code
stringlengths
13
6.09M
order_type
stringclasses
2 values
original_example
dict
step_ids
listlengths
1
5
import numpy as np import pandas as pd def fetch_data(faultNumber, position): df1 = pd.read_csv("./data/TEP_CaseStudy_Fault_" + str(faultNumber) + "_Pos_" + str(position) + "%.csv") df1.set_index(df1.columns[0]) df1 = df1.drop(columns=[df1.columns[0]]) df2 = pd.read_csv("./data/TEP_CaseStudy_Fault_" + str(faultNumber) + "_Pos_" + str(position) + "%_LSTM-AE_Output.csv") df2.set_index(df2.columns[0]) df2 = df2.drop(columns=[df2.columns[0]]) df1 = df1.join(df2["Loss_mae"]) df1 = df1.join(df2["Threshold"]) df1["pointType"] = df1.apply(lambda row: _label_point(row), axis=1) df2.join(df1["pointType"]) return df1 def _label_point(row): if np.isnan(row.Threshold): return "TR" if (row["Loss_mae"] >= row["Threshold"]) and (row["faultNumber"] != 0): return "TP" if (row["Loss_mae"] < row["Threshold"]) and (row["faultNumber"] != 0): return "FN" if (row["Loss_mae"] >= row["Threshold"]) and (row["faultNumber"] == 0): return "FP" if (row["Loss_mae"] < row["Threshold"]) and (row["faultNumber"] == 0): return "TN"
normal
{ "blob_id": "d71ec86f68cc81c93a39f15c785c75c2a1023f14", "index": 2129, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef fetch_data(faultNumber, position):\n df1 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) +\n '_Pos_' + str(position) + '%.csv')\n df1.set_index(df1.columns[0])\n df1 = df1.drop(columns=[df1.columns[0]])\n df2 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) +\n '_Pos_' + str(position) + '%_LSTM-AE_Output.csv')\n df2.set_index(df2.columns[0])\n df2 = df2.drop(columns=[df2.columns[0]])\n df1 = df1.join(df2['Loss_mae'])\n df1 = df1.join(df2['Threshold'])\n df1['pointType'] = df1.apply(lambda row: _label_point(row), axis=1)\n df2.join(df1['pointType'])\n return df1\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef fetch_data(faultNumber, position):\n df1 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) +\n '_Pos_' + str(position) + '%.csv')\n df1.set_index(df1.columns[0])\n df1 = df1.drop(columns=[df1.columns[0]])\n df2 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) +\n '_Pos_' + str(position) + '%_LSTM-AE_Output.csv')\n df2.set_index(df2.columns[0])\n df2 = df2.drop(columns=[df2.columns[0]])\n df1 = df1.join(df2['Loss_mae'])\n df1 = df1.join(df2['Threshold'])\n df1['pointType'] = df1.apply(lambda row: _label_point(row), axis=1)\n df2.join(df1['pointType'])\n return df1\n\n\ndef _label_point(row):\n if np.isnan(row.Threshold):\n return 'TR'\n if row['Loss_mae'] >= row['Threshold'] and row['faultNumber'] != 0:\n return 'TP'\n if row['Loss_mae'] < row['Threshold'] and row['faultNumber'] != 0:\n return 'FN'\n if row['Loss_mae'] >= row['Threshold'] and row['faultNumber'] == 0:\n return 'FP'\n if row['Loss_mae'] < row['Threshold'] and row['faultNumber'] == 0:\n return 'TN'\n", "step-4": "import numpy as np\nimport pandas as pd\n\n\ndef fetch_data(faultNumber, position):\n df1 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) +\n '_Pos_' + str(position) + '%.csv')\n df1.set_index(df1.columns[0])\n df1 = df1.drop(columns=[df1.columns[0]])\n df2 = pd.read_csv('./data/TEP_CaseStudy_Fault_' + str(faultNumber) +\n '_Pos_' + str(position) + '%_LSTM-AE_Output.csv')\n df2.set_index(df2.columns[0])\n df2 = df2.drop(columns=[df2.columns[0]])\n df1 = df1.join(df2['Loss_mae'])\n df1 = df1.join(df2['Threshold'])\n df1['pointType'] = df1.apply(lambda row: _label_point(row), axis=1)\n df2.join(df1['pointType'])\n return df1\n\n\ndef _label_point(row):\n if np.isnan(row.Threshold):\n return 'TR'\n if row['Loss_mae'] >= row['Threshold'] and row['faultNumber'] != 0:\n return 'TP'\n if row['Loss_mae'] < row['Threshold'] and row['faultNumber'] != 0:\n return 'FN'\n if row['Loss_mae'] >= row['Threshold'] and row['faultNumber'] == 0:\n return 'FP'\n if row['Loss_mae'] < row['Threshold'] and row['faultNumber'] == 0:\n return 'TN'\n", "step-5": "import numpy as np\nimport pandas as pd\n\n\ndef fetch_data(faultNumber, position):\n df1 = pd.read_csv(\"./data/TEP_CaseStudy_Fault_\" + str(faultNumber) + \"_Pos_\" + str(position) + \"%.csv\")\n df1.set_index(df1.columns[0])\n df1 = df1.drop(columns=[df1.columns[0]])\n\n df2 = pd.read_csv(\"./data/TEP_CaseStudy_Fault_\" + str(faultNumber) + \"_Pos_\" + str(position) + \"%_LSTM-AE_Output.csv\")\n df2.set_index(df2.columns[0])\n df2 = df2.drop(columns=[df2.columns[0]])\n\n df1 = df1.join(df2[\"Loss_mae\"])\n df1 = df1.join(df2[\"Threshold\"])\n\n df1[\"pointType\"] = df1.apply(lambda row: _label_point(row), axis=1)\n\n df2.join(df1[\"pointType\"])\n\n return df1\n\n\ndef _label_point(row):\n if np.isnan(row.Threshold):\n return \"TR\"\n if (row[\"Loss_mae\"] >= row[\"Threshold\"]) and (row[\"faultNumber\"] != 0):\n return \"TP\"\n if (row[\"Loss_mae\"] < row[\"Threshold\"]) and (row[\"faultNumber\"] != 0):\n return \"FN\"\n if (row[\"Loss_mae\"] >= row[\"Threshold\"]) and (row[\"faultNumber\"] == 0):\n return \"FP\"\n if (row[\"Loss_mae\"] < row[\"Threshold\"]) and (row[\"faultNumber\"] == 0):\n return \"TN\"\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'main.ui' # # Created by: PyQt5 UI code generator 5.14.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(500, 251) MainWindow.setStyleSheet("/*\n" "Neon Style Sheet for QT Applications (QpushButton)\n" "Author: Jaime A. Quiroga P.\n" "Company: GTRONICK\n" "Last updated: 24/10/2020, 15:42.\n" "Available at: https://github.com/GTRONICK/QSS/blob/master/NeonButtons.qss\n" "*/\n" "QPushButton{\n" " border-style: solid;\n" " border-color: #050a0e;\n" " border-width: 1px;\n" " border-radius: 5px;\n" " color: #d3dae3;\n" " padding: 2px;\n" " background-color: #100E19;\n" "}\n" "QPushButton::default{\n" " border-style: solid;\n" " border-color: #050a0e;\n" " border-width: 1px;\n" " border-radius: 5px;\n" " color: #FFFFFF;\n" " padding: 2px;\n" " background-color: #151a1e;\n" "}\n" "QPushButton:hover{\n" " border-style: solid;\n" " border-top-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #C0DB50, stop:0.4 #C0DB50, stop:0.5 #100E19, stop:1 #100E19);\n" " border-bottom-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #100E19, stop:0.5 #100E19, stop:0.6 #C0DB50, stop:1 #C0DB50);\n" " border-left-color: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0 #C0DB50, stop:0.3 #C0DB50, stop:0.7 #100E19, stop:1 #100E19);\n" " border-right-color: qlineargradient(spread:pad, x1:0, y1:1, x2:0, y2:0, stop:0 #C0DB50, stop:0.3 #C0DB50, stop:0.7 #100E19, stop:1 #100E19);\n" " border-width: 2px;\n" " border-radius: 1px;\n" " color: #d3dae3;\n" " padding: 2px;\n" "}\n" "QPushButton:pressed{\n" " border-style: solid;\n" " border-top-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #d33af1, stop:0.4 #d33af1, stop:0.5 #100E19, stop:1 #100E19);\n" " border-bottom-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #100E19, stop:0.5 #100E19, stop:0.6 #d33af1, stop:1 #d33af1);\n" " border-left-color: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0 #d33af1, stop:0.3 #d33af1, stop:0.7 #100E19, stop:1 #100E19);\n" " border-right-color: qlineargradient(spread:pad, x1:0, y1:1, x2:0, y2:0, stop:0 #d33af1, stop:0.3 #d33af1, stop:0.7 #100E19, stop:1 #100E19);\n" " border-width: 2px;\n" " border-radius: 1px;\n" " color: #d3dae3;\n" " padding: 2px;\n" "}") self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_3.setGeometry(QtCore.QRect(330, 180, 141, 31)) self.pushButton_3.setStyleSheet("") self.pushButton_3.setObjectName("pushButton_3") self.lineEdit = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit.setGeometry(QtCore.QRect(130, 20, 341, 25)) self.lineEdit.setObjectName("lineEdit") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(20, 70, 91, 20)) self.label_2.setObjectName("label_2") self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_2.setGeometry(QtCore.QRect(130, 70, 261, 25)) self.lineEdit_2.setObjectName("lineEdit_2") self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_2.setGeometry(QtCore.QRect(130, 180, 141, 31)) self.pushButton_2.setStyleSheet("") self.pushButton_2.setObjectName("pushButton_2") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(20, 120, 64, 17)) self.label_3.setObjectName("label_3") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(400, 70, 71, 25)) self.pushButton.setStyleSheet("") self.pushButton.setObjectName("pushButton") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(20, 20, 71, 21)) self.label.setObjectName("label") self.comboBox = QtWidgets.QComboBox(self.centralwidget) self.comboBox.setGeometry(QtCore.QRect(130, 120, 341, 25)) self.comboBox.setStyleSheet("background-color: rgb(101, 101, 101);") self.comboBox.setObjectName("comboBox") MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 500, 22)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.pushButton_3.setText(_translate("MainWindow", "Download")) self.label_2.setText(_translate("MainWindow", "Save location")) self.pushButton_2.setText(_translate("MainWindow", "Search")) self.label_3.setText(_translate("MainWindow", "Qualiti")) self.pushButton.setText(_translate("MainWindow", "Browse")) self.label.setText(_translate("MainWindow", "Video URL"))
normal
{ "blob_id": "2d503c93160b6f44fba2495f0ae0cf9ba0eaf9d6", "index": 8930, "step-1": "<mask token>\n\n\nclass Ui_MainWindow(object):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Ui_MainWindow(object):\n <mask token>\n\n def retranslateUi(self, MainWindow):\n _translate = QtCore.QCoreApplication.translate\n MainWindow.setWindowTitle(_translate('MainWindow', 'MainWindow'))\n self.pushButton_3.setText(_translate('MainWindow', 'Download'))\n self.label_2.setText(_translate('MainWindow', 'Save location'))\n self.pushButton_2.setText(_translate('MainWindow', 'Search'))\n self.label_3.setText(_translate('MainWindow', 'Qualiti'))\n self.pushButton.setText(_translate('MainWindow', 'Browse'))\n self.label.setText(_translate('MainWindow', 'Video URL'))\n", "step-3": "<mask token>\n\n\nclass Ui_MainWindow(object):\n\n def setupUi(self, MainWindow):\n MainWindow.setObjectName('MainWindow')\n MainWindow.resize(500, 251)\n MainWindow.setStyleSheet(\n \"\"\"/*\nNeon Style Sheet for QT Applications (QpushButton)\nAuthor: Jaime A. Quiroga P.\nCompany: GTRONICK\nLast updated: 24/10/2020, 15:42.\nAvailable at: https://github.com/GTRONICK/QSS/blob/master/NeonButtons.qss\n*/\nQPushButton{\n border-style: solid;\n border-color: #050a0e;\n border-width: 1px;\n border-radius: 5px;\n color: #d3dae3;\n padding: 2px;\n background-color: #100E19;\n}\nQPushButton::default{\n border-style: solid;\n border-color: #050a0e;\n border-width: 1px;\n border-radius: 5px;\n color: #FFFFFF;\n padding: 2px;\n background-color: #151a1e;\n}\nQPushButton:hover{\n border-style: solid;\n border-top-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #C0DB50, stop:0.4 #C0DB50, stop:0.5 #100E19, stop:1 #100E19);\n border-bottom-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #100E19, stop:0.5 #100E19, stop:0.6 #C0DB50, stop:1 #C0DB50);\n border-left-color: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0 #C0DB50, stop:0.3 #C0DB50, stop:0.7 #100E19, stop:1 #100E19);\n border-right-color: qlineargradient(spread:pad, x1:0, y1:1, x2:0, y2:0, stop:0 #C0DB50, stop:0.3 #C0DB50, stop:0.7 #100E19, stop:1 #100E19);\n border-width: 2px;\n border-radius: 1px;\n color: #d3dae3;\n padding: 2px;\n}\nQPushButton:pressed{\n border-style: solid;\n border-top-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #d33af1, stop:0.4 #d33af1, stop:0.5 #100E19, stop:1 #100E19);\n border-bottom-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #100E19, stop:0.5 #100E19, stop:0.6 #d33af1, stop:1 #d33af1);\n border-left-color: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0 #d33af1, stop:0.3 #d33af1, stop:0.7 #100E19, stop:1 #100E19);\n border-right-color: qlineargradient(spread:pad, x1:0, y1:1, x2:0, y2:0, stop:0 #d33af1, stop:0.3 #d33af1, stop:0.7 #100E19, stop:1 #100E19);\n border-width: 2px;\n border-radius: 1px;\n color: #d3dae3;\n padding: 2px;\n}\"\"\"\n )\n self.centralwidget = QtWidgets.QWidget(MainWindow)\n self.centralwidget.setObjectName('centralwidget')\n self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget)\n self.pushButton_3.setGeometry(QtCore.QRect(330, 180, 141, 31))\n self.pushButton_3.setStyleSheet('')\n self.pushButton_3.setObjectName('pushButton_3')\n self.lineEdit = QtWidgets.QLineEdit(self.centralwidget)\n self.lineEdit.setGeometry(QtCore.QRect(130, 20, 341, 25))\n self.lineEdit.setObjectName('lineEdit')\n self.label_2 = QtWidgets.QLabel(self.centralwidget)\n self.label_2.setGeometry(QtCore.QRect(20, 70, 91, 20))\n self.label_2.setObjectName('label_2')\n self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget)\n self.lineEdit_2.setGeometry(QtCore.QRect(130, 70, 261, 25))\n self.lineEdit_2.setObjectName('lineEdit_2')\n self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget)\n self.pushButton_2.setGeometry(QtCore.QRect(130, 180, 141, 31))\n self.pushButton_2.setStyleSheet('')\n self.pushButton_2.setObjectName('pushButton_2')\n self.label_3 = QtWidgets.QLabel(self.centralwidget)\n self.label_3.setGeometry(QtCore.QRect(20, 120, 64, 17))\n self.label_3.setObjectName('label_3')\n self.pushButton = QtWidgets.QPushButton(self.centralwidget)\n self.pushButton.setGeometry(QtCore.QRect(400, 70, 71, 25))\n self.pushButton.setStyleSheet('')\n self.pushButton.setObjectName('pushButton')\n self.label = QtWidgets.QLabel(self.centralwidget)\n self.label.setGeometry(QtCore.QRect(20, 20, 71, 21))\n self.label.setObjectName('label')\n self.comboBox = QtWidgets.QComboBox(self.centralwidget)\n self.comboBox.setGeometry(QtCore.QRect(130, 120, 341, 25))\n self.comboBox.setStyleSheet('background-color: rgb(101, 101, 101);')\n self.comboBox.setObjectName('comboBox')\n MainWindow.setCentralWidget(self.centralwidget)\n self.menubar = QtWidgets.QMenuBar(MainWindow)\n self.menubar.setGeometry(QtCore.QRect(0, 0, 500, 22))\n self.menubar.setObjectName('menubar')\n MainWindow.setMenuBar(self.menubar)\n self.statusbar = QtWidgets.QStatusBar(MainWindow)\n self.statusbar.setObjectName('statusbar')\n MainWindow.setStatusBar(self.statusbar)\n self.retranslateUi(MainWindow)\n QtCore.QMetaObject.connectSlotsByName(MainWindow)\n\n def retranslateUi(self, MainWindow):\n _translate = QtCore.QCoreApplication.translate\n MainWindow.setWindowTitle(_translate('MainWindow', 'MainWindow'))\n self.pushButton_3.setText(_translate('MainWindow', 'Download'))\n self.label_2.setText(_translate('MainWindow', 'Save location'))\n self.pushButton_2.setText(_translate('MainWindow', 'Search'))\n self.label_3.setText(_translate('MainWindow', 'Qualiti'))\n self.pushButton.setText(_translate('MainWindow', 'Browse'))\n self.label.setText(_translate('MainWindow', 'Video URL'))\n", "step-4": "from PyQt5 import QtCore, QtGui, QtWidgets\n\n\nclass Ui_MainWindow(object):\n\n def setupUi(self, MainWindow):\n MainWindow.setObjectName('MainWindow')\n MainWindow.resize(500, 251)\n MainWindow.setStyleSheet(\n \"\"\"/*\nNeon Style Sheet for QT Applications (QpushButton)\nAuthor: Jaime A. Quiroga P.\nCompany: GTRONICK\nLast updated: 24/10/2020, 15:42.\nAvailable at: https://github.com/GTRONICK/QSS/blob/master/NeonButtons.qss\n*/\nQPushButton{\n border-style: solid;\n border-color: #050a0e;\n border-width: 1px;\n border-radius: 5px;\n color: #d3dae3;\n padding: 2px;\n background-color: #100E19;\n}\nQPushButton::default{\n border-style: solid;\n border-color: #050a0e;\n border-width: 1px;\n border-radius: 5px;\n color: #FFFFFF;\n padding: 2px;\n background-color: #151a1e;\n}\nQPushButton:hover{\n border-style: solid;\n border-top-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #C0DB50, stop:0.4 #C0DB50, stop:0.5 #100E19, stop:1 #100E19);\n border-bottom-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #100E19, stop:0.5 #100E19, stop:0.6 #C0DB50, stop:1 #C0DB50);\n border-left-color: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0 #C0DB50, stop:0.3 #C0DB50, stop:0.7 #100E19, stop:1 #100E19);\n border-right-color: qlineargradient(spread:pad, x1:0, y1:1, x2:0, y2:0, stop:0 #C0DB50, stop:0.3 #C0DB50, stop:0.7 #100E19, stop:1 #100E19);\n border-width: 2px;\n border-radius: 1px;\n color: #d3dae3;\n padding: 2px;\n}\nQPushButton:pressed{\n border-style: solid;\n border-top-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #d33af1, stop:0.4 #d33af1, stop:0.5 #100E19, stop:1 #100E19);\n border-bottom-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #100E19, stop:0.5 #100E19, stop:0.6 #d33af1, stop:1 #d33af1);\n border-left-color: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0 #d33af1, stop:0.3 #d33af1, stop:0.7 #100E19, stop:1 #100E19);\n border-right-color: qlineargradient(spread:pad, x1:0, y1:1, x2:0, y2:0, stop:0 #d33af1, stop:0.3 #d33af1, stop:0.7 #100E19, stop:1 #100E19);\n border-width: 2px;\n border-radius: 1px;\n color: #d3dae3;\n padding: 2px;\n}\"\"\"\n )\n self.centralwidget = QtWidgets.QWidget(MainWindow)\n self.centralwidget.setObjectName('centralwidget')\n self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget)\n self.pushButton_3.setGeometry(QtCore.QRect(330, 180, 141, 31))\n self.pushButton_3.setStyleSheet('')\n self.pushButton_3.setObjectName('pushButton_3')\n self.lineEdit = QtWidgets.QLineEdit(self.centralwidget)\n self.lineEdit.setGeometry(QtCore.QRect(130, 20, 341, 25))\n self.lineEdit.setObjectName('lineEdit')\n self.label_2 = QtWidgets.QLabel(self.centralwidget)\n self.label_2.setGeometry(QtCore.QRect(20, 70, 91, 20))\n self.label_2.setObjectName('label_2')\n self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget)\n self.lineEdit_2.setGeometry(QtCore.QRect(130, 70, 261, 25))\n self.lineEdit_2.setObjectName('lineEdit_2')\n self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget)\n self.pushButton_2.setGeometry(QtCore.QRect(130, 180, 141, 31))\n self.pushButton_2.setStyleSheet('')\n self.pushButton_2.setObjectName('pushButton_2')\n self.label_3 = QtWidgets.QLabel(self.centralwidget)\n self.label_3.setGeometry(QtCore.QRect(20, 120, 64, 17))\n self.label_3.setObjectName('label_3')\n self.pushButton = QtWidgets.QPushButton(self.centralwidget)\n self.pushButton.setGeometry(QtCore.QRect(400, 70, 71, 25))\n self.pushButton.setStyleSheet('')\n self.pushButton.setObjectName('pushButton')\n self.label = QtWidgets.QLabel(self.centralwidget)\n self.label.setGeometry(QtCore.QRect(20, 20, 71, 21))\n self.label.setObjectName('label')\n self.comboBox = QtWidgets.QComboBox(self.centralwidget)\n self.comboBox.setGeometry(QtCore.QRect(130, 120, 341, 25))\n self.comboBox.setStyleSheet('background-color: rgb(101, 101, 101);')\n self.comboBox.setObjectName('comboBox')\n MainWindow.setCentralWidget(self.centralwidget)\n self.menubar = QtWidgets.QMenuBar(MainWindow)\n self.menubar.setGeometry(QtCore.QRect(0, 0, 500, 22))\n self.menubar.setObjectName('menubar')\n MainWindow.setMenuBar(self.menubar)\n self.statusbar = QtWidgets.QStatusBar(MainWindow)\n self.statusbar.setObjectName('statusbar')\n MainWindow.setStatusBar(self.statusbar)\n self.retranslateUi(MainWindow)\n QtCore.QMetaObject.connectSlotsByName(MainWindow)\n\n def retranslateUi(self, MainWindow):\n _translate = QtCore.QCoreApplication.translate\n MainWindow.setWindowTitle(_translate('MainWindow', 'MainWindow'))\n self.pushButton_3.setText(_translate('MainWindow', 'Download'))\n self.label_2.setText(_translate('MainWindow', 'Save location'))\n self.pushButton_2.setText(_translate('MainWindow', 'Search'))\n self.label_3.setText(_translate('MainWindow', 'Qualiti'))\n self.pushButton.setText(_translate('MainWindow', 'Browse'))\n self.label.setText(_translate('MainWindow', 'Video URL'))\n", "step-5": "# -*- coding: utf-8 -*-\n\n# Form implementation generated from reading ui file 'main.ui'\n#\n# Created by: PyQt5 UI code generator 5.14.1\n#\n# WARNING! All changes made in this file will be lost!\n\n\nfrom PyQt5 import QtCore, QtGui, QtWidgets\n\n\nclass Ui_MainWindow(object):\n def setupUi(self, MainWindow):\n MainWindow.setObjectName(\"MainWindow\")\n MainWindow.resize(500, 251)\n MainWindow.setStyleSheet(\"/*\\n\"\n\"Neon Style Sheet for QT Applications (QpushButton)\\n\"\n\"Author: Jaime A. Quiroga P.\\n\"\n\"Company: GTRONICK\\n\"\n\"Last updated: 24/10/2020, 15:42.\\n\"\n\"Available at: https://github.com/GTRONICK/QSS/blob/master/NeonButtons.qss\\n\"\n\"*/\\n\"\n\"QPushButton{\\n\"\n\" border-style: solid;\\n\"\n\" border-color: #050a0e;\\n\"\n\" border-width: 1px;\\n\"\n\" border-radius: 5px;\\n\"\n\" color: #d3dae3;\\n\"\n\" padding: 2px;\\n\"\n\" background-color: #100E19;\\n\"\n\"}\\n\"\n\"QPushButton::default{\\n\"\n\" border-style: solid;\\n\"\n\" border-color: #050a0e;\\n\"\n\" border-width: 1px;\\n\"\n\" border-radius: 5px;\\n\"\n\" color: #FFFFFF;\\n\"\n\" padding: 2px;\\n\"\n\" background-color: #151a1e;\\n\"\n\"}\\n\"\n\"QPushButton:hover{\\n\"\n\" border-style: solid;\\n\"\n\" border-top-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #C0DB50, stop:0.4 #C0DB50, stop:0.5 #100E19, stop:1 #100E19);\\n\"\n\" border-bottom-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #100E19, stop:0.5 #100E19, stop:0.6 #C0DB50, stop:1 #C0DB50);\\n\"\n\" border-left-color: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0 #C0DB50, stop:0.3 #C0DB50, stop:0.7 #100E19, stop:1 #100E19);\\n\"\n\" border-right-color: qlineargradient(spread:pad, x1:0, y1:1, x2:0, y2:0, stop:0 #C0DB50, stop:0.3 #C0DB50, stop:0.7 #100E19, stop:1 #100E19);\\n\"\n\" border-width: 2px;\\n\"\n\" border-radius: 1px;\\n\"\n\" color: #d3dae3;\\n\"\n\" padding: 2px;\\n\"\n\"}\\n\"\n\"QPushButton:pressed{\\n\"\n\" border-style: solid;\\n\"\n\" border-top-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #d33af1, stop:0.4 #d33af1, stop:0.5 #100E19, stop:1 #100E19);\\n\"\n\" border-bottom-color: qlineargradient(spread:pad, x1:0, y1:1, x2:1, y2:1, stop:0 #100E19, stop:0.5 #100E19, stop:0.6 #d33af1, stop:1 #d33af1);\\n\"\n\" border-left-color: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0 #d33af1, stop:0.3 #d33af1, stop:0.7 #100E19, stop:1 #100E19);\\n\"\n\" border-right-color: qlineargradient(spread:pad, x1:0, y1:1, x2:0, y2:0, stop:0 #d33af1, stop:0.3 #d33af1, stop:0.7 #100E19, stop:1 #100E19);\\n\"\n\" border-width: 2px;\\n\"\n\" border-radius: 1px;\\n\"\n\" color: #d3dae3;\\n\"\n\" padding: 2px;\\n\"\n\"}\")\n self.centralwidget = QtWidgets.QWidget(MainWindow)\n self.centralwidget.setObjectName(\"centralwidget\")\n self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget)\n self.pushButton_3.setGeometry(QtCore.QRect(330, 180, 141, 31))\n self.pushButton_3.setStyleSheet(\"\")\n self.pushButton_3.setObjectName(\"pushButton_3\")\n self.lineEdit = QtWidgets.QLineEdit(self.centralwidget)\n self.lineEdit.setGeometry(QtCore.QRect(130, 20, 341, 25))\n self.lineEdit.setObjectName(\"lineEdit\")\n self.label_2 = QtWidgets.QLabel(self.centralwidget)\n self.label_2.setGeometry(QtCore.QRect(20, 70, 91, 20))\n self.label_2.setObjectName(\"label_2\")\n self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget)\n self.lineEdit_2.setGeometry(QtCore.QRect(130, 70, 261, 25))\n self.lineEdit_2.setObjectName(\"lineEdit_2\")\n self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget)\n self.pushButton_2.setGeometry(QtCore.QRect(130, 180, 141, 31))\n self.pushButton_2.setStyleSheet(\"\")\n self.pushButton_2.setObjectName(\"pushButton_2\")\n self.label_3 = QtWidgets.QLabel(self.centralwidget)\n self.label_3.setGeometry(QtCore.QRect(20, 120, 64, 17))\n self.label_3.setObjectName(\"label_3\")\n self.pushButton = QtWidgets.QPushButton(self.centralwidget)\n self.pushButton.setGeometry(QtCore.QRect(400, 70, 71, 25))\n self.pushButton.setStyleSheet(\"\")\n self.pushButton.setObjectName(\"pushButton\")\n self.label = QtWidgets.QLabel(self.centralwidget)\n self.label.setGeometry(QtCore.QRect(20, 20, 71, 21))\n self.label.setObjectName(\"label\")\n self.comboBox = QtWidgets.QComboBox(self.centralwidget)\n self.comboBox.setGeometry(QtCore.QRect(130, 120, 341, 25))\n self.comboBox.setStyleSheet(\"background-color: rgb(101, 101, 101);\")\n self.comboBox.setObjectName(\"comboBox\")\n MainWindow.setCentralWidget(self.centralwidget)\n self.menubar = QtWidgets.QMenuBar(MainWindow)\n self.menubar.setGeometry(QtCore.QRect(0, 0, 500, 22))\n self.menubar.setObjectName(\"menubar\")\n MainWindow.setMenuBar(self.menubar)\n self.statusbar = QtWidgets.QStatusBar(MainWindow)\n self.statusbar.setObjectName(\"statusbar\")\n MainWindow.setStatusBar(self.statusbar)\n\n self.retranslateUi(MainWindow)\n QtCore.QMetaObject.connectSlotsByName(MainWindow)\n\n def retranslateUi(self, MainWindow):\n _translate = QtCore.QCoreApplication.translate\n MainWindow.setWindowTitle(_translate(\"MainWindow\", \"MainWindow\"))\n self.pushButton_3.setText(_translate(\"MainWindow\", \"Download\"))\n self.label_2.setText(_translate(\"MainWindow\", \"Save location\"))\n self.pushButton_2.setText(_translate(\"MainWindow\", \"Search\"))\n self.label_3.setText(_translate(\"MainWindow\", \"Qualiti\"))\n self.pushButton.setText(_translate(\"MainWindow\", \"Browse\"))\n self.label.setText(_translate(\"MainWindow\", \"Video URL\"))\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> class Sprite: def __init__(self, name: str, index: str, xCoord: int, yCoord: int, heading: int, scale: float, volume: int, pan: int, rotation: int, draggable: bool, hidden: bool, costumes: str, color: (float, float, float), pen: str, id: int): self.name = name self.index = index self.coords = xCoord, yCoord self.heading = heading self.scale = scale self.volume = volume self.pan = pan self.rotation = rotation self.draggable = draggable self.hidden = hidden self.costumes = costumes self.color = color self.pen = pen self.id = id <|reserved_special_token_1|> <|reserved_special_token_0|> class Stage: <|reserved_special_token_0|> class Sprite: def __init__(self, name: str, index: str, xCoord: int, yCoord: int, heading: int, scale: float, volume: int, pan: int, rotation: int, draggable: bool, hidden: bool, costumes: str, color: (float, float, float), pen: str, id: int): self.name = name self.index = index self.coords = xCoord, yCoord self.heading = heading self.scale = scale self.volume = volume self.pan = pan self.rotation = rotation self.draggable = draggable self.hidden = hidden self.costumes = costumes self.color = color self.pen = pen self.id = id <|reserved_special_token_1|> <|reserved_special_token_0|> class Stage: def __init__(self, costumes, sounds, variables, blocks, scripts, sprites): self.costumes = costumes self.sounds = sounds self.variables = variables self.blocks = blocks self.scripts = scripts self.sprites = sprites class Sprite: def __init__(self, name: str, index: str, xCoord: int, yCoord: int, heading: int, scale: float, volume: int, pan: int, rotation: int, draggable: bool, hidden: bool, costumes: str, color: (float, float, float), pen: str, id: int): self.name = name self.index = index self.coords = xCoord, yCoord self.heading = heading self.scale = scale self.volume = volume self.pan = pan self.rotation = rotation self.draggable = draggable self.hidden = hidden self.costumes = costumes self.color = color self.pen = pen self.id = id <|reserved_special_token_1|> import xml.etree.ElementTree as ET class Stage: def __init__(self, costumes, sounds, variables, blocks, scripts, sprites): self.costumes = costumes self.sounds = sounds self.variables = variables self.blocks = blocks self.scripts = scripts self.sprites = sprites class Sprite: def __init__(self, name: str, index: str, xCoord: int, yCoord: int, heading: int, scale: float, volume: int, pan: int, rotation: int, draggable: bool, hidden: bool, costumes: str, color: (float, float, float), pen: str, id: int): self.name = name self.index = index self.coords = xCoord, yCoord self.heading = heading self.scale = scale self.volume = volume self.pan = pan self.rotation = rotation self.draggable = draggable self.hidden = hidden self.costumes = costumes self.color = color self.pen = pen self.id = id
flexible
{ "blob_id": "575768c200ad81f878c132d68569c84f497091f2", "index": 8137, "step-1": "<mask token>\n\n\nclass Sprite:\n\n def __init__(self, name: str, index: str, xCoord: int, yCoord: int,\n heading: int, scale: float, volume: int, pan: int, rotation: int,\n draggable: bool, hidden: bool, costumes: str, color: (float, float,\n float), pen: str, id: int):\n self.name = name\n self.index = index\n self.coords = xCoord, yCoord\n self.heading = heading\n self.scale = scale\n self.volume = volume\n self.pan = pan\n self.rotation = rotation\n self.draggable = draggable\n self.hidden = hidden\n self.costumes = costumes\n self.color = color\n self.pen = pen\n self.id = id\n", "step-2": "<mask token>\n\n\nclass Stage:\n <mask token>\n\n\nclass Sprite:\n\n def __init__(self, name: str, index: str, xCoord: int, yCoord: int,\n heading: int, scale: float, volume: int, pan: int, rotation: int,\n draggable: bool, hidden: bool, costumes: str, color: (float, float,\n float), pen: str, id: int):\n self.name = name\n self.index = index\n self.coords = xCoord, yCoord\n self.heading = heading\n self.scale = scale\n self.volume = volume\n self.pan = pan\n self.rotation = rotation\n self.draggable = draggable\n self.hidden = hidden\n self.costumes = costumes\n self.color = color\n self.pen = pen\n self.id = id\n", "step-3": "<mask token>\n\n\nclass Stage:\n\n def __init__(self, costumes, sounds, variables, blocks, scripts, sprites):\n self.costumes = costumes\n self.sounds = sounds\n self.variables = variables\n self.blocks = blocks\n self.scripts = scripts\n self.sprites = sprites\n\n\nclass Sprite:\n\n def __init__(self, name: str, index: str, xCoord: int, yCoord: int,\n heading: int, scale: float, volume: int, pan: int, rotation: int,\n draggable: bool, hidden: bool, costumes: str, color: (float, float,\n float), pen: str, id: int):\n self.name = name\n self.index = index\n self.coords = xCoord, yCoord\n self.heading = heading\n self.scale = scale\n self.volume = volume\n self.pan = pan\n self.rotation = rotation\n self.draggable = draggable\n self.hidden = hidden\n self.costumes = costumes\n self.color = color\n self.pen = pen\n self.id = id\n", "step-4": "import xml.etree.ElementTree as ET\n\n\nclass Stage:\n\n def __init__(self, costumes, sounds, variables, blocks, scripts, sprites):\n self.costumes = costumes\n self.sounds = sounds\n self.variables = variables\n self.blocks = blocks\n self.scripts = scripts\n self.sprites = sprites\n\n\nclass Sprite:\n\n def __init__(self, name: str, index: str, xCoord: int, yCoord: int,\n heading: int, scale: float, volume: int, pan: int, rotation: int,\n draggable: bool, hidden: bool, costumes: str, color: (float, float,\n float), pen: str, id: int):\n self.name = name\n self.index = index\n self.coords = xCoord, yCoord\n self.heading = heading\n self.scale = scale\n self.volume = volume\n self.pan = pan\n self.rotation = rotation\n self.draggable = draggable\n self.hidden = hidden\n self.costumes = costumes\n self.color = color\n self.pen = pen\n self.id = id\n", "step-5": null, "step-ids": [ 2, 3, 4, 5 ] }
[ 2, 3, 4, 5 ]
<|reserved_special_token_0|> @unittest.skipIf(sys.platform.startswith('win'), 'subprocess complications on Windows') class TestSharedModules(unittest.TestCase): def setUp(self): pass def test_shared_modules(self): jep_pipe(build_java_process_cmd('jep.test.TestSharedModules')) <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @unittest.skipIf(sys.platform.startswith('win'), 'subprocess complications on Windows') class TestSharedModules(unittest.TestCase): def setUp(self): pass def test_shared_modules(self): jep_pipe(build_java_process_cmd('jep.test.TestSharedModules')) @unittest.skipIf(not jep.JEP_NUMPY_ENABLED, 'Jep library built without numpy support') def test_numpy_prod_succeeds(self): jep_pipe(build_java_process_cmd('jep.test.numpy.TestNumpyProdShared')) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @unittest.skipIf(sys.platform.startswith('win'), 'subprocess complications on Windows') class TestSharedModules(unittest.TestCase): def setUp(self): pass def test_shared_modules(self): jep_pipe(build_java_process_cmd('jep.test.TestSharedModules')) @unittest.skipIf(not jep.JEP_NUMPY_ENABLED, 'Jep library built without numpy support') def test_numpy_prod_succeeds(self): jep_pipe(build_java_process_cmd('jep.test.numpy.TestNumpyProdShared')) @unittest.skipIf(not jep.JEP_NUMPY_ENABLED, 'Jep library built without numpy support') def test_numpy_array_to_string(self): jep_pipe(build_java_process_cmd( 'jep.test.numpy.TestNumpyArrayToString')) <|reserved_special_token_1|> import unittest import sys from tests.jep_pipe import jep_pipe from tests.jep_pipe import build_java_process_cmd import jep @unittest.skipIf(sys.platform.startswith('win'), 'subprocess complications on Windows') class TestSharedModules(unittest.TestCase): def setUp(self): pass def test_shared_modules(self): jep_pipe(build_java_process_cmd('jep.test.TestSharedModules')) @unittest.skipIf(not jep.JEP_NUMPY_ENABLED, 'Jep library built without numpy support') def test_numpy_prod_succeeds(self): jep_pipe(build_java_process_cmd('jep.test.numpy.TestNumpyProdShared')) @unittest.skipIf(not jep.JEP_NUMPY_ENABLED, 'Jep library built without numpy support') def test_numpy_array_to_string(self): jep_pipe(build_java_process_cmd( 'jep.test.numpy.TestNumpyArrayToString')) <|reserved_special_token_1|> import unittest import sys from tests.jep_pipe import jep_pipe from tests.jep_pipe import build_java_process_cmd import jep @unittest.skipIf(sys.platform.startswith("win"), "subprocess complications on Windows") class TestSharedModules(unittest.TestCase): def setUp(self): pass def test_shared_modules(self): jep_pipe(build_java_process_cmd('jep.test.TestSharedModules')) @unittest.skipIf(not jep.JEP_NUMPY_ENABLED, 'Jep library built without numpy support') def test_numpy_prod_succeeds(self): jep_pipe(build_java_process_cmd('jep.test.numpy.TestNumpyProdShared')) @unittest.skipIf(not jep.JEP_NUMPY_ENABLED, 'Jep library built without numpy support') def test_numpy_array_to_string(self): jep_pipe(build_java_process_cmd( 'jep.test.numpy.TestNumpyArrayToString'))
flexible
{ "blob_id": "39bc90f34cccebe9a8b1475e396caa1c14f6b2df", "index": 9004, "step-1": "<mask token>\n\n\[email protected](sys.platform.startswith('win'),\n 'subprocess complications on Windows')\nclass TestSharedModules(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def test_shared_modules(self):\n jep_pipe(build_java_process_cmd('jep.test.TestSharedModules'))\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\[email protected](sys.platform.startswith('win'),\n 'subprocess complications on Windows')\nclass TestSharedModules(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def test_shared_modules(self):\n jep_pipe(build_java_process_cmd('jep.test.TestSharedModules'))\n\n @unittest.skipIf(not jep.JEP_NUMPY_ENABLED,\n 'Jep library built without numpy support')\n def test_numpy_prod_succeeds(self):\n jep_pipe(build_java_process_cmd('jep.test.numpy.TestNumpyProdShared'))\n <mask token>\n", "step-3": "<mask token>\n\n\[email protected](sys.platform.startswith('win'),\n 'subprocess complications on Windows')\nclass TestSharedModules(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def test_shared_modules(self):\n jep_pipe(build_java_process_cmd('jep.test.TestSharedModules'))\n\n @unittest.skipIf(not jep.JEP_NUMPY_ENABLED,\n 'Jep library built without numpy support')\n def test_numpy_prod_succeeds(self):\n jep_pipe(build_java_process_cmd('jep.test.numpy.TestNumpyProdShared'))\n\n @unittest.skipIf(not jep.JEP_NUMPY_ENABLED,\n 'Jep library built without numpy support')\n def test_numpy_array_to_string(self):\n jep_pipe(build_java_process_cmd(\n 'jep.test.numpy.TestNumpyArrayToString'))\n", "step-4": "import unittest\nimport sys\nfrom tests.jep_pipe import jep_pipe\nfrom tests.jep_pipe import build_java_process_cmd\nimport jep\n\n\[email protected](sys.platform.startswith('win'),\n 'subprocess complications on Windows')\nclass TestSharedModules(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def test_shared_modules(self):\n jep_pipe(build_java_process_cmd('jep.test.TestSharedModules'))\n\n @unittest.skipIf(not jep.JEP_NUMPY_ENABLED,\n 'Jep library built without numpy support')\n def test_numpy_prod_succeeds(self):\n jep_pipe(build_java_process_cmd('jep.test.numpy.TestNumpyProdShared'))\n\n @unittest.skipIf(not jep.JEP_NUMPY_ENABLED,\n 'Jep library built without numpy support')\n def test_numpy_array_to_string(self):\n jep_pipe(build_java_process_cmd(\n 'jep.test.numpy.TestNumpyArrayToString'))\n", "step-5": "import unittest\nimport sys\nfrom tests.jep_pipe import jep_pipe\nfrom tests.jep_pipe import build_java_process_cmd\nimport jep\n\n\[email protected](sys.platform.startswith(\"win\"), \"subprocess complications on Windows\")\nclass TestSharedModules(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def test_shared_modules(self):\n jep_pipe(build_java_process_cmd('jep.test.TestSharedModules'))\n\n @unittest.skipIf(not jep.JEP_NUMPY_ENABLED, 'Jep library built without numpy support')\n def test_numpy_prod_succeeds(self):\n jep_pipe(build_java_process_cmd('jep.test.numpy.TestNumpyProdShared'))\n\n @unittest.skipIf(not jep.JEP_NUMPY_ENABLED, 'Jep library built without numpy support')\n def test_numpy_array_to_string(self):\n jep_pipe(build_java_process_cmd(\n 'jep.test.numpy.TestNumpyArrayToString'))\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
# Generated by Django 3.2.7 on 2021-09-11 19:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cryptocurrency', '0012_rename_cancel_exists_order_cancel_exist'), ] operations = [ migrations.AlterField( model_name='order', name='created_at', field=models.IntegerField(blank=True, null=True), ), ]
normal
{ "blob_id": "de347b41cd88947690cb42e043880a80d81e2c5c", "index": 436, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('cryptocurrency',\n '0012_rename_cancel_exists_order_cancel_exist')]\n operations = [migrations.AlterField(model_name='order', name=\n 'created_at', field=models.IntegerField(blank=True, null=True))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('cryptocurrency',\n '0012_rename_cancel_exists_order_cancel_exist')]\n operations = [migrations.AlterField(model_name='order', name=\n 'created_at', field=models.IntegerField(blank=True, null=True))]\n", "step-5": "# Generated by Django 3.2.7 on 2021-09-11 19:38\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('cryptocurrency', '0012_rename_cancel_exists_order_cancel_exist'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='order',\n name='created_at',\n field=models.IntegerField(blank=True, null=True),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class TestTransliteratePackage(unittest.TestCase): <|reserved_special_token_0|> def test_romanize_royin_basic(self): for word in _BASIC_TESTS: expect = _BASIC_TESTS[word] self.assertEqual(romanize(word, engine='royin'), expect) def test_romanize_royin_consistency(self): for word, part1, part2 in _CONSISTENCY_TESTS: self.assertEqual(romanize(word, engine='royin'), romanize(part1, engine='royin') + romanize(part2, engine='royin')) def test_romanize_thai2rom(self): self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo') self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai') self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak') self.assertEqual(romanize('นก', engine='thai2rom'), 'nok') self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im') self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'), 'kan narong') self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun') self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin') def test_thai2rom_prepare_sequence(self): transliterater = ThaiTransliterator() UNK_TOKEN = 1 END_TOKEN = 3 self.assertListEqual(transliterater._prepare_sequence_in('A').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu(). detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) <|reserved_special_token_0|> def test_pronunciate(self): self.assertEqual(pronunciate(''), '') remove('thai_w2p') self.assertIsNotNone(pronunciate('คน', engine='w2p')) self.assertIsNotNone(pronunciate('แมว', engine='w2p')) self.assertIsNotNone(pronunciate('มข.', engine='w2p')) self.assertIsNotNone(pronunciate('มช.', engine='w2p')) self.assertIsNotNone(pronunciate('jks', engine='w2p')) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestTransliteratePackage(unittest.TestCase): <|reserved_special_token_0|> def test_romanize_royin_basic(self): for word in _BASIC_TESTS: expect = _BASIC_TESTS[word] self.assertEqual(romanize(word, engine='royin'), expect) def test_romanize_royin_consistency(self): for word, part1, part2 in _CONSISTENCY_TESTS: self.assertEqual(romanize(word, engine='royin'), romanize(part1, engine='royin') + romanize(part2, engine='royin')) def test_romanize_thai2rom(self): self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo') self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai') self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak') self.assertEqual(romanize('นก', engine='thai2rom'), 'nok') self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im') self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'), 'kan narong') self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun') self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin') def test_thai2rom_prepare_sequence(self): transliterater = ThaiTransliterator() UNK_TOKEN = 1 END_TOKEN = 3 self.assertListEqual(transliterater._prepare_sequence_in('A').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu(). detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) def test_transliterate(self): self.assertEqual(transliterate(''), '') self.assertEqual(transliterate('แมว', 'pyicu'), 'mæw') self.assertEqual(transliterate('คน', engine='ipa'), 'kʰon') self.assertIsNotNone(transliterate('คน', engine='thaig2p')) self.assertIsNotNone(transliterate('แมว', engine='thaig2p')) self.assertIsNotNone(transliterate('คน', engine='tltk_g2p')) self.assertIsNotNone(transliterate('แมว', engine='tltk_g2p')) self.assertIsNotNone(transliterate('คน', engine='tltk_ipa')) self.assertIsNotNone(transliterate('แมว', engine='tltk_ipa')) self.assertIsNotNone(trans_list('คน')) self.assertIsNotNone(xsampa_list('คน')) def test_pronunciate(self): self.assertEqual(pronunciate(''), '') remove('thai_w2p') self.assertIsNotNone(pronunciate('คน', engine='w2p')) self.assertIsNotNone(pronunciate('แมว', engine='w2p')) self.assertIsNotNone(pronunciate('มข.', engine='w2p')) self.assertIsNotNone(pronunciate('มช.', engine='w2p')) self.assertIsNotNone(pronunciate('jks', engine='w2p')) def test_puan(self): self.assertEqual(puan('นาริน'), 'นิน-รา') self.assertEqual(puan('นาริน', False), 'นินรา') self.assertEqual(puan('แสงดีนะ'), 'แสง-ดะ-นี') self.assertEqual(puan('แสงดีนะ', False), 'แสงดะนี') with self.assertRaises(ValueError): self.assertEqual(puan('สวัสดีครับ'), 'สวัสดีครับ') <|reserved_special_token_1|> <|reserved_special_token_0|> _BASIC_TESTS = {None: '', '': '', 'abc': 'abc', 'หมอก': 'mok', 'หาย': 'hai', 'แมว': 'maeo', 'เดือน': 'duean', 'ดำ': 'dam', 'ดู': 'du', 'บัว': 'bua', 'กก': 'kok', 'พร': 'phon', 'กร': 'kon', 'กรร': 'kan', 'กรรม': 'kam', 'ฝ้าย': 'fai', 'นพพร': 'nopphon', 'อัก': 'ak'} _CONSISTENCY_TESTS = [('ตากใบ', 'ตาก', 'ใบ')] class TestTransliteratePackage(unittest.TestCase): def test_romanize(self): self.assertEqual(romanize(None), '') self.assertEqual(romanize(''), '') self.assertEqual(romanize('แมว'), 'maeo') self.assertEqual(romanize('แมว', engine='tltk'), 'maeo') def test_romanize_royin_basic(self): for word in _BASIC_TESTS: expect = _BASIC_TESTS[word] self.assertEqual(romanize(word, engine='royin'), expect) def test_romanize_royin_consistency(self): for word, part1, part2 in _CONSISTENCY_TESTS: self.assertEqual(romanize(word, engine='royin'), romanize(part1, engine='royin') + romanize(part2, engine='royin')) def test_romanize_thai2rom(self): self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo') self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai') self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak') self.assertEqual(romanize('นก', engine='thai2rom'), 'nok') self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im') self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'), 'kan narong') self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun') self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin') def test_thai2rom_prepare_sequence(self): transliterater = ThaiTransliterator() UNK_TOKEN = 1 END_TOKEN = 3 self.assertListEqual(transliterater._prepare_sequence_in('A').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu(). detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) def test_transliterate(self): self.assertEqual(transliterate(''), '') self.assertEqual(transliterate('แมว', 'pyicu'), 'mæw') self.assertEqual(transliterate('คน', engine='ipa'), 'kʰon') self.assertIsNotNone(transliterate('คน', engine='thaig2p')) self.assertIsNotNone(transliterate('แมว', engine='thaig2p')) self.assertIsNotNone(transliterate('คน', engine='tltk_g2p')) self.assertIsNotNone(transliterate('แมว', engine='tltk_g2p')) self.assertIsNotNone(transliterate('คน', engine='tltk_ipa')) self.assertIsNotNone(transliterate('แมว', engine='tltk_ipa')) self.assertIsNotNone(trans_list('คน')) self.assertIsNotNone(xsampa_list('คน')) def test_pronunciate(self): self.assertEqual(pronunciate(''), '') remove('thai_w2p') self.assertIsNotNone(pronunciate('คน', engine='w2p')) self.assertIsNotNone(pronunciate('แมว', engine='w2p')) self.assertIsNotNone(pronunciate('มข.', engine='w2p')) self.assertIsNotNone(pronunciate('มช.', engine='w2p')) self.assertIsNotNone(pronunciate('jks', engine='w2p')) def test_puan(self): self.assertEqual(puan('นาริน'), 'นิน-รา') self.assertEqual(puan('นาริน', False), 'นินรา') self.assertEqual(puan('แสงดีนะ'), 'แสง-ดะ-นี') self.assertEqual(puan('แสงดีนะ', False), 'แสงดะนี') with self.assertRaises(ValueError): self.assertEqual(puan('สวัสดีครับ'), 'สวัสดีครับ') <|reserved_special_token_1|> import unittest import torch from pythainlp.transliterate import romanize, transliterate, pronunciate, puan from pythainlp.transliterate.ipa import trans_list, xsampa_list from pythainlp.transliterate.thai2rom import ThaiTransliterator from pythainlp.corpus import remove _BASIC_TESTS = {None: '', '': '', 'abc': 'abc', 'หมอก': 'mok', 'หาย': 'hai', 'แมว': 'maeo', 'เดือน': 'duean', 'ดำ': 'dam', 'ดู': 'du', 'บัว': 'bua', 'กก': 'kok', 'พร': 'phon', 'กร': 'kon', 'กรร': 'kan', 'กรรม': 'kam', 'ฝ้าย': 'fai', 'นพพร': 'nopphon', 'อัก': 'ak'} _CONSISTENCY_TESTS = [('ตากใบ', 'ตาก', 'ใบ')] class TestTransliteratePackage(unittest.TestCase): def test_romanize(self): self.assertEqual(romanize(None), '') self.assertEqual(romanize(''), '') self.assertEqual(romanize('แมว'), 'maeo') self.assertEqual(romanize('แมว', engine='tltk'), 'maeo') def test_romanize_royin_basic(self): for word in _BASIC_TESTS: expect = _BASIC_TESTS[word] self.assertEqual(romanize(word, engine='royin'), expect) def test_romanize_royin_consistency(self): for word, part1, part2 in _CONSISTENCY_TESTS: self.assertEqual(romanize(word, engine='royin'), romanize(part1, engine='royin') + romanize(part2, engine='royin')) def test_romanize_thai2rom(self): self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo') self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai') self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak') self.assertEqual(romanize('นก', engine='thai2rom'), 'nok') self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im') self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'), 'kan narong') self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun') self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin') def test_thai2rom_prepare_sequence(self): transliterater = ThaiTransliterator() UNK_TOKEN = 1 END_TOKEN = 3 self.assertListEqual(transliterater._prepare_sequence_in('A').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu(). detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) def test_transliterate(self): self.assertEqual(transliterate(''), '') self.assertEqual(transliterate('แมว', 'pyicu'), 'mæw') self.assertEqual(transliterate('คน', engine='ipa'), 'kʰon') self.assertIsNotNone(transliterate('คน', engine='thaig2p')) self.assertIsNotNone(transliterate('แมว', engine='thaig2p')) self.assertIsNotNone(transliterate('คน', engine='tltk_g2p')) self.assertIsNotNone(transliterate('แมว', engine='tltk_g2p')) self.assertIsNotNone(transliterate('คน', engine='tltk_ipa')) self.assertIsNotNone(transliterate('แมว', engine='tltk_ipa')) self.assertIsNotNone(trans_list('คน')) self.assertIsNotNone(xsampa_list('คน')) def test_pronunciate(self): self.assertEqual(pronunciate(''), '') remove('thai_w2p') self.assertIsNotNone(pronunciate('คน', engine='w2p')) self.assertIsNotNone(pronunciate('แมว', engine='w2p')) self.assertIsNotNone(pronunciate('มข.', engine='w2p')) self.assertIsNotNone(pronunciate('มช.', engine='w2p')) self.assertIsNotNone(pronunciate('jks', engine='w2p')) def test_puan(self): self.assertEqual(puan('นาริน'), 'นิน-รา') self.assertEqual(puan('นาริน', False), 'นินรา') self.assertEqual(puan('แสงดีนะ'), 'แสง-ดะ-นี') self.assertEqual(puan('แสงดีนะ', False), 'แสงดะนี') with self.assertRaises(ValueError): self.assertEqual(puan('สวัสดีครับ'), 'สวัสดีครับ') <|reserved_special_token_1|> # -*- coding: utf-8 -*- import unittest import torch from pythainlp.transliterate import romanize, transliterate, pronunciate, puan from pythainlp.transliterate.ipa import trans_list, xsampa_list from pythainlp.transliterate.thai2rom import ThaiTransliterator from pythainlp.corpus import remove _BASIC_TESTS = { None: "", "": "", "abc": "abc", "หมอก": "mok", "หาย": "hai", "แมว": "maeo", "เดือน": "duean", "ดำ": "dam", "ดู": "du", "บัว": "bua", "กก": "kok", "พร": "phon", "กร": "kon", "กรร": "kan", "กรรม": "kam", # "กรม": "krom", # failed "ฝ้าย": "fai", "นพพร": "nopphon", "อัก": "ak", # "ทีปกร": "thipakon", # failed # "ธรรพ์": "than", # failed # "ธรรม": "tham", # failed # "มหา": "maha", # failed # "หยาก": "yak", # failed # "อยาก": "yak", # failed # "ยมก": "yamok", # failed # "กลัว": "klua", # failed # "บ้านไร่": "banrai", # failed # "ชารินทร์": "charin", # failed } # these are set of two-syllable words, # to test if the transliteration/romanization is consistent, say # romanize(1+2) = romanize(1) + romanize(2) _CONSISTENCY_TESTS = [ # ("กระจก", "กระ", "จก"), # failed # ("ระเบิด", "ระ", "เบิด"), # failed # ("หยากไย่", "หยาก", "ไย่"), # failed ("ตากใบ", "ตาก", "ใบ"), # ("จัดสรร", "จัด", "สรร"), # failed ] class TestTransliteratePackage(unittest.TestCase): def test_romanize(self): self.assertEqual(romanize(None), "") self.assertEqual(romanize(""), "") self.assertEqual(romanize("แมว"), "maeo") self.assertEqual(romanize("แมว", engine="tltk"), "maeo") def test_romanize_royin_basic(self): for word in _BASIC_TESTS: expect = _BASIC_TESTS[word] self.assertEqual(romanize(word, engine="royin"), expect) def test_romanize_royin_consistency(self): for word, part1, part2 in _CONSISTENCY_TESTS: self.assertEqual( romanize(word, engine="royin"), ( romanize(part1, engine="royin") + romanize(part2, engine="royin") ), ) def test_romanize_thai2rom(self): self.assertEqual(romanize("แมว", engine="thai2rom"), "maeo") self.assertEqual(romanize("บ้านไร่", engine="thai2rom"), "banrai") self.assertEqual(romanize("สุนัข", engine="thai2rom"), "sunak") self.assertEqual(romanize("นก", engine="thai2rom"), "nok") self.assertEqual(romanize("ความอิ่ม", engine="thai2rom"), "khwam-im") self.assertEqual( romanize("กานต์ ณรงค์", engine="thai2rom"), "kan narong" ) self.assertEqual(romanize("สกุนต์", engine="thai2rom"), "sakun") self.assertEqual(romanize("ชารินทร์", engine="thai2rom"), "charin") def test_thai2rom_prepare_sequence(self): transliterater = ThaiTransliterator() UNK_TOKEN = 1 # UNK_TOKEN or <UNK> is represented by 1 END_TOKEN = 3 # END_TOKEN or <end> is represented by 3 self.assertListEqual( transliterater._prepare_sequence_in("A") .cpu() .detach() .numpy() .tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long) .cpu() .detach() .numpy() .tolist(), ) self.assertListEqual( transliterater._prepare_sequence_in("♥") .cpu() .detach() .numpy() .tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long) .cpu() .detach() .numpy() .tolist(), ) self.assertNotEqual( transliterater._prepare_sequence_in("ก") .cpu() .detach() .numpy() .tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long) .cpu() .detach() .numpy() .tolist(), ) def test_transliterate(self): self.assertEqual(transliterate(""), "") self.assertEqual(transliterate("แมว", "pyicu"), "mæw") self.assertEqual(transliterate("คน", engine="ipa"), "kʰon") self.assertIsNotNone(transliterate("คน", engine="thaig2p")) self.assertIsNotNone(transliterate("แมว", engine="thaig2p")) self.assertIsNotNone(transliterate("คน", engine="tltk_g2p")) self.assertIsNotNone(transliterate("แมว", engine="tltk_g2p")) self.assertIsNotNone(transliterate("คน", engine="tltk_ipa")) self.assertIsNotNone(transliterate("แมว", engine="tltk_ipa")) self.assertIsNotNone(trans_list("คน")) self.assertIsNotNone(xsampa_list("คน")) def test_pronunciate(self): self.assertEqual(pronunciate(""), "") remove("thai_w2p") self.assertIsNotNone(pronunciate("คน", engine="w2p")) self.assertIsNotNone(pronunciate("แมว", engine="w2p")) self.assertIsNotNone(pronunciate("มข.", engine="w2p")) self.assertIsNotNone(pronunciate("มช.", engine="w2p")) self.assertIsNotNone(pronunciate("jks", engine="w2p")) def test_puan(self): self.assertEqual(puan("นาริน"), "นิน-รา") self.assertEqual(puan("นาริน", False), "นินรา") self.assertEqual(puan("แสงดีนะ"), "แสง-ดะ-นี") self.assertEqual(puan("แสงดีนะ", False), "แสงดะนี") with self.assertRaises(ValueError): self.assertEqual(puan("สวัสดีครับ"), "สวัสดีครับ")
flexible
{ "blob_id": "486cfc4bb4b46d78715b11cba44656e8ba077c9b", "index": 2551, "step-1": "<mask token>\n\n\nclass TestTransliteratePackage(unittest.TestCase):\n <mask token>\n\n def test_romanize_royin_basic(self):\n for word in _BASIC_TESTS:\n expect = _BASIC_TESTS[word]\n self.assertEqual(romanize(word, engine='royin'), expect)\n\n def test_romanize_royin_consistency(self):\n for word, part1, part2 in _CONSISTENCY_TESTS:\n self.assertEqual(romanize(word, engine='royin'), romanize(part1,\n engine='royin') + romanize(part2, engine='royin'))\n\n def test_romanize_thai2rom(self):\n self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo')\n self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai')\n self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak')\n self.assertEqual(romanize('นก', engine='thai2rom'), 'nok')\n self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im')\n self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'),\n 'kan narong')\n self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun')\n self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin')\n\n def test_thai2rom_prepare_sequence(self):\n transliterater = ThaiTransliterator()\n UNK_TOKEN = 1\n END_TOKEN = 3\n self.assertListEqual(transliterater._prepare_sequence_in('A').cpu()\n .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu()\n .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu().\n detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n <mask token>\n\n def test_pronunciate(self):\n self.assertEqual(pronunciate(''), '')\n remove('thai_w2p')\n self.assertIsNotNone(pronunciate('คน', engine='w2p'))\n self.assertIsNotNone(pronunciate('แมว', engine='w2p'))\n self.assertIsNotNone(pronunciate('มข.', engine='w2p'))\n self.assertIsNotNone(pronunciate('มช.', engine='w2p'))\n self.assertIsNotNone(pronunciate('jks', engine='w2p'))\n <mask token>\n", "step-2": "<mask token>\n\n\nclass TestTransliteratePackage(unittest.TestCase):\n <mask token>\n\n def test_romanize_royin_basic(self):\n for word in _BASIC_TESTS:\n expect = _BASIC_TESTS[word]\n self.assertEqual(romanize(word, engine='royin'), expect)\n\n def test_romanize_royin_consistency(self):\n for word, part1, part2 in _CONSISTENCY_TESTS:\n self.assertEqual(romanize(word, engine='royin'), romanize(part1,\n engine='royin') + romanize(part2, engine='royin'))\n\n def test_romanize_thai2rom(self):\n self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo')\n self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai')\n self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak')\n self.assertEqual(romanize('นก', engine='thai2rom'), 'nok')\n self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im')\n self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'),\n 'kan narong')\n self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun')\n self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin')\n\n def test_thai2rom_prepare_sequence(self):\n transliterater = ThaiTransliterator()\n UNK_TOKEN = 1\n END_TOKEN = 3\n self.assertListEqual(transliterater._prepare_sequence_in('A').cpu()\n .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu()\n .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu().\n detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n\n def test_transliterate(self):\n self.assertEqual(transliterate(''), '')\n self.assertEqual(transliterate('แมว', 'pyicu'), 'mæw')\n self.assertEqual(transliterate('คน', engine='ipa'), 'kʰon')\n self.assertIsNotNone(transliterate('คน', engine='thaig2p'))\n self.assertIsNotNone(transliterate('แมว', engine='thaig2p'))\n self.assertIsNotNone(transliterate('คน', engine='tltk_g2p'))\n self.assertIsNotNone(transliterate('แมว', engine='tltk_g2p'))\n self.assertIsNotNone(transliterate('คน', engine='tltk_ipa'))\n self.assertIsNotNone(transliterate('แมว', engine='tltk_ipa'))\n self.assertIsNotNone(trans_list('คน'))\n self.assertIsNotNone(xsampa_list('คน'))\n\n def test_pronunciate(self):\n self.assertEqual(pronunciate(''), '')\n remove('thai_w2p')\n self.assertIsNotNone(pronunciate('คน', engine='w2p'))\n self.assertIsNotNone(pronunciate('แมว', engine='w2p'))\n self.assertIsNotNone(pronunciate('มข.', engine='w2p'))\n self.assertIsNotNone(pronunciate('มช.', engine='w2p'))\n self.assertIsNotNone(pronunciate('jks', engine='w2p'))\n\n def test_puan(self):\n self.assertEqual(puan('นาริน'), 'นิน-รา')\n self.assertEqual(puan('นาริน', False), 'นินรา')\n self.assertEqual(puan('แสงดีนะ'), 'แสง-ดะ-นี')\n self.assertEqual(puan('แสงดีนะ', False), 'แสงดะนี')\n with self.assertRaises(ValueError):\n self.assertEqual(puan('สวัสดีครับ'), 'สวัสดีครับ')\n", "step-3": "<mask token>\n_BASIC_TESTS = {None: '', '': '', 'abc': 'abc', 'หมอก': 'mok', 'หาย': 'hai',\n 'แมว': 'maeo', 'เดือน': 'duean', 'ดำ': 'dam', 'ดู': 'du', 'บัว': 'bua',\n 'กก': 'kok', 'พร': 'phon', 'กร': 'kon', 'กรร': 'kan', 'กรรม': 'kam',\n 'ฝ้าย': 'fai', 'นพพร': 'nopphon', 'อัก': 'ak'}\n_CONSISTENCY_TESTS = [('ตากใบ', 'ตาก', 'ใบ')]\n\n\nclass TestTransliteratePackage(unittest.TestCase):\n\n def test_romanize(self):\n self.assertEqual(romanize(None), '')\n self.assertEqual(romanize(''), '')\n self.assertEqual(romanize('แมว'), 'maeo')\n self.assertEqual(romanize('แมว', engine='tltk'), 'maeo')\n\n def test_romanize_royin_basic(self):\n for word in _BASIC_TESTS:\n expect = _BASIC_TESTS[word]\n self.assertEqual(romanize(word, engine='royin'), expect)\n\n def test_romanize_royin_consistency(self):\n for word, part1, part2 in _CONSISTENCY_TESTS:\n self.assertEqual(romanize(word, engine='royin'), romanize(part1,\n engine='royin') + romanize(part2, engine='royin'))\n\n def test_romanize_thai2rom(self):\n self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo')\n self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai')\n self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak')\n self.assertEqual(romanize('นก', engine='thai2rom'), 'nok')\n self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im')\n self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'),\n 'kan narong')\n self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun')\n self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin')\n\n def test_thai2rom_prepare_sequence(self):\n transliterater = ThaiTransliterator()\n UNK_TOKEN = 1\n END_TOKEN = 3\n self.assertListEqual(transliterater._prepare_sequence_in('A').cpu()\n .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu()\n .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu().\n detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n\n def test_transliterate(self):\n self.assertEqual(transliterate(''), '')\n self.assertEqual(transliterate('แมว', 'pyicu'), 'mæw')\n self.assertEqual(transliterate('คน', engine='ipa'), 'kʰon')\n self.assertIsNotNone(transliterate('คน', engine='thaig2p'))\n self.assertIsNotNone(transliterate('แมว', engine='thaig2p'))\n self.assertIsNotNone(transliterate('คน', engine='tltk_g2p'))\n self.assertIsNotNone(transliterate('แมว', engine='tltk_g2p'))\n self.assertIsNotNone(transliterate('คน', engine='tltk_ipa'))\n self.assertIsNotNone(transliterate('แมว', engine='tltk_ipa'))\n self.assertIsNotNone(trans_list('คน'))\n self.assertIsNotNone(xsampa_list('คน'))\n\n def test_pronunciate(self):\n self.assertEqual(pronunciate(''), '')\n remove('thai_w2p')\n self.assertIsNotNone(pronunciate('คน', engine='w2p'))\n self.assertIsNotNone(pronunciate('แมว', engine='w2p'))\n self.assertIsNotNone(pronunciate('มข.', engine='w2p'))\n self.assertIsNotNone(pronunciate('มช.', engine='w2p'))\n self.assertIsNotNone(pronunciate('jks', engine='w2p'))\n\n def test_puan(self):\n self.assertEqual(puan('นาริน'), 'นิน-รา')\n self.assertEqual(puan('นาริน', False), 'นินรา')\n self.assertEqual(puan('แสงดีนะ'), 'แสง-ดะ-นี')\n self.assertEqual(puan('แสงดีนะ', False), 'แสงดะนี')\n with self.assertRaises(ValueError):\n self.assertEqual(puan('สวัสดีครับ'), 'สวัสดีครับ')\n", "step-4": "import unittest\nimport torch\nfrom pythainlp.transliterate import romanize, transliterate, pronunciate, puan\nfrom pythainlp.transliterate.ipa import trans_list, xsampa_list\nfrom pythainlp.transliterate.thai2rom import ThaiTransliterator\nfrom pythainlp.corpus import remove\n_BASIC_TESTS = {None: '', '': '', 'abc': 'abc', 'หมอก': 'mok', 'หาย': 'hai',\n 'แมว': 'maeo', 'เดือน': 'duean', 'ดำ': 'dam', 'ดู': 'du', 'บัว': 'bua',\n 'กก': 'kok', 'พร': 'phon', 'กร': 'kon', 'กรร': 'kan', 'กรรม': 'kam',\n 'ฝ้าย': 'fai', 'นพพร': 'nopphon', 'อัก': 'ak'}\n_CONSISTENCY_TESTS = [('ตากใบ', 'ตาก', 'ใบ')]\n\n\nclass TestTransliteratePackage(unittest.TestCase):\n\n def test_romanize(self):\n self.assertEqual(romanize(None), '')\n self.assertEqual(romanize(''), '')\n self.assertEqual(romanize('แมว'), 'maeo')\n self.assertEqual(romanize('แมว', engine='tltk'), 'maeo')\n\n def test_romanize_royin_basic(self):\n for word in _BASIC_TESTS:\n expect = _BASIC_TESTS[word]\n self.assertEqual(romanize(word, engine='royin'), expect)\n\n def test_romanize_royin_consistency(self):\n for word, part1, part2 in _CONSISTENCY_TESTS:\n self.assertEqual(romanize(word, engine='royin'), romanize(part1,\n engine='royin') + romanize(part2, engine='royin'))\n\n def test_romanize_thai2rom(self):\n self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo')\n self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai')\n self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak')\n self.assertEqual(romanize('นก', engine='thai2rom'), 'nok')\n self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im')\n self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'),\n 'kan narong')\n self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun')\n self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin')\n\n def test_thai2rom_prepare_sequence(self):\n transliterater = ThaiTransliterator()\n UNK_TOKEN = 1\n END_TOKEN = 3\n self.assertListEqual(transliterater._prepare_sequence_in('A').cpu()\n .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu()\n .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu().\n detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN],\n dtype=torch.long).cpu().detach().numpy().tolist())\n\n def test_transliterate(self):\n self.assertEqual(transliterate(''), '')\n self.assertEqual(transliterate('แมว', 'pyicu'), 'mæw')\n self.assertEqual(transliterate('คน', engine='ipa'), 'kʰon')\n self.assertIsNotNone(transliterate('คน', engine='thaig2p'))\n self.assertIsNotNone(transliterate('แมว', engine='thaig2p'))\n self.assertIsNotNone(transliterate('คน', engine='tltk_g2p'))\n self.assertIsNotNone(transliterate('แมว', engine='tltk_g2p'))\n self.assertIsNotNone(transliterate('คน', engine='tltk_ipa'))\n self.assertIsNotNone(transliterate('แมว', engine='tltk_ipa'))\n self.assertIsNotNone(trans_list('คน'))\n self.assertIsNotNone(xsampa_list('คน'))\n\n def test_pronunciate(self):\n self.assertEqual(pronunciate(''), '')\n remove('thai_w2p')\n self.assertIsNotNone(pronunciate('คน', engine='w2p'))\n self.assertIsNotNone(pronunciate('แมว', engine='w2p'))\n self.assertIsNotNone(pronunciate('มข.', engine='w2p'))\n self.assertIsNotNone(pronunciate('มช.', engine='w2p'))\n self.assertIsNotNone(pronunciate('jks', engine='w2p'))\n\n def test_puan(self):\n self.assertEqual(puan('นาริน'), 'นิน-รา')\n self.assertEqual(puan('นาริน', False), 'นินรา')\n self.assertEqual(puan('แสงดีนะ'), 'แสง-ดะ-นี')\n self.assertEqual(puan('แสงดีนะ', False), 'แสงดะนี')\n with self.assertRaises(ValueError):\n self.assertEqual(puan('สวัสดีครับ'), 'สวัสดีครับ')\n", "step-5": "# -*- coding: utf-8 -*-\n\nimport unittest\n\nimport torch\nfrom pythainlp.transliterate import romanize, transliterate, pronunciate, puan\nfrom pythainlp.transliterate.ipa import trans_list, xsampa_list\nfrom pythainlp.transliterate.thai2rom import ThaiTransliterator\nfrom pythainlp.corpus import remove\n\n_BASIC_TESTS = {\n None: \"\",\n \"\": \"\",\n \"abc\": \"abc\",\n \"หมอก\": \"mok\",\n \"หาย\": \"hai\",\n \"แมว\": \"maeo\",\n \"เดือน\": \"duean\",\n \"ดำ\": \"dam\",\n \"ดู\": \"du\",\n \"บัว\": \"bua\",\n \"กก\": \"kok\",\n \"พร\": \"phon\",\n \"กร\": \"kon\",\n \"กรร\": \"kan\",\n \"กรรม\": \"kam\",\n # \"กรม\": \"krom\", # failed\n \"ฝ้าย\": \"fai\",\n \"นพพร\": \"nopphon\",\n \"อัก\": \"ak\",\n # \"ทีปกร\": \"thipakon\", # failed\n # \"ธรรพ์\": \"than\", # failed\n # \"ธรรม\": \"tham\", # failed\n # \"มหา\": \"maha\", # failed\n # \"หยาก\": \"yak\", # failed\n # \"อยาก\": \"yak\", # failed\n # \"ยมก\": \"yamok\", # failed\n # \"กลัว\": \"klua\", # failed\n # \"บ้านไร่\": \"banrai\", # failed\n # \"ชารินทร์\": \"charin\", # failed\n}\n\n# these are set of two-syllable words,\n# to test if the transliteration/romanization is consistent, say\n# romanize(1+2) = romanize(1) + romanize(2)\n_CONSISTENCY_TESTS = [\n # (\"กระจก\", \"กระ\", \"จก\"), # failed\n # (\"ระเบิด\", \"ระ\", \"เบิด\"), # failed\n # (\"หยากไย่\", \"หยาก\", \"ไย่\"), # failed\n (\"ตากใบ\", \"ตาก\", \"ใบ\"),\n # (\"จัดสรร\", \"จัด\", \"สรร\"), # failed\n]\n\n\nclass TestTransliteratePackage(unittest.TestCase):\n def test_romanize(self):\n self.assertEqual(romanize(None), \"\")\n self.assertEqual(romanize(\"\"), \"\")\n self.assertEqual(romanize(\"แมว\"), \"maeo\")\n self.assertEqual(romanize(\"แมว\", engine=\"tltk\"), \"maeo\")\n\n def test_romanize_royin_basic(self):\n for word in _BASIC_TESTS:\n expect = _BASIC_TESTS[word]\n self.assertEqual(romanize(word, engine=\"royin\"), expect)\n\n def test_romanize_royin_consistency(self):\n for word, part1, part2 in _CONSISTENCY_TESTS:\n self.assertEqual(\n romanize(word, engine=\"royin\"),\n (\n romanize(part1, engine=\"royin\")\n + romanize(part2, engine=\"royin\")\n ),\n )\n\n def test_romanize_thai2rom(self):\n self.assertEqual(romanize(\"แมว\", engine=\"thai2rom\"), \"maeo\")\n self.assertEqual(romanize(\"บ้านไร่\", engine=\"thai2rom\"), \"banrai\")\n self.assertEqual(romanize(\"สุนัข\", engine=\"thai2rom\"), \"sunak\")\n self.assertEqual(romanize(\"นก\", engine=\"thai2rom\"), \"nok\")\n self.assertEqual(romanize(\"ความอิ่ม\", engine=\"thai2rom\"), \"khwam-im\")\n self.assertEqual(\n romanize(\"กานต์ ณรงค์\", engine=\"thai2rom\"), \"kan narong\"\n )\n self.assertEqual(romanize(\"สกุนต์\", engine=\"thai2rom\"), \"sakun\")\n self.assertEqual(romanize(\"ชารินทร์\", engine=\"thai2rom\"), \"charin\")\n\n def test_thai2rom_prepare_sequence(self):\n transliterater = ThaiTransliterator()\n\n UNK_TOKEN = 1 # UNK_TOKEN or <UNK> is represented by 1\n END_TOKEN = 3 # END_TOKEN or <end> is represented by 3\n\n self.assertListEqual(\n transliterater._prepare_sequence_in(\"A\")\n .cpu()\n .detach()\n .numpy()\n .tolist(),\n torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long)\n .cpu()\n .detach()\n .numpy()\n .tolist(),\n )\n\n self.assertListEqual(\n transliterater._prepare_sequence_in(\"♥\")\n .cpu()\n .detach()\n .numpy()\n .tolist(),\n torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long)\n .cpu()\n .detach()\n .numpy()\n .tolist(),\n )\n\n self.assertNotEqual(\n transliterater._prepare_sequence_in(\"ก\")\n .cpu()\n .detach()\n .numpy()\n .tolist(),\n torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long)\n .cpu()\n .detach()\n .numpy()\n .tolist(),\n )\n\n def test_transliterate(self):\n self.assertEqual(transliterate(\"\"), \"\")\n self.assertEqual(transliterate(\"แมว\", \"pyicu\"), \"mæw\")\n self.assertEqual(transliterate(\"คน\", engine=\"ipa\"), \"kʰon\")\n self.assertIsNotNone(transliterate(\"คน\", engine=\"thaig2p\"))\n self.assertIsNotNone(transliterate(\"แมว\", engine=\"thaig2p\"))\n self.assertIsNotNone(transliterate(\"คน\", engine=\"tltk_g2p\"))\n self.assertIsNotNone(transliterate(\"แมว\", engine=\"tltk_g2p\"))\n self.assertIsNotNone(transliterate(\"คน\", engine=\"tltk_ipa\"))\n self.assertIsNotNone(transliterate(\"แมว\", engine=\"tltk_ipa\"))\n self.assertIsNotNone(trans_list(\"คน\"))\n self.assertIsNotNone(xsampa_list(\"คน\"))\n\n def test_pronunciate(self):\n self.assertEqual(pronunciate(\"\"), \"\")\n remove(\"thai_w2p\")\n self.assertIsNotNone(pronunciate(\"คน\", engine=\"w2p\"))\n self.assertIsNotNone(pronunciate(\"แมว\", engine=\"w2p\"))\n self.assertIsNotNone(pronunciate(\"มข.\", engine=\"w2p\"))\n self.assertIsNotNone(pronunciate(\"มช.\", engine=\"w2p\"))\n self.assertIsNotNone(pronunciate(\"jks\", engine=\"w2p\"))\n\n def test_puan(self):\n self.assertEqual(puan(\"นาริน\"), \"นิน-รา\")\n self.assertEqual(puan(\"นาริน\", False), \"นินรา\")\n self.assertEqual(puan(\"แสงดีนะ\"), \"แสง-ดะ-นี\")\n self.assertEqual(puan(\"แสงดีนะ\", False), \"แสงดะนี\")\n with self.assertRaises(ValueError):\n self.assertEqual(puan(\"สวัสดีครับ\"), \"สวัสดีครับ\")\n", "step-ids": [ 6, 8, 10, 11, 12 ] }
[ 6, 8, 10, 11, 12 ]
import sys from random import randint if len(sys.argv) != 2: print "Usage: generate.py <number of orders>" sys.exit(1) n = int(sys.argv[1]) for i in range(0, n): action = 'A' orderid = i + 1 side = 'S' if (randint(0,1) == 0) else 'B' quantity = randint(1,100) price = randint(100,200) print action + ',' + str(orderid) + ',' + side + ',' + str(quantity) + ',' + str(price)
normal
{ "blob_id": "6267c999d3cec051c33cbcde225ff7acaa6bff74", "index": 5383, "step-1": "import sys\nfrom random import randint\n\nif len(sys.argv) != 2:\n print \"Usage: generate.py <number of orders>\"\n sys.exit(1)\n\nn = int(sys.argv[1])\n\nfor i in range(0, n):\n action = 'A'\n orderid = i + 1\n side = 'S' if (randint(0,1) == 0) else 'B'\n quantity = randint(1,100)\n price = randint(100,200)\n\n print action + ',' + str(orderid) + ',' + side + ',' + str(quantity) + ',' + str(price)\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> class Baidu: <|reserved_special_token_0|> <|reserved_special_token_0|> def __init__(self, count): cfg = ConfigParser.ConfigParser() cfg.read('config/setting.conf') self.baidu_page_size = int(cfg.get('search', 'baidu_page_size')) self.savefile = cfg.get('global', 'savefile') self.write_title = cfg.get('log', 'write_title') self.write_name = cfg.get('log', 'write_name') self.my_filter = SupFilter() self.my_data = SupGetData() self.my_status = Supstatus() self.count = count <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Baidu: <|reserved_special_token_0|> <|reserved_special_token_0|> def __init__(self, count): cfg = ConfigParser.ConfigParser() cfg.read('config/setting.conf') self.baidu_page_size = int(cfg.get('search', 'baidu_page_size')) self.savefile = cfg.get('global', 'savefile') self.write_title = cfg.get('log', 'write_title') self.write_name = cfg.get('log', 'write_name') self.my_filter = SupFilter() self.my_data = SupGetData() self.my_status = Supstatus() self.count = count def search(self, key, page_pn): page_num = str(page_pn / self.baidu_page_size + 1) search_url = 'http://www.baidu.com/s?wd=key&rn=' + str(self. baidu_page_size) + '&pn=' + str(page_pn) search_url = search_url.replace('key', key) htmlcontent = self.my_data.get_pagehtml(search_url, 'baidu') regex_page = '<span class="pc">' + page_num + '</span>' page_compile = re.compile(regex_page) page_result = page_compile.findall(htmlcontent) if page_result: pass else: self.my_status.baidu_search = False return regex_titleurl = ( '<div class="result c-container ".*<h3 class=".*"><a(?:[^\\<]*\\n[^\\<]*)href = "(?P<url>.+?)"(?:[^\\<]*\\n[^\\<]*)target="_blank"(?:[^\\<]*\\n[^\\<]*)>(?P<title>.+?)</a></h3>' ) content = re.compile(regex_titleurl) find_result = content.findall(htmlcontent) print( '\x1b[1;37;40m==========================百度 第%s页采集开始================\n' % page_num) if self.savefile == 'True': logfile = open(key + '.txt', 'a') for i in range(len(find_result)): dr = re.compile('<[^>]+>', re.S) title = dr.sub('', find_result[i][1]) realurl = self.my_data.get_baidu_realurl(find_result[i][0]) self.count.all_totals += 1 realurl = self.my_filter.filter_data(realurl, title) if realurl != 'filter': self.count.all_checked_totals += 1 print('[ID]:%d [URL]:%s [TITLE]:%s' % (i, realurl, title)) if self.savefile == 'True': have_url = 0 with open(key + '.txt', 'r') as foo: for line in foo.readlines(): if realurl in line: have_url = 1 if have_url == 0: if self.write_title: if self.write_name: logfile.write(self.search_name + realurl + ' ' + title + '\n') else: logfile.write(realurl + ' ' + title + '\n') elif self.write_name: logfile.write(self.search_name + realurl + '\n' ) else: logfile.write(realurl + '\n') else: self.count.all_delete_totals += 1 else: self.count.all_filter_totals += 1 if self.savefile == 'True': logfile.close() print('==========================百度 第%s页采集结束================\n' % page_num) <|reserved_special_token_1|> <|reserved_special_token_0|> class Baidu: baidu_page_size = 50 search_name = '[baidu]' def __init__(self, count): cfg = ConfigParser.ConfigParser() cfg.read('config/setting.conf') self.baidu_page_size = int(cfg.get('search', 'baidu_page_size')) self.savefile = cfg.get('global', 'savefile') self.write_title = cfg.get('log', 'write_title') self.write_name = cfg.get('log', 'write_name') self.my_filter = SupFilter() self.my_data = SupGetData() self.my_status = Supstatus() self.count = count def search(self, key, page_pn): page_num = str(page_pn / self.baidu_page_size + 1) search_url = 'http://www.baidu.com/s?wd=key&rn=' + str(self. baidu_page_size) + '&pn=' + str(page_pn) search_url = search_url.replace('key', key) htmlcontent = self.my_data.get_pagehtml(search_url, 'baidu') regex_page = '<span class="pc">' + page_num + '</span>' page_compile = re.compile(regex_page) page_result = page_compile.findall(htmlcontent) if page_result: pass else: self.my_status.baidu_search = False return regex_titleurl = ( '<div class="result c-container ".*<h3 class=".*"><a(?:[^\\<]*\\n[^\\<]*)href = "(?P<url>.+?)"(?:[^\\<]*\\n[^\\<]*)target="_blank"(?:[^\\<]*\\n[^\\<]*)>(?P<title>.+?)</a></h3>' ) content = re.compile(regex_titleurl) find_result = content.findall(htmlcontent) print( '\x1b[1;37;40m==========================百度 第%s页采集开始================\n' % page_num) if self.savefile == 'True': logfile = open(key + '.txt', 'a') for i in range(len(find_result)): dr = re.compile('<[^>]+>', re.S) title = dr.sub('', find_result[i][1]) realurl = self.my_data.get_baidu_realurl(find_result[i][0]) self.count.all_totals += 1 realurl = self.my_filter.filter_data(realurl, title) if realurl != 'filter': self.count.all_checked_totals += 1 print('[ID]:%d [URL]:%s [TITLE]:%s' % (i, realurl, title)) if self.savefile == 'True': have_url = 0 with open(key + '.txt', 'r') as foo: for line in foo.readlines(): if realurl in line: have_url = 1 if have_url == 0: if self.write_title: if self.write_name: logfile.write(self.search_name + realurl + ' ' + title + '\n') else: logfile.write(realurl + ' ' + title + '\n') elif self.write_name: logfile.write(self.search_name + realurl + '\n' ) else: logfile.write(realurl + '\n') else: self.count.all_delete_totals += 1 else: self.count.all_filter_totals += 1 if self.savefile == 'True': logfile.close() print('==========================百度 第%s页采集结束================\n' % page_num) <|reserved_special_token_1|> import urllib2 import re import ConfigParser from lib.filter import * from lib.getdata import * from lib.count import * from lib.status import * class Baidu: baidu_page_size = 50 search_name = '[baidu]' def __init__(self, count): cfg = ConfigParser.ConfigParser() cfg.read('config/setting.conf') self.baidu_page_size = int(cfg.get('search', 'baidu_page_size')) self.savefile = cfg.get('global', 'savefile') self.write_title = cfg.get('log', 'write_title') self.write_name = cfg.get('log', 'write_name') self.my_filter = SupFilter() self.my_data = SupGetData() self.my_status = Supstatus() self.count = count def search(self, key, page_pn): page_num = str(page_pn / self.baidu_page_size + 1) search_url = 'http://www.baidu.com/s?wd=key&rn=' + str(self. baidu_page_size) + '&pn=' + str(page_pn) search_url = search_url.replace('key', key) htmlcontent = self.my_data.get_pagehtml(search_url, 'baidu') regex_page = '<span class="pc">' + page_num + '</span>' page_compile = re.compile(regex_page) page_result = page_compile.findall(htmlcontent) if page_result: pass else: self.my_status.baidu_search = False return regex_titleurl = ( '<div class="result c-container ".*<h3 class=".*"><a(?:[^\\<]*\\n[^\\<]*)href = "(?P<url>.+?)"(?:[^\\<]*\\n[^\\<]*)target="_blank"(?:[^\\<]*\\n[^\\<]*)>(?P<title>.+?)</a></h3>' ) content = re.compile(regex_titleurl) find_result = content.findall(htmlcontent) print( '\x1b[1;37;40m==========================百度 第%s页采集开始================\n' % page_num) if self.savefile == 'True': logfile = open(key + '.txt', 'a') for i in range(len(find_result)): dr = re.compile('<[^>]+>', re.S) title = dr.sub('', find_result[i][1]) realurl = self.my_data.get_baidu_realurl(find_result[i][0]) self.count.all_totals += 1 realurl = self.my_filter.filter_data(realurl, title) if realurl != 'filter': self.count.all_checked_totals += 1 print('[ID]:%d [URL]:%s [TITLE]:%s' % (i, realurl, title)) if self.savefile == 'True': have_url = 0 with open(key + '.txt', 'r') as foo: for line in foo.readlines(): if realurl in line: have_url = 1 if have_url == 0: if self.write_title: if self.write_name: logfile.write(self.search_name + realurl + ' ' + title + '\n') else: logfile.write(realurl + ' ' + title + '\n') elif self.write_name: logfile.write(self.search_name + realurl + '\n' ) else: logfile.write(realurl + '\n') else: self.count.all_delete_totals += 1 else: self.count.all_filter_totals += 1 if self.savefile == 'True': logfile.close() print('==========================百度 第%s页采集结束================\n' % page_num) <|reserved_special_token_1|> # -*- coding: utf-8 -*- # Project = https://github.com/super-l/search-url.git # Author = superl # Blog = www.superl.org QQ:86717375 # Team = Code Security Team(C.S.T) | 铭剑创鼎 import urllib2 import re import ConfigParser from lib.filter import * from lib.getdata import * from lib.count import * from lib.status import * class Baidu(): baidu_page_size = 50 search_name = '[baidu]' def __init__(self,count) : cfg = ConfigParser.ConfigParser() cfg.read("config/setting.conf") self.baidu_page_size = int(cfg.get("search", "baidu_page_size")) self.savefile = cfg.get("global", "savefile") self.write_title = cfg.get("log", "write_title") self.write_name = cfg.get("log", "write_name") self.my_filter = SupFilter() self.my_data = SupGetData() self.my_status = Supstatus() self.count = count #Get the web page source code def search(self,key,page_pn): #The number of baidu pages currently viewed #page_num = page_pn/baidu_page_size page_num = str(page_pn/self.baidu_page_size+1) search_url = 'http://www.baidu.com/s?wd=key&rn='+str(self.baidu_page_size)+'&pn='+str(page_pn) search_url = search_url.replace('key',key) #print search_url htmlcontent = self.my_data.get_pagehtml(search_url,'baidu') regex_page = r'<span class="pc">'+page_num+'</span>' page_compile = re.compile(regex_page) page_result = page_compile.findall(htmlcontent) if page_result: pass else: self.my_status.baidu_search = False return regex_titleurl = r'<div class="result c-container ".*<h3 class=".*"><a(?:[^\<]*\n[^\<]*)href = "(?P<url>.+?)"(?:[^\<]*\n[^\<]*)target="_blank"(?:[^\<]*\n[^\<]*)>(?P<title>.+?)</a></h3>' content = re.compile(regex_titleurl) find_result = content.findall(htmlcontent) print ("\033[1;37;40m==========================百度 第%s页采集开始================\n"%(page_num)) if self.savefile == 'True': logfile = open(key+'.txt','a') for i in range(len(find_result)): dr = re.compile(r'<[^>]+>',re.S) title = dr.sub('',find_result[i][1]) realurl = self.my_data.get_baidu_realurl(find_result[i][0]) self.count.all_totals+=1 realurl = self.my_filter.filter_data(realurl,title) if realurl != "filter": self.count.all_checked_totals+=1 print ("[ID]:%d [URL]:%s [TITLE]:%s"%(i,realurl,title)) if self.savefile == 'True': have_url = 0 with open(key+'.txt','r') as foo: for line in foo.readlines(): if realurl in line: have_url = 1 if have_url ==0: if self.write_title: if self.write_name: logfile.write(self.search_name+realurl+' '+title+'\n') else: logfile.write(realurl+' '+title+'\n') else: if self.write_name: logfile.write(self.search_name+realurl+'\n') else: logfile.write(realurl+'\n') else: self.count.all_delete_totals+=1 else: self.count.all_filter_totals+=1 if self.savefile == 'True': logfile.close() print ("==========================百度 第%s页采集结束================\n"%(page_num))
flexible
{ "blob_id": "b724b04c6303cc9021539ad7df5a198000491029", "index": 5436, "step-1": "<mask token>\n\n\nclass Baidu:\n <mask token>\n <mask token>\n\n def __init__(self, count):\n cfg = ConfigParser.ConfigParser()\n cfg.read('config/setting.conf')\n self.baidu_page_size = int(cfg.get('search', 'baidu_page_size'))\n self.savefile = cfg.get('global', 'savefile')\n self.write_title = cfg.get('log', 'write_title')\n self.write_name = cfg.get('log', 'write_name')\n self.my_filter = SupFilter()\n self.my_data = SupGetData()\n self.my_status = Supstatus()\n self.count = count\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Baidu:\n <mask token>\n <mask token>\n\n def __init__(self, count):\n cfg = ConfigParser.ConfigParser()\n cfg.read('config/setting.conf')\n self.baidu_page_size = int(cfg.get('search', 'baidu_page_size'))\n self.savefile = cfg.get('global', 'savefile')\n self.write_title = cfg.get('log', 'write_title')\n self.write_name = cfg.get('log', 'write_name')\n self.my_filter = SupFilter()\n self.my_data = SupGetData()\n self.my_status = Supstatus()\n self.count = count\n\n def search(self, key, page_pn):\n page_num = str(page_pn / self.baidu_page_size + 1)\n search_url = 'http://www.baidu.com/s?wd=key&rn=' + str(self.\n baidu_page_size) + '&pn=' + str(page_pn)\n search_url = search_url.replace('key', key)\n htmlcontent = self.my_data.get_pagehtml(search_url, 'baidu')\n regex_page = '<span class=\"pc\">' + page_num + '</span>'\n page_compile = re.compile(regex_page)\n page_result = page_compile.findall(htmlcontent)\n if page_result:\n pass\n else:\n self.my_status.baidu_search = False\n return\n regex_titleurl = (\n '<div class=\"result c-container \".*<h3 class=\".*\"><a(?:[^\\\\<]*\\\\n[^\\\\<]*)href = \"(?P<url>.+?)\"(?:[^\\\\<]*\\\\n[^\\\\<]*)target=\"_blank\"(?:[^\\\\<]*\\\\n[^\\\\<]*)>(?P<title>.+?)</a></h3>'\n )\n content = re.compile(regex_titleurl)\n find_result = content.findall(htmlcontent)\n print(\n '\\x1b[1;37;40m==========================百度 第%s页采集开始================\\n'\n % page_num)\n if self.savefile == 'True':\n logfile = open(key + '.txt', 'a')\n for i in range(len(find_result)):\n dr = re.compile('<[^>]+>', re.S)\n title = dr.sub('', find_result[i][1])\n realurl = self.my_data.get_baidu_realurl(find_result[i][0])\n self.count.all_totals += 1\n realurl = self.my_filter.filter_data(realurl, title)\n if realurl != 'filter':\n self.count.all_checked_totals += 1\n print('[ID]:%d [URL]:%s [TITLE]:%s' % (i, realurl, title))\n if self.savefile == 'True':\n have_url = 0\n with open(key + '.txt', 'r') as foo:\n for line in foo.readlines():\n if realurl in line:\n have_url = 1\n if have_url == 0:\n if self.write_title:\n if self.write_name:\n logfile.write(self.search_name +\n realurl + ' ' + title + '\\n')\n else:\n logfile.write(realurl + ' ' + title +\n '\\n')\n elif self.write_name:\n logfile.write(self.search_name + realurl + '\\n'\n )\n else:\n logfile.write(realurl + '\\n')\n else:\n self.count.all_delete_totals += 1\n else:\n self.count.all_filter_totals += 1\n if self.savefile == 'True':\n logfile.close()\n print('==========================百度 第%s页采集结束================\\n' %\n page_num)\n", "step-3": "<mask token>\n\n\nclass Baidu:\n baidu_page_size = 50\n search_name = '[baidu]'\n\n def __init__(self, count):\n cfg = ConfigParser.ConfigParser()\n cfg.read('config/setting.conf')\n self.baidu_page_size = int(cfg.get('search', 'baidu_page_size'))\n self.savefile = cfg.get('global', 'savefile')\n self.write_title = cfg.get('log', 'write_title')\n self.write_name = cfg.get('log', 'write_name')\n self.my_filter = SupFilter()\n self.my_data = SupGetData()\n self.my_status = Supstatus()\n self.count = count\n\n def search(self, key, page_pn):\n page_num = str(page_pn / self.baidu_page_size + 1)\n search_url = 'http://www.baidu.com/s?wd=key&rn=' + str(self.\n baidu_page_size) + '&pn=' + str(page_pn)\n search_url = search_url.replace('key', key)\n htmlcontent = self.my_data.get_pagehtml(search_url, 'baidu')\n regex_page = '<span class=\"pc\">' + page_num + '</span>'\n page_compile = re.compile(regex_page)\n page_result = page_compile.findall(htmlcontent)\n if page_result:\n pass\n else:\n self.my_status.baidu_search = False\n return\n regex_titleurl = (\n '<div class=\"result c-container \".*<h3 class=\".*\"><a(?:[^\\\\<]*\\\\n[^\\\\<]*)href = \"(?P<url>.+?)\"(?:[^\\\\<]*\\\\n[^\\\\<]*)target=\"_blank\"(?:[^\\\\<]*\\\\n[^\\\\<]*)>(?P<title>.+?)</a></h3>'\n )\n content = re.compile(regex_titleurl)\n find_result = content.findall(htmlcontent)\n print(\n '\\x1b[1;37;40m==========================百度 第%s页采集开始================\\n'\n % page_num)\n if self.savefile == 'True':\n logfile = open(key + '.txt', 'a')\n for i in range(len(find_result)):\n dr = re.compile('<[^>]+>', re.S)\n title = dr.sub('', find_result[i][1])\n realurl = self.my_data.get_baidu_realurl(find_result[i][0])\n self.count.all_totals += 1\n realurl = self.my_filter.filter_data(realurl, title)\n if realurl != 'filter':\n self.count.all_checked_totals += 1\n print('[ID]:%d [URL]:%s [TITLE]:%s' % (i, realurl, title))\n if self.savefile == 'True':\n have_url = 0\n with open(key + '.txt', 'r') as foo:\n for line in foo.readlines():\n if realurl in line:\n have_url = 1\n if have_url == 0:\n if self.write_title:\n if self.write_name:\n logfile.write(self.search_name +\n realurl + ' ' + title + '\\n')\n else:\n logfile.write(realurl + ' ' + title +\n '\\n')\n elif self.write_name:\n logfile.write(self.search_name + realurl + '\\n'\n )\n else:\n logfile.write(realurl + '\\n')\n else:\n self.count.all_delete_totals += 1\n else:\n self.count.all_filter_totals += 1\n if self.savefile == 'True':\n logfile.close()\n print('==========================百度 第%s页采集结束================\\n' %\n page_num)\n", "step-4": "import urllib2\nimport re\nimport ConfigParser\nfrom lib.filter import *\nfrom lib.getdata import *\nfrom lib.count import *\nfrom lib.status import *\n\n\nclass Baidu:\n baidu_page_size = 50\n search_name = '[baidu]'\n\n def __init__(self, count):\n cfg = ConfigParser.ConfigParser()\n cfg.read('config/setting.conf')\n self.baidu_page_size = int(cfg.get('search', 'baidu_page_size'))\n self.savefile = cfg.get('global', 'savefile')\n self.write_title = cfg.get('log', 'write_title')\n self.write_name = cfg.get('log', 'write_name')\n self.my_filter = SupFilter()\n self.my_data = SupGetData()\n self.my_status = Supstatus()\n self.count = count\n\n def search(self, key, page_pn):\n page_num = str(page_pn / self.baidu_page_size + 1)\n search_url = 'http://www.baidu.com/s?wd=key&rn=' + str(self.\n baidu_page_size) + '&pn=' + str(page_pn)\n search_url = search_url.replace('key', key)\n htmlcontent = self.my_data.get_pagehtml(search_url, 'baidu')\n regex_page = '<span class=\"pc\">' + page_num + '</span>'\n page_compile = re.compile(regex_page)\n page_result = page_compile.findall(htmlcontent)\n if page_result:\n pass\n else:\n self.my_status.baidu_search = False\n return\n regex_titleurl = (\n '<div class=\"result c-container \".*<h3 class=\".*\"><a(?:[^\\\\<]*\\\\n[^\\\\<]*)href = \"(?P<url>.+?)\"(?:[^\\\\<]*\\\\n[^\\\\<]*)target=\"_blank\"(?:[^\\\\<]*\\\\n[^\\\\<]*)>(?P<title>.+?)</a></h3>'\n )\n content = re.compile(regex_titleurl)\n find_result = content.findall(htmlcontent)\n print(\n '\\x1b[1;37;40m==========================百度 第%s页采集开始================\\n'\n % page_num)\n if self.savefile == 'True':\n logfile = open(key + '.txt', 'a')\n for i in range(len(find_result)):\n dr = re.compile('<[^>]+>', re.S)\n title = dr.sub('', find_result[i][1])\n realurl = self.my_data.get_baidu_realurl(find_result[i][0])\n self.count.all_totals += 1\n realurl = self.my_filter.filter_data(realurl, title)\n if realurl != 'filter':\n self.count.all_checked_totals += 1\n print('[ID]:%d [URL]:%s [TITLE]:%s' % (i, realurl, title))\n if self.savefile == 'True':\n have_url = 0\n with open(key + '.txt', 'r') as foo:\n for line in foo.readlines():\n if realurl in line:\n have_url = 1\n if have_url == 0:\n if self.write_title:\n if self.write_name:\n logfile.write(self.search_name +\n realurl + ' ' + title + '\\n')\n else:\n logfile.write(realurl + ' ' + title +\n '\\n')\n elif self.write_name:\n logfile.write(self.search_name + realurl + '\\n'\n )\n else:\n logfile.write(realurl + '\\n')\n else:\n self.count.all_delete_totals += 1\n else:\n self.count.all_filter_totals += 1\n if self.savefile == 'True':\n logfile.close()\n print('==========================百度 第%s页采集结束================\\n' %\n page_num)\n", "step-5": "# -*- coding: utf-8 -*-\n# Project = https://github.com/super-l/search-url.git\n# Author = superl\n# Blog = www.superl.org QQ:86717375\n# Team = Code Security Team(C.S.T) | 铭剑创鼎\nimport urllib2\nimport re \nimport ConfigParser\n\nfrom lib.filter import *\nfrom lib.getdata import *\nfrom lib.count import *\nfrom lib.status import *\n\nclass Baidu():\n\n baidu_page_size = 50\n search_name = '[baidu]'\n\n def __init__(self,count) :\n cfg = ConfigParser.ConfigParser()\n cfg.read(\"config/setting.conf\")\n\n self.baidu_page_size = int(cfg.get(\"search\", \"baidu_page_size\"))\n self.savefile = cfg.get(\"global\", \"savefile\")\n self.write_title = cfg.get(\"log\", \"write_title\")\n self.write_name = cfg.get(\"log\", \"write_name\")\n self.my_filter = SupFilter()\n self.my_data = SupGetData()\n self.my_status = Supstatus()\n self.count = count\n\n\n #Get the web page source code\n def search(self,key,page_pn):\n #The number of baidu pages currently viewed\n #page_num = page_pn/baidu_page_size\n page_num = str(page_pn/self.baidu_page_size+1)\n\n search_url = 'http://www.baidu.com/s?wd=key&rn='+str(self.baidu_page_size)+'&pn='+str(page_pn)\n search_url = search_url.replace('key',key)\n #print search_url\n htmlcontent = self.my_data.get_pagehtml(search_url,'baidu')\n\n regex_page = r'<span class=\"pc\">'+page_num+'</span>'\n page_compile = re.compile(regex_page)\n page_result = page_compile.findall(htmlcontent)\n\n if page_result:\n pass\n else:\n self.my_status.baidu_search = False\n return\n\n regex_titleurl = r'<div class=\"result c-container \".*<h3 class=\".*\"><a(?:[^\\<]*\\n[^\\<]*)href = \"(?P<url>.+?)\"(?:[^\\<]*\\n[^\\<]*)target=\"_blank\"(?:[^\\<]*\\n[^\\<]*)>(?P<title>.+?)</a></h3>'\n\n content = re.compile(regex_titleurl)\n find_result = content.findall(htmlcontent)\n\n print (\"\\033[1;37;40m==========================百度 第%s页采集开始================\\n\"%(page_num))\n \n if self.savefile == 'True':\n logfile = open(key+'.txt','a')\n\n for i in range(len(find_result)):\n dr = re.compile(r'<[^>]+>',re.S)\n title = dr.sub('',find_result[i][1])\n\n realurl = self.my_data.get_baidu_realurl(find_result[i][0])\n\n self.count.all_totals+=1\n\n \n realurl = self.my_filter.filter_data(realurl,title)\n\n if realurl != \"filter\":\n self.count.all_checked_totals+=1\n\n print (\"[ID]:%d [URL]:%s [TITLE]:%s\"%(i,realurl,title))\n if self.savefile == 'True':\n have_url = 0\n with open(key+'.txt','r') as foo:\n for line in foo.readlines():\n if realurl in line:\n have_url = 1\n if have_url ==0:\n if self.write_title:\n if self.write_name:\n logfile.write(self.search_name+realurl+' '+title+'\\n')\n else:\n logfile.write(realurl+' '+title+'\\n')\n else:\n if self.write_name:\n logfile.write(self.search_name+realurl+'\\n')\n else:\n logfile.write(realurl+'\\n')\n else:\n self.count.all_delete_totals+=1 \n else:\n self.count.all_filter_totals+=1\n if self.savefile == 'True': \n logfile.close() \n print (\"==========================百度 第%s页采集结束================\\n\"%(page_num)) \n \n ", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def with_metaclass(meta, *bases): class metaclass(meta): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, 'temporary_class', (), {}) <|reserved_special_token_1|> <|reserved_special_token_0|> if PY2: text_type = unicode string_types = basestring, else: text_type = str string_types = str, def with_metaclass(meta, *bases): class metaclass(meta): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, 'temporary_class', (), {}) <|reserved_special_token_1|> <|reserved_special_token_0|> PY2 = sys.version_info[0] == 2 if PY2: text_type = unicode string_types = basestring, else: text_type = str string_types = str, def with_metaclass(meta, *bases): class metaclass(meta): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, 'temporary_class', (), {}) <|reserved_special_token_1|> import sys PY2 = sys.version_info[0] == 2 if PY2: text_type = unicode string_types = basestring, else: text_type = str string_types = str, def with_metaclass(meta, *bases): class metaclass(meta): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, 'temporary_class', (), {}) <|reserved_special_token_1|> #!/usr/bin/python # -*- coding: utf-8 -*- import sys PY2 = sys.version_info[0] == 2 if PY2: text_type = unicode string_types = basestring, else: text_type = str string_types = str, def with_metaclass(meta, *bases): # This requires a bit of explanation: the basic idea is to make a dummy # metaclass for one level of class instantiation that replaces itself with # the actual metaclass. class metaclass(meta): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, 'temporary_class', (), {})
flexible
{ "blob_id": "414cb9a173ac70ad9ad1fc540aec569321fd3f8b", "index": 9477, "step-1": "<mask token>\n\n\ndef with_metaclass(meta, *bases):\n\n\n class metaclass(meta):\n\n def __new__(cls, name, this_bases, d):\n return meta(name, bases, d)\n return type.__new__(metaclass, 'temporary_class', (), {})\n", "step-2": "<mask token>\nif PY2:\n text_type = unicode\n string_types = basestring,\nelse:\n text_type = str\n string_types = str,\n\n\ndef with_metaclass(meta, *bases):\n\n\n class metaclass(meta):\n\n def __new__(cls, name, this_bases, d):\n return meta(name, bases, d)\n return type.__new__(metaclass, 'temporary_class', (), {})\n", "step-3": "<mask token>\nPY2 = sys.version_info[0] == 2\nif PY2:\n text_type = unicode\n string_types = basestring,\nelse:\n text_type = str\n string_types = str,\n\n\ndef with_metaclass(meta, *bases):\n\n\n class metaclass(meta):\n\n def __new__(cls, name, this_bases, d):\n return meta(name, bases, d)\n return type.__new__(metaclass, 'temporary_class', (), {})\n", "step-4": "import sys\nPY2 = sys.version_info[0] == 2\nif PY2:\n text_type = unicode\n string_types = basestring,\nelse:\n text_type = str\n string_types = str,\n\n\ndef with_metaclass(meta, *bases):\n\n\n class metaclass(meta):\n\n def __new__(cls, name, this_bases, d):\n return meta(name, bases, d)\n return type.__new__(metaclass, 'temporary_class', (), {})\n", "step-5": "#!/usr/bin/python\n# -*- coding: utf-8 -*-\nimport sys\n\nPY2 = sys.version_info[0] == 2\n\nif PY2:\n text_type = unicode\n string_types = basestring,\nelse:\n text_type = str\n string_types = str,\n\n\ndef with_metaclass(meta, *bases):\n # This requires a bit of explanation: the basic idea is to make a dummy\n # metaclass for one level of class instantiation that replaces itself with\n # the actual metaclass.\n class metaclass(meta):\n def __new__(cls, name, this_bases, d):\n return meta(name, bases, d)\n return type.__new__(metaclass, 'temporary_class', (), {})\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# Imports import os import time import math import random from lib import * def MT19937_keystream_generator(seed: int) -> bytes: """ Generate keystream for MT19937 """ # Verify that the seed is atmost 16 bit long. assert math.log2(seed) <= 16 prng = MT19937(seed) while True: number = prng.extract_number() yield from number.to_bytes(4, "big") def MT19937_CTR(string: str, seed: int) -> bytes: """ Encrypts a plaintext with MT19937 CTR Mode. """ # Verify that the seed is an integer. assert isinstance(seed, int) keystream = MT19937_keystream_generator(seed) if len(string) == 0: return b"" else: return bytes([(b1 ^ b2) for b1, b2 in zip(string, keystream)]) def main(): plaintext = "Hello World!" # append random characters before plainttext string = b"" for _ in range(random.randint(0, 10)): i = random.randint(33, 126) string += chr(i).encode() string += plaintext.encode() seed = random.randint(1, 2**16) print("> Seed value coded to be", seed) cipher_bytes = MT19937_CTR(string, seed) deciphered_bytes = MT19937_CTR(cipher_bytes, seed) # verify if it can be decrypted assert string == deciphered_bytes #The number of possible keys is super small so you can just try them all. They even insist on it in the instructions: the cipher is using a 16-bits seed. It's kind of weird actually because from the specifications of MT19937 the seed seems to be 32 bits. Well even 32 bits should be small enough to crack, it would just take longer. for seed in range(1, 2**16): deciphered_bytes = MT19937_CTR(cipher_bytes, seed) try: assert string == deciphered_bytes print("> Brute force successful.\nSeed:", seed) break except AssertionError: continue return if __name__=="__main__": main()
normal
{ "blob_id": "66b7d928bc2c98a12f7adb8a375ced21edce8333", "index": 8492, "step-1": "<mask token>\n\n\ndef main():\n plaintext = 'Hello World!'\n string = b''\n for _ in range(random.randint(0, 10)):\n i = random.randint(33, 126)\n string += chr(i).encode()\n string += plaintext.encode()\n seed = random.randint(1, 2 ** 16)\n print('> Seed value coded to be', seed)\n cipher_bytes = MT19937_CTR(string, seed)\n deciphered_bytes = MT19937_CTR(cipher_bytes, seed)\n assert string == deciphered_bytes\n for seed in range(1, 2 ** 16):\n deciphered_bytes = MT19937_CTR(cipher_bytes, seed)\n try:\n assert string == deciphered_bytes\n print('> Brute force successful.\\nSeed:', seed)\n break\n except AssertionError:\n continue\n return\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef MT19937_keystream_generator(seed: int) ->bytes:\n \"\"\"\n Generate keystream for MT19937\n \"\"\"\n assert math.log2(seed) <= 16\n prng = MT19937(seed)\n while True:\n number = prng.extract_number()\n yield from number.to_bytes(4, 'big')\n\n\ndef MT19937_CTR(string: str, seed: int) ->bytes:\n \"\"\"\n Encrypts a plaintext with MT19937 CTR Mode.\n \"\"\"\n assert isinstance(seed, int)\n keystream = MT19937_keystream_generator(seed)\n if len(string) == 0:\n return b''\n else:\n return bytes([(b1 ^ b2) for b1, b2 in zip(string, keystream)])\n\n\ndef main():\n plaintext = 'Hello World!'\n string = b''\n for _ in range(random.randint(0, 10)):\n i = random.randint(33, 126)\n string += chr(i).encode()\n string += plaintext.encode()\n seed = random.randint(1, 2 ** 16)\n print('> Seed value coded to be', seed)\n cipher_bytes = MT19937_CTR(string, seed)\n deciphered_bytes = MT19937_CTR(cipher_bytes, seed)\n assert string == deciphered_bytes\n for seed in range(1, 2 ** 16):\n deciphered_bytes = MT19937_CTR(cipher_bytes, seed)\n try:\n assert string == deciphered_bytes\n print('> Brute force successful.\\nSeed:', seed)\n break\n except AssertionError:\n continue\n return\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef MT19937_keystream_generator(seed: int) ->bytes:\n \"\"\"\n Generate keystream for MT19937\n \"\"\"\n assert math.log2(seed) <= 16\n prng = MT19937(seed)\n while True:\n number = prng.extract_number()\n yield from number.to_bytes(4, 'big')\n\n\ndef MT19937_CTR(string: str, seed: int) ->bytes:\n \"\"\"\n Encrypts a plaintext with MT19937 CTR Mode.\n \"\"\"\n assert isinstance(seed, int)\n keystream = MT19937_keystream_generator(seed)\n if len(string) == 0:\n return b''\n else:\n return bytes([(b1 ^ b2) for b1, b2 in zip(string, keystream)])\n\n\ndef main():\n plaintext = 'Hello World!'\n string = b''\n for _ in range(random.randint(0, 10)):\n i = random.randint(33, 126)\n string += chr(i).encode()\n string += plaintext.encode()\n seed = random.randint(1, 2 ** 16)\n print('> Seed value coded to be', seed)\n cipher_bytes = MT19937_CTR(string, seed)\n deciphered_bytes = MT19937_CTR(cipher_bytes, seed)\n assert string == deciphered_bytes\n for seed in range(1, 2 ** 16):\n deciphered_bytes = MT19937_CTR(cipher_bytes, seed)\n try:\n assert string == deciphered_bytes\n print('> Brute force successful.\\nSeed:', seed)\n break\n except AssertionError:\n continue\n return\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import os\nimport time\nimport math\nimport random\nfrom lib import *\n\n\ndef MT19937_keystream_generator(seed: int) ->bytes:\n \"\"\"\n Generate keystream for MT19937\n \"\"\"\n assert math.log2(seed) <= 16\n prng = MT19937(seed)\n while True:\n number = prng.extract_number()\n yield from number.to_bytes(4, 'big')\n\n\ndef MT19937_CTR(string: str, seed: int) ->bytes:\n \"\"\"\n Encrypts a plaintext with MT19937 CTR Mode.\n \"\"\"\n assert isinstance(seed, int)\n keystream = MT19937_keystream_generator(seed)\n if len(string) == 0:\n return b''\n else:\n return bytes([(b1 ^ b2) for b1, b2 in zip(string, keystream)])\n\n\ndef main():\n plaintext = 'Hello World!'\n string = b''\n for _ in range(random.randint(0, 10)):\n i = random.randint(33, 126)\n string += chr(i).encode()\n string += plaintext.encode()\n seed = random.randint(1, 2 ** 16)\n print('> Seed value coded to be', seed)\n cipher_bytes = MT19937_CTR(string, seed)\n deciphered_bytes = MT19937_CTR(cipher_bytes, seed)\n assert string == deciphered_bytes\n for seed in range(1, 2 ** 16):\n deciphered_bytes = MT19937_CTR(cipher_bytes, seed)\n try:\n assert string == deciphered_bytes\n print('> Brute force successful.\\nSeed:', seed)\n break\n except AssertionError:\n continue\n return\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "# Imports\nimport os\nimport time\nimport math\nimport random\nfrom lib import *\n\ndef MT19937_keystream_generator(seed: int) -> bytes:\n \"\"\"\n Generate keystream for MT19937\n \"\"\"\n # Verify that the seed is atmost 16 bit long.\n assert math.log2(seed) <= 16\n \n prng = MT19937(seed)\n while True:\n number = prng.extract_number()\n yield from number.to_bytes(4, \"big\")\n \ndef MT19937_CTR(string: str, seed: int) -> bytes:\n \"\"\"\n Encrypts a plaintext with MT19937 CTR Mode.\n \"\"\"\n # Verify that the seed is an integer.\n assert isinstance(seed, int)\n \n keystream = MT19937_keystream_generator(seed)\n if len(string) == 0:\n return b\"\"\n else:\n return bytes([(b1 ^ b2) for b1, b2 in zip(string, keystream)])\n \ndef main():\n\n\tplaintext = \"Hello World!\"\n\n\t# append random characters before plainttext\n\tstring = b\"\"\n\tfor _ in range(random.randint(0, 10)):\n\t\ti = random.randint(33, 126)\n\t\tstring += chr(i).encode()\n\tstring += plaintext.encode()\n\n\tseed = random.randint(1, 2**16)\n\tprint(\"> Seed value coded to be\", seed)\n\tcipher_bytes = MT19937_CTR(string, seed)\n\tdeciphered_bytes = MT19937_CTR(cipher_bytes, seed)\n\n\t# verify if it can be decrypted\n\tassert string == deciphered_bytes\n\n\t#The number of possible keys is super small so you can just try them all. They even insist on it in the instructions: the cipher is using a 16-bits seed. It's kind of weird actually because from the specifications of MT19937 the seed seems to be 32 bits. Well even 32 bits should be small enough to crack, it would just take longer.\n\tfor seed in range(1, 2**16):\n\t\tdeciphered_bytes = MT19937_CTR(cipher_bytes, seed)\n\t\ttry:\n\t\t assert string == deciphered_bytes\n\t\t print(\"> Brute force successful.\\nSeed:\", seed)\n\t\t break\n\t\texcept AssertionError:\n\t\t continue\n\t\t \n\treturn\n\t\nif __name__==\"__main__\":\n\tmain()\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
#!/usr/bin/python debug = 0 if debug == 1: limit = [8,20] n = 3 p = [[2,10],[10,12],[8,30],[1,5]] #n = 1 # p = [[8,30]] print limit print n print p def isIn(arr): if arr[0] > limit[1] or arr[1] < limit[0] or \ arr[1] == 0: return False else: return True def overlapNum(): count = 0 maxN = 0 minN = 10001 global p global limit if debug !=1: limit = [] p = [] n = 0 i = 0 s = raw_input().split(" ") limit = map(int,s) n = input() while i<n: s = raw_input().split(" ") p.append([int(s[0]),int(s[1])]) i = i + 1 if n == 0: print 0 print 0 return p = filter(isIn,p) #Filtered out those not in limit scale #add 0,1 to the start and end time l = [] for i in range(len(p)): l.append((p[i][0],0)) l.append((p[i][1],1)) #sort l = sorted(l) #count 0 and 1 if limit[1] == 0 or len(l) == 0: print 0 print 0 return if l[0][0] > limit[0] or l[-1][0] < limit[1]: minN = 0 for k in l: if k[1] == 0: count = count + 1 maxN = max(maxN,count) if minN != 0: minN = count else: #k[1] == 1 if k[0] < limit[1]: count = count -1 if minN != 0: minN = min(minN,count) if minN >= 10001: print 0 else: print minN print maxN return if __name__ == "__main__": overlapNum()
normal
{ "blob_id": "c8d27965df83eb3e673b3857ee700a8474826335", "index": 3895, "step-1": "#!/usr/bin/python\n\n\ndebug = 0\n\nif debug == 1:\n limit = [8,20]\n n = 3\n p = [[2,10],[10,12],[8,30],[1,5]]\n #n = 1\n # p = [[8,30]] \n print limit\n print n\n print p\n\ndef isIn(arr):\n\n if arr[0] > limit[1] or arr[1] < limit[0] or \\\n arr[1] == 0:\n return False\n else:\n return True\n\ndef overlapNum():\n\n count = 0\n maxN = 0\n minN = 10001\n\n global p\n global limit\n if debug !=1: \n limit = []\n p = []\n n = 0\n i = 0\n\n s = raw_input().split(\" \")\n limit = map(int,s) \n n = input()\n\n while i<n:\n s = raw_input().split(\" \")\n p.append([int(s[0]),int(s[1])])\n i = i + 1\n if n == 0:\n print 0\n print 0\n return\n\n p = filter(isIn,p) #Filtered out those not in limit scale\n\n #add 0,1 to the start and end time\n l = []\n for i in range(len(p)):\n l.append((p[i][0],0))\n l.append((p[i][1],1))\n\n #sort\n l = sorted(l)\n\n #count 0 and 1\n if limit[1] == 0 or len(l) == 0:\n print 0\n print 0\n return\n\n if l[0][0] > limit[0] or l[-1][0] < limit[1]:\n minN = 0\n\n for k in l:\n if k[1] == 0:\n count = count + 1\n maxN = max(maxN,count)\n if minN != 0:\n minN = count\n else: #k[1] == 1\n if k[0] < limit[1]:\n count = count -1\n if minN != 0:\n minN = min(minN,count)\n\n if minN >= 10001:\n print 0\n else:\n print minN\n print maxN\n return\n\nif __name__ == \"__main__\":\n overlapNum()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
strings = ['(())())', '(((()())()', '(()())((()))', '((()()(()))(((())))()', '()()()()(()()())()', '(()((())()('] #print(string[0]) ''' for i in string: testlist = [] for j in string[i]: if j == ')': if ''' def isVPS(phrase): testlist = [] for char in phrase: if char == '(': testlist.append(char) else: if len(testlist) == 0: #return False return 'NO' else: testlist.pop() if len(testlist) == 0: #return True return 'YES' else: #return False return 'NO' for string in strings: print(isVPS(string)) #print(isVPS(string[0]))
normal
