"return",
"port",
"if",
"not",
"strict",
"and",
"len",
"(",
"_ids_founds",
")",
">=",
"len",
"(",
"ids",
")",
"/",
"2",
":",
"logger",
".",
"warning",
"(",
"'Missing ids: {}'",
".",
"format",
"(",
"ids",
",",
"list",
"(",
"set",
"(",
"ids",
")",
"-",
"set",
"(",
"_ids_founds",
")",
")",
")",
")",
"return",
"port",
"if",
"len",
"(",
"ids_founds",
")",
">",
"0",
":",
"logger",
".",
"warning",
"(",
"'Port:{} ids found:{}'",
".",
"format",
"(",
"port",
",",
"_ids_founds",
")",
")",
"except",
"DxlError",
":",
"logger",
".",
"warning",
"(",
"'DxlError on port {}'",
".",
"format",
"(",
"port",
")",
")",
"continue",
"raise",
"IndexError",
"(",
"'No suitable port found for ids {}. These ids are missing {} !'",
".",
"format",
"(",
"ids",
",",
"list",
"(",
"set",
"(",
"ids",
")",
"-",
"set",
"(",
"ids_founds",
")",
")",
")",
")"
] | Find the port with the specified attached motor ids.
:param list ids: list of motor ids to find
:param bool strict: specify if all ids should be find (when set to False, only half motor must be found)
.. warning:: If two (or more) ports are attached to the same list of motor ids the first match will be returned. | [
"Find",
"the",
"port",
"with",
"the",
"specified",
"attached",
"motor",
"ids",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/__init__.py#L74-L106 |
705 | poppy-project/pypot | pypot/sensor/depth/sonar.py | Sonar._filter | def _filter(self, data):
""" Apply a filter to reduce noisy data.
Return the median value of a heap of data.
"""
filtered_data = []
for queue, data in zip(self._raw_data_queues, data):
queue.append(data)
filtered_data.append(numpy.median(queue))
return filtered_data | python | def _filter(self, data):
""" Apply a filter to reduce noisy data.
Return the median value of a heap of data.
"""
filtered_data = []
for queue, data in zip(self._raw_data_queues, data):
queue.append(data)
filtered_data.append(numpy.median(queue))
return filtered_data | [
"def",
"_filter",
"(",
"self",
",",
"data",
")",
":",
"filtered_data",
"=",
"[",
"]",
"for",
"queue",
",",
"data",
"in",
"zip",
"(",
"self",
".",
"_raw_data_queues",
",",
"data",
")",
":",
"queue",
".",
"append",
"(",
"data",
")",
"filtered_data",
".",
"append",
"(",
"numpy",
".",
"median",
"(",
"queue",
")",
")",
"return",
"filtered_data"
] | Apply a filter to reduce noisy data.
Return the median value of a heap of data. | [
"Apply",
"a",
"filter",
"to",
"reduce",
"noisy",
"data",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/sensor/depth/sonar.py#L87-L98 |
706 | poppy-project/pypot | pypot/dynamixel/syncloop.py | MetaDxlController.setup | def setup(self):
""" Starts all the synchronization loops. """
[c.start() for c in self.controllers]
[c.wait_to_start() for c in self.controllers] | python | def setup(self):
""" Starts all the synchronization loops. """
[c.start() for c in self.controllers]
[c.wait_to_start() for c in self.controllers] | [
"def",
"setup",
"(",
"self",
")",
":",
"[",
"c",
".",
"start",
"(",
")",
"for",
"c",
"in",
"self",
".",
"controllers",
"]",
"[",
"c",
".",
"wait_to_start",
"(",
")",
"for",
"c",
"in",
"self",
".",
"controllers",
"]"
] | Starts all the synchronization loops. | [
"Starts",
"all",
"the",
"synchronization",
"loops",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/syncloop.py#L20-L23 |
707 | poppy-project/pypot | pypot/creatures/ik.py | IKChain.from_poppy_creature | def from_poppy_creature(cls, poppy, motors, passiv, tip,
reversed_motors=[]):
""" Creates an kinematic chain from motors of a Poppy Creature.
:param poppy: PoppyCreature used
:param list motors: list of all motors that composed the kinematic chain
:param list passiv: list of motors which are passiv in the chain (they will not move)
:param list tip: [x, y, z] translation of the tip of the chain (in meters)
:param list reversed_motors: list of motors that should be manually reversed (due to a problem in the URDF?)
"""
chain_elements = get_chain_from_joints(poppy.urdf_file,
[m.name for m in motors])
activ = [False] + [m not in passiv for m in motors] + [True]
chain = cls.from_urdf_file(poppy.urdf_file,
base_elements=chain_elements,
last_link_vector=tip,
active_links_mask=activ)
chain.motors = [getattr(poppy, l.name) for l in chain.links[1:-1]]
for m, l in zip(chain.motors, chain.links[1:-1]):
# Force an access to angle limit to retrieve real values
# This is quite an ugly fix and should be handled better
m.angle_limit
bounds = m.__dict__['lower_limit'], m.__dict__['upper_limit']
l.bounds = tuple(map(rad2deg, bounds))
chain._reversed = array([(-1 if m in reversed_motors else 1)
for m in motors])
return chain | python | def from_poppy_creature(cls, poppy, motors, passiv, tip,
reversed_motors=[]):
""" Creates an kinematic chain from motors of a Poppy Creature.
:param poppy: PoppyCreature used
:param list motors: list of all motors that composed the kinematic chain
:param list passiv: list of motors which are passiv in the chain (they will not move)
:param list tip: [x, y, z] translation of the tip of the chain (in meters)
:param list reversed_motors: list of motors that should be manually reversed (due to a problem in the URDF?)
"""
chain_elements = get_chain_from_joints(poppy.urdf_file,
[m.name for m in motors])
activ = [False] + [m not in passiv for m in motors] + [True]
chain = cls.from_urdf_file(poppy.urdf_file,
base_elements=chain_elements,
last_link_vector=tip,
active_links_mask=activ)
chain.motors = [getattr(poppy, l.name) for l in chain.links[1:-1]]
for m, l in zip(chain.motors, chain.links[1:-1]):
# Force an access to angle limit to retrieve real values
# This is quite an ugly fix and should be handled better
m.angle_limit
bounds = m.__dict__['lower_limit'], m.__dict__['upper_limit']
l.bounds = tuple(map(rad2deg, bounds))
chain._reversed = array([(-1 if m in reversed_motors else 1)
for m in motors])
return chain | [
"def",
"from_poppy_creature",
"(",
"cls",
",",
"poppy",
",",
"motors",
",",
"passiv",
",",
"tip",
",",
"reversed_motors",
"=",
"[",
"]",
")",
":",
"chain_elements",
"=",
"get_chain_from_joints",
"(",
"poppy",
".",
"urdf_file",
",",
"[",
"m",
".",
"name",
"for",
"m",
"in",
"motors",
"]",
")",
"activ",
"=",
"[",
"False",
"]",
"+",
"[",
"m",
"not",
"in",
"passiv",
"for",
"m",
"in",
"motors",
"]",
"+",
"[",
"True",
"]",
"chain",
"=",
"cls",
".",
"from_urdf_file",
"(",
"poppy",
".",
"urdf_file",
",",
"base_elements",
"=",
"chain_elements",
",",
"last_link_vector",
"=",
"tip",
",",
"active_links_mask",
"=",
"activ",
")",
"chain",
".",
"motors",
"=",
"[",
"getattr",
"(",
"poppy",
",",
"l",
".",
"name",
")",
"for",
"l",
"in",
"chain",
".",
"links",
"[",
"1",
":",
"-",
"1",
"]",
"]",
"for",
"m",
",",
"l",
"in",
"zip",
"(",
"chain",
".",
"motors",
",",
"chain",
".",
"links",
"[",
"1",
":",
"-",
"1",
"]",
")",
":",
"# Force an access to angle limit to retrieve real values",
"# This is quite an ugly fix and should be handled better",
"m",
".",
"angle_limit",
"bounds",
"=",
"m",
".",
"__dict__",
"[",
"'lower_limit'",
"]",
",",
"m",
".",
"__dict__",
"[",
"'upper_limit'",
"]",
"l",
".",
"bounds",
"=",
"tuple",
"(",
"map",
"(",
"rad2deg",
",",
"bounds",
")",
")",
"chain",
".",
"_reversed",
"=",
"array",
"(",
"[",
"(",
"-",
"1",
"if",
"m",
"in",
"reversed_motors",
"else",
"1",
")",
"for",
"m",
"in",
"motors",
"]",
")",
"return",
"chain"
] | Creates an kinematic chain from motors of a Poppy Creature.
:param poppy: PoppyCreature used
:param list motors: list of all motors that composed the kinematic chain
:param list passiv: list of motors which are passiv in the chain (they will not move)
:param list tip: [x, y, z] translation of the tip of the chain (in meters)
:param list reversed_motors: list of motors that should be manually reversed (due to a problem in the URDF?) | [
"Creates",
"an",
"kinematic",
"chain",
"from",
"motors",
"of",
"a",
"Poppy",
"Creature",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/creatures/ik.py#L14-L48 |
708 | poppy-project/pypot | pypot/creatures/ik.py | IKChain.goto | def goto(self, position, duration, wait=False, accurate=False):
""" Goes to a given cartesian position.
:param list position: [x, y, z] representing the target position (in meters)
:param float duration: move duration
:param bool wait: whether to wait for the end of the move
:param bool accurate: trade-off between accurate solution and computation time. By default, use the not so accurate but fast version.
"""
if len(position) != 3:
raise ValueError('Position should be a list [x, y, z]!')
M = eye(4)
M[:3, 3] = position
self._goto(M, duration, wait, accurate) | python | def goto(self, position, duration, wait=False, accurate=False):
""" Goes to a given cartesian position.
:param list position: [x, y, z] representing the target position (in meters)
:param float duration: move duration
:param bool wait: whether to wait for the end of the move
:param bool accurate: trade-off between accurate solution and computation time. By default, use the not so accurate but fast version.
"""
if len(position) != 3:
raise ValueError('Position should be a list [x, y, z]!')
M = eye(4)
M[:3, 3] = position
self._goto(M, duration, wait, accurate) | [
"def",
"goto",
"(",
"self",
",",
"position",
",",
"duration",
",",
"wait",
"=",
"False",
",",
"accurate",
"=",
"False",
")",
":",
"if",
"len",
"(",
"position",
")",
"!=",
"3",
":",
"raise",
"ValueError",
"(",
"'Position should be a list [x, y, z]!'",
")",
"M",
"=",
"eye",
"(",
"4",
")",
"M",
"[",
":",
"3",
",",
"3",
"]",
"=",
"position",
"self",
".",
"_goto",
"(",
"M",
",",
"duration",
",",
"wait",
",",
"accurate",
")"
] | Goes to a given cartesian position.
:param list position: [x, y, z] representing the target position (in meters)
:param float duration: move duration
:param bool wait: whether to wait for the end of the move
:param bool accurate: trade-off between accurate solution and computation time. By default, use the not so accurate but fast version. | [
"Goes",
"to",
"a",
"given",
"cartesian",
"position",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/creatures/ik.py#L61-L75 |
709 | poppy-project/pypot | pypot/creatures/ik.py | IKChain._goto | def _goto(self, pose, duration, wait, accurate):
""" Goes to a given cartesian pose.
:param matrix pose: homogeneous matrix representing the target position
:param float duration: move duration
:param bool wait: whether to wait for the end of the move
:param bool accurate: trade-off between accurate solution and computation time. By default, use the not so accurate but fast version.
"""
kwargs = {}
if not accurate:
kwargs['max_iter'] = 3
q0 = self.convert_to_ik_angles(self.joints_position)
q = self.inverse_kinematics(pose, initial_position=q0, **kwargs)
joints = self.convert_from_ik_angles(q)
last = self.motors[-1]
for m, pos in list(zip(self.motors, joints)):
m.goto_position(pos, duration,
wait=False if m != last else wait) | python | def _goto(self, pose, duration, wait, accurate):
""" Goes to a given cartesian pose.
:param matrix pose: homogeneous matrix representing the target position
:param float duration: move duration
:param bool wait: whether to wait for the end of the move
:param bool accurate: trade-off between accurate solution and computation time. By default, use the not so accurate but fast version.
"""
kwargs = {}
if not accurate:
kwargs['max_iter'] = 3
q0 = self.convert_to_ik_angles(self.joints_position)
q = self.inverse_kinematics(pose, initial_position=q0, **kwargs)
joints = self.convert_from_ik_angles(q)
last = self.motors[-1]
for m, pos in list(zip(self.motors, joints)):
m.goto_position(pos, duration,
wait=False if m != last else wait) | [
"def",
"_goto",
"(",
"self",
",",
"pose",
",",
"duration",
",",
"wait",
",",
"accurate",
")",
":",
"kwargs",
"=",
"{",
"}",
"if",
"not",
"accurate",
":",
"kwargs",
"[",
"'max_iter'",
"]",
"=",
"3",
"q0",
"=",
"self",
".",
"convert_to_ik_angles",
"(",
"self",
".",
"joints_position",
")",
"q",
"=",
"self",
".",
"inverse_kinematics",
"(",
"pose",
",",
"initial_position",
"=",
"q0",
",",
"*",
"*",
"kwargs",
")",
"joints",
"=",
"self",
".",
"convert_from_ik_angles",
"(",
"q",
")",
"last",
"=",
"self",
".",
"motors",
"[",
"-",
"1",
"]",
"for",
"m",
",",
"pos",
"in",
"list",
"(",
"zip",
"(",
"self",
".",
"motors",
",",
"joints",
")",
")",
":",
"m",
".",
"goto_position",
"(",
"pos",
",",
"duration",
",",
"wait",
"=",
"False",
"if",
"m",
"!=",
"last",
"else",
"wait",
")"
] | Goes to a given cartesian pose.
:param matrix pose: homogeneous matrix representing the target position
:param float duration: move duration
:param bool wait: whether to wait for the end of the move
:param bool accurate: trade-off between accurate solution and computation time. By default, use the not so accurate but fast version. | [
"Goes",
"to",
"a",
"given",
"cartesian",
"pose",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/creatures/ik.py#L77-L99 |
710 | poppy-project/pypot | pypot/creatures/ik.py | IKChain.convert_to_ik_angles | def convert_to_ik_angles(self, joints):
""" Convert from poppy representation to IKPY internal representation. """
if len(joints) != len(self.motors):
raise ValueError('Incompatible data, len(joints) should be {}!'.format(len(self.motors)))
raw_joints = [(j + m.offset) * (1 if m.direct else -1)
for j, m in zip(joints, self.motors)]
raw_joints *= self._reversed
return [0] + [deg2rad(j) for j in raw_joints] + [0] | python | def convert_to_ik_angles(self, joints):
""" Convert from poppy representation to IKPY internal representation. """
if len(joints) != len(self.motors):
raise ValueError('Incompatible data, len(joints) should be {}!'.format(len(self.motors)))
raw_joints = [(j + m.offset) * (1 if m.direct else -1)
for j, m in zip(joints, self.motors)]
raw_joints *= self._reversed
return [0] + [deg2rad(j) for j in raw_joints] + [0] | [
"def",
"convert_to_ik_angles",
"(",
"self",
",",
"joints",
")",
":",
"if",
"len",
"(",
"joints",
")",
"!=",
"len",
"(",
"self",
".",
"motors",
")",
":",
"raise",
"ValueError",
"(",
"'Incompatible data, len(joints) should be {}!'",
".",
"format",
"(",
"len",
"(",
"self",
".",
"motors",
")",
")",
")",
"raw_joints",
"=",
"[",
"(",
"j",
"+",
"m",
".",
"offset",
")",
"*",
"(",
"1",
"if",
"m",
".",
"direct",
"else",
"-",
"1",
")",
"for",
"j",
",",
"m",
"in",
"zip",
"(",
"joints",
",",
"self",
".",
"motors",
")",
"]",
"raw_joints",
"*=",
"self",
".",
"_reversed",
"return",
"[",
"0",
"]",
"+",
"[",
"deg2rad",
"(",
"j",
")",
"for",
"j",
"in",
"raw_joints",
"]",
"+",
"[",
"0",
"]"
] | Convert from poppy representation to IKPY internal representation. | [
"Convert",
"from",
"poppy",
"representation",
"to",
"IKPY",
"internal",
"representation",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/creatures/ik.py#L101-L111 |
711 | poppy-project/pypot | pypot/creatures/ik.py | IKChain.convert_from_ik_angles | def convert_from_ik_angles(self, joints):
""" Convert from IKPY internal representation to poppy representation. """
if len(joints) != len(self.motors) + 2:
raise ValueError('Incompatible data, len(joints) should be {}!'.format(len(self.motors) + 2))
joints = [rad2deg(j) for j in joints[1:-1]]
joints *= self._reversed
return [(j * (1 if m.direct else -1)) - m.offset
for j, m in zip(joints, self.motors)] | python | def convert_from_ik_angles(self, joints):
""" Convert from IKPY internal representation to poppy representation. """
if len(joints) != len(self.motors) + 2:
raise ValueError('Incompatible data, len(joints) should be {}!'.format(len(self.motors) + 2))
joints = [rad2deg(j) for j in joints[1:-1]]
joints *= self._reversed
return [(j * (1 if m.direct else -1)) - m.offset
for j, m in zip(joints, self.motors)] | [
"def",
"convert_from_ik_angles",
"(",
"self",
",",
"joints",
")",
":",
"if",
"len",
"(",
"joints",
")",
"!=",
"len",
"(",
"self",
".",
"motors",
")",
"+",
"2",
":",
"raise",
"ValueError",
"(",
"'Incompatible data, len(joints) should be {}!'",
".",
"format",
"(",
"len",
"(",
"self",
".",
"motors",
")",
"+",
"2",
")",
")",
"joints",
"=",
"[",
"rad2deg",
"(",
"j",
")",
"for",
"j",
"in",
"joints",
"[",
"1",
":",
"-",
"1",
"]",
"]",
"joints",
"*=",
"self",
".",
"_reversed",
"return",
"[",
"(",
"j",
"*",
"(",
"1",
"if",
"m",
".",
"direct",
"else",
"-",
"1",
")",
")",
"-",
"m",
".",
"offset",
"for",
"j",
",",
"m",
"in",
"zip",
"(",
"joints",
",",
"self",
".",
"motors",
")",
"]"
] | Convert from IKPY internal representation to poppy representation. | [
"Convert",
"from",
"IKPY",
"internal",
"representation",
"to",
"poppy",
"representation",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/creatures/ik.py#L113-L122 |
712 | poppy-project/pypot | pypot/dynamixel/io/io_320.py | Dxl320IO.factory_reset | def factory_reset(self, ids, except_ids=False, except_baudrate_and_ids=False):
""" Reset all motors on the bus to their factory default settings. """
mode = (0x02 if except_baudrate_and_ids else
0x01 if except_ids else 0xFF)
for id in ids:
try:
self._send_packet(self._protocol.DxlResetPacket(id, mode))
except (DxlTimeoutError, DxlCommunicationError):
pass | python | def factory_reset(self, ids, except_ids=False, except_baudrate_and_ids=False):
""" Reset all motors on the bus to their factory default settings. """
mode = (0x02 if except_baudrate_and_ids else
0x01 if except_ids else 0xFF)
for id in ids:
try:
self._send_packet(self._protocol.DxlResetPacket(id, mode))
except (DxlTimeoutError, DxlCommunicationError):
pass | [
"def",
"factory_reset",
"(",
"self",
",",
"ids",
",",
"except_ids",
"=",
"False",
",",
"except_baudrate_and_ids",
"=",
"False",
")",
":",
"mode",
"=",
"(",
"0x02",
"if",
"except_baudrate_and_ids",
"else",
"0x01",
"if",
"except_ids",
"else",
"0xFF",
")",
"for",
"id",
"in",
"ids",
":",
"try",
":",
"self",
".",
"_send_packet",
"(",
"self",
".",
"_protocol",
".",
"DxlResetPacket",
"(",
"id",
",",
"mode",
")",
")",
"except",
"(",
"DxlTimeoutError",
",",
"DxlCommunicationError",
")",
":",
"pass"
] | Reset all motors on the bus to their factory default settings. | [
"Reset",
"all",
"motors",
"on",
"the",
"bus",
"to",
"their",
"factory",
"default",
"settings",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/io_320.py#L32-L43 |
713 | poppy-project/pypot | pypot/primitive/primitive.py | Primitive.stop | def stop(self, wait=True):
""" Requests the primitive to stop. """
logger.info("Primitive %s stopped.", self)
StoppableThread.stop(self, wait) | python | def stop(self, wait=True):
""" Requests the primitive to stop. """
logger.info("Primitive %s stopped.", self)
StoppableThread.stop(self, wait) | [
"def",
"stop",
"(",
"self",
",",
"wait",
"=",
"True",
")",
":",
"logger",
".",
"info",
"(",
"\"Primitive %s stopped.\"",
",",
"self",
")",
"StoppableThread",
".",
"stop",
"(",
"self",
",",
"wait",
")"
] | Requests the primitive to stop. | [
"Requests",
"the",
"primitive",
"to",
"stop",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/primitive/primitive.py#L126-L129 |
714 | poppy-project/pypot | pypot/primitive/primitive.py | LoopPrimitive.recent_update_frequencies | def recent_update_frequencies(self):
""" Returns the 10 most recent update frequencies.
The given frequencies are computed as short-term frequencies!
The 0th element of the list corresponds to the most recent frequency.
"""
return list(reversed([(1.0 / p) for p in numpy.diff(self._recent_updates)])) | python | def recent_update_frequencies(self):
""" Returns the 10 most recent update frequencies.
The given frequencies are computed as short-term frequencies!
The 0th element of the list corresponds to the most recent frequency.
"""
return list(reversed([(1.0 / p) for p in numpy.diff(self._recent_updates)])) | [
"def",
"recent_update_frequencies",
"(",
"self",
")",
":",
"return",
"list",
"(",
"reversed",
"(",
"[",
"(",
"1.0",
"/",
"p",
")",
"for",
"p",
"in",
"numpy",
".",
"diff",
"(",
"self",
".",
"_recent_updates",
")",
"]",
")",
")"
] | Returns the 10 most recent update frequencies.
The given frequencies are computed as short-term frequencies!
The 0th element of the list corresponds to the most recent frequency. | [
"Returns",
"the",
"10",
"most",
"recent",
"update",
"frequencies",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/primitive/primitive.py#L174-L180 |
715 | poppy-project/pypot | pypot/primitive/primitive.py | MockupMotor.goto_position | def goto_position(self, position, duration, control=None, wait=False):
""" Automatically sets the goal position and the moving speed to reach the desired position within the duration. """
if control is None:
control = self.goto_behavior
if control == 'minjerk':
goto_min_jerk = GotoMinJerk(self, position, duration)
goto_min_jerk.start()
if wait:
goto_min_jerk.wait_to_stop()
elif control == 'dummy':
dp = abs(self.present_position - position)
speed = (dp / float(duration)) if duration > 0 else numpy.inf
self.moving_speed = speed
self.goal_position = position
if wait:
time.sleep(duration) | python | def goto_position(self, position, duration, control=None, wait=False):
""" Automatically sets the goal position and the moving speed to reach the desired position within the duration. """
if control is None:
control = self.goto_behavior
if control == 'minjerk':
goto_min_jerk = GotoMinJerk(self, position, duration)
goto_min_jerk.start()
if wait:
goto_min_jerk.wait_to_stop()
elif control == 'dummy':
dp = abs(self.present_position - position)
speed = (dp / float(duration)) if duration > 0 else numpy.inf
self.moving_speed = speed
self.goal_position = position
if wait:
time.sleep(duration) | [
"def",
"goto_position",
"(",
"self",
",",
"position",
",",
"duration",
",",
"control",
"=",
"None",
",",
"wait",
"=",
"False",
")",
":",
"if",
"control",
"is",
"None",
":",
"control",
"=",
"self",
".",
"goto_behavior",
"if",
"control",
"==",
"'minjerk'",
":",
"goto_min_jerk",
"=",
"GotoMinJerk",
"(",
"self",
",",
"position",
",",
"duration",
")",
"goto_min_jerk",
".",
"start",
"(",
")",
"if",
"wait",
":",
"goto_min_jerk",
".",
"wait_to_stop",
"(",
")",
"elif",
"control",
"==",
"'dummy'",
":",
"dp",
"=",
"abs",
"(",
"self",
".",
"present_position",
"-",
"position",
")",
"speed",
"=",
"(",
"dp",
"/",
"float",
"(",
"duration",
")",
")",
"if",
"duration",
">",
"0",
"else",
"numpy",
".",
"inf",
"self",
".",
"moving_speed",
"=",
"speed",
"self",
".",
"goal_position",
"=",
"position",
"if",
"wait",
":",
"time",
".",
"sleep",
"(",
"duration",
")"
] | Automatically sets the goal position and the moving speed to reach the desired position within the duration. | [
"Automatically",
"sets",
"the",
"goal",
"position",
"and",
"the",
"moving",
"speed",
"to",
"reach",
"the",
"desired",
"position",
"within",
"the",
"duration",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/primitive/primitive.py#L257-L277 |
716 | poppy-project/pypot | pypot/primitive/move.py | MoveRecorder.add_tracked_motors | def add_tracked_motors(self, tracked_motors):
"""Add new motors to the recording"""
new_mockup_motors = map(self.get_mockup_motor, tracked_motors)
self.tracked_motors = list(set(self.tracked_motors + new_mockup_motors)) | python | def add_tracked_motors(self, tracked_motors):
"""Add new motors to the recording"""
new_mockup_motors = map(self.get_mockup_motor, tracked_motors)
self.tracked_motors = list(set(self.tracked_motors + new_mockup_motors)) | [
"def",
"add_tracked_motors",
"(",
"self",
",",
"tracked_motors",
")",
":",
"new_mockup_motors",
"=",
"map",
"(",
"self",
".",
"get_mockup_motor",
",",
"tracked_motors",
")",
"self",
".",
"tracked_motors",
"=",
"list",
"(",
"set",
"(",
"self",
".",
"tracked_motors",
"+",
"new_mockup_motors",
")",
")"
] | Add new motors to the recording | [
"Add",
"new",
"motors",
"to",
"the",
"recording"
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/primitive/move.py#L137-L140 |
717 | poppy-project/pypot | pypot/primitive/manager.py | PrimitiveManager.update | def update(self):
""" Combined at a predefined frequency the request orders and affect them to the real motors. """
with self.syncing:
for m in self._motors:
to_set = defaultdict(list)
for p in self._prim:
for key, val in getattr(p.robot, m.name)._to_set.iteritems():
to_set[key].append(val)
for key, val in to_set.iteritems():
if key == 'led':
colors = set(val)
if len(colors) > 1:
colors -= {'off'}
filtred_val = colors.pop()
else:
filtred_val = self._filter(val)
logger.debug('Combined %s.%s from %s to %s',
m.name, key, val, filtred_val)
setattr(m, key, filtred_val)
[p._synced.set() for p in self._prim] | python | def update(self):
""" Combined at a predefined frequency the request orders and affect them to the real motors. """
with self.syncing:
for m in self._motors:
to_set = defaultdict(list)
for p in self._prim:
for key, val in getattr(p.robot, m.name)._to_set.iteritems():
to_set[key].append(val)
for key, val in to_set.iteritems():
if key == 'led':
colors = set(val)
if len(colors) > 1:
colors -= {'off'}
filtred_val = colors.pop()
else:
filtred_val = self._filter(val)
logger.debug('Combined %s.%s from %s to %s',
m.name, key, val, filtred_val)
setattr(m, key, filtred_val)
[p._synced.set() for p in self._prim] | [
"def",
"update",
"(",
"self",
")",
":",
"with",
"self",
".",
"syncing",
":",
"for",
"m",
"in",
"self",
".",
"_motors",
":",
"to_set",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"p",
"in",
"self",
".",
"_prim",
":",
"for",
"key",
",",
"val",
"in",
"getattr",
"(",
"p",
".",
"robot",
",",
"m",
".",
"name",
")",
".",
"_to_set",
".",
"iteritems",
"(",
")",
":",
"to_set",
"[",
"key",
"]",
".",
"append",
"(",
"val",
")",
"for",
"key",
",",
"val",
"in",
"to_set",
".",
"iteritems",
"(",
")",
":",
"if",
"key",
"==",
"'led'",
":",
"colors",
"=",
"set",
"(",
"val",
")",
"if",
"len",
"(",
"colors",
")",
">",
"1",
":",
"colors",
"-=",
"{",
"'off'",
"}",
"filtred_val",
"=",
"colors",
".",
"pop",
"(",
")",
"else",
":",
"filtred_val",
"=",
"self",
".",
"_filter",
"(",
"val",
")",
"logger",
".",
"debug",
"(",
"'Combined %s.%s from %s to %s'",
",",
"m",
".",
"name",
",",
"key",
",",
"val",
",",
"filtred_val",
")",
"setattr",
"(",
"m",
",",
"key",
",",
"filtred_val",
")",
"[",
"p",
".",
"_synced",
".",
"set",
"(",
")",
"for",
"p",
"in",
"self",
".",
"_prim",
"]"
] | Combined at a predefined frequency the request orders and affect them to the real motors. | [
"Combined",
"at",
"a",
"predefined",
"frequency",
"the",
"request",
"orders",
"and",
"affect",
"them",
"to",
"the",
"real",
"motors",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/primitive/manager.py#L51-L74 |
718 | poppy-project/pypot | pypot/primitive/manager.py | PrimitiveManager.stop | def stop(self):
""" Stop the primitive manager. """
for p in self.primitives[:]:
p.stop()
StoppableLoopThread.stop(self) | python | def stop(self):
""" Stop the primitive manager. """
for p in self.primitives[:]:
p.stop()
StoppableLoopThread.stop(self) | [
"def",
"stop",
"(",
"self",
")",
":",
"for",
"p",
"in",
"self",
".",
"primitives",
"[",
":",
"]",
":",
"p",
".",
"stop",
"(",
")",
"StoppableLoopThread",
".",
"stop",
"(",
"self",
")"
] | Stop the primitive manager. | [
"Stop",
"the",
"primitive",
"manager",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/primitive/manager.py#L76-L81 |
719 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.load_scene | def load_scene(self, scene_path, start=False):
""" Loads a scene on the V-REP server.
:param str scene_path: path to a V-REP scene file
:param bool start: whether to directly start the simulation after loading the scene
.. note:: It is assumed that the scene file is always available on the server side.
"""
self.stop_simulation()
if not os.path.exists(scene_path):
raise IOError("No such file or directory: '{}'".format(scene_path))
self.call_remote_api('simxLoadScene', scene_path, True)
if start:
self.start_simulation() | python | def load_scene(self, scene_path, start=False):
""" Loads a scene on the V-REP server.
:param str scene_path: path to a V-REP scene file
:param bool start: whether to directly start the simulation after loading the scene
.. note:: It is assumed that the scene file is always available on the server side.
"""
self.stop_simulation()
if not os.path.exists(scene_path):
raise IOError("No such file or directory: '{}'".format(scene_path))
self.call_remote_api('simxLoadScene', scene_path, True)
if start:
self.start_simulation() | [
"def",
"load_scene",
"(",
"self",
",",
"scene_path",
",",
"start",
"=",
"False",
")",
":",
"self",
".",
"stop_simulation",
"(",
")",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"scene_path",
")",
":",
"raise",
"IOError",
"(",
"\"No such file or directory: '{}'\"",
".",
"format",
"(",
"scene_path",
")",
")",
"self",
".",
"call_remote_api",
"(",
"'simxLoadScene'",
",",
"scene_path",
",",
"True",
")",
"if",
"start",
":",
"self",
".",
"start_simulation",
"(",
")"
] | Loads a scene on the V-REP server.
