File size: 5,609 Bytes
fc2a0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import cv2
import numpy as np
import supervision as sv
from ultralytics import YOLO
import yaml
from pathlib import Path
import torch

print(torch.cuda.is_available())

def setup_dataset_config(dataset_path, class_names):
    data_yaml = {
        'path': os.path.abspath(dataset_path),
        'train': 'train/images',
        'val': 'valid/images',
        'test': 'test/images',
        'names': {i: name for i, name in enumerate(class_names)},
        'nc': len(class_names)
    }
    
    with open(os.path.join(dataset_path, 'dataset.yaml'), 'w') as f:
        yaml.dump(data_yaml, f, sort_keys=False)
    
    print(f"Dataset config saved to {os.path.join(dataset_path, 'dataset.yaml')}")
    return os.path.join(dataset_path, 'dataset.yaml')


def train_yolov8_model(dataset_config, epochs=100, img_size=640, batch_size=16):
    model = YOLO('yolov8n.pt')
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f"Training on device: {device}")
    
    results = model.train(
        data=dataset_config,
        epochs=epochs,
        imgsz=img_size,
        batch=batch_size,
        name='accessory_detection',
        patience=20,
        save=True,
        device=device,
        verbose=True
    )
    
    print("Training completed!")
    return model


def validate_model(model):
    metrics = model.val()
    print(f"Validation metrics: {metrics}")
    return metrics


def run_webcam_detection(model_path=None):
    if model_path is None:
        runs_dir = Path('runs/detect')
        if runs_dir.exists():
            model_dirs = [d for d in runs_dir.iterdir() if d.is_dir() and d.name.startswith('accessory_detection')]
            if model_dirs:
                latest_model = max(model_dirs, key=os.path.getmtime) / 'weights' / 'best.pt'
                if latest_model.exists():
                    model_path = str(latest_model)
                    print(f"Using latest model: {model_path}")
    
    model = YOLO(model_path) if model_path else YOLO('yolov8n.pt')
    print(f"Model loaded from {model_path if model_path else 'Pretrained YOLOv8n'}")
    
    cap = cv2.VideoCapture(0, cv2.CAP_V4L2)
    if not cap.isOpened():
        print("Error: Could not open webcam.")
        return
    
    box_annotator = sv.BoxAnnotator(thickness=2, text_thickness=2, text_scale=1)
    print("Press 'q' to quit")
    
    while True:
        ret, frame = cap.read()
        if not ret:
            print("Error: Failed to capture image")
            break
        
        results = model(frame, conf=0.25)
        detections = sv.Detections.from_ultralytics(results[0])
        class_names = model.names if hasattr(model, 'names') else {0: "unknown"}
        
        labels = [
            f"{class_names[class_id]} {confidence:.2f}"
            for _, confidence, class_id, _ in detections
        ]
        
        frame = box_annotator.annotate(scene=frame, detections=detections, labels=labels)
        cv2.putText(frame, "Press 'q' to quit", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
        
        cv2.imshow("YOLOv8 Accessory Detection", frame)
        
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows()


def prepare_custom_dataset(source_dir, target_dir, split_ratios=(0.7, 0.2, 0.1)):
    import shutil
    from sklearn.model_selection import train_test_split
    
    os.makedirs(os.path.join(target_dir, 'train', 'images'), exist_ok=True)
    os.makedirs(os.path.join(target_dir, 'train', 'labels'), exist_ok=True)
    os.makedirs(os.path.join(target_dir, 'valid', 'images'), exist_ok=True)
    os.makedirs(os.path.join(target_dir, 'valid', 'labels'), exist_ok=True)
    os.makedirs(os.path.join(target_dir, 'test', 'images'), exist_ok=True)
    os.makedirs(os.path.join(target_dir, 'test', 'labels'), exist_ok=True)
    
    print("YOLOv8 directory structure created")
    
    files = [f for f in os.listdir(source_dir) if f.endswith('.txt') and not f.endswith('classes.txt')]
    
    train_files, temp_files = train_test_split(files, test_size=(split_ratios[1]+split_ratios[2]), random_state=42)
    val_ratio = split_ratios[1] / (split_ratios[1] + split_ratios[2])
    val_files, test_files = train_test_split(temp_files, test_size=(1-val_ratio), random_state=42)
    
    print(f"Split dataset: {len(train_files)} train, {len(val_files)} validation, {len(test_files)} test images")
    
    setup_dataset_config(target_dir, ["hat", "scarf", "sunglasses", "spectacles", "headphones", "ears_visible"])
    print("Dataset preparation completed!")
    
    return os.path.join(target_dir, 'dataset.yaml')


if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description="YOLOv8 Face Accessory Detection System")
    parser.add_argument('--train', action='store_true', help='Train model')
    parser.add_argument('--detect', action='store_true', help='Run detection on webcam')
    parser.add_argument('--config', type=str, help='Path to dataset config file')
    parser.add_argument('--model', type=str, help='Path to trained model')
    parser.add_argument('--epochs', type=int, default=100, help='Number of training epochs')
    args = parser.parse_args()
    
    if args.train:
        if not args.config:
            print("Error: Dataset config is required for training")
        else:
            model = train_yolov8_model(args.config, epochs=args.epochs)
            validate_model(model)
    
    if args.detect:
        run_webcam_detection(args.model)
    
    if not (args.train or args.detect):
        parser.print_help()