{ "blob_id": "d9f055301f050eea4281ce418974546c1245ac7e", "index": 4621, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef isVPS(phrase):\n testlist = []\n for char in phrase:\n if char == '(':\n testlist.append(char)\n elif len(testlist) == 0:\n return 'NO'\n else:\n testlist.pop()\n if len(testlist) == 0:\n return 'YES'\n else:\n return 'NO'\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef isVPS(phrase):\n testlist = []\n for char in phrase:\n if char == '(':\n testlist.append(char)\n elif len(testlist) == 0:\n return 'NO'\n else:\n testlist.pop()\n if len(testlist) == 0:\n return 'YES'\n else:\n return 'NO'\n\n\nfor string in strings:\n print(isVPS(string))\n", "step-4": "strings = ['(())())', '(((()())()', '(()())((()))', '((()()(()))(((())))()',\n '()()()()(()()())()', '(()((())()(']\n<mask token>\n\n\ndef isVPS(phrase):\n testlist = []\n for char in phrase:\n if char == '(':\n testlist.append(char)\n elif len(testlist) == 0:\n return 'NO'\n else:\n testlist.pop()\n if len(testlist) == 0:\n return 'YES'\n else:\n return 'NO'\n\n\nfor string in strings:\n print(isVPS(string))\n", "step-5": "strings = ['(())())', '(((()())()', '(()())((()))', '((()()(()))(((())))()', '()()()()(()()())()', '(()((())()(']\n\n#print(string[0])\n'''\nfor i in string:\n testlist = []\n for j in string[i]:\n if j == ')':\n if \n'''\n\ndef isVPS(phrase):\n testlist = []\n for char in phrase:\n if char == '(':\n testlist.append(char)\n else:\n if len(testlist) == 0:\n #return False\n return 'NO'\n else:\n testlist.pop()\n if len(testlist) == 0:\n #return True\n return 'YES'\n else:\n #return False\n return 'NO'\n\nfor string in strings:\n print(isVPS(string))\n#print(isVPS(string[0]))", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def home(request): blogs = Blog.objects return render(request, 'home.html', {'blogs': blogs}) def detail(request, blog_id): blog_detail = get_object_or_404(Blog, pk=blog_id) return render(request, 'detail.html', {'blog': blog_detail}) <|reserved_special_token_0|> def create(request): blog = Blog() blog.title = request.GET['title'] blog.body = request.GET['body'] blog.pub_date = timezone.datetime.now() blog.save() return redirect('/blog/' + str(blog.id)) <|reserved_special_token_1|> <|reserved_special_token_0|> def home(request): blogs = Blog.objects return render(request, 'home.html', {'blogs': blogs}) def detail(request, blog_id): blog_detail = get_object_or_404(Blog, pk=blog_id) return render(request, 'detail.html', {'blog': blog_detail}) def new(request): return render(request, 'new.html') def create(request): blog = Blog() blog.title = request.GET['title'] blog.body = request.GET['body'] blog.pub_date = timezone.datetime.now() blog.save() return redirect('/blog/' + str(blog.id)) <|reserved_special_token_1|> <|reserved_special_token_0|> admin.site.register(Blog) def home(request): blogs = Blog.objects return render(request, 'home.html', {'blogs': blogs}) def detail(request, blog_id): blog_detail = get_object_or_404(Blog, pk=blog_id) return render(request, 'detail.html', {'blog': blog_detail}) def new(request): return render(request, 'new.html') def create(request): blog = Blog() blog.title = request.GET['title'] blog.body = request.GET['body'] blog.pub_date = timezone.datetime.now() blog.save() return redirect('/blog/' + str(blog.id)) <|reserved_special_token_1|> from django.shortcuts import render, get_object_or_404, redirect from django.contrib import admin from .models import Blog from django.utils import timezone admin.site.register(Blog) def home(request): blogs = Blog.objects return render(request, 'home.html', {'blogs': blogs}) def detail(request, blog_id): blog_detail = get_object_or_404(Blog, pk=blog_id) return render(request, 'detail.html', {'blog': blog_detail}) def new(request): return render(request, 'new.html') def create(request): blog = Blog() blog.title = request.GET['title'] blog.body = request.GET['body'] blog.pub_date = timezone.datetime.now() blog.save() return redirect('/blog/' + str(blog.id)) <|reserved_special_token_1|> from django.shortcuts import render,get_object_or_404, redirect from django.contrib import admin #어드민 쓸꺼면 써야됨 from .models import Blog #앱을 가지고 오겠다는거 from django.utils import timezone admin.site.register(Blog) #블로그 형식을 가져와 등록하겠다. # Create your views here. def home(request): blogs = Blog.objects return render(request,'home.html',{'blogs':blogs}) def detail(request,blog_id): blog_detail= get_object_or_404(Blog,pk=blog_id) return render(request,'detail.html',{'blog': blog_detail}) def new(request): return render(request,'new.html') def create(request): blog=Blog() blog.title=request.GET['title'] blog.body=request.GET['body'] blog.pub_date=timezone.datetime.now() blog.save() return redirect('/blog/'+str(blog.id))
flexible
{ "blob_id": "bc25338612f525f616fb26c64d8b36667d297d40", "index": 3921, "step-1": "<mask token>\n\n\ndef home(request):\n blogs = Blog.objects\n return render(request, 'home.html', {'blogs': blogs})\n\n\ndef detail(request, blog_id):\n blog_detail = get_object_or_404(Blog, pk=blog_id)\n return render(request, 'detail.html', {'blog': blog_detail})\n\n\n<mask token>\n\n\ndef create(request):\n blog = Blog()\n blog.title = request.GET['title']\n blog.body = request.GET['body']\n blog.pub_date = timezone.datetime.now()\n blog.save()\n return redirect('/blog/' + str(blog.id))\n", "step-2": "<mask token>\n\n\ndef home(request):\n blogs = Blog.objects\n return render(request, 'home.html', {'blogs': blogs})\n\n\ndef detail(request, blog_id):\n blog_detail = get_object_or_404(Blog, pk=blog_id)\n return render(request, 'detail.html', {'blog': blog_detail})\n\n\ndef new(request):\n return render(request, 'new.html')\n\n\ndef create(request):\n blog = Blog()\n blog.title = request.GET['title']\n blog.body = request.GET['body']\n blog.pub_date = timezone.datetime.now()\n blog.save()\n return redirect('/blog/' + str(blog.id))\n", "step-3": "<mask token>\nadmin.site.register(Blog)\n\n\ndef home(request):\n blogs = Blog.objects\n return render(request, 'home.html', {'blogs': blogs})\n\n\ndef detail(request, blog_id):\n blog_detail = get_object_or_404(Blog, pk=blog_id)\n return render(request, 'detail.html', {'blog': blog_detail})\n\n\ndef new(request):\n return render(request, 'new.html')\n\n\ndef create(request):\n blog = Blog()\n blog.title = request.GET['title']\n blog.body = request.GET['body']\n blog.pub_date = timezone.datetime.now()\n blog.save()\n return redirect('/blog/' + str(blog.id))\n", "step-4": "from django.shortcuts import render, get_object_or_404, redirect\nfrom django.contrib import admin\nfrom .models import Blog\nfrom django.utils import timezone\nadmin.site.register(Blog)\n\n\ndef home(request):\n blogs = Blog.objects\n return render(request, 'home.html', {'blogs': blogs})\n\n\ndef detail(request, blog_id):\n blog_detail = get_object_or_404(Blog, pk=blog_id)\n return render(request, 'detail.html', {'blog': blog_detail})\n\n\ndef new(request):\n return render(request, 'new.html')\n\n\ndef create(request):\n blog = Blog()\n blog.title = request.GET['title']\n blog.body = request.GET['body']\n blog.pub_date = timezone.datetime.now()\n blog.save()\n return redirect('/blog/' + str(blog.id))\n", "step-5": "from django.shortcuts import render,get_object_or_404, redirect\nfrom django.contrib import admin #어드민 쓸꺼면 써야됨\nfrom .models import Blog #앱을 가지고 오겠다는거\nfrom django.utils import timezone\n\nadmin.site.register(Blog) #블로그 형식을 가져와 등록하겠다.\n# Create your views here.\ndef home(request):\n blogs = Blog.objects\n return render(request,'home.html',{'blogs':blogs})\n\ndef detail(request,blog_id):\n blog_detail= get_object_or_404(Blog,pk=blog_id)\n return render(request,'detail.html',{'blog': blog_detail})\n\ndef new(request):\n return render(request,'new.html')\n\ndef create(request):\n blog=Blog()\n blog.title=request.GET['title']\n blog.body=request.GET['body']\n blog.pub_date=timezone.datetime.now()\n blog.save()\n return redirect('/blog/'+str(blog.id))", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
from getMerriamWebster import searchMerriamWebster from searchWikipedia import searchWikipedia from synonyms import searchSynonyms class Scraping: def __init__(self, clues, answers, gridIndex): self.clues = clues self.domains = {"across": {}, "down":{}} self.answers = answers self.gridIndex = gridIndex def setDomains(self): for down in self.clues["down"]: self.domains["down"][down] = self.search(self.clues["down"][down]) for across in self.clues["across"]: self.domains["across"][across] = self.search(self.clues["across"][across]) #======================== CHEAT ============================= #self.cheat() def getClueList(self, clue): clueList = [clue] return clueList def search(self, clue): domain = set() wiki_set = set() synonym_set = set() toSearch = clue """ print("Google search for:", toSearch) try: domain = domain + self.getGoogle(toSearch) except: print("An exception occurred") """ print("Wikipedia search for:", toSearch) try: wiki_set = wiki_set | self.getWiki(toSearch) except: print("An exception occurred") print("Synonym search from Datamuse and Merriam-Webster for:", toSearch) try: synonym_set = synonym_set | self.getSynonyms(toSearch) except: print("An exception occurred") """ print("Merriam Webster search for:", toSearch) try: merriam_set = merriam_set | self.getMerriam(toSearch) except: print("An exception occurred") """ domain = domain.union(wiki_set, synonym_set) return ' '.join(str(e) for e in domain) #''.join(str(e) for e in words) def getGoogle(self, toSearch): return "toSearch" def getWiki(self, toSearch): return searchWikipedia(toSearch) def getMerriam(self,toSearch): return searchMerriamWebster(toSearch) def getSynonyms(self, toSearch): return searchSynonyms(toSearch, self.clues["across"], self.clues["down"]) def cheat(self): for across in self.clues["across"]: for row in range(0,5): for col in range(0,5): if self.gridIndex[row][col] == across: answer = "" for colIn in range(0,5): if self.answers[row][colIn] != "-": answer = answer + self.answers[row][colIn] self.domains["across"][across] = self.domains["across"][across] + " " + answer #print(answer) for down in self.clues["down"]: for row in range(0,5): for col in range(0,5): if self.gridIndex[row][col] == down: answer = "" for rowIn in range(0,5): if self.answers[rowIn][col] != "-": answer = answer + self.answers[rowIn][col] self.domains["down"][down] = self.domains["down"][down] + " " + answer #print(answer) """ scraping = Scraping() scraping.setDomains() print(scraping.domains) """
normal
{ "blob_id": "138abb40fda0f19b4a74a294d5cd0dd326dc59ce", "index": 7722, "step-1": "<mask token>\n\n\nclass Scraping:\n\n def __init__(self, clues, answers, gridIndex):\n self.clues = clues\n self.domains = {'across': {}, 'down': {}}\n self.answers = answers\n self.gridIndex = gridIndex\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def getSynonyms(self, toSearch):\n return searchSynonyms(toSearch, self.clues['across'], self.clues[\n 'down'])\n\n def cheat(self):\n for across in self.clues['across']:\n for row in range(0, 5):\n for col in range(0, 5):\n if self.gridIndex[row][col] == across:\n answer = ''\n for colIn in range(0, 5):\n if self.answers[row][colIn] != '-':\n answer = answer + self.answers[row][colIn]\n self.domains['across'][across] = self.domains['across'\n ][across] + ' ' + answer\n for down in self.clues['down']:\n for row in range(0, 5):\n for col in range(0, 5):\n if self.gridIndex[row][col] == down:\n answer = ''\n for rowIn in range(0, 5):\n if self.answers[rowIn][col] != '-':\n answer = answer + self.answers[rowIn][col]\n self.domains['down'][down] = self.domains['down'][down\n ] + ' ' + answer\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Scraping:\n\n def __init__(self, clues, answers, gridIndex):\n self.clues = clues\n self.domains = {'across': {}, 'down': {}}\n self.answers = answers\n self.gridIndex = gridIndex\n <mask token>\n <mask token>\n\n def search(self, clue):\n domain = set()\n wiki_set = set()\n synonym_set = set()\n toSearch = clue\n \"\"\"\n print(\"Google search for:\", toSearch)\n try:\n domain = domain + self.getGoogle(toSearch)\n except:\n print(\"An exception occurred\")\n \"\"\"\n print('Wikipedia search for:', toSearch)\n try:\n wiki_set = wiki_set | self.getWiki(toSearch)\n except:\n print('An exception occurred')\n print('Synonym search from Datamuse and Merriam-Webster for:', toSearch\n )\n try:\n synonym_set = synonym_set | self.getSynonyms(toSearch)\n except:\n print('An exception occurred')\n \"\"\"\n print(\"Merriam Webster search for:\", toSearch)\n try:\n merriam_set = merriam_set | self.getMerriam(toSearch)\n except:\n print(\"An exception occurred\")\n \"\"\"\n domain = domain.union(wiki_set, synonym_set)\n return ' '.join(str(e) for e in domain)\n <mask token>\n\n def getWiki(self, toSearch):\n return searchWikipedia(toSearch)\n <mask token>\n\n def getSynonyms(self, toSearch):\n return searchSynonyms(toSearch, self.clues['across'], self.clues[\n 'down'])\n\n def cheat(self):\n for across in self.clues['across']:\n for row in range(0, 5):\n for col in range(0, 5):\n if self.gridIndex[row][col] == across:\n answer = ''\n for colIn in range(0, 5):\n if self.answers[row][colIn] != '-':\n answer = answer + self.answers[row][colIn]\n self.domains['across'][across] = self.domains['across'\n ][across] + ' ' + answer\n for down in self.clues['down']:\n for row in range(0, 5):\n for col in range(0, 5):\n if self.gridIndex[row][col] == down:\n answer = ''\n for rowIn in range(0, 5):\n if self.answers[rowIn][col] != '-':\n answer = answer + self.answers[rowIn][col]\n self.domains['down'][down] = self.domains['down'][down\n ] + ' ' + answer\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Scraping:\n\n def __init__(self, clues, answers, gridIndex):\n self.clues = clues\n self.domains = {'across': {}, 'down': {}}\n self.answers = answers\n self.gridIndex = gridIndex\n\n def setDomains(self):\n for down in self.clues['down']:\n self.domains['down'][down] = self.search(self.clues['down'][down])\n for across in self.clues['across']:\n self.domains['across'][across] = self.search(self.clues[\n 'across'][across])\n <mask token>\n\n def search(self, clue):\n domain = set()\n wiki_set = set()\n synonym_set = set()\n toSearch = clue\n \"\"\"\n print(\"Google search for:\", toSearch)\n try:\n domain = domain + self.getGoogle(toSearch)\n except:\n print(\"An exception occurred\")\n \"\"\"\n print('Wikipedia search for:', toSearch)\n try:\n wiki_set = wiki_set | self.getWiki(toSearch)\n except:\n print('An exception occurred')\n print('Synonym search from Datamuse and Merriam-Webster for:', toSearch\n )\n try:\n synonym_set = synonym_set | self.getSynonyms(toSearch)\n except:\n print('An exception occurred')\n \"\"\"\n print(\"Merriam Webster search for:\", toSearch)\n try:\n merriam_set = merriam_set | self.getMerriam(toSearch)\n except:\n print(\"An exception occurred\")\n \"\"\"\n domain = domain.union(wiki_set, synonym_set)\n return ' '.join(str(e) for e in domain)\n\n def getGoogle(self, toSearch):\n return 'toSearch'\n\n def getWiki(self, toSearch):\n return searchWikipedia(toSearch)\n\n def getMerriam(self, toSearch):\n return searchMerriamWebster(toSearch)\n\n def getSynonyms(self, toSearch):\n return searchSynonyms(toSearch, self.clues['across'], self.clues[\n 'down'])\n\n def cheat(self):\n for across in self.clues['across']:\n for row in range(0, 5):\n for col in range(0, 5):\n if self.gridIndex[row][col] == across:\n answer = ''\n for colIn in range(0, 5):\n if self.answers[row][colIn] != '-':\n answer = answer + self.answers[row][colIn]\n self.domains['across'][across] = self.domains['across'\n ][across] + ' ' + answer\n for down in self.clues['down']:\n for row in range(0, 5):\n for col in range(0, 5):\n if self.gridIndex[row][col] == down:\n answer = ''\n for rowIn in range(0, 5):\n if self.answers[rowIn][col] != '-':\n answer = answer + self.answers[rowIn][col]\n self.domains['down'][down] = self.domains['down'][down\n ] + ' ' + answer\n\n\n<mask token>\n", "step-4": "from getMerriamWebster import searchMerriamWebster\nfrom searchWikipedia import searchWikipedia\nfrom synonyms import searchSynonyms\n\n\nclass Scraping:\n\n def __init__(self, clues, answers, gridIndex):\n self.clues = clues\n self.domains = {'across': {}, 'down': {}}\n self.answers = answers\n self.gridIndex = gridIndex\n\n def setDomains(self):\n for down in self.clues['down']:\n self.domains['down'][down] = self.search(self.clues['down'][down])\n for across in self.clues['across']:\n self.domains['across'][across] = self.search(self.clues[\n 'across'][across])\n\n def getClueList(self, clue):\n clueList = [clue]\n return clueList\n\n def search(self, clue):\n domain = set()\n wiki_set = set()\n synonym_set = set()\n toSearch = clue\n \"\"\"\n print(\"Google search for:\", toSearch)\n try:\n domain = domain + self.getGoogle(toSearch)\n except:\n print(\"An exception occurred\")\n \"\"\"\n print('Wikipedia search for:', toSearch)\n try:\n wiki_set = wiki_set | self.getWiki(toSearch)\n except:\n print('An exception occurred')\n print('Synonym search from Datamuse and Merriam-Webster for:', toSearch\n )\n try:\n synonym_set = synonym_set | self.getSynonyms(toSearch)\n except:\n print('An exception occurred')\n \"\"\"\n print(\"Merriam Webster search for:\", toSearch)\n try:\n merriam_set = merriam_set | self.getMerriam(toSearch)\n except:\n print(\"An exception occurred\")\n \"\"\"\n domain = domain.union(wiki_set, synonym_set)\n return ' '.join(str(e) for e in domain)\n\n def getGoogle(self, toSearch):\n return 'toSearch'\n\n def getWiki(self, toSearch):\n return searchWikipedia(toSearch)\n\n def getMerriam(self, toSearch):\n return searchMerriamWebster(toSearch)\n\n def getSynonyms(self, toSearch):\n return searchSynonyms(toSearch, self.clues['across'], self.clues[\n 'down'])\n\n def cheat(self):\n for across in self.clues['across']:\n for row in range(0, 5):\n for col in range(0, 5):\n if self.gridIndex[row][col] == across:\n answer = ''\n for colIn in range(0, 5):\n if self.answers[row][colIn] != '-':\n answer = answer + self.answers[row][colIn]\n self.domains['across'][across] = self.domains['across'\n ][across] + ' ' + answer\n for down in self.clues['down']:\n for row in range(0, 5):\n for col in range(0, 5):\n if self.gridIndex[row][col] == down:\n answer = ''\n for rowIn in range(0, 5):\n if self.answers[rowIn][col] != '-':\n answer = answer + self.answers[rowIn][col]\n self.domains['down'][down] = self.domains['down'][down\n ] + ' ' + answer\n\n\n<mask token>\n", "step-5": "from getMerriamWebster import searchMerriamWebster\nfrom searchWikipedia import searchWikipedia\nfrom synonyms import searchSynonyms\n\nclass Scraping:\n def __init__(self, clues, answers, gridIndex):\n self.clues = clues\n self.domains = {\"across\": {}, \"down\":{}}\n self.answers = answers\n self.gridIndex = gridIndex\n\n def setDomains(self):\n for down in self.clues[\"down\"]:\n self.domains[\"down\"][down] = self.search(self.clues[\"down\"][down])\n for across in self.clues[\"across\"]:\n self.domains[\"across\"][across] = self.search(self.clues[\"across\"][across])\n #======================== CHEAT =============================\n #self.cheat()\n\n def getClueList(self, clue):\n clueList = [clue]\n return clueList\n\n def search(self, clue):\n domain = set()\n wiki_set = set()\n synonym_set = set()\n toSearch = clue\n \"\"\"\n print(\"Google search for:\", toSearch)\n try:\n domain = domain + self.getGoogle(toSearch)\n except:\n print(\"An exception occurred\")\n \"\"\"\n print(\"Wikipedia search for:\", toSearch)\n try:\n\n wiki_set = wiki_set | self.getWiki(toSearch)\n except:\n print(\"An exception occurred\")\n \n print(\"Synonym search from Datamuse and Merriam-Webster for:\", toSearch)\n try:\n synonym_set = synonym_set | self.getSynonyms(toSearch)\n except:\n print(\"An exception occurred\")\n \n \"\"\"\n print(\"Merriam Webster search for:\", toSearch)\n try:\n merriam_set = merriam_set | self.getMerriam(toSearch)\n except:\n print(\"An exception occurred\")\n \"\"\" \n domain = domain.union(wiki_set, synonym_set)\n return ' '.join(str(e) for e in domain) #''.join(str(e) for e in words)\n\n def getGoogle(self, toSearch):\n\n return \"toSearch\"\n\n def getWiki(self, toSearch):\n return searchWikipedia(toSearch)\n\n def getMerriam(self,toSearch):\n return searchMerriamWebster(toSearch)\n\n def getSynonyms(self, toSearch):\n return searchSynonyms(toSearch, self.clues[\"across\"], self.clues[\"down\"])\n\n def cheat(self):\n for across in self.clues[\"across\"]:\n \n for row in range(0,5):\n for col in range(0,5):\n if self.gridIndex[row][col] == across:\n answer = \"\"\n for colIn in range(0,5):\n if self.answers[row][colIn] != \"-\":\n answer = answer + self.answers[row][colIn]\n self.domains[\"across\"][across] = self.domains[\"across\"][across] + \" \" + answer\n #print(answer)\n\n for down in self.clues[\"down\"]:\n \n for row in range(0,5):\n for col in range(0,5):\n if self.gridIndex[row][col] == down:\n answer = \"\"\n for rowIn in range(0,5):\n if self.answers[rowIn][col] != \"-\":\n answer = answer + self.answers[rowIn][col]\n self.domains[\"down\"][down] = self.domains[\"down\"][down] + \" \" + answer\n #print(answer)\n\n\n\"\"\"\nscraping = Scraping()\nscraping.setDomains()\nprint(scraping.domains)\n\"\"\"", "step-ids": [ 4, 6, 9, 11, 12 ] }
[ 4, 6, 9, 11, 12 ]
<|reserved_special_token_0|> class illumination(object): <|reserved_special_token_0|> class darkfield(object): def __init__(self, basePath, darkframePath=None, flip_image_across_axis =None, show_image=False, save_image=False, save_img_type='.tif', savePath=None, savename=None, save_plot=False): """ details about dark field image """ self.basePath = basePath img, mean, std = calculate_darkfield(self.basePath, darkframePath= darkframePath, flip_image_axes=flip_image_across_axis, show_image=show_image, save_image=save_image, save_img_type= save_img_type, savePath=savePath, savename=savename, save_plot= save_plot) self.img = img self.mean = mean self.std = std class microscope(object): def __init__(self, type, objective, illumination, ccd): """ describes the micrscope setup :param type: :param objective: """ self.type = type self.objective = objective self.illumination = illumination self.ccd = ccd class ccd(object): def __init__(self, exposure_time, img_acq_rate, EM_gain, name= 'iXon Ultra 897', img_acq_type='emcdd', darkfield=None, binning= None, vertical_pixel_shift_speed=5e-07, horizontal_pixel_shift_speed=1e-07, horizontal_pixel_shift_rate_bits=14, frame_transfer=True, crop_mode =False, acquisition_mode='kinetic', triggering='internal', readout_mode='image', pixels=512, pixel_size=1.6e-05): """ describe the CCD class """ self.name = name self.img_acq_type = img_acq_type self.exposure_time = exposure_time self.img_acq_rate = img_acq_rate self.em_gain = EM_gain self.darkfield = darkfield self.binning = binning self.vpss = vertical_pixel_shift_speed self.hpss = horizontal_pixel_shift_speed self.hpss_bits = horizontal_pixel_shift_rate_bits self.frame_transfer = frame_transfer self.crop_mode = crop_mode self.acquisition_mode = acquisition_mode self.triggering = triggering self.readout_mode = readout_mode if isinstance(pixels, int): self.pixels = pixels, pixels else: self.pixels = pixels self.pixel_size = pixel_size self.image_area = self.pixels[0] * pixel_size, self.pixels[1 ] * pixel_size class objective(object): def __init__(self, fluoro_particle, name=None, numerical_aperture=None, magnification=None, basePath=None, channel_height=None, illumination=None, wavelength=None, microgrid=None, auto_calc_pix_to_micron_scaling=False, pixel_to_micron=None, field_number=None, n0=1, show_depth_plot=False, save_depth_plot=False): """ Objectives in the Pennathur Lab Dark Room uScope: 20X - LCPlanFL N 20X LCD [LCPLFLN20xLCD] magnification: 20 numerical_aperture: 0.45 field_number: 26.5 working distance: 7.4 - 8.3 mm transmittance: 90% @ 425 - 670 nm correction collar: 0 - 1.2 mm microns per pixel: 1.55 50X - LCPlanFL N 50x LCD [LCPLFLN50xLCD] magnification: 50 numerical aperture: 0.7 field number: 26.5 working distance: 2.2 - 3 mm transmittance: 90% @ 425 - 650 nm correction collar: 0 - 1.2 mm microns per pixel: 0.6 Manufacturer website: https://www.olympus-ims.com/en/microscope/lcplfln-lcd/#!cms[focus]=cmsContent11428 """ self.name = name if name == 'LCPLFLN20xLCD': self.magnification = 20 self.numerical_aperture = 0.45 self.field_number = 26.5 self.transmittance = 0.9 self.pixel_to_micron = 1.55 elif name == 'LCPLFLN50xLCD': self.magnification = 50 self.numerical_aperture = 0.7 self.field_number = 26.5 self.transmittance = 0.9 self.pixel_to_micron = 0.6 else: self.numerical_aperture = numerical_aperture self.magnification = magnification self.field_number = field_number self._illumination = illumination if self._illumination is not None: self._wavelength = self._illumination.emission_wavelength elif wavelength is not None: self._wavelength = wavelength else: raise ValueError( 'A wavelength is required via the <illumination> class or <wavelength> input parameter' ) self._pd = fluoro_particle.diameter self._n0 = n0 self.calculate_depth_of_field() self.calculate_depth_of_correlation() if field_number: self.calculate_field_of_view() if show_depth_plot or save_depth_plot: plot_field_depth(depth_of_corr=self.depth_of_correlation, depth_of_field=self.depth_of_field, show_depth_plot= show_depth_plot, save_depth_plot=save_depth_plot, basePath= basePath, savename=None, channel_height=channel_height, objective=self.magnification) if auto_calc_pix_to_micron_scaling and self.pixel_to_micron is None: self.microgrid = microgrid self.calculate_pixel_to_micron_scaling() def calculate_field_of_view(self): self.field_of_view = self.field_number / self.magnification def calculate_depth_of_field(self, e=1.6e-05, n=1): """ e: CCD pixel resolution example: e = 16 um (16 microns is the pixel size) """ self.depth_of_field = (self._wavelength * n / self. numerical_aperture ** 2 + e * n / (self.magnification * self. numerical_aperture)) def calculate_depth_of_correlation(self, eps=0.01): n = self._n0 dp = self._pd NA = self.numerical_aperture M = self.magnification lmbda = self._wavelength depth_of_correlation = calculate_depth_of_correlation(M=M, NA=NA, dp=dp, n=n, lmbda=lmbda, eps=eps) self.depth_of_correlation = depth_of_correlation def calculate_pixel_to_micron_scaling(self): if self.microgrid is None: raise ValueError( 'Need objective.microgrid property in order to calculate scaling factor' ) @property def NA(self): return self.numerical_aperture @property def M(self): return self.magnification class microgrid(object): def __init__(self, gridPath=None, center_to_center_spacing=None, feature_width=None, grid_type='grid', show_grid=False): """ this class holds images for the microgrid and performs pixel to micron scaling calculations """ if gridPath is not None: self.gridPath = gridPath self.spacing = center_to_center_spacing self.width = feature_width self.grid_type = grid_type file_list = glob.glob(join(self.gridPath, 'grid*.tif')) if len(file_list) < 1: raise ValueError('No grid*.tif files found in {}'.format( self.gridPath)) img_grid = np.zeros(shape=(512, 512)) for f in file_list: img = io.imread(f, plugin='tifffile') if len(np.shape(img)) > 2: img = np.mean(img, axis=0) img_grid += img img_grid = img_grid / len(file_list) self.img_grid = img_grid if show_grid is True: fig, ax = plt.subplots() ax.imshow(img_grid, cmap='gray') ax.set_xlabel('pixels') ax.set_ylabel('pixels') plt.title('grid: 10 um Lines; 50 um Spacing') plt.show() class fluorescent_particles(object): def __init__(self, name=None, materials=None, diameter=None, fluorescence_spectra=None, concentration=None, electrophoretic_mobility=None, zeta=None): """ the details of the fluroescent particles used :param materials: :param diameter: :param fluorescence_spectra: :param concentration: :param electrophoretic_mobility: :param zeta: """ self.name = name self.materials = materials self.concentration = concentration self.electrophoretic_mobility = electrophoretic_mobility self.zeta = zeta self.diameter = diameter if diameter: k_b = 1.3806e-23 T = 298 mu = 0.001 self.diffusivity = k_b * T / (6 * np.pi * mu * diameter / 2) self.fluorescence_spectra = fluorescence_spectra class reservoir(object): def __init__(self, diameter, height, height_of_reservoir=None, material =None): """ describes the micrscope setup :param type: :param objective: """ g = 9.81 self.material = material self.diameter = diameter self.height = height self.volume = np.pi * self.diameter ** 2 / 4 self.height_of_reservoir = height_of_reservoir if material and height_of_reservoir: self.hydrostatic_pressure = (material.density * g * self. height_of_reservoir) class fluid_handling_system(object): def __init__(self, fluid_reservoir=None, all_tubing=None, onchip_reservoir=None): """ describes the fluid handling system """ self.fluid_reservoir = fluid_reservoir self.all_tubing = all_tubing self.onchip_reservoir = onchip_reservoir class tubing(object): def __init__(self, inner_diameter=None, length=None, material=None): """ describes each segment of tubing """ self.inner_diameter = inner_diameter self.length = length self.material = material class optical_element(object): def __init__(self, passing_wavelengths=None, reflectivity=None): """ this class describes the optical characteristics of any material or element :param wavelength_bandpass: """ self.passing_wavelengths = passing_wavelengths self.reflectivity = reflectivity class measurable_quantity(object): def __init__(self, reference_value=None, measured_value=None): """ what value was measured and when """ self.reference_value = reference_value self.measured_value = measured_value class measurement(object): def __init__(self, value=None, date=None): """ Object for storing measurements :param value: :param date: """ self.value = value self.date = date class electrode_configuration(object): def __init__(self, material=None, length=None, entrance_length=None): """ Object for holding electrode configuration details :param material: :param length: :param entrance_length: """ self.material = material self.length = length self.entrance_length = entrance_length class material_solid(object): def __init__(self, name=None, zeta=None, concentration=None, index_of_refraction=None, transparency=None, fluorescence_spectra= None, permittivity=None, conductivity=None, thickness=None, youngs_modulus=None, poissons_ratio=None, density=None, dielectric_strength=None, reaction_site_density=None, Ka=None, Kb= None, width=None, length=None): """ everything about a material :param transparency: :param fluorescence_spectra: :param zeta: """ self.name = name self.length = length self.width = width self.thickness = thickness self.density = density self.concentration = concentration self.youngs_modulus = youngs_modulus self.poissons_ratio = poissons_ratio self.index_of_refraction = index_of_refraction self.fluorescence_spectra = fluorescence_spectra self.transparency = transparency if self.transparency: self.reflectivity = 1 / self.transparency self.conductivity = conductivity if permittivity: self.permittivity = permittivity self.zeta = zeta self.dielectric_strength = dielectric_strength if reaction_site_density: self.reaction_site_density = reaction_site_density * 1e+18 self.Ka = Ka self.Kb = Kb class material_liquid(object): def __init__(self, name=None, species=None, concentration=None, conductivity=None, pH=None, density=None, viscosity=None, permittivity=None, temperature=None, valence=1.0): """ everything about a liquid :param species: :param concentration: :param conductivity: :param pH: """ self.name = name self.species = species self.concentration = concentration self.conductivity = conductivity if permittivity: self.permittivity = permittivity if pH: self.pH = pH self.c_H = 10 ** -pH * 1000.0 self.valence = valence self.density = density self.viscosity = viscosity self.temperature = temperature self.diffusivity = 2e-09 <|reserved_special_token_1|> <|reserved_special_token_0|> class bpe(object): <|reserved_special_token_0|> class optics(object): def __init__(self, microscope, fluorescent_particles=None, calibration_grid=None, pixel_to_micron_scaling=None): self.microscope = microscope self.fluorescent_particles = fluorescent_particles self.calibration_grid = calibration_grid if self.microscope.objective.magnification == 50: self.pixel_to_micron_scaling = 0.6 elif self.microscope.objective.magnification == 20: self.pixel_to_micron_scaling = 1.55 else: raise ValueError( 'Unable to determine microns/pixels scaling because objective magnification not 50X or 20X' ) if pixel_to_micron_scaling is not None: print( 'Manual input of pixel_to_micron_scaling is deprecated. A scaling factor of {} um/pix for {} magnification was instantiated.' .format(self.pixel_to_micron_scaling, self.microscope. objective.magnification)) """ --- I THINK THIS SECTION IS DEPRECATED --- Notes: deprecated because calculating the scaling factor or entering it manually is too confusing. I have permanently figured out the correct scaling. if microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is None: self.pixel_to_micron = microscope.objective.pixel_to_micron elif microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is not None and microscope.objective.pixel_to_micron != pixel_to_micron_scaling: raise ValueError("Conflicting scaling factors: microscope.objective={}, optics={}".format(microscope.objective.pixel_to_micron, pixel_to_micron_scaling)) elif microscope.objective.pixel_to_micron is None and pixel_to_micron_scaling is not None: self.pixel_to_micron = pixel_to_micron_scaling """ class illumination(object): def __init__(self, basePath=None, source=None, excitation=None, emission=None, dichroic=None, illumination_distribution=None, calculate_illumination_distribution=False, illumPath=None, illumSavePath=None, illumSaveName=None, showIllumPlot=False, save_txt=False, save_plot=False, save_image=False): """ details about the optical setup :param source: :param excitation: :param emission: :param dichroic: """ self.basePath = basePath self.source = source self.excitation_wavelength = excitation self.emission_wavelength = emission self.dichroic = dichroic if illumination_distribution is not None: self.illumination_distribution = illumination_distribution elif illumPath is not None: flatfield = io.imread(illumPath, plugin='tifffile') if len(np.shape(flatfield)) > 2: flatfield = np.asarray(np.rint(np.mean(flatfield, axis=0)), dtype='uint16') self.illumination_distribution = flatfield elif calculate_illumination_distribution and illumination_distribution is None: self.illumination_distribution = measureIlluminationDistributionXY( basePath=self.basePath, illumPath=illumPath, show_image= showIllumPlot, save_image=save_image, save_img_type='.tif', save_txt=save_txt, show_plot=showIllumPlot, save_plot= save_plot, savePath=illumSavePath, savename=illumSaveName) else: self.illumination_distribution = illumination_distribution self.flatfield = self.illumination_distribution if self.flatfield is not None: self.flatfield_mean = np.mean(self.flatfield) self.flatfield_std = np.std(self.flatfield) class darkfield(object): def __init__(self, basePath, darkframePath=None, flip_image_across_axis =None, show_image=False, save_image=False, save_img_type='.tif', savePath=None, savename=None, save_plot=False): """ details about dark field image """ self.basePath = basePath img, mean, std = calculate_darkfield(self.basePath, darkframePath= darkframePath, flip_image_axes=flip_image_across_axis, show_image=show_image, save_image=save_image, save_img_type= save_img_type, savePath=savePath, savename=savename, save_plot= save_plot) self.img = img self.mean = mean self.std = std class microscope(object): def __init__(self, type, objective, illumination, ccd): """ describes the micrscope setup :param type: :param objective: """ self.type = type self.objective = objective self.illumination = illumination self.ccd = ccd class ccd(object): def __init__(self, exposure_time, img_acq_rate, EM_gain, name= 'iXon Ultra 897', img_acq_type='emcdd', darkfield=None, binning= None, vertical_pixel_shift_speed=5e-07, horizontal_pixel_shift_speed=1e-07, horizontal_pixel_shift_rate_bits=14, frame_transfer=True, crop_mode =False, acquisition_mode='kinetic', triggering='internal', readout_mode='image', pixels=512, pixel_size=1.6e-05): """ describe the CCD class """ self.name = name self.img_acq_type = img_acq_type self.exposure_time = exposure_time self.img_acq_rate = img_acq_rate self.em_gain = EM_gain self.darkfield = darkfield self.binning = binning self.vpss = vertical_pixel_shift_speed self.hpss = horizontal_pixel_shift_speed self.hpss_bits = horizontal_pixel_shift_rate_bits self.frame_transfer = frame_transfer self.crop_mode = crop_mode self.acquisition_mode = acquisition_mode self.triggering = triggering self.readout_mode = readout_mode if isinstance(pixels, int): self.pixels = pixels, pixels else: self.pixels = pixels self.pixel_size = pixel_size self.image_area = self.pixels[0] * pixel_size, self.pixels[1 ] * pixel_size class objective(object): def __init__(self, fluoro_particle, name=None, numerical_aperture=None, magnification=None, basePath=None, channel_height=None, illumination=None, wavelength=None, microgrid=None, auto_calc_pix_to_micron_scaling=False, pixel_to_micron=None, field_number=None, n0=1, show_depth_plot=False, save_depth_plot=False): """ Objectives in the Pennathur Lab Dark Room uScope: 20X - LCPlanFL N 20X LCD [LCPLFLN20xLCD] magnification: 20 numerical_aperture: 0.45 field_number: 26.5 working distance: 7.4 - 8.3 mm transmittance: 90% @ 425 - 670 nm correction collar: 0 - 1.2 mm microns per pixel: 1.55 50X - LCPlanFL N 50x LCD [LCPLFLN50xLCD] magnification: 50 numerical aperture: 0.7 field number: 26.5 working distance: 2.2 - 3 mm transmittance: 90% @ 425 - 650 nm correction collar: 0 - 1.2 mm microns per pixel: 0.6 Manufacturer website: https://www.olympus-ims.com/en/microscope/lcplfln-lcd/#!cms[focus]=cmsContent11428 """ self.name = name if name == 'LCPLFLN20xLCD': self.magnification = 20 self.numerical_aperture = 0.45 self.field_number = 26.5 self.transmittance = 0.9 self.pixel_to_micron = 1.55 elif name == 'LCPLFLN50xLCD': self.magnification = 50 self.numerical_aperture = 0.7 self.field_number = 26.5 self.transmittance = 0.9 self.pixel_to_micron = 0.6 else: self.numerical_aperture = numerical_aperture self.magnification = magnification self.field_number = field_number self._illumination = illumination if self._illumination is not None: self._wavelength = self._illumination.emission_wavelength elif wavelength is not None: self._wavelength = wavelength else: raise ValueError( 'A wavelength is required via the <illumination> class or <wavelength> input parameter' ) self._pd = fluoro_particle.diameter self._n0 = n0 self.calculate_depth_of_field() self.calculate_depth_of_correlation() if field_number: self.calculate_field_of_view() if show_depth_plot or save_depth_plot: plot_field_depth(depth_of_corr=self.depth_of_correlation, depth_of_field=self.depth_of_field, show_depth_plot= show_depth_plot, save_depth_plot=save_depth_plot, basePath= basePath, savename=None, channel_height=channel_height, objective=self.magnification) if auto_calc_pix_to_micron_scaling and self.pixel_to_micron is None: self.microgrid = microgrid self.calculate_pixel_to_micron_scaling() def calculate_field_of_view(self): self.field_of_view = self.field_number / self.magnification def calculate_depth_of_field(self, e=1.6e-05, n=1): """ e: CCD pixel resolution example: e = 16 um (16 microns is the pixel size) """ self.depth_of_field = (self._wavelength * n / self. numerical_aperture ** 2 + e * n / (self.magnification * self. numerical_aperture)) def calculate_depth_of_correlation(self, eps=0.01): n = self._n0 dp = self._pd NA = self.numerical_aperture M = self.magnification lmbda = self._wavelength depth_of_correlation = calculate_depth_of_correlation(M=M, NA=NA, dp=dp, n=n, lmbda=lmbda, eps=eps) self.depth_of_correlation = depth_of_correlation def calculate_pixel_to_micron_scaling(self): if self.microgrid is None: raise ValueError( 'Need objective.microgrid property in order to calculate scaling factor' ) @property def NA(self): return self.numerical_aperture @property def M(self): return self.magnification class microgrid(object): def __init__(self, gridPath=None, center_to_center_spacing=None, feature_width=None, grid_type='grid', show_grid=False): """ this class holds images for the microgrid and performs pixel to micron scaling calculations """ if gridPath is not None: self.gridPath = gridPath self.spacing = center_to_center_spacing self.width = feature_width self.grid_type = grid_type file_list = glob.glob(join(self.gridPath, 'grid*.tif')) if len(file_list) < 1: raise ValueError('No grid*.tif files found in {}'.format( self.gridPath)) img_grid = np.zeros(shape=(512, 512)) for f in file_list: img = io.imread(f, plugin='tifffile') if len(np.shape(img)) > 2: img = np.mean(img, axis=0) img_grid += img img_grid = img_grid / len(file_list) self.img_grid = img_grid if show_grid is True: fig, ax = plt.subplots() ax.imshow(img_grid, cmap='gray') ax.set_xlabel('pixels') ax.set_ylabel('pixels') plt.title('grid: 10 um Lines; 50 um Spacing') plt.show() class fluorescent_particles(object): def __init__(self, name=None, materials=None, diameter=None, fluorescence_spectra=None, concentration=None, electrophoretic_mobility=None, zeta=None): """ the details of the fluroescent particles used :param materials: :param diameter: :param fluorescence_spectra: :param concentration: :param electrophoretic_mobility: :param zeta: """ self.name = name self.materials = materials self.concentration = concentration self.electrophoretic_mobility = electrophoretic_mobility self.zeta = zeta self.diameter = diameter if diameter: k_b = 1.3806e-23 T = 298 mu = 0.001 self.diffusivity = k_b * T / (6 * np.pi * mu * diameter / 2) self.fluorescence_spectra = fluorescence_spectra class reservoir(object): def __init__(self, diameter, height, height_of_reservoir=None, material =None): """ describes the micrscope setup :param type: :param objective: """ g = 9.81 self.material = material self.diameter = diameter self.height = height self.volume = np.pi * self.diameter ** 2 / 4 self.height_of_reservoir = height_of_reservoir if material and height_of_reservoir: self.hydrostatic_pressure = (material.density * g * self. height_of_reservoir) class fluid_handling_system(object): def __init__(self, fluid_reservoir=None, all_tubing=None, onchip_reservoir=None): """ describes the fluid handling system """ self.fluid_reservoir = fluid_reservoir self.all_tubing = all_tubing self.onchip_reservoir = onchip_reservoir class tubing(object): def __init__(self, inner_diameter=None, length=None, material=None): """ describes each segment of tubing """ self.inner_diameter = inner_diameter self.length = length self.material = material class optical_element(object): def __init__(self, passing_wavelengths=None, reflectivity=None): """ this class describes the optical characteristics of any material or element :param wavelength_bandpass: """ self.passing_wavelengths = passing_wavelengths self.reflectivity = reflectivity class measurable_quantity(object): def __init__(self, reference_value=None, measured_value=None): """ what value was measured and when """ self.reference_value = reference_value self.measured_value = measured_value class measurement(object): def __init__(self, value=None, date=None): """ Object for storing measurements :param value: :param date: """ self.value = value self.date = date class electrode_configuration(object): def __init__(self, material=None, length=None, entrance_length=None): """ Object for holding electrode configuration details :param material: :param length: :param entrance_length: """ self.material = material self.length = length self.entrance_length = entrance_length class material_solid(object): def __init__(self, name=None, zeta=None, concentration=None, index_of_refraction=None, transparency=None, fluorescence_spectra= None, permittivity=None, conductivity=None, thickness=None, youngs_modulus=None, poissons_ratio=None, density=None, dielectric_strength=None, reaction_site_density=None, Ka=None, Kb= None, width=None, length=None): """ everything about a material :param transparency: :param fluorescence_spectra: :param zeta: """ self.name = name self.length = length self.width = width self.thickness = thickness self.density = density self.concentration = concentration self.youngs_modulus = youngs_modulus self.poissons_ratio = poissons_ratio self.index_of_refraction = index_of_refraction self.fluorescence_spectra = fluorescence_spectra self.transparency = transparency if self.transparency: self.reflectivity = 1 / self.transparency self.conductivity = conductivity if permittivity: self.permittivity = permittivity self.zeta = zeta self.dielectric_strength = dielectric_strength if reaction_site_density: self.reaction_site_density = reaction_site_density * 1e+18 self.Ka = Ka self.Kb = Kb class material_liquid(object): def __init__(self, name=None, species=None, concentration=None, conductivity=None, pH=None, density=None, viscosity=None, permittivity=None, temperature=None, valence=1.0): """ everything about a liquid :param species: :param concentration: :param conductivity: :param pH: """ self.name = name self.species = species self.concentration = concentration self.conductivity = conductivity if permittivity: self.permittivity = permittivity if pH: self.pH = pH self.c_H = 10 ** -pH * 1000.0 self.valence = valence self.density = density self.viscosity = viscosity self.temperature = temperature self.diffusivity = 2e-09 <|reserved_special_token_1|> <|reserved_special_token_0|> class chip(object): <|reserved_special_token_0|> class channel(object): def __init__(self, length=None, width=None, height=None, material_bottom_wall_surface=None, material_top_wall_surface=None, material_fluid=None): """ Everything important about the chip """ self.length = length self.width = width self.height = height self.material_bottom_wall_surface = material_bottom_wall_surface self.material_top_wall_surface = material_top_wall_surface self.material_fluid = material_fluid class bpe(object): def __init__(self, length=None, width=None, height=None, material=None, adhesion_material=None, dielectric_coating=None): """ Everything important about the chip """ self.length = length self.linspace_x = np.linspace(-length / 2, length / 2, num=100) self.width = width self.height = height self.material = material if self.material.thickness: if self.material.thickness != self.height: raise ValueError('BPE height must equal BPE material thickness' ) self.adhesion_material = adhesion_material if dielectric_coating: self.dielectric_coating = dielectric_coating else: self.dielectric_coating = material_solid(name='no_dielectric', permittivity=1, thickness=1e-12, Ka=6, Kb=2, reaction_site_density=5) class optics(object): def __init__(self, microscope, fluorescent_particles=None, calibration_grid=None, pixel_to_micron_scaling=None): self.microscope = microscope self.fluorescent_particles = fluorescent_particles self.calibration_grid = calibration_grid if self.microscope.objective.magnification == 50: self.pixel_to_micron_scaling = 0.6 elif self.microscope.objective.magnification == 20: self.pixel_to_micron_scaling = 1.55 else: raise ValueError( 'Unable to determine microns/pixels scaling because objective magnification not 50X or 20X' ) if pixel_to_micron_scaling is not None: print( 'Manual input of pixel_to_micron_scaling is deprecated. A scaling factor of {} um/pix for {} magnification was instantiated.' .format(self.pixel_to_micron_scaling, self.microscope. objective.magnification)) """ --- I THINK THIS SECTION IS DEPRECATED --- Notes: deprecated because calculating the scaling factor or entering it manually is too confusing. I have permanently figured out the correct scaling. if microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is None: self.pixel_to_micron = microscope.objective.pixel_to_micron elif microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is not None and microscope.objective.pixel_to_micron != pixel_to_micron_scaling: raise ValueError("Conflicting scaling factors: microscope.objective={}, optics={}".format(microscope.objective.pixel_to_micron, pixel_to_micron_scaling)) elif microscope.objective.pixel_to_micron is None and pixel_to_micron_scaling is not None: self.pixel_to_micron = pixel_to_micron_scaling """ class illumination(object): def __init__(self, basePath=None, source=None, excitation=None, emission=None, dichroic=None, illumination_distribution=None, calculate_illumination_distribution=False, illumPath=None, illumSavePath=None, illumSaveName=None, showIllumPlot=False, save_txt=False, save_plot=False, save_image=False): """ details about the optical setup :param source: :param excitation: :param emission: :param dichroic: """ self.basePath = basePath self.source = source self.excitation_wavelength = excitation self.emission_wavelength = emission self.dichroic = dichroic if illumination_distribution is not None: self.illumination_distribution = illumination_distribution elif illumPath is not None: flatfield = io.imread(illumPath, plugin='tifffile') if len(np.shape(flatfield)) > 2: flatfield = np.asarray(np.rint(np.mean(flatfield, axis=0)), dtype='uint16') self.illumination_distribution = flatfield elif calculate_illumination_distribution and illumination_distribution is None: self.illumination_distribution = measureIlluminationDistributionXY( basePath=self.basePath, illumPath=illumPath, show_image= showIllumPlot, save_image=save_image, save_img_type='.tif', save_txt=save_txt, show_plot=showIllumPlot, save_plot= save_plot, savePath=illumSavePath, savename=illumSaveName) else: self.illumination_distribution = illumination_distribution self.flatfield = self.illumination_distribution if self.flatfield is not None: self.flatfield_mean = np.mean(self.flatfield) self.flatfield_std = np.std(self.flatfield) class darkfield(object): def __init__(self, basePath, darkframePath=None, flip_image_across_axis =None, show_image=False, save_image=False, save_img_type='.tif', savePath=None, savename=None, save_plot=False): """ details about dark field image """ self.basePath = basePath img, mean, std = calculate_darkfield(self.basePath, darkframePath= darkframePath, flip_image_axes=flip_image_across_axis, show_image=show_image, save_image=save_image, save_img_type= save_img_type, savePath=savePath, savename=savename, save_plot= save_plot) self.img = img self.mean = mean self.std = std class microscope(object): def __init__(self, type, objective, illumination, ccd): """ describes the micrscope setup :param type: :param objective: """ self.type = type self.objective = objective self.illumination = illumination self.ccd = ccd class ccd(object): def __init__(self, exposure_time, img_acq_rate, EM_gain, name= 'iXon Ultra 897', img_acq_type='emcdd', darkfield=None, binning= None, vertical_pixel_shift_speed=5e-07, horizontal_pixel_shift_speed=1e-07, horizontal_pixel_shift_rate_bits=14, frame_transfer=True, crop_mode =False, acquisition_mode='kinetic', triggering='internal', readout_mode='image', pixels=512, pixel_size=1.6e-05): """ describe the CCD class """ self.name = name self.img_acq_type = img_acq_type self.exposure_time = exposure_time self.img_acq_rate = img_acq_rate self.em_gain = EM_gain self.darkfield = darkfield self.binning = binning self.vpss = vertical_pixel_shift_speed self.hpss = horizontal_pixel_shift_speed self.hpss_bits = horizontal_pixel_shift_rate_bits self.frame_transfer = frame_transfer self.crop_mode = crop_mode self.acquisition_mode = acquisition_mode self.triggering = triggering self.readout_mode = readout_mode if isinstance(pixels, int): self.pixels = pixels, pixels else: self.pixels = pixels self.pixel_size = pixel_size self.image_area = self.pixels[0] * pixel_size, self.pixels[1 ] * pixel_size class objective(object): def __init__(self, fluoro_particle, name=None, numerical_aperture=None, magnification=None, basePath=None, channel_height=None, illumination=None, wavelength=None, microgrid=None, auto_calc_pix_to_micron_scaling=False, pixel_to_micron=None, field_number=None, n0=1, show_depth_plot=False, save_depth_plot=False): """ Objectives in the Pennathur Lab Dark Room uScope: 20X - LCPlanFL N 20X LCD [LCPLFLN20xLCD] magnification: 20 numerical_aperture: 0.45 field_number: 26.5 working distance: 7.4 - 8.3 mm transmittance: 90% @ 425 - 670 nm correction collar: 0 - 1.2 mm microns per pixel: 1.55 50X - LCPlanFL N 50x LCD [LCPLFLN50xLCD] magnification: 50 numerical aperture: 0.7 field number: 26.5 working distance: 2.2 - 3 mm transmittance: 90% @ 425 - 650 nm correction collar: 0 - 1.2 mm microns per pixel: 0.6 Manufacturer website: https://www.olympus-ims.com/en/microscope/lcplfln-lcd/#!cms[focus]=cmsContent11428 """ self.name = name if name == 'LCPLFLN20xLCD': self.magnification = 20 self.numerical_aperture = 0.45 self.field_number = 26.5 self.transmittance = 0.9 self.pixel_to_micron = 1.55 elif name == 'LCPLFLN50xLCD': self.magnification = 50 self.numerical_aperture = 0.7 self.field_number = 26.5 self.transmittance = 0.9 self.pixel_to_micron = 0.6 else: self.numerical_aperture = numerical_aperture self.magnification = magnification self.field_number = field_number self._illumination = illumination if self._illumination is not None: self._wavelength = self._illumination.emission_wavelength elif wavelength is not None: self._wavelength = wavelength else: raise ValueError( 'A wavelength is required via the <illumination> class or <wavelength> input parameter' ) self._pd = fluoro_particle.diameter self._n0 = n0 self.calculate_depth_of_field() self.calculate_depth_of_correlation() if field_number: self.calculate_field_of_view() if show_depth_plot or save_depth_plot: plot_field_depth(depth_of_corr=self.depth_of_correlation, depth_of_field=self.depth_of_field, show_depth_plot= show_depth_plot, save_depth_plot=save_depth_plot, basePath= basePath, savename=None, channel_height=channel_height, objective=self.magnification) if auto_calc_pix_to_micron_scaling and self.pixel_to_micron is None: self.microgrid = microgrid self.calculate_pixel_to_micron_scaling() def calculate_field_of_view(self): self.field_of_view = self.field_number / self.magnification def calculate_depth_of_field(self, e=1.6e-05, n=1): """ e: CCD pixel resolution example: e = 16 um (16 microns is the pixel size) """ self.depth_of_field = (self._wavelength * n / self. numerical_aperture ** 2 + e * n / (self.magnification * self. numerical_aperture)) def calculate_depth_of_correlation(self, eps=0.01): n = self._n0 dp = self._pd NA = self.numerical_aperture M = self.magnification lmbda = self._wavelength depth_of_correlation = calculate_depth_of_correlation(M=M, NA=NA, dp=dp, n=n, lmbda=lmbda, eps=eps) self.depth_of_correlation = depth_of_correlation def calculate_pixel_to_micron_scaling(self): if self.microgrid is None: raise ValueError( 'Need objective.microgrid property in order to calculate scaling factor' ) @property def NA(self): return self.numerical_aperture @property def M(self): return self.magnification class microgrid(object): def __init__(self, gridPath=None, center_to_center_spacing=None, feature_width=None, grid_type='grid', show_grid=False): """ this class holds images for the microgrid and performs pixel to micron scaling calculations """ if gridPath is not None: self.gridPath = gridPath self.spacing = center_to_center_spacing self.width = feature_width self.grid_type = grid_type file_list = glob.glob(join(self.gridPath, 'grid*.tif')) if len(file_list) < 1: raise ValueError('No grid*.tif files found in {}'.format( self.gridPath)) img_grid = np.zeros(shape=(512, 512)) for f in file_list: img = io.imread(f, plugin='tifffile') if len(np.shape(img)) > 2: img = np.mean(img, axis=0) img_grid += img img_grid = img_grid / len(file_list) self.img_grid = img_grid if show_grid is True: fig, ax = plt.subplots() ax.imshow(img_grid, cmap='gray') ax.set_xlabel('pixels') ax.set_ylabel('pixels') plt.title('grid: 10 um Lines; 50 um Spacing') plt.show() class fluorescent_particles(object): def __init__(self, name=None, materials=None, diameter=None, fluorescence_spectra=None, concentration=None, electrophoretic_mobility=None, zeta=None): """ the details of the fluroescent particles used :param materials: :param diameter: :param fluorescence_spectra: :param concentration: :param electrophoretic_mobility: :param zeta: """ self.name = name self.materials = materials self.concentration = concentration self.electrophoretic_mobility = electrophoretic_mobility self.zeta = zeta self.diameter = diameter if diameter: k_b = 1.3806e-23 T = 298 mu = 0.001 self.diffusivity = k_b * T / (6 * np.pi * mu * diameter / 2) self.fluorescence_spectra = fluorescence_spectra class reservoir(object): def __init__(self, diameter, height, height_of_reservoir=None, material =None): """ describes the micrscope setup :param type: :param objective: """ g = 9.81 self.material = material self.diameter = diameter self.height = height self.volume = np.pi * self.diameter ** 2 / 4 self.height_of_reservoir = height_of_reservoir if material and height_of_reservoir: self.hydrostatic_pressure = (material.density * g * self. height_of_reservoir) class fluid_handling_system(object): def __init__(self, fluid_reservoir=None, all_tubing=None, onchip_reservoir=None): """ describes the fluid handling system """ self.fluid_reservoir = fluid_reservoir self.all_tubing = all_tubing self.onchip_reservoir = onchip_reservoir class tubing(object): def __init__(self, inner_diameter=None, length=None, material=None): """ describes each segment of tubing """ self.inner_diameter = inner_diameter self.length = length self.material = material class optical_element(object): def __init__(self, passing_wavelengths=None, reflectivity=None): """ this class describes the optical characteristics of any material or element :param wavelength_bandpass: """ self.passing_wavelengths = passing_wavelengths self.reflectivity = reflectivity class measurable_quantity(object): def __init__(self, reference_value=None, measured_value=None): """ what value was measured and when """ self.reference_value = reference_value self.measured_value = measured_value class measurement(object): def __init__(self, value=None, date=None): """ Object for storing measurements :param value: :param date: """ self.value = value self.date = date class electrode_configuration(object): def __init__(self, material=None, length=None, entrance_length=None): """ Object for holding electrode configuration details :param material: :param length: :param entrance_length: """ self.material = material self.length = length self.entrance_length = entrance_length class material_solid(object): def __init__(self, name=None, zeta=None, concentration=None, index_of_refraction=None, transparency=None, fluorescence_spectra= None, permittivity=None, conductivity=None, thickness=None, youngs_modulus=None, poissons_ratio=None, density=None, dielectric_strength=None, reaction_site_density=None, Ka=None, Kb= None, width=None, length=None): """ everything about a material :param transparency: :param fluorescence_spectra: :param zeta: """ self.name = name self.length = length self.width = width self.thickness = thickness self.density = density self.concentration = concentration self.youngs_modulus = youngs_modulus self.poissons_ratio = poissons_ratio self.index_of_refraction = index_of_refraction self.fluorescence_spectra = fluorescence_spectra self.transparency = transparency if self.transparency: self.reflectivity = 1 / self.transparency self.conductivity = conductivity if permittivity: self.permittivity = permittivity self.zeta = zeta self.dielectric_strength = dielectric_strength if reaction_site_density: self.reaction_site_density = reaction_site_density * 1e+18 self.Ka = Ka self.Kb = Kb class material_liquid(object): def __init__(self, name=None, species=None, concentration=None, conductivity=None, pH=None, density=None, viscosity=None, permittivity=None, temperature=None, valence=1.0): """ everything about a liquid :param species: :param concentration: :param conductivity: :param pH: """ self.name = name self.species = species self.concentration = concentration self.conductivity = conductivity if permittivity: self.permittivity = permittivity if pH: self.pH = pH self.c_H = 10 ** -pH * 1000.0 self.valence = valence self.density = density self.viscosity = viscosity self.temperature = temperature self.diffusivity = 2e-09 <|reserved_special_token_1|> <|reserved_special_token_0|> class CurlypivTestSetup(object): def __init__(self, name, chip, optics, fluid_handling_system): """ All the "settings" used in the experimental setup: 1. chip (class) 1.1 solid material (class) (e.g. SiO2) 1.1.1 transparency 1.1.2 fluorescence spectral characteristics 1.1.3 surface charge density 1.1.4 %/vol (here would be 100%) 1.2 channel (class) 1.2.1 height 1.2.2 width 1.2.3 length 1.3 reservoir volume 1.4 electrode configuration (class) 1.4.1 material 1.4.2 separation distance 1.4.3 distance to channel entrance 2. test solution (class) 2.1 liquid material (class) (e.g. electrolyte) 2.1.1 chemical species (e.g. KCl) 2.1.2 concentration 2.1.3 measurable quantity (class) (e.g. conductivity) 2.1.3.1 theoretical 2.1.3.2 measured 2.1.3.2.1 measured conductivity 2.1.3.2.1 measured date 2.1.4 measurable quantity (class) (e.g. pH) 2.1.4.1 theoretical 2.1.4.2 measured 2.1.4.2.1 measured conductivity 2.1.4.2.1 measured date 2.2 fluorescent particles (class) 2.2.0 diameter 2.2.. measurable quantity (class) (e.g. zeta) 2.2.. measurable quantity (class) (e.g electrophoretic mobility) 2.2.. spectral characteristics 2.2.1 solid materials (class) (e.g. polystyrene) 2.2.1.1 %/vol 2.2.2 liquid materials (class) (e.g. DI water) 2.2.3 liquid materials (Class) (e.g. sodium azide) 2.2.3.1 conductivity 2.2.3.2 concentration 3. illumination (class) 3.1 source (class) 3.1.1 type (e.g. Hg lamp) 3.1.2 intensity 3.1.3 emission spectra 3.2 optical element (class) (e.g. excitation filter) 3.3 optical element (class) (e.g. emission filter) 3.4 optical element (class) (e.g. dichroic mirror) 4. microscope 4.1 type (Olympus iX 73) 4.2 objective (class) 4.2.1 numerical aperature (e.g. 0.3) 4.2.2 magnification (e.g. 20X) 4.2.3 field of view (e.g. 500 x 500 um) 4.2.4 depth of focus (e.g 4.1 microns) """ self.name = name self.chip = chip self.optics = optics self.fluid_handling_system = fluid_handling_system class chip(object): def __init__(self, channel=None, bpe=None, reservoir=None, electrodes= None, fluid_handling_system=None, material_in_optical_path=None, thickness_in_optical_path=None): """ Everything important about the chip """ self.channel = channel self.bpe = bpe self.electrodes = electrodes self.fluid_handling_system = fluid_handling_system self.material_in_optical_path = material_in_optical_path self.thickness_in_optical_path = thickness_in_optical_path class channel(object): def __init__(self, length=None, width=None, height=None, material_bottom_wall_surface=None, material_top_wall_surface=None, material_fluid=None): """ Everything important about the chip """ self.length = length self.width = width self.height = height self.material_bottom_wall_surface = material_bottom_wall_surface self.material_top_wall_surface = material_top_wall_surface self.material_fluid = material_fluid class bpe(object): def __init__(self, length=None, width=None, height=None, material=None, adhesion_material=None, dielectric_coating=None): """ Everything important about the chip """ self.length = length self.linspace_x = np.linspace(-length / 2, length / 2, num=100) self.width = width self.height = height self.material = material if self.material.thickness: if self.material.thickness != self.height: raise ValueError('BPE height must equal BPE material thickness' ) self.adhesion_material = adhesion_material if dielectric_coating: self.dielectric_coating = dielectric_coating else: self.dielectric_coating = material_solid(name='no_dielectric', permittivity=1, thickness=1e-12, Ka=6, Kb=2, reaction_site_density=5) class optics(object): def __init__(self, microscope, fluorescent_particles=None, calibration_grid=None, pixel_to_micron_scaling=None): self.microscope = microscope self.fluorescent_particles = fluorescent_particles self.calibration_grid = calibration_grid if self.microscope.objective.magnification == 50: self.pixel_to_micron_scaling = 0.6 elif self.microscope.objective.magnification == 20: self.pixel_to_micron_scaling = 1.55 else: raise ValueError( 'Unable to determine microns/pixels scaling because objective magnification not 50X or 20X' ) if pixel_to_micron_scaling is not None: print( 'Manual input of pixel_to_micron_scaling is deprecated. A scaling factor of {} um/pix for {} magnification was instantiated.' .format(self.pixel_to_micron_scaling, self.microscope. objective.magnification)) """ --- I THINK THIS SECTION IS DEPRECATED --- Notes: deprecated because calculating the scaling factor or entering it manually is too confusing. I have permanently figured out the correct scaling. if microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is None: self.pixel_to_micron = microscope.objective.pixel_to_micron elif microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is not None and microscope.objective.pixel_to_micron != pixel_to_micron_scaling: raise ValueError("Conflicting scaling factors: microscope.objective={}, optics={}".format(microscope.objective.pixel_to_micron, pixel_to_micron_scaling)) elif microscope.objective.pixel_to_micron is None and pixel_to_micron_scaling is not None: self.pixel_to_micron = pixel_to_micron_scaling """ class illumination(object): def __init__(self, basePath=None, source=None, excitation=None, emission=None, dichroic=None, illumination_distribution=None, calculate_illumination_distribution=False, illumPath=None, illumSavePath=None, illumSaveName=None, showIllumPlot=False, save_txt=False, save_plot=False, save_image=False): """ details about the optical setup :param source: :param excitation: :param emission: :param dichroic: """ self.basePath = basePath self.source = source self.excitation_wavelength = excitation self.emission_wavelength = emission self.dichroic = dichroic if illumination_distribution is not None: self.illumination_distribution = illumination_distribution elif illumPath is not None: flatfield = io.imread(illumPath, plugin='tifffile') if len(np.shape(flatfield)) > 2: flatfield = np.asarray(np.rint(np.mean(flatfield, axis=0)), dtype='uint16') self.illumination_distribution = flatfield elif calculate_illumination_distribution and illumination_distribution is None: self.illumination_distribution = measureIlluminationDistributionXY( basePath=self.basePath, illumPath=illumPath, show_image= showIllumPlot, save_image=save_image, save_img_type='.tif', save_txt=save_txt, show_plot=showIllumPlot, save_plot= save_plot, savePath=illumSavePath, savename=illumSaveName) else: self.illumination_distribution = illumination_distribution self.flatfield = self.illumination_distribution if self.flatfield is not None: self.flatfield_mean = np.mean(self.flatfield) self.flatfield_std = np.std(self.flatfield) class darkfield(object): def __init__(self, basePath, darkframePath=None, flip_image_across_axis =None, show_image=False, save_image=False, save_img_type='.tif', savePath=None, savename=None, save_plot=False): """ details about dark field image """ self.basePath = basePath img, mean, std = calculate_darkfield(self.basePath, darkframePath= darkframePath, flip_image_axes=flip_image_across_axis, show_image=show_image, save_image=save_image, save_img_type= save_img_type, savePath=savePath, savename=savename, save_plot= save_plot) self.img = img self.mean = mean self.std = std class microscope(object): def __init__(self, type, objective, illumination, ccd): """ describes the micrscope setup :param type: :param objective: """ self.type = type self.objective = objective self.illumination = illumination self.ccd = ccd class ccd(object): def __init__(self, exposure_time, img_acq_rate, EM_gain, name= 'iXon Ultra 897', img_acq_type='emcdd', darkfield=None, binning= None, vertical_pixel_shift_speed=5e-07, horizontal_pixel_shift_speed=1e-07, horizontal_pixel_shift_rate_bits=14, frame_transfer=True, crop_mode =False, acquisition_mode='kinetic', triggering='internal', readout_mode='image', pixels=512, pixel_size=1.6e-05): """ describe the CCD class """ self.name = name self.img_acq_type = img_acq_type self.exposure_time = exposure_time self.img_acq_rate = img_acq_rate self.em_gain = EM_gain self.darkfield = darkfield self.binning = binning self.vpss = vertical_pixel_shift_speed self.hpss = horizontal_pixel_shift_speed self.hpss_bits = horizontal_pixel_shift_rate_bits self.frame_transfer = frame_transfer self.crop_mode = crop_mode self.acquisition_mode = acquisition_mode self.triggering = triggering self.readout_mode = readout_mode if isinstance(pixels, int): self.pixels = pixels, pixels else: self.pixels = pixels self.pixel_size = pixel_size self.image_area = self.pixels[0] * pixel_size, self.pixels[1 ] * pixel_size class objective(object): def __init__(self, fluoro_particle, name=None, numerical_aperture=None, magnification=None, basePath=None, channel_height=None, illumination=None, wavelength=None, microgrid=None, auto_calc_pix_to_micron_scaling=False, pixel_to_micron=None, field_number=None, n0=1, show_depth_plot=False, save_depth_plot=False): """ Objectives in the Pennathur Lab Dark Room uScope: 20X - LCPlanFL N 20X LCD [LCPLFLN20xLCD] magnification: 20 numerical_aperture: 0.45 field_number: 26.5 working distance: 7.4 - 8.3 mm transmittance: 90% @ 425 - 670 nm correction collar: 0 - 1.2 mm microns per pixel: 1.55 50X - LCPlanFL N 50x LCD [LCPLFLN50xLCD] magnification: 50 numerical aperture: 0.7 field number: 26.5 working distance: 2.2 - 3 mm transmittance: 90% @ 425 - 650 nm correction collar: 0 - 1.2 mm microns per pixel: 0.6 Manufacturer website: https://www.olympus-ims.com/en/microscope/lcplfln-lcd/#!cms[focus]=cmsContent11428 """ self.name = name if name == 'LCPLFLN20xLCD': self.magnification = 20 self.numerical_aperture = 0.45 self.field_number = 26.5 self.transmittance = 0.9 self.pixel_to_micron = 1.55 elif name == 'LCPLFLN50xLCD': self.magnification = 50 self.numerical_aperture = 0.7 self.field_number = 26.5 self.transmittance = 0.9 self.pixel_to_micron = 0.6 else: self.numerical_aperture = numerical_aperture self.magnification = magnification self.field_number = field_number self._illumination = illumination if self._illumination is not None: self._wavelength = self._illumination.emission_wavelength elif wavelength is not None: self._wavelength = wavelength else: raise ValueError( 'A wavelength is required via the <illumination> class or <wavelength> input parameter' ) self._pd = fluoro_particle.diameter self._n0 = n0 self.calculate_depth_of_field() self.calculate_depth_of_correlation() if field_number: self.calculate_field_of_view() if show_depth_plot or save_depth_plot: plot_field_depth(depth_of_corr=self.depth_of_correlation, depth_of_field=self.depth_of_field, show_depth_plot= show_depth_plot, save_depth_plot=save_depth_plot, basePath= basePath, savename=None, channel_height=channel_height, objective=self.magnification) if auto_calc_pix_to_micron_scaling and self.pixel_to_micron is None: self.microgrid = microgrid self.calculate_pixel_to_micron_scaling() def calculate_field_of_view(self): self.field_of_view = self.field_number / self.magnification def calculate_depth_of_field(self, e=1.6e-05, n=1): """ e: CCD pixel resolution example: e = 16 um (16 microns is the pixel size) """ self.depth_of_field = (self._wavelength * n / self. numerical_aperture ** 2 + e * n / (self.magnification * self. numerical_aperture)) def calculate_depth_of_correlation(self, eps=0.01): n = self._n0 dp = self._pd NA = self.numerical_aperture M = self.magnification lmbda = self._wavelength depth_of_correlation = calculate_depth_of_correlation(M=M, NA=NA, dp=dp, n=n, lmbda=lmbda, eps=eps) self.depth_of_correlation = depth_of_correlation def calculate_pixel_to_micron_scaling(self): if self.microgrid is None: raise ValueError( 'Need objective.microgrid property in order to calculate scaling factor' ) @property def NA(self): return self.numerical_aperture @property def M(self): return self.magnification class microgrid(object): def __init__(self, gridPath=None, center_to_center_spacing=None, feature_width=None, grid_type='grid', show_grid=False): """ this class holds images for the microgrid and performs pixel to micron scaling calculations """ if gridPath is not None: self.gridPath = gridPath self.spacing = center_to_center_spacing self.width = feature_width self.grid_type = grid_type file_list = glob.glob(join(self.gridPath, 'grid*.tif')) if len(file_list) < 1: raise ValueError('No grid*.tif files found in {}'.format( self.gridPath)) img_grid = np.zeros(shape=(512, 512)) for f in file_list: img = io.imread(f, plugin='tifffile') if len(np.shape(img)) > 2: img = np.mean(img, axis=0) img_grid += img img_grid = img_grid / len(file_list) self.img_grid = img_grid if show_grid is True: fig, ax = plt.subplots() ax.imshow(img_grid, cmap='gray') ax.set_xlabel('pixels') ax.set_ylabel('pixels') plt.title('grid: 10 um Lines; 50 um Spacing') plt.show() class fluorescent_particles(object): def __init__(self, name=None, materials=None, diameter=None, fluorescence_spectra=None, concentration=None, electrophoretic_mobility=None, zeta=None): """ the details of the fluroescent particles used :param materials: :param diameter: :param fluorescence_spectra: :param concentration: :param electrophoretic_mobility: :param zeta: """ self.name = name self.materials = materials self.concentration = concentration self.electrophoretic_mobility = electrophoretic_mobility self.zeta = zeta self.diameter = diameter if diameter: k_b = 1.3806e-23 T = 298 mu = 0.001 self.diffusivity = k_b * T / (6 * np.pi * mu * diameter / 2) self.fluorescence_spectra = fluorescence_spectra class reservoir(object): def __init__(self, diameter, height, height_of_reservoir=None, material =None): """ describes the micrscope setup :param type: :param objective: """ g = 9.81 self.material = material self.diameter = diameter self.height = height self.volume = np.pi * self.diameter ** 2 / 4 self.height_of_reservoir = height_of_reservoir if material and height_of_reservoir: self.hydrostatic_pressure = (material.density * g * self. height_of_reservoir) class fluid_handling_system(object): def __init__(self, fluid_reservoir=None, all_tubing=None, onchip_reservoir=None): """ describes the fluid handling system """ self.fluid_reservoir = fluid_reservoir self.all_tubing = all_tubing self.onchip_reservoir = onchip_reservoir class tubing(object): def __init__(self, inner_diameter=None, length=None, material=None): """ describes each segment of tubing """ self.inner_diameter = inner_diameter self.length = length self.material = material class optical_element(object): def __init__(self, passing_wavelengths=None, reflectivity=None): """ this class describes the optical characteristics of any material or element :param wavelength_bandpass: """ self.passing_wavelengths = passing_wavelengths self.reflectivity = reflectivity class measurable_quantity(object): def __init__(self, reference_value=None, measured_value=None): """ what value was measured and when """ self.reference_value = reference_value self.measured_value = measured_value class measurement(object): def __init__(self, value=None, date=None): """ Object for storing measurements :param value: :param date: """ self.value = value self.date = date class electrode_configuration(object): def __init__(self, material=None, length=None, entrance_length=None): """ Object for holding electrode configuration details :param material: :param length: :param entrance_length: """ self.material = material self.length = length self.entrance_length = entrance_length class material_solid(object): def __init__(self, name=None, zeta=None, concentration=None, index_of_refraction=None, transparency=None, fluorescence_spectra= None, permittivity=None, conductivity=None, thickness=None, youngs_modulus=None, poissons_ratio=None, density=None, dielectric_strength=None, reaction_site_density=None, Ka=None, Kb= None, width=None, length=None): """ everything about a material :param transparency: :param fluorescence_spectra: :param zeta: """ self.name = name self.length = length self.width = width self.thickness = thickness self.density = density self.concentration = concentration self.youngs_modulus = youngs_modulus self.poissons_ratio = poissons_ratio self.index_of_refraction = index_of_refraction self.fluorescence_spectra = fluorescence_spectra self.transparency = transparency if self.transparency: self.reflectivity = 1 / self.transparency self.conductivity = conductivity if permittivity: self.permittivity = permittivity self.zeta = zeta self.dielectric_strength = dielectric_strength if reaction_site_density: self.reaction_site_density = reaction_site_density * 1e+18 self.Ka = Ka self.Kb = Kb class material_liquid(object): def __init__(self, name=None, species=None, concentration=None, conductivity=None, pH=None, density=None, viscosity=None, permittivity=None, temperature=None, valence=1.0): """ everything about a liquid :param species: :param concentration: :param conductivity: :param pH: """ self.name = name self.species = species self.concentration = concentration self.conductivity = conductivity if permittivity: self.permittivity = permittivity if pH: self.pH = pH self.c_H = 10 ** -pH * 1000.0 self.valence = valence self.density = density self.viscosity = viscosity self.temperature = temperature self.diffusivity = 2e-09 <|reserved_special_token_1|> # test CurlypivSetup """ Notes about program """ # 1.0 import modules import numpy as np from skimage import io import glob from os.path import join import matplotlib.pyplot as plt from curlypiv.utils.calibrateCamera import measureIlluminationDistributionXY, calculate_depth_of_correlation, calculate_darkfield, plot_field_depth # 2.0 define class class CurlypivTestSetup(object): def __init__(self, name, chip, optics, fluid_handling_system): """ All the "settings" used in the experimental setup: 1. chip (class) 1.1 solid material (class) (e.g. SiO2) 1.1.1 transparency 1.1.2 fluorescence spectral characteristics 1.1.3 surface charge density 1.1.4 %/vol (here would be 100%) 1.2 channel (class) 1.2.1 height 1.2.2 width 1.2.3 length 1.3 reservoir volume 1.4 electrode configuration (class) 1.4.1 material 1.4.2 separation distance 1.4.3 distance to channel entrance 2. test solution (class) 2.1 liquid material (class) (e.g. electrolyte) 2.1.1 chemical species (e.g. KCl) 2.1.2 concentration 2.1.3 measurable quantity (class) (e.g. conductivity) 2.1.3.1 theoretical 2.1.3.2 measured 2.1.3.2.1 measured conductivity 2.1.3.2.1 measured date 2.1.4 measurable quantity (class) (e.g. pH) 2.1.4.1 theoretical 2.1.4.2 measured 2.1.4.2.1 measured conductivity 2.1.4.2.1 measured date 2.2 fluorescent particles (class) 2.2.0 diameter 2.2.. measurable quantity (class) (e.g. zeta) 2.2.. measurable quantity (class) (e.g electrophoretic mobility) 2.2.. spectral characteristics 2.2.1 solid materials (class) (e.g. polystyrene) 2.2.1.1 %/vol 2.2.2 liquid materials (class) (e.g. DI water) 2.2.3 liquid materials (Class) (e.g. sodium azide) 2.2.3.1 conductivity 2.2.3.2 concentration 3. illumination (class) 3.1 source (class) 3.1.1 type (e.g. Hg lamp) 3.1.2 intensity 3.1.3 emission spectra 3.2 optical element (class) (e.g. excitation filter) 3.3 optical element (class) (e.g. emission filter) 3.4 optical element (class) (e.g. dichroic mirror) 4. microscope 4.1 type (Olympus iX 73) 4.2 objective (class) 4.2.1 numerical aperature (e.g. 0.3) 4.2.2 magnification (e.g. 20X) 4.2.3 field of view (e.g. 500 x 500 um) 4.2.4 depth of focus (e.g 4.1 microns) """ self.name = name self.chip = chip self.optics = optics self.fluid_handling_system = fluid_handling_system class chip(object): def __init__(self, channel=None, bpe=None, reservoir=None, electrodes=None, fluid_handling_system=None, material_in_optical_path=None, thickness_in_optical_path=None): """ Everything important about the chip """ #self.material = material # deprecated so the channel class can hold this information self.channel = channel self.bpe = bpe self.electrodes = electrodes self.fluid_handling_system = fluid_handling_system self.material_in_optical_path = material_in_optical_path self.thickness_in_optical_path = thickness_in_optical_path class channel(object): def __init__(self, length=None, width=None, height=None, material_bottom_wall_surface=None, material_top_wall_surface=None, material_fluid=None): """ Everything important about the chip """ self.length = length self.width = width self.height = height self.material_bottom_wall_surface = material_bottom_wall_surface # material should only hold relevant electrokinetic data self.material_top_wall_surface = material_top_wall_surface # material should only hold relevant elect self.material_fluid = material_fluid # could be a mixture of liquid materials + fluorescent particles class bpe(object): def __init__(self, length=None, width=None, height=None, material=None, adhesion_material=None, dielectric_coating=None): """ Everything important about the chip """ self.length = length self.linspace_x = np.linspace(-length/2, length/2, num=100) self.width = width self.height = height self.material = material if self.material.thickness: if self.material.thickness != self.height: raise ValueError("BPE height must equal BPE material thickness") # adhesion layer used for thin metal film BPE self.adhesion_material = adhesion_material # dielectric coating on top of BPE if dielectric_coating: self.dielectric_coating = dielectric_coating else: self.dielectric_coating = material_solid(name='no_dielectric', permittivity=1, thickness=1e-12, Ka=6, Kb=2, reaction_site_density=5) class optics(object): def __init__(self, microscope, fluorescent_particles=None, calibration_grid=None, pixel_to_micron_scaling=None): self.microscope = microscope self.fluorescent_particles = fluorescent_particles self.calibration_grid = calibration_grid if self.microscope.objective.magnification == 50: self.pixel_to_micron_scaling = 0.60 # (microns/pixels) elif self.microscope.objective.magnification == 20: self.pixel_to_micron_scaling = 1.55 # (microns/pixels) else: raise ValueError("Unable to determine microns/pixels scaling because objective magnification not 50X or 20X") if pixel_to_micron_scaling is not None: print("Manual input of pixel_to_micron_scaling is deprecated. A scaling factor of {} um/pix for {} magnification was instantiated.".format(self.pixel_to_micron_scaling, self.microscope.objective.magnification)) """ --- I THINK THIS SECTION IS DEPRECATED --- Notes: deprecated because calculating the scaling factor or entering it manually is too confusing. I have permanently figured out the correct scaling. if microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is None: self.pixel_to_micron = microscope.objective.pixel_to_micron elif microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is not None and microscope.objective.pixel_to_micron != pixel_to_micron_scaling: raise ValueError("Conflicting scaling factors: microscope.objective={}, optics={}".format(microscope.objective.pixel_to_micron, pixel_to_micron_scaling)) elif microscope.objective.pixel_to_micron is None and pixel_to_micron_scaling is not None: self.pixel_to_micron = pixel_to_micron_scaling """ class illumination(object): def __init__(self, basePath=None, source=None, excitation=None, emission=None, dichroic=None, illumination_distribution=None, calculate_illumination_distribution=False, illumPath=None, illumSavePath=None, illumSaveName=None, showIllumPlot=False, save_txt=False, save_plot=False, save_image=False): """ details about the optical setup :param source: :param excitation: :param emission: :param dichroic: """ self.basePath = basePath # this should come from CurlypivTestCollection self.source = source self.excitation_wavelength = excitation self.emission_wavelength = emission self.dichroic = dichroic if illumination_distribution is not None: self.illumination_distribution = illumination_distribution elif illumPath is not None: flatfield = io.imread(illumPath, plugin='tifffile') if len(np.shape(flatfield)) > 2: flatfield = np.asarray(np.rint(np.mean(flatfield, axis=0)), dtype='uint16') self.illumination_distribution = flatfield elif calculate_illumination_distribution and illumination_distribution is None: self.illumination_distribution = measureIlluminationDistributionXY(basePath=self.basePath, illumPath=illumPath, show_image=showIllumPlot, save_image=save_image, save_img_type='.tif', save_txt=save_txt, show_plot=showIllumPlot, save_plot=save_plot, savePath=illumSavePath, savename=illumSaveName) else: self.illumination_distribution = illumination_distribution self.flatfield = self.illumination_distribution if self.flatfield is not None: self.flatfield_mean = np.mean(self.flatfield) self.flatfield_std = np.std(self.flatfield) class darkfield(object): def __init__(self, basePath, darkframePath=None, flip_image_across_axis=None, show_image=False, save_image=False, save_img_type='.tif', savePath=None, savename=None, save_plot=False): """ details about dark field image """ self.basePath = basePath img, mean, std = calculate_darkfield(self.basePath, darkframePath=darkframePath, flip_image_axes=flip_image_across_axis, show_image=show_image, save_image=save_image, save_img_type=save_img_type, savePath=savePath, savename=savename, save_plot=save_plot) self.img = img self.mean = mean self.std = std class microscope(object): def __init__(self, type, objective, illumination, ccd): """ describes the micrscope setup :param type: :param objective: """ self.type = type # e.g. Olympus iX73 self.objective = objective self.illumination = illumination self.ccd = ccd class ccd(object): def __init__(self, exposure_time, img_acq_rate, EM_gain, name='iXon Ultra 897', img_acq_type='emcdd', darkfield=None, binning=None, vertical_pixel_shift_speed=0.5e-6, horizontal_pixel_shift_speed=0.1e-6, horizontal_pixel_shift_rate_bits=14, frame_transfer=True, crop_mode=False, acquisition_mode='kinetic', triggering='internal', readout_mode='image', pixels=512, pixel_size=16e-6): """ describe the CCD class """ self.name = name self.img_acq_type = img_acq_type self.exposure_time = exposure_time self.img_acq_rate = img_acq_rate self.em_gain = EM_gain self.darkfield = darkfield self.binning = binning # supporting camera acquisition settings self.vpss = vertical_pixel_shift_speed self.hpss = horizontal_pixel_shift_speed self.hpss_bits = horizontal_pixel_shift_rate_bits self.frame_transfer = frame_transfer self.crop_mode = crop_mode self.acquisition_mode = acquisition_mode self.triggering = triggering self.readout_mode = readout_mode if isinstance(pixels, int): self.pixels = (pixels, pixels) else: self.pixels = pixels self.pixel_size = pixel_size self.image_area = (self.pixels[0]*pixel_size, self.pixels[1]*pixel_size) class objective(object): def __init__(self, fluoro_particle, name=None, numerical_aperture=None, magnification=None, basePath=None, channel_height=None, illumination=None, wavelength=None, microgrid=None, auto_calc_pix_to_micron_scaling=False, pixel_to_micron=None, field_number=None, n0=1, show_depth_plot=False, save_depth_plot=False): """ Objectives in the Pennathur Lab Dark Room uScope: 20X - LCPlanFL N 20X LCD [LCPLFLN20xLCD] magnification: 20 numerical_aperture: 0.45 field_number: 26.5 working distance: 7.4 - 8.3 mm transmittance: 90% @ 425 - 670 nm correction collar: 0 - 1.2 mm microns per pixel: 1.55 50X - LCPlanFL N 50x LCD [LCPLFLN50xLCD] magnification: 50 numerical aperture: 0.7 field number: 26.5 working distance: 2.2 - 3 mm transmittance: 90% @ 425 - 650 nm correction collar: 0 - 1.2 mm microns per pixel: 0.6 Manufacturer website: https://www.olympus-ims.com/en/microscope/lcplfln-lcd/#!cms[focus]=cmsContent11428 """ # if name is entered, then pull all the terms directly self.name = name if name == 'LCPLFLN20xLCD': self.magnification = 20 self.numerical_aperture = 0.45 self.field_number = 26.5 self.transmittance = 0.9 self.pixel_to_micron = 1.55 elif name == 'LCPLFLN50xLCD': self.magnification = 50 self.numerical_aperture = 0.7 self.field_number = 26.5 self.transmittance = 0.9 self.pixel_to_micron = 0.6 else: self.numerical_aperture = numerical_aperture self.magnification = magnification self.field_number = field_number # general terms self._illumination = illumination if self._illumination is not None: self._wavelength = self._illumination.emission_wavelength elif wavelength is not None: self._wavelength = wavelength else: raise ValueError("A wavelength is required via the <illumination> class or <wavelength> input parameter") self._pd = fluoro_particle.diameter self._n0 = n0 self.calculate_depth_of_field() self.calculate_depth_of_correlation() if field_number: self.calculate_field_of_view() if show_depth_plot or save_depth_plot: plot_field_depth(depth_of_corr=self.depth_of_correlation, depth_of_field=self.depth_of_field, show_depth_plot=show_depth_plot, save_depth_plot=save_depth_plot, basePath=basePath, savename=None, channel_height=channel_height, objective=self.magnification) # grids and scaling factors if auto_calc_pix_to_micron_scaling and self.pixel_to_micron is None: self.microgrid = microgrid self.calculate_pixel_to_micron_scaling() def calculate_field_of_view(self): self.field_of_view = self.field_number / self.magnification def calculate_depth_of_field(self, e=16e-6, n=1): """ e: CCD pixel resolution example: e = 16 um (16 microns is the pixel size) """ self.depth_of_field = self._wavelength*n/self.numerical_aperture**2+e*n/(self.magnification*self.numerical_aperture) def calculate_depth_of_correlation(self, eps=0.01): # step 0: define n = self._n0 dp = self._pd NA = self.numerical_aperture M = self.magnification lmbda = self._wavelength # step 1: calculate the depth of correlation for the optical setup depth_of_correlation = calculate_depth_of_correlation(M=M, NA=NA, dp=dp, n=n, lmbda=lmbda, eps=eps) self.depth_of_correlation = depth_of_correlation def calculate_pixel_to_micron_scaling(self): if self.microgrid is None: raise ValueError("Need objective.microgrid property in order to calculate scaling factor") # script to calculate scaling factor from grid # would go here @property def NA(self): return self.numerical_aperture @property def M(self): return self.magnification class microgrid(object): def __init__(self, gridPath=None, center_to_center_spacing=None, feature_width=None, grid_type='grid', show_grid=False): """ this class holds images for the microgrid and performs pixel to micron scaling calculations """ if gridPath is not None: self.gridPath = gridPath self.spacing = center_to_center_spacing self.width = feature_width self.grid_type = grid_type # find files in directory file_list = glob.glob(join(self.gridPath, 'grid*.tif')) if len(file_list) < 1: raise ValueError("No grid*.tif files found in {}".format(self.gridPath)) img_grid = np.zeros(shape=(512,512)) for f in file_list: img = io.imread(f, plugin='tifffile') if len(np.shape(img)) > 2: img = np.mean(img, axis=0) img_grid += img img_grid = img_grid / len(file_list) self.img_grid = img_grid if show_grid is True: fig, ax = plt.subplots() ax.imshow(img_grid, cmap='gray') ax.set_xlabel('pixels') ax.set_ylabel('pixels') plt.title('grid: 10 um Lines; 50 um Spacing') plt.show() class fluorescent_particles(object): def __init__(self, name=None, materials=None,diameter=None,fluorescence_spectra=None, concentration=None, electrophoretic_mobility=None, zeta=None): """ the details of the fluroescent particles used :param materials: :param diameter: :param fluorescence_spectra: :param concentration: :param electrophoretic_mobility: :param zeta: """ self.name = name self.materials=materials self.concentration=concentration self.electrophoretic_mobility=electrophoretic_mobility self.zeta=zeta self.diameter=diameter if diameter: k_b = 1.3806e-23 T=298 mu=0.001 self.diffusivity = k_b*T/(6*np.pi*mu*diameter/2) self.fluorescence_spectra=fluorescence_spectra class reservoir(object): def __init__(self, diameter, height, height_of_reservoir=None, material=None): """ describes the micrscope setup :param type: :param objective: """ g = 9.81 # m/s**2 self.material = material self.diameter = diameter self.height = height self.volume = np.pi*self.diameter**2/4 self.height_of_reservoir = height_of_reservoir if material and height_of_reservoir: self.hydrostatic_pressure = material.density*g*self.height_of_reservoir class fluid_handling_system(object): def __init__(self, fluid_reservoir=None, all_tubing=None, onchip_reservoir=None): """ describes the fluid handling system """ self.fluid_reservoir=fluid_reservoir self.all_tubing = all_tubing self.onchip_reservoir = onchip_reservoir class tubing(object): def __init__(self, inner_diameter=None, length=None, material=None): """ describes each segment of tubing """ self.inner_diameter = inner_diameter self.length = length self.material = material class optical_element(object): def __init__(self, passing_wavelengths=None, reflectivity=None): """ this class describes the optical characteristics of any material or element :param wavelength_bandpass: """ self.passing_wavelengths=passing_wavelengths self.reflectivity=reflectivity class measurable_quantity(object): def __init__(self, reference_value=None, measured_value=None): """ what value was measured and when """ self.reference_value = reference_value self.measured_value = measured_value class measurement(object): def __init__(self, value=None, date=None): """ Object for storing measurements :param value: :param date: """ self.value = value self.date = date class electrode_configuration(object): def __init__(self, material=None, length=None, entrance_length=None): """ Object for holding electrode configuration details :param material: :param length: :param entrance_length: """ self.material = material self.length = length self.entrance_length = entrance_length class material_solid(object): def __init__(self, name=None, zeta=None, concentration=None, index_of_refraction=None, transparency=None, fluorescence_spectra=None, permittivity=None, conductivity=None, thickness=None, youngs_modulus=None, poissons_ratio=None, density=None, dielectric_strength=None, reaction_site_density=None, Ka=None, Kb=None, width=None, length=None): """ everything about a material :param transparency: :param fluorescence_spectra: :param zeta: """ # identity self.name = name # geometry self.length = length self.width = width self.thickness = thickness # mechanical self.density = density self.concentration = concentration # For a solid, this is % by volume. self.youngs_modulus = youngs_modulus self.poissons_ratio = poissons_ratio # optical self.index_of_refraction = index_of_refraction self.fluorescence_spectra = fluorescence_spectra self.transparency = transparency if self.transparency: self.reflectivity = 1 / self.transparency # electrochemical self.conductivity = conductivity if permittivity: self.permittivity = permittivity self.zeta = zeta self.dielectric_strength = dielectric_strength if reaction_site_density: self.reaction_site_density = reaction_site_density*1e18 # (#/nm2) surface density of reaction sites: accepts nm2 and converts to m2 (see Squires) self.Ka = Ka # reaction equilibrium constant - upper bound self.Kb = Kb # reaction equilibrium constant - lower bound class material_liquid(object): def __init__(self, name=None, species=None, concentration=None, conductivity=None, pH=None, density=None, viscosity=None, permittivity=None, temperature=None, valence=1.0): """ everything about a liquid :param species: :param concentration: :param conductivity: :param pH: """ # identity self.name = name # electro/chemical self.species = species self.concentration = concentration # (mmol) = (mmol/L) = (mol/m3) self.conductivity = conductivity if permittivity: self.permittivity = permittivity if pH: self.pH = pH self.c_H = 10**-pH * 1e3 # (mmol) = (mmol/L) = (mol/m3); (concentration of Hydrogen ions (H+) self.valence = valence # mechanical self.density = density self.viscosity = viscosity self.temperature = temperature self.diffusivity = 2e-9 # (m^2/s) Diffusivity of KCl in DI water [Soni]
flexible