:param str scene_path: path to a V-REP scene file
:param bool start: whether to directly start the simulation after loading the scene
.. note:: It is assumed that the scene file is always available on the server side. | [
"Loads",
"a",
"scene",
"on",
"the",
"V",
"-",
"REP",
"server",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L91-L108 |
720 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.get_motor_position | def get_motor_position(self, motor_name):
""" Gets the motor current position. """
return self.call_remote_api('simxGetJointPosition',
self.get_object_handle(motor_name),
streaming=True) | python | def get_motor_position(self, motor_name):
""" Gets the motor current position. """
return self.call_remote_api('simxGetJointPosition',
self.get_object_handle(motor_name),
streaming=True) | [
"def",
"get_motor_position",
"(",
"self",
",",
"motor_name",
")",
":",
"return",
"self",
".",
"call_remote_api",
"(",
"'simxGetJointPosition'",
",",
"self",
".",
"get_object_handle",
"(",
"motor_name",
")",
",",
"streaming",
"=",
"True",
")"
] | Gets the motor current position. | [
"Gets",
"the",
"motor",
"current",
"position",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L143-L147 |
721 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.set_motor_position | def set_motor_position(self, motor_name, position):
""" Sets the motor target position. """
self.call_remote_api('simxSetJointTargetPosition',
self.get_object_handle(motor_name),
position,
sending=True) | python | def set_motor_position(self, motor_name, position):
""" Sets the motor target position. """
self.call_remote_api('simxSetJointTargetPosition',
self.get_object_handle(motor_name),
position,
sending=True) | [
"def",
"set_motor_position",
"(",
"self",
",",
"motor_name",
",",
"position",
")",
":",
"self",
".",
"call_remote_api",
"(",
"'simxSetJointTargetPosition'",
",",
"self",
".",
"get_object_handle",
"(",
"motor_name",
")",
",",
"position",
",",
"sending",
"=",
"True",
")"
] | Sets the motor target position. | [
"Sets",
"the",
"motor",
"target",
"position",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L149-L154 |
722 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.set_motor_force | def set_motor_force(self, motor_name, force):
""" Sets the maximum force or torque that a joint can exert. """
self.call_remote_api('simxSetJointForce',
self.get_object_handle(motor_name),
force,
sending=True) | python | def set_motor_force(self, motor_name, force):
""" Sets the maximum force or torque that a joint can exert. """
self.call_remote_api('simxSetJointForce',
self.get_object_handle(motor_name),
force,
sending=True) | [
"def",
"set_motor_force",
"(",
"self",
",",
"motor_name",
",",
"force",
")",
":",
"self",
".",
"call_remote_api",
"(",
"'simxSetJointForce'",
",",
"self",
".",
"get_object_handle",
"(",
"motor_name",
")",
",",
"force",
",",
"sending",
"=",
"True",
")"
] | Sets the maximum force or torque that a joint can exert. | [
"Sets",
"the",
"maximum",
"force",
"or",
"torque",
"that",
"a",
"joint",
"can",
"exert",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L162-L167 |
723 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.get_object_position | def get_object_position(self, object_name, relative_to_object=None):
""" Gets the object position. """
h = self.get_object_handle(object_name)
relative_handle = (-1 if relative_to_object is None
else self.get_object_handle(relative_to_object))
return self.call_remote_api('simxGetObjectPosition',
h, relative_handle,
streaming=True) | python | def get_object_position(self, object_name, relative_to_object=None):
""" Gets the object position. """
h = self.get_object_handle(object_name)
relative_handle = (-1 if relative_to_object is None
else self.get_object_handle(relative_to_object))
return self.call_remote_api('simxGetObjectPosition',
h, relative_handle,
streaming=True) | [
"def",
"get_object_position",
"(",
"self",
",",
"object_name",
",",
"relative_to_object",
"=",
"None",
")",
":",
"h",
"=",
"self",
".",
"get_object_handle",
"(",
"object_name",
")",
"relative_handle",
"=",
"(",
"-",
"1",
"if",
"relative_to_object",
"is",
"None",
"else",
"self",
".",
"get_object_handle",
"(",
"relative_to_object",
")",
")",
"return",
"self",
".",
"call_remote_api",
"(",
"'simxGetObjectPosition'",
",",
"h",
",",
"relative_handle",
",",
"streaming",
"=",
"True",
")"
] | Gets the object position. | [
"Gets",
"the",
"object",
"position",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L169-L177 |
724 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.set_object_position | def set_object_position(self, object_name, position=[0, 0, 0]):
""" Sets the object position. """
h = self.get_object_handle(object_name)
return self.call_remote_api('simxSetObjectPosition',
h, -1, position,
sending=True) | python | def set_object_position(self, object_name, position=[0, 0, 0]):
""" Sets the object position. """
h = self.get_object_handle(object_name)
return self.call_remote_api('simxSetObjectPosition',
h, -1, position,
sending=True) | [
"def",
"set_object_position",
"(",
"self",
",",
"object_name",
",",
"position",
"=",
"[",
"0",
",",
"0",
",",
"0",
"]",
")",
":",
"h",
"=",
"self",
".",
"get_object_handle",
"(",
"object_name",
")",
"return",
"self",
".",
"call_remote_api",
"(",
"'simxSetObjectPosition'",
",",
"h",
",",
"-",
"1",
",",
"position",
",",
"sending",
"=",
"True",
")"
] | Sets the object position. | [
"Sets",
"the",
"object",
"position",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L179-L185 |
725 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.get_object_handle | def get_object_handle(self, obj):
""" Gets the vrep object handle. """
if obj not in self._object_handles:
self._object_handles[obj] = self._get_object_handle(obj=obj)
return self._object_handles[obj] | python | def get_object_handle(self, obj):
""" Gets the vrep object handle. """
if obj not in self._object_handles:
self._object_handles[obj] = self._get_object_handle(obj=obj)
return self._object_handles[obj] | [
"def",
"get_object_handle",
"(",
"self",
",",
"obj",
")",
":",
"if",
"obj",
"not",
"in",
"self",
".",
"_object_handles",
":",
"self",
".",
"_object_handles",
"[",
"obj",
"]",
"=",
"self",
".",
"_get_object_handle",
"(",
"obj",
"=",
"obj",
")",
"return",
"self",
".",
"_object_handles",
"[",
"obj",
"]"
] | Gets the vrep object handle. | [
"Gets",
"the",
"vrep",
"object",
"handle",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L200-L205 |
726 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.get_collision_state | def get_collision_state(self, collision_name):
""" Gets the collision state. """
return self.call_remote_api('simxReadCollision',
self.get_collision_handle(collision_name),
streaming=True) | python | def get_collision_state(self, collision_name):
""" Gets the collision state. """
return self.call_remote_api('simxReadCollision',
self.get_collision_handle(collision_name),
streaming=True) | [
"def",
"get_collision_state",
"(",
"self",
",",
"collision_name",
")",
":",
"return",
"self",
".",
"call_remote_api",
"(",
"'simxReadCollision'",
",",
"self",
".",
"get_collision_handle",
"(",
"collision_name",
")",
",",
"streaming",
"=",
"True",
")"
] | Gets the collision state. | [
"Gets",
"the",
"collision",
"state",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L207-L211 |
727 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.get_collision_handle | def get_collision_handle(self, collision):
""" Gets a vrep collisions handle. """
if collision not in self._object_handles:
h = self._get_collision_handle(collision)
self._object_handles[collision] = h
return self._object_handles[collision] | python | def get_collision_handle(self, collision):
""" Gets a vrep collisions handle. """
if collision not in self._object_handles:
h = self._get_collision_handle(collision)
self._object_handles[collision] = h
return self._object_handles[collision] | [
"def",
"get_collision_handle",
"(",
"self",
",",
"collision",
")",
":",
"if",
"collision",
"not",
"in",
"self",
".",
"_object_handles",
":",
"h",
"=",
"self",
".",
"_get_collision_handle",
"(",
"collision",
")",
"self",
".",
"_object_handles",
"[",
"collision",
"]",
"=",
"h",
"return",
"self",
".",
"_object_handles",
"[",
"collision",
"]"
] | Gets a vrep collisions handle. | [
"Gets",
"a",
"vrep",
"collisions",
"handle",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L216-L222 |
728 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.change_object_name | def change_object_name(self, old_name, new_name):
""" Change object name """
h = self._get_object_handle(old_name)
if old_name in self._object_handles:
self._object_handles.pop(old_name)
lua_code = "simSetObjectName({}, '{}')".format(h, new_name)
self._inject_lua_code(lua_code) | python | def change_object_name(self, old_name, new_name):
""" Change object name """
h = self._get_object_handle(old_name)
if old_name in self._object_handles:
self._object_handles.pop(old_name)
lua_code = "simSetObjectName({}, '{}')".format(h, new_name)
self._inject_lua_code(lua_code) | [
"def",
"change_object_name",
"(",
"self",
",",
"old_name",
",",
"new_name",
")",
":",
"h",
"=",
"self",
".",
"_get_object_handle",
"(",
"old_name",
")",
"if",
"old_name",
"in",
"self",
".",
"_object_handles",
":",
"self",
".",
"_object_handles",
".",
"pop",
"(",
"old_name",
")",
"lua_code",
"=",
"\"simSetObjectName({}, '{}')\"",
".",
"format",
"(",
"h",
",",
"new_name",
")",
"self",
".",
"_inject_lua_code",
"(",
"lua_code",
")"
] | Change object name | [
"Change",
"object",
"name"
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L255-L261 |
729 | poppy-project/pypot | pypot/vrep/io.py | VrepIO._create_pure_shape | def _create_pure_shape(self, primitive_type, options, sizes, mass, precision):
""" Create Pure Shape """
lua_code = "simCreatePureShape({}, {}, {{{}, {}, {}}}, {}, {{{}, {}}})".format(
primitive_type, options, sizes[0], sizes[1], sizes[2], mass, precision[0], precision[1])
self._inject_lua_code(lua_code) | python | def _create_pure_shape(self, primitive_type, options, sizes, mass, precision):
""" Create Pure Shape """
lua_code = "simCreatePureShape({}, {}, {{{}, {}, {}}}, {}, {{{}, {}}})".format(
primitive_type, options, sizes[0], sizes[1], sizes[2], mass, precision[0], precision[1])
self._inject_lua_code(lua_code) | [
"def",
"_create_pure_shape",
"(",
"self",
",",
"primitive_type",
",",
"options",
",",
"sizes",
",",
"mass",
",",
"precision",
")",
":",
"lua_code",
"=",
"\"simCreatePureShape({}, {}, {{{}, {}, {}}}, {}, {{{}, {}}})\"",
".",
"format",
"(",
"primitive_type",
",",
"options",
",",
"sizes",
"[",
"0",
"]",
",",
"sizes",
"[",
"1",
"]",
",",
"sizes",
"[",
"2",
"]",
",",
"mass",
",",
"precision",
"[",
"0",
"]",
",",
"precision",
"[",
"1",
"]",
")",
"self",
".",
"_inject_lua_code",
"(",
"lua_code",
")"
] | Create Pure Shape | [
"Create",
"Pure",
"Shape"
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L263-L267 |
730 | poppy-project/pypot | pypot/vrep/io.py | VrepIO._inject_lua_code | def _inject_lua_code(self, lua_code):
""" Sends raw lua code and evaluate it wihtout any checking! """
msg = (ctypes.c_ubyte * len(lua_code)).from_buffer_copy(lua_code.encode())
self.call_remote_api('simxWriteStringStream', 'my_lua_code', msg) | python | def _inject_lua_code(self, lua_code):
""" Sends raw lua code and evaluate it wihtout any checking! """
msg = (ctypes.c_ubyte * len(lua_code)).from_buffer_copy(lua_code.encode())
self.call_remote_api('simxWriteStringStream', 'my_lua_code', msg) | [
"def",
"_inject_lua_code",
"(",
"self",
",",
"lua_code",
")",
":",
"msg",
"=",
"(",
"ctypes",
".",
"c_ubyte",
"*",
"len",
"(",
"lua_code",
")",
")",
".",
"from_buffer_copy",
"(",
"lua_code",
".",
"encode",
"(",
")",
")",
"self",
".",
"call_remote_api",
"(",
"'simxWriteStringStream'",
",",
"'my_lua_code'",
",",
"msg",
")"
] | Sends raw lua code and evaluate it wihtout any checking! | [
"Sends",
"raw",
"lua",
"code",
"and",
"evaluate",
"it",
"wihtout",
"any",
"checking!"
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L269-L272 |
731 | poppy-project/pypot | pypot/vrep/io.py | VrepIO.call_remote_api | def call_remote_api(self, func_name, *args, **kwargs):
""" Calls any remote API func in a thread_safe way.
:param str func_name: name of the remote API func to call
:param args: args to pass to the remote API call
:param kwargs: args to pass to the remote API call
.. note:: You can add an extra keyword to specify if you want to use the streaming or sending mode. The oneshot_wait mode is used by default (see `here <http://www.coppeliarobotics.com/helpFiles/en/remoteApiConstants.htm#operationModes>`_ for details about possible modes).
.. warning:: You should not pass the clientId and the operationMode as arguments. They will be automatically added.
As an example you can retrieve all joints name using the following call::
vrep_io.remote_api_call('simxGetObjectGroupData',
vrep_io.remote_api.sim_object_joint_type,
0,
streaming=True)
"""
f = getattr(remote_api, func_name)
mode = self._extract_mode(kwargs)
kwargs['operationMode'] = vrep_mode[mode]
# hard_retry = True
if '_force' in kwargs:
del kwargs['_force']
_force = True
else:
_force = False
for _ in range(VrepIO.MAX_ITER):
with self._lock:
ret = f(self.client_id, *args, **kwargs)
if _force:
return
if mode == 'sending' or isinstance(ret, int):
err, res = ret, None
else:
err, res = ret[0], ret[1:]
res = res[0] if len(res) == 1 else res
err = [bool((err >> i) & 1) for i in range(len(vrep_error))]
if remote_api.simx_return_novalue_flag not in err:
break
time.sleep(VrepIO.TIMEOUT)
# if any(err) and hard_retry:
# print "HARD RETRY"
# self.stop_simulation() #nope
#
# notconnected = True
# while notconnected:
# self.close()
# close_all_connections()
# time.sleep(0.5)
# try:
# self.open_io()
# notconnected = False
# except:
# print 'CONNECTION ERROR'
# pass
#
# self.start_simulation()
#
# with self._lock:
# ret = f(self.client_id, *args, **kwargs)
#
# if mode == 'sending' or isinstance(ret, int):
# err, res = ret, None
# else:
# err, res = ret[0], ret[1:]
# res = res[0] if len(res) == 1 else res
#
# err = [bool((err >> i) & 1) for i in range(len(vrep_error))]
#
# return res
if any(err):
msg = ' '.join([vrep_error[2 ** i]
for i, e in enumerate(err) if e])
raise VrepIOErrors(msg)
return res | python | def call_remote_api(self, func_name, *args, **kwargs):
""" Calls any remote API func in a thread_safe way.
:param str func_name: name of the remote API func to call
:param args: args to pass to the remote API call
:param kwargs: args to pass to the remote API call
.. note:: You can add an extra keyword to specify if you want to use the streaming or sending mode. The oneshot_wait mode is used by default (see `here <http://www.coppeliarobotics.com/helpFiles/en/remoteApiConstants.htm#operationModes>`_ for details about possible modes).
.. warning:: You should not pass the clientId and the operationMode as arguments. They will be automatically added.
As an example you can retrieve all joints name using the following call::
vrep_io.remote_api_call('simxGetObjectGroupData',
vrep_io.remote_api.sim_object_joint_type,
0,
streaming=True)
"""
f = getattr(remote_api, func_name)
mode = self._extract_mode(kwargs)
kwargs['operationMode'] = vrep_mode[mode]
# hard_retry = True
if '_force' in kwargs:
del kwargs['_force']
_force = True
else:
_force = False
for _ in range(VrepIO.MAX_ITER):
with self._lock:
ret = f(self.client_id, *args, **kwargs)
if _force:
return
if mode == 'sending' or isinstance(ret, int):
err, res = ret, None
else:
err, res = ret[0], ret[1:]
res = res[0] if len(res) == 1 else res
err = [bool((err >> i) & 1) for i in range(len(vrep_error))]
if remote_api.simx_return_novalue_flag not in err:
break
time.sleep(VrepIO.TIMEOUT)
# if any(err) and hard_retry:
# print "HARD RETRY"
# self.stop_simulation() #nope
#
# notconnected = True
# while notconnected:
# self.close()
# close_all_connections()
# time.sleep(0.5)
# try:
# self.open_io()
# notconnected = False
# except:
# print 'CONNECTION ERROR'
# pass
#
# self.start_simulation()
#
# with self._lock:
# ret = f(self.client_id, *args, **kwargs)
#
# if mode == 'sending' or isinstance(ret, int):
# err, res = ret, None
# else:
# err, res = ret[0], ret[1:]
# res = res[0] if len(res) == 1 else res
#
# err = [bool((err >> i) & 1) for i in range(len(vrep_error))]
#
# return res
if any(err):
msg = ' '.join([vrep_error[2 ** i]
for i, e in enumerate(err) if e])
raise VrepIOErrors(msg)
return res | [
"def",
"call_remote_api",
"(",
"self",
",",
"func_name",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"f",
"=",
"getattr",
"(",
"remote_api",
",",
"func_name",
")",
"mode",
"=",
"self",
".",
"_extract_mode",
"(",
"kwargs",
")",
"kwargs",
"[",
"'operationMode'",
"]",
"=",
"vrep_mode",
"[",
"mode",
"]",
"# hard_retry = True",
"if",
"'_force'",
"in",
"kwargs",
":",
"del",
"kwargs",
"[",
"'_force'",
"]",
"_force",
"=",
"True",
"else",
":",
"_force",
"=",
"False",
"for",
"_",
"in",
"range",
"(",
"VrepIO",
".",
"MAX_ITER",
")",
":",
"with",
"self",
".",
"_lock",
":",
"ret",
"=",
"f",
"(",
"self",
".",
"client_id",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"if",
"_force",
":",
"return",
"if",
"mode",
"==",
"'sending'",
"or",
"isinstance",
"(",
"ret",
",",
"int",
")",
":",
"err",
",",
"res",
"=",
"ret",
",",
"None",
"else",
":",
"err",
",",
"res",
"=",
"ret",
"[",
"0",
"]",
",",
"ret",
"[",
"1",
":",
"]",
"res",
"=",
"res",
"[",
"0",
"]",
"if",
"len",
"(",
"res",
")",
"==",
"1",
"else",
"res",
"err",
"=",
"[",
"bool",
"(",
"(",
"err",
">>",
"i",
")",
"&",
"1",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"vrep_error",
")",
")",
"]",
"if",
"remote_api",
".",
"simx_return_novalue_flag",
"not",
"in",
"err",
":",
"break",
"time",
".",
"sleep",
"(",
"VrepIO",
".",
"TIMEOUT",
")",
"# if any(err) and hard_retry:",
"# print \"HARD RETRY\"",
"# self.stop_simulation() #nope",
"#",
"# notconnected = True",
"# while notconnected:",
"# self.close()",
"# close_all_connections()",
"# time.sleep(0.5)",
"# try:",
"# self.open_io()",
"# notconnected = False",
"# except:",
"# print 'CONNECTION ERROR'",
"# pass",
"#",
"# self.start_simulation()",
"#",
"# with self._lock:",
"# ret = f(self.client_id, *args, **kwargs)",
"#",
"# if mode == 'sending' or isinstance(ret, int):",
"# err, res = ret, None",
"# else:",
"# err, res = ret[0], ret[1:]",
"# res = res[0] if len(res) == 1 else res",
"#",
"# err = [bool((err >> i) & 1) for i in range(len(vrep_error))]",
"#",
"# return res",
"if",
"any",
"(",
"err",
")",
":",
"msg",
"=",
"' '",
".",
"join",
"(",
"[",
"vrep_error",
"[",
"2",
"**",
"i",
"]",
"for",
"i",
",",
"e",
"in",
"enumerate",
"(",
"err",
")",
"if",
"e",
"]",
")",
"raise",
"VrepIOErrors",
"(",
"msg",
")",
"return",
"res"
] | Calls any remote API func in a thread_safe way.
:param str func_name: name of the remote API func to call
:param args: args to pass to the remote API call
:param kwargs: args to pass to the remote API call
.. note:: You can add an extra keyword to specify if you want to use the streaming or sending mode. The oneshot_wait mode is used by default (see `here <http://www.coppeliarobotics.com/helpFiles/en/remoteApiConstants.htm#operationModes>`_ for details about possible modes).
.. warning:: You should not pass the clientId and the operationMode as arguments. They will be automatically added.
As an example you can retrieve all joints name using the following call::
vrep_io.remote_api_call('simxGetObjectGroupData',
vrep_io.remote_api.sim_object_joint_type,
0,
streaming=True) | [
"Calls",
"any",
"remote",
"API",
"func",
"in",
"a",
"thread_safe",
"way",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/vrep/io.py#L274-L361 |
732 | poppy-project/pypot | pypot/server/httpserver.py | HTTPRobotServer.run | def run(self, **kwargs):
""" Start the tornado server, run forever"""
try:
loop = IOLoop()
app = self.make_app()
app.listen(self.port)
loop.start()
except socket.error as serr:
# Re raise the socket error if not "[Errno 98] Address already in use"
if serr.errno != errno.EADDRINUSE:
raise serr
else:
logger.warning('The webserver port {} is already used. May be the HttpRobotServer is already running or another software is using this port.'.format(self.port)) | python | def run(self, **kwargs):
""" Start the tornado server, run forever"""
try:
loop = IOLoop()
app = self.make_app()
app.listen(self.port)
loop.start()
except socket.error as serr:
# Re raise the socket error if not "[Errno 98] Address already in use"
if serr.errno != errno.EADDRINUSE:
raise serr
else:
logger.warning('The webserver port {} is already used. May be the HttpRobotServer is already running or another software is using this port.'.format(self.port)) | [
"def",
"run",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"try",
":",
"loop",
"=",
"IOLoop",
"(",
")",
"app",
"=",
"self",
".",
"make_app",
"(",
")",
"app",
".",
"listen",
"(",
"self",
".",
"port",
")",
"loop",
".",
"start",
"(",
")",
"except",
"socket",
".",
"error",
"as",
"serr",
":",
"# Re raise the socket error if not \"[Errno 98] Address already in use\"",
"if",
"serr",
".",
"errno",
"!=",
"errno",
".",
"EADDRINUSE",
":",
"raise",
"serr",
"else",
":",
"logger",
".",
"warning",
"(",
"'The webserver port {} is already used. May be the HttpRobotServer is already running or another software is using this port.'",
".",
"format",
"(",
"self",
".",
"port",
")",
")"
] | Start the tornado server, run forever | [
"Start",
"the",
"tornado",
"server",
"run",
"forever"
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/server/httpserver.py#L253-L267 |
733 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.close | def close(self, _force_lock=False):
""" Closes the serial communication if opened. """
if not self.closed:
with self.__force_lock(_force_lock) or self._serial_lock:
self._serial.close()
self.__used_ports.remove(self.port)
logger.info("Closing port '%s'", self.port,
extra={'port': self.port,
'baudrate': self.baudrate,
'timeout': self.timeout}) | python | def close(self, _force_lock=False):
""" Closes the serial communication if opened. """
if not self.closed:
with self.__force_lock(_force_lock) or self._serial_lock:
self._serial.close()
self.__used_ports.remove(self.port)
logger.info("Closing port '%s'", self.port,
extra={'port': self.port,
'baudrate': self.baudrate,
'timeout': self.timeout}) | [
"def",
"close",
"(",
"self",
",",
"_force_lock",
"=",
"False",
")",
":",
"if",
"not",
"self",
".",
"closed",
":",
"with",
"self",
".",
"__force_lock",
"(",
"_force_lock",
")",
"or",
"self",
".",
"_serial_lock",
":",
"self",
".",
"_serial",
".",
"close",
"(",
")",
"self",
".",
"__used_ports",
".",
"remove",
"(",
"self",
".",
"port",
")",
"logger",
".",
"info",
"(",
"\"Closing port '%s'\"",
",",
"self",
".",
"port",
",",
"extra",
"=",
"{",
"'port'",
":",
"self",
".",
"port",
",",
"'baudrate'",
":",
"self",
".",
"baudrate",
",",
"'timeout'",
":",
"self",
".",
"timeout",
"}",
")"
] | Closes the serial communication if opened. | [
"Closes",
"the",
"serial",
"communication",
"if",
"opened",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L145-L155 |
734 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.ping | def ping(self, id):
""" Pings the motor with the specified id.
.. note:: The motor id should always be included in [0, 253]. 254 is used for broadcast.
"""
pp = self._protocol.DxlPingPacket(id)
try:
self._send_packet(pp, error_handler=None)
return True
except DxlTimeoutError:
return False | python | def ping(self, id):
""" Pings the motor with the specified id.
.. note:: The motor id should always be included in [0, 253]. 254 is used for broadcast.
"""
pp = self._protocol.DxlPingPacket(id)
try:
self._send_packet(pp, error_handler=None)
return True
except DxlTimeoutError:
return False | [
"def",
"ping",
"(",
"self",
",",
"id",
")",
":",
"pp",
"=",
"self",
".",
"_protocol",
".",
"DxlPingPacket",
"(",
"id",
")",
"try",
":",
"self",
".",
"_send_packet",
"(",
"pp",
",",
"error_handler",
"=",
"None",
")",
"return",
"True",
"except",
"DxlTimeoutError",
":",
"return",
"False"
] | Pings the motor with the specified id.
.. note:: The motor id should always be included in [0, 253]. 254 is used for broadcast. | [
"Pings",
"the",
"motor",
"with",
"the",
"specified",
"id",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L205-L217 |
735 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.scan | def scan(self, ids=range(254)):
""" Pings all ids within the specified list, by default it finds all the motors connected to the bus. """
return [id for id in ids if self.ping(id)] | python | def scan(self, ids=range(254)):
""" Pings all ids within the specified list, by default it finds all the motors connected to the bus. """
return [id for id in ids if self.ping(id)] | [
"def",
"scan",
"(",
"self",
",",
"ids",
"=",
"range",
"(",
"254",
")",
")",
":",
"return",
"[",
"id",
"for",
"id",
"in",
"ids",
"if",
"self",
".",
"ping",
"(",
"id",
")",
"]"
] | Pings all ids within the specified list, by default it finds all the motors connected to the bus. | [
"Pings",
"all",
"ids",
"within",
"the",
"specified",
"list",
"by",
"default",
"it",
"finds",
"all",
"the",
"motors",
"connected",
"to",
"the",
"bus",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L219-L221 |
736 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.get_model | def get_model(self, ids):
""" Gets the model for the specified motors. """
to_get_ids = [i for i in ids if i not in self._known_models]
models = [dxl_to_model(m) for m in self._get_model(to_get_ids, convert=False)]
self._known_models.update(zip(to_get_ids, models))
return tuple(self._known_models[id] for id in ids) | python | def get_model(self, ids):
""" Gets the model for the specified motors. """
to_get_ids = [i for i in ids if i not in self._known_models]
models = [dxl_to_model(m) for m in self._get_model(to_get_ids, convert=False)]
self._known_models.update(zip(to_get_ids, models))
return tuple(self._known_models[id] for id in ids) | [
"def",
"get_model",
"(",
"self",
",",
"ids",
")",
":",
"to_get_ids",
"=",
"[",
"i",
"for",
"i",
"in",
"ids",
"if",
"i",
"not",
"in",
"self",
".",
"_known_models",
"]",
"models",
"=",
"[",
"dxl_to_model",
"(",
"m",
")",
"for",
"m",
"in",
"self",
".",
"_get_model",
"(",
"to_get_ids",
",",
"convert",
"=",
"False",
")",
"]",
"self",
".",
"_known_models",
".",
"update",
"(",
"zip",
"(",
"to_get_ids",
",",
"models",
")",
")",
"return",
"tuple",
"(",
"self",
".",
"_known_models",
"[",
"id",
"]",
"for",
"id",
"in",
"ids",
")"
] | Gets the model for the specified motors. | [
"Gets",
"the",
"model",
"for",
"the",
"specified",
"motors",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L225-L231 |
737 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.change_baudrate | def change_baudrate(self, baudrate_for_ids):
""" Changes the baudrate of the specified motors. """
self._change_baudrate(baudrate_for_ids)
for motor_id in baudrate_for_ids:
if motor_id in self._known_models:
del self._known_models[motor_id]
if motor_id in self._known_mode:
del self._known_mode[motor_id] | python | def change_baudrate(self, baudrate_for_ids):
""" Changes the baudrate of the specified motors. """
self._change_baudrate(baudrate_for_ids)
for motor_id in baudrate_for_ids:
if motor_id in self._known_models:
del self._known_models[motor_id]
if motor_id in self._known_mode:
del self._known_mode[motor_id] | [
"def",
"change_baudrate",
"(",
"self",
",",
"baudrate_for_ids",
")",
":",
"self",
".",
"_change_baudrate",
"(",
"baudrate_for_ids",
")",
"for",
"motor_id",
"in",
"baudrate_for_ids",
":",
"if",
"motor_id",
"in",
"self",
".",
"_known_models",
":",
"del",
"self",
".",
"_known_models",
"[",
"motor_id",
"]",
"if",
"motor_id",
"in",
"self",
".",
"_known_mode",
":",
"del",
"self",
".",
"_known_mode",
"[",
"motor_id",
"]"
] | Changes the baudrate of the specified motors. | [
"Changes",
"the",
"baudrate",
"of",
"the",
"specified",
"motors",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L252-L260 |
738 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.get_status_return_level | def get_status_return_level(self, ids, **kwargs):
""" Gets the status level for the specified motors. """
convert = kwargs['convert'] if 'convert' in kwargs else self._convert
srl = []
for id in ids:
try:
srl.extend(self._get_status_return_level((id, ),
error_handler=None, convert=convert))
except DxlTimeoutError as e:
if self.ping(id):
srl.append('never' if convert else 0)
else:
if self._error_handler:
self._error_handler.handle_timeout(e)
return ()
else:
raise e
return tuple(srl) | python | def get_status_return_level(self, ids, **kwargs):
""" Gets the status level for the specified motors. """
convert = kwargs['convert'] if 'convert' in kwargs else self._convert
srl = []
for id in ids:
try:
srl.extend(self._get_status_return_level((id, ),
error_handler=None, convert=convert))
except DxlTimeoutError as e:
if self.ping(id):
srl.append('never' if convert else 0)
else:
if self._error_handler:
self._error_handler.handle_timeout(e)
return ()
else:
raise e
return tuple(srl) | [
"def",
"get_status_return_level",
"(",
"self",
",",
"ids",
",",
"*",
"*",
"kwargs",
")",
":",
"convert",
"=",
"kwargs",
"[",
"'convert'",
"]",
"if",
"'convert'",
"in",
"kwargs",
"else",
"self",
".",
"_convert",
"srl",
"=",
"[",
"]",
"for",
"id",
"in",
"ids",
":",
"try",
":",
"srl",
".",
"extend",
"(",
"self",
".",
"_get_status_return_level",
"(",
"(",
"id",
",",
")",
",",
"error_handler",
"=",
"None",
",",
"convert",
"=",
"convert",
")",
")",
"except",
"DxlTimeoutError",
"as",
"e",
":",
"if",
"self",
".",
"ping",
"(",
"id",
")",
":",
"srl",
".",
"append",
"(",
"'never'",
"if",
"convert",
"else",
"0",
")",
"else",
":",
"if",
"self",
".",
"_error_handler",
":",
"self",
".",
"_error_handler",
".",
"handle_timeout",
"(",
"e",
")",
"return",
"(",
")",
"else",
":",
"raise",
"e",
"return",
"tuple",
"(",
"srl",
")"
] | Gets the status level for the specified motors. | [
"Gets",
"the",
"status",
"level",
"for",
"the",
"specified",
"motors",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L262-L280 |
739 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.set_status_return_level | def set_status_return_level(self, srl_for_id, **kwargs):
""" Sets status return level to the specified motors. """
convert = kwargs['convert'] if 'convert' in kwargs else self._convert
if convert:
srl_for_id = dict(zip(srl_for_id.keys(),
[('never', 'read', 'always').index(s) for s in srl_for_id.values()]))
self._set_status_return_level(srl_for_id, convert=False) | python | def set_status_return_level(self, srl_for_id, **kwargs):
""" Sets status return level to the specified motors. """
convert = kwargs['convert'] if 'convert' in kwargs else self._convert
if convert:
srl_for_id = dict(zip(srl_for_id.keys(),
[('never', 'read', 'always').index(s) for s in srl_for_id.values()]))
self._set_status_return_level(srl_for_id, convert=False) | [
"def",
"set_status_return_level",
"(",
"self",
",",
"srl_for_id",
",",
"*",
"*",
"kwargs",
")",
":",
"convert",
"=",
"kwargs",
"[",
"'convert'",
"]",
"if",
"'convert'",
"in",
"kwargs",
"else",
"self",
".",
"_convert",
"if",
"convert",
":",
"srl_for_id",
"=",
"dict",
"(",
"zip",
"(",
"srl_for_id",
".",
"keys",
"(",
")",
",",
"[",
"(",
"'never'",
",",
"'read'",
",",
"'always'",
")",
".",
"index",
"(",
"s",
")",
"for",
"s",
"in",
"srl_for_id",
".",
"values",
"(",
")",
"]",
")",
")",
"self",
".",
"_set_status_return_level",
"(",
"srl_for_id",
",",
"convert",
"=",
"False",
")"
] | Sets status return level to the specified motors. | [
"Sets",
"status",
"return",
"level",
"to",
"the",
"specified",
"motors",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L282-L288 |
740 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.switch_led_on | def switch_led_on(self, ids):
""" Switches on the LED of the motors with the specified ids. """
self._set_LED(dict(zip(ids, itertools.repeat(True)))) | python | def switch_led_on(self, ids):
""" Switches on the LED of the motors with the specified ids. """
self._set_LED(dict(zip(ids, itertools.repeat(True)))) | [
"def",
"switch_led_on",
"(",
"self",
",",
"ids",
")",
":",
"self",
".",
"_set_LED",
"(",
"dict",
"(",
"zip",
"(",
"ids",
",",
"itertools",
".",
"repeat",
"(",
"True",
")",
")",
")",
")"
] | Switches on the LED of the motors with the specified ids. | [
"Switches",
"on",
"the",
"LED",
"of",
"the",
"motors",
"with",
"the",
"specified",
"ids",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L290-L292 |
741 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.switch_led_off | def switch_led_off(self, ids):
""" Switches off the LED of the motors with the specified ids. """
self._set_LED(dict(zip(ids, itertools.repeat(False)))) | python | def switch_led_off(self, ids):
""" Switches off the LED of the motors with the specified ids. """
self._set_LED(dict(zip(ids, itertools.repeat(False)))) | [
"def",
"switch_led_off",
"(",
"self",
",",
"ids",
")",
":",
"self",
".",
"_set_LED",
"(",
"dict",
"(",
"zip",
"(",
"ids",
",",
"itertools",
".",
"repeat",
"(",
"False",
")",
")",
")",
")"
] | Switches off the LED of the motors with the specified ids. | [
"Switches",
"off",
"the",
"LED",
"of",
"the",
"motors",
"with",
"the",
"specified",
"ids",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L294-L296 |
742 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.enable_torque | def enable_torque(self, ids):
""" Enables torque of the motors with the specified ids. """
self._set_torque_enable(dict(zip(ids, itertools.repeat(True)))) | python | def enable_torque(self, ids):
""" Enables torque of the motors with the specified ids. """
self._set_torque_enable(dict(zip(ids, itertools.repeat(True)))) | [
"def",
"enable_torque",
"(",
"self",
",",
"ids",
")",
":",
"self",
".",
"_set_torque_enable",
"(",
"dict",
"(",
"zip",
"(",
"ids",
",",
"itertools",
".",
"repeat",
"(",
"True",
")",
")",
")",
")"
] | Enables torque of the motors with the specified ids. | [
"Enables",
"torque",
"of",
"the",
"motors",
"with",
"the",
"specified",
"ids",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L298-L300 |
743 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.disable_torque | def disable_torque(self, ids):
""" Disables torque of the motors with the specified ids. """
self._set_torque_enable(dict(zip(ids, itertools.repeat(False)))) | python | def disable_torque(self, ids):
""" Disables torque of the motors with the specified ids. """
self._set_torque_enable(dict(zip(ids, itertools.repeat(False)))) | [
"def",
"disable_torque",
"(",
"self",
",",
"ids",
")",
":",
"self",
".",
"_set_torque_enable",
"(",
"dict",
"(",
"zip",
"(",
"ids",
",",
"itertools",
".",
"repeat",
"(",
"False",
")",
")",
")",
")"
] | Disables torque of the motors with the specified ids. | [
"Disables",
"torque",
"of",
"the",
"motors",
"with",
"the",
"specified",
"ids",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L302-L304 |
744 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.get_pid_gain | def get_pid_gain(self, ids, **kwargs):
""" Gets the pid gain for the specified motors. """
return tuple([tuple(reversed(t)) for t in self._get_pid_gain(ids, **kwargs)]) | python | def get_pid_gain(self, ids, **kwargs):
""" Gets the pid gain for the specified motors. """
return tuple([tuple(reversed(t)) for t in self._get_pid_gain(ids, **kwargs)]) | [
"def",
"get_pid_gain",
"(",
"self",
",",
"ids",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"tuple",
"(",
"[",
"tuple",
"(",
"reversed",
"(",
"t",
")",
")",
"for",
"t",
"in",
"self",
".",
"_get_pid_gain",
"(",
"ids",
",",
"*",
"*",
"kwargs",
")",
"]",
")"
] | Gets the pid gain for the specified motors. | [
"Gets",
"the",
"pid",
"gain",
"for",
"the",
"specified",
"motors",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L306-L308 |
745 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.set_pid_gain | def set_pid_gain(self, pid_for_id, **kwargs):
""" Sets the pid gain to the specified motors. """
pid_for_id = dict(itertools.izip(pid_for_id.iterkeys(),
[tuple(reversed(t)) for t in pid_for_id.values()]))
self._set_pid_gain(pid_for_id, **kwargs) | python | def set_pid_gain(self, pid_for_id, **kwargs):
""" Sets the pid gain to the specified motors. """
pid_for_id = dict(itertools.izip(pid_for_id.iterkeys(),
[tuple(reversed(t)) for t in pid_for_id.values()]))
self._set_pid_gain(pid_for_id, **kwargs) | [
"def",
"set_pid_gain",
"(",
"self",
",",
"pid_for_id",
",",
"*",
"*",
"kwargs",
")",
":",
"pid_for_id",
"=",
"dict",
"(",
"itertools",
".",
"izip",
"(",
"pid_for_id",
".",
"iterkeys",
"(",
")",
",",
"[",
"tuple",
"(",
"reversed",
"(",
"t",
")",
")",
"for",
"t",
"in",
"pid_for_id",
".",
"values",
"(",
")",
"]",
")",
")",
"self",
".",
"_set_pid_gain",
"(",
"pid_for_id",
",",
"*",
"*",
"kwargs",
")"
] | Sets the pid gain to the specified motors. | [
"Sets",
"the",
"pid",
"gain",
"to",
"the",
"specified",
"motors",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L310-L314 |
746 | poppy-project/pypot | pypot/dynamixel/io/abstract_io.py | AbstractDxlIO.get_control_table | def get_control_table(self, ids, **kwargs):
""" Gets the full control table for the specified motors.
