File size: 5,609 Bytes
fc2a0c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import cv2
import numpy as np
import supervision as sv
from ultralytics import YOLO
import yaml
from pathlib import Path
import torch
print(torch.cuda.is_available())
def setup_dataset_config(dataset_path, class_names):
data_yaml = {
'path': os.path.abspath(dataset_path),
'train': 'train/images',
'val': 'valid/images',
'test': 'test/images',
'names': {i: name for i, name in enumerate(class_names)},
'nc': len(class_names)
}
with open(os.path.join(dataset_path, 'dataset.yaml'), 'w') as f:
yaml.dump(data_yaml, f, sort_keys=False)
print(f"Dataset config saved to {os.path.join(dataset_path, 'dataset.yaml')}")
return os.path.join(dataset_path, 'dataset.yaml')
def train_yolov8_model(dataset_config, epochs=100, img_size=640, batch_size=16):
model = YOLO('yolov8n.pt')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Training on device: {device}")
results = model.train(
data=dataset_config,
epochs=epochs,
imgsz=img_size,
batch=batch_size,
name='accessory_detection',
patience=20,
save=True,
device=device,
verbose=True
)
print("Training completed!")
return model
def validate_model(model):
metrics = model.val()
print(f"Validation metrics: {metrics}")
return metrics
def run_webcam_detection(model_path=None):
if model_path is None:
runs_dir = Path('runs/detect')
if runs_dir.exists():
model_dirs = [d for d in runs_dir.iterdir() if d.is_dir() and d.name.startswith('accessory_detection')]
if model_dirs:
latest_model = max(model_dirs, key=os.path.getmtime) / 'weights' / 'best.pt'
if latest_model.exists():
model_path = str(latest_model)
print(f"Using latest model: {model_path}")
model = YOLO(model_path) if model_path else YOLO('yolov8n.pt')
print(f"Model loaded from {model_path if model_path else 'Pretrained YOLOv8n'}")
cap = cv2.VideoCapture(0, cv2.CAP_V4L2)
if not cap.isOpened():
print("Error: Could not open webcam.")
return
box_annotator = sv.BoxAnnotator(thickness=2, text_thickness=2, text_scale=1)
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
if not ret:
print("Error: Failed to capture image")
break
results = model(frame, conf=0.25)
detections = sv.Detections.from_ultralytics(results[0])
class_names = model.names if hasattr(model, 'names') else {0: "unknown"}
labels = [
f"{class_names[class_id]} {confidence:.2f}"
for _, confidence, class_id, _ in detections
]
frame = box_annotator.annotate(scene=frame, detections=detections, labels=labels)
cv2.putText(frame, "Press 'q' to quit", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow("YOLOv8 Accessory Detection", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def prepare_custom_dataset(source_dir, target_dir, split_ratios=(0.7, 0.2, 0.1)):
import shutil
from sklearn.model_selection import train_test_split
os.makedirs(os.path.join(target_dir, 'train', 'images'), exist_ok=True)
os.makedirs(os.path.join(target_dir, 'train', 'labels'), exist_ok=True)
os.makedirs(os.path.join(target_dir, 'valid', 'images'), exist_ok=True)
os.makedirs(os.path.join(target_dir, 'valid', 'labels'), exist_ok=True)
os.makedirs(os.path.join(target_dir, 'test', 'images'), exist_ok=True)
os.makedirs(os.path.join(target_dir, 'test', 'labels'), exist_ok=True)
print("YOLOv8 directory structure created")
files = [f for f in os.listdir(source_dir) if f.endswith('.txt') and not f.endswith('classes.txt')]
train_files, temp_files = train_test_split(files, test_size=(split_ratios[1]+split_ratios[2]), random_state=42)
val_ratio = split_ratios[1] / (split_ratios[1] + split_ratios[2])
val_files, test_files = train_test_split(temp_files, test_size=(1-val_ratio), random_state=42)
print(f"Split dataset: {len(train_files)} train, {len(val_files)} validation, {len(test_files)} test images")
setup_dataset_config(target_dir, ["hat", "scarf", "sunglasses", "spectacles", "headphones", "ears_visible"])
print("Dataset preparation completed!")
return os.path.join(target_dir, 'dataset.yaml')
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="YOLOv8 Face Accessory Detection System")
parser.add_argument('--train', action='store_true', help='Train model')
parser.add_argument('--detect', action='store_true', help='Run detection on webcam')
parser.add_argument('--config', type=str, help='Path to dataset config file')
parser.add_argument('--model', type=str, help='Path to trained model')
parser.add_argument('--epochs', type=int, default=100, help='Number of training epochs')
args = parser.parse_args()
if args.train:
if not args.config:
print("Error: Dataset config is required for training")
else:
model = train_yolov8_model(args.config, epochs=args.epochs)
validate_model(model)
if args.detect:
run_webcam_detection(args.model)
if not (args.train or args.detect):
parser.print_help()
|