{ "blob_id": "6ca7b896cc20220f790c06d4ba08fef7bda8400f", "index": 3301, "step-1": "<mask token>\n\n\nclass illumination(object):\n <mask token>\n\n\nclass darkfield(object):\n\n def __init__(self, basePath, darkframePath=None, flip_image_across_axis\n =None, show_image=False, save_image=False, save_img_type='.tif',\n savePath=None, savename=None, save_plot=False):\n \"\"\"\n details about dark field image\n\n \"\"\"\n self.basePath = basePath\n img, mean, std = calculate_darkfield(self.basePath, darkframePath=\n darkframePath, flip_image_axes=flip_image_across_axis,\n show_image=show_image, save_image=save_image, save_img_type=\n save_img_type, savePath=savePath, savename=savename, save_plot=\n save_plot)\n self.img = img\n self.mean = mean\n self.std = std\n\n\nclass microscope(object):\n\n def __init__(self, type, objective, illumination, ccd):\n \"\"\"\n describes the micrscope setup\n :param type:\n :param objective:\n \"\"\"\n self.type = type\n self.objective = objective\n self.illumination = illumination\n self.ccd = ccd\n\n\nclass ccd(object):\n\n def __init__(self, exposure_time, img_acq_rate, EM_gain, name=\n 'iXon Ultra 897', img_acq_type='emcdd', darkfield=None, binning=\n None, vertical_pixel_shift_speed=5e-07,\n horizontal_pixel_shift_speed=1e-07,\n horizontal_pixel_shift_rate_bits=14, frame_transfer=True, crop_mode\n =False, acquisition_mode='kinetic', triggering='internal',\n readout_mode='image', pixels=512, pixel_size=1.6e-05):\n \"\"\"\n describe the CCD class\n \"\"\"\n self.name = name\n self.img_acq_type = img_acq_type\n self.exposure_time = exposure_time\n self.img_acq_rate = img_acq_rate\n self.em_gain = EM_gain\n self.darkfield = darkfield\n self.binning = binning\n self.vpss = vertical_pixel_shift_speed\n self.hpss = horizontal_pixel_shift_speed\n self.hpss_bits = horizontal_pixel_shift_rate_bits\n self.frame_transfer = frame_transfer\n self.crop_mode = crop_mode\n self.acquisition_mode = acquisition_mode\n self.triggering = triggering\n self.readout_mode = readout_mode\n if isinstance(pixels, int):\n self.pixels = pixels, pixels\n else:\n self.pixels = pixels\n self.pixel_size = pixel_size\n self.image_area = self.pixels[0] * pixel_size, self.pixels[1\n ] * pixel_size\n\n\nclass objective(object):\n\n def __init__(self, fluoro_particle, name=None, numerical_aperture=None,\n magnification=None, basePath=None, channel_height=None,\n illumination=None, wavelength=None, microgrid=None,\n auto_calc_pix_to_micron_scaling=False, pixel_to_micron=None,\n field_number=None, n0=1, show_depth_plot=False, save_depth_plot=False):\n \"\"\"\n\n Objectives in the Pennathur Lab Dark Room uScope:\n\n 20X - LCPlanFL N 20X LCD [LCPLFLN20xLCD]\n magnification: 20\n numerical_aperture: 0.45\n field_number: 26.5\n working distance: 7.4 - 8.3 mm\n transmittance: 90% @ 425 - 670 nm\n correction collar: 0 - 1.2 mm\n microns per pixel: 1.55\n 50X - LCPlanFL N 50x LCD [LCPLFLN50xLCD]\n magnification: 50\n numerical aperture: 0.7\n field number: 26.5\n working distance: 2.2 - 3 mm\n transmittance: 90% @ 425 - 650 nm\n correction collar: 0 - 1.2 mm\n microns per pixel: 0.6\n\n Manufacturer website: https://www.olympus-ims.com/en/microscope/lcplfln-lcd/#!cms[focus]=cmsContent11428\n \"\"\"\n self.name = name\n if name == 'LCPLFLN20xLCD':\n self.magnification = 20\n self.numerical_aperture = 0.45\n self.field_number = 26.5\n self.transmittance = 0.9\n self.pixel_to_micron = 1.55\n elif name == 'LCPLFLN50xLCD':\n self.magnification = 50\n self.numerical_aperture = 0.7\n self.field_number = 26.5\n self.transmittance = 0.9\n self.pixel_to_micron = 0.6\n else:\n self.numerical_aperture = numerical_aperture\n self.magnification = magnification\n self.field_number = field_number\n self._illumination = illumination\n if self._illumination is not None:\n self._wavelength = self._illumination.emission_wavelength\n elif wavelength is not None:\n self._wavelength = wavelength\n else:\n raise ValueError(\n 'A wavelength is required via the <illumination> class or <wavelength> input parameter'\n )\n self._pd = fluoro_particle.diameter\n self._n0 = n0\n self.calculate_depth_of_field()\n self.calculate_depth_of_correlation()\n if field_number:\n self.calculate_field_of_view()\n if show_depth_plot or save_depth_plot:\n plot_field_depth(depth_of_corr=self.depth_of_correlation,\n depth_of_field=self.depth_of_field, show_depth_plot=\n show_depth_plot, save_depth_plot=save_depth_plot, basePath=\n basePath, savename=None, channel_height=channel_height,\n objective=self.magnification)\n if auto_calc_pix_to_micron_scaling and self.pixel_to_micron is None:\n self.microgrid = microgrid\n self.calculate_pixel_to_micron_scaling()\n\n def calculate_field_of_view(self):\n self.field_of_view = self.field_number / self.magnification\n\n def calculate_depth_of_field(self, e=1.6e-05, n=1):\n \"\"\"\n e: CCD pixel resolution example: e = 16 um (16 microns is the pixel size)\n \"\"\"\n self.depth_of_field = (self._wavelength * n / self.\n numerical_aperture ** 2 + e * n / (self.magnification * self.\n numerical_aperture))\n\n def calculate_depth_of_correlation(self, eps=0.01):\n n = self._n0\n dp = self._pd\n NA = self.numerical_aperture\n M = self.magnification\n lmbda = self._wavelength\n depth_of_correlation = calculate_depth_of_correlation(M=M, NA=NA,\n dp=dp, n=n, lmbda=lmbda, eps=eps)\n self.depth_of_correlation = depth_of_correlation\n\n def calculate_pixel_to_micron_scaling(self):\n if self.microgrid is None:\n raise ValueError(\n 'Need objective.microgrid property in order to calculate scaling factor'\n )\n\n @property\n def NA(self):\n return self.numerical_aperture\n\n @property\n def M(self):\n return self.magnification\n\n\nclass microgrid(object):\n\n def __init__(self, gridPath=None, center_to_center_spacing=None,\n feature_width=None, grid_type='grid', show_grid=False):\n \"\"\"\n this class holds images for the microgrid and performs pixel to micron scaling calculations\n \"\"\"\n if gridPath is not None:\n self.gridPath = gridPath\n self.spacing = center_to_center_spacing\n self.width = feature_width\n self.grid_type = grid_type\n file_list = glob.glob(join(self.gridPath, 'grid*.tif'))\n if len(file_list) < 1:\n raise ValueError('No grid*.tif files found in {}'.format(\n self.gridPath))\n img_grid = np.zeros(shape=(512, 512))\n for f in file_list:\n img = io.imread(f, plugin='tifffile')\n if len(np.shape(img)) > 2:\n img = np.mean(img, axis=0)\n img_grid += img\n img_grid = img_grid / len(file_list)\n self.img_grid = img_grid\n if show_grid is True:\n fig, ax = plt.subplots()\n ax.imshow(img_grid, cmap='gray')\n ax.set_xlabel('pixels')\n ax.set_ylabel('pixels')\n plt.title('grid: 10 um Lines; 50 um Spacing')\n plt.show()\n\n\nclass fluorescent_particles(object):\n\n def __init__(self, name=None, materials=None, diameter=None,\n fluorescence_spectra=None, concentration=None,\n electrophoretic_mobility=None, zeta=None):\n \"\"\"\n the details of the fluroescent particles used\n :param materials:\n :param diameter:\n :param fluorescence_spectra:\n :param concentration:\n :param electrophoretic_mobility:\n :param zeta:\n \"\"\"\n self.name = name\n self.materials = materials\n self.concentration = concentration\n self.electrophoretic_mobility = electrophoretic_mobility\n self.zeta = zeta\n self.diameter = diameter\n if diameter:\n k_b = 1.3806e-23\n T = 298\n mu = 0.001\n self.diffusivity = k_b * T / (6 * np.pi * mu * diameter / 2)\n self.fluorescence_spectra = fluorescence_spectra\n\n\nclass reservoir(object):\n\n def __init__(self, diameter, height, height_of_reservoir=None, material\n =None):\n \"\"\"\n describes the micrscope setup\n :param type:\n :param objective:\n \"\"\"\n g = 9.81\n self.material = material\n self.diameter = diameter\n self.height = height\n self.volume = np.pi * self.diameter ** 2 / 4\n self.height_of_reservoir = height_of_reservoir\n if material and height_of_reservoir:\n self.hydrostatic_pressure = (material.density * g * self.\n height_of_reservoir)\n\n\nclass fluid_handling_system(object):\n\n def __init__(self, fluid_reservoir=None, all_tubing=None,\n onchip_reservoir=None):\n \"\"\"\n describes the fluid handling system\n \"\"\"\n self.fluid_reservoir = fluid_reservoir\n self.all_tubing = all_tubing\n self.onchip_reservoir = onchip_reservoir\n\n\nclass tubing(object):\n\n def __init__(self, inner_diameter=None, length=None, material=None):\n \"\"\"\n describes each segment of tubing\n\n \"\"\"\n self.inner_diameter = inner_diameter\n self.length = length\n self.material = material\n\n\nclass optical_element(object):\n\n def __init__(self, passing_wavelengths=None, reflectivity=None):\n \"\"\"\n this class describes the optical characteristics of any material or element\n :param wavelength_bandpass:\n \"\"\"\n self.passing_wavelengths = passing_wavelengths\n self.reflectivity = reflectivity\n\n\nclass measurable_quantity(object):\n\n def __init__(self, reference_value=None, measured_value=None):\n \"\"\"\n what value was measured and when\n \"\"\"\n self.reference_value = reference_value\n self.measured_value = measured_value\n\n\nclass measurement(object):\n\n def __init__(self, value=None, date=None):\n \"\"\"\n Object for storing measurements\n :param value:\n :param date:\n \"\"\"\n self.value = value\n self.date = date\n\n\nclass electrode_configuration(object):\n\n def __init__(self, material=None, length=None, entrance_length=None):\n \"\"\"\n Object for holding electrode configuration details\n :param material:\n :param length:\n :param entrance_length:\n \"\"\"\n self.material = material\n self.length = length\n self.entrance_length = entrance_length\n\n\nclass material_solid(object):\n\n def __init__(self, name=None, zeta=None, concentration=None,\n index_of_refraction=None, transparency=None, fluorescence_spectra=\n None, permittivity=None, conductivity=None, thickness=None,\n youngs_modulus=None, poissons_ratio=None, density=None,\n dielectric_strength=None, reaction_site_density=None, Ka=None, Kb=\n None, width=None, length=None):\n \"\"\"\n everything about a material\n :param transparency:\n :param fluorescence_spectra:\n :param zeta:\n \"\"\"\n self.name = name\n self.length = length\n self.width = width\n self.thickness = thickness\n self.density = density\n self.concentration = concentration\n self.youngs_modulus = youngs_modulus\n self.poissons_ratio = poissons_ratio\n self.index_of_refraction = index_of_refraction\n self.fluorescence_spectra = fluorescence_spectra\n self.transparency = transparency\n if self.transparency:\n self.reflectivity = 1 / self.transparency\n self.conductivity = conductivity\n if permittivity:\n self.permittivity = permittivity\n self.zeta = zeta\n self.dielectric_strength = dielectric_strength\n if reaction_site_density:\n self.reaction_site_density = reaction_site_density * 1e+18\n self.Ka = Ka\n self.Kb = Kb\n\n\nclass material_liquid(object):\n\n def __init__(self, name=None, species=None, concentration=None,\n conductivity=None, pH=None, density=None, viscosity=None,\n permittivity=None, temperature=None, valence=1.0):\n \"\"\"\n everything about a liquid\n :param species:\n :param concentration:\n :param conductivity:\n :param pH:\n \"\"\"\n self.name = name\n self.species = species\n self.concentration = concentration\n self.conductivity = conductivity\n if permittivity:\n self.permittivity = permittivity\n if pH:\n self.pH = pH\n self.c_H = 10 ** -pH * 1000.0\n self.valence = valence\n self.density = density\n self.viscosity = viscosity\n self.temperature = temperature\n self.diffusivity = 2e-09\n", "step-2": "<mask token>\n\n\nclass bpe(object):\n <mask token>\n\n\nclass optics(object):\n\n def __init__(self, microscope, fluorescent_particles=None,\n calibration_grid=None, pixel_to_micron_scaling=None):\n self.microscope = microscope\n self.fluorescent_particles = fluorescent_particles\n self.calibration_grid = calibration_grid\n if self.microscope.objective.magnification == 50:\n self.pixel_to_micron_scaling = 0.6\n elif self.microscope.objective.magnification == 20:\n self.pixel_to_micron_scaling = 1.55\n else:\n raise ValueError(\n 'Unable to determine microns/pixels scaling because objective magnification not 50X or 20X'\n )\n if pixel_to_micron_scaling is not None:\n print(\n 'Manual input of pixel_to_micron_scaling is deprecated. A scaling factor of {} um/pix for {} magnification was instantiated.'\n .format(self.pixel_to_micron_scaling, self.microscope.\n objective.magnification))\n \"\"\"\n --- I THINK THIS SECTION IS DEPRECATED ---\n Notes: deprecated because calculating the scaling factor or entering it manually is too confusing. I have\n permanently figured out the correct scaling.\n \n if microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is None:\n self.pixel_to_micron = microscope.objective.pixel_to_micron\n elif microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is not None and microscope.objective.pixel_to_micron != pixel_to_micron_scaling:\n raise ValueError(\"Conflicting scaling factors: microscope.objective={}, optics={}\".format(microscope.objective.pixel_to_micron, pixel_to_micron_scaling))\n elif microscope.objective.pixel_to_micron is None and pixel_to_micron_scaling is not None:\n self.pixel_to_micron = pixel_to_micron_scaling\n \"\"\"\n\n\nclass illumination(object):\n\n def __init__(self, basePath=None, source=None, excitation=None,\n emission=None, dichroic=None, illumination_distribution=None,\n calculate_illumination_distribution=False, illumPath=None,\n illumSavePath=None, illumSaveName=None, showIllumPlot=False,\n save_txt=False, save_plot=False, save_image=False):\n \"\"\"\n details about the optical setup\n :param source:\n :param excitation:\n :param emission:\n :param dichroic:\n \"\"\"\n self.basePath = basePath\n self.source = source\n self.excitation_wavelength = excitation\n self.emission_wavelength = emission\n self.dichroic = dichroic\n if illumination_distribution is not None:\n self.illumination_distribution = illumination_distribution\n elif illumPath is not None:\n flatfield = io.imread(illumPath, plugin='tifffile')\n if len(np.shape(flatfield)) > 2:\n flatfield = np.asarray(np.rint(np.mean(flatfield, axis=0)),\n dtype='uint16')\n self.illumination_distribution = flatfield\n elif calculate_illumination_distribution and illumination_distribution is None:\n self.illumination_distribution = measureIlluminationDistributionXY(\n basePath=self.basePath, illumPath=illumPath, show_image=\n showIllumPlot, save_image=save_image, save_img_type='.tif',\n save_txt=save_txt, show_plot=showIllumPlot, save_plot=\n save_plot, savePath=illumSavePath, savename=illumSaveName)\n else:\n self.illumination_distribution = illumination_distribution\n self.flatfield = self.illumination_distribution\n if self.flatfield is not None:\n self.flatfield_mean = np.mean(self.flatfield)\n self.flatfield_std = np.std(self.flatfield)\n\n\nclass darkfield(object):\n\n def __init__(self, basePath, darkframePath=None, flip_image_across_axis\n =None, show_image=False, save_image=False, save_img_type='.tif',\n savePath=None, savename=None, save_plot=False):\n \"\"\"\n details about dark field image\n\n \"\"\"\n self.basePath = basePath\n img, mean, std = calculate_darkfield(self.basePath, darkframePath=\n darkframePath, flip_image_axes=flip_image_across_axis,\n show_image=show_image, save_image=save_image, save_img_type=\n save_img_type, savePath=savePath, savename=savename, save_plot=\n save_plot)\n self.img = img\n self.mean = mean\n self.std = std\n\n\nclass microscope(object):\n\n def __init__(self, type, objective, illumination, ccd):\n \"\"\"\n describes the micrscope setup\n :param type:\n :param objective:\n \"\"\"\n self.type = type\n self.objective = objective\n self.illumination = illumination\n self.ccd = ccd\n\n\nclass ccd(object):\n\n def __init__(self, exposure_time, img_acq_rate, EM_gain, name=\n 'iXon Ultra 897', img_acq_type='emcdd', darkfield=None, binning=\n None, vertical_pixel_shift_speed=5e-07,\n horizontal_pixel_shift_speed=1e-07,\n horizontal_pixel_shift_rate_bits=14, frame_transfer=True, crop_mode\n =False, acquisition_mode='kinetic', triggering='internal',\n readout_mode='image', pixels=512, pixel_size=1.6e-05):\n \"\"\"\n describe the CCD class\n \"\"\"\n self.name = name\n self.img_acq_type = img_acq_type\n self.exposure_time = exposure_time\n self.img_acq_rate = img_acq_rate\n self.em_gain = EM_gain\n self.darkfield = darkfield\n self.binning = binning\n self.vpss = vertical_pixel_shift_speed\n self.hpss = horizontal_pixel_shift_speed\n self.hpss_bits = horizontal_pixel_shift_rate_bits\n self.frame_transfer = frame_transfer\n self.crop_mode = crop_mode\n self.acquisition_mode = acquisition_mode\n self.triggering = triggering\n self.readout_mode = readout_mode\n if isinstance(pixels, int):\n self.pixels = pixels, pixels\n else:\n self.pixels = pixels\n self.pixel_size = pixel_size\n self.image_area = self.pixels[0] * pixel_size, self.pixels[1\n ] * pixel_size\n\n\nclass objective(object):\n\n def __init__(self, fluoro_particle, name=None, numerical_aperture=None,\n magnification=None, basePath=None, channel_height=None,\n illumination=None, wavelength=None, microgrid=None,\n auto_calc_pix_to_micron_scaling=False, pixel_to_micron=None,\n field_number=None, n0=1, show_depth_plot=False, save_depth_plot=False):\n \"\"\"\n\n Objectives in the Pennathur Lab Dark Room uScope:\n\n 20X - LCPlanFL N 20X LCD [LCPLFLN20xLCD]\n magnification: 20\n numerical_aperture: 0.45\n field_number: 26.5\n working distance: 7.4 - 8.3 mm\n transmittance: 90% @ 425 - 670 nm\n correction collar: 0 - 1.2 mm\n microns per pixel: 1.55\n 50X - LCPlanFL N 50x LCD [LCPLFLN50xLCD]\n magnification: 50\n numerical aperture: 0.7\n field number: 26.5\n working distance: 2.2 - 3 mm\n transmittance: 90% @ 425 - 650 nm\n correction collar: 0 - 1.2 mm\n microns per pixel: 0.6\n\n Manufacturer website: https://www.olympus-ims.com/en/microscope/lcplfln-lcd/#!cms[focus]=cmsContent11428\n \"\"\"\n self.name = name\n if name == 'LCPLFLN20xLCD':\n self.magnification = 20\n self.numerical_aperture = 0.45\n self.field_number = 26.5\n self.transmittance = 0.9\n self.pixel_to_micron = 1.55\n elif name == 'LCPLFLN50xLCD':\n self.magnification = 50\n self.numerical_aperture = 0.7\n self.field_number = 26.5\n self.transmittance = 0.9\n self.pixel_to_micron = 0.6\n else:\n self.numerical_aperture = numerical_aperture\n self.magnification = magnification\n self.field_number = field_number\n self._illumination = illumination\n if self._illumination is not None:\n self._wavelength = self._illumination.emission_wavelength\n elif wavelength is not None:\n self._wavelength = wavelength\n else:\n raise ValueError(\n 'A wavelength is required via the <illumination> class or <wavelength> input parameter'\n )\n self._pd = fluoro_particle.diameter\n self._n0 = n0\n self.calculate_depth_of_field()\n self.calculate_depth_of_correlation()\n if field_number:\n self.calculate_field_of_view()\n if show_depth_plot or save_depth_plot:\n plot_field_depth(depth_of_corr=self.depth_of_correlation,\n depth_of_field=self.depth_of_field, show_depth_plot=\n show_depth_plot, save_depth_plot=save_depth_plot, basePath=\n basePath, savename=None, channel_height=channel_height,\n objective=self.magnification)\n if auto_calc_pix_to_micron_scaling and self.pixel_to_micron is None:\n self.microgrid = microgrid\n self.calculate_pixel_to_micron_scaling()\n\n def calculate_field_of_view(self):\n self.field_of_view = self.field_number / self.magnification\n\n def calculate_depth_of_field(self, e=1.6e-05, n=1):\n \"\"\"\n e: CCD pixel resolution example: e = 16 um (16 microns is the pixel size)\n \"\"\"\n self.depth_of_field = (self._wavelength * n / self.\n numerical_aperture ** 2 + e * n / (self.magnification * self.\n numerical_aperture))\n\n def calculate_depth_of_correlation(self, eps=0.01):\n n = self._n0\n dp = self._pd\n NA = self.numerical_aperture\n M = self.magnification\n lmbda = self._wavelength\n depth_of_correlation = calculate_depth_of_correlation(M=M, NA=NA,\n dp=dp, n=n, lmbda=lmbda, eps=eps)\n self.depth_of_correlation = depth_of_correlation\n\n def calculate_pixel_to_micron_scaling(self):\n if self.microgrid is None:\n raise ValueError(\n 'Need objective.microgrid property in order to calculate scaling factor'\n )\n\n @property\n def NA(self):\n return self.numerical_aperture\n\n @property\n def M(self):\n return self.magnification\n\n\nclass microgrid(object):\n\n def __init__(self, gridPath=None, center_to_center_spacing=None,\n feature_width=None, grid_type='grid', show_grid=False):\n \"\"\"\n this class holds images for the microgrid and performs pixel to micron scaling calculations\n \"\"\"\n if gridPath is not None:\n self.gridPath = gridPath\n self.spacing = center_to_center_spacing\n self.width = feature_width\n self.grid_type = grid_type\n file_list = glob.glob(join(self.gridPath, 'grid*.tif'))\n if len(file_list) < 1:\n raise ValueError('No grid*.tif files found in {}'.format(\n self.gridPath))\n img_grid = np.zeros(shape=(512, 512))\n for f in file_list:\n img = io.imread(f, plugin='tifffile')\n if len(np.shape(img)) > 2:\n img = np.mean(img, axis=0)\n img_grid += img\n img_grid = img_grid / len(file_list)\n self.img_grid = img_grid\n if show_grid is True:\n fig, ax = plt.subplots()\n ax.imshow(img_grid, cmap='gray')\n ax.set_xlabel('pixels')\n ax.set_ylabel('pixels')\n plt.title('grid: 10 um Lines; 50 um Spacing')\n plt.show()\n\n\nclass fluorescent_particles(object):\n\n def __init__(self, name=None, materials=None, diameter=None,\n fluorescence_spectra=None, concentration=None,\n electrophoretic_mobility=None, zeta=None):\n \"\"\"\n the details of the fluroescent particles used\n :param materials:\n :param diameter:\n :param fluorescence_spectra:\n :param concentration:\n :param electrophoretic_mobility:\n :param zeta:\n \"\"\"\n self.name = name\n self.materials = materials\n self.concentration = concentration\n self.electrophoretic_mobility = electrophoretic_mobility\n self.zeta = zeta\n self.diameter = diameter\n if diameter:\n k_b = 1.3806e-23\n T = 298\n mu = 0.001\n self.diffusivity = k_b * T / (6 * np.pi * mu * diameter / 2)\n self.fluorescence_spectra = fluorescence_spectra\n\n\nclass reservoir(object):\n\n def __init__(self, diameter, height, height_of_reservoir=None, material\n =None):\n \"\"\"\n describes the micrscope setup\n :param type:\n :param objective:\n \"\"\"\n g = 9.81\n self.material = material\n self.diameter = diameter\n self.height = height\n self.volume = np.pi * self.diameter ** 2 / 4\n self.height_of_reservoir = height_of_reservoir\n if material and height_of_reservoir:\n self.hydrostatic_pressure = (material.density * g * self.\n height_of_reservoir)\n\n\nclass fluid_handling_system(object):\n\n def __init__(self, fluid_reservoir=None, all_tubing=None,\n onchip_reservoir=None):\n \"\"\"\n describes the fluid handling system\n \"\"\"\n self.fluid_reservoir = fluid_reservoir\n self.all_tubing = all_tubing\n self.onchip_reservoir = onchip_reservoir\n\n\nclass tubing(object):\n\n def __init__(self, inner_diameter=None, length=None, material=None):\n \"\"\"\n describes each segment of tubing\n\n \"\"\"\n self.inner_diameter = inner_diameter\n self.length = length\n self.material = material\n\n\nclass optical_element(object):\n\n def __init__(self, passing_wavelengths=None, reflectivity=None):\n \"\"\"\n this class describes the optical characteristics of any material or element\n :param wavelength_bandpass:\n \"\"\"\n self.passing_wavelengths = passing_wavelengths\n self.reflectivity = reflectivity\n\n\nclass measurable_quantity(object):\n\n def __init__(self, reference_value=None, measured_value=None):\n \"\"\"\n what value was measured and when\n \"\"\"\n self.reference_value = reference_value\n self.measured_value = measured_value\n\n\nclass measurement(object):\n\n def __init__(self, value=None, date=None):\n \"\"\"\n Object for storing measurements\n :param value:\n :param date:\n \"\"\"\n self.value = value\n self.date = date\n\n\nclass electrode_configuration(object):\n\n def __init__(self, material=None, length=None, entrance_length=None):\n \"\"\"\n Object for holding electrode configuration details\n :param material:\n :param length:\n :param entrance_length:\n \"\"\"\n self.material = material\n self.length = length\n self.entrance_length = entrance_length\n\n\nclass material_solid(object):\n\n def __init__(self, name=None, zeta=None, concentration=None,\n index_of_refraction=None, transparency=None, fluorescence_spectra=\n None, permittivity=None, conductivity=None, thickness=None,\n youngs_modulus=None, poissons_ratio=None, density=None,\n dielectric_strength=None, reaction_site_density=None, Ka=None, Kb=\n None, width=None, length=None):\n \"\"\"\n everything about a material\n :param transparency:\n :param fluorescence_spectra:\n :param zeta:\n \"\"\"\n self.name = name\n self.length = length\n self.width = width\n self.thickness = thickness\n self.density = density\n self.concentration = concentration\n self.youngs_modulus = youngs_modulus\n self.poissons_ratio = poissons_ratio\n self.index_of_refraction = index_of_refraction\n self.fluorescence_spectra = fluorescence_spectra\n self.transparency = transparency\n if self.transparency:\n self.reflectivity = 1 / self.transparency\n self.conductivity = conductivity\n if permittivity:\n self.permittivity = permittivity\n self.zeta = zeta\n self.dielectric_strength = dielectric_strength\n if reaction_site_density:\n self.reaction_site_density = reaction_site_density * 1e+18\n self.Ka = Ka\n self.Kb = Kb\n\n\nclass material_liquid(object):\n\n def __init__(self, name=None, species=None, concentration=None,\n conductivity=None, pH=None, density=None, viscosity=None,\n permittivity=None, temperature=None, valence=1.0):\n \"\"\"\n everything about a liquid\n :param species:\n :param concentration:\n :param conductivity:\n :param pH:\n \"\"\"\n self.name = name\n self.species = species\n self.concentration = concentration\n self.conductivity = conductivity\n if permittivity:\n self.permittivity = permittivity\n if pH:\n self.pH = pH\n self.c_H = 10 ** -pH * 1000.0\n self.valence = valence\n self.density = density\n self.viscosity = viscosity\n self.temperature = temperature\n self.diffusivity = 2e-09\n", "step-3": "<mask token>\n\n\nclass chip(object):\n <mask token>\n\n\nclass channel(object):\n\n def __init__(self, length=None, width=None, height=None,\n material_bottom_wall_surface=None, material_top_wall_surface=None,\n material_fluid=None):\n \"\"\"\n Everything important about the chip\n \"\"\"\n self.length = length\n self.width = width\n self.height = height\n self.material_bottom_wall_surface = material_bottom_wall_surface\n self.material_top_wall_surface = material_top_wall_surface\n self.material_fluid = material_fluid\n\n\nclass bpe(object):\n\n def __init__(self, length=None, width=None, height=None, material=None,\n adhesion_material=None, dielectric_coating=None):\n \"\"\"\n Everything important about the chip\n \"\"\"\n self.length = length\n self.linspace_x = np.linspace(-length / 2, length / 2, num=100)\n self.width = width\n self.height = height\n self.material = material\n if self.material.thickness:\n if self.material.thickness != self.height:\n raise ValueError('BPE height must equal BPE material thickness'\n )\n self.adhesion_material = adhesion_material\n if dielectric_coating:\n self.dielectric_coating = dielectric_coating\n else:\n self.dielectric_coating = material_solid(name='no_dielectric',\n permittivity=1, thickness=1e-12, Ka=6, Kb=2,\n reaction_site_density=5)\n\n\nclass optics(object):\n\n def __init__(self, microscope, fluorescent_particles=None,\n calibration_grid=None, pixel_to_micron_scaling=None):\n self.microscope = microscope\n self.fluorescent_particles = fluorescent_particles\n self.calibration_grid = calibration_grid\n if self.microscope.objective.magnification == 50:\n self.pixel_to_micron_scaling = 0.6\n elif self.microscope.objective.magnification == 20:\n self.pixel_to_micron_scaling = 1.55\n else:\n raise ValueError(\n 'Unable to determine microns/pixels scaling because objective magnification not 50X or 20X'\n )\n if pixel_to_micron_scaling is not None:\n print(\n 'Manual input of pixel_to_micron_scaling is deprecated. A scaling factor of {} um/pix for {} magnification was instantiated.'\n .format(self.pixel_to_micron_scaling, self.microscope.\n objective.magnification))\n \"\"\"\n --- I THINK THIS SECTION IS DEPRECATED ---\n Notes: deprecated because calculating the scaling factor or entering it manually is too confusing. I have\n permanently figured out the correct scaling.\n \n if microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is None:\n self.pixel_to_micron = microscope.objective.pixel_to_micron\n elif microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is not None and microscope.objective.pixel_to_micron != pixel_to_micron_scaling:\n raise ValueError(\"Conflicting scaling factors: microscope.objective={}, optics={}\".format(microscope.objective.pixel_to_micron, pixel_to_micron_scaling))\n elif microscope.objective.pixel_to_micron is None and pixel_to_micron_scaling is not None:\n self.pixel_to_micron = pixel_to_micron_scaling\n \"\"\"\n\n\nclass illumination(object):\n\n def __init__(self, basePath=None, source=None, excitation=None,\n emission=None, dichroic=None, illumination_distribution=None,\n calculate_illumination_distribution=False, illumPath=None,\n illumSavePath=None, illumSaveName=None, showIllumPlot=False,\n save_txt=False, save_plot=False, save_image=False):\n \"\"\"\n details about the optical setup\n :param source:\n :param excitation:\n :param emission:\n :param dichroic:\n \"\"\"\n self.basePath = basePath\n self.source = source\n self.excitation_wavelength = excitation\n self.emission_wavelength = emission\n self.dichroic = dichroic\n if illumination_distribution is not None:\n self.illumination_distribution = illumination_distribution\n elif illumPath is not None:\n flatfield = io.imread(illumPath, plugin='tifffile')\n if len(np.shape(flatfield)) > 2:\n flatfield = np.asarray(np.rint(np.mean(flatfield, axis=0)),\n dtype='uint16')\n self.illumination_distribution = flatfield\n elif calculate_illumination_distribution and illumination_distribution is None:\n self.illumination_distribution = measureIlluminationDistributionXY(\n basePath=self.basePath, illumPath=illumPath, show_image=\n showIllumPlot, save_image=save_image, save_img_type='.tif',\n save_txt=save_txt, show_plot=showIllumPlot, save_plot=\n save_plot, savePath=illumSavePath, savename=illumSaveName)\n else:\n self.illumination_distribution = illumination_distribution\n self.flatfield = self.illumination_distribution\n if self.flatfield is not None:\n self.flatfield_mean = np.mean(self.flatfield)\n self.flatfield_std = np.std(self.flatfield)\n\n\nclass darkfield(object):\n\n def __init__(self, basePath, darkframePath=None, flip_image_across_axis\n =None, show_image=False, save_image=False, save_img_type='.tif',\n savePath=None, savename=None, save_plot=False):\n \"\"\"\n details about dark field image\n\n \"\"\"\n self.basePath = basePath\n img, mean, std = calculate_darkfield(self.basePath, darkframePath=\n darkframePath, flip_image_axes=flip_image_across_axis,\n show_image=show_image, save_image=save_image, save_img_type=\n save_img_type, savePath=savePath, savename=savename, save_plot=\n save_plot)\n self.img = img\n self.mean = mean\n self.std = std\n\n\nclass microscope(object):\n\n def __init__(self, type, objective, illumination, ccd):\n \"\"\"\n describes the micrscope setup\n :param type:\n :param objective:\n \"\"\"\n self.type = type\n self.objective = objective\n self.illumination = illumination\n self.ccd = ccd\n\n\nclass ccd(object):\n\n def __init__(self, exposure_time, img_acq_rate, EM_gain, name=\n 'iXon Ultra 897', img_acq_type='emcdd', darkfield=None, binning=\n None, vertical_pixel_shift_speed=5e-07,\n horizontal_pixel_shift_speed=1e-07,\n horizontal_pixel_shift_rate_bits=14, frame_transfer=True, crop_mode\n =False, acquisition_mode='kinetic', triggering='internal',\n readout_mode='image', pixels=512, pixel_size=1.6e-05):\n \"\"\"\n describe the CCD class\n \"\"\"\n self.name = name\n self.img_acq_type = img_acq_type\n self.exposure_time = exposure_time\n self.img_acq_rate = img_acq_rate\n self.em_gain = EM_gain\n self.darkfield = darkfield\n self.binning = binning\n self.vpss = vertical_pixel_shift_speed\n self.hpss = horizontal_pixel_shift_speed\n self.hpss_bits = horizontal_pixel_shift_rate_bits\n self.frame_transfer = frame_transfer\n self.crop_mode = crop_mode\n self.acquisition_mode = acquisition_mode\n self.triggering = triggering\n self.readout_mode = readout_mode\n if isinstance(pixels, int):\n self.pixels = pixels, pixels\n else:\n self.pixels = pixels\n self.pixel_size = pixel_size\n self.image_area = self.pixels[0] * pixel_size, self.pixels[1\n ] * pixel_size\n\n\nclass objective(object):\n\n def __init__(self, fluoro_particle, name=None, numerical_aperture=None,\n magnification=None, basePath=None, channel_height=None,\n illumination=None, wavelength=None, microgrid=None,\n auto_calc_pix_to_micron_scaling=False, pixel_to_micron=None,\n field_number=None, n0=1, show_depth_plot=False, save_depth_plot=False):\n \"\"\"\n\n Objectives in the Pennathur Lab Dark Room uScope:\n\n 20X - LCPlanFL N 20X LCD [LCPLFLN20xLCD]\n magnification: 20\n numerical_aperture: 0.45\n field_number: 26.5\n working distance: 7.4 - 8.3 mm\n transmittance: 90% @ 425 - 670 nm\n correction collar: 0 - 1.2 mm\n microns per pixel: 1.55\n 50X - LCPlanFL N 50x LCD [LCPLFLN50xLCD]\n magnification: 50\n numerical aperture: 0.7\n field number: 26.5\n working distance: 2.2 - 3 mm\n transmittance: 90% @ 425 - 650 nm\n correction collar: 0 - 1.2 mm\n microns per pixel: 0.6\n\n Manufacturer website: https://www.olympus-ims.com/en/microscope/lcplfln-lcd/#!cms[focus]=cmsContent11428\n \"\"\"\n self.name = name\n if name == 'LCPLFLN20xLCD':\n self.magnification = 20\n self.numerical_aperture = 0.45\n self.field_number = 26.5\n self.transmittance = 0.9\n self.pixel_to_micron = 1.55\n elif name == 'LCPLFLN50xLCD':\n self.magnification = 50\n self.numerical_aperture = 0.7\n self.field_number = 26.5\n self.transmittance = 0.9\n self.pixel_to_micron = 0.6\n else:\n self.numerical_aperture = numerical_aperture\n self.magnification = magnification\n self.field_number = field_number\n self._illumination = illumination\n if self._illumination is not None:\n self._wavelength = self._illumination.emission_wavelength\n elif wavelength is not None:\n self._wavelength = wavelength\n else:\n raise ValueError(\n 'A wavelength is required via the <illumination> class or <wavelength> input parameter'\n )\n self._pd = fluoro_particle.diameter\n self._n0 = n0\n self.calculate_depth_of_field()\n self.calculate_depth_of_correlation()\n if field_number:\n self.calculate_field_of_view()\n if show_depth_plot or save_depth_plot:\n plot_field_depth(depth_of_corr=self.depth_of_correlation,\n depth_of_field=self.depth_of_field, show_depth_plot=\n show_depth_plot, save_depth_plot=save_depth_plot, basePath=\n basePath, savename=None, channel_height=channel_height,\n objective=self.magnification)\n if auto_calc_pix_to_micron_scaling and self.pixel_to_micron is None:\n self.microgrid = microgrid\n self.calculate_pixel_to_micron_scaling()\n\n def calculate_field_of_view(self):\n self.field_of_view = self.field_number / self.magnification\n\n def calculate_depth_of_field(self, e=1.6e-05, n=1):\n \"\"\"\n e: CCD pixel resolution example: e = 16 um (16 microns is the pixel size)\n \"\"\"\n self.depth_of_field = (self._wavelength * n / self.\n numerical_aperture ** 2 + e * n / (self.magnification * self.\n numerical_aperture))\n\n def calculate_depth_of_correlation(self, eps=0.01):\n n = self._n0\n dp = self._pd\n NA = self.numerical_aperture\n M = self.magnification\n lmbda = self._wavelength\n depth_of_correlation = calculate_depth_of_correlation(M=M, NA=NA,\n dp=dp, n=n, lmbda=lmbda, eps=eps)\n self.depth_of_correlation = depth_of_correlation\n\n def calculate_pixel_to_micron_scaling(self):\n if self.microgrid is None:\n raise ValueError(\n 'Need objective.microgrid property in order to calculate scaling factor'\n )\n\n @property\n def NA(self):\n return self.numerical_aperture\n\n @property\n def M(self):\n return self.magnification\n\n\nclass microgrid(object):\n\n def __init__(self, gridPath=None, center_to_center_spacing=None,\n feature_width=None, grid_type='grid', show_grid=False):\n \"\"\"\n this class holds images for the microgrid and performs pixel to micron scaling calculations\n \"\"\"\n if gridPath is not None:\n self.gridPath = gridPath\n self.spacing = center_to_center_spacing\n self.width = feature_width\n self.grid_type = grid_type\n file_list = glob.glob(join(self.gridPath, 'grid*.tif'))\n if len(file_list) < 1:\n raise ValueError('No grid*.tif files found in {}'.format(\n self.gridPath))\n img_grid = np.zeros(shape=(512, 512))\n for f in file_list:\n img = io.imread(f, plugin='tifffile')\n if len(np.shape(img)) > 2:\n img = np.mean(img, axis=0)\n img_grid += img\n img_grid = img_grid / len(file_list)\n self.img_grid = img_grid\n if show_grid is True:\n fig, ax = plt.subplots()\n ax.imshow(img_grid, cmap='gray')\n ax.set_xlabel('pixels')\n ax.set_ylabel('pixels')\n plt.title('grid: 10 um Lines; 50 um Spacing')\n plt.show()\n\n\nclass fluorescent_particles(object):\n\n def __init__(self, name=None, materials=None, diameter=None,\n fluorescence_spectra=None, concentration=None,\n electrophoretic_mobility=None, zeta=None):\n \"\"\"\n the details of the fluroescent particles used\n :param materials:\n :param diameter:\n :param fluorescence_spectra:\n :param concentration:\n :param electrophoretic_mobility:\n :param zeta:\n \"\"\"\n self.name = name\n self.materials = materials\n self.concentration = concentration\n self.electrophoretic_mobility = electrophoretic_mobility\n self.zeta = zeta\n self.diameter = diameter\n if diameter:\n k_b = 1.3806e-23\n T = 298\n mu = 0.001\n self.diffusivity = k_b * T / (6 * np.pi * mu * diameter / 2)\n self.fluorescence_spectra = fluorescence_spectra\n\n\nclass reservoir(object):\n\n def __init__(self, diameter, height, height_of_reservoir=None, material\n =None):\n \"\"\"\n describes the micrscope setup\n :param type:\n :param objective:\n \"\"\"\n g = 9.81\n self.material = material\n self.diameter = diameter\n self.height = height\n self.volume = np.pi * self.diameter ** 2 / 4\n self.height_of_reservoir = height_of_reservoir\n if material and height_of_reservoir:\n self.hydrostatic_pressure = (material.density * g * self.\n height_of_reservoir)\n\n\nclass fluid_handling_system(object):\n\n def __init__(self, fluid_reservoir=None, all_tubing=None,\n onchip_reservoir=None):\n \"\"\"\n describes the fluid handling system\n \"\"\"\n self.fluid_reservoir = fluid_reservoir\n self.all_tubing = all_tubing\n self.onchip_reservoir = onchip_reservoir\n\n\nclass tubing(object):\n\n def __init__(self, inner_diameter=None, length=None, material=None):\n \"\"\"\n describes each segment of tubing\n\n \"\"\"\n self.inner_diameter = inner_diameter\n self.length = length\n self.material = material\n\n\nclass optical_element(object):\n\n def __init__(self, passing_wavelengths=None, reflectivity=None):\n \"\"\"\n this class describes the optical characteristics of any material or element\n :param wavelength_bandpass:\n \"\"\"\n self.passing_wavelengths = passing_wavelengths\n self.reflectivity = reflectivity\n\n\nclass measurable_quantity(object):\n\n def __init__(self, reference_value=None, measured_value=None):\n \"\"\"\n what value was measured and when\n \"\"\"\n self.reference_value = reference_value\n self.measured_value = measured_value\n\n\nclass measurement(object):\n\n def __init__(self, value=None, date=None):\n \"\"\"\n Object for storing measurements\n :param value:\n :param date:\n \"\"\"\n self.value = value\n self.date = date\n\n\nclass electrode_configuration(object):\n\n def __init__(self, material=None, length=None, entrance_length=None):\n \"\"\"\n Object for holding electrode configuration details\n :param material:\n :param length:\n :param entrance_length:\n \"\"\"\n self.material = material\n self.length = length\n self.entrance_length = entrance_length\n\n\nclass material_solid(object):\n\n def __init__(self, name=None, zeta=None, concentration=None,\n index_of_refraction=None, transparency=None, fluorescence_spectra=\n None, permittivity=None, conductivity=None, thickness=None,\n youngs_modulus=None, poissons_ratio=None, density=None,\n dielectric_strength=None, reaction_site_density=None, Ka=None, Kb=\n None, width=None, length=None):\n \"\"\"\n everything about a material\n :param transparency:\n :param fluorescence_spectra:\n :param zeta:\n \"\"\"\n self.name = name\n self.length = length\n self.width = width\n self.thickness = thickness\n self.density = density\n self.concentration = concentration\n self.youngs_modulus = youngs_modulus\n self.poissons_ratio = poissons_ratio\n self.index_of_refraction = index_of_refraction\n self.fluorescence_spectra = fluorescence_spectra\n self.transparency = transparency\n if self.transparency:\n self.reflectivity = 1 / self.transparency\n self.conductivity = conductivity\n if permittivity:\n self.permittivity = permittivity\n self.zeta = zeta\n self.dielectric_strength = dielectric_strength\n if reaction_site_density:\n self.reaction_site_density = reaction_site_density * 1e+18\n self.Ka = Ka\n self.Kb = Kb\n\n\nclass material_liquid(object):\n\n def __init__(self, name=None, species=None, concentration=None,\n conductivity=None, pH=None, density=None, viscosity=None,\n permittivity=None, temperature=None, valence=1.0):\n \"\"\"\n everything about a liquid\n :param species:\n :param concentration:\n :param conductivity:\n :param pH:\n \"\"\"\n self.name = name\n self.species = species\n self.concentration = concentration\n self.conductivity = conductivity\n if permittivity:\n self.permittivity = permittivity\n if pH:\n self.pH = pH\n self.c_H = 10 ** -pH * 1000.0\n self.valence = valence\n self.density = density\n self.viscosity = viscosity\n self.temperature = temperature\n self.diffusivity = 2e-09\n", "step-4": "<mask token>\n\n\nclass CurlypivTestSetup(object):\n\n def __init__(self, name, chip, optics, fluid_handling_system):\n \"\"\"\n All the \"settings\" used in the experimental setup:\n 1. chip (class)\n 1.1 solid material (class) (e.g. SiO2)\n 1.1.1 transparency\n 1.1.2 fluorescence spectral characteristics\n 1.1.3 surface charge density\n 1.1.4 %/vol (here would be 100%)\n 1.2 channel (class)\n 1.2.1 height\n 1.2.2 width\n 1.2.3 length\n 1.3 reservoir volume\n 1.4 electrode configuration (class)\n 1.4.1 material\n 1.4.2 separation distance\n 1.4.3 distance to channel entrance\n 2. test solution (class)\n 2.1 liquid material (class) (e.g. electrolyte)\n 2.1.1 chemical species (e.g. KCl)\n 2.1.2 concentration\n 2.1.3 measurable quantity (class) (e.g. conductivity)\n 2.1.3.1 theoretical\n 2.1.3.2 measured\n 2.1.3.2.1 measured conductivity\n 2.1.3.2.1 measured date\n 2.1.4 measurable quantity (class) (e.g. pH)\n 2.1.4.1 theoretical\n 2.1.4.2 measured\n 2.1.4.2.1 measured conductivity\n 2.1.4.2.1 measured date\n 2.2 fluorescent particles (class)\n 2.2.0 diameter\n 2.2.. measurable quantity (class) (e.g. zeta)\n 2.2.. measurable quantity (class) (e.g electrophoretic mobility)\n 2.2.. spectral characteristics\n 2.2.1 solid materials (class) (e.g. polystyrene)\n 2.2.1.1 %/vol\n 2.2.2 liquid materials (class) (e.g. DI water)\n 2.2.3 liquid materials (Class) (e.g. sodium azide)\n 2.2.3.1 conductivity\n 2.2.3.2 concentration\n 3. illumination (class)\n 3.1 source (class)\n 3.1.1 type (e.g. Hg lamp)\n 3.1.2 intensity\n 3.1.3 emission spectra\n 3.2 optical element (class) (e.g. excitation filter)\n 3.3 optical element (class) (e.g. emission filter)\n 3.4 optical element (class) (e.g. dichroic mirror)\n 4. microscope\n 4.1 type (Olympus iX 73)\n 4.2 objective (class)\n 4.2.1 numerical aperature (e.g. 0.3)\n 4.2.2 magnification (e.g. 20X)\n 4.2.3 field of view (e.g. 500 x 500 um)\n 4.2.4 depth of focus (e.g 4.1 microns)\n \"\"\"\n self.name = name\n self.chip = chip\n self.optics = optics\n self.fluid_handling_system = fluid_handling_system\n\n\nclass chip(object):\n\n def __init__(self, channel=None, bpe=None, reservoir=None, electrodes=\n None, fluid_handling_system=None, material_in_optical_path=None,\n thickness_in_optical_path=None):\n \"\"\"\n Everything important about the chip\n \"\"\"\n self.channel = channel\n self.bpe = bpe\n self.electrodes = electrodes\n self.fluid_handling_system = fluid_handling_system\n self.material_in_optical_path = material_in_optical_path\n self.thickness_in_optical_path = thickness_in_optical_path\n\n\nclass channel(object):\n\n def __init__(self, length=None, width=None, height=None,\n material_bottom_wall_surface=None, material_top_wall_surface=None,\n material_fluid=None):\n \"\"\"\n Everything important about the chip\n \"\"\"\n self.length = length\n self.width = width\n self.height = height\n self.material_bottom_wall_surface = material_bottom_wall_surface\n self.material_top_wall_surface = material_top_wall_surface\n self.material_fluid = material_fluid\n\n\nclass bpe(object):\n\n def __init__(self, length=None, width=None, height=None, material=None,\n adhesion_material=None, dielectric_coating=None):\n \"\"\"\n Everything important about the chip\n \"\"\"\n self.length = length\n self.linspace_x = np.linspace(-length / 2, length / 2, num=100)\n self.width = width\n self.height = height\n self.material = material\n if self.material.thickness:\n if self.material.thickness != self.height:\n raise ValueError('BPE height must equal BPE material thickness'\n )\n self.adhesion_material = adhesion_material\n if dielectric_coating:\n self.dielectric_coating = dielectric_coating\n else:\n self.dielectric_coating = material_solid(name='no_dielectric',\n permittivity=1, thickness=1e-12, Ka=6, Kb=2,\n reaction_site_density=5)\n\n\nclass optics(object):\n\n def __init__(self, microscope, fluorescent_particles=None,\n calibration_grid=None, pixel_to_micron_scaling=None):\n self.microscope = microscope\n self.fluorescent_particles = fluorescent_particles\n self.calibration_grid = calibration_grid\n if self.microscope.objective.magnification == 50:\n self.pixel_to_micron_scaling = 0.6\n elif self.microscope.objective.magnification == 20:\n self.pixel_to_micron_scaling = 1.55\n else:\n raise ValueError(\n 'Unable to determine microns/pixels scaling because objective magnification not 50X or 20X'\n )\n if pixel_to_micron_scaling is not None:\n print(\n 'Manual input of pixel_to_micron_scaling is deprecated. A scaling factor of {} um/pix for {} magnification was instantiated.'\n .format(self.pixel_to_micron_scaling, self.microscope.\n objective.magnification))\n \"\"\"\n --- I THINK THIS SECTION IS DEPRECATED ---\n Notes: deprecated because calculating the scaling factor or entering it manually is too confusing. I have\n permanently figured out the correct scaling.\n \n if microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is None:\n self.pixel_to_micron = microscope.objective.pixel_to_micron\n elif microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is not None and microscope.objective.pixel_to_micron != pixel_to_micron_scaling:\n raise ValueError(\"Conflicting scaling factors: microscope.objective={}, optics={}\".format(microscope.objective.pixel_to_micron, pixel_to_micron_scaling))\n elif microscope.objective.pixel_to_micron is None and pixel_to_micron_scaling is not None:\n self.pixel_to_micron = pixel_to_micron_scaling\n \"\"\"\n\n\nclass illumination(object):\n\n def __init__(self, basePath=None, source=None, excitation=None,\n emission=None, dichroic=None, illumination_distribution=None,\n calculate_illumination_distribution=False, illumPath=None,\n illumSavePath=None, illumSaveName=None, showIllumPlot=False,\n save_txt=False, save_plot=False, save_image=False):\n \"\"\"\n details about the optical setup\n :param source:\n :param excitation:\n :param emission:\n :param dichroic:\n \"\"\"\n self.basePath = basePath\n self.source = source\n self.excitation_wavelength = excitation\n self.emission_wavelength = emission\n self.dichroic = dichroic\n if illumination_distribution is not None:\n self.illumination_distribution = illumination_distribution\n elif illumPath is not None:\n flatfield = io.imread(illumPath, plugin='tifffile')\n if len(np.shape(flatfield)) > 2:\n flatfield = np.asarray(np.rint(np.mean(flatfield, axis=0)),\n dtype='uint16')\n self.illumination_distribution = flatfield\n elif calculate_illumination_distribution and illumination_distribution is None:\n self.illumination_distribution = measureIlluminationDistributionXY(\n basePath=self.basePath, illumPath=illumPath, show_image=\n showIllumPlot, save_image=save_image, save_img_type='.tif',\n save_txt=save_txt, show_plot=showIllumPlot, save_plot=\n save_plot, savePath=illumSavePath, savename=illumSaveName)\n else:\n self.illumination_distribution = illumination_distribution\n self.flatfield = self.illumination_distribution\n if self.flatfield is not None:\n self.flatfield_mean = np.mean(self.flatfield)\n self.flatfield_std = np.std(self.flatfield)\n\n\nclass darkfield(object):\n\n def __init__(self, basePath, darkframePath=None, flip_image_across_axis\n =None, show_image=False, save_image=False, save_img_type='.tif',\n savePath=None, savename=None, save_plot=False):\n \"\"\"\n details about dark field image\n\n \"\"\"\n self.basePath = basePath\n img, mean, std = calculate_darkfield(self.basePath, darkframePath=\n darkframePath, flip_image_axes=flip_image_across_axis,\n show_image=show_image, save_image=save_image, save_img_type=\n save_img_type, savePath=savePath, savename=savename, save_plot=\n save_plot)\n self.img = img\n self.mean = mean\n self.std = std\n\n\nclass microscope(object):\n\n def __init__(self, type, objective, illumination, ccd):\n \"\"\"\n describes the micrscope setup\n :param type:\n :param objective:\n \"\"\"\n self.type = type\n self.objective = objective\n self.illumination = illumination\n self.ccd = ccd\n\n\nclass ccd(object):\n\n def __init__(self, exposure_time, img_acq_rate, EM_gain, name=\n 'iXon Ultra 897', img_acq_type='emcdd', darkfield=None, binning=\n None, vertical_pixel_shift_speed=5e-07,\n horizontal_pixel_shift_speed=1e-07,\n horizontal_pixel_shift_rate_bits=14, frame_transfer=True, crop_mode\n =False, acquisition_mode='kinetic', triggering='internal',\n readout_mode='image', pixels=512, pixel_size=1.6e-05):\n \"\"\"\n describe the CCD class\n \"\"\"\n self.name = name\n self.img_acq_type = img_acq_type\n self.exposure_time = exposure_time\n self.img_acq_rate = img_acq_rate\n self.em_gain = EM_gain\n self.darkfield = darkfield\n self.binning = binning\n self.vpss = vertical_pixel_shift_speed\n self.hpss = horizontal_pixel_shift_speed\n self.hpss_bits = horizontal_pixel_shift_rate_bits\n self.frame_transfer = frame_transfer\n self.crop_mode = crop_mode\n self.acquisition_mode = acquisition_mode\n self.triggering = triggering\n self.readout_mode = readout_mode\n if isinstance(pixels, int):\n self.pixels = pixels, pixels\n else:\n self.pixels = pixels\n self.pixel_size = pixel_size\n self.image_area = self.pixels[0] * pixel_size, self.pixels[1\n ] * pixel_size\n\n\nclass objective(object):\n\n def __init__(self, fluoro_particle, name=None, numerical_aperture=None,\n magnification=None, basePath=None, channel_height=None,\n illumination=None, wavelength=None, microgrid=None,\n auto_calc_pix_to_micron_scaling=False, pixel_to_micron=None,\n field_number=None, n0=1, show_depth_plot=False, save_depth_plot=False):\n \"\"\"\n\n Objectives in the Pennathur Lab Dark Room uScope:\n\n 20X - LCPlanFL N 20X LCD [LCPLFLN20xLCD]\n magnification: 20\n numerical_aperture: 0.45\n field_number: 26.5\n working distance: 7.4 - 8.3 mm\n transmittance: 90% @ 425 - 670 nm\n correction collar: 0 - 1.2 mm\n microns per pixel: 1.55\n 50X - LCPlanFL N 50x LCD [LCPLFLN50xLCD]\n magnification: 50\n numerical aperture: 0.7\n field number: 26.5\n working distance: 2.2 - 3 mm\n transmittance: 90% @ 425 - 650 nm\n correction collar: 0 - 1.2 mm\n microns per pixel: 0.6\n\n Manufacturer website: https://www.olympus-ims.com/en/microscope/lcplfln-lcd/#!cms[focus]=cmsContent11428\n \"\"\"\n self.name = name\n if name == 'LCPLFLN20xLCD':\n self.magnification = 20\n self.numerical_aperture = 0.45\n self.field_number = 26.5\n self.transmittance = 0.9\n self.pixel_to_micron = 1.55\n elif name == 'LCPLFLN50xLCD':\n self.magnification = 50\n self.numerical_aperture = 0.7\n self.field_number = 26.5\n self.transmittance = 0.9\n self.pixel_to_micron = 0.6\n else:\n self.numerical_aperture = numerical_aperture\n self.magnification = magnification\n self.field_number = field_number\n self._illumination = illumination\n if self._illumination is not None:\n self._wavelength = self._illumination.emission_wavelength\n elif wavelength is not None:\n self._wavelength = wavelength\n else:\n raise ValueError(\n 'A wavelength is required via the <illumination> class or <wavelength> input parameter'\n )\n self._pd = fluoro_particle.diameter\n self._n0 = n0\n self.calculate_depth_of_field()\n self.calculate_depth_of_correlation()\n if field_number:\n self.calculate_field_of_view()\n if show_depth_plot or save_depth_plot:\n plot_field_depth(depth_of_corr=self.depth_of_correlation,\n depth_of_field=self.depth_of_field, show_depth_plot=\n show_depth_plot, save_depth_plot=save_depth_plot, basePath=\n basePath, savename=None, channel_height=channel_height,\n objective=self.magnification)\n if auto_calc_pix_to_micron_scaling and self.pixel_to_micron is None:\n self.microgrid = microgrid\n self.calculate_pixel_to_micron_scaling()\n\n def calculate_field_of_view(self):\n self.field_of_view = self.field_number / self.magnification\n\n def calculate_depth_of_field(self, e=1.6e-05, n=1):\n \"\"\"\n e: CCD pixel resolution example: e = 16 um (16 microns is the pixel size)\n \"\"\"\n self.depth_of_field = (self._wavelength * n / self.\n numerical_aperture ** 2 + e * n / (self.magnification * self.\n numerical_aperture))\n\n def calculate_depth_of_correlation(self, eps=0.01):\n n = self._n0\n dp = self._pd\n NA = self.numerical_aperture\n M = self.magnification\n lmbda = self._wavelength\n depth_of_correlation = calculate_depth_of_correlation(M=M, NA=NA,\n dp=dp, n=n, lmbda=lmbda, eps=eps)\n self.depth_of_correlation = depth_of_correlation\n\n def calculate_pixel_to_micron_scaling(self):\n if self.microgrid is None:\n raise ValueError(\n 'Need objective.microgrid property in order to calculate scaling factor'\n )\n\n @property\n def NA(self):\n return self.numerical_aperture\n\n @property\n def M(self):\n return self.magnification\n\n\nclass microgrid(object):\n\n def __init__(self, gridPath=None, center_to_center_spacing=None,\n feature_width=None, grid_type='grid', show_grid=False):\n \"\"\"\n this class holds images for the microgrid and performs pixel to micron scaling calculations\n \"\"\"\n if gridPath is not None:\n self.gridPath = gridPath\n self.spacing = center_to_center_spacing\n self.width = feature_width\n self.grid_type = grid_type\n file_list = glob.glob(join(self.gridPath, 'grid*.tif'))\n if len(file_list) < 1:\n raise ValueError('No grid*.tif files found in {}'.format(\n self.gridPath))\n img_grid = np.zeros(shape=(512, 512))\n for f in file_list:\n img = io.imread(f, plugin='tifffile')\n if len(np.shape(img)) > 2:\n img = np.mean(img, axis=0)\n img_grid += img\n img_grid = img_grid / len(file_list)\n self.img_grid = img_grid\n if show_grid is True:\n fig, ax = plt.subplots()\n ax.imshow(img_grid, cmap='gray')\n ax.set_xlabel('pixels')\n ax.set_ylabel('pixels')\n plt.title('grid: 10 um Lines; 50 um Spacing')\n plt.show()\n\n\nclass fluorescent_particles(object):\n\n def __init__(self, name=None, materials=None, diameter=None,\n fluorescence_spectra=None, concentration=None,\n electrophoretic_mobility=None, zeta=None):\n \"\"\"\n the details of the fluroescent particles used\n :param materials:\n :param diameter:\n :param fluorescence_spectra:\n :param concentration:\n :param electrophoretic_mobility:\n :param zeta:\n \"\"\"\n self.name = name\n self.materials = materials\n self.concentration = concentration\n self.electrophoretic_mobility = electrophoretic_mobility\n self.zeta = zeta\n self.diameter = diameter\n if diameter:\n k_b = 1.3806e-23\n T = 298\n mu = 0.001\n self.diffusivity = k_b * T / (6 * np.pi * mu * diameter / 2)\n self.fluorescence_spectra = fluorescence_spectra\n\n\nclass reservoir(object):\n\n def __init__(self, diameter, height, height_of_reservoir=None, material\n =None):\n \"\"\"\n describes the micrscope setup\n :param type:\n :param objective:\n \"\"\"\n g = 9.81\n self.material = material\n self.diameter = diameter\n self.height = height\n self.volume = np.pi * self.diameter ** 2 / 4\n self.height_of_reservoir = height_of_reservoir\n if material and height_of_reservoir:\n self.hydrostatic_pressure = (material.density * g * self.\n height_of_reservoir)\n\n\nclass fluid_handling_system(object):\n\n def __init__(self, fluid_reservoir=None, all_tubing=None,\n onchip_reservoir=None):\n \"\"\"\n describes the fluid handling system\n \"\"\"\n self.fluid_reservoir = fluid_reservoir\n self.all_tubing = all_tubing\n self.onchip_reservoir = onchip_reservoir\n\n\nclass tubing(object):\n\n def __init__(self, inner_diameter=None, length=None, material=None):\n \"\"\"\n describes each segment of tubing\n\n \"\"\"\n self.inner_diameter = inner_diameter\n self.length = length\n self.material = material\n\n\nclass optical_element(object):\n\n def __init__(self, passing_wavelengths=None, reflectivity=None):\n \"\"\"\n this class describes the optical characteristics of any material or element\n :param wavelength_bandpass:\n \"\"\"\n self.passing_wavelengths = passing_wavelengths\n self.reflectivity = reflectivity\n\n\nclass measurable_quantity(object):\n\n def __init__(self, reference_value=None, measured_value=None):\n \"\"\"\n what value was measured and when\n \"\"\"\n self.reference_value = reference_value\n self.measured_value = measured_value\n\n\nclass measurement(object):\n\n def __init__(self, value=None, date=None):\n \"\"\"\n Object for storing measurements\n :param value:\n :param date:\n \"\"\"\n self.value = value\n self.date = date\n\n\nclass electrode_configuration(object):\n\n def __init__(self, material=None, length=None, entrance_length=None):\n \"\"\"\n Object for holding electrode configuration details\n :param material:\n :param length:\n :param entrance_length:\n \"\"\"\n self.material = material\n self.length = length\n self.entrance_length = entrance_length\n\n\nclass material_solid(object):\n\n def __init__(self, name=None, zeta=None, concentration=None,\n index_of_refraction=None, transparency=None, fluorescence_spectra=\n None, permittivity=None, conductivity=None, thickness=None,\n youngs_modulus=None, poissons_ratio=None, density=None,\n dielectric_strength=None, reaction_site_density=None, Ka=None, Kb=\n None, width=None, length=None):\n \"\"\"\n everything about a material\n :param transparency:\n :param fluorescence_spectra:\n :param zeta:\n \"\"\"\n self.name = name\n self.length = length\n self.width = width\n self.thickness = thickness\n self.density = density\n self.concentration = concentration\n self.youngs_modulus = youngs_modulus\n self.poissons_ratio = poissons_ratio\n self.index_of_refraction = index_of_refraction\n self.fluorescence_spectra = fluorescence_spectra\n self.transparency = transparency\n if self.transparency:\n self.reflectivity = 1 / self.transparency\n self.conductivity = conductivity\n if permittivity:\n self.permittivity = permittivity\n self.zeta = zeta\n self.dielectric_strength = dielectric_strength\n if reaction_site_density:\n self.reaction_site_density = reaction_site_density * 1e+18\n self.Ka = Ka\n self.Kb = Kb\n\n\nclass material_liquid(object):\n\n def __init__(self, name=None, species=None, concentration=None,\n conductivity=None, pH=None, density=None, viscosity=None,\n permittivity=None, temperature=None, valence=1.0):\n \"\"\"\n everything about a liquid\n :param species:\n :param concentration:\n :param conductivity:\n :param pH:\n \"\"\"\n self.name = name\n self.species = species\n self.concentration = concentration\n self.conductivity = conductivity\n if permittivity:\n self.permittivity = permittivity\n if pH:\n self.pH = pH\n self.c_H = 10 ** -pH * 1000.0\n self.valence = valence\n self.density = density\n self.viscosity = viscosity\n self.temperature = temperature\n self.diffusivity = 2e-09\n", "step-5": "# test CurlypivSetup\n\"\"\"\nNotes about program\n\"\"\"\n\n# 1.0 import modules\nimport numpy as np\nfrom skimage import io\nimport glob\nfrom os.path import join\nimport matplotlib.pyplot as plt\nfrom curlypiv.utils.calibrateCamera import measureIlluminationDistributionXY, calculate_depth_of_correlation, calculate_darkfield, plot_field_depth\n\n# 2.0 define class\n\nclass CurlypivTestSetup(object):\n\n def __init__(self, name, chip, optics, fluid_handling_system):\n \"\"\"\n All the \"settings\" used in the experimental setup:\n 1. chip (class)\n 1.1 solid material (class) (e.g. SiO2)\n 1.1.1 transparency\n 1.1.2 fluorescence spectral characteristics\n 1.1.3 surface charge density\n 1.1.4 %/vol (here would be 100%)\n 1.2 channel (class)\n 1.2.1 height\n 1.2.2 width\n 1.2.3 length\n 1.3 reservoir volume\n 1.4 electrode configuration (class)\n 1.4.1 material\n 1.4.2 separation distance\n 1.4.3 distance to channel entrance\n 2. test solution (class)\n 2.1 liquid material (class) (e.g. electrolyte)\n 2.1.1 chemical species (e.g. KCl)\n 2.1.2 concentration\n 2.1.3 measurable quantity (class) (e.g. conductivity)\n 2.1.3.1 theoretical\n 2.1.3.2 measured\n 2.1.3.2.1 measured conductivity\n 2.1.3.2.1 measured date\n 2.1.4 measurable quantity (class) (e.g. pH)\n 2.1.4.1 theoretical\n 2.1.4.2 measured\n 2.1.4.2.1 measured conductivity\n 2.1.4.2.1 measured date\n 2.2 fluorescent particles (class)\n 2.2.0 diameter\n 2.2.. measurable quantity (class) (e.g. zeta)\n 2.2.. measurable quantity (class) (e.g electrophoretic mobility)\n 2.2.. spectral characteristics\n 2.2.1 solid materials (class) (e.g. polystyrene)\n 2.2.1.1 %/vol\n 2.2.2 liquid materials (class) (e.g. DI water)\n 2.2.3 liquid materials (Class) (e.g. sodium azide)\n 2.2.3.1 conductivity\n 2.2.3.2 concentration\n 3. illumination (class)\n 3.1 source (class)\n 3.1.1 type (e.g. Hg lamp)\n 3.1.2 intensity\n 3.1.3 emission spectra\n 3.2 optical element (class) (e.g. excitation filter)\n 3.3 optical element (class) (e.g. emission filter)\n 3.4 optical element (class) (e.g. dichroic mirror)\n 4. microscope\n 4.1 type (Olympus iX 73)\n 4.2 objective (class)\n 4.2.1 numerical aperature (e.g. 0.3)\n 4.2.2 magnification (e.g. 20X)\n 4.2.3 field of view (e.g. 500 x 500 um)\n 4.2.4 depth of focus (e.g 4.1 microns)\n \"\"\"\n self.name = name\n self.chip = chip\n self.optics = optics\n self.fluid_handling_system = fluid_handling_system\n\nclass chip(object):\n\n def __init__(self, channel=None, bpe=None, reservoir=None, electrodes=None, fluid_handling_system=None,\n material_in_optical_path=None, thickness_in_optical_path=None):\n \"\"\"\n Everything important about the chip\n \"\"\"\n #self.material = material # deprecated so the channel class can hold this information\n self.channel = channel\n self.bpe = bpe\n self.electrodes = electrodes\n self.fluid_handling_system = fluid_handling_system\n self.material_in_optical_path = material_in_optical_path\n self.thickness_in_optical_path = thickness_in_optical_path\n\nclass channel(object):\n\n def __init__(self, length=None, width=None, height=None,\n material_bottom_wall_surface=None, material_top_wall_surface=None, material_fluid=None):\n \"\"\"\n Everything important about the chip\n \"\"\"\n self.length = length\n self.width = width\n self.height = height\n self.material_bottom_wall_surface = material_bottom_wall_surface # material should only hold relevant electrokinetic data\n self.material_top_wall_surface = material_top_wall_surface # material should only hold relevant elect\n self.material_fluid = material_fluid # could be a mixture of liquid materials + fluorescent particles\n\nclass bpe(object):\n\n def __init__(self, length=None, width=None, height=None, material=None, adhesion_material=None,\n dielectric_coating=None):\n \"\"\"\n Everything important about the chip\n \"\"\"\n self.length = length\n self.linspace_x = np.linspace(-length/2, length/2, num=100)\n self.width = width\n self.height = height\n self.material = material\n\n if self.material.thickness:\n if self.material.thickness != self.height:\n raise ValueError(\"BPE height must equal BPE material thickness\")\n\n # adhesion layer used for thin metal film BPE\n self.adhesion_material = adhesion_material\n\n # dielectric coating on top of BPE\n if dielectric_coating:\n self.dielectric_coating = dielectric_coating\n else:\n self.dielectric_coating = material_solid(name='no_dielectric', permittivity=1, thickness=1e-12, Ka=6, Kb=2, reaction_site_density=5)\n\nclass optics(object):\n def __init__(self, microscope, fluorescent_particles=None, calibration_grid=None, pixel_to_micron_scaling=None):\n\n self.microscope = microscope\n self.fluorescent_particles = fluorescent_particles\n self.calibration_grid = calibration_grid\n\n if self.microscope.objective.magnification == 50:\n self.pixel_to_micron_scaling = 0.60 # (microns/pixels)\n elif self.microscope.objective.magnification == 20:\n self.pixel_to_micron_scaling = 1.55 # (microns/pixels)\n else:\n raise ValueError(\"Unable to determine microns/pixels scaling because objective magnification not 50X or 20X\")\n\n if pixel_to_micron_scaling is not None:\n print(\"Manual input of pixel_to_micron_scaling is deprecated. A scaling factor of {} um/pix for {} magnification was instantiated.\".format(self.pixel_to_micron_scaling, self.microscope.objective.magnification))\n \"\"\"\n --- I THINK THIS SECTION IS DEPRECATED ---\n Notes: deprecated because calculating the scaling factor or entering it manually is too confusing. I have\n permanently figured out the correct scaling.\n \n if microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is None:\n self.pixel_to_micron = microscope.objective.pixel_to_micron\n elif microscope.objective.pixel_to_micron is not None and pixel_to_micron_scaling is not None and microscope.objective.pixel_to_micron != pixel_to_micron_scaling:\n raise ValueError(\"Conflicting scaling factors: microscope.objective={}, optics={}\".format(microscope.objective.pixel_to_micron, pixel_to_micron_scaling))\n elif microscope.objective.pixel_to_micron is None and pixel_to_micron_scaling is not None:\n self.pixel_to_micron = pixel_to_micron_scaling\n \"\"\"\n\nclass illumination(object):\n\n def __init__(self, basePath=None, source=None, excitation=None, emission=None, dichroic=None, illumination_distribution=None,\n calculate_illumination_distribution=False,\n illumPath=None, illumSavePath=None, illumSaveName=None, showIllumPlot=False, save_txt=False, save_plot=False, save_image=False):\n \"\"\"\n details about the optical setup\n :param source:\n :param excitation:\n :param emission:\n :param dichroic:\n \"\"\"\n self.basePath = basePath # this should come from CurlypivTestCollection\n self.source = source\n self.excitation_wavelength = excitation\n self.emission_wavelength = emission\n self.dichroic = dichroic\n\n if illumination_distribution is not None:\n self.illumination_distribution = illumination_distribution\n elif illumPath is not None:\n flatfield = io.imread(illumPath, plugin='tifffile')\n if len(np.shape(flatfield)) > 2:\n flatfield = np.asarray(np.rint(np.mean(flatfield, axis=0)), dtype='uint16')\n self.illumination_distribution = flatfield\n elif calculate_illumination_distribution and illumination_distribution is None:\n self.illumination_distribution = measureIlluminationDistributionXY(basePath=self.basePath, illumPath=illumPath,\n show_image=showIllumPlot, save_image=save_image, save_img_type='.tif',\n save_txt=save_txt, show_plot=showIllumPlot, save_plot=save_plot,\n savePath=illumSavePath, savename=illumSaveName)\n else:\n self.illumination_distribution = illumination_distribution\n\n self.flatfield = self.illumination_distribution\n\n if self.flatfield is not None:\n self.flatfield_mean = np.mean(self.flatfield)\n self.flatfield_std = np.std(self.flatfield)\n\nclass darkfield(object):\n\n def __init__(self, basePath, darkframePath=None, flip_image_across_axis=None, show_image=False, save_image=False, save_img_type='.tif',\n savePath=None, savename=None, save_plot=False):\n \"\"\"\n details about dark field image\n\n \"\"\"\n self.basePath = basePath\n\n img, mean, std = calculate_darkfield(self.basePath, darkframePath=darkframePath, flip_image_axes=flip_image_across_axis, show_image=show_image, save_image=save_image, save_img_type=save_img_type,\n savePath=savePath, savename=savename, save_plot=save_plot)\n\n self.img = img\n self.mean = mean\n self.std = std\n\nclass microscope(object):\n\n def __init__(self, type, objective, illumination, ccd):\n \"\"\"\n describes the micrscope setup\n :param type:\n :param objective:\n \"\"\"\n self.type = type # e.g. Olympus iX73\n self.objective = objective\n self.illumination = illumination\n self.ccd = ccd\n\nclass ccd(object):\n\n def __init__(self, exposure_time, img_acq_rate, EM_gain, name='iXon Ultra 897', img_acq_type='emcdd', darkfield=None, binning=None,\n vertical_pixel_shift_speed=0.5e-6, horizontal_pixel_shift_speed=0.1e-6, horizontal_pixel_shift_rate_bits=14,\n frame_transfer=True, crop_mode=False, acquisition_mode='kinetic', triggering='internal', readout_mode='image',\n pixels=512, pixel_size=16e-6):\n \"\"\"\n describe the CCD class\n \"\"\"\n self.name = name\n self.img_acq_type = img_acq_type\n\n self.exposure_time = exposure_time\n self.img_acq_rate = img_acq_rate\n self.em_gain = EM_gain\n self.darkfield = darkfield\n self.binning = binning\n\n # supporting camera acquisition settings\n self.vpss = vertical_pixel_shift_speed\n self.hpss = horizontal_pixel_shift_speed\n self.hpss_bits = horizontal_pixel_shift_rate_bits\n self.frame_transfer = frame_transfer\n self.crop_mode = crop_mode\n self.acquisition_mode = acquisition_mode\n self.triggering = triggering\n self.readout_mode = readout_mode\n\n if isinstance(pixels, int):\n self.pixels = (pixels, pixels)\n else:\n self.pixels = pixels\n self.pixel_size = pixel_size\n self.image_area = (self.pixels[0]*pixel_size, self.pixels[1]*pixel_size)\n\n\nclass objective(object):\n\n def __init__(self, fluoro_particle, name=None, numerical_aperture=None, magnification=None, basePath=None, channel_height=None, illumination=None, wavelength=None, microgrid=None, auto_calc_pix_to_micron_scaling=False, pixel_to_micron=None, field_number=None, n0=1, show_depth_plot=False, save_depth_plot=False):\n \"\"\"\n\n Objectives in the Pennathur Lab Dark Room uScope:\n\n 20X - LCPlanFL N 20X LCD [LCPLFLN20xLCD]\n magnification: 20\n numerical_aperture: 0.45\n field_number: 26.5\n working distance: 7.4 - 8.3 mm\n transmittance: 90% @ 425 - 670 nm\n correction collar: 0 - 1.2 mm\n microns per pixel: 1.55\n 50X - LCPlanFL N 50x LCD [LCPLFLN50xLCD]\n magnification: 50\n numerical aperture: 0.7\n field number: 26.5\n working distance: 2.2 - 3 mm\n transmittance: 90% @ 425 - 650 nm\n correction collar: 0 - 1.2 mm\n microns per pixel: 0.6\n\n Manufacturer website: https://www.olympus-ims.com/en/microscope/lcplfln-lcd/#!cms[focus]=cmsContent11428\n \"\"\"\n\n # if name is entered, then pull all the terms directly\n self.name = name\n\n if name == 'LCPLFLN20xLCD':\n self.magnification = 20\n self.numerical_aperture = 0.45\n self.field_number = 26.5\n self.transmittance = 0.9\n self.pixel_to_micron = 1.55\n elif name == 'LCPLFLN50xLCD':\n self.magnification = 50\n self.numerical_aperture = 0.7\n self.field_number = 26.5\n self.transmittance = 0.9\n self.pixel_to_micron = 0.6\n else:\n self.numerical_aperture = numerical_aperture\n self.magnification = magnification\n self.field_number = field_number\n\n # general terms\n self._illumination = illumination\n if self._illumination is not None:\n self._wavelength = self._illumination.emission_wavelength\n elif wavelength is not None:\n self._wavelength = wavelength\n else:\n raise ValueError(\"A wavelength is required via the <illumination> class or <wavelength> input parameter\")\n self._pd = fluoro_particle.diameter\n self._n0 = n0\n self.calculate_depth_of_field()\n self.calculate_depth_of_correlation()\n\n if field_number:\n self.calculate_field_of_view()\n\n if show_depth_plot or save_depth_plot:\n plot_field_depth(depth_of_corr=self.depth_of_correlation, depth_of_field=self.depth_of_field, show_depth_plot=show_depth_plot, save_depth_plot=save_depth_plot,\n basePath=basePath, savename=None, channel_height=channel_height, objective=self.magnification)\n\n # grids and scaling factors\n if auto_calc_pix_to_micron_scaling and self.pixel_to_micron is None:\n self.microgrid = microgrid\n self.calculate_pixel_to_micron_scaling()\n\n\n def calculate_field_of_view(self):\n self.field_of_view = self.field_number / self.magnification\n\n def calculate_depth_of_field(self, e=16e-6, n=1):\n \"\"\"\n e: CCD pixel resolution example: e = 16 um (16 microns is the pixel size)\n \"\"\"\n self.depth_of_field = self._wavelength*n/self.numerical_aperture**2+e*n/(self.magnification*self.numerical_aperture)\n\n def calculate_depth_of_correlation(self, eps=0.01):\n # step 0: define\n n = self._n0\n dp = self._pd\n NA = self.numerical_aperture\n M = self.magnification\n lmbda = self._wavelength\n\n # step 1: calculate the depth of correlation for the optical setup\n depth_of_correlation = calculate_depth_of_correlation(M=M, NA=NA, dp=dp, n=n, lmbda=lmbda, eps=eps)\n\n self.depth_of_correlation = depth_of_correlation\n\n def calculate_pixel_to_micron_scaling(self):\n if self.microgrid is None:\n raise ValueError(\"Need objective.microgrid property in order to calculate scaling factor\")\n # script to calculate scaling factor from grid\n # would go here\n\n @property\n def NA(self):\n return self.numerical_aperture\n\n @property\n def M(self):\n return self.magnification\n\nclass microgrid(object):\n\n def __init__(self, gridPath=None, center_to_center_spacing=None, feature_width=None, grid_type='grid', show_grid=False):\n \"\"\"\n this class holds images for the microgrid and performs pixel to micron scaling calculations\n \"\"\"\n if gridPath is not None:\n self.gridPath = gridPath\n self.spacing = center_to_center_spacing\n self.width = feature_width\n self.grid_type = grid_type\n\n # find files in directory\n file_list = glob.glob(join(self.gridPath, 'grid*.tif'))\n\n if len(file_list) < 1:\n raise ValueError(\"No grid*.tif files found in {}\".format(self.gridPath))\n\n img_grid = np.zeros(shape=(512,512))\n for f in file_list:\n img = io.imread(f, plugin='tifffile')\n if len(np.shape(img)) > 2:\n img = np.mean(img, axis=0)\n img_grid += img\n\n img_grid = img_grid / len(file_list)\n\n self.img_grid = img_grid\n\n if show_grid is True:\n fig, ax = plt.subplots()\n ax.imshow(img_grid, cmap='gray')\n\n ax.set_xlabel('pixels')\n ax.set_ylabel('pixels')\n plt.title('grid: 10 um Lines; 50 um Spacing')\n plt.show()\n\n\nclass fluorescent_particles(object):\n\n def __init__(self, name=None, materials=None,diameter=None,fluorescence_spectra=None, concentration=None,\n electrophoretic_mobility=None, zeta=None):\n \"\"\"\n the details of the fluroescent particles used\n :param materials:\n :param diameter:\n :param fluorescence_spectra:\n :param concentration:\n :param electrophoretic_mobility:\n :param zeta:\n \"\"\"\n\n self.name = name\n self.materials=materials\n self.concentration=concentration\n self.electrophoretic_mobility=electrophoretic_mobility\n self.zeta=zeta\n self.diameter=diameter\n if diameter:\n k_b = 1.3806e-23\n T=298\n mu=0.001\n self.diffusivity = k_b*T/(6*np.pi*mu*diameter/2)\n\n self.fluorescence_spectra=fluorescence_spectra\n\n\nclass reservoir(object):\n\n def __init__(self, diameter, height, height_of_reservoir=None, material=None):\n \"\"\"\n describes the micrscope setup\n :param type:\n :param objective:\n \"\"\"\n g = 9.81 # m/s**2\n\n self.material = material\n self.diameter = diameter\n self.height = height\n self.volume = np.pi*self.diameter**2/4\n self.height_of_reservoir = height_of_reservoir\n if material and height_of_reservoir:\n self.hydrostatic_pressure = material.density*g*self.height_of_reservoir\n\nclass fluid_handling_system(object):\n\n def __init__(self, fluid_reservoir=None, all_tubing=None, onchip_reservoir=None):\n \"\"\"\n describes the fluid handling system\n \"\"\"\n self.fluid_reservoir=fluid_reservoir\n self.all_tubing = all_tubing\n self.onchip_reservoir = onchip_reservoir\n\nclass tubing(object):\n\n def __init__(self, inner_diameter=None, length=None, material=None):\n \"\"\"\n describes each segment of tubing\n\n \"\"\"\n self.inner_diameter = inner_diameter\n self.length = length\n self.material = material\n\nclass optical_element(object):\n\n def __init__(self, passing_wavelengths=None, reflectivity=None):\n \"\"\"\n this class describes the optical characteristics of any material or element\n :param wavelength_bandpass:\n \"\"\"\n self.passing_wavelengths=passing_wavelengths\n self.reflectivity=reflectivity\n\nclass measurable_quantity(object):\n\n def __init__(self, reference_value=None, measured_value=None):\n \"\"\"\n what value was measured and when\n \"\"\"\n self.reference_value = reference_value\n self.measured_value = measured_value\n\nclass measurement(object):\n\n def __init__(self, value=None, date=None):\n \"\"\"\n Object for storing measurements\n :param value:\n :param date:\n \"\"\"\n self.value = value\n self.date = date\n\nclass electrode_configuration(object):\n\n def __init__(self, material=None, length=None, entrance_length=None):\n \"\"\"\n Object for holding electrode configuration details\n :param material:\n :param length:\n :param entrance_length:\n \"\"\"\n self.material = material\n self.length = length\n self.entrance_length = entrance_length\n\nclass material_solid(object):\n\n def __init__(self, name=None, zeta=None, concentration=None, index_of_refraction=None, transparency=None, fluorescence_spectra=None,\n permittivity=None, conductivity=None, thickness=None, youngs_modulus=None, poissons_ratio=None,\n density=None, dielectric_strength=None, reaction_site_density=None, Ka=None, Kb=None, width=None, length=None):\n \"\"\"\n everything about a material\n :param transparency:\n :param fluorescence_spectra:\n :param zeta:\n \"\"\"\n # identity\n self.name = name\n\n # geometry\n self.length = length\n self.width = width\n self.thickness = thickness\n\n # mechanical\n self.density = density\n self.concentration = concentration # For a solid, this is % by volume.\n self.youngs_modulus = youngs_modulus\n self.poissons_ratio = poissons_ratio\n\n # optical\n self.index_of_refraction = index_of_refraction\n self.fluorescence_spectra = fluorescence_spectra\n self.transparency = transparency\n if self.transparency:\n self.reflectivity = 1 / self.transparency\n\n # electrochemical\n self.conductivity = conductivity\n if permittivity:\n self.permittivity = permittivity\n self.zeta = zeta\n self.dielectric_strength = dielectric_strength\n if reaction_site_density:\n self.reaction_site_density = reaction_site_density*1e18 # (#/nm2) surface density of reaction sites: accepts nm2 and converts to m2 (see Squires)\n self.Ka = Ka # reaction equilibrium constant - upper bound\n self.Kb = Kb # reaction equilibrium constant - lower bound\n\nclass material_liquid(object):\n\n def __init__(self, name=None, species=None, concentration=None, conductivity=None, pH=None, density=None, viscosity=None,\n permittivity=None, temperature=None, valence=1.0):\n \"\"\"\n everything about a liquid\n :param species:\n :param concentration:\n :param conductivity:\n :param pH:\n \"\"\"\n # identity\n self.name = name\n\n # electro/chemical\n self.species = species\n self.concentration = concentration # (mmol) = (mmol/L) = (mol/m3)\n self.conductivity = conductivity\n if permittivity:\n self.permittivity = permittivity\n if pH:\n self.pH = pH\n self.c_H = 10**-pH * 1e3 # (mmol) = (mmol/L) = (mol/m3); (concentration of Hydrogen ions (H+)\n self.valence = valence\n\n # mechanical\n self.density = density\n self.viscosity = viscosity\n self.temperature = temperature\n self.diffusivity = 2e-9 # (m^2/s) Diffusivity of KCl in DI water [Soni]", "step-ids": [ 37, 41, 45, 48, 50 ] }
[ 37, 41, 45, 48, 50 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> a.sort() <|reserved_special_token_0|> for l, h in a: if h0 < h: s += (l - l0) * h0 l0, h0 = l, h <|reserved_special_token_0|> for l, h in a[::-1]: if h > h1: s += (l1 - l) * h1 l1, h1 = l, h s += (l1 - l0 + 1) * h1 print(s) <|reserved_special_token_1|> a = [[*map(int, input().split())] for _ in range(int(input()))] a.sort() s = 0 l0, h0 = a[0] for l, h in a: if h0 < h: s += (l - l0) * h0 l0, h0 = l, h l1, h1 = a[-1] for l, h in a[::-1]: if h > h1: s += (l1 - l) * h1 l1, h1 = l, h s += (l1 - l0 + 1) * h1 print(s) <|reserved_special_token_1|> a=[[*map(int,input().split())]for _ in range(int(input()))] a.sort() s=0 l0,h0=a[0] for l,h in a: if h0<h:s+=(l-l0)*h0;l0,h0=l,h l1,h1=a[-1] for l,h in a[::-1]: if h>h1:s+=(l1-l)*h1;l1,h1=l,h s+=(l1-l0+1)*h1 print(s)
flexible
{ "blob_id": "62dab85b7ab5fdae8117827b2f56bccf99615cb7", "index": 7341, "step-1": "<mask token>\n", "step-2": "<mask token>\na.sort()\n<mask token>\nfor l, h in a:\n if h0 < h:\n s += (l - l0) * h0\n l0, h0 = l, h\n<mask token>\nfor l, h in a[::-1]:\n if h > h1:\n s += (l1 - l) * h1\n l1, h1 = l, h\ns += (l1 - l0 + 1) * h1\nprint(s)\n", "step-3": "a = [[*map(int, input().split())] for _ in range(int(input()))]\na.sort()\ns = 0\nl0, h0 = a[0]\nfor l, h in a:\n if h0 < h:\n s += (l - l0) * h0\n l0, h0 = l, h\nl1, h1 = a[-1]\nfor l, h in a[::-1]:\n if h > h1:\n s += (l1 - l) * h1\n l1, h1 = l, h\ns += (l1 - l0 + 1) * h1\nprint(s)\n", "step-4": "a=[[*map(int,input().split())]for _ in range(int(input()))]\na.sort()\ns=0\nl0,h0=a[0]\nfor l,h in a:\n if h0<h:s+=(l-l0)*h0;l0,h0=l,h\nl1,h1=a[-1]\nfor l,h in a[::-1]:\n if h>h1:s+=(l1-l)*h1;l1,h1=l,h\ns+=(l1-l0+1)*h1\nprint(s)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import xl2dict myxlobject= XlToDict() myxlobject.convert_sheet_to_dict(file_path="Soul Breaks.xlsx", sheet="First Sheet", filter_variables_dict={"User Type" : "Admin", "Environment" : "Dev"})
normal
{ "blob_id": "8ec981bf8746e09d3865bc20dcfbf2fbd797c145", "index": 7511, "step-1": "<mask token>\n", "step-2": "<mask token>\nmyxlobject.convert_sheet_to_dict(file_path='Soul Breaks.xlsx', sheet=\n 'First Sheet', filter_variables_dict={'User Type': 'Admin',\n 'Environment': 'Dev'})\n", "step-3": "<mask token>\nmyxlobject = XlToDict()\nmyxlobject.convert_sheet_to_dict(file_path='Soul Breaks.xlsx', sheet=\n 'First Sheet', filter_variables_dict={'User Type': 'Admin',\n 'Environment': 'Dev'})\n", "step-4": "import xl2dict\nmyxlobject = XlToDict()\nmyxlobject.convert_sheet_to_dict(file_path='Soul Breaks.xlsx', sheet=\n 'First Sheet', filter_variables_dict={'User Type': 'Admin',\n 'Environment': 'Dev'})\n", "step-5": "import xl2dict\n\nmyxlobject= XlToDict()\nmyxlobject.convert_sheet_to_dict(file_path=\"Soul Breaks.xlsx\", sheet=\"First Sheet\",\n filter_variables_dict={\"User Type\" : \"Admin\", \"Environment\" : \"Dev\"})", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
## Import modules import matplotlib, sys, datetime, time matplotlib.use('TkAgg') from math import * from numpy import * from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib import dates import matplotlib.pyplot as plt from Tkinter import * ## Load the data data = loadtxt("data/data011c.txt", unpack = True, skiprows=1, comments = '#') temperature = data[7] humidity = data[6] light = data[8] timer = data[9] year, month, day, hour, minute, second = data[0], data[1], data[2], data[3], data[4], data[5] ## Make empty are to append the formatted dates date_times = [] ## Format the dates to dd.mm.yyyy hh:mm:ss for i in range(len(year)): # can be the length of any arbitrary data set # this makes a nice long string of the "day.month.year hour:min:sec" date_times.append(str(int(day[i])).zfill(2) + "." + str(int(month[i])).zfill(2) + "." + str(int(year[i])) + " " + str(int(hour[i])).zfill(2) + ":" + str(int(minute[i])).zfill(2) + ":" + str(int(second[i])).zfill(2) ) ## String format of the date pattern = '%d.%m.%Y %H:%M:%S' ## Convert the list of date_times to epoch time in seconds epoch = [] for datetimes in date_times: epoch.append(int(time.mktime(time.strptime(datetimes, pattern)))) ## Convert epoch time to list of dateformatter objects dts = map(datetime.datetime.fromtimestamp, epoch) fds = dates.date2num(dts) hfmt = dates.DateFormatter('%m/%d %H:%M') ## Create interface object master = Tk() ## Set the title and size master.title("Room Sensor") master.geometry("1200x600") ## Create figure to add onto interface window f = Figure(figsize=(9,5), dpi=100,)# facecolor='black') ## Not sure what zorder does f.zorder ## within the figure create subplot called a a = f.add_subplot(111) ## Add figure onto interface window dataPlot = FigureCanvasTkAgg(f, master) dataPlot.draw() ## Turn figure into a widget dataPlot.get_tk_widget().place(x = 240, y = 40) ## Add plot toolbar widget toolbar = NavigationToolbar2TkAgg(dataPlot, master) toolbar.update() toolbar.place(x = 240, y = 560) ## Functions to switch between plots def show_temp(): ## Clear the figure a.clear() ## Plot the temperature ## a.plot(timer,temperature, "r.--") a.plot(fds,temperature, "r.--") a.set_ylabel("Temperature (Degrees Celsius)", color = "r") a.xaxis.set_major_formatter(hfmt) a.grid(color = "r") ## a.set_ylim([20.0,30.0]) for tick in a.xaxis.get_major_ticks(): tick.label.set_fontsize(7) tick.label.set_rotation(15) tick.label.set_color("r") for tick in a.yaxis.get_major_ticks(): tick.label.set_color("r") ## Reset the toolbar toolbar.update() f.canvas.draw() def show_humidity(): a.clear() a.plot(fds,humidity, "b.--") a.set_ylabel("Humidity %", color = "b") a.xaxis.set_major_formatter(hfmt) a.grid(color = "blue") for tick in a.xaxis.get_major_ticks(): tick.label.set_fontsize(7) tick.label.set_rotation(15) tick.label.set_color("b") for tick in a.yaxis.get_major_ticks(): tick.label.set_color("b") toolbar.update() f.canvas.draw() def show_light(): a.clear() a.plot(fds,light, "g.--") a.set_ylabel("Ambient Light", color = "g") a.xaxis.set_major_formatter(hfmt) a.grid(color = "g") for tick in a.xaxis.get_major_ticks(): tick.label.set_fontsize(7) tick.label.set_rotation(15) tick.label.set_color("g") for tick in a.yaxis.get_major_ticks(): tick.label.set_color("g") toolbar.update() f.canvas.draw() ## Load icon and button images tempButton = PhotoImage(file="images/temp_button.gif") hmdButton = PhotoImage(file="images/hmd_button.gif") lightButton = PhotoImage(file="images/light_button.gif") tempIcon = PhotoImage(file="images/temp_icon.gif") hmdIcon = PhotoImage(file="images/hmd_icon.gif") lightIcon = PhotoImage(file="images/light_icon.gif") ## Create button widgets Button1 = Button(master, image = tempButton, command = show_temp, height = 50, width = 109) Button2 = Button(master, image = hmdButton, command = show_humidity, height = 50, width = 109) Button3 = Button(master, image = lightButton, command = show_light, height = 50, width = 109) ## Create labels Label1 = Label(master, image = tempIcon, height = 50, width = 50) Label2 = Label(master, image = hmdIcon, height = 50, width = 50) Label3 = Label(master, image = lightIcon, height = 50, width = 50) ## Place the buttons and labels to specific location Button1.place(x=60,y=110) Button2.place(x=60,y=260) Button3.place(x=60,y=410) Label1.place(x=180, y=111) Label2.place(x=180, y=261) Label3.place(x=180, y=411) ## Start with the temperature graph showing show_temp() ## Run the main interface loop master.mainloop()
normal
{ "blob_id": "2de12085ddc73fed85dda8ce3d6908b42fdc4bcc", "index": 3046, "step-1": "<mask token>\n\n\ndef show_humidity():\n a.clear()\n a.plot(fds, humidity, 'b.--')\n a.set_ylabel('Humidity %', color='b')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='blue')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('b')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('b')\n toolbar.update()\n f.canvas.draw()\n\n\ndef show_light():\n a.clear()\n a.plot(fds, light, 'g.--')\n a.set_ylabel('Ambient Light', color='g')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='g')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('g')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('g')\n toolbar.update()\n f.canvas.draw()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef show_temp():\n a.clear()\n a.plot(fds, temperature, 'r.--')\n a.set_ylabel('Temperature (Degrees Celsius)', color='r')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='r')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('r')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('r')\n toolbar.update()\n f.canvas.draw()\n\n\ndef show_humidity():\n a.clear()\n a.plot(fds, humidity, 'b.--')\n a.set_ylabel('Humidity %', color='b')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='blue')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('b')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('b')\n toolbar.update()\n f.canvas.draw()\n\n\ndef show_light():\n a.clear()\n a.plot(fds, light, 'g.--')\n a.set_ylabel('Ambient Light', color='g')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='g')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('g')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('g')\n toolbar.update()\n f.canvas.draw()\n\n\n<mask token>\n", "step-3": "<mask token>\nmatplotlib.use('TkAgg')\n<mask token>\ndata = loadtxt('data/data011c.txt', unpack=True, skiprows=1, comments='#')\ntemperature = data[7]\nhumidity = data[6]\nlight = data[8]\ntimer = data[9]\nyear, month, day, hour, minute, second = data[0], data[1], data[2], data[3\n ], data[4], data[5]\ndate_times = []\nfor i in range(len(year)):\n date_times.append(str(int(day[i])).zfill(2) + '.' + str(int(month[i])).\n zfill(2) + '.' + str(int(year[i])) + ' ' + str(int(hour[i])).zfill(\n 2) + ':' + str(int(minute[i])).zfill(2) + ':' + str(int(second[i]))\n .zfill(2))\npattern = '%d.%m.%Y %H:%M:%S'\nepoch = []\nfor datetimes in date_times:\n epoch.append(int(time.mktime(time.strptime(datetimes, pattern))))\ndts = map(datetime.datetime.fromtimestamp, epoch)\nfds = dates.date2num(dts)\nhfmt = dates.DateFormatter('%m/%d %H:%M')\nmaster = Tk()\nmaster.title('Room Sensor')\nmaster.geometry('1200x600')\nf = Figure(figsize=(9, 5), dpi=100)\nf.zorder\na = f.add_subplot(111)\ndataPlot = FigureCanvasTkAgg(f, master)\ndataPlot.draw()\ndataPlot.get_tk_widget().place(x=240, y=40)\ntoolbar = NavigationToolbar2TkAgg(dataPlot, master)\ntoolbar.update()\ntoolbar.place(x=240, y=560)\n\n\ndef show_temp():\n a.clear()\n a.plot(fds, temperature, 'r.--')\n a.set_ylabel('Temperature (Degrees Celsius)', color='r')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='r')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('r')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('r')\n toolbar.update()\n f.canvas.draw()\n\n\ndef show_humidity():\n a.clear()\n a.plot(fds, humidity, 'b.--')\n a.set_ylabel('Humidity %', color='b')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='blue')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('b')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('b')\n toolbar.update()\n f.canvas.draw()\n\n\ndef show_light():\n a.clear()\n a.plot(fds, light, 'g.--')\n a.set_ylabel('Ambient Light', color='g')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='g')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('g')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('g')\n toolbar.update()\n f.canvas.draw()\n\n\ntempButton = PhotoImage(file='images/temp_button.gif')\nhmdButton = PhotoImage(file='images/hmd_button.gif')\nlightButton = PhotoImage(file='images/light_button.gif')\ntempIcon = PhotoImage(file='images/temp_icon.gif')\nhmdIcon = PhotoImage(file='images/hmd_icon.gif')\nlightIcon = PhotoImage(file='images/light_icon.gif')\nButton1 = Button(master, image=tempButton, command=show_temp, height=50,\n width=109)\nButton2 = Button(master, image=hmdButton, command=show_humidity, height=50,\n width=109)\nButton3 = Button(master, image=lightButton, command=show_light, height=50,\n width=109)\nLabel1 = Label(master, image=tempIcon, height=50, width=50)\nLabel2 = Label(master, image=hmdIcon, height=50, width=50)\nLabel3 = Label(master, image=lightIcon, height=50, width=50)\nButton1.place(x=60, y=110)\nButton2.place(x=60, y=260)\nButton3.place(x=60, y=410)\nLabel1.place(x=180, y=111)\nLabel2.place(x=180, y=261)\nLabel3.place(x=180, y=411)\nshow_temp()\nmaster.mainloop()\n", "step-4": "import matplotlib, sys, datetime, time\nmatplotlib.use('TkAgg')\nfrom math import *\nfrom numpy import *\nfrom matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg\nfrom matplotlib.figure import Figure\nfrom matplotlib import dates\nimport matplotlib.pyplot as plt\nfrom Tkinter import *\ndata = loadtxt('data/data011c.txt', unpack=True, skiprows=1, comments='#')\ntemperature = data[7]\nhumidity = data[6]\nlight = data[8]\ntimer = data[9]\nyear, month, day, hour, minute, second = data[0], data[1], data[2], data[3\n ], data[4], data[5]\ndate_times = []\nfor i in range(len(year)):\n date_times.append(str(int(day[i])).zfill(2) + '.' + str(int(month[i])).\n zfill(2) + '.' + str(int(year[i])) + ' ' + str(int(hour[i])).zfill(\n 2) + ':' + str(int(minute[i])).zfill(2) + ':' + str(int(second[i]))\n .zfill(2))\npattern = '%d.%m.%Y %H:%M:%S'\nepoch = []\nfor datetimes in date_times:\n epoch.append(int(time.mktime(time.strptime(datetimes, pattern))))\ndts = map(datetime.datetime.fromtimestamp, epoch)\nfds = dates.date2num(dts)\nhfmt = dates.DateFormatter('%m/%d %H:%M')\nmaster = Tk()\nmaster.title('Room Sensor')\nmaster.geometry('1200x600')\nf = Figure(figsize=(9, 5), dpi=100)\nf.zorder\na = f.add_subplot(111)\ndataPlot = FigureCanvasTkAgg(f, master)\ndataPlot.draw()\ndataPlot.get_tk_widget().place(x=240, y=40)\ntoolbar = NavigationToolbar2TkAgg(dataPlot, master)\ntoolbar.update()\ntoolbar.place(x=240, y=560)\n\n\ndef show_temp():\n a.clear()\n a.plot(fds, temperature, 'r.--')\n a.set_ylabel('Temperature (Degrees Celsius)', color='r')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='r')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('r')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('r')\n toolbar.update()\n f.canvas.draw()\n\n\ndef show_humidity():\n a.clear()\n a.plot(fds, humidity, 'b.--')\n a.set_ylabel('Humidity %', color='b')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='blue')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('b')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('b')\n toolbar.update()\n f.canvas.draw()\n\n\ndef show_light():\n a.clear()\n a.plot(fds, light, 'g.--')\n a.set_ylabel('Ambient Light', color='g')\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color='g')\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7)\n tick.label.set_rotation(15)\n tick.label.set_color('g')\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color('g')\n toolbar.update()\n f.canvas.draw()\n\n\ntempButton = PhotoImage(file='images/temp_button.gif')\nhmdButton = PhotoImage(file='images/hmd_button.gif')\nlightButton = PhotoImage(file='images/light_button.gif')\ntempIcon = PhotoImage(file='images/temp_icon.gif')\nhmdIcon = PhotoImage(file='images/hmd_icon.gif')\nlightIcon = PhotoImage(file='images/light_icon.gif')\nButton1 = Button(master, image=tempButton, command=show_temp, height=50,\n width=109)\nButton2 = Button(master, image=hmdButton, command=show_humidity, height=50,\n width=109)\nButton3 = Button(master, image=lightButton, command=show_light, height=50,\n width=109)\nLabel1 = Label(master, image=tempIcon, height=50, width=50)\nLabel2 = Label(master, image=hmdIcon, height=50, width=50)\nLabel3 = Label(master, image=lightIcon, height=50, width=50)\nButton1.place(x=60, y=110)\nButton2.place(x=60, y=260)\nButton3.place(x=60, y=410)\nLabel1.place(x=180, y=111)\nLabel2.place(x=180, y=261)\nLabel3.place(x=180, y=411)\nshow_temp()\nmaster.mainloop()\n", "step-5": "## Import modules\nimport matplotlib, sys, datetime, time\nmatplotlib.use('TkAgg')\nfrom math import *\nfrom numpy import *\nfrom matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg\nfrom matplotlib.figure import Figure\nfrom matplotlib import dates\nimport matplotlib.pyplot as plt\nfrom Tkinter import *\n\n## Load the data\ndata = loadtxt(\"data/data011c.txt\", unpack = True, skiprows=1, comments = '#')\ntemperature = data[7]\nhumidity = data[6]\nlight = data[8]\ntimer = data[9]\nyear, month, day, hour, minute, second = data[0], data[1], data[2], data[3], data[4], data[5]\n\n## Make empty are to append the formatted dates\ndate_times = [] \n\n## Format the dates to dd.mm.yyyy hh:mm:ss\nfor i in range(len(year)): # can be the length of any arbitrary data set\n # this makes a nice long string of the \"day.month.year hour:min:sec\"\n date_times.append(str(int(day[i])).zfill(2) + \".\" + str(int(month[i])).zfill(2) + \".\" + str(int(year[i])) +\n \" \" + str(int(hour[i])).zfill(2) + \":\" + str(int(minute[i])).zfill(2) + \":\" + str(int(second[i])).zfill(2) )\n\n## String format of the date\npattern = '%d.%m.%Y %H:%M:%S'\n\n## Convert the list of date_times to epoch time in seconds\nepoch = []\nfor datetimes in date_times:\n epoch.append(int(time.mktime(time.strptime(datetimes, pattern))))\n\n## Convert epoch time to list of dateformatter objects\ndts = map(datetime.datetime.fromtimestamp, epoch)\nfds = dates.date2num(dts)\nhfmt = dates.DateFormatter('%m/%d %H:%M')\n\n## Create interface object\nmaster = Tk()\n## Set the title and size\nmaster.title(\"Room Sensor\")\nmaster.geometry(\"1200x600\")\n\n## Create figure to add onto interface window\nf = Figure(figsize=(9,5), dpi=100,)# facecolor='black')\n## Not sure what zorder does\nf.zorder\n## within the figure create subplot called a\na = f.add_subplot(111)\n\n## Add figure onto interface window\ndataPlot = FigureCanvasTkAgg(f, master)\ndataPlot.draw()\n## Turn figure into a widget\ndataPlot.get_tk_widget().place(x = 240, y = 40)\n## Add plot toolbar widget\ntoolbar = NavigationToolbar2TkAgg(dataPlot, master)\ntoolbar.update()\ntoolbar.place(x = 240, y = 560)\n\n## Functions to switch between plots \n\ndef show_temp():\n ## Clear the figure\n a.clear()\n ## Plot the temperature\n## a.plot(timer,temperature, \"r.--\")\n a.plot(fds,temperature, \"r.--\")\n a.set_ylabel(\"Temperature (Degrees Celsius)\", color = \"r\")\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color = \"r\")\n## a.set_ylim([20.0,30.0])\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7) \n tick.label.set_rotation(15)\n tick.label.set_color(\"r\")\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color(\"r\")\n ## Reset the toolbar\n toolbar.update()\n f.canvas.draw()\n \ndef show_humidity():\n a.clear()\n a.plot(fds,humidity, \"b.--\")\n a.set_ylabel(\"Humidity %\", color = \"b\")\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color = \"blue\")\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7) \n tick.label.set_rotation(15)\n tick.label.set_color(\"b\")\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color(\"b\")\n toolbar.update()\n f.canvas.draw()\n \ndef show_light():\n a.clear()\n a.plot(fds,light, \"g.--\")\n a.set_ylabel(\"Ambient Light\", color = \"g\")\n a.xaxis.set_major_formatter(hfmt)\n a.grid(color = \"g\")\n for tick in a.xaxis.get_major_ticks():\n tick.label.set_fontsize(7) \n tick.label.set_rotation(15)\n tick.label.set_color(\"g\")\n for tick in a.yaxis.get_major_ticks():\n tick.label.set_color(\"g\")\n toolbar.update()\n f.canvas.draw()\n\n## Load icon and button images\ntempButton = PhotoImage(file=\"images/temp_button.gif\")\nhmdButton = PhotoImage(file=\"images/hmd_button.gif\")\nlightButton = PhotoImage(file=\"images/light_button.gif\")\ntempIcon = PhotoImage(file=\"images/temp_icon.gif\")\nhmdIcon = PhotoImage(file=\"images/hmd_icon.gif\")\nlightIcon = PhotoImage(file=\"images/light_icon.gif\")\n\n## Create button widgets\nButton1 = Button(master, image = tempButton, command = show_temp, height = 50, width = 109)\nButton2 = Button(master, image = hmdButton, command = show_humidity, height = 50, width = 109)\nButton3 = Button(master, image = lightButton, command = show_light, height = 50, width = 109)\n## Create labels\nLabel1 = Label(master, image = tempIcon, height = 50, width = 50)\nLabel2 = Label(master, image = hmdIcon, height = 50, width = 50)\nLabel3 = Label(master, image = lightIcon, height = 50, width = 50)\n## Place the buttons and labels to specific location\nButton1.place(x=60,y=110)\nButton2.place(x=60,y=260)\nButton3.place(x=60,y=410)\nLabel1.place(x=180, y=111)\nLabel2.place(x=180, y=261)\nLabel3.place(x=180, y=411)\n## Start with the temperature graph showing\nshow_temp()\n## Run the main interface loop\nmaster.mainloop()\n", "step-ids": [ 2, 3, 5, 6, 7 ] }
[ 2, 3, 5, 6, 7 ]
"""Exercise 7.2. Encapsulate this loop in a function called square_root that takes a as a parameter, chooses a reasonable value of x, and returns an estimate of the square root of a.""" def my_square_root(a,x) : e = 0.0001 while True : y=(x+a/x)/2 if abs(y-x) < e : return y break x = y a = input("Find square root of which number? ",) x = input("What is your first guess?") result = round(my_square_root(float(a),float(x)),3) print("The square root of ",a,"is ",result)
normal
{ "blob_id": "c9f4ae94dc901d34a3c0fb4371c8d35a7fe94507", "index": 5095, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef my_square_root(a, x):\n e = 0.0001\n while True:\n y = (x + a / x) / 2\n if abs(y - x) < e:\n return y\n break\n x = y\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef my_square_root(a, x):\n e = 0.0001\n while True:\n y = (x + a / x) / 2\n if abs(y - x) < e:\n return y\n break\n x = y\n\n\n<mask token>\nprint('The square root of ', a, 'is ', result)\n", "step-4": "<mask token>\n\n\ndef my_square_root(a, x):\n e = 0.0001\n while True:\n y = (x + a / x) / 2\n if abs(y - x) < e:\n return y\n break\n x = y\n\n\na = input('Find square root of which number? ')\nx = input('What is your first guess?')\nresult = round(my_square_root(float(a), float(x)), 3)\nprint('The square root of ', a, 'is ', result)\n", "step-5": "\"\"\"Exercise 7.2. Encapsulate this loop in a function called square_root that takes a as a parameter,\nchooses a reasonable value of x, and returns an estimate of the square root of a.\"\"\"\n\ndef my_square_root(a,x) :\n e = 0.0001\n while True :\n y=(x+a/x)/2\n if abs(y-x) < e :\n return y\n break\n x = y\n\na = input(\"Find square root of which number? \",)\nx = input(\"What is your first guess?\") \nresult = round(my_square_root(float(a),float(x)),3)\nprint(\"The square root of \",a,\"is \",result)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" Base cache mechanism """ import time import string import codecs import pickle from functools import wraps from abc import ABCMeta, abstractmethod from asyncio import iscoroutinefunction class BaseCache(metaclass=ABCMeta): """Base cache class.""" @abstractmethod def __init__(self, kvstore, makekey, lifetime, fail_silent): self._kvstore = kvstore self._makekey = makekey self._lifetime = lifetime self._fail_silent = fail_silent def __call__(self, func): @wraps(func) def wrapper(*args, **kwargs): """decorator.""" key = self._makekey(func, args, kwargs) if self._kvstore.exists(key): value_str = self._kvstore.get(key) try: value = pickle.loads(codecs.decode(value_str.encode(), "base64")) if self._lifetime is None or time.time() - value['time'] < self._lifetime: result = value['data'] return result except: # pylint: disable=W0702 if not self._fail_silent: raise result = func(*args, **kwargs) value = {'time': time.time(), 'data': result} value_str = codecs.encode(pickle.dumps(value), "base64").decode() self._kvstore.set(key, value_str) return result @wraps(func) async def async_wrapper(*args, **kwargs): """async decorator.""" key = self._makekey(func, args, kwargs) if self._kvstore.exists(key): value_str = self._kvstore.get(key) try: value = pickle.loads(codecs.decode(value_str.encode(), "base64")) if self._lifetime is None or time.time() - value['time'] < self._lifetime: result = value['data'] return result except: # pylint: disable=W0702 if not self._fail_silent: raise result = await func(*args, **kwargs) value = {'time': time.time(), 'data': result} value_str = codecs.encode(pickle.dumps(value), "base64").decode() self._kvstore.set(key, value_str) return result if iscoroutinefunction(func): return async_wrapper return wrapper @staticmethod def makekey(function, *args, **kwargs) -> str: """creates a unique key based to be used when storing the cache. :param function: function :param *args: positional args of the function :param **kwargs: keyword arguments of the function :return: string base64 key """ arguments = str((function.__name__, args, kwargs)).strip() arguments = arguments.translate( str.maketrans('', '', string.punctuation+string.whitespace) ) key = codecs.encode(pickle.dumps(arguments, protocol=0), "base64").decode().strip() return key
normal
{ "blob_id": "e810cde7f77d36c6a43f8c277b66d038b143aae6", "index": 6746, "step-1": "<mask token>\n\n\nclass BaseCache(metaclass=ABCMeta):\n <mask token>\n\n @abstractmethod\n def __init__(self, kvstore, makekey, lifetime, fail_silent):\n self._kvstore = kvstore\n self._makekey = makekey\n self._lifetime = lifetime\n self._fail_silent = fail_silent\n <mask token>\n\n @staticmethod\n def makekey(function, *args, **kwargs) ->str:\n \"\"\"creates a unique key based to be used when storing the cache.\n :param function: function\n :param *args: positional args of the function\n :param **kwargs: keyword arguments of the function\n :return: string base64 key\n \"\"\"\n arguments = str((function.__name__, args, kwargs)).strip()\n arguments = arguments.translate(str.maketrans('', '', string.\n punctuation + string.whitespace))\n key = codecs.encode(pickle.dumps(arguments, protocol=0), 'base64'\n ).decode().strip()\n return key\n", "step-2": "<mask token>\n\n\nclass BaseCache(metaclass=ABCMeta):\n <mask token>\n\n @abstractmethod\n def __init__(self, kvstore, makekey, lifetime, fail_silent):\n self._kvstore = kvstore\n self._makekey = makekey\n self._lifetime = lifetime\n self._fail_silent = fail_silent\n\n def __call__(self, func):\n\n @wraps(func)\n def wrapper(*args, **kwargs):\n \"\"\"decorator.\"\"\"\n key = self._makekey(func, args, kwargs)\n if self._kvstore.exists(key):\n value_str = self._kvstore.get(key)\n try:\n value = pickle.loads(codecs.decode(value_str.encode(),\n 'base64'))\n if self._lifetime is None or time.time() - value['time'\n ] < self._lifetime:\n result = value['data']\n return result\n except:\n if not self._fail_silent:\n raise\n result = func(*args, **kwargs)\n value = {'time': time.time(), 'data': result}\n value_str = codecs.encode(pickle.dumps(value), 'base64').decode()\n self._kvstore.set(key, value_str)\n return result\n\n @wraps(func)\n async def async_wrapper(*args, **kwargs):\n \"\"\"async decorator.\"\"\"\n key = self._makekey(func, args, kwargs)\n if self._kvstore.exists(key):\n value_str = self._kvstore.get(key)\n try:\n value = pickle.loads(codecs.decode(value_str.encode(),\n 'base64'))\n if self._lifetime is None or time.time() - value['time'\n ] < self._lifetime:\n result = value['data']\n return result\n except:\n if not self._fail_silent:\n raise\n result = await func(*args, **kwargs)\n value = {'time': time.time(), 'data': result}\n value_str = codecs.encode(pickle.dumps(value), 'base64').decode()\n self._kvstore.set(key, value_str)\n return result\n if iscoroutinefunction(func):\n return async_wrapper\n return wrapper\n\n @staticmethod\n def makekey(function, *args, **kwargs) ->str:\n \"\"\"creates a unique key based to be used when storing the cache.\n :param function: function\n :param *args: positional args of the function\n :param **kwargs: keyword arguments of the function\n :return: string base64 key\n \"\"\"\n arguments = str((function.__name__, args, kwargs)).strip()\n arguments = arguments.translate(str.maketrans('', '', string.\n punctuation + string.whitespace))\n key = codecs.encode(pickle.dumps(arguments, protocol=0), 'base64'\n ).decode().strip()\n return key\n", "step-3": "<mask token>\n\n\nclass BaseCache(metaclass=ABCMeta):\n \"\"\"Base cache class.\"\"\"\n\n @abstractmethod\n def __init__(self, kvstore, makekey, lifetime, fail_silent):\n self._kvstore = kvstore\n self._makekey = makekey\n self._lifetime = lifetime\n self._fail_silent = fail_silent\n\n def __call__(self, func):\n\n @wraps(func)\n def wrapper(*args, **kwargs):\n \"\"\"decorator.\"\"\"\n key = self._makekey(func, args, kwargs)\n if self._kvstore.exists(key):\n value_str = self._kvstore.get(key)\n try:\n value = pickle.loads(codecs.decode(value_str.encode(),\n 'base64'))\n if self._lifetime is None or time.time() - value['time'\n ] < self._lifetime:\n result = value['data']\n return result\n except:\n if not self._fail_silent:\n raise\n result = func(*args, **kwargs)\n value = {'time': time.time(), 'data': result}\n value_str = codecs.encode(pickle.dumps(value), 'base64').decode()\n self._kvstore.set(key, value_str)\n return result\n\n @wraps(func)\n async def async_wrapper(*args, **kwargs):\n \"\"\"async decorator.\"\"\"\n key = self._makekey(func, args, kwargs)\n if self._kvstore.exists(key):\n value_str = self._kvstore.get(key)\n try:\n value = pickle.loads(codecs.decode(value_str.encode(),\n 'base64'))\n if self._lifetime is None or time.time() - value['time'\n ] < self._lifetime:\n result = value['data']\n return result\n except:\n if not self._fail_silent:\n raise\n result = await func(*args, **kwargs)\n value = {'time': time.time(), 'data': result}\n value_str = codecs.encode(pickle.dumps(value), 'base64').decode()\n self._kvstore.set(key, value_str)\n return result\n if iscoroutinefunction(func):\n return async_wrapper\n return wrapper\n\n @staticmethod\n def makekey(function, *args, **kwargs) ->str:\n \"\"\"creates a unique key based to be used when storing the cache.\n :param function: function\n :param *args: positional args of the function\n :param **kwargs: keyword arguments of the function\n :return: string base64 key\n \"\"\"\n arguments = str((function.__name__, args, kwargs)).strip()\n arguments = arguments.translate(str.maketrans('', '', string.\n punctuation + string.whitespace))\n key = codecs.encode(pickle.dumps(arguments, protocol=0), 'base64'\n ).decode().strip()\n return key\n", "step-4": "<mask token>\nimport time\nimport string\nimport codecs\nimport pickle\nfrom functools import wraps\nfrom abc import ABCMeta, abstractmethod\nfrom asyncio import iscoroutinefunction\n\n\nclass BaseCache(metaclass=ABCMeta):\n \"\"\"Base cache class.\"\"\"\n\n @abstractmethod\n def __init__(self, kvstore, makekey, lifetime, fail_silent):\n self._kvstore = kvstore\n self._makekey = makekey\n self._lifetime = lifetime\n self._fail_silent = fail_silent\n\n def __call__(self, func):\n\n @wraps(func)\n def wrapper(*args, **kwargs):\n \"\"\"decorator.\"\"\"\n key = self._makekey(func, args, kwargs)\n if self._kvstore.exists(key):\n value_str = self._kvstore.get(key)\n try:\n value = pickle.loads(codecs.decode(value_str.encode(),\n 'base64'))\n if self._lifetime is None or time.time() - value['time'\n ] < self._lifetime:\n result = value['data']\n return result\n except:\n if not self._fail_silent:\n raise\n result = func(*args, **kwargs)\n value = {'time': time.time(), 'data': result}\n value_str = codecs.encode(pickle.dumps(value), 'base64').decode()\n self._kvstore.set(key, value_str)\n return result\n\n @wraps(func)\n async def async_wrapper(*args, **kwargs):\n \"\"\"async decorator.\"\"\"\n key = self._makekey(func, args, kwargs)\n if self._kvstore.exists(key):\n value_str = self._kvstore.get(key)\n try:\n value = pickle.loads(codecs.decode(value_str.encode(),\n 'base64'))\n if self._lifetime is None or time.time() - value['time'\n ] < self._lifetime:\n result = value['data']\n return result\n except:\n if not self._fail_silent:\n raise\n result = await func(*args, **kwargs)\n value = {'time': time.time(), 'data': result}\n value_str = codecs.encode(pickle.dumps(value), 'base64').decode()\n self._kvstore.set(key, value_str)\n return result\n if iscoroutinefunction(func):\n return async_wrapper\n return wrapper\n\n @staticmethod\n def makekey(function, *args, **kwargs) ->str:\n \"\"\"creates a unique key based to be used when storing the cache.\n :param function: function\n :param *args: positional args of the function\n :param **kwargs: keyword arguments of the function\n :return: string base64 key\n \"\"\"\n arguments = str((function.__name__, args, kwargs)).strip()\n arguments = arguments.translate(str.maketrans('', '', string.\n punctuation + string.whitespace))\n key = codecs.encode(pickle.dumps(arguments, protocol=0), 'base64'\n ).decode().strip()\n return key\n", "step-5": "\"\"\"\nBase cache mechanism\n\"\"\"\nimport time\nimport string\nimport codecs\nimport pickle\nfrom functools import wraps\nfrom abc import ABCMeta, abstractmethod\nfrom asyncio import iscoroutinefunction\n\n\nclass BaseCache(metaclass=ABCMeta):\n \"\"\"Base cache class.\"\"\"\n @abstractmethod\n def __init__(self, kvstore, makekey, lifetime, fail_silent):\n self._kvstore = kvstore\n self._makekey = makekey\n self._lifetime = lifetime\n self._fail_silent = fail_silent\n\n def __call__(self, func):\n @wraps(func)\n def wrapper(*args, **kwargs):\n \"\"\"decorator.\"\"\"\n key = self._makekey(func, args, kwargs)\n if self._kvstore.exists(key):\n value_str = self._kvstore.get(key)\n try:\n value = pickle.loads(codecs.decode(value_str.encode(), \"base64\"))\n if self._lifetime is None or time.time() - value['time'] < self._lifetime:\n result = value['data']\n return result\n except: # pylint: disable=W0702\n if not self._fail_silent:\n raise\n\n result = func(*args, **kwargs)\n value = {'time': time.time(), 'data': result}\n value_str = codecs.encode(pickle.dumps(value), \"base64\").decode()\n self._kvstore.set(key, value_str)\n\n return result\n\n @wraps(func)\n async def async_wrapper(*args, **kwargs):\n \"\"\"async decorator.\"\"\"\n key = self._makekey(func, args, kwargs)\n if self._kvstore.exists(key):\n value_str = self._kvstore.get(key)\n try:\n value = pickle.loads(codecs.decode(value_str.encode(), \"base64\"))\n if self._lifetime is None or time.time() - value['time'] < self._lifetime:\n result = value['data']\n return result\n except: # pylint: disable=W0702\n if not self._fail_silent:\n raise\n\n result = await func(*args, **kwargs)\n value = {'time': time.time(), 'data': result}\n value_str = codecs.encode(pickle.dumps(value), \"base64\").decode()\n self._kvstore.set(key, value_str)\n\n return result\n\n if iscoroutinefunction(func):\n return async_wrapper\n return wrapper\n\n @staticmethod\n def makekey(function, *args, **kwargs) -> str:\n \"\"\"creates a unique key based to be used when storing the cache.\n :param function: function\n :param *args: positional args of the function\n :param **kwargs: keyword arguments of the function\n :return: string base64 key\n \"\"\"\n arguments = str((function.__name__, args, kwargs)).strip()\n arguments = arguments.translate(\n str.maketrans('', '', string.punctuation+string.whitespace)\n )\n key = codecs.encode(pickle.dumps(arguments, protocol=0), \"base64\").decode().strip()\n return key\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import chars2vec import sklearn.decomposition import matplotlib.pyplot as plt import csv # Load Inutition Engineering pretrained model # Models names: 'eng_50', 'eng_100', 'eng_150' 'eng_200', 'eng_300' from sklearn.cluster import KMeans c2v_model = chars2vec.load_model('eng_50') words=[] etichette=[] with open('datasetParsing2DEF.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 for row in csv_reader: if line_count == 0: print(f'Column names are {", ".join(row)}') line_count += 1 else: print(row[1],row[2]) words.append(row[2]) etichette.append(row[1]) line_count += 1 print(f'Processed {line_count} lines.') # Create word embeddings word_embeddings = c2v_model.vectorize_words(words) print(word_embeddings) kmeans = KMeans( init="random", n_clusters=4, n_init=10, max_iter=200, random_state=30) kmeans.fit(word_embeddings), y_kmeans = kmeans.predict(word_embeddings) print(y_kmeans) i=0; for j in range(0,len(y_kmeans)): print(etichette[i]) print(word_embeddings[j,0]) print(word_embeddings[j,1]) print() #plt.scatter(word_embeddings[:, 0], word_embeddings[:, 1],marker=('$' + etichette[i] + '$'),c=y_kmeans, s=1800) plt.scatter(word_embeddings[j, 0], word_embeddings[j, 1], marker=('$' + 'O'+ '$'), s=30, label=j) i=i+1 centers = kmeans.cluster_centers_ plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5) plt.show()
normal
{ "blob_id": "084579152a2cc7feb2c31e0209ce1e32f4905d81", "index": 5316, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('datasetParsing2DEF.csv') as csv_file:\n csv_reader = csv.reader(csv_file, delimiter=',')\n line_count = 0\n for row in csv_reader:\n if line_count == 0:\n print(f\"Column names are {', '.join(row)}\")\n line_count += 1\n else:\n print(row[1], row[2])\n words.append(row[2])\n etichette.append(row[1])\n line_count += 1\n print(f'Processed {line_count} lines.')\n<mask token>\nprint(word_embeddings)\n<mask token>\nkmeans.fit(word_embeddings),\n<mask token>\nprint(y_kmeans)\n<mask token>\nfor j in range(0, len(y_kmeans)):\n print(etichette[i])\n print(word_embeddings[j, 0])\n print(word_embeddings[j, 1])\n print()\n plt.scatter(word_embeddings[j, 0], word_embeddings[j, 1], marker='$' +\n 'O' + '$', s=30, label=j)\n i = i + 1\n<mask token>\nplt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)\nplt.show()\n", "step-3": "<mask token>\nc2v_model = chars2vec.load_model('eng_50')\nwords = []\netichette = []\nwith open('datasetParsing2DEF.csv') as csv_file:\n csv_reader = csv.reader(csv_file, delimiter=',')\n line_count = 0\n for row in csv_reader:\n if line_count == 0:\n print(f\"Column names are {', '.join(row)}\")\n line_count += 1\n else:\n print(row[1], row[2])\n words.append(row[2])\n etichette.append(row[1])\n line_count += 1\n print(f'Processed {line_count} lines.')\nword_embeddings = c2v_model.vectorize_words(words)\nprint(word_embeddings)\nkmeans = KMeans(init='random', n_clusters=4, n_init=10, max_iter=200,\n random_state=30)\nkmeans.fit(word_embeddings),\ny_kmeans = kmeans.predict(word_embeddings)\nprint(y_kmeans)\ni = 0\nfor j in range(0, len(y_kmeans)):\n print(etichette[i])\n print(word_embeddings[j, 0])\n print(word_embeddings[j, 1])\n print()\n plt.scatter(word_embeddings[j, 0], word_embeddings[j, 1], marker='$' +\n 'O' + '$', s=30, label=j)\n i = i + 1\ncenters = kmeans.cluster_centers_\nplt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)\nplt.show()\n", "step-4": "import chars2vec\nimport sklearn.decomposition\nimport matplotlib.pyplot as plt\nimport csv\nfrom sklearn.cluster import KMeans\nc2v_model = chars2vec.load_model('eng_50')\nwords = []\netichette = []\nwith open('datasetParsing2DEF.csv') as csv_file:\n csv_reader = csv.reader(csv_file, delimiter=',')\n line_count = 0\n for row in csv_reader:\n if line_count == 0:\n print(f\"Column names are {', '.join(row)}\")\n line_count += 1\n else:\n print(row[1], row[2])\n words.append(row[2])\n etichette.append(row[1])\n line_count += 1\n print(f'Processed {line_count} lines.')\nword_embeddings = c2v_model.vectorize_words(words)\nprint(word_embeddings)\nkmeans = KMeans(init='random', n_clusters=4, n_init=10, max_iter=200,\n random_state=30)\nkmeans.fit(word_embeddings),\ny_kmeans = kmeans.predict(word_embeddings)\nprint(y_kmeans)\ni = 0\nfor j in range(0, len(y_kmeans)):\n print(etichette[i])\n print(word_embeddings[j, 0])\n print(word_embeddings[j, 1])\n print()\n plt.scatter(word_embeddings[j, 0], word_embeddings[j, 1], marker='$' +\n 'O' + '$', s=30, label=j)\n i = i + 1\ncenters = kmeans.cluster_centers_\nplt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)\nplt.show()\n", "step-5": "import chars2vec\nimport sklearn.decomposition\nimport matplotlib.pyplot as plt\nimport csv\n\n# Load Inutition Engineering pretrained model\n# Models names: 'eng_50', 'eng_100', 'eng_150' 'eng_200', 'eng_300'\nfrom sklearn.cluster import KMeans\n\nc2v_model = chars2vec.load_model('eng_50')\n\nwords=[]\netichette=[]\n\nwith open('datasetParsing2DEF.csv') as csv_file:\n csv_reader = csv.reader(csv_file, delimiter=',')\n line_count = 0\n for row in csv_reader:\n if line_count == 0:\n print(f'Column names are {\", \".join(row)}')\n line_count += 1\n else:\n print(row[1],row[2])\n words.append(row[2])\n etichette.append(row[1])\n line_count += 1\n\n\n print(f'Processed {line_count} lines.')\n\n\n\n# Create word embeddings\nword_embeddings = c2v_model.vectorize_words(words)\nprint(word_embeddings)\n\n\nkmeans = KMeans(\n init=\"random\",\n n_clusters=4,\n n_init=10,\n max_iter=200,\n random_state=30)\n\nkmeans.fit(word_embeddings),\n\ny_kmeans = kmeans.predict(word_embeddings)\nprint(y_kmeans)\ni=0;\nfor j in range(0,len(y_kmeans)):\n print(etichette[i])\n print(word_embeddings[j,0])\n print(word_embeddings[j,1])\n print()\n #plt.scatter(word_embeddings[:, 0], word_embeddings[:, 1],marker=('$' + etichette[i] + '$'),c=y_kmeans, s=1800)\n plt.scatter(word_embeddings[j, 0], word_embeddings[j, 1],\n marker=('$' + 'O'+ '$'),\n s=30, label=j)\n i=i+1\n\ncenters = kmeans.cluster_centers_\n\nplt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)\n\nplt.show()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print('total ball:', a * 6) <|reserved_special_token_0|> print("computer's run:", comp_runs) <|reserved_special_token_0|> print('runs need to win:', comp_runs) <|reserved_special_token_0|> print("""----------------------------------------------- Your Batting """) while no_of_chances_1 < chances_1: runs = int(input('Enter Runs for Your Batting Turn: ')) comp_bowl = random.randint(1, 6) if runs == comp_bowl: print('Computer Guess: ', comp_bowl) print('You are Out. Your Total Runs= ', your_runs, '\n') break elif runs > 10: print('ALERT!! Support No only till 10\n') continue else: your_runs = your_runs + runs print('Computer Guess: ', comp_bowl) print('Your runs Now are: ', your_runs, '\n') if comp_runs < your_runs: break no_of_chances_1 = no_of_chances_1 + 1 print(""" ----------------------------------------------- RESULTS: """) if comp_runs < your_runs: print('You won the Game.') elif comp_runs == your_runs: print('The Game is a Tie') else: print('Computer won the Game.') <|reserved_special_token_1|> a = int(input('Enter no. of over: ')) print('total ball:', a * 6) <|reserved_special_token_0|> comp_runs = random.randint(0, 36) print("computer's run:", comp_runs) comp_runs = comp_runs + 1 print('runs need to win:', comp_runs) chances_1 = a * 6 no_of_chances_1 = 0 your_runs = 0 print("""----------------------------------------------- Your Batting """) while no_of_chances_1 < chances_1: runs = int(input('Enter Runs for Your Batting Turn: ')) comp_bowl = random.randint(1, 6) if runs == comp_bowl: print('Computer Guess: ', comp_bowl) print('You are Out. Your Total Runs= ', your_runs, '\n') break elif runs > 10: print('ALERT!! Support No only till 10\n') continue else: your_runs = your_runs + runs print('Computer Guess: ', comp_bowl) print('Your runs Now are: ', your_runs, '\n') if comp_runs < your_runs: break no_of_chances_1 = no_of_chances_1 + 1 print(""" ----------------------------------------------- RESULTS: """) if comp_runs < your_runs: print('You won the Game.') elif comp_runs == your_runs: print('The Game is a Tie') else: print('Computer won the Game.') <|reserved_special_token_1|> a = int(input('Enter no. of over: ')) print('total ball:', a * 6) import random comp_runs = random.randint(0, 36) print("computer's run:", comp_runs) comp_runs = comp_runs + 1 print('runs need to win:', comp_runs) chances_1 = a * 6 no_of_chances_1 = 0 your_runs = 0 print("""----------------------------------------------- Your Batting """) while no_of_chances_1 < chances_1: runs = int(input('Enter Runs for Your Batting Turn: ')) comp_bowl = random.randint(1, 6) if runs == comp_bowl: print('Computer Guess: ', comp_bowl) print('You are Out. Your Total Runs= ', your_runs, '\n') break elif runs > 10: print('ALERT!! Support No only till 10\n') continue else: your_runs = your_runs + runs print('Computer Guess: ', comp_bowl) print('Your runs Now are: ', your_runs, '\n') if comp_runs < your_runs: break no_of_chances_1 = no_of_chances_1 + 1 print(""" ----------------------------------------------- RESULTS: """) if comp_runs < your_runs: print('You won the Game.') elif comp_runs == your_runs: print('The Game is a Tie') else: print('Computer won the Game.') <|reserved_special_token_1|> a = int(input("Enter no. of over: ")) print("total ball:",a*6 ) import random comp_runs = random.randint(0,36) print("computer's run:" ,comp_runs) comp_runs = comp_runs+1 print("runs need to win:",comp_runs) chances_1 = a*6 no_of_chances_1 = 0 your_runs = 0 print("-----------------------------------------------\nYour Batting\n") while no_of_chances_1 < chances_1: runs = int(input("Enter Runs for Your Batting Turn: ")) comp_bowl = random.randint(1,6) if runs == comp_bowl: print("Computer Guess: ", comp_bowl) print("You are Out. Your Total Runs= ", your_runs, "\n") break elif runs > 10: print("ALERT!! Support No only till 10\n") continue else: your_runs = your_runs + runs print("Computer Guess: ", comp_bowl) print("Your runs Now are: ", your_runs, "\n") if comp_runs < your_runs: break no_of_chances_1 = no_of_chances_1 + 1 #after the over ends now result time print("\n-----------------------------------------------\nRESULTS: ") if comp_runs < your_runs: print("You won the Game.") elif comp_runs == your_runs: print("The Game is a Tie") else: print("Computer won the Game.")