..note:: This function requires the model for each motor to be known. Querring this additional information might add some extra delay.
"""
error_handler = kwargs['error_handler'] if ('error_handler' in kwargs) else self._error_handler
convert = kwargs['convert'] if ('convert' in kwargs) else self._convert
bl = ('goal position speed load', 'present position speed load')
controls = [c for c in self._AbstractDxlIO__controls if c.name not in bl]
res = []
for id, model in zip(ids, self.get_model(ids)):
controls = [c for c in controls if model in c.models]
controls = sorted(controls, key=lambda c: c.address)
address = controls[0].address
length = controls[-1].address + controls[-1].nb_elem * controls[-1].length
rp = self._protocol.DxlReadDataPacket(id, address, length)
sp = self._send_packet(rp, error_handler=error_handler)
d = OrderedDict()
for c in controls:
v = dxl_decode_all(sp.parameters[c.address:c.address + c.nb_elem * c.length], c.nb_elem)
d[c.name] = c.dxl_to_si(v, model) if convert else v
res.append(d)
return tuple(res) | python | def get_control_table(self, ids, **kwargs):
""" Gets the full control table for the specified motors.
..note:: This function requires the model for each motor to be known. Querring this additional information might add some extra delay.
"""
error_handler = kwargs['error_handler'] if ('error_handler' in kwargs) else self._error_handler
convert = kwargs['convert'] if ('convert' in kwargs) else self._convert
bl = ('goal position speed load', 'present position speed load')
controls = [c for c in self._AbstractDxlIO__controls if c.name not in bl]
res = []
for id, model in zip(ids, self.get_model(ids)):
controls = [c for c in controls if model in c.models]
controls = sorted(controls, key=lambda c: c.address)
address = controls[0].address
length = controls[-1].address + controls[-1].nb_elem * controls[-1].length
rp = self._protocol.DxlReadDataPacket(id, address, length)
sp = self._send_packet(rp, error_handler=error_handler)
d = OrderedDict()
for c in controls:
v = dxl_decode_all(sp.parameters[c.address:c.address + c.nb_elem * c.length], c.nb_elem)
d[c.name] = c.dxl_to_si(v, model) if convert else v
res.append(d)
return tuple(res) | [
"def",
"get_control_table",
"(",
"self",
",",
"ids",
",",
"*",
"*",
"kwargs",
")",
":",
"error_handler",
"=",
"kwargs",
"[",
"'error_handler'",
"]",
"if",
"(",
"'error_handler'",
"in",
"kwargs",
")",
"else",
"self",
".",
"_error_handler",
"convert",
"=",
"kwargs",
"[",
"'convert'",
"]",
"if",
"(",
"'convert'",
"in",
"kwargs",
")",
"else",
"self",
".",
"_convert",
"bl",
"=",
"(",
"'goal position speed load'",
",",
"'present position speed load'",
")",
"controls",
"=",
"[",
"c",
"for",
"c",
"in",
"self",
".",
"_AbstractDxlIO__controls",
"if",
"c",
".",
"name",
"not",
"in",
"bl",
"]",
"res",
"=",
"[",
"]",
"for",
"id",
",",
"model",
"in",
"zip",
"(",
"ids",
",",
"self",
".",
"get_model",
"(",
"ids",
")",
")",
":",
"controls",
"=",
"[",
"c",
"for",
"c",
"in",
"controls",
"if",
"model",
"in",
"c",
".",
"models",
"]",
"controls",
"=",
"sorted",
"(",
"controls",
",",
"key",
"=",
"lambda",
"c",
":",
"c",
".",
"address",
")",
"address",
"=",
"controls",
"[",
"0",
"]",
".",
"address",
"length",
"=",
"controls",
"[",
"-",
"1",
"]",
".",
"address",
"+",
"controls",
"[",
"-",
"1",
"]",
".",
"nb_elem",
"*",
"controls",
"[",
"-",
"1",
"]",
".",
"length",
"rp",
"=",
"self",
".",
"_protocol",
".",
"DxlReadDataPacket",
"(",
"id",
",",
"address",
",",
"length",
")",
"sp",
"=",
"self",
".",
"_send_packet",
"(",
"rp",
",",
"error_handler",
"=",
"error_handler",
")",
"d",
"=",
"OrderedDict",
"(",
")",
"for",
"c",
"in",
"controls",
":",
"v",
"=",
"dxl_decode_all",
"(",
"sp",
".",
"parameters",
"[",
"c",
".",
"address",
":",
"c",
".",
"address",
"+",
"c",
".",
"nb_elem",
"*",
"c",
".",
"length",
"]",
",",
"c",
".",
"nb_elem",
")",
"d",
"[",
"c",
".",
"name",
"]",
"=",
"c",
".",
"dxl_to_si",
"(",
"v",
",",
"model",
")",
"if",
"convert",
"else",
"v",
"res",
".",
"append",
"(",
"d",
")",
"return",
"tuple",
"(",
"res",
")"
] | Gets the full control table for the specified motors.
..note:: This function requires the model for each motor to be known. Querring this additional information might add some extra delay. | [
"Gets",
"the",
"full",
"control",
"table",
"for",
"the",
"specified",
"motors",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/dynamixel/io/abstract_io.py#L318-L350 |
747 | poppy-project/pypot | pypot/robot/config.py | check_motor_eprom_configuration | def check_motor_eprom_configuration(config, dxl_io, motor_names):
""" Change the angles limits depanding on the robot configuration ;
Check if the return delay time is set to 0.
"""
changed_angle_limits = {}
changed_return_delay_time = {}
for name in motor_names:
m = config['motors'][name]
id = m['id']
try:
old_limits = dxl_io.get_angle_limit((id, ))[0]
old_return_delay_time = dxl_io.get_return_delay_time((id, ))[0]
except IndexError: # probably a broken motor so we just skip
continue
if old_return_delay_time != 0:
logger.warning("Return delay time of %s changed from %s to 0",
name, old_return_delay_time)
changed_return_delay_time[id] = 0
new_limits = m['angle_limit']
if 'wheel_mode' in m and m['wheel_mode']:
dxl_io.set_wheel_mode([m['id']])
time.sleep(0.5)
else:
# TODO: we probably need a better fix for this.
# dxl_io.set_joint_mode([m['id']])
d = numpy.linalg.norm(numpy.asarray(new_limits) - numpy.asarray(old_limits))
if d > 1:
logger.warning("Limits of '%s' changed from %s to %s",
name, old_limits, new_limits,
extra={'config': config})
changed_angle_limits[id] = new_limits
if changed_angle_limits:
dxl_io.set_angle_limit(changed_angle_limits)
time.sleep(0.5)
if changed_return_delay_time:
dxl_io.set_return_delay_time(changed_return_delay_time)
time.sleep(0.5) | python | def check_motor_eprom_configuration(config, dxl_io, motor_names):
""" Change the angles limits depanding on the robot configuration ;
Check if the return delay time is set to 0.
"""
changed_angle_limits = {}
changed_return_delay_time = {}
for name in motor_names:
m = config['motors'][name]
id = m['id']
try:
old_limits = dxl_io.get_angle_limit((id, ))[0]
old_return_delay_time = dxl_io.get_return_delay_time((id, ))[0]
except IndexError: # probably a broken motor so we just skip
continue
if old_return_delay_time != 0:
logger.warning("Return delay time of %s changed from %s to 0",
name, old_return_delay_time)
changed_return_delay_time[id] = 0
new_limits = m['angle_limit']
if 'wheel_mode' in m and m['wheel_mode']:
dxl_io.set_wheel_mode([m['id']])
time.sleep(0.5)
else:
# TODO: we probably need a better fix for this.
# dxl_io.set_joint_mode([m['id']])
d = numpy.linalg.norm(numpy.asarray(new_limits) - numpy.asarray(old_limits))
if d > 1:
logger.warning("Limits of '%s' changed from %s to %s",
name, old_limits, new_limits,
extra={'config': config})
changed_angle_limits[id] = new_limits
if changed_angle_limits:
dxl_io.set_angle_limit(changed_angle_limits)
time.sleep(0.5)
if changed_return_delay_time:
dxl_io.set_return_delay_time(changed_return_delay_time)
time.sleep(0.5) | [
"def",
"check_motor_eprom_configuration",
"(",
"config",
",",
"dxl_io",
",",
"motor_names",
")",
":",
"changed_angle_limits",
"=",
"{",
"}",
"changed_return_delay_time",
"=",
"{",
"}",
"for",
"name",
"in",
"motor_names",
":",
"m",
"=",
"config",
"[",
"'motors'",
"]",
"[",
"name",
"]",
"id",
"=",
"m",
"[",
"'id'",
"]",
"try",
":",
"old_limits",
"=",
"dxl_io",
".",
"get_angle_limit",
"(",
"(",
"id",
",",
")",
")",
"[",
"0",
"]",
"old_return_delay_time",
"=",
"dxl_io",
".",
"get_return_delay_time",
"(",
"(",
"id",
",",
")",
")",
"[",
"0",
"]",
"except",
"IndexError",
":",
"# probably a broken motor so we just skip",
"continue",
"if",
"old_return_delay_time",
"!=",
"0",
":",
"logger",
".",
"warning",
"(",
"\"Return delay time of %s changed from %s to 0\"",
",",
"name",
",",
"old_return_delay_time",
")",
"changed_return_delay_time",
"[",
"id",
"]",
"=",
"0",
"new_limits",
"=",
"m",
"[",
"'angle_limit'",
"]",
"if",
"'wheel_mode'",
"in",
"m",
"and",
"m",
"[",
"'wheel_mode'",
"]",
":",
"dxl_io",
".",
"set_wheel_mode",
"(",
"[",
"m",
"[",
"'id'",
"]",
"]",
")",
"time",
".",
"sleep",
"(",
"0.5",
")",
"else",
":",
"# TODO: we probably need a better fix for this.",
"# dxl_io.set_joint_mode([m['id']])",
"d",
"=",
"numpy",
".",
"linalg",
".",
"norm",
"(",
"numpy",
".",
"asarray",
"(",
"new_limits",
")",
"-",
"numpy",
".",
"asarray",
"(",
"old_limits",
")",
")",
"if",
"d",
">",
"1",
":",
"logger",
".",
"warning",
"(",
"\"Limits of '%s' changed from %s to %s\"",
",",
"name",
",",
"old_limits",
",",
"new_limits",
",",
"extra",
"=",
"{",
"'config'",
":",
"config",
"}",
")",
"changed_angle_limits",
"[",
"id",
"]",
"=",
"new_limits",
"if",
"changed_angle_limits",
":",
"dxl_io",
".",
"set_angle_limit",
"(",
"changed_angle_limits",
")",
"time",
".",
"sleep",
"(",
"0.5",
")",
"if",
"changed_return_delay_time",
":",
"dxl_io",
".",
"set_return_delay_time",
"(",
"changed_return_delay_time",
")",
"time",
".",
"sleep",
"(",
"0.5",
")"
] | Change the angles limits depanding on the robot configuration ;
Check if the return delay time is set to 0. | [
"Change",
"the",
"angles",
"limits",
"depanding",
"on",
"the",
"robot",
"configuration",
";",
"Check",
"if",
"the",
"return",
"delay",
"time",
"is",
"set",
"to",
"0",
"."
] | d9c6551bbc87d45d9d1f0bc15e35b616d0002afd | https://github.com/poppy-project/pypot/blob/d9c6551bbc87d45d9d1f0bc15e35b616d0002afd/pypot/robot/config.py#L209-L252 |
748 | icometrix/dicom2nifti | dicom2nifti/compressed_dicom.py | _get_gdcmconv | def _get_gdcmconv():
"""
Get the full path to gdcmconv.
If not found raise error
"""
gdcmconv_executable = settings.gdcmconv_path
if gdcmconv_executable is None:
gdcmconv_executable = _which('gdcmconv')
if gdcmconv_executable is None:
gdcmconv_executable = _which('gdcmconv.exe')
if gdcmconv_executable is None:
raise ConversionError('GDCMCONV_NOT_FOUND')
return gdcmconv_executable | python | def _get_gdcmconv():
"""
Get the full path to gdcmconv.
If not found raise error
"""
gdcmconv_executable = settings.gdcmconv_path
if gdcmconv_executable is None:
gdcmconv_executable = _which('gdcmconv')
if gdcmconv_executable is None:
gdcmconv_executable = _which('gdcmconv.exe')
if gdcmconv_executable is None:
raise ConversionError('GDCMCONV_NOT_FOUND')
return gdcmconv_executable | [
"def",
"_get_gdcmconv",
"(",
")",
":",
"gdcmconv_executable",
"=",
"settings",
".",
"gdcmconv_path",
"if",
"gdcmconv_executable",
"is",
"None",
":",
"gdcmconv_executable",
"=",
"_which",
"(",
"'gdcmconv'",
")",
"if",
"gdcmconv_executable",
"is",
"None",
":",
"gdcmconv_executable",
"=",
"_which",
"(",
"'gdcmconv.exe'",
")",
"if",
"gdcmconv_executable",
"is",
"None",
":",
"raise",
"ConversionError",
"(",
"'GDCMCONV_NOT_FOUND'",
")",
"return",
"gdcmconv_executable"
] | Get the full path to gdcmconv.
If not found raise error | [
"Get",
"the",
"full",
"path",
"to",
"gdcmconv",
".",
"If",
"not",
"found",
"raise",
"error"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/compressed_dicom.py#L41-L55 |
749 | icometrix/dicom2nifti | dicom2nifti/compressed_dicom.py | compress_directory | def compress_directory(dicom_directory):
"""
This function can be used to convert a folder of jpeg compressed images to an uncompressed ones
:param dicom_directory: directory of dicom files to compress
"""
if _is_compressed(dicom_directory):
return
logger.info('Compressing dicom files in %s' % dicom_directory)
for root, _, files in os.walk(dicom_directory):
for dicom_file in files:
if is_dicom_file(os.path.join(root, dicom_file)):
_compress_dicom(os.path.join(root, dicom_file)) | python | def compress_directory(dicom_directory):
"""
This function can be used to convert a folder of jpeg compressed images to an uncompressed ones
:param dicom_directory: directory of dicom files to compress
"""
if _is_compressed(dicom_directory):
return
logger.info('Compressing dicom files in %s' % dicom_directory)
for root, _, files in os.walk(dicom_directory):
for dicom_file in files:
if is_dicom_file(os.path.join(root, dicom_file)):
_compress_dicom(os.path.join(root, dicom_file)) | [
"def",
"compress_directory",
"(",
"dicom_directory",
")",
":",
"if",
"_is_compressed",
"(",
"dicom_directory",
")",
":",
"return",
"logger",
".",
"info",
"(",
"'Compressing dicom files in %s'",
"%",
"dicom_directory",
")",
"for",
"root",
",",
"_",
",",
"files",
"in",
"os",
".",
"walk",
"(",
"dicom_directory",
")",
":",
"for",
"dicom_file",
"in",
"files",
":",
"if",
"is_dicom_file",
"(",
"os",
".",
"path",
".",
"join",
"(",
"root",
",",
"dicom_file",
")",
")",
":",
"_compress_dicom",
"(",
"os",
".",
"path",
".",
"join",
"(",
"root",
",",
"dicom_file",
")",
")"
] | This function can be used to convert a folder of jpeg compressed images to an uncompressed ones
:param dicom_directory: directory of dicom files to compress | [
"This",
"function",
"can",
"be",
"used",
"to",
"convert",
"a",
"folder",
"of",
"jpeg",
"compressed",
"images",
"to",
"an",
"uncompressed",
"ones"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/compressed_dicom.py#L58-L71 |
750 | icometrix/dicom2nifti | dicom2nifti/compressed_dicom.py | is_dicom_file | def is_dicom_file(filename):
"""
Util function to check if file is a dicom file
the first 128 bytes are preamble
the next 4 bytes should contain DICM otherwise it is not a dicom
:param filename: file to check for the DICM header block
:type filename: six.string_types
:returns: True if it is a dicom file
"""
file_stream = open(filename, 'rb')
file_stream.seek(128)
data = file_stream.read(4)
file_stream.close()
if data == b'DICM':
return True
if settings.pydicom_read_force:
try:
dicom_headers = pydicom.read_file(filename, defer_size="1 KB", stop_before_pixels=True, force=True)
if dicom_headers is not None:
return True
except:
pass
return False | python | def is_dicom_file(filename):
"""
Util function to check if file is a dicom file
the first 128 bytes are preamble
the next 4 bytes should contain DICM otherwise it is not a dicom
:param filename: file to check for the DICM header block
:type filename: six.string_types
:returns: True if it is a dicom file
"""
file_stream = open(filename, 'rb')
file_stream.seek(128)
data = file_stream.read(4)
file_stream.close()
if data == b'DICM':
return True
if settings.pydicom_read_force:
try:
dicom_headers = pydicom.read_file(filename, defer_size="1 KB", stop_before_pixels=True, force=True)
if dicom_headers is not None:
return True
except:
pass
return False | [
"def",
"is_dicom_file",
"(",
"filename",
")",
":",
"file_stream",
"=",
"open",
"(",
"filename",
",",
"'rb'",
")",
"file_stream",
".",
"seek",
"(",
"128",
")",
"data",
"=",
"file_stream",
".",
"read",
"(",
"4",
")",
"file_stream",
".",
"close",
"(",
")",
"if",
"data",
"==",
"b'DICM'",
":",
"return",
"True",
"if",
"settings",
".",
"pydicom_read_force",
":",
"try",
":",
"dicom_headers",
"=",
"pydicom",
".",
"read_file",
"(",
"filename",
",",
"defer_size",
"=",
"\"1 KB\"",
",",
"stop_before_pixels",
"=",
"True",
",",
"force",
"=",
"True",
")",
"if",
"dicom_headers",
"is",
"not",
"None",
":",
"return",
"True",
"except",
":",
"pass",
"return",
"False"
] | Util function to check if file is a dicom file
the first 128 bytes are preamble
the next 4 bytes should contain DICM otherwise it is not a dicom
:param filename: file to check for the DICM header block
:type filename: six.string_types
:returns: True if it is a dicom file | [
"Util",
"function",
"to",
"check",
"if",
"file",
"is",
"a",
"dicom",
"file",
"the",
"first",
"128",
"bytes",
"are",
"preamble",
"the",
"next",
"4",
"bytes",
"should",
"contain",
"DICM",
"otherwise",
"it",
"is",
"not",
"a",
"dicom"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/compressed_dicom.py#L74-L97 |
751 | icometrix/dicom2nifti | dicom2nifti/compressed_dicom.py | _is_compressed | def _is_compressed(dicom_file, force=False):
"""
Check if dicoms are compressed or not
"""
header = pydicom.read_file(dicom_file,
defer_size="1 KB",
stop_before_pixels=True,
force=force)
uncompressed_types = ["1.2.840.10008.1.2",
"1.2.840.10008.1.2.1",
"1.2.840.10008.1.2.1.99",
"1.2.840.10008.1.2.2"]
if 'TransferSyntaxUID' in header.file_meta and header.file_meta.TransferSyntaxUID in uncompressed_types:
return False
return True | python | def _is_compressed(dicom_file, force=False):
"""
Check if dicoms are compressed or not
"""
header = pydicom.read_file(dicom_file,
defer_size="1 KB",
stop_before_pixels=True,
force=force)
uncompressed_types = ["1.2.840.10008.1.2",
"1.2.840.10008.1.2.1",
"1.2.840.10008.1.2.1.99",
"1.2.840.10008.1.2.2"]
if 'TransferSyntaxUID' in header.file_meta and header.file_meta.TransferSyntaxUID in uncompressed_types:
return False
return True | [
"def",
"_is_compressed",
"(",
"dicom_file",
",",
"force",
"=",
"False",
")",
":",
"header",
"=",
"pydicom",
".",
"read_file",
"(",
"dicom_file",
",",
"defer_size",
"=",
"\"1 KB\"",
",",
"stop_before_pixels",
"=",
"True",
",",
"force",
"=",
"force",
")",
"uncompressed_types",
"=",
"[",
"\"1.2.840.10008.1.2\"",
",",
"\"1.2.840.10008.1.2.1\"",
",",
"\"1.2.840.10008.1.2.1.99\"",
",",
"\"1.2.840.10008.1.2.2\"",
"]",
"if",
"'TransferSyntaxUID'",
"in",
"header",
".",
"file_meta",
"and",
"header",
".",
"file_meta",
".",
"TransferSyntaxUID",
"in",
"uncompressed_types",
":",
"return",
"False",
"return",
"True"
] | Check if dicoms are compressed or not | [
"Check",
"if",
"dicoms",
"are",
"compressed",
"or",
"not"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/compressed_dicom.py#L100-L116 |
752 | icometrix/dicom2nifti | dicom2nifti/compressed_dicom.py | _decompress_dicom | def _decompress_dicom(dicom_file, output_file):
"""
This function can be used to convert a jpeg compressed image to an uncompressed one for further conversion
:param input_file: single dicom file to decompress
"""
gdcmconv_executable = _get_gdcmconv()
subprocess.check_output([gdcmconv_executable, '-w', dicom_file, output_file]) | python | def _decompress_dicom(dicom_file, output_file):
"""
This function can be used to convert a jpeg compressed image to an uncompressed one for further conversion
:param input_file: single dicom file to decompress
"""
gdcmconv_executable = _get_gdcmconv()
subprocess.check_output([gdcmconv_executable, '-w', dicom_file, output_file]) | [
"def",
"_decompress_dicom",
"(",
"dicom_file",
",",
"output_file",
")",
":",
"gdcmconv_executable",
"=",
"_get_gdcmconv",
"(",
")",
"subprocess",
".",
"check_output",
"(",
"[",
"gdcmconv_executable",
",",
"'-w'",
",",
"dicom_file",
",",
"output_file",
"]",
")"
] | This function can be used to convert a jpeg compressed image to an uncompressed one for further conversion
:param input_file: single dicom file to decompress | [
"This",
"function",
"can",
"be",
"used",
"to",
"convert",
"a",
"jpeg",
"compressed",
"image",
"to",
"an",
"uncompressed",
"one",
"for",
"further",
"conversion"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/compressed_dicom.py#L119-L127 |
753 | icometrix/dicom2nifti | scripts/dicomdiff.py | dicom_diff | def dicom_diff(file1, file2):
""" Shows the fields that differ between two DICOM images.
Inspired by https://code.google.com/p/pydicom/source/browse/source/dicom/examples/DicomDiff.py
"""
datasets = compressed_dicom.read_file(file1), compressed_dicom.read_file(file2)
rep = []
for dataset in datasets:
lines = (str(dataset.file_meta)+"\n"+str(dataset)).split('\n')
lines = [line + '\n' for line in lines] # add the newline to the end
rep.append(lines)
diff = difflib.Differ()
for line in diff.compare(rep[0], rep[1]):
if (line[0] == '+') or (line[0] == '-'):
sys.stdout.write(line) | python | def dicom_diff(file1, file2):
""" Shows the fields that differ between two DICOM images.
Inspired by https://code.google.com/p/pydicom/source/browse/source/dicom/examples/DicomDiff.py
"""
datasets = compressed_dicom.read_file(file1), compressed_dicom.read_file(file2)
rep = []
for dataset in datasets:
lines = (str(dataset.file_meta)+"\n"+str(dataset)).split('\n')
lines = [line + '\n' for line in lines] # add the newline to the end
rep.append(lines)
diff = difflib.Differ()
for line in diff.compare(rep[0], rep[1]):
if (line[0] == '+') or (line[0] == '-'):
sys.stdout.write(line) | [
"def",
"dicom_diff",
"(",
"file1",
",",
"file2",
")",
":",
"datasets",
"=",
"compressed_dicom",
".",
"read_file",
"(",
"file1",
")",
",",
"compressed_dicom",
".",
"read_file",
"(",
"file2",
")",
"rep",
"=",
"[",
"]",
"for",
"dataset",
"in",
"datasets",
":",
"lines",
"=",
"(",
"str",
"(",
"dataset",
".",
"file_meta",
")",
"+",
"\"\\n\"",
"+",
"str",
"(",
"dataset",
")",
")",
".",
"split",
"(",
"'\\n'",
")",
"lines",
"=",
"[",
"line",
"+",
"'\\n'",
"for",
"line",
"in",
"lines",
"]",
"# add the newline to the end",
"rep",
".",
"append",
"(",
"lines",
")",
"diff",
"=",
"difflib",
".",
"Differ",
"(",
")",
"for",
"line",
"in",
"diff",
".",
"compare",
"(",
"rep",
"[",
"0",
"]",
",",
"rep",
"[",
"1",
"]",
")",
":",
"if",
"(",
"line",
"[",
"0",
"]",
"==",
"'+'",
")",
"or",
"(",
"line",
"[",
"0",
"]",
"==",
"'-'",
")",
":",
"sys",
".",
"stdout",
".",
"write",
"(",
"line",
")"
] | Shows the fields that differ between two DICOM images.
Inspired by https://code.google.com/p/pydicom/source/browse/source/dicom/examples/DicomDiff.py | [
"Shows",
"the",
"fields",
"that",
"differ",
"between",
"two",
"DICOM",
"images",
"."
