Datasets:
CZLC
/

Modalities:
Tabular
Text
Formats:
json
Languages:
Czech
Libraries:
Datasets
pandas
License:
sumeczech_downsampled / README-ufal.md
mdocekal's picture
Upload folder using huggingface_hub
40b0307 verified

SumeCzech Corpus

These are the accompanying materials of the paper:

@inproceedings{straka-etal-2018-sumeczech,
    title = "{S}ume{C}zech: Large {C}zech News-Based Summarization Dataset",
    author = "Straka, Milan  and Mediankin, Nikita  and Kocmi, Tom  and
      {\v{Z}}abokrtsk{\'y}, Zden{\v{e}}k  and Hude{\v{c}}ek, Vojt{\v{e}}ch  and Haji{\v{c}}, Jan",
    booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC}-2018)",
    month = may,
    year = "2018",
    address = "Miyazaki, Japan",
    publisher = "European Languages Resources Association (ELRA)",
}

SumeCzech Download Script

To download the SumeCzech dataset, use the downloader.py script. The script has several dependencies (and requires an exact version for some of them) listed in requirements.txt, you can install them using pip3 install -r requirements.txt.

You can start the script using python3 downloader.py. By default, 16 parallel processes are used to download the data (you can override this number using the --parallel N option).

During download, MD5 hash of every document's headline, abstract and text is checked with the official one, allowing to detect possible errors during download and extraction. Although not recommended, the check can be bypassed by using the --no_verify_md5 option.

The validated documents are saved during download. If the download script is interrupted and run again, it will reuse the already processed documents and only download new ones.

Changelog:

  • 13 Feb 2018: The original download script was released.

  • 25 Feb 2023: An update with the following changes:

SumeCzech ROUGE_RAW Evaluation Metric

The RougeRAW metric is implemented in rouge_raw.py module, which can compute the RougeRAW-1, RougeRAW-2, RougeRAW-L metrics either for a single pair of documents, or for a pair of corpora.

Unfortunately, slightly different tokenization was used in the original paper. Therefore, here we provide the results of the systems from the paper evaluated using the rouge_raw.py module.

Results for abstract-headline on test

            RougeRAW-1      RougeRAW-2      RougeRAW-L
Method      P    R    F     P    R    F     P    R    F
first     13.9 23.6 16.5  04.1 07.4 05.0  12.2 20.7 14.5
random    11.0 17.8 12.8  02.6 04.5 03.1  09.6 15.5 11.1
textrank  13.3 22.8 15.9  03.7 06.8 04.6  11.6 19.9 13.8
t2t       20.2 15.9 17.2  06.7 05.1 05.6  18.6 14.7 15.8

Results for abstract-headline on oodtest

            RougeRAW-1      RougeRAW-2      RougeRAW-L
Method      P    R    F     P    R    F     P    R    F
first     13.3 26.5 16.7  04.7 10.0 06.0  11.6 23.3 14.7
random    10.6 20.7 13.1  03.2 06.9 04.1  09.3 18.2 11.5
textrank  12.8 25.9 16.3  04.5 09.6 05.7  11.3 22.7 14.2
t2t       19.4 15.1 16.3  07.1 05.2 05.7  18.1 14.1 15.2

Results for text-headline on test

            RougeRAW-1      RougeRAW-2      RougeRAW-L
Method      P    R    F     P    R    F     P    R    F
first     07.4 13.5 08.9  01.1 02.2 01.3  06.5 11.7 07.7
random    05.9 10.3 06.9  00.5 01.0 00.6  05.2 08.9 06.0
textrank  06.0 16.5 08.3  00.8 02.3 01.1  05.0 13.8 06.9
t2t       08.8 07.0 07.5  00.8 00.6 00.7  08.1 06.5 07.0

Results for text-headline on oodtest

            RougeRAW-1      RougeRAW-2      RougeRAW-L
Method      P    R    F     P    R    F     P    R    F
first     06.7 13.6 08.3  01.3 02.8 01.6  05.9 12.0 07.4
random    05.2 10.0 06.3  00.6 01.4 00.8  04.6 08.9 05.6
textrank  05.8 16.9 08.1  01.1 03.4 01.5  05.0 14.5 06.9
t2t       06.3 05.1 05.5  00.5 00.4 00.4  05.9 04.8 05.1

Results for text-abstract on test

            RougeRAW-1      RougeRAW-2      RougeRAW-L
Method      P    R    F     P    R    F     P    R    F
first     13.1 17.9 14.4  01.9 02.8 02.1  08.8 12.0 09.6
random    11.7 15.5 12.7  01.2 01.7 01.3  07.7 10.3 08.4
textrank  11.1 20.8 13.8  01.6 03.1 02.0  07.1 13.4 08.9
t2t       13.2 10.5 11.3  01.2 00.9 01.0  10.2 08.1 08.7

Results for text-abstract on oodtest

            RougeRAW-1      RougeRAW-2      RougeRAW-L
Method      P    R    F     P    R    F     P    R    F
first     11.1 17.1 12.7  01.6 02.7 01.9  07.6 11.7 08.7
random    10.1 15.1 11.4  01.0 01.7 01.2  06.9 10.3 07.8
textrank  09.8 19.9 12.5  01.5 03.3 02.0  06.6 13.3 08.4
t2t       12.5 09.4 10.3  00.8 00.6 00.6  09.8 07.5 08.1