flexible
{ "blob_id": "00312f57e8a78444937f46cecb62a2b684b4fc91", "index": 8779, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('total ball:', a * 6)\n<mask token>\nprint(\"computer's run:\", comp_runs)\n<mask token>\nprint('runs need to win:', comp_runs)\n<mask token>\nprint(\"\"\"-----------------------------------------------\nYour Batting\n\"\"\")\nwhile no_of_chances_1 < chances_1:\n runs = int(input('Enter Runs for Your Batting Turn: '))\n comp_bowl = random.randint(1, 6)\n if runs == comp_bowl:\n print('Computer Guess: ', comp_bowl)\n print('You are Out. Your Total Runs= ', your_runs, '\\n')\n break\n elif runs > 10:\n print('ALERT!! Support No only till 10\\n')\n continue\n else:\n your_runs = your_runs + runs\n print('Computer Guess: ', comp_bowl)\n print('Your runs Now are: ', your_runs, '\\n')\n if comp_runs < your_runs:\n break\n no_of_chances_1 = no_of_chances_1 + 1\nprint(\"\"\"\n-----------------------------------------------\nRESULTS: \"\"\")\nif comp_runs < your_runs:\n print('You won the Game.')\nelif comp_runs == your_runs:\n print('The Game is a Tie')\nelse:\n print('Computer won the Game.')\n", "step-3": "a = int(input('Enter no. of over: '))\nprint('total ball:', a * 6)\n<mask token>\ncomp_runs = random.randint(0, 36)\nprint(\"computer's run:\", comp_runs)\ncomp_runs = comp_runs + 1\nprint('runs need to win:', comp_runs)\nchances_1 = a * 6\nno_of_chances_1 = 0\nyour_runs = 0\nprint(\"\"\"-----------------------------------------------\nYour Batting\n\"\"\")\nwhile no_of_chances_1 < chances_1:\n runs = int(input('Enter Runs for Your Batting Turn: '))\n comp_bowl = random.randint(1, 6)\n if runs == comp_bowl:\n print('Computer Guess: ', comp_bowl)\n print('You are Out. Your Total Runs= ', your_runs, '\\n')\n break\n elif runs > 10:\n print('ALERT!! Support No only till 10\\n')\n continue\n else:\n your_runs = your_runs + runs\n print('Computer Guess: ', comp_bowl)\n print('Your runs Now are: ', your_runs, '\\n')\n if comp_runs < your_runs:\n break\n no_of_chances_1 = no_of_chances_1 + 1\nprint(\"\"\"\n-----------------------------------------------\nRESULTS: \"\"\")\nif comp_runs < your_runs:\n print('You won the Game.')\nelif comp_runs == your_runs:\n print('The Game is a Tie')\nelse:\n print('Computer won the Game.')\n", "step-4": "a = int(input('Enter no. of over: '))\nprint('total ball:', a * 6)\nimport random\ncomp_runs = random.randint(0, 36)\nprint(\"computer's run:\", comp_runs)\ncomp_runs = comp_runs + 1\nprint('runs need to win:', comp_runs)\nchances_1 = a * 6\nno_of_chances_1 = 0\nyour_runs = 0\nprint(\"\"\"-----------------------------------------------\nYour Batting\n\"\"\")\nwhile no_of_chances_1 < chances_1:\n runs = int(input('Enter Runs for Your Batting Turn: '))\n comp_bowl = random.randint(1, 6)\n if runs == comp_bowl:\n print('Computer Guess: ', comp_bowl)\n print('You are Out. Your Total Runs= ', your_runs, '\\n')\n break\n elif runs > 10:\n print('ALERT!! Support No only till 10\\n')\n continue\n else:\n your_runs = your_runs + runs\n print('Computer Guess: ', comp_bowl)\n print('Your runs Now are: ', your_runs, '\\n')\n if comp_runs < your_runs:\n break\n no_of_chances_1 = no_of_chances_1 + 1\nprint(\"\"\"\n-----------------------------------------------\nRESULTS: \"\"\")\nif comp_runs < your_runs:\n print('You won the Game.')\nelif comp_runs == your_runs:\n print('The Game is a Tie')\nelse:\n print('Computer won the Game.')\n", "step-5": "a = int(input(\"Enter no. of over: \"))\r\nprint(\"total ball:\",a*6 )\r\nimport random\r\n\r\ncomp_runs = random.randint(0,36)\r\nprint(\"computer's run:\" ,comp_runs)\r\ncomp_runs = comp_runs+1\r\nprint(\"runs need to win:\",comp_runs)\r\nchances_1 = a*6\r\nno_of_chances_1 = 0\r\nyour_runs = 0\r\n\r\nprint(\"-----------------------------------------------\\nYour Batting\\n\")\r\nwhile no_of_chances_1 < chances_1:\r\n\r\n runs = int(input(\"Enter Runs for Your Batting Turn: \"))\r\n comp_bowl = random.randint(1,6)\r\n\r\n if runs == comp_bowl:\r\n print(\"Computer Guess: \", comp_bowl)\r\n print(\"You are Out. Your Total Runs= \", your_runs, \"\\n\")\r\n break\r\n elif runs > 10:\r\n print(\"ALERT!! Support No only till 10\\n\")\r\n continue\r\n else:\r\n your_runs = your_runs + runs\r\n print(\"Computer Guess: \", comp_bowl)\r\n print(\"Your runs Now are: \", your_runs, \"\\n\")\r\n if comp_runs < your_runs:\r\n break\r\n\r\n no_of_chances_1 = no_of_chances_1 + 1\r\n\r\n#after the over ends now result time\r\n\r\nprint(\"\\n-----------------------------------------------\\nRESULTS: \")\r\n\r\nif comp_runs < your_runs:\r\n print(\"You won the Game.\")\r\n\r\nelif comp_runs == your_runs:\r\n print(\"The Game is a Tie\")\r\n\r\nelse:\r\n print(\"Computer won the Game.\")\r\n\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from distributions.zero_inflated_poisson import ZeroInflatedPoisson from distributions.negative_binomial import NegativeBinomial from distributions.zero_inflated_negative_binomial import ZeroInflatedNegativeBinomial from distributions.zero_inflated import ZeroInflated from distributions.categorized import Categorized from distributions.pareto import Pareto
normal
{ "blob_id": "dfae1007adc557a15d03b78f2bf790fb5b06141a", "index": 4442, "step-1": "<mask token>\n", "step-2": "from distributions.zero_inflated_poisson import ZeroInflatedPoisson\nfrom distributions.negative_binomial import NegativeBinomial\nfrom distributions.zero_inflated_negative_binomial import ZeroInflatedNegativeBinomial\nfrom distributions.zero_inflated import ZeroInflated\nfrom distributions.categorized import Categorized\nfrom distributions.pareto import Pareto\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> class Solution: <|reserved_special_token_0|> <|reserved_special_token_1|> class Solution: def longestConsecutive(self, num): sted = {} n = len(num) for item in num: if item in sted: continue sted[item] = item if item - 1 in sted: sted[item] = sted[item - 1] sted[sted[item - 1]] = item if item + 1 in sted: tmp = sted[item + 1] sted[tmp] = sted[item] sted[sted[item]] = tmp res = 0 for item in sted: res = max(res, sted[item] - item) return res + 1 <|reserved_special_token_1|> class Solution: # @param num, a list of integer # @return an integer def longestConsecutive(self, num): sted = {} n = len(num) for item in num: if item in sted: continue sted[item] = item if item-1 in sted: sted[item] = sted[item-1] sted[sted[item-1]] = item if item+1 in sted: tmp = sted[item+1] sted[tmp] = sted[item] sted[sted[item]] = tmp res = 0 for item in sted: res = max(res, sted[item] - item) return res + 1
flexible
{ "blob_id": "d7c4bee7245dab1cbb90ee68b8e99994ce7dd219", "index": 3295, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def longestConsecutive(self, num):\n sted = {}\n n = len(num)\n for item in num:\n if item in sted:\n continue\n sted[item] = item\n if item - 1 in sted:\n sted[item] = sted[item - 1]\n sted[sted[item - 1]] = item\n if item + 1 in sted:\n tmp = sted[item + 1]\n sted[tmp] = sted[item]\n sted[sted[item]] = tmp\n res = 0\n for item in sted:\n res = max(res, sted[item] - item)\n return res + 1\n", "step-4": "class Solution:\n # @param num, a list of integer\n # @return an integer\n def longestConsecutive(self, num):\n sted = {}\n n = len(num)\n for item in num:\n if item in sted:\n continue\n sted[item] = item\n if item-1 in sted:\n sted[item] = sted[item-1]\n sted[sted[item-1]] = item\n if item+1 in sted:\n tmp = sted[item+1]\n sted[tmp] = sted[item]\n sted[sted[item]] = tmp\n \n res = 0\n for item in sted:\n res = max(res, sted[item] - item)\n return res + 1", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Test_Ranges_Case(unittest.TestCase, mixins.CategoricalMixins): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Test_Ranges_Case(unittest.TestCase, mixins.CategoricalMixins): <|reserved_special_token_0|> def test_that_all_ranges_are_present(self): df = get_clean_data() RANGOS = ['cancelled', '0-1.5', '1.5-3.5', '3.5-'] self.assertCategoricalLevelsEqual(list(df.toPandas()[ 'rangoatrasohoras'].unique()), RANGOS) <|reserved_special_token_1|> <|reserved_special_token_0|> class Test_Ranges_Case(unittest.TestCase, mixins.CategoricalMixins): """ Verifica que los valores de la columna rangoatrasohoras sean los indicados """ def test_that_all_ranges_are_present(self): df = get_clean_data() RANGOS = ['cancelled', '0-1.5', '1.5-3.5', '3.5-'] self.assertCategoricalLevelsEqual(list(df.toPandas()[ 'rangoatrasohoras'].unique()), RANGOS) <|reserved_special_token_1|> import unittest from marbles.mixins import mixins import pandas as pd import requests from pyspark.sql import SparkSession import psycopg2 as pg import pandas as pd from pyspark.sql.types import StructType, StructField, StringType from src.features.build_features import get_clean_data class Test_Ranges_Case(unittest.TestCase, mixins.CategoricalMixins): """ Verifica que los valores de la columna rangoatrasohoras sean los indicados """ def test_that_all_ranges_are_present(self): df = get_clean_data() RANGOS = ['cancelled', '0-1.5', '1.5-3.5', '3.5-'] self.assertCategoricalLevelsEqual(list(df.toPandas()[ 'rangoatrasohoras'].unique()), RANGOS) <|reserved_special_token_1|> #python -m marbles test_clean_rangos.py import unittest from marbles.mixins import mixins import pandas as pd import requests from pyspark.sql import SparkSession import psycopg2 as pg import pandas as pd from pyspark.sql.types import StructType, StructField, StringType from src.features.build_features import get_clean_data class Test_Ranges_Case(unittest.TestCase, mixins.CategoricalMixins): ''' Verifica que los valores de la columna rangoatrasohoras sean los indicados ''' def test_that_all_ranges_are_present(self): df = get_clean_data() RANGOS=['cancelled', '0-1.5', '1.5-3.5' ,'3.5-'] self.assertCategoricalLevelsEqual(list(df.toPandas()["rangoatrasohoras"].unique()), RANGOS)
flexible
{ "blob_id": "f7c6990b4ddbe5ef9d79ef2326e60cdf1f761db3", "index": 4542, "step-1": "<mask token>\n\n\nclass Test_Ranges_Case(unittest.TestCase, mixins.CategoricalMixins):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Test_Ranges_Case(unittest.TestCase, mixins.CategoricalMixins):\n <mask token>\n\n def test_that_all_ranges_are_present(self):\n df = get_clean_data()\n RANGOS = ['cancelled', '0-1.5', '1.5-3.5', '3.5-']\n self.assertCategoricalLevelsEqual(list(df.toPandas()[\n 'rangoatrasohoras'].unique()), RANGOS)\n", "step-3": "<mask token>\n\n\nclass Test_Ranges_Case(unittest.TestCase, mixins.CategoricalMixins):\n \"\"\"\n Verifica que los valores de la columna rangoatrasohoras \n sean los indicados\n\n \"\"\"\n\n def test_that_all_ranges_are_present(self):\n df = get_clean_data()\n RANGOS = ['cancelled', '0-1.5', '1.5-3.5', '3.5-']\n self.assertCategoricalLevelsEqual(list(df.toPandas()[\n 'rangoatrasohoras'].unique()), RANGOS)\n", "step-4": "import unittest\nfrom marbles.mixins import mixins\nimport pandas as pd\nimport requests\nfrom pyspark.sql import SparkSession\nimport psycopg2 as pg\nimport pandas as pd\nfrom pyspark.sql.types import StructType, StructField, StringType\nfrom src.features.build_features import get_clean_data\n\n\nclass Test_Ranges_Case(unittest.TestCase, mixins.CategoricalMixins):\n \"\"\"\n Verifica que los valores de la columna rangoatrasohoras \n sean los indicados\n\n \"\"\"\n\n def test_that_all_ranges_are_present(self):\n df = get_clean_data()\n RANGOS = ['cancelled', '0-1.5', '1.5-3.5', '3.5-']\n self.assertCategoricalLevelsEqual(list(df.toPandas()[\n 'rangoatrasohoras'].unique()), RANGOS)\n", "step-5": "#python -m marbles test_clean_rangos.py\n\nimport unittest\nfrom marbles.mixins import mixins\nimport pandas as pd\nimport requests\nfrom pyspark.sql import SparkSession\nimport psycopg2 as pg\nimport pandas as pd\nfrom pyspark.sql.types import StructType, StructField, StringType\nfrom src.features.build_features import get_clean_data\n\nclass Test_Ranges_Case(unittest.TestCase, mixins.CategoricalMixins):\n\t'''\n Verifica que los valores de la columna rangoatrasohoras \n sean los indicados\n\n '''\n\n\tdef test_that_all_ranges_are_present(self):\n\n\n\t\tdf = get_clean_data()\n\t\tRANGOS=['cancelled', '0-1.5', '1.5-3.5' ,'3.5-']\n\t\tself.assertCategoricalLevelsEqual(list(df.toPandas()[\"rangoatrasohoras\"].unique()), RANGOS)\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): dependencies = [('settings', '0003_auto_20210814_2246')] operations = [migrations.AlterField(model_name='building', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='group', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID')), migrations.AlterField(model_name='lessontype', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='other', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID')), migrations.AlterField(model_name='patterns', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='room', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID')), migrations.AlterField(model_name='roomtype', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='salary', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID')), migrations.AlterField(model_name='staff', name='id', field= models.BigAutoField(auto_created=True, primary_key=True, serialize= False, verbose_name='ID')), migrations.AlterField(model_name= 'student', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations. AlterField(model_name='subjects', name='id', field=models. BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField(model_name='teacherrole', name='id', field=models.BigAutoField(auto_created=True, primary_key =True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='teachertypes', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID')), migrations.AlterField(model_name='timetable', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='userprofile', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID'))] <|reserved_special_token_1|> from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('settings', '0003_auto_20210814_2246')] operations = [migrations.AlterField(model_name='building', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='group', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID')), migrations.AlterField(model_name='lessontype', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='other', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID')), migrations.AlterField(model_name='patterns', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='room', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID')), migrations.AlterField(model_name='roomtype', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='salary', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID')), migrations.AlterField(model_name='staff', name='id', field= models.BigAutoField(auto_created=True, primary_key=True, serialize= False, verbose_name='ID')), migrations.AlterField(model_name= 'student', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations. AlterField(model_name='subjects', name='id', field=models. BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField(model_name='teacherrole', name='id', field=models.BigAutoField(auto_created=True, primary_key =True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='teachertypes', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID')), migrations.AlterField(model_name='timetable', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), migrations.AlterField( model_name='userprofile', name='id', field=models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name= 'ID'))] <|reserved_special_token_1|> # Generated by Django 3.2.9 on 2021-11-10 13:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('settings', '0003_auto_20210814_2246'), ] operations = [ migrations.AlterField( model_name='building', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='group', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='lessontype', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='other', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='patterns', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='room', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='roomtype', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='salary', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='staff', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='student', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='subjects', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='teacherrole', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='teachertypes', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='timetable', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='userprofile', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), ]
flexible
{ "blob_id": "9dfbf14a2005aad87be82e5e482c6b0347f32f2c", "index": 8007, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('settings', '0003_auto_20210814_2246')]\n operations = [migrations.AlterField(model_name='building', name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='group', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), migrations.AlterField(model_name='lessontype', name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='other', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), migrations.AlterField(model_name='patterns', name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='room', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), migrations.AlterField(model_name='roomtype', name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='salary', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), migrations.AlterField(model_name='staff', name='id', field=\n models.BigAutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), migrations.AlterField(model_name=\n 'student', name='id', field=models.BigAutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), migrations.\n AlterField(model_name='subjects', name='id', field=models.\n BigAutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), migrations.AlterField(model_name='teacherrole',\n name='id', field=models.BigAutoField(auto_created=True, primary_key\n =True, serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='teachertypes', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), migrations.AlterField(model_name='timetable', name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='userprofile', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID'))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('settings', '0003_auto_20210814_2246')]\n operations = [migrations.AlterField(model_name='building', name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='group', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), migrations.AlterField(model_name='lessontype', name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='other', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), migrations.AlterField(model_name='patterns', name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='room', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), migrations.AlterField(model_name='roomtype', name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='salary', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), migrations.AlterField(model_name='staff', name='id', field=\n models.BigAutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), migrations.AlterField(model_name=\n 'student', name='id', field=models.BigAutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), migrations.\n AlterField(model_name='subjects', name='id', field=models.\n BigAutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), migrations.AlterField(model_name='teacherrole',\n name='id', field=models.BigAutoField(auto_created=True, primary_key\n =True, serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='teachertypes', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), migrations.AlterField(model_name='timetable', name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), migrations.AlterField(\n model_name='userprofile', name='id', field=models.BigAutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID'))]\n", "step-5": "# Generated by Django 3.2.9 on 2021-11-10 13:36\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('settings', '0003_auto_20210814_2246'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='building',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='group',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='lessontype',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='other',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='patterns',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='room',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='roomtype',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='salary',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='staff',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='student',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='subjects',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='teacherrole',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='teachertypes',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='timetable',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n migrations.AlterField(\n model_name='userprofile',\n name='id',\n field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- from math import acos, pi, sqrt from decimal import Decimal, getcontext getcontext().prec = 30 class Vector(object): NO_NONZERO_ELTS_FOUND_MSG = 'No nonzero elements found' def __init__(self, coordinates): try: if not coordinates: raise ValueError self.coordinates = tuple([Decimal(x) for x in coordinates]) self.dimension = len(coordinates) except ValueError: raise ValueError('The coordinates must be nonempty') except TypeError: raise TypeError('The coordinates must be an iterable') def __str__(self): return 'Vector: {}'.format(self.coordinates) def __eq__(self, v): return self.coordinates == v.coordinates def iszero(self, tolerance=1e-10): return self.magnitude()<tolerance def plus(self, v): if isinstance(v, Vector): if self.dimension == v.dimension : return Vector([x+y for x, y in zip(self.coordinates, v.coordinates)]) else: raise ValueError('dimension not match.') else: raise TypeError('not a Vector.') def minus(self, v): if isinstance(v, Vector): if self.dimension == v.dimension : return Vector([x-y for x, y in zip(self.coordinates, v.coordinates)]) else: raise ValueError('dimension not match.') else: raise TypeError('not a Vector.') def time_scalar(self, scalar): try: return Vector([Decimal(scalar) * x for x in self.coordinates]) except Exception: raise TypeError('{0} is not a number'.format(scalar)) def magnitude(self): return Decimal(sqrt(sum([x**2 for x in self.coordinates]))) def normalize(self): if self.iszero(): raise ValueError("Can't normalize a zero vector.") else: return self.time_scalar(Decimal(1.0)/self.magnitude()) def dot(self, v): if not isinstance(v, Vector): raise TypeError('not a Vector') else: if self.dimension != v.dimension: raise ValueError('dimension not match.') else: return sum([x*y for x,y in zip(self.coordinates,v.coordinates)]) def angle_with(self, v, in_degree=False, tolerance=1e-10): if not isinstance(v, Vector): raise TypeError('not a Vector') if self.dimension != v.dimension: raise ValueError('dimension not match.') d = self.dot(v)/(self.magnitude()*v.magnitude()) if abs(abs(d)-1) < tolerance: d = 1 if d>0 else -1 elif abs(d)<tolerance: d = 0 if in_degree: return acos(d)/pi*180 else: return acos(d) def is_parallel_to(self, v): if not isinstance(v, Vector): raise TypeError('not a Vector') if self.iszero() or v.iszero(): return True v1 = self.normalize() v2 = v.normalize() return (v1.minus(v2).iszero() or v1.plus(v2).iszero()) def is_parallel_to2(self, v): if not isinstance(v, Vector): raise TypeError('not a Vector') if self.iszero() or v.iszero(): return True n = Vector.first_nonzero_index(self.coordinates) if (v.coordinates[n] == 0): return False if abs(self.coordinates[n])<=abs(v.coordinates[n]): return self.time_scalar(v.coordinates[n] / self.coordinates[n]).minus(v).iszero() else: return v.time_scalar(self.coordinates[n] / v.coordinates[n]).minus(self).iszero() def is_parallel_to3(self, v): if not isinstance(v, Vector): raise TypeError('not a Vector') return (self.iszero() or v.iszero() or self.angle_with(v) == 0 or self.angle_with(v) == pi) def is_orthogonal_to(self, v, tolerance=1e-10): if not isinstance(v, Vector): raise TypeError('not a Vector') return abs(self.dot(v)) < tolerance def component_project_to(self, v): if not isinstance(v, Vector): raise TypeError('not a Vector') return v.normalize().time_scalar(self.dot(v.normalize())) def component_orthogonal_to(self, v): if not isinstance(v, Vector): raise TypeError('not a Vector') return self.minus(self.project(v)) def cross(self, v): if not isinstance(v, Vector): raise TypeError('not a Vector') r = [] if ((self.dimension != v.dimension) or (self.dimension == 1) or (v.dimension == 1)): raise ValueError('dimensions not match') if (self.dimension == v.dimension == 2): z1 = z2 = Decimal(0.0) if (self.dimension == v.dimension == 3): z1 = self.coordinates[2] z2 = v.coordinates[2] r.append(self.coordinates[1]*z2 - v.coordinates[1]*z1) r.append(v.coordinates[0]*z1 - self.coordinates[0]*z2) r.append(self.coordinates[0]*v.coordinates[1] - v.coordinates[0]*self.coordinates[1]) return Vector(r) def parallelogram_area(self, v): if not isinstance(v, Vector): raise TypeError('not a Vector') return self.cross(v).magnitude() @staticmethod def first_nonzero_index(iterable): for k, item in enumerate(iterable): if not MyDecimal(item).is_near_zero(): return k raise Exception(Vector.NO_NONZERO_ELTS_FOUND_MSG) def __getitem__(self, i): return self.coordinates[i] def __setitem__(self, i, x): self.coordinates[i] = x class MyDecimal(Decimal): def is_near_zero(self, eps=1e-10): return abs(self) < eps
normal
{ "blob_id": "1253e052865860a6895f91204a70152745b04652", "index": 8498, "step-1": "<mask token>\n\n\nclass Vector(object):\n <mask token>\n\n def __init__(self, coordinates):\n try:\n if not coordinates:\n raise ValueError\n self.coordinates = tuple([Decimal(x) for x in coordinates])\n self.dimension = len(coordinates)\n except ValueError:\n raise ValueError('The coordinates must be nonempty')\n except TypeError:\n raise TypeError('The coordinates must be an iterable')\n\n def __str__(self):\n return 'Vector: {}'.format(self.coordinates)\n <mask token>\n\n def iszero(self, tolerance=1e-10):\n return self.magnitude() < tolerance\n\n def plus(self, v):\n if isinstance(v, Vector):\n if self.dimension == v.dimension:\n return Vector([(x + y) for x, y in zip(self.coordinates, v.\n coordinates)])\n else:\n raise ValueError('dimension not match.')\n else:\n raise TypeError('not a Vector.')\n <mask token>\n <mask token>\n\n def magnitude(self):\n return Decimal(sqrt(sum([(x ** 2) for x in self.coordinates])))\n <mask token>\n <mask token>\n <mask token>\n\n def is_parallel_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.iszero() or v.iszero():\n return True\n v1 = self.normalize()\n v2 = v.normalize()\n return v1.minus(v2).iszero() or v1.plus(v2).iszero()\n\n def is_parallel_to2(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.iszero() or v.iszero():\n return True\n n = Vector.first_nonzero_index(self.coordinates)\n if v.coordinates[n] == 0:\n return False\n if abs(self.coordinates[n]) <= abs(v.coordinates[n]):\n return self.time_scalar(v.coordinates[n] / self.coordinates[n]\n ).minus(v).iszero()\n else:\n return v.time_scalar(self.coordinates[n] / v.coordinates[n]).minus(\n self).iszero()\n\n def is_parallel_to3(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.iszero() or v.iszero() or self.angle_with(v\n ) == 0 or self.angle_with(v) == pi\n\n def is_orthogonal_to(self, v, tolerance=1e-10):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return abs(self.dot(v)) < tolerance\n <mask token>\n\n def component_orthogonal_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.minus(self.project(v))\n\n def cross(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n r = []\n if (self.dimension != v.dimension or self.dimension == 1 or v.\n dimension == 1):\n raise ValueError('dimensions not match')\n if self.dimension == v.dimension == 2:\n z1 = z2 = Decimal(0.0)\n if self.dimension == v.dimension == 3:\n z1 = self.coordinates[2]\n z2 = v.coordinates[2]\n r.append(self.coordinates[1] * z2 - v.coordinates[1] * z1)\n r.append(v.coordinates[0] * z1 - self.coordinates[0] * z2)\n r.append(self.coordinates[0] * v.coordinates[1] - v.coordinates[0] *\n self.coordinates[1])\n return Vector(r)\n\n def parallelogram_area(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.cross(v).magnitude()\n <mask token>\n <mask token>\n <mask token>\n\n\nclass MyDecimal(Decimal):\n\n def is_near_zero(self, eps=1e-10):\n return abs(self) < eps\n", "step-2": "<mask token>\n\n\nclass Vector(object):\n <mask token>\n\n def __init__(self, coordinates):\n try:\n if not coordinates:\n raise ValueError\n self.coordinates = tuple([Decimal(x) for x in coordinates])\n self.dimension = len(coordinates)\n except ValueError:\n raise ValueError('The coordinates must be nonempty')\n except TypeError:\n raise TypeError('The coordinates must be an iterable')\n\n def __str__(self):\n return 'Vector: {}'.format(self.coordinates)\n\n def __eq__(self, v):\n return self.coordinates == v.coordinates\n\n def iszero(self, tolerance=1e-10):\n return self.magnitude() < tolerance\n\n def plus(self, v):\n if isinstance(v, Vector):\n if self.dimension == v.dimension:\n return Vector([(x + y) for x, y in zip(self.coordinates, v.\n coordinates)])\n else:\n raise ValueError('dimension not match.')\n else:\n raise TypeError('not a Vector.')\n <mask token>\n <mask token>\n\n def magnitude(self):\n return Decimal(sqrt(sum([(x ** 2) for x in self.coordinates])))\n <mask token>\n <mask token>\n\n def angle_with(self, v, in_degree=False, tolerance=1e-10):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.dimension != v.dimension:\n raise ValueError('dimension not match.')\n d = self.dot(v) / (self.magnitude() * v.magnitude())\n if abs(abs(d) - 1) < tolerance:\n d = 1 if d > 0 else -1\n elif abs(d) < tolerance:\n d = 0\n if in_degree:\n return acos(d) / pi * 180\n else:\n return acos(d)\n\n def is_parallel_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.iszero() or v.iszero():\n return True\n v1 = self.normalize()\n v2 = v.normalize()\n return v1.minus(v2).iszero() or v1.plus(v2).iszero()\n\n def is_parallel_to2(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.iszero() or v.iszero():\n return True\n n = Vector.first_nonzero_index(self.coordinates)\n if v.coordinates[n] == 0:\n return False\n if abs(self.coordinates[n]) <= abs(v.coordinates[n]):\n return self.time_scalar(v.coordinates[n] / self.coordinates[n]\n ).minus(v).iszero()\n else:\n return v.time_scalar(self.coordinates[n] / v.coordinates[n]).minus(\n self).iszero()\n\n def is_parallel_to3(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.iszero() or v.iszero() or self.angle_with(v\n ) == 0 or self.angle_with(v) == pi\n\n def is_orthogonal_to(self, v, tolerance=1e-10):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return abs(self.dot(v)) < tolerance\n <mask token>\n\n def component_orthogonal_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.minus(self.project(v))\n\n def cross(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n r = []\n if (self.dimension != v.dimension or self.dimension == 1 or v.\n dimension == 1):\n raise ValueError('dimensions not match')\n if self.dimension == v.dimension == 2:\n z1 = z2 = Decimal(0.0)\n if self.dimension == v.dimension == 3:\n z1 = self.coordinates[2]\n z2 = v.coordinates[2]\n r.append(self.coordinates[1] * z2 - v.coordinates[1] * z1)\n r.append(v.coordinates[0] * z1 - self.coordinates[0] * z2)\n r.append(self.coordinates[0] * v.coordinates[1] - v.coordinates[0] *\n self.coordinates[1])\n return Vector(r)\n\n def parallelogram_area(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.cross(v).magnitude()\n <mask token>\n <mask token>\n <mask token>\n\n\nclass MyDecimal(Decimal):\n\n def is_near_zero(self, eps=1e-10):\n return abs(self) < eps\n", "step-3": "<mask token>\n\n\nclass Vector(object):\n <mask token>\n\n def __init__(self, coordinates):\n try:\n if not coordinates:\n raise ValueError\n self.coordinates = tuple([Decimal(x) for x in coordinates])\n self.dimension = len(coordinates)\n except ValueError:\n raise ValueError('The coordinates must be nonempty')\n except TypeError:\n raise TypeError('The coordinates must be an iterable')\n\n def __str__(self):\n return 'Vector: {}'.format(self.coordinates)\n\n def __eq__(self, v):\n return self.coordinates == v.coordinates\n\n def iszero(self, tolerance=1e-10):\n return self.magnitude() < tolerance\n\n def plus(self, v):\n if isinstance(v, Vector):\n if self.dimension == v.dimension:\n return Vector([(x + y) for x, y in zip(self.coordinates, v.\n coordinates)])\n else:\n raise ValueError('dimension not match.')\n else:\n raise TypeError('not a Vector.')\n <mask token>\n\n def time_scalar(self, scalar):\n try:\n return Vector([(Decimal(scalar) * x) for x in self.coordinates])\n except Exception:\n raise TypeError('{0} is not a number'.format(scalar))\n\n def magnitude(self):\n return Decimal(sqrt(sum([(x ** 2) for x in self.coordinates])))\n\n def normalize(self):\n if self.iszero():\n raise ValueError(\"Can't normalize a zero vector.\")\n else:\n return self.time_scalar(Decimal(1.0) / self.magnitude())\n\n def dot(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n elif self.dimension != v.dimension:\n raise ValueError('dimension not match.')\n else:\n return sum([(x * y) for x, y in zip(self.coordinates, v.\n coordinates)])\n\n def angle_with(self, v, in_degree=False, tolerance=1e-10):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.dimension != v.dimension:\n raise ValueError('dimension not match.')\n d = self.dot(v) / (self.magnitude() * v.magnitude())\n if abs(abs(d) - 1) < tolerance:\n d = 1 if d > 0 else -1\n elif abs(d) < tolerance:\n d = 0\n if in_degree:\n return acos(d) / pi * 180\n else:\n return acos(d)\n\n def is_parallel_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.iszero() or v.iszero():\n return True\n v1 = self.normalize()\n v2 = v.normalize()\n return v1.minus(v2).iszero() or v1.plus(v2).iszero()\n\n def is_parallel_to2(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.iszero() or v.iszero():\n return True\n n = Vector.first_nonzero_index(self.coordinates)\n if v.coordinates[n] == 0:\n return False\n if abs(self.coordinates[n]) <= abs(v.coordinates[n]):\n return self.time_scalar(v.coordinates[n] / self.coordinates[n]\n ).minus(v).iszero()\n else:\n return v.time_scalar(self.coordinates[n] / v.coordinates[n]).minus(\n self).iszero()\n\n def is_parallel_to3(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.iszero() or v.iszero() or self.angle_with(v\n ) == 0 or self.angle_with(v) == pi\n\n def is_orthogonal_to(self, v, tolerance=1e-10):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return abs(self.dot(v)) < tolerance\n\n def component_project_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return v.normalize().time_scalar(self.dot(v.normalize()))\n\n def component_orthogonal_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.minus(self.project(v))\n\n def cross(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n r = []\n if (self.dimension != v.dimension or self.dimension == 1 or v.\n dimension == 1):\n raise ValueError('dimensions not match')\n if self.dimension == v.dimension == 2:\n z1 = z2 = Decimal(0.0)\n if self.dimension == v.dimension == 3:\n z1 = self.coordinates[2]\n z2 = v.coordinates[2]\n r.append(self.coordinates[1] * z2 - v.coordinates[1] * z1)\n r.append(v.coordinates[0] * z1 - self.coordinates[0] * z2)\n r.append(self.coordinates[0] * v.coordinates[1] - v.coordinates[0] *\n self.coordinates[1])\n return Vector(r)\n\n def parallelogram_area(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.cross(v).magnitude()\n\n @staticmethod\n def first_nonzero_index(iterable):\n for k, item in enumerate(iterable):\n if not MyDecimal(item).is_near_zero():\n return k\n raise Exception(Vector.NO_NONZERO_ELTS_FOUND_MSG)\n\n def __getitem__(self, i):\n return self.coordinates[i]\n <mask token>\n\n\nclass MyDecimal(Decimal):\n\n def is_near_zero(self, eps=1e-10):\n return abs(self) < eps\n", "step-4": "<mask token>\ngetcontext().prec = 30\n\n\nclass Vector(object):\n NO_NONZERO_ELTS_FOUND_MSG = 'No nonzero elements found'\n\n def __init__(self, coordinates):\n try:\n if not coordinates:\n raise ValueError\n self.coordinates = tuple([Decimal(x) for x in coordinates])\n self.dimension = len(coordinates)\n except ValueError:\n raise ValueError('The coordinates must be nonempty')\n except TypeError:\n raise TypeError('The coordinates must be an iterable')\n\n def __str__(self):\n return 'Vector: {}'.format(self.coordinates)\n\n def __eq__(self, v):\n return self.coordinates == v.coordinates\n\n def iszero(self, tolerance=1e-10):\n return self.magnitude() < tolerance\n\n def plus(self, v):\n if isinstance(v, Vector):\n if self.dimension == v.dimension:\n return Vector([(x + y) for x, y in zip(self.coordinates, v.\n coordinates)])\n else:\n raise ValueError('dimension not match.')\n else:\n raise TypeError('not a Vector.')\n\n def minus(self, v):\n if isinstance(v, Vector):\n if self.dimension == v.dimension:\n return Vector([(x - y) for x, y in zip(self.coordinates, v.\n coordinates)])\n else:\n raise ValueError('dimension not match.')\n else:\n raise TypeError('not a Vector.')\n\n def time_scalar(self, scalar):\n try:\n return Vector([(Decimal(scalar) * x) for x in self.coordinates])\n except Exception:\n raise TypeError('{0} is not a number'.format(scalar))\n\n def magnitude(self):\n return Decimal(sqrt(sum([(x ** 2) for x in self.coordinates])))\n\n def normalize(self):\n if self.iszero():\n raise ValueError(\"Can't normalize a zero vector.\")\n else:\n return self.time_scalar(Decimal(1.0) / self.magnitude())\n\n def dot(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n elif self.dimension != v.dimension:\n raise ValueError('dimension not match.')\n else:\n return sum([(x * y) for x, y in zip(self.coordinates, v.\n coordinates)])\n\n def angle_with(self, v, in_degree=False, tolerance=1e-10):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.dimension != v.dimension:\n raise ValueError('dimension not match.')\n d = self.dot(v) / (self.magnitude() * v.magnitude())\n if abs(abs(d) - 1) < tolerance:\n d = 1 if d > 0 else -1\n elif abs(d) < tolerance:\n d = 0\n if in_degree:\n return acos(d) / pi * 180\n else:\n return acos(d)\n\n def is_parallel_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.iszero() or v.iszero():\n return True\n v1 = self.normalize()\n v2 = v.normalize()\n return v1.minus(v2).iszero() or v1.plus(v2).iszero()\n\n def is_parallel_to2(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.iszero() or v.iszero():\n return True\n n = Vector.first_nonzero_index(self.coordinates)\n if v.coordinates[n] == 0:\n return False\n if abs(self.coordinates[n]) <= abs(v.coordinates[n]):\n return self.time_scalar(v.coordinates[n] / self.coordinates[n]\n ).minus(v).iszero()\n else:\n return v.time_scalar(self.coordinates[n] / v.coordinates[n]).minus(\n self).iszero()\n\n def is_parallel_to3(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.iszero() or v.iszero() or self.angle_with(v\n ) == 0 or self.angle_with(v) == pi\n\n def is_orthogonal_to(self, v, tolerance=1e-10):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return abs(self.dot(v)) < tolerance\n\n def component_project_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return v.normalize().time_scalar(self.dot(v.normalize()))\n\n def component_orthogonal_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.minus(self.project(v))\n\n def cross(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n r = []\n if (self.dimension != v.dimension or self.dimension == 1 or v.\n dimension == 1):\n raise ValueError('dimensions not match')\n if self.dimension == v.dimension == 2:\n z1 = z2 = Decimal(0.0)\n if self.dimension == v.dimension == 3:\n z1 = self.coordinates[2]\n z2 = v.coordinates[2]\n r.append(self.coordinates[1] * z2 - v.coordinates[1] * z1)\n r.append(v.coordinates[0] * z1 - self.coordinates[0] * z2)\n r.append(self.coordinates[0] * v.coordinates[1] - v.coordinates[0] *\n self.coordinates[1])\n return Vector(r)\n\n def parallelogram_area(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.cross(v).magnitude()\n\n @staticmethod\n def first_nonzero_index(iterable):\n for k, item in enumerate(iterable):\n if not MyDecimal(item).is_near_zero():\n return k\n raise Exception(Vector.NO_NONZERO_ELTS_FOUND_MSG)\n\n def __getitem__(self, i):\n return self.coordinates[i]\n\n def __setitem__(self, i, x):\n self.coordinates[i] = x\n\n\nclass MyDecimal(Decimal):\n\n def is_near_zero(self, eps=1e-10):\n return abs(self) < eps\n", "step-5": "# -*- coding: utf-8 -*-\n\nfrom math import acos, pi, sqrt\nfrom decimal import Decimal, getcontext\n\ngetcontext().prec = 30\n\nclass Vector(object):\n NO_NONZERO_ELTS_FOUND_MSG = 'No nonzero elements found'\n \n def __init__(self, coordinates):\n try:\n if not coordinates:\n raise ValueError\n self.coordinates = tuple([Decimal(x) for x in coordinates])\n self.dimension = len(coordinates)\n\n except ValueError:\n raise ValueError('The coordinates must be nonempty')\n\n except TypeError:\n raise TypeError('The coordinates must be an iterable')\n\n def __str__(self):\n return 'Vector: {}'.format(self.coordinates)\n\n def __eq__(self, v):\n return self.coordinates == v.coordinates\n \n def iszero(self, tolerance=1e-10):\n return self.magnitude()<tolerance\n \n def plus(self, v):\n if isinstance(v, Vector):\n if self.dimension == v.dimension :\n return Vector([x+y for x, y in zip(self.coordinates, v.coordinates)])\n else:\n raise ValueError('dimension not match.')\n else:\n raise TypeError('not a Vector.')\n\n def minus(self, v):\n if isinstance(v, Vector):\n if self.dimension == v.dimension :\n return Vector([x-y for x, y in zip(self.coordinates, v.coordinates)])\n else:\n raise ValueError('dimension not match.')\n else:\n raise TypeError('not a Vector.')\n\n def time_scalar(self, scalar):\n try:\n return Vector([Decimal(scalar) * x for x in self.coordinates])\n except Exception:\n raise TypeError('{0} is not a number'.format(scalar))\n \n def magnitude(self):\n return Decimal(sqrt(sum([x**2 for x in self.coordinates])))\n \n def normalize(self):\n if self.iszero():\n raise ValueError(\"Can't normalize a zero vector.\")\n else:\n return self.time_scalar(Decimal(1.0)/self.magnitude())\n \n def dot(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n else:\n if self.dimension != v.dimension:\n raise ValueError('dimension not match.')\n else:\n return sum([x*y for x,y in zip(self.coordinates,v.coordinates)]) \n \n def angle_with(self, v, in_degree=False, tolerance=1e-10):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.dimension != v.dimension:\n raise ValueError('dimension not match.')\n d = self.dot(v)/(self.magnitude()*v.magnitude())\n if abs(abs(d)-1) < tolerance:\n d = 1 if d>0 else -1\n elif abs(d)<tolerance:\n d = 0\n if in_degree:\n return acos(d)/pi*180\n else:\n return acos(d)\n \n def is_parallel_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.iszero() or v.iszero():\n return True\n v1 = self.normalize()\n v2 = v.normalize()\n return (v1.minus(v2).iszero() or \n v1.plus(v2).iszero())\n \n def is_parallel_to2(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n if self.iszero() or v.iszero():\n return True\n n = Vector.first_nonzero_index(self.coordinates)\n if (v.coordinates[n] == 0):\n return False\n if abs(self.coordinates[n])<=abs(v.coordinates[n]):\n return self.time_scalar(v.coordinates[n] / self.coordinates[n]).minus(v).iszero()\n else:\n return v.time_scalar(self.coordinates[n] / v.coordinates[n]).minus(self).iszero()\n \n def is_parallel_to3(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return (self.iszero() or \n v.iszero() or\n self.angle_with(v) == 0 or\n self.angle_with(v) == pi)\n \n def is_orthogonal_to(self, v, tolerance=1e-10):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return abs(self.dot(v)) < tolerance\n\n def component_project_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return v.normalize().time_scalar(self.dot(v.normalize()))\n\n def component_orthogonal_to(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.minus(self.project(v))\n \n def cross(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n r = []\n if ((self.dimension != v.dimension) or\n (self.dimension == 1) or\n (v.dimension == 1)):\n raise ValueError('dimensions not match')\n if (self.dimension == v.dimension == 2):\n z1 = z2 = Decimal(0.0)\n if (self.dimension == v.dimension == 3):\n z1 = self.coordinates[2]\n z2 = v.coordinates[2]\n r.append(self.coordinates[1]*z2 - v.coordinates[1]*z1)\n r.append(v.coordinates[0]*z1 - self.coordinates[0]*z2)\n r.append(self.coordinates[0]*v.coordinates[1] - v.coordinates[0]*self.coordinates[1])\n return Vector(r)\n \n \n def parallelogram_area(self, v):\n if not isinstance(v, Vector):\n raise TypeError('not a Vector')\n return self.cross(v).magnitude()\n \n @staticmethod\n def first_nonzero_index(iterable):\n for k, item in enumerate(iterable):\n if not MyDecimal(item).is_near_zero():\n return k\n raise Exception(Vector.NO_NONZERO_ELTS_FOUND_MSG)\n \n def __getitem__(self, i):\n return self.coordinates[i]\n \n def __setitem__(self, i, x):\n self.coordinates[i] = x\n\n \nclass MyDecimal(Decimal):\n def is_near_zero(self, eps=1e-10):\n return abs(self) < eps", "step-ids": [ 15, 17, 23, 27, 29 ] }
[ 15, 17, 23, 27, 29 ]
#! /usr/bin/env python3 """Publishes joint trajectory to move robot to given pose""" import rospy from trajectory_msgs.msg import JointTrajectory from trajectory_msgs.msg import JointTrajectoryPoint from std_srvs.srv import Empty import argparse import time def argumentParser(argument): """ Argument parser """ parser = argparse.ArgumentParser(description='Drive robot joint to command position') parser.add_argument('kinova_robotType', metavar='kinova_robotType', type=str, default='j2n6a300', help='kinova_RobotType is in format of: [{j|m|r|c}{1|2}{s|n}{4|6|7}{s|a}{2|3}{0}{0}]. eg: j2n6a300 refers to jaco v2 6DOF assistive 3fingers. Please be noted that not all options are valided for different robot types.') #args_ = parser.parse_args(argument) argv = rospy.myargv() args_ = parser.parse_args(argv[1:]) prefix = args_.kinova_robotType nbJoints = int(args_.kinova_robotType[3]) nbfingers = int(args_.kinova_robotType[5]) return prefix, nbJoints, nbfingers def moveJoint (jointcmds,prefix,nbJoints): topic_name = '/' + prefix + '/effort_joint_trajectory_controller/command' pub = rospy.Publisher(topic_name, JointTrajectory, queue_size=1) jointCmd = JointTrajectory() point = JointTrajectoryPoint() jointCmd.header.stamp = rospy.Time.now() + rospy.Duration.from_sec(0.0); point.time_from_start = rospy.Duration.from_sec(5.0) for i in range(0, nbJoints): jointCmd.joint_names.append(prefix +'_joint_'+str(i+1)) point.positions.append(jointcmds[i]) point.velocities.append(0) point.accelerations.append(0) point.effort.append(0) jointCmd.points.append(point) rate = rospy.Rate(100) count = 0 while (count < 50): pub.publish(jointCmd) count = count + 1 rate.sleep() def moveFingers (jointcmds,prefix,nbJoints): topic_name = '/' + prefix + '/effort_finger_trajectory_controller/command' pub = rospy.Publisher(topic_name, JointTrajectory, queue_size=1) jointCmd = JointTrajectory() point = JointTrajectoryPoint() jointCmd.header.stamp = rospy.Time.now() + rospy.Duration.from_sec(0.0); point.time_from_start = rospy.Duration.from_sec(5.0) for i in range(0, nbJoints): jointCmd.joint_names.append(prefix +'_joint_finger_'+str(i+1)) point.positions.append(jointcmds[i]) point.velocities.append(0) point.accelerations.append(0) point.effort.append(0) jointCmd.points.append(point) rate = rospy.Rate(100) count = 0 while (count < 500): pub.publish(jointCmd) count = count + 1 rate.sleep() if __name__ == '__main__': try: rospy.init_node('move_robot_using_trajectory_msg') prefix, nbJoints, nbfingers = argumentParser(None) #allow gazebo to launch time.sleep(5) # Unpause the physics rospy.wait_for_service('/gazebo/unpause_physics') unpause_gazebo = rospy.ServiceProxy('/gazebo/unpause_physics', Empty) resp = unpause_gazebo() if (nbJoints==6): #home robots moveJoint ([0.0,2.9,1.3,4.2,1.4,0.0],prefix,nbJoints) else: moveJoint ([0.0,2.9,0.0,1.3,4.2,1.4,0.0],prefix,nbJoints) moveFingers ([1,1,1],prefix,nbfingers) except rospy.ROSInterruptException: print("program interrupted before completion")
normal
{ "blob_id": "ee7c63f36b4720566389826680b90c6f68de85b2", "index": 5200, "step-1": "<mask token>\n\n\ndef moveFingers(jointcmds, prefix, nbJoints):\n topic_name = '/' + prefix + '/effort_finger_trajectory_controller/command'\n pub = rospy.Publisher(topic_name, JointTrajectory, queue_size=1)\n jointCmd = JointTrajectory()\n point = JointTrajectoryPoint()\n jointCmd.header.stamp = rospy.Time.now() + rospy.Duration.from_sec(0.0)\n point.time_from_start = rospy.Duration.from_sec(5.0)\n for i in range(0, nbJoints):\n jointCmd.joint_names.append(prefix + '_joint_finger_' + str(i + 1))\n point.positions.append(jointcmds[i])\n point.velocities.append(0)\n point.accelerations.append(0)\n point.effort.append(0)\n jointCmd.points.append(point)\n rate = rospy.Rate(100)\n count = 0\n while count < 500:\n pub.publish(jointCmd)\n count = count + 1\n rate.sleep()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef argumentParser(argument):\n \"\"\" Argument parser \"\"\"\n parser = argparse.ArgumentParser(description=\n 'Drive robot joint to command position')\n parser.add_argument('kinova_robotType', metavar='kinova_robotType',\n type=str, default='j2n6a300', help=\n 'kinova_RobotType is in format of: [{j|m|r|c}{1|2}{s|n}{4|6|7}{s|a}{2|3}{0}{0}]. eg: j2n6a300 refers to jaco v2 6DOF assistive 3fingers. Please be noted that not all options are valided for different robot types.'\n )\n argv = rospy.myargv()\n args_ = parser.parse_args(argv[1:])\n prefix = args_.kinova_robotType\n nbJoints = int(args_.kinova_robotType[3])\n nbfingers = int(args_.kinova_robotType[5])\n return prefix, nbJoints, nbfingers\n\n\n<mask token>\n\n\ndef moveFingers(jointcmds, prefix, nbJoints):\n topic_name = '/' + prefix + '/effort_finger_trajectory_controller/command'\n pub = rospy.Publisher(topic_name, JointTrajectory, queue_size=1)\n jointCmd = JointTrajectory()\n point = JointTrajectoryPoint()\n jointCmd.header.stamp = rospy.Time.now() + rospy.Duration.from_sec(0.0)\n point.time_from_start = rospy.Duration.from_sec(5.0)\n for i in range(0, nbJoints):\n jointCmd.joint_names.append(prefix + '_joint_finger_' + str(i + 1))\n point.positions.append(jointcmds[i])\n point.velocities.append(0)\n point.accelerations.append(0)\n point.effort.append(0)\n jointCmd.points.append(point)\n rate = rospy.Rate(100)\n count = 0\n while count < 500:\n pub.publish(jointCmd)\n count = count + 1\n rate.sleep()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef argumentParser(argument):\n \"\"\" Argument parser \"\"\"\n parser = argparse.ArgumentParser(description=\n 'Drive robot joint to command position')\n parser.add_argument('kinova_robotType', metavar='kinova_robotType',\n type=str, default='j2n6a300', help=\n 'kinova_RobotType is in format of: [{j|m|r|c}{1|2}{s|n}{4|6|7}{s|a}{2|3}{0}{0}]. eg: j2n6a300 refers to jaco v2 6DOF assistive 3fingers. Please be noted that not all options are valided for different robot types.'\n )\n argv = rospy.myargv()\n args_ = parser.parse_args(argv[1:])\n prefix = args_.kinova_robotType\n nbJoints = int(args_.kinova_robotType[3])\n nbfingers = int(args_.kinova_robotType[5])\n return prefix, nbJoints, nbfingers\n\n\ndef moveJoint(jointcmds, prefix, nbJoints):\n topic_name = '/' + prefix + '/effort_joint_trajectory_controller/command'\n pub = rospy.Publisher(topic_name, JointTrajectory, queue_size=1)\n jointCmd = JointTrajectory()\n point = JointTrajectoryPoint()\n jointCmd.header.stamp = rospy.Time.now() + rospy.Duration.from_sec(0.0)\n point.time_from_start = rospy.Duration.from_sec(5.0)\n for i in range(0, nbJoints):\n jointCmd.joint_names.append(prefix + '_joint_' + str(i + 1))\n point.positions.append(jointcmds[i])\n point.velocities.append(0)\n point.accelerations.append(0)\n point.effort.append(0)\n jointCmd.points.append(point)\n rate = rospy.Rate(100)\n count = 0\n while count < 50:\n pub.publish(jointCmd)\n count = count + 1\n rate.sleep()\n\n\ndef moveFingers(jointcmds, prefix, nbJoints):\n topic_name = '/' + prefix + '/effort_finger_trajectory_controller/command'\n pub = rospy.Publisher(topic_name, JointTrajectory, queue_size=1)\n jointCmd = JointTrajectory()\n point = JointTrajectoryPoint()\n jointCmd.header.stamp = rospy.Time.now() + rospy.Duration.from_sec(0.0)\n point.time_from_start = rospy.Duration.from_sec(5.0)\n for i in range(0, nbJoints):\n jointCmd.joint_names.append(prefix + '_joint_finger_' + str(i + 1))\n point.positions.append(jointcmds[i])\n point.velocities.append(0)\n point.accelerations.append(0)\n point.effort.append(0)\n jointCmd.points.append(point)\n rate = rospy.Rate(100)\n count = 0\n while count < 500:\n pub.publish(jointCmd)\n count = count + 1\n rate.sleep()\n\n\nif __name__ == '__main__':\n try:\n rospy.init_node('move_robot_using_trajectory_msg')\n prefix, nbJoints, nbfingers = argumentParser(None)\n time.sleep(5)\n rospy.wait_for_service('/gazebo/unpause_physics')\n unpause_gazebo = rospy.ServiceProxy('/gazebo/unpause_physics', Empty)\n resp = unpause_gazebo()\n if nbJoints == 6:\n moveJoint([0.0, 2.9, 1.3, 4.2, 1.4, 0.0], prefix, nbJoints)\n else:\n moveJoint([0.0, 2.9, 0.0, 1.3, 4.2, 1.4, 0.0], prefix, nbJoints)\n moveFingers([1, 1, 1], prefix, nbfingers)\n except rospy.ROSInterruptException:\n print('program interrupted before completion')\n", "step-4": "<mask token>\nimport rospy\nfrom trajectory_msgs.msg import JointTrajectory\nfrom trajectory_msgs.msg import JointTrajectoryPoint\nfrom std_srvs.srv import Empty\nimport argparse\nimport time\n\n\ndef argumentParser(argument):\n \"\"\" Argument parser \"\"\"\n parser = argparse.ArgumentParser(description=\n 'Drive robot joint to command position')\n parser.add_argument('kinova_robotType', metavar='kinova_robotType',\n type=str, default='j2n6a300', help=\n 'kinova_RobotType is in format of: [{j|m|r|c}{1|2}{s|n}{4|6|7}{s|a}{2|3}{0}{0}]. eg: j2n6a300 refers to jaco v2 6DOF assistive 3fingers. Please be noted that not all options are valided for different robot types.'\n )\n argv = rospy.myargv()\n args_ = parser.parse_args(argv[1:])\n prefix = args_.kinova_robotType\n nbJoints = int(args_.kinova_robotType[3])\n nbfingers = int(args_.kinova_robotType[5])\n return prefix, nbJoints, nbfingers\n\n\ndef moveJoint(jointcmds, prefix, nbJoints):\n topic_name = '/' + prefix + '/effort_joint_trajectory_controller/command'\n pub = rospy.Publisher(topic_name, JointTrajectory, queue_size=1)\n jointCmd = JointTrajectory()\n point = JointTrajectoryPoint()\n jointCmd.header.stamp = rospy.Time.now() + rospy.Duration.from_sec(0.0)\n point.time_from_start = rospy.Duration.from_sec(5.0)\n for i in range(0, nbJoints):\n jointCmd.joint_names.append(prefix + '_joint_' + str(i + 1))\n point.positions.append(jointcmds[i])\n point.velocities.append(0)\n point.accelerations.append(0)\n point.effort.append(0)\n jointCmd.points.append(point)\n rate = rospy.Rate(100)\n count = 0\n while count < 50:\n pub.publish(jointCmd)\n count = count + 1\n rate.sleep()\n\n\ndef moveFingers(jointcmds, prefix, nbJoints):\n topic_name = '/' + prefix + '/effort_finger_trajectory_controller/command'\n pub = rospy.Publisher(topic_name, JointTrajectory, queue_size=1)\n jointCmd = JointTrajectory()\n point = JointTrajectoryPoint()\n jointCmd.header.stamp = rospy.Time.now() + rospy.Duration.from_sec(0.0)\n point.time_from_start = rospy.Duration.from_sec(5.0)\n for i in range(0, nbJoints):\n jointCmd.joint_names.append(prefix + '_joint_finger_' + str(i + 1))\n point.positions.append(jointcmds[i])\n point.velocities.append(0)\n point.accelerations.append(0)\n point.effort.append(0)\n jointCmd.points.append(point)\n rate = rospy.Rate(100)\n count = 0\n while count < 500:\n pub.publish(jointCmd)\n count = count + 1\n rate.sleep()\n\n\nif __name__ == '__main__':\n try:\n rospy.init_node('move_robot_using_trajectory_msg')\n prefix, nbJoints, nbfingers = argumentParser(None)\n time.sleep(5)\n rospy.wait_for_service('/gazebo/unpause_physics')\n unpause_gazebo = rospy.ServiceProxy('/gazebo/unpause_physics', Empty)\n resp = unpause_gazebo()\n if nbJoints == 6:\n moveJoint([0.0, 2.9, 1.3, 4.2, 1.4, 0.0], prefix, nbJoints)\n else:\n moveJoint([0.0, 2.9, 0.0, 1.3, 4.2, 1.4, 0.0], prefix, nbJoints)\n moveFingers([1, 1, 1], prefix, nbfingers)\n except rospy.ROSInterruptException:\n print('program interrupted before completion')\n", "step-5": "#! /usr/bin/env python3\n\"\"\"Publishes joint trajectory to move robot to given pose\"\"\"\n\nimport rospy\nfrom trajectory_msgs.msg import JointTrajectory\nfrom trajectory_msgs.msg import JointTrajectoryPoint\nfrom std_srvs.srv import Empty\nimport argparse\nimport time\n\ndef argumentParser(argument):\n \"\"\" Argument parser \"\"\"\n parser = argparse.ArgumentParser(description='Drive robot joint to command position')\n parser.add_argument('kinova_robotType', metavar='kinova_robotType', type=str, default='j2n6a300',\n help='kinova_RobotType is in format of: [{j|m|r|c}{1|2}{s|n}{4|6|7}{s|a}{2|3}{0}{0}]. eg: j2n6a300 refers to jaco v2 6DOF assistive 3fingers. Please be noted that not all options are valided for different robot types.')\n #args_ = parser.parse_args(argument)\n argv = rospy.myargv()\n args_ = parser.parse_args(argv[1:])\n prefix = args_.kinova_robotType\n nbJoints = int(args_.kinova_robotType[3])\t\n nbfingers = int(args_.kinova_robotType[5])\t\n return prefix, nbJoints, nbfingers\n\ndef moveJoint (jointcmds,prefix,nbJoints):\n topic_name = '/' + prefix + '/effort_joint_trajectory_controller/command'\n pub = rospy.Publisher(topic_name, JointTrajectory, queue_size=1)\n jointCmd = JointTrajectory() \n point = JointTrajectoryPoint()\n jointCmd.header.stamp = rospy.Time.now() + rospy.Duration.from_sec(0.0); \n point.time_from_start = rospy.Duration.from_sec(5.0)\n for i in range(0, nbJoints):\n jointCmd.joint_names.append(prefix +'_joint_'+str(i+1))\n point.positions.append(jointcmds[i])\n point.velocities.append(0)\n point.accelerations.append(0)\n point.effort.append(0) \n jointCmd.points.append(point)\n rate = rospy.Rate(100)\n count = 0\n while (count < 50):\n pub.publish(jointCmd)\n count = count + 1\n rate.sleep() \n\ndef moveFingers (jointcmds,prefix,nbJoints):\n topic_name = '/' + prefix + '/effort_finger_trajectory_controller/command'\n pub = rospy.Publisher(topic_name, JointTrajectory, queue_size=1) \n jointCmd = JointTrajectory() \n point = JointTrajectoryPoint()\n jointCmd.header.stamp = rospy.Time.now() + rospy.Duration.from_sec(0.0); \n point.time_from_start = rospy.Duration.from_sec(5.0)\n for i in range(0, nbJoints):\n jointCmd.joint_names.append(prefix +'_joint_finger_'+str(i+1))\n point.positions.append(jointcmds[i])\n point.velocities.append(0)\n point.accelerations.append(0)\n point.effort.append(0) \n jointCmd.points.append(point)\n rate = rospy.Rate(100)\n count = 0\n while (count < 500):\n pub.publish(jointCmd)\n count = count + 1\n rate.sleep() \n\nif __name__ == '__main__':\n try: \n rospy.init_node('move_robot_using_trajectory_msg')\t\t\n prefix, nbJoints, nbfingers = argumentParser(None) \n #allow gazebo to launch\n time.sleep(5)\n\n # Unpause the physics\n rospy.wait_for_service('/gazebo/unpause_physics')\n unpause_gazebo = rospy.ServiceProxy('/gazebo/unpause_physics', Empty)\n resp = unpause_gazebo()\n\n if (nbJoints==6):\n #home robots\n moveJoint ([0.0,2.9,1.3,4.2,1.4,0.0],prefix,nbJoints)\n else:\n moveJoint ([0.0,2.9,0.0,1.3,4.2,1.4,0.0],prefix,nbJoints)\n\n moveFingers ([1,1,1],prefix,nbfingers)\n except rospy.ROSInterruptException:\n print(\"program interrupted before completion\")\n", "step-ids": [ 1, 2, 4, 5, 6 ] }
[ 1, 2, 4, 5, 6 ]
''' This file creates the model of Post, which maps to the post table in the mysql database. The model Provider contains four attributes: author, title, content, and created time. ''' from django.db import models class Post(models.Model): ''' The education post by provider database model ''' author = models.ForeignKey('Provider', on_delete=models.CASCADE) title = models.CharField(max_length=255, null=False) content = models.TextField(null=False) created_at = models.DateTimeField(auto_now_add=True) def __str__(self): return "{}".format(self.title)
normal
{ "blob_id": "4fa9c00a07c8263a6a3afd460b84f21637a771ec", "index": 3081, "step-1": "<mask token>\n\n\nclass Post(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n return '{}'.format(self.title)\n", "step-2": "<mask token>\n\n\nclass Post(models.Model):\n <mask token>\n author = models.ForeignKey('Provider', on_delete=models.CASCADE)\n title = models.CharField(max_length=255, null=False)\n content = models.TextField(null=False)\n created_at = models.DateTimeField(auto_now_add=True)\n\n def __str__(self):\n return '{}'.format(self.title)\n", "step-3": "<mask token>\n\n\nclass Post(models.Model):\n \"\"\"\n The education post by provider database model\n \"\"\"\n author = models.ForeignKey('Provider', on_delete=models.CASCADE)\n title = models.CharField(max_length=255, null=False)\n content = models.TextField(null=False)\n created_at = models.DateTimeField(auto_now_add=True)\n\n def __str__(self):\n return '{}'.format(self.title)\n", "step-4": "<mask token>\nfrom django.db import models\n\n\nclass Post(models.Model):\n \"\"\"\n The education post by provider database model\n \"\"\"\n author = models.ForeignKey('Provider', on_delete=models.CASCADE)\n title = models.CharField(max_length=255, null=False)\n content = models.TextField(null=False)\n created_at = models.DateTimeField(auto_now_add=True)\n\n def __str__(self):\n return '{}'.format(self.title)\n", "step-5": "\n'''\nThis file creates the model of Post, which maps to the post table in the mysql database. \nThe model Provider contains four attributes: author, title, content, and created time. \n'''\nfrom django.db import models\n\nclass Post(models.Model):\n '''\n The education post by provider database model\n '''\n author = models.ForeignKey('Provider', on_delete=models.CASCADE)\n title = models.CharField(max_length=255, null=False)\n content = models.TextField(null=False)\n created_at = models.DateTimeField(auto_now_add=True)\n\n def __str__(self):\n return \"{}\".format(self.title)\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def checkSides(): rightC, frontC, leftC = True, True, True drivetrain.turn_for(RIGHT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: rightC = False drivetrain.turn_for(LEFT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: frontC = False drivetrain.turn_for(LEFT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: leftC = False drivetrain.turn_for(RIGHT, 90, DEGREES) return rightC, frontC, leftC def run(): while True: drivetrain.drive_for(FORWARD, 250, MM) rightClear, frontClear, leftClear = checkSides() if frontClear and not rightClear: print('') elif rightClear: drivetrain.turn_for(RIGHT, 90, DEGREES) elif not (rightClear and frontClear) and leftClear: drivetrain.turn_for(LEFT, 90, DEGREES) elif not (rightClear and leftClear and frontClear): drivetrain.turn_for(RIGHT, 180, DEGREES) if down_eye.detect(RED): break wait(1, MSEC) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def main(): pen.set_pen_color(BLUE) pen.move(DOWN) drivetrain.set_drive_velocity(50, PERCENT) drivetrain.set_turn_velocity(50, PERCENT) drivetrain.turn_for(RIGHT, 90, DEGREES) run() def checkSides(): rightC, frontC, leftC = True, True, True drivetrain.turn_for(RIGHT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: rightC = False drivetrain.turn_for(LEFT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: frontC = False drivetrain.turn_for(LEFT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: leftC = False drivetrain.turn_for(RIGHT, 90, DEGREES) return rightC, frontC, leftC def run(): while True: drivetrain.drive_for(FORWARD, 250, MM) rightClear, frontClear, leftClear = checkSides() if frontClear and not rightClear: print('') elif rightClear: drivetrain.turn_for(RIGHT, 90, DEGREES) elif not (rightClear and frontClear) and leftClear: drivetrain.turn_for(LEFT, 90, DEGREES) elif not (rightClear and leftClear and frontClear): drivetrain.turn_for(RIGHT, 180, DEGREES) if down_eye.detect(RED): break wait(1, MSEC) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def main(): pen.set_pen_color(BLUE) pen.move(DOWN) drivetrain.set_drive_velocity(50, PERCENT) drivetrain.set_turn_velocity(50, PERCENT) drivetrain.turn_for(RIGHT, 90, DEGREES) run() def checkSides(): rightC, frontC, leftC = True, True, True drivetrain.turn_for(RIGHT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: rightC = False drivetrain.turn_for(LEFT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: frontC = False drivetrain.turn_for(LEFT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: leftC = False drivetrain.turn_for(RIGHT, 90, DEGREES) return rightC, frontC, leftC def run(): while True: drivetrain.drive_for(FORWARD, 250, MM) rightClear, frontClear, leftClear = checkSides() if frontClear and not rightClear: print('') elif rightClear: drivetrain.turn_for(RIGHT, 90, DEGREES) elif not (rightClear and frontClear) and leftClear: drivetrain.turn_for(LEFT, 90, DEGREES) elif not (rightClear and leftClear and frontClear): drivetrain.turn_for(RIGHT, 180, DEGREES) if down_eye.detect(RED): break wait(1, MSEC) vr_thread(main()) <|reserved_special_token_1|> from vexcode import * def main(): pen.set_pen_color(BLUE) pen.move(DOWN) drivetrain.set_drive_velocity(50, PERCENT) drivetrain.set_turn_velocity(50, PERCENT) drivetrain.turn_for(RIGHT, 90, DEGREES) run() def checkSides(): rightC, frontC, leftC = True, True, True drivetrain.turn_for(RIGHT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: rightC = False drivetrain.turn_for(LEFT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: frontC = False drivetrain.turn_for(LEFT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: leftC = False drivetrain.turn_for(RIGHT, 90, DEGREES) return rightC, frontC, leftC def run(): while True: drivetrain.drive_for(FORWARD, 250, MM) rightClear, frontClear, leftClear = checkSides() if frontClear and not rightClear: print('') elif rightClear: drivetrain.turn_for(RIGHT, 90, DEGREES) elif not (rightClear and frontClear) and leftClear: drivetrain.turn_for(LEFT, 90, DEGREES) elif not (rightClear and leftClear and frontClear): drivetrain.turn_for(RIGHT, 180, DEGREES) if down_eye.detect(RED): break wait(1, MSEC) vr_thread(main()) <|reserved_special_token_1|> # ------------------------------------------ # # Project: VEXcode VR Maze Solver # Author: Hyunwoo Choi # Created: January 12 2021 # Description: Solves a VEXcode VR maze using the right hand rule # # ------------------------------------------ # Library imports from vexcode import * #main def main(): #putting down the pen to show the path of the robot pen.set_pen_color(BLUE) pen.move(DOWN) drivetrain.set_drive_velocity(50, PERCENT) drivetrain.set_turn_velocity(50, PERCENT) #start with 90 deg turned right since we are using a right hand rule to solve this maze drivetrain.turn_for(RIGHT, 90, DEGREES) #run run() #this method checks all three sides and returns a boolean for each side if it is blocked or not def checkSides(): rightC, frontC, leftC = True, True, True drivetrain.turn_for(RIGHT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: rightC = False drivetrain.turn_for(LEFT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: frontC = False drivetrain.turn_for(LEFT, 90, DEGREES) if front_eye.near_object() and distance.get_distance(MM) < 3000: leftC = False drivetrain.turn_for(RIGHT, 90, DEGREES) return rightC, frontC, leftC #main run function def run(): #program loop while True: #drive drivetrain.drive_for(FORWARD, 250, MM) #checks if the robot's surroundings are clear by using the method above rightClear, frontClear, leftClear = checkSides() #uses the 3 boolean values above to determine the which direction to turn if frontClear and not rightClear: print("") elif rightClear: drivetrain.turn_for(RIGHT, 90, DEGREES) elif (not (rightClear and frontClear)) and leftClear: drivetrain.turn_for(LEFT, 90, DEGREES) elif not (rightClear and leftClear and frontClear): drivetrain.turn_for(RIGHT, 180, DEGREES) #if found an exit, stop if(down_eye.detect(RED)): break wait(1,MSEC) # VR threads — Do not delete vr_thread(main())
flexible
{ "blob_id": "e560f2f202e477822729d1361b8d7ef7831a00e6", "index": 8339, "step-1": "<mask token>\n\n\ndef checkSides():\n rightC, frontC, leftC = True, True, True\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n rightC = False\n drivetrain.turn_for(LEFT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n frontC = False\n drivetrain.turn_for(LEFT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n leftC = False\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n return rightC, frontC, leftC\n\n\ndef run():\n while True:\n drivetrain.drive_for(FORWARD, 250, MM)\n rightClear, frontClear, leftClear = checkSides()\n if frontClear and not rightClear:\n print('')\n elif rightClear:\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n elif not (rightClear and frontClear) and leftClear:\n drivetrain.turn_for(LEFT, 90, DEGREES)\n elif not (rightClear and leftClear and frontClear):\n drivetrain.turn_for(RIGHT, 180, DEGREES)\n if down_eye.detect(RED):\n break\n wait(1, MSEC)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n pen.set_pen_color(BLUE)\n pen.move(DOWN)\n drivetrain.set_drive_velocity(50, PERCENT)\n drivetrain.set_turn_velocity(50, PERCENT)\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n run()\n\n\ndef checkSides():\n rightC, frontC, leftC = True, True, True\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n rightC = False\n drivetrain.turn_for(LEFT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n frontC = False\n drivetrain.turn_for(LEFT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n leftC = False\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n return rightC, frontC, leftC\n\n\ndef run():\n while True:\n drivetrain.drive_for(FORWARD, 250, MM)\n rightClear, frontClear, leftClear = checkSides()\n if frontClear and not rightClear:\n print('')\n elif rightClear:\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n elif not (rightClear and frontClear) and leftClear:\n drivetrain.turn_for(LEFT, 90, DEGREES)\n elif not (rightClear and leftClear and frontClear):\n drivetrain.turn_for(RIGHT, 180, DEGREES)\n if down_eye.detect(RED):\n break\n wait(1, MSEC)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n pen.set_pen_color(BLUE)\n pen.move(DOWN)\n drivetrain.set_drive_velocity(50, PERCENT)\n drivetrain.set_turn_velocity(50, PERCENT)\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n run()\n\n\ndef checkSides():\n rightC, frontC, leftC = True, True, True\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n rightC = False\n drivetrain.turn_for(LEFT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n frontC = False\n drivetrain.turn_for(LEFT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n leftC = False\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n return rightC, frontC, leftC\n\n\ndef run():\n while True:\n drivetrain.drive_for(FORWARD, 250, MM)\n rightClear, frontClear, leftClear = checkSides()\n if frontClear and not rightClear:\n print('')\n elif rightClear:\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n elif not (rightClear and frontClear) and leftClear:\n drivetrain.turn_for(LEFT, 90, DEGREES)\n elif not (rightClear and leftClear and frontClear):\n drivetrain.turn_for(RIGHT, 180, DEGREES)\n if down_eye.detect(RED):\n break\n wait(1, MSEC)\n\n\nvr_thread(main())\n", "step-4": "from vexcode import *\n\n\ndef main():\n pen.set_pen_color(BLUE)\n pen.move(DOWN)\n drivetrain.set_drive_velocity(50, PERCENT)\n drivetrain.set_turn_velocity(50, PERCENT)\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n run()\n\n\ndef checkSides():\n rightC, frontC, leftC = True, True, True\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n rightC = False\n drivetrain.turn_for(LEFT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n frontC = False\n drivetrain.turn_for(LEFT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n leftC = False\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n return rightC, frontC, leftC\n\n\ndef run():\n while True:\n drivetrain.drive_for(FORWARD, 250, MM)\n rightClear, frontClear, leftClear = checkSides()\n if frontClear and not rightClear:\n print('')\n elif rightClear:\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n elif not (rightClear and frontClear) and leftClear:\n drivetrain.turn_for(LEFT, 90, DEGREES)\n elif not (rightClear and leftClear and frontClear):\n drivetrain.turn_for(RIGHT, 180, DEGREES)\n if down_eye.detect(RED):\n break\n wait(1, MSEC)\n\n\nvr_thread(main())\n", "step-5": "# ------------------------------------------\n# \n# \tProject: VEXcode VR Maze Solver\n#\tAuthor: Hyunwoo Choi\n#\tCreated: January 12 2021\n#\tDescription: Solves a VEXcode VR maze using the right hand rule\n# \n# ------------------------------------------\n\n# Library imports\nfrom vexcode import *\n\n#main\ndef main():\n #putting down the pen to show the path of the robot\n pen.set_pen_color(BLUE)\n pen.move(DOWN)\n\n drivetrain.set_drive_velocity(50, PERCENT)\n drivetrain.set_turn_velocity(50, PERCENT)\n\n \n #start with 90 deg turned right since we are using a right hand rule to solve this maze\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n \n #run\n run()\n\n#this method checks all three sides and returns a boolean for each side if it is blocked or not\ndef checkSides():\n \n rightC, frontC, leftC = True, True, True\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n rightC = False\n drivetrain.turn_for(LEFT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n frontC = False\n drivetrain.turn_for(LEFT, 90, DEGREES)\n if front_eye.near_object() and distance.get_distance(MM) < 3000:\n leftC = False\n \n drivetrain.turn_for(RIGHT, 90, DEGREES)\n\n return rightC, frontC, leftC\n\n#main run function\ndef run():\n #program loop\n while True:\n\n #drive\n drivetrain.drive_for(FORWARD, 250, MM)\n\n #checks if the robot's surroundings are clear by using the method above\n rightClear, frontClear, leftClear = checkSides()\n\n #uses the 3 boolean values above to determine the which direction to turn\n if frontClear and not rightClear:\n print(\"\")\n elif rightClear:\n drivetrain.turn_for(RIGHT, 90, DEGREES)\n elif (not (rightClear and frontClear)) and leftClear:\n drivetrain.turn_for(LEFT, 90, DEGREES)\n elif not (rightClear and leftClear and frontClear):\n drivetrain.turn_for(RIGHT, 180, DEGREES)\n\n #if found an exit, stop\n if(down_eye.detect(RED)):\n break\n\n wait(1,MSEC)\n\n \n \n# VR threads — Do not delete\nvr_thread(main())\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print('Start simulation!') <|reserved_special_token_0|> if os.path.exists(figurefolderName): shutil.rmtree(figurefolderName) os.makedirs(figurefolderName) <|reserved_special_token_0|> print('Common parameters were set.') <|reserved_special_token_0|> print('Plant model was set.') <|reserved_special_token_0|> print('PID controller was designed.') <|reserved_special_token_0|> print('Phase lead filters were desinged.') print('Frequency respose alanysis is running...') <|reserved_special_token_0|> print('Plotting figures...') <|reserved_special_token_0|> plot.plot_tffrd(ax_mag, ax_phase, Pnz1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of plant') plot.plot_tffrd(ax_mag, ax_phase, Pnz2_frd, '-', 'r', 1.5, 1.0, freqrange, legend=['Motor side', 'Load side']) plot.savefig(figurefolderName + '/freq_P.png') <|reserved_special_token_0|> plot.plot_tffrd(ax_mag, ax_phase, Cz_frd, '-', 'b', 1.5, 1.0, freqrange, title='Frequency response of PID controller') plot.savefig(figurefolderName + '/freq_C.png') <|reserved_special_token_0|> plot.plot_tffrd(ax_mag, ax_phase, PLz1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of filters') plot.plot_tffrd(ax_mag, ax_phase, PLz2_frd, '-', 'r', 1.5, 1.0, freqrange, [-10, 10], legend=['PL for motor side', 'PL for load side']) plot.savefig(figurefolderName + '/freq_PL.png') <|reserved_special_token_0|> plot.plot_tffrd(ax_mag, ax_phase, Gn1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of open loop transfer function') plot.plot_tffrd(ax_mag, ax_phase, Gn2_frd, '-', 'r', 1.5, 1.0, freqrange, legend=['Motor side', 'Load side']) plot.savefig(figurefolderName + '/freq_G.png') <|reserved_special_token_0|> plot.plot_tffrd(ax_mag, ax_phase, Sn1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of sensitivity function') plot.plot_tffrd(ax_mag, ax_phase, Sn2_frd, '-', 'r', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Sn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Sn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange, [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.savefig(figurefolderName + '/freq_S.png') <|reserved_special_token_0|> plot.plot_tffrd(ax_mag, ax_phase, Tn1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of complementary sensitivity function') plot.plot_tffrd(ax_mag, ax_phase, Tn2_frd, '-', 'r', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Tn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Tn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange, [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.savefig(figurefolderName + '/freq_T.png') <|reserved_special_token_0|> plot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram') plot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0) plot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.plot_nyquist_assistline(ax) plot.savefig(figurefolderName + '/nyquist.png') <|reserved_special_token_0|> plot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram') plot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0) plot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, xrange=[-5, 5], yrange=[-5, 5], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.plot_nyquist_assistline(ax) plot.savefig(figurefolderName + '/nyquist_.png') print('Finished.') <|reserved_special_token_1|> <|reserved_special_token_0|> print('Start simulation!') figurefolderName = 'figure_2mass_pl' if os.path.exists(figurefolderName): shutil.rmtree(figurefolderName) os.makedirs(figurefolderName) Ts = 1 / 4000 dataNum = 10000 freqrange = [1, 1000] freq = np.logspace(np.log10(freqrange[0]), np.log10(freqrange[1]), dataNum, base=10) s = ctrl.tf([1, 0], [1]) z = ctrl.tf([1, 0], [1], Ts) print('Common parameters were set.') M1 = 1.0 M2 = 1.0 M = M1 + M2 C = 10.0 K = 0.0 Creso = 10.0 Kreso = 50000.0 k1 = M2 / (M1 * (M1 + M2)) k2 = -1.0 / (M1 + M2) omegaPreso = np.sqrt(Kreso * (M1 + M2) / (M1 * M2)) zetaPreso = 0.5 * Creso * np.sqrt((M1 + M2) / (Kreso * M1 * M2)) Pmechs1 = ctrl.tf([1], [M, C, K]) + k1 * ctrl.tf([1], [1, 2 * zetaPreso * omegaPreso, omegaPreso ** 2]) Pmechs2 = ctrl.tf([1], [M, C, K]) + k2 * ctrl.tf([1], [1, 2 * zetaPreso * omegaPreso, omegaPreso ** 2]) numDelay, denDelay = matlab.pade(Ts * 4, n=4) Ds = ctrl.tf(numDelay, denDelay) Dz = z ** -4 Pns1 = Pmechs1 * Ds Pns2 = Pmechs2 * Ds Pnz1 = ctrl.c2d(Pmechs1, Ts, method='zoh') * Dz Pnz2 = ctrl.c2d(Pmechs2, Ts, method='zoh') * Dz Pnz1_frd = ctrl.sys2frd(Pnz1, freq) Pnz2_frd = ctrl.sys2frd(Pnz2, freq) print('Plant model was set.') freq1 = 10.0 zeta1 = 1.0 freq2 = 10.0 zeta2 = 1.0 Cz = ctrl.pid(freq1, zeta1, freq2, zeta2, M, C, K, Ts) Cz_frd = ctrl.sys2frd(Cz, freq) print('PID controller was designed.') zeta1 = 0.7 freq1 = 40 zeta2 = 0.7 freq2 = 60 PLz1 = ctrl.pl2nd(freq1, zeta1, freq2, zeta2, Ts) PLz1_frd = ctrl.sys2frd(PLz1, freq) PLz2 = ctrl.pl2nd(freq2, zeta2, freq1, zeta1, Ts) PLz2_frd = ctrl.sys2frd(PLz2, freq) print('Phase lead filters were desinged.') print('Frequency respose alanysis is running...') Gn1_frd = Pnz1_frd * Cz_frd Sn1_frd = 1 / (1 + Gn1_frd) Tn1_frd = 1 - Sn1_frd Gn1_pl_frd = Pnz1_frd * Cz_frd * PLz1_frd Sn1_pl_frd = 1 / (1 + Gn1_pl_frd) Tn1_pl_frd = 1 - Sn1_pl_frd Gn2_frd = Pnz2_frd * Cz_frd Sn2_frd = 1 / (1 + Gn2_frd) Tn2_frd = 1 - Sn2_frd Gn2_pl_frd = Pnz2_frd * Cz_frd * PLz2_frd Sn2_pl_frd = 1 / (1 + Gn2_pl_frd) Tn2_pl_frd = 1 - Sn2_pl_frd print('Plotting figures...') fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Pnz1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of plant') plot.plot_tffrd(ax_mag, ax_phase, Pnz2_frd, '-', 'r', 1.5, 1.0, freqrange, legend=['Motor side', 'Load side']) plot.savefig(figurefolderName + '/freq_P.png') fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Cz_frd, '-', 'b', 1.5, 1.0, freqrange, title='Frequency response of PID controller') plot.savefig(figurefolderName + '/freq_C.png') fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, PLz1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of filters') plot.plot_tffrd(ax_mag, ax_phase, PLz2_frd, '-', 'r', 1.5, 1.0, freqrange, [-10, 10], legend=['PL for motor side', 'PL for load side']) plot.savefig(figurefolderName + '/freq_PL.png') fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Gn1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of open loop transfer function') plot.plot_tffrd(ax_mag, ax_phase, Gn2_frd, '-', 'r', 1.5, 1.0, freqrange, legend=['Motor side', 'Load side']) plot.savefig(figurefolderName + '/freq_G.png') fig = plot.makefig() ax_mag = fig.add_subplot(111) ax_phase = None plot.plot_tffrd(ax_mag, ax_phase, Sn1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of sensitivity function') plot.plot_tffrd(ax_mag, ax_phase, Sn2_frd, '-', 'r', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Sn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Sn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange, [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.savefig(figurefolderName + '/freq_S.png') fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Tn1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of complementary sensitivity function') plot.plot_tffrd(ax_mag, ax_phase, Tn2_frd, '-', 'r', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Tn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Tn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange, [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.savefig(figurefolderName + '/freq_T.png') fig = plot.makefig() ax = fig.add_subplot(111) plot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram') plot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0) plot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.plot_nyquist_assistline(ax) plot.savefig(figurefolderName + '/nyquist.png') fig = plot.makefig() ax = fig.add_subplot(111) plot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram') plot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0) plot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, xrange=[-5, 5], yrange=[-5, 5], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.plot_nyquist_assistline(ax) plot.savefig(figurefolderName + '/nyquist_.png') print('Finished.') <|reserved_special_token_1|> from pylib_sakata import init as init import os import shutil import numpy as np from control import matlab from pylib_sakata import ctrl from pylib_sakata import plot print('Start simulation!') figurefolderName = 'figure_2mass_pl' if os.path.exists(figurefolderName): shutil.rmtree(figurefolderName) os.makedirs(figurefolderName) Ts = 1 / 4000 dataNum = 10000 freqrange = [1, 1000] freq = np.logspace(np.log10(freqrange[0]), np.log10(freqrange[1]), dataNum, base=10) s = ctrl.tf([1, 0], [1]) z = ctrl.tf([1, 0], [1], Ts) print('Common parameters were set.') M1 = 1.0 M2 = 1.0 M = M1 + M2 C = 10.0 K = 0.0 Creso = 10.0 Kreso = 50000.0 k1 = M2 / (M1 * (M1 + M2)) k2 = -1.0 / (M1 + M2) omegaPreso = np.sqrt(Kreso * (M1 + M2) / (M1 * M2)) zetaPreso = 0.5 * Creso * np.sqrt((M1 + M2) / (Kreso * M1 * M2)) Pmechs1 = ctrl.tf([1], [M, C, K]) + k1 * ctrl.tf([1], [1, 2 * zetaPreso * omegaPreso, omegaPreso ** 2]) Pmechs2 = ctrl.tf([1], [M, C, K]) + k2 * ctrl.tf([1], [1, 2 * zetaPreso * omegaPreso, omegaPreso ** 2]) numDelay, denDelay = matlab.pade(Ts * 4, n=4) Ds = ctrl.tf(numDelay, denDelay) Dz = z ** -4 Pns1 = Pmechs1 * Ds Pns2 = Pmechs2 * Ds Pnz1 = ctrl.c2d(Pmechs1, Ts, method='zoh') * Dz Pnz2 = ctrl.c2d(Pmechs2, Ts, method='zoh') * Dz Pnz1_frd = ctrl.sys2frd(Pnz1, freq) Pnz2_frd = ctrl.sys2frd(Pnz2, freq) print('Plant model was set.') freq1 = 10.0 zeta1 = 1.0 freq2 = 10.0 zeta2 = 1.0 Cz = ctrl.pid(freq1, zeta1, freq2, zeta2, M, C, K, Ts) Cz_frd = ctrl.sys2frd(Cz, freq) print('PID controller was designed.') zeta1 = 0.7 freq1 = 40 zeta2 = 0.7 freq2 = 60 PLz1 = ctrl.pl2nd(freq1, zeta1, freq2, zeta2, Ts) PLz1_frd = ctrl.sys2frd(PLz1, freq) PLz2 = ctrl.pl2nd(freq2, zeta2, freq1, zeta1, Ts) PLz2_frd = ctrl.sys2frd(PLz2, freq) print('Phase lead filters were desinged.') print('Frequency respose alanysis is running...') Gn1_frd = Pnz1_frd * Cz_frd Sn1_frd = 1 / (1 + Gn1_frd) Tn1_frd = 1 - Sn1_frd Gn1_pl_frd = Pnz1_frd * Cz_frd * PLz1_frd Sn1_pl_frd = 1 / (1 + Gn1_pl_frd) Tn1_pl_frd = 1 - Sn1_pl_frd Gn2_frd = Pnz2_frd * Cz_frd Sn2_frd = 1 / (1 + Gn2_frd) Tn2_frd = 1 - Sn2_frd Gn2_pl_frd = Pnz2_frd * Cz_frd * PLz2_frd Sn2_pl_frd = 1 / (1 + Gn2_pl_frd) Tn2_pl_frd = 1 - Sn2_pl_frd print('Plotting figures...') fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Pnz1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of plant') plot.plot_tffrd(ax_mag, ax_phase, Pnz2_frd, '-', 'r', 1.5, 1.0, freqrange, legend=['Motor side', 'Load side']) plot.savefig(figurefolderName + '/freq_P.png') fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Cz_frd, '-', 'b', 1.5, 1.0, freqrange, title='Frequency response of PID controller') plot.savefig(figurefolderName + '/freq_C.png') fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, PLz1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of filters') plot.plot_tffrd(ax_mag, ax_phase, PLz2_frd, '-', 'r', 1.5, 1.0, freqrange, [-10, 10], legend=['PL for motor side', 'PL for load side']) plot.savefig(figurefolderName + '/freq_PL.png') fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Gn1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of open loop transfer function') plot.plot_tffrd(ax_mag, ax_phase, Gn2_frd, '-', 'r', 1.5, 1.0, freqrange, legend=['Motor side', 'Load side']) plot.savefig(figurefolderName + '/freq_G.png') fig = plot.makefig() ax_mag = fig.add_subplot(111) ax_phase = None plot.plot_tffrd(ax_mag, ax_phase, Sn1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of sensitivity function') plot.plot_tffrd(ax_mag, ax_phase, Sn2_frd, '-', 'r', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Sn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Sn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange, [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.savefig(figurefolderName + '/freq_S.png') fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Tn1_frd, '-', 'b', 1.5, 1.0, title= 'Frequency response of complementary sensitivity function') plot.plot_tffrd(ax_mag, ax_phase, Tn2_frd, '-', 'r', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Tn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Tn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange, [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.savefig(figurefolderName + '/freq_T.png') fig = plot.makefig() ax = fig.add_subplot(111) plot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram') plot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0) plot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.plot_nyquist_assistline(ax) plot.savefig(figurefolderName + '/nyquist.png') fig = plot.makefig() ax = fig.add_subplot(111) plot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram') plot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0) plot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, xrange=[-5, 5], yrange=[-5, 5], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.plot_nyquist_assistline(ax) plot.savefig(figurefolderName + '/nyquist_.png') print('Finished.') <|reserved_special_token_1|> # Copyright (c) 2021 Koichi Sakata from pylib_sakata import init as init # uncomment the follows when the file is executed in a Python console. # init.close_all() # init.clear_all() import os import shutil import numpy as np from control import matlab from pylib_sakata import ctrl from pylib_sakata import plot print('Start simulation!') # Common parameters figurefolderName = 'figure_2mass_pl' if os.path.exists(figurefolderName): shutil.rmtree(figurefolderName) os.makedirs(figurefolderName) Ts = 1/4000 dataNum = 10000 freqrange = [1, 1000] freq = np.logspace(np.log10(freqrange[0]), np.log10(freqrange[1]), dataNum, base=10) s = ctrl.tf([1, 0], [1]) z = ctrl.tf([1, 0], [1], Ts) print('Common parameters were set.') # Plant model M1 = 1.0 M2 = 1.0 M = M1 + M2 C = 10.0 K = 0.0 Creso = 10.0 Kreso = 50000.0 k1 = M2/(M1 * (M1 + M2)) k2 = -1.0/(M1 + M2) omegaPreso = np.sqrt(Kreso * (M1 + M2)/(M1 * M2)) zetaPreso = 0.5 * Creso*np.sqrt((M1 + M2)/(Kreso * M1 * M2)) Pmechs1 = ctrl.tf([1], [M, C, K]) + k1 * ctrl.tf([1], [1, 2*zetaPreso*omegaPreso, omegaPreso**2]) Pmechs2 = ctrl.tf([1], [M, C, K]) + k2 * ctrl.tf([1], [1, 2*zetaPreso*omegaPreso, omegaPreso**2]) numDelay, denDelay = matlab.pade(Ts*4, n=4) Ds = ctrl.tf(numDelay, denDelay) Dz = z**-4 Pns1 = Pmechs1 * Ds Pns2 = Pmechs2 * Ds Pnz1 = ctrl.c2d(Pmechs1, Ts, method='zoh') * Dz Pnz2 = ctrl.c2d(Pmechs2, Ts, method='zoh') * Dz Pnz1_frd = ctrl.sys2frd(Pnz1, freq) Pnz2_frd = ctrl.sys2frd(Pnz2, freq) print('Plant model was set.') # Design PID controller freq1 = 10.0 zeta1 = 1.0 freq2 = 10.0 zeta2 = 1.0 Cz = ctrl.pid(freq1, zeta1, freq2, zeta2, M, C, K, Ts) Cz_frd = ctrl.sys2frd(Cz, freq) print('PID controller was designed.') # Design phase lead filter zeta1 = 0.7 freq1 = 40 zeta2 = 0.7 freq2 = 60 PLz1 = ctrl.pl2nd(freq1, zeta1, freq2, zeta2, Ts) PLz1_frd = ctrl.sys2frd(PLz1, freq) PLz2 = ctrl.pl2nd(freq2, zeta2, freq1, zeta1, Ts) PLz2_frd = ctrl.sys2frd(PLz2, freq) print('Phase lead filters were desinged.') print('Frequency respose alanysis is running...') # Motor side Gn1_frd = Pnz1_frd * Cz_frd Sn1_frd = 1/(1 + Gn1_frd) Tn1_frd = 1 - Sn1_frd Gn1_pl_frd = Pnz1_frd * Cz_frd * PLz1_frd Sn1_pl_frd = 1/(1 + Gn1_pl_frd) Tn1_pl_frd = 1 - Sn1_pl_frd # Load side Gn2_frd = Pnz2_frd * Cz_frd Sn2_frd = 1/(1 + Gn2_frd) Tn2_frd = 1 - Sn2_frd Gn2_pl_frd = Pnz2_frd * Cz_frd * PLz2_frd Sn2_pl_frd = 1/(1 + Gn2_pl_frd) Tn2_pl_frd = 1 - Sn2_pl_frd print('Plotting figures...') # Plant fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Pnz1_frd, '-', 'b', 1.5, 1.0, title='Frequency response of plant') plot.plot_tffrd(ax_mag, ax_phase, Pnz2_frd, '-', 'r', 1.5, 1.0, freqrange, legend=['Motor side', 'Load side']) plot.savefig(figurefolderName+'/freq_P.png') # PID controller fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Cz_frd, '-', 'b', 1.5, 1.0, freqrange, title='Frequency response of PID controller') plot.savefig(figurefolderName+'/freq_C.png') # Phase lead filters fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, PLz1_frd, '-', 'b', 1.5, 1.0, title='Frequency response of filters') plot.plot_tffrd(ax_mag, ax_phase, PLz2_frd, '-', 'r', 1.5, 1.0, freqrange, [-10, 10], legend=['PL for motor side', 'PL for load side']) plot.savefig(figurefolderName+'/freq_PL.png') # Open loop function fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Gn1_frd, '-', 'b', 1.5, 1.0, title='Frequency response of open loop transfer function') plot.plot_tffrd(ax_mag, ax_phase, Gn2_frd, '-', 'r', 1.5, 1.0, freqrange, legend=['Motor side', 'Load side']) plot.savefig(figurefolderName+'/freq_G.png') # Sensitivity function fig = plot.makefig() ax_mag = fig.add_subplot(111) ax_phase = None plot.plot_tffrd(ax_mag, ax_phase, Sn1_frd, '-', 'b', 1.5, 1.0, title='Frequency response of sensitivity function') plot.plot_tffrd(ax_mag, ax_phase, Sn2_frd, '-', 'r', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Sn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Sn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange, [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.savefig(figurefolderName+'/freq_S.png') # Complementary sensitivity function fig = plot.makefig() ax_mag = fig.add_subplot(211) ax_phase = fig.add_subplot(212) plot.plot_tffrd(ax_mag, ax_phase, Tn1_frd, '-', 'b', 1.5, 1.0, title='Frequency response of complementary sensitivity function') plot.plot_tffrd(ax_mag, ax_phase, Tn2_frd, '-', 'r', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Tn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_tffrd(ax_mag, ax_phase, Tn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange, [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.savefig(figurefolderName+'/freq_T.png') # Nyquist fig = plot.makefig() ax = fig.add_subplot(111) plot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram') plot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0) plot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.plot_nyquist_assistline(ax) plot.savefig(figurefolderName+'/nyquist.png') fig = plot.makefig() ax = fig.add_subplot(111) plot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram') plot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0) plot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0) plot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, xrange=[-5, 5], yrange=[-5, 5], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF']) plot.plot_nyquist_assistline(ax) plot.savefig(figurefolderName+'/nyquist_.png') print('Finished.')
flexible
{ "blob_id": "ad1aa69f92f104ac8b82aca3c0a64ce3de48b36d", "index": 3847, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('Start simulation!')\n<mask token>\nif os.path.exists(figurefolderName):\n shutil.rmtree(figurefolderName)\nos.makedirs(figurefolderName)\n<mask token>\nprint('Common parameters were set.')\n<mask token>\nprint('Plant model was set.')\n<mask token>\nprint('PID controller was designed.')\n<mask token>\nprint('Phase lead filters were desinged.')\nprint('Frequency respose alanysis is running...')\n<mask token>\nprint('Plotting figures...')\n<mask token>\nplot.plot_tffrd(ax_mag, ax_phase, Pnz1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of plant')\nplot.plot_tffrd(ax_mag, ax_phase, Pnz2_frd, '-', 'r', 1.5, 1.0, freqrange,\n legend=['Motor side', 'Load side'])\nplot.savefig(figurefolderName + '/freq_P.png')\n<mask token>\nplot.plot_tffrd(ax_mag, ax_phase, Cz_frd, '-', 'b', 1.5, 1.0, freqrange,\n title='Frequency response of PID controller')\nplot.savefig(figurefolderName + '/freq_C.png')\n<mask token>\nplot.plot_tffrd(ax_mag, ax_phase, PLz1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of filters')\nplot.plot_tffrd(ax_mag, ax_phase, PLz2_frd, '-', 'r', 1.5, 1.0, freqrange,\n [-10, 10], legend=['PL for motor side', 'PL for load side'])\nplot.savefig(figurefolderName + '/freq_PL.png')\n<mask token>\nplot.plot_tffrd(ax_mag, ax_phase, Gn1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of open loop transfer function')\nplot.plot_tffrd(ax_mag, ax_phase, Gn2_frd, '-', 'r', 1.5, 1.0, freqrange,\n legend=['Motor side', 'Load side'])\nplot.savefig(figurefolderName + '/freq_G.png')\n<mask token>\nplot.plot_tffrd(ax_mag, ax_phase, Sn1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of sensitivity function')\nplot.plot_tffrd(ax_mag, ax_phase, Sn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Sn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Sn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange,\n [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF',\n 'Load side with NF'])\nplot.savefig(figurefolderName + '/freq_S.png')\n<mask token>\nplot.plot_tffrd(ax_mag, ax_phase, Tn1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of complementary sensitivity function')\nplot.plot_tffrd(ax_mag, ax_phase, Tn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Tn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Tn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange,\n [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF',\n 'Load side with NF'])\nplot.savefig(figurefolderName + '/freq_T.png')\n<mask token>\nplot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram')\nplot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, legend=['Motor side',\n 'Load side', 'Motor side with NF', 'Load side with NF'])\nplot.plot_nyquist_assistline(ax)\nplot.savefig(figurefolderName + '/nyquist.png')\n<mask token>\nplot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram')\nplot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, xrange=[-5, 5],\n yrange=[-5, 5], legend=['Motor side', 'Load side', 'Motor side with NF',\n 'Load side with NF'])\nplot.plot_nyquist_assistline(ax)\nplot.savefig(figurefolderName + '/nyquist_.png')\nprint('Finished.')\n", "step-3": "<mask token>\nprint('Start simulation!')\nfigurefolderName = 'figure_2mass_pl'\nif os.path.exists(figurefolderName):\n shutil.rmtree(figurefolderName)\nos.makedirs(figurefolderName)\nTs = 1 / 4000\ndataNum = 10000\nfreqrange = [1, 1000]\nfreq = np.logspace(np.log10(freqrange[0]), np.log10(freqrange[1]), dataNum,\n base=10)\ns = ctrl.tf([1, 0], [1])\nz = ctrl.tf([1, 0], [1], Ts)\nprint('Common parameters were set.')\nM1 = 1.0\nM2 = 1.0\nM = M1 + M2\nC = 10.0\nK = 0.0\nCreso = 10.0\nKreso = 50000.0\nk1 = M2 / (M1 * (M1 + M2))\nk2 = -1.0 / (M1 + M2)\nomegaPreso = np.sqrt(Kreso * (M1 + M2) / (M1 * M2))\nzetaPreso = 0.5 * Creso * np.sqrt((M1 + M2) / (Kreso * M1 * M2))\nPmechs1 = ctrl.tf([1], [M, C, K]) + k1 * ctrl.tf([1], [1, 2 * zetaPreso *\n omegaPreso, omegaPreso ** 2])\nPmechs2 = ctrl.tf([1], [M, C, K]) + k2 * ctrl.tf([1], [1, 2 * zetaPreso *\n omegaPreso, omegaPreso ** 2])\nnumDelay, denDelay = matlab.pade(Ts * 4, n=4)\nDs = ctrl.tf(numDelay, denDelay)\nDz = z ** -4\nPns1 = Pmechs1 * Ds\nPns2 = Pmechs2 * Ds\nPnz1 = ctrl.c2d(Pmechs1, Ts, method='zoh') * Dz\nPnz2 = ctrl.c2d(Pmechs2, Ts, method='zoh') * Dz\nPnz1_frd = ctrl.sys2frd(Pnz1, freq)\nPnz2_frd = ctrl.sys2frd(Pnz2, freq)\nprint('Plant model was set.')\nfreq1 = 10.0\nzeta1 = 1.0\nfreq2 = 10.0\nzeta2 = 1.0\nCz = ctrl.pid(freq1, zeta1, freq2, zeta2, M, C, K, Ts)\nCz_frd = ctrl.sys2frd(Cz, freq)\nprint('PID controller was designed.')\nzeta1 = 0.7\nfreq1 = 40\nzeta2 = 0.7\nfreq2 = 60\nPLz1 = ctrl.pl2nd(freq1, zeta1, freq2, zeta2, Ts)\nPLz1_frd = ctrl.sys2frd(PLz1, freq)\nPLz2 = ctrl.pl2nd(freq2, zeta2, freq1, zeta1, Ts)\nPLz2_frd = ctrl.sys2frd(PLz2, freq)\nprint('Phase lead filters were desinged.')\nprint('Frequency respose alanysis is running...')\nGn1_frd = Pnz1_frd * Cz_frd\nSn1_frd = 1 / (1 + Gn1_frd)\nTn1_frd = 1 - Sn1_frd\nGn1_pl_frd = Pnz1_frd * Cz_frd * PLz1_frd\nSn1_pl_frd = 1 / (1 + Gn1_pl_frd)\nTn1_pl_frd = 1 - Sn1_pl_frd\nGn2_frd = Pnz2_frd * Cz_frd\nSn2_frd = 1 / (1 + Gn2_frd)\nTn2_frd = 1 - Sn2_frd\nGn2_pl_frd = Pnz2_frd * Cz_frd * PLz2_frd\nSn2_pl_frd = 1 / (1 + Gn2_pl_frd)\nTn2_pl_frd = 1 - Sn2_pl_frd\nprint('Plotting figures...')\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Pnz1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of plant')\nplot.plot_tffrd(ax_mag, ax_phase, Pnz2_frd, '-', 'r', 1.5, 1.0, freqrange,\n legend=['Motor side', 'Load side'])\nplot.savefig(figurefolderName + '/freq_P.png')\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Cz_frd, '-', 'b', 1.5, 1.0, freqrange,\n title='Frequency response of PID controller')\nplot.savefig(figurefolderName + '/freq_C.png')\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, PLz1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of filters')\nplot.plot_tffrd(ax_mag, ax_phase, PLz2_frd, '-', 'r', 1.5, 1.0, freqrange,\n [-10, 10], legend=['PL for motor side', 'PL for load side'])\nplot.savefig(figurefolderName + '/freq_PL.png')\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Gn1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of open loop transfer function')\nplot.plot_tffrd(ax_mag, ax_phase, Gn2_frd, '-', 'r', 1.5, 1.0, freqrange,\n legend=['Motor side', 'Load side'])\nplot.savefig(figurefolderName + '/freq_G.png')\nfig = plot.makefig()\nax_mag = fig.add_subplot(111)\nax_phase = None\nplot.plot_tffrd(ax_mag, ax_phase, Sn1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of sensitivity function')\nplot.plot_tffrd(ax_mag, ax_phase, Sn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Sn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Sn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange,\n [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF',\n 'Load side with NF'])\nplot.savefig(figurefolderName + '/freq_S.png')\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Tn1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of complementary sensitivity function')\nplot.plot_tffrd(ax_mag, ax_phase, Tn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Tn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Tn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange,\n [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF',\n 'Load side with NF'])\nplot.savefig(figurefolderName + '/freq_T.png')\nfig = plot.makefig()\nax = fig.add_subplot(111)\nplot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram')\nplot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, legend=['Motor side',\n 'Load side', 'Motor side with NF', 'Load side with NF'])\nplot.plot_nyquist_assistline(ax)\nplot.savefig(figurefolderName + '/nyquist.png')\nfig = plot.makefig()\nax = fig.add_subplot(111)\nplot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram')\nplot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, xrange=[-5, 5],\n yrange=[-5, 5], legend=['Motor side', 'Load side', 'Motor side with NF',\n 'Load side with NF'])\nplot.plot_nyquist_assistline(ax)\nplot.savefig(figurefolderName + '/nyquist_.png')\nprint('Finished.')\n", "step-4": "from pylib_sakata import init as init\nimport os\nimport shutil\nimport numpy as np\nfrom control import matlab\nfrom pylib_sakata import ctrl\nfrom pylib_sakata import plot\nprint('Start simulation!')\nfigurefolderName = 'figure_2mass_pl'\nif os.path.exists(figurefolderName):\n shutil.rmtree(figurefolderName)\nos.makedirs(figurefolderName)\nTs = 1 / 4000\ndataNum = 10000\nfreqrange = [1, 1000]\nfreq = np.logspace(np.log10(freqrange[0]), np.log10(freqrange[1]), dataNum,\n base=10)\ns = ctrl.tf([1, 0], [1])\nz = ctrl.tf([1, 0], [1], Ts)\nprint('Common parameters were set.')\nM1 = 1.0\nM2 = 1.0\nM = M1 + M2\nC = 10.0\nK = 0.0\nCreso = 10.0\nKreso = 50000.0\nk1 = M2 / (M1 * (M1 + M2))\nk2 = -1.0 / (M1 + M2)\nomegaPreso = np.sqrt(Kreso * (M1 + M2) / (M1 * M2))\nzetaPreso = 0.5 * Creso * np.sqrt((M1 + M2) / (Kreso * M1 * M2))\nPmechs1 = ctrl.tf([1], [M, C, K]) + k1 * ctrl.tf([1], [1, 2 * zetaPreso *\n omegaPreso, omegaPreso ** 2])\nPmechs2 = ctrl.tf([1], [M, C, K]) + k2 * ctrl.tf([1], [1, 2 * zetaPreso *\n omegaPreso, omegaPreso ** 2])\nnumDelay, denDelay = matlab.pade(Ts * 4, n=4)\nDs = ctrl.tf(numDelay, denDelay)\nDz = z ** -4\nPns1 = Pmechs1 * Ds\nPns2 = Pmechs2 * Ds\nPnz1 = ctrl.c2d(Pmechs1, Ts, method='zoh') * Dz\nPnz2 = ctrl.c2d(Pmechs2, Ts, method='zoh') * Dz\nPnz1_frd = ctrl.sys2frd(Pnz1, freq)\nPnz2_frd = ctrl.sys2frd(Pnz2, freq)\nprint('Plant model was set.')\nfreq1 = 10.0\nzeta1 = 1.0\nfreq2 = 10.0\nzeta2 = 1.0\nCz = ctrl.pid(freq1, zeta1, freq2, zeta2, M, C, K, Ts)\nCz_frd = ctrl.sys2frd(Cz, freq)\nprint('PID controller was designed.')\nzeta1 = 0.7\nfreq1 = 40\nzeta2 = 0.7\nfreq2 = 60\nPLz1 = ctrl.pl2nd(freq1, zeta1, freq2, zeta2, Ts)\nPLz1_frd = ctrl.sys2frd(PLz1, freq)\nPLz2 = ctrl.pl2nd(freq2, zeta2, freq1, zeta1, Ts)\nPLz2_frd = ctrl.sys2frd(PLz2, freq)\nprint('Phase lead filters were desinged.')\nprint('Frequency respose alanysis is running...')\nGn1_frd = Pnz1_frd * Cz_frd\nSn1_frd = 1 / (1 + Gn1_frd)\nTn1_frd = 1 - Sn1_frd\nGn1_pl_frd = Pnz1_frd * Cz_frd * PLz1_frd\nSn1_pl_frd = 1 / (1 + Gn1_pl_frd)\nTn1_pl_frd = 1 - Sn1_pl_frd\nGn2_frd = Pnz2_frd * Cz_frd\nSn2_frd = 1 / (1 + Gn2_frd)\nTn2_frd = 1 - Sn2_frd\nGn2_pl_frd = Pnz2_frd * Cz_frd * PLz2_frd\nSn2_pl_frd = 1 / (1 + Gn2_pl_frd)\nTn2_pl_frd = 1 - Sn2_pl_frd\nprint('Plotting figures...')\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Pnz1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of plant')\nplot.plot_tffrd(ax_mag, ax_phase, Pnz2_frd, '-', 'r', 1.5, 1.0, freqrange,\n legend=['Motor side', 'Load side'])\nplot.savefig(figurefolderName + '/freq_P.png')\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Cz_frd, '-', 'b', 1.5, 1.0, freqrange,\n title='Frequency response of PID controller')\nplot.savefig(figurefolderName + '/freq_C.png')\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, PLz1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of filters')\nplot.plot_tffrd(ax_mag, ax_phase, PLz2_frd, '-', 'r', 1.5, 1.0, freqrange,\n [-10, 10], legend=['PL for motor side', 'PL for load side'])\nplot.savefig(figurefolderName + '/freq_PL.png')\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Gn1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of open loop transfer function')\nplot.plot_tffrd(ax_mag, ax_phase, Gn2_frd, '-', 'r', 1.5, 1.0, freqrange,\n legend=['Motor side', 'Load side'])\nplot.savefig(figurefolderName + '/freq_G.png')\nfig = plot.makefig()\nax_mag = fig.add_subplot(111)\nax_phase = None\nplot.plot_tffrd(ax_mag, ax_phase, Sn1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of sensitivity function')\nplot.plot_tffrd(ax_mag, ax_phase, Sn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Sn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Sn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange,\n [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF',\n 'Load side with NF'])\nplot.savefig(figurefolderName + '/freq_S.png')\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Tn1_frd, '-', 'b', 1.5, 1.0, title=\n 'Frequency response of complementary sensitivity function')\nplot.plot_tffrd(ax_mag, ax_phase, Tn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Tn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Tn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange,\n [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF',\n 'Load side with NF'])\nplot.savefig(figurefolderName + '/freq_T.png')\nfig = plot.makefig()\nax = fig.add_subplot(111)\nplot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram')\nplot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, legend=['Motor side',\n 'Load side', 'Motor side with NF', 'Load side with NF'])\nplot.plot_nyquist_assistline(ax)\nplot.savefig(figurefolderName + '/nyquist.png')\nfig = plot.makefig()\nax = fig.add_subplot(111)\nplot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram')\nplot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, xrange=[-5, 5],\n yrange=[-5, 5], legend=['Motor side', 'Load side', 'Motor side with NF',\n 'Load side with NF'])\nplot.plot_nyquist_assistline(ax)\nplot.savefig(figurefolderName + '/nyquist_.png')\nprint('Finished.')\n", "step-5": "# Copyright (c) 2021 Koichi Sakata\n\n\nfrom pylib_sakata import init as init\n# uncomment the follows when the file is executed in a Python console.\n# init.close_all()\n# init.clear_all()\n\nimport os\nimport shutil\nimport numpy as np\nfrom control import matlab\nfrom pylib_sakata import ctrl\nfrom pylib_sakata import plot\n\nprint('Start simulation!')\n\n# Common parameters\nfigurefolderName = 'figure_2mass_pl'\nif os.path.exists(figurefolderName):\n shutil.rmtree(figurefolderName)\nos.makedirs(figurefolderName)\nTs = 1/4000\ndataNum = 10000\nfreqrange = [1, 1000]\nfreq = np.logspace(np.log10(freqrange[0]), np.log10(freqrange[1]), dataNum, base=10)\ns = ctrl.tf([1, 0], [1])\nz = ctrl.tf([1, 0], [1], Ts)\nprint('Common parameters were set.')\n\n# Plant model\nM1 = 1.0\nM2 = 1.0\nM = M1 + M2\nC = 10.0\nK = 0.0\nCreso = 10.0\nKreso = 50000.0\nk1 = M2/(M1 * (M1 + M2))\nk2 = -1.0/(M1 + M2)\nomegaPreso = np.sqrt(Kreso * (M1 + M2)/(M1 * M2))\nzetaPreso = 0.5 * Creso*np.sqrt((M1 + M2)/(Kreso * M1 * M2))\nPmechs1 = ctrl.tf([1], [M, C, K]) + k1 * ctrl.tf([1], [1, 2*zetaPreso*omegaPreso, omegaPreso**2])\nPmechs2 = ctrl.tf([1], [M, C, K]) + k2 * ctrl.tf([1], [1, 2*zetaPreso*omegaPreso, omegaPreso**2])\nnumDelay, denDelay = matlab.pade(Ts*4, n=4)\nDs = ctrl.tf(numDelay, denDelay)\nDz = z**-4\nPns1 = Pmechs1 * Ds\nPns2 = Pmechs2 * Ds\nPnz1 = ctrl.c2d(Pmechs1, Ts, method='zoh') * Dz\nPnz2 = ctrl.c2d(Pmechs2, Ts, method='zoh') * Dz\nPnz1_frd = ctrl.sys2frd(Pnz1, freq)\nPnz2_frd = ctrl.sys2frd(Pnz2, freq)\nprint('Plant model was set.')\n\n# Design PID controller\nfreq1 = 10.0\nzeta1 = 1.0\nfreq2 = 10.0\nzeta2 = 1.0\nCz = ctrl.pid(freq1, zeta1, freq2, zeta2, M, C, K, Ts)\nCz_frd = ctrl.sys2frd(Cz, freq)\nprint('PID controller was designed.')\n\n# Design phase lead filter\nzeta1 = 0.7\nfreq1 = 40\nzeta2 = 0.7\nfreq2 = 60\nPLz1 = ctrl.pl2nd(freq1, zeta1, freq2, zeta2, Ts)\nPLz1_frd = ctrl.sys2frd(PLz1, freq)\nPLz2 = ctrl.pl2nd(freq2, zeta2, freq1, zeta1, Ts)\nPLz2_frd = ctrl.sys2frd(PLz2, freq)\nprint('Phase lead filters were desinged.')\n\nprint('Frequency respose alanysis is running...')\n# Motor side\nGn1_frd = Pnz1_frd * Cz_frd\nSn1_frd = 1/(1 + Gn1_frd)\nTn1_frd = 1 - Sn1_frd\n\nGn1_pl_frd = Pnz1_frd * Cz_frd * PLz1_frd\nSn1_pl_frd = 1/(1 + Gn1_pl_frd)\nTn1_pl_frd = 1 - Sn1_pl_frd\n\n# Load side\nGn2_frd = Pnz2_frd * Cz_frd\nSn2_frd = 1/(1 + Gn2_frd)\nTn2_frd = 1 - Sn2_frd\n\nGn2_pl_frd = Pnz2_frd * Cz_frd * PLz2_frd\nSn2_pl_frd = 1/(1 + Gn2_pl_frd)\nTn2_pl_frd = 1 - Sn2_pl_frd\n\nprint('Plotting figures...')\n# Plant\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Pnz1_frd, '-', 'b', 1.5, 1.0, title='Frequency response of plant')\nplot.plot_tffrd(ax_mag, ax_phase, Pnz2_frd, '-', 'r', 1.5, 1.0, freqrange, legend=['Motor side', 'Load side'])\nplot.savefig(figurefolderName+'/freq_P.png')\n\n# PID controller\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Cz_frd, '-', 'b', 1.5, 1.0, freqrange, title='Frequency response of PID controller')\nplot.savefig(figurefolderName+'/freq_C.png')\n\n# Phase lead filters\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, PLz1_frd, '-', 'b', 1.5, 1.0, title='Frequency response of filters')\nplot.plot_tffrd(ax_mag, ax_phase, PLz2_frd, '-', 'r', 1.5, 1.0, freqrange, [-10, 10], legend=['PL for motor side', 'PL for load side'])\nplot.savefig(figurefolderName+'/freq_PL.png')\n\n# Open loop function\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Gn1_frd, '-', 'b', 1.5, 1.0, title='Frequency response of open loop transfer function')\nplot.plot_tffrd(ax_mag, ax_phase, Gn2_frd, '-', 'r', 1.5, 1.0, freqrange, legend=['Motor side', 'Load side'])\nplot.savefig(figurefolderName+'/freq_G.png')\n\n# Sensitivity function\nfig = plot.makefig()\nax_mag = fig.add_subplot(111)\nax_phase = None\nplot.plot_tffrd(ax_mag, ax_phase, Sn1_frd, '-', 'b', 1.5, 1.0, title='Frequency response of sensitivity function')\nplot.plot_tffrd(ax_mag, ax_phase, Sn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Sn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Sn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange, [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF'])\nplot.savefig(figurefolderName+'/freq_S.png')\n\n# Complementary sensitivity function\nfig = plot.makefig()\nax_mag = fig.add_subplot(211)\nax_phase = fig.add_subplot(212)\nplot.plot_tffrd(ax_mag, ax_phase, Tn1_frd, '-', 'b', 1.5, 1.0, title='Frequency response of complementary sensitivity function')\nplot.plot_tffrd(ax_mag, ax_phase, Tn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Tn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_tffrd(ax_mag, ax_phase, Tn2_pl_frd, '-', 'm', 1.5, 1.0, freqrange, [-60, 20], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF'])\nplot.savefig(figurefolderName+'/freq_T.png')\n\n# Nyquist\nfig = plot.makefig()\nax = fig.add_subplot(111)\nplot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram')\nplot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF'])\nplot.plot_nyquist_assistline(ax)\nplot.savefig(figurefolderName+'/nyquist.png')\n\nfig = plot.makefig()\nax = fig.add_subplot(111)\nplot.plot_nyquist(ax, Gn1_frd, '-', 'b', 1.5, 1.0, title='Nyquist Diagram')\nplot.plot_nyquist(ax, Gn2_frd, '-', 'r', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn1_pl_frd, '-', 'c', 1.5, 1.0)\nplot.plot_nyquist(ax, Gn2_pl_frd, '-', 'm', 1.5, 1.0, xrange=[-5, 5], yrange=[-5, 5], legend=['Motor side', 'Load side', 'Motor side with NF', 'Load side with NF'])\nplot.plot_nyquist_assistline(ax)\nplot.savefig(figurefolderName+'/nyquist_.png')\n\nprint('Finished.')\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> app_name = 'trees' urlpatterns = [path('list/', TreeListView.as_view(), name='list'), path( 'create/', TreeCreateView.as_view(), name='create'), path( '<int:pk>/update/', TreeCreateView.as_view(), name='update')] <|reserved_special_token_1|> from django.urls import path from .views import TreeCreateView, TreeListView, TreeUpdateView app_name = 'trees' urlpatterns = [path('list/', TreeListView.as_view(), name='list'), path( 'create/', TreeCreateView.as_view(), name='create'), path( '<int:pk>/update/', TreeCreateView.as_view(), name='update')] <|reserved_special_token_1|> from django.urls import path from .views import ( TreeCreateView, TreeListView, TreeUpdateView, ) app_name = 'trees' urlpatterns = [ path('list/', TreeListView.as_view(), name='list'), path('create/', TreeCreateView.as_view(), name='create'), path('<int:pk>/update/', TreeCreateView.as_view(), name='update'), ]
flexible
{ "blob_id": "0c1de2c1eb5a4de7aeb14ad6b27aa61e07bc4c51", "index": 602, "step-1": "<mask token>\n", "step-2": "<mask token>\napp_name = 'trees'\nurlpatterns = [path('list/', TreeListView.as_view(), name='list'), path(\n 'create/', TreeCreateView.as_view(), name='create'), path(\n '<int:pk>/update/', TreeCreateView.as_view(), name='update')]\n", "step-3": "from django.urls import path\nfrom .views import TreeCreateView, TreeListView, TreeUpdateView\napp_name = 'trees'\nurlpatterns = [path('list/', TreeListView.as_view(), name='list'), path(\n 'create/', TreeCreateView.as_view(), name='create'), path(\n '<int:pk>/update/', TreeCreateView.as_view(), name='update')]\n", "step-4": "from django.urls import path\nfrom .views import (\n TreeCreateView,\n TreeListView,\n TreeUpdateView,\n)\n\n\napp_name = 'trees'\n\nurlpatterns = [\n path('list/', TreeListView.as_view(),\n name='list'),\n path('create/', TreeCreateView.as_view(),\n name='create'),\n path('<int:pk>/update/', TreeCreateView.as_view(),\n name='update'),\n]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def test_get_from_hell(): try: url = ( 'http://127.0.0.1:5000/api/lahman2017/people?children=appearances%2Cbatting&people.nameLast=Williams&batting.yearID=1960&appearances.yearID=1960&fields=people.playerID%2Cpeople.nameLast%2Cpeople.nameFirst%2Cbatting.AB%2Cbatting.H%2Cappearances.G_all' ) print('\n test 1, ', url) result = requests.get(url) display_response(result) except Exception as e: print('POST got exception = ', e) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def display_response(rsp): try: print('Printing a response.') print('HTTP status code: ', rsp.status_code) h = dict(rsp.headers) print('Response headers: \n', json.dumps(h, indent=2, default=str)) try: body = rsp.json() print('JSON body: \n', json.dumps(body, indent=2, default=str)) except Exception as e: body = rsp.text print('Text body: \n', body) except Exception as e: print('display_response got exception e = ', e) def test_get_from_hell(): try: url = ( 'http://127.0.0.1:5000/api/lahman2017/people?children=appearances%2Cbatting&people.nameLast=Williams&batting.yearID=1960&appearances.yearID=1960&fields=people.playerID%2Cpeople.nameLast%2Cpeople.nameFirst%2Cbatting.AB%2Cbatting.H%2Cappearances.G_all' ) print('\n test 1, ', url) result = requests.get(url) display_response(result) except Exception as e: print('POST got exception = ', e) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def display_response(rsp): try: print('Printing a response.') print('HTTP status code: ', rsp.status_code) h = dict(rsp.headers) print('Response headers: \n', json.dumps(h, indent=2, default=str)) try: body = rsp.json() print('JSON body: \n', json.dumps(body, indent=2, default=str)) except Exception as e: body = rsp.text print('Text body: \n', body) except Exception as e: print('display_response got exception e = ', e) def test_get_from_hell(): try: url = ( 'http://127.0.0.1:5000/api/lahman2017/people?children=appearances%2Cbatting&people.nameLast=Williams&batting.yearID=1960&appearances.yearID=1960&fields=people.playerID%2Cpeople.nameLast%2Cpeople.nameFirst%2Cbatting.AB%2Cbatting.H%2Cappearances.G_all' ) print('\n test 1, ', url) result = requests.get(url) display_response(result) except Exception as e: print('POST got exception = ', e) test_get_from_hell() <|reserved_special_token_1|> import requests import json def display_response(rsp): try: print('Printing a response.') print('HTTP status code: ', rsp.status_code) h = dict(rsp.headers) print('Response headers: \n', json.dumps(h, indent=2, default=str)) try: body = rsp.json() print('JSON body: \n', json.dumps(body, indent=2, default=str)) except Exception as e: body = rsp.text print('Text body: \n', body) except Exception as e: print('display_response got exception e = ', e) def test_get_from_hell(): try: url = ( 'http://127.0.0.1:5000/api/lahman2017/people?children=appearances%2Cbatting&people.nameLast=Williams&batting.yearID=1960&appearances.yearID=1960&fields=people.playerID%2Cpeople.nameLast%2Cpeople.nameFirst%2Cbatting.AB%2Cbatting.H%2Cappearances.G_all' ) print('\n test 1, ', url) result = requests.get(url) display_response(result) except Exception as e: print('POST got exception = ', e) test_get_from_hell() <|reserved_special_token_1|> import requests import json def display_response(rsp): try: print("Printing a response.") print("HTTP status code: ", rsp.status_code) h = dict(rsp.headers) print("Response headers: \n", json.dumps(h, indent=2, default=str)) try: body = rsp.json() print("JSON body: \n", json.dumps(body, indent=2, default=str)) except Exception as e: body = rsp.text print("Text body: \n", body) except Exception as e: print("display_response got exception e = ", e) def test_get_from_hell(): try: url = "http://127.0.0.1:5000/api/lahman2017/people?children=appearances%2Cbatting&people.nameLast=Williams&batting.yearID=1960&appearances.yearID=1960&fields=people.playerID%2Cpeople.nameLast%2Cpeople.nameFirst%2Cbatting.AB%2Cbatting.H%2Cappearances.G_all" print("\n test 1, ", url) result = requests.get(url) display_response(result) except Exception as e: print("POST got exception = ", e) test_get_from_hell()
flexible