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/scripts/dicomdiff.py#L14-L32 |
754 | icometrix/dicom2nifti | dicom2nifti/image_volume.py | ImageVolume._get_number_of_slices | def _get_number_of_slices(self, slice_type):
"""
Get the number of slices in a certain direction
"""
if slice_type == SliceType.AXIAL:
return self.dimensions[self.axial_orientation.normal_component]
elif slice_type == SliceType.SAGITTAL:
return self.dimensions[self.sagittal_orientation.normal_component]
elif slice_type == SliceType.CORONAL:
return self.dimensions[self.coronal_orientation.normal_component] | python | def _get_number_of_slices(self, slice_type):
"""
Get the number of slices in a certain direction
"""
if slice_type == SliceType.AXIAL:
return self.dimensions[self.axial_orientation.normal_component]
elif slice_type == SliceType.SAGITTAL:
return self.dimensions[self.sagittal_orientation.normal_component]
elif slice_type == SliceType.CORONAL:
return self.dimensions[self.coronal_orientation.normal_component] | [
"def",
"_get_number_of_slices",
"(",
"self",
",",
"slice_type",
")",
":",
"if",
"slice_type",
"==",
"SliceType",
".",
"AXIAL",
":",
"return",
"self",
".",
"dimensions",
"[",
"self",
".",
"axial_orientation",
".",
"normal_component",
"]",
"elif",
"slice_type",
"==",
"SliceType",
".",
"SAGITTAL",
":",
"return",
"self",
".",
"dimensions",
"[",
"self",
".",
"sagittal_orientation",
".",
"normal_component",
"]",
"elif",
"slice_type",
"==",
"SliceType",
".",
"CORONAL",
":",
"return",
"self",
".",
"dimensions",
"[",
"self",
".",
"coronal_orientation",
".",
"normal_component",
"]"
] | Get the number of slices in a certain direction | [
"Get",
"the",
"number",
"of",
"slices",
"in",
"a",
"certain",
"direction"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/image_volume.py#L166-L175 |
755 | icometrix/dicom2nifti | dicom2nifti/convert_dicom.py | _get_first_header | def _get_first_header(dicom_directory):
"""
Function to get the first dicom file form a directory and return the header
Useful to determine the type of data to convert
:param dicom_directory: directory with dicom files
"""
# looping over all files
for root, _, file_names in os.walk(dicom_directory):
# go over all the files and try to read the dicom header
for file_name in file_names:
file_path = os.path.join(root, file_name)
# check wither it is a dicom file
if not compressed_dicom.is_dicom_file(file_path):
continue
# read the headers
return compressed_dicom.read_file(file_path,
stop_before_pixels=True,
force=dicom2nifti.settings.pydicom_read_force)
# no dicom files found
raise ConversionError('NO_DICOM_FILES_FOUND') | python | def _get_first_header(dicom_directory):
"""
Function to get the first dicom file form a directory and return the header
Useful to determine the type of data to convert
:param dicom_directory: directory with dicom files
"""
# looping over all files
for root, _, file_names in os.walk(dicom_directory):
# go over all the files and try to read the dicom header
for file_name in file_names:
file_path = os.path.join(root, file_name)
# check wither it is a dicom file
if not compressed_dicom.is_dicom_file(file_path):
continue
# read the headers
return compressed_dicom.read_file(file_path,
stop_before_pixels=True,
force=dicom2nifti.settings.pydicom_read_force)
# no dicom files found
raise ConversionError('NO_DICOM_FILES_FOUND') | [
"def",
"_get_first_header",
"(",
"dicom_directory",
")",
":",
"# looping over all files",
"for",
"root",
",",
"_",
",",
"file_names",
"in",
"os",
".",
"walk",
"(",
"dicom_directory",
")",
":",
"# go over all the files and try to read the dicom header",
"for",
"file_name",
"in",
"file_names",
":",
"file_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"root",
",",
"file_name",
")",
"# check wither it is a dicom file",
"if",
"not",
"compressed_dicom",
".",
"is_dicom_file",
"(",
"file_path",
")",
":",
"continue",
"# read the headers",
"return",
"compressed_dicom",
".",
"read_file",
"(",
"file_path",
",",
"stop_before_pixels",
"=",
"True",
",",
"force",
"=",
"dicom2nifti",
".",
"settings",
".",
"pydicom_read_force",
")",
"# no dicom files found",
"raise",
"ConversionError",
"(",
"'NO_DICOM_FILES_FOUND'",
")"
] | Function to get the first dicom file form a directory and return the header
Useful to determine the type of data to convert
:param dicom_directory: directory with dicom files | [
"Function",
"to",
"get",
"the",
"first",
"dicom",
"file",
"form",
"a",
"directory",
"and",
"return",
"the",
"header",
"Useful",
"to",
"determine",
"the",
"type",
"of",
"data",
"to",
"convert"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_dicom.py#L196-L216 |
756 | icometrix/dicom2nifti | dicom2nifti/image_reorientation.py | _reorient_3d | def _reorient_3d(image):
"""
Reorganize the data for a 3d nifti
"""
# Create empty array where x,y,z correspond to LR (sagittal), PA (coronal), IS (axial) directions and the size
# of the array in each direction is the same with the corresponding direction of the input image.
new_image = numpy.zeros([image.dimensions[image.sagittal_orientation.normal_component],
image.dimensions[image.coronal_orientation.normal_component],
image.dimensions[image.axial_orientation.normal_component]],
dtype=image.nifti_data.dtype)
# Fill the new image with the values of the input image but with matching the orientation with x,y,z
if image.coronal_orientation.y_inverted:
for i in range(new_image.shape[2]):
new_image[:, :, i] = numpy.fliplr(numpy.squeeze(image.get_slice(SliceType.AXIAL,
new_image.shape[2] - 1 - i).original_data))
else:
for i in range(new_image.shape[2]):
new_image[:, :, i] = numpy.fliplr(numpy.squeeze(image.get_slice(SliceType.AXIAL,
i).original_data))
return new_image | python | def _reorient_3d(image):
"""
Reorganize the data for a 3d nifti
"""
# Create empty array where x,y,z correspond to LR (sagittal), PA (coronal), IS (axial) directions and the size
# of the array in each direction is the same with the corresponding direction of the input image.
new_image = numpy.zeros([image.dimensions[image.sagittal_orientation.normal_component],
image.dimensions[image.coronal_orientation.normal_component],
image.dimensions[image.axial_orientation.normal_component]],
dtype=image.nifti_data.dtype)
# Fill the new image with the values of the input image but with matching the orientation with x,y,z
if image.coronal_orientation.y_inverted:
for i in range(new_image.shape[2]):
new_image[:, :, i] = numpy.fliplr(numpy.squeeze(image.get_slice(SliceType.AXIAL,
new_image.shape[2] - 1 - i).original_data))
else:
for i in range(new_image.shape[2]):
new_image[:, :, i] = numpy.fliplr(numpy.squeeze(image.get_slice(SliceType.AXIAL,
i).original_data))
return new_image | [
"def",
"_reorient_3d",
"(",
"image",
")",
":",
"# Create empty array where x,y,z correspond to LR (sagittal), PA (coronal), IS (axial) directions and the size",
"# of the array in each direction is the same with the corresponding direction of the input image.",
"new_image",
"=",
"numpy",
".",
"zeros",
"(",
"[",
"image",
".",
"dimensions",
"[",
"image",
".",
"sagittal_orientation",
".",
"normal_component",
"]",
",",
"image",
".",
"dimensions",
"[",
"image",
".",
"coronal_orientation",
".",
"normal_component",
"]",
",",
"image",
".",
"dimensions",
"[",
"image",
".",
"axial_orientation",
".",
"normal_component",
"]",
"]",
",",
"dtype",
"=",
"image",
".",
"nifti_data",
".",
"dtype",
")",
"# Fill the new image with the values of the input image but with matching the orientation with x,y,z",
"if",
"image",
".",
"coronal_orientation",
".",
"y_inverted",
":",
"for",
"i",
"in",
"range",
"(",
"new_image",
".",
"shape",
"[",
"2",
"]",
")",
":",
"new_image",
"[",
":",
",",
":",
",",
"i",
"]",
"=",
"numpy",
".",
"fliplr",
"(",
"numpy",
".",
"squeeze",
"(",
"image",
".",
"get_slice",
"(",
"SliceType",
".",
"AXIAL",
",",
"new_image",
".",
"shape",
"[",
"2",
"]",
"-",
"1",
"-",
"i",
")",
".",
"original_data",
")",
")",
"else",
":",
"for",
"i",
"in",
"range",
"(",
"new_image",
".",
"shape",
"[",
"2",
"]",
")",
":",
"new_image",
"[",
":",
",",
":",
",",
"i",
"]",
"=",
"numpy",
".",
"fliplr",
"(",
"numpy",
".",
"squeeze",
"(",
"image",
".",
"get_slice",
"(",
"SliceType",
".",
"AXIAL",
",",
"i",
")",
".",
"original_data",
")",
")",
"return",
"new_image"
] | Reorganize the data for a 3d nifti | [
"Reorganize",
"the",
"data",
"for",
"a",
"3d",
"nifti"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/image_reorientation.py#L112-L133 |
757 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | dicom_to_nifti | def dicom_to_nifti(dicom_input, output_file=None):
"""
This is the main dicom to nifti conversion fuction for philips images.
As input philips images are required. It will then determine the type of images and do the correct conversion
Examples: See unit test
:param output_file: file path to the output nifti
:param dicom_input: directory with dicom files for 1 scan
"""
assert common.is_philips(dicom_input)
if common.is_multiframe_dicom(dicom_input):
_assert_explicit_vr(dicom_input)
logger.info('Found multiframe dicom')
if _is_multiframe_4d(dicom_input):
logger.info('Found sequence type: MULTIFRAME 4D')
return _multiframe_to_nifti(dicom_input, output_file)
if _is_multiframe_anatomical(dicom_input):
logger.info('Found sequence type: MULTIFRAME ANATOMICAL')
return _multiframe_to_nifti(dicom_input, output_file)
else:
logger.info('Found singleframe dicom')
grouped_dicoms = _get_grouped_dicoms(dicom_input)
if _is_singleframe_4d(dicom_input):
logger.info('Found sequence type: SINGLEFRAME 4D')
return _singleframe_to_nifti(grouped_dicoms, output_file)
logger.info('Assuming anatomical data')
return convert_generic.dicom_to_nifti(dicom_input, output_file) | python | def dicom_to_nifti(dicom_input, output_file=None):
"""
This is the main dicom to nifti conversion fuction for philips images.
As input philips images are required. It will then determine the type of images and do the correct conversion
Examples: See unit test
:param output_file: file path to the output nifti
:param dicom_input: directory with dicom files for 1 scan
"""
assert common.is_philips(dicom_input)
if common.is_multiframe_dicom(dicom_input):
_assert_explicit_vr(dicom_input)
logger.info('Found multiframe dicom')
if _is_multiframe_4d(dicom_input):
logger.info('Found sequence type: MULTIFRAME 4D')
return _multiframe_to_nifti(dicom_input, output_file)
if _is_multiframe_anatomical(dicom_input):
logger.info('Found sequence type: MULTIFRAME ANATOMICAL')
return _multiframe_to_nifti(dicom_input, output_file)
else:
logger.info('Found singleframe dicom')
grouped_dicoms = _get_grouped_dicoms(dicom_input)
if _is_singleframe_4d(dicom_input):
logger.info('Found sequence type: SINGLEFRAME 4D')
return _singleframe_to_nifti(grouped_dicoms, output_file)
logger.info('Assuming anatomical data')
return convert_generic.dicom_to_nifti(dicom_input, output_file) | [
"def",
"dicom_to_nifti",
"(",
"dicom_input",
",",
"output_file",
"=",
"None",
")",
":",
"assert",
"common",
".",
"is_philips",
"(",
"dicom_input",
")",
"if",
"common",
".",
"is_multiframe_dicom",
"(",
"dicom_input",
")",
":",
"_assert_explicit_vr",
"(",
"dicom_input",
")",
"logger",
".",
"info",
"(",
"'Found multiframe dicom'",
")",
"if",
"_is_multiframe_4d",
"(",
"dicom_input",
")",
":",
"logger",
".",
"info",
"(",
"'Found sequence type: MULTIFRAME 4D'",
")",
"return",
"_multiframe_to_nifti",
"(",
"dicom_input",
",",
"output_file",
")",
"if",
"_is_multiframe_anatomical",
"(",
"dicom_input",
")",
":",
"logger",
".",
"info",
"(",
"'Found sequence type: MULTIFRAME ANATOMICAL'",
")",
"return",
"_multiframe_to_nifti",
"(",
"dicom_input",
",",
"output_file",
")",
"else",
":",
"logger",
".",
"info",
"(",
"'Found singleframe dicom'",
")",
"grouped_dicoms",
"=",
"_get_grouped_dicoms",
"(",
"dicom_input",
")",
"if",
"_is_singleframe_4d",
"(",
"dicom_input",
")",
":",
"logger",
".",
"info",
"(",
"'Found sequence type: SINGLEFRAME 4D'",
")",
"return",
"_singleframe_to_nifti",
"(",
"grouped_dicoms",
",",
"output_file",
")",
"logger",
".",
"info",
"(",
"'Assuming anatomical data'",
")",
"return",
"convert_generic",
".",
"dicom_to_nifti",
"(",
"dicom_input",
",",
"output_file",
")"
] | This is the main dicom to nifti conversion fuction for philips images.
As input philips images are required. It will then determine the type of images and do the correct conversion
Examples: See unit test
:param output_file: file path to the output nifti
:param dicom_input: directory with dicom files for 1 scan | [
"This",
"is",
"the",
"main",
"dicom",
"to",
"nifti",
"conversion",
"fuction",
"for",
"philips",
"images",
".",
"As",
"input",
"philips",
"images",
"are",
"required",
".",
"It",
"will",
"then",
"determine",
"the",
"type",
"of",
"images",
"and",
"do",
"the",
"correct",
"conversion"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L31-L62 |
758 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | _assert_explicit_vr | def _assert_explicit_vr(dicom_input):
"""
Assert that explicit vr is used
"""
if settings.validate_multiframe_implicit:
header = dicom_input[0]
if header.file_meta[0x0002, 0x0010].value == '1.2.840.10008.1.2':
raise ConversionError('IMPLICIT_VR_ENHANCED_DICOM') | python | def _assert_explicit_vr(dicom_input):
"""
Assert that explicit vr is used
"""
if settings.validate_multiframe_implicit:
header = dicom_input[0]
if header.file_meta[0x0002, 0x0010].value == '1.2.840.10008.1.2':
raise ConversionError('IMPLICIT_VR_ENHANCED_DICOM') | [
"def",
"_assert_explicit_vr",
"(",
"dicom_input",
")",
":",
"if",
"settings",
".",
"validate_multiframe_implicit",
":",
"header",
"=",
"dicom_input",
"[",
"0",
"]",
"if",
"header",
".",
"file_meta",
"[",
"0x0002",
",",
"0x0010",
"]",
".",
"value",
"==",
"'1.2.840.10008.1.2'",
":",
"raise",
"ConversionError",
"(",
"'IMPLICIT_VR_ENHANCED_DICOM'",
")"
] | Assert that explicit vr is used | [
"Assert",
"that",
"explicit",
"vr",
"is",
"used"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L65-L72 |
759 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | _is_multiframe_4d | def _is_multiframe_4d(dicom_input):
"""
Use this function to detect if a dicom series is a philips multiframe 4D dataset
"""
# check if it is multi frame dicom
if not common.is_multiframe_dicom(dicom_input):
return False
header = dicom_input[0]
# check if there are multiple stacks
number_of_stack_slices = common.get_ss_value(header[Tag(0x2001, 0x105f)][0][Tag(0x2001, 0x102d)])
number_of_stacks = int(int(header.NumberOfFrames) / number_of_stack_slices)
if number_of_stacks <= 1:
return False
return True | python | def _is_multiframe_4d(dicom_input):
"""
Use this function to detect if a dicom series is a philips multiframe 4D dataset
"""
# check if it is multi frame dicom
if not common.is_multiframe_dicom(dicom_input):
return False
header = dicom_input[0]
# check if there are multiple stacks
number_of_stack_slices = common.get_ss_value(header[Tag(0x2001, 0x105f)][0][Tag(0x2001, 0x102d)])
number_of_stacks = int(int(header.NumberOfFrames) / number_of_stack_slices)
if number_of_stacks <= 1:
return False
return True | [
"def",
"_is_multiframe_4d",
"(",
"dicom_input",
")",
":",
"# check if it is multi frame dicom",
"if",
"not",
"common",
".",
"is_multiframe_dicom",
"(",
"dicom_input",
")",
":",
"return",
"False",
"header",
"=",
"dicom_input",
"[",
"0",
"]",
"# check if there are multiple stacks",
"number_of_stack_slices",
"=",
"common",
".",
"get_ss_value",
"(",
"header",
"[",
"Tag",
"(",
"0x2001",
",",
"0x105f",
")",
"]",
"[",
"0",
"]",
"[",
"Tag",
"(",
"0x2001",
",",
"0x102d",
")",
"]",
")",
"number_of_stacks",
"=",
"int",
"(",
"int",
"(",
"header",
".",
"NumberOfFrames",
")",
"/",
"number_of_stack_slices",
")",
"if",
"number_of_stacks",
"<=",
"1",
":",
"return",
"False",
"return",
"True"
] | Use this function to detect if a dicom series is a philips multiframe 4D dataset | [
"Use",
"this",
"function",
"to",
"detect",
"if",
"a",
"dicom",
"series",
"is",
"a",
"philips",
"multiframe",
"4D",
"dataset"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L98-L114 |
760 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | _is_singleframe_4d | def _is_singleframe_4d(dicom_input):
"""
Use this function to detect if a dicom series is a philips singleframe 4D dataset
"""
header = dicom_input[0]
# check if there are stack information
slice_number_mr_tag = Tag(0x2001, 0x100a)
if slice_number_mr_tag not in header:
return False
# check if there are multiple timepoints
grouped_dicoms = _get_grouped_dicoms(dicom_input)
if len(grouped_dicoms) <= 1:
return False
return True | python | def _is_singleframe_4d(dicom_input):
"""
Use this function to detect if a dicom series is a philips singleframe 4D dataset
"""
header = dicom_input[0]
# check if there are stack information
slice_number_mr_tag = Tag(0x2001, 0x100a)
if slice_number_mr_tag not in header:
return False
# check if there are multiple timepoints
grouped_dicoms = _get_grouped_dicoms(dicom_input)
if len(grouped_dicoms) <= 1:
return False
return True | [
"def",
"_is_singleframe_4d",
"(",
"dicom_input",
")",
":",
"header",
"=",
"dicom_input",
"[",
"0",
"]",
"# check if there are stack information",
"slice_number_mr_tag",
"=",
"Tag",
"(",
"0x2001",
",",
"0x100a",
")",
"if",
"slice_number_mr_tag",
"not",
"in",
"header",
":",
"return",
"False",
"# check if there are multiple timepoints",
"grouped_dicoms",
"=",
"_get_grouped_dicoms",
"(",
"dicom_input",
")",
"if",
"len",
"(",
"grouped_dicoms",
")",
"<=",
"1",
":",
"return",
"False",
"return",
"True"
] | Use this function to detect if a dicom series is a philips singleframe 4D dataset | [
"Use",
"this",
"function",
"to",
"detect",
"if",
"a",
"dicom",
"series",
"is",
"a",
"philips",
"singleframe",
"4D",
"dataset"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L139-L155 |
761 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | _is_bval_type_a | def _is_bval_type_a(grouped_dicoms):
"""
Check if the bvals are stored in the first of 2 currently known ways for single frame dti
"""
bval_tag = Tag(0x2001, 0x1003)
bvec_x_tag = Tag(0x2005, 0x10b0)
bvec_y_tag = Tag(0x2005, 0x10b1)
bvec_z_tag = Tag(0x2005, 0x10b2)
for group in grouped_dicoms:
if bvec_x_tag in group[0] and _is_float(common.get_fl_value(group[0][bvec_x_tag])) and \
bvec_y_tag in group[0] and _is_float(common.get_fl_value(group[0][bvec_y_tag])) and \
bvec_z_tag in group[0] and _is_float(common.get_fl_value(group[0][bvec_z_tag])) and \
bval_tag in group[0] and _is_float(common.get_fl_value(group[0][bval_tag])) and \
common.get_fl_value(group[0][bval_tag]) != 0:
return True
return False | python | def _is_bval_type_a(grouped_dicoms):
"""
Check if the bvals are stored in the first of 2 currently known ways for single frame dti
"""
bval_tag = Tag(0x2001, 0x1003)
bvec_x_tag = Tag(0x2005, 0x10b0)
bvec_y_tag = Tag(0x2005, 0x10b1)
bvec_z_tag = Tag(0x2005, 0x10b2)
for group in grouped_dicoms:
if bvec_x_tag in group[0] and _is_float(common.get_fl_value(group[0][bvec_x_tag])) and \
bvec_y_tag in group[0] and _is_float(common.get_fl_value(group[0][bvec_y_tag])) and \
bvec_z_tag in group[0] and _is_float(common.get_fl_value(group[0][bvec_z_tag])) and \
bval_tag in group[0] and _is_float(common.get_fl_value(group[0][bval_tag])) and \
common.get_fl_value(group[0][bval_tag]) != 0:
return True
return False | [
"def",
"_is_bval_type_a",
"(",
"grouped_dicoms",
")",
":",
"bval_tag",
"=",
"Tag",
"(",
"0x2001",
",",
"0x1003",
")",
"bvec_x_tag",
"=",
"Tag",
"(",
"0x2005",
",",
"0x10b0",
")",
"bvec_y_tag",
"=",
"Tag",
"(",
"0x2005",
",",
"0x10b1",
")",
"bvec_z_tag",
"=",
"Tag",
"(",
"0x2005",
",",
"0x10b2",
")",
"for",
"group",
"in",
"grouped_dicoms",
":",
"if",
"bvec_x_tag",
"in",
"group",
"[",
"0",
"]",
"and",
"_is_float",
"(",
"common",
".",
"get_fl_value",
"(",
"group",
"[",
"0",
"]",
"[",
"bvec_x_tag",
"]",
")",
")",
"and",
"bvec_y_tag",
"in",
"group",
"[",
"0",
"]",
"and",
"_is_float",
"(",
"common",
".",
"get_fl_value",
"(",
"group",
"[",
"0",
"]",
"[",
"bvec_y_tag",
"]",
")",
")",
"and",
"bvec_z_tag",
"in",
"group",
"[",
"0",
"]",
"and",
"_is_float",
"(",
"common",
".",
"get_fl_value",
"(",
"group",
"[",
"0",
"]",
"[",
"bvec_z_tag",
"]",
")",
")",
"and",
"bval_tag",
"in",
"group",
"[",
"0",
"]",
"and",
"_is_float",
"(",
"common",
".",
"get_fl_value",
"(",
"group",
"[",
"0",
"]",
"[",
"bval_tag",
"]",
")",
")",
"and",
"common",
".",
"get_fl_value",
"(",
"group",
"[",
"0",
"]",
"[",
"bval_tag",
"]",
")",
"!=",
"0",
":",
"return",
"True",
"return",
"False"
] | Check if the bvals are stored in the first of 2 currently known ways for single frame dti | [
"Check",
"if",
"the",
"bvals",
"are",
"stored",
"in",
"the",
"first",
"of",
"2",
"currently",
"known",
"ways",
"for",
"single",
"frame",
"dti"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L172-L187 |
762 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | _is_bval_type_b | def _is_bval_type_b(grouped_dicoms):
"""
Check if the bvals are stored in the second of 2 currently known ways for single frame dti
"""
bval_tag = Tag(0x0018, 0x9087)
bvec_tag = Tag(0x0018, 0x9089)
for group in grouped_dicoms:
if bvec_tag in group[0] and bval_tag in group[0]:
bvec = common.get_fd_array_value(group[0][bvec_tag], 3)
bval = common.get_fd_value(group[0][bval_tag])
if _is_float(bvec[0]) and _is_float(bvec[1]) and _is_float(bvec[2]) and _is_float(bval) and bval != 0:
return True
return False | python | def _is_bval_type_b(grouped_dicoms):
"""
Check if the bvals are stored in the second of 2 currently known ways for single frame dti
"""
bval_tag = Tag(0x0018, 0x9087)
bvec_tag = Tag(0x0018, 0x9089)
for group in grouped_dicoms:
if bvec_tag in group[0] and bval_tag in group[0]:
bvec = common.get_fd_array_value(group[0][bvec_tag], 3)
bval = common.get_fd_value(group[0][bval_tag])
if _is_float(bvec[0]) and _is_float(bvec[1]) and _is_float(bvec[2]) and _is_float(bval) and bval != 0:
return True
return False | [
"def",
"_is_bval_type_b",
"(",
"grouped_dicoms",
")",
":",
"bval_tag",
"=",
"Tag",
"(",
"0x0018",
",",
"0x9087",
")",
"bvec_tag",
"=",
"Tag",
"(",
"0x0018",
",",
"0x9089",
")",
"for",
"group",
"in",
"grouped_dicoms",
":",
"if",
"bvec_tag",
"in",
"group",
"[",
"0",
"]",
"and",
"bval_tag",
"in",
"group",
"[",
"0",
"]",
":",
"bvec",
"=",
"common",
".",
"get_fd_array_value",
"(",
"group",
"[",
"0",
"]",
"[",
"bvec_tag",
"]",
",",
"3",
")",
"bval",
"=",
"common",
".",
"get_fd_value",
"(",
"group",
"[",
"0",
"]",
"[",
"bval_tag",
"]",
")",
"if",
"_is_float",
"(",
"bvec",
"[",
"0",
"]",
")",
"and",
"_is_float",
"(",
"bvec",
"[",
"1",
"]",
")",
"and",
"_is_float",
"(",
"bvec",
"[",
"2",
"]",
")",
"and",
"_is_float",
"(",
"bval",
")",
"and",
"bval",
"!=",
"0",
":",
"return",
"True",
"return",
"False"
] | Check if the bvals are stored in the second of 2 currently known ways for single frame dti | [
"Check",
"if",
"the",
"bvals",
"are",
"stored",
"in",
"the",
"second",
"of",
"2",
"currently",
"known",
"ways",
"for",
"single",
"frame",
"dti"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L190-L202 |
763 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | _multiframe_to_nifti | def _multiframe_to_nifti(dicom_input, output_file):
"""
This function will convert philips 4D or anatomical multiframe series to a nifti
"""
# Read the multiframe dicom file
logger.info('Read dicom file')
multiframe_dicom = dicom_input[0]
# Create mosaic block
logger.info('Creating data block')
full_block = _multiframe_to_block(multiframe_dicom)
logger.info('Creating affine')
# Create the nifti header info
affine = _create_affine_multiframe(multiframe_dicom)
logger.info('Creating nifti')
# Convert to nifti
nii_image = nibabel.Nifti1Image(full_block, affine)
timing_parameters = multiframe_dicom.SharedFunctionalGroupsSequence[0].MRTimingAndRelatedParametersSequence[0]
first_frame = multiframe_dicom[Tag(0x5200, 0x9230)][0]
common.set_tr_te(nii_image, float(timing_parameters.RepetitionTime),
float(first_frame[0x2005, 0x140f][0].EchoTime))
# Save to disk
if output_file is not None:
logger.info('Saving nifti to disk %s' % output_file)
nii_image.to_filename(output_file)
if _is_multiframe_diffusion_imaging(dicom_input):
bval_file = None
bvec_file = None
if output_file is not None:
# Create the bval en bvec files
base_path = os.path.dirname(output_file)
base_name = os.path.splitext(os.path.splitext(os.path.basename(output_file))[0])[0]
logger.info('Creating bval en bvec files')
bval_file = '%s/%s.bval' % (base_path, base_name)
bvec_file = '%s/%s.bvec' % (base_path, base_name)
bval, bvec, bval_file, bvec_file = _create_bvals_bvecs(multiframe_dicom, bval_file, bvec_file, nii_image,
output_file)
return {'NII_FILE': output_file,
'BVAL_FILE': bval_file,
'BVEC_FILE': bvec_file,
'NII': nii_image,
'BVAL': bval,
'BVEC': bvec}
return {'NII_FILE': output_file,
'NII': nii_image} | python | def _multiframe_to_nifti(dicom_input, output_file):
"""
This function will convert philips 4D or anatomical multiframe series to a nifti
"""
# Read the multiframe dicom file
logger.info('Read dicom file')
multiframe_dicom = dicom_input[0]
# Create mosaic block
logger.info('Creating data block')
full_block = _multiframe_to_block(multiframe_dicom)
logger.info('Creating affine')
# Create the nifti header info
affine = _create_affine_multiframe(multiframe_dicom)
logger.info('Creating nifti')
# Convert to nifti
nii_image = nibabel.Nifti1Image(full_block, affine)
timing_parameters = multiframe_dicom.SharedFunctionalGroupsSequence[0].MRTimingAndRelatedParametersSequence[0]
first_frame = multiframe_dicom[Tag(0x5200, 0x9230)][0]
common.set_tr_te(nii_image, float(timing_parameters.RepetitionTime),
float(first_frame[0x2005, 0x140f][0].EchoTime))
# Save to disk
if output_file is not None:
logger.info('Saving nifti to disk %s' % output_file)
nii_image.to_filename(output_file)
if _is_multiframe_diffusion_imaging(dicom_input):
bval_file = None
bvec_file = None
if output_file is not None:
# Create the bval en bvec files
base_path = os.path.dirname(output_file)
base_name = os.path.splitext(os.path.splitext(os.path.basename(output_file))[0])[0]
logger.info('Creating bval en bvec files')
bval_file = '%s/%s.bval' % (base_path, base_name)
bvec_file = '%s/%s.bvec' % (base_path, base_name)
bval, bvec, bval_file, bvec_file = _create_bvals_bvecs(multiframe_dicom, bval_file, bvec_file, nii_image,
output_file)
return {'NII_FILE': output_file,
'BVAL_FILE': bval_file,
'BVEC_FILE': bvec_file,
'NII': nii_image,
'BVAL': bval,
'BVEC': bvec}
return {'NII_FILE': output_file,
'NII': nii_image} | [
"def",
"_multiframe_to_nifti",
"(",
"dicom_input",
",",
"output_file",
")",
":",
"# Read the multiframe dicom file",
"logger",
".",
"info",
"(",
"'Read dicom file'",
")",
"multiframe_dicom",
"=",
"dicom_input",
"[",
"0",
"]",
"# Create mosaic block",
"logger",
".",
"info",
"(",
"'Creating data block'",
")",
"full_block",
"=",
"_multiframe_to_block",
"(",
"multiframe_dicom",
")",
"logger",
".",
"info",
"(",
"'Creating affine'",
")",
"# Create the nifti header info",
"affine",
"=",
"_create_affine_multiframe",
"(",
"multiframe_dicom",
")",
"logger",
".",
"info",
"(",
"'Creating nifti'",
")",
"# Convert to nifti",
"nii_image",
"=",
"nibabel",
".",
"Nifti1Image",
"(",
"full_block",
",",
"affine",
")",
"timing_parameters",
"=",
"multiframe_dicom",
".",
"SharedFunctionalGroupsSequence",
"[",
"0",
"]",
".",
"MRTimingAndRelatedParametersSequence",
"[",
"0",
"]",
"first_frame",
"=",
"multiframe_dicom",
"[",
"Tag",
"(",
"0x5200",
",",
"0x9230",
")",
"]",
"[",
"0",
"]",
"common",
".",
"set_tr_te",
"(",
"nii_image",
",",
"float",
"(",
"timing_parameters",
".",
"RepetitionTime",
")",
",",
"float",
"(",
"first_frame",
"[",
"0x2005",
",",
"0x140f",
"]",
"[",
"0",
"]",
".",
"EchoTime",
")",
")",
"# Save to disk",
"if",
"output_file",
"is",
"not",
"None",
":",
"logger",
".",
"info",
"(",
"'Saving nifti to disk %s'",
"%",
"output_file",
")",
"nii_image",
".",
"to_filename",
"(",
"output_file",
")",
"if",
"_is_multiframe_diffusion_imaging",
"(",
"dicom_input",
")",
":",
"bval_file",
"=",
"None",
"bvec_file",
"=",
"None",
"if",
"output_file",
"is",
"not",
"None",
":",
"# Create the bval en bvec files",
"base_path",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"output_file",
")",
"base_name",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"os",
".",
"path",
".",
"splitext",
"(",
"os",
".",
"path",
".",
"basename",
"(",
"output_file",
")",
")",
"[",
"0",
"]",
")",
"[",
"0",
"]",
"logger",
".",
"info",
"(",
"'Creating bval en bvec files'",
")",
"bval_file",
"=",
"'%s/%s.bval'",
"%",
"(",
"base_path",
",",
"base_name",
")",
"bvec_file",
"=",
"'%s/%s.bvec'",
"%",
"(",
"base_path",
",",
"base_name",
")",
"bval",
",",
"bvec",
",",
"bval_file",
",",
"bvec_file",
"=",
"_create_bvals_bvecs",
"(",
"multiframe_dicom",
",",
"bval_file",
",",
"bvec_file",
",",
"nii_image",
",",
"output_file",
")",
"return",
"{",
"'NII_FILE'",
":",
"output_file",
",",
"'BVAL_FILE'",
":",
"bval_file",
",",
"'BVEC_FILE'",
":",
"bvec_file",
",",
"'NII'",
":",
"nii_image",
",",
"'BVAL'",
":",
"bval",
",",
"'BVEC'",
":",
"bvec",
"}",
"return",
"{",
"'NII_FILE'",
":",
"output_file",
",",
"'NII'",
":",
"nii_image",
"}"
] | This function will convert philips 4D or anatomical multiframe series to a nifti | [
"This",
"function",
"will",
"convert",
"philips",
"4D",
"or",
"anatomical",
"multiframe",
"series",
"to",
"a",
"nifti"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L216-L268 |
764 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | _singleframe_to_nifti | def _singleframe_to_nifti(grouped_dicoms, output_file):
"""
This function will convert a philips singleframe series to a nifti
"""
# Create mosaic block
logger.info('Creating data block')
full_block = _singleframe_to_block(grouped_dicoms)
logger.info('Creating affine')
# Create the nifti header info
affine, slice_increment = common.create_affine(grouped_dicoms[0])
logger.info('Creating nifti')
# Convert to nifti
nii_image = nibabel.Nifti1Image(full_block, affine)
common.set_tr_te(nii_image, float(grouped_dicoms[0][0].RepetitionTime), float(grouped_dicoms[0][0].EchoTime))
if output_file is not None:
# Save to disk
logger.info('Saving nifti to disk %s' % output_file)
nii_image.to_filename(output_file)
if _is_singleframe_diffusion_imaging(grouped_dicoms):
bval_file = None
bvec_file = None
# Create the bval en bvec files
if output_file is not None:
base_name = os.path.splitext(output_file)[0]
if base_name.endswith('.nii'):
base_name = os.path.splitext(base_name)[0]
logger.info('Creating bval en bvec files')
bval_file = '%s.bval' % base_name
bvec_file = '%s.bvec' % base_name
nii_image, bval, bvec, bval_file, bvec_file = _create_singleframe_bvals_bvecs(grouped_dicoms,
bval_file,
bvec_file,
nii_image,
output_file)
return {'NII_FILE': output_file,
'BVAL_FILE': bval_file,
'BVEC_FILE': bvec_file,
'NII': nii_image,
'BVAL': bval,
'BVEC': bvec,
'MAX_SLICE_INCREMENT': slice_increment}
return {'NII_FILE': output_file,
'NII': nii_image,
'MAX_SLICE_INCREMENT': slice_increment} | python | def _singleframe_to_nifti(grouped_dicoms, output_file):
"""
This function will convert a philips singleframe series to a nifti
"""
# Create mosaic block
logger.info('Creating data block')
full_block = _singleframe_to_block(grouped_dicoms)
logger.info('Creating affine')
# Create the nifti header info
affine, slice_increment = common.create_affine(grouped_dicoms[0])
logger.info('Creating nifti')
# Convert to nifti
nii_image = nibabel.Nifti1Image(full_block, affine)
common.set_tr_te(nii_image, float(grouped_dicoms[0][0].RepetitionTime), float(grouped_dicoms[0][0].EchoTime))
if output_file is not None:
# Save to disk
logger.info('Saving nifti to disk %s' % output_file)
nii_image.to_filename(output_file)
if _is_singleframe_diffusion_imaging(grouped_dicoms):
bval_file = None
bvec_file = None
# Create the bval en bvec files
if output_file is not None:
base_name = os.path.splitext(output_file)[0]
if base_name.endswith('.nii'):
base_name = os.path.splitext(base_name)[0]
logger.info('Creating bval en bvec files')
bval_file = '%s.bval' % base_name
bvec_file = '%s.bvec' % base_name
nii_image, bval, bvec, bval_file, bvec_file = _create_singleframe_bvals_bvecs(grouped_dicoms,
bval_file,
bvec_file,
nii_image,
output_file)
return {'NII_FILE': output_file,
'BVAL_FILE': bval_file,
'BVEC_FILE': bvec_file,
'NII': nii_image,
'BVAL': bval,
'BVEC': bvec,
'MAX_SLICE_INCREMENT': slice_increment}
return {'NII_FILE': output_file,
'NII': nii_image,
'MAX_SLICE_INCREMENT': slice_increment} | [
"def",
"_singleframe_to_nifti",
"(",
"grouped_dicoms",
",",
"output_file",
")",
":",
"# Create mosaic block",
"logger",
".",
"info",
"(",
"'Creating data block'",
")",
"full_block",
"=",
"_singleframe_to_block",
"(",
"grouped_dicoms",
")",
"logger",
".",
"info",
"(",
"'Creating affine'",
")",
"# Create the nifti header info",
"affine",
",",
"slice_increment",
"=",
"common",
".",
"create_affine",
"(",
"grouped_dicoms",
"[",
"0",
"]",
")",
"logger",
".",
"info",
"(",
"'Creating nifti'",
")",
"# Convert to nifti",
"nii_image",
"=",
"nibabel",
".",
"Nifti1Image",
"(",
"full_block",
",",
"affine",
")",
"common",
".",
"set_tr_te",
"(",
"nii_image",
",",
"float",
"(",
"grouped_dicoms",
"[",
"0",