{ "blob_id": "31761b9469cc579c209e070fbe7b71943404a1ff", "index": 3992, "step-1": "<mask token>\n\n\ndef test_get_from_hell():\n try:\n url = (\n 'http://127.0.0.1:5000/api/lahman2017/people?children=appearances%2Cbatting&people.nameLast=Williams&batting.yearID=1960&appearances.yearID=1960&fields=people.playerID%2Cpeople.nameLast%2Cpeople.nameFirst%2Cbatting.AB%2Cbatting.H%2Cappearances.G_all'\n )\n print('\\n test 1, ', url)\n result = requests.get(url)\n display_response(result)\n except Exception as e:\n print('POST got exception = ', e)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef display_response(rsp):\n try:\n print('Printing a response.')\n print('HTTP status code: ', rsp.status_code)\n h = dict(rsp.headers)\n print('Response headers: \\n', json.dumps(h, indent=2, default=str))\n try:\n body = rsp.json()\n print('JSON body: \\n', json.dumps(body, indent=2, default=str))\n except Exception as e:\n body = rsp.text\n print('Text body: \\n', body)\n except Exception as e:\n print('display_response got exception e = ', e)\n\n\ndef test_get_from_hell():\n try:\n url = (\n 'http://127.0.0.1:5000/api/lahman2017/people?children=appearances%2Cbatting&people.nameLast=Williams&batting.yearID=1960&appearances.yearID=1960&fields=people.playerID%2Cpeople.nameLast%2Cpeople.nameFirst%2Cbatting.AB%2Cbatting.H%2Cappearances.G_all'\n )\n print('\\n test 1, ', url)\n result = requests.get(url)\n display_response(result)\n except Exception as e:\n print('POST got exception = ', e)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef display_response(rsp):\n try:\n print('Printing a response.')\n print('HTTP status code: ', rsp.status_code)\n h = dict(rsp.headers)\n print('Response headers: \\n', json.dumps(h, indent=2, default=str))\n try:\n body = rsp.json()\n print('JSON body: \\n', json.dumps(body, indent=2, default=str))\n except Exception as e:\n body = rsp.text\n print('Text body: \\n', body)\n except Exception as e:\n print('display_response got exception e = ', e)\n\n\ndef test_get_from_hell():\n try:\n url = (\n 'http://127.0.0.1:5000/api/lahman2017/people?children=appearances%2Cbatting&people.nameLast=Williams&batting.yearID=1960&appearances.yearID=1960&fields=people.playerID%2Cpeople.nameLast%2Cpeople.nameFirst%2Cbatting.AB%2Cbatting.H%2Cappearances.G_all'\n )\n print('\\n test 1, ', url)\n result = requests.get(url)\n display_response(result)\n except Exception as e:\n print('POST got exception = ', e)\n\n\ntest_get_from_hell()\n", "step-4": "import requests\nimport json\n\n\ndef display_response(rsp):\n try:\n print('Printing a response.')\n print('HTTP status code: ', rsp.status_code)\n h = dict(rsp.headers)\n print('Response headers: \\n', json.dumps(h, indent=2, default=str))\n try:\n body = rsp.json()\n print('JSON body: \\n', json.dumps(body, indent=2, default=str))\n except Exception as e:\n body = rsp.text\n print('Text body: \\n', body)\n except Exception as e:\n print('display_response got exception e = ', e)\n\n\ndef test_get_from_hell():\n try:\n url = (\n 'http://127.0.0.1:5000/api/lahman2017/people?children=appearances%2Cbatting&people.nameLast=Williams&batting.yearID=1960&appearances.yearID=1960&fields=people.playerID%2Cpeople.nameLast%2Cpeople.nameFirst%2Cbatting.AB%2Cbatting.H%2Cappearances.G_all'\n )\n print('\\n test 1, ', url)\n result = requests.get(url)\n display_response(result)\n except Exception as e:\n print('POST got exception = ', e)\n\n\ntest_get_from_hell()\n", "step-5": "import requests\nimport json\n\ndef display_response(rsp):\n\n try:\n print(\"Printing a response.\")\n print(\"HTTP status code: \", rsp.status_code)\n h = dict(rsp.headers)\n print(\"Response headers: \\n\", json.dumps(h, indent=2, default=str))\n\n try:\n body = rsp.json()\n print(\"JSON body: \\n\", json.dumps(body, indent=2, default=str))\n except Exception as e:\n body = rsp.text\n print(\"Text body: \\n\", body)\n\n except Exception as e:\n print(\"display_response got exception e = \", e)\n\n\ndef test_get_from_hell():\n\n\n try:\n\n\n url = \"http://127.0.0.1:5000/api/lahman2017/people?children=appearances%2Cbatting&people.nameLast=Williams&batting.yearID=1960&appearances.yearID=1960&fields=people.playerID%2Cpeople.nameLast%2Cpeople.nameFirst%2Cbatting.AB%2Cbatting.H%2Cappearances.G_all\"\n print(\"\\n test 1, \", url)\n result = requests.get(url)\n display_response(result)\n\n\n except Exception as e:\n print(\"POST got exception = \", e)\n\n\ntest_get_from_hell()", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from math import * def eval_loop(): line = input('Please enter a sting') while True: if line == 'done': break else: output = eval(line) print(output) line = input('Please enter a sting') eval_loop()
normal
{ "blob_id": "b0062dde448c450131f578a2afe130ca663f0902", "index": 2041, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef eval_loop():\n line = input('Please enter a sting')\n while True:\n if line == 'done':\n break\n else:\n output = eval(line)\n print(output)\n line = input('Please enter a sting')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef eval_loop():\n line = input('Please enter a sting')\n while True:\n if line == 'done':\n break\n else:\n output = eval(line)\n print(output)\n line = input('Please enter a sting')\n\n\neval_loop()\n", "step-4": "from math import *\n\n\ndef eval_loop():\n line = input('Please enter a sting')\n while True:\n if line == 'done':\n break\n else:\n output = eval(line)\n print(output)\n line = input('Please enter a sting')\n\n\neval_loop()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
def tort(n, a, b): return min(n * a, b) def main(): n, a, b = map(int, input().split()) print(tort(n, a, b)) if __name__ == '__main__': main()
normal
{ "blob_id": "7c06bd52c924d3e401f50625109c5b8b489df157", "index": 7434, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n n, a, b = map(int, input().split())\n print(tort(n, a, b))\n\n\n<mask token>\n", "step-3": "def tort(n, a, b):\n return min(n * a, b)\n\n\ndef main():\n n, a, b = map(int, input().split())\n print(tort(n, a, b))\n\n\n<mask token>\n", "step-4": "def tort(n, a, b):\n return min(n * a, b)\n\n\ndef main():\n n, a, b = map(int, input().split())\n print(tort(n, a, b))\n\n\nif __name__ == '__main__':\n main()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import argparse, os, joblib, json, torch import pandas as pd from utils import regression, dataset, lstm PREDICT_X_SKIP_COLS = ["date", "weight", "ts_id", "resp", "resp_1", "resp_2", "resp_3", "resp_4"] X_COLS = ["resp_1", "resp_2", "resp_3", "resp_4"] Y_OUTPUT_COLS = ["date", "ts_id"] Y_COL = ["resp"] METRICS_INFO = ["mse", "r2", "mape"] DROPOUT = 0.25 HIDDEN_SIZE = 20 def get_prediction_data(data, model_path): x = data.drop(PREDICT_X_SKIP_COLS, axis=1) y = data[X_COLS] model = joblib.load(model_path) (y_pred, metrics) = regression.evaluate(model, x, y, METRICS_INFO) y_pred = pd.DataFrame(data=y_pred, columns=X_COLS) return (y_pred, metrics) def prepare_data(data_folder, model_path): (train, test, na_value) = dataset.read_data(data_folder) x_train = train[X_COLS] y_train = train[Y_COL] x_test = test[X_COLS] y_test = test[Y_COL] out_train = train[Y_OUTPUT_COLS] out_test = test[Y_OUTPUT_COLS] (x_pred_train , metrics_train) = get_prediction_data(train, model_path) (x_pred_test, metrics_test) = get_prediction_data(test, model_path) train = { "x": x_train, "y": y_train, "x_pred": x_pred_train, "out": out_train} test = { "x": x_test, "y": y_test, "x_pred": x_pred_test, "out": out_test} metrics = { "reg_train_pred": metrics_train, "reg_test_pred": metrics_test } return (train, test, metrics, na_value) def postprocess_data(out_data, y_pred): y_output = out_data.copy() y_output[Y_COL] = y_pred return y_output def train_evaluate(data_folder, output_folder, model_path): model = lstm.get_model(DROPOUT, len(X_COLS), HIDDEN_SIZE) print("Preparing data...") (train, test, metrics, na_value) = prepare_data(data_folder, model_path) print("Training...") model = lstm.train(model, train["x"], train["y"]) model = lstm.train(model, train["x_pred"], train["y"]) print("Evaluating...") (y_pred, metrics_lstm) = lstm.evaluate(model, test["x"], test["y"], METRICS_INFO) (y_pred_reg, metrics_reg_lstm) = lstm.evaluate(model, test["x_pred"], test["y"], METRICS_INFO) metrics["lstm_pred"] = metrics_lstm metrics["reg_lstm_pred"] = metrics_reg_lstm print("Postprocessing data...") y_output = postprocess_data(test["out"], y_pred) y_output_reg = postprocess_data(test["out"], y_pred_reg) output_path = os.path.join(output_folder, "pred.csv") y_output.to_csv(output_path, index=False) output_path = os.path.join(output_folder, "pred_reg.csv") y_output_reg.to_csv(output_path, index=False) result = { "metrics": metrics, "na_value": na_value } result_path = os.path.join(output_folder, "result.json") json_config = json.dumps(result, indent=4) with open(result_path, "w") as result_file: result_file.write(json_config) model_path = os.path.join(output_folder, "lstm.mdl") torch.save(model, model_path) print("Output files (model, result, prediction) saved to {}".format( output_folder)) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--data_path", type=str, help="specifies the data folder path", required=True) parser.add_argument( "--output_path", type=str, help="specifies the output folder path", required=True) parser.add_argument( "--regression_model_path", type=str, required = True, help="specifies the regression model path") return vars(parser.parse_args()) def main(): args = parse_args() print("Args: {}".format(args)) data_path = os.path.abspath(args["data_path"]) output_path = os.path.abspath(args["output_path"]) model_path = os.path.abspath(args["regression_model_path"]) train_evaluate(data_path, output_path, model_path) main()
normal
{ "blob_id": "4bdff51a4e277889f4d54d4ace7a0f5384e74f1e", "index": 9017, "step-1": "<mask token>\n\n\ndef get_prediction_data(data, model_path):\n x = data.drop(PREDICT_X_SKIP_COLS, axis=1)\n y = data[X_COLS]\n model = joblib.load(model_path)\n y_pred, metrics = regression.evaluate(model, x, y, METRICS_INFO)\n y_pred = pd.DataFrame(data=y_pred, columns=X_COLS)\n return y_pred, metrics\n\n\ndef prepare_data(data_folder, model_path):\n train, test, na_value = dataset.read_data(data_folder)\n x_train = train[X_COLS]\n y_train = train[Y_COL]\n x_test = test[X_COLS]\n y_test = test[Y_COL]\n out_train = train[Y_OUTPUT_COLS]\n out_test = test[Y_OUTPUT_COLS]\n x_pred_train, metrics_train = get_prediction_data(train, model_path)\n x_pred_test, metrics_test = get_prediction_data(test, model_path)\n train = {'x': x_train, 'y': y_train, 'x_pred': x_pred_train, 'out':\n out_train}\n test = {'x': x_test, 'y': y_test, 'x_pred': x_pred_test, 'out': out_test}\n metrics = {'reg_train_pred': metrics_train, 'reg_test_pred': metrics_test}\n return train, test, metrics, na_value\n\n\ndef postprocess_data(out_data, y_pred):\n y_output = out_data.copy()\n y_output[Y_COL] = y_pred\n return y_output\n\n\ndef train_evaluate(data_folder, output_folder, model_path):\n model = lstm.get_model(DROPOUT, len(X_COLS), HIDDEN_SIZE)\n print('Preparing data...')\n train, test, metrics, na_value = prepare_data(data_folder, model_path)\n print('Training...')\n model = lstm.train(model, train['x'], train['y'])\n model = lstm.train(model, train['x_pred'], train['y'])\n print('Evaluating...')\n y_pred, metrics_lstm = lstm.evaluate(model, test['x'], test['y'],\n METRICS_INFO)\n y_pred_reg, metrics_reg_lstm = lstm.evaluate(model, test['x_pred'],\n test['y'], METRICS_INFO)\n metrics['lstm_pred'] = metrics_lstm\n metrics['reg_lstm_pred'] = metrics_reg_lstm\n print('Postprocessing data...')\n y_output = postprocess_data(test['out'], y_pred)\n y_output_reg = postprocess_data(test['out'], y_pred_reg)\n output_path = os.path.join(output_folder, 'pred.csv')\n y_output.to_csv(output_path, index=False)\n output_path = os.path.join(output_folder, 'pred_reg.csv')\n y_output_reg.to_csv(output_path, index=False)\n result = {'metrics': metrics, 'na_value': na_value}\n result_path = os.path.join(output_folder, 'result.json')\n json_config = json.dumps(result, indent=4)\n with open(result_path, 'w') as result_file:\n result_file.write(json_config)\n model_path = os.path.join(output_folder, 'lstm.mdl')\n torch.save(model, model_path)\n print('Output files (model, result, prediction) saved to {}'.format(\n output_folder))\n\n\ndef parse_args():\n parser = argparse.ArgumentParser()\n parser.add_argument('--data_path', type=str, help=\n 'specifies the data folder path', required=True)\n parser.add_argument('--output_path', type=str, help=\n 'specifies the output folder path', required=True)\n parser.add_argument('--regression_model_path', type=str, required=True,\n help='specifies the regression model path')\n return vars(parser.parse_args())\n\n\ndef main():\n args = parse_args()\n print('Args: {}'.format(args))\n data_path = os.path.abspath(args['data_path'])\n output_path = os.path.abspath(args['output_path'])\n model_path = os.path.abspath(args['regression_model_path'])\n train_evaluate(data_path, output_path, model_path)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_prediction_data(data, model_path):\n x = data.drop(PREDICT_X_SKIP_COLS, axis=1)\n y = data[X_COLS]\n model = joblib.load(model_path)\n y_pred, metrics = regression.evaluate(model, x, y, METRICS_INFO)\n y_pred = pd.DataFrame(data=y_pred, columns=X_COLS)\n return y_pred, metrics\n\n\ndef prepare_data(data_folder, model_path):\n train, test, na_value = dataset.read_data(data_folder)\n x_train = train[X_COLS]\n y_train = train[Y_COL]\n x_test = test[X_COLS]\n y_test = test[Y_COL]\n out_train = train[Y_OUTPUT_COLS]\n out_test = test[Y_OUTPUT_COLS]\n x_pred_train, metrics_train = get_prediction_data(train, model_path)\n x_pred_test, metrics_test = get_prediction_data(test, model_path)\n train = {'x': x_train, 'y': y_train, 'x_pred': x_pred_train, 'out':\n out_train}\n test = {'x': x_test, 'y': y_test, 'x_pred': x_pred_test, 'out': out_test}\n metrics = {'reg_train_pred': metrics_train, 'reg_test_pred': metrics_test}\n return train, test, metrics, na_value\n\n\ndef postprocess_data(out_data, y_pred):\n y_output = out_data.copy()\n y_output[Y_COL] = y_pred\n return y_output\n\n\ndef train_evaluate(data_folder, output_folder, model_path):\n model = lstm.get_model(DROPOUT, len(X_COLS), HIDDEN_SIZE)\n print('Preparing data...')\n train, test, metrics, na_value = prepare_data(data_folder, model_path)\n print('Training...')\n model = lstm.train(model, train['x'], train['y'])\n model = lstm.train(model, train['x_pred'], train['y'])\n print('Evaluating...')\n y_pred, metrics_lstm = lstm.evaluate(model, test['x'], test['y'],\n METRICS_INFO)\n y_pred_reg, metrics_reg_lstm = lstm.evaluate(model, test['x_pred'],\n test['y'], METRICS_INFO)\n metrics['lstm_pred'] = metrics_lstm\n metrics['reg_lstm_pred'] = metrics_reg_lstm\n print('Postprocessing data...')\n y_output = postprocess_data(test['out'], y_pred)\n y_output_reg = postprocess_data(test['out'], y_pred_reg)\n output_path = os.path.join(output_folder, 'pred.csv')\n y_output.to_csv(output_path, index=False)\n output_path = os.path.join(output_folder, 'pred_reg.csv')\n y_output_reg.to_csv(output_path, index=False)\n result = {'metrics': metrics, 'na_value': na_value}\n result_path = os.path.join(output_folder, 'result.json')\n json_config = json.dumps(result, indent=4)\n with open(result_path, 'w') as result_file:\n result_file.write(json_config)\n model_path = os.path.join(output_folder, 'lstm.mdl')\n torch.save(model, model_path)\n print('Output files (model, result, prediction) saved to {}'.format(\n output_folder))\n\n\ndef parse_args():\n parser = argparse.ArgumentParser()\n parser.add_argument('--data_path', type=str, help=\n 'specifies the data folder path', required=True)\n parser.add_argument('--output_path', type=str, help=\n 'specifies the output folder path', required=True)\n parser.add_argument('--regression_model_path', type=str, required=True,\n help='specifies the regression model path')\n return vars(parser.parse_args())\n\n\ndef main():\n args = parse_args()\n print('Args: {}'.format(args))\n data_path = os.path.abspath(args['data_path'])\n output_path = os.path.abspath(args['output_path'])\n model_path = os.path.abspath(args['regression_model_path'])\n train_evaluate(data_path, output_path, model_path)\n\n\nmain()\n", "step-3": "<mask token>\nPREDICT_X_SKIP_COLS = ['date', 'weight', 'ts_id', 'resp', 'resp_1',\n 'resp_2', 'resp_3', 'resp_4']\nX_COLS = ['resp_1', 'resp_2', 'resp_3', 'resp_4']\nY_OUTPUT_COLS = ['date', 'ts_id']\nY_COL = ['resp']\nMETRICS_INFO = ['mse', 'r2', 'mape']\nDROPOUT = 0.25\nHIDDEN_SIZE = 20\n\n\ndef get_prediction_data(data, model_path):\n x = data.drop(PREDICT_X_SKIP_COLS, axis=1)\n y = data[X_COLS]\n model = joblib.load(model_path)\n y_pred, metrics = regression.evaluate(model, x, y, METRICS_INFO)\n y_pred = pd.DataFrame(data=y_pred, columns=X_COLS)\n return y_pred, metrics\n\n\ndef prepare_data(data_folder, model_path):\n train, test, na_value = dataset.read_data(data_folder)\n x_train = train[X_COLS]\n y_train = train[Y_COL]\n x_test = test[X_COLS]\n y_test = test[Y_COL]\n out_train = train[Y_OUTPUT_COLS]\n out_test = test[Y_OUTPUT_COLS]\n x_pred_train, metrics_train = get_prediction_data(train, model_path)\n x_pred_test, metrics_test = get_prediction_data(test, model_path)\n train = {'x': x_train, 'y': y_train, 'x_pred': x_pred_train, 'out':\n out_train}\n test = {'x': x_test, 'y': y_test, 'x_pred': x_pred_test, 'out': out_test}\n metrics = {'reg_train_pred': metrics_train, 'reg_test_pred': metrics_test}\n return train, test, metrics, na_value\n\n\ndef postprocess_data(out_data, y_pred):\n y_output = out_data.copy()\n y_output[Y_COL] = y_pred\n return y_output\n\n\ndef train_evaluate(data_folder, output_folder, model_path):\n model = lstm.get_model(DROPOUT, len(X_COLS), HIDDEN_SIZE)\n print('Preparing data...')\n train, test, metrics, na_value = prepare_data(data_folder, model_path)\n print('Training...')\n model = lstm.train(model, train['x'], train['y'])\n model = lstm.train(model, train['x_pred'], train['y'])\n print('Evaluating...')\n y_pred, metrics_lstm = lstm.evaluate(model, test['x'], test['y'],\n METRICS_INFO)\n y_pred_reg, metrics_reg_lstm = lstm.evaluate(model, test['x_pred'],\n test['y'], METRICS_INFO)\n metrics['lstm_pred'] = metrics_lstm\n metrics['reg_lstm_pred'] = metrics_reg_lstm\n print('Postprocessing data...')\n y_output = postprocess_data(test['out'], y_pred)\n y_output_reg = postprocess_data(test['out'], y_pred_reg)\n output_path = os.path.join(output_folder, 'pred.csv')\n y_output.to_csv(output_path, index=False)\n output_path = os.path.join(output_folder, 'pred_reg.csv')\n y_output_reg.to_csv(output_path, index=False)\n result = {'metrics': metrics, 'na_value': na_value}\n result_path = os.path.join(output_folder, 'result.json')\n json_config = json.dumps(result, indent=4)\n with open(result_path, 'w') as result_file:\n result_file.write(json_config)\n model_path = os.path.join(output_folder, 'lstm.mdl')\n torch.save(model, model_path)\n print('Output files (model, result, prediction) saved to {}'.format(\n output_folder))\n\n\ndef parse_args():\n parser = argparse.ArgumentParser()\n parser.add_argument('--data_path', type=str, help=\n 'specifies the data folder path', required=True)\n parser.add_argument('--output_path', type=str, help=\n 'specifies the output folder path', required=True)\n parser.add_argument('--regression_model_path', type=str, required=True,\n help='specifies the regression model path')\n return vars(parser.parse_args())\n\n\ndef main():\n args = parse_args()\n print('Args: {}'.format(args))\n data_path = os.path.abspath(args['data_path'])\n output_path = os.path.abspath(args['output_path'])\n model_path = os.path.abspath(args['regression_model_path'])\n train_evaluate(data_path, output_path, model_path)\n\n\nmain()\n", "step-4": "import argparse, os, joblib, json, torch\nimport pandas as pd\nfrom utils import regression, dataset, lstm\nPREDICT_X_SKIP_COLS = ['date', 'weight', 'ts_id', 'resp', 'resp_1',\n 'resp_2', 'resp_3', 'resp_4']\nX_COLS = ['resp_1', 'resp_2', 'resp_3', 'resp_4']\nY_OUTPUT_COLS = ['date', 'ts_id']\nY_COL = ['resp']\nMETRICS_INFO = ['mse', 'r2', 'mape']\nDROPOUT = 0.25\nHIDDEN_SIZE = 20\n\n\ndef get_prediction_data(data, model_path):\n x = data.drop(PREDICT_X_SKIP_COLS, axis=1)\n y = data[X_COLS]\n model = joblib.load(model_path)\n y_pred, metrics = regression.evaluate(model, x, y, METRICS_INFO)\n y_pred = pd.DataFrame(data=y_pred, columns=X_COLS)\n return y_pred, metrics\n\n\ndef prepare_data(data_folder, model_path):\n train, test, na_value = dataset.read_data(data_folder)\n x_train = train[X_COLS]\n y_train = train[Y_COL]\n x_test = test[X_COLS]\n y_test = test[Y_COL]\n out_train = train[Y_OUTPUT_COLS]\n out_test = test[Y_OUTPUT_COLS]\n x_pred_train, metrics_train = get_prediction_data(train, model_path)\n x_pred_test, metrics_test = get_prediction_data(test, model_path)\n train = {'x': x_train, 'y': y_train, 'x_pred': x_pred_train, 'out':\n out_train}\n test = {'x': x_test, 'y': y_test, 'x_pred': x_pred_test, 'out': out_test}\n metrics = {'reg_train_pred': metrics_train, 'reg_test_pred': metrics_test}\n return train, test, metrics, na_value\n\n\ndef postprocess_data(out_data, y_pred):\n y_output = out_data.copy()\n y_output[Y_COL] = y_pred\n return y_output\n\n\ndef train_evaluate(data_folder, output_folder, model_path):\n model = lstm.get_model(DROPOUT, len(X_COLS), HIDDEN_SIZE)\n print('Preparing data...')\n train, test, metrics, na_value = prepare_data(data_folder, model_path)\n print('Training...')\n model = lstm.train(model, train['x'], train['y'])\n model = lstm.train(model, train['x_pred'], train['y'])\n print('Evaluating...')\n y_pred, metrics_lstm = lstm.evaluate(model, test['x'], test['y'],\n METRICS_INFO)\n y_pred_reg, metrics_reg_lstm = lstm.evaluate(model, test['x_pred'],\n test['y'], METRICS_INFO)\n metrics['lstm_pred'] = metrics_lstm\n metrics['reg_lstm_pred'] = metrics_reg_lstm\n print('Postprocessing data...')\n y_output = postprocess_data(test['out'], y_pred)\n y_output_reg = postprocess_data(test['out'], y_pred_reg)\n output_path = os.path.join(output_folder, 'pred.csv')\n y_output.to_csv(output_path, index=False)\n output_path = os.path.join(output_folder, 'pred_reg.csv')\n y_output_reg.to_csv(output_path, index=False)\n result = {'metrics': metrics, 'na_value': na_value}\n result_path = os.path.join(output_folder, 'result.json')\n json_config = json.dumps(result, indent=4)\n with open(result_path, 'w') as result_file:\n result_file.write(json_config)\n model_path = os.path.join(output_folder, 'lstm.mdl')\n torch.save(model, model_path)\n print('Output files (model, result, prediction) saved to {}'.format(\n output_folder))\n\n\ndef parse_args():\n parser = argparse.ArgumentParser()\n parser.add_argument('--data_path', type=str, help=\n 'specifies the data folder path', required=True)\n parser.add_argument('--output_path', type=str, help=\n 'specifies the output folder path', required=True)\n parser.add_argument('--regression_model_path', type=str, required=True,\n help='specifies the regression model path')\n return vars(parser.parse_args())\n\n\ndef main():\n args = parse_args()\n print('Args: {}'.format(args))\n data_path = os.path.abspath(args['data_path'])\n output_path = os.path.abspath(args['output_path'])\n model_path = os.path.abspath(args['regression_model_path'])\n train_evaluate(data_path, output_path, model_path)\n\n\nmain()\n", "step-5": "import argparse, os, joblib, json, torch\nimport pandas as pd\nfrom utils import regression, dataset, lstm\n\nPREDICT_X_SKIP_COLS = [\"date\", \"weight\", \"ts_id\", \"resp\", \"resp_1\", \"resp_2\", \"resp_3\", \"resp_4\"]\nX_COLS = [\"resp_1\", \"resp_2\", \"resp_3\", \"resp_4\"]\nY_OUTPUT_COLS = [\"date\", \"ts_id\"]\nY_COL = [\"resp\"]\nMETRICS_INFO = [\"mse\", \"r2\", \"mape\"]\nDROPOUT = 0.25\nHIDDEN_SIZE = 20\n\ndef get_prediction_data(data, model_path):\n\tx = data.drop(PREDICT_X_SKIP_COLS, axis=1)\n\ty = data[X_COLS]\n\tmodel = joblib.load(model_path)\n\t(y_pred, metrics) = regression.evaluate(model, x, y, METRICS_INFO)\n\ty_pred = pd.DataFrame(data=y_pred, columns=X_COLS)\n\treturn (y_pred, metrics)\n\ndef prepare_data(data_folder, model_path):\n\t(train, test, na_value) = dataset.read_data(data_folder)\n\tx_train = train[X_COLS]\n\ty_train = train[Y_COL]\n\tx_test = test[X_COLS]\n\ty_test = test[Y_COL]\n\tout_train = train[Y_OUTPUT_COLS]\n\tout_test = test[Y_OUTPUT_COLS]\n\t(x_pred_train , metrics_train) = get_prediction_data(train, model_path)\n\t(x_pred_test, metrics_test) = get_prediction_data(test, model_path)\n\ttrain = { \"x\": x_train, \"y\": y_train, \"x_pred\": x_pred_train, \"out\": out_train}\n\ttest = { \"x\": x_test, \"y\": y_test, \"x_pred\": x_pred_test, \"out\": out_test}\n\tmetrics = {\n\t\t\"reg_train_pred\": metrics_train,\n\t\t\"reg_test_pred\": metrics_test\n\t}\n\treturn (train, test, metrics, na_value)\n\ndef postprocess_data(out_data, y_pred):\n\ty_output = out_data.copy()\n\ty_output[Y_COL] = y_pred\n\treturn y_output\n\ndef train_evaluate(data_folder, output_folder, model_path):\n\tmodel = lstm.get_model(DROPOUT, len(X_COLS), HIDDEN_SIZE)\n\n\tprint(\"Preparing data...\")\n\t(train, test, metrics, na_value) = prepare_data(data_folder, model_path)\n\n\tprint(\"Training...\")\n\tmodel = lstm.train(model, train[\"x\"], train[\"y\"])\n\tmodel = lstm.train(model, train[\"x_pred\"], train[\"y\"])\n\n\tprint(\"Evaluating...\")\n\t(y_pred, metrics_lstm) = lstm.evaluate(model, test[\"x\"],\n\t\ttest[\"y\"], METRICS_INFO)\n\t(y_pred_reg, metrics_reg_lstm) = lstm.evaluate(model,\n\t\ttest[\"x_pred\"], test[\"y\"], METRICS_INFO)\n\tmetrics[\"lstm_pred\"] = metrics_lstm\n\tmetrics[\"reg_lstm_pred\"] = metrics_reg_lstm\n\n\tprint(\"Postprocessing data...\")\n\ty_output = postprocess_data(test[\"out\"], y_pred)\n\ty_output_reg = postprocess_data(test[\"out\"], y_pred_reg)\n\n\toutput_path = os.path.join(output_folder, \"pred.csv\")\n\ty_output.to_csv(output_path, index=False)\n\n\toutput_path = os.path.join(output_folder, \"pred_reg.csv\")\n\ty_output_reg.to_csv(output_path, index=False)\n\n\tresult = { \"metrics\": metrics, \"na_value\": na_value }\n\tresult_path = os.path.join(output_folder, \"result.json\")\n\tjson_config = json.dumps(result, indent=4)\n\twith open(result_path, \"w\") as result_file:\n\t\tresult_file.write(json_config)\n\n\tmodel_path = os.path.join(output_folder, \"lstm.mdl\")\n\ttorch.save(model, model_path)\n\tprint(\"Output files (model, result, prediction) saved to {}\".format(\n\t\toutput_folder))\n\ndef parse_args():\n\tparser = argparse.ArgumentParser()\n\tparser.add_argument(\n\t\t\"--data_path\", type=str, help=\"specifies the data folder path\",\n\t\trequired=True)\n\tparser.add_argument(\n\t\t\"--output_path\", type=str, help=\"specifies the output folder path\",\n\t\trequired=True)\n\tparser.add_argument(\n\t\t\"--regression_model_path\", type=str, required = True,\n\t\thelp=\"specifies the regression model path\")\n\treturn vars(parser.parse_args())\n\ndef main():\n\targs = parse_args()\n\tprint(\"Args: {}\".format(args))\n\tdata_path = os.path.abspath(args[\"data_path\"])\n\toutput_path = os.path.abspath(args[\"output_path\"])\n\tmodel_path = os.path.abspath(args[\"regression_model_path\"])\n\ttrain_evaluate(data_path, output_path, model_path)\n\nmain()\n", "step-ids": [ 6, 7, 8, 9, 10 ] }
[ 6, 7, 8, 9, 10 ]
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmagic.registry import MODELS def test_colorization_net(): model_cfg = dict( type='ColorizationNet', input_nc=4, output_nc=2, norm_type='batch') # build model model = MODELS.build(model_cfg) # test attributes assert model.__class__.__name__ == 'ColorizationNet' # prepare data input_A = torch.rand(1, 1, 256, 256) input_B = torch.rand(1, 2, 256, 256) mask_B = torch.rand(1, 1, 256, 256) target_shape = (1, 2, 256, 256) # test on cpu (out_class, out_reg, feature_map) = model(input_A, input_B, mask_B) assert isinstance(feature_map, dict) assert feature_map['conv1_2'].shape == (1, 64, 256, 256) \ and feature_map['out_reg'].shape == target_shape # test on gpu if torch.cuda.is_available(): model = model.cuda() input_A = input_A.cuda() input_B = input_B.cuda() mask_B = mask_B.cuda() (out_class, out_reg, feature_map) = \ model(input_A, input_B, mask_B) assert isinstance(feature_map, dict) for item in feature_map.keys(): assert torch.is_tensor(feature_map[item])
normal
{ "blob_id": "94be205e516c1f1248b6028419c04c927236596e", "index": 618, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef test_colorization_net():\n model_cfg = dict(type='ColorizationNet', input_nc=4, output_nc=2,\n norm_type='batch')\n model = MODELS.build(model_cfg)\n assert model.__class__.__name__ == 'ColorizationNet'\n input_A = torch.rand(1, 1, 256, 256)\n input_B = torch.rand(1, 2, 256, 256)\n mask_B = torch.rand(1, 1, 256, 256)\n target_shape = 1, 2, 256, 256\n out_class, out_reg, feature_map = model(input_A, input_B, mask_B)\n assert isinstance(feature_map, dict)\n assert feature_map['conv1_2'].shape == (1, 64, 256, 256) and feature_map[\n 'out_reg'].shape == target_shape\n if torch.cuda.is_available():\n model = model.cuda()\n input_A = input_A.cuda()\n input_B = input_B.cuda()\n mask_B = mask_B.cuda()\n out_class, out_reg, feature_map = model(input_A, input_B, mask_B)\n assert isinstance(feature_map, dict)\n for item in feature_map.keys():\n assert torch.is_tensor(feature_map[item])\n", "step-3": "import torch\nfrom mmagic.registry import MODELS\n\n\ndef test_colorization_net():\n model_cfg = dict(type='ColorizationNet', input_nc=4, output_nc=2,\n norm_type='batch')\n model = MODELS.build(model_cfg)\n assert model.__class__.__name__ == 'ColorizationNet'\n input_A = torch.rand(1, 1, 256, 256)\n input_B = torch.rand(1, 2, 256, 256)\n mask_B = torch.rand(1, 1, 256, 256)\n target_shape = 1, 2, 256, 256\n out_class, out_reg, feature_map = model(input_A, input_B, mask_B)\n assert isinstance(feature_map, dict)\n assert feature_map['conv1_2'].shape == (1, 64, 256, 256) and feature_map[\n 'out_reg'].shape == target_shape\n if torch.cuda.is_available():\n model = model.cuda()\n input_A = input_A.cuda()\n input_B = input_B.cuda()\n mask_B = mask_B.cuda()\n out_class, out_reg, feature_map = model(input_A, input_B, mask_B)\n assert isinstance(feature_map, dict)\n for item in feature_map.keys():\n assert torch.is_tensor(feature_map[item])\n", "step-4": "# Copyright (c) OpenMMLab. All rights reserved.\nimport torch\n\nfrom mmagic.registry import MODELS\n\n\ndef test_colorization_net():\n\n model_cfg = dict(\n type='ColorizationNet', input_nc=4, output_nc=2, norm_type='batch')\n\n # build model\n model = MODELS.build(model_cfg)\n\n # test attributes\n assert model.__class__.__name__ == 'ColorizationNet'\n\n # prepare data\n input_A = torch.rand(1, 1, 256, 256)\n input_B = torch.rand(1, 2, 256, 256)\n mask_B = torch.rand(1, 1, 256, 256)\n\n target_shape = (1, 2, 256, 256)\n\n # test on cpu\n (out_class, out_reg, feature_map) = model(input_A, input_B, mask_B)\n assert isinstance(feature_map, dict)\n assert feature_map['conv1_2'].shape == (1, 64, 256, 256) \\\n and feature_map['out_reg'].shape == target_shape\n\n # test on gpu\n if torch.cuda.is_available():\n model = model.cuda()\n input_A = input_A.cuda()\n input_B = input_B.cuda()\n mask_B = mask_B.cuda()\n (out_class, out_reg, feature_map) = \\\n model(input_A, input_B, mask_B)\n\n assert isinstance(feature_map, dict)\n for item in feature_map.keys():\n assert torch.is_tensor(feature_map[item])\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> q.append((1, 0, 0)) while q: e, clip, t = q.popleft() if e == s: print(t) exit(0) if 0 < e < 1001: if visited[e][e] is False: visited[e][e] = True q.append((e, e, t + 1)) if e + clip < 1001 and visited[e + clip][clip] is False: visited[e + clip][clip] = True q.append((e + clip, clip, t + 1)) if visited[e - 1][clip] is False: visited[e - 1][clip] = True q.append((e - 1, clip, t + 1)) <|reserved_special_token_1|> <|reserved_special_token_0|> s = int(input()) q = deque() visited = [([False] * 1001) for _ in range(1001)] visited[1][0] = True q.append((1, 0, 0)) while q: e, clip, t = q.popleft() if e == s: print(t) exit(0) if 0 < e < 1001: if visited[e][e] is False: visited[e][e] = True q.append((e, e, t + 1)) if e + clip < 1001 and visited[e + clip][clip] is False: visited[e + clip][clip] = True q.append((e + clip, clip, t + 1)) if visited[e - 1][clip] is False: visited[e - 1][clip] = True q.append((e - 1, clip, t + 1)) <|reserved_special_token_1|> from collections import deque s = int(input()) q = deque() visited = [([False] * 1001) for _ in range(1001)] visited[1][0] = True q.append((1, 0, 0)) while q: e, clip, t = q.popleft() if e == s: print(t) exit(0) if 0 < e < 1001: if visited[e][e] is False: visited[e][e] = True q.append((e, e, t + 1)) if e + clip < 1001 and visited[e + clip][clip] is False: visited[e + clip][clip] = True q.append((e + clip, clip, t + 1)) if visited[e - 1][clip] is False: visited[e - 1][clip] = True q.append((e - 1, clip, t + 1)) <|reserved_special_token_1|> # https://kyu9341.github.io/algorithm/2020/03/11/algorithm14226/ # https://developingbear.tistory.com/138 # https://devbelly.tistory.com/108 # 이모티콘 s개 생성 # 3가지 연산 이용 # bfs 이용 => visited를 이모티콘 방문 여부 2차원 배열 => 이모티콘의 수 와 클립보드에 저장된 이모티콘의 갯수를 이용 from collections import deque s = int(input()) q = deque() # visited[이모티콘의 수][클리보드의 이모티콘 수] visited = [[False] * 1001 for _ in range(1001)] visited[1][0] = True # 이모티콘의 수, 클립보드의 수, 시간 q.append((1, 0, 0)) while q: e, clip, t = q.popleft() if e == s: print(t) exit(0) if 0 < e < 1001: if visited[e][e] is False: visited[e][e] = True q.append((e, e, t + 1)) # clip이 0 이상 조건이 필요없음 어차피 위에서 e가 0보다 큰걸로 조건 수행했으므로 if e + clip < 1001 and visited[e + clip][clip] is False: visited[e + clip][clip] = True q.append((e + clip, clip, t + 1)) # e가 1000을 넘을때만 수행하는 것이 아닌 모든 경우에 대해서 탐색을 하기 위해서 e에 대한 조건을 걸지 않음 if visited[e - 1][clip] is False: visited[e - 1][clip] = True q.append((e - 1, clip, t + 1))
flexible
{ "blob_id": "0c14a6fa8b25e1791a6eb9c71290db8bb316819a", "index": 5684, "step-1": "<mask token>\n", "step-2": "<mask token>\nq.append((1, 0, 0))\nwhile q:\n e, clip, t = q.popleft()\n if e == s:\n print(t)\n exit(0)\n if 0 < e < 1001:\n if visited[e][e] is False:\n visited[e][e] = True\n q.append((e, e, t + 1))\n if e + clip < 1001 and visited[e + clip][clip] is False:\n visited[e + clip][clip] = True\n q.append((e + clip, clip, t + 1))\n if visited[e - 1][clip] is False:\n visited[e - 1][clip] = True\n q.append((e - 1, clip, t + 1))\n", "step-3": "<mask token>\ns = int(input())\nq = deque()\nvisited = [([False] * 1001) for _ in range(1001)]\nvisited[1][0] = True\nq.append((1, 0, 0))\nwhile q:\n e, clip, t = q.popleft()\n if e == s:\n print(t)\n exit(0)\n if 0 < e < 1001:\n if visited[e][e] is False:\n visited[e][e] = True\n q.append((e, e, t + 1))\n if e + clip < 1001 and visited[e + clip][clip] is False:\n visited[e + clip][clip] = True\n q.append((e + clip, clip, t + 1))\n if visited[e - 1][clip] is False:\n visited[e - 1][clip] = True\n q.append((e - 1, clip, t + 1))\n", "step-4": "from collections import deque\ns = int(input())\nq = deque()\nvisited = [([False] * 1001) for _ in range(1001)]\nvisited[1][0] = True\nq.append((1, 0, 0))\nwhile q:\n e, clip, t = q.popleft()\n if e == s:\n print(t)\n exit(0)\n if 0 < e < 1001:\n if visited[e][e] is False:\n visited[e][e] = True\n q.append((e, e, t + 1))\n if e + clip < 1001 and visited[e + clip][clip] is False:\n visited[e + clip][clip] = True\n q.append((e + clip, clip, t + 1))\n if visited[e - 1][clip] is False:\n visited[e - 1][clip] = True\n q.append((e - 1, clip, t + 1))\n", "step-5": "# https://kyu9341.github.io/algorithm/2020/03/11/algorithm14226/\n# https://developingbear.tistory.com/138\n# https://devbelly.tistory.com/108\n# 이모티콘 s개 생성\n# 3가지 연산 이용\n# bfs 이용 => visited를 이모티콘 방문 여부 2차원 배열 => 이모티콘의 수 와 클립보드에 저장된 이모티콘의 갯수를 이용\nfrom collections import deque\ns = int(input())\nq = deque()\n# visited[이모티콘의 수][클리보드의 이모티콘 수]\nvisited = [[False] * 1001 for _ in range(1001)]\nvisited[1][0] = True\n# 이모티콘의 수, 클립보드의 수, 시간\nq.append((1, 0, 0))\nwhile q:\n e, clip, t = q.popleft()\n if e == s:\n print(t)\n exit(0)\n\n if 0 < e < 1001:\n if visited[e][e] is False:\n visited[e][e] = True\n q.append((e, e, t + 1))\n # clip이 0 이상 조건이 필요없음 어차피 위에서 e가 0보다 큰걸로 조건 수행했으므로\n if e + clip < 1001 and visited[e + clip][clip] is False:\n visited[e + clip][clip] = True\n q.append((e + clip, clip, t + 1))\n # e가 1000을 넘을때만 수행하는 것이 아닌 모든 경우에 대해서 탐색을 하기 위해서 e에 대한 조건을 걸지 않음\n if visited[e - 1][clip] is False:\n visited[e - 1][clip] = True\n q.append((e - 1, clip, t + 1))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class MemberClient(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class MemberClient(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def __str__(self): return '{0}'.format(self.client) <|reserved_special_token_1|> <|reserved_special_token_0|> class MemberClient(models.Model): created = models.DateTimeField(auto_now_add=timezone.now()) client = models.ForeignKey(AllUser, related_name='client', default=None, on_delete=models.CASCADE) member = models.ForeignKey(AllUser, related_name='member', default=None, on_delete=models.CASCADE) profile = models.ForeignKey(Profile, related_name='profile', default= None, on_delete=models.CASCADE, blank=True, null=True) def __str__(self): return '{0}'.format(self.client) <|reserved_special_token_1|> from django.db import models from django.utils import timezone from accounts.models import AllUser from profiles.models import Profile class MemberClient(models.Model): created = models.DateTimeField(auto_now_add=timezone.now()) client = models.ForeignKey(AllUser, related_name='client', default=None, on_delete=models.CASCADE) member = models.ForeignKey(AllUser, related_name='member', default=None, on_delete=models.CASCADE) profile = models.ForeignKey(Profile, related_name='profile', default= None, on_delete=models.CASCADE, blank=True, null=True) def __str__(self): return '{0}'.format(self.client) <|reserved_special_token_1|> from django.db import models from django.utils import timezone from accounts.models import AllUser from profiles.models import Profile ### MODEL HOLDING MEMBER TO CLIENT RELATIONSHIPS. ### class MemberClient(models.Model): created = models.DateTimeField(auto_now_add=timezone.now()) client = models.ForeignKey(AllUser, related_name='client', default=None, on_delete=models.CASCADE) member = models.ForeignKey(AllUser, related_name='member', default=None, on_delete=models.CASCADE) profile = models.ForeignKey(Profile, related_name='profile', default=None, on_delete=models.CASCADE, blank=True, null=True) def __str__(self): return "{0}".format(self.client)
flexible
{ "blob_id": "b419e26cbf5bbb746f897367ddaa829773a6860c", "index": 7742, "step-1": "<mask token>\n\n\nclass MemberClient(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass MemberClient(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n return '{0}'.format(self.client)\n", "step-3": "<mask token>\n\n\nclass MemberClient(models.Model):\n created = models.DateTimeField(auto_now_add=timezone.now())\n client = models.ForeignKey(AllUser, related_name='client', default=None,\n on_delete=models.CASCADE)\n member = models.ForeignKey(AllUser, related_name='member', default=None,\n on_delete=models.CASCADE)\n profile = models.ForeignKey(Profile, related_name='profile', default=\n None, on_delete=models.CASCADE, blank=True, null=True)\n\n def __str__(self):\n return '{0}'.format(self.client)\n", "step-4": "from django.db import models\nfrom django.utils import timezone\nfrom accounts.models import AllUser\nfrom profiles.models import Profile\n\n\nclass MemberClient(models.Model):\n created = models.DateTimeField(auto_now_add=timezone.now())\n client = models.ForeignKey(AllUser, related_name='client', default=None,\n on_delete=models.CASCADE)\n member = models.ForeignKey(AllUser, related_name='member', default=None,\n on_delete=models.CASCADE)\n profile = models.ForeignKey(Profile, related_name='profile', default=\n None, on_delete=models.CASCADE, blank=True, null=True)\n\n def __str__(self):\n return '{0}'.format(self.client)\n", "step-5": "from django.db import models\nfrom django.utils import timezone\nfrom accounts.models import AllUser\nfrom profiles.models import Profile\n\n### MODEL HOLDING MEMBER TO CLIENT RELATIONSHIPS. ###\n\nclass MemberClient(models.Model):\n created = models.DateTimeField(auto_now_add=timezone.now())\n client = models.ForeignKey(AllUser, \n related_name='client', \n default=None, \n on_delete=models.CASCADE)\n member = models.ForeignKey(AllUser,\n related_name='member', \n default=None, \n on_delete=models.CASCADE)\n profile = models.ForeignKey(Profile,\n related_name='profile', \n default=None, \n on_delete=models.CASCADE,\n blank=True,\n null=True)\n \n def __str__(self):\n return \"{0}\".format(self.client)", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#!/usr/local/bin/python3 """ Copyright (c) 2015-2019 Ad Schellevis <[email protected]> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -------------------------------------------------------------------------------------- returns system activity (top) """ import collections import tempfile import subprocess import os import sys import ujson if __name__ == '__main__': fieldnames = None field_max_width = dict() result = {'headers': [], 'details': []} is_header = True tidpid = dict() for line in subprocess.run(['/usr/bin/procstat','-ath'], capture_output=True, text=True).stdout.split('\n'): parts = line.split(maxsplit=2) if len(parts) > 1: tidpid[parts[1]] = parts[0] # grab second display so that CPU time data appears sp = subprocess.run(['/usr/bin/top','-aHSTn','-d2','999999'], capture_output=True, text=True) topData = sp.stdout.strip().split('\n\n',2)[-1] for line in topData.split('\n'): # end of header, start of top detection if line.find('USERNAME') > -1 and line.find('COMMAND') > -1: is_header = False if is_header: # parse headers from top command, add to result if len(line.strip()) > 0: result['headers'].append(line) else: # parse details including fieldnames (leave original) if fieldnames is None: fieldnames = ['PID'] + line.split() else: tmp = line.split(maxsplit=10) record = {'C': '0'} for field_id in range(len(fieldnames)): fieldname = fieldnames[field_id] if field_id == 0: # PID record[fieldname] = tidpid[tmp[0]] if tmp[0] in tidpid else '' else: record[fieldname] = tmp[field_id - 1] if fieldname not in field_max_width or field_max_width[fieldname] < len(record[fieldname]): field_max_width[fieldname] = len(record[fieldname]) result['details'].append(record) if len(sys.argv) > 1 and sys.argv[1] == 'json': # output as json print(ujson.dumps(result)) else: # output plain (reconstruct data) for header_line in result['headers']: print (header_line) print ("\n") if fieldnames is not None: format_str = "" header_fields = {} for fieldname in fieldnames: format_str = '%s %%(%s)-%ds'%(format_str,fieldname, field_max_width[fieldname]+1) header_fields[fieldname] = fieldname print (format_str % header_fields) for detail_line in result['details']: print (format_str % detail_line)
normal
{ "blob_id": "f4ae34be2be2b47b3394e6da751c53c51a1c3174", "index": 6678, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n fieldnames = None\n field_max_width = dict()\n result = {'headers': [], 'details': []}\n is_header = True\n tidpid = dict()\n for line in subprocess.run(['/usr/bin/procstat', '-ath'],\n capture_output=True, text=True).stdout.split('\\n'):\n parts = line.split(maxsplit=2)\n if len(parts) > 1:\n tidpid[parts[1]] = parts[0]\n sp = subprocess.run(['/usr/bin/top', '-aHSTn', '-d2', '999999'],\n capture_output=True, text=True)\n topData = sp.stdout.strip().split('\\n\\n', 2)[-1]\n for line in topData.split('\\n'):\n if line.find('USERNAME') > -1 and line.find('COMMAND') > -1:\n is_header = False\n if is_header:\n if len(line.strip()) > 0:\n result['headers'].append(line)\n elif fieldnames is None:\n fieldnames = ['PID'] + line.split()\n else:\n tmp = line.split(maxsplit=10)\n record = {'C': '0'}\n for field_id in range(len(fieldnames)):\n fieldname = fieldnames[field_id]\n if field_id == 0:\n record[fieldname] = tidpid[tmp[0]] if tmp[0\n ] in tidpid else ''\n else:\n record[fieldname] = tmp[field_id - 1]\n if fieldname not in field_max_width or field_max_width[\n fieldname] < len(record[fieldname]):\n field_max_width[fieldname] = len(record[fieldname])\n result['details'].append(record)\n if len(sys.argv) > 1 and sys.argv[1] == 'json':\n print(ujson.dumps(result))\n else:\n for header_line in result['headers']:\n print(header_line)\n print('\\n')\n if fieldnames is not None:\n format_str = ''\n header_fields = {}\n for fieldname in fieldnames:\n format_str = '%s %%(%s)-%ds' % (format_str, fieldname, \n field_max_width[fieldname] + 1)\n header_fields[fieldname] = fieldname\n print(format_str % header_fields)\n for detail_line in result['details']:\n print(format_str % detail_line)\n", "step-3": "<mask token>\nimport collections\nimport tempfile\nimport subprocess\nimport os\nimport sys\nimport ujson\nif __name__ == '__main__':\n fieldnames = None\n field_max_width = dict()\n result = {'headers': [], 'details': []}\n is_header = True\n tidpid = dict()\n for line in subprocess.run(['/usr/bin/procstat', '-ath'],\n capture_output=True, text=True).stdout.split('\\n'):\n parts = line.split(maxsplit=2)\n if len(parts) > 1:\n tidpid[parts[1]] = parts[0]\n sp = subprocess.run(['/usr/bin/top', '-aHSTn', '-d2', '999999'],\n capture_output=True, text=True)\n topData = sp.stdout.strip().split('\\n\\n', 2)[-1]\n for line in topData.split('\\n'):\n if line.find('USERNAME') > -1 and line.find('COMMAND') > -1:\n is_header = False\n if is_header:\n if len(line.strip()) > 0:\n result['headers'].append(line)\n elif fieldnames is None:\n fieldnames = ['PID'] + line.split()\n else:\n tmp = line.split(maxsplit=10)\n record = {'C': '0'}\n for field_id in range(len(fieldnames)):\n fieldname = fieldnames[field_id]\n if field_id == 0:\n record[fieldname] = tidpid[tmp[0]] if tmp[0\n ] in tidpid else ''\n else:\n record[fieldname] = tmp[field_id - 1]\n if fieldname not in field_max_width or field_max_width[\n fieldname] < len(record[fieldname]):\n field_max_width[fieldname] = len(record[fieldname])\n result['details'].append(record)\n if len(sys.argv) > 1 and sys.argv[1] == 'json':\n print(ujson.dumps(result))\n else:\n for header_line in result['headers']:\n print(header_line)\n print('\\n')\n if fieldnames is not None:\n format_str = ''\n header_fields = {}\n for fieldname in fieldnames:\n format_str = '%s %%(%s)-%ds' % (format_str, fieldname, \n field_max_width[fieldname] + 1)\n header_fields[fieldname] = fieldname\n print(format_str % header_fields)\n for detail_line in result['details']:\n print(format_str % detail_line)\n", "step-4": "#!/usr/local/bin/python3\n\n\"\"\"\n Copyright (c) 2015-2019 Ad Schellevis <[email protected]>\n All rights reserved.\n\n Redistribution and use in source and binary forms, with or without\n modification, are permitted provided that the following conditions are met:\n\n 1. Redistributions of source code must retain the above copyright notice,\n this list of conditions and the following disclaimer.\n\n 2. Redistributions in binary form must reproduce the above copyright\n notice, this list of conditions and the following disclaimer in the\n documentation and/or other materials provided with the distribution.\n\n THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,\n INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY\n AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE\n AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,\n OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE\n POSSIBILITY OF SUCH DAMAGE.\n\n --------------------------------------------------------------------------------------\n returns system activity (top)\n\"\"\"\nimport collections\nimport tempfile\nimport subprocess\nimport os\nimport sys\nimport ujson\n\nif __name__ == '__main__':\n fieldnames = None\n field_max_width = dict()\n result = {'headers': [], 'details': []}\n is_header = True\n tidpid = dict()\n for line in subprocess.run(['/usr/bin/procstat','-ath'], capture_output=True, text=True).stdout.split('\\n'):\n parts = line.split(maxsplit=2)\n if len(parts) > 1:\n tidpid[parts[1]] = parts[0]\n # grab second display so that CPU time data appears\n sp = subprocess.run(['/usr/bin/top','-aHSTn','-d2','999999'], capture_output=True, text=True)\n topData = sp.stdout.strip().split('\\n\\n',2)[-1]\n for line in topData.split('\\n'):\n # end of header, start of top detection\n if line.find('USERNAME') > -1 and line.find('COMMAND') > -1:\n is_header = False\n if is_header:\n # parse headers from top command, add to result\n if len(line.strip()) > 0:\n result['headers'].append(line)\n else:\n # parse details including fieldnames (leave original)\n if fieldnames is None:\n fieldnames = ['PID'] + line.split()\n else:\n tmp = line.split(maxsplit=10)\n record = {'C': '0'}\n for field_id in range(len(fieldnames)):\n fieldname = fieldnames[field_id]\n if field_id == 0: # PID\n record[fieldname] = tidpid[tmp[0]] if tmp[0] in tidpid else ''\n else:\n record[fieldname] = tmp[field_id - 1]\n\n if fieldname not in field_max_width or field_max_width[fieldname] < len(record[fieldname]):\n field_max_width[fieldname] = len(record[fieldname])\n result['details'].append(record)\n\n if len(sys.argv) > 1 and sys.argv[1] == 'json':\n # output as json\n print(ujson.dumps(result))\n else:\n # output plain (reconstruct data)\n for header_line in result['headers']:\n print (header_line)\n print (\"\\n\")\n if fieldnames is not None:\n format_str = \"\"\n header_fields = {}\n for fieldname in fieldnames:\n format_str = '%s %%(%s)-%ds'%(format_str,fieldname, field_max_width[fieldname]+1)\n header_fields[fieldname] = fieldname\n\n print (format_str % header_fields)\n for detail_line in result['details']:\n print (format_str % detail_line)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import from datetime import datetime try: from unittest.mock import patch except ImportError: from mock import patch import pytest from django.test import TestCase try: from django.test import override_settings except ImportError: from django.test.utils import override_settings from django.utils import timezone from custom_email_user.models import EmailUser from custom_email_user.managers import EmailUserManager fake_now = datetime(2015, 9, 10) @override_settings(USE_TZ=False) class TestEmailUserManager(TestCase): def setUp(self): self.email = '[email protected]' self.password = 'default' def test_private_create_user_without_email(self): """ Test that EmailUser.objects._create_user without email raise an ValueError exception """ with pytest.raises(ValueError) as exinfo: EmailUser.objects._create_user(None, None, False, False) self.assertIn('email must be set', str(exinfo.value)) @patch.object(timezone, 'now', return_value=fake_now) def test_private_create_user_its_ok(self, mock_now): user = EmailUser.objects._create_user(self.email, self.password, True, False) self.assertTrue(isinstance(user, EmailUser)) self.assertIsNotNone(user.pk) self.assertEqual(user.email, self.email) self.assertEqual(user.date_joined, fake_now) self.assertEqual(user.last_login, fake_now) self.assertTrue(user.is_staff) self.assertTrue(user.is_active) self.assertFalse(user.is_superuser) self.assertTrue(user.check_password(self.password)) def test_private_create_user_with_wrong_email(self): with pytest.raises(ValueError) as exinfo: EmailUser.objects._create_user('wrong@example', None, False, False) self.assertIn('email must be a valid email', str(exinfo.value)) @patch.object(EmailUserManager, '_create_user') def test_create_user_call_private_create_user_without_staff( self, mock_create_user): EmailUser.objects.create_user(self.email, self.password) mock_create_user.assert_called_once_with( self.email, self.password, False, False) @patch.object(EmailUserManager, '_create_user') def test_create_user_call_private_create_user_with_staff( self, mock_create_user): EmailUser.objects.create_user(self.email, self.password, True) mock_create_user.assert_called_once_with( self.email, self.password, True, False) @patch.object(EmailUserManager, '_create_user') def test_create_superuser_call_private_create_user(self, mock_create_user): EmailUser.objects.create_superuser(self.email, self.password) mock_create_user.assert_called_once_with( self.email, self.password, True, True)
normal
{ "blob_id": "71f9d9d7973809654db3ea613073f2d431f2d65f", "index": 1510, "step-1": "<mask token>\n\n\n@override_settings(USE_TZ=False)\nclass TestEmailUserManager(TestCase):\n\n def setUp(self):\n self.email = '[email protected]'\n self.password = 'default'\n\n def test_private_create_user_without_email(self):\n \"\"\"\n Test that EmailUser.objects._create_user without email raise an\n ValueError exception\n \"\"\"\n with pytest.raises(ValueError) as exinfo:\n EmailUser.objects._create_user(None, None, False, False)\n self.assertIn('email must be set', str(exinfo.value))\n\n @patch.object(timezone, 'now', return_value=fake_now)\n def test_private_create_user_its_ok(self, mock_now):\n user = EmailUser.objects._create_user(self.email, self.password, \n True, False)\n self.assertTrue(isinstance(user, EmailUser))\n self.assertIsNotNone(user.pk)\n self.assertEqual(user.email, self.email)\n self.assertEqual(user.date_joined, fake_now)\n self.assertEqual(user.last_login, fake_now)\n self.assertTrue(user.is_staff)\n self.assertTrue(user.is_active)\n self.assertFalse(user.is_superuser)\n self.assertTrue(user.check_password(self.password))\n <mask token>\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_user_call_private_create_user_without_staff(self,\n mock_create_user):\n EmailUser.objects.create_user(self.email, self.password)\n mock_create_user.assert_called_once_with(self.email, self.password,\n False, False)\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_user_call_private_create_user_with_staff(self,\n mock_create_user):\n EmailUser.objects.create_user(self.email, self.password, True)\n mock_create_user.assert_called_once_with(self.email, self.password,\n True, False)\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_superuser_call_private_create_user(self, mock_create_user):\n EmailUser.objects.create_superuser(self.email, self.password)\n mock_create_user.assert_called_once_with(self.email, self.password,\n True, True)\n", "step-2": "<mask token>\ntry:\n from unittest.mock import patch\nexcept ImportError:\n from mock import patch\n<mask token>\ntry:\n from django.test import override_settings\nexcept ImportError:\n from django.test.utils import override_settings\n<mask token>\n\n\n@override_settings(USE_TZ=False)\nclass TestEmailUserManager(TestCase):\n\n def setUp(self):\n self.email = '[email protected]'\n self.password = 'default'\n\n def test_private_create_user_without_email(self):\n \"\"\"\n Test that EmailUser.objects._create_user without email raise an\n ValueError exception\n \"\"\"\n with pytest.raises(ValueError) as exinfo:\n EmailUser.objects._create_user(None, None, False, False)\n self.assertIn('email must be set', str(exinfo.value))\n\n @patch.object(timezone, 'now', return_value=fake_now)\n def test_private_create_user_its_ok(self, mock_now):\n user = EmailUser.objects._create_user(self.email, self.password, \n True, False)\n self.assertTrue(isinstance(user, EmailUser))\n self.assertIsNotNone(user.pk)\n self.assertEqual(user.email, self.email)\n self.assertEqual(user.date_joined, fake_now)\n self.assertEqual(user.last_login, fake_now)\n self.assertTrue(user.is_staff)\n self.assertTrue(user.is_active)\n self.assertFalse(user.is_superuser)\n self.assertTrue(user.check_password(self.password))\n\n def test_private_create_user_with_wrong_email(self):\n with pytest.raises(ValueError) as exinfo:\n EmailUser.objects._create_user('wrong@example', None, False, False)\n self.assertIn('email must be a valid email', str(exinfo.value))\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_user_call_private_create_user_without_staff(self,\n mock_create_user):\n EmailUser.objects.create_user(self.email, self.password)\n mock_create_user.assert_called_once_with(self.email, self.password,\n False, False)\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_user_call_private_create_user_with_staff(self,\n mock_create_user):\n EmailUser.objects.create_user(self.email, self.password, True)\n mock_create_user.assert_called_once_with(self.email, self.password,\n True, False)\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_superuser_call_private_create_user(self, mock_create_user):\n EmailUser.objects.create_superuser(self.email, self.password)\n mock_create_user.assert_called_once_with(self.email, self.password,\n True, True)\n", "step-3": "<mask token>\ntry:\n from unittest.mock import patch\nexcept ImportError:\n from mock import patch\n<mask token>\ntry:\n from django.test import override_settings\nexcept ImportError:\n from django.test.utils import override_settings\n<mask token>\nfake_now = datetime(2015, 9, 10)\n\n\n@override_settings(USE_TZ=False)\nclass TestEmailUserManager(TestCase):\n\n def setUp(self):\n self.email = '[email protected]'\n self.password = 'default'\n\n def test_private_create_user_without_email(self):\n \"\"\"\n Test that EmailUser.objects._create_user without email raise an\n ValueError exception\n \"\"\"\n with pytest.raises(ValueError) as exinfo:\n EmailUser.objects._create_user(None, None, False, False)\n self.assertIn('email must be set', str(exinfo.value))\n\n @patch.object(timezone, 'now', return_value=fake_now)\n def test_private_create_user_its_ok(self, mock_now):\n user = EmailUser.objects._create_user(self.email, self.password, \n True, False)\n self.assertTrue(isinstance(user, EmailUser))\n self.assertIsNotNone(user.pk)\n self.assertEqual(user.email, self.email)\n self.assertEqual(user.date_joined, fake_now)\n self.assertEqual(user.last_login, fake_now)\n self.assertTrue(user.is_staff)\n self.assertTrue(user.is_active)\n self.assertFalse(user.is_superuser)\n self.assertTrue(user.check_password(self.password))\n\n def test_private_create_user_with_wrong_email(self):\n with pytest.raises(ValueError) as exinfo:\n EmailUser.objects._create_user('wrong@example', None, False, False)\n self.assertIn('email must be a valid email', str(exinfo.value))\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_user_call_private_create_user_without_staff(self,\n mock_create_user):\n EmailUser.objects.create_user(self.email, self.password)\n mock_create_user.assert_called_once_with(self.email, self.password,\n False, False)\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_user_call_private_create_user_with_staff(self,\n mock_create_user):\n EmailUser.objects.create_user(self.email, self.password, True)\n mock_create_user.assert_called_once_with(self.email, self.password,\n True, False)\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_superuser_call_private_create_user(self, mock_create_user):\n EmailUser.objects.create_superuser(self.email, self.password)\n mock_create_user.assert_called_once_with(self.email, self.password,\n True, True)\n", "step-4": "from __future__ import unicode_literals, absolute_import\nfrom datetime import datetime\ntry:\n from unittest.mock import patch\nexcept ImportError:\n from mock import patch\nimport pytest\nfrom django.test import TestCase\ntry:\n from django.test import override_settings\nexcept ImportError:\n from django.test.utils import override_settings\nfrom django.utils import timezone\nfrom custom_email_user.models import EmailUser\nfrom custom_email_user.managers import EmailUserManager\nfake_now = datetime(2015, 9, 10)\n\n\n@override_settings(USE_TZ=False)\nclass TestEmailUserManager(TestCase):\n\n def setUp(self):\n self.email = '[email protected]'\n self.password = 'default'\n\n def test_private_create_user_without_email(self):\n \"\"\"\n Test that EmailUser.objects._create_user without email raise an\n ValueError exception\n \"\"\"\n with pytest.raises(ValueError) as exinfo:\n EmailUser.objects._create_user(None, None, False, False)\n self.assertIn('email must be set', str(exinfo.value))\n\n @patch.object(timezone, 'now', return_value=fake_now)\n def test_private_create_user_its_ok(self, mock_now):\n user = EmailUser.objects._create_user(self.email, self.password, \n True, False)\n self.assertTrue(isinstance(user, EmailUser))\n self.assertIsNotNone(user.pk)\n self.assertEqual(user.email, self.email)\n self.assertEqual(user.date_joined, fake_now)\n self.assertEqual(user.last_login, fake_now)\n self.assertTrue(user.is_staff)\n self.assertTrue(user.is_active)\n self.assertFalse(user.is_superuser)\n self.assertTrue(user.check_password(self.password))\n\n def test_private_create_user_with_wrong_email(self):\n with pytest.raises(ValueError) as exinfo:\n EmailUser.objects._create_user('wrong@example', None, False, False)\n self.assertIn('email must be a valid email', str(exinfo.value))\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_user_call_private_create_user_without_staff(self,\n mock_create_user):\n EmailUser.objects.create_user(self.email, self.password)\n mock_create_user.assert_called_once_with(self.email, self.password,\n False, False)\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_user_call_private_create_user_with_staff(self,\n mock_create_user):\n EmailUser.objects.create_user(self.email, self.password, True)\n mock_create_user.assert_called_once_with(self.email, self.password,\n True, False)\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_superuser_call_private_create_user(self, mock_create_user):\n EmailUser.objects.create_superuser(self.email, self.password)\n mock_create_user.assert_called_once_with(self.email, self.password,\n True, True)\n", "step-5": "# -*- coding: utf-8 -*-\nfrom __future__ import unicode_literals, absolute_import\n\nfrom datetime import datetime\ntry:\n from unittest.mock import patch\nexcept ImportError:\n from mock import patch\n\nimport pytest\n\nfrom django.test import TestCase\ntry:\n from django.test import override_settings\nexcept ImportError:\n from django.test.utils import override_settings\nfrom django.utils import timezone\n\nfrom custom_email_user.models import EmailUser\nfrom custom_email_user.managers import EmailUserManager\n\nfake_now = datetime(2015, 9, 10)\n\n\n@override_settings(USE_TZ=False)\nclass TestEmailUserManager(TestCase):\n\n def setUp(self):\n self.email = '[email protected]'\n self.password = 'default'\n\n def test_private_create_user_without_email(self):\n \"\"\"\n Test that EmailUser.objects._create_user without email raise an\n ValueError exception\n \"\"\"\n with pytest.raises(ValueError) as exinfo:\n EmailUser.objects._create_user(None, None, False, False)\n self.assertIn('email must be set', str(exinfo.value))\n\n @patch.object(timezone, 'now', return_value=fake_now)\n def test_private_create_user_its_ok(self, mock_now):\n user = EmailUser.objects._create_user(self.email, self.password,\n True, False)\n self.assertTrue(isinstance(user, EmailUser))\n self.assertIsNotNone(user.pk)\n self.assertEqual(user.email, self.email)\n self.assertEqual(user.date_joined, fake_now)\n self.assertEqual(user.last_login, fake_now)\n self.assertTrue(user.is_staff)\n self.assertTrue(user.is_active)\n self.assertFalse(user.is_superuser)\n self.assertTrue(user.check_password(self.password))\n\n def test_private_create_user_with_wrong_email(self):\n with pytest.raises(ValueError) as exinfo:\n EmailUser.objects._create_user('wrong@example', None, False, False)\n self.assertIn('email must be a valid email', str(exinfo.value))\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_user_call_private_create_user_without_staff(\n self, mock_create_user):\n EmailUser.objects.create_user(self.email, self.password)\n mock_create_user.assert_called_once_with(\n self.email, self.password, False, False)\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_user_call_private_create_user_with_staff(\n self, mock_create_user):\n EmailUser.objects.create_user(self.email, self.password, True)\n mock_create_user.assert_called_once_with(\n self.email, self.password, True, False)\n\n @patch.object(EmailUserManager, '_create_user')\n def test_create_superuser_call_private_create_user(self, mock_create_user):\n EmailUser.objects.create_superuser(self.email, self.password)\n mock_create_user.assert_called_once_with(\n self.email, self.password, True, True)\n\n\n", "step-ids": [ 7, 9, 10, 11, 12 ] }
[ 7, 9, 10, 11, 12 ]
import pandas from sklearn.externals import joblib import TrainTestProcesser from sklearn.ensemble import RandomForestClassifier from Select_OF_File import get_subdir import matplotlib.pyplot as mp import sklearn.model_selection as ms from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report import numpy as np import itertools def main(): #获取数据集 #不使用第一列作为行索引 data_set = pandas.read_csv("dataset.csv",index_col=False,encoding='gbk') print("数据集的shape:",data_set.shape) #将数据集分为特征x和标签y dnumpy_x,dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set) #使用StratifiedKFold将数据集分为训练集和测试集 folds= TrainTestProcesser.split_dnumpy_train_test(dnumpy_x, dnumpy_y) #创建模型 model=RandomForestClassifier(n_estimators=23) #使用kfol交叉验证 TrainTestProcesser.apply_SKfold(model, folds) #训练模型 TrainTestProcesser.train_model(model, dnumpy_x, dnumpy_y) #保存模型以备将来使用 joblib.dump(model,"RFC_model.plk") def getconfusion_matrix(): mp.rcParams['font.family'] = ['sans-serif'] mp.rcParams['font.sans-serif'] = ['SimHei'] classes=get_subdir("音频文件") data_set = pandas.read_csv("dataset.csv",index_col=False,encoding='gbk') dnumpy_x, dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set) train_x, test_x, train_y, test_y = ms.train_test_split(dnumpy_x, dnumpy_y, test_size=0.25, random_state=7) model=joblib.load("RFC_model.plk") pred_test_y = model.predict(test_x) #混淆矩阵 cm=confusion_matrix(test_y, pred_test_y) # 获取分类报告 r = classification_report(test_y, pred_test_y) print('分类报告为:', r, sep='\n') mp.figure() plot_confusion_matrix(cm, classes=classes, normalize=True, title='随机森林分类器混淆矩阵') def plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix', cmap=mp.cm.Blues): if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("混淆矩阵归一化") else: print('混淆矩阵未归一化') print("混淆矩阵为:",cm) mp.imshow(cm, interpolation='nearest', cmap=cmap) mp.title(title) mp.colorbar() tick_marks = np.arange(len(classes)) mp.xticks(tick_marks, classes, rotation=45) mp.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): mp.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") mp.tight_layout() mp.ylabel('True label') mp.xlabel('Predicted label') mp.savefig('confusion_matrix_RFC.png', format='png') mp.show() if __name__ == "__main__": main() getconfusion_matrix()
normal
{ "blob_id": "b0bc55ab05d49605e2f42ea036f8405727c468d2", "index": 3504, "step-1": "<mask token>\n\n\ndef main():\n data_set = pandas.read_csv('dataset.csv', index_col=False, encoding='gbk')\n print('数据集的shape:', data_set.shape)\n dnumpy_x, dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set)\n folds = TrainTestProcesser.split_dnumpy_train_test(dnumpy_x, dnumpy_y)\n model = RandomForestClassifier(n_estimators=23)\n TrainTestProcesser.apply_SKfold(model, folds)\n TrainTestProcesser.train_model(model, dnumpy_x, dnumpy_y)\n joblib.dump(model, 'RFC_model.plk')\n\n\ndef getconfusion_matrix():\n mp.rcParams['font.family'] = ['sans-serif']\n mp.rcParams['font.sans-serif'] = ['SimHei']\n classes = get_subdir('音频文件')\n data_set = pandas.read_csv('dataset.csv', index_col=False, encoding='gbk')\n dnumpy_x, dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set)\n train_x, test_x, train_y, test_y = ms.train_test_split(dnumpy_x,\n dnumpy_y, test_size=0.25, random_state=7)\n model = joblib.load('RFC_model.plk')\n pred_test_y = model.predict(test_x)\n cm = confusion_matrix(test_y, pred_test_y)\n r = classification_report(test_y, pred_test_y)\n print('分类报告为:', r, sep='\\n')\n mp.figure()\n plot_confusion_matrix(cm, classes=classes, normalize=True, title=\n '随机森林分类器混淆矩阵')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n data_set = pandas.read_csv('dataset.csv', index_col=False, encoding='gbk')\n print('数据集的shape:', data_set.shape)\n dnumpy_x, dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set)\n folds = TrainTestProcesser.split_dnumpy_train_test(dnumpy_x, dnumpy_y)\n model = RandomForestClassifier(n_estimators=23)\n TrainTestProcesser.apply_SKfold(model, folds)\n TrainTestProcesser.train_model(model, dnumpy_x, dnumpy_y)\n joblib.dump(model, 'RFC_model.plk')\n\n\ndef getconfusion_matrix():\n mp.rcParams['font.family'] = ['sans-serif']\n mp.rcParams['font.sans-serif'] = ['SimHei']\n classes = get_subdir('音频文件')\n data_set = pandas.read_csv('dataset.csv', index_col=False, encoding='gbk')\n dnumpy_x, dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set)\n train_x, test_x, train_y, test_y = ms.train_test_split(dnumpy_x,\n dnumpy_y, test_size=0.25, random_state=7)\n model = joblib.load('RFC_model.plk')\n pred_test_y = model.predict(test_x)\n cm = confusion_matrix(test_y, pred_test_y)\n r = classification_report(test_y, pred_test_y)\n print('分类报告为:', r, sep='\\n')\n mp.figure()\n plot_confusion_matrix(cm, classes=classes, normalize=True, title=\n '随机森林分类器混淆矩阵')\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=mp.cm.Blues):\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('混淆矩阵归一化')\n else:\n print('混淆矩阵未归一化')\n print('混淆矩阵为:', cm)\n mp.imshow(cm, interpolation='nearest', cmap=cmap)\n mp.title(title)\n mp.colorbar()\n tick_marks = np.arange(len(classes))\n mp.xticks(tick_marks, classes, rotation=45)\n mp.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n mp.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n mp.tight_layout()\n mp.ylabel('True label')\n mp.xlabel('Predicted label')\n mp.savefig('confusion_matrix_RFC.png', format='png')\n mp.show()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n data_set = pandas.read_csv('dataset.csv', index_col=False, encoding='gbk')\n print('数据集的shape:', data_set.shape)\n dnumpy_x, dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set)\n folds = TrainTestProcesser.split_dnumpy_train_test(dnumpy_x, dnumpy_y)\n model = RandomForestClassifier(n_estimators=23)\n TrainTestProcesser.apply_SKfold(model, folds)\n TrainTestProcesser.train_model(model, dnumpy_x, dnumpy_y)\n joblib.dump(model, 'RFC_model.plk')\n\n\ndef getconfusion_matrix():\n mp.rcParams['font.family'] = ['sans-serif']\n mp.rcParams['font.sans-serif'] = ['SimHei']\n classes = get_subdir('音频文件')\n data_set = pandas.read_csv('dataset.csv', index_col=False, encoding='gbk')\n dnumpy_x, dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set)\n train_x, test_x, train_y, test_y = ms.train_test_split(dnumpy_x,\n dnumpy_y, test_size=0.25, random_state=7)\n model = joblib.load('RFC_model.plk')\n pred_test_y = model.predict(test_x)\n cm = confusion_matrix(test_y, pred_test_y)\n r = classification_report(test_y, pred_test_y)\n print('分类报告为:', r, sep='\\n')\n mp.figure()\n plot_confusion_matrix(cm, classes=classes, normalize=True, title=\n '随机森林分类器混淆矩阵')\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=mp.cm.Blues):\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('混淆矩阵归一化')\n else:\n print('混淆矩阵未归一化')\n print('混淆矩阵为:', cm)\n mp.imshow(cm, interpolation='nearest', cmap=cmap)\n mp.title(title)\n mp.colorbar()\n tick_marks = np.arange(len(classes))\n mp.xticks(tick_marks, classes, rotation=45)\n mp.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n mp.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n mp.tight_layout()\n mp.ylabel('True label')\n mp.xlabel('Predicted label')\n mp.savefig('confusion_matrix_RFC.png', format='png')\n mp.show()\n\n\nif __name__ == '__main__':\n main()\n getconfusion_matrix()\n", "step-4": "import pandas\nfrom sklearn.externals import joblib\nimport TrainTestProcesser\nfrom sklearn.ensemble import RandomForestClassifier\nfrom Select_OF_File import get_subdir\nimport matplotlib.pyplot as mp\nimport sklearn.model_selection as ms\nfrom sklearn.metrics import confusion_matrix\nfrom sklearn.metrics import classification_report\nimport numpy as np\nimport itertools\n\n\ndef main():\n data_set = pandas.read_csv('dataset.csv', index_col=False, encoding='gbk')\n print('数据集的shape:', data_set.shape)\n dnumpy_x, dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set)\n folds = TrainTestProcesser.split_dnumpy_train_test(dnumpy_x, dnumpy_y)\n model = RandomForestClassifier(n_estimators=23)\n TrainTestProcesser.apply_SKfold(model, folds)\n TrainTestProcesser.train_model(model, dnumpy_x, dnumpy_y)\n joblib.dump(model, 'RFC_model.plk')\n\n\ndef getconfusion_matrix():\n mp.rcParams['font.family'] = ['sans-serif']\n mp.rcParams['font.sans-serif'] = ['SimHei']\n classes = get_subdir('音频文件')\n data_set = pandas.read_csv('dataset.csv', index_col=False, encoding='gbk')\n dnumpy_x, dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set)\n train_x, test_x, train_y, test_y = ms.train_test_split(dnumpy_x,\n dnumpy_y, test_size=0.25, random_state=7)\n model = joblib.load('RFC_model.plk')\n pred_test_y = model.predict(test_x)\n cm = confusion_matrix(test_y, pred_test_y)\n r = classification_report(test_y, pred_test_y)\n print('分类报告为:', r, sep='\\n')\n mp.figure()\n plot_confusion_matrix(cm, classes=classes, normalize=True, title=\n '随机森林分类器混淆矩阵')\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=mp.cm.Blues):\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('混淆矩阵归一化')\n else:\n print('混淆矩阵未归一化')\n print('混淆矩阵为:', cm)\n mp.imshow(cm, interpolation='nearest', cmap=cmap)\n mp.title(title)\n mp.colorbar()\n tick_marks = np.arange(len(classes))\n mp.xticks(tick_marks, classes, rotation=45)\n mp.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n mp.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n mp.tight_layout()\n mp.ylabel('True label')\n mp.xlabel('Predicted label')\n mp.savefig('confusion_matrix_RFC.png', format='png')\n mp.show()\n\n\nif __name__ == '__main__':\n main()\n getconfusion_matrix()\n", "step-5": "import pandas\nfrom sklearn.externals import joblib\nimport TrainTestProcesser\nfrom sklearn.ensemble import RandomForestClassifier\nfrom Select_OF_File import get_subdir\nimport matplotlib.pyplot as mp\nimport sklearn.model_selection as ms\nfrom sklearn.metrics import confusion_matrix\nfrom sklearn.metrics import classification_report\nimport numpy as np\nimport itertools\ndef main():\n #获取数据集\n #不使用第一列作为行索引\n data_set = pandas.read_csv(\"dataset.csv\",index_col=False,encoding='gbk')\n print(\"数据集的shape:\",data_set.shape)\n #将数据集分为特征x和标签y\n dnumpy_x,dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set)\n #使用StratifiedKFold将数据集分为训练集和测试集\n folds= TrainTestProcesser.split_dnumpy_train_test(dnumpy_x, dnumpy_y)\n #创建模型\n model=RandomForestClassifier(n_estimators=23)\n #使用kfol交叉验证\n TrainTestProcesser.apply_SKfold(model, folds)\n #训练模型\n TrainTestProcesser.train_model(model, dnumpy_x, dnumpy_y)\n #保存模型以备将来使用\n joblib.dump(model,\"RFC_model.plk\")\n\n\n\ndef getconfusion_matrix():\n mp.rcParams['font.family'] = ['sans-serif']\n mp.rcParams['font.sans-serif'] = ['SimHei']\n classes=get_subdir(\"音频文件\")\n data_set = pandas.read_csv(\"dataset.csv\",index_col=False,encoding='gbk')\n dnumpy_x, dnumpy_y = TrainTestProcesser.split_dframe_x_y(data_set)\n train_x, test_x, train_y, test_y = ms.train_test_split(dnumpy_x, dnumpy_y, test_size=0.25, random_state=7)\n model=joblib.load(\"RFC_model.plk\")\n pred_test_y = model.predict(test_x)\n #混淆矩阵\n cm=confusion_matrix(test_y, pred_test_y)\n # 获取分类报告\n r = classification_report(test_y, pred_test_y)\n print('分类报告为:', r, sep='\\n')\n\n mp.figure()\n plot_confusion_matrix(cm, classes=classes, normalize=True,\n title='随机森林分类器混淆矩阵')\n\ndef plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',\n cmap=mp.cm.Blues):\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print(\"混淆矩阵归一化\")\n else:\n print('混淆矩阵未归一化')\n\n print(\"混淆矩阵为:\",cm)\n\n mp.imshow(cm, interpolation='nearest', cmap=cmap)\n mp.title(title)\n mp.colorbar()\n tick_marks = np.arange(len(classes))\n mp.xticks(tick_marks, classes, rotation=45)\n mp.yticks(tick_marks, classes)\n\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n mp.text(j, i, format(cm[i, j], fmt),\n horizontalalignment=\"center\",\n color=\"white\" if cm[i, j] > thresh else \"black\")\n\n mp.tight_layout()\n mp.ylabel('True label')\n mp.xlabel('Predicted label')\n mp.savefig('confusion_matrix_RFC.png', format='png')\n mp.show()\n\n\n\n\n\n\n\nif __name__ == \"__main__\":\n main()\n getconfusion_matrix()", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> train_station.add_platform(platform) <|reserved_special_token_0|> platform.accept_train(train_1) <|reserved_special_token_0|> train_1.dock_section(train_section_1) train_1.dock_section(train_section_2) train_1.dock_section(train_section_3) train_1.print_sections() <|reserved_special_token_0|> train_section_1.get_on_train(person_1) train_section_1.get_on_train(person_2) train_section_2.get_on_train(person_3) train_section_3.get_on_train(person_4) train_section_2.get_off_train(person_3) train_1.show_current_passengers() train_1.count_passengers() <|reserved_special_token_1|> <|reserved_special_token_0|> platform = Platform('platform 1') train_station = TrainStation('Linz') train_station.add_platform(platform) train_1 = ICE('ICE 1') platform.accept_train(train_1) train_section_1 = TrainSection('First section') train_section_2 = TrainSection('Second section') train_section_3 = TrainSection('Third section') train_1.dock_section(train_section_1) train_1.dock_section(train_section_2) train_1.dock_section(train_section_3) train_1.print_sections() person_1 = Person('Franz', 'Mair') person_2 = Person('Michael', 'Schuh') person_3 = Person('Herbert', 'Sailer') person_4 = Person('Michaela', 'Mader') train_section_1.get_on_train(person_1) train_section_1.get_on_train(person_2) train_section_2.get_on_train(person_3) train_section_3.get_on_train(person_4) train_section_2.get_off_train(person_3) train_1.show_current_passengers() train_1.count_passengers() <|reserved_special_token_1|> from draft import * platform = Platform('platform 1') train_station = TrainStation('Linz') train_station.add_platform(platform) train_1 = ICE('ICE 1') platform.accept_train(train_1) train_section_1 = TrainSection('First section') train_section_2 = TrainSection('Second section') train_section_3 = TrainSection('Third section') train_1.dock_section(train_section_1) train_1.dock_section(train_section_2) train_1.dock_section(train_section_3) train_1.print_sections() person_1 = Person('Franz', 'Mair') person_2 = Person('Michael', 'Schuh') person_3 = Person('Herbert', 'Sailer') person_4 = Person('Michaela', 'Mader') train_section_1.get_on_train(person_1) train_section_1.get_on_train(person_2) train_section_2.get_on_train(person_3) train_section_3.get_on_train(person_4) train_section_2.get_off_train(person_3) train_1.show_current_passengers() train_1.count_passengers() <|reserved_special_token_1|> from draft import * # create a train station platform = Platform('platform 1') train_station = TrainStation('Linz') train_station.add_platform(platform) # create a train train_1 = ICE('ICE 1') platform.accept_train(train_1) train_section_1 = TrainSection('First section') train_section_2 = TrainSection('Second section') train_section_3 = TrainSection('Third section') train_1.dock_section(train_section_1) train_1.dock_section(train_section_2) train_1.dock_section(train_section_3) train_1.print_sections() # Expected output: First section - Second section - Third section # create persons person_1 = Person('Franz', 'Mair') person_2 = Person('Michael', 'Schuh') person_3 = Person('Herbert', 'Sailer') person_4 = Person('Michaela', 'Mader') train_section_1.get_on_train(person_1) # Expected output: Franz Mair is on the train now train_section_1.get_on_train(person_2) # Expected output: Michael Schuh is on the train now train_section_2.get_on_train(person_3) # Expected output: Herbert Sailer is on the train now train_section_3.get_on_train(person_4) # Expected output: Michaela Mader is on the train now train_section_2.get_off_train(person_3) # Expected output: Herbert Sailer has left the train # query passengers train_1.show_current_passengers() # Expected output: Franz Mair, Michel Schuh, Michaela Mader train_1.count_passengers() # Expected output: 3
flexible
{ "blob_id": "5900dc0acde45ac9a31dc9d489aa8dae304d626b", "index": 1791, "step-1": "<mask token>\n", "step-2": "<mask token>\ntrain_station.add_platform(platform)\n<mask token>\nplatform.accept_train(train_1)\n<mask token>\ntrain_1.dock_section(train_section_1)\ntrain_1.dock_section(train_section_2)\ntrain_1.dock_section(train_section_3)\ntrain_1.print_sections()\n<mask token>\ntrain_section_1.get_on_train(person_1)\ntrain_section_1.get_on_train(person_2)\ntrain_section_2.get_on_train(person_3)\ntrain_section_3.get_on_train(person_4)\ntrain_section_2.get_off_train(person_3)\ntrain_1.show_current_passengers()\ntrain_1.count_passengers()\n", "step-3": "<mask token>\nplatform = Platform('platform 1')\ntrain_station = TrainStation('Linz')\ntrain_station.add_platform(platform)\ntrain_1 = ICE('ICE 1')\nplatform.accept_train(train_1)\ntrain_section_1 = TrainSection('First section')\ntrain_section_2 = TrainSection('Second section')\ntrain_section_3 = TrainSection('Third section')\ntrain_1.dock_section(train_section_1)\ntrain_1.dock_section(train_section_2)\ntrain_1.dock_section(train_section_3)\ntrain_1.print_sections()\nperson_1 = Person('Franz', 'Mair')\nperson_2 = Person('Michael', 'Schuh')\nperson_3 = Person('Herbert', 'Sailer')\nperson_4 = Person('Michaela', 'Mader')\ntrain_section_1.get_on_train(person_1)\ntrain_section_1.get_on_train(person_2)\ntrain_section_2.get_on_train(person_3)\ntrain_section_3.get_on_train(person_4)\ntrain_section_2.get_off_train(person_3)\ntrain_1.show_current_passengers()\ntrain_1.count_passengers()\n", "step-4": "from draft import *\nplatform = Platform('platform 1')\ntrain_station = TrainStation('Linz')\ntrain_station.add_platform(platform)\ntrain_1 = ICE('ICE 1')\nplatform.accept_train(train_1)\ntrain_section_1 = TrainSection('First section')\ntrain_section_2 = TrainSection('Second section')\ntrain_section_3 = TrainSection('Third section')\ntrain_1.dock_section(train_section_1)\ntrain_1.dock_section(train_section_2)\ntrain_1.dock_section(train_section_3)\ntrain_1.print_sections()\nperson_1 = Person('Franz', 'Mair')\nperson_2 = Person('Michael', 'Schuh')\nperson_3 = Person('Herbert', 'Sailer')\nperson_4 = Person('Michaela', 'Mader')\ntrain_section_1.get_on_train(person_1)\ntrain_section_1.get_on_train(person_2)\ntrain_section_2.get_on_train(person_3)\ntrain_section_3.get_on_train(person_4)\ntrain_section_2.get_off_train(person_3)\ntrain_1.show_current_passengers()\ntrain_1.count_passengers()\n", "step-5": "from draft import *\n# create a train station\nplatform = Platform('platform 1')\ntrain_station = TrainStation('Linz')\ntrain_station.add_platform(platform)\n# create a train\ntrain_1 = ICE('ICE 1')\nplatform.accept_train(train_1)\ntrain_section_1 = TrainSection('First section')\ntrain_section_2 = TrainSection('Second section')\ntrain_section_3 = TrainSection('Third section')\ntrain_1.dock_section(train_section_1)\ntrain_1.dock_section(train_section_2)\ntrain_1.dock_section(train_section_3)\ntrain_1.print_sections()\n# Expected output: First section - Second section - Third section\n# create persons\nperson_1 = Person('Franz', 'Mair')\nperson_2 = Person('Michael', 'Schuh')\nperson_3 = Person('Herbert', 'Sailer')\nperson_4 = Person('Michaela', 'Mader')\ntrain_section_1.get_on_train(person_1)\n# Expected output: Franz Mair is on the train now\ntrain_section_1.get_on_train(person_2)\n# Expected output: Michael Schuh is on the train now\ntrain_section_2.get_on_train(person_3)\n# Expected output: Herbert Sailer is on the train now\ntrain_section_3.get_on_train(person_4)\n# Expected output: Michaela Mader is on the train now\ntrain_section_2.get_off_train(person_3)\n# Expected output: Herbert Sailer has left the train\n# query passengers\ntrain_1.show_current_passengers()\n# Expected output: Franz Mair, Michel Schuh, Michaela Mader\ntrain_1.count_passengers()\n# Expected output: 3\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
class Solution(object): def countSmaller(self, nums): """ :type nums: List[int] :rtype: List[int] naive -- o(n^2) """ ## StefanPochmann solution #2 def countSmaller(self, nums): def sort(enum): half = len(enum) / 2 if half: left = sort(enum[:half]) right = sort(enum[half:]) for i in range(len(enum))[::-1]: if not right or left and left[-1][1] > right[-1][1]: smaller[left[-1][0]] += len(right) enum[i] = left.pop() else: enum[i] = right.pop() return enum smaller = [0] * len(nums) sort(list(enumerate(nums))) return smaller ## StefanPochmann solution #1 def countSmaller(self, nums): def sort(enum): half = len(enum) / 2 if half: left, right = sort(enum[:half]), sort(enum[half:]) m, n = len(left), len(right) i = j = 0 while i < m or j < n: if j == n or i < m and left[i][1] <= right[j][1]: enum[i+j] = left[i] smaller[left[i][0]] += j i += 1 else: enum[i+j] = right[j] j += 1 return enum smaller = [0] * len(nums) sort(list(enumerate(nums))) return smaller """ a = [2,4,6] b = [1,3,5] """ def mergesort(x): if len(x)==0: return x, [] if len(x)==1: return x, [0] mid = len(x)/2 a, A = mergesort(x[:mid]) b, B = mergesort(x[mid:]) y, Y = merge(a, b, A, B) return y,Y def merge(a, b): res = [] i,j = 0,0 while i < len(a) and j < len(b): if a[i] <= b[j]: res.append(a[i]) i += 1 else: res.append(b[j]) ### j += 1 if i < len(a): res += a[i:] elif j < len(b): res += b[j:] return res merge([2,4,6], [1,3,5], [0,0,0], [0,0,0]) mergesort([5, 2, 6, 1]) """ base merge sort: """ def mergesort(x): if len(x)==0 or len(x)==1: return x else: mid = len(x)/2 a = mergesort(x[:mid]) b = mergesort(x[mid:]) return merge(a,b) def merge(a,b, left, right): # left, right will keep track of inversions so far res = [] while len(a)>0 and len(b)>0: if a[0] < b[0]: res += [a[0]] a = a[1:] else: res += [b[0]] b = b[1:] if len(a) > 0: res += a if len(b) > 0: res += b return res
normal
{ "blob_id": "42021b762737a2eb21866ba029ece4ac120152cd", "index": 5902, "step-1": "class Solution(object):\n\n def countSmaller(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n naive -- o(n^2)\n \"\"\"\n\n\n<mask token>\n\n\ndef mergesort(x):\n if len(x) == 0:\n return x, []\n if len(x) == 1:\n return x, [0]\n mid = len(x) / 2\n a, A = mergesort(x[:mid])\n b, B = mergesort(x[mid:])\n y, Y = merge(a, b, A, B)\n return y, Y\n\n\ndef merge(a, b):\n res = []\n i, j = 0, 0\n while i < len(a) and j < len(b):\n if a[i] <= b[j]:\n res.append(a[i])\n i += 1\n else:\n res.append(b[j])\n j += 1\n if i < len(a):\n res += a[i:]\n elif j < len(b):\n res += b[j:]\n return res\n\n\n<mask token>\n\n\ndef mergesort(x):\n if len(x) == 0 or len(x) == 1:\n return x\n else:\n mid = len(x) / 2\n a = mergesort(x[:mid])\n b = mergesort(x[mid:])\n return merge(a, b)\n\n\ndef merge(a, b, left, right):\n res = []\n while len(a) > 0 and len(b) > 0:\n if a[0] < b[0]:\n res += [a[0]]\n a = a[1:]\n else:\n res += [b[0]]\n b = b[1:]\n if len(a) > 0:\n res += a\n if len(b) > 0:\n res += b\n return res\n", "step-2": "class Solution(object):\n\n def countSmaller(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n naive -- o(n^2)\n \"\"\"\n\n\n<mask token>\n\n\ndef countSmaller(self, nums):\n\n def sort(enum):\n half = len(enum) / 2\n if half:\n left, right = sort(enum[:half]), sort(enum[half:])\n m, n = len(left), len(right)\n i = j = 0\n while i < m or j < n:\n if j == n or i < m and left[i][1] <= right[j][1]:\n enum[i + j] = left[i]\n smaller[left[i][0]] += j\n i += 1\n else:\n enum[i + j] = right[j]\n j += 1\n return enum\n smaller = [0] * len(nums)\n sort(list(enumerate(nums)))\n return smaller\n\n\n<mask token>\n\n\ndef mergesort(x):\n if len(x) == 0:\n return x, []\n if len(x) == 1:\n return x, [0]\n mid = len(x) / 2\n a, A = mergesort(x[:mid])\n b, B = mergesort(x[mid:])\n y, Y = merge(a, b, A, B)\n return y, Y\n\n\ndef merge(a, b):\n res = []\n i, j = 0, 0\n while i < len(a) and j < len(b):\n if a[i] <= b[j]:\n res.append(a[i])\n i += 1\n else:\n res.append(b[j])\n j += 1\n if i < len(a):\n res += a[i:]\n elif j < len(b):\n res += b[j:]\n return res\n\n\n<mask token>\n\n\ndef mergesort(x):\n if len(x) == 0 or len(x) == 1:\n return x\n else:\n mid = len(x) / 2\n a = mergesort(x[:mid])\n b = mergesort(x[mid:])\n return merge(a, b)\n\n\ndef merge(a, b, left, right):\n res = []\n while len(a) > 0 and len(b) > 0:\n if a[0] < b[0]:\n res += [a[0]]\n a = a[1:]\n else:\n res += [b[0]]\n b = b[1:]\n if len(a) > 0:\n res += a\n if len(b) > 0:\n res += b\n return res\n", "step-3": "class Solution(object):\n\n def countSmaller(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n naive -- o(n^2)\n \"\"\"\n\n\ndef countSmaller(self, nums):\n\n def sort(enum):\n half = len(enum) / 2\n if half:\n left = sort(enum[:half])\n right = sort(enum[half:])\n for i in range(len(enum))[::-1]:\n if not right or left and left[-1][1] > right[-1][1]:\n smaller[left[-1][0]] += len(right)\n enum[i] = left.pop()\n else:\n enum[i] = right.pop()\n return enum\n smaller = [0] * len(nums)\n sort(list(enumerate(nums)))\n return smaller\n\n\ndef countSmaller(self, nums):\n\n def sort(enum):\n half = len(enum) / 2\n if half:\n left, right = sort(enum[:half]), sort(enum[half:])\n m, n = len(left), len(right)\n i = j = 0\n while i < m or j < n:\n if j == n or i < m and left[i][1] <= right[j][1]:\n enum[i + j] = left[i]\n smaller[left[i][0]] += j\n i += 1\n else:\n enum[i + j] = right[j]\n j += 1\n return enum\n smaller = [0] * len(nums)\n sort(list(enumerate(nums)))\n return smaller\n\n\n<mask token>\n\n\ndef mergesort(x):\n if len(x) == 0:\n return x, []\n if len(x) == 1:\n return x, [0]\n mid = len(x) / 2\n a, A = mergesort(x[:mid])\n b, B = mergesort(x[mid:])\n y, Y = merge(a, b, A, B)\n return y, Y\n\n\ndef merge(a, b):\n res = []\n i, j = 0, 0\n while i < len(a) and j < len(b):\n if a[i] <= b[j]:\n res.append(a[i])\n i += 1\n else:\n res.append(b[j])\n j += 1\n if i < len(a):\n res += a[i:]\n elif j < len(b):\n res += b[j:]\n return res\n\n\n<mask token>\n\n\ndef mergesort(x):\n if len(x) == 0 or len(x) == 1:\n return x\n else:\n mid = len(x) / 2\n a = mergesort(x[:mid])\n b = mergesort(x[mid:])\n return merge(a, b)\n\n\ndef merge(a, b, left, right):\n res = []\n while len(a) > 0 and len(b) > 0:\n if a[0] < b[0]:\n res += [a[0]]\n a = a[1:]\n else:\n res += [b[0]]\n b = b[1:]\n if len(a) > 0:\n res += a\n if len(b) > 0:\n res += b\n return res\n", "step-4": "class Solution(object):\n\n def countSmaller(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n naive -- o(n^2)\n \"\"\"\n\n\ndef countSmaller(self, nums):\n\n def sort(enum):\n half = len(enum) / 2\n if half:\n left = sort(enum[:half])\n right = sort(enum[half:])\n for i in range(len(enum))[::-1]:\n if not right or left and left[-1][1] > right[-1][1]:\n smaller[left[-1][0]] += len(right)\n enum[i] = left.pop()\n else:\n enum[i] = right.pop()\n return enum\n smaller = [0] * len(nums)\n sort(list(enumerate(nums)))\n return smaller\n\n\ndef countSmaller(self, nums):\n\n def sort(enum):\n half = len(enum) / 2\n if half:\n left, right = sort(enum[:half]), sort(enum[half:])\n m, n = len(left), len(right)\n i = j = 0\n while i < m or j < n:\n if j == n or i < m and left[i][1] <= right[j][1]:\n enum[i + j] = left[i]\n smaller[left[i][0]] += j\n i += 1\n else:\n enum[i + j] = right[j]\n j += 1\n return enum\n smaller = [0] * len(nums)\n sort(list(enumerate(nums)))\n return smaller\n\n\n<mask token>\n\n\ndef mergesort(x):\n if len(x) == 0:\n return x, []\n if len(x) == 1:\n return x, [0]\n mid = len(x) / 2\n a, A = mergesort(x[:mid])\n b, B = mergesort(x[mid:])\n y, Y = merge(a, b, A, B)\n return y, Y\n\n\ndef merge(a, b):\n res = []\n i, j = 0, 0\n while i < len(a) and j < len(b):\n if a[i] <= b[j]:\n res.append(a[i])\n i += 1\n else:\n res.append(b[j])\n j += 1\n if i < len(a):\n res += a[i:]\n elif j < len(b):\n res += b[j:]\n return res\n\n\nmerge([2, 4, 6], [1, 3, 5], [0, 0, 0], [0, 0, 0])\nmergesort([5, 2, 6, 1])\n<mask token>\n\n\ndef mergesort(x):\n if len(x) == 0 or len(x) == 1:\n return x\n else:\n mid = len(x) / 2\n a = mergesort(x[:mid])\n b = mergesort(x[mid:])\n return merge(a, b)\n\n\ndef merge(a, b, left, right):\n res = []\n while len(a) > 0 and len(b) > 0:\n if a[0] < b[0]:\n res += [a[0]]\n a = a[1:]\n else:\n res += [b[0]]\n b = b[1:]\n if len(a) > 0:\n res += a\n if len(b) > 0:\n res += b\n return res\n", "step-5": "class Solution(object):\n def countSmaller(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n naive -- o(n^2)\n \"\"\"\n\n## StefanPochmann solution #2\ndef countSmaller(self, nums):\n def sort(enum):\n half = len(enum) / 2\n if half:\n left = sort(enum[:half])\n right = sort(enum[half:])\n for i in range(len(enum))[::-1]:\n if not right or left and left[-1][1] > right[-1][1]:\n smaller[left[-1][0]] += len(right)\n enum[i] = left.pop()\n else:\n enum[i] = right.pop()\n return enum\n smaller = [0] * len(nums)\n sort(list(enumerate(nums)))\n return smaller\n\n## StefanPochmann solution #1\ndef countSmaller(self, nums):\n def sort(enum):\n half = len(enum) / 2\n if half:\n left, right = sort(enum[:half]), sort(enum[half:])\n m, n = len(left), len(right)\n i = j = 0\n while i < m or j < n:\n if j == n or i < m and left[i][1] <= right[j][1]:\n enum[i+j] = left[i]\n smaller[left[i][0]] += j\n i += 1\n else:\n enum[i+j] = right[j]\n j += 1\n return enum\n smaller = [0] * len(nums)\n sort(list(enumerate(nums)))\n return smaller\n\n\"\"\"\na = [2,4,6] \nb = [1,3,5]\n\"\"\"\n\n\n\ndef mergesort(x):\n if len(x)==0: \n return x, []\n if len(x)==1:\n return x, [0]\n mid = len(x)/2\n a, A = mergesort(x[:mid])\n b, B = mergesort(x[mid:])\n y, Y = merge(a, b, A, B)\n return y,Y\n\ndef merge(a, b):\n res = []\n i,j = 0,0\n while i < len(a) and j < len(b):\n if a[i] <= b[j]:\n res.append(a[i])\n i += 1\n else: \n res.append(b[j])\n ###\n j += 1\n if i < len(a):\n res += a[i:]\n elif j < len(b):\n res += b[j:]\n return res\n\n\n\nmerge([2,4,6], [1,3,5], [0,0,0], [0,0,0])\n\nmergesort([5, 2, 6, 1])\n\n\"\"\"\n\nbase merge sort:\n\"\"\"\n\ndef mergesort(x):\n if len(x)==0 or len(x)==1:\n return x\n else:\n mid = len(x)/2\n a = mergesort(x[:mid])\n b = mergesort(x[mid:])\n return merge(a,b)\n\ndef merge(a,b, left, right): # left, right will keep track of inversions so far\n res = []\n while len(a)>0 and len(b)>0:\n if a[0] < b[0]:\n res += [a[0]]\n a = a[1:]\n else:\n res += [b[0]]\n b = b[1:]\n if len(a) > 0:\n res += a\n if len(b) > 0:\n res += b\n return res\n", "step-ids": [ 6, 7, 8, 9, 10 ] }
[ 6, 7, 8, 9, 10 ]
import random def createRandomPhoneNumber(): phoneNumberFront = ['130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '150', '151', '152', '153', '158', '159', '177', '180', '181', '182', '183', '186', '188', '189'] phoneNumberBack = [] for i in range(8): phoneNumberBack.append(str(random.randint(0, 9))) return random.choice(phoneNumberFront) + ''.join(phoneNumberBack)
normal
{ "blob_id": "5e8f9a222fb2c35b4720e48f0277481e410aee47", "index": 2791, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef createRandomPhoneNumber():\n phoneNumberFront = ['130', '131', '132', '133', '134', '135', '136',\n '137', '138', '139', '150', '151', '152', '153', '158', '159',\n '177', '180', '181', '182', '183', '186', '188', '189']\n phoneNumberBack = []\n for i in range(8):\n phoneNumberBack.append(str(random.randint(0, 9)))\n return random.choice(phoneNumberFront) + ''.join(phoneNumberBack)\n", "step-3": "import random\n\n\ndef createRandomPhoneNumber():\n phoneNumberFront = ['130', '131', '132', '133', '134', '135', '136',\n '137', '138', '139', '150', '151', '152', '153', '158', '159',\n '177', '180', '181', '182', '183', '186', '188', '189']\n phoneNumberBack = []\n for i in range(8):\n phoneNumberBack.append(str(random.randint(0, 9)))\n return random.choice(phoneNumberFront) + ''.join(phoneNumberBack)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import sys, getopt import sys, locale import httplib import json #sys.argv = [sys.argv[0], '--id=275', '--ofile=275.json'] def getRouteId(routeName, out_filename): conn = httplib.HTTPConnection("data.ntpc.gov.tw") qryString = "/od/data/api/67BB3C2B-E7D1-43A7-B872-61B2F082E11B?$format=json&$filter=nameZh%20eq%20" + routeName conn.request("GET",qryString.encode('utf8')) response = conn.getresponse() print response.status, response.reason data = response.read() print len(data) ofile = open(out_filename, "w") ofile.write(data) ofile.close() def main(argv): route_id = '' outputfile = '' try: opts, args = getopt.getopt(argv,"hi:o:",["id=","ofile="]) except getopt.GetoptError: print 'cliGetRouteID.py -i <route id> -o <outputfile>' sys.exit(2) for opt, arg in opts: if opt == '-h': print 'cliGetRouteID.py -i <route id> -o <outputfile>' sys.exit() elif opt in ("-i", "--id"): route_id = arg elif opt in ("-o", "--ofile"): outputfile = arg getRouteId(route_id, outputfile) print 'Route ID is', route_id print 'Output file is', outputfile if __name__ == "__main__": main(sys.argv[1:])
normal
{ "blob_id": "87c413051ed38b52fbcc0b0cf84ecd75cd1e3f0c", "index": 3139, "step-1": "import sys, getopt\nimport sys, locale\nimport httplib\nimport json\n\n#sys.argv = [sys.argv[0], '--id=275', '--ofile=275.json']\n\ndef getRouteId(routeName, out_filename):\n conn = httplib.HTTPConnection(\"data.ntpc.gov.tw\")\n qryString = \"/od/data/api/67BB3C2B-E7D1-43A7-B872-61B2F082E11B?$format=json&$filter=nameZh%20eq%20\" + routeName\n conn.request(\"GET\",qryString.encode('utf8'))\n response = conn.getresponse()\n print response.status, response.reason\n\n data = response.read()\n print len(data)\n\n ofile = open(out_filename, \"w\")\n ofile.write(data)\n ofile.close()\n \ndef main(argv):\n route_id = ''\n outputfile = ''\n try:\n opts, args = getopt.getopt(argv,\"hi:o:\",[\"id=\",\"ofile=\"])\n except getopt.GetoptError:\n print 'cliGetRouteID.py -i <route id> -o <outputfile>'\n sys.exit(2)\n for opt, arg in opts:\n if opt == '-h':\n print 'cliGetRouteID.py -i <route id> -o <outputfile>'\n sys.exit()\n elif opt in (\"-i\", \"--id\"):\n route_id = arg \n elif opt in (\"-o\", \"--ofile\"):\n outputfile = arg\n\n getRouteId(route_id, outputfile)\n print 'Route ID is', route_id\n print 'Output file is', outputfile\n\nif __name__ == \"__main__\":\n main(sys.argv[1:])\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/python from cagd.polyline import polyline from cagd.spline import spline, knots from cagd.vec import vec2 import cagd.scene_2d as scene_2d from math import sin,cos,pi, sqrt #returns a list of num_samples points that are uniformly distributed on the unit circle def unit_circle_points(num_samples): a = 2*pi/num_samples return [vec2(cos(a*i), sin(a*i)) for i in range(num_samples)] #calculates the deviation between the given spline and a unit circle #the Manhattan Metrics is chosen def calculate_circle_deviation(spline): ideal_d = 1.0 center_x = 0.0 center_y = 0.0 deviation = 0.0 for p in spline.control_points: deviation += sqrt((p.x - center_x)**2 + (p.y - center_y)**2) deviation /= len(spline.control_points) deviation -= ideal_d return deviation #interpolate 6 points with a periodic spline to create the number "8" pts = [vec2( 0, 2.5), vec2(-1, 1), vec2( 1,-1), vec2( 0,-2.5), vec2(-1,-1), vec2(1,1)] s = spline.interpolate_cubic_periodic(pts) p = s.get_polyline_from_control_points() p.set_color("blue") sc = scene_2d.scene() sc.set_resolution(900) sc.add_element(s) sc.add_element(p) #generate a spline that approximates the unit circle n = 100 circle_pts = unit_circle_points(n) circle = spline.interpolate_cubic_periodic(circle_pts) p_circle = circle.get_polyline_from_control_points() #sc.add_element(circle) #sc.add_element(p_circle) p_circle.set_color("blue") error = calculate_circle_deviation(circle) print("The error is: " + str(error)) sc.write_image() sc.show()
normal
{ "blob_id": "35e61add90b5c12f94d5f8071f00d98316461dd6", "index": 8497, "step-1": "<mask token>\n\n\ndef unit_circle_points(num_samples):\n a = 2 * pi / num_samples\n return [vec2(cos(a * i), sin(a * i)) for i in range(num_samples)]\n\n\ndef calculate_circle_deviation(spline):\n ideal_d = 1.0\n center_x = 0.0\n center_y = 0.0\n deviation = 0.0\n for p in spline.control_points:\n deviation += sqrt((p.x - center_x) ** 2 + (p.y - center_y) ** 2)\n deviation /= len(spline.control_points)\n deviation -= ideal_d\n return deviation\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef unit_circle_points(num_samples):\n a = 2 * pi / num_samples\n return [vec2(cos(a * i), sin(a * i)) for i in range(num_samples)]\n\n\ndef calculate_circle_deviation(spline):\n ideal_d = 1.0\n center_x = 0.0\n center_y = 0.0\n deviation = 0.0\n for p in spline.control_points:\n deviation += sqrt((p.x - center_x) ** 2 + (p.y - center_y) ** 2)\n deviation /= len(spline.control_points)\n deviation -= ideal_d\n return deviation\n\n\n<mask token>\np.set_color('blue')\n<mask token>\nsc.set_resolution(900)\nsc.add_element(s)\nsc.add_element(p)\n<mask token>\np_circle.set_color('blue')\n<mask token>\nprint('The error is: ' + str(error))\nsc.write_image()\nsc.show()\n", "step-3": "<mask token>\n\n\ndef unit_circle_points(num_samples):\n a = 2 * pi / num_samples\n return [vec2(cos(a * i), sin(a * i)) for i in range(num_samples)]\n\n\ndef calculate_circle_deviation(spline):\n ideal_d = 1.0\n center_x = 0.0\n center_y = 0.0\n deviation = 0.0\n for p in spline.control_points:\n deviation += sqrt((p.x - center_x) ** 2 + (p.y - center_y) ** 2)\n deviation /= len(spline.control_points)\n deviation -= ideal_d\n return deviation\n\n\npts = [vec2(0, 2.5), vec2(-1, 1), vec2(1, -1), vec2(0, -2.5), vec2(-1, -1),\n vec2(1, 1)]\ns = spline.interpolate_cubic_periodic(pts)\np = s.get_polyline_from_control_points()\np.set_color('blue')\nsc = scene_2d.scene()\nsc.set_resolution(900)\nsc.add_element(s)\nsc.add_element(p)\nn = 100\ncircle_pts = unit_circle_points(n)\ncircle = spline.interpolate_cubic_periodic(circle_pts)\np_circle = circle.get_polyline_from_control_points()\np_circle.set_color('blue')\nerror = calculate_circle_deviation(circle)\nprint('The error is: ' + str(error))\nsc.write_image()\nsc.show()\n", "step-4": "from cagd.polyline import polyline\nfrom cagd.spline import spline, knots\nfrom cagd.vec import vec2\nimport cagd.scene_2d as scene_2d\nfrom math import sin, cos, pi, sqrt\n\n\ndef unit_circle_points(num_samples):\n a = 2 * pi / num_samples\n return [vec2(cos(a * i), sin(a * i)) for i in range(num_samples)]\n\n\ndef calculate_circle_deviation(spline):\n ideal_d = 1.0\n center_x = 0.0\n center_y = 0.0\n deviation = 0.0\n for p in spline.control_points:\n deviation += sqrt((p.x - center_x) ** 2 + (p.y - center_y) ** 2)\n deviation /= len(spline.control_points)\n deviation -= ideal_d\n return deviation\n\n\npts = [vec2(0, 2.5), vec2(-1, 1), vec2(1, -1), vec2(0, -2.5), vec2(-1, -1),\n vec2(1, 1)]\ns = spline.interpolate_cubic_periodic(pts)\np = s.get_polyline_from_control_points()\np.set_color('blue')\nsc = scene_2d.scene()\nsc.set_resolution(900)\nsc.add_element(s)\nsc.add_element(p)\nn = 100\ncircle_pts = unit_circle_points(n)\ncircle = spline.interpolate_cubic_periodic(circle_pts)\np_circle = circle.get_polyline_from_control_points()\np_circle.set_color('blue')\nerror = calculate_circle_deviation(circle)\nprint('The error is: ' + str(error))\nsc.write_image()\nsc.show()\n", "step-5": "#!/usr/bin/python\n\nfrom cagd.polyline import polyline\nfrom cagd.spline import spline, knots\nfrom cagd.vec import vec2\nimport cagd.scene_2d as scene_2d\nfrom math import sin,cos,pi, sqrt\n\n#returns a list of num_samples points that are uniformly distributed on the unit circle\ndef unit_circle_points(num_samples):\n a = 2*pi/num_samples\n return [vec2(cos(a*i), sin(a*i)) for i in range(num_samples)]\n\n#calculates the deviation between the given spline and a unit circle\n#the Manhattan Metrics is chosen\ndef calculate_circle_deviation(spline):\n ideal_d = 1.0\n center_x = 0.0\n center_y = 0.0\n deviation = 0.0\n for p in spline.control_points:\n deviation += sqrt((p.x - center_x)**2 + (p.y - center_y)**2)\n deviation /= len(spline.control_points)\n deviation -= ideal_d\n return deviation\n\n\n#interpolate 6 points with a periodic spline to create the number \"8\"\npts = [vec2( 0, 2.5), vec2(-1, 1), vec2( 1,-1), vec2( 0,-2.5), vec2(-1,-1), vec2(1,1)]\ns = spline.interpolate_cubic_periodic(pts)\np = s.get_polyline_from_control_points()\np.set_color(\"blue\")\nsc = scene_2d.scene()\nsc.set_resolution(900)\nsc.add_element(s)\nsc.add_element(p)\n\n#generate a spline that approximates the unit circle\nn = 100\ncircle_pts = unit_circle_points(n)\ncircle = spline.interpolate_cubic_periodic(circle_pts)\np_circle = circle.get_polyline_from_control_points()\n#sc.add_element(circle)\n#sc.add_element(p_circle)\np_circle.set_color(\"blue\")\nerror = calculate_circle_deviation(circle)\nprint(\"The error is: \" + str(error))\n\nsc.write_image()\nsc.show()\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# -*- coding: utf-8 -*- c = int(input()) t = input() m = [] for i in range(12): aux = [] for j in range(12): aux.append(float(input())) m.append(aux) aux = [] soma = 0 for i in range(12): soma += m[i][c] resultado = soma / (t == 'S' and 1 or 12) print('%.1f' % resultado)
normal
{ "blob_id": "6edb1f99ca9af01f28322cbaf13f278e79b94e92", "index": 5882, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(12):\n aux = []\n for j in range(12):\n aux.append(float(input()))\n m.append(aux)\n aux = []\n<mask token>\nfor i in range(12):\n soma += m[i][c]\n<mask token>\nprint('%.1f' % resultado)\n", "step-3": "c = int(input())\nt = input()\nm = []\nfor i in range(12):\n aux = []\n for j in range(12):\n aux.append(float(input()))\n m.append(aux)\n aux = []\nsoma = 0\nfor i in range(12):\n soma += m[i][c]\nresultado = soma / (t == 'S' and 1 or 12)\nprint('%.1f' % resultado)\n", "step-4": "# -*- coding: utf-8 -*-\n\nc = int(input())\nt = input()\nm = []\n\nfor i in range(12):\n aux = []\n for j in range(12):\n aux.append(float(input()))\n m.append(aux)\n aux = []\n\nsoma = 0\nfor i in range(12):\n soma += m[i][c]\n\nresultado = soma / (t == 'S' and 1 or 12)\nprint('%.1f' % resultado)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# Generated by Django 2.2.2 on 2019-10-19 14:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('account', '0001_initial'), ] operations = [ migrations.AlterField( model_name='account', name='phone_number', field=models.CharField(max_length=15, verbose_name='phone number'), ), ]
normal
{ "blob_id": "7d25a8eb61b6fb9069616745c2b68fd3ceeca9fb", "index": 6600, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('account', '0001_initial')]\n operations = [migrations.AlterField(model_name='account', name=\n 'phone_number', field=models.CharField(max_length=15, verbose_name=\n 'phone number'))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('account', '0001_initial')]\n operations = [migrations.AlterField(model_name='account', name=\n 'phone_number', field=models.CharField(max_length=15, verbose_name=\n 'phone number'))]\n", "step-5": "# Generated by Django 2.2.2 on 2019-10-19 14:09\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('account', '0001_initial'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='account',\n name='phone_number',\n field=models.CharField(max_length=15, verbose_name='phone number'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class PBAR(object): <|reserved_special_token_0|> def __init__(self, model): """ Defines the PCOMP object. :param self: the PCOMP object :param model: the BDF object :param cards: the list of PCOMP cards """ self.model = model self.n = 0 self._cards = [] self._comments = [] <|reserved_special_token_0|> def build(self): cards = self._cards ncards = len(cards) self.n = ncards if ncards: self.property_id = zeros(ncards, 'int32') self.material_id = zeros(ncards, 'int32') self.area = zeros(ncards, 'float64') self.I1 = zeros(ncards, 'float64') self.I2 = zeros(ncards, 'float64') self.J = zeros(ncards, 'float64') self.nsm = zeros(ncards, 'float64') for i, card in enumerate(cards): self.property_id[i] = integer(card, 1, 'property_id') self.material_id[i] = integer(card, 2, 'material_id') self.area[i] = double_or_blank(card, 3, 'area', 0.0) self.I1[i] = double_or_blank(card, 4, 'I1', 0.0) self.I2[i] = double_or_blank(card, 5, 'I2', 0.0) Jdefault = 0.5 * (self.I1[i] + self.I2[i]) self.J[i] = double_or_blank(card, 6, 'J', Jdefault) self.nsm[i] = double_or_blank(card, 7, 'non-structural_mass', 0.0) if 0: self.C1 = double_or_blank(card, 9, 'C1', 0.0) self.C2 = double_or_blank(card, 10, 'C2', 0.0) self.D1 = double_or_blank(card, 11, 'D1', 0.0) self.D2 = double_or_blank(card, 12, 'D2', 0.0) self.E1 = double_or_blank(card, 13, 'E1', 0.0) self.E2 = double_or_blank(card, 14, 'E2', 0.0) self.F1 = double_or_blank(card, 15, 'F1', 0.0) self.F2 = double_or_blank(card, 16, 'F2', 0.0) self.K1 = double_or_blank(card, 17, 'K1', 100000000.0) self.K2 = double_or_blank(card, 18, 'K2', 100000000.0) self.i12 = double_or_blank(card, 19, 'I12', 0.0) if self.A == 0.0 and self.i12 == 0.0: assert self.K1 is None, 'K1 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K1=%r' % ( self.A, self.i12, self.K1) assert self.K2 is None, 'K2 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K2=%r' % ( self.A, self.i12, self.K2) assert len(card) <= 20, 'len(PBAR card) = %i' % len(card) i = self.property_id.argsort() self.property_id = self.property_id[i] self.material_id = self.material_id[i] self.area = self.area[i] self.I1 = self.I1[i] self.I2 = self.I2[i] self.J = self.J[i] self.nsm = self.nsm[i] unique_pids = unique(self.property_id) if len(unique_pids) != len(self.property_id): raise RuntimeError('There are duplicate PCOMP IDs...') self._cards = [] self._comments = [] <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class PBAR(object): <|reserved_special_token_0|> def __init__(self, model): """ Defines the PCOMP object. :param self: the PCOMP object :param model: the BDF object :param cards: the list of PCOMP cards """ self.model = model self.n = 0 self._cards = [] self._comments = [] def add(self, card, comment): self._cards.append(card) self._comments.append(comment) def build(self): cards = self._cards ncards = len(cards) self.n = ncards if ncards: self.property_id = zeros(ncards, 'int32') self.material_id = zeros(ncards, 'int32') self.area = zeros(ncards, 'float64') self.I1 = zeros(ncards, 'float64') self.I2 = zeros(ncards, 'float64') self.J = zeros(ncards, 'float64') self.nsm = zeros(ncards, 'float64') for i, card in enumerate(cards): self.property_id[i] = integer(card, 1, 'property_id') self.material_id[i] = integer(card, 2, 'material_id') self.area[i] = double_or_blank(card, 3, 'area', 0.0) self.I1[i] = double_or_blank(card, 4, 'I1', 0.0) self.I2[i] = double_or_blank(card, 5, 'I2', 0.0) Jdefault = 0.5 * (self.I1[i] + self.I2[i]) self.J[i] = double_or_blank(card, 6, 'J', Jdefault) self.nsm[i] = double_or_blank(card, 7, 'non-structural_mass', 0.0) if 0: self.C1 = double_or_blank(card, 9, 'C1', 0.0) self.C2 = double_or_blank(card, 10, 'C2', 0.0) self.D1 = double_or_blank(card, 11, 'D1', 0.0) self.D2 = double_or_blank(card, 12, 'D2', 0.0) self.E1 = double_or_blank(card, 13, 'E1', 0.0) self.E2 = double_or_blank(card, 14, 'E2', 0.0) self.F1 = double_or_blank(card, 15, 'F1', 0.0) self.F2 = double_or_blank(card, 16, 'F2', 0.0) self.K1 = double_or_blank(card, 17, 'K1', 100000000.0) self.K2 = double_or_blank(card, 18, 'K2', 100000000.0) self.i12 = double_or_blank(card, 19, 'I12', 0.0) if self.A == 0.0 and self.i12 == 0.0: assert self.K1 is None, 'K1 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K1=%r' % ( self.A, self.i12, self.K1) assert self.K2 is None, 'K2 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K2=%r' % ( self.A, self.i12, self.K2) assert len(card) <= 20, 'len(PBAR card) = %i' % len(card) i = self.property_id.argsort() self.property_id = self.property_id[i] self.material_id = self.material_id[i] self.area = self.area[i] self.I1 = self.I1[i] self.I2 = self.I2[i] self.J = self.J[i] self.nsm = self.nsm[i] unique_pids = unique(self.property_id) if len(unique_pids) != len(self.property_id): raise RuntimeError('There are duplicate PCOMP IDs...') self._cards = [] self._comments = [] def get_index(self, property_ids): if isinstance(property_ids, int): property_ids = array([property_ids]) if property_ids is None: return arange(self.n) indexs = searchsorted(self.property_id, property_ids) assert len(indexs) == len(property_ids), 'indexs=%s pids=%s' % (indexs, property_ids) return indexs def write_bdf(self, f, size=8, property_ids=None): if self.n: if property_ids is None: i = arange(self.n) else: i = searchsorted(self.property_id, property_ids) for pid, mid, area, I1, I2, J in zip(self.property_id[i], self. material_id[i], self.area[i], self.I1[i], self.I2[i], self.J[i] ): card = ['PBAR', pid, mid, area, I1, I2, J] f.write(print_card_8(card)) <|reserved_special_token_1|> <|reserved_special_token_0|> class PBAR(object): type = 'PBAR' def __init__(self, model): """ Defines the PCOMP object. :param self: the PCOMP object :param model: the BDF object :param cards: the list of PCOMP cards """ self.model = model self.n = 0 self._cards = [] self._comments = [] def add(self, card, comment): self._cards.append(card) self._comments.append(comment) def build(self): cards = self._cards ncards = len(cards) self.n = ncards if ncards: self.property_id = zeros(ncards, 'int32') self.material_id = zeros(ncards, 'int32') self.area = zeros(ncards, 'float64') self.I1 = zeros(ncards, 'float64') self.I2 = zeros(ncards, 'float64') self.J = zeros(ncards, 'float64') self.nsm = zeros(ncards, 'float64') for i, card in enumerate(cards): self.property_id[i] = integer(card, 1, 'property_id') self.material_id[i] = integer(card, 2, 'material_id') self.area[i] = double_or_blank(card, 3, 'area', 0.0) self.I1[i] = double_or_blank(card, 4, 'I1', 0.0) self.I2[i] = double_or_blank(card, 5, 'I2', 0.0) Jdefault = 0.5 * (self.I1[i] + self.I2[i]) self.J[i] = double_or_blank(card, 6, 'J', Jdefault) self.nsm[i] = double_or_blank(card, 7, 'non-structural_mass', 0.0) if 0: self.C1 = double_or_blank(card, 9, 'C1', 0.0) self.C2 = double_or_blank(card, 10, 'C2', 0.0) self.D1 = double_or_blank(card, 11, 'D1', 0.0) self.D2 = double_or_blank(card, 12, 'D2', 0.0) self.E1 = double_or_blank(card, 13, 'E1', 0.0) self.E2 = double_or_blank(card, 14, 'E2', 0.0) self.F1 = double_or_blank(card, 15, 'F1', 0.0) self.F2 = double_or_blank(card, 16, 'F2', 0.0) self.K1 = double_or_blank(card, 17, 'K1', 100000000.0) self.K2 = double_or_blank(card, 18, 'K2', 100000000.0) self.i12 = double_or_blank(card, 19, 'I12', 0.0) if self.A == 0.0 and self.i12 == 0.0: assert self.K1 is None, 'K1 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K1=%r' % ( self.A, self.i12, self.K1) assert self.K2 is None, 'K2 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K2=%r' % ( self.A, self.i12, self.K2) assert len(card) <= 20, 'len(PBAR card) = %i' % len(card) i = self.property_id.argsort() self.property_id = self.property_id[i] self.material_id = self.material_id[i] self.area = self.area[i] self.I1 = self.I1[i] self.I2 = self.I2[i] self.J = self.J[i] self.nsm = self.nsm[i] unique_pids = unique(self.property_id) if len(unique_pids) != len(self.property_id): raise RuntimeError('There are duplicate PCOMP IDs...') self._cards = [] self._comments = [] def get_index(self, property_ids): if isinstance(property_ids, int): property_ids = array([property_ids]) if property_ids is None: return arange(self.n) indexs = searchsorted(self.property_id, property_ids) assert len(indexs) == len(property_ids), 'indexs=%s pids=%s' % (indexs, property_ids) return indexs def write_bdf(self, f, size=8, property_ids=None): if self.n: if property_ids is None: i = arange(self.n) else: i = searchsorted(self.property_id, property_ids) for pid, mid, area, I1, I2, J in zip(self.property_id[i], self. material_id[i], self.area[i], self.I1[i], self.I2[i], self.J[i] ): card = ['PBAR', pid, mid, area, I1, I2, J] f.write(print_card_8(card)) <|reserved_special_token_1|> from numpy import array, zeros, arange, concatenate, searchsorted, where, unique from pyNastran.bdf.fieldWriter import print_card_8 from pyNastran.bdf.bdfInterface.assign_type import integer, integer_or_blank, double_or_blank, integer_double_or_blank, blank class PBAR(object): type = 'PBAR' def __init__(self, model): """ Defines the PCOMP object. :param self: the PCOMP object :param model: the BDF object :param cards: the list of PCOMP cards """ self.model = model self.n = 0 self._cards = [] self._comments = [] def add(self, card, comment): self._cards.append(card) self._comments.append(comment) def build(self): cards = self._cards ncards = len(cards) self.n = ncards if ncards: self.property_id = zeros(ncards, 'int32') self.material_id = zeros(ncards, 'int32') self.area = zeros(ncards, 'float64') self.I1 = zeros(ncards, 'float64') self.I2 = zeros(ncards, 'float64') self.J = zeros(ncards, 'float64') self.nsm = zeros(ncards, 'float64') for i, card in enumerate(cards): self.property_id[i] = integer(card, 1, 'property_id') self.material_id[i] = integer(card, 2, 'material_id') self.area[i] = double_or_blank(card, 3, 'area', 0.0) self.I1[i] = double_or_blank(card, 4, 'I1', 0.0) self.I2[i] = double_or_blank(card, 5, 'I2', 0.0) Jdefault = 0.5 * (self.I1[i] + self.I2[i]) self.J[i] = double_or_blank(card, 6, 'J', Jdefault) self.nsm[i] = double_or_blank(card, 7, 'non-structural_mass', 0.0) if 0: self.C1 = double_or_blank(card, 9, 'C1', 0.0) self.C2 = double_or_blank(card, 10, 'C2', 0.0) self.D1 = double_or_blank(card, 11, 'D1', 0.0) self.D2 = double_or_blank(card, 12, 'D2', 0.0) self.E1 = double_or_blank(card, 13, 'E1', 0.0) self.E2 = double_or_blank(card, 14, 'E2', 0.0) self.F1 = double_or_blank(card, 15, 'F1', 0.0) self.F2 = double_or_blank(card, 16, 'F2', 0.0) self.K1 = double_or_blank(card, 17, 'K1', 100000000.0) self.K2 = double_or_blank(card, 18, 'K2', 100000000.0) self.i12 = double_or_blank(card, 19, 'I12', 0.0) if self.A == 0.0 and self.i12 == 0.0: assert self.K1 is None, 'K1 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K1=%r' % ( self.A, self.i12, self.K1) assert self.K2 is None, 'K2 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K2=%r' % ( self.A, self.i12, self.K2) assert len(card) <= 20, 'len(PBAR card) = %i' % len(card) i = self.property_id.argsort() self.property_id = self.property_id[i] self.material_id = self.material_id[i] self.area = self.area[i] self.I1 = self.I1[i] self.I2 = self.I2[i] self.J = self.J[i] self.nsm = self.nsm[i] unique_pids = unique(self.property_id) if len(unique_pids) != len(self.property_id): raise RuntimeError('There are duplicate PCOMP IDs...') self._cards = [] self._comments = [] def get_index(self, property_ids): if isinstance(property_ids, int): property_ids = array([property_ids]) if property_ids is None: return arange(self.n) indexs = searchsorted(self.property_id, property_ids) assert len(indexs) == len(property_ids), 'indexs=%s pids=%s' % (indexs, property_ids) return indexs def write_bdf(self, f, size=8, property_ids=None): if self.n: if property_ids is None: i = arange(self.n) else: i = searchsorted(self.property_id, property_ids) for pid, mid, area, I1, I2, J in zip(self.property_id[i], self. material_id[i], self.area[i], self.I1[i], self.I2[i], self.J[i] ): card = ['PBAR', pid, mid, area, I1, I2, J] f.write(print_card_8(card)) <|reserved_special_token_1|> from numpy import array, zeros, arange, concatenate, searchsorted, where, unique from pyNastran.bdf.fieldWriter import print_card_8 from pyNastran.bdf.bdfInterface.assign_type import (integer, integer_or_blank, double_or_blank, integer_double_or_blank, blank) class PBAR(object): type = 'PBAR' def __init__(self, model): """ Defines the PCOMP object. :param self: the PCOMP object :param model: the BDF object :param cards: the list of PCOMP cards """ self.model = model self.n = 0 self._cards = [] self._comments = [] def add(self, card, comment): self._cards.append(card) self._comments.append(comment) def build(self): cards = self._cards ncards = len(cards) self.n = ncards if ncards: #: Property ID self.property_id = zeros(ncards, 'int32') self.material_id = zeros(ncards, 'int32') self.area = zeros(ncards, 'float64') self.I1 = zeros(ncards, 'float64') self.I2 = zeros(ncards, 'float64') self.J = zeros(ncards, 'float64') self.nsm = zeros(ncards, 'float64') for i, card in enumerate(cards): #: property ID self.property_id[i] = integer(card, 1, 'property_id') #: material ID self.material_id[i] = integer(card, 2, 'material_id') #: material ID self.area[i] = double_or_blank(card, 3, 'area', 0.0) #: I1 self.I1[i] = double_or_blank(card, 4, 'I1', 0.0) #: I2 self.I2[i] = double_or_blank(card, 5, 'I2', 0.0) #: Polar Moment of Inertia J -> use J() #: default=1/2(I1+I2) for SOL=600, otherwise 0.0 #: .. todo:: support SOL 600 default Jdefault = 0.5 * (self.I1[i] + self.I2[i]) self.J[i] = double_or_blank(card, 6, 'J', Jdefault) self.nsm[i] = double_or_blank(card, 7, 'non-structural_mass', 0.0) if 0: self.C1 = double_or_blank(card, 9, 'C1', 0.0) self.C2 = double_or_blank(card, 10, 'C2', 0.0) self.D1 = double_or_blank(card, 11, 'D1', 0.0) self.D2 = double_or_blank(card, 12, 'D2', 0.0) self.E1 = double_or_blank(card, 13, 'E1', 0.0) self.E2 = double_or_blank(card, 14, 'E2', 0.0) self.F1 = double_or_blank(card, 15, 'F1', 0.0) self.F2 = double_or_blank(card, 16, 'F2', 0.0) #: default=infinite; assume 1e8 self.K1 = double_or_blank(card, 17, 'K1', 1e8) #: default=infinite; assume 1e8 self.K2 = double_or_blank(card, 18, 'K2', 1e8) #: I12 -> use I12() self.i12 = double_or_blank(card, 19, 'I12', 0.0) if self.A == 0.0 and self.i12 == 0.0: assert self.K1 is None, 'K1 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K1=%r' % (self.A, self.i12, self.K1) assert self.K2 is None, 'K2 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K2=%r' % (self.A, self.i12, self.K2) assert len(card) <= 20, 'len(PBAR card) = %i' % len(card) i = self.property_id.argsort() self.property_id = self.property_id[i] self.material_id = self.material_id[i] self.area = self.area[i] self.I1 = self.I1[i] self.I2 = self.I2[i] self.J = self.J[i] self.nsm = self.nsm[i] unique_pids = unique(self.property_id) if len(unique_pids) != len(self.property_id): raise RuntimeError('There are duplicate PCOMP IDs...') self._cards = [] self._comments = [] #========================================================================= def get_index(self, property_ids): if isinstance(property_ids, int): property_ids = array([property_ids]) if property_ids is None: return arange(self.n) indexs = searchsorted(self.property_id, property_ids) assert len(indexs) == len(property_ids), 'indexs=%s pids=%s' % (indexs, property_ids) return indexs #========================================================================= def write_bdf(self, f, size=8, property_ids=None): if self.n: if property_ids is None: i = arange(self.n) else: i = searchsorted(self.property_id, property_ids) for (pid, mid, area, I1, I2, J) in zip(self.property_id[i], self.material_id[i], self.area[i], self.I1[i], self.I2[i], self.J[i]): card = ['PBAR', pid, mid, area, I1, I2, J] f.write(print_card_8(card))
flexible
{ "blob_id": "8f960ad465d0a7bf48752db35c73169be6da27d8", "index": 9092, "step-1": "<mask token>\n\n\nclass PBAR(object):\n <mask token>\n\n def __init__(self, model):\n \"\"\"\n Defines the PCOMP object.\n\n :param self: the PCOMP object\n :param model: the BDF object\n :param cards: the list of PCOMP cards\n \"\"\"\n self.model = model\n self.n = 0\n self._cards = []\n self._comments = []\n <mask token>\n\n def build(self):\n cards = self._cards\n ncards = len(cards)\n self.n = ncards\n if ncards:\n self.property_id = zeros(ncards, 'int32')\n self.material_id = zeros(ncards, 'int32')\n self.area = zeros(ncards, 'float64')\n self.I1 = zeros(ncards, 'float64')\n self.I2 = zeros(ncards, 'float64')\n self.J = zeros(ncards, 'float64')\n self.nsm = zeros(ncards, 'float64')\n for i, card in enumerate(cards):\n self.property_id[i] = integer(card, 1, 'property_id')\n self.material_id[i] = integer(card, 2, 'material_id')\n self.area[i] = double_or_blank(card, 3, 'area', 0.0)\n self.I1[i] = double_or_blank(card, 4, 'I1', 0.0)\n self.I2[i] = double_or_blank(card, 5, 'I2', 0.0)\n Jdefault = 0.5 * (self.I1[i] + self.I2[i])\n self.J[i] = double_or_blank(card, 6, 'J', Jdefault)\n self.nsm[i] = double_or_blank(card, 7,\n 'non-structural_mass', 0.0)\n if 0:\n self.C1 = double_or_blank(card, 9, 'C1', 0.0)\n self.C2 = double_or_blank(card, 10, 'C2', 0.0)\n self.D1 = double_or_blank(card, 11, 'D1', 0.0)\n self.D2 = double_or_blank(card, 12, 'D2', 0.0)\n self.E1 = double_or_blank(card, 13, 'E1', 0.0)\n self.E2 = double_or_blank(card, 14, 'E2', 0.0)\n self.F1 = double_or_blank(card, 15, 'F1', 0.0)\n self.F2 = double_or_blank(card, 16, 'F2', 0.0)\n self.K1 = double_or_blank(card, 17, 'K1', 100000000.0)\n self.K2 = double_or_blank(card, 18, 'K2', 100000000.0)\n self.i12 = double_or_blank(card, 19, 'I12', 0.0)\n if self.A == 0.0 and self.i12 == 0.0:\n assert self.K1 is None, 'K1 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K1=%r' % (\n self.A, self.i12, self.K1)\n assert self.K2 is None, 'K2 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K2=%r' % (\n self.A, self.i12, self.K2)\n assert len(card) <= 20, 'len(PBAR card) = %i' % len(card)\n i = self.property_id.argsort()\n self.property_id = self.property_id[i]\n self.material_id = self.material_id[i]\n self.area = self.area[i]\n self.I1 = self.I1[i]\n self.I2 = self.I2[i]\n self.J = self.J[i]\n self.nsm = self.nsm[i]\n unique_pids = unique(self.property_id)\n if len(unique_pids) != len(self.property_id):\n raise RuntimeError('There are duplicate PCOMP IDs...')\n self._cards = []\n self._comments = []\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass PBAR(object):\n <mask token>\n\n def __init__(self, model):\n \"\"\"\n Defines the PCOMP object.\n\n :param self: the PCOMP object\n :param model: the BDF object\n :param cards: the list of PCOMP cards\n \"\"\"\n self.model = model\n self.n = 0\n self._cards = []\n self._comments = []\n\n def add(self, card, comment):\n self._cards.append(card)\n self._comments.append(comment)\n\n def build(self):\n cards = self._cards\n ncards = len(cards)\n self.n = ncards\n if ncards:\n self.property_id = zeros(ncards, 'int32')\n self.material_id = zeros(ncards, 'int32')\n self.area = zeros(ncards, 'float64')\n self.I1 = zeros(ncards, 'float64')\n self.I2 = zeros(ncards, 'float64')\n self.J = zeros(ncards, 'float64')\n self.nsm = zeros(ncards, 'float64')\n for i, card in enumerate(cards):\n self.property_id[i] = integer(card, 1, 'property_id')\n self.material_id[i] = integer(card, 2, 'material_id')\n self.area[i] = double_or_blank(card, 3, 'area', 0.0)\n self.I1[i] = double_or_blank(card, 4, 'I1', 0.0)\n self.I2[i] = double_or_blank(card, 5, 'I2', 0.0)\n Jdefault = 0.5 * (self.I1[i] + self.I2[i])\n self.J[i] = double_or_blank(card, 6, 'J', Jdefault)\n self.nsm[i] = double_or_blank(card, 7,\n 'non-structural_mass', 0.0)\n if 0:\n self.C1 = double_or_blank(card, 9, 'C1', 0.0)\n self.C2 = double_or_blank(card, 10, 'C2', 0.0)\n self.D1 = double_or_blank(card, 11, 'D1', 0.0)\n self.D2 = double_or_blank(card, 12, 'D2', 0.0)\n self.E1 = double_or_blank(card, 13, 'E1', 0.0)\n self.E2 = double_or_blank(card, 14, 'E2', 0.0)\n self.F1 = double_or_blank(card, 15, 'F1', 0.0)\n self.F2 = double_or_blank(card, 16, 'F2', 0.0)\n self.K1 = double_or_blank(card, 17, 'K1', 100000000.0)\n self.K2 = double_or_blank(card, 18, 'K2', 100000000.0)\n self.i12 = double_or_blank(card, 19, 'I12', 0.0)\n if self.A == 0.0 and self.i12 == 0.0:\n assert self.K1 is None, 'K1 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K1=%r' % (\n self.A, self.i12, self.K1)\n assert self.K2 is None, 'K2 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K2=%r' % (\n self.A, self.i12, self.K2)\n assert len(card) <= 20, 'len(PBAR card) = %i' % len(card)\n i = self.property_id.argsort()\n self.property_id = self.property_id[i]\n self.material_id = self.material_id[i]\n self.area = self.area[i]\n self.I1 = self.I1[i]\n self.I2 = self.I2[i]\n self.J = self.J[i]\n self.nsm = self.nsm[i]\n unique_pids = unique(self.property_id)\n if len(unique_pids) != len(self.property_id):\n raise RuntimeError('There are duplicate PCOMP IDs...')\n self._cards = []\n self._comments = []\n\n def get_index(self, property_ids):\n if isinstance(property_ids, int):\n property_ids = array([property_ids])\n if property_ids is None:\n return arange(self.n)\n indexs = searchsorted(self.property_id, property_ids)\n assert len(indexs) == len(property_ids), 'indexs=%s pids=%s' % (indexs,\n property_ids)\n return indexs\n\n def write_bdf(self, f, size=8, property_ids=None):\n if self.n:\n if property_ids is None:\n i = arange(self.n)\n else:\n i = searchsorted(self.property_id, property_ids)\n for pid, mid, area, I1, I2, J in zip(self.property_id[i], self.\n material_id[i], self.area[i], self.I1[i], self.I2[i], self.J[i]\n ):\n card = ['PBAR', pid, mid, area, I1, I2, J]\n f.write(print_card_8(card))\n", "step-3": "<mask token>\n\n\nclass PBAR(object):\n type = 'PBAR'\n\n def __init__(self, model):\n \"\"\"\n Defines the PCOMP object.\n\n :param self: the PCOMP object\n :param model: the BDF object\n :param cards: the list of PCOMP cards\n \"\"\"\n self.model = model\n self.n = 0\n self._cards = []\n self._comments = []\n\n def add(self, card, comment):\n self._cards.append(card)\n self._comments.append(comment)\n\n def build(self):\n cards = self._cards\n ncards = len(cards)\n self.n = ncards\n if ncards:\n self.property_id = zeros(ncards, 'int32')\n self.material_id = zeros(ncards, 'int32')\n self.area = zeros(ncards, 'float64')\n self.I1 = zeros(ncards, 'float64')\n self.I2 = zeros(ncards, 'float64')\n self.J = zeros(ncards, 'float64')\n self.nsm = zeros(ncards, 'float64')\n for i, card in enumerate(cards):\n self.property_id[i] = integer(card, 1, 'property_id')\n self.material_id[i] = integer(card, 2, 'material_id')\n self.area[i] = double_or_blank(card, 3, 'area', 0.0)\n self.I1[i] = double_or_blank(card, 4, 'I1', 0.0)\n self.I2[i] = double_or_blank(card, 5, 'I2', 0.0)\n Jdefault = 0.5 * (self.I1[i] + self.I2[i])\n self.J[i] = double_or_blank(card, 6, 'J', Jdefault)\n self.nsm[i] = double_or_blank(card, 7,\n 'non-structural_mass', 0.0)\n if 0:\n self.C1 = double_or_blank(card, 9, 'C1', 0.0)\n self.C2 = double_or_blank(card, 10, 'C2', 0.0)\n self.D1 = double_or_blank(card, 11, 'D1', 0.0)\n self.D2 = double_or_blank(card, 12, 'D2', 0.0)\n self.E1 = double_or_blank(card, 13, 'E1', 0.0)\n self.E2 = double_or_blank(card, 14, 'E2', 0.0)\n self.F1 = double_or_blank(card, 15, 'F1', 0.0)\n self.F2 = double_or_blank(card, 16, 'F2', 0.0)\n self.K1 = double_or_blank(card, 17, 'K1', 100000000.0)\n self.K2 = double_or_blank(card, 18, 'K2', 100000000.0)\n self.i12 = double_or_blank(card, 19, 'I12', 0.0)\n if self.A == 0.0 and self.i12 == 0.0:\n assert self.K1 is None, 'K1 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K1=%r' % (\n self.A, self.i12, self.K1)\n assert self.K2 is None, 'K2 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K2=%r' % (\n self.A, self.i12, self.K2)\n assert len(card) <= 20, 'len(PBAR card) = %i' % len(card)\n i = self.property_id.argsort()\n self.property_id = self.property_id[i]\n self.material_id = self.material_id[i]\n self.area = self.area[i]\n self.I1 = self.I1[i]\n self.I2 = self.I2[i]\n self.J = self.J[i]\n self.nsm = self.nsm[i]\n unique_pids = unique(self.property_id)\n if len(unique_pids) != len(self.property_id):\n raise RuntimeError('There are duplicate PCOMP IDs...')\n self._cards = []\n self._comments = []\n\n def get_index(self, property_ids):\n if isinstance(property_ids, int):\n property_ids = array([property_ids])\n if property_ids is None:\n return arange(self.n)\n indexs = searchsorted(self.property_id, property_ids)\n assert len(indexs) == len(property_ids), 'indexs=%s pids=%s' % (indexs,\n property_ids)\n return indexs\n\n def write_bdf(self, f, size=8, property_ids=None):\n if self.n:\n if property_ids is None:\n i = arange(self.n)\n else:\n i = searchsorted(self.property_id, property_ids)\n for pid, mid, area, I1, I2, J in zip(self.property_id[i], self.\n material_id[i], self.area[i], self.I1[i], self.I2[i], self.J[i]\n ):\n card = ['PBAR', pid, mid, area, I1, I2, J]\n f.write(print_card_8(card))\n", "step-4": "from numpy import array, zeros, arange, concatenate, searchsorted, where, unique\nfrom pyNastran.bdf.fieldWriter import print_card_8\nfrom pyNastran.bdf.bdfInterface.assign_type import integer, integer_or_blank, double_or_blank, integer_double_or_blank, blank\n\n\nclass PBAR(object):\n type = 'PBAR'\n\n def __init__(self, model):\n \"\"\"\n Defines the PCOMP object.\n\n :param self: the PCOMP object\n :param model: the BDF object\n :param cards: the list of PCOMP cards\n \"\"\"\n self.model = model\n self.n = 0\n self._cards = []\n self._comments = []\n\n def add(self, card, comment):\n self._cards.append(card)\n self._comments.append(comment)\n\n def build(self):\n cards = self._cards\n ncards = len(cards)\n self.n = ncards\n if ncards:\n self.property_id = zeros(ncards, 'int32')\n self.material_id = zeros(ncards, 'int32')\n self.area = zeros(ncards, 'float64')\n self.I1 = zeros(ncards, 'float64')\n self.I2 = zeros(ncards, 'float64')\n self.J = zeros(ncards, 'float64')\n self.nsm = zeros(ncards, 'float64')\n for i, card in enumerate(cards):\n self.property_id[i] = integer(card, 1, 'property_id')\n self.material_id[i] = integer(card, 2, 'material_id')\n self.area[i] = double_or_blank(card, 3, 'area', 0.0)\n self.I1[i] = double_or_blank(card, 4, 'I1', 0.0)\n self.I2[i] = double_or_blank(card, 5, 'I2', 0.0)\n Jdefault = 0.5 * (self.I1[i] + self.I2[i])\n self.J[i] = double_or_blank(card, 6, 'J', Jdefault)\n self.nsm[i] = double_or_blank(card, 7,\n 'non-structural_mass', 0.0)\n if 0:\n self.C1 = double_or_blank(card, 9, 'C1', 0.0)\n self.C2 = double_or_blank(card, 10, 'C2', 0.0)\n self.D1 = double_or_blank(card, 11, 'D1', 0.0)\n self.D2 = double_or_blank(card, 12, 'D2', 0.0)\n self.E1 = double_or_blank(card, 13, 'E1', 0.0)\n self.E2 = double_or_blank(card, 14, 'E2', 0.0)\n self.F1 = double_or_blank(card, 15, 'F1', 0.0)\n self.F2 = double_or_blank(card, 16, 'F2', 0.0)\n self.K1 = double_or_blank(card, 17, 'K1', 100000000.0)\n self.K2 = double_or_blank(card, 18, 'K2', 100000000.0)\n self.i12 = double_or_blank(card, 19, 'I12', 0.0)\n if self.A == 0.0 and self.i12 == 0.0:\n assert self.K1 is None, 'K1 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K1=%r' % (\n self.A, self.i12, self.K1)\n assert self.K2 is None, 'K2 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K2=%r' % (\n self.A, self.i12, self.K2)\n assert len(card) <= 20, 'len(PBAR card) = %i' % len(card)\n i = self.property_id.argsort()\n self.property_id = self.property_id[i]\n self.material_id = self.material_id[i]\n self.area = self.area[i]\n self.I1 = self.I1[i]\n self.I2 = self.I2[i]\n self.J = self.J[i]\n self.nsm = self.nsm[i]\n unique_pids = unique(self.property_id)\n if len(unique_pids) != len(self.property_id):\n raise RuntimeError('There are duplicate PCOMP IDs...')\n self._cards = []\n self._comments = []\n\n def get_index(self, property_ids):\n if isinstance(property_ids, int):\n property_ids = array([property_ids])\n if property_ids is None:\n return arange(self.n)\n indexs = searchsorted(self.property_id, property_ids)\n assert len(indexs) == len(property_ids), 'indexs=%s pids=%s' % (indexs,\n property_ids)\n return indexs\n\n def write_bdf(self, f, size=8, property_ids=None):\n if self.n:\n if property_ids is None:\n i = arange(self.n)\n else:\n i = searchsorted(self.property_id, property_ids)\n for pid, mid, area, I1, I2, J in zip(self.property_id[i], self.\n material_id[i], self.area[i], self.I1[i], self.I2[i], self.J[i]\n ):\n card = ['PBAR', pid, mid, area, I1, I2, J]\n f.write(print_card_8(card))\n", "step-5": "from numpy import array, zeros, arange, concatenate, searchsorted, where, unique\n\nfrom pyNastran.bdf.fieldWriter import print_card_8\nfrom pyNastran.bdf.bdfInterface.assign_type import (integer, integer_or_blank,\n double_or_blank, integer_double_or_blank, blank)\n\n\nclass PBAR(object):\n type = 'PBAR'\n def __init__(self, model):\n \"\"\"\n Defines the PCOMP object.\n\n :param self: the PCOMP object\n :param model: the BDF object\n :param cards: the list of PCOMP cards\n \"\"\"\n self.model = model\n self.n = 0\n self._cards = []\n self._comments = []\n\n def add(self, card, comment):\n self._cards.append(card)\n self._comments.append(comment)\n\n def build(self):\n cards = self._cards\n ncards = len(cards)\n self.n = ncards\n\n if ncards:\n #: Property ID\n self.property_id = zeros(ncards, 'int32')\n self.material_id = zeros(ncards, 'int32')\n self.area = zeros(ncards, 'float64')\n self.I1 = zeros(ncards, 'float64')\n self.I2 = zeros(ncards, 'float64')\n self.J = zeros(ncards, 'float64')\n self.nsm = zeros(ncards, 'float64')\n\n for i, card in enumerate(cards):\n #: property ID\n self.property_id[i] = integer(card, 1, 'property_id')\n\n #: material ID\n self.material_id[i] = integer(card, 2, 'material_id')\n\n\n #: material ID\n self.area[i] = double_or_blank(card, 3, 'area', 0.0)\n\n #: I1\n self.I1[i] = double_or_blank(card, 4, 'I1', 0.0)\n\n #: I2\n self.I2[i] = double_or_blank(card, 5, 'I2', 0.0)\n\n #: Polar Moment of Inertia J -> use J()\n #: default=1/2(I1+I2) for SOL=600, otherwise 0.0\n #: .. todo:: support SOL 600 default\n\n Jdefault = 0.5 * (self.I1[i] + self.I2[i])\n self.J[i] = double_or_blank(card, 6, 'J', Jdefault)\n self.nsm[i] = double_or_blank(card, 7, 'non-structural_mass', 0.0)\n\n if 0:\n self.C1 = double_or_blank(card, 9, 'C1', 0.0)\n self.C2 = double_or_blank(card, 10, 'C2', 0.0)\n self.D1 = double_or_blank(card, 11, 'D1', 0.0)\n self.D2 = double_or_blank(card, 12, 'D2', 0.0)\n self.E1 = double_or_blank(card, 13, 'E1', 0.0)\n self.E2 = double_or_blank(card, 14, 'E2', 0.0)\n self.F1 = double_or_blank(card, 15, 'F1', 0.0)\n self.F2 = double_or_blank(card, 16, 'F2', 0.0)\n\n #: default=infinite; assume 1e8\n self.K1 = double_or_blank(card, 17, 'K1', 1e8)\n #: default=infinite; assume 1e8\n self.K2 = double_or_blank(card, 18, 'K2', 1e8)\n #: I12 -> use I12()\n self.i12 = double_or_blank(card, 19, 'I12', 0.0)\n if self.A == 0.0 and self.i12 == 0.0:\n assert self.K1 is None, 'K1 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K1=%r' % (self.A, self.i12, self.K1)\n assert self.K2 is None, 'K2 must be blank if A=0.0 and I12=0.0; A=%r I12=%r K2=%r' % (self.A, self.i12, self.K2)\n assert len(card) <= 20, 'len(PBAR card) = %i' % len(card)\n\n i = self.property_id.argsort()\n self.property_id = self.property_id[i]\n self.material_id = self.material_id[i]\n\n self.area = self.area[i]\n self.I1 = self.I1[i]\n self.I2 = self.I2[i]\n self.J = self.J[i]\n self.nsm = self.nsm[i]\n\n unique_pids = unique(self.property_id)\n\n if len(unique_pids) != len(self.property_id):\n raise RuntimeError('There are duplicate PCOMP IDs...')\n self._cards = []\n self._comments = []\n\n #=========================================================================\n def get_index(self, property_ids):\n if isinstance(property_ids, int):\n property_ids = array([property_ids])\n if property_ids is None:\n return arange(self.n)\n\n indexs = searchsorted(self.property_id, property_ids)\n assert len(indexs) == len(property_ids), 'indexs=%s pids=%s' % (indexs, property_ids)\n return indexs\n\n #=========================================================================\n def write_bdf(self, f, size=8, property_ids=None):\n if self.n:\n if property_ids is None:\n i = arange(self.n)\n else:\n i = searchsorted(self.property_id, property_ids)\n\n for (pid, mid, area, I1, I2, J) in zip(self.property_id[i], self.material_id[i],\n self.area[i], self.I1[i], self.I2[i], self.J[i]):\n card = ['PBAR', pid, mid, area, I1, I2, J]\n f.write(print_card_8(card))\n", "step-ids": [ 3, 6, 7, 8, 9 ] }
[ 3, 6, 7, 8, 9 ]
<|reserved_special_token_0|> def main(_): writer_train = tf.python_io.TFRecordWriter('./data/train.record') writer_test = tf.python_io.TFRecordWriter('./data/test.record') filename_list = tf.train.match_filenames_once('./data/annotations/*.xml') init = tf.global_variables_initializer(), tf.local_variables_initializer() sess = tf.Session() sess.run(init) list = sess.run(filename_list) random.shuffle(list) i = 1 tst = 0 trn = 0 for xml_file in list: example = create_example(xml_file) if i % 5 == 0: writer_test.write(example.SerializeToString()) tst = tst + 1 else: writer_train.write(example.SerializeToString()) trn = trn + 1 i = i + 1 print(xml_file) writer_test.close() writer_train.close() print('Successfully converted dataset to TFRecord.') print('training dataset: # ') print(trn) print('test dataset: # ') print(tst) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def create_example(xml_file): tree = ET.parse(xml_file) root = tree.getroot() image_name = root.find('filename').text file_name = image_name.encode('utf8') size = root.find('size') width = int(size[0].text) height = int(size[1].text) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] for member in root.findall('object'): classes_text.append(member[0].text) def class_text_to_int(row_label): if row_label == 'car-red': return 1 if row_label == 'car-blue': return 2 if row_label == 'phone': return 3 classes.append(class_text_to_int(member[0].text)) xmin.append(float(member[4][0].text) / width) ymin.append(float(member[4][1].text) / height) xmax.append(float(member[4][2].text) / width) ymax.append(float(member[4][3].text) / height) difficult_obj.append(0) truncated.append(0) poses.append('Unspecified'.encode('utf8')) full_path = os.path.join('./data/images', '{}'.format(image_name)) with tf.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util. bytes_feature(file_name), 'image/source_id': dataset_util. bytes_feature(file_name), 'image/key/sha256': dataset_util. bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util. bytes_feature(encoded_jpg), 'image/format': dataset_util. bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes ), 'image/object/difficult': dataset_util.int64_list_feature( difficult_obj), 'image/object/truncated': dataset_util. int64_list_feature(truncated), 'image/object/view': dataset_util. bytes_list_feature(poses)})) return example def main(_): writer_train = tf.python_io.TFRecordWriter('./data/train.record') writer_test = tf.python_io.TFRecordWriter('./data/test.record') filename_list = tf.train.match_filenames_once('./data/annotations/*.xml') init = tf.global_variables_initializer(), tf.local_variables_initializer() sess = tf.Session() sess.run(init) list = sess.run(filename_list) random.shuffle(list) i = 1 tst = 0 trn = 0 for xml_file in list: example = create_example(xml_file) if i % 5 == 0: writer_test.write(example.SerializeToString()) tst = tst + 1 else: writer_train.write(example.SerializeToString()) trn = trn + 1 i = i + 1 print(xml_file) writer_test.close() writer_train.close() print('Successfully converted dataset to TFRecord.') print('training dataset: # ') print(trn) print('test dataset: # ') print(tst) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def create_example(xml_file): tree = ET.parse(xml_file) root = tree.getroot() image_name = root.find('filename').text file_name = image_name.encode('utf8') size = root.find('size') width = int(size[0].text) height = int(size[1].text) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] for member in root.findall('object'): classes_text.append(member[0].text) def class_text_to_int(row_label): if row_label == 'car-red': return 1 if row_label == 'car-blue': return 2 if row_label == 'phone': return 3 classes.append(class_text_to_int(member[0].text)) xmin.append(float(member[4][0].text) / width) ymin.append(float(member[4][1].text) / height) xmax.append(float(member[4][2].text) / width) ymax.append(float(member[4][3].text) / height) difficult_obj.append(0) truncated.append(0) poses.append('Unspecified'.encode('utf8')) full_path = os.path.join('./data/images', '{}'.format(image_name)) with tf.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util. bytes_feature(file_name), 'image/source_id': dataset_util. bytes_feature(file_name), 'image/key/sha256': dataset_util. bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util. bytes_feature(encoded_jpg), 'image/format': dataset_util. bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes ), 'image/object/difficult': dataset_util.int64_list_feature( difficult_obj), 'image/object/truncated': dataset_util. int64_list_feature(truncated), 'image/object/view': dataset_util. bytes_list_feature(poses)})) return example def main(_): writer_train = tf.python_io.TFRecordWriter('./data/train.record') writer_test = tf.python_io.TFRecordWriter('./data/test.record') filename_list = tf.train.match_filenames_once('./data/annotations/*.xml') init = tf.global_variables_initializer(), tf.local_variables_initializer() sess = tf.Session() sess.run(init) list = sess.run(filename_list) random.shuffle(list) i = 1 tst = 0 trn = 0 for xml_file in list: example = create_example(xml_file) if i % 5 == 0: writer_test.write(example.SerializeToString()) tst = tst + 1 else: writer_train.write(example.SerializeToString()) trn = trn + 1 i = i + 1 print(xml_file) writer_test.close() writer_train.close() print('Successfully converted dataset to TFRecord.') print('training dataset: # ') print(trn) print('test dataset: # ') print(tst) if __name__ == '__main__': tf.app.run() <|reserved_special_token_1|> import tensorflow as tf from object_detection.utils import dataset_util import os import io import hashlib import xml.etree.ElementTree as ET import random from PIL import Image def create_example(xml_file): tree = ET.parse(xml_file) root = tree.getroot() image_name = root.find('filename').text file_name = image_name.encode('utf8') size = root.find('size') width = int(size[0].text) height = int(size[1].text) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] for member in root.findall('object'): classes_text.append(member[0].text) def class_text_to_int(row_label): if row_label == 'car-red': return 1 if row_label == 'car-blue': return 2 if row_label == 'phone': return 3 classes.append(class_text_to_int(member[0].text)) xmin.append(float(member[4][0].text) / width) ymin.append(float(member[4][1].text) / height) xmax.append(float(member[4][2].text) / width) ymax.append(float(member[4][3].text) / height) difficult_obj.append(0) truncated.append(0) poses.append('Unspecified'.encode('utf8')) full_path = os.path.join('./data/images', '{}'.format(image_name)) with tf.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util. bytes_feature(file_name), 'image/source_id': dataset_util. bytes_feature(file_name), 'image/key/sha256': dataset_util. bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util. bytes_feature(encoded_jpg), 'image/format': dataset_util. bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes ), 'image/object/difficult': dataset_util.int64_list_feature( difficult_obj), 'image/object/truncated': dataset_util. int64_list_feature(truncated), 'image/object/view': dataset_util. bytes_list_feature(poses)})) return example def main(_): writer_train = tf.python_io.TFRecordWriter('./data/train.record') writer_test = tf.python_io.TFRecordWriter('./data/test.record') filename_list = tf.train.match_filenames_once('./data/annotations/*.xml') init = tf.global_variables_initializer(), tf.local_variables_initializer() sess = tf.Session() sess.run(init) list = sess.run(filename_list) random.shuffle(list) i = 1 tst = 0 trn = 0 for xml_file in list: example = create_example(xml_file) if i % 5 == 0: writer_test.write(example.SerializeToString()) tst = tst + 1 else: writer_train.write(example.SerializeToString()) trn = trn + 1 i = i + 1 print(xml_file) writer_test.close() writer_train.close() print('Successfully converted dataset to TFRecord.') print('training dataset: # ') print(trn) print('test dataset: # ') print(tst) if __name__ == '__main__': tf.app.run() <|reserved_special_token_1|> # from https://github.com/tensorflow/models/tree/master/research/object_detection/dataset_tools # and https://gist.github.com/saghiralfasly/ee642af0616461145a9a82d7317fb1d6 import tensorflow as tf from object_detection.utils import dataset_util import os import io import hashlib import xml.etree.ElementTree as ET import random from PIL import Image def create_example(xml_file): tree = ET.parse(xml_file) root = tree.getroot() image_name = root.find('filename').text file_name = image_name.encode('utf8') size=root.find('size') width = int(size[0].text) height = int(size[1].text) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] for member in root.findall('object'): classes_text.append(member[0].text) def class_text_to_int(row_label): if row_label == 'car-red': return 1 if row_label == 'car-blue': return 2 if row_label == 'phone': return 3 classes.append(class_text_to_int(member[0].text)) xmin.append(float(member[4][0].text) / width) ymin.append(float(member[4][1].text) / height) xmax.append(float(member[4][2].text) / width) ymax.append(float(member[4][3].text) / height) difficult_obj.append(0) truncated.append(0) poses.append('Unspecified'.encode('utf8')) full_path = os.path.join('./data/images', '{}'.format(image_name)) with tf.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(file_name), 'image/source_id': dataset_util.bytes_feature(file_name), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), })) return example def main(_): writer_train = tf.python_io.TFRecordWriter('./data/train.record') writer_test = tf.python_io.TFRecordWriter('./data/test.record') filename_list=tf.train.match_filenames_once("./data/annotations/*.xml") init = (tf.global_variables_initializer(), tf.local_variables_initializer()) sess=tf.Session() sess.run(init) list=sess.run(filename_list) random.shuffle(list) i=1 tst=0 trn=0 for xml_file in list: example = create_example(xml_file) if (i%5)==0: writer_test.write(example.SerializeToString()) tst=tst+1 else: writer_train.write(example.SerializeToString()) trn=trn+1 i=i+1 print(xml_file) writer_test.close() writer_train.close() print('Successfully converted dataset to TFRecord.') print('training dataset: # ') print(trn) print('test dataset: # ') print(tst) if __name__ == '__main__': tf.app.run()
flexible
{ "blob_id": "8142585827590f6d951f0fcc375e8511aa75e9c8", "index": 7320, "step-1": "<mask token>\n\n\ndef main(_):\n writer_train = tf.python_io.TFRecordWriter('./data/train.record')\n writer_test = tf.python_io.TFRecordWriter('./data/test.record')\n filename_list = tf.train.match_filenames_once('./data/annotations/*.xml')\n init = tf.global_variables_initializer(), tf.local_variables_initializer()\n sess = tf.Session()\n sess.run(init)\n list = sess.run(filename_list)\n random.shuffle(list)\n i = 1\n tst = 0\n trn = 0\n for xml_file in list:\n example = create_example(xml_file)\n if i % 5 == 0:\n writer_test.write(example.SerializeToString())\n tst = tst + 1\n else:\n writer_train.write(example.SerializeToString())\n trn = trn + 1\n i = i + 1\n print(xml_file)\n writer_test.close()\n writer_train.close()\n print('Successfully converted dataset to TFRecord.')\n print('training dataset: # ')\n print(trn)\n print('test dataset: # ')\n print(tst)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef create_example(xml_file):\n tree = ET.parse(xml_file)\n root = tree.getroot()\n image_name = root.find('filename').text\n file_name = image_name.encode('utf8')\n size = root.find('size')\n width = int(size[0].text)\n height = int(size[1].text)\n xmin = []\n ymin = []\n xmax = []\n ymax = []\n classes = []\n classes_text = []\n truncated = []\n poses = []\n difficult_obj = []\n for member in root.findall('object'):\n classes_text.append(member[0].text)\n\n def class_text_to_int(row_label):\n if row_label == 'car-red':\n return 1\n if row_label == 'car-blue':\n return 2\n if row_label == 'phone':\n return 3\n classes.append(class_text_to_int(member[0].text))\n xmin.append(float(member[4][0].text) / width)\n ymin.append(float(member[4][1].text) / height)\n xmax.append(float(member[4][2].text) / width)\n ymax.append(float(member[4][3].text) / height)\n difficult_obj.append(0)\n truncated.append(0)\n poses.append('Unspecified'.encode('utf8'))\n full_path = os.path.join('./data/images', '{}'.format(image_name))\n with tf.gfile.GFile(full_path, 'rb') as fid:\n encoded_jpg = fid.read()\n encoded_jpg_io = io.BytesIO(encoded_jpg)\n image = Image.open(encoded_jpg_io)\n if image.format != 'JPEG':\n raise ValueError('Image format not JPEG')\n key = hashlib.sha256(encoded_jpg).hexdigest()\n example = tf.train.Example(features=tf.train.Features(feature={\n 'image/height': dataset_util.int64_feature(height), 'image/width':\n dataset_util.int64_feature(width), 'image/filename': dataset_util.\n bytes_feature(file_name), 'image/source_id': dataset_util.\n bytes_feature(file_name), 'image/key/sha256': dataset_util.\n bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.\n bytes_feature(encoded_jpg), 'image/format': dataset_util.\n bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin':\n dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax':\n dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin':\n dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax':\n dataset_util.float_list_feature(ymax), 'image/object/class/text':\n dataset_util.bytes_list_feature(classes_text),\n 'image/object/class/label': dataset_util.int64_list_feature(classes\n ), 'image/object/difficult': dataset_util.int64_list_feature(\n difficult_obj), 'image/object/truncated': dataset_util.\n int64_list_feature(truncated), 'image/object/view': dataset_util.\n bytes_list_feature(poses)}))\n return example\n\n\ndef main(_):\n writer_train = tf.python_io.TFRecordWriter('./data/train.record')\n writer_test = tf.python_io.TFRecordWriter('./data/test.record')\n filename_list = tf.train.match_filenames_once('./data/annotations/*.xml')\n init = tf.global_variables_initializer(), tf.local_variables_initializer()\n sess = tf.Session()\n sess.run(init)\n list = sess.run(filename_list)\n random.shuffle(list)\n i = 1\n tst = 0\n trn = 0\n for xml_file in list:\n example = create_example(xml_file)\n if i % 5 == 0:\n writer_test.write(example.SerializeToString())\n tst = tst + 1\n else:\n writer_train.write(example.SerializeToString())\n trn = trn + 1\n i = i + 1\n print(xml_file)\n writer_test.close()\n writer_train.close()\n print('Successfully converted dataset to TFRecord.')\n print('training dataset: # ')\n print(trn)\n print('test dataset: # ')\n print(tst)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef create_example(xml_file):\n tree = ET.parse(xml_file)\n root = tree.getroot()\n image_name = root.find('filename').text\n file_name = image_name.encode('utf8')\n size = root.find('size')\n width = int(size[0].text)\n height = int(size[1].text)\n xmin = []\n ymin = []\n xmax = []\n ymax = []\n classes = []\n classes_text = []\n truncated = []\n poses = []\n difficult_obj = []\n for member in root.findall('object'):\n classes_text.append(member[0].text)\n\n def class_text_to_int(row_label):\n if row_label == 'car-red':\n return 1\n if row_label == 'car-blue':\n return 2\n if row_label == 'phone':\n return 3\n classes.append(class_text_to_int(member[0].text))\n xmin.append(float(member[4][0].text) / width)\n ymin.append(float(member[4][1].text) / height)\n xmax.append(float(member[4][2].text) / width)\n ymax.append(float(member[4][3].text) / height)\n difficult_obj.append(0)\n truncated.append(0)\n poses.append('Unspecified'.encode('utf8'))\n full_path = os.path.join('./data/images', '{}'.format(image_name))\n with tf.gfile.GFile(full_path, 'rb') as fid:\n encoded_jpg = fid.read()\n encoded_jpg_io = io.BytesIO(encoded_jpg)\n image = Image.open(encoded_jpg_io)\n if image.format != 'JPEG':\n raise ValueError('Image format not JPEG')\n key = hashlib.sha256(encoded_jpg).hexdigest()\n example = tf.train.Example(features=tf.train.Features(feature={\n 'image/height': dataset_util.int64_feature(height), 'image/width':\n dataset_util.int64_feature(width), 'image/filename': dataset_util.\n bytes_feature(file_name), 'image/source_id': dataset_util.\n bytes_feature(file_name), 'image/key/sha256': dataset_util.\n bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.\n bytes_feature(encoded_jpg), 'image/format': dataset_util.\n bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin':\n dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax':\n dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin':\n dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax':\n dataset_util.float_list_feature(ymax), 'image/object/class/text':\n dataset_util.bytes_list_feature(classes_text),\n 'image/object/class/label': dataset_util.int64_list_feature(classes\n ), 'image/object/difficult': dataset_util.int64_list_feature(\n difficult_obj), 'image/object/truncated': dataset_util.\n int64_list_feature(truncated), 'image/object/view': dataset_util.\n bytes_list_feature(poses)}))\n return example\n\n\ndef main(_):\n writer_train = tf.python_io.TFRecordWriter('./data/train.record')\n writer_test = tf.python_io.TFRecordWriter('./data/test.record')\n filename_list = tf.train.match_filenames_once('./data/annotations/*.xml')\n init = tf.global_variables_initializer(), tf.local_variables_initializer()\n sess = tf.Session()\n sess.run(init)\n list = sess.run(filename_list)\n random.shuffle(list)\n i = 1\n tst = 0\n trn = 0\n for xml_file in list:\n example = create_example(xml_file)\n if i % 5 == 0:\n writer_test.write(example.SerializeToString())\n tst = tst + 1\n else:\n writer_train.write(example.SerializeToString())\n trn = trn + 1\n i = i + 1\n print(xml_file)\n writer_test.close()\n writer_train.close()\n print('Successfully converted dataset to TFRecord.')\n print('training dataset: # ')\n print(trn)\n print('test dataset: # ')\n print(tst)\n\n\nif __name__ == '__main__':\n tf.app.run()\n", "step-4": "import tensorflow as tf\nfrom object_detection.utils import dataset_util\nimport os\nimport io\nimport hashlib\nimport xml.etree.ElementTree as ET\nimport random\nfrom PIL import Image\n\n\ndef create_example(xml_file):\n tree = ET.parse(xml_file)\n root = tree.getroot()\n image_name = root.find('filename').text\n file_name = image_name.encode('utf8')\n size = root.find('size')\n width = int(size[0].text)\n height = int(size[1].text)\n xmin = []\n ymin = []\n xmax = []\n ymax = []\n classes = []\n classes_text = []\n truncated = []\n poses = []\n difficult_obj = []\n for member in root.findall('object'):\n classes_text.append(member[0].text)\n\n def class_text_to_int(row_label):\n if row_label == 'car-red':\n return 1\n if row_label == 'car-blue':\n return 2\n if row_label == 'phone':\n return 3\n classes.append(class_text_to_int(member[0].text))\n xmin.append(float(member[4][0].text) / width)\n ymin.append(float(member[4][1].text) / height)\n xmax.append(float(member[4][2].text) / width)\n ymax.append(float(member[4][3].text) / height)\n difficult_obj.append(0)\n truncated.append(0)\n poses.append('Unspecified'.encode('utf8'))\n full_path = os.path.join('./data/images', '{}'.format(image_name))\n with tf.gfile.GFile(full_path, 'rb') as fid:\n encoded_jpg = fid.read()\n encoded_jpg_io = io.BytesIO(encoded_jpg)\n image = Image.open(encoded_jpg_io)\n if image.format != 'JPEG':\n raise ValueError('Image format not JPEG')\n key = hashlib.sha256(encoded_jpg).hexdigest()\n example = tf.train.Example(features=tf.train.Features(feature={\n 'image/height': dataset_util.int64_feature(height), 'image/width':\n dataset_util.int64_feature(width), 'image/filename': dataset_util.\n bytes_feature(file_name), 'image/source_id': dataset_util.\n bytes_feature(file_name), 'image/key/sha256': dataset_util.\n bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.\n bytes_feature(encoded_jpg), 'image/format': dataset_util.\n bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin':\n dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax':\n dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin':\n dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax':\n dataset_util.float_list_feature(ymax), 'image/object/class/text':\n dataset_util.bytes_list_feature(classes_text),\n 'image/object/class/label': dataset_util.int64_list_feature(classes\n ), 'image/object/difficult': dataset_util.int64_list_feature(\n difficult_obj), 'image/object/truncated': dataset_util.\n int64_list_feature(truncated), 'image/object/view': dataset_util.\n bytes_list_feature(poses)}))\n return example\n\n\ndef main(_):\n writer_train = tf.python_io.TFRecordWriter('./data/train.record')\n writer_test = tf.python_io.TFRecordWriter('./data/test.record')\n filename_list = tf.train.match_filenames_once('./data/annotations/*.xml')\n init = tf.global_variables_initializer(), tf.local_variables_initializer()\n sess = tf.Session()\n sess.run(init)\n list = sess.run(filename_list)\n random.shuffle(list)\n i = 1\n tst = 0\n trn = 0\n for xml_file in list:\n example = create_example(xml_file)\n if i % 5 == 0:\n writer_test.write(example.SerializeToString())\n tst = tst + 1\n else:\n writer_train.write(example.SerializeToString())\n trn = trn + 1\n i = i + 1\n print(xml_file)\n writer_test.close()\n writer_train.close()\n print('Successfully converted dataset to TFRecord.')\n print('training dataset: # ')\n print(trn)\n print('test dataset: # ')\n print(tst)\n\n\nif __name__ == '__main__':\n tf.app.run()\n", "step-5": "# from https://github.com/tensorflow/models/tree/master/research/object_detection/dataset_tools\n# and https://gist.github.com/saghiralfasly/ee642af0616461145a9a82d7317fb1d6\n \nimport tensorflow as tf\nfrom object_detection.utils import dataset_util\nimport os\nimport io\nimport hashlib\nimport xml.etree.ElementTree as ET\nimport random\nfrom PIL import Image\n\ndef create_example(xml_file):\n tree = ET.parse(xml_file)\n root = tree.getroot()\n image_name = root.find('filename').text\n file_name = image_name.encode('utf8')\n size=root.find('size')\n width = int(size[0].text)\n height = int(size[1].text)\n xmin = []\n ymin = []\n xmax = []\n ymax = []\n classes = []\n classes_text = []\n truncated = []\n poses = []\n difficult_obj = []\n for member in root.findall('object'):\n classes_text.append(member[0].text)\n\n def class_text_to_int(row_label):\n if row_label == 'car-red':\n return 1\n if row_label == 'car-blue':\n return 2\n if row_label == 'phone':\n return 3\n\n classes.append(class_text_to_int(member[0].text))\n\n xmin.append(float(member[4][0].text) / width)\n ymin.append(float(member[4][1].text) / height)\n xmax.append(float(member[4][2].text) / width)\n ymax.append(float(member[4][3].text) / height)\n difficult_obj.append(0)\n truncated.append(0)\n poses.append('Unspecified'.encode('utf8'))\n\n full_path = os.path.join('./data/images', '{}'.format(image_name))\n with tf.gfile.GFile(full_path, 'rb') as fid:\n encoded_jpg = fid.read()\n encoded_jpg_io = io.BytesIO(encoded_jpg)\n image = Image.open(encoded_jpg_io)\n if image.format != 'JPEG':\n raise ValueError('Image format not JPEG')\n key = hashlib.sha256(encoded_jpg).hexdigest()\n\t\t\n example = tf.train.Example(features=tf.train.Features(feature={\n 'image/height': dataset_util.int64_feature(height),\n 'image/width': dataset_util.int64_feature(width),\n 'image/filename': dataset_util.bytes_feature(file_name),\n 'image/source_id': dataset_util.bytes_feature(file_name),\n 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),\n 'image/encoded': dataset_util.bytes_feature(encoded_jpg),\n 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),\n 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),\n 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),\n 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),\n 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),\n 'image/object/class/text': dataset_util.bytes_list_feature(classes_text),\n 'image/object/class/label': dataset_util.int64_list_feature(classes),\n 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj),\n 'image/object/truncated': dataset_util.int64_list_feature(truncated),\n 'image/object/view': dataset_util.bytes_list_feature(poses),\n }))\t\n return example\t\n\t\t\ndef main(_):\n writer_train = tf.python_io.TFRecordWriter('./data/train.record') \n writer_test = tf.python_io.TFRecordWriter('./data/test.record')\n filename_list=tf.train.match_filenames_once(\"./data/annotations/*.xml\")\n init = (tf.global_variables_initializer(), tf.local_variables_initializer())\n sess=tf.Session()\n sess.run(init)\n list=sess.run(filename_list)\n random.shuffle(list) \n i=1 \n tst=0\n trn=0 \n for xml_file in list:\n example = create_example(xml_file)\n if (i%5)==0: \n writer_test.write(example.SerializeToString())\n tst=tst+1\n else: \n writer_train.write(example.SerializeToString())\n trn=trn+1\n i=i+1\n print(xml_file)\n writer_test.close()\n writer_train.close()\n print('Successfully converted dataset to TFRecord.')\n print('training dataset: # ')\n print(trn)\n print('test dataset: # ')\n print(tst)\t\n\t\nif __name__ == '__main__':\n tf.app.run()", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
class Mood(object): GENERIC = 1 HIGH_TEMP = 2 LOW_TEMP = 3 HIGH_DUST = 4 LOW_DUST = 5 def decision(self, data): temp = float(data) if temp <= 10: return self.LOW_TEMP if temp > 30: return self.HIGH_TEMP if (10 < temp <=30): return self.GENERIC
normal
{ "blob_id": "511016b9cd54f6824360d609ede233b9cc3e4447", "index": 7564, "step-1": "<mask token>\n", "step-2": "class Mood(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "class Mood(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def decision(self, data):\n temp = float(data)\n if temp <= 10:\n return self.LOW_TEMP\n if temp > 30:\n return self.HIGH_TEMP\n if 10 < temp <= 30:\n return self.GENERIC\n", "step-4": "class Mood(object):\n GENERIC = 1\n HIGH_TEMP = 2\n LOW_TEMP = 3\n HIGH_DUST = 4\n LOW_DUST = 5\n\n def decision(self, data):\n temp = float(data)\n if temp <= 10:\n return self.LOW_TEMP\n if temp > 30:\n return self.HIGH_TEMP\n if 10 < temp <= 30:\n return self.GENERIC\n", "step-5": "class Mood(object):\n\n GENERIC = 1\n HIGH_TEMP = 2\n LOW_TEMP = 3\n HIGH_DUST = 4\n LOW_DUST = 5\n\n def decision(self, data):\n temp = float(data)\n\n if temp <= 10:\n return self.LOW_TEMP\n\n if temp > 30:\n return self.HIGH_TEMP\n\n if (10 < temp <=30):\n return self.GENERIC\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class Category(Document): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Category(Document): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> @classmethod def get_category_by_text(cls, category_text: str) ->'Category': try: category = cls.objects.get(Q(name=category_text) | Q(aliases= category_text.lower())) except Category.DoesNotExist: raise exceptions.InvalidCategory( 'Нет такой категории по имени или алиасам') return category <|reserved_special_token_1|> <|reserved_special_token_0|> class Category(Document): id = StringField(primary_key=True) name = StringField() is_base_expenses = BooleanField(default=False) aliases = ListField(StringField()) @classmethod def get_category_by_text(cls, category_text: str) ->'Category': try: category = cls.objects.get(Q(name=category_text) | Q(aliases= category_text.lower())) except Category.DoesNotExist: raise exceptions.InvalidCategory( 'Нет такой категории по имени или алиасам') return category <|reserved_special_token_1|> from mongoengine import Document, StringField, BooleanField, ListField, Q import exceptions class Category(Document): id = StringField(primary_key=True) name = StringField() is_base_expenses = BooleanField(default=False) aliases = ListField(StringField()) @classmethod def get_category_by_text(cls, category_text: str) ->'Category': try: category = cls.objects.get(Q(name=category_text) | Q(aliases= category_text.lower())) except Category.DoesNotExist: raise exceptions.InvalidCategory( 'Нет такой категории по имени или алиасам') return category
flexible
{ "blob_id": "63d9a0fa0d0747762e65f6f1e85e53090035454c", "index": 583, "step-1": "<mask token>\n\n\nclass Category(Document):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Category(Document):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @classmethod\n def get_category_by_text(cls, category_text: str) ->'Category':\n try:\n category = cls.objects.get(Q(name=category_text) | Q(aliases=\n category_text.lower()))\n except Category.DoesNotExist:\n raise exceptions.InvalidCategory(\n 'Нет такой категории по имени или алиасам')\n return category\n", "step-3": "<mask token>\n\n\nclass Category(Document):\n id = StringField(primary_key=True)\n name = StringField()\n is_base_expenses = BooleanField(default=False)\n aliases = ListField(StringField())\n\n @classmethod\n def get_category_by_text(cls, category_text: str) ->'Category':\n try:\n category = cls.objects.get(Q(name=category_text) | Q(aliases=\n category_text.lower()))\n except Category.DoesNotExist:\n raise exceptions.InvalidCategory(\n 'Нет такой категории по имени или алиасам')\n return category\n", "step-4": "from mongoengine import Document, StringField, BooleanField, ListField, Q\nimport exceptions\n\n\nclass Category(Document):\n id = StringField(primary_key=True)\n name = StringField()\n is_base_expenses = BooleanField(default=False)\n aliases = ListField(StringField())\n\n @classmethod\n def get_category_by_text(cls, category_text: str) ->'Category':\n try:\n category = cls.objects.get(Q(name=category_text) | Q(aliases=\n category_text.lower()))\n except Category.DoesNotExist:\n raise exceptions.InvalidCategory(\n 'Нет такой категории по имени или алиасам')\n return category\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
/home/pushkar/anaconda3/lib/python3.6/_bootlocale.py
normal
{ "blob_id": "ea4e4c8067d9e910b8d4c6a1c4c01f1ef70d7341", "index": 7410, "step-1": "/home/pushkar/anaconda3/lib/python3.6/_bootlocale.py", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> def downgrade(): op.drop_index(op.f('ix_account_sub_int'), table_name='account') op.drop_index(op.f('ix_account_mac'), table_name='account') op.drop_index(op.f('ix_account_interface'), table_name='account') <|reserved_special_token_1|> <|reserved_special_token_0|> def upgrade(): op.create_index(op.f('ix_account_interface'), 'account', ['interface'], unique=False) op.create_index(op.f('ix_account_mac'), 'account', ['mac'], unique=False) op.create_index(op.f('ix_account_sub_int'), 'account', ['sub_int'], unique=False) def downgrade(): op.drop_index(op.f('ix_account_sub_int'), table_name='account') op.drop_index(op.f('ix_account_mac'), table_name='account') op.drop_index(op.f('ix_account_interface'), table_name='account') <|reserved_special_token_1|> <|reserved_special_token_0|> revision = '3e4ee9eaaeaa' down_revision = '6d58871d74a0' <|reserved_special_token_0|> def upgrade(): op.create_index(op.f('ix_account_interface'), 'account', ['interface'], unique=False) op.create_index(op.f('ix_account_mac'), 'account', ['mac'], unique=False) op.create_index(op.f('ix_account_sub_int'), 'account', ['sub_int'], unique=False) def downgrade(): op.drop_index(op.f('ix_account_sub_int'), table_name='account') op.drop_index(op.f('ix_account_mac'), table_name='account') op.drop_index(op.f('ix_account_interface'), table_name='account') <|reserved_special_token_1|> <|reserved_special_token_0|> revision = '3e4ee9eaaeaa' down_revision = '6d58871d74a0' from alembic import op import sqlalchemy as sa def upgrade(): op.create_index(op.f('ix_account_interface'), 'account', ['interface'], unique=False) op.create_index(op.f('ix_account_mac'), 'account', ['mac'], unique=False) op.create_index(op.f('ix_account_sub_int'), 'account', ['sub_int'], unique=False) def downgrade(): op.drop_index(op.f('ix_account_sub_int'), table_name='account') op.drop_index(op.f('ix_account_mac'), table_name='account') op.drop_index(op.f('ix_account_interface'), table_name='account') <|reserved_special_token_1|> """empty message Revision ID: 3e4ee9eaaeaa Revises: 6d58871d74a0 Create Date: 2016-07-25 15:30:38.008238 """ # revision identifiers, used by Alembic. revision = '3e4ee9eaaeaa' down_revision = '6d58871d74a0' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_index(op.f('ix_account_interface'), 'account', ['interface'], unique=False) op.create_index(op.f('ix_account_mac'), 'account', ['mac'], unique=False) op.create_index(op.f('ix_account_sub_int'), 'account', ['sub_int'], unique=False) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_account_sub_int'), table_name='account') op.drop_index(op.f('ix_account_mac'), table_name='account') op.drop_index(op.f('ix_account_interface'), table_name='account') ### end Alembic commands ###
flexible
{ "blob_id": "db49313d2bc8b9f0be0dfd48c6065ea0ab3294cb", "index": 4032, "step-1": "<mask token>\n\n\ndef downgrade():\n op.drop_index(op.f('ix_account_sub_int'), table_name='account')\n op.drop_index(op.f('ix_account_mac'), table_name='account')\n op.drop_index(op.f('ix_account_interface'), table_name='account')\n", "step-2": "<mask token>\n\n\ndef upgrade():\n op.create_index(op.f('ix_account_interface'), 'account', ['interface'],\n unique=False)\n op.create_index(op.f('ix_account_mac'), 'account', ['mac'], unique=False)\n op.create_index(op.f('ix_account_sub_int'), 'account', ['sub_int'],\n unique=False)\n\n\ndef downgrade():\n op.drop_index(op.f('ix_account_sub_int'), table_name='account')\n op.drop_index(op.f('ix_account_mac'), table_name='account')\n op.drop_index(op.f('ix_account_interface'), table_name='account')\n", "step-3": "<mask token>\nrevision = '3e4ee9eaaeaa'\ndown_revision = '6d58871d74a0'\n<mask token>\n\n\ndef upgrade():\n op.create_index(op.f('ix_account_interface'), 'account', ['interface'],\n unique=False)\n op.create_index(op.f('ix_account_mac'), 'account', ['mac'], unique=False)\n op.create_index(op.f('ix_account_sub_int'), 'account', ['sub_int'],\n unique=False)\n\n\ndef downgrade():\n op.drop_index(op.f('ix_account_sub_int'), table_name='account')\n op.drop_index(op.f('ix_account_mac'), table_name='account')\n op.drop_index(op.f('ix_account_interface'), table_name='account')\n", "step-4": "<mask token>\nrevision = '3e4ee9eaaeaa'\ndown_revision = '6d58871d74a0'\nfrom alembic import op\nimport sqlalchemy as sa\n\n\ndef upgrade():\n op.create_index(op.f('ix_account_interface'), 'account', ['interface'],\n unique=False)\n op.create_index(op.f('ix_account_mac'), 'account', ['mac'], unique=False)\n op.create_index(op.f('ix_account_sub_int'), 'account', ['sub_int'],\n unique=False)\n\n\ndef downgrade():\n op.drop_index(op.f('ix_account_sub_int'), table_name='account')\n op.drop_index(op.f('ix_account_mac'), table_name='account')\n op.drop_index(op.f('ix_account_interface'), table_name='account')\n", "step-5": "\"\"\"empty message\n\nRevision ID: 3e4ee9eaaeaa\nRevises: 6d58871d74a0\nCreate Date: 2016-07-25 15:30:38.008238\n\n\"\"\"\n\n# revision identifiers, used by Alembic.\nrevision = '3e4ee9eaaeaa'\ndown_revision = '6d58871d74a0'\n\nfrom alembic import op\nimport sqlalchemy as sa\n\n\ndef upgrade():\n ### commands auto generated by Alembic - please adjust! ###\n op.create_index(op.f('ix_account_interface'), 'account', ['interface'], unique=False)\n op.create_index(op.f('ix_account_mac'), 'account', ['mac'], unique=False)\n op.create_index(op.f('ix_account_sub_int'), 'account', ['sub_int'], unique=False)\n ### end Alembic commands ###\n\n\ndef downgrade():\n ### commands auto generated by Alembic - please adjust! ###\n op.drop_index(op.f('ix_account_sub_int'), table_name='account')\n op.drop_index(op.f('ix_account_mac'), table_name='account')\n op.drop_index(op.f('ix_account_interface'), table_name='account')\n ### end Alembic commands ###\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import sys import os from pyparsing import * import csv def parse_cave_details(details): ########################################################################## # Define the Bretz Grammar. # Sample cave description: # Boring Caverns SE1/4 NW1/4 sec. 16, T. 37 N., R. 10 W., Pulaski County Not shown on Waynesville Quadrangle map The mouth of this cave ...\n # Another Cave S1/2 sec. 15, T. 36 N., R. 12 W., Pulaski County Not shown on Waynesville Quadrangle map There are two large caves...\n # Something Bridge Sec. 15 or 22, T. 36 N., R. 13 W., Pulaski County Not shown on Richland Quadrangle map This cave is near Ozark...\n # # CAVE ::= CAVE_NAME [ALIQUOT_PART] SECTION, TOWNSHIP, RANGE, COUNTY QUAD_MAP DESCRIPTION # ALIQUOT_PART ::= (((NE|SE|SW|NW)1/4)|((N|E|S|W)1/2))* # SECTION ::= (S|s)ec. num+ # TOWNSHIP ::= T. num+ TOWNSHIP_DIR. # TOWNSHIP_DIR ::= N|S # RANGE ::= R. num+ RANGE_DIR. # RANGE_DIR ::= E|W # COUNTY = WORD+ County # QUAD_MAP = (Not s|S)hown on QUAD Quadrangle map # QUAD = WORD+ # DESCRIPTION = WORD+ aliquotQuadrantID = Literal("NE") |\ Literal("SE") |\ Literal("SW") |\ Literal("NW") aliquotQuadrantString = aliquotQuadrantID + Suppress("1/4") aliquotHalfString = oneOf("N E S W") + Suppress("1/2") aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString))\ .setResultsName("aliquot")\ .setParseAction(lambda kwd: " ".join(kwd[0])) sectionToken = Suppress(oneOf("S s") + Literal("ec") + Optional(".")) sectionNumber = Word(nums) section = Group( sectionToken \ + sectionNumber \ + ZeroOrMore(Suppress("or") + sectionNumber) ).setResultsName("section") afterEndOfCaveName = aliquotHalfString | aliquotQuadrantString | sectionToken caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables)))\ .setResultsName('name')\ .setParseAction(lambda name: " ".join(name[0])) townshipDirection = oneOf("N S").setResultsName("direction") townshipNumber = Word(nums).setResultsName("number") township = Suppress("T.") \ + Group(townshipNumber + townshipDirection).setResultsName("township")\ + Suppress('.') rangeDirection = oneOf("E W").setResultsName("direction") rangeNumber = Word(nums).setResultsName("number") range_info = Suppress("R.") \ + Group(rangeNumber + rangeDirection).setResultsName("range")\ + Suppress('.') countyKeyword = Literal("County") countyName = Group(OneOrMore(~countyKeyword + Word(alphas+"-'.")))\ .setResultsName("county")\ .setParseAction(lambda c: " ".join(c[0])) county = countyName + Suppress("County") notShownOnQuad = (Literal("Not") + Suppress("s"))\ .setParseAction(lambda x: False) shownOnQuad = Literal("S").setParseAction(lambda x: True) onKeyword = Literal("on") mapAlias = Group(OneOrMore(~onKeyword + Word(printables)))\ .setParseAction(lambda alias: " ".join(alias[0]))\ .setResultsName("alias") quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName("is_on_map")\ + Suppress("hown") \ + Optional(Suppress('as') + mapAlias)\ + Suppress(onKeyword) quadrangleKeyword = Literal("Quadrangle") + Literal("map") quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas+"-'.")))\ .setResultsName("name")\ .setParseAction(lambda name: " ".join(name[0])) quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName("quad") \ + Suppress(quadrangleKeyword) description = Group(ZeroOrMore(Word(alphanums + printables)))\ .setResultsName("description")\ .setParseAction(lambda desc: " ".join(desc[0])) location = caveName \ + aliquotPart \ + section + Suppress(',') \ + township + Suppress(',') \ + range_info + Suppress(',')\ + county \ + quadrangle \ + description return location.parseString(details) if __name__ == "__main__": if len(sys.argv) < 2: print("ERROR: pass in the filename as the second argument.") print(" $ python {0} /path/to/file.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] with open(filepath) as f: raw_text = f.read() raw_caves = raw_text.split("\n") caves = [] for raw_cave_text in raw_caves: raw_cave_text = raw_cave_text.strip() if raw_cave_text: try: cave = parse_cave_details(raw_cave_text) caves.append({ 'Cave name': cave.name, 'Alias': cave.quad.alias, 'On map': cave.quad.is_on_map, 'Quad': cave.quad.name, 'County': cave.county, 'State': 'MO', 'Principal Meridian Code': 5, 'Township Number': cave.township.number, 'Township Fraction': 0, 'Township Direction': cave.township.direction, 'Range Number': cave.range.number, 'Range Fraction': 0, 'Range Direction': cave.range.direction, 'Section': cave.section[0], 'Section Division': "".join(cave.aliquot), 'Township Duplicate': 0, 'Description': raw_cave_text, }) except: print("="*80) print("ERROR: unexpected format for {0}".format(cave.name)) print(raw_cave_text) import traceback print(traceback.format_exc()) print("\t" + "\n\t".join([str(x) for x in sys.exc_info()])) print("Skipping this cave for the next one") else: sections = " or ".join(cave.section) #print("="*80) #print("{1} := {0.aliquot} Sect. {2}, T. {0.township.number} {0.township.direction}., R. {0.range.number} {0.range.direction}., in {0.county} County on the {0.quad.name} quad map.".format(cave, cave.name, sections)) #print(" Marked on map as {0}".format(cave.quad.alias if cave.quad.alias else cave.name) if cave.quad.is_on_map else " Not on map") output_path = os.path.basename(filepath).split(".")[0] + ".csv" print("#"*80) print("{0} caves processed! Saving to '{1}'.".format(len(caves), output_path)) with open(output_path, 'wb') as f: cave_csv = csv.DictWriter(f, fieldnames=caves[0].keys()) try: cave_csv.writeheader() except: # Versions before 2.7 of Python do not have csv with writeheader(). header = {} for k in caves[0].keys(): header[k] = k cave_csv.writerow(header) cave_csv.writerows(caves)
normal
{ "blob_id": "1fc1d2e1a7d18b1ef8ee6396210afe47a63ab09f", "index": 3267, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef parse_cave_details(details):\n aliquotQuadrantID = Literal('NE') | Literal('SE') | Literal('SW'\n ) | Literal('NW')\n aliquotQuadrantString = aliquotQuadrantID + Suppress('1/4')\n aliquotHalfString = oneOf('N E S W') + Suppress('1/2')\n aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString)\n ).setResultsName('aliquot').setParseAction(lambda kwd: ' '.join(kwd[0])\n )\n sectionToken = Suppress(oneOf('S s') + Literal('ec') + Optional('.'))\n sectionNumber = Word(nums)\n section = Group(sectionToken + sectionNumber + ZeroOrMore(Suppress('or'\n ) + sectionNumber)).setResultsName('section')\n afterEndOfCaveName = (aliquotHalfString | aliquotQuadrantString |\n sectionToken)\n caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n townshipDirection = oneOf('N S').setResultsName('direction')\n townshipNumber = Word(nums).setResultsName('number')\n township = Suppress('T.') + Group(townshipNumber + townshipDirection\n ).setResultsName('township') + Suppress('.')\n rangeDirection = oneOf('E W').setResultsName('direction')\n rangeNumber = Word(nums).setResultsName('number')\n range_info = Suppress('R.') + Group(rangeNumber + rangeDirection\n ).setResultsName('range') + Suppress('.')\n countyKeyword = Literal('County')\n countyName = Group(OneOrMore(~countyKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('county').setParseAction(lambda c: ' '.join(c[0]))\n county = countyName + Suppress('County')\n notShownOnQuad = (Literal('Not') + Suppress('s')).setParseAction(lambda\n x: False)\n shownOnQuad = Literal('S').setParseAction(lambda x: True)\n onKeyword = Literal('on')\n mapAlias = Group(OneOrMore(~onKeyword + Word(printables))).setParseAction(\n lambda alias: ' '.join(alias[0])).setResultsName('alias')\n quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName(\n 'is_on_map') + Suppress('hown') + Optional(Suppress('as') + mapAlias\n ) + Suppress(onKeyword)\n quadrangleKeyword = Literal('Quadrangle') + Literal('map')\n quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName('quad'\n ) + Suppress(quadrangleKeyword)\n description = Group(ZeroOrMore(Word(alphanums + printables))\n ).setResultsName('description').setParseAction(lambda desc: ' '.\n join(desc[0]))\n location = caveName + aliquotPart + section + Suppress(','\n ) + township + Suppress(',') + range_info + Suppress(','\n ) + county + quadrangle + description\n return location.parseString(details)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef parse_cave_details(details):\n aliquotQuadrantID = Literal('NE') | Literal('SE') | Literal('SW'\n ) | Literal('NW')\n aliquotQuadrantString = aliquotQuadrantID + Suppress('1/4')\n aliquotHalfString = oneOf('N E S W') + Suppress('1/2')\n aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString)\n ).setResultsName('aliquot').setParseAction(lambda kwd: ' '.join(kwd[0])\n )\n sectionToken = Suppress(oneOf('S s') + Literal('ec') + Optional('.'))\n sectionNumber = Word(nums)\n section = Group(sectionToken + sectionNumber + ZeroOrMore(Suppress('or'\n ) + sectionNumber)).setResultsName('section')\n afterEndOfCaveName = (aliquotHalfString | aliquotQuadrantString |\n sectionToken)\n caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n townshipDirection = oneOf('N S').setResultsName('direction')\n townshipNumber = Word(nums).setResultsName('number')\n township = Suppress('T.') + Group(townshipNumber + townshipDirection\n ).setResultsName('township') + Suppress('.')\n rangeDirection = oneOf('E W').setResultsName('direction')\n rangeNumber = Word(nums).setResultsName('number')\n range_info = Suppress('R.') + Group(rangeNumber + rangeDirection\n ).setResultsName('range') + Suppress('.')\n countyKeyword = Literal('County')\n countyName = Group(OneOrMore(~countyKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('county').setParseAction(lambda c: ' '.join(c[0]))\n county = countyName + Suppress('County')\n notShownOnQuad = (Literal('Not') + Suppress('s')).setParseAction(lambda\n x: False)\n shownOnQuad = Literal('S').setParseAction(lambda x: True)\n onKeyword = Literal('on')\n mapAlias = Group(OneOrMore(~onKeyword + Word(printables))).setParseAction(\n lambda alias: ' '.join(alias[0])).setResultsName('alias')\n quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName(\n 'is_on_map') + Suppress('hown') + Optional(Suppress('as') + mapAlias\n ) + Suppress(onKeyword)\n quadrangleKeyword = Literal('Quadrangle') + Literal('map')\n quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName('quad'\n ) + Suppress(quadrangleKeyword)\n description = Group(ZeroOrMore(Word(alphanums + printables))\n ).setResultsName('description').setParseAction(lambda desc: ' '.\n join(desc[0]))\n location = caveName + aliquotPart + section + Suppress(','\n ) + township + Suppress(',') + range_info + Suppress(','\n ) + county + quadrangle + description\n return location.parseString(details)\n\n\nif __name__ == '__main__':\n if len(sys.argv) < 2:\n print('ERROR: pass in the filename as the second argument.')\n print(' $ python {0} /path/to/file.txt'.format(sys.argv[0]))\n exit()\n filepath = sys.argv[1]\n with open(filepath) as f:\n raw_text = f.read()\n raw_caves = raw_text.split('\\n')\n caves = []\n for raw_cave_text in raw_caves:\n raw_cave_text = raw_cave_text.strip()\n if raw_cave_text:\n try:\n cave = parse_cave_details(raw_cave_text)\n caves.append({'Cave name': cave.name, 'Alias': cave.quad.\n alias, 'On map': cave.quad.is_on_map, 'Quad': cave.quad\n .name, 'County': cave.county, 'State': 'MO',\n 'Principal Meridian Code': 5, 'Township Number': cave.\n township.number, 'Township Fraction': 0,\n 'Township Direction': cave.township.direction,\n 'Range Number': cave.range.number, 'Range Fraction': 0,\n 'Range Direction': cave.range.direction, 'Section':\n cave.section[0], 'Section Division': ''.join(cave.\n aliquot), 'Township Duplicate': 0, 'Description':\n raw_cave_text})\n except:\n print('=' * 80)\n print('ERROR: unexpected format for {0}'.format(cave.name))\n print(raw_cave_text)\n import traceback\n print(traceback.format_exc())\n print('\\t' + '\\n\\t'.join([str(x) for x in sys.exc_info()]))\n print('Skipping this cave for the next one')\n else:\n sections = ' or '.join(cave.section)\n output_path = os.path.basename(filepath).split('.')[0] + '.csv'\n print('#' * 80)\n print(\"{0} caves processed! Saving to '{1}'.\".format(len(caves),\n output_path))\n with open(output_path, 'wb') as f:\n cave_csv = csv.DictWriter(f, fieldnames=caves[0].keys())\n try:\n cave_csv.writeheader()\n except:\n header = {}\n for k in caves[0].keys():\n header[k] = k\n cave_csv.writerow(header)\n cave_csv.writerows(caves)\n", "step-4": "import sys\nimport os\nfrom pyparsing import *\nimport csv\n\n\ndef parse_cave_details(details):\n aliquotQuadrantID = Literal('NE') | Literal('SE') | Literal('SW'\n ) | Literal('NW')\n aliquotQuadrantString = aliquotQuadrantID + Suppress('1/4')\n aliquotHalfString = oneOf('N E S W') + Suppress('1/2')\n aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString)\n ).setResultsName('aliquot').setParseAction(lambda kwd: ' '.join(kwd[0])\n )\n sectionToken = Suppress(oneOf('S s') + Literal('ec') + Optional('.'))\n sectionNumber = Word(nums)\n section = Group(sectionToken + sectionNumber + ZeroOrMore(Suppress('or'\n ) + sectionNumber)).setResultsName('section')\n afterEndOfCaveName = (aliquotHalfString | aliquotQuadrantString |\n sectionToken)\n caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n townshipDirection = oneOf('N S').setResultsName('direction')\n townshipNumber = Word(nums).setResultsName('number')\n township = Suppress('T.') + Group(townshipNumber + townshipDirection\n ).setResultsName('township') + Suppress('.')\n rangeDirection = oneOf('E W').setResultsName('direction')\n rangeNumber = Word(nums).setResultsName('number')\n range_info = Suppress('R.') + Group(rangeNumber + rangeDirection\n ).setResultsName('range') + Suppress('.')\n countyKeyword = Literal('County')\n countyName = Group(OneOrMore(~countyKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('county').setParseAction(lambda c: ' '.join(c[0]))\n county = countyName + Suppress('County')\n notShownOnQuad = (Literal('Not') + Suppress('s')).setParseAction(lambda\n x: False)\n shownOnQuad = Literal('S').setParseAction(lambda x: True)\n onKeyword = Literal('on')\n mapAlias = Group(OneOrMore(~onKeyword + Word(printables))).setParseAction(\n lambda alias: ' '.join(alias[0])).setResultsName('alias')\n quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName(\n 'is_on_map') + Suppress('hown') + Optional(Suppress('as') + mapAlias\n ) + Suppress(onKeyword)\n quadrangleKeyword = Literal('Quadrangle') + Literal('map')\n quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName('quad'\n ) + Suppress(quadrangleKeyword)\n description = Group(ZeroOrMore(Word(alphanums + printables))\n ).setResultsName('description').setParseAction(lambda desc: ' '.\n join(desc[0]))\n location = caveName + aliquotPart + section + Suppress(','\n ) + township + Suppress(',') + range_info + Suppress(','\n ) + county + quadrangle + description\n return location.parseString(details)\n\n\nif __name__ == '__main__':\n if len(sys.argv) < 2:\n print('ERROR: pass in the filename as the second argument.')\n print(' $ python {0} /path/to/file.txt'.format(sys.argv[0]))\n exit()\n filepath = sys.argv[1]\n with open(filepath) as f:\n raw_text = f.read()\n raw_caves = raw_text.split('\\n')\n caves = []\n for raw_cave_text in raw_caves:\n raw_cave_text = raw_cave_text.strip()\n if raw_cave_text:\n try:\n cave = parse_cave_details(raw_cave_text)\n caves.append({'Cave name': cave.name, 'Alias': cave.quad.\n alias, 'On map': cave.quad.is_on_map, 'Quad': cave.quad\n .name, 'County': cave.county, 'State': 'MO',\n 'Principal Meridian Code': 5, 'Township Number': cave.\n township.number, 'Township Fraction': 0,\n 'Township Direction': cave.township.direction,\n 'Range Number': cave.range.number, 'Range Fraction': 0,\n 'Range Direction': cave.range.direction, 'Section':\n cave.section[0], 'Section Division': ''.join(cave.\n aliquot), 'Township Duplicate': 0, 'Description':\n raw_cave_text})\n except:\n print('=' * 80)\n print('ERROR: unexpected format for {0}'.format(cave.name))\n print(raw_cave_text)\n import traceback\n print(traceback.format_exc())\n print('\\t' + '\\n\\t'.join([str(x) for x in sys.exc_info()]))\n print('Skipping this cave for the next one')\n else:\n sections = ' or '.join(cave.section)\n output_path = os.path.basename(filepath).split('.')[0] + '.csv'\n print('#' * 80)\n print(\"{0} caves processed! Saving to '{1}'.\".format(len(caves),\n output_path))\n with open(output_path, 'wb') as f:\n cave_csv = csv.DictWriter(f, fieldnames=caves[0].keys())\n try:\n cave_csv.writeheader()\n except:\n header = {}\n for k in caves[0].keys():\n header[k] = k\n cave_csv.writerow(header)\n cave_csv.writerows(caves)\n", "step-5": "import sys\r\nimport os\r\nfrom pyparsing import *\r\nimport csv\r\n\r\n\r\ndef parse_cave_details(details):\r\n ##########################################################################\r\n # Define the Bretz Grammar.\r\n # Sample cave description:\r\n # Boring Caverns SE1/4 NW1/4 sec. 16, T. 37 N., R. 10 W., Pulaski County Not shown on Waynesville Quadrangle map The mouth of this cave ...\\n\r\n # Another Cave S1/2 sec. 15, T. 36 N., R. 12 W., Pulaski County Not shown on Waynesville Quadrangle map There are two large caves...\\n\r\n # Something Bridge Sec. 15 or 22, T. 36 N., R. 13 W., Pulaski County Not shown on Richland Quadrangle map This cave is near Ozark...\\n\r\n #\r\n # CAVE ::= CAVE_NAME [ALIQUOT_PART] SECTION, TOWNSHIP, RANGE, COUNTY QUAD_MAP DESCRIPTION\r\n # ALIQUOT_PART ::= (((NE|SE|SW|NW)1/4)|((N|E|S|W)1/2))*\r\n # SECTION ::= (S|s)ec. num+\r\n # TOWNSHIP ::= T. num+ TOWNSHIP_DIR.\r\n # TOWNSHIP_DIR ::= N|S\r\n # RANGE ::= R. num+ RANGE_DIR.\r\n # RANGE_DIR ::= E|W\r\n # COUNTY = WORD+ County\r\n # QUAD_MAP = (Not s|S)hown on QUAD Quadrangle map\r\n # QUAD = WORD+\r\n # DESCRIPTION = WORD+\r\n aliquotQuadrantID = Literal(\"NE\") |\\\r\n Literal(\"SE\") |\\\r\n Literal(\"SW\") |\\\r\n Literal(\"NW\")\r\n aliquotQuadrantString = aliquotQuadrantID + Suppress(\"1/4\")\r\n aliquotHalfString = oneOf(\"N E S W\") + Suppress(\"1/2\")\r\n aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString))\\\r\n .setResultsName(\"aliquot\")\\\r\n .setParseAction(lambda kwd: \" \".join(kwd[0]))\r\n\r\n sectionToken = Suppress(oneOf(\"S s\") + Literal(\"ec\") + Optional(\".\"))\r\n sectionNumber = Word(nums)\r\n section = Group(\r\n sectionToken \\\r\n + sectionNumber \\\r\n + ZeroOrMore(Suppress(\"or\") + sectionNumber)\r\n ).setResultsName(\"section\")\r\n\r\n afterEndOfCaveName = aliquotHalfString | aliquotQuadrantString | sectionToken\r\n caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables)))\\\r\n .setResultsName('name')\\\r\n .setParseAction(lambda name: \" \".join(name[0]))\r\n\r\n townshipDirection = oneOf(\"N S\").setResultsName(\"direction\")\r\n townshipNumber = Word(nums).setResultsName(\"number\")\r\n township = Suppress(\"T.\") \\\r\n + Group(townshipNumber + townshipDirection).setResultsName(\"township\")\\\r\n + Suppress('.')\r\n\r\n rangeDirection = oneOf(\"E W\").setResultsName(\"direction\")\r\n rangeNumber = Word(nums).setResultsName(\"number\")\r\n range_info = Suppress(\"R.\") \\\r\n + Group(rangeNumber + rangeDirection).setResultsName(\"range\")\\\r\n + Suppress('.')\r\n\r\n countyKeyword = Literal(\"County\")\r\n countyName = Group(OneOrMore(~countyKeyword + Word(alphas+\"-'.\")))\\\r\n .setResultsName(\"county\")\\\r\n .setParseAction(lambda c: \" \".join(c[0]))\r\n county = countyName + Suppress(\"County\")\r\n\r\n notShownOnQuad = (Literal(\"Not\") + Suppress(\"s\"))\\\r\n .setParseAction(lambda x: False)\r\n shownOnQuad = Literal(\"S\").setParseAction(lambda x: True)\r\n onKeyword = Literal(\"on\")\r\n mapAlias = Group(OneOrMore(~onKeyword + Word(printables)))\\\r\n .setParseAction(lambda alias: \" \".join(alias[0]))\\\r\n .setResultsName(\"alias\")\r\n quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName(\"is_on_map\")\\\r\n + Suppress(\"hown\") \\\r\n + Optional(Suppress('as') + mapAlias)\\\r\n + Suppress(onKeyword)\r\n quadrangleKeyword = Literal(\"Quadrangle\") + Literal(\"map\")\r\n quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas+\"-'.\")))\\\r\n .setResultsName(\"name\")\\\r\n .setParseAction(lambda name: \" \".join(name[0]))\r\n quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName(\"quad\") \\\r\n + Suppress(quadrangleKeyword)\r\n\r\n description = Group(ZeroOrMore(Word(alphanums + printables)))\\\r\n .setResultsName(\"description\")\\\r\n .setParseAction(lambda desc: \" \".join(desc[0]))\r\n\r\n location = caveName \\\r\n + aliquotPart \\\r\n + section + Suppress(',') \\\r\n + township + Suppress(',') \\\r\n + range_info + Suppress(',')\\\r\n + county \\\r\n + quadrangle \\\r\n + description\r\n\r\n return location.parseString(details)\r\n\r\n\r\nif __name__ == \"__main__\":\r\n if len(sys.argv) < 2:\r\n print(\"ERROR: pass in the filename as the second argument.\")\r\n print(\" $ python {0} /path/to/file.txt\".format(sys.argv[0]))\r\n exit()\r\n\r\n filepath = sys.argv[1]\r\n with open(filepath) as f:\r\n raw_text = f.read()\r\n\r\n raw_caves = raw_text.split(\"\\n\")\r\n caves = []\r\n for raw_cave_text in raw_caves:\r\n raw_cave_text = raw_cave_text.strip()\r\n if raw_cave_text:\r\n try:\r\n cave = parse_cave_details(raw_cave_text)\r\n caves.append({\r\n 'Cave name': cave.name,\r\n 'Alias': cave.quad.alias,\r\n 'On map': cave.quad.is_on_map,\r\n 'Quad': cave.quad.name,\r\n 'County': cave.county,\r\n 'State': 'MO',\r\n 'Principal Meridian Code': 5,\r\n 'Township Number': cave.township.number,\r\n 'Township Fraction': 0,\r\n 'Township Direction': cave.township.direction,\r\n 'Range Number': cave.range.number,\r\n 'Range Fraction': 0,\r\n 'Range Direction': cave.range.direction,\r\n 'Section': cave.section[0],\r\n 'Section Division': \"\".join(cave.aliquot),\r\n 'Township Duplicate': 0,\r\n 'Description': raw_cave_text,\r\n })\r\n\r\n except:\r\n print(\"=\"*80)\r\n print(\"ERROR: unexpected format for {0}\".format(cave.name))\r\n print(raw_cave_text)\r\n import traceback\r\n print(traceback.format_exc())\r\n print(\"\\t\" + \"\\n\\t\".join([str(x) for x in sys.exc_info()]))\r\n print(\"Skipping this cave for the next one\")\r\n else:\r\n sections = \" or \".join(cave.section)\r\n #print(\"=\"*80)\r\n #print(\"{1} := {0.aliquot} Sect. {2}, T. {0.township.number} {0.township.direction}., R. {0.range.number} {0.range.direction}., in {0.county} County on the {0.quad.name} quad map.\".format(cave, cave.name, sections))\r\n #print(\" Marked on map as {0}\".format(cave.quad.alias if cave.quad.alias else cave.name) if cave.quad.is_on_map else \" Not on map\")\r\n\r\n output_path = os.path.basename(filepath).split(\".\")[0] + \".csv\"\r\n print(\"#\"*80)\r\n print(\"{0} caves processed! Saving to '{1}'.\".format(len(caves), output_path))\r\n with open(output_path, 'wb') as f:\r\n cave_csv = csv.DictWriter(f, fieldnames=caves[0].keys())\r\n try:\r\n cave_csv.writeheader()\r\n \r\n except: # Versions before 2.7 of Python do not have csv with writeheader().\r\n header = {}\r\n for k in caves[0].keys():\r\n header[k] = k\r\n \r\n cave_csv.writerow(header)\r\n\r\n cave_csv.writerows(caves)\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class _HINDERED(_HINDER): <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class _HINDERED(_HINDER): def __init__(self): _HINDER.__init__(self) self.name = 'HINDERED' self.specie = 'verbs' self.basic = 'hinder' self.jsondata = {} <|reserved_special_token_1|> from xai.brain.wordbase.verbs._hinder import _HINDER class _HINDERED(_HINDER): def __init__(self): _HINDER.__init__(self) self.name = 'HINDERED' self.specie = 'verbs' self.basic = 'hinder' self.jsondata = {} <|reserved_special_token_1|> from xai.brain.wordbase.verbs._hinder import _HINDER #calss header class _HINDERED(_HINDER, ): def __init__(self,): _HINDER.__init__(self) self.name = "HINDERED" self.specie = 'verbs' self.basic = "hinder" self.jsondata = {}
flexible
{ "blob_id": "420beba5b6fd575ab9be0c907ae0698ba7be5220", "index": 4622, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass _HINDERED(_HINDER):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass _HINDERED(_HINDER):\n\n def __init__(self):\n _HINDER.__init__(self)\n self.name = 'HINDERED'\n self.specie = 'verbs'\n self.basic = 'hinder'\n self.jsondata = {}\n", "step-4": "from xai.brain.wordbase.verbs._hinder import _HINDER\n\n\nclass _HINDERED(_HINDER):\n\n def __init__(self):\n _HINDER.__init__(self)\n self.name = 'HINDERED'\n self.specie = 'verbs'\n self.basic = 'hinder'\n self.jsondata = {}\n", "step-5": "\n\nfrom xai.brain.wordbase.verbs._hinder import _HINDER\n\n#calss header\nclass _HINDERED(_HINDER, ):\n\tdef __init__(self,): \n\t\t_HINDER.__init__(self)\n\t\tself.name = \"HINDERED\"\n\t\tself.specie = 'verbs'\n\t\tself.basic = \"hinder\"\n\t\tself.jsondata = {}\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" クリップボードのamazonのURLから不要な部分を削除する """ # -*- coding: utf-8 -*- import re import pyperclip as clip from urllib.parse import urlparse #print(clip.paste()) def urlShortner(): # text = "https://www.amazon.co.jp/Jupyter-Cookbook-Dan-Toomey/dp/1788839447/ref=sr_1_5?s=books&ie=UTF8&qid=1535164277&sr=1-5&keywords=Jupyter" if clip.paste(): text = clip.paste() o = urlparse(text) # print(o.scheme) if not (o.scheme == 'http' or o.scheme == 'https') : print("This is not url.") return 1 newUrl = "https://www.amazon.co.jp" urlLen = len(text) #print(urlLen) matchObj = re.search(r'https://www.amazon.co.jp', text) matchObjDp = re.search(r'/dp/', text) matchObjRef = re.search(r'/ref', text) """" if matchObjRef: print (matchObjDp.start()) # マッチした文字列の開始位置: 3 print(type(matchObj.start())) print(type(matchObj.end())) """ if matchObjDp and matchObjRef: i:int = matchObjDp.start() #print("2ndStart:" + str(i) ) while i < matchObjRef.start(): newUrl = newUrl + text[i] i= i+1 shortUrl = newUrl.replace("www","") print ("shortUrl:" + shortUrl) clip.copy(shortUrl) else: print ("This url is not an introduction page of books on the amazon website.") urlShortner()
normal
{ "blob_id": "c3c82b9ba198b7818cc8e63710140bbb6e28a9ea", "index": 6628, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef urlShortner():\n if clip.paste():\n text = clip.paste()\n o = urlparse(text)\n if not (o.scheme == 'http' or o.scheme == 'https'):\n print('This is not url.')\n return 1\n newUrl = 'https://www.amazon.co.jp'\n urlLen = len(text)\n matchObj = re.search('https://www.amazon.co.jp', text)\n matchObjDp = re.search('/dp/', text)\n matchObjRef = re.search('/ref', text)\n \"\"\"\"\n if matchObjRef:\n print (matchObjDp.start()) # マッチした文字列の開始位置: 3\n\n print(type(matchObj.start()))\n print(type(matchObj.end()))\n\n \"\"\"\n if matchObjDp and matchObjRef:\n i: int = matchObjDp.start()\n while i < matchObjRef.start():\n newUrl = newUrl + text[i]\n i = i + 1\n shortUrl = newUrl.replace('www', '')\n print('shortUrl:' + shortUrl)\n clip.copy(shortUrl)\n else:\n print(\n 'This url is not an introduction page of books on the amazon website.'\n )\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef urlShortner():\n if clip.paste():\n text = clip.paste()\n o = urlparse(text)\n if not (o.scheme == 'http' or o.scheme == 'https'):\n print('This is not url.')\n return 1\n newUrl = 'https://www.amazon.co.jp'\n urlLen = len(text)\n matchObj = re.search('https://www.amazon.co.jp', text)\n matchObjDp = re.search('/dp/', text)\n matchObjRef = re.search('/ref', text)\n \"\"\"\"\n if matchObjRef:\n print (matchObjDp.start()) # マッチした文字列の開始位置: 3\n\n print(type(matchObj.start()))\n print(type(matchObj.end()))\n\n \"\"\"\n if matchObjDp and matchObjRef:\n i: int = matchObjDp.start()\n while i < matchObjRef.start():\n newUrl = newUrl + text[i]\n i = i + 1\n shortUrl = newUrl.replace('www', '')\n print('shortUrl:' + shortUrl)\n clip.copy(shortUrl)\n else:\n print(\n 'This url is not an introduction page of books on the amazon website.'\n )\n\n\nurlShortner()\n", "step-4": "<mask token>\nimport re\nimport pyperclip as clip\nfrom urllib.parse import urlparse\n\n\ndef urlShortner():\n if clip.paste():\n text = clip.paste()\n o = urlparse(text)\n if not (o.scheme == 'http' or o.scheme == 'https'):\n print('This is not url.')\n return 1\n newUrl = 'https://www.amazon.co.jp'\n urlLen = len(text)\n matchObj = re.search('https://www.amazon.co.jp', text)\n matchObjDp = re.search('/dp/', text)\n matchObjRef = re.search('/ref', text)\n \"\"\"\"\n if matchObjRef:\n print (matchObjDp.start()) # マッチした文字列の開始位置: 3\n\n print(type(matchObj.start()))\n print(type(matchObj.end()))\n\n \"\"\"\n if matchObjDp and matchObjRef:\n i: int = matchObjDp.start()\n while i < matchObjRef.start():\n newUrl = newUrl + text[i]\n i = i + 1\n shortUrl = newUrl.replace('www', '')\n print('shortUrl:' + shortUrl)\n clip.copy(shortUrl)\n else:\n print(\n 'This url is not an introduction page of books on the amazon website.'\n )\n\n\nurlShortner()\n", "step-5": "\n\"\"\"\nクリップボードのamazonのURLから不要な部分を削除する\n\"\"\"\n# -*- coding: utf-8 -*-\n\nimport re\nimport pyperclip as clip\nfrom urllib.parse import urlparse\n\n#print(clip.paste())\n\ndef urlShortner():\n# text = \"https://www.amazon.co.jp/Jupyter-Cookbook-Dan-Toomey/dp/1788839447/ref=sr_1_5?s=books&ie=UTF8&qid=1535164277&sr=1-5&keywords=Jupyter\"\n\n if clip.paste():\n text = clip.paste()\n o = urlparse(text)\n# print(o.scheme)\n\n if not (o.scheme == 'http' or o.scheme == 'https') :\n print(\"This is not url.\")\n return 1\n\n newUrl = \"https://www.amazon.co.jp\"\n\n urlLen = len(text)\n #print(urlLen)\n\n matchObj = re.search(r'https://www.amazon.co.jp', text)\n matchObjDp = re.search(r'/dp/', text)\n matchObjRef = re.search(r'/ref', text)\n\n \"\"\"\"\n if matchObjRef:\n print (matchObjDp.start()) # マッチした文字列の開始位置: 3\n\n print(type(matchObj.start()))\n print(type(matchObj.end()))\n\n \"\"\"\n\n if matchObjDp and matchObjRef:\n i:int = matchObjDp.start()\n #print(\"2ndStart:\" + str(i) )\n while i < matchObjRef.start():\n newUrl = newUrl + text[i]\n i= i+1\n\n shortUrl = newUrl.replace(\"www\",\"\")\n\n print (\"shortUrl:\" + shortUrl)\n\n clip.copy(shortUrl)\n\n else:\n print (\"This url is not an introduction page of books on the amazon website.\")\n\n\nurlShortner()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> app_name = 'user' urlpatterns = [path('detalhes/', user_views.painel, name='painel'), path( 'produto/ajax/delete_prod/', prod_views.deleteProd, name='deleteProd'), path('produto/', user_views.painelProdutos, name='painel_produtos'), path('<int:id_produto>', prod_views.detalheProduto, name='detalhe_prod' ), path('ajax/delete_prod/', prod_views.deleteProd, name='deleteProd')] <|reserved_special_token_1|> from django.urls import path from . import views as user_views from produtos import views as prod_views from django.contrib.auth import views as auth_views app_name = 'user' urlpatterns = [path('detalhes/', user_views.painel, name='painel'), path( 'produto/ajax/delete_prod/', prod_views.deleteProd, name='deleteProd'), path('produto/', user_views.painelProdutos, name='painel_produtos'), path('<int:id_produto>', prod_views.detalheProduto, name='detalhe_prod' ), path('ajax/delete_prod/', prod_views.deleteProd, name='deleteProd')] <|reserved_special_token_1|> from django.urls import path from . import views as user_views from produtos import views as prod_views from django.contrib.auth import views as auth_views app_name = 'user' urlpatterns = [ path('detalhes/', user_views.painel, name="painel"), path('produto/ajax/delete_prod/', prod_views.deleteProd, name="deleteProd"), path('produto/', user_views.painelProdutos, name="painel_produtos"), path('<int:id_produto>', prod_views.detalheProduto, name="detalhe_prod"), path('ajax/delete_prod/', prod_views.deleteProd, name='deleteProd'), ]
flexible
{ "blob_id": "a7f2791e359b848a217beadc77fc983d971ef8b0", "index": 8436, "step-1": "<mask token>\n", "step-2": "<mask token>\napp_name = 'user'\nurlpatterns = [path('detalhes/', user_views.painel, name='painel'), path(\n 'produto/ajax/delete_prod/', prod_views.deleteProd, name='deleteProd'),\n path('produto/', user_views.painelProdutos, name='painel_produtos'),\n path('<int:id_produto>', prod_views.detalheProduto, name='detalhe_prod'\n ), path('ajax/delete_prod/', prod_views.deleteProd, name='deleteProd')]\n", "step-3": "from django.urls import path\nfrom . import views as user_views\nfrom produtos import views as prod_views\nfrom django.contrib.auth import views as auth_views\napp_name = 'user'\nurlpatterns = [path('detalhes/', user_views.painel, name='painel'), path(\n 'produto/ajax/delete_prod/', prod_views.deleteProd, name='deleteProd'),\n path('produto/', user_views.painelProdutos, name='painel_produtos'),\n path('<int:id_produto>', prod_views.detalheProduto, name='detalhe_prod'\n ), path('ajax/delete_prod/', prod_views.deleteProd, name='deleteProd')]\n", "step-4": "from django.urls import path\nfrom . import views as user_views\nfrom produtos import views as prod_views\nfrom django.contrib.auth import views as auth_views\n\napp_name = 'user'\n\nurlpatterns = [\n path('detalhes/', user_views.painel, name=\"painel\"),\n path('produto/ajax/delete_prod/', prod_views.deleteProd, name=\"deleteProd\"),\n path('produto/', user_views.painelProdutos, name=\"painel_produtos\"),\n path('<int:id_produto>', prod_views.detalheProduto, name=\"detalhe_prod\"),\n path('ajax/delete_prod/', prod_views.deleteProd, name='deleteProd'),\n]", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#-*- coding: utf-8 -*- import django if django.get_version() <= '1.3.1': import apps.settings as settings from django.core.management import setup_environ setup_environ(settings) elif django.get_version() >= '1.7.0': import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "apps.settings") django.setup() elif django.get_version() >= '1.6.0': #ubuntu 14.04 used 1.6.? import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "apps.settings") from django.conf import settings import os import os.path import traceback cur_dir = os.path.dirname(os.path.abspath(__file__)) LOGFILE = os.path.join(cur_dir,"logs","oneclick.log") file_list = ['import_test', 'import_test_dev', 'import_test_local','settings', 'manage', 'settings_dev', 'manage_dev', 'settings_stg','manage_stg', 'settings_local','manage_local'] exclude_dir = ['.svn', 'realtime_pvp'] def run_dir(py_dir): log_f = open(LOGFILE, 'a+') try: for root, dirs, files in os.walk(py_dir): if os.path.basename(root) not in exclude_dir: for f in files: name, ext = os.path.splitext(f) if ext == '.py' and name not in file_list: root = root.replace(py_dir, '').replace('/', '.').replace('\\', '.') print root, name log_f.write(str(root) + str(name) + '\n') if root: __import__('apps.' + root, globals(), locals(), [name], -1) else: __import__('apps.' + name, globals(), locals(), [], -1) log_f.close() except: err_info = traceback.format_exc() print err_info log_f.write(err_info+ '\n') log_f.close() if __name__ == '__main__': run_dir(settings.BASE_ROOT+'/apps/')
normal
{ "blob_id": "8894b73829978cec29aab6ee8bf09700da7fb59f", "index": 5659, "step-1": "#-*- coding: utf-8 -*-\n\nimport django\n\nif django.get_version() <= '1.3.1':\n import apps.settings as settings\n from django.core.management import setup_environ\n setup_environ(settings)\nelif django.get_version() >= '1.7.0': \n import os\n os.environ.setdefault(\"DJANGO_SETTINGS_MODULE\", \"apps.settings\")\n django.setup()\nelif django.get_version() >= '1.6.0': #ubuntu 14.04 used 1.6.?\n import os\n os.environ.setdefault(\"DJANGO_SETTINGS_MODULE\", \"apps.settings\")\n from django.conf import settings\n\n\nimport os\nimport os.path\nimport traceback\n\ncur_dir = os.path.dirname(os.path.abspath(__file__))\nLOGFILE = os.path.join(cur_dir,\"logs\",\"oneclick.log\")\nfile_list = ['import_test', 'import_test_dev', 'import_test_local','settings', 'manage', 'settings_dev', 'manage_dev', 'settings_stg','manage_stg', 'settings_local','manage_local']\nexclude_dir = ['.svn', 'realtime_pvp']\n\ndef run_dir(py_dir):\n log_f = open(LOGFILE, 'a+')\n try:\n for root, dirs, files in os.walk(py_dir):\n if os.path.basename(root) not in exclude_dir:\n for f in files:\n name, ext = os.path.splitext(f)\n if ext == '.py' and name not in file_list:\n root = root.replace(py_dir, '').replace('/', '.').replace('\\\\', '.')\n print root, name\n log_f.write(str(root) + str(name) + '\\n')\n if root:\n __import__('apps.' + root, globals(), locals(), [name], -1)\n else:\n __import__('apps.' + name, globals(), locals(), [], -1)\n log_f.close()\n except:\n err_info = traceback.format_exc()\n print err_info\n log_f.write(err_info+ '\\n')\n log_f.close()\n\nif __name__ == '__main__':\n run_dir(settings.BASE_ROOT+'/apps/')\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from django.shortcuts import render from django.template import loader # Create your views here. from django.http import HttpResponse from .models import Student def index(request): student_objects = Student.objects.all() context = {"students": student_objects} return render(request, 'student_list.html', context) def addstudent(request): context = {} return render(request, 'add_student.html', context) def newstudent(request): student_entered_name = request.GET.get('name') Student.objects.create(name=student_entered_name) print(student_entered_name) context = {} return render(request, 'student_list.html', context)
normal
{ "blob_id": "00e8e0b5aeccd2a67f6cfdad63012a0d8b066e6f", "index": 9551, "step-1": "<mask token>\n\n\ndef addstudent(request):\n context = {}\n return render(request, 'add_student.html', context)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef index(request):\n student_objects = Student.objects.all()\n context = {'students': student_objects}\n return render(request, 'student_list.html', context)\n\n\ndef addstudent(request):\n context = {}\n return render(request, 'add_student.html', context)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef index(request):\n student_objects = Student.objects.all()\n context = {'students': student_objects}\n return render(request, 'student_list.html', context)\n\n\ndef addstudent(request):\n context = {}\n return render(request, 'add_student.html', context)\n\n\ndef newstudent(request):\n student_entered_name = request.GET.get('name')\n Student.objects.create(name=student_entered_name)\n print(student_entered_name)\n context = {}\n return render(request, 'student_list.html', context)\n", "step-4": "from django.shortcuts import render\nfrom django.template import loader\nfrom django.http import HttpResponse\nfrom .models import Student\n\n\ndef index(request):\n student_objects = Student.objects.all()\n context = {'students': student_objects}\n return render(request, 'student_list.html', context)\n\n\ndef addstudent(request):\n context = {}\n return render(request, 'add_student.html', context)\n\n\ndef newstudent(request):\n student_entered_name = request.GET.get('name')\n Student.objects.create(name=student_entered_name)\n print(student_entered_name)\n context = {}\n return render(request, 'student_list.html', context)\n", "step-5": "from django.shortcuts import render\nfrom django.template import loader\n\n# Create your views here.\n\nfrom django.http import HttpResponse\n\nfrom .models import Student\n\ndef index(request):\n\tstudent_objects = Student.objects.all()\n\tcontext = {\"students\": student_objects}\n\treturn render(request, 'student_list.html', context)\n\ndef addstudent(request):\n\tcontext = {}\n\treturn render(request, 'add_student.html', context)\n\ndef newstudent(request):\n\tstudent_entered_name = request.GET.get('name')\n\tStudent.objects.create(name=student_entered_name)\n\tprint(student_entered_name)\n\tcontext = {}\n\treturn render(request, 'student_list.html', context)\n\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> while income_number != 0: num_exp = 10 ** (len(str(income_number)) - 1) deleted_number = int(income_number / num_exp) if max_number < deleted_number: max_number = deleted_number income_number = income_number - deleted_number * num_exp print(f'Самая большая цифра в числе {max_number}') <|reserved_special_token_1|> income_number = int(input('Введите, пожалуйста, целое положительное число ')) max_number = 0 while income_number != 0: num_exp = 10 ** (len(str(income_number)) - 1) deleted_number = int(income_number / num_exp) if max_number < deleted_number: max_number = deleted_number income_number = income_number - deleted_number * num_exp print(f'Самая большая цифра в числе {max_number}') <|reserved_special_token_1|> # 4. Пользователь вводит целое положительное число. # Найдите самую большую цифру в числе. Для решения используйте цикл while и арифметические операции. income_number = int(input('Введите, пожалуйста, целое положительное число ')) max_number = 0 # в другую сторону решение, не так как Вы на вебинаре советовали, но тоже работает, и не сказать чтобы сильно длинее... while income_number != 0: # продолжаю цикл вплоть до уничтожения числа num_exp = 10 ** (len(str(income_number)) - 1) # устанавливаю размерность числа deleted_number = int(income_number / num_exp) # узнаю крайнюю левую цифру if max_number < deleted_number: # перезапись максимальной, если есть такая необходимость max_number = deleted_number income_number = income_number - deleted_number * num_exp # "откусываю" крайнюю левую цифру print(f'Самая большая цифра в числе {max_number}')
flexible
{ "blob_id": "18e0ece7c38169d2de91a07dddd4f40b7427848f", "index": 3759, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile income_number != 0:\n num_exp = 10 ** (len(str(income_number)) - 1)\n deleted_number = int(income_number / num_exp)\n if max_number < deleted_number:\n max_number = deleted_number\n income_number = income_number - deleted_number * num_exp\nprint(f'Самая большая цифра в числе {max_number}')\n", "step-3": "income_number = int(input('Введите, пожалуйста, целое положительное число '))\nmax_number = 0\nwhile income_number != 0:\n num_exp = 10 ** (len(str(income_number)) - 1)\n deleted_number = int(income_number / num_exp)\n if max_number < deleted_number:\n max_number = deleted_number\n income_number = income_number - deleted_number * num_exp\nprint(f'Самая большая цифра в числе {max_number}')\n", "step-4": "# 4. Пользователь вводит целое положительное число.\n# Найдите самую большую цифру в числе. Для решения используйте цикл while и арифметические операции.\n\nincome_number = int(input('Введите, пожалуйста, целое положительное число '))\n\nmax_number = 0\n# в другую сторону решение, не так как Вы на вебинаре советовали, но тоже работает, и не сказать чтобы сильно длинее...\nwhile income_number != 0: # продолжаю цикл вплоть до уничтожения числа\n num_exp = 10 ** (len(str(income_number)) - 1) # устанавливаю размерность числа\n deleted_number = int(income_number / num_exp) # узнаю крайнюю левую цифру\n if max_number < deleted_number: # перезапись максимальной, если есть такая необходимость\n max_number = deleted_number\n income_number = income_number - deleted_number * num_exp # \"откусываю\" крайнюю левую цифру\n\nprint(f'Самая большая цифра в числе {max_number}')\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def add_data(g): g.add_node(1) g.add_node(2, x=5) g.add_edge(1, 2, y=6) g.add_edge(2, 3, z=[]) def assert_graph_data(g1, g2): assert g1 is not g2 assert g2.nodes[1] == {} assert g2.nodes[2] == {'x': 5} assert g2.edges[1, 2] == {'y': 6} assert g2.edges[2, 3] == {'z': []} assert g2.nodes[2] is not g1.nodes[2] assert g2.edges[2, 3] is not g1.edges[2, 3] @pytest.mark.parametrize('do_deepcopy', [True, False]) def test_nx_copy_with_deepcopy(do_deepcopy): g = nx.Graph() g2 = nx.DiGraph() add_data(g) nx_copy(g, g2, deepcopy=do_deepcopy) assert_graph_data(g, g2) assert (g2.edges[2, 3]['z'] is g.edges[2, 3]['z']) != do_deepcopy def test_nx_copy_with_none(): g = nx.Graph() add_data(g) g2 = nx_copy(g, None) assert_graph_data(g, g2) def test_nx_copy_with_class(): g = nx.Graph() add_data(g) g2 = nx_copy(g, nx.OrderedDiGraph) assert isinstance(nx.OrderedDiGraph, type) and issubclass(nx. OrderedDiGraph, nx.Graph) assert isinstance(g2, nx.OrderedDiGraph) assert_graph_data(g, g2) def test_nx_copy_node_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) def node_transform(nodes): for n, ndata in nodes: yield str(n), ndata g2 = nx_copy(g, None, node_transform=node_transform) assert g2.number_of_nodes() == 3 assert g2.number_of_edges() == 2 assert '1' in g2 assert '2' in g2 assert 1 not in g2 assert 2 not in g2 assert g2.edges['1', '2'] == {'f': 4} assert g2.edges['2', '3'] == {'f': 5} <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def add_data(g): g.add_node(1) g.add_node(2, x=5) g.add_edge(1, 2, y=6) g.add_edge(2, 3, z=[]) def assert_graph_data(g1, g2): assert g1 is not g2 assert g2.nodes[1] == {} assert g2.nodes[2] == {'x': 5} assert g2.edges[1, 2] == {'y': 6} assert g2.edges[2, 3] == {'z': []} assert g2.nodes[2] is not g1.nodes[2] assert g2.edges[2, 3] is not g1.edges[2, 3] @pytest.mark.parametrize('do_deepcopy', [True, False]) def test_nx_copy_with_deepcopy(do_deepcopy): g = nx.Graph() g2 = nx.DiGraph() add_data(g) nx_copy(g, g2, deepcopy=do_deepcopy) assert_graph_data(g, g2) assert (g2.edges[2, 3]['z'] is g.edges[2, 3]['z']) != do_deepcopy def test_nx_copy_with_none(): g = nx.Graph() add_data(g) g2 = nx_copy(g, None) assert_graph_data(g, g2) def test_nx_copy_with_class(): g = nx.Graph() add_data(g) g2 = nx_copy(g, nx.OrderedDiGraph) assert isinstance(nx.OrderedDiGraph, type) and issubclass(nx. OrderedDiGraph, nx.Graph) assert isinstance(g2, nx.OrderedDiGraph) assert_graph_data(g, g2) def test_nx_copy_node_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) def node_transform(nodes): for n, ndata in nodes: yield str(n), ndata g2 = nx_copy(g, None, node_transform=node_transform) assert g2.number_of_nodes() == 3 assert g2.number_of_edges() == 2 assert '1' in g2 assert '2' in g2 assert 1 not in g2 assert 2 not in g2 assert g2.edges['1', '2'] == {'f': 4} assert g2.edges['2', '3'] == {'f': 5} def test_nx_copy_edge_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) g.add_edge(4, 5) assert g.number_of_edges() == 3 assert g.number_of_nodes() == 5 def edge_transform(edges): for n1, n2, edata in edges: if n1 != 4: yield n1, n2, {'f': 8} g2 = nx_copy(g, None, edge_transform=edge_transform) assert g2.number_of_nodes() == 5 assert g2.number_of_edges() == 2 assert g2.edges[1, 2] == {'f': 8} assert g2.edges[2, 3] == {'f': 8} <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def add_data(g): g.add_node(1) g.add_node(2, x=5) g.add_edge(1, 2, y=6) g.add_edge(2, 3, z=[]) def assert_graph_data(g1, g2): assert g1 is not g2 assert g2.nodes[1] == {} assert g2.nodes[2] == {'x': 5} assert g2.edges[1, 2] == {'y': 6} assert g2.edges[2, 3] == {'z': []} assert g2.nodes[2] is not g1.nodes[2] assert g2.edges[2, 3] is not g1.edges[2, 3] @pytest.mark.parametrize('do_deepcopy', [True, False]) def test_nx_copy_with_deepcopy(do_deepcopy): g = nx.Graph() g2 = nx.DiGraph() add_data(g) nx_copy(g, g2, deepcopy=do_deepcopy) assert_graph_data(g, g2) assert (g2.edges[2, 3]['z'] is g.edges[2, 3]['z']) != do_deepcopy def test_nx_copy_with_none(): g = nx.Graph() add_data(g) g2 = nx_copy(g, None) assert_graph_data(g, g2) def test_nx_copy_with_class(): g = nx.Graph() add_data(g) g2 = nx_copy(g, nx.OrderedDiGraph) assert isinstance(nx.OrderedDiGraph, type) and issubclass(nx. OrderedDiGraph, nx.Graph) assert isinstance(g2, nx.OrderedDiGraph) assert_graph_data(g, g2) def test_nx_copy_node_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) def node_transform(nodes): for n, ndata in nodes: yield str(n), ndata g2 = nx_copy(g, None, node_transform=node_transform) assert g2.number_of_nodes() == 3 assert g2.number_of_edges() == 2 assert '1' in g2 assert '2' in g2 assert 1 not in g2 assert 2 not in g2 assert g2.edges['1', '2'] == {'f': 4} assert g2.edges['2', '3'] == {'f': 5} def test_nx_copy_edge_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) g.add_edge(4, 5) assert g.number_of_edges() == 3 assert g.number_of_nodes() == 5 def edge_transform(edges): for n1, n2, edata in edges: if n1 != 4: yield n1, n2, {'f': 8} g2 = nx_copy(g, None, edge_transform=edge_transform) assert g2.number_of_nodes() == 5 assert g2.number_of_edges() == 2 assert g2.edges[1, 2] == {'f': 8} assert g2.edges[2, 3] == {'f': 8} def test_nx_copy_global_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) g.add_edge(4, 5) g.get_global()['f'] = 8 assert g.number_of_edges() == 3 assert g.number_of_nodes() == 5 def global_transform(g): for _, gdata in g: gdata['x'] = 4 yield _, gdata g2 = nx_copy(g, None, global_transform=global_transform) assert g2.get_global() == {'x': 4, 'f': 8} <|reserved_special_token_1|> import networkx as nx import pytest from caldera.utils.nx import nx_copy def add_data(g): g.add_node(1) g.add_node(2, x=5) g.add_edge(1, 2, y=6) g.add_edge(2, 3, z=[]) def assert_graph_data(g1, g2): assert g1 is not g2 assert g2.nodes[1] == {} assert g2.nodes[2] == {'x': 5} assert g2.edges[1, 2] == {'y': 6} assert g2.edges[2, 3] == {'z': []} assert g2.nodes[2] is not g1.nodes[2] assert g2.edges[2, 3] is not g1.edges[2, 3] @pytest.mark.parametrize('do_deepcopy', [True, False]) def test_nx_copy_with_deepcopy(do_deepcopy): g = nx.Graph() g2 = nx.DiGraph() add_data(g) nx_copy(g, g2, deepcopy=do_deepcopy) assert_graph_data(g, g2) assert (g2.edges[2, 3]['z'] is g.edges[2, 3]['z']) != do_deepcopy def test_nx_copy_with_none(): g = nx.Graph() add_data(g) g2 = nx_copy(g, None) assert_graph_data(g, g2) def test_nx_copy_with_class(): g = nx.Graph() add_data(g) g2 = nx_copy(g, nx.OrderedDiGraph) assert isinstance(nx.OrderedDiGraph, type) and issubclass(nx. OrderedDiGraph, nx.Graph) assert isinstance(g2, nx.OrderedDiGraph) assert_graph_data(g, g2) def test_nx_copy_node_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) def node_transform(nodes): for n, ndata in nodes: yield str(n), ndata g2 = nx_copy(g, None, node_transform=node_transform) assert g2.number_of_nodes() == 3 assert g2.number_of_edges() == 2 assert '1' in g2 assert '2' in g2 assert 1 not in g2 assert 2 not in g2 assert g2.edges['1', '2'] == {'f': 4} assert g2.edges['2', '3'] == {'f': 5} def test_nx_copy_edge_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) g.add_edge(4, 5) assert g.number_of_edges() == 3 assert g.number_of_nodes() == 5 def edge_transform(edges): for n1, n2, edata in edges: if n1 != 4: yield n1, n2, {'f': 8} g2 = nx_copy(g, None, edge_transform=edge_transform) assert g2.number_of_nodes() == 5 assert g2.number_of_edges() == 2 assert g2.edges[1, 2] == {'f': 8} assert g2.edges[2, 3] == {'f': 8} def test_nx_copy_global_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) g.add_edge(4, 5) g.get_global()['f'] = 8 assert g.number_of_edges() == 3 assert g.number_of_nodes() == 5 def global_transform(g): for _, gdata in g: gdata['x'] = 4 yield _, gdata g2 = nx_copy(g, None, global_transform=global_transform) assert g2.get_global() == {'x': 4, 'f': 8} <|reserved_special_token_1|> import networkx as nx import pytest from caldera.utils.nx import nx_copy def add_data(g): g.add_node(1) g.add_node(2, x=5) g.add_edge(1, 2, y=6) g.add_edge(2, 3, z=[]) def assert_graph_data(g1, g2): assert g1 is not g2 assert g2.nodes[1] == {} assert g2.nodes[2] == {"x": 5} assert g2.edges[(1, 2)] == {"y": 6} assert g2.edges[(2, 3)] == {"z": []} assert g2.nodes[2] is not g1.nodes[2] assert g2.edges[(2, 3)] is not g1.edges[(2, 3)] @pytest.mark.parametrize("do_deepcopy", [True, False]) def test_nx_copy_with_deepcopy(do_deepcopy): g = nx.Graph() g2 = nx.DiGraph() add_data(g) nx_copy(g, g2, deepcopy=do_deepcopy) assert_graph_data(g, g2) assert (g2.edges[(2, 3)]["z"] is g.edges[(2, 3)]["z"]) != do_deepcopy def test_nx_copy_with_none(): g = nx.Graph() add_data(g) g2 = nx_copy(g, None) assert_graph_data(g, g2) def test_nx_copy_with_class(): g = nx.Graph() add_data(g) g2 = nx_copy(g, nx.OrderedDiGraph) assert isinstance(nx.OrderedDiGraph, type) and issubclass( nx.OrderedDiGraph, nx.Graph ) assert isinstance(g2, nx.OrderedDiGraph) assert_graph_data(g, g2) def test_nx_copy_node_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) def node_transform(nodes): for n, ndata in nodes: yield str(n), ndata g2 = nx_copy(g, None, node_transform=node_transform) assert g2.number_of_nodes() == 3 assert g2.number_of_edges() == 2 assert "1" in g2 assert "2" in g2 assert 1 not in g2 assert 2 not in g2 assert g2.edges[("1", "2")] == {"f": 4} assert g2.edges[("2", "3")] == {"f": 5} def test_nx_copy_edge_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) g.add_edge(4, 5) assert g.number_of_edges() == 3 assert g.number_of_nodes() == 5 def edge_transform(edges): for n1, n2, edata in edges: if n1 != 4: yield n1, n2, {"f": 8} g2 = nx_copy(g, None, edge_transform=edge_transform) assert g2.number_of_nodes() == 5 assert g2.number_of_edges() == 2 assert g2.edges[(1, 2)] == {"f": 8} assert g2.edges[(2, 3)] == {"f": 8} def test_nx_copy_global_transform(): g = nx.Graph() g.add_node(1) g.add_node(2) g.add_edge(1, 2, f=4) g.add_edge(2, 3, f=5) g.add_edge(4, 5) g.get_global()["f"] = 8 assert g.number_of_edges() == 3 assert g.number_of_nodes() == 5 def global_transform(g): for _, gdata in g: gdata["x"] = 4 yield _, gdata g2 = nx_copy(g, None, global_transform=global_transform) assert g2.get_global() == {"x": 4, "f": 8}
flexible
{ "blob_id": "7fe7ea89908f9d233dbdb9e46bf2d677406ab324", "index": 1050, "step-1": "<mask token>\n\n\ndef add_data(g):\n g.add_node(1)\n g.add_node(2, x=5)\n g.add_edge(1, 2, y=6)\n g.add_edge(2, 3, z=[])\n\n\ndef assert_graph_data(g1, g2):\n assert g1 is not g2\n assert g2.nodes[1] == {}\n assert g2.nodes[2] == {'x': 5}\n assert g2.edges[1, 2] == {'y': 6}\n assert g2.edges[2, 3] == {'z': []}\n assert g2.nodes[2] is not g1.nodes[2]\n assert g2.edges[2, 3] is not g1.edges[2, 3]\n\n\[email protected]('do_deepcopy', [True, False])\ndef test_nx_copy_with_deepcopy(do_deepcopy):\n g = nx.Graph()\n g2 = nx.DiGraph()\n add_data(g)\n nx_copy(g, g2, deepcopy=do_deepcopy)\n assert_graph_data(g, g2)\n assert (g2.edges[2, 3]['z'] is g.edges[2, 3]['z']) != do_deepcopy\n\n\ndef test_nx_copy_with_none():\n g = nx.Graph()\n add_data(g)\n g2 = nx_copy(g, None)\n assert_graph_data(g, g2)\n\n\ndef test_nx_copy_with_class():\n g = nx.Graph()\n add_data(g)\n g2 = nx_copy(g, nx.OrderedDiGraph)\n assert isinstance(nx.OrderedDiGraph, type) and issubclass(nx.\n OrderedDiGraph, nx.Graph)\n assert isinstance(g2, nx.OrderedDiGraph)\n assert_graph_data(g, g2)\n\n\ndef test_nx_copy_node_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n\n def node_transform(nodes):\n for n, ndata in nodes:\n yield str(n), ndata\n g2 = nx_copy(g, None, node_transform=node_transform)\n assert g2.number_of_nodes() == 3\n assert g2.number_of_edges() == 2\n assert '1' in g2\n assert '2' in g2\n assert 1 not in g2\n assert 2 not in g2\n assert g2.edges['1', '2'] == {'f': 4}\n assert g2.edges['2', '3'] == {'f': 5}\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef add_data(g):\n g.add_node(1)\n g.add_node(2, x=5)\n g.add_edge(1, 2, y=6)\n g.add_edge(2, 3, z=[])\n\n\ndef assert_graph_data(g1, g2):\n assert g1 is not g2\n assert g2.nodes[1] == {}\n assert g2.nodes[2] == {'x': 5}\n assert g2.edges[1, 2] == {'y': 6}\n assert g2.edges[2, 3] == {'z': []}\n assert g2.nodes[2] is not g1.nodes[2]\n assert g2.edges[2, 3] is not g1.edges[2, 3]\n\n\[email protected]('do_deepcopy', [True, False])\ndef test_nx_copy_with_deepcopy(do_deepcopy):\n g = nx.Graph()\n g2 = nx.DiGraph()\n add_data(g)\n nx_copy(g, g2, deepcopy=do_deepcopy)\n assert_graph_data(g, g2)\n assert (g2.edges[2, 3]['z'] is g.edges[2, 3]['z']) != do_deepcopy\n\n\ndef test_nx_copy_with_none():\n g = nx.Graph()\n add_data(g)\n g2 = nx_copy(g, None)\n assert_graph_data(g, g2)\n\n\ndef test_nx_copy_with_class():\n g = nx.Graph()\n add_data(g)\n g2 = nx_copy(g, nx.OrderedDiGraph)\n assert isinstance(nx.OrderedDiGraph, type) and issubclass(nx.\n OrderedDiGraph, nx.Graph)\n assert isinstance(g2, nx.OrderedDiGraph)\n assert_graph_data(g, g2)\n\n\ndef test_nx_copy_node_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n\n def node_transform(nodes):\n for n, ndata in nodes:\n yield str(n), ndata\n g2 = nx_copy(g, None, node_transform=node_transform)\n assert g2.number_of_nodes() == 3\n assert g2.number_of_edges() == 2\n assert '1' in g2\n assert '2' in g2\n assert 1 not in g2\n assert 2 not in g2\n assert g2.edges['1', '2'] == {'f': 4}\n assert g2.edges['2', '3'] == {'f': 5}\n\n\ndef test_nx_copy_edge_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n g.add_edge(4, 5)\n assert g.number_of_edges() == 3\n assert g.number_of_nodes() == 5\n\n def edge_transform(edges):\n for n1, n2, edata in edges:\n if n1 != 4:\n yield n1, n2, {'f': 8}\n g2 = nx_copy(g, None, edge_transform=edge_transform)\n assert g2.number_of_nodes() == 5\n assert g2.number_of_edges() == 2\n assert g2.edges[1, 2] == {'f': 8}\n assert g2.edges[2, 3] == {'f': 8}\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef add_data(g):\n g.add_node(1)\n g.add_node(2, x=5)\n g.add_edge(1, 2, y=6)\n g.add_edge(2, 3, z=[])\n\n\ndef assert_graph_data(g1, g2):\n assert g1 is not g2\n assert g2.nodes[1] == {}\n assert g2.nodes[2] == {'x': 5}\n assert g2.edges[1, 2] == {'y': 6}\n assert g2.edges[2, 3] == {'z': []}\n assert g2.nodes[2] is not g1.nodes[2]\n assert g2.edges[2, 3] is not g1.edges[2, 3]\n\n\[email protected]('do_deepcopy', [True, False])\ndef test_nx_copy_with_deepcopy(do_deepcopy):\n g = nx.Graph()\n g2 = nx.DiGraph()\n add_data(g)\n nx_copy(g, g2, deepcopy=do_deepcopy)\n assert_graph_data(g, g2)\n assert (g2.edges[2, 3]['z'] is g.edges[2, 3]['z']) != do_deepcopy\n\n\ndef test_nx_copy_with_none():\n g = nx.Graph()\n add_data(g)\n g2 = nx_copy(g, None)\n assert_graph_data(g, g2)\n\n\ndef test_nx_copy_with_class():\n g = nx.Graph()\n add_data(g)\n g2 = nx_copy(g, nx.OrderedDiGraph)\n assert isinstance(nx.OrderedDiGraph, type) and issubclass(nx.\n OrderedDiGraph, nx.Graph)\n assert isinstance(g2, nx.OrderedDiGraph)\n assert_graph_data(g, g2)\n\n\ndef test_nx_copy_node_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n\n def node_transform(nodes):\n for n, ndata in nodes:\n yield str(n), ndata\n g2 = nx_copy(g, None, node_transform=node_transform)\n assert g2.number_of_nodes() == 3\n assert g2.number_of_edges() == 2\n assert '1' in g2\n assert '2' in g2\n assert 1 not in g2\n assert 2 not in g2\n assert g2.edges['1', '2'] == {'f': 4}\n assert g2.edges['2', '3'] == {'f': 5}\n\n\ndef test_nx_copy_edge_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n g.add_edge(4, 5)\n assert g.number_of_edges() == 3\n assert g.number_of_nodes() == 5\n\n def edge_transform(edges):\n for n1, n2, edata in edges:\n if n1 != 4:\n yield n1, n2, {'f': 8}\n g2 = nx_copy(g, None, edge_transform=edge_transform)\n assert g2.number_of_nodes() == 5\n assert g2.number_of_edges() == 2\n assert g2.edges[1, 2] == {'f': 8}\n assert g2.edges[2, 3] == {'f': 8}\n\n\ndef test_nx_copy_global_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n g.add_edge(4, 5)\n g.get_global()['f'] = 8\n assert g.number_of_edges() == 3\n assert g.number_of_nodes() == 5\n\n def global_transform(g):\n for _, gdata in g:\n gdata['x'] = 4\n yield _, gdata\n g2 = nx_copy(g, None, global_transform=global_transform)\n assert g2.get_global() == {'x': 4, 'f': 8}\n", "step-4": "import networkx as nx\nimport pytest\nfrom caldera.utils.nx import nx_copy\n\n\ndef add_data(g):\n g.add_node(1)\n g.add_node(2, x=5)\n g.add_edge(1, 2, y=6)\n g.add_edge(2, 3, z=[])\n\n\ndef assert_graph_data(g1, g2):\n assert g1 is not g2\n assert g2.nodes[1] == {}\n assert g2.nodes[2] == {'x': 5}\n assert g2.edges[1, 2] == {'y': 6}\n assert g2.edges[2, 3] == {'z': []}\n assert g2.nodes[2] is not g1.nodes[2]\n assert g2.edges[2, 3] is not g1.edges[2, 3]\n\n\[email protected]('do_deepcopy', [True, False])\ndef test_nx_copy_with_deepcopy(do_deepcopy):\n g = nx.Graph()\n g2 = nx.DiGraph()\n add_data(g)\n nx_copy(g, g2, deepcopy=do_deepcopy)\n assert_graph_data(g, g2)\n assert (g2.edges[2, 3]['z'] is g.edges[2, 3]['z']) != do_deepcopy\n\n\ndef test_nx_copy_with_none():\n g = nx.Graph()\n add_data(g)\n g2 = nx_copy(g, None)\n assert_graph_data(g, g2)\n\n\ndef test_nx_copy_with_class():\n g = nx.Graph()\n add_data(g)\n g2 = nx_copy(g, nx.OrderedDiGraph)\n assert isinstance(nx.OrderedDiGraph, type) and issubclass(nx.\n OrderedDiGraph, nx.Graph)\n assert isinstance(g2, nx.OrderedDiGraph)\n assert_graph_data(g, g2)\n\n\ndef test_nx_copy_node_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n\n def node_transform(nodes):\n for n, ndata in nodes:\n yield str(n), ndata\n g2 = nx_copy(g, None, node_transform=node_transform)\n assert g2.number_of_nodes() == 3\n assert g2.number_of_edges() == 2\n assert '1' in g2\n assert '2' in g2\n assert 1 not in g2\n assert 2 not in g2\n assert g2.edges['1', '2'] == {'f': 4}\n assert g2.edges['2', '3'] == {'f': 5}\n\n\ndef test_nx_copy_edge_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n g.add_edge(4, 5)\n assert g.number_of_edges() == 3\n assert g.number_of_nodes() == 5\n\n def edge_transform(edges):\n for n1, n2, edata in edges:\n if n1 != 4:\n yield n1, n2, {'f': 8}\n g2 = nx_copy(g, None, edge_transform=edge_transform)\n assert g2.number_of_nodes() == 5\n assert g2.number_of_edges() == 2\n assert g2.edges[1, 2] == {'f': 8}\n assert g2.edges[2, 3] == {'f': 8}\n\n\ndef test_nx_copy_global_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n g.add_edge(4, 5)\n g.get_global()['f'] = 8\n assert g.number_of_edges() == 3\n assert g.number_of_nodes() == 5\n\n def global_transform(g):\n for _, gdata in g:\n gdata['x'] = 4\n yield _, gdata\n g2 = nx_copy(g, None, global_transform=global_transform)\n assert g2.get_global() == {'x': 4, 'f': 8}\n", "step-5": "import networkx as nx\nimport pytest\n\nfrom caldera.utils.nx import nx_copy\n\n\ndef add_data(g):\n g.add_node(1)\n g.add_node(2, x=5)\n g.add_edge(1, 2, y=6)\n g.add_edge(2, 3, z=[])\n\n\ndef assert_graph_data(g1, g2):\n assert g1 is not g2\n assert g2.nodes[1] == {}\n assert g2.nodes[2] == {\"x\": 5}\n assert g2.edges[(1, 2)] == {\"y\": 6}\n assert g2.edges[(2, 3)] == {\"z\": []}\n assert g2.nodes[2] is not g1.nodes[2]\n assert g2.edges[(2, 3)] is not g1.edges[(2, 3)]\n\n\[email protected](\"do_deepcopy\", [True, False])\ndef test_nx_copy_with_deepcopy(do_deepcopy):\n g = nx.Graph()\n g2 = nx.DiGraph()\n add_data(g)\n nx_copy(g, g2, deepcopy=do_deepcopy)\n assert_graph_data(g, g2)\n assert (g2.edges[(2, 3)][\"z\"] is g.edges[(2, 3)][\"z\"]) != do_deepcopy\n\n\ndef test_nx_copy_with_none():\n g = nx.Graph()\n add_data(g)\n g2 = nx_copy(g, None)\n assert_graph_data(g, g2)\n\n\ndef test_nx_copy_with_class():\n g = nx.Graph()\n add_data(g)\n g2 = nx_copy(g, nx.OrderedDiGraph)\n assert isinstance(nx.OrderedDiGraph, type) and issubclass(\n nx.OrderedDiGraph, nx.Graph\n )\n assert isinstance(g2, nx.OrderedDiGraph)\n assert_graph_data(g, g2)\n\n\ndef test_nx_copy_node_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n\n def node_transform(nodes):\n for n, ndata in nodes:\n yield str(n), ndata\n\n g2 = nx_copy(g, None, node_transform=node_transform)\n assert g2.number_of_nodes() == 3\n assert g2.number_of_edges() == 2\n assert \"1\" in g2\n assert \"2\" in g2\n assert 1 not in g2\n assert 2 not in g2\n assert g2.edges[(\"1\", \"2\")] == {\"f\": 4}\n assert g2.edges[(\"2\", \"3\")] == {\"f\": 5}\n\n\ndef test_nx_copy_edge_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n g.add_edge(4, 5)\n\n assert g.number_of_edges() == 3\n assert g.number_of_nodes() == 5\n\n def edge_transform(edges):\n for n1, n2, edata in edges:\n if n1 != 4:\n yield n1, n2, {\"f\": 8}\n\n g2 = nx_copy(g, None, edge_transform=edge_transform)\n assert g2.number_of_nodes() == 5\n assert g2.number_of_edges() == 2\n assert g2.edges[(1, 2)] == {\"f\": 8}\n assert g2.edges[(2, 3)] == {\"f\": 8}\n\n\ndef test_nx_copy_global_transform():\n g = nx.Graph()\n g.add_node(1)\n g.add_node(2)\n g.add_edge(1, 2, f=4)\n g.add_edge(2, 3, f=5)\n g.add_edge(4, 5)\n g.get_global()[\"f\"] = 8\n assert g.number_of_edges() == 3\n assert g.number_of_nodes() == 5\n\n def global_transform(g):\n for _, gdata in g:\n gdata[\"x\"] = 4\n yield _, gdata\n\n g2 = nx_copy(g, None, global_transform=global_transform)\n assert g2.get_global() == {\"x\": 4, \"f\": 8}\n", "step-ids": [ 6, 7, 8, 9, 10 ] }