"]",
"[",
"0",
"]",
".",
"RepetitionTime",
")",
",",
"float",
"(",
"grouped_dicoms",
"[",
"0",
"]",
"[",
"0",
"]",
".",
"EchoTime",
")",
")",
"if",
"output_file",
"is",
"not",
"None",
":",
"# Save to disk",
"logger",
".",
"info",
"(",
"'Saving nifti to disk %s'",
"%",
"output_file",
")",
"nii_image",
".",
"to_filename",
"(",
"output_file",
")",
"if",
"_is_singleframe_diffusion_imaging",
"(",
"grouped_dicoms",
")",
":",
"bval_file",
"=",
"None",
"bvec_file",
"=",
"None",
"# Create the bval en bvec files",
"if",
"output_file",
"is",
"not",
"None",
":",
"base_name",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"output_file",
")",
"[",
"0",
"]",
"if",
"base_name",
".",
"endswith",
"(",
"'.nii'",
")",
":",
"base_name",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"base_name",
")",
"[",
"0",
"]",
"logger",
".",
"info",
"(",
"'Creating bval en bvec files'",
")",
"bval_file",
"=",
"'%s.bval'",
"%",
"base_name",
"bvec_file",
"=",
"'%s.bvec'",
"%",
"base_name",
"nii_image",
",",
"bval",
",",
"bvec",
",",
"bval_file",
",",
"bvec_file",
"=",
"_create_singleframe_bvals_bvecs",
"(",
"grouped_dicoms",
",",
"bval_file",
",",
"bvec_file",
",",
"nii_image",
",",
"output_file",
")",
"return",
"{",
"'NII_FILE'",
":",
"output_file",
",",
"'BVAL_FILE'",
":",
"bval_file",
",",
"'BVEC_FILE'",
":",
"bvec_file",
",",
"'NII'",
":",
"nii_image",
",",
"'BVAL'",
":",
"bval",
",",
"'BVEC'",
":",
"bvec",
",",
"'MAX_SLICE_INCREMENT'",
":",
"slice_increment",
"}",
"return",
"{",
"'NII_FILE'",
":",
"output_file",
",",
"'NII'",
":",
"nii_image",
",",
"'MAX_SLICE_INCREMENT'",
":",
"slice_increment",
"}"
] | This function will convert a philips singleframe series to a nifti | [
"This",
"function",
"will",
"convert",
"a",
"philips",
"singleframe",
"series",
"to",
"a",
"nifti"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L271-L322 |
765 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | _create_affine_multiframe | def _create_affine_multiframe(multiframe_dicom):
"""
Function to create the affine matrix for a siemens mosaic dataset
This will work for siemens dti and 4D if in mosaic format
"""
first_frame = multiframe_dicom[Tag(0x5200, 0x9230)][0]
last_frame = multiframe_dicom[Tag(0x5200, 0x9230)][-1]
# Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine)
image_orient1 = numpy.array(first_frame.PlaneOrientationSequence[0].ImageOrientationPatient)[0:3].astype(float)
image_orient2 = numpy.array(first_frame.PlaneOrientationSequence[0].ImageOrientationPatient)[3:6].astype(float)
normal = numpy.cross(image_orient1, image_orient2)
delta_r = float(first_frame[0x2005, 0x140f][0].PixelSpacing[0])
delta_c = float(first_frame[0x2005, 0x140f][0].PixelSpacing[1])
image_pos = numpy.array(first_frame.PlanePositionSequence[0].ImagePositionPatient).astype(float)
last_image_pos = numpy.array(last_frame.PlanePositionSequence[0].ImagePositionPatient).astype(float)
number_of_stack_slices = int(common.get_ss_value(multiframe_dicom[Tag(0x2001, 0x105f)][0][Tag(0x2001, 0x102d)]))
delta_s = abs(numpy.linalg.norm(last_image_pos - image_pos)) / (number_of_stack_slices - 1)
return numpy.array(
[[-image_orient1[0] * delta_c, -image_orient2[0] * delta_r, -delta_s * normal[0], -image_pos[0]],
[-image_orient1[1] * delta_c, -image_orient2[1] * delta_r, -delta_s * normal[1], -image_pos[1]],
[image_orient1[2] * delta_c, image_orient2[2] * delta_r, delta_s * normal[2], image_pos[2]],
[0, 0, 0, 1]]) | python | def _create_affine_multiframe(multiframe_dicom):
"""
Function to create the affine matrix for a siemens mosaic dataset
This will work for siemens dti and 4D if in mosaic format
"""
first_frame = multiframe_dicom[Tag(0x5200, 0x9230)][0]
last_frame = multiframe_dicom[Tag(0x5200, 0x9230)][-1]
# Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine)
image_orient1 = numpy.array(first_frame.PlaneOrientationSequence[0].ImageOrientationPatient)[0:3].astype(float)
image_orient2 = numpy.array(first_frame.PlaneOrientationSequence[0].ImageOrientationPatient)[3:6].astype(float)
normal = numpy.cross(image_orient1, image_orient2)
delta_r = float(first_frame[0x2005, 0x140f][0].PixelSpacing[0])
delta_c = float(first_frame[0x2005, 0x140f][0].PixelSpacing[1])
image_pos = numpy.array(first_frame.PlanePositionSequence[0].ImagePositionPatient).astype(float)
last_image_pos = numpy.array(last_frame.PlanePositionSequence[0].ImagePositionPatient).astype(float)
number_of_stack_slices = int(common.get_ss_value(multiframe_dicom[Tag(0x2001, 0x105f)][0][Tag(0x2001, 0x102d)]))
delta_s = abs(numpy.linalg.norm(last_image_pos - image_pos)) / (number_of_stack_slices - 1)
return numpy.array(
[[-image_orient1[0] * delta_c, -image_orient2[0] * delta_r, -delta_s * normal[0], -image_pos[0]],
[-image_orient1[1] * delta_c, -image_orient2[1] * delta_r, -delta_s * normal[1], -image_pos[1]],
[image_orient1[2] * delta_c, image_orient2[2] * delta_r, delta_s * normal[2], image_pos[2]],
[0, 0, 0, 1]]) | [
"def",
"_create_affine_multiframe",
"(",
"multiframe_dicom",
")",
":",
"first_frame",
"=",
"multiframe_dicom",
"[",
"Tag",
"(",
"0x5200",
",",
"0x9230",
")",
"]",
"[",
"0",
"]",
"last_frame",
"=",
"multiframe_dicom",
"[",
"Tag",
"(",
"0x5200",
",",
"0x9230",
")",
"]",
"[",
"-",
"1",
"]",
"# Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine)",
"image_orient1",
"=",
"numpy",
".",
"array",
"(",
"first_frame",
".",
"PlaneOrientationSequence",
"[",
"0",
"]",
".",
"ImageOrientationPatient",
")",
"[",
"0",
":",
"3",
"]",
".",
"astype",
"(",
"float",
")",
"image_orient2",
"=",
"numpy",
".",
"array",
"(",
"first_frame",
".",
"PlaneOrientationSequence",
"[",
"0",
"]",
".",
"ImageOrientationPatient",
")",
"[",
"3",
":",
"6",
"]",
".",
"astype",
"(",
"float",
")",
"normal",
"=",
"numpy",
".",
"cross",
"(",
"image_orient1",
",",
"image_orient2",
")",
"delta_r",
"=",
"float",
"(",
"first_frame",
"[",
"0x2005",
",",
"0x140f",
"]",
"[",
"0",
"]",
".",
"PixelSpacing",
"[",
"0",
"]",
")",
"delta_c",
"=",
"float",
"(",
"first_frame",
"[",
"0x2005",
",",
"0x140f",
"]",
"[",
"0",
"]",
".",
"PixelSpacing",
"[",
"1",
"]",
")",
"image_pos",
"=",
"numpy",
".",
"array",
"(",
"first_frame",
".",
"PlanePositionSequence",
"[",
"0",
"]",
".",
"ImagePositionPatient",
")",
".",
"astype",
"(",
"float",
")",
"last_image_pos",
"=",
"numpy",
".",
"array",
"(",
"last_frame",
".",
"PlanePositionSequence",
"[",
"0",
"]",
".",
"ImagePositionPatient",
")",
".",
"astype",
"(",
"float",
")",
"number_of_stack_slices",
"=",
"int",
"(",
"common",
".",
"get_ss_value",
"(",
"multiframe_dicom",
"[",
"Tag",
"(",
"0x2001",
",",
"0x105f",
")",
"]",
"[",
"0",
"]",
"[",
"Tag",
"(",
"0x2001",
",",
"0x102d",
")",
"]",
")",
")",
"delta_s",
"=",
"abs",
"(",
"numpy",
".",
"linalg",
".",
"norm",
"(",
"last_image_pos",
"-",
"image_pos",
")",
")",
"/",
"(",
"number_of_stack_slices",
"-",
"1",
")",
"return",
"numpy",
".",
"array",
"(",
"[",
"[",
"-",
"image_orient1",
"[",
"0",
"]",
"*",
"delta_c",
",",
"-",
"image_orient2",
"[",
"0",
"]",
"*",
"delta_r",
",",
"-",
"delta_s",
"*",
"normal",
"[",
"0",
"]",
",",
"-",
"image_pos",
"[",
"0",
"]",
"]",
",",
"[",
"-",
"image_orient1",
"[",
"1",
"]",
"*",
"delta_c",
",",
"-",
"image_orient2",
"[",
"1",
"]",
"*",
"delta_r",
",",
"-",
"delta_s",
"*",
"normal",
"[",
"1",
"]",
",",
"-",
"image_pos",
"[",
"1",
"]",
"]",
",",
"[",
"image_orient1",
"[",
"2",
"]",
"*",
"delta_c",
",",
"image_orient2",
"[",
"2",
"]",
"*",
"delta_r",
",",
"delta_s",
"*",
"normal",
"[",
"2",
"]",
",",
"image_pos",
"[",
"2",
"]",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"1",
"]",
"]",
")"
] | Function to create the affine matrix for a siemens mosaic dataset
This will work for siemens dti and 4D if in mosaic format | [
"Function",
"to",
"create",
"the",
"affine",
"matrix",
"for",
"a",
"siemens",
"mosaic",
"dataset",
"This",
"will",
"work",
"for",
"siemens",
"dti",
"and",
"4D",
"if",
"in",
"mosaic",
"format"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L393-L419 |
766 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | _multiframe_to_block | def _multiframe_to_block(multiframe_dicom):
"""
Generate a full datablock containing all stacks
"""
# Calculate the amount of stacks and slices in the stack
number_of_stack_slices = int(common.get_ss_value(multiframe_dicom[Tag(0x2001, 0x105f)][0][Tag(0x2001, 0x102d)]))
number_of_stacks = int(int(multiframe_dicom.NumberOfFrames) / number_of_stack_slices)
# We create a numpy array
size_x = multiframe_dicom.pixel_array.shape[2]
size_y = multiframe_dicom.pixel_array.shape[1]
size_z = number_of_stack_slices
size_t = number_of_stacks
# get the format
format_string = common.get_numpy_type(multiframe_dicom)
# get header info needed for ordering
frame_info = multiframe_dicom[0x5200, 0x9230]
data_4d = numpy.zeros((size_z, size_y, size_x, size_t), dtype=format_string)
# loop over each slice and insert in datablock
t_location_index = _get_t_position_index(multiframe_dicom)
for slice_index in range(0, size_t * size_z):
z_location = frame_info[slice_index].FrameContentSequence[0].InStackPositionNumber - 1
if t_location_index is None:
t_location = frame_info[slice_index].FrameContentSequence[0].TemporalPositionIndex - 1
else:
t_location = frame_info[slice_index].FrameContentSequence[0].DimensionIndexValues[t_location_index] - 1
block_data = multiframe_dicom.pixel_array[slice_index, :, :]
# apply scaling
rescale_intercept = frame_info[slice_index].PixelValueTransformationSequence[0].RescaleIntercept
rescale_slope = frame_info[slice_index].PixelValueTransformationSequence[0].RescaleSlope
block_data = common.do_scaling(block_data,
rescale_slope, rescale_intercept)
# switch to float if needed
if block_data.dtype != data_4d.dtype:
data_4d = data_4d.astype(block_data.dtype)
data_4d[z_location, :, :, t_location] = block_data
full_block = numpy.zeros((size_x, size_y, size_z, size_t), dtype=data_4d.dtype)
# loop over each stack and reorganize the data
for t_index in range(0, size_t):
# transpose the block so the directions are correct
data_3d = numpy.transpose(data_4d[:, :, :, t_index], (2, 1, 0))
# add the block the the full data
full_block[:, :, :, t_index] = data_3d
return full_block | python | def _multiframe_to_block(multiframe_dicom):
"""
Generate a full datablock containing all stacks
"""
# Calculate the amount of stacks and slices in the stack
number_of_stack_slices = int(common.get_ss_value(multiframe_dicom[Tag(0x2001, 0x105f)][0][Tag(0x2001, 0x102d)]))
number_of_stacks = int(int(multiframe_dicom.NumberOfFrames) / number_of_stack_slices)
# We create a numpy array
size_x = multiframe_dicom.pixel_array.shape[2]
size_y = multiframe_dicom.pixel_array.shape[1]
size_z = number_of_stack_slices
size_t = number_of_stacks
# get the format
format_string = common.get_numpy_type(multiframe_dicom)
# get header info needed for ordering
frame_info = multiframe_dicom[0x5200, 0x9230]
data_4d = numpy.zeros((size_z, size_y, size_x, size_t), dtype=format_string)
# loop over each slice and insert in datablock
t_location_index = _get_t_position_index(multiframe_dicom)
for slice_index in range(0, size_t * size_z):
z_location = frame_info[slice_index].FrameContentSequence[0].InStackPositionNumber - 1
if t_location_index is None:
t_location = frame_info[slice_index].FrameContentSequence[0].TemporalPositionIndex - 1
else:
t_location = frame_info[slice_index].FrameContentSequence[0].DimensionIndexValues[t_location_index] - 1
block_data = multiframe_dicom.pixel_array[slice_index, :, :]
# apply scaling
rescale_intercept = frame_info[slice_index].PixelValueTransformationSequence[0].RescaleIntercept
rescale_slope = frame_info[slice_index].PixelValueTransformationSequence[0].RescaleSlope
block_data = common.do_scaling(block_data,
rescale_slope, rescale_intercept)
# switch to float if needed
if block_data.dtype != data_4d.dtype:
data_4d = data_4d.astype(block_data.dtype)
data_4d[z_location, :, :, t_location] = block_data
full_block = numpy.zeros((size_x, size_y, size_z, size_t), dtype=data_4d.dtype)
# loop over each stack and reorganize the data
for t_index in range(0, size_t):
# transpose the block so the directions are correct
data_3d = numpy.transpose(data_4d[:, :, :, t_index], (2, 1, 0))
# add the block the the full data
full_block[:, :, :, t_index] = data_3d
return full_block | [
"def",
"_multiframe_to_block",
"(",
"multiframe_dicom",
")",
":",
"# Calculate the amount of stacks and slices in the stack",
"number_of_stack_slices",
"=",
"int",
"(",
"common",
".",
"get_ss_value",
"(",
"multiframe_dicom",
"[",
"Tag",
"(",
"0x2001",
",",
"0x105f",
")",
"]",
"[",
"0",
"]",
"[",
"Tag",
"(",
"0x2001",
",",
"0x102d",
")",
"]",
")",
")",
"number_of_stacks",
"=",
"int",
"(",
"int",
"(",
"multiframe_dicom",
".",
"NumberOfFrames",
")",
"/",
"number_of_stack_slices",
")",
"# We create a numpy array",
"size_x",
"=",
"multiframe_dicom",
".",
"pixel_array",
".",
"shape",
"[",
"2",
"]",
"size_y",
"=",
"multiframe_dicom",
".",
"pixel_array",
".",
"shape",
"[",
"1",
"]",
"size_z",
"=",
"number_of_stack_slices",
"size_t",
"=",
"number_of_stacks",
"# get the format",
"format_string",
"=",
"common",
".",
"get_numpy_type",
"(",
"multiframe_dicom",
")",
"# get header info needed for ordering",
"frame_info",
"=",
"multiframe_dicom",
"[",
"0x5200",
",",
"0x9230",
"]",
"data_4d",
"=",
"numpy",
".",
"zeros",
"(",
"(",
"size_z",
",",
"size_y",
",",
"size_x",
",",
"size_t",
")",
",",
"dtype",
"=",
"format_string",
")",
"# loop over each slice and insert in datablock",
"t_location_index",
"=",
"_get_t_position_index",
"(",
"multiframe_dicom",
")",
"for",
"slice_index",
"in",
"range",
"(",
"0",
",",
"size_t",
"*",
"size_z",
")",
":",
"z_location",
"=",
"frame_info",
"[",
"slice_index",
"]",
".",
"FrameContentSequence",
"[",
"0",
"]",
".",
"InStackPositionNumber",
"-",
"1",
"if",
"t_location_index",
"is",
"None",
":",
"t_location",
"=",
"frame_info",
"[",
"slice_index",
"]",
".",
"FrameContentSequence",
"[",
"0",
"]",
".",
"TemporalPositionIndex",
"-",
"1",
"else",
":",
"t_location",
"=",
"frame_info",
"[",
"slice_index",
"]",
".",
"FrameContentSequence",
"[",
"0",
"]",
".",
"DimensionIndexValues",
"[",
"t_location_index",
"]",
"-",
"1",
"block_data",
"=",
"multiframe_dicom",
".",
"pixel_array",
"[",
"slice_index",
",",
":",
",",
":",
"]",
"# apply scaling",
"rescale_intercept",
"=",
"frame_info",
"[",
"slice_index",
"]",
".",
"PixelValueTransformationSequence",
"[",
"0",
"]",
".",
"RescaleIntercept",
"rescale_slope",
"=",
"frame_info",
"[",
"slice_index",
"]",
".",
"PixelValueTransformationSequence",
"[",
"0",
"]",
".",
"RescaleSlope",
"block_data",
"=",
"common",
".",
"do_scaling",
"(",
"block_data",
",",
"rescale_slope",
",",
"rescale_intercept",
")",
"# switch to float if needed",
"if",
"block_data",
".",
"dtype",
"!=",
"data_4d",
".",
"dtype",
":",
"data_4d",
"=",
"data_4d",
".",
"astype",
"(",
"block_data",
".",
"dtype",
")",
"data_4d",
"[",
"z_location",
",",
":",
",",
":",
",",
"t_location",
"]",
"=",
"block_data",
"full_block",
"=",
"numpy",
".",
"zeros",
"(",
"(",
"size_x",
",",
"size_y",
",",
"size_z",
",",
"size_t",
")",
",",
"dtype",
"=",
"data_4d",
".",
"dtype",
")",
"# loop over each stack and reorganize the data",
"for",
"t_index",
"in",
"range",
"(",
"0",
",",
"size_t",
")",
":",
"# transpose the block so the directions are correct",
"data_3d",
"=",
"numpy",
".",
"transpose",
"(",
"data_4d",
"[",
":",
",",
":",
",",
":",
",",
"t_index",
"]",
",",
"(",
"2",
",",
"1",
",",
"0",
")",
")",
"# add the block the the full data",
"full_block",
"[",
":",
",",
":",
",",
":",
",",
"t_index",
"]",
"=",
"data_3d",
"return",
"full_block"
] | Generate a full datablock containing all stacks | [
"Generate",
"a",
"full",
"datablock",
"containing",
"all",
"stacks"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L422-L473 |
767 | icometrix/dicom2nifti | dicom2nifti/convert_philips.py | _fix_diffusion_images | def _fix_diffusion_images(bvals, bvecs, nifti, nifti_file):
"""
This function will remove the last timepoint from the nifti, bvals and bvecs if the last vector is 0,0,0
This is sometimes added at the end by philips
"""
# if all zero continue of if the last bvec is not all zero continue
if numpy.count_nonzero(bvecs) == 0 or not numpy.count_nonzero(bvals[-1]) == 0:
# nothing needs to be done here
return nifti, bvals, bvecs
# remove last elements from bvals and bvecs
bvals = bvals[:-1]
bvecs = bvecs[:-1]
# remove last elements from the nifti
new_nifti = nibabel.Nifti1Image(nifti.get_data()[:, :, :, :-1], nifti.affine)
new_nifti.to_filename(nifti_file)
return new_nifti, bvals, bvecs | python | def _fix_diffusion_images(bvals, bvecs, nifti, nifti_file):
"""
This function will remove the last timepoint from the nifti, bvals and bvecs if the last vector is 0,0,0
This is sometimes added at the end by philips
"""
# if all zero continue of if the last bvec is not all zero continue
if numpy.count_nonzero(bvecs) == 0 or not numpy.count_nonzero(bvals[-1]) == 0:
# nothing needs to be done here
return nifti, bvals, bvecs
# remove last elements from bvals and bvecs
bvals = bvals[:-1]
bvecs = bvecs[:-1]
# remove last elements from the nifti
new_nifti = nibabel.Nifti1Image(nifti.get_data()[:, :, :, :-1], nifti.affine)
new_nifti.to_filename(nifti_file)
return new_nifti, bvals, bvecs | [
"def",
"_fix_diffusion_images",
"(",
"bvals",
",",
"bvecs",
",",
"nifti",
",",
"nifti_file",
")",
":",
"# if all zero continue of if the last bvec is not all zero continue",
"if",
"numpy",
".",
"count_nonzero",
"(",
"bvecs",
")",
"==",
"0",
"or",
"not",
"numpy",
".",
"count_nonzero",
"(",
"bvals",
"[",
"-",
"1",
"]",
")",
"==",
"0",
":",
"# nothing needs to be done here",
"return",
"nifti",
",",
"bvals",
",",
"bvecs",
"# remove last elements from bvals and bvecs",
"bvals",
"=",
"bvals",
"[",
":",
"-",
"1",
"]",
"bvecs",
"=",
"bvecs",
"[",
":",
"-",
"1",
"]",
"# remove last elements from the nifti",
"new_nifti",
"=",
"nibabel",
".",
"Nifti1Image",
"(",
"nifti",
".",
"get_data",
"(",
")",
"[",
":",
",",
":",
",",
":",
",",
":",
"-",
"1",
"]",
",",
"nifti",
".",
"affine",
")",
"new_nifti",
".",
"to_filename",
"(",
"nifti_file",
")",
"return",
"new_nifti",
",",
"bvals",
",",
"bvecs"
] | This function will remove the last timepoint from the nifti, bvals and bvecs if the last vector is 0,0,0
This is sometimes added at the end by philips | [
"This",
"function",
"will",
"remove",
"the",
"last",
"timepoint",
"from",
"the",
"nifti",
"bvals",
"and",
"bvecs",
"if",
"the",
"last",
"vector",
"is",
"0",
"0",
"0",
"This",
"is",
"sometimes",
"added",
"at",
"the",
"end",
"by",
"philips"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_philips.py#L548-L565 |
768 | icometrix/dicom2nifti | dicom2nifti/convert_generic.py | dicom_to_nifti | def dicom_to_nifti(dicom_input, output_file):
"""
This function will convert an anatomical dicom series to a nifti
Examples: See unit test
:param output_file: filepath to the output nifti
:param dicom_input: directory with the dicom files for a single scan, or list of read in dicoms
"""
if len(dicom_input) <= 0:
raise ConversionError('NO_DICOM_FILES_FOUND')
# remove duplicate slices based on position and data
dicom_input = _remove_duplicate_slices(dicom_input)
# remove localizers based on image type
dicom_input = _remove_localizers_by_imagetype(dicom_input)
if settings.validate_slicecount:
# remove_localizers based on image orientation (only valid if slicecount is validated)
dicom_input = _remove_localizers_by_orientation(dicom_input)
# validate all the dicom files for correct orientations
common.validate_slicecount(dicom_input)
if settings.validate_orientation:
# validate that all slices have the same orientation
common.validate_orientation(dicom_input)
if settings.validate_orthogonal:
# validate that we have an orthogonal image (to detect gantry tilting etc)
common.validate_orthogonal(dicom_input)
# sort the dicoms
dicom_input = common.sort_dicoms(dicom_input)
# validate slice increment inconsistent
slice_increment_inconsistent = False
if settings.validate_slice_increment:
# validate that all slices have a consistent slice increment
common.validate_slice_increment(dicom_input)
elif common.is_slice_increment_inconsistent(dicom_input):
slice_increment_inconsistent = True
# if inconsistent increment and we allow resampling then do the resampling based conversion to maintain the correct geometric shape
if slice_increment_inconsistent and settings.resample:
nii_image, max_slice_increment = _convert_slice_incement_inconsistencies(dicom_input)
# do the normal conversion
else:
# Get data; originally z,y,x, transposed to x,y,z
data = common.get_volume_pixeldata(dicom_input)
affine, max_slice_increment = common.create_affine(dicom_input)
# Convert to nifti
nii_image = nibabel.Nifti1Image(data, affine)
# Set TR and TE if available
if Tag(0x0018, 0x0081) in dicom_input[0] and Tag(0x0018, 0x0081) in dicom_input[0]:
common.set_tr_te(nii_image, float(dicom_input[0].RepetitionTime), float(dicom_input[0].EchoTime))
# Save to disk
if output_file is not None:
logger.info('Saving nifti to disk %s' % output_file)
nii_image.to_filename(output_file)
return {'NII_FILE': output_file,
'NII': nii_image,
'MAX_SLICE_INCREMENT': max_slice_increment} | python | def dicom_to_nifti(dicom_input, output_file):
"""
This function will convert an anatomical dicom series to a nifti
Examples: See unit test
:param output_file: filepath to the output nifti
:param dicom_input: directory with the dicom files for a single scan, or list of read in dicoms
"""
if len(dicom_input) <= 0:
raise ConversionError('NO_DICOM_FILES_FOUND')
# remove duplicate slices based on position and data
dicom_input = _remove_duplicate_slices(dicom_input)
# remove localizers based on image type
dicom_input = _remove_localizers_by_imagetype(dicom_input)
if settings.validate_slicecount:
# remove_localizers based on image orientation (only valid if slicecount is validated)
dicom_input = _remove_localizers_by_orientation(dicom_input)
# validate all the dicom files for correct orientations
common.validate_slicecount(dicom_input)
if settings.validate_orientation:
# validate that all slices have the same orientation
common.validate_orientation(dicom_input)
if settings.validate_orthogonal:
# validate that we have an orthogonal image (to detect gantry tilting etc)
common.validate_orthogonal(dicom_input)
# sort the dicoms
dicom_input = common.sort_dicoms(dicom_input)
# validate slice increment inconsistent
slice_increment_inconsistent = False
if settings.validate_slice_increment:
# validate that all slices have a consistent slice increment
common.validate_slice_increment(dicom_input)
elif common.is_slice_increment_inconsistent(dicom_input):
slice_increment_inconsistent = True
# if inconsistent increment and we allow resampling then do the resampling based conversion to maintain the correct geometric shape
if slice_increment_inconsistent and settings.resample:
nii_image, max_slice_increment = _convert_slice_incement_inconsistencies(dicom_input)
# do the normal conversion
else:
# Get data; originally z,y,x, transposed to x,y,z
data = common.get_volume_pixeldata(dicom_input)
affine, max_slice_increment = common.create_affine(dicom_input)
# Convert to nifti
nii_image = nibabel.Nifti1Image(data, affine)
# Set TR and TE if available
if Tag(0x0018, 0x0081) in dicom_input[0] and Tag(0x0018, 0x0081) in dicom_input[0]:
common.set_tr_te(nii_image, float(dicom_input[0].RepetitionTime), float(dicom_input[0].EchoTime))
# Save to disk
if output_file is not None:
logger.info('Saving nifti to disk %s' % output_file)
nii_image.to_filename(output_file)
return {'NII_FILE': output_file,
'NII': nii_image,
'MAX_SLICE_INCREMENT': max_slice_increment} | [
"def",
"dicom_to_nifti",
"(",
"dicom_input",
",",
"output_file",
")",
":",
"if",
"len",
"(",
"dicom_input",
")",
"<=",
"0",
":",
"raise",
"ConversionError",
"(",
"'NO_DICOM_FILES_FOUND'",
")",
"# remove duplicate slices based on position and data",
"dicom_input",
"=",
"_remove_duplicate_slices",
"(",
"dicom_input",
")",
"# remove localizers based on image type",
"dicom_input",
"=",
"_remove_localizers_by_imagetype",
"(",
"dicom_input",
")",
"if",
"settings",
".",
"validate_slicecount",
":",
"# remove_localizers based on image orientation (only valid if slicecount is validated)",
"dicom_input",
"=",
"_remove_localizers_by_orientation",
"(",
"dicom_input",
")",
"# validate all the dicom files for correct orientations",
"common",
".",
"validate_slicecount",
"(",
"dicom_input",
")",
"if",
"settings",
".",
"validate_orientation",
":",
"# validate that all slices have the same orientation",
"common",
".",
"validate_orientation",
"(",
"dicom_input",
")",
"if",
"settings",
".",
"validate_orthogonal",
":",
"# validate that we have an orthogonal image (to detect gantry tilting etc)",
"common",
".",
"validate_orthogonal",
"(",
"dicom_input",
")",
"# sort the dicoms",
"dicom_input",
"=",
"common",
".",
"sort_dicoms",
"(",
"dicom_input",
")",
"# validate slice increment inconsistent",
"slice_increment_inconsistent",
"=",
"False",
"if",
"settings",
".",
"validate_slice_increment",
":",
"# validate that all slices have a consistent slice increment",
"common",
".",
"validate_slice_increment",
"(",
"dicom_input",
")",
"elif",
"common",
".",
"is_slice_increment_inconsistent",
"(",
"dicom_input",
")",
":",
"slice_increment_inconsistent",
"=",
"True",
"# if inconsistent increment and we allow resampling then do the resampling based conversion to maintain the correct geometric shape",
"if",
"slice_increment_inconsistent",
"and",
"settings",
".",
"resample",
":",
"nii_image",
",",
"max_slice_increment",
"=",
"_convert_slice_incement_inconsistencies",
"(",
"dicom_input",
")",
"# do the normal conversion",
"else",
":",
"# Get data; originally z,y,x, transposed to x,y,z",
"data",
"=",
"common",
".",
"get_volume_pixeldata",
"(",
"dicom_input",
")",
"affine",
",",
"max_slice_increment",
"=",
"common",
".",
"create_affine",
"(",
"dicom_input",
")",
"# Convert to nifti",
"nii_image",
"=",
"nibabel",
".",
"Nifti1Image",
"(",
"data",
",",
"affine",
")",
"# Set TR and TE if available",
"if",
"Tag",
"(",
"0x0018",
",",
"0x0081",
")",
"in",
"dicom_input",
"[",
"0",
"]",
"and",
"Tag",
"(",
"0x0018",
",",
"0x0081",
")",
"in",
"dicom_input",
"[",
"0",
"]",
":",
"common",
".",
"set_tr_te",
"(",
"nii_image",
",",
"float",
"(",
"dicom_input",
"[",
"0",
"]",
".",
"RepetitionTime",
")",
",",
"float",
"(",
"dicom_input",
"[",
"0",
"]",
".",
"EchoTime",
")",
")",
"# Save to disk",
"if",
"output_file",
"is",
"not",
"None",
":",
"logger",
".",
"info",
"(",
"'Saving nifti to disk %s'",
"%",
"output_file",
")",
"nii_image",
".",
"to_filename",
"(",
"output_file",
")",
"return",
"{",
"'NII_FILE'",
":",
"output_file",
",",
"'NII'",
":",
"nii_image",
",",
"'MAX_SLICE_INCREMENT'",
":",
"max_slice_increment",
"}"
] | This function will convert an anatomical dicom series to a nifti
Examples: See unit test
:param output_file: filepath to the output nifti
:param dicom_input: directory with the dicom files for a single scan, or list of read in dicoms | [
"This",
"function",
"will",
"convert",
"an",
"anatomical",
"dicom",
"series",
"to",
"a",
"nifti"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_generic.py#L29-L94 |
769 | icometrix/dicom2nifti | dicom2nifti/convert_generic.py | _convert_slice_incement_inconsistencies | def _convert_slice_incement_inconsistencies(dicom_input):
"""
If there is slice increment inconsistency detected, for the moment CT images, then split the volumes into subvolumes based on the slice increment and process each volume separately using a space constructed based on the highest resolution increment
"""
# Estimate the "first" slice increment based on the 2 first slices
increment = numpy.array(dicom_input[0].ImagePositionPatient) - numpy.array(dicom_input[1].ImagePositionPatient)
# Create as many volumes as many changes in slice increment. NB Increments might be repeated in different volumes
max_slice_increment = 0
slice_incement_groups = []
current_group = [dicom_input[0], dicom_input[1]]
previous_image_position = numpy.array(dicom_input[1].ImagePositionPatient)
for dicom in dicom_input[2:]:
current_image_position = numpy.array(dicom.ImagePositionPatient)
current_increment = previous_image_position - current_image_position
max_slice_increment = max(max_slice_increment, numpy.linalg.norm(current_increment))
if numpy.allclose(increment, current_increment, rtol=0.05, atol=0.1):
current_group.append(dicom)
if not numpy.allclose(increment, current_increment, rtol=0.05, atol=0.1):
slice_incement_groups.append(current_group)
current_group = [current_group[-1], dicom]
increment = current_increment
previous_image_position = current_image_position
slice_incement_groups.append(current_group)
# Create nibabel objects for each volume based on the corresponding headers
slice_incement_niftis = []
for dicom_slices in slice_incement_groups:
data = common.get_volume_pixeldata(dicom_slices)
affine, _ = common.create_affine(dicom_slices)
slice_incement_niftis.append(nibabel.Nifti1Image(data, affine))
nifti_volume = resample.resample_nifti_images(slice_incement_niftis)
return nifti_volume, max_slice_increment | python | def _convert_slice_incement_inconsistencies(dicom_input):
"""
If there is slice increment inconsistency detected, for the moment CT images, then split the volumes into subvolumes based on the slice increment and process each volume separately using a space constructed based on the highest resolution increment
"""
# Estimate the "first" slice increment based on the 2 first slices
increment = numpy.array(dicom_input[0].ImagePositionPatient) - numpy.array(dicom_input[1].ImagePositionPatient)
# Create as many volumes as many changes in slice increment. NB Increments might be repeated in different volumes
max_slice_increment = 0
slice_incement_groups = []
current_group = [dicom_input[0], dicom_input[1]]
previous_image_position = numpy.array(dicom_input[1].ImagePositionPatient)
for dicom in dicom_input[2:]:
current_image_position = numpy.array(dicom.ImagePositionPatient)
current_increment = previous_image_position - current_image_position
max_slice_increment = max(max_slice_increment, numpy.linalg.norm(current_increment))
if numpy.allclose(increment, current_increment, rtol=0.05, atol=0.1):
current_group.append(dicom)
if not numpy.allclose(increment, current_increment, rtol=0.05, atol=0.1):
slice_incement_groups.append(current_group)
current_group = [current_group[-1], dicom]
increment = current_increment
previous_image_position = current_image_position
slice_incement_groups.append(current_group)
# Create nibabel objects for each volume based on the corresponding headers
slice_incement_niftis = []
for dicom_slices in slice_incement_groups:
data = common.get_volume_pixeldata(dicom_slices)
affine, _ = common.create_affine(dicom_slices)
slice_incement_niftis.append(nibabel.Nifti1Image(data, affine))
nifti_volume = resample.resample_nifti_images(slice_incement_niftis)
return nifti_volume, max_slice_increment | [
"def",
"_convert_slice_incement_inconsistencies",
"(",
"dicom_input",
")",
":",
"# Estimate the \"first\" slice increment based on the 2 first slices",
"increment",
"=",
"numpy",
".",
"array",
"(",
"dicom_input",
"[",
"0",
"]",
".",
"ImagePositionPatient",
")",
"-",
"numpy",
".",
"array",
"(",
"dicom_input",
"[",
"1",
"]",
".",
"ImagePositionPatient",
")",
"# Create as many volumes as many changes in slice increment. NB Increments might be repeated in different volumes",
"max_slice_increment",
"=",
"0",
"slice_incement_groups",
"=",
"[",
"]",
"current_group",
"=",
"[",
"dicom_input",
"[",
"0",
"]",
",",
"dicom_input",
"[",
"1",
"]",
"]",
"previous_image_position",
"=",
"numpy",
".",
"array",
"(",
"dicom_input",
"[",
"1",
"]",
".",
"ImagePositionPatient",
")",
"for",
"dicom",
"in",
"dicom_input",
"[",
"2",
":",
"]",
":",
"current_image_position",
"=",
"numpy",
".",
"array",
"(",
"dicom",
".",
"ImagePositionPatient",
")",
"current_increment",
"=",
"previous_image_position",
"-",
"current_image_position",
"max_slice_increment",
"=",
"max",
"(",
"max_slice_increment",
",",
"numpy",
".",
"linalg",
".",
"norm",
"(",
"current_increment",
")",
")",
"if",
"numpy",
".",
"allclose",
"(",
"increment",
",",
"current_increment",
",",
"rtol",
"=",
"0.05",
",",
"atol",
"=",
"0.1",
")",
":",
"current_group",
".",
"append",
"(",
"dicom",
")",
"if",
"not",
"numpy",
".",
"allclose",
"(",
"increment",
",",
"current_increment",
",",
"rtol",
"=",
"0.05",
",",
"atol",
"=",
"0.1",
")",
":",
"slice_incement_groups",
".",
"append",
"(",
"current_group",
")",
"current_group",
"=",
"[",
"current_group",
"[",
"-",
"1",
"]",
",",
"dicom",
"]",
"increment",
"=",
"current_increment",
"previous_image_position",
"=",
"current_image_position",
"slice_incement_groups",
".",
"append",
"(",
"current_group",
")",
"# Create nibabel objects for each volume based on the corresponding headers",
"slice_incement_niftis",
"=",
"[",
"]",
"for",
"dicom_slices",
"in",
"slice_incement_groups",
":",
"data",
"=",
"common",
".",
"get_volume_pixeldata",
"(",
"dicom_slices",
")",
"affine",
",",
"_",
"=",
"common",
".",
"create_affine",
"(",
"dicom_slices",
")",
"slice_incement_niftis",
".",
"append",
"(",
"nibabel",
".",
"Nifti1Image",
"(",
"data",
",",
"affine",
")",
")",
"nifti_volume",
"=",
"resample",
".",
"resample_nifti_images",
"(",
"slice_incement_niftis",
")",
"return",
"nifti_volume",
",",
"max_slice_increment"
] | If there is slice increment inconsistency detected, for the moment CT images, then split the volumes into subvolumes based on the slice increment and process each volume separately using a space constructed based on the highest resolution increment | [
"If",
"there",
"is",
"slice",
"increment",
"inconsistency",
"detected",
"for",
"the",
"moment",
"CT",
"images",
"then",
"split",
"the",
"volumes",
"into",
"subvolumes",
"based",
"on",
"the",
"slice",
"increment",
"and",
"process",
"each",
"volume",
"separately",
"using",
"a",
"space",
"constructed",
"based",
"on",
"the",
"highest",
"resolution",
"increment"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_generic.py#L174-L209 |
770 | icometrix/dicom2nifti | dicom2nifti/common.py | is_hitachi | def is_hitachi(dicom_input):
"""
Use this function to detect if a dicom series is a hitachi dataset
:param dicom_input: directory with dicom files for 1 scan of a dicom_header
"""
# read dicom header
header = dicom_input[0]
if 'Manufacturer' not in header or 'Modality' not in header:
return False # we try generic conversion in these cases
# check if Modality is mr
if header.Modality.upper() != 'MR':
return False
# check if manufacturer is hitachi
if 'HITACHI' not in header.Manufacturer.upper():
return False
return True | python | def is_hitachi(dicom_input):
"""
Use this function to detect if a dicom series is a hitachi dataset
:param dicom_input: directory with dicom files for 1 scan of a dicom_header
"""
# read dicom header
header = dicom_input[0]
if 'Manufacturer' not in header or 'Modality' not in header:
return False # we try generic conversion in these cases
# check if Modality is mr
if header.Modality.upper() != 'MR':
return False
# check if manufacturer is hitachi
if 'HITACHI' not in header.Manufacturer.upper():
return False
return True | [
"def",
"is_hitachi",
"(",
"dicom_input",
")",
":",
"# read dicom header",
"header",
"=",
"dicom_input",
"[",
"0",
"]",
"if",
"'Manufacturer'",
"not",
"in",
"header",
"or",
"'Modality'",
"not",
"in",
"header",
":",
"return",
"False",
"# we try generic conversion in these cases",
"# check if Modality is mr",
"if",
"header",
".",
"Modality",
".",
"upper",
"(",
")",
"!=",
"'MR'",
":",
"return",
"False",
"# check if manufacturer is hitachi",
"if",
"'HITACHI'",
"not",
"in",
"header",
".",
"Manufacturer",
".",
"upper",
"(",
")",
":",
"return",
"False",
"return",
"True"
] | Use this function to detect if a dicom series is a hitachi dataset
:param dicom_input: directory with dicom files for 1 scan of a dicom_header | [
"Use",
"this",
"function",
"to",
"detect",
"if",
"a",
"dicom",
"series",
"is",
"a",
"hitachi",
"dataset"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L57-L77 |
771 | icometrix/dicom2nifti | dicom2nifti/common.py | is_ge | def is_ge(dicom_input):
"""
Use this function to detect if a dicom series is a GE dataset
:param dicom_input: list with dicom objects
"""
# read dicom header
header = dicom_input[0]
if 'Manufacturer' not in header or 'Modality' not in header:
return False # we try generic conversion in these cases
# check if Modality is mr
if header.Modality.upper() != 'MR':
return False
# check if manufacturer is GE
if 'GE MEDICAL SYSTEMS' not in header.Manufacturer.upper():
return False
return True | python | def is_ge(dicom_input):
"""
Use this function to detect if a dicom series is a GE dataset
:param dicom_input: list with dicom objects
"""
# read dicom header
header = dicom_input[0]
if 'Manufacturer' not in header or 'Modality' not in header:
return False # we try generic conversion in these cases
# check if Modality is mr
if header.Modality.upper() != 'MR':
return False
# check if manufacturer is GE
if 'GE MEDICAL SYSTEMS' not in header.Manufacturer.upper():
return False
return True | [
"def",
"is_ge",
"(",
"dicom_input",
")",
":",
"# read dicom header",
"header",
"=",
"dicom_input",
"[",
"0",
"]",
"if",
"'Manufacturer'",
"not",
"in",
"header",
"or",
"'Modality'",
"not",
"in",
"header",
":",
"return",
"False",
"# we try generic conversion in these cases",
"# check if Modality is mr",
"if",
"header",
".",
"Modality",
".",
"upper",
"(",
")",
"!=",
"'MR'",
":",
"return",
"False",
"# check if manufacturer is GE",
"if",
"'GE MEDICAL SYSTEMS'",
"not",
"in",
"header",
".",
"Manufacturer",
".",
"upper",
"(",
")",
":",
"return",
"False",
"return",
"True"
] | Use this function to detect if a dicom series is a GE dataset
:param dicom_input: list with dicom objects | [
"Use",
"this",
"function",
"to",
"detect",
"if",
"a",
"dicom",
"series",
"is",
"a",
"GE",
"dataset"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L80-L100 |
772 | icometrix/dicom2nifti | dicom2nifti/common.py | is_philips | def is_philips(dicom_input):
"""
Use this function to detect if a dicom series is a philips dataset
:param dicom_input: directory with dicom files for 1 scan of a dicom_header
"""
# read dicom header
header = dicom_input[0]
if 'Manufacturer' not in header or 'Modality' not in header:
return False # we try generic conversion in these cases
# check if Modality is mr
if header.Modality.upper() != 'MR':
return False
# check if manufacturer is Philips
if 'PHILIPS' not in header.Manufacturer.upper():
return False
return True | python | def is_philips(dicom_input):
"""
Use this function to detect if a dicom series is a philips dataset
:param dicom_input: directory with dicom files for 1 scan of a dicom_header
"""
# read dicom header
header = dicom_input[0]
if 'Manufacturer' not in header or 'Modality' not in header:
return False # we try generic conversion in these cases
# check if Modality is mr
if header.Modality.upper() != 'MR':
return False
# check if manufacturer is Philips
if 'PHILIPS' not in header.Manufacturer.upper():
return False
return True | [
"def",
"is_philips",
"(",
"dicom_input",
")",
":",
"# read dicom header",
"header",
"=",
"dicom_input",
"[",
"0",
"]",
"if",
"'Manufacturer'",
"not",
"in",
"header",
"or",
"'Modality'",
"not",
"in",
"header",
":",
"return",
"False",
"# we try generic conversion in these cases",
"# check if Modality is mr",
"if",
"header",
".",
"Modality",
".",
"upper",
"(",
")",
"!=",
"'MR'",
":",
"return",
"False",
"# check if manufacturer is Philips",
"if",
"'PHILIPS'",
"not",
"in",
"header",
".",
"Manufacturer",
".",
"upper",
"(",
")",
":",
"return",
"False",
"return",
"True"
] | Use this function to detect if a dicom series is a philips dataset
:param dicom_input: directory with dicom files for 1 scan of a dicom_header | [
"Use",
"this",
"function",
"to",
"detect",
"if",
"a",
"dicom",
"series",
"is",
"a",
"philips",
"dataset"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L103-L123 |
773 | icometrix/dicom2nifti | dicom2nifti/common.py | is_siemens | def is_siemens(dicom_input):
"""
Use this function to detect if a dicom series is a siemens dataset
:param dicom_input: directory with dicom files for 1 scan
"""
# read dicom header
header = dicom_input[0]
# check if manufacturer is Siemens
if 'Manufacturer' not in header or 'Modality' not in header:
return False # we try generic conversion in these cases
# check if Modality is mr
if header.Modality.upper() != 'MR':
return False
if 'SIEMENS' not in header.Manufacturer.upper():
return False
return True | python | def is_siemens(dicom_input):
"""
Use this function to detect if a dicom series is a siemens dataset
:param dicom_input: directory with dicom files for 1 scan
"""
# read dicom header
header = dicom_input[0]
# check if manufacturer is Siemens
if 'Manufacturer' not in header or 'Modality' not in header:
return False # we try generic conversion in these cases
# check if Modality is mr
if header.Modality.upper() != 'MR':
return False
if 'SIEMENS' not in header.Manufacturer.upper():
return False
return True | [
"def",
"is_siemens",
"(",
"dicom_input",
")",
":",
"# read dicom header",
"header",
"=",
"dicom_input",
"[",
"0",
"]",
"# check if manufacturer is Siemens",
"if",
"'Manufacturer'",
"not",
"in",
"header",
"or",
"'Modality'",
"not",
"in",
"header",
":",
"return",
"False",
"# we try generic conversion in these cases",
"# check if Modality is mr",
"if",
"header",
".",
"Modality",
".",
"upper",
"(",
")",
"!=",
"'MR'",
":",
"return",
"False",
"if",
"'SIEMENS'",
"not",
"in",
"header",
".",
"Manufacturer",
".",
"upper",
"(",
")",
":",
"return",
"False",
"return",
"True"
] | Use this function to detect if a dicom series is a siemens dataset
:param dicom_input: directory with dicom files for 1 scan | [
"Use",
"this",
"function",
"to",
"detect",
"if",
"a",
"dicom",
"series",
"is",
"a",
"siemens",
"dataset"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L126-L146 |
774 | icometrix/dicom2nifti | dicom2nifti/common.py | _get_slice_pixeldata | def _get_slice_pixeldata(dicom_slice):
"""
the slice and intercept calculation can cause the slices to have different dtypes
we should get the correct dtype that can cover all of them
:type dicom_slice: pydicom object
:param dicom_slice: slice to get the pixeldata for
"""
data = dicom_slice.pixel_array
# fix overflow issues for signed data where BitsStored is lower than BitsAllocated and PixelReprentation = 1 (signed)
# for example a hitachi mri scan can have BitsAllocated 16 but BitsStored is 12 and HighBit 11
if dicom_slice.BitsAllocated != dicom_slice.BitsStored and \
dicom_slice.HighBit == dicom_slice.BitsStored - 1 and \
dicom_slice.PixelRepresentation == 1:
if dicom_slice.BitsAllocated == 16:
data = data.astype(numpy.int16) # assert that it is a signed type
max_value = pow(2, dicom_slice.HighBit) - 1
invert_value = -1 ^ max_value
data[data > max_value] = numpy.bitwise_or(data[data > max_value], invert_value)
pass
return apply_scaling(data, dicom_slice) | python | def _get_slice_pixeldata(dicom_slice):
"""
the slice and intercept calculation can cause the slices to have different dtypes
we should get the correct dtype that can cover all of them
:type dicom_slice: pydicom object
:param dicom_slice: slice to get the pixeldata for
"""
data = dicom_slice.pixel_array
# fix overflow issues for signed data where BitsStored is lower than BitsAllocated and PixelReprentation = 1 (signed)
# for example a hitachi mri scan can have BitsAllocated 16 but BitsStored is 12 and HighBit 11
if dicom_slice.BitsAllocated != dicom_slice.BitsStored and \
dicom_slice.HighBit == dicom_slice.BitsStored - 1 and \
dicom_slice.PixelRepresentation == 1:
if dicom_slice.BitsAllocated == 16:
data = data.astype(numpy.int16) # assert that it is a signed type
max_value = pow(2, dicom_slice.HighBit) - 1
invert_value = -1 ^ max_value
data[data > max_value] = numpy.bitwise_or(data[data > max_value], invert_value)
pass
return apply_scaling(data, dicom_slice) | [
"def",
"_get_slice_pixeldata",
"(",
"dicom_slice",
")",
":",
"data",
"=",
"dicom_slice",
".",
"pixel_array",
"# fix overflow issues for signed data where BitsStored is lower than BitsAllocated and PixelReprentation = 1 (signed)",
"# for example a hitachi mri scan can have BitsAllocated 16 but BitsStored is 12 and HighBit 11",
"if",
"dicom_slice",
".",
"BitsAllocated",
"!=",
"dicom_slice",
".",
"BitsStored",
"and",
"dicom_slice",
".",
"HighBit",
"==",
"dicom_slice",
".",
"BitsStored",
"-",
"1",
"and",
"dicom_slice",
".",
"PixelRepresentation",
"==",
"1",
":",
"if",
"dicom_slice",
".",
"BitsAllocated",
"==",
"16",
":",
"data",
"=",
"data",
".",
"astype",
"(",
"numpy",
".",
"int16",
")",
"# assert that it is a signed type",
"max_value",
"=",
"pow",
"(",
"2",
",",
"dicom_slice",
".",
"HighBit",
")",
"-",
"1",
"invert_value",
"=",
"-",
"1",
"^",
"max_value",
"data",
"[",
"data",
">",
"max_value",
"]",
"=",
"numpy",
".",
"bitwise_or",
"(",
"data",
"[",
"data",
">",
"max_value",
"]",
",",
"invert_value",
")",
"pass",
"return",
"apply_scaling",
"(",
"data",
",",
"dicom_slice",
")"
] | the slice and intercept calculation can cause the slices to have different dtypes
we should get the correct dtype that can cover all of them
:type dicom_slice: pydicom object
:param dicom_slice: slice to get the pixeldata for | [
"the",
"slice",
"and",
"intercept",
"calculation",
"can",
"cause",
"the",
"slices",
"to",
"have",
"different",
"dtypes",
"we",
"should",
"get",
"the",
"correct",
"dtype",
"that",
"can",
"cover",
"all",
"of",
"them"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L225-L245 |
775 | icometrix/dicom2nifti | dicom2nifti/common.py | set_fd_value | def set_fd_value(tag, value):
"""
Setters for data that also work with implicit transfersyntax
:param value: the value to set on the tag
:param tag: the tag to read
"""
if tag.VR == 'OB' or tag.VR == 'UN':
value = struct.pack('d', value)
tag.value = value | python | def set_fd_value(tag, value):
"""
Setters for data that also work with implicit transfersyntax
:param value: the value to set on the tag
:param tag: the tag to read
"""
if tag.VR == 'OB' or tag.VR == 'UN':
value = struct.pack('d', value)
tag.value = value | [
"def",
"set_fd_value",
"(",
"tag",
",",
"value",
")",
":",
"if",
"tag",
".",
"VR",
"==",
"'OB'",
"or",
"tag",
".",
"VR",
"==",
"'UN'",
":",
"value",
"=",
"struct",
".",
"pack",
"(",
"'d'",
",",
"value",
")",
"tag",
".",
"value",
"=",
"value"
] | Setters for data that also work with implicit transfersyntax
:param value: the value to set on the tag
:param tag: the tag to read | [
"Setters",
"for",
"data",
"that",
"also",
"work",
"with",
"implicit",
"transfersyntax"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L309-L318 |
776 | icometrix/dicom2nifti | dicom2nifti/common.py | set_ss_value | def set_ss_value(tag, value):
"""
Setter for data that also work with implicit transfersyntax
:param value: the value to set on the tag
:param tag: the tag to read
"""
if tag.VR == 'OB' or tag.VR == 'UN':
value = struct.pack('h', value)
tag.value = value | python | def set_ss_value(tag, value):
"""
Setter for data that also work with implicit transfersyntax
:param value: the value to set on the tag
:param tag: the tag to read
"""
if tag.VR == 'OB' or tag.VR == 'UN':
value = struct.pack('h', value)
tag.value = value | [
"def",
"set_ss_value",
"(",
"tag",
",",
"value",
")",
":",
"if",
"tag",
".",
"VR",
"==",
"'OB'",
"or",
"tag",
".",
"VR",
"==",
"'UN'",
":",
"value",
"=",
"struct",
".",
"pack",
"(",
"'h'",
",",
"value",
")",
"tag",
".",
"value",
"=",
"value"
] | Setter for data that also work with implicit transfersyntax
:param value: the value to set on the tag
:param tag: the tag to read | [
"Setter",
"for",
"data",
"that",
"also",
"work",
"with",
"implicit",
"transfersyntax"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L359-L368 |
777 | icometrix/dicom2nifti | dicom2nifti/common.py | apply_scaling | def apply_scaling(data, dicom_headers):
"""
Rescale the data based on the RescaleSlope and RescaleOffset
Based on the scaling from pydicomseries
:param dicom_headers: dicom headers to use to retreive the scaling factors
:param data: the input data
"""
# Apply the rescaling if needed
private_scale_slope_tag = Tag(0x2005, 0x100E)
private_scale_intercept_tag = Tag(0x2005, 0x100D)
if 'RescaleSlope' in dicom_headers or 'RescaleIntercept' in dicom_headers \
or private_scale_slope_tag in dicom_headers or private_scale_intercept_tag in dicom_headers:
rescale_slope = 1
rescale_intercept = 0
if 'RescaleSlope' in dicom_headers:
rescale_slope = dicom_headers.RescaleSlope
if 'RescaleIntercept' in dicom_headers:
rescale_intercept = dicom_headers.RescaleIntercept
# try:
# # this section can sometimes fail due to unknown private fields
# if private_scale_slope_tag in dicom_headers:
# private_scale_slope = float(dicom_headers[private_scale_slope_tag].value)
# if private_scale_slope_tag in dicom_headers:
# private_scale_slope = float(dicom_headers[private_scale_slope_tag].value)
# except:
# pass
return do_scaling(data, rescale_slope, rescale_intercept)
else:
return data | python | def apply_scaling(data, dicom_headers):
"""
Rescale the data based on the RescaleSlope and RescaleOffset
Based on the scaling from pydicomseries
:param dicom_headers: dicom headers to use to retreive the scaling factors
:param data: the input data
"""
# Apply the rescaling if needed
private_scale_slope_tag = Tag(0x2005, 0x100E)
private_scale_intercept_tag = Tag(0x2005, 0x100D)
if 'RescaleSlope' in dicom_headers or 'RescaleIntercept' in dicom_headers \
or private_scale_slope_tag in dicom_headers or private_scale_intercept_tag in dicom_headers:
rescale_slope = 1
rescale_intercept = 0
if 'RescaleSlope' in dicom_headers:
rescale_slope = dicom_headers.RescaleSlope
if 'RescaleIntercept' in dicom_headers:
rescale_intercept = dicom_headers.RescaleIntercept
# try:
# # this section can sometimes fail due to unknown private fields
# if private_scale_slope_tag in dicom_headers:
# private_scale_slope = float(dicom_headers[private_scale_slope_tag].value)
# if private_scale_slope_tag in dicom_headers:
# private_scale_slope = float(dicom_headers[private_scale_slope_tag].value)
# except:
# pass
return do_scaling(data, rescale_slope, rescale_intercept)
else:
return data | [
"def",
"apply_scaling",
"(",
"data",
",",
"dicom_headers",
")",
":",
"# Apply the rescaling if needed",
"private_scale_slope_tag",
"=",
"Tag",
"(",
"0x2005",
",",
"0x100E",
")",
"private_scale_intercept_tag",
"=",
"Tag",
"(",
"0x2005",
",",
"0x100D",
")",
"if",
"'RescaleSlope'",
"in",
"dicom_headers",
"or",
"'RescaleIntercept'",
"in",
"dicom_headers",
"or",
"private_scale_slope_tag",
"in",
"dicom_headers",
"or",
"private_scale_intercept_tag",
"in",
"dicom_headers",
":",
"rescale_slope",
"=",
"1",
"rescale_intercept",
"=",
"0",
"if",
"'RescaleSlope'",
"in",
"dicom_headers",
":",
"rescale_slope",
"=",
"dicom_headers",
".",
"RescaleSlope",
"if",
"'RescaleIntercept'",
"in",
"dicom_headers",
":",
"rescale_intercept",
"=",
"dicom_headers",
".",
"RescaleIntercept",
"# try:",
"# # this section can sometimes fail due to unknown private fields",
"# if private_scale_slope_tag in dicom_headers:",
"# private_scale_slope = float(dicom_headers[private_scale_slope_tag].value)",
"# if private_scale_slope_tag in dicom_headers:",
"# private_scale_slope = float(dicom_headers[private_scale_slope_tag].value)",
"# except:",
"# pass",
"return",
"do_scaling",
"(",
"data",
",",
"rescale_slope",
",",
"rescale_intercept",
")",
"else",
":",
"return",
"data"
] | Rescale the data based on the RescaleSlope and RescaleOffset
Based on the scaling from pydicomseries
:param dicom_headers: dicom headers to use to retreive the scaling factors
:param data: the input data | [
"Rescale",
"the",
"data",
"based",
"on",
"the",
"RescaleSlope",
"and",
"RescaleOffset",
"Based",
"on",
"the",
"scaling",
"from",
"pydicomseries"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L371-L401 |
778 | icometrix/dicom2nifti | dicom2nifti/common.py | write_bvec_file | def write_bvec_file(bvecs, bvec_file):
"""
Write an array of bvecs to a bvec file
:param bvecs: array with the vectors
:param bvec_file: filepath to write to
"""
if bvec_file is None:
return
logger.info('Saving BVEC file: %s' % bvec_file)
with open(bvec_file, 'w') as text_file:
# Map a dicection to string join them using a space and write to the file
text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 0])))
text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 1])))
text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 2]))) | python | def write_bvec_file(bvecs, bvec_file):
"""
Write an array of bvecs to a bvec file
:param bvecs: array with the vectors
:param bvec_file: filepath to write to
"""
if bvec_file is None:
return
logger.info('Saving BVEC file: %s' % bvec_file)
with open(bvec_file, 'w') as text_file:
# Map a dicection to string join them using a space and write to the file
text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 0])))
text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 1])))
text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 2]))) | [
"def",
"write_bvec_file",
"(",
"bvecs",
",",
"bvec_file",
")",
":",
"if",
"bvec_file",
"is",
"None",
":",
"return",
"logger",
".",
"info",
"(",
"'Saving BVEC file: %s'",
"%",
"bvec_file",
")",
"with",
"open",
"(",
"bvec_file",
",",
"'w'",
")",
"as",
"text_file",
":",
"# Map a dicection to string join them using a space and write to the file",
"text_file",
".",
"write",
"(",
"'%s\\n'",
"%",
"' '",
".",
"join",
"(",
"map",
"(",
"str",
",",
"bvecs",
"[",
":",
",",
"0",
"]",
")",
")",
")",
"text_file",
".",
"write",
"(",
"'%s\\n'",
"%",
"' '",
".",
"join",
"(",
"map",
"(",
"str",
",",
"bvecs",
"[",
":",
",",
"1",
"]",
")",
")",
")",
"text_file",
".",
"write",
"(",
"'%s\\n'",
"%",
"' '",
".",
"join",
"(",
"map",
"(",
"str",
",",
"bvecs",
"[",
":",
",",
"2",
"]",
")",
")",
")"
] | Write an array of bvecs to a bvec file
:param bvecs: array with the vectors
:param bvec_file: filepath to write to | [
"Write",
"an",
"array",
"of",
"bvecs",
"to",
"a",
"bvec",
"file"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L478-L492 |
779 | icometrix/dicom2nifti | dicom2nifti/common.py | write_bval_file | def write_bval_file(bvals, bval_file):
"""
Write an array of bvals to a bval file
:param bvals: array with the values
:param bval_file: filepath to write to
"""
if bval_file is None:
return
logger.info('Saving BVAL file: %s' % bval_file)
with open(bval_file, 'w') as text_file:
# join the bvals using a space and write to the file
text_file.write('%s\n' % ' '.join(map(str, bvals))) | python | def write_bval_file(bvals, bval_file):
"""
Write an array of bvals to a bval file
:param bvals: array with the values
:param bval_file: filepath to write to
"""
if bval_file is None:
return
logger.info('Saving BVAL file: %s' % bval_file)
with open(bval_file, 'w') as text_file:
# join the bvals using a space and write to the file
text_file.write('%s\n' % ' '.join(map(str, bvals))) | [
"def",
"write_bval_file",
"(",
"bvals",
",",
"bval_file",
")",
":",
"if",
"bval_file",
"is",
"None",
":",
"return",
"logger",
".",
"info",
"(",
"'Saving BVAL file: %s'",
"%",
"bval_file",
")",
"with",
"open",
"(",
"bval_file",
",",
"'w'",
")",
"as",
"text_file",
":",
"# join the bvals using a space and write to the file",
"text_file",
".",
"write",
"(",
"'%s\\n'",
"%",
"' '",
".",
"join",
"(",
"map",
"(",
"str",
",",
"bvals",
")",
")",
")"
] | Write an array of bvals to a bval file
:param bvals: array with the values
:param bval_file: filepath to write to | [
"Write",
"an",
"array",
"of",
"bvals",
"to",
"a",
"bval",
"file"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L495-L507 |
780 | icometrix/dicom2nifti | dicom2nifti/common.py | sort_dicoms | def sort_dicoms(dicoms):
"""
Sort the dicoms based om the image possition patient
:param dicoms: list of dicoms
"""
# find most significant axis to use during sorting
# the original way of sorting (first x than y than z) does not work in certain border situations
# where for exampe the X will only slightly change causing the values to remain equal on multiple slices
# messing up the sorting completely)
dicom_input_sorted_x = sorted(dicoms, key=lambda x: (x.ImagePositionPatient[0]))
dicom_input_sorted_y = sorted(dicoms, key=lambda x: (x.ImagePositionPatient[1]))
dicom_input_sorted_z = sorted(dicoms, key=lambda x: (x.ImagePositionPatient[2]))
diff_x = abs(dicom_input_sorted_x[-1].ImagePositionPatient[0] - dicom_input_sorted_x[0].ImagePositionPatient[0])
diff_y = abs(dicom_input_sorted_y[-1].ImagePositionPatient[1] - dicom_input_sorted_y[0].ImagePositionPatient[1])
diff_z = abs(dicom_input_sorted_z[-1].ImagePositionPatient[2] - dicom_input_sorted_z[0].ImagePositionPatient[2])
if diff_x >= diff_y and diff_x >= diff_z:
return dicom_input_sorted_x
if diff_y >= diff_x and diff_y >= diff_z:
return dicom_input_sorted_y
if diff_z >= diff_x and diff_z >= diff_y:
return dicom_input_sorted_z | python | def sort_dicoms(dicoms):
"""
Sort the dicoms based om the image possition patient
:param dicoms: list of dicoms
"""
# find most significant axis to use during sorting
# the original way of sorting (first x than y than z) does not work in certain border situations
# where for exampe the X will only slightly change causing the values to remain equal on multiple slices
# messing up the sorting completely)
dicom_input_sorted_x = sorted(dicoms, key=lambda x: (x.ImagePositionPatient[0]))
dicom_input_sorted_y = sorted(dicoms, key=lambda x: (x.ImagePositionPatient[1]))
dicom_input_sorted_z = sorted(dicoms, key=lambda x: (x.ImagePositionPatient[2]))
diff_x = abs(dicom_input_sorted_x[-1].ImagePositionPatient[0] - dicom_input_sorted_x[0].ImagePositionPatient[0])
diff_y = abs(dicom_input_sorted_y[-1].ImagePositionPatient[1] - dicom_input_sorted_y[0].ImagePositionPatient[1])
diff_z = abs(dicom_input_sorted_z[-1].ImagePositionPatient[2] - dicom_input_sorted_z[0].ImagePositionPatient[2])
if diff_x >= diff_y and diff_x >= diff_z:
return dicom_input_sorted_x
if diff_y >= diff_x and diff_y >= diff_z:
return dicom_input_sorted_y
if diff_z >= diff_x and diff_z >= diff_y:
return dicom_input_sorted_z | [
"def",
"sort_dicoms",
"(",
"dicoms",
")",
":",
"# find most significant axis to use during sorting",
"# the original way of sorting (first x than y than z) does not work in certain border situations",
"# where for exampe the X will only slightly change causing the values to remain equal on multiple slices",
"# messing up the sorting completely)",
"dicom_input_sorted_x",
"=",
"sorted",
"(",
"dicoms",
",",
"key",
"=",
"lambda",
"x",
":",
"(",
"x",
".",
"ImagePositionPatient",
"[",
"0",
"]",
")",
")",
"dicom_input_sorted_y",
"=",
"sorted",
"(",
"dicoms",
",",
"key",
"=",
"lambda",
"x",
":",
"(",
"x",
".",
"ImagePositionPatient",
"[",
"1",
"]",
")",
")",
"dicom_input_sorted_z",
"=",
"sorted",
"(",
"dicoms",
",",
"key",
"=",
"lambda",
"x",
":",
"(",
"x",
".",
"ImagePositionPatient",
"[",
"2",
"]",
")",
")",
"diff_x",
"=",
"abs",
"(",
"dicom_input_sorted_x",
"[",
"-",
"1",
"]",
".",
"ImagePositionPatient",
"[",
"0",
"]",
"-",
"dicom_input_sorted_x",
"[",
"0",
"]",
".",
"ImagePositionPatient",
"[",
"0",
"]",
")",
"diff_y",
"=",
"abs",
"(",
"dicom_input_sorted_y",
"[",
"-",
"1",
"]",
".",
"ImagePositionPatient",
"[",
"1",
"]",
"-",
"dicom_input_sorted_y",
"[",
"0",
"]",
".",
"ImagePositionPatient",
"[",
"1",
"]",
")",
"diff_z",
"=",
"abs",
"(",
"dicom_input_sorted_z",
"[",
"-",
"1",
"]",
".",
"ImagePositionPatient",
"[",
"2",
"]",
"-",
"dicom_input_sorted_z",
"[",
"0",
"]",
".",
"ImagePositionPatient",
"[",
"2",
"]",
")",
"if",
"diff_x",
">=",
"diff_y",
"and",
"diff_x",
">=",
"diff_z",
":",
"return",
"dicom_input_sorted_x",
"if",
"diff_y",
">=",
"diff_x",
"and",
"diff_y",
">=",
"diff_z",
":",
"return",
"dicom_input_sorted_y",
"if",
"diff_z",
">=",
"diff_x",
"and",
"diff_z",
">=",
"diff_y",
":",
"return",
"dicom_input_sorted_z"
] | Sort the dicoms based om the image possition patient
:param dicoms: list of dicoms | [
"Sort",
"the",
"dicoms",
"based",
"om",
"the",
"image",
"possition",
"patient"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L614-L635 |
781 | icometrix/dicom2nifti | dicom2nifti/common.py | validate_orientation | def validate_orientation(dicoms):
"""
Validate that all dicoms have the same orientation
:param dicoms: list of dicoms
"""
first_image_orient1 = numpy.array(dicoms[0].ImageOrientationPatient)[0:3]
first_image_orient2 = numpy.array(dicoms[0].ImageOrientationPatient)[3:6]
for dicom_ in dicoms:
# Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine)
image_orient1 = numpy.array(dicom_.ImageOrientationPatient)[0:3]
image_orient2 = numpy.array(dicom_.ImageOrientationPatient)[3:6]
if not numpy.allclose(image_orient1, first_image_orient1, rtol=0.001, atol=0.001) \
or not numpy.allclose(image_orient2, first_image_orient2, rtol=0.001, atol=0.001):
logger.warning('Image orientations not consistent through all slices')
logger.warning('---------------------------------------------------------')
logger.warning('%s %s' % (image_orient1, first_image_orient1))
logger.warning('%s %s' % (image_orient2, first_image_orient2))
logger.warning('---------------------------------------------------------')
raise ConversionValidationError('IMAGE_ORIENTATION_INCONSISTENT') | python | def validate_orientation(dicoms):
"""
Validate that all dicoms have the same orientation
:param dicoms: list of dicoms
"""
first_image_orient1 = numpy.array(dicoms[0].ImageOrientationPatient)[0:3]
first_image_orient2 = numpy.array(dicoms[0].ImageOrientationPatient)[3:6]
for dicom_ in dicoms:
# Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine)
image_orient1 = numpy.array(dicom_.ImageOrientationPatient)[0:3]
image_orient2 = numpy.array(dicom_.ImageOrientationPatient)[3:6]
if not numpy.allclose(image_orient1, first_image_orient1, rtol=0.001, atol=0.001) \
or not numpy.allclose(image_orient2, first_image_orient2, rtol=0.001, atol=0.001):
logger.warning('Image orientations not consistent through all slices')
logger.warning('---------------------------------------------------------')
logger.warning('%s %s' % (image_orient1, first_image_orient1))
logger.warning('%s %s' % (image_orient2, first_image_orient2))
logger.warning('---------------------------------------------------------')
raise ConversionValidationError('IMAGE_ORIENTATION_INCONSISTENT') | [
"def",
"validate_orientation",
"(",
"dicoms",
")",
":",
"first_image_orient1",
"=",
"numpy",
".",
"array",
"(",
"dicoms",
"[",
"0",
"]",
".",
"ImageOrientationPatient",
")",
"[",
"0",
":",
"3",
"]",
"first_image_orient2",
"=",
"numpy",
".",
"array",
"(",
"dicoms",
"[",
"0",
"]",
".",
"ImageOrientationPatient",
")",
"[",
"3",
":",
"6",
"]",
"for",
"dicom_",
"in",
"dicoms",
":",
"# Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine)",
"image_orient1",
"=",
"numpy",
".",
"array",
"(",
"dicom_",
".",
"ImageOrientationPatient",
")",
"[",
"0",
":",
"3",
"]",
"image_orient2",
"=",
"numpy",
".",
"array",
"(",
"dicom_",
".",
"ImageOrientationPatient",
")",
"[",
"3",
":",
"6",
"]",
"if",
"not",
"numpy",
".",
"allclose",
"(",
"image_orient1",
",",
"first_image_orient1",
",",
"rtol",
"=",
"0.001",
",",
"atol",
"=",
"0.001",
")",
"or",
"not",
"numpy",
".",
"allclose",
"(",
"image_orient2",
",",
"first_image_orient2",
",",
"rtol",
"=",
"0.001",
",",
"atol",
"=",
"0.001",
")",
":",
"logger",
".",
"warning",
"(",
"'Image orientations not consistent through all slices'",
")",
"logger",
".",
"warning",
"(",
"'---------------------------------------------------------'",
")",
"logger",
".",
"warning",
"(",
"'%s %s'",
"%",
"(",
"image_orient1",
",",
"first_image_orient1",
")",
")",
"logger",
".",
"warning",
"(",
"'%s %s'",
"%",
"(",
"image_orient2",
",",
"first_image_orient2",
")",
")",
"logger",
".",
"warning",
"(",
"'---------------------------------------------------------'",
")",
"raise",
"ConversionValidationError",
"(",
"'IMAGE_ORIENTATION_INCONSISTENT'",
")"
] | Validate that all dicoms have the same orientation
:param dicoms: list of dicoms | [
"Validate",
"that",
"all",
"dicoms",
"have",
"the",
"same",
"orientation"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L696-L715 |
782 | icometrix/dicom2nifti | dicom2nifti/common.py | set_tr_te | def set_tr_te(nifti_image, repetition_time, echo_time):
"""
Set the tr and te in the nifti headers
:param echo_time: echo time
:param repetition_time: repetition time
:param nifti_image: nifti image to set the info to
"""
# set the repetition time in pixdim
nifti_image.header.structarr['pixdim'][4] = repetition_time / 1000.0
# set tr and te in db_name field
nifti_image.header.structarr['db_name'] = '?TR:%.3f TE:%d' % (repetition_time, echo_time)
return nifti_image | python | def set_tr_te(nifti_image, repetition_time, echo_time):
"""
Set the tr and te in the nifti headers
:param echo_time: echo time
:param repetition_time: repetition time
:param nifti_image: nifti image to set the info to
"""
# set the repetition time in pixdim
nifti_image.header.structarr['pixdim'][4] = repetition_time / 1000.0
# set tr and te in db_name field
nifti_image.header.structarr['db_name'] = '?TR:%.3f TE:%d' % (repetition_time, echo_time)
return nifti_image | [
"def",
"set_tr_te",
"(",
"nifti_image",
",",
"repetition_time",
",",
"echo_time",
")",
":",
"# set the repetition time in pixdim",
"nifti_image",
".",
"header",
".",
"structarr",
"[",
"'pixdim'",
"]",
"[",
"4",
"]",
"=",
"repetition_time",
"/",
"1000.0",
"# set tr and te in db_name field",
"nifti_image",
".",
"header",
".",
"structarr",
"[",
"'db_name'",
"]",
"=",
"'?TR:%.3f TE:%d'",
"%",
"(",
"repetition_time",
",",
"echo_time",
")",
"return",
"nifti_image"
] | Set the tr and te in the nifti headers
:param echo_time: echo time
:param repetition_time: repetition time
:param nifti_image: nifti image to set the info to | [
"Set",
"the",
"tr",
"and",
"te",
"in",
"the",
"nifti",
"headers"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/common.py#L718-L732 |
783 | icometrix/dicom2nifti | dicom2nifti/convert_ge.py | dicom_to_nifti | def dicom_to_nifti(dicom_input, output_file=None):
"""
This is the main dicom to nifti conversion fuction for ge images.