[ 6, 7, 8, 9, 10 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @Client.on_callback_query(filters.regex('^change_lg_')) async def on_change_language(_, callback): settings_id = int(callback.data.split('_')[2]) with db_session: settings = SettingsInstance.get(id=settings_id) if not settings or not settings.can_edit(callback.db_user): await callback.answer(callback.db_user.get_message('not_admin'), show_alert=True) return await callback.answer() await callback.edit_message_text(**languages.create_message_data( callback.db_user, settings.chat, settings)) @Client.on_callback_query(filters.regex('^language_g_')) async def on_language_selected(_, callback): data = callback.data.split('_')[2:] settings_id = int(data[0]) language = '_'.join(data[1:]) with db_session: settings = SettingsInstance.get(id=settings_id) if not settings or not settings.can_edit(callback.db_user): await callback.answer(callback.db_user.get_message('not_admin'), show_alert=True) return settings.chat.language = language await callback.answer(settings.chat.get_message('language_selected', flag=settings.chat.get_message('flag')), show_alert=True) try: await callback.edit_message_text(**languages. create_message_data(callback.db_user, settings.chat, settings)) except MessageNotModified: pass <|reserved_special_token_1|> from pyrogram import Client, filters from pyrogram.errors import MessageNotModified from db.models import * @Client.on_callback_query(filters.regex('^change_lg_')) async def on_change_language(_, callback): settings_id = int(callback.data.split('_')[2]) with db_session: settings = SettingsInstance.get(id=settings_id) if not settings or not settings.can_edit(callback.db_user): await callback.answer(callback.db_user.get_message('not_admin'), show_alert=True) return await callback.answer() await callback.edit_message_text(**languages.create_message_data( callback.db_user, settings.chat, settings)) @Client.on_callback_query(filters.regex('^language_g_')) async def on_language_selected(_, callback): data = callback.data.split('_')[2:] settings_id = int(data[0]) language = '_'.join(data[1:]) with db_session: settings = SettingsInstance.get(id=settings_id) if not settings or not settings.can_edit(callback.db_user): await callback.answer(callback.db_user.get_message('not_admin'), show_alert=True) return settings.chat.language = language await callback.answer(settings.chat.get_message('language_selected', flag=settings.chat.get_message('flag')), show_alert=True) try: await callback.edit_message_text(**languages. create_message_data(callback.db_user, settings.chat, settings)) except MessageNotModified: pass <|reserved_special_token_1|> from pyrogram import Client, filters from pyrogram.errors import MessageNotModified from db.models import * @Client.on_callback_query(filters.regex('^change_lg_')) async def on_change_language(_, callback): settings_id = int(callback.data.split('_')[2]) with db_session: settings = SettingsInstance.get(id=settings_id) if not settings or not settings.can_edit(callback.db_user): await callback.answer(callback.db_user.get_message('not_admin'), show_alert=True) return await callback.answer() await callback.edit_message_text(**languages.create_message_data(callback.db_user, settings.chat, settings)) @Client.on_callback_query(filters.regex('^language_g_')) async def on_language_selected(_, callback): data = callback.data.split('_')[2:] settings_id = int(data[0]) language = '_'.join(data[1:]) with db_session: settings = SettingsInstance.get(id=settings_id) if not settings or not settings.can_edit(callback.db_user): await callback.answer(callback.db_user.get_message('not_admin'), show_alert=True) return settings.chat.language = language await callback.answer(settings.chat.get_message('language_selected', flag=settings.chat.get_message('flag')), show_alert=True) try: await callback.edit_message_text(**languages.create_message_data(callback.db_user, settings.chat, settings)) except MessageNotModified: # If the user selects the same language he already had pass
flexible
{ "blob_id": "dd053da45d2577772414b1373ba324b0bfdc0d94", "index": 6605, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\[email protected]_callback_query(filters.regex('^change_lg_'))\nasync def on_change_language(_, callback):\n settings_id = int(callback.data.split('_')[2])\n with db_session:\n settings = SettingsInstance.get(id=settings_id)\n if not settings or not settings.can_edit(callback.db_user):\n await callback.answer(callback.db_user.get_message('not_admin'),\n show_alert=True)\n return\n await callback.answer()\n await callback.edit_message_text(**languages.create_message_data(\n callback.db_user, settings.chat, settings))\n\n\[email protected]_callback_query(filters.regex('^language_g_'))\nasync def on_language_selected(_, callback):\n data = callback.data.split('_')[2:]\n settings_id = int(data[0])\n language = '_'.join(data[1:])\n with db_session:\n settings = SettingsInstance.get(id=settings_id)\n if not settings or not settings.can_edit(callback.db_user):\n await callback.answer(callback.db_user.get_message('not_admin'),\n show_alert=True)\n return\n settings.chat.language = language\n await callback.answer(settings.chat.get_message('language_selected',\n flag=settings.chat.get_message('flag')), show_alert=True)\n try:\n await callback.edit_message_text(**languages.\n create_message_data(callback.db_user, settings.chat, settings))\n except MessageNotModified:\n pass\n", "step-3": "from pyrogram import Client, filters\nfrom pyrogram.errors import MessageNotModified\nfrom db.models import *\n\n\[email protected]_callback_query(filters.regex('^change_lg_'))\nasync def on_change_language(_, callback):\n settings_id = int(callback.data.split('_')[2])\n with db_session:\n settings = SettingsInstance.get(id=settings_id)\n if not settings or not settings.can_edit(callback.db_user):\n await callback.answer(callback.db_user.get_message('not_admin'),\n show_alert=True)\n return\n await callback.answer()\n await callback.edit_message_text(**languages.create_message_data(\n callback.db_user, settings.chat, settings))\n\n\[email protected]_callback_query(filters.regex('^language_g_'))\nasync def on_language_selected(_, callback):\n data = callback.data.split('_')[2:]\n settings_id = int(data[0])\n language = '_'.join(data[1:])\n with db_session:\n settings = SettingsInstance.get(id=settings_id)\n if not settings or not settings.can_edit(callback.db_user):\n await callback.answer(callback.db_user.get_message('not_admin'),\n show_alert=True)\n return\n settings.chat.language = language\n await callback.answer(settings.chat.get_message('language_selected',\n flag=settings.chat.get_message('flag')), show_alert=True)\n try:\n await callback.edit_message_text(**languages.\n create_message_data(callback.db_user, settings.chat, settings))\n except MessageNotModified:\n pass\n", "step-4": "from pyrogram import Client, filters\nfrom pyrogram.errors import MessageNotModified\n\nfrom db.models import *\n\n\[email protected]_callback_query(filters.regex('^change_lg_'))\nasync def on_change_language(_, callback):\n settings_id = int(callback.data.split('_')[2])\n\n with db_session:\n settings = SettingsInstance.get(id=settings_id)\n\n if not settings or not settings.can_edit(callback.db_user):\n await callback.answer(callback.db_user.get_message('not_admin'), show_alert=True)\n return\n\n await callback.answer()\n await callback.edit_message_text(**languages.create_message_data(callback.db_user, settings.chat, settings))\n\n\[email protected]_callback_query(filters.regex('^language_g_'))\nasync def on_language_selected(_, callback):\n data = callback.data.split('_')[2:]\n settings_id = int(data[0])\n language = '_'.join(data[1:])\n\n with db_session:\n settings = SettingsInstance.get(id=settings_id)\n\n if not settings or not settings.can_edit(callback.db_user):\n await callback.answer(callback.db_user.get_message('not_admin'), show_alert=True)\n return\n\n settings.chat.language = language\n await callback.answer(settings.chat.get_message('language_selected', flag=settings.chat.get_message('flag')),\n show_alert=True)\n\n try:\n await callback.edit_message_text(**languages.create_message_data(callback.db_user, settings.chat, settings))\n except MessageNotModified: # If the user selects the same language he already had\n pass\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class BuildCommand(ServerCommand): def __init__(self, tile: tuple, building_name: str): ServerCommand.__init__(self) self._tile = tile self._building_name = building_name <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class CollectResourceCommand(ServerCommand): ENERGY_COST = 30 def __init__(self, tile: tuple, item: Item): ServerCommand.__init__(self) self._tile = tile self._item = item def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.resources: self.check_result += 'No resource in {}'.format(self._tile) return resource = self.town.resources[self._tile] TransactionCheck(resource, player, self._item).check(self.check_result) EnergyCheck(player, CollectResourceCommand.ENERGY_COST).check(self. check_result) def _do(self): player = self.town.get_player(self.client_id) player.inventory.add_item(self._item) resource = self.town.resources[self._tile] resource.inventory.remove_item(self._item) player.energy.value -= CollectResourceCommand.ENERGY_COST def __repr__(self): msg = 'Collect Resource ServerCommand : {}'.format(self._item) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->CollectResourceCommand: return cls(json_dict['tile'], Item.from_json_dict(json_dict['item'])) def to_json_dict(self) ->dict: json_dict = super().to_json_dict() json_dict['command'] = 'collect' json_dict['tile'] = self._tile json_dict['item'] = self._item.to_json_dict() return json_dict class BuildingProcessCommand(ServerCommand): def __init__(self, tile: tuple, building_process: BuildingProcess): ServerCommand.__init__(self) self._tile = tile self._building_process = building_process def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.buildings: self.check_result += 'No building on {}'.format(self._tile) return building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) InventoryRemoveCheck(building.inventory, self._building_process. item_required).check(self.check_result) InventoryAddCheck(building.inventory, self._building_process. item_result).check(self.check_result) EnergyCheck(player, self._building_process.energy_required).check(self .check_result) def _do(self): building = self.town.buildings[self._tile] building.inventory.remove_item(self._building_process.item_required) building.inventory.add_item(self._building_process.item_result) player = self.town.get_player(self.client_id) player.energy.value -= self._building_process.energy_required def __repr__(self): msg = 'BuildingProcessCommand ServerCommand {}'.format(self. _building_process) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingProcess.from_json_dict( json_dict['building_process'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'building_process' json_dict['tile'] = self._tile json_dict['building_process'] = self._building_process.to_json_dict() return json_dict class BuyCommand(ServerCommand): def __init__(self, tile: tuple, transaction: BuildingTransaction): ServerCommand.__init__(self) self._tile = tile self._transaction = transaction def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) item = Item(self._transaction.item_name, 1) AvailableCheck(player).check(self.check_result) TransactionCheck(building, player, item).check(self.check_result) def _do(self): item = Item(self._transaction.item_name, 1) building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) building.inventory.remove_item(item) player.inventory.add_item(item) def __repr__(self): msg = 'BuyCommand ServerCommand {}'.format(self._transaction.item_name) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingTransaction.from_json_dict( json_dict['transaction'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'buy' json_dict['tile'] = self._tile json_dict['transaction'] = self._transaction.to_json_dict() return json_dict class SellCommand(ServerCommand): def __init__(self, tile: tuple, transaction: BuildingTransaction): ServerCommand.__init__(self) self._tile = tile self._transaction = transaction def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) item = Item(self._transaction.item_name, 1) AvailableCheck(player).check(self.check_result) TransactionCheck(player, building, item).check(self.check_result) def _do(self): item = Item(self._transaction.item_name, 1) building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) building.inventory.add_item(item) player.inventory.remove_item(item) def __repr__(self): msg = 'SellCommand ServerCommand {}'.format(self._transaction.item_name ) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingTransaction.from_json_dict( json_dict['transaction'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'sell' json_dict['tile'] = self._tile json_dict['transaction'] = self._transaction.to_json_dict() return json_dict class BuildBuildingCommand(ServerCommand): ENERGY_COST = 20 def __init__(self, tile: tuple, item: Item): ServerCommand.__init__(self) self._item = item self._tile = tile def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) EnergyCheck(player, BuildBuildingCommand.ENERGY_COST).check(self. check_result) TransactionCheck(building, building, self._item).check(self. check_result) def _do(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) player.energy.value -= BuildBuildingCommand.ENERGY_COST building.inventory.remove_item(self._item) building.construction_inventory.add_item(self._item) def __repr__(self): msg = 'Build Building ServerCommand {}'.format(self._item) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], Item.from_json_dict(json_dict['item'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'build_building' json_dict['tile'] = self._tile json_dict['item'] = self._item.to_json_dict() return json_dict class UpgradeBuildingCommand(ServerCommand): def __init__(self, tile: tuple): ServerCommand.__init__(self) self._tile = tile def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if not building.construction_inventory.is_full(): self.check_result += 'construction not finished' def _do(self): building = self.town.buildings[self._tile] building.upgrade() def __repr__(self): msg = 'Upgrade Building ServerCommand {}'.format(self._tile) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'upgrade_building' json_dict['tile'] = self._tile return json_dict class SleepCommand(ServerCommand): ENERGY_REGEN_IN_HOUSE = 4 ENERGY_REGEN_IN_GROUND = 2 def __init__(self): ServerCommand.__init__(self) def _check(self): tile = self.town.get_player_tile(self.client_id) if tile in self.town.buildings and self.town.buildings[tile ].name != 'cabane': self.check_result += "Can't sleep in building" def _do(self): player = self.town.get_player(self.client_id) tile = self.town.get_player_tile(self.client_id) player.status = 'sleep' player.energy.regen = SleepCommand.ENERGY_REGEN_IN_GROUND if tile in self.town.buildings and self.town.buildings[tile ].name == 'cabane': player.energy.regen = SleepCommand.ENERGY_REGEN_IN_HOUSE def __repr__(self): msg = 'Sleep command. Player id: {}'.format(self.client_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->SleepCommand: return cls() def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'sleep' return json_dict class WakeUpCommand(ServerCommand): def __init__(self): ServerCommand.__init__(self) def _check(self): player = self.town.get_player(self.client_id) is_awaken_check = CheckResult() AwakenCheck(player).check(is_awaken_check) if is_awaken_check: self.check_result += '{} is already awake'.format(player.name) def _do(self): player = self.town.get_player(self.client_id) player.status = 'idle' player.energy.reset_regen() def __repr__(self): msg = 'Wake up command. Player id: {}'.format(self.client_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->WakeUpCommand: return cls() def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'wakeup' return json_dict class HelpPlayerCommand(ServerCommand): ENERGY_TO_HELP = 20 HEALTH_TO_GIVE = 1 def __init__(self, player_to_help_id): ServerCommand.__init__(self) self._player_to_help_id = player_to_help_id def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self.client_id not in self.town.players.keys(): self.check_result += 'Player {} does not exist'.format(self. client_id) return if self._player_to_help_id not in self.town.players.keys(): self.check_result += 'Player {} does not exist'.format(self. _player_to_help_id) return if self.town.get_player_tile(self.client_id ) != self.town.get_player_tile(self._player_to_help_id): self.check_result += ('Players {} and {} are not in the same tile' .format(self.client_id, self._player_to_help_id)) return EnergyCheck(self.town.get_player(self.client_id), HelpPlayerCommand .ENERGY_TO_HELP).check(self.check_result) is_alive_check = CheckResult() AvailableCheck(self.town.get_player(self._player_to_help_id)).check( is_alive_check) if is_alive_check: self.check_result += '{} has enough health to keep moving'.format( self._player_to_help_id) def _do(self): player_helper = self.town.get_player(self.client_id) player_helper.energy.value -= HelpPlayerCommand.ENERGY_TO_HELP player_to_help = self.town.get_player(self._player_to_help_id) player_to_help.health.value += HelpPlayerCommand.HEALTH_TO_GIVE def __repr__(self): msg = 'HelpPlayerCommand: try to help {}'.format(self. _player_to_help_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->HelpPlayerCommand: return cls(json_dict['player_to_help_id']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'help' json_dict['player_to_help_id'] = self._player_to_help_id return json_dict class CommandsFactory: COMMANDS_DICT = {} COMMANDS_DICT['move'] = MovePlayerCommand COMMANDS_DICT['build'] = BuildCommand COMMANDS_DICT['collect'] = CollectResourceCommand COMMANDS_DICT['building_process'] = BuildingProcessCommand COMMANDS_DICT['buy'] = BuyCommand COMMANDS_DICT['sell'] = SellCommand COMMANDS_DICT['build_building'] = BuildBuildingCommand COMMANDS_DICT['upgrade_building'] = UpgradeBuildingCommand COMMANDS_DICT['help'] = HelpPlayerCommand COMMANDS_DICT['sleep'] = SleepCommand COMMANDS_DICT['wakeup'] = WakeUpCommand @staticmethod def from_podsixnet(podsixnet_dict): if podsixnet_dict['command'] in CommandsFactory.COMMANDS_DICT: command = CommandsFactory.COMMANDS_DICT[podsixnet_dict['command'] ].from_json_dict(podsixnet_dict) else: raise NotImplementedError command.client_id = podsixnet_dict['client_id'] command.check_result = CheckResult.from_json_dict(podsixnet_dict[ 'check_result']) return command <|reserved_special_token_1|> <|reserved_special_token_0|> class BuildCommand(ServerCommand): def __init__(self, tile: tuple, building_name: str): ServerCommand.__init__(self) self._tile = tile self._building_name = building_name <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> @classmethod def from_json_dict(cls, json_dict: dict) ->BuildCommand: return cls(json_dict['tile'], json_dict['building_name']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'build' json_dict['building_name'] = self._building_name json_dict['tile'] = self._tile return json_dict class CollectResourceCommand(ServerCommand): ENERGY_COST = 30 def __init__(self, tile: tuple, item: Item): ServerCommand.__init__(self) self._tile = tile self._item = item def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.resources: self.check_result += 'No resource in {}'.format(self._tile) return resource = self.town.resources[self._tile] TransactionCheck(resource, player, self._item).check(self.check_result) EnergyCheck(player, CollectResourceCommand.ENERGY_COST).check(self. check_result) def _do(self): player = self.town.get_player(self.client_id) player.inventory.add_item(self._item) resource = self.town.resources[self._tile] resource.inventory.remove_item(self._item) player.energy.value -= CollectResourceCommand.ENERGY_COST def __repr__(self): msg = 'Collect Resource ServerCommand : {}'.format(self._item) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->CollectResourceCommand: return cls(json_dict['tile'], Item.from_json_dict(json_dict['item'])) def to_json_dict(self) ->dict: json_dict = super().to_json_dict() json_dict['command'] = 'collect' json_dict['tile'] = self._tile json_dict['item'] = self._item.to_json_dict() return json_dict class BuildingProcessCommand(ServerCommand): def __init__(self, tile: tuple, building_process: BuildingProcess): ServerCommand.__init__(self) self._tile = tile self._building_process = building_process def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.buildings: self.check_result += 'No building on {}'.format(self._tile) return building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) InventoryRemoveCheck(building.inventory, self._building_process. item_required).check(self.check_result) InventoryAddCheck(building.inventory, self._building_process. item_result).check(self.check_result) EnergyCheck(player, self._building_process.energy_required).check(self .check_result) def _do(self): building = self.town.buildings[self._tile] building.inventory.remove_item(self._building_process.item_required) building.inventory.add_item(self._building_process.item_result) player = self.town.get_player(self.client_id) player.energy.value -= self._building_process.energy_required def __repr__(self): msg = 'BuildingProcessCommand ServerCommand {}'.format(self. _building_process) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingProcess.from_json_dict( json_dict['building_process'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'building_process' json_dict['tile'] = self._tile json_dict['building_process'] = self._building_process.to_json_dict() return json_dict class BuyCommand(ServerCommand): def __init__(self, tile: tuple, transaction: BuildingTransaction): ServerCommand.__init__(self) self._tile = tile self._transaction = transaction def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) item = Item(self._transaction.item_name, 1) AvailableCheck(player).check(self.check_result) TransactionCheck(building, player, item).check(self.check_result) def _do(self): item = Item(self._transaction.item_name, 1) building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) building.inventory.remove_item(item) player.inventory.add_item(item) def __repr__(self): msg = 'BuyCommand ServerCommand {}'.format(self._transaction.item_name) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingTransaction.from_json_dict( json_dict['transaction'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'buy' json_dict['tile'] = self._tile json_dict['transaction'] = self._transaction.to_json_dict() return json_dict class SellCommand(ServerCommand): def __init__(self, tile: tuple, transaction: BuildingTransaction): ServerCommand.__init__(self) self._tile = tile self._transaction = transaction def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) item = Item(self._transaction.item_name, 1) AvailableCheck(player).check(self.check_result) TransactionCheck(player, building, item).check(self.check_result) def _do(self): item = Item(self._transaction.item_name, 1) building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) building.inventory.add_item(item) player.inventory.remove_item(item) def __repr__(self): msg = 'SellCommand ServerCommand {}'.format(self._transaction.item_name ) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingTransaction.from_json_dict( json_dict['transaction'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'sell' json_dict['tile'] = self._tile json_dict['transaction'] = self._transaction.to_json_dict() return json_dict class BuildBuildingCommand(ServerCommand): ENERGY_COST = 20 def __init__(self, tile: tuple, item: Item): ServerCommand.__init__(self) self._item = item self._tile = tile def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) EnergyCheck(player, BuildBuildingCommand.ENERGY_COST).check(self. check_result) TransactionCheck(building, building, self._item).check(self. check_result) def _do(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) player.energy.value -= BuildBuildingCommand.ENERGY_COST building.inventory.remove_item(self._item) building.construction_inventory.add_item(self._item) def __repr__(self): msg = 'Build Building ServerCommand {}'.format(self._item) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], Item.from_json_dict(json_dict['item'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'build_building' json_dict['tile'] = self._tile json_dict['item'] = self._item.to_json_dict() return json_dict class UpgradeBuildingCommand(ServerCommand): def __init__(self, tile: tuple): ServerCommand.__init__(self) self._tile = tile def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if not building.construction_inventory.is_full(): self.check_result += 'construction not finished' def _do(self): building = self.town.buildings[self._tile] building.upgrade() def __repr__(self): msg = 'Upgrade Building ServerCommand {}'.format(self._tile) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'upgrade_building' json_dict['tile'] = self._tile return json_dict class SleepCommand(ServerCommand): ENERGY_REGEN_IN_HOUSE = 4 ENERGY_REGEN_IN_GROUND = 2 def __init__(self): ServerCommand.__init__(self) def _check(self): tile = self.town.get_player_tile(self.client_id) if tile in self.town.buildings and self.town.buildings[tile ].name != 'cabane': self.check_result += "Can't sleep in building" def _do(self): player = self.town.get_player(self.client_id) tile = self.town.get_player_tile(self.client_id) player.status = 'sleep' player.energy.regen = SleepCommand.ENERGY_REGEN_IN_GROUND if tile in self.town.buildings and self.town.buildings[tile ].name == 'cabane': player.energy.regen = SleepCommand.ENERGY_REGEN_IN_HOUSE def __repr__(self): msg = 'Sleep command. Player id: {}'.format(self.client_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->SleepCommand: return cls() def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'sleep' return json_dict class WakeUpCommand(ServerCommand): def __init__(self): ServerCommand.__init__(self) def _check(self): player = self.town.get_player(self.client_id) is_awaken_check = CheckResult() AwakenCheck(player).check(is_awaken_check) if is_awaken_check: self.check_result += '{} is already awake'.format(player.name) def _do(self): player = self.town.get_player(self.client_id) player.status = 'idle' player.energy.reset_regen() def __repr__(self): msg = 'Wake up command. Player id: {}'.format(self.client_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->WakeUpCommand: return cls() def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'wakeup' return json_dict class HelpPlayerCommand(ServerCommand): ENERGY_TO_HELP = 20 HEALTH_TO_GIVE = 1 def __init__(self, player_to_help_id): ServerCommand.__init__(self) self._player_to_help_id = player_to_help_id def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self.client_id not in self.town.players.keys(): self.check_result += 'Player {} does not exist'.format(self. client_id) return if self._player_to_help_id not in self.town.players.keys(): self.check_result += 'Player {} does not exist'.format(self. _player_to_help_id) return if self.town.get_player_tile(self.client_id ) != self.town.get_player_tile(self._player_to_help_id): self.check_result += ('Players {} and {} are not in the same tile' .format(self.client_id, self._player_to_help_id)) return EnergyCheck(self.town.get_player(self.client_id), HelpPlayerCommand .ENERGY_TO_HELP).check(self.check_result) is_alive_check = CheckResult() AvailableCheck(self.town.get_player(self._player_to_help_id)).check( is_alive_check) if is_alive_check: self.check_result += '{} has enough health to keep moving'.format( self._player_to_help_id) def _do(self): player_helper = self.town.get_player(self.client_id) player_helper.energy.value -= HelpPlayerCommand.ENERGY_TO_HELP player_to_help = self.town.get_player(self._player_to_help_id) player_to_help.health.value += HelpPlayerCommand.HEALTH_TO_GIVE def __repr__(self): msg = 'HelpPlayerCommand: try to help {}'.format(self. _player_to_help_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->HelpPlayerCommand: return cls(json_dict['player_to_help_id']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'help' json_dict['player_to_help_id'] = self._player_to_help_id return json_dict class CommandsFactory: COMMANDS_DICT = {} COMMANDS_DICT['move'] = MovePlayerCommand COMMANDS_DICT['build'] = BuildCommand COMMANDS_DICT['collect'] = CollectResourceCommand COMMANDS_DICT['building_process'] = BuildingProcessCommand COMMANDS_DICT['buy'] = BuyCommand COMMANDS_DICT['sell'] = SellCommand COMMANDS_DICT['build_building'] = BuildBuildingCommand COMMANDS_DICT['upgrade_building'] = UpgradeBuildingCommand COMMANDS_DICT['help'] = HelpPlayerCommand COMMANDS_DICT['sleep'] = SleepCommand COMMANDS_DICT['wakeup'] = WakeUpCommand @staticmethod def from_podsixnet(podsixnet_dict): if podsixnet_dict['command'] in CommandsFactory.COMMANDS_DICT: command = CommandsFactory.COMMANDS_DICT[podsixnet_dict['command'] ].from_json_dict(podsixnet_dict) else: raise NotImplementedError command.client_id = podsixnet_dict['client_id'] command.check_result = CheckResult.from_json_dict(podsixnet_dict[ 'check_result']) return command <|reserved_special_token_1|> <|reserved_special_token_0|> class MovePlayerCommand(ServerCommand): <|reserved_special_token_0|> <|reserved_special_token_0|> def __repr__(self): msg = 'Move ServerCommand : {}'.format(self._direction) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg def _check(self): player = self.town.get_player(self.client_id) EnergyCheck(player, MovePlayerCommand.ENERGY_COST).check(self. check_result) AvailableCheck(player).check(self.check_result) for tile in self._get_tiles_coordinates_dict().values(): if tile not in self.town.backgrounds.keys(): self.check_result += 'tile {} not in town'.format(tile) return BackgroundMovementCheck(self.town.backgrounds[tile], player).check( self.check_result) def _do(self): x_dest, y_dest = self.tile_dest player = self.town.get_player(self.client_id) player.status = 'move' player.direction = self._direction player.energy.value -= MovePlayerCommand.ENERGY_COST player.x = x_dest player.y = y_dest @property def tile_dest(self) ->tuple: movement_matrix = {} movement_matrix['left'] = -1, 0 movement_matrix['right'] = +1, 0 movement_matrix['up'] = 0, -1 movement_matrix['down'] = 0, +1 player = self.town.get_player(self.client_id) tile = self.town.get_player_tile(self.client_id) background = self.town.backgrounds[tile] bg_multiplicator = background.move_multiplicator x_dest = player.x + movement_matrix[self._direction][0 ] * bg_multiplicator * player.velocity y_dest = player.y + movement_matrix[self._direction][1 ] * bg_multiplicator * player.velocity return x_dest, y_dest def _get_tiles_coordinates_dict(self): x_dest, y_dest = self.tile_dest tiles_coordinates_dict = {'topleft': (math.floor(x_dest), math. floor(y_dest)), 'topright': (math.floor(x_dest + 0.99), math. floor(y_dest)), 'bottomleft': (math.floor(x_dest), math.floor( y_dest + 0.99)), 'bottomright': (math.floor(x_dest + 0.99), math.floor(y_dest + 0.99))} return tiles_coordinates_dict @classmethod def from_json_dict(cls, json_dict) ->MovePlayerCommand: return cls(json_dict['direction']) <|reserved_special_token_0|> class BuildCommand(ServerCommand): def __init__(self, tile: tuple, building_name: str): ServerCommand.__init__(self) self._tile = tile self._building_name = building_name def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.backgrounds: self.check_result += 'tile {} not in town'.format(self._tile) return background = self.town.backgrounds[self._tile] BackgroundBuildCheck(background, self._building_name).check(self. check_result) if self._tile in self.town.buildings: self.check_result += ("Can't build {} : {} already built on {}" .format(self._building_name, self.town.buildings[self._tile ].name, self._tile)) def _do(self): self.town.set_building(BuildingFactory.create_building_by_name(self ._building_name), self._tile) def __repr__(self): msg = 'Build ServerCommand : {} in {}'.format(self._building_name, self._tile) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->BuildCommand: return cls(json_dict['tile'], json_dict['building_name']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'build' json_dict['building_name'] = self._building_name json_dict['tile'] = self._tile return json_dict class CollectResourceCommand(ServerCommand): ENERGY_COST = 30 def __init__(self, tile: tuple, item: Item): ServerCommand.__init__(self) self._tile = tile self._item = item def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.resources: self.check_result += 'No resource in {}'.format(self._tile) return resource = self.town.resources[self._tile] TransactionCheck(resource, player, self._item).check(self.check_result) EnergyCheck(player, CollectResourceCommand.ENERGY_COST).check(self. check_result) def _do(self): player = self.town.get_player(self.client_id) player.inventory.add_item(self._item) resource = self.town.resources[self._tile] resource.inventory.remove_item(self._item) player.energy.value -= CollectResourceCommand.ENERGY_COST def __repr__(self): msg = 'Collect Resource ServerCommand : {}'.format(self._item) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->CollectResourceCommand: return cls(json_dict['tile'], Item.from_json_dict(json_dict['item'])) def to_json_dict(self) ->dict: json_dict = super().to_json_dict() json_dict['command'] = 'collect' json_dict['tile'] = self._tile json_dict['item'] = self._item.to_json_dict() return json_dict class BuildingProcessCommand(ServerCommand): def __init__(self, tile: tuple, building_process: BuildingProcess): ServerCommand.__init__(self) self._tile = tile self._building_process = building_process def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.buildings: self.check_result += 'No building on {}'.format(self._tile) return building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) InventoryRemoveCheck(building.inventory, self._building_process. item_required).check(self.check_result) InventoryAddCheck(building.inventory, self._building_process. item_result).check(self.check_result) EnergyCheck(player, self._building_process.energy_required).check(self .check_result) def _do(self): building = self.town.buildings[self._tile] building.inventory.remove_item(self._building_process.item_required) building.inventory.add_item(self._building_process.item_result) player = self.town.get_player(self.client_id) player.energy.value -= self._building_process.energy_required def __repr__(self): msg = 'BuildingProcessCommand ServerCommand {}'.format(self. _building_process) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingProcess.from_json_dict( json_dict['building_process'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'building_process' json_dict['tile'] = self._tile json_dict['building_process'] = self._building_process.to_json_dict() return json_dict class BuyCommand(ServerCommand): def __init__(self, tile: tuple, transaction: BuildingTransaction): ServerCommand.__init__(self) self._tile = tile self._transaction = transaction def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) item = Item(self._transaction.item_name, 1) AvailableCheck(player).check(self.check_result) TransactionCheck(building, player, item).check(self.check_result) def _do(self): item = Item(self._transaction.item_name, 1) building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) building.inventory.remove_item(item) player.inventory.add_item(item) def __repr__(self): msg = 'BuyCommand ServerCommand {}'.format(self._transaction.item_name) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingTransaction.from_json_dict( json_dict['transaction'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'buy' json_dict['tile'] = self._tile json_dict['transaction'] = self._transaction.to_json_dict() return json_dict class SellCommand(ServerCommand): def __init__(self, tile: tuple, transaction: BuildingTransaction): ServerCommand.__init__(self) self._tile = tile self._transaction = transaction def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) item = Item(self._transaction.item_name, 1) AvailableCheck(player).check(self.check_result) TransactionCheck(player, building, item).check(self.check_result) def _do(self): item = Item(self._transaction.item_name, 1) building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) building.inventory.add_item(item) player.inventory.remove_item(item) def __repr__(self): msg = 'SellCommand ServerCommand {}'.format(self._transaction.item_name ) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingTransaction.from_json_dict( json_dict['transaction'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'sell' json_dict['tile'] = self._tile json_dict['transaction'] = self._transaction.to_json_dict() return json_dict class BuildBuildingCommand(ServerCommand): ENERGY_COST = 20 def __init__(self, tile: tuple, item: Item): ServerCommand.__init__(self) self._item = item self._tile = tile def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) EnergyCheck(player, BuildBuildingCommand.ENERGY_COST).check(self. check_result) TransactionCheck(building, building, self._item).check(self. check_result) def _do(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) player.energy.value -= BuildBuildingCommand.ENERGY_COST building.inventory.remove_item(self._item) building.construction_inventory.add_item(self._item) def __repr__(self): msg = 'Build Building ServerCommand {}'.format(self._item) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], Item.from_json_dict(json_dict['item'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'build_building' json_dict['tile'] = self._tile json_dict['item'] = self._item.to_json_dict() return json_dict class UpgradeBuildingCommand(ServerCommand): def __init__(self, tile: tuple): ServerCommand.__init__(self) self._tile = tile def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if not building.construction_inventory.is_full(): self.check_result += 'construction not finished' def _do(self): building = self.town.buildings[self._tile] building.upgrade() def __repr__(self): msg = 'Upgrade Building ServerCommand {}'.format(self._tile) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'upgrade_building' json_dict['tile'] = self._tile return json_dict class SleepCommand(ServerCommand): ENERGY_REGEN_IN_HOUSE = 4 ENERGY_REGEN_IN_GROUND = 2 def __init__(self): ServerCommand.__init__(self) def _check(self): tile = self.town.get_player_tile(self.client_id) if tile in self.town.buildings and self.town.buildings[tile ].name != 'cabane': self.check_result += "Can't sleep in building" def _do(self): player = self.town.get_player(self.client_id) tile = self.town.get_player_tile(self.client_id) player.status = 'sleep' player.energy.regen = SleepCommand.ENERGY_REGEN_IN_GROUND if tile in self.town.buildings and self.town.buildings[tile ].name == 'cabane': player.energy.regen = SleepCommand.ENERGY_REGEN_IN_HOUSE def __repr__(self): msg = 'Sleep command. Player id: {}'.format(self.client_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->SleepCommand: return cls() def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'sleep' return json_dict class WakeUpCommand(ServerCommand): def __init__(self): ServerCommand.__init__(self) def _check(self): player = self.town.get_player(self.client_id) is_awaken_check = CheckResult() AwakenCheck(player).check(is_awaken_check) if is_awaken_check: self.check_result += '{} is already awake'.format(player.name) def _do(self): player = self.town.get_player(self.client_id) player.status = 'idle' player.energy.reset_regen() def __repr__(self): msg = 'Wake up command. Player id: {}'.format(self.client_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->WakeUpCommand: return cls() def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'wakeup' return json_dict class HelpPlayerCommand(ServerCommand): ENERGY_TO_HELP = 20 HEALTH_TO_GIVE = 1 def __init__(self, player_to_help_id): ServerCommand.__init__(self) self._player_to_help_id = player_to_help_id def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self.client_id not in self.town.players.keys(): self.check_result += 'Player {} does not exist'.format(self. client_id) return if self._player_to_help_id not in self.town.players.keys(): self.check_result += 'Player {} does not exist'.format(self. _player_to_help_id) return if self.town.get_player_tile(self.client_id ) != self.town.get_player_tile(self._player_to_help_id): self.check_result += ('Players {} and {} are not in the same tile' .format(self.client_id, self._player_to_help_id)) return EnergyCheck(self.town.get_player(self.client_id), HelpPlayerCommand .ENERGY_TO_HELP).check(self.check_result) is_alive_check = CheckResult() AvailableCheck(self.town.get_player(self._player_to_help_id)).check( is_alive_check) if is_alive_check: self.check_result += '{} has enough health to keep moving'.format( self._player_to_help_id) def _do(self): player_helper = self.town.get_player(self.client_id) player_helper.energy.value -= HelpPlayerCommand.ENERGY_TO_HELP player_to_help = self.town.get_player(self._player_to_help_id) player_to_help.health.value += HelpPlayerCommand.HEALTH_TO_GIVE def __repr__(self): msg = 'HelpPlayerCommand: try to help {}'.format(self. _player_to_help_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->HelpPlayerCommand: return cls(json_dict['player_to_help_id']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'help' json_dict['player_to_help_id'] = self._player_to_help_id return json_dict class CommandsFactory: COMMANDS_DICT = {} COMMANDS_DICT['move'] = MovePlayerCommand COMMANDS_DICT['build'] = BuildCommand COMMANDS_DICT['collect'] = CollectResourceCommand COMMANDS_DICT['building_process'] = BuildingProcessCommand COMMANDS_DICT['buy'] = BuyCommand COMMANDS_DICT['sell'] = SellCommand COMMANDS_DICT['build_building'] = BuildBuildingCommand COMMANDS_DICT['upgrade_building'] = UpgradeBuildingCommand COMMANDS_DICT['help'] = HelpPlayerCommand COMMANDS_DICT['sleep'] = SleepCommand COMMANDS_DICT['wakeup'] = WakeUpCommand @staticmethod def from_podsixnet(podsixnet_dict): if podsixnet_dict['command'] in CommandsFactory.COMMANDS_DICT: command = CommandsFactory.COMMANDS_DICT[podsixnet_dict['command'] ].from_json_dict(podsixnet_dict) else: raise NotImplementedError command.client_id = podsixnet_dict['client_id'] command.check_result = CheckResult.from_json_dict(podsixnet_dict[ 'check_result']) return command <|reserved_special_token_1|> <|reserved_special_token_0|> class MovePlayerCommand(ServerCommand): <|reserved_special_token_0|> def __init__(self, direction: str): ServerCommand.__init__(self) self._direction = direction def __repr__(self): msg = 'Move ServerCommand : {}'.format(self._direction) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg def _check(self): player = self.town.get_player(self.client_id) EnergyCheck(player, MovePlayerCommand.ENERGY_COST).check(self. check_result) AvailableCheck(player).check(self.check_result) for tile in self._get_tiles_coordinates_dict().values(): if tile not in self.town.backgrounds.keys(): self.check_result += 'tile {} not in town'.format(tile) return BackgroundMovementCheck(self.town.backgrounds[tile], player).check( self.check_result) def _do(self): x_dest, y_dest = self.tile_dest player = self.town.get_player(self.client_id) player.status = 'move' player.direction = self._direction player.energy.value -= MovePlayerCommand.ENERGY_COST player.x = x_dest player.y = y_dest @property def tile_dest(self) ->tuple: movement_matrix = {} movement_matrix['left'] = -1, 0 movement_matrix['right'] = +1, 0 movement_matrix['up'] = 0, -1 movement_matrix['down'] = 0, +1 player = self.town.get_player(self.client_id) tile = self.town.get_player_tile(self.client_id) background = self.town.backgrounds[tile] bg_multiplicator = background.move_multiplicator x_dest = player.x + movement_matrix[self._direction][0 ] * bg_multiplicator * player.velocity y_dest = player.y + movement_matrix[self._direction][1 ] * bg_multiplicator * player.velocity return x_dest, y_dest def _get_tiles_coordinates_dict(self): x_dest, y_dest = self.tile_dest tiles_coordinates_dict = {'topleft': (math.floor(x_dest), math. floor(y_dest)), 'topright': (math.floor(x_dest + 0.99), math. floor(y_dest)), 'bottomleft': (math.floor(x_dest), math.floor( y_dest + 0.99)), 'bottomright': (math.floor(x_dest + 0.99), math.floor(y_dest + 0.99))} return tiles_coordinates_dict @classmethod def from_json_dict(cls, json_dict) ->MovePlayerCommand: return cls(json_dict['direction']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'move' json_dict['direction'] = self._direction return json_dict class BuildCommand(ServerCommand): def __init__(self, tile: tuple, building_name: str): ServerCommand.__init__(self) self._tile = tile self._building_name = building_name def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.backgrounds: self.check_result += 'tile {} not in town'.format(self._tile) return background = self.town.backgrounds[self._tile] BackgroundBuildCheck(background, self._building_name).check(self. check_result) if self._tile in self.town.buildings: self.check_result += ("Can't build {} : {} already built on {}" .format(self._building_name, self.town.buildings[self._tile ].name, self._tile)) def _do(self): self.town.set_building(BuildingFactory.create_building_by_name(self ._building_name), self._tile) def __repr__(self): msg = 'Build ServerCommand : {} in {}'.format(self._building_name, self._tile) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->BuildCommand: return cls(json_dict['tile'], json_dict['building_name']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'build' json_dict['building_name'] = self._building_name json_dict['tile'] = self._tile return json_dict class CollectResourceCommand(ServerCommand): ENERGY_COST = 30 def __init__(self, tile: tuple, item: Item): ServerCommand.__init__(self) self._tile = tile self._item = item def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.resources: self.check_result += 'No resource in {}'.format(self._tile) return resource = self.town.resources[self._tile] TransactionCheck(resource, player, self._item).check(self.check_result) EnergyCheck(player, CollectResourceCommand.ENERGY_COST).check(self. check_result) def _do(self): player = self.town.get_player(self.client_id) player.inventory.add_item(self._item) resource = self.town.resources[self._tile] resource.inventory.remove_item(self._item) player.energy.value -= CollectResourceCommand.ENERGY_COST def __repr__(self): msg = 'Collect Resource ServerCommand : {}'.format(self._item) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->CollectResourceCommand: return cls(json_dict['tile'], Item.from_json_dict(json_dict['item'])) def to_json_dict(self) ->dict: json_dict = super().to_json_dict() json_dict['command'] = 'collect' json_dict['tile'] = self._tile json_dict['item'] = self._item.to_json_dict() return json_dict class BuildingProcessCommand(ServerCommand): def __init__(self, tile: tuple, building_process: BuildingProcess): ServerCommand.__init__(self) self._tile = tile self._building_process = building_process def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.buildings: self.check_result += 'No building on {}'.format(self._tile) return building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) InventoryRemoveCheck(building.inventory, self._building_process. item_required).check(self.check_result) InventoryAddCheck(building.inventory, self._building_process. item_result).check(self.check_result) EnergyCheck(player, self._building_process.energy_required).check(self .check_result) def _do(self): building = self.town.buildings[self._tile] building.inventory.remove_item(self._building_process.item_required) building.inventory.add_item(self._building_process.item_result) player = self.town.get_player(self.client_id) player.energy.value -= self._building_process.energy_required def __repr__(self): msg = 'BuildingProcessCommand ServerCommand {}'.format(self. _building_process) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingProcess.from_json_dict( json_dict['building_process'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'building_process' json_dict['tile'] = self._tile json_dict['building_process'] = self._building_process.to_json_dict() return json_dict class BuyCommand(ServerCommand): def __init__(self, tile: tuple, transaction: BuildingTransaction): ServerCommand.__init__(self) self._tile = tile self._transaction = transaction def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) item = Item(self._transaction.item_name, 1) AvailableCheck(player).check(self.check_result) TransactionCheck(building, player, item).check(self.check_result) def _do(self): item = Item(self._transaction.item_name, 1) building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) building.inventory.remove_item(item) player.inventory.add_item(item) def __repr__(self): msg = 'BuyCommand ServerCommand {}'.format(self._transaction.item_name) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingTransaction.from_json_dict( json_dict['transaction'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'buy' json_dict['tile'] = self._tile json_dict['transaction'] = self._transaction.to_json_dict() return json_dict class SellCommand(ServerCommand): def __init__(self, tile: tuple, transaction: BuildingTransaction): ServerCommand.__init__(self) self._tile = tile self._transaction = transaction def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) item = Item(self._transaction.item_name, 1) AvailableCheck(player).check(self.check_result) TransactionCheck(player, building, item).check(self.check_result) def _do(self): item = Item(self._transaction.item_name, 1) building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) building.inventory.add_item(item) player.inventory.remove_item(item) def __repr__(self): msg = 'SellCommand ServerCommand {}'.format(self._transaction.item_name ) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], BuildingTransaction.from_json_dict( json_dict['transaction'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'sell' json_dict['tile'] = self._tile json_dict['transaction'] = self._transaction.to_json_dict() return json_dict class BuildBuildingCommand(ServerCommand): ENERGY_COST = 20 def __init__(self, tile: tuple, item: Item): ServerCommand.__init__(self) self._item = item self._tile = tile def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) EnergyCheck(player, BuildBuildingCommand.ENERGY_COST).check(self. check_result) TransactionCheck(building, building, self._item).check(self. check_result) def _do(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) player.energy.value -= BuildBuildingCommand.ENERGY_COST building.inventory.remove_item(self._item) building.construction_inventory.add_item(self._item) def __repr__(self): msg = 'Build Building ServerCommand {}'.format(self._item) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile'], Item.from_json_dict(json_dict['item'])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'build_building' json_dict['tile'] = self._tile json_dict['item'] = self._item.to_json_dict() return json_dict class UpgradeBuildingCommand(ServerCommand): def __init__(self, tile: tuple): ServerCommand.__init__(self) self._tile = tile def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if not building.construction_inventory.is_full(): self.check_result += 'construction not finished' def _do(self): building = self.town.buildings[self._tile] building.upgrade() def __repr__(self): msg = 'Upgrade Building ServerCommand {}'.format(self._tile) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict['tile']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'upgrade_building' json_dict['tile'] = self._tile return json_dict class SleepCommand(ServerCommand): ENERGY_REGEN_IN_HOUSE = 4 ENERGY_REGEN_IN_GROUND = 2 def __init__(self): ServerCommand.__init__(self) def _check(self): tile = self.town.get_player_tile(self.client_id) if tile in self.town.buildings and self.town.buildings[tile ].name != 'cabane': self.check_result += "Can't sleep in building" def _do(self): player = self.town.get_player(self.client_id) tile = self.town.get_player_tile(self.client_id) player.status = 'sleep' player.energy.regen = SleepCommand.ENERGY_REGEN_IN_GROUND if tile in self.town.buildings and self.town.buildings[tile ].name == 'cabane': player.energy.regen = SleepCommand.ENERGY_REGEN_IN_HOUSE def __repr__(self): msg = 'Sleep command. Player id: {}'.format(self.client_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->SleepCommand: return cls() def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'sleep' return json_dict class WakeUpCommand(ServerCommand): def __init__(self): ServerCommand.__init__(self) def _check(self): player = self.town.get_player(self.client_id) is_awaken_check = CheckResult() AwakenCheck(player).check(is_awaken_check) if is_awaken_check: self.check_result += '{} is already awake'.format(player.name) def _do(self): player = self.town.get_player(self.client_id) player.status = 'idle' player.energy.reset_regen() def __repr__(self): msg = 'Wake up command. Player id: {}'.format(self.client_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->WakeUpCommand: return cls() def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'wakeup' return json_dict class HelpPlayerCommand(ServerCommand): ENERGY_TO_HELP = 20 HEALTH_TO_GIVE = 1 def __init__(self, player_to_help_id): ServerCommand.__init__(self) self._player_to_help_id = player_to_help_id def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self.client_id not in self.town.players.keys(): self.check_result += 'Player {} does not exist'.format(self. client_id) return if self._player_to_help_id not in self.town.players.keys(): self.check_result += 'Player {} does not exist'.format(self. _player_to_help_id) return if self.town.get_player_tile(self.client_id ) != self.town.get_player_tile(self._player_to_help_id): self.check_result += ('Players {} and {} are not in the same tile' .format(self.client_id, self._player_to_help_id)) return EnergyCheck(self.town.get_player(self.client_id), HelpPlayerCommand .ENERGY_TO_HELP).check(self.check_result) is_alive_check = CheckResult() AvailableCheck(self.town.get_player(self._player_to_help_id)).check( is_alive_check) if is_alive_check: self.check_result += '{} has enough health to keep moving'.format( self._player_to_help_id) def _do(self): player_helper = self.town.get_player(self.client_id) player_helper.energy.value -= HelpPlayerCommand.ENERGY_TO_HELP player_to_help = self.town.get_player(self._player_to_help_id) player_to_help.health.value += HelpPlayerCommand.HEALTH_TO_GIVE def __repr__(self): msg = 'HelpPlayerCommand: try to help {}'.format(self. _player_to_help_id) if not self.check_result: msg += '\n{}'.format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) ->HelpPlayerCommand: return cls(json_dict['player_to_help_id']) def to_json_dict(self): json_dict = super().to_json_dict() json_dict['command'] = 'help' json_dict['player_to_help_id'] = self._player_to_help_id return json_dict class CommandsFactory: COMMANDS_DICT = {} COMMANDS_DICT['move'] = MovePlayerCommand COMMANDS_DICT['build'] = BuildCommand COMMANDS_DICT['collect'] = CollectResourceCommand COMMANDS_DICT['building_process'] = BuildingProcessCommand COMMANDS_DICT['buy'] = BuyCommand COMMANDS_DICT['sell'] = SellCommand COMMANDS_DICT['build_building'] = BuildBuildingCommand COMMANDS_DICT['upgrade_building'] = UpgradeBuildingCommand COMMANDS_DICT['help'] = HelpPlayerCommand COMMANDS_DICT['sleep'] = SleepCommand COMMANDS_DICT['wakeup'] = WakeUpCommand @staticmethod def from_podsixnet(podsixnet_dict): if podsixnet_dict['command'] in CommandsFactory.COMMANDS_DICT: command = CommandsFactory.COMMANDS_DICT[podsixnet_dict['command'] ].from_json_dict(podsixnet_dict) else: raise NotImplementedError command.client_id = podsixnet_dict['client_id'] command.check_result = CheckResult.from_json_dict(podsixnet_dict[ 'check_result']) return command <|reserved_special_token_1|> from __future__ import annotations import math from abc import abstractmethod from pytown_core.patterns.behavioral import Command from pytown_core.serializers import IJSONSerializable from .buildings import BuildingProcess, BuildingTransaction from .buildings.factory import BuildingFactory from .check import ( AvailableCheck, AwakenCheck, BackgroundBuildCheck, BackgroundMovementCheck, CheckResult, EnergyCheck, InventoryAddCheck, InventoryRemoveCheck, TransactionCheck, ) from .inventory import Item class ServerCommand(IJSONSerializable, Command): def __init__(self): self.client_id = None self.town = None # TODO: will be set by townmanager self.check_result = CheckResult() def execute(self): self._check() if self.check_result: self._do() @abstractmethod def _check(self): raise NotImplementedError @abstractmethod def _do(self): raise NotImplementedError @abstractmethod def __repr__(self): pass @classmethod @abstractmethod def from_json_dict(cls, json_dict) -> ServerCommand: raise NotImplementedError def to_json_dict(self) -> dict: json_dict = {} json_dict["client_id"] = self.client_id json_dict["check_result"] = self.check_result.to_json_dict() return json_dict def to_podsixnet(self): podsixnet_dict = self.to_json_dict() podsixnet_dict["action"] = "command" return podsixnet_dict class MovePlayerCommand(ServerCommand): ENERGY_COST = 1 def __init__(self, direction: str): ServerCommand.__init__(self) self._direction = direction def __repr__(self): msg = "Move ServerCommand : {}".format(self._direction) if not self.check_result: msg += "\n{}".format(self.check_result) return msg def _check(self): player = self.town.get_player(self.client_id) EnergyCheck(player, MovePlayerCommand.ENERGY_COST).check(self.check_result) AvailableCheck(player).check(self.check_result) for tile in self._get_tiles_coordinates_dict().values(): if tile not in self.town.backgrounds.keys(): self.check_result += "tile {} not in town".format(tile) return BackgroundMovementCheck(self.town.backgrounds[tile], player).check( self.check_result ) def _do(self): (x_dest, y_dest) = self.tile_dest player = self.town.get_player(self.client_id) player.status = "move" player.direction = self._direction player.energy.value -= MovePlayerCommand.ENERGY_COST player.x = x_dest player.y = y_dest @property def tile_dest(self) -> tuple: movement_matrix = {} movement_matrix["left"] = (-1, 0) movement_matrix["right"] = (+1, 0) movement_matrix["up"] = (0, -1) movement_matrix["down"] = (0, +1) player = self.town.get_player(self.client_id) tile = self.town.get_player_tile(self.client_id) background = self.town.backgrounds[tile] bg_multiplicator = background.move_multiplicator x_dest = ( player.x + movement_matrix[self._direction][0] * bg_multiplicator * player.velocity ) y_dest = ( player.y + movement_matrix[self._direction][1] * bg_multiplicator * player.velocity ) return (x_dest, y_dest) def _get_tiles_coordinates_dict(self): (x_dest, y_dest) = self.tile_dest tiles_coordinates_dict = { "topleft": (math.floor(x_dest), math.floor(y_dest)), "topright": (math.floor(x_dest + 0.99), math.floor(y_dest)), "bottomleft": (math.floor(x_dest), math.floor(y_dest + 0.99)), "bottomright": (math.floor(x_dest + 0.99), math.floor(y_dest + 0.99)), } return tiles_coordinates_dict @classmethod def from_json_dict(cls, json_dict) -> MovePlayerCommand: return cls(json_dict["direction"]) def to_json_dict(self): json_dict = super().to_json_dict() json_dict["command"] = "move" json_dict["direction"] = self._direction return json_dict class BuildCommand(ServerCommand): def __init__(self, tile: tuple, building_name: str): ServerCommand.__init__(self) self._tile = tile self._building_name = building_name def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.backgrounds: self.check_result += "tile {} not in town".format(self._tile) return background = self.town.backgrounds[self._tile] BackgroundBuildCheck(background, self._building_name).check(self.check_result) if self._tile in self.town.buildings: self.check_result += "Can't build {} : {} already built on {}".format( self._building_name, self.town.buildings[self._tile].name, self._tile ) def _do(self): self.town.set_building( BuildingFactory.create_building_by_name(self._building_name), self._tile ) def __repr__(self): msg = "Build ServerCommand : {} in {}".format(self._building_name, self._tile) if not self.check_result: msg += "\n{}".format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) -> BuildCommand: return cls(json_dict["tile"], json_dict["building_name"]) def to_json_dict(self): json_dict = super().to_json_dict() json_dict["command"] = "build" json_dict["building_name"] = self._building_name json_dict["tile"] = self._tile return json_dict class CollectResourceCommand(ServerCommand): ENERGY_COST = 30 def __init__(self, tile: tuple, item: Item): ServerCommand.__init__(self) self._tile = tile self._item = item def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.resources: self.check_result += "No resource in {}".format(self._tile) return resource = self.town.resources[self._tile] TransactionCheck(resource, player, self._item).check(self.check_result) EnergyCheck(player, CollectResourceCommand.ENERGY_COST).check(self.check_result) def _do(self): player = self.town.get_player(self.client_id) player.inventory.add_item(self._item) resource = self.town.resources[self._tile] resource.inventory.remove_item(self._item) player.energy.value -= CollectResourceCommand.ENERGY_COST def __repr__(self): msg = "Collect Resource ServerCommand : {}".format(self._item) if not self.check_result: msg += "\n{}".format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) -> CollectResourceCommand: return cls(json_dict["tile"], Item.from_json_dict(json_dict["item"])) def to_json_dict(self) -> dict: json_dict = super().to_json_dict() json_dict["command"] = "collect" json_dict["tile"] = self._tile json_dict["item"] = self._item.to_json_dict() return json_dict class BuildingProcessCommand(ServerCommand): def __init__(self, tile: tuple, building_process: BuildingProcess): ServerCommand.__init__(self) self._tile = tile self._building_process = building_process def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if self._tile not in self.town.buildings: self.check_result += "No building on {}".format(self._tile) return building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) InventoryRemoveCheck( building.inventory, self._building_process.item_required ).check(self.check_result) InventoryAddCheck(building.inventory, self._building_process.item_result).check( self.check_result ) EnergyCheck(player, self._building_process.energy_required).check( self.check_result ) def _do(self): building = self.town.buildings[self._tile] building.inventory.remove_item(self._building_process.item_required) building.inventory.add_item(self._building_process.item_result) player = self.town.get_player(self.client_id) player.energy.value -= self._building_process.energy_required def __repr__(self): msg = "BuildingProcessCommand ServerCommand {}".format(self._building_process) if not self.check_result: msg += "\n{}".format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls( json_dict["tile"], BuildingProcess.from_json_dict(json_dict["building_process"]), ) def to_json_dict(self): json_dict = super().to_json_dict() json_dict["command"] = "building_process" json_dict["tile"] = self._tile json_dict["building_process"] = self._building_process.to_json_dict() return json_dict class BuyCommand(ServerCommand): def __init__(self, tile: tuple, transaction: BuildingTransaction): ServerCommand.__init__(self) self._tile = tile self._transaction = transaction def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) item = Item(self._transaction.item_name, 1) AvailableCheck(player).check(self.check_result) TransactionCheck(building, player, item).check(self.check_result) def _do(self): item = Item(self._transaction.item_name, 1) building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) building.inventory.remove_item(item) player.inventory.add_item(item) def __repr__(self): msg = "BuyCommand ServerCommand {}".format(self._transaction.item_name) if not self.check_result: msg += "\n{}".format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls( json_dict["tile"], BuildingTransaction.from_json_dict(json_dict["transaction"]), ) def to_json_dict(self): json_dict = super().to_json_dict() json_dict["command"] = "buy" json_dict["tile"] = self._tile json_dict["transaction"] = self._transaction.to_json_dict() return json_dict class SellCommand(ServerCommand): def __init__(self, tile: tuple, transaction: BuildingTransaction): ServerCommand.__init__(self) self._tile = tile self._transaction = transaction def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) item = Item(self._transaction.item_name, 1) AvailableCheck(player).check(self.check_result) TransactionCheck(player, building, item).check(self.check_result) def _do(self): item = Item(self._transaction.item_name, 1) building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) building.inventory.add_item(item) player.inventory.remove_item(item) def __repr__(self): msg = "SellCommand ServerCommand {}".format(self._transaction.item_name) if not self.check_result: msg += "\n{}".format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls( json_dict["tile"], BuildingTransaction.from_json_dict(json_dict["transaction"]), ) def to_json_dict(self): json_dict = super().to_json_dict() json_dict["command"] = "sell" json_dict["tile"] = self._tile json_dict["transaction"] = self._transaction.to_json_dict() return json_dict class BuildBuildingCommand(ServerCommand): ENERGY_COST = 20 def __init__(self, tile: tuple, item: Item): ServerCommand.__init__(self) self._item = item self._tile = tile def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) EnergyCheck(player, BuildBuildingCommand.ENERGY_COST).check(self.check_result) TransactionCheck(building, building, self._item).check(self.check_result) def _do(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) player.energy.value -= BuildBuildingCommand.ENERGY_COST building.inventory.remove_item(self._item) building.construction_inventory.add_item(self._item) def __repr__(self): msg = "Build Building ServerCommand {}".format(self._item) if not self.check_result: msg += "\n{}".format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict["tile"], Item.from_json_dict(json_dict["item"])) def to_json_dict(self): json_dict = super().to_json_dict() json_dict["command"] = "build_building" json_dict["tile"] = self._tile json_dict["item"] = self._item.to_json_dict() return json_dict class UpgradeBuildingCommand(ServerCommand): def __init__(self, tile: tuple): ServerCommand.__init__(self) self._tile = tile def _check(self): building = self.town.buildings[self._tile] player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) if not building.construction_inventory.is_full(): self.check_result += "construction not finished" def _do(self): building = self.town.buildings[self._tile] building.upgrade() def __repr__(self): msg = "Upgrade Building ServerCommand {}".format(self._tile) if not self.check_result: msg += "\n{}".format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict): return cls(json_dict["tile"]) def to_json_dict(self): json_dict = super().to_json_dict() json_dict["command"] = "upgrade_building" json_dict["tile"] = self._tile return json_dict class SleepCommand(ServerCommand): ENERGY_REGEN_IN_HOUSE = 4 ENERGY_REGEN_IN_GROUND = 2 def __init__(self): ServerCommand.__init__(self) def _check(self): tile = self.town.get_player_tile(self.client_id) # Player not in building if tile in self.town.buildings and self.town.buildings[tile].name != "cabane": self.check_result += "Can't sleep in building" def _do(self): player = self.town.get_player(self.client_id) tile = self.town.get_player_tile(self.client_id) # Change player sprite player.status = "sleep" player.energy.regen = SleepCommand.ENERGY_REGEN_IN_GROUND # Change energy regeneration depending on where he sleeps if tile in self.town.buildings and self.town.buildings[tile].name == "cabane": player.energy.regen = SleepCommand.ENERGY_REGEN_IN_HOUSE def __repr__(self): msg = "Sleep command. Player id: {}".format(self.client_id) if not self.check_result: msg += "\n{}".format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) -> SleepCommand: return cls() def to_json_dict(self): json_dict = super().to_json_dict() json_dict["command"] = "sleep" return json_dict class WakeUpCommand(ServerCommand): def __init__(self): ServerCommand.__init__(self) def _check(self): player = self.town.get_player(self.client_id) is_awaken_check = CheckResult() AwakenCheck(player).check(is_awaken_check) if is_awaken_check: self.check_result += "{} is already awake".format(player.name) def _do(self): player = self.town.get_player(self.client_id) player.status = "idle" player.energy.reset_regen() def __repr__(self): msg = "Wake up command. Player id: {}".format(self.client_id) if not self.check_result: msg += "\n{}".format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) -> WakeUpCommand: return cls() def to_json_dict(self): json_dict = super().to_json_dict() json_dict["command"] = "wakeup" return json_dict class HelpPlayerCommand(ServerCommand): ENERGY_TO_HELP = 20 HEALTH_TO_GIVE = 1 def __init__(self, player_to_help_id): ServerCommand.__init__(self) self._player_to_help_id = player_to_help_id def _check(self): player = self.town.get_player(self.client_id) AvailableCheck(player).check(self.check_result) # The two players id exists in the town ? if self.client_id not in self.town.players.keys(): self.check_result += "Player {} does not exist".format(self.client_id) return if self._player_to_help_id not in self.town.players.keys(): self.check_result += "Player {} does not exist".format( self._player_to_help_id ) return # Check if the two players are in the same tile if self.town.get_player_tile(self.client_id) != self.town.get_player_tile( self._player_to_help_id ): self.check_result += "Players {} and {} are not in the same tile".format( self.client_id, self._player_to_help_id ) return # Check if I have enough energy to help EnergyCheck( self.town.get_player(self.client_id), HelpPlayerCommand.ENERGY_TO_HELP ).check(self.check_result) # Check if patient doesn't have health is_alive_check = CheckResult() AvailableCheck(self.town.get_player(self._player_to_help_id)).check( is_alive_check ) if is_alive_check: self.check_result += "{} has enough health to keep moving".format( self._player_to_help_id ) def _do(self): player_helper = self.town.get_player(self.client_id) player_helper.energy.value -= HelpPlayerCommand.ENERGY_TO_HELP player_to_help = self.town.get_player(self._player_to_help_id) player_to_help.health.value += HelpPlayerCommand.HEALTH_TO_GIVE def __repr__(self): msg = "HelpPlayerCommand: try to help {}".format(self._player_to_help_id) if not self.check_result: msg += "\n{}".format(self.check_result) return msg @classmethod def from_json_dict(cls, json_dict: dict) -> HelpPlayerCommand: return cls(json_dict["player_to_help_id"]) def to_json_dict(self): json_dict = super().to_json_dict() json_dict["command"] = "help" json_dict["player_to_help_id"] = self._player_to_help_id return json_dict class CommandsFactory: COMMANDS_DICT = {} COMMANDS_DICT["move"] = MovePlayerCommand COMMANDS_DICT["build"] = BuildCommand COMMANDS_DICT["collect"] = CollectResourceCommand COMMANDS_DICT["building_process"] = BuildingProcessCommand COMMANDS_DICT["buy"] = BuyCommand COMMANDS_DICT["sell"] = SellCommand COMMANDS_DICT["build_building"] = BuildBuildingCommand COMMANDS_DICT["upgrade_building"] = UpgradeBuildingCommand COMMANDS_DICT["help"] = HelpPlayerCommand COMMANDS_DICT["sleep"] = SleepCommand COMMANDS_DICT["wakeup"] = WakeUpCommand @staticmethod def from_podsixnet(podsixnet_dict): if podsixnet_dict["command"] in CommandsFactory.COMMANDS_DICT: command = CommandsFactory.COMMANDS_DICT[ podsixnet_dict["command"] ].from_json_dict(podsixnet_dict) else: raise NotImplementedError command.client_id = podsixnet_dict["client_id"] command.check_result = CheckResult.from_json_dict( podsixnet_dict["check_result"] ) return command
flexible
{ "blob_id": "22b9868063d6c5fc3f8b08a6e725fff40f4a1a03", "index": 3886, "step-1": "<mask token>\n\n\nclass BuildCommand(ServerCommand):\n\n def __init__(self, tile: tuple, building_name: str):\n ServerCommand.__init__(self)\n self._tile = tile\n self._building_name = building_name\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass CollectResourceCommand(ServerCommand):\n ENERGY_COST = 30\n\n def __init__(self, tile: tuple, item: Item):\n ServerCommand.__init__(self)\n self._tile = tile\n self._item = item\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self._tile not in self.town.resources:\n self.check_result += 'No resource in {}'.format(self._tile)\n return\n resource = self.town.resources[self._tile]\n TransactionCheck(resource, player, self._item).check(self.check_result)\n EnergyCheck(player, CollectResourceCommand.ENERGY_COST).check(self.\n check_result)\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n player.inventory.add_item(self._item)\n resource = self.town.resources[self._tile]\n resource.inventory.remove_item(self._item)\n player.energy.value -= CollectResourceCommand.ENERGY_COST\n\n def __repr__(self):\n msg = 'Collect Resource ServerCommand : {}'.format(self._item)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->CollectResourceCommand:\n return cls(json_dict['tile'], Item.from_json_dict(json_dict['item']))\n\n def to_json_dict(self) ->dict:\n json_dict = super().to_json_dict()\n json_dict['command'] = 'collect'\n json_dict['tile'] = self._tile\n json_dict['item'] = self._item.to_json_dict()\n return json_dict\n\n\nclass BuildingProcessCommand(ServerCommand):\n\n def __init__(self, tile: tuple, building_process: BuildingProcess):\n ServerCommand.__init__(self)\n self._tile = tile\n self._building_process = building_process\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self._tile not in self.town.buildings:\n self.check_result += 'No building on {}'.format(self._tile)\n return\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n InventoryRemoveCheck(building.inventory, self._building_process.\n item_required).check(self.check_result)\n InventoryAddCheck(building.inventory, self._building_process.\n item_result).check(self.check_result)\n EnergyCheck(player, self._building_process.energy_required).check(self\n .check_result)\n\n def _do(self):\n building = self.town.buildings[self._tile]\n building.inventory.remove_item(self._building_process.item_required)\n building.inventory.add_item(self._building_process.item_result)\n player = self.town.get_player(self.client_id)\n player.energy.value -= self._building_process.energy_required\n\n def __repr__(self):\n msg = 'BuildingProcessCommand ServerCommand {}'.format(self.\n _building_process)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingProcess.from_json_dict(\n json_dict['building_process']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'building_process'\n json_dict['tile'] = self._tile\n json_dict['building_process'] = self._building_process.to_json_dict()\n return json_dict\n\n\nclass BuyCommand(ServerCommand):\n\n def __init__(self, tile: tuple, transaction: BuildingTransaction):\n ServerCommand.__init__(self)\n self._tile = tile\n self._transaction = transaction\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n item = Item(self._transaction.item_name, 1)\n AvailableCheck(player).check(self.check_result)\n TransactionCheck(building, player, item).check(self.check_result)\n\n def _do(self):\n item = Item(self._transaction.item_name, 1)\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n building.inventory.remove_item(item)\n player.inventory.add_item(item)\n\n def __repr__(self):\n msg = 'BuyCommand ServerCommand {}'.format(self._transaction.item_name)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingTransaction.from_json_dict(\n json_dict['transaction']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'buy'\n json_dict['tile'] = self._tile\n json_dict['transaction'] = self._transaction.to_json_dict()\n return json_dict\n\n\nclass SellCommand(ServerCommand):\n\n def __init__(self, tile: tuple, transaction: BuildingTransaction):\n ServerCommand.__init__(self)\n self._tile = tile\n self._transaction = transaction\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n item = Item(self._transaction.item_name, 1)\n AvailableCheck(player).check(self.check_result)\n TransactionCheck(player, building, item).check(self.check_result)\n\n def _do(self):\n item = Item(self._transaction.item_name, 1)\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n building.inventory.add_item(item)\n player.inventory.remove_item(item)\n\n def __repr__(self):\n msg = 'SellCommand ServerCommand {}'.format(self._transaction.item_name\n )\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingTransaction.from_json_dict(\n json_dict['transaction']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'sell'\n json_dict['tile'] = self._tile\n json_dict['transaction'] = self._transaction.to_json_dict()\n return json_dict\n\n\nclass BuildBuildingCommand(ServerCommand):\n ENERGY_COST = 20\n\n def __init__(self, tile: tuple, item: Item):\n ServerCommand.__init__(self)\n self._item = item\n self._tile = tile\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n EnergyCheck(player, BuildBuildingCommand.ENERGY_COST).check(self.\n check_result)\n TransactionCheck(building, building, self._item).check(self.\n check_result)\n\n def _do(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n player.energy.value -= BuildBuildingCommand.ENERGY_COST\n building.inventory.remove_item(self._item)\n building.construction_inventory.add_item(self._item)\n\n def __repr__(self):\n msg = 'Build Building ServerCommand {}'.format(self._item)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], Item.from_json_dict(json_dict['item']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'build_building'\n json_dict['tile'] = self._tile\n json_dict['item'] = self._item.to_json_dict()\n return json_dict\n\n\nclass UpgradeBuildingCommand(ServerCommand):\n\n def __init__(self, tile: tuple):\n ServerCommand.__init__(self)\n self._tile = tile\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if not building.construction_inventory.is_full():\n self.check_result += 'construction not finished'\n\n def _do(self):\n building = self.town.buildings[self._tile]\n building.upgrade()\n\n def __repr__(self):\n msg = 'Upgrade Building ServerCommand {}'.format(self._tile)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'upgrade_building'\n json_dict['tile'] = self._tile\n return json_dict\n\n\nclass SleepCommand(ServerCommand):\n ENERGY_REGEN_IN_HOUSE = 4\n ENERGY_REGEN_IN_GROUND = 2\n\n def __init__(self):\n ServerCommand.__init__(self)\n\n def _check(self):\n tile = self.town.get_player_tile(self.client_id)\n if tile in self.town.buildings and self.town.buildings[tile\n ].name != 'cabane':\n self.check_result += \"Can't sleep in building\"\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n tile = self.town.get_player_tile(self.client_id)\n player.status = 'sleep'\n player.energy.regen = SleepCommand.ENERGY_REGEN_IN_GROUND\n if tile in self.town.buildings and self.town.buildings[tile\n ].name == 'cabane':\n player.energy.regen = SleepCommand.ENERGY_REGEN_IN_HOUSE\n\n def __repr__(self):\n msg = 'Sleep command. Player id: {}'.format(self.client_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->SleepCommand:\n return cls()\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'sleep'\n return json_dict\n\n\nclass WakeUpCommand(ServerCommand):\n\n def __init__(self):\n ServerCommand.__init__(self)\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n is_awaken_check = CheckResult()\n AwakenCheck(player).check(is_awaken_check)\n if is_awaken_check:\n self.check_result += '{} is already awake'.format(player.name)\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n player.status = 'idle'\n player.energy.reset_regen()\n\n def __repr__(self):\n msg = 'Wake up command. Player id: {}'.format(self.client_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->WakeUpCommand:\n return cls()\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'wakeup'\n return json_dict\n\n\nclass HelpPlayerCommand(ServerCommand):\n ENERGY_TO_HELP = 20\n HEALTH_TO_GIVE = 1\n\n def __init__(self, player_to_help_id):\n ServerCommand.__init__(self)\n self._player_to_help_id = player_to_help_id\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self.client_id not in self.town.players.keys():\n self.check_result += 'Player {} does not exist'.format(self.\n client_id)\n return\n if self._player_to_help_id not in self.town.players.keys():\n self.check_result += 'Player {} does not exist'.format(self.\n _player_to_help_id)\n return\n if self.town.get_player_tile(self.client_id\n ) != self.town.get_player_tile(self._player_to_help_id):\n self.check_result += ('Players {} and {} are not in the same tile'\n .format(self.client_id, self._player_to_help_id))\n return\n EnergyCheck(self.town.get_player(self.client_id), HelpPlayerCommand\n .ENERGY_TO_HELP).check(self.check_result)\n is_alive_check = CheckResult()\n AvailableCheck(self.town.get_player(self._player_to_help_id)).check(\n is_alive_check)\n if is_alive_check:\n self.check_result += '{} has enough health to keep moving'.format(\n self._player_to_help_id)\n\n def _do(self):\n player_helper = self.town.get_player(self.client_id)\n player_helper.energy.value -= HelpPlayerCommand.ENERGY_TO_HELP\n player_to_help = self.town.get_player(self._player_to_help_id)\n player_to_help.health.value += HelpPlayerCommand.HEALTH_TO_GIVE\n\n def __repr__(self):\n msg = 'HelpPlayerCommand: try to help {}'.format(self.\n _player_to_help_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->HelpPlayerCommand:\n return cls(json_dict['player_to_help_id'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'help'\n json_dict['player_to_help_id'] = self._player_to_help_id\n return json_dict\n\n\nclass CommandsFactory:\n COMMANDS_DICT = {}\n COMMANDS_DICT['move'] = MovePlayerCommand\n COMMANDS_DICT['build'] = BuildCommand\n COMMANDS_DICT['collect'] = CollectResourceCommand\n COMMANDS_DICT['building_process'] = BuildingProcessCommand\n COMMANDS_DICT['buy'] = BuyCommand\n COMMANDS_DICT['sell'] = SellCommand\n COMMANDS_DICT['build_building'] = BuildBuildingCommand\n COMMANDS_DICT['upgrade_building'] = UpgradeBuildingCommand\n COMMANDS_DICT['help'] = HelpPlayerCommand\n COMMANDS_DICT['sleep'] = SleepCommand\n COMMANDS_DICT['wakeup'] = WakeUpCommand\n\n @staticmethod\n def from_podsixnet(podsixnet_dict):\n if podsixnet_dict['command'] in CommandsFactory.COMMANDS_DICT:\n command = CommandsFactory.COMMANDS_DICT[podsixnet_dict['command']\n ].from_json_dict(podsixnet_dict)\n else:\n raise NotImplementedError\n command.client_id = podsixnet_dict['client_id']\n command.check_result = CheckResult.from_json_dict(podsixnet_dict[\n 'check_result'])\n return command\n", "step-2": "<mask token>\n\n\nclass BuildCommand(ServerCommand):\n\n def __init__(self, tile: tuple, building_name: str):\n ServerCommand.__init__(self)\n self._tile = tile\n self._building_name = building_name\n <mask token>\n <mask token>\n <mask token>\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->BuildCommand:\n return cls(json_dict['tile'], json_dict['building_name'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'build'\n json_dict['building_name'] = self._building_name\n json_dict['tile'] = self._tile\n return json_dict\n\n\nclass CollectResourceCommand(ServerCommand):\n ENERGY_COST = 30\n\n def __init__(self, tile: tuple, item: Item):\n ServerCommand.__init__(self)\n self._tile = tile\n self._item = item\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self._tile not in self.town.resources:\n self.check_result += 'No resource in {}'.format(self._tile)\n return\n resource = self.town.resources[self._tile]\n TransactionCheck(resource, player, self._item).check(self.check_result)\n EnergyCheck(player, CollectResourceCommand.ENERGY_COST).check(self.\n check_result)\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n player.inventory.add_item(self._item)\n resource = self.town.resources[self._tile]\n resource.inventory.remove_item(self._item)\n player.energy.value -= CollectResourceCommand.ENERGY_COST\n\n def __repr__(self):\n msg = 'Collect Resource ServerCommand : {}'.format(self._item)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->CollectResourceCommand:\n return cls(json_dict['tile'], Item.from_json_dict(json_dict['item']))\n\n def to_json_dict(self) ->dict:\n json_dict = super().to_json_dict()\n json_dict['command'] = 'collect'\n json_dict['tile'] = self._tile\n json_dict['item'] = self._item.to_json_dict()\n return json_dict\n\n\nclass BuildingProcessCommand(ServerCommand):\n\n def __init__(self, tile: tuple, building_process: BuildingProcess):\n ServerCommand.__init__(self)\n self._tile = tile\n self._building_process = building_process\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self._tile not in self.town.buildings:\n self.check_result += 'No building on {}'.format(self._tile)\n return\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n InventoryRemoveCheck(building.inventory, self._building_process.\n item_required).check(self.check_result)\n InventoryAddCheck(building.inventory, self._building_process.\n item_result).check(self.check_result)\n EnergyCheck(player, self._building_process.energy_required).check(self\n .check_result)\n\n def _do(self):\n building = self.town.buildings[self._tile]\n building.inventory.remove_item(self._building_process.item_required)\n building.inventory.add_item(self._building_process.item_result)\n player = self.town.get_player(self.client_id)\n player.energy.value -= self._building_process.energy_required\n\n def __repr__(self):\n msg = 'BuildingProcessCommand ServerCommand {}'.format(self.\n _building_process)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingProcess.from_json_dict(\n json_dict['building_process']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'building_process'\n json_dict['tile'] = self._tile\n json_dict['building_process'] = self._building_process.to_json_dict()\n return json_dict\n\n\nclass BuyCommand(ServerCommand):\n\n def __init__(self, tile: tuple, transaction: BuildingTransaction):\n ServerCommand.__init__(self)\n self._tile = tile\n self._transaction = transaction\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n item = Item(self._transaction.item_name, 1)\n AvailableCheck(player).check(self.check_result)\n TransactionCheck(building, player, item).check(self.check_result)\n\n def _do(self):\n item = Item(self._transaction.item_name, 1)\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n building.inventory.remove_item(item)\n player.inventory.add_item(item)\n\n def __repr__(self):\n msg = 'BuyCommand ServerCommand {}'.format(self._transaction.item_name)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingTransaction.from_json_dict(\n json_dict['transaction']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'buy'\n json_dict['tile'] = self._tile\n json_dict['transaction'] = self._transaction.to_json_dict()\n return json_dict\n\n\nclass SellCommand(ServerCommand):\n\n def __init__(self, tile: tuple, transaction: BuildingTransaction):\n ServerCommand.__init__(self)\n self._tile = tile\n self._transaction = transaction\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n item = Item(self._transaction.item_name, 1)\n AvailableCheck(player).check(self.check_result)\n TransactionCheck(player, building, item).check(self.check_result)\n\n def _do(self):\n item = Item(self._transaction.item_name, 1)\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n building.inventory.add_item(item)\n player.inventory.remove_item(item)\n\n def __repr__(self):\n msg = 'SellCommand ServerCommand {}'.format(self._transaction.item_name\n )\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingTransaction.from_json_dict(\n json_dict['transaction']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'sell'\n json_dict['tile'] = self._tile\n json_dict['transaction'] = self._transaction.to_json_dict()\n return json_dict\n\n\nclass BuildBuildingCommand(ServerCommand):\n ENERGY_COST = 20\n\n def __init__(self, tile: tuple, item: Item):\n ServerCommand.__init__(self)\n self._item = item\n self._tile = tile\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n EnergyCheck(player, BuildBuildingCommand.ENERGY_COST).check(self.\n check_result)\n TransactionCheck(building, building, self._item).check(self.\n check_result)\n\n def _do(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n player.energy.value -= BuildBuildingCommand.ENERGY_COST\n building.inventory.remove_item(self._item)\n building.construction_inventory.add_item(self._item)\n\n def __repr__(self):\n msg = 'Build Building ServerCommand {}'.format(self._item)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], Item.from_json_dict(json_dict['item']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'build_building'\n json_dict['tile'] = self._tile\n json_dict['item'] = self._item.to_json_dict()\n return json_dict\n\n\nclass UpgradeBuildingCommand(ServerCommand):\n\n def __init__(self, tile: tuple):\n ServerCommand.__init__(self)\n self._tile = tile\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if not building.construction_inventory.is_full():\n self.check_result += 'construction not finished'\n\n def _do(self):\n building = self.town.buildings[self._tile]\n building.upgrade()\n\n def __repr__(self):\n msg = 'Upgrade Building ServerCommand {}'.format(self._tile)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'upgrade_building'\n json_dict['tile'] = self._tile\n return json_dict\n\n\nclass SleepCommand(ServerCommand):\n ENERGY_REGEN_IN_HOUSE = 4\n ENERGY_REGEN_IN_GROUND = 2\n\n def __init__(self):\n ServerCommand.__init__(self)\n\n def _check(self):\n tile = self.town.get_player_tile(self.client_id)\n if tile in self.town.buildings and self.town.buildings[tile\n ].name != 'cabane':\n self.check_result += \"Can't sleep in building\"\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n tile = self.town.get_player_tile(self.client_id)\n player.status = 'sleep'\n player.energy.regen = SleepCommand.ENERGY_REGEN_IN_GROUND\n if tile in self.town.buildings and self.town.buildings[tile\n ].name == 'cabane':\n player.energy.regen = SleepCommand.ENERGY_REGEN_IN_HOUSE\n\n def __repr__(self):\n msg = 'Sleep command. Player id: {}'.format(self.client_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->SleepCommand:\n return cls()\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'sleep'\n return json_dict\n\n\nclass WakeUpCommand(ServerCommand):\n\n def __init__(self):\n ServerCommand.__init__(self)\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n is_awaken_check = CheckResult()\n AwakenCheck(player).check(is_awaken_check)\n if is_awaken_check:\n self.check_result += '{} is already awake'.format(player.name)\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n player.status = 'idle'\n player.energy.reset_regen()\n\n def __repr__(self):\n msg = 'Wake up command. Player id: {}'.format(self.client_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->WakeUpCommand:\n return cls()\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'wakeup'\n return json_dict\n\n\nclass HelpPlayerCommand(ServerCommand):\n ENERGY_TO_HELP = 20\n HEALTH_TO_GIVE = 1\n\n def __init__(self, player_to_help_id):\n ServerCommand.__init__(self)\n self._player_to_help_id = player_to_help_id\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self.client_id not in self.town.players.keys():\n self.check_result += 'Player {} does not exist'.format(self.\n client_id)\n return\n if self._player_to_help_id not in self.town.players.keys():\n self.check_result += 'Player {} does not exist'.format(self.\n _player_to_help_id)\n return\n if self.town.get_player_tile(self.client_id\n ) != self.town.get_player_tile(self._player_to_help_id):\n self.check_result += ('Players {} and {} are not in the same tile'\n .format(self.client_id, self._player_to_help_id))\n return\n EnergyCheck(self.town.get_player(self.client_id), HelpPlayerCommand\n .ENERGY_TO_HELP).check(self.check_result)\n is_alive_check = CheckResult()\n AvailableCheck(self.town.get_player(self._player_to_help_id)).check(\n is_alive_check)\n if is_alive_check:\n self.check_result += '{} has enough health to keep moving'.format(\n self._player_to_help_id)\n\n def _do(self):\n player_helper = self.town.get_player(self.client_id)\n player_helper.energy.value -= HelpPlayerCommand.ENERGY_TO_HELP\n player_to_help = self.town.get_player(self._player_to_help_id)\n player_to_help.health.value += HelpPlayerCommand.HEALTH_TO_GIVE\n\n def __repr__(self):\n msg = 'HelpPlayerCommand: try to help {}'.format(self.\n _player_to_help_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->HelpPlayerCommand:\n return cls(json_dict['player_to_help_id'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'help'\n json_dict['player_to_help_id'] = self._player_to_help_id\n return json_dict\n\n\nclass CommandsFactory:\n COMMANDS_DICT = {}\n COMMANDS_DICT['move'] = MovePlayerCommand\n COMMANDS_DICT['build'] = BuildCommand\n COMMANDS_DICT['collect'] = CollectResourceCommand\n COMMANDS_DICT['building_process'] = BuildingProcessCommand\n COMMANDS_DICT['buy'] = BuyCommand\n COMMANDS_DICT['sell'] = SellCommand\n COMMANDS_DICT['build_building'] = BuildBuildingCommand\n COMMANDS_DICT['upgrade_building'] = UpgradeBuildingCommand\n COMMANDS_DICT['help'] = HelpPlayerCommand\n COMMANDS_DICT['sleep'] = SleepCommand\n COMMANDS_DICT['wakeup'] = WakeUpCommand\n\n @staticmethod\n def from_podsixnet(podsixnet_dict):\n if podsixnet_dict['command'] in CommandsFactory.COMMANDS_DICT:\n command = CommandsFactory.COMMANDS_DICT[podsixnet_dict['command']\n ].from_json_dict(podsixnet_dict)\n else:\n raise NotImplementedError\n command.client_id = podsixnet_dict['client_id']\n command.check_result = CheckResult.from_json_dict(podsixnet_dict[\n 'check_result'])\n return command\n", "step-3": "<mask token>\n\n\nclass MovePlayerCommand(ServerCommand):\n <mask token>\n <mask token>\n\n def __repr__(self):\n msg = 'Move ServerCommand : {}'.format(self._direction)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n EnergyCheck(player, MovePlayerCommand.ENERGY_COST).check(self.\n check_result)\n AvailableCheck(player).check(self.check_result)\n for tile in self._get_tiles_coordinates_dict().values():\n if tile not in self.town.backgrounds.keys():\n self.check_result += 'tile {} not in town'.format(tile)\n return\n BackgroundMovementCheck(self.town.backgrounds[tile], player).check(\n self.check_result)\n\n def _do(self):\n x_dest, y_dest = self.tile_dest\n player = self.town.get_player(self.client_id)\n player.status = 'move'\n player.direction = self._direction\n player.energy.value -= MovePlayerCommand.ENERGY_COST\n player.x = x_dest\n player.y = y_dest\n\n @property\n def tile_dest(self) ->tuple:\n movement_matrix = {}\n movement_matrix['left'] = -1, 0\n movement_matrix['right'] = +1, 0\n movement_matrix['up'] = 0, -1\n movement_matrix['down'] = 0, +1\n player = self.town.get_player(self.client_id)\n tile = self.town.get_player_tile(self.client_id)\n background = self.town.backgrounds[tile]\n bg_multiplicator = background.move_multiplicator\n x_dest = player.x + movement_matrix[self._direction][0\n ] * bg_multiplicator * player.velocity\n y_dest = player.y + movement_matrix[self._direction][1\n ] * bg_multiplicator * player.velocity\n return x_dest, y_dest\n\n def _get_tiles_coordinates_dict(self):\n x_dest, y_dest = self.tile_dest\n tiles_coordinates_dict = {'topleft': (math.floor(x_dest), math.\n floor(y_dest)), 'topright': (math.floor(x_dest + 0.99), math.\n floor(y_dest)), 'bottomleft': (math.floor(x_dest), math.floor(\n y_dest + 0.99)), 'bottomright': (math.floor(x_dest + 0.99),\n math.floor(y_dest + 0.99))}\n return tiles_coordinates_dict\n\n @classmethod\n def from_json_dict(cls, json_dict) ->MovePlayerCommand:\n return cls(json_dict['direction'])\n <mask token>\n\n\nclass BuildCommand(ServerCommand):\n\n def __init__(self, tile: tuple, building_name: str):\n ServerCommand.__init__(self)\n self._tile = tile\n self._building_name = building_name\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self._tile not in self.town.backgrounds:\n self.check_result += 'tile {} not in town'.format(self._tile)\n return\n background = self.town.backgrounds[self._tile]\n BackgroundBuildCheck(background, self._building_name).check(self.\n check_result)\n if self._tile in self.town.buildings:\n self.check_result += (\"Can't build {} : {} already built on {}\"\n .format(self._building_name, self.town.buildings[self._tile\n ].name, self._tile))\n\n def _do(self):\n self.town.set_building(BuildingFactory.create_building_by_name(self\n ._building_name), self._tile)\n\n def __repr__(self):\n msg = 'Build ServerCommand : {} in {}'.format(self._building_name,\n self._tile)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->BuildCommand:\n return cls(json_dict['tile'], json_dict['building_name'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'build'\n json_dict['building_name'] = self._building_name\n json_dict['tile'] = self._tile\n return json_dict\n\n\nclass CollectResourceCommand(ServerCommand):\n ENERGY_COST = 30\n\n def __init__(self, tile: tuple, item: Item):\n ServerCommand.__init__(self)\n self._tile = tile\n self._item = item\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self._tile not in self.town.resources:\n self.check_result += 'No resource in {}'.format(self._tile)\n return\n resource = self.town.resources[self._tile]\n TransactionCheck(resource, player, self._item).check(self.check_result)\n EnergyCheck(player, CollectResourceCommand.ENERGY_COST).check(self.\n check_result)\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n player.inventory.add_item(self._item)\n resource = self.town.resources[self._tile]\n resource.inventory.remove_item(self._item)\n player.energy.value -= CollectResourceCommand.ENERGY_COST\n\n def __repr__(self):\n msg = 'Collect Resource ServerCommand : {}'.format(self._item)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->CollectResourceCommand:\n return cls(json_dict['tile'], Item.from_json_dict(json_dict['item']))\n\n def to_json_dict(self) ->dict:\n json_dict = super().to_json_dict()\n json_dict['command'] = 'collect'\n json_dict['tile'] = self._tile\n json_dict['item'] = self._item.to_json_dict()\n return json_dict\n\n\nclass BuildingProcessCommand(ServerCommand):\n\n def __init__(self, tile: tuple, building_process: BuildingProcess):\n ServerCommand.__init__(self)\n self._tile = tile\n self._building_process = building_process\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self._tile not in self.town.buildings:\n self.check_result += 'No building on {}'.format(self._tile)\n return\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n InventoryRemoveCheck(building.inventory, self._building_process.\n item_required).check(self.check_result)\n InventoryAddCheck(building.inventory, self._building_process.\n item_result).check(self.check_result)\n EnergyCheck(player, self._building_process.energy_required).check(self\n .check_result)\n\n def _do(self):\n building = self.town.buildings[self._tile]\n building.inventory.remove_item(self._building_process.item_required)\n building.inventory.add_item(self._building_process.item_result)\n player = self.town.get_player(self.client_id)\n player.energy.value -= self._building_process.energy_required\n\n def __repr__(self):\n msg = 'BuildingProcessCommand ServerCommand {}'.format(self.\n _building_process)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingProcess.from_json_dict(\n json_dict['building_process']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'building_process'\n json_dict['tile'] = self._tile\n json_dict['building_process'] = self._building_process.to_json_dict()\n return json_dict\n\n\nclass BuyCommand(ServerCommand):\n\n def __init__(self, tile: tuple, transaction: BuildingTransaction):\n ServerCommand.__init__(self)\n self._tile = tile\n self._transaction = transaction\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n item = Item(self._transaction.item_name, 1)\n AvailableCheck(player).check(self.check_result)\n TransactionCheck(building, player, item).check(self.check_result)\n\n def _do(self):\n item = Item(self._transaction.item_name, 1)\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n building.inventory.remove_item(item)\n player.inventory.add_item(item)\n\n def __repr__(self):\n msg = 'BuyCommand ServerCommand {}'.format(self._transaction.item_name)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingTransaction.from_json_dict(\n json_dict['transaction']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'buy'\n json_dict['tile'] = self._tile\n json_dict['transaction'] = self._transaction.to_json_dict()\n return json_dict\n\n\nclass SellCommand(ServerCommand):\n\n def __init__(self, tile: tuple, transaction: BuildingTransaction):\n ServerCommand.__init__(self)\n self._tile = tile\n self._transaction = transaction\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n item = Item(self._transaction.item_name, 1)\n AvailableCheck(player).check(self.check_result)\n TransactionCheck(player, building, item).check(self.check_result)\n\n def _do(self):\n item = Item(self._transaction.item_name, 1)\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n building.inventory.add_item(item)\n player.inventory.remove_item(item)\n\n def __repr__(self):\n msg = 'SellCommand ServerCommand {}'.format(self._transaction.item_name\n )\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingTransaction.from_json_dict(\n json_dict['transaction']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'sell'\n json_dict['tile'] = self._tile\n json_dict['transaction'] = self._transaction.to_json_dict()\n return json_dict\n\n\nclass BuildBuildingCommand(ServerCommand):\n ENERGY_COST = 20\n\n def __init__(self, tile: tuple, item: Item):\n ServerCommand.__init__(self)\n self._item = item\n self._tile = tile\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n EnergyCheck(player, BuildBuildingCommand.ENERGY_COST).check(self.\n check_result)\n TransactionCheck(building, building, self._item).check(self.\n check_result)\n\n def _do(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n player.energy.value -= BuildBuildingCommand.ENERGY_COST\n building.inventory.remove_item(self._item)\n building.construction_inventory.add_item(self._item)\n\n def __repr__(self):\n msg = 'Build Building ServerCommand {}'.format(self._item)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], Item.from_json_dict(json_dict['item']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'build_building'\n json_dict['tile'] = self._tile\n json_dict['item'] = self._item.to_json_dict()\n return json_dict\n\n\nclass UpgradeBuildingCommand(ServerCommand):\n\n def __init__(self, tile: tuple):\n ServerCommand.__init__(self)\n self._tile = tile\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if not building.construction_inventory.is_full():\n self.check_result += 'construction not finished'\n\n def _do(self):\n building = self.town.buildings[self._tile]\n building.upgrade()\n\n def __repr__(self):\n msg = 'Upgrade Building ServerCommand {}'.format(self._tile)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'upgrade_building'\n json_dict['tile'] = self._tile\n return json_dict\n\n\nclass SleepCommand(ServerCommand):\n ENERGY_REGEN_IN_HOUSE = 4\n ENERGY_REGEN_IN_GROUND = 2\n\n def __init__(self):\n ServerCommand.__init__(self)\n\n def _check(self):\n tile = self.town.get_player_tile(self.client_id)\n if tile in self.town.buildings and self.town.buildings[tile\n ].name != 'cabane':\n self.check_result += \"Can't sleep in building\"\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n tile = self.town.get_player_tile(self.client_id)\n player.status = 'sleep'\n player.energy.regen = SleepCommand.ENERGY_REGEN_IN_GROUND\n if tile in self.town.buildings and self.town.buildings[tile\n ].name == 'cabane':\n player.energy.regen = SleepCommand.ENERGY_REGEN_IN_HOUSE\n\n def __repr__(self):\n msg = 'Sleep command. Player id: {}'.format(self.client_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->SleepCommand:\n return cls()\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'sleep'\n return json_dict\n\n\nclass WakeUpCommand(ServerCommand):\n\n def __init__(self):\n ServerCommand.__init__(self)\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n is_awaken_check = CheckResult()\n AwakenCheck(player).check(is_awaken_check)\n if is_awaken_check:\n self.check_result += '{} is already awake'.format(player.name)\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n player.status = 'idle'\n player.energy.reset_regen()\n\n def __repr__(self):\n msg = 'Wake up command. Player id: {}'.format(self.client_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->WakeUpCommand:\n return cls()\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'wakeup'\n return json_dict\n\n\nclass HelpPlayerCommand(ServerCommand):\n ENERGY_TO_HELP = 20\n HEALTH_TO_GIVE = 1\n\n def __init__(self, player_to_help_id):\n ServerCommand.__init__(self)\n self._player_to_help_id = player_to_help_id\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self.client_id not in self.town.players.keys():\n self.check_result += 'Player {} does not exist'.format(self.\n client_id)\n return\n if self._player_to_help_id not in self.town.players.keys():\n self.check_result += 'Player {} does not exist'.format(self.\n _player_to_help_id)\n return\n if self.town.get_player_tile(self.client_id\n ) != self.town.get_player_tile(self._player_to_help_id):\n self.check_result += ('Players {} and {} are not in the same tile'\n .format(self.client_id, self._player_to_help_id))\n return\n EnergyCheck(self.town.get_player(self.client_id), HelpPlayerCommand\n .ENERGY_TO_HELP).check(self.check_result)\n is_alive_check = CheckResult()\n AvailableCheck(self.town.get_player(self._player_to_help_id)).check(\n is_alive_check)\n if is_alive_check:\n self.check_result += '{} has enough health to keep moving'.format(\n self._player_to_help_id)\n\n def _do(self):\n player_helper = self.town.get_player(self.client_id)\n player_helper.energy.value -= HelpPlayerCommand.ENERGY_TO_HELP\n player_to_help = self.town.get_player(self._player_to_help_id)\n player_to_help.health.value += HelpPlayerCommand.HEALTH_TO_GIVE\n\n def __repr__(self):\n msg = 'HelpPlayerCommand: try to help {}'.format(self.\n _player_to_help_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->HelpPlayerCommand:\n return cls(json_dict['player_to_help_id'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'help'\n json_dict['player_to_help_id'] = self._player_to_help_id\n return json_dict\n\n\nclass CommandsFactory:\n COMMANDS_DICT = {}\n COMMANDS_DICT['move'] = MovePlayerCommand\n COMMANDS_DICT['build'] = BuildCommand\n COMMANDS_DICT['collect'] = CollectResourceCommand\n COMMANDS_DICT['building_process'] = BuildingProcessCommand\n COMMANDS_DICT['buy'] = BuyCommand\n COMMANDS_DICT['sell'] = SellCommand\n COMMANDS_DICT['build_building'] = BuildBuildingCommand\n COMMANDS_DICT['upgrade_building'] = UpgradeBuildingCommand\n COMMANDS_DICT['help'] = HelpPlayerCommand\n COMMANDS_DICT['sleep'] = SleepCommand\n COMMANDS_DICT['wakeup'] = WakeUpCommand\n\n @staticmethod\n def from_podsixnet(podsixnet_dict):\n if podsixnet_dict['command'] in CommandsFactory.COMMANDS_DICT:\n command = CommandsFactory.COMMANDS_DICT[podsixnet_dict['command']\n ].from_json_dict(podsixnet_dict)\n else:\n raise NotImplementedError\n command.client_id = podsixnet_dict['client_id']\n command.check_result = CheckResult.from_json_dict(podsixnet_dict[\n 'check_result'])\n return command\n", "step-4": "<mask token>\n\n\nclass MovePlayerCommand(ServerCommand):\n <mask token>\n\n def __init__(self, direction: str):\n ServerCommand.__init__(self)\n self._direction = direction\n\n def __repr__(self):\n msg = 'Move ServerCommand : {}'.format(self._direction)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n EnergyCheck(player, MovePlayerCommand.ENERGY_COST).check(self.\n check_result)\n AvailableCheck(player).check(self.check_result)\n for tile in self._get_tiles_coordinates_dict().values():\n if tile not in self.town.backgrounds.keys():\n self.check_result += 'tile {} not in town'.format(tile)\n return\n BackgroundMovementCheck(self.town.backgrounds[tile], player).check(\n self.check_result)\n\n def _do(self):\n x_dest, y_dest = self.tile_dest\n player = self.town.get_player(self.client_id)\n player.status = 'move'\n player.direction = self._direction\n player.energy.value -= MovePlayerCommand.ENERGY_COST\n player.x = x_dest\n player.y = y_dest\n\n @property\n def tile_dest(self) ->tuple:\n movement_matrix = {}\n movement_matrix['left'] = -1, 0\n movement_matrix['right'] = +1, 0\n movement_matrix['up'] = 0, -1\n movement_matrix['down'] = 0, +1\n player = self.town.get_player(self.client_id)\n tile = self.town.get_player_tile(self.client_id)\n background = self.town.backgrounds[tile]\n bg_multiplicator = background.move_multiplicator\n x_dest = player.x + movement_matrix[self._direction][0\n ] * bg_multiplicator * player.velocity\n y_dest = player.y + movement_matrix[self._direction][1\n ] * bg_multiplicator * player.velocity\n return x_dest, y_dest\n\n def _get_tiles_coordinates_dict(self):\n x_dest, y_dest = self.tile_dest\n tiles_coordinates_dict = {'topleft': (math.floor(x_dest), math.\n floor(y_dest)), 'topright': (math.floor(x_dest + 0.99), math.\n floor(y_dest)), 'bottomleft': (math.floor(x_dest), math.floor(\n y_dest + 0.99)), 'bottomright': (math.floor(x_dest + 0.99),\n math.floor(y_dest + 0.99))}\n return tiles_coordinates_dict\n\n @classmethod\n def from_json_dict(cls, json_dict) ->MovePlayerCommand:\n return cls(json_dict['direction'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'move'\n json_dict['direction'] = self._direction\n return json_dict\n\n\nclass BuildCommand(ServerCommand):\n\n def __init__(self, tile: tuple, building_name: str):\n ServerCommand.__init__(self)\n self._tile = tile\n self._building_name = building_name\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self._tile not in self.town.backgrounds:\n self.check_result += 'tile {} not in town'.format(self._tile)\n return\n background = self.town.backgrounds[self._tile]\n BackgroundBuildCheck(background, self._building_name).check(self.\n check_result)\n if self._tile in self.town.buildings:\n self.check_result += (\"Can't build {} : {} already built on {}\"\n .format(self._building_name, self.town.buildings[self._tile\n ].name, self._tile))\n\n def _do(self):\n self.town.set_building(BuildingFactory.create_building_by_name(self\n ._building_name), self._tile)\n\n def __repr__(self):\n msg = 'Build ServerCommand : {} in {}'.format(self._building_name,\n self._tile)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->BuildCommand:\n return cls(json_dict['tile'], json_dict['building_name'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'build'\n json_dict['building_name'] = self._building_name\n json_dict['tile'] = self._tile\n return json_dict\n\n\nclass CollectResourceCommand(ServerCommand):\n ENERGY_COST = 30\n\n def __init__(self, tile: tuple, item: Item):\n ServerCommand.__init__(self)\n self._tile = tile\n self._item = item\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self._tile not in self.town.resources:\n self.check_result += 'No resource in {}'.format(self._tile)\n return\n resource = self.town.resources[self._tile]\n TransactionCheck(resource, player, self._item).check(self.check_result)\n EnergyCheck(player, CollectResourceCommand.ENERGY_COST).check(self.\n check_result)\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n player.inventory.add_item(self._item)\n resource = self.town.resources[self._tile]\n resource.inventory.remove_item(self._item)\n player.energy.value -= CollectResourceCommand.ENERGY_COST\n\n def __repr__(self):\n msg = 'Collect Resource ServerCommand : {}'.format(self._item)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->CollectResourceCommand:\n return cls(json_dict['tile'], Item.from_json_dict(json_dict['item']))\n\n def to_json_dict(self) ->dict:\n json_dict = super().to_json_dict()\n json_dict['command'] = 'collect'\n json_dict['tile'] = self._tile\n json_dict['item'] = self._item.to_json_dict()\n return json_dict\n\n\nclass BuildingProcessCommand(ServerCommand):\n\n def __init__(self, tile: tuple, building_process: BuildingProcess):\n ServerCommand.__init__(self)\n self._tile = tile\n self._building_process = building_process\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self._tile not in self.town.buildings:\n self.check_result += 'No building on {}'.format(self._tile)\n return\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n InventoryRemoveCheck(building.inventory, self._building_process.\n item_required).check(self.check_result)\n InventoryAddCheck(building.inventory, self._building_process.\n item_result).check(self.check_result)\n EnergyCheck(player, self._building_process.energy_required).check(self\n .check_result)\n\n def _do(self):\n building = self.town.buildings[self._tile]\n building.inventory.remove_item(self._building_process.item_required)\n building.inventory.add_item(self._building_process.item_result)\n player = self.town.get_player(self.client_id)\n player.energy.value -= self._building_process.energy_required\n\n def __repr__(self):\n msg = 'BuildingProcessCommand ServerCommand {}'.format(self.\n _building_process)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingProcess.from_json_dict(\n json_dict['building_process']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'building_process'\n json_dict['tile'] = self._tile\n json_dict['building_process'] = self._building_process.to_json_dict()\n return json_dict\n\n\nclass BuyCommand(ServerCommand):\n\n def __init__(self, tile: tuple, transaction: BuildingTransaction):\n ServerCommand.__init__(self)\n self._tile = tile\n self._transaction = transaction\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n item = Item(self._transaction.item_name, 1)\n AvailableCheck(player).check(self.check_result)\n TransactionCheck(building, player, item).check(self.check_result)\n\n def _do(self):\n item = Item(self._transaction.item_name, 1)\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n building.inventory.remove_item(item)\n player.inventory.add_item(item)\n\n def __repr__(self):\n msg = 'BuyCommand ServerCommand {}'.format(self._transaction.item_name)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingTransaction.from_json_dict(\n json_dict['transaction']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'buy'\n json_dict['tile'] = self._tile\n json_dict['transaction'] = self._transaction.to_json_dict()\n return json_dict\n\n\nclass SellCommand(ServerCommand):\n\n def __init__(self, tile: tuple, transaction: BuildingTransaction):\n ServerCommand.__init__(self)\n self._tile = tile\n self._transaction = transaction\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n item = Item(self._transaction.item_name, 1)\n AvailableCheck(player).check(self.check_result)\n TransactionCheck(player, building, item).check(self.check_result)\n\n def _do(self):\n item = Item(self._transaction.item_name, 1)\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n building.inventory.add_item(item)\n player.inventory.remove_item(item)\n\n def __repr__(self):\n msg = 'SellCommand ServerCommand {}'.format(self._transaction.item_name\n )\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], BuildingTransaction.from_json_dict(\n json_dict['transaction']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'sell'\n json_dict['tile'] = self._tile\n json_dict['transaction'] = self._transaction.to_json_dict()\n return json_dict\n\n\nclass BuildBuildingCommand(ServerCommand):\n ENERGY_COST = 20\n\n def __init__(self, tile: tuple, item: Item):\n ServerCommand.__init__(self)\n self._item = item\n self._tile = tile\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n EnergyCheck(player, BuildBuildingCommand.ENERGY_COST).check(self.\n check_result)\n TransactionCheck(building, building, self._item).check(self.\n check_result)\n\n def _do(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n player.energy.value -= BuildBuildingCommand.ENERGY_COST\n building.inventory.remove_item(self._item)\n building.construction_inventory.add_item(self._item)\n\n def __repr__(self):\n msg = 'Build Building ServerCommand {}'.format(self._item)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'], Item.from_json_dict(json_dict['item']))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'build_building'\n json_dict['tile'] = self._tile\n json_dict['item'] = self._item.to_json_dict()\n return json_dict\n\n\nclass UpgradeBuildingCommand(ServerCommand):\n\n def __init__(self, tile: tuple):\n ServerCommand.__init__(self)\n self._tile = tile\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if not building.construction_inventory.is_full():\n self.check_result += 'construction not finished'\n\n def _do(self):\n building = self.town.buildings[self._tile]\n building.upgrade()\n\n def __repr__(self):\n msg = 'Upgrade Building ServerCommand {}'.format(self._tile)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict['tile'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'upgrade_building'\n json_dict['tile'] = self._tile\n return json_dict\n\n\nclass SleepCommand(ServerCommand):\n ENERGY_REGEN_IN_HOUSE = 4\n ENERGY_REGEN_IN_GROUND = 2\n\n def __init__(self):\n ServerCommand.__init__(self)\n\n def _check(self):\n tile = self.town.get_player_tile(self.client_id)\n if tile in self.town.buildings and self.town.buildings[tile\n ].name != 'cabane':\n self.check_result += \"Can't sleep in building\"\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n tile = self.town.get_player_tile(self.client_id)\n player.status = 'sleep'\n player.energy.regen = SleepCommand.ENERGY_REGEN_IN_GROUND\n if tile in self.town.buildings and self.town.buildings[tile\n ].name == 'cabane':\n player.energy.regen = SleepCommand.ENERGY_REGEN_IN_HOUSE\n\n def __repr__(self):\n msg = 'Sleep command. Player id: {}'.format(self.client_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->SleepCommand:\n return cls()\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'sleep'\n return json_dict\n\n\nclass WakeUpCommand(ServerCommand):\n\n def __init__(self):\n ServerCommand.__init__(self)\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n is_awaken_check = CheckResult()\n AwakenCheck(player).check(is_awaken_check)\n if is_awaken_check:\n self.check_result += '{} is already awake'.format(player.name)\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n player.status = 'idle'\n player.energy.reset_regen()\n\n def __repr__(self):\n msg = 'Wake up command. Player id: {}'.format(self.client_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->WakeUpCommand:\n return cls()\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'wakeup'\n return json_dict\n\n\nclass HelpPlayerCommand(ServerCommand):\n ENERGY_TO_HELP = 20\n HEALTH_TO_GIVE = 1\n\n def __init__(self, player_to_help_id):\n ServerCommand.__init__(self)\n self._player_to_help_id = player_to_help_id\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n if self.client_id not in self.town.players.keys():\n self.check_result += 'Player {} does not exist'.format(self.\n client_id)\n return\n if self._player_to_help_id not in self.town.players.keys():\n self.check_result += 'Player {} does not exist'.format(self.\n _player_to_help_id)\n return\n if self.town.get_player_tile(self.client_id\n ) != self.town.get_player_tile(self._player_to_help_id):\n self.check_result += ('Players {} and {} are not in the same tile'\n .format(self.client_id, self._player_to_help_id))\n return\n EnergyCheck(self.town.get_player(self.client_id), HelpPlayerCommand\n .ENERGY_TO_HELP).check(self.check_result)\n is_alive_check = CheckResult()\n AvailableCheck(self.town.get_player(self._player_to_help_id)).check(\n is_alive_check)\n if is_alive_check:\n self.check_result += '{} has enough health to keep moving'.format(\n self._player_to_help_id)\n\n def _do(self):\n player_helper = self.town.get_player(self.client_id)\n player_helper.energy.value -= HelpPlayerCommand.ENERGY_TO_HELP\n player_to_help = self.town.get_player(self._player_to_help_id)\n player_to_help.health.value += HelpPlayerCommand.HEALTH_TO_GIVE\n\n def __repr__(self):\n msg = 'HelpPlayerCommand: try to help {}'.format(self.