As input ge images are required. It will then determine the type of images and do the correct conversion
Examples: See unit test
:param output_file: the filepath to the output nifti file
:param dicom_input: list with dicom objects
"""
assert common.is_ge(dicom_input)
logger.info('Reading and sorting dicom files')
grouped_dicoms = _get_grouped_dicoms(dicom_input)
if _is_4d(grouped_dicoms):
logger.info('Found sequence type: 4D')
return _4d_to_nifti(grouped_dicoms, output_file)
logger.info('Assuming anatomical data')
return convert_generic.dicom_to_nifti(dicom_input, output_file) | python | def dicom_to_nifti(dicom_input, output_file=None):
"""
This is the main dicom to nifti conversion fuction for ge images.
As input ge images are required. It will then determine the type of images and do the correct conversion
Examples: See unit test
:param output_file: the filepath to the output nifti file
:param dicom_input: list with dicom objects
"""
assert common.is_ge(dicom_input)
logger.info('Reading and sorting dicom files')
grouped_dicoms = _get_grouped_dicoms(dicom_input)
if _is_4d(grouped_dicoms):
logger.info('Found sequence type: 4D')
return _4d_to_nifti(grouped_dicoms, output_file)
logger.info('Assuming anatomical data')
return convert_generic.dicom_to_nifti(dicom_input, output_file) | [
"def",
"dicom_to_nifti",
"(",
"dicom_input",
",",
"output_file",
"=",
"None",
")",
":",
"assert",
"common",
".",
"is_ge",
"(",
"dicom_input",
")",
"logger",
".",
"info",
"(",
"'Reading and sorting dicom files'",
")",
"grouped_dicoms",
"=",
"_get_grouped_dicoms",
"(",
"dicom_input",
")",
"if",
"_is_4d",
"(",
"grouped_dicoms",
")",
":",
"logger",
".",
"info",
"(",
"'Found sequence type: 4D'",
")",
"return",
"_4d_to_nifti",
"(",
"grouped_dicoms",
",",
"output_file",
")",
"logger",
".",
"info",
"(",
"'Assuming anatomical data'",
")",
"return",
"convert_generic",
".",
"dicom_to_nifti",
"(",
"dicom_input",
",",
"output_file",
")"
] | This is the main dicom to nifti conversion fuction for ge images.
As input ge images are required. It will then determine the type of images and do the correct conversion
Examples: See unit test
:param output_file: the filepath to the output nifti file
:param dicom_input: list with dicom objects | [
"This",
"is",
"the",
"main",
"dicom",
"to",
"nifti",
"conversion",
"fuction",
"for",
"ge",
"images",
".",
"As",
"input",
"ge",
"images",
"are",
"required",
".",
"It",
"will",
"then",
"determine",
"the",
"type",
"of",
"images",
"and",
"do",
"the",
"correct",
"conversion"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_ge.py#L32-L52 |
784 | icometrix/dicom2nifti | dicom2nifti/convert_ge.py | _4d_to_nifti | def _4d_to_nifti(grouped_dicoms, output_file):
"""
This function will convert ge 4d series to a nifti
"""
# Create mosaic block
logger.info('Creating data block')
full_block = _get_full_block(grouped_dicoms)
logger.info('Creating affine')
# Create the nifti header info
affine, slice_increment = common.create_affine(grouped_dicoms[0])
logger.info('Creating nifti')
# Convert to nifti
nii_image = nibabel.Nifti1Image(full_block, affine)
common.set_tr_te(nii_image, float(grouped_dicoms[0][0].RepetitionTime),
float(grouped_dicoms[0][0].EchoTime))
logger.info('Saving nifti to disk %s' % output_file)
# Save to disk
if output_file is not None:
nii_image.to_filename(output_file)
if _is_diffusion_imaging(grouped_dicoms):
bval_file = None
bvec_file = None
# Create the bval en bevec files
if output_file is not None:
base_path = os.path.dirname(output_file)
base_name = os.path.splitext(os.path.splitext(os.path.basename(output_file))[0])[0]
logger.info('Creating bval en bvec files')
bval_file = '%s/%s.bval' % (base_path, base_name)
bvec_file = '%s/%s.bvec' % (base_path, base_name)
bval, bvec = _create_bvals_bvecs(grouped_dicoms, bval_file, bvec_file)
return {'NII_FILE': output_file,
'BVAL_FILE': bval_file,
'BVEC_FILE': bvec_file,
'NII': nii_image,
'BVAL': bval,
'BVEC': bvec,
'MAX_SLICE_INCREMENT': slice_increment
}
return {'NII_FILE': output_file,
'NII': nii_image} | python | def _4d_to_nifti(grouped_dicoms, output_file):
"""
This function will convert ge 4d series to a nifti
"""
# Create mosaic block
logger.info('Creating data block')
full_block = _get_full_block(grouped_dicoms)
logger.info('Creating affine')
# Create the nifti header info
affine, slice_increment = common.create_affine(grouped_dicoms[0])
logger.info('Creating nifti')
# Convert to nifti
nii_image = nibabel.Nifti1Image(full_block, affine)
common.set_tr_te(nii_image, float(grouped_dicoms[0][0].RepetitionTime),
float(grouped_dicoms[0][0].EchoTime))
logger.info('Saving nifti to disk %s' % output_file)
# Save to disk
if output_file is not None:
nii_image.to_filename(output_file)
if _is_diffusion_imaging(grouped_dicoms):
bval_file = None
bvec_file = None
# Create the bval en bevec files
if output_file is not None:
base_path = os.path.dirname(output_file)
base_name = os.path.splitext(os.path.splitext(os.path.basename(output_file))[0])[0]
logger.info('Creating bval en bvec files')
bval_file = '%s/%s.bval' % (base_path, base_name)
bvec_file = '%s/%s.bvec' % (base_path, base_name)
bval, bvec = _create_bvals_bvecs(grouped_dicoms, bval_file, bvec_file)
return {'NII_FILE': output_file,
'BVAL_FILE': bval_file,
'BVEC_FILE': bvec_file,
'NII': nii_image,
'BVAL': bval,
'BVEC': bvec,
'MAX_SLICE_INCREMENT': slice_increment
}
return {'NII_FILE': output_file,
'NII': nii_image} | [
"def",
"_4d_to_nifti",
"(",
"grouped_dicoms",
",",
"output_file",
")",
":",
"# Create mosaic block",
"logger",
".",
"info",
"(",
"'Creating data block'",
")",
"full_block",
"=",
"_get_full_block",
"(",
"grouped_dicoms",
")",
"logger",
".",
"info",
"(",
"'Creating affine'",
")",
"# Create the nifti header info",
"affine",
",",
"slice_increment",
"=",
"common",
".",
"create_affine",
"(",
"grouped_dicoms",
"[",
"0",
"]",
")",
"logger",
".",
"info",
"(",
"'Creating nifti'",
")",
"# Convert to nifti",
"nii_image",
"=",
"nibabel",
".",
"Nifti1Image",
"(",
"full_block",
",",
"affine",
")",
"common",
".",
"set_tr_te",
"(",
"nii_image",
",",
"float",
"(",
"grouped_dicoms",
"[",
"0",
"]",
"[",
"0",
"]",
".",
"RepetitionTime",
")",
",",
"float",
"(",
"grouped_dicoms",
"[",
"0",
"]",
"[",
"0",
"]",
".",
"EchoTime",
")",
")",
"logger",
".",
"info",
"(",
"'Saving nifti to disk %s'",
"%",
"output_file",
")",
"# Save to disk",
"if",
"output_file",
"is",
"not",
"None",
":",
"nii_image",
".",
"to_filename",
"(",
"output_file",
")",
"if",
"_is_diffusion_imaging",
"(",
"grouped_dicoms",
")",
":",
"bval_file",
"=",
"None",
"bvec_file",
"=",
"None",
"# Create the bval en bevec files",
"if",
"output_file",
"is",
"not",
"None",
":",
"base_path",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"output_file",
")",
"base_name",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"os",
".",
"path",
".",
"splitext",
"(",
"os",
".",
"path",
".",
"basename",
"(",
"output_file",
")",
")",
"[",
"0",
"]",
")",
"[",
"0",
"]",
"logger",
".",
"info",
"(",
"'Creating bval en bvec files'",
")",
"bval_file",
"=",
"'%s/%s.bval'",
"%",
"(",
"base_path",
",",
"base_name",
")",
"bvec_file",
"=",
"'%s/%s.bvec'",
"%",
"(",
"base_path",
",",
"base_name",
")",
"bval",
",",
"bvec",
"=",
"_create_bvals_bvecs",
"(",
"grouped_dicoms",
",",
"bval_file",
",",
"bvec_file",
")",
"return",
"{",
"'NII_FILE'",
":",
"output_file",
",",
"'BVAL_FILE'",
":",
"bval_file",
",",
"'BVEC_FILE'",
":",
"bvec_file",
",",
"'NII'",
":",
"nii_image",
",",
"'BVAL'",
":",
"bval",
",",
"'BVEC'",
":",
"bvec",
",",
"'MAX_SLICE_INCREMENT'",
":",
"slice_increment",
"}",
"return",
"{",
"'NII_FILE'",
":",
"output_file",
",",
"'NII'",
":",
"nii_image",
"}"
] | This function will convert ge 4d series to a nifti | [
"This",
"function",
"will",
"convert",
"ge",
"4d",
"series",
"to",
"a",
"nifti"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_ge.py#L91-L136 |
785 | icometrix/dicom2nifti | dicom2nifti/convert_hitachi.py | dicom_to_nifti | def dicom_to_nifti(dicom_input, output_file=None):
"""
This is the main dicom to nifti conversion fuction for hitachi images.
As input hitachi images are required. It will then determine the type of images and do the correct conversion
Examples: See unit test
:param output_file: file path to the output nifti
:param dicom_input: directory with dicom files for 1 scan
"""
assert common.is_hitachi(dicom_input)
# TODO add validations and conversion for DTI and fMRI once testdata is available
logger.info('Assuming anatomical data')
return convert_generic.dicom_to_nifti(dicom_input, output_file) | python | def dicom_to_nifti(dicom_input, output_file=None):
"""
This is the main dicom to nifti conversion fuction for hitachi images.
As input hitachi images are required. It will then determine the type of images and do the correct conversion
Examples: See unit test
:param output_file: file path to the output nifti
:param dicom_input: directory with dicom files for 1 scan
"""
assert common.is_hitachi(dicom_input)
# TODO add validations and conversion for DTI and fMRI once testdata is available
logger.info('Assuming anatomical data')
return convert_generic.dicom_to_nifti(dicom_input, output_file) | [
"def",
"dicom_to_nifti",
"(",
"dicom_input",
",",
"output_file",
"=",
"None",
")",
":",
"assert",
"common",
".",
"is_hitachi",
"(",
"dicom_input",
")",
"# TODO add validations and conversion for DTI and fMRI once testdata is available",
"logger",
".",
"info",
"(",
"'Assuming anatomical data'",
")",
"return",
"convert_generic",
".",
"dicom_to_nifti",
"(",
"dicom_input",
",",
"output_file",
")"
] | This is the main dicom to nifti conversion fuction for hitachi images.
As input hitachi images are required. It will then determine the type of images and do the correct conversion
Examples: See unit test
:param output_file: file path to the output nifti
:param dicom_input: directory with dicom files for 1 scan | [
"This",
"is",
"the",
"main",
"dicom",
"to",
"nifti",
"conversion",
"fuction",
"for",
"hitachi",
"images",
".",
"As",
"input",
"hitachi",
"images",
"are",
"required",
".",
"It",
"will",
"then",
"determine",
"the",
"type",
"of",
"images",
"and",
"do",
"the",
"correct",
"conversion"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_hitachi.py#L25-L41 |
786 | icometrix/dicom2nifti | dicom2nifti/convert_siemens.py | dicom_to_nifti | def dicom_to_nifti(dicom_input, output_file=None):
"""
This is the main dicom to nifti conversion function for ge images.
As input ge images are required. It will then determine the type of images and do the correct conversion
:param output_file: filepath to the output nifti
:param dicom_input: directory with dicom files for 1 scan
"""
assert common.is_siemens(dicom_input)
if _is_4d(dicom_input):
logger.info('Found sequence type: MOSAIC 4D')
return _mosaic_4d_to_nifti(dicom_input, output_file)
grouped_dicoms = _classic_get_grouped_dicoms(dicom_input)
if _is_classic_4d(grouped_dicoms):
logger.info('Found sequence type: CLASSIC 4D')
return _classic_4d_to_nifti(grouped_dicoms, output_file)
logger.info('Assuming anatomical data')
return convert_generic.dicom_to_nifti(dicom_input, output_file) | python | def dicom_to_nifti(dicom_input, output_file=None):
"""
This is the main dicom to nifti conversion function for ge images.
As input ge images are required. It will then determine the type of images and do the correct conversion
:param output_file: filepath to the output nifti
:param dicom_input: directory with dicom files for 1 scan
"""
assert common.is_siemens(dicom_input)
if _is_4d(dicom_input):
logger.info('Found sequence type: MOSAIC 4D')
return _mosaic_4d_to_nifti(dicom_input, output_file)
grouped_dicoms = _classic_get_grouped_dicoms(dicom_input)
if _is_classic_4d(grouped_dicoms):
logger.info('Found sequence type: CLASSIC 4D')
return _classic_4d_to_nifti(grouped_dicoms, output_file)
logger.info('Assuming anatomical data')
return convert_generic.dicom_to_nifti(dicom_input, output_file) | [
"def",
"dicom_to_nifti",
"(",
"dicom_input",
",",
"output_file",
"=",
"None",
")",
":",
"assert",
"common",
".",
"is_siemens",
"(",
"dicom_input",
")",
"if",
"_is_4d",
"(",
"dicom_input",
")",
":",
"logger",
".",
"info",
"(",
"'Found sequence type: MOSAIC 4D'",
")",
"return",
"_mosaic_4d_to_nifti",
"(",
"dicom_input",
",",
"output_file",
")",
"grouped_dicoms",
"=",
"_classic_get_grouped_dicoms",
"(",
"dicom_input",
")",
"if",
"_is_classic_4d",
"(",
"grouped_dicoms",
")",
":",
"logger",
".",
"info",
"(",
"'Found sequence type: CLASSIC 4D'",
")",
"return",
"_classic_4d_to_nifti",
"(",
"grouped_dicoms",
",",
"output_file",
")",
"logger",
".",
"info",
"(",
"'Assuming anatomical data'",
")",
"return",
"convert_generic",
".",
"dicom_to_nifti",
"(",
"dicom_input",
",",
"output_file",
")"
] | This is the main dicom to nifti conversion function for ge images.
As input ge images are required. It will then determine the type of images and do the correct conversion
:param output_file: filepath to the output nifti
:param dicom_input: directory with dicom files for 1 scan | [
"This",
"is",
"the",
"main",
"dicom",
"to",
"nifti",
"conversion",
"function",
"for",
"ge",
"images",
".",
"As",
"input",
"ge",
"images",
"are",
"required",
".",
"It",
"will",
"then",
"determine",
"the",
"type",
"of",
"images",
"and",
"do",
"the",
"correct",
"conversion"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_siemens.py#L45-L66 |
787 | icometrix/dicom2nifti | dicom2nifti/convert_siemens.py | _get_sorted_mosaics | def _get_sorted_mosaics(dicom_input):
"""
Search all mosaics in the dicom directory, sort and validate them
"""
# Order all dicom files by acquisition number
sorted_mosaics = sorted(dicom_input, key=lambda x: x.AcquisitionNumber)
for index in range(0, len(sorted_mosaics) - 1):
# Validate that there are no duplicate AcquisitionNumber
if sorted_mosaics[index].AcquisitionNumber >= sorted_mosaics[index + 1].AcquisitionNumber:
raise ConversionValidationError("INCONSISTENT_ACQUISITION_NUMBERS")
return sorted_mosaics | python | def _get_sorted_mosaics(dicom_input):
"""
Search all mosaics in the dicom directory, sort and validate them
"""
# Order all dicom files by acquisition number
sorted_mosaics = sorted(dicom_input, key=lambda x: x.AcquisitionNumber)
for index in range(0, len(sorted_mosaics) - 1):
# Validate that there are no duplicate AcquisitionNumber
if sorted_mosaics[index].AcquisitionNumber >= sorted_mosaics[index + 1].AcquisitionNumber:
raise ConversionValidationError("INCONSISTENT_ACQUISITION_NUMBERS")
return sorted_mosaics | [
"def",
"_get_sorted_mosaics",
"(",
"dicom_input",
")",
":",
"# Order all dicom files by acquisition number",
"sorted_mosaics",
"=",
"sorted",
"(",
"dicom_input",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
".",
"AcquisitionNumber",
")",
"for",
"index",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"sorted_mosaics",
")",
"-",
"1",
")",
":",
"# Validate that there are no duplicate AcquisitionNumber",
"if",
"sorted_mosaics",
"[",
"index",
"]",
".",
"AcquisitionNumber",
">=",
"sorted_mosaics",
"[",
"index",
"+",
"1",
"]",
".",
"AcquisitionNumber",
":",
"raise",
"ConversionValidationError",
"(",
"\"INCONSISTENT_ACQUISITION_NUMBERS\"",
")",
"return",
"sorted_mosaics"
] | Search all mosaics in the dicom directory, sort and validate them | [
"Search",
"all",
"mosaics",
"in",
"the",
"dicom",
"directory",
"sort",
"and",
"validate",
"them"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_siemens.py#L324-L336 |
788 | icometrix/dicom2nifti | dicom2nifti/convert_siemens.py | _mosaic_to_block | def _mosaic_to_block(mosaic):
"""
Convert a mosaic slice to a block of data by reading the headers, splitting the mosaic and appending
"""
# get the mosaic type
mosaic_type = _get_mosaic_type(mosaic)
# get the size of one tile format is 64p*64 or 80*80 or something similar
matches = re.findall(r'(\d+)\D+(\d+)\D*', str(mosaic[Tag(0x0051, 0x100b)].value))[0]
ascconv_headers = _get_asconv_headers(mosaic)
size = [int(matches[0]),
int(matches[1]),
int(re.findall(r'sSliceArray\.lSize\s*=\s*(\d+)', ascconv_headers)[0])]
# get the number of rows and columns
number_x = int(mosaic.Rows / size[0])
number_y = int(mosaic.Columns / size[1])
# recreate 2d slice
data_2d = mosaic.pixel_array
# create 3d block
data_3d = numpy.zeros((size[2], size[1], size[0]), dtype=data_2d.dtype)
# fill 3d block by taking the correct portions of the slice
z_index = 0
for y_index in range(0, number_y):
if z_index >= size[2]:
break
for x_index in range(0, number_x):
if mosaic_type == MosaicType.ASCENDING:
data_3d[z_index, :, :] = data_2d[size[1] * y_index:size[1] * (y_index + 1),
size[0] * x_index:size[0] * (x_index + 1)]
else:
data_3d[size[2] - (z_index + 1), :, :] = data_2d[size[1] * y_index:size[1] * (y_index + 1),
size[0] * x_index:size[0] * (x_index + 1)]
z_index += 1
if z_index >= size[2]:
break
# reorient the block of data
data_3d = numpy.transpose(data_3d, (2, 1, 0))
return data_3d | python | def _mosaic_to_block(mosaic):
"""
Convert a mosaic slice to a block of data by reading the headers, splitting the mosaic and appending
"""
# get the mosaic type
mosaic_type = _get_mosaic_type(mosaic)
# get the size of one tile format is 64p*64 or 80*80 or something similar
matches = re.findall(r'(\d+)\D+(\d+)\D*', str(mosaic[Tag(0x0051, 0x100b)].value))[0]
ascconv_headers = _get_asconv_headers(mosaic)
size = [int(matches[0]),
int(matches[1]),
int(re.findall(r'sSliceArray\.lSize\s*=\s*(\d+)', ascconv_headers)[0])]
# get the number of rows and columns
number_x = int(mosaic.Rows / size[0])
number_y = int(mosaic.Columns / size[1])
# recreate 2d slice
data_2d = mosaic.pixel_array
# create 3d block
data_3d = numpy.zeros((size[2], size[1], size[0]), dtype=data_2d.dtype)
# fill 3d block by taking the correct portions of the slice
z_index = 0
for y_index in range(0, number_y):
if z_index >= size[2]:
break
for x_index in range(0, number_x):
if mosaic_type == MosaicType.ASCENDING:
data_3d[z_index, :, :] = data_2d[size[1] * y_index:size[1] * (y_index + 1),
size[0] * x_index:size[0] * (x_index + 1)]
else:
data_3d[size[2] - (z_index + 1), :, :] = data_2d[size[1] * y_index:size[1] * (y_index + 1),
size[0] * x_index:size[0] * (x_index + 1)]
z_index += 1
if z_index >= size[2]:
break
# reorient the block of data
data_3d = numpy.transpose(data_3d, (2, 1, 0))
return data_3d | [
"def",
"_mosaic_to_block",
"(",
"mosaic",
")",
":",
"# get the mosaic type",
"mosaic_type",
"=",
"_get_mosaic_type",
"(",
"mosaic",
")",
"# get the size of one tile format is 64p*64 or 80*80 or something similar",
"matches",
"=",
"re",
".",
"findall",
"(",
"r'(\\d+)\\D+(\\d+)\\D*'",
",",
"str",
"(",
"mosaic",
"[",
"Tag",
"(",
"0x0051",
",",
"0x100b",
")",
"]",
".",
"value",
")",
")",
"[",
"0",
"]",
"ascconv_headers",
"=",
"_get_asconv_headers",
"(",
"mosaic",
")",
"size",
"=",
"[",
"int",
"(",
"matches",
"[",
"0",
"]",
")",
",",
"int",
"(",
"matches",
"[",
"1",
"]",
")",
",",
"int",
"(",
"re",
".",
"findall",
"(",
"r'sSliceArray\\.lSize\\s*=\\s*(\\d+)'",
",",
"ascconv_headers",
")",
"[",
"0",
"]",
")",
"]",
"# get the number of rows and columns",
"number_x",
"=",
"int",
"(",
"mosaic",
".",
"Rows",
"/",
"size",
"[",
"0",
"]",
")",
"number_y",
"=",
"int",
"(",
"mosaic",
".",
"Columns",
"/",
"size",
"[",
"1",
"]",
")",
"# recreate 2d slice",
"data_2d",
"=",
"mosaic",
".",
"pixel_array",
"# create 3d block",
"data_3d",
"=",
"numpy",
".",
"zeros",
"(",
"(",
"size",
"[",
"2",
"]",
",",
"size",
"[",
"1",
"]",
",",
"size",
"[",
"0",
"]",
")",
",",
"dtype",
"=",
"data_2d",
".",
"dtype",
")",
"# fill 3d block by taking the correct portions of the slice",
"z_index",
"=",
"0",
"for",
"y_index",
"in",
"range",
"(",
"0",
",",
"number_y",
")",
":",
"if",
"z_index",
">=",
"size",
"[",
"2",
"]",
":",
"break",
"for",
"x_index",
"in",
"range",
"(",
"0",
",",
"number_x",
")",
":",
"if",
"mosaic_type",
"==",
"MosaicType",
".",
"ASCENDING",
":",
"data_3d",
"[",
"z_index",
",",
":",
",",
":",
"]",
"=",
"data_2d",
"[",
"size",
"[",
"1",
"]",
"*",
"y_index",
":",
"size",
"[",
"1",
"]",
"*",
"(",
"y_index",
"+",
"1",
")",
",",
"size",
"[",
"0",
"]",
"*",
"x_index",
":",
"size",
"[",
"0",
"]",
"*",
"(",
"x_index",
"+",
"1",
")",
"]",
"else",
":",
"data_3d",
"[",
"size",
"[",
"2",
"]",
"-",
"(",
"z_index",
"+",
"1",
")",
",",
":",
",",
":",
"]",
"=",
"data_2d",
"[",
"size",
"[",
"1",
"]",
"*",
"y_index",
":",
"size",
"[",
"1",
"]",
"*",
"(",
"y_index",
"+",
"1",
")",
",",
"size",
"[",
"0",
"]",
"*",
"x_index",
":",
"size",
"[",
"0",
"]",
"*",
"(",
"x_index",
"+",
"1",
")",
"]",
"z_index",
"+=",
"1",
"if",
"z_index",
">=",
"size",
"[",
"2",
"]",
":",
"break",
"# reorient the block of data",
"data_3d",
"=",
"numpy",
".",
"transpose",
"(",
"data_3d",
",",
"(",
"2",
",",
"1",
",",
"0",
")",
")",
"return",
"data_3d"
] | Convert a mosaic slice to a block of data by reading the headers, splitting the mosaic and appending | [
"Convert",
"a",
"mosaic",
"slice",
"to",
"a",
"block",
"of",
"data",
"by",
"reading",
"the",
"headers",
"splitting",
"the",
"mosaic",
"and",
"appending"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_siemens.py#L399-L440 |
789 | icometrix/dicom2nifti | dicom2nifti/convert_siemens.py | _create_affine_siemens_mosaic | def _create_affine_siemens_mosaic(dicom_input):
"""
Function to create the affine matrix for a siemens mosaic dataset
This will work for siemens dti and 4d if in mosaic format
"""
# read dicom series with pds
dicom_header = dicom_input[0]
# Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine)
image_orient1 = numpy.array(dicom_header.ImageOrientationPatient)[0:3]
image_orient2 = numpy.array(dicom_header.ImageOrientationPatient)[3:6]
normal = numpy.cross(image_orient1, image_orient2)
delta_r = float(dicom_header.PixelSpacing[0])
delta_c = float(dicom_header.PixelSpacing[1])
image_pos = dicom_header.ImagePositionPatient
delta_s = dicom_header.SpacingBetweenSlices
return numpy.array(
[[-image_orient1[0] * delta_c, -image_orient2[0] * delta_r, -delta_s * normal[0], -image_pos[0]],
[-image_orient1[1] * delta_c, -image_orient2[1] * delta_r, -delta_s * normal[1], -image_pos[1]],
[image_orient1[2] * delta_c, image_orient2[2] * delta_r, delta_s * normal[2], image_pos[2]],
[0, 0, 0, 1]]) | python | def _create_affine_siemens_mosaic(dicom_input):
"""
Function to create the affine matrix for a siemens mosaic dataset
This will work for siemens dti and 4d if in mosaic format
"""
# read dicom series with pds
dicom_header = dicom_input[0]
# Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine)
image_orient1 = numpy.array(dicom_header.ImageOrientationPatient)[0:3]
image_orient2 = numpy.array(dicom_header.ImageOrientationPatient)[3:6]
normal = numpy.cross(image_orient1, image_orient2)
delta_r = float(dicom_header.PixelSpacing[0])
delta_c = float(dicom_header.PixelSpacing[1])
image_pos = dicom_header.ImagePositionPatient
delta_s = dicom_header.SpacingBetweenSlices
return numpy.array(
[[-image_orient1[0] * delta_c, -image_orient2[0] * delta_r, -delta_s * normal[0], -image_pos[0]],
[-image_orient1[1] * delta_c, -image_orient2[1] * delta_r, -delta_s * normal[1], -image_pos[1]],
[image_orient1[2] * delta_c, image_orient2[2] * delta_r, delta_s * normal[2], image_pos[2]],
[0, 0, 0, 1]]) | [
"def",
"_create_affine_siemens_mosaic",
"(",
"dicom_input",
")",
":",
"# read dicom series with pds",
"dicom_header",
"=",
"dicom_input",
"[",
"0",
"]",
"# Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine)",
"image_orient1",
"=",
"numpy",
".",
"array",
"(",
"dicom_header",
".",
"ImageOrientationPatient",
")",
"[",
"0",
":",
"3",
"]",
"image_orient2",
"=",
"numpy",
".",
"array",
"(",
"dicom_header",
".",
"ImageOrientationPatient",
")",
"[",
"3",
":",
"6",
"]",
"normal",
"=",
"numpy",
".",
"cross",
"(",
"image_orient1",
",",
"image_orient2",
")",
"delta_r",
"=",
"float",
"(",
"dicom_header",
".",
"PixelSpacing",
"[",
"0",
"]",
")",
"delta_c",
"=",
"float",
"(",
"dicom_header",
".",
"PixelSpacing",
"[",
"1",
"]",
")",
"image_pos",
"=",
"dicom_header",
".",
"ImagePositionPatient",
"delta_s",
"=",
"dicom_header",
".",
"SpacingBetweenSlices",
"return",
"numpy",
".",
"array",
"(",
"[",
"[",
"-",
"image_orient1",
"[",
"0",
"]",
"*",
"delta_c",
",",
"-",
"image_orient2",
"[",
"0",
"]",
"*",
"delta_r",
",",
"-",
"delta_s",
"*",
"normal",
"[",
"0",
"]",
",",
"-",
"image_pos",
"[",
"0",
"]",
"]",
",",
"[",
"-",
"image_orient1",
"[",
"1",
"]",
"*",
"delta_c",
",",
"-",
"image_orient2",
"[",
"1",
"]",
"*",
"delta_r",
",",
"-",
"delta_s",
"*",
"normal",
"[",
"1",
"]",
",",
"-",
"image_pos",
"[",
"1",
"]",
"]",
",",
"[",
"image_orient1",
"[",
"2",
"]",
"*",
"delta_c",
",",
"image_orient2",
"[",
"2",
"]",
"*",
"delta_r",
",",
"delta_s",
"*",
"normal",
"[",
"2",
"]",
",",
"image_pos",
"[",
"2",
"]",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
",",
"1",
"]",
"]",
")"
] | Function to create the affine matrix for a siemens mosaic dataset
This will work for siemens dti and 4d if in mosaic format | [
"Function",
"to",
"create",
"the",
"affine",
"matrix",
"for",
"a",
"siemens",
"mosaic",
"dataset",
"This",
"will",
"work",
"for",
"siemens",
"dti",
"and",
"4d",
"if",
"in",
"mosaic",
"format"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_siemens.py#L443-L467 |
790 | icometrix/dicom2nifti | dicom2nifti/resample.py | resample_single_nifti | def resample_single_nifti(input_nifti):
"""
Resample a gantry tilted image in place
"""
# read the input image
input_image = nibabel.load(input_nifti)
output_image = resample_nifti_images([input_image])
output_image.to_filename(input_nifti) | python | def resample_single_nifti(input_nifti):
"""
Resample a gantry tilted image in place
"""
# read the input image
input_image = nibabel.load(input_nifti)
output_image = resample_nifti_images([input_image])
output_image.to_filename(input_nifti) | [
"def",
"resample_single_nifti",
"(",
"input_nifti",
")",
":",
"# read the input image",
"input_image",
"=",
"nibabel",
".",
"load",
"(",
"input_nifti",
")",
"output_image",
"=",
"resample_nifti_images",
"(",
"[",
"input_image",
"]",
")",
"output_image",
".",
"to_filename",
"(",
"input_nifti",
")"
] | Resample a gantry tilted image in place | [
"Resample",
"a",
"gantry",
"tilted",
"image",
"in",
"place"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/resample.py#L15-L22 |
791 | icometrix/dicom2nifti | dicom2nifti/convert_dir.py | convert_directory | def convert_directory(dicom_directory, output_folder, compression=True, reorient=True):
"""
This function will order all dicom files by series and order them one by one
:param compression: enable or disable gzip compression
:param reorient: reorient the dicoms according to LAS orientation
:param output_folder: folder to write the nifti files to
:param dicom_directory: directory with dicom files
"""
# sort dicom files by series uid
dicom_series = {}
for root, _, files in os.walk(dicom_directory):
for dicom_file in files:
file_path = os.path.join(root, dicom_file)
# noinspection PyBroadException
try:
if compressed_dicom.is_dicom_file(file_path):
# read the dicom as fast as possible
# (max length for SeriesInstanceUID is 64 so defer_size 100 should be ok)
dicom_headers = compressed_dicom.read_file(file_path,
defer_size="1 KB",
stop_before_pixels=False,
force=dicom2nifti.settings.pydicom_read_force)
if not _is_valid_imaging_dicom(dicom_headers):
logger.info("Skipping: %s" % file_path)
continue
logger.info("Organizing: %s" % file_path)
if dicom_headers.SeriesInstanceUID not in dicom_series:
dicom_series[dicom_headers.SeriesInstanceUID] = []
dicom_series[dicom_headers.SeriesInstanceUID].append(dicom_headers)
except: # Explicitly capturing all errors here to be able to continue processing all the rest
logger.warning("Unable to read: %s" % file_path)
traceback.print_exc()
# start converting one by one
for series_id, dicom_input in iteritems(dicom_series):
base_filename = ""
# noinspection PyBroadException
try:
# construct the filename for the nifti
base_filename = ""
if 'SeriesNumber' in dicom_input[0]:
base_filename = _remove_accents('%s' % dicom_input[0].SeriesNumber)
if 'SeriesDescription' in dicom_input[0]:
base_filename = _remove_accents('%s_%s' % (base_filename,
dicom_input[0].SeriesDescription))
elif 'SequenceName' in dicom_input[0]:
base_filename = _remove_accents('%s_%s' % (base_filename,
dicom_input[0].SequenceName))
elif 'ProtocolName' in dicom_input[0]:
base_filename = _remove_accents('%s_%s' % (base_filename,
dicom_input[0].ProtocolName))
else:
base_filename = _remove_accents(dicom_input[0].SeriesInstanceUID)
logger.info('--------------------------------------------')
logger.info('Start converting %s' % base_filename)
if compression:
nifti_file = os.path.join(output_folder, base_filename + '.nii.gz')
else:
nifti_file = os.path.join(output_folder, base_filename + '.nii')
convert_dicom.dicom_array_to_nifti(dicom_input, nifti_file, reorient)
gc.collect()
except: # Explicitly capturing app exceptions here to be able to continue processing
logger.info("Unable to convert: %s" % base_filename)
traceback.print_exc() | python | def convert_directory(dicom_directory, output_folder, compression=True, reorient=True):
"""
This function will order all dicom files by series and order them one by one
:param compression: enable or disable gzip compression
:param reorient: reorient the dicoms according to LAS orientation
:param output_folder: folder to write the nifti files to
:param dicom_directory: directory with dicom files
"""
# sort dicom files by series uid
dicom_series = {}
for root, _, files in os.walk(dicom_directory):
for dicom_file in files:
file_path = os.path.join(root, dicom_file)
# noinspection PyBroadException
try:
if compressed_dicom.is_dicom_file(file_path):
# read the dicom as fast as possible
# (max length for SeriesInstanceUID is 64 so defer_size 100 should be ok)
dicom_headers = compressed_dicom.read_file(file_path,
defer_size="1 KB",
stop_before_pixels=False,
force=dicom2nifti.settings.pydicom_read_force)
if not _is_valid_imaging_dicom(dicom_headers):
logger.info("Skipping: %s" % file_path)
continue
logger.info("Organizing: %s" % file_path)
if dicom_headers.SeriesInstanceUID not in dicom_series:
dicom_series[dicom_headers.SeriesInstanceUID] = []
dicom_series[dicom_headers.SeriesInstanceUID].append(dicom_headers)
except: # Explicitly capturing all errors here to be able to continue processing all the rest
logger.warning("Unable to read: %s" % file_path)
traceback.print_exc()
# start converting one by one
for series_id, dicom_input in iteritems(dicom_series):
base_filename = ""
# noinspection PyBroadException
try:
# construct the filename for the nifti
base_filename = ""
if 'SeriesNumber' in dicom_input[0]:
base_filename = _remove_accents('%s' % dicom_input[0].SeriesNumber)
if 'SeriesDescription' in dicom_input[0]:
base_filename = _remove_accents('%s_%s' % (base_filename,
dicom_input[0].SeriesDescription))
elif 'SequenceName' in dicom_input[0]:
base_filename = _remove_accents('%s_%s' % (base_filename,
dicom_input[0].SequenceName))
elif 'ProtocolName' in dicom_input[0]:
base_filename = _remove_accents('%s_%s' % (base_filename,
dicom_input[0].ProtocolName))
else:
base_filename = _remove_accents(dicom_input[0].SeriesInstanceUID)
logger.info('--------------------------------------------')
logger.info('Start converting %s' % base_filename)
if compression:
nifti_file = os.path.join(output_folder, base_filename + '.nii.gz')
else:
nifti_file = os.path.join(output_folder, base_filename + '.nii')
convert_dicom.dicom_array_to_nifti(dicom_input, nifti_file, reorient)
gc.collect()
except: # Explicitly capturing app exceptions here to be able to continue processing
logger.info("Unable to convert: %s" % base_filename)
traceback.print_exc() | [
"def",
"convert_directory",
"(",
"dicom_directory",
",",
"output_folder",
",",
"compression",
"=",
"True",
",",
"reorient",
"=",
"True",
")",
":",
"# sort dicom files by series uid",
"dicom_series",
"=",
"{",
"}",
"for",
"root",
",",
"_",
",",
"files",
"in",
"os",
".",
"walk",
"(",
"dicom_directory",
")",
":",
"for",
"dicom_file",
"in",
"files",
":",
"file_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"root",
",",
"dicom_file",
")",
"# noinspection PyBroadException",
"try",
":",
"if",
"compressed_dicom",
".",
"is_dicom_file",
"(",
"file_path",
")",
":",
"# read the dicom as fast as possible",
"# (max length for SeriesInstanceUID is 64 so defer_size 100 should be ok)",
"dicom_headers",
"=",
"compressed_dicom",
".",
"read_file",
"(",
"file_path",
",",
"defer_size",
"=",
"\"1 KB\"",
",",
"stop_before_pixels",
"=",
"False",
",",
"force",
"=",
"dicom2nifti",
".",
"settings",
".",
"pydicom_read_force",
")",
"if",
"not",
"_is_valid_imaging_dicom",
"(",
"dicom_headers",
")",
":",
"logger",
".",
"info",
"(",
"\"Skipping: %s\"",
"%",
"file_path",
")",
"continue",
"logger",
".",
"info",
"(",
"\"Organizing: %s\"",
"%",
"file_path",
")",
"if",
"dicom_headers",
".",
"SeriesInstanceUID",
"not",
"in",
"dicom_series",
":",
"dicom_series",
"[",
"dicom_headers",
".",
"SeriesInstanceUID",
"]",
"=",
"[",
"]",
"dicom_series",
"[",
"dicom_headers",
".",
"SeriesInstanceUID",
"]",
".",
"append",
"(",
"dicom_headers",
")",
"except",
":",
"# Explicitly capturing all errors here to be able to continue processing all the rest",
"logger",
".",
"warning",
"(",
"\"Unable to read: %s\"",
"%",
"file_path",
")",
"traceback",
".",
"print_exc",
"(",
")",
"# start converting one by one",
"for",
"series_id",
",",
"dicom_input",
"in",
"iteritems",
"(",
"dicom_series",
")",
":",
"base_filename",
"=",
"\"\"",
"# noinspection PyBroadException",
"try",
":",
"# construct the filename for the nifti",
"base_filename",
"=",
"\"\"",
"if",
"'SeriesNumber'",
"in",
"dicom_input",
"[",
"0",
"]",
":",
"base_filename",
"=",
"_remove_accents",
"(",
"'%s'",
"%",
"dicom_input",
"[",
"0",
"]",
".",
"SeriesNumber",
")",
"if",
"'SeriesDescription'",
"in",
"dicom_input",
"[",
"0",
"]",
":",
"base_filename",
"=",
"_remove_accents",
"(",
"'%s_%s'",
"%",
"(",
"base_filename",
",",
"dicom_input",
"[",
"0",
"]",
".",
"SeriesDescription",
")",
")",
"elif",
"'SequenceName'",
"in",
"dicom_input",
"[",
"0",
"]",
":",
"base_filename",
"=",
"_remove_accents",
"(",
"'%s_%s'",
"%",
"(",
"base_filename",
",",
"dicom_input",
"[",
"0",
"]",
".",
"SequenceName",
")",
")",
"elif",
"'ProtocolName'",
"in",
"dicom_input",
"[",
"0",
"]",
":",
"base_filename",
"=",
"_remove_accents",
"(",
"'%s_%s'",
"%",
"(",
"base_filename",
",",
"dicom_input",
"[",
"0",
"]",
".",
"ProtocolName",
")",
")",
"else",
":",
"base_filename",
"=",
"_remove_accents",
"(",
"dicom_input",
"[",
"0",
"]",
".",
"SeriesInstanceUID",
")",
"logger",
".",
"info",
"(",
"'--------------------------------------------'",
")",
"logger",
".",
"info",
"(",
"'Start converting %s'",
"%",
"base_filename",
")",
"if",
"compression",
":",
"nifti_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"output_folder",
",",
"base_filename",
"+",
"'.nii.gz'",
")",
"else",
":",
"nifti_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"output_folder",
",",
"base_filename",
"+",
"'.nii'",
")",
"convert_dicom",
".",
"dicom_array_to_nifti",
"(",
"dicom_input",
",",
"nifti_file",
",",
"reorient",
")",
"gc",
".",
"collect",
"(",
")",
"except",
":",
"# Explicitly capturing app exceptions here to be able to continue processing",
"logger",
".",
"info",
"(",
"\"Unable to convert: %s\"",
"%",
"base_filename",
")",
"traceback",
".",
"print_exc",
"(",
")"
] | This function will order all dicom files by series and order them one by one
:param compression: enable or disable gzip compression
:param reorient: reorient the dicoms according to LAS orientation
:param output_folder: folder to write the nifti files to
:param dicom_directory: directory with dicom files | [
"This",
"function",
"will",
"order",
"all",
"dicom",
"files",
"by",
"series",
"and",
"order",
"them",
"one",
"by",
"one"
] | 1462ae5dd979fa3f276fe7a78ceb9b028121536f | https://github.com/icometrix/dicom2nifti/blob/1462ae5dd979fa3f276fe7a78ceb9b028121536f/dicom2nifti/convert_dir.py#L34-L99 |
792 | aegirhall/console-menu | consolemenu/menu_formatter.py | MenuFormatBuilder.clear_data | def clear_data(self):
"""
Clear menu data from previous menu generation.
"""
self.__header.title = None
self.__header.subtitle = None
self.__prologue.text = None
self.__epilogue.text = None
self.__items_section.items = None | python | def clear_data(self):
"""
Clear menu data from previous menu generation.
"""
self.__header.title = None
self.__header.subtitle = None
self.__prologue.text = None
self.__epilogue.text = None
self.__items_section.items = None | [
"def",
"clear_data",
"(",
"self",
")",
":",
"self",
".",
"__header",
".",
"title",
"=",
"None",
"self",
".",
"__header",
".",
"subtitle",
"=",
"None",
"self",
".",
"__prologue",
".",
"text",
"=",
"None",
"self",
".",
"__epilogue",
".",
"text",
"=",
"None",
"self",
".",
"__items_section",
".",
"items",
"=",
"None"
] | Clear menu data from previous menu generation. | [
"Clear",
"menu",
"data",
"from",
"previous",
"menu",
"generation",
"."
] | 1a28959d6f1dd6ac79c87b11efd8529d05532422 | https://github.com/aegirhall/console-menu/blob/1a28959d6f1dd6ac79c87b11efd8529d05532422/consolemenu/menu_formatter.py#L246-L254 |
793 | aegirhall/console-menu | consolemenu/menu_component.py | MenuComponent.inner_horizontal_border | def inner_horizontal_border(self):
"""
The complete inner horizontal border section, including the left and right border verticals.
Returns:
str: The complete inner horizontal border.
"""
return u"{lm}{lv}{hz}{rv}".format(lm=' ' * self.margins.left,
lv=self.border_style.outer_vertical_inner_right,
rv=self.border_style.outer_vertical_inner_left,
hz=self.inner_horizontals()) | python | def inner_horizontal_border(self):
"""
The complete inner horizontal border section, including the left and right border verticals.
Returns:
str: The complete inner horizontal border.
"""
return u"{lm}{lv}{hz}{rv}".format(lm=' ' * self.margins.left,
lv=self.border_style.outer_vertical_inner_right,
rv=self.border_style.outer_vertical_inner_left,
hz=self.inner_horizontals()) | [
"def",
"inner_horizontal_border",
"(",
"self",
")",
":",
"return",
"u\"{lm}{lv}{hz}{rv}\"",
".",
"format",
"(",
"lm",
"=",
"' '",
"*",
"self",
".",
"margins",
".",
"left",
",",
"lv",
"=",
"self",
".",
"border_style",
".",
"outer_vertical_inner_right",
",",
"rv",
"=",
"self",
".",
"border_style",
".",
"outer_vertical_inner_left",
",",
"hz",
"=",
"self",
".",
"inner_horizontals",
"(",
")",
")"
] | The complete inner horizontal border section, including the left and right border verticals.
Returns:
str: The complete inner horizontal border. | [
"The",
"complete",
"inner",
"horizontal",
"border",
"section",
"including",
"the",
"left",
"and",
"right",
"border",
"verticals",
"."
] | 1a28959d6f1dd6ac79c87b11efd8529d05532422 | https://github.com/aegirhall/console-menu/blob/1a28959d6f1dd6ac79c87b11efd8529d05532422/consolemenu/menu_component.py#L123-L133 |
794 | aegirhall/console-menu | consolemenu/menu_component.py | MenuComponent.outer_horizontal_border_bottom | def outer_horizontal_border_bottom(self):
"""
The complete outer bottom horizontal border section, including left and right margins.
Returns:
str: The bottom menu border.
"""
return u"{lm}{lv}{hz}{rv}".format(lm=' ' * self.margins.left,
lv=self.border_style.bottom_left_corner,
rv=self.border_style.bottom_right_corner,
hz=self.outer_horizontals()) | python | def outer_horizontal_border_bottom(self):
"""
The complete outer bottom horizontal border section, including left and right margins.
Returns:
str: The bottom menu border.
"""
return u"{lm}{lv}{hz}{rv}".format(lm=' ' * self.margins.left,
lv=self.border_style.bottom_left_corner,
rv=self.border_style.bottom_right_corner,
hz=self.outer_horizontals()) | [
"def",
"outer_horizontal_border_bottom",
"(",
"self",
")",
":",
"return",
"u\"{lm}{lv}{hz}{rv}\"",
".",
"format",
"(",
"lm",
"=",
"' '",
"*",
"self",
".",
"margins",
".",
"left",
",",
"lv",
"=",
"self",
".",
"border_style",
".",
"bottom_left_corner",
",",
"rv",
"=",
"self",
".",
"border_style",
".",
"bottom_right_corner",
",",
"hz",
"=",
"self",
".",
"outer_horizontals",
"(",
")",
")"
] | The complete outer bottom horizontal border section, including left and right margins.
Returns:
str: The bottom menu border. | [
"The",
"complete",
"outer",
"bottom",
"horizontal",
"border",
"section",
"including",
"left",
"and",
"right",
"margins",
"."
] | 1a28959d6f1dd6ac79c87b11efd8529d05532422 | https://github.com/aegirhall/console-menu/blob/1a28959d6f1dd6ac79c87b11efd8529d05532422/consolemenu/menu_component.py#L145-L155 |
795 | aegirhall/console-menu | consolemenu/menu_component.py | MenuComponent.outer_horizontal_border_top | def outer_horizontal_border_top(self):
"""
The complete outer top horizontal border section, including left and right margins.
Returns:
str: The top menu border.
"""
return u"{lm}{lv}{hz}{rv}".format(lm=' ' * self.margins.left,
lv=self.border_style.top_left_corner,
rv=self.border_style.top_right_corner,
hz=self.outer_horizontals()) | python | def outer_horizontal_border_top(self):
"""
The complete outer top horizontal border section, including left and right margins.
Returns:
str: The top menu border.
"""
return u"{lm}{lv}{hz}{rv}".format(lm=' ' * self.margins.left,
lv=self.border_style.top_left_corner,
rv=self.border_style.top_right_corner,
hz=self.outer_horizontals()) | [
"def",
"outer_horizontal_border_top",
"(",
"self",
")",
":",
"return",
"u\"{lm}{lv}{hz}{rv}\"",
".",
"format",
"(",
"lm",
"=",
"' '",
"*",
"self",
".",
"margins",
".",
"left",
",",
"lv",
"=",
"self",
".",
"border_style",
".",
"top_left_corner",
",",
"rv",
"=",
"self",
".",
"border_style",
".",
"top_right_corner",
",",
"hz",
"=",
"self",
".",
"outer_horizontals",
"(",
")",
")"
] | The complete outer top horizontal border section, including left and right margins.
Returns:
str: The top menu border. | [
"The",
"complete",
"outer",
"top",
"horizontal",
"border",
"section",
"including",
"left",
"and",
"right",
"margins",
"."
] | 1a28959d6f1dd6ac79c87b11efd8529d05532422 | https://github.com/aegirhall/console-menu/blob/1a28959d6f1dd6ac79c87b11efd8529d05532422/consolemenu/menu_component.py#L157-L167 |
796 | aegirhall/console-menu | consolemenu/menu_component.py | MenuComponent.row | def row(self, content='', align='left'):
"""
A row of the menu, which comprises the left and right verticals plus the given content.
Returns:
str: A row of this menu component with the specified content.
"""
return u"{lm}{vert}{cont}{vert}".format(lm=' ' * self.margins.left,
vert=self.border_style.outer_vertical,
cont=self._format_content(content, align)) | python | def row(self, content='', align='left'):
"""
A row of the menu, which comprises the left and right verticals plus the given content.
Returns:
str: A row of this menu component with the specified content.
"""
return u"{lm}{vert}{cont}{vert}".format(lm=' ' * self.margins.left,
vert=self.border_style.outer_vertical,
cont=self._format_content(content, align)) | [
"def",
"row",
"(",
"self",
",",
"content",
"=",
"''",
",",
"align",
"=",
"'left'",
")",
":",
"return",
"u\"{lm}{vert}{cont}{vert}\"",
".",
"format",
"(",
"lm",
"=",
"' '",
"*",
"self",
".",
"margins",
".",
"left",
",",
"vert",
"=",
"self",
".",
"border_style",
".",
"outer_vertical",
",",
"cont",
"=",
"self",
".",
"_format_content",
"(",
"content",
",",
"align",
")",
")"
] | A row of the menu, which comprises the left and right verticals plus the given content.
Returns:
str: A row of this menu component with the specified content. | [
"A",
"row",
"of",
"the",
"menu",
"which",
"comprises",
"the",
"left",
"and",
"right",
"verticals",
"plus",
"the",
"given",
"content",
"."
] | 1a28959d6f1dd6ac79c87b11efd8529d05532422 | https://github.com/aegirhall/console-menu/blob/1a28959d6f1dd6ac79c87b11efd8529d05532422/consolemenu/menu_component.py#L169-L178 |
797 | aegirhall/console-menu | consolemenu/format/menu_borders.py | MenuBorderStyleFactory.create_border | def create_border(self, border_style_type):
"""
Create a new MenuBorderStyle instance based on the given border style type.
Args:
border_style_type (int): an integer value from :obj:`MenuBorderStyleType`.
Returns:
:obj:`MenuBorderStyle`: a new MenuBorderStyle instance of the specified style.
"""
if border_style_type == MenuBorderStyleType.ASCII_BORDER:
return self.create_ascii_border()
elif border_style_type == MenuBorderStyleType.LIGHT_BORDER:
return self.create_light_border()
elif border_style_type == MenuBorderStyleType.HEAVY_BORDER:
return self.create_heavy_border()
elif border_style_type == MenuBorderStyleType.DOUBLE_LINE_BORDER:
return self.create_doubleline_border()
elif border_style_type == MenuBorderStyleType.HEAVY_OUTER_LIGHT_INNER_BORDER:
return self.create_heavy_outer_light_inner_border()
elif border_style_type == MenuBorderStyleType.DOUBLE_LINE_OUTER_LIGHT_INNER_BORDER:
return self.create_doubleline_outer_light_inner_border()
else:
# Use ASCII if we don't recognize the type
self.logger.info('Unrecognized border style type: {}. Defaulting to ASCII.'.format(border_style_type))
return self.create_ascii_border() | python | def create_border(self, border_style_type):
"""
Create a new MenuBorderStyle instance based on the given border style type.
Args:
border_style_type (int): an integer value from :obj:`MenuBorderStyleType`.
Returns:
:obj:`MenuBorderStyle`: a new MenuBorderStyle instance of the specified style.
"""
if border_style_type == MenuBorderStyleType.ASCII_BORDER:
return self.create_ascii_border()
elif border_style_type == MenuBorderStyleType.LIGHT_BORDER:
return self.create_light_border()
elif border_style_type == MenuBorderStyleType.HEAVY_BORDER:
return self.create_heavy_border()
elif border_style_type == MenuBorderStyleType.DOUBLE_LINE_BORDER:
return self.create_doubleline_border()
elif border_style_type == MenuBorderStyleType.HEAVY_OUTER_LIGHT_INNER_BORDER:
return self.create_heavy_outer_light_inner_border()
elif border_style_type == MenuBorderStyleType.DOUBLE_LINE_OUTER_LIGHT_INNER_BORDER:
return self.create_doubleline_outer_light_inner_border()
else:
# Use ASCII if we don't recognize the type
self.logger.info('Unrecognized border style type: {}. Defaulting to ASCII.'.format(border_style_type))
return self.create_ascii_border() | [
"def",
"create_border",
"(",
"self",
",",
"border_style_type",
")",
":",
"if",
"border_style_type",
"==",
"MenuBorderStyleType",
".",
"ASCII_BORDER",
":",
"return",
"self",
".",
"create_ascii_border",
"(",
")",
"elif",
"border_style_type",
"==",
"MenuBorderStyleType",
".",
"LIGHT_BORDER",
":",
"return",
"self",
".",
"create_light_border",
"(",
")",
"elif",
"border_style_type",
"==",
"MenuBorderStyleType",
".",
"HEAVY_BORDER",
":",
"return",
"self",
".",
"create_heavy_border",
"(",
")",
"elif",
"border_style_type",
"==",
"MenuBorderStyleType",
".",
"DOUBLE_LINE_BORDER",
":",
"return",
"self",
".",
"create_doubleline_border",
"(",
")",
"elif",
"border_style_type",
"==",
"MenuBorderStyleType",
".",
"HEAVY_OUTER_LIGHT_INNER_BORDER",
":",
"return",
"self",
".",
"create_heavy_outer_light_inner_border",
"(",
")",
"elif",
"border_style_type",
"==",
"MenuBorderStyleType",
".",
"DOUBLE_LINE_OUTER_LIGHT_INNER_BORDER",
":",
"return",
"self",
".",
"create_doubleline_outer_light_inner_border",
"(",
")",
"else",
":",
"# Use ASCII if we don't recognize the type",
"self",
".",
"logger",
".",
"info",
"(",
"'Unrecognized border style type: {}. Defaulting to ASCII.'",
".",
"format",
"(",
"border_style_type",
")",
")",
"return",
"self",
".",
"create_ascii_border",
"(",
")"
] | Create a new MenuBorderStyle instance based on the given border style type.
Args:
border_style_type (int): an integer value from :obj:`MenuBorderStyleType`.
Returns:
:obj:`MenuBorderStyle`: a new MenuBorderStyle instance of the specified style. | [
"Create",
"a",
"new",
"MenuBorderStyle",
"instance",
"based",
"on",
"the",
"given",
"border",
"style",
"type",
"."
] | 1a28959d6f1dd6ac79c87b11efd8529d05532422 | https://github.com/aegirhall/console-menu/blob/1a28959d6f1dd6ac79c87b11efd8529d05532422/consolemenu/format/menu_borders.py#L352-L378 |
798 | aegirhall/console-menu | consolemenu/format/menu_borders.py | MenuBorderStyleFactory.is_win_python35_or_earlier | def is_win_python35_or_earlier():
"""
Convenience method to determine if the current platform is Windows and Python version 3.5 or earlier.
Returns:
bool: True if the current platform is Windows and the Python interpreter is 3.5 or earlier; False otherwise.
"""
return sys.platform.startswith("win") and sys.version_info.major < 3 or (
sys.version_info.major == 3 and sys.version_info.minor < 6) | python | def is_win_python35_or_earlier():
"""
Convenience method to determine if the current platform is Windows and Python version 3.5 or earlier.
Returns:
bool: True if the current platform is Windows and the Python interpreter is 3.5 or earlier; False otherwise.
"""
return sys.platform.startswith("win") and sys.version_info.major < 3 or (
sys.version_info.major == 3 and sys.version_info.minor < 6) | [
"def",
"is_win_python35_or_earlier",
"(",
")",
":",
"return",
"sys",
".",
"platform",
".",
"startswith",
"(",
"\"win\"",
")",
"and",
"sys",
".",
"version_info",
".",
"major",
"<",
"3",
"or",
"(",
"sys",
".",
"version_info",
".",
"major",
"==",
"3",
"and",
"sys",
".",
"version_info",
".",
"minor",
"<",
"6",
")"
] | Convenience method to determine if the current platform is Windows and Python version 3.5 or earlier.
Returns:
bool: True if the current platform is Windows and the Python interpreter is 3.5 or earlier; False otherwise. | [
"Convenience",
"method",
"to",
"determine",
"if",
"the",
"current",
"platform",
"is",
"Windows",
"and",
"Python",
"version",
"3",
".",
"5",
"or",
"earlier",
"."
] | 1a28959d6f1dd6ac79c87b11efd8529d05532422 | https://github.com/aegirhall/console-menu/blob/1a28959d6f1dd6ac79c87b11efd8529d05532422/consolemenu/format/menu_borders.py#L454-L463 |
799 | aegirhall/console-menu | consolemenu/items/submenu_item.py | SubmenuItem.set_menu | def set_menu(self, menu):
"""
Sets the menu of this item.
Should be used instead of directly accessing the menu attribute for this class.
:param ConsoleMenu menu: the menu
"""
self.menu = menu
self.submenu.parent = menu | python | def set_menu(self, menu):
"""
Sets the menu of this item.
Should be used instead of directly accessing the menu attribute for this class.
:param ConsoleMenu menu: the menu
"""
self.menu = menu
self.submenu.parent = menu | [
"def",
"set_menu",
"(",
"self",
",",
"menu",
")",
":",
"self",
".",
"menu",
"=",
"menu",
"self",
".",
"submenu",
".",
"parent",
"=",
"menu"
] | Sets the menu of this item.
Should be used instead of directly accessing the menu attribute for this class.
:param ConsoleMenu menu: the menu | [
"Sets",
"the",
"menu",
"of",
"this",
"item",
".",
"Should",
"be",
"used",
"instead",
"of",
"directly",
"accessing",
"the",
"menu",
"attribute",
"for",
"this",
"class",
"."
] | 1a28959d6f1dd6ac79c87b11efd8529d05532422 | https://github.com/aegirhall/console-menu/blob/1a28959d6f1dd6ac79c87b11efd8529d05532422/consolemenu/items/submenu_item.py#L19-L27 |
Subsets and Splits