\n _player_to_help_id)\n if not self.check_result:\n msg += '\\n{}'.format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) ->HelpPlayerCommand:\n return cls(json_dict['player_to_help_id'])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict['command'] = 'help'\n json_dict['player_to_help_id'] = self._player_to_help_id\n return json_dict\n\n\nclass CommandsFactory:\n COMMANDS_DICT = {}\n COMMANDS_DICT['move'] = MovePlayerCommand\n COMMANDS_DICT['build'] = BuildCommand\n COMMANDS_DICT['collect'] = CollectResourceCommand\n COMMANDS_DICT['building_process'] = BuildingProcessCommand\n COMMANDS_DICT['buy'] = BuyCommand\n COMMANDS_DICT['sell'] = SellCommand\n COMMANDS_DICT['build_building'] = BuildBuildingCommand\n COMMANDS_DICT['upgrade_building'] = UpgradeBuildingCommand\n COMMANDS_DICT['help'] = HelpPlayerCommand\n COMMANDS_DICT['sleep'] = SleepCommand\n COMMANDS_DICT['wakeup'] = WakeUpCommand\n\n @staticmethod\n def from_podsixnet(podsixnet_dict):\n if podsixnet_dict['command'] in CommandsFactory.COMMANDS_DICT:\n command = CommandsFactory.COMMANDS_DICT[podsixnet_dict['command']\n ].from_json_dict(podsixnet_dict)\n else:\n raise NotImplementedError\n command.client_id = podsixnet_dict['client_id']\n command.check_result = CheckResult.from_json_dict(podsixnet_dict[\n 'check_result'])\n return command\n", "step-5": "from __future__ import annotations\n\nimport math\nfrom abc import abstractmethod\n\nfrom pytown_core.patterns.behavioral import Command\nfrom pytown_core.serializers import IJSONSerializable\n\nfrom .buildings import BuildingProcess, BuildingTransaction\nfrom .buildings.factory import BuildingFactory\nfrom .check import (\n AvailableCheck,\n AwakenCheck,\n BackgroundBuildCheck,\n BackgroundMovementCheck,\n CheckResult,\n EnergyCheck,\n InventoryAddCheck,\n InventoryRemoveCheck,\n TransactionCheck,\n)\nfrom .inventory import Item\n\n\nclass ServerCommand(IJSONSerializable, Command):\n def __init__(self):\n\n self.client_id = None\n self.town = None # TODO: will be set by townmanager\n self.check_result = CheckResult()\n\n def execute(self):\n self._check()\n\n if self.check_result:\n self._do()\n\n @abstractmethod\n def _check(self):\n raise NotImplementedError\n\n @abstractmethod\n def _do(self):\n raise NotImplementedError\n\n @abstractmethod\n def __repr__(self):\n pass\n\n @classmethod\n @abstractmethod\n def from_json_dict(cls, json_dict) -> ServerCommand:\n raise NotImplementedError\n\n def to_json_dict(self) -> dict:\n json_dict = {}\n json_dict[\"client_id\"] = self.client_id\n json_dict[\"check_result\"] = self.check_result.to_json_dict()\n return json_dict\n\n def to_podsixnet(self):\n podsixnet_dict = self.to_json_dict()\n podsixnet_dict[\"action\"] = \"command\"\n return podsixnet_dict\n\n\nclass MovePlayerCommand(ServerCommand):\n\n ENERGY_COST = 1\n\n def __init__(self, direction: str):\n ServerCommand.__init__(self)\n\n self._direction = direction\n\n def __repr__(self):\n msg = \"Move ServerCommand : {}\".format(self._direction)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n EnergyCheck(player, MovePlayerCommand.ENERGY_COST).check(self.check_result)\n\n AvailableCheck(player).check(self.check_result)\n\n for tile in self._get_tiles_coordinates_dict().values():\n if tile not in self.town.backgrounds.keys():\n self.check_result += \"tile {} not in town\".format(tile)\n return\n\n BackgroundMovementCheck(self.town.backgrounds[tile], player).check(\n self.check_result\n )\n\n def _do(self):\n\n (x_dest, y_dest) = self.tile_dest\n player = self.town.get_player(self.client_id)\n player.status = \"move\"\n player.direction = self._direction\n player.energy.value -= MovePlayerCommand.ENERGY_COST\n\n player.x = x_dest\n player.y = y_dest\n\n @property\n def tile_dest(self) -> tuple:\n movement_matrix = {}\n movement_matrix[\"left\"] = (-1, 0)\n movement_matrix[\"right\"] = (+1, 0)\n movement_matrix[\"up\"] = (0, -1)\n movement_matrix[\"down\"] = (0, +1)\n\n player = self.town.get_player(self.client_id)\n tile = self.town.get_player_tile(self.client_id)\n background = self.town.backgrounds[tile]\n\n bg_multiplicator = background.move_multiplicator\n x_dest = (\n player.x\n + movement_matrix[self._direction][0] * bg_multiplicator * player.velocity\n )\n y_dest = (\n player.y\n + movement_matrix[self._direction][1] * bg_multiplicator * player.velocity\n )\n\n return (x_dest, y_dest)\n\n def _get_tiles_coordinates_dict(self):\n\n (x_dest, y_dest) = self.tile_dest\n\n tiles_coordinates_dict = {\n \"topleft\": (math.floor(x_dest), math.floor(y_dest)),\n \"topright\": (math.floor(x_dest + 0.99), math.floor(y_dest)),\n \"bottomleft\": (math.floor(x_dest), math.floor(y_dest + 0.99)),\n \"bottomright\": (math.floor(x_dest + 0.99), math.floor(y_dest + 0.99)),\n }\n return tiles_coordinates_dict\n\n @classmethod\n def from_json_dict(cls, json_dict) -> MovePlayerCommand:\n return cls(json_dict[\"direction\"])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"move\"\n json_dict[\"direction\"] = self._direction\n return json_dict\n\n\nclass BuildCommand(ServerCommand):\n def __init__(self, tile: tuple, building_name: str):\n ServerCommand.__init__(self)\n\n self._tile = tile\n self._building_name = building_name\n\n def _check(self):\n\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n\n if self._tile not in self.town.backgrounds:\n self.check_result += \"tile {} not in town\".format(self._tile)\n return\n\n background = self.town.backgrounds[self._tile]\n BackgroundBuildCheck(background, self._building_name).check(self.check_result)\n\n if self._tile in self.town.buildings:\n self.check_result += \"Can't build {} : {} already built on {}\".format(\n self._building_name, self.town.buildings[self._tile].name, self._tile\n )\n\n def _do(self):\n self.town.set_building(\n BuildingFactory.create_building_by_name(self._building_name), self._tile\n )\n\n def __repr__(self):\n msg = \"Build ServerCommand : {} in {}\".format(self._building_name, self._tile)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) -> BuildCommand:\n return cls(json_dict[\"tile\"], json_dict[\"building_name\"])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"build\"\n json_dict[\"building_name\"] = self._building_name\n json_dict[\"tile\"] = self._tile\n return json_dict\n\n\nclass CollectResourceCommand(ServerCommand):\n\n ENERGY_COST = 30\n\n def __init__(self, tile: tuple, item: Item):\n ServerCommand.__init__(self)\n\n self._tile = tile\n self._item = item\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n\n AvailableCheck(player).check(self.check_result)\n\n if self._tile not in self.town.resources:\n self.check_result += \"No resource in {}\".format(self._tile)\n return\n\n resource = self.town.resources[self._tile]\n\n TransactionCheck(resource, player, self._item).check(self.check_result)\n\n EnergyCheck(player, CollectResourceCommand.ENERGY_COST).check(self.check_result)\n\n def _do(self):\n player = self.town.get_player(self.client_id)\n player.inventory.add_item(self._item)\n resource = self.town.resources[self._tile]\n resource.inventory.remove_item(self._item)\n player.energy.value -= CollectResourceCommand.ENERGY_COST\n\n def __repr__(self):\n msg = \"Collect Resource ServerCommand : {}\".format(self._item)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) -> CollectResourceCommand:\n return cls(json_dict[\"tile\"], Item.from_json_dict(json_dict[\"item\"]))\n\n def to_json_dict(self) -> dict:\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"collect\"\n json_dict[\"tile\"] = self._tile\n json_dict[\"item\"] = self._item.to_json_dict()\n return json_dict\n\n\nclass BuildingProcessCommand(ServerCommand):\n def __init__(self, tile: tuple, building_process: BuildingProcess):\n ServerCommand.__init__(self)\n\n self._tile = tile\n self._building_process = building_process\n\n def _check(self):\n\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n\n if self._tile not in self.town.buildings:\n self.check_result += \"No building on {}\".format(self._tile)\n return\n\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n\n InventoryRemoveCheck(\n building.inventory, self._building_process.item_required\n ).check(self.check_result)\n InventoryAddCheck(building.inventory, self._building_process.item_result).check(\n self.check_result\n )\n EnergyCheck(player, self._building_process.energy_required).check(\n self.check_result\n )\n\n def _do(self):\n building = self.town.buildings[self._tile]\n building.inventory.remove_item(self._building_process.item_required)\n building.inventory.add_item(self._building_process.item_result)\n player = self.town.get_player(self.client_id)\n player.energy.value -= self._building_process.energy_required\n\n def __repr__(self):\n msg = \"BuildingProcessCommand ServerCommand {}\".format(self._building_process)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(\n json_dict[\"tile\"],\n BuildingProcess.from_json_dict(json_dict[\"building_process\"]),\n )\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"building_process\"\n json_dict[\"tile\"] = self._tile\n json_dict[\"building_process\"] = self._building_process.to_json_dict()\n return json_dict\n\n\nclass BuyCommand(ServerCommand):\n def __init__(self, tile: tuple, transaction: BuildingTransaction):\n ServerCommand.__init__(self)\n\n self._tile = tile\n self._transaction = transaction\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n\n item = Item(self._transaction.item_name, 1)\n\n AvailableCheck(player).check(self.check_result)\n\n TransactionCheck(building, player, item).check(self.check_result)\n\n def _do(self):\n item = Item(self._transaction.item_name, 1)\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n building.inventory.remove_item(item)\n player.inventory.add_item(item)\n\n def __repr__(self):\n msg = \"BuyCommand ServerCommand {}\".format(self._transaction.item_name)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(\n json_dict[\"tile\"],\n BuildingTransaction.from_json_dict(json_dict[\"transaction\"]),\n )\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"buy\"\n json_dict[\"tile\"] = self._tile\n json_dict[\"transaction\"] = self._transaction.to_json_dict()\n return json_dict\n\n\nclass SellCommand(ServerCommand):\n def __init__(self, tile: tuple, transaction: BuildingTransaction):\n ServerCommand.__init__(self)\n\n self._tile = tile\n self._transaction = transaction\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n\n item = Item(self._transaction.item_name, 1)\n\n AvailableCheck(player).check(self.check_result)\n TransactionCheck(player, building, item).check(self.check_result)\n\n def _do(self):\n item = Item(self._transaction.item_name, 1)\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n building.inventory.add_item(item)\n player.inventory.remove_item(item)\n\n def __repr__(self):\n msg = \"SellCommand ServerCommand {}\".format(self._transaction.item_name)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(\n json_dict[\"tile\"],\n BuildingTransaction.from_json_dict(json_dict[\"transaction\"]),\n )\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"sell\"\n json_dict[\"tile\"] = self._tile\n json_dict[\"transaction\"] = self._transaction.to_json_dict()\n return json_dict\n\n\nclass BuildBuildingCommand(ServerCommand):\n\n ENERGY_COST = 20\n\n def __init__(self, tile: tuple, item: Item):\n ServerCommand.__init__(self)\n\n self._item = item\n self._tile = tile\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n\n AvailableCheck(player).check(self.check_result)\n\n EnergyCheck(player, BuildBuildingCommand.ENERGY_COST).check(self.check_result)\n TransactionCheck(building, building, self._item).check(self.check_result)\n\n def _do(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n\n player.energy.value -= BuildBuildingCommand.ENERGY_COST\n building.inventory.remove_item(self._item)\n building.construction_inventory.add_item(self._item)\n\n def __repr__(self):\n msg = \"Build Building ServerCommand {}\".format(self._item)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict[\"tile\"], Item.from_json_dict(json_dict[\"item\"]))\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"build_building\"\n json_dict[\"tile\"] = self._tile\n json_dict[\"item\"] = self._item.to_json_dict()\n return json_dict\n\n\nclass UpgradeBuildingCommand(ServerCommand):\n def __init__(self, tile: tuple):\n ServerCommand.__init__(self)\n\n self._tile = tile\n\n def _check(self):\n building = self.town.buildings[self._tile]\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n\n if not building.construction_inventory.is_full():\n self.check_result += \"construction not finished\"\n\n def _do(self):\n building = self.town.buildings[self._tile]\n building.upgrade()\n\n def __repr__(self):\n msg = \"Upgrade Building ServerCommand {}\".format(self._tile)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict):\n return cls(json_dict[\"tile\"])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"upgrade_building\"\n json_dict[\"tile\"] = self._tile\n return json_dict\n\n\nclass SleepCommand(ServerCommand):\n\n ENERGY_REGEN_IN_HOUSE = 4\n ENERGY_REGEN_IN_GROUND = 2\n\n def __init__(self):\n ServerCommand.__init__(self)\n\n def _check(self):\n\n tile = self.town.get_player_tile(self.client_id)\n\n # Player not in building\n if tile in self.town.buildings and self.town.buildings[tile].name != \"cabane\":\n self.check_result += \"Can't sleep in building\"\n\n def _do(self):\n\n player = self.town.get_player(self.client_id)\n tile = self.town.get_player_tile(self.client_id)\n\n # Change player sprite\n player.status = \"sleep\"\n player.energy.regen = SleepCommand.ENERGY_REGEN_IN_GROUND\n\n # Change energy regeneration depending on where he sleeps\n if tile in self.town.buildings and self.town.buildings[tile].name == \"cabane\":\n player.energy.regen = SleepCommand.ENERGY_REGEN_IN_HOUSE\n\n def __repr__(self):\n msg = \"Sleep command. Player id: {}\".format(self.client_id)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) -> SleepCommand:\n return cls()\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"sleep\"\n return json_dict\n\n\nclass WakeUpCommand(ServerCommand):\n def __init__(self):\n ServerCommand.__init__(self)\n\n def _check(self):\n\n player = self.town.get_player(self.client_id)\n\n is_awaken_check = CheckResult()\n AwakenCheck(player).check(is_awaken_check)\n\n if is_awaken_check:\n self.check_result += \"{} is already awake\".format(player.name)\n\n def _do(self):\n\n player = self.town.get_player(self.client_id)\n player.status = \"idle\"\n\n player.energy.reset_regen()\n\n def __repr__(self):\n msg = \"Wake up command. Player id: {}\".format(self.client_id)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) -> WakeUpCommand:\n return cls()\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"wakeup\"\n return json_dict\n\n\nclass HelpPlayerCommand(ServerCommand):\n\n ENERGY_TO_HELP = 20\n HEALTH_TO_GIVE = 1\n\n def __init__(self, player_to_help_id):\n ServerCommand.__init__(self)\n\n self._player_to_help_id = player_to_help_id\n\n def _check(self):\n player = self.town.get_player(self.client_id)\n AvailableCheck(player).check(self.check_result)\n\n # The two players id exists in the town ?\n if self.client_id not in self.town.players.keys():\n self.check_result += \"Player {} does not exist\".format(self.client_id)\n return\n\n if self._player_to_help_id not in self.town.players.keys():\n self.check_result += \"Player {} does not exist\".format(\n self._player_to_help_id\n )\n return\n\n # Check if the two players are in the same tile\n if self.town.get_player_tile(self.client_id) != self.town.get_player_tile(\n self._player_to_help_id\n ):\n self.check_result += \"Players {} and {} are not in the same tile\".format(\n self.client_id, self._player_to_help_id\n )\n return\n\n # Check if I have enough energy to help\n EnergyCheck(\n self.town.get_player(self.client_id), HelpPlayerCommand.ENERGY_TO_HELP\n ).check(self.check_result)\n\n # Check if patient doesn't have health\n is_alive_check = CheckResult()\n AvailableCheck(self.town.get_player(self._player_to_help_id)).check(\n is_alive_check\n )\n\n if is_alive_check:\n self.check_result += \"{} has enough health to keep moving\".format(\n self._player_to_help_id\n )\n\n def _do(self):\n\n player_helper = self.town.get_player(self.client_id)\n player_helper.energy.value -= HelpPlayerCommand.ENERGY_TO_HELP\n\n player_to_help = self.town.get_player(self._player_to_help_id)\n player_to_help.health.value += HelpPlayerCommand.HEALTH_TO_GIVE\n\n def __repr__(self):\n msg = \"HelpPlayerCommand: try to help {}\".format(self._player_to_help_id)\n if not self.check_result:\n msg += \"\\n{}\".format(self.check_result)\n return msg\n\n @classmethod\n def from_json_dict(cls, json_dict: dict) -> HelpPlayerCommand:\n return cls(json_dict[\"player_to_help_id\"])\n\n def to_json_dict(self):\n json_dict = super().to_json_dict()\n json_dict[\"command\"] = \"help\"\n json_dict[\"player_to_help_id\"] = self._player_to_help_id\n return json_dict\n\n\nclass CommandsFactory:\n\n COMMANDS_DICT = {}\n COMMANDS_DICT[\"move\"] = MovePlayerCommand\n COMMANDS_DICT[\"build\"] = BuildCommand\n COMMANDS_DICT[\"collect\"] = CollectResourceCommand\n COMMANDS_DICT[\"building_process\"] = BuildingProcessCommand\n COMMANDS_DICT[\"buy\"] = BuyCommand\n COMMANDS_DICT[\"sell\"] = SellCommand\n COMMANDS_DICT[\"build_building\"] = BuildBuildingCommand\n COMMANDS_DICT[\"upgrade_building\"] = UpgradeBuildingCommand\n COMMANDS_DICT[\"help\"] = HelpPlayerCommand\n COMMANDS_DICT[\"sleep\"] = SleepCommand\n COMMANDS_DICT[\"wakeup\"] = WakeUpCommand\n\n @staticmethod\n def from_podsixnet(podsixnet_dict):\n\n if podsixnet_dict[\"command\"] in CommandsFactory.COMMANDS_DICT:\n command = CommandsFactory.COMMANDS_DICT[\n podsixnet_dict[\"command\"]\n ].from_json_dict(podsixnet_dict)\n else:\n raise NotImplementedError\n\n command.client_id = podsixnet_dict[\"client_id\"]\n command.check_result = CheckResult.from_json_dict(\n podsixnet_dict[\"check_result\"]\n )\n return command\n", "step-ids": [ 72, 74, 84, 86, 98 ] }
[ 72, 74, 84, 86, 98 ]
import numpy numpy.random.seed(1) M = 20 N = 100 import numpy as np x = np.random.randn(N, 2) w = np.random.randn(M, 2) f = np.einsum('ik,jk->ij', w, x) y = f + 0.1*np.random.randn(M, N) D = 10 from bayespy.nodes import GaussianARD, Gamma, SumMultiply X = GaussianARD(0, 1, plates=(1,N), shape=(D,)) alpha = Gamma(1e-5, 1e-5, plates=(D,)) C = GaussianARD(0, alpha, plates=(M,1), shape=(D,)) F = SumMultiply('d,d->', X, C) tau = Gamma(1e-5, 1e-5) Y = GaussianARD(F, tau) Y.observe(y) from bayespy.inference import VB Q = VB(Y, X, C, alpha, tau) C.initialize_from_random() from bayespy.inference.vmp.transformations import RotateGaussianARD rot_X = RotateGaussianARD(X) rot_C = RotateGaussianARD(C, alpha) from bayespy.inference.vmp.transformations import RotationOptimizer R = RotationOptimizer(rot_X, rot_C, D) Q.set_callback(R.rotate) Q.update(repeat=1000) import bayespy.plot as bpplt bpplt.hinton(C)
normal
{ "blob_id": "9af2b94c6eef47dad0348a5437593cc8561a7deb", "index": 3593, "step-1": "<mask token>\n", "step-2": "<mask token>\nnumpy.random.seed(1)\n<mask token>\nY.observe(y)\n<mask token>\nC.initialize_from_random()\n<mask token>\nQ.set_callback(R.rotate)\nQ.update(repeat=1000)\n<mask token>\nbpplt.hinton(C)\n", "step-3": "<mask token>\nnumpy.random.seed(1)\nM = 20\nN = 100\n<mask token>\nx = np.random.randn(N, 2)\nw = np.random.randn(M, 2)\nf = np.einsum('ik,jk->ij', w, x)\ny = f + 0.1 * np.random.randn(M, N)\nD = 10\n<mask token>\nX = GaussianARD(0, 1, plates=(1, N), shape=(D,))\nalpha = Gamma(1e-05, 1e-05, plates=(D,))\nC = GaussianARD(0, alpha, plates=(M, 1), shape=(D,))\nF = SumMultiply('d,d->', X, C)\ntau = Gamma(1e-05, 1e-05)\nY = GaussianARD(F, tau)\nY.observe(y)\n<mask token>\nQ = VB(Y, X, C, alpha, tau)\nC.initialize_from_random()\n<mask token>\nrot_X = RotateGaussianARD(X)\nrot_C = RotateGaussianARD(C, alpha)\n<mask token>\nR = RotationOptimizer(rot_X, rot_C, D)\nQ.set_callback(R.rotate)\nQ.update(repeat=1000)\n<mask token>\nbpplt.hinton(C)\n", "step-4": "import numpy\nnumpy.random.seed(1)\nM = 20\nN = 100\nimport numpy as np\nx = np.random.randn(N, 2)\nw = np.random.randn(M, 2)\nf = np.einsum('ik,jk->ij', w, x)\ny = f + 0.1 * np.random.randn(M, N)\nD = 10\nfrom bayespy.nodes import GaussianARD, Gamma, SumMultiply\nX = GaussianARD(0, 1, plates=(1, N), shape=(D,))\nalpha = Gamma(1e-05, 1e-05, plates=(D,))\nC = GaussianARD(0, alpha, plates=(M, 1), shape=(D,))\nF = SumMultiply('d,d->', X, C)\ntau = Gamma(1e-05, 1e-05)\nY = GaussianARD(F, tau)\nY.observe(y)\nfrom bayespy.inference import VB\nQ = VB(Y, X, C, alpha, tau)\nC.initialize_from_random()\nfrom bayespy.inference.vmp.transformations import RotateGaussianARD\nrot_X = RotateGaussianARD(X)\nrot_C = RotateGaussianARD(C, alpha)\nfrom bayespy.inference.vmp.transformations import RotationOptimizer\nR = RotationOptimizer(rot_X, rot_C, D)\nQ.set_callback(R.rotate)\nQ.update(repeat=1000)\nimport bayespy.plot as bpplt\nbpplt.hinton(C)\n", "step-5": "import numpy\nnumpy.random.seed(1)\nM = 20\nN = 100\nimport numpy as np\nx = np.random.randn(N, 2)\nw = np.random.randn(M, 2)\nf = np.einsum('ik,jk->ij', w, x)\ny = f + 0.1*np.random.randn(M, N)\nD = 10\nfrom bayespy.nodes import GaussianARD, Gamma, SumMultiply\nX = GaussianARD(0, 1, plates=(1,N), shape=(D,))\nalpha = Gamma(1e-5, 1e-5, plates=(D,))\nC = GaussianARD(0, alpha, plates=(M,1), shape=(D,))\nF = SumMultiply('d,d->', X, C)\ntau = Gamma(1e-5, 1e-5)\nY = GaussianARD(F, tau)\nY.observe(y)\nfrom bayespy.inference import VB\nQ = VB(Y, X, C, alpha, tau)\nC.initialize_from_random()\nfrom bayespy.inference.vmp.transformations import RotateGaussianARD\nrot_X = RotateGaussianARD(X)\nrot_C = RotateGaussianARD(C, alpha)\nfrom bayespy.inference.vmp.transformations import RotationOptimizer\nR = RotationOptimizer(rot_X, rot_C, D)\nQ.set_callback(R.rotate)\nQ.update(repeat=1000)\nimport bayespy.plot as bpplt\nbpplt.hinton(C)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def tile_number(lon_deg, lat_deg, zoom): n = 2.0 ** zoom xtile = int((lon_deg + 180.0) / 360.0 * n) ytile = int((lat_deg + 90.0) / 180.0 * n) return xtile, ytile <|reserved_special_token_1|> <|reserved_special_token_0|> def Distance(t1, t2): RADIUS = 6371000.0 p1 = [0, 0] p2 = [0, 0] p1[0] = t1[0] * math.pi / 180.0 p1[1] = t1[1] * math.pi / 180.0 p2[0] = t2[0] * math.pi / 180.0 p2[1] = t2[1] * math.pi / 180.0 d_lat = p2[0] - p1[0] d_lon = p2[1] - p1[1] a = math.sin(d_lat / 2) * math.sin(d_lat / 2) + math.cos(p1[0]) * math.cos( p2[0]) * math.sin(d_lon / 2) * math.sin(d_lon / 2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) d = RADIUS * c return d def tile_number(lon_deg, lat_deg, zoom): n = 2.0 ** zoom xtile = int((lon_deg + 180.0) / 360.0 * n) ytile = int((lat_deg + 90.0) / 180.0 * n) return xtile, ytile <|reserved_special_token_1|> import math def Distance(t1, t2): RADIUS = 6371000.0 p1 = [0, 0] p2 = [0, 0] p1[0] = t1[0] * math.pi / 180.0 p1[1] = t1[1] * math.pi / 180.0 p2[0] = t2[0] * math.pi / 180.0 p2[1] = t2[1] * math.pi / 180.0 d_lat = p2[0] - p1[0] d_lon = p2[1] - p1[1] a = math.sin(d_lat / 2) * math.sin(d_lat / 2) + math.cos(p1[0]) * math.cos( p2[0]) * math.sin(d_lon / 2) * math.sin(d_lon / 2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) d = RADIUS * c return d def tile_number(lon_deg, lat_deg, zoom): n = 2.0 ** zoom xtile = int((lon_deg + 180.0) / 360.0 * n) ytile = int((lat_deg + 90.0) / 180.0 * n) return xtile, ytile <|reserved_special_token_1|> import math def Distance(t1, t2): RADIUS = 6371000. # earth's mean radius in km p1 = [0, 0] p2 = [0, 0] p1[0] = t1[0] * math.pi / 180. p1[1] = t1[1] * math.pi / 180. p2[0] = t2[0] * math.pi / 180. p2[1] = t2[1] * math.pi / 180. d_lat = (p2[0] - p1[0]) d_lon = (p2[1] - p1[1]) a = math.sin(d_lat / 2) * math.sin(d_lat / 2) + math.cos( p1[0]) * math.cos(p2[0]) * math.sin(d_lon / 2) * math.sin(d_lon / 2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) d = RADIUS * c return d def tile_number(lon_deg, lat_deg, zoom): n = 2.0 ** zoom xtile = int((lon_deg + 180.0) / 360.0 * n) ytile = int((lat_deg + 90.0) / 180.0 * n) return (xtile, ytile)
flexible
{ "blob_id": "f3f5b14917c89c5bc2866dd56e212bd3ec8af1cd", "index": 4841, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef tile_number(lon_deg, lat_deg, zoom):\n n = 2.0 ** zoom\n xtile = int((lon_deg + 180.0) / 360.0 * n)\n ytile = int((lat_deg + 90.0) / 180.0 * n)\n return xtile, ytile\n", "step-3": "<mask token>\n\n\ndef Distance(t1, t2):\n RADIUS = 6371000.0\n p1 = [0, 0]\n p2 = [0, 0]\n p1[0] = t1[0] * math.pi / 180.0\n p1[1] = t1[1] * math.pi / 180.0\n p2[0] = t2[0] * math.pi / 180.0\n p2[1] = t2[1] * math.pi / 180.0\n d_lat = p2[0] - p1[0]\n d_lon = p2[1] - p1[1]\n a = math.sin(d_lat / 2) * math.sin(d_lat / 2) + math.cos(p1[0]) * math.cos(\n p2[0]) * math.sin(d_lon / 2) * math.sin(d_lon / 2)\n c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))\n d = RADIUS * c\n return d\n\n\ndef tile_number(lon_deg, lat_deg, zoom):\n n = 2.0 ** zoom\n xtile = int((lon_deg + 180.0) / 360.0 * n)\n ytile = int((lat_deg + 90.0) / 180.0 * n)\n return xtile, ytile\n", "step-4": "import math\n\n\ndef Distance(t1, t2):\n RADIUS = 6371000.0\n p1 = [0, 0]\n p2 = [0, 0]\n p1[0] = t1[0] * math.pi / 180.0\n p1[1] = t1[1] * math.pi / 180.0\n p2[0] = t2[0] * math.pi / 180.0\n p2[1] = t2[1] * math.pi / 180.0\n d_lat = p2[0] - p1[0]\n d_lon = p2[1] - p1[1]\n a = math.sin(d_lat / 2) * math.sin(d_lat / 2) + math.cos(p1[0]) * math.cos(\n p2[0]) * math.sin(d_lon / 2) * math.sin(d_lon / 2)\n c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))\n d = RADIUS * c\n return d\n\n\ndef tile_number(lon_deg, lat_deg, zoom):\n n = 2.0 ** zoom\n xtile = int((lon_deg + 180.0) / 360.0 * n)\n ytile = int((lat_deg + 90.0) / 180.0 * n)\n return xtile, ytile\n", "step-5": "import math\n\ndef Distance(t1, t2):\n RADIUS = 6371000. # earth's mean radius in km\n p1 = [0, 0]\n p2 = [0, 0]\n p1[0] = t1[0] * math.pi / 180.\n p1[1] = t1[1] * math.pi / 180.\n p2[0] = t2[0] * math.pi / 180.\n p2[1] = t2[1] * math.pi / 180.\n\n d_lat = (p2[0] - p1[0])\n d_lon = (p2[1] - p1[1])\n\n a = math.sin(d_lat / 2) * math.sin(d_lat / 2) + math.cos(\n p1[0]) * math.cos(p2[0]) * math.sin(d_lon / 2) * math.sin(d_lon / 2)\n c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))\n d = RADIUS * c\n return d\n\ndef tile_number(lon_deg, lat_deg, zoom):\n n = 2.0 ** zoom\n xtile = int((lon_deg + 180.0) / 360.0 * n)\n ytile = int((lat_deg + 90.0) / 180.0 * n)\n return (xtile, ytile)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def print_json(obj, err=False): if isinstance(obj, Iterator): obj = list(obj) click.echo(json.dumps(obj, sort_keys=True, indent=4, ensure_ascii=False ), err=err) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def print_json(obj, err=False): if isinstance(obj, Iterator): obj = list(obj) click.echo(json.dumps(obj, sort_keys=True, indent=4, ensure_ascii=False ), err=err) def show_fields(*fields): def show(obj, verbose=False): if verbose: return obj about = {} for entry in fields: if isinstance(entry, str): entry = entry, name, *subpath = entry try: value = obj[name] except KeyError: continue for sp in subpath: if value is None: break elif callable(sp): value = sp(value) elif isinstance(value, list): value = [(v and v[sp]) for v in value] else: value = value[sp] about[name] = value return about return show <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def print_json(obj, err=False): if isinstance(obj, Iterator): obj = list(obj) click.echo(json.dumps(obj, sort_keys=True, indent=4, ensure_ascii=False ), err=err) def show_fields(*fields): def show(obj, verbose=False): if verbose: return obj about = {} for entry in fields: if isinstance(entry, str): entry = entry, name, *subpath = entry try: value = obj[name] except KeyError: continue for sp in subpath: if value is None: break elif callable(sp): value = sp(value) elif isinstance(value, list): value = [(v and v[sp]) for v in value] else: value = value[sp] about[name] = value return about return show repo_info = show_fields(('owner', 'login'), 'name', 'url', 'html_url', 'clone_url', 'git_url', 'ssh_url', 'full_name', 'description', 'homepage', 'private', 'default_branch', 'created_at', 'updated_at', 'pushed_at', 'fork', 'forks_count', 'watchers_count', 'size', 'subscribers_count', 'stargazers_count', 'id', 'language', 'network_count', 'open_issues_count', ('parent', 'full_name'), ( 'source', 'full_name')) gist_info = show_fields('id', 'url', 'git_push_url', ('files', lambda files: {fname: {k: v for k, v in about.items() if k != 'content'} for fname, about in files.items()}), 'public', 'html_url', ('owner', 'login'), 'description', 'created_at', 'updated_at', 'comments', ('fork_of', 'id' ), ('forks', 'id')) issue_info = show_fields(('assignees', 'login'), 'closed_at', ('closed_by', 'login'), 'comments', 'created_at', 'html_url', 'id', ('labels', 'name' ), 'locked', ('milestone', 'title'), 'number', 'state', 'title', 'updated_at', 'url', ('user', 'login'), 'repository_url') <|reserved_special_token_1|> from collections.abc import Iterator import json import click def print_json(obj, err=False): if isinstance(obj, Iterator): obj = list(obj) click.echo(json.dumps(obj, sort_keys=True, indent=4, ensure_ascii=False ), err=err) def show_fields(*fields): def show(obj, verbose=False): if verbose: return obj about = {} for entry in fields: if isinstance(entry, str): entry = entry, name, *subpath = entry try: value = obj[name] except KeyError: continue for sp in subpath: if value is None: break elif callable(sp): value = sp(value) elif isinstance(value, list): value = [(v and v[sp]) for v in value] else: value = value[sp] about[name] = value return about return show repo_info = show_fields(('owner', 'login'), 'name', 'url', 'html_url', 'clone_url', 'git_url', 'ssh_url', 'full_name', 'description', 'homepage', 'private', 'default_branch', 'created_at', 'updated_at', 'pushed_at', 'fork', 'forks_count', 'watchers_count', 'size', 'subscribers_count', 'stargazers_count', 'id', 'language', 'network_count', 'open_issues_count', ('parent', 'full_name'), ( 'source', 'full_name')) gist_info = show_fields('id', 'url', 'git_push_url', ('files', lambda files: {fname: {k: v for k, v in about.items() if k != 'content'} for fname, about in files.items()}), 'public', 'html_url', ('owner', 'login'), 'description', 'created_at', 'updated_at', 'comments', ('fork_of', 'id' ), ('forks', 'id')) issue_info = show_fields(('assignees', 'login'), 'closed_at', ('closed_by', 'login'), 'comments', 'created_at', 'html_url', 'id', ('labels', 'name' ), 'locked', ('milestone', 'title'), 'number', 'state', 'title', 'updated_at', 'url', ('user', 'login'), 'repository_url') <|reserved_special_token_1|> from collections.abc import Iterator import json import click def print_json(obj, err=False): if isinstance(obj, Iterator): obj = list(obj) click.echo(json.dumps(obj, sort_keys=True, indent=4, ensure_ascii=False), err=err) def show_fields(*fields): def show(obj, verbose=False): if verbose: return obj about = {} for entry in fields: if isinstance(entry, str): entry = (entry,) name, *subpath = entry try: value = obj[name] except KeyError: continue for sp in subpath: if value is None: break elif callable(sp): value = sp(value) elif isinstance(value, list): value = [v and v[sp] for v in value] else: value = value[sp] about[name] = value return about return show repo_info = show_fields( ("owner", "login"), "name", "url", "html_url", "clone_url", "git_url", "ssh_url", "full_name", "description", "homepage", "private", "default_branch", "created_at", "updated_at", "pushed_at", "fork", "forks_count", "watchers_count", "size", "subscribers_count", "stargazers_count", "id", "language", "network_count", "open_issues_count", ("parent", "full_name"), ("source", "full_name"), ) gist_info = show_fields( "id", "url", "git_push_url", ("files", lambda files: { fname: {k:v for k,v in about.items() if k != 'content'} for fname, about in files.items() }), "public", "html_url", ("owner", "login"), "description", "created_at", "updated_at", "comments", ("fork_of", "id"), ("forks", "id"), ) issue_info = show_fields( ("assignees", "login"), "closed_at", ("closed_by", "login"), "comments", "created_at", "html_url", "id", ("labels", "name"), "locked", ("milestone", "title"), "number", "state", "title", "updated_at", "url", ("user", "login"), "repository_url", ### pull_request )
flexible
{ "blob_id": "d340ac979f57cf4650131665e4fa5b9923f22a3e", "index": 6691, "step-1": "<mask token>\n\n\ndef print_json(obj, err=False):\n if isinstance(obj, Iterator):\n obj = list(obj)\n click.echo(json.dumps(obj, sort_keys=True, indent=4, ensure_ascii=False\n ), err=err)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef print_json(obj, err=False):\n if isinstance(obj, Iterator):\n obj = list(obj)\n click.echo(json.dumps(obj, sort_keys=True, indent=4, ensure_ascii=False\n ), err=err)\n\n\ndef show_fields(*fields):\n\n def show(obj, verbose=False):\n if verbose:\n return obj\n about = {}\n for entry in fields:\n if isinstance(entry, str):\n entry = entry,\n name, *subpath = entry\n try:\n value = obj[name]\n except KeyError:\n continue\n for sp in subpath:\n if value is None:\n break\n elif callable(sp):\n value = sp(value)\n elif isinstance(value, list):\n value = [(v and v[sp]) for v in value]\n else:\n value = value[sp]\n about[name] = value\n return about\n return show\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef print_json(obj, err=False):\n if isinstance(obj, Iterator):\n obj = list(obj)\n click.echo(json.dumps(obj, sort_keys=True, indent=4, ensure_ascii=False\n ), err=err)\n\n\ndef show_fields(*fields):\n\n def show(obj, verbose=False):\n if verbose:\n return obj\n about = {}\n for entry in fields:\n if isinstance(entry, str):\n entry = entry,\n name, *subpath = entry\n try:\n value = obj[name]\n except KeyError:\n continue\n for sp in subpath:\n if value is None:\n break\n elif callable(sp):\n value = sp(value)\n elif isinstance(value, list):\n value = [(v and v[sp]) for v in value]\n else:\n value = value[sp]\n about[name] = value\n return about\n return show\n\n\nrepo_info = show_fields(('owner', 'login'), 'name', 'url', 'html_url',\n 'clone_url', 'git_url', 'ssh_url', 'full_name', 'description',\n 'homepage', 'private', 'default_branch', 'created_at', 'updated_at',\n 'pushed_at', 'fork', 'forks_count', 'watchers_count', 'size',\n 'subscribers_count', 'stargazers_count', 'id', 'language',\n 'network_count', 'open_issues_count', ('parent', 'full_name'), (\n 'source', 'full_name'))\ngist_info = show_fields('id', 'url', 'git_push_url', ('files', lambda files:\n {fname: {k: v for k, v in about.items() if k != 'content'} for fname,\n about in files.items()}), 'public', 'html_url', ('owner', 'login'),\n 'description', 'created_at', 'updated_at', 'comments', ('fork_of', 'id'\n ), ('forks', 'id'))\nissue_info = show_fields(('assignees', 'login'), 'closed_at', ('closed_by',\n 'login'), 'comments', 'created_at', 'html_url', 'id', ('labels', 'name'\n ), 'locked', ('milestone', 'title'), 'number', 'state', 'title',\n 'updated_at', 'url', ('user', 'login'), 'repository_url')\n", "step-4": "from collections.abc import Iterator\nimport json\nimport click\n\n\ndef print_json(obj, err=False):\n if isinstance(obj, Iterator):\n obj = list(obj)\n click.echo(json.dumps(obj, sort_keys=True, indent=4, ensure_ascii=False\n ), err=err)\n\n\ndef show_fields(*fields):\n\n def show(obj, verbose=False):\n if verbose:\n return obj\n about = {}\n for entry in fields:\n if isinstance(entry, str):\n entry = entry,\n name, *subpath = entry\n try:\n value = obj[name]\n except KeyError:\n continue\n for sp in subpath:\n if value is None:\n break\n elif callable(sp):\n value = sp(value)\n elif isinstance(value, list):\n value = [(v and v[sp]) for v in value]\n else:\n value = value[sp]\n about[name] = value\n return about\n return show\n\n\nrepo_info = show_fields(('owner', 'login'), 'name', 'url', 'html_url',\n 'clone_url', 'git_url', 'ssh_url', 'full_name', 'description',\n 'homepage', 'private', 'default_branch', 'created_at', 'updated_at',\n 'pushed_at', 'fork', 'forks_count', 'watchers_count', 'size',\n 'subscribers_count', 'stargazers_count', 'id', 'language',\n 'network_count', 'open_issues_count', ('parent', 'full_name'), (\n 'source', 'full_name'))\ngist_info = show_fields('id', 'url', 'git_push_url', ('files', lambda files:\n {fname: {k: v for k, v in about.items() if k != 'content'} for fname,\n about in files.items()}), 'public', 'html_url', ('owner', 'login'),\n 'description', 'created_at', 'updated_at', 'comments', ('fork_of', 'id'\n ), ('forks', 'id'))\nissue_info = show_fields(('assignees', 'login'), 'closed_at', ('closed_by',\n 'login'), 'comments', 'created_at', 'html_url', 'id', ('labels', 'name'\n ), 'locked', ('milestone', 'title'), 'number', 'state', 'title',\n 'updated_at', 'url', ('user', 'login'), 'repository_url')\n", "step-5": "from collections.abc import Iterator\nimport json\nimport click\n\ndef print_json(obj, err=False):\n if isinstance(obj, Iterator):\n obj = list(obj)\n click.echo(json.dumps(obj, sort_keys=True, indent=4, ensure_ascii=False),\n err=err)\n\ndef show_fields(*fields):\n def show(obj, verbose=False):\n if verbose:\n return obj\n about = {}\n for entry in fields:\n if isinstance(entry, str):\n entry = (entry,)\n name, *subpath = entry\n try:\n value = obj[name]\n except KeyError:\n continue\n for sp in subpath:\n if value is None:\n break\n elif callable(sp):\n value = sp(value)\n elif isinstance(value, list):\n value = [v and v[sp] for v in value]\n else:\n value = value[sp]\n about[name] = value\n return about\n return show\n\nrepo_info = show_fields(\n (\"owner\", \"login\"),\n \"name\",\n \"url\",\n \"html_url\",\n \"clone_url\",\n \"git_url\",\n \"ssh_url\",\n \"full_name\",\n \"description\",\n \"homepage\",\n \"private\",\n \"default_branch\",\n \"created_at\",\n \"updated_at\",\n \"pushed_at\",\n \"fork\",\n \"forks_count\",\n \"watchers_count\",\n \"size\",\n \"subscribers_count\",\n \"stargazers_count\",\n \"id\",\n \"language\",\n \"network_count\",\n \"open_issues_count\",\n (\"parent\", \"full_name\"),\n (\"source\", \"full_name\"),\n)\n\ngist_info = show_fields(\n \"id\",\n \"url\",\n \"git_push_url\",\n (\"files\", lambda files: {\n fname: {k:v for k,v in about.items() if k != 'content'}\n for fname, about in files.items()\n }),\n \"public\",\n \"html_url\",\n (\"owner\", \"login\"),\n \"description\",\n \"created_at\",\n \"updated_at\",\n \"comments\",\n (\"fork_of\", \"id\"),\n (\"forks\", \"id\"),\n)\n\nissue_info = show_fields(\n (\"assignees\", \"login\"),\n \"closed_at\",\n (\"closed_by\", \"login\"),\n \"comments\",\n \"created_at\",\n \"html_url\",\n \"id\",\n (\"labels\", \"name\"),\n \"locked\",\n (\"milestone\", \"title\"),\n \"number\",\n \"state\",\n \"title\",\n \"updated_at\",\n \"url\",\n (\"user\", \"login\"),\n \"repository_url\",\n ### pull_request\n)\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#CALCULATE NUMBER OF UPPER AND LOWER CASES def cnt(): s1=input("enter a string :").strip() count=0 countu=0 for i in s1: if(i.islower()): count+=1 elif(i.isupper()): countu+=1 else: pass print("THE NUMBER OF UPPER CASES ARE :",countu) print("THE NUMBER OF LOWER CASSES ARE: ",count) cnt()
normal
{ "blob_id": "6cfda09f360aaa560011b91db8316e5e3889eea1", "index": 2017, "step-1": "<mask token>\n", "step-2": "def cnt():\n s1 = input('enter a string :').strip()\n count = 0\n countu = 0\n for i in s1:\n if i.islower():\n count += 1\n elif i.isupper():\n countu += 1\n else:\n pass\n print('THE NUMBER OF UPPER CASES ARE :', countu)\n print('THE NUMBER OF LOWER CASSES ARE: ', count)\n cnt()\n", "step-3": "#CALCULATE NUMBER OF UPPER AND LOWER CASES\r\ndef cnt():\r\n \r\n s1=input(\"enter a string :\").strip()\r\n count=0\r\n countu=0\r\n for i in s1:\r\n if(i.islower()):\r\n count+=1\r\n \r\n elif(i.isupper()):\r\n countu+=1\r\n \r\n else:\r\n pass\r\n print(\"THE NUMBER OF UPPER CASES ARE :\",countu)\r\n print(\"THE NUMBER OF LOWER CASSES ARE: \",count)\r\n cnt()\r\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# 체크는 오른쪽+아래로만 체크합니다. def check22(y, x, board) : dirs = [[0,1], [1,0], [1,1]] ret = [(y,x)] for d in dirs : dy, dx = y+d[0], x+d[1] if not ( (0<=dy<len(board)) and (0<=dx<len(board[0])) and board[dy][dx]!='0' and board[y][x]==board[dy][dx] ) : return False else : ret.append((dy,dx)) return ret # 나중에 한 번에 삭제될 거임 def dropdown(board) : for x in range(len(board[0])) : cnt = 0 movable = False for y in range(len(board)-1, -1, -1) : # if y == len(board)-1 : # if board[y][x] == '0' : break if board[y][x] == '0' : cnt += 1 movable = True if board[y][x] != '0' and movable : # 위에 떠있는 블록임. cnt만큼 내리면 됨 board[y+cnt][x] = board[y][x] board[y][x] = '0' return board def deleteBoard(delete, board) : for delNode in delete : board[delNode[0]][delNode[1]] = '0' return board def solution(m, n, board): answer = 0 for i in range(len(board)) : board[i] = list(board[i]) while True : delete = set([]) for y in range(len(board)) : for x in range(len(board[0])) : tmp = check22(y, x, board) if tmp : delete |= set(tmp) delete = list(delete) if not delete : break answer += len(delete) board = deleteBoard(delete, board) # print(board) board = dropdown(board) # print(board) return answer
normal
{ "blob_id": "938c4325480608b904bfbe0b11c081166aad694b", "index": 7291, "step-1": "def check22(y, x, board):\n dirs = [[0, 1], [1, 0], [1, 1]]\n ret = [(y, x)]\n for d in dirs:\n dy, dx = y + d[0], x + d[1]\n if not (0 <= dy < len(board) and 0 <= dx < len(board[0]) and board[\n dy][dx] != '0' and board[y][x] == board[dy][dx]):\n return False\n else:\n ret.append((dy, dx))\n return ret\n\n\n<mask token>\n", "step-2": "def check22(y, x, board):\n dirs = [[0, 1], [1, 0], [1, 1]]\n ret = [(y, x)]\n for d in dirs:\n dy, dx = y + d[0], x + d[1]\n if not (0 <= dy < len(board) and 0 <= dx < len(board[0]) and board[\n dy][dx] != '0' and board[y][x] == board[dy][dx]):\n return False\n else:\n ret.append((dy, dx))\n return ret\n\n\n<mask token>\n\n\ndef deleteBoard(delete, board):\n for delNode in delete:\n board[delNode[0]][delNode[1]] = '0'\n return board\n\n\n<mask token>\n", "step-3": "def check22(y, x, board):\n dirs = [[0, 1], [1, 0], [1, 1]]\n ret = [(y, x)]\n for d in dirs:\n dy, dx = y + d[0], x + d[1]\n if not (0 <= dy < len(board) and 0 <= dx < len(board[0]) and board[\n dy][dx] != '0' and board[y][x] == board[dy][dx]):\n return False\n else:\n ret.append((dy, dx))\n return ret\n\n\n<mask token>\n\n\ndef deleteBoard(delete, board):\n for delNode in delete:\n board[delNode[0]][delNode[1]] = '0'\n return board\n\n\ndef solution(m, n, board):\n answer = 0\n for i in range(len(board)):\n board[i] = list(board[i])\n while True:\n delete = set([])\n for y in range(len(board)):\n for x in range(len(board[0])):\n tmp = check22(y, x, board)\n if tmp:\n delete |= set(tmp)\n delete = list(delete)\n if not delete:\n break\n answer += len(delete)\n board = deleteBoard(delete, board)\n board = dropdown(board)\n return answer\n", "step-4": "def check22(y, x, board):\n dirs = [[0, 1], [1, 0], [1, 1]]\n ret = [(y, x)]\n for d in dirs:\n dy, dx = y + d[0], x + d[1]\n if not (0 <= dy < len(board) and 0 <= dx < len(board[0]) and board[\n dy][dx] != '0' and board[y][x] == board[dy][dx]):\n return False\n else:\n ret.append((dy, dx))\n return ret\n\n\ndef dropdown(board):\n for x in range(len(board[0])):\n cnt = 0\n movable = False\n for y in range(len(board) - 1, -1, -1):\n if board[y][x] == '0':\n cnt += 1\n movable = True\n if board[y][x] != '0' and movable:\n board[y + cnt][x] = board[y][x]\n board[y][x] = '0'\n return board\n\n\ndef deleteBoard(delete, board):\n for delNode in delete:\n board[delNode[0]][delNode[1]] = '0'\n return board\n\n\ndef solution(m, n, board):\n answer = 0\n for i in range(len(board)):\n board[i] = list(board[i])\n while True:\n delete = set([])\n for y in range(len(board)):\n for x in range(len(board[0])):\n tmp = check22(y, x, board)\n if tmp:\n delete |= set(tmp)\n delete = list(delete)\n if not delete:\n break\n answer += len(delete)\n board = deleteBoard(delete, board)\n board = dropdown(board)\n return answer\n", "step-5": "# 체크는 오른쪽+아래로만 체크합니다.\ndef check22(y, x, board) : \n \n dirs = [[0,1], [1,0], [1,1]]\n \n ret = [(y,x)]\n for d in dirs :\n dy, dx = y+d[0], x+d[1]\n if not ( (0<=dy<len(board)) and (0<=dx<len(board[0])) and board[dy][dx]!='0' and board[y][x]==board[dy][dx] ) :\n return False\n else :\n ret.append((dy,dx))\n\n return ret # 나중에 한 번에 삭제될 거임\n\ndef dropdown(board) :\n \n for x in range(len(board[0])) :\n cnt = 0\n movable = False\n for y in range(len(board)-1, -1, -1) :\n # if y == len(board)-1 :\n # if board[y][x] == '0' : break\n if board[y][x] == '0' :\n cnt += 1\n movable = True\n if board[y][x] != '0' and movable :\n # 위에 떠있는 블록임. cnt만큼 내리면 됨\n board[y+cnt][x] = board[y][x]\n board[y][x] = '0'\n \n return board\n \ndef deleteBoard(delete, board) :\n \n for delNode in delete :\n board[delNode[0]][delNode[1]] = '0'\n \n return board\n\ndef solution(m, n, board):\n answer = 0\n \n for i in range(len(board)) :\n board[i] = list(board[i])\n \n \n while True :\n \n delete = set([])\n \n for y in range(len(board)) :\n for x in range(len(board[0])) :\n tmp = check22(y, x, board)\n if tmp :\n delete |= set(tmp)\n \n delete = list(delete)\n if not delete : break\n \n answer += len(delete)\n \n board = deleteBoard(delete, board)\n # print(board)\n board = dropdown(board)\n # print(board)\n \n return answer\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# Dependancies import pandas as pd # We can use the read_html function in Pandas # to automatically scrape any tabular data from a page. # URL of website to scrape url = 'https://en.wikipedia.org/wiki/List_of_capitals_in_the_United_States' # Read HTML tables = pd.read_html(url) tables # What we get in return is a list of dataframes for any tabular data that Pandas found. # We can slice off any of those dataframes that we want using normal indexing. # Select first table as df df = tables[0] # Establish columns df.columns = ['State', 'Abr.', 'State-hood Rank', 'Capital', 'Capital Since', 'Area (sq-mi)', 'Municipal Population', 'Metropolitan', 'Metropolitan Population', 'Population Rank', 'Notes'] # Display df.head() # Cleanup of extra rows df = df.iloc[2:] df.head() # Set the index to the State column df.set_index('State', inplace=True) df.head() # That way we can display all info about a row df.loc['Alabama'] # Pandas also had a to_html method that we can use to generate HTML tables from DataFrames. html_table = df.to_html() html_table # You may have to strip unwanted newlines to clean up the table. html_table.replace('\n', '') # You can also save the table directly to a file. df.to_html('table.html')
normal
{ "blob_id": "f4fca5ce20db0e27da11d76a7a2fd402c33d2e92", "index": 4731, "step-1": "<mask token>\n", "step-2": "<mask token>\ntables\n<mask token>\ndf.head()\n<mask token>\ndf.head()\ndf.set_index('State', inplace=True)\ndf.head()\ndf.loc['Alabama']\n<mask token>\nhtml_table\nhtml_table.replace('\\n', '')\ndf.to_html('table.html')\n", "step-3": "<mask token>\nurl = 'https://en.wikipedia.org/wiki/List_of_capitals_in_the_United_States'\ntables = pd.read_html(url)\ntables\ndf = tables[0]\ndf.columns = ['State', 'Abr.', 'State-hood Rank', 'Capital',\n 'Capital Since', 'Area (sq-mi)', 'Municipal Population', 'Metropolitan',\n 'Metropolitan Population', 'Population Rank', 'Notes']\ndf.head()\ndf = df.iloc[2:]\ndf.head()\ndf.set_index('State', inplace=True)\ndf.head()\ndf.loc['Alabama']\nhtml_table = df.to_html()\nhtml_table\nhtml_table.replace('\\n', '')\ndf.to_html('table.html')\n", "step-4": "import pandas as pd\nurl = 'https://en.wikipedia.org/wiki/List_of_capitals_in_the_United_States'\ntables = pd.read_html(url)\ntables\ndf = tables[0]\ndf.columns = ['State', 'Abr.', 'State-hood Rank', 'Capital',\n 'Capital Since', 'Area (sq-mi)', 'Municipal Population', 'Metropolitan',\n 'Metropolitan Population', 'Population Rank', 'Notes']\ndf.head()\ndf = df.iloc[2:]\ndf.head()\ndf.set_index('State', inplace=True)\ndf.head()\ndf.loc['Alabama']\nhtml_table = df.to_html()\nhtml_table\nhtml_table.replace('\\n', '')\ndf.to_html('table.html')\n", "step-5": "# Dependancies\nimport pandas as pd\n\n# We can use the read_html function in Pandas \n# to automatically scrape any tabular data from a page.\n\n# URL of website to scrape\nurl = 'https://en.wikipedia.org/wiki/List_of_capitals_in_the_United_States'\n\n# Read HTML\ntables = pd.read_html(url)\ntables\n\n# What we get in return is a list of dataframes for any tabular data that Pandas found.\n# We can slice off any of those dataframes that we want using normal indexing.\n\n# Select first table as df\ndf = tables[0]\n\n# Establish columns\ndf.columns = ['State', 'Abr.', 'State-hood Rank', 'Capital', \n 'Capital Since', 'Area (sq-mi)', 'Municipal Population', 'Metropolitan', \n 'Metropolitan Population', 'Population Rank', 'Notes']\n# Display\ndf.head()\n\n# Cleanup of extra rows\ndf = df.iloc[2:]\ndf.head()\n\n# Set the index to the State column\ndf.set_index('State', inplace=True)\ndf.head()\n\n# That way we can display all info about a row\ndf.loc['Alabama']\n\n\n# Pandas also had a to_html method that we can use to generate HTML tables from DataFrames.\nhtml_table = df.to_html()\nhtml_table\n\n# You may have to strip unwanted newlines to clean up the table.\nhtml_table.replace('\\n', '')\n\n# You can also save the table directly to a file.\ndf.to_html('table.html')", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> initCors(app) initRoutes(app) <|reserved_special_token_1|> <|reserved_special_token_0|> app = FastAPI(debug=True, title='Recipe API') initCors(app) initRoutes(app) <|reserved_special_token_1|> from fastapi import FastAPI from app.router.routes import initRoutes from app.cors.cors import initCors app = FastAPI(debug=True, title='Recipe API') initCors(app) initRoutes(app) <|reserved_special_token_1|> from fastapi import FastAPI from app.router.routes import initRoutes from app.cors.cors import initCors app = FastAPI(debug=True,title="Recipe API") initCors(app) initRoutes(app)
flexible
{ "blob_id": "1857d76b8c68c58d2d721de529811a6aeb09fcbb", "index": 5407, "step-1": "<mask token>\n", "step-2": "<mask token>\ninitCors(app)\ninitRoutes(app)\n", "step-3": "<mask token>\napp = FastAPI(debug=True, title='Recipe API')\ninitCors(app)\ninitRoutes(app)\n", "step-4": "from fastapi import FastAPI\nfrom app.router.routes import initRoutes\nfrom app.cors.cors import initCors\napp = FastAPI(debug=True, title='Recipe API')\ninitCors(app)\ninitRoutes(app)\n", "step-5": "from fastapi import FastAPI\nfrom app.router.routes import initRoutes\nfrom app.cors.cors import initCors\n\napp = FastAPI(debug=True,title=\"Recipe API\")\ninitCors(app)\ninitRoutes(app)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(cosinus_real) print(cosinus_imaginary) print(sinus_real) print(sinus_imag) <|reserved_special_token_1|> <|reserved_special_token_0|> z = 1.0j cosinus_real = math.cos(z.real) cosinus_imaginary = math.cos(z.imag) sinus_real = math.sin(z.real) sinus_imag = math.sin(z.imag) print(cosinus_real) print(cosinus_imaginary) print(sinus_real) print(sinus_imag) <|reserved_special_token_1|> import math z = 1.0j cosinus_real = math.cos(z.real) cosinus_imaginary = math.cos(z.imag) sinus_real = math.sin(z.real) sinus_imag = math.sin(z.imag) print(cosinus_real) print(cosinus_imaginary) print(sinus_real) print(sinus_imag) <|reserved_special_token_1|> import math z = 1j cosinus_real = math.cos(z.real) cosinus_imaginary = math.cos(z.imag) sinus_real = math.sin(z.real) sinus_imag = math.sin(z.imag) print (cosinus_real) print (cosinus_imaginary) print (sinus_real) print (sinus_imag)
flexible
{ "blob_id": "7ea608b73f592cffc7723b4319cf1a87b3e9b443", "index": 4220, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(cosinus_real)\nprint(cosinus_imaginary)\nprint(sinus_real)\nprint(sinus_imag)\n", "step-3": "<mask token>\nz = 1.0j\ncosinus_real = math.cos(z.real)\ncosinus_imaginary = math.cos(z.imag)\nsinus_real = math.sin(z.real)\nsinus_imag = math.sin(z.imag)\nprint(cosinus_real)\nprint(cosinus_imaginary)\nprint(sinus_real)\nprint(sinus_imag)\n", "step-4": "import math\nz = 1.0j\ncosinus_real = math.cos(z.real)\ncosinus_imaginary = math.cos(z.imag)\nsinus_real = math.sin(z.real)\nsinus_imag = math.sin(z.imag)\nprint(cosinus_real)\nprint(cosinus_imaginary)\nprint(sinus_real)\nprint(sinus_imag)\n", "step-5": "import math\n\nz = 1j\n\n\ncosinus_real = math.cos(z.real)\ncosinus_imaginary = math.cos(z.imag)\nsinus_real = math.sin(z.real)\nsinus_imag = math.sin(z.imag)\n\nprint (cosinus_real)\nprint (cosinus_imaginary)\nprint (sinus_real)\nprint (sinus_imag)\n\n\n\n\n\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class Command(BaseCommand): <|reserved_special_token_0|> help = ( 'Will auto populate the database with all the Spells from 5th Edition Dungeons and Dragons.' ) def handle(self, *args, **kwargs): for spell in SPELLS: spell_entry = Spell.objects.create(name=spell['name'], distance =spell['range'], ritual=spell['ritual']) if len(spell['classes']) > 1: spell_entry.available_to = '' for i in range(len(spell['classes'])): spell_entry.available_to += spell['classes'][i].title( ) + ', ' else: spell_entry.available_to = spell['classes'][0].title() if 'components' in spell.keys(): spell_entry.somatic = spell['components']['somatic'] spell_entry.verbal = spell['components']['verbal'] spell_entry.material = spell['components']['material'] if spell_entry.material: spell_entry.specific_materials = '' for i in range(len(spell['components']['materials_needed']) ): spell_entry.specific_materials += spell['components'][ 'materials_needed'][i] + ', ' if 'description' in spell.keys(): spell_entry.description = spell['description'] dice_number = re.findall('\\d+(?=d)', spell['description']) if len(dice_number) > 0: spell_entry.damage_dice_number = dice_number[0] dice_size = re.findall('(?<=d)\\d+', spell['description']) if len(dice_size) > 0: spell_entry.damage_dice_size = dice_size[0] s_throw = re.findall('[A-Z]\\w+(?= saving throw)', spell[ 'description']) if len(s_throw) == 1: s_throw = s_throw[0][:3].upper() spell_entry.save_type = s_throw if spell['level'] == 'cantrip': spell_entry.level = 'Cantrip' else: spell_entry.level = SPELL_LEVELS[spell['level']] if 'higher_levels' in spell.keys(): spell_entry.higher_level = spell['higher_levels'] if 'school' in spell.keys(): spell_entry.school = SPELL_SCHOOL[spell['school'].title()] if 'casting_time' in spell.keys(): if 'reaction' in spell['casting_time']: spell_entry.cast_time = CAST_TIME['1 Reaction'] else: spell_entry.cast_time = spell['casting_time'].title() if 'Concentration' in spell['duration']: spell_entry.concentration = True spell_entry.duration = spell['duration'][15:].title() else: spell_entry.concentration = False spell_entry.duration = spell['duration'] spell_entry.save() <|reserved_special_token_1|> <|reserved_special_token_0|> class Command(BaseCommand): """Command to populate the database with all spells for 5th Edition.""" help = ( 'Will auto populate the database with all the Spells from 5th Edition Dungeons and Dragons.' ) def handle(self, *args, **kwargs): for spell in SPELLS: spell_entry = Spell.objects.create(name=spell['name'], distance =spell['range'], ritual=spell['ritual']) if len(spell['classes']) > 1: spell_entry.available_to = '' for i in range(len(spell['classes'])): spell_entry.available_to += spell['classes'][i].title( ) + ', ' else: spell_entry.available_to = spell['classes'][0].title() if 'components' in spell.keys(): spell_entry.somatic = spell['components']['somatic'] spell_entry.verbal = spell['components']['verbal'] spell_entry.material = spell['components']['material'] if spell_entry.material: spell_entry.specific_materials = '' for i in range(len(spell['components']['materials_needed']) ): spell_entry.specific_materials += spell['components'][ 'materials_needed'][i] + ', ' if 'description' in spell.keys(): spell_entry.description = spell['description'] dice_number = re.findall('\\d+(?=d)', spell['description']) if len(dice_number) > 0: spell_entry.damage_dice_number = dice_number[0] dice_size = re.findall('(?<=d)\\d+', spell['description']) if len(dice_size) > 0: spell_entry.damage_dice_size = dice_size[0] s_throw = re.findall('[A-Z]\\w+(?= saving throw)', spell[ 'description']) if len(s_throw) == 1: s_throw = s_throw[0][:3].upper() spell_entry.save_type = s_throw if spell['level'] == 'cantrip': spell_entry.level = 'Cantrip' else: spell_entry.level = SPELL_LEVELS[spell['level']] if 'higher_levels' in spell.keys(): spell_entry.higher_level = spell['higher_levels'] if 'school' in spell.keys(): spell_entry.school = SPELL_SCHOOL[spell['school'].title()] if 'casting_time' in spell.keys(): if 'reaction' in spell['casting_time']: spell_entry.cast_time = CAST_TIME['1 Reaction'] else: spell_entry.cast_time = spell['casting_time'].title() if 'Concentration' in spell['duration']: spell_entry.concentration = True spell_entry.duration = spell['duration'][15:].title() else: spell_entry.concentration = False spell_entry.duration = spell['duration'] spell_entry.save() <|reserved_special_token_1|> <|reserved_special_token_0|> SPELL_SCHOOL = {'Abjuration': 'Abjuration', 'Conjuration': 'Conjuration', 'Divination': 'Divination', 'Enchantment': 'Enchantment', 'Evocation': 'Evocation', 'Illusion': 'Illusion', 'Necromancy': 'Necromancy', 'Transmutation': 'Transmutation'} CAST_TIME = {'1 Action': '1 Action', '1 Bonus Action': '1 Bonus Action', '1 Reaction': '1 Reaction', '1 Minute': '1 Minute', '10 Minutes': '10 Minutes', '1 Hour': '1 Hour', '8 Hours': '8 Hours', '12 Hours': '12 Hours', '24 Hours': '24 Hours', '1 Action or 8 Hours': '1 Action or 8 Hours'} SPELL_LEVELS = {'Cantrip': 'Cantrip', '1': '1st-level', '2': '2nd-level', '3': '3rd-level', '4': '4th-level', '5': '5th-level', '6': '6th-level', '7': '7th-level', '8': '8th-level', '9': '9th-level'} class Command(BaseCommand): """Command to populate the database with all spells for 5th Edition.""" help = ( 'Will auto populate the database with all the Spells from 5th Edition Dungeons and Dragons.' ) def handle(self, *args, **kwargs): for spell in SPELLS: spell_entry = Spell.objects.create(name=spell['name'], distance =spell['range'], ritual=spell['ritual']) if len(spell['classes']) > 1: spell_entry.available_to = '' for i in range(len(spell['classes'])): spell_entry.available_to += spell['classes'][i].title( ) + ', ' else: spell_entry.available_to = spell['classes'][0].title() if 'components' in spell.keys(): spell_entry.somatic = spell['components']['somatic'] spell_entry.verbal = spell['components']['verbal'] spell_entry.material = spell['components']['material'] if spell_entry.material: spell_entry.specific_materials = '' for i in range(len(spell['components']['materials_needed']) ): spell_entry.specific_materials += spell['components'][ 'materials_needed'][i] + ', ' if 'description' in spell.keys(): spell_entry.description = spell['description'] dice_number = re.findall('\\d+(?=d)', spell['description']) if len(dice_number) > 0: spell_entry.damage_dice_number = dice_number[0] dice_size = re.findall('(?<=d)\\d+', spell['description']) if len(dice_size) > 0: spell_entry.damage_dice_size = dice_size[0] s_throw = re.findall('[A-Z]\\w+(?= saving throw)', spell[ 'description']) if len(s_throw) == 1: s_throw = s_throw[0][:3].upper() spell_entry.save_type = s_throw if spell['level'] == 'cantrip': spell_entry.level = 'Cantrip' else: spell_entry.level = SPELL_LEVELS[spell['level']] if 'higher_levels' in spell.keys(): spell_entry.higher_level = spell['higher_levels'] if 'school' in spell.keys(): spell_entry.school = SPELL_SCHOOL[spell['school'].title()] if 'casting_time' in spell.keys(): if 'reaction' in spell['casting_time']: spell_entry.cast_time = CAST_TIME['1 Reaction'] else: spell_entry.cast_time = spell['casting_time'].title() if 'Concentration' in spell['duration']: spell_entry.concentration = True spell_entry.duration = spell['duration'][15:].title() else: spell_entry.concentration = False spell_entry.duration = spell['duration'] spell_entry.save() <|reserved_special_token_1|> import re from django.core.management.base import BaseCommand from utils.spells import SPELLS from spells.models import Spell SPELL_SCHOOL = {'Abjuration': 'Abjuration', 'Conjuration': 'Conjuration', 'Divination': 'Divination', 'Enchantment': 'Enchantment', 'Evocation': 'Evocation', 'Illusion': 'Illusion', 'Necromancy': 'Necromancy', 'Transmutation': 'Transmutation'} CAST_TIME = {'1 Action': '1 Action', '1 Bonus Action': '1 Bonus Action', '1 Reaction': '1 Reaction', '1 Minute': '1 Minute', '10 Minutes': '10 Minutes', '1 Hour': '1 Hour', '8 Hours': '8 Hours', '12 Hours': '12 Hours', '24 Hours': '24 Hours', '1 Action or 8 Hours': '1 Action or 8 Hours'} SPELL_LEVELS = {'Cantrip': 'Cantrip', '1': '1st-level', '2': '2nd-level', '3': '3rd-level', '4': '4th-level', '5': '5th-level', '6': '6th-level', '7': '7th-level', '8': '8th-level', '9': '9th-level'} class Command(BaseCommand): """Command to populate the database with all spells for 5th Edition.""" help = ( 'Will auto populate the database with all the Spells from 5th Edition Dungeons and Dragons.' ) def handle(self, *args, **kwargs): for spell in SPELLS: spell_entry = Spell.objects.create(name=spell['name'], distance =spell['range'], ritual=spell['ritual']) if len(spell['classes']) > 1: spell_entry.available_to = '' for i in range(len(spell['classes'])): spell_entry.available_to += spell['classes'][i].title( ) + ', ' else: spell_entry.available_to = spell['classes'][0].title() if 'components' in spell.keys(): spell_entry.somatic = spell['components']['somatic'] spell_entry.verbal = spell['components']['verbal'] spell_entry.material = spell['components']['material'] if spell_entry.material: spell_entry.specific_materials = '' for i in range(len(spell['components']['materials_needed']) ): spell_entry.specific_materials += spell['components'][ 'materials_needed'][i] + ', ' if 'description' in spell.keys(): spell_entry.description = spell['description'] dice_number = re.findall('\\d+(?=d)', spell['description']) if len(dice_number) > 0: spell_entry.damage_dice_number = dice_number[0] dice_size = re.findall('(?<=d)\\d+', spell['description']) if len(dice_size) > 0: spell_entry.damage_dice_size = dice_size[0] s_throw = re.findall('[A-Z]\\w+(?= saving throw)', spell[ 'description']) if len(s_throw) == 1: s_throw = s_throw[0][:3].upper() spell_entry.save_type = s_throw if spell['level'] == 'cantrip': spell_entry.level = 'Cantrip' else: spell_entry.level = SPELL_LEVELS[spell['level']] if 'higher_levels' in spell.keys(): spell_entry.higher_level = spell['higher_levels'] if 'school' in spell.keys(): spell_entry.school = SPELL_SCHOOL[spell['school'].title()] if 'casting_time' in spell.keys(): if 'reaction' in spell['casting_time']: spell_entry.cast_time = CAST_TIME['1 Reaction'] else: spell_entry.cast_time = spell['casting_time'].title() if 'Concentration' in spell['duration']: spell_entry.concentration = True spell_entry.duration = spell['duration'][15:].title() else: spell_entry.concentration = False spell_entry.duration = spell['duration'] spell_entry.save() <|reserved_special_token_1|> # python imports import re # django imports from django.core.management.base import BaseCommand # module level imports from utils.spells import SPELLS from spells.models import Spell SPELL_SCHOOL = { 'Abjuration': 'Abjuration', 'Conjuration': 'Conjuration', 'Divination': 'Divination', 'Enchantment': 'Enchantment', 'Evocation': 'Evocation', 'Illusion': 'Illusion', 'Necromancy': 'Necromancy', 'Transmutation': 'Transmutation', } CAST_TIME = { '1 Action': '1 Action', '1 Bonus Action': '1 Bonus Action', '1 Reaction': '1 Reaction', '1 Minute': '1 Minute', '10 Minutes': '10 Minutes', '1 Hour': '1 Hour', '8 Hours': '8 Hours', '12 Hours': '12 Hours', '24 Hours': '24 Hours', '1 Action or 8 Hours': '1 Action or 8 Hours', } SPELL_LEVELS = { 'Cantrip': 'Cantrip', '1': '1st-level', '2': '2nd-level', '3': '3rd-level', '4': '4th-level', '5': '5th-level', '6': '6th-level', '7': '7th-level', '8': '8th-level', '9': '9th-level', } class Command(BaseCommand): """Command to populate the database with all spells for 5th Edition.""" # args help = 'Will auto populate the database with all the Spells from 5th Edition Dungeons and Dragons.' def handle(self, *args, **kwargs): for spell in SPELLS: spell_entry = Spell.objects.create( name=spell['name'], distance=spell['range'], ritual=spell['ritual'], ) if len(spell['classes']) > 1: spell_entry.available_to = '' for i in range(len(spell['classes'])): spell_entry.available_to += spell['classes'][i].title() + ', ' else: spell_entry.available_to = spell['classes'][0].title() if 'components' in spell.keys(): spell_entry.somatic = spell['components']['somatic'] spell_entry.verbal = spell['components']['verbal'] spell_entry.material = spell['components']['material'] if spell_entry.material: spell_entry.specific_materials = '' for i in range(len(spell['components']['materials_needed'])): spell_entry.specific_materials += spell['components']['materials_needed'][i] + ', ' if 'description' in spell.keys(): spell_entry.description = spell['description'] dice_number = re.findall(r'\d+(?=d)', spell['description']) if len(dice_number) > 0: spell_entry.damage_dice_number = dice_number[0] dice_size = re.findall(r'(?<=d)\d+', spell['description']) if len(dice_size) > 0: spell_entry.damage_dice_size = dice_size[0] s_throw = re.findall(r"[A-Z]\w+(?= saving throw)", spell['description']) if len(s_throw) == 1: s_throw = s_throw[0][:3].upper() spell_entry.save_type = s_throw if spell['level'] == 'cantrip': spell_entry.level = 'Cantrip' else: spell_entry.level = SPELL_LEVELS[spell['level']] if 'higher_levels' in spell.keys(): spell_entry.higher_level = spell['higher_levels'] if 'school' in spell.keys(): spell_entry.school = SPELL_SCHOOL[spell['school'].title()] if 'casting_time' in spell.keys(): if 'reaction' in spell['casting_time']: spell_entry.cast_time = CAST_TIME['1 Reaction'] else: spell_entry.cast_time = spell['casting_time'].title() if 'Concentration' in spell['duration']: spell_entry.concentration = True spell_entry.duration = spell['duration'][15:].title() else: spell_entry.concentration = False spell_entry.duration = spell['duration'] spell_entry.save()
flexible
{ "blob_id": "010f78d952657b3d7c11fbf8e46912d0294f6cc1", "index": 9103, "step-1": "<mask token>\n\n\nclass Command(BaseCommand):\n <mask token>\n help = (\n 'Will auto populate the database with all the Spells from 5th Edition Dungeons and Dragons.'\n )\n\n def handle(self, *args, **kwargs):\n for spell in SPELLS:\n spell_entry = Spell.objects.create(name=spell['name'], distance\n =spell['range'], ritual=spell['ritual'])\n if len(spell['classes']) > 1:\n spell_entry.available_to = ''\n for i in range(len(spell['classes'])):\n spell_entry.available_to += spell['classes'][i].title(\n ) + ', '\n else:\n spell_entry.available_to = spell['classes'][0].title()\n if 'components' in spell.keys():\n spell_entry.somatic = spell['components']['somatic']\n spell_entry.verbal = spell['components']['verbal']\n spell_entry.material = spell['components']['material']\n if spell_entry.material:\n spell_entry.specific_materials = ''\n for i in range(len(spell['components']['materials_needed'])\n ):\n spell_entry.specific_materials += spell['components'][\n 'materials_needed'][i] + ', '\n if 'description' in spell.keys():\n spell_entry.description = spell['description']\n dice_number = re.findall('\\\\d+(?=d)', spell['description'])\n if len(dice_number) > 0:\n spell_entry.damage_dice_number = dice_number[0]\n dice_size = re.findall('(?<=d)\\\\d+', spell['description'])\n if len(dice_size) > 0:\n spell_entry.damage_dice_size = dice_size[0]\n s_throw = re.findall('[A-Z]\\\\w+(?= saving throw)', spell[\n 'description'])\n if len(s_throw) == 1:\n s_throw = s_throw[0][:3].upper()\n spell_entry.save_type = s_throw\n if spell['level'] == 'cantrip':\n spell_entry.level = 'Cantrip'\n else:\n spell_entry.level = SPELL_LEVELS[spell['level']]\n if 'higher_levels' in spell.keys():\n spell_entry.higher_level = spell['higher_levels']\n if 'school' in spell.keys():\n spell_entry.school = SPELL_SCHOOL[spell['school'].title()]\n if 'casting_time' in spell.keys():\n if 'reaction' in spell['casting_time']:\n spell_entry.cast_time = CAST_TIME['1 Reaction']\n else:\n spell_entry.cast_time = spell['casting_time'].title()\n if 'Concentration' in spell['duration']:\n spell_entry.concentration = True\n spell_entry.duration = spell['duration'][15:].title()\n else:\n spell_entry.concentration = False\n spell_entry.duration = spell['duration']\n spell_entry.save()\n", "step-2": "<mask token>\n\n\nclass Command(BaseCommand):\n \"\"\"Command to populate the database with all spells for 5th Edition.\"\"\"\n help = (\n 'Will auto populate the database with all the Spells from 5th Edition Dungeons and Dragons.'\n )\n\n def handle(self, *args, **kwargs):\n for spell in SPELLS:\n spell_entry = Spell.objects.create(name=spell['name'], distance\n =spell['range'], ritual=spell['ritual'])\n if len(spell['classes']) > 1:\n spell_entry.available_to = ''\n for i in range(len(spell['classes'])):\n spell_entry.available_to += spell['classes'][i].title(\n ) + ', '\n else:\n spell_entry.available_to = spell['classes'][0].title()\n if 'components' in spell.keys():\n spell_entry.somatic = spell['components']['somatic']\n spell_entry.verbal = spell['components']['verbal']\n spell_entry.material = spell['components']['material']\n if spell_entry.material:\n spell_entry.specific_materials = ''\n for i in range(len(spell['components']['materials_needed'])\n ):\n spell_entry.specific_materials += spell['components'][\n 'materials_needed'][i] + ', '\n if 'description' in spell.keys():\n spell_entry.description = spell['description']\n dice_number = re.findall('\\\\d+(?=d)', spell['description'])\n if len(dice_number) > 0:\n spell_entry.damage_dice_number = dice_number[0]\n dice_size = re.findall('(?<=d)\\\\d+', spell['description'])\n if len(dice_size) > 0:\n spell_entry.damage_dice_size = dice_size[0]\n s_throw = re.findall('[A-Z]\\\\w+(?= saving throw)', spell[\n 'description'])\n if len(s_throw) == 1:\n s_throw = s_throw[0][:3].upper()\n spell_entry.save_type = s_throw\n if spell['level'] == 'cantrip':\n spell_entry.level = 'Cantrip'\n else:\n spell_entry.level = SPELL_LEVELS[spell['level']]\n if 'higher_levels' in spell.keys():\n spell_entry.higher_level = spell['higher_levels']\n if 'school' in spell.keys():\n spell_entry.school = SPELL_SCHOOL[spell['school'].title()]\n if 'casting_time' in spell.keys():\n if 'reaction' in spell['casting_time']:\n spell_entry.cast_time = CAST_TIME['1 Reaction']\n else:\n spell_entry.cast_time = spell['casting_time'].title()\n if 'Concentration' in spell['duration']:\n spell_entry.concentration = True\n spell_entry.duration = spell['duration'][15:].title()\n else:\n spell_entry.concentration = False\n spell_entry.duration = spell['duration']\n spell_entry.save()\n", "step-3": "<mask token>\nSPELL_SCHOOL = {'Abjuration': 'Abjuration', 'Conjuration': 'Conjuration',\n 'Divination': 'Divination', 'Enchantment': 'Enchantment', 'Evocation':\n 'Evocation', 'Illusion': 'Illusion', 'Necromancy': 'Necromancy',\n 'Transmutation': 'Transmutation'}\nCAST_TIME = {'1 Action': '1 Action', '1 Bonus Action': '1 Bonus Action',\n '1 Reaction': '1 Reaction', '1 Minute': '1 Minute', '10 Minutes':\n '10 Minutes', '1 Hour': '1 Hour', '8 Hours': '8 Hours', '12 Hours':\n '12 Hours', '24 Hours': '24 Hours', '1 Action or 8 Hours':\n '1 Action or 8 Hours'}\nSPELL_LEVELS = {'Cantrip': 'Cantrip', '1': '1st-level', '2': '2nd-level',\n '3': '3rd-level', '4': '4th-level', '5': '5th-level', '6': '6th-level',\n '7': '7th-level', '8': '8th-level', '9': '9th-level'}\n\n\nclass Command(BaseCommand):\n \"\"\"Command to populate the database with all spells for 5th Edition.\"\"\"\n help = (\n 'Will auto populate the database with all the Spells from 5th Edition Dungeons and Dragons.'\n )\n\n def handle(self, *args, **kwargs):\n for spell in SPELLS:\n spell_entry = Spell.objects.create(name=spell['name'], distance\n =spell['range'], ritual=spell['ritual'])\n if len(spell['classes']) > 1:\n spell_entry.available_to = ''\n for i in range(len(spell['classes'])):\n spell_entry.available_to += spell['classes'][i].title(\n ) + ', '\n else:\n spell_entry.available_to = spell['classes'][0].title()\n if 'components' in spell.keys():\n spell_entry.somatic = spell['components']['somatic']\n spell_entry.verbal = spell['components']['verbal']\n spell_entry.material = spell['components']['material']\n if spell_entry.material:\n spell_entry.specific_materials = ''\n for i in range(len(spell['components']['materials_needed'])\n ):\n spell_entry.specific_materials += spell['components'][\n 'materials_needed'][i] + ', '\n if 'description' in spell.keys():\n spell_entry.description = spell['description']\n dice_number = re.findall('\\\\d+(?=d)', spell['description'])\n if len(dice_number) > 0:\n spell_entry.damage_dice_number = dice_number[0]\n dice_size = re.findall('(?<=d)\\\\d+', spell['description'])\n if len(dice_size) > 0:\n spell_entry.damage_dice_size = dice_size[0]\n s_throw = re.findall('[A-Z]\\\\w+(?= saving throw)', spell[\n 'description'])\n if len(s_throw) == 1:\n s_throw = s_throw[0][:3].upper()\n spell_entry.save_type = s_throw\n if spell['level'] == 'cantrip':\n spell_entry.level = 'Cantrip'\n else:\n spell_entry.level = SPELL_LEVELS[spell['level']]\n if 'higher_levels' in spell.keys():\n spell_entry.higher_level = spell['higher_levels']\n if 'school' in spell.keys():\n spell_entry.school = SPELL_SCHOOL[spell['school'].title()]\n if 'casting_time' in spell.keys():\n if 'reaction' in spell['casting_time']:\n spell_entry.cast_time = CAST_TIME['1 Reaction']\n else:\n spell_entry.cast_time = spell['casting_time'].title()\n if 'Concentration' in spell['duration']:\n spell_entry.concentration = True\n spell_entry.duration = spell['duration'][15:].title()\n else:\n spell_entry.concentration = False\n spell_entry.duration = spell['duration']\n spell_entry.save()\n", "step-4": "import re\nfrom django.core.management.base import BaseCommand\nfrom utils.spells import SPELLS\nfrom spells.models import Spell\nSPELL_SCHOOL = {'Abjuration': 'Abjuration', 'Conjuration': 'Conjuration',\n 'Divination': 'Divination', 'Enchantment': 'Enchantment', 'Evocation':\n 'Evocation', 'Illusion': 'Illusion', 'Necromancy': 'Necromancy',\n 'Transmutation': 'Transmutation'}\nCAST_TIME = {'1 Action': '1 Action', '1 Bonus Action': '1 Bonus Action',\n '1 Reaction': '1 Reaction', '1 Minute': '1 Minute', '10 Minutes':\n '10 Minutes', '1 Hour': '1 Hour', '8 Hours': '8 Hours', '12 Hours':\n '12 Hours', '24 Hours': '24 Hours', '1 Action or 8 Hours':\n '1 Action or 8 Hours'}\nSPELL_LEVELS = {'Cantrip': 'Cantrip', '1': '1st-level', '2': '2nd-level',\n '3': '3rd-level', '4': '4th-level', '5': '5th-level', '6': '6th-level',\n '7': '7th-level', '8': '8th-level', '9': '9th-level'}\n\n\nclass Command(BaseCommand):\n \"\"\"Command to populate the database with all spells for 5th Edition.\"\"\"\n help = (\n 'Will auto populate the database with all the Spells from 5th Edition Dungeons and Dragons.'\n )\n\n def handle(self, *args, **kwargs):\n for spell in SPELLS:\n spell_entry = Spell.objects.create(name=spell['name'], distance\n =spell['range'], ritual=spell['ritual'])\n if len(spell['classes']) > 1:\n spell_entry.available_to = ''\n for i in range(len(spell['classes'])):\n spell_entry.available_to += spell['classes'][i].title(\n ) + ', '\n else:\n spell_entry.available_to = spell['classes'][0].title()\n if 'components' in spell.keys():\n spell_entry.somatic = spell['components']['somatic']\n spell_entry.verbal = spell['components']['verbal']\n spell_entry.material = spell['components']['material']\n if spell_entry.material:\n spell_entry.specific_materials = ''\n for i in range(len(spell['components']['materials_needed'])\n ):\n spell_entry.specific_materials += spell['components'][\n 'materials_needed'][i] + ', '\n if 'description' in spell.keys():\n spell_entry.description = spell['description']\n dice_number = re.findall('\\\\d+(?=d)', spell['description'])\n if len(dice_number) > 0:\n spell_entry.damage_dice_number = dice_number[0]\n dice_size = re.findall('(?<=d)\\\\d+', spell['description'])\n if len(dice_size) > 0:\n spell_entry.damage_dice_size = dice_size[0]\n s_throw = re.findall('[A-Z]\\\\w+(?= saving throw)', spell[\n 'description'])\n if len(s_throw) == 1:\n s_throw = s_throw[0][:3].upper()\n spell_entry.save_type = s_throw\n if spell['level'] == 'cantrip':\n spell_entry.level = 'Cantrip'\n else:\n spell_entry.level = SPELL_LEVELS[spell['level']]\n if 'higher_levels' in spell.keys():\n spell_entry.higher_level = spell['higher_levels']\n if 'school' in spell.keys():\n spell_entry.school = SPELL_SCHOOL[spell['school'].title()]\n if 'casting_time' in spell.keys():\n if 'reaction' in spell['casting_time']:\n spell_entry.cast_time = CAST_TIME['1 Reaction']\n else:\n spell_entry.cast_time = spell['casting_time'].title()\n if 'Concentration' in spell['duration']:\n spell_entry.concentration = True\n spell_entry.duration = spell['duration'][15:].title()\n else:\n spell_entry.concentration = False\n spell_entry.duration = spell['duration']\n spell_entry.save()\n", "step-5": "# python imports\nimport re\n\n# django imports\nfrom django.core.management.base import BaseCommand\n\n# module level imports\nfrom utils.spells import SPELLS\nfrom spells.models import Spell\n\nSPELL_SCHOOL = {\n 'Abjuration': 'Abjuration',\n 'Conjuration': 'Conjuration',\n 'Divination': 'Divination',\n 'Enchantment': 'Enchantment',\n 'Evocation': 'Evocation',\n 'Illusion': 'Illusion',\n 'Necromancy': 'Necromancy',\n 'Transmutation': 'Transmutation',\n}\n\nCAST_TIME = {\n '1 Action': '1 Action',\n '1 Bonus Action': '1 Bonus Action',\n '1 Reaction': '1 Reaction',\n '1 Minute': '1 Minute',\n '10 Minutes': '10 Minutes',\n '1 Hour': '1 Hour',\n '8 Hours': '8 Hours',\n '12 Hours': '12 Hours',\n '24 Hours': '24 Hours',\n '1 Action or 8 Hours': '1 Action or 8 Hours',\n}\n\nSPELL_LEVELS = {\n 'Cantrip': 'Cantrip',\n '1': '1st-level',\n '2': '2nd-level',\n '3': '3rd-level',\n '4': '4th-level',\n '5': '5th-level',\n '6': '6th-level',\n '7': '7th-level',\n '8': '8th-level',\n '9': '9th-level',\n}\n\n\nclass Command(BaseCommand):\n \"\"\"Command to populate the database with all spells for 5th Edition.\"\"\"\n\n # args\n help = 'Will auto populate the database with all the Spells from 5th Edition Dungeons and Dragons.'\n\n def handle(self, *args, **kwargs):\n\n for spell in SPELLS:\n spell_entry = Spell.objects.create(\n name=spell['name'],\n distance=spell['range'],\n ritual=spell['ritual'],\n )\n\n if len(spell['classes']) > 1:\n spell_entry.available_to = ''\n for i in range(len(spell['classes'])):\n spell_entry.available_to += spell['classes'][i].title() + ', '\n else:\n spell_entry.available_to = spell['classes'][0].title()\n\n if 'components' in spell.keys():\n spell_entry.somatic = spell['components']['somatic']\n spell_entry.verbal = spell['components']['verbal']\n spell_entry.material = spell['components']['material']\n\n if spell_entry.material:\n spell_entry.specific_materials = ''\n for i in range(len(spell['components']['materials_needed'])):\n spell_entry.specific_materials += spell['components']['materials_needed'][i] + ', '\n\n if 'description' in spell.keys():\n spell_entry.description = spell['description']\n\n dice_number = re.findall(r'\\d+(?=d)', spell['description'])\n if len(dice_number) > 0:\n spell_entry.damage_dice_number = dice_number[0]\n\n dice_size = re.findall(r'(?<=d)\\d+', spell['description'])\n if len(dice_size) > 0:\n spell_entry.damage_dice_size = dice_size[0]\n\n s_throw = re.findall(r\"[A-Z]\\w+(?= saving throw)\", spell['description'])\n if len(s_throw) == 1:\n s_throw = s_throw[0][:3].upper()\n spell_entry.save_type = s_throw\n\n if spell['level'] == 'cantrip':\n spell_entry.level = 'Cantrip'\n else:\n spell_entry.level = SPELL_LEVELS[spell['level']]\n\n if 'higher_levels' in spell.keys():\n spell_entry.higher_level = spell['higher_levels']\n\n if 'school' in spell.keys():\n spell_entry.school = SPELL_SCHOOL[spell['school'].title()]\n\n if 'casting_time' in spell.keys():\n if 'reaction' in spell['casting_time']:\n spell_entry.cast_time = CAST_TIME['1 Reaction']\n\n else:\n spell_entry.cast_time = spell['casting_time'].title()\n\n if 'Concentration' in spell['duration']:\n spell_entry.concentration = True\n spell_entry.duration = spell['duration'][15:].title()\n else:\n spell_entry.concentration = False\n spell_entry.duration = spell['duration']\n\n spell_entry.save()\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import tkinter as tk from tkinter import Tk, ttk from tkinter import filedialog import matplotlib.pyplot as plt import numpy as np import matplotlib from matplotlib.backends.backend_tkagg import ( FigureCanvasTkAgg, NavigationToolbar2Tk) from matplotlib.figure import Figure import matplotlib.animation as animation from matplotlib import style import crystalpeaktab as cp import smallangletab as sa matplotlib.use("TkAgg") class mainwin: def __init__(self, master): self.master = master master.title master.title("University of Utah XRD Analysis Multi-tool") #Sets up tabs self.tab_parent = ttk.Notebook(master) self.tab1 = ttk.Frame(self.tab_parent) self.tab2 = ttk.Frame(self.tab_parent) self.tab3 = ttk.Frame(self.tab_parent) self.tab_parent.add(self.tab1, text="Crystallization Peak Fit") self.tab_parent.add(self.tab2, text="Small Angle Simulation") self.tab_parent.grid(row=1, column=0) # Spacers tk.Label(self.master, text="").grid(row=2, column=3) # Sets the first tab to be the crystal peak analysis cp.tab(self.tab1) # Sets the second tab to be the Small Angle Analytic Simulation sa.tab(self.tab2) # ====================================================================================================================== # ====================================================================================================================== # MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN # ====================================================================================================================== root = tk.Tk() my_gui = mainwin(root) root.mainloop() # ====================================================================================================================== # ======================================================================================================================
normal
{ "blob_id": "137ed9c36265781dbebabbd1ee0ea84c9850201a", "index": 1642, "step-1": "<mask token>\n\n\nclass mainwin:\n\n def __init__(self, master):\n self.master = master\n master.title\n master.title('University of Utah XRD Analysis Multi-tool')\n self.tab_parent = ttk.Notebook(master)\n self.tab1 = ttk.Frame(self.tab_parent)\n self.tab2 = ttk.Frame(self.tab_parent)\n self.tab3 = ttk.Frame(self.tab_parent)\n self.tab_parent.add(self.tab1, text='Crystallization Peak Fit')\n self.tab_parent.add(self.tab2, text='Small Angle Simulation')\n self.tab_parent.grid(row=1, column=0)\n tk.Label(self.master, text='').grid(row=2, column=3)\n cp.tab(self.tab1)\n sa.tab(self.tab2)\n\n\n<mask token>\n", "step-2": "<mask token>\nmatplotlib.use('TkAgg')\n\n\nclass mainwin:\n\n def __init__(self, master):\n self.master = master\n master.title\n master.title('University of Utah XRD Analysis Multi-tool')\n self.tab_parent = ttk.Notebook(master)\n self.tab1 = ttk.Frame(self.tab_parent)\n self.tab2 = ttk.Frame(self.tab_parent)\n self.tab3 = ttk.Frame(self.tab_parent)\n self.tab_parent.add(self.tab1, text='Crystallization Peak Fit')\n self.tab_parent.add(self.tab2, text='Small Angle Simulation')\n self.tab_parent.grid(row=1, column=0)\n tk.Label(self.master, text='').grid(row=2, column=3)\n cp.tab(self.tab1)\n sa.tab(self.tab2)\n\n\n<mask token>\nroot.mainloop()\n", "step-3": "<mask token>\nmatplotlib.use('TkAgg')\n\n\nclass mainwin:\n\n def __init__(self, master):\n self.master = master\n master.title\n master.title('University of Utah XRD Analysis Multi-tool')\n self.tab_parent = ttk.Notebook(master)\n self.tab1 = ttk.Frame(self.tab_parent)\n self.tab2 = ttk.Frame(self.tab_parent)\n self.tab3 = ttk.Frame(self.tab_parent)\n self.tab_parent.add(self.tab1, text='Crystallization Peak Fit')\n self.tab_parent.add(self.tab2, text='Small Angle Simulation')\n self.tab_parent.grid(row=1, column=0)\n tk.Label(self.master, text='').grid(row=2, column=3)\n cp.tab(self.tab1)\n sa.tab(self.tab2)\n\n\nroot = tk.Tk()\nmy_gui = mainwin(root)\nroot.mainloop()\n", "step-4": "import tkinter as tk\nfrom tkinter import Tk, ttk\nfrom tkinter import filedialog\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport matplotlib\nfrom matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk\nfrom matplotlib.figure import Figure\nimport matplotlib.animation as animation\nfrom matplotlib import style\nimport crystalpeaktab as cp\nimport smallangletab as sa\nmatplotlib.use('TkAgg')\n\n\nclass mainwin:\n\n def __init__(self, master):\n self.master = master\n master.title\n master.title('University of Utah XRD Analysis Multi-tool')\n self.tab_parent = ttk.Notebook(master)\n self.tab1 = ttk.Frame(self.tab_parent)\n self.tab2 = ttk.Frame(self.tab_parent)\n self.tab3 = ttk.Frame(self.tab_parent)\n self.tab_parent.add(self.tab1, text='Crystallization Peak Fit')\n self.tab_parent.add(self.tab2, text='Small Angle Simulation')\n self.tab_parent.grid(row=1, column=0)\n tk.Label(self.master, text='').grid(row=2, column=3)\n cp.tab(self.tab1)\n sa.tab(self.tab2)\n\n\nroot = tk.Tk()\nmy_gui = mainwin(root)\nroot.mainloop()\n", "step-5": "import tkinter as tk\nfrom tkinter import Tk, ttk\nfrom tkinter import filedialog\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport matplotlib\nfrom matplotlib.backends.backend_tkagg import (\n FigureCanvasTkAgg, NavigationToolbar2Tk)\nfrom matplotlib.figure import Figure\nimport matplotlib.animation as animation\nfrom matplotlib import style\nimport crystalpeaktab as cp\nimport smallangletab as sa\nmatplotlib.use(\"TkAgg\")\n\nclass mainwin:\n def __init__(self, master):\n self.master = master\n master.title\n master.title(\"University of Utah XRD Analysis Multi-tool\")\n #Sets up tabs\n self.tab_parent = ttk.Notebook(master)\n self.tab1 = ttk.Frame(self.tab_parent)\n self.tab2 = ttk.Frame(self.tab_parent)\n self.tab3 = ttk.Frame(self.tab_parent)\n self.tab_parent.add(self.tab1, text=\"Crystallization Peak Fit\")\n self.tab_parent.add(self.tab2, text=\"Small Angle Simulation\")\n self.tab_parent.grid(row=1, column=0)\n # Spacers\n tk.Label(self.master, text=\"\").grid(row=2, column=3)\n # Sets the first tab to be the crystal peak analysis\n cp.tab(self.tab1)\n # Sets the second tab to be the Small Angle Analytic Simulation\n sa.tab(self.tab2)\n# ======================================================================================================================\n# ======================================================================================================================\n# MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN\n# ======================================================================================================================\nroot = tk.Tk()\nmy_gui = mainwin(root)\nroot.mainloop()\n# ======================================================================================================================\n# ======================================================================================================================\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
Dict={0:0, 1:1} def fibo(n): if n not in Dict: val=fibo(n-1)+fibo(n-2) Dict[n]=val return Dict[n] n=int(input("Enter the value of n:")) print("Fibonacci(", n,")= ", fibo(n)) # uncomment to take input from the user nterms = int(input("How many terms? ")) # check if the number of terms is valid if nterms <= 0: print("Plese enter a positive integer") else: print("Fibonacci sequence:") for i in range(nterms):``` print(fibo(i), end=" , ")
normal
{ "blob_id": "5a1c4cc572431f89709d20296d43e8d889e8c5b0", "index": 5180, "step-1": "Dict={0:0, 1:1}\ndef fibo(n):\n if n not in Dict:\n val=fibo(n-1)+fibo(n-2)\n Dict[n]=val\n return Dict[n]\nn=int(input(\"Enter the value of n:\"))\nprint(\"Fibonacci(\", n,\")= \", fibo(n))\n\n# uncomment to take input from the user\nnterms = int(input(\"How many terms? \"))\n\n# check if the number of terms is valid\nif nterms <= 0:\n print(\"Plese enter a positive integer\")\nelse:\n print(\"Fibonacci sequence:\")\n for i in range(nterms):```\n print(fibo(i), end=\" , \")\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def classify_question(query): try: """ Get answer-type from google autoML classifier (by making POST requests with authorization key) """ question_classifier = GoogleQuestionClassifier() answer_type = question_classifier.classify_by_api_call(query) except KeyError: """ Get answer-type from google autoML classifier (without authorization key by using google package) """ answer_type = question_classifier.classify_by_package(query) except: """ Get answer-type from custom question classifier """ from QnA_processor.question_analysis.custom_question_classifier import CustomQuestionClassifier question_classifier = CustomQuestionClassifier() answer_type = question_classifier.classify_question(query)[0] return answer_type <|reserved_special_token_1|> from QnA_processor.question_analysis.google_question_classifier import GoogleQuestionClassifier def classify_question(query): try: """ Get answer-type from google autoML classifier (by making POST requests with authorization key) """ question_classifier = GoogleQuestionClassifier() answer_type = question_classifier.classify_by_api_call(query) except KeyError: """ Get answer-type from google autoML classifier (without authorization key by using google package) """ answer_type = question_classifier.classify_by_package(query) except: """ Get answer-type from custom question classifier """ from QnA_processor.question_analysis.custom_question_classifier import CustomQuestionClassifier question_classifier = CustomQuestionClassifier() answer_type = question_classifier.classify_question(query)[0] return answer_type <|reserved_special_token_1|> from QnA_processor.question_analysis.google_question_classifier import GoogleQuestionClassifier def classify_question(query): try: """ Get answer-type from google autoML classifier (by making POST requests with authorization key) """ question_classifier = GoogleQuestionClassifier() answer_type = question_classifier.classify_by_api_call(query) except KeyError : """ Get answer-type from google autoML classifier (without authorization key by using google package) """ answer_type = question_classifier.classify_by_package(query) except: """ Get answer-type from custom question classifier """ from QnA_processor.question_analysis.custom_question_classifier import CustomQuestionClassifier question_classifier = CustomQuestionClassifier() answer_type = question_classifier.classify_question(query)[0] return answer_type # print (classify_question("How many seasons are there in a year"))
flexible
{ "blob_id": "db231ea92319414dd10ca8dfbc14e5a70ed2fe44", "index": 7343, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef classify_question(query):\n try:\n \"\"\"\n Get answer-type from google autoML classifier \n (by making POST requests with authorization key)\n \"\"\"\n question_classifier = GoogleQuestionClassifier()\n answer_type = question_classifier.classify_by_api_call(query)\n except KeyError:\n \"\"\"\n Get answer-type from google autoML classifier \n (without authorization key by using google package)\n \"\"\"\n answer_type = question_classifier.classify_by_package(query)\n except:\n \"\"\"\n Get answer-type from custom question classifier\n \"\"\"\n from QnA_processor.question_analysis.custom_question_classifier import CustomQuestionClassifier\n question_classifier = CustomQuestionClassifier()\n answer_type = question_classifier.classify_question(query)[0]\n return answer_type\n", "step-3": "from QnA_processor.question_analysis.google_question_classifier import GoogleQuestionClassifier\n\n\ndef classify_question(query):\n try:\n \"\"\"\n Get answer-type from google autoML classifier \n (by making POST requests with authorization key)\n \"\"\"\n question_classifier = GoogleQuestionClassifier()\n answer_type = question_classifier.classify_by_api_call(query)\n except KeyError:\n \"\"\"\n Get answer-type from google autoML classifier \n (without authorization key by using google package)\n \"\"\"\n answer_type = question_classifier.classify_by_package(query)\n except:\n \"\"\"\n Get answer-type from custom question classifier\n \"\"\"\n from QnA_processor.question_analysis.custom_question_classifier import CustomQuestionClassifier\n question_classifier = CustomQuestionClassifier()\n answer_type = question_classifier.classify_question(query)[0]\n return answer_type\n", "step-4": " \r\n \r\nfrom QnA_processor.question_analysis.google_question_classifier import GoogleQuestionClassifier\r\n \r\ndef classify_question(query):\r\n \r\n try:\r\n \"\"\"\r\n Get answer-type from google autoML classifier \r\n (by making POST requests with authorization key)\r\n \"\"\"\r\n question_classifier = GoogleQuestionClassifier()\r\n answer_type = question_classifier.classify_by_api_call(query)\r\n except KeyError :\r\n \"\"\"\r\n Get answer-type from google autoML classifier \r\n (without authorization key by using google package)\r\n \"\"\"\r\n answer_type = question_classifier.classify_by_package(query)\r\n \r\n except:\r\n \"\"\"\r\n Get answer-type from custom question classifier\r\n \"\"\"\r\n from QnA_processor.question_analysis.custom_question_classifier import CustomQuestionClassifier\r\n question_classifier = CustomQuestionClassifier()\r\n answer_type = question_classifier.classify_question(query)[0]\r\n \r\n return answer_type\r\n\r\n# print (classify_question(\"How many seasons are there in a year\"))", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from cpp_service.SubService import SubService import config if __name__ == "__main__": gateway = config.gateway["trading_system_gateway"] host = gateway["host"] port = gateway["port"] server_id = gateway["server_id"] licences = gateway["licences"] service = SubService(host, port, server_id, licences) """订阅order""" service.sub_order()
normal
{ "blob_id": "f72cdf8d91c31760335b96052a34615307f48727", "index": 9774, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n gateway = config.gateway['trading_system_gateway']\n host = gateway['host']\n port = gateway['port']\n server_id = gateway['server_id']\n licences = gateway['licences']\n service = SubService(host, port, server_id, licences)\n \"\"\"订阅order\"\"\"\n service.sub_order()\n", "step-3": "from cpp_service.SubService import SubService\nimport config\nif __name__ == '__main__':\n gateway = config.gateway['trading_system_gateway']\n host = gateway['host']\n port = gateway['port']\n server_id = gateway['server_id']\n licences = gateway['licences']\n service = SubService(host, port, server_id, licences)\n \"\"\"订阅order\"\"\"\n service.sub_order()\n", "step-4": "from cpp_service.SubService import SubService\nimport config\n\nif __name__ == \"__main__\":\n gateway = config.gateway[\"trading_system_gateway\"]\n host = gateway[\"host\"]\n port = gateway[\"port\"]\n server_id = gateway[\"server_id\"]\n licences = gateway[\"licences\"]\n\n service = SubService(host, port, server_id, licences)\n \"\"\"订阅order\"\"\"\n service.sub_order()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# EXERCISE: # Plotting distributions pairwise (2) # In this exercise, you will generate pairwise joint distributions again. This time, you will make two particular # additions: # - You will display regressions as well as scatter plots in the off-diagonal subplots. You will do this with the # argument kind='reg' (where 'reg' means 'regression'). Another option for kind is 'scatter' (the default) that # plots scatter plots in the off-diagonal subplots. # - You will also visualize the joint distributions separated by continent of origin. You will do this with the # keyword argument hue specifying the 'origin'. # INSTRUCTIONS: # - Plot the pairwise joint distributions separated by continent of origin and display the regressions. # CODE: # Print the first 5 rows of the DataFrame print(auto.head()) # Plot the pairwise joint distributions grouped by 'origin' along with regression lines sns.pairplot(auto, kind='reg', hue='origin') # Display the plot plt.show()
normal
{ "blob_id": "0eaaa81d3c8bc61368701e1916b42ede88b90d04", "index": 412, "step-1": "<mask token>\n", "step-2": "print(auto.head())\nsns.pairplot(auto, kind='reg', hue='origin')\nplt.show()\n", "step-3": "# EXERCISE:\n\n# Plotting distributions pairwise (2)\n\n# In this exercise, you will generate pairwise joint distributions again. This time, you will make two particular\n# additions:\n\n# - You will display regressions as well as scatter plots in the off-diagonal subplots. You will do this with the\n# argument kind='reg' (where 'reg' means 'regression'). Another option for kind is 'scatter' (the default) that\n# plots scatter plots in the off-diagonal subplots.\n# - You will also visualize the joint distributions separated by continent of origin. You will do this with the\n# keyword argument hue specifying the 'origin'.\n\n\n# INSTRUCTIONS:\n\n# - Plot the pairwise joint distributions separated by continent of origin and display the regressions.\n\n\n# CODE:\n\n# Print the first 5 rows of the DataFrame\nprint(auto.head())\n\n# Plot the pairwise joint distributions grouped by 'origin' along with regression lines\nsns.pairplot(auto, kind='reg', hue='origin')\n\n# Display the plot\nplt.show()\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> class ButtonActions(object): <|reserved_special_token_0|> def plot_rdf(self, display): matplotlib.rcParams.update({'font.size': 10}) self.fig = plt.figure(figsize=(display.width, display.height)) self.display = display rows, cols = self._get_rows_and_cols(display) count = 0 for existing, (symbol, name) in zip(display.existing_elements, display.rdf_names.items()): if existing: count += 1 if os.path.exists('rdf-' + str(name) + '.dat'): arr = np.loadtxt('rdf-' + str(name) + '.dat') else: print('ERROR: RDF analysis for ' + str(name) + ' was not performed in this directory!') ax = self.fig.add_subplot(rows, cols, count) txt = ax.text(0.1, 0.5, '', transform=ax.transAxes) txt.set_text('ERROR: RDF analysis for ' + str(name) + """ was not performed in this directory!""") plt.plot() continue x = arr[:, 0] y = arr[:, 1] ax = self.fig.add_subplot(rows, cols, count) self.axs.append(ax) sc_x, sc_y, integrals = self._find_local_minima_and_maxima(x, y, name) sc = plt.scatter(sc_x, sc_y, s=10, c=display.colors['mark']) self.integrals.append(integrals) self.scs.append(sc) annot = ax.annotate('', xy=(0, 0), xytext=(20, 20), textcoords='offset points', bbox=dict(boxstyle='round', fc='w'), arrowprops=dict(arrowstyle='->')) annot.set_visible(False) self.annots.append(annot) plt.xlabel('Distance of ' + str(name) + ' to oxygen atoms in water / Å') plt.ylabel('RDF') plt.xticks(np.arange(0, np.max(x) + 0.5, step=0.5)) ax.set_xlim([0, np.max(x)]) ax.axhline(y=1, ls='--', color=display.colors['mark']) plt.plot(x, y, linestyle='-', color='#80b1d3') plt.ion() self.fig.canvas.mpl_connect('motion_notify_event', lambda event: self._hover(event)) plt.show() <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def _update_annot(self, ind, subplot_number: int): index = ind['ind'][0] integral = self.integrals[subplot_number][index] text = '{0:.2f} waters'.format(integral) annot = self.annots[subplot_number] annot.xy = self.scs[subplot_number].get_offsets()[index] annot.set_text(text) annot.get_bbox_patch().set_facecolor(self.display.colors['mark']) annot.get_bbox_patch().set_alpha(0.4) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ButtonActions(object): def __init__(self): self.axs = [] self.integrals = [] self.scs = [] self.annots = [] def plot_rdf(self, display): matplotlib.rcParams.update({'font.size': 10}) self.fig = plt.figure(figsize=(display.width, display.height)) self.display = display rows, cols = self._get_rows_and_cols(display) count = 0 for existing, (symbol, name) in zip(display.existing_elements, display.rdf_names.items()): if existing: count += 1 if os.path.exists('rdf-' + str(name) + '.dat'): arr = np.loadtxt('rdf-' + str(name) + '.dat') else: print('ERROR: RDF analysis for ' + str(name) + ' was not performed in this directory!') ax = self.fig.add_subplot(rows, cols, count) txt = ax.text(0.1, 0.5, '', transform=ax.transAxes) txt.set_text('ERROR: RDF analysis for ' + str(name) + """ was not performed in this directory!""") plt.plot() continue x = arr[:, 0] y = arr[:, 1] ax = self.fig.add_subplot(rows, cols, count) self.axs.append(ax) sc_x, sc_y, integrals = self._find_local_minima_and_maxima(x, y, name) sc = plt.scatter(sc_x, sc_y, s=10, c=display.colors['mark']) self.integrals.append(integrals) self.scs.append(sc) annot = ax.annotate('', xy=(0, 0), xytext=(20, 20), textcoords='offset points', bbox=dict(boxstyle='round', fc='w'), arrowprops=dict(arrowstyle='->')) annot.set_visible(False) self.annots.append(annot) plt.xlabel('Distance of ' + str(name) + ' to oxygen atoms in water / Å') plt.ylabel('RDF') plt.xticks(np.arange(0, np.max(x) + 0.5, step=0.5)) ax.set_xlim([0, np.max(x)]) ax.axhline(y=1, ls='--', color=display.colors['mark']) plt.plot(x, y, linestyle='-', color='#80b1d3') plt.ion() self.fig.canvas.mpl_connect('motion_notify_event', lambda event: self._hover(event)) plt.show() def _get_rows_and_cols(self, display) ->Tuple[int, int]: true_count = sum(display.existing_elements) if true_count % 2 == 0: rows = int(round(true_count / 2)) cols = int(round(true_count / 2)) if true_count == 2: rows = 2 else: rows = int(round(true_count / 2 + 0.5)) cols = int(round(true_count / 2 + 0.5)) if true_count == 5: cols = 2 return rows, cols def _find_local_minima_and_maxima(self, distances: np.array, values: np .array, name: str) ->Tuple[List[float], List[float], List[float]]: n_local = 5 maxima = argrelextrema(values, np.greater, order=n_local)[0] minima = argrelextrema(values, np.less, order=n_local)[0] extrema = np.asarray(list(maxima) + list(minima)) ext_distances = [distances[x] for x in extrema] ext_values = [values[x] for x in extrema] integrals = self._get_integrals(extrema, name) return ext_distances, ext_values, integrals def _get_integrals(self, indices: np.array, name: str) ->List[float]: arr = np.loadtxt('int-rdf-' + str(name) + '.dat') return [arr[:, 1][i] for i in indices] def _update_annot(self, ind, subplot_number: int): index = ind['ind'][0] integral = self.integrals[subplot_number][index] text = '{0:.2f} waters'.format(integral) annot = self.annots[subplot_number] annot.xy = self.scs[subplot_number].get_offsets()[index] annot.set_text(text) annot.get_bbox_patch().set_facecolor(self.display.colors['mark']) annot.get_bbox_patch().set_alpha(0.4) def _hover(self, event): for i, a in enumerate(self.axs): if event.inaxes == a: contains, ind = self.scs[i].contains(event) annot = self.annots[i] visible = annot.get_visible() if contains: self._update_annot(ind, i) annot.set_visible(True) self.fig.canvas.draw_idle() elif visible: annot.set_visible(False) self.fig.canvas.draw_idle() <|reserved_special_token_1|> __copyright__ = """ This code is licensed under the MIT license. Copyright University Innsbruck, Institute for General, Inorganic, and Theoretical Chemistry, Podewitz Group See LICENSE for details """ <|reserved_special_token_0|> class ButtonActions(object): def __init__(self): self.axs = [] self.integrals = [] self.scs = [] self.annots = [] def plot_rdf(self, display): matplotlib.rcParams.update({'font.size': 10}) self.fig = plt.figure(figsize=(display.width, display.height)) self.display = display rows, cols = self._get_rows_and_cols(display) count = 0 for existing, (symbol, name) in zip(display.existing_elements, display.rdf_names.items()): if existing: count += 1 if os.path.exists('rdf-' + str(name) + '.dat'): arr = np.loadtxt('rdf-' + str(name) + '.dat') else: print('ERROR: RDF analysis for ' + str(name) + ' was not performed in this directory!') ax = self.fig.add_subplot(rows, cols, count) txt = ax.text(0.1, 0.5, '', transform=ax.transAxes) txt.set_text('ERROR: RDF analysis for ' + str(name) + """ was not performed in this directory!""") plt.plot() continue x = arr[:, 0] y = arr[:, 1] ax = self.fig.add_subplot(rows, cols, count) self.axs.append(ax) sc_x, sc_y, integrals = self._find_local_minima_and_maxima(x, y, name) sc = plt.scatter(sc_x, sc_y, s=10, c=display.colors['mark']) self.integrals.append(integrals) self.scs.append(sc) annot = ax.annotate('', xy=(0, 0), xytext=(20, 20), textcoords='offset points', bbox=dict(boxstyle='round', fc='w'), arrowprops=dict(arrowstyle='->')) annot.set_visible(False) self.annots.append(annot) plt.xlabel('Distance of ' + str(name) + ' to oxygen atoms in water / Å') plt.ylabel('RDF') plt.xticks(np.arange(0, np.max(x) + 0.5, step=0.5)) ax.set_xlim([0, np.max(x)]) ax.axhline(y=1, ls='--', color=display.colors['mark']) plt.plot(x, y, linestyle='-', color='#80b1d3') plt.ion() self.fig.canvas.mpl_connect('motion_notify_event', lambda event: self._hover(event)) plt.show() def _get_rows_and_cols(self, display) ->Tuple[int, int]: true_count = sum(display.existing_elements) if true_count % 2 == 0: rows = int(round(true_count / 2)) cols = int(round(true_count / 2)) if true_count == 2: rows = 2 else: rows = int(round(true_count / 2 + 0.5)) cols = int(round(true_count / 2 + 0.5)) if true_count == 5: cols = 2 return rows, cols def _find_local_minima_and_maxima(self, distances: np.array, values: np .array, name: str) ->Tuple[List[float], List[float], List[float]]: n_local = 5 maxima = argrelextrema(values, np.greater, order=n_local)[0] minima = argrelextrema(values, np.less, order=n_local)[0] extrema = np.asarray(list(maxima) + list(minima)) ext_distances = [distances[x] for x in extrema] ext_values = [values[x] for x in extrema] integrals = self._get_integrals(extrema, name) return ext_distances, ext_values, integrals def _get_integrals(self, indices: np.array, name: str) ->List[float]: arr = np.loadtxt('int-rdf-' + str(name) + '.dat') return [arr[:, 1][i] for i in indices] def _update_annot(self, ind, subplot_number: int): index = ind['ind'][0] integral = self.integrals[subplot_number][index] text = '{0:.2f} waters'.format(integral) annot = self.annots[subplot_number] annot.xy = self.scs[subplot_number].get_offsets()[index] annot.set_text(text) annot.get_bbox_patch().set_facecolor(self.display.colors['mark']) annot.get_bbox_patch().set_alpha(0.4) def _hover(self, event): for i, a in enumerate(self.axs): if event.inaxes == a: contains, ind = self.scs[i].contains(event) annot = self.annots[i] visible = annot.get_visible() if contains: self._update_annot(ind, i) annot.set_visible(True) self.fig.canvas.draw_idle() elif visible: annot.set_visible(False) self.fig.canvas.draw_idle() <|reserved_special_token_1|> __copyright__ = """ This code is licensed under the MIT license. Copyright University Innsbruck, Institute for General, Inorganic, and Theoretical Chemistry, Podewitz Group See LICENSE for details """ from scipy.signal import argrelextrema from typing import List, Tuple import matplotlib import matplotlib.pyplot as plt import numpy as np import os class ButtonActions(object): def __init__(self): self.axs = [] self.integrals = [] self.scs = [] self.annots = [] def plot_rdf(self, display): matplotlib.rcParams.update({'font.size': 10}) self.fig = plt.figure(figsize=(display.width, display.height)) self.display = display rows, cols = self._get_rows_and_cols(display) count = 0 for existing, (symbol, name) in zip(display.existing_elements, display.rdf_names.items()): if existing: count += 1 if os.path.exists('rdf-' + str(name) + '.dat'): arr = np.loadtxt('rdf-' + str(name) + '.dat') else: print('ERROR: RDF analysis for ' + str(name) + ' was not performed in this directory!') ax = self.fig.add_subplot(rows, cols, count) txt = ax.text(0.1, 0.5, '', transform=ax.transAxes) txt.set_text('ERROR: RDF analysis for ' + str(name) + """ was not performed in this directory!""") plt.plot() continue x = arr[:, 0] y = arr[:, 1] ax = self.fig.add_subplot(rows, cols, count) self.axs.append(ax) sc_x, sc_y, integrals = self._find_local_minima_and_maxima(x, y, name) sc = plt.scatter(sc_x, sc_y, s=10, c=display.colors['mark']) self.integrals.append(integrals) self.scs.append(sc) annot = ax.annotate('', xy=(0, 0), xytext=(20, 20), textcoords='offset points', bbox=dict(boxstyle='round', fc='w'), arrowprops=dict(arrowstyle='->')) annot.set_visible(False) self.annots.append(annot) plt.xlabel('Distance of ' + str(name) + ' to oxygen atoms in water / Å') plt.ylabel('RDF') plt.xticks(np.arange(0, np.max(x) + 0.5, step=0.5)) ax.set_xlim([0, np.max(x)]) ax.axhline(y=1, ls='--', color=display.colors['mark']) plt.plot(x, y, linestyle='-', color='#80b1d3') plt.ion() self.fig.canvas.mpl_connect('motion_notify_event', lambda event: self._hover(event)) plt.show() def _get_rows_and_cols(self, display) ->Tuple[int, int]: true_count = sum(display.existing_elements) if true_count % 2 == 0: rows = int(round(true_count / 2)) cols = int(round(true_count / 2)) if true_count == 2: rows = 2 else: rows = int(round(true_count / 2 + 0.5)) cols = int(round(true_count / 2 + 0.5)) if true_count == 5: cols = 2 return rows, cols def _find_local_minima_and_maxima(self, distances: np.array, values: np .array, name: str) ->Tuple[List[float], List[float], List[float]]: n_local = 5 maxima = argrelextrema(values, np.greater, order=n_local)[0] minima = argrelextrema(values, np.less, order=n_local)[0] extrema = np.asarray(list(maxima) + list(minima)) ext_distances = [distances[x] for x in extrema] ext_values = [values[x] for x in extrema] integrals = self._get_integrals(extrema, name) return ext_distances, ext_values, integrals def _get_integrals(self, indices: np.array, name: str) ->List[float]: arr = np.loadtxt('int-rdf-' + str(name) + '.dat') return [arr[:, 1][i] for i in indices] def _update_annot(self, ind, subplot_number: int): index = ind['ind'][0] integral = self.integrals[subplot_number][index] text = '{0:.2f} waters'.format(integral) annot = self.annots[subplot_number] annot.xy = self.scs[subplot_number].get_offsets()[index] annot.set_text(text) annot.get_bbox_patch().set_facecolor(self.display.colors['mark']) annot.get_bbox_patch().set_alpha(0.4) def _hover(self, event): for i, a in enumerate(self.axs): if event.inaxes == a: contains, ind = self.scs[i].contains(event) annot = self.annots[i] visible = annot.get_visible() if contains: self._update_annot(ind, i) annot.set_visible(True) self.fig.canvas.draw_idle() elif visible: annot.set_visible(False) self.fig.canvas.draw_idle() <|reserved_special_token_1|> #!/usr/bin/env python3 # -*- coding: utf-8 -*- __copyright__ = """ This code is licensed under the MIT license. Copyright University Innsbruck, Institute for General, Inorganic, and Theoretical Chemistry, Podewitz Group See LICENSE for details """ from scipy.signal import argrelextrema from typing import List, Tuple import matplotlib import matplotlib.pyplot as plt import numpy as np import os class ButtonActions(object): def __init__(self): self.axs = [] self.integrals = [] self.scs = [] self.annots = [] def plot_rdf(self, display): matplotlib.rcParams.update({'font.size': 10}) self.fig = plt.figure(figsize=(display.width, display.height)) self.display = display rows, cols = self._get_rows_and_cols(display) count = 0 # only count existing -> not enumerate for existing, (symbol, name) in zip(display.existing_elements, display.rdf_names.items()): if existing: count += 1 if os.path.exists('rdf-' + str(name) + '.dat'): arr = np.loadtxt("rdf-" + str(name) + ".dat") else: print("ERROR: RDF analysis for " + str(name) + " was not performed in this directory!") ax = self.fig.add_subplot(rows, cols, count) txt = ax.text(0.1, 0.5, '', transform=ax.transAxes) txt.set_text("ERROR: RDF analysis for " + str(name) + "\nwas not performed in this directory!") plt.plot() continue x = arr[:, 0] y = arr[:, 1] ax = self.fig.add_subplot(rows, cols, count) self.axs.append(ax) # determine integrals sc_x, sc_y, integrals = self._find_local_minima_and_maxima(x, y, name) sc = plt.scatter(sc_x, sc_y, s=10, c=display.colors['mark']) self.integrals.append(integrals) self.scs.append(sc) annot = ax.annotate("", xy=(0, 0), xytext=(20, 20), textcoords="offset points", bbox=dict(boxstyle="round", fc="w"), arrowprops=dict(arrowstyle="->")) annot.set_visible(False) self.annots.append(annot) # title and label specifications plt.xlabel("Distance of " + str(name) + ' to oxygen atoms in water / \u00c5') plt.ylabel('RDF') plt.xticks(np.arange(0, np.max(x) + 0.5, step=0.5)) ax.set_xlim([0, np.max(x)]) ax.axhline(y=1, ls='--', color=display.colors['mark']) plt.plot(x, y, linestyle="-", color='#80b1d3') plt.ion() # avoids 'The event loop is already running' error message self.fig.canvas.mpl_connect('motion_notify_event', lambda event: self._hover(event)) plt.show() def _get_rows_and_cols(self, display) -> Tuple[int, int]: true_count = sum(display.existing_elements) if true_count % 2 == 0: rows = int(round(true_count / 2)) cols = int(round(true_count / 2)) if true_count == 2: rows = 2 else: rows = int(round(true_count / 2 + 0.5)) cols = int(round(true_count / 2 + 0.5)) if true_count == 5: cols = 2 return rows, cols def _find_local_minima_and_maxima(self, distances: np.array, values: np.array, name: str) -> Tuple[List[float], List[float], List[float]]: n_local = 5 maxima = argrelextrema(values, np.greater, order=n_local)[0] minima = argrelextrema(values, np.less, order=n_local)[0] extrema = np.asarray(list(maxima) + list(minima)) ext_distances = [distances[x] for x in extrema] ext_values = [values[x] for x in extrema] integrals = self._get_integrals(extrema, name) return ext_distances, ext_values, integrals def _get_integrals(self, indices: np.array, name: str) -> List[float]: arr = np.loadtxt("int-rdf-" + str(name) + ".dat") return [arr[:, 1][i] for i in indices] def _update_annot(self, ind, subplot_number: int): index = ind['ind'][0] integral = self.integrals[subplot_number][index] text = "{0:.2f} waters".format(integral) annot = self.annots[subplot_number] annot.xy = self.scs[subplot_number].get_offsets()[index] annot.set_text(text) annot.get_bbox_patch().set_facecolor(self.display.colors['mark']) annot.get_bbox_patch().set_alpha(0.4) def _hover(self, event): for i, a in enumerate(self.axs): if event.inaxes == a: contains, ind = self.scs[i].contains(event) annot = self.annots[i] visible = annot.get_visible() if contains: self._update_annot(ind, i) annot.set_visible(True) self.fig.canvas.draw_idle() else: if visible: annot.set_visible(False) self.fig.canvas.draw_idle()
flexible
{ "blob_id": "8c42e06fd92f0110b3ba8c4e7cc0ac45b9e44378", "index": 3150, "step-1": "<mask token>\n\n\nclass ButtonActions(object):\n <mask token>\n\n def plot_rdf(self, display):\n matplotlib.rcParams.update({'font.size': 10})\n self.fig = plt.figure(figsize=(display.width, display.height))\n self.display = display\n rows, cols = self._get_rows_and_cols(display)\n count = 0\n for existing, (symbol, name) in zip(display.existing_elements,\n display.rdf_names.items()):\n if existing:\n count += 1\n if os.path.exists('rdf-' + str(name) + '.dat'):\n arr = np.loadtxt('rdf-' + str(name) + '.dat')\n else:\n print('ERROR: RDF analysis for ' + str(name) +\n ' was not performed in this directory!')\n ax = self.fig.add_subplot(rows, cols, count)\n txt = ax.text(0.1, 0.5, '', transform=ax.transAxes)\n txt.set_text('ERROR: RDF analysis for ' + str(name) +\n \"\"\"\nwas not performed in this directory!\"\"\")\n plt.plot()\n continue\n x = arr[:, 0]\n y = arr[:, 1]\n ax = self.fig.add_subplot(rows, cols, count)\n self.axs.append(ax)\n sc_x, sc_y, integrals = self._find_local_minima_and_maxima(x,\n y, name)\n sc = plt.scatter(sc_x, sc_y, s=10, c=display.colors['mark'])\n self.integrals.append(integrals)\n self.scs.append(sc)\n annot = ax.annotate('', xy=(0, 0), xytext=(20, 20),\n textcoords='offset points', bbox=dict(boxstyle='round',\n fc='w'), arrowprops=dict(arrowstyle='->'))\n annot.set_visible(False)\n self.annots.append(annot)\n plt.xlabel('Distance of ' + str(name) +\n ' to oxygen atoms in water / Å')\n plt.ylabel('RDF')\n plt.xticks(np.arange(0, np.max(x) + 0.5, step=0.5))\n ax.set_xlim([0, np.max(x)])\n ax.axhline(y=1, ls='--', color=display.colors['mark'])\n plt.plot(x, y, linestyle='-', color='#80b1d3')\n plt.ion()\n self.fig.canvas.mpl_connect('motion_notify_event', lambda event:\n self._hover(event))\n plt.show()\n <mask token>\n <mask token>\n <mask token>\n\n def _update_annot(self, ind, subplot_number: int):\n index = ind['ind'][0]\n integral = self.integrals[subplot_number][index]\n text = '{0:.2f} waters'.format(integral)\n annot = self.annots[subplot_number]\n annot.xy = self.scs[subplot_number].get_offsets()[index]\n annot.set_text(text)\n annot.get_bbox_patch().set_facecolor(self.display.colors['mark'])\n annot.get_bbox_patch().set_alpha(0.4)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass ButtonActions(object):\n\n def __init__(self):\n self.axs = []\n self.integrals = []\n self.scs = []\n self.annots = []\n\n def plot_rdf(self, display):\n matplotlib.rcParams.update({'font.size': 10})\n self.fig = plt.figure(figsize=(display.width, display.height))\n self.display = display\n rows, cols = self._get_rows_and_cols(display)\n count = 0\n for existing, (symbol, name) in zip(display.existing_elements,\n display.rdf_names.items()):\n if existing:\n count += 1\n if os.path.exists('rdf-' + str(name) + '.dat'):\n arr = np.loadtxt('rdf-' + str(name) + '.dat')\n else:\n print('ERROR: RDF analysis for ' + str(name) +\n ' was not performed in this directory!')\n ax = self.fig.add_subplot(rows, cols, count)\n txt = ax.text(0.1, 0.5, '', transform=ax.transAxes)\n txt.set_text('ERROR: RDF analysis for ' + str(name) +\n \"\"\"\nwas not performed in this directory!\"\"\")\n plt.plot()\n continue\n x = arr[:, 0]\n y = arr[:, 1]\n ax = self.fig.add_subplot(rows, cols, count)\n self.axs.append(ax)\n sc_x, sc_y, integrals = self._find_local_minima_and_maxima(x,\n y, name)\n sc = plt.scatter(sc_x, sc_y, s=10, c=display.colors['mark'])\n self.integrals.append(integrals)\n self.scs.append(sc)\n annot = ax.annotate('', xy=(0, 0), xytext=(20, 20),\n textcoords='offset points', bbox=dict(boxstyle='round',\n fc='w'), arrowprops=dict(arrowstyle='->'))\n annot.set_visible(False)\n self.annots.append(annot)\n plt.xlabel('Distance of ' + str(name) +\n ' to oxygen atoms in water / Å')\n plt.ylabel('RDF')\n plt.xticks(np.arange(0, np.max(x) + 0.5, step=0.5))\n ax.set_xlim([0, np.max(x)])\n ax.axhline(y=1, ls='--', color=display.colors['mark'])\n plt.plot(x, y, linestyle='-', color='#80b1d3')\n plt.ion()\n self.fig.canvas.mpl_connect('motion_notify_event', lambda event:\n self._hover(event))\n plt.show()\n\n def _get_rows_and_cols(self, display) ->Tuple[int, int]:\n true_count = sum(display.existing_elements)\n if true_count % 2 == 0:\n rows = int(round(true_count / 2))\n cols = int(round(true_count / 2))\n if true_count == 2:\n rows = 2\n else:\n rows = int(round(true_count / 2 + 0.5))\n cols = int(round(true_count / 2 + 0.5))\n if true_count == 5:\n cols = 2\n return rows, cols\n\n def _find_local_minima_and_maxima(self, distances: np.array, values: np\n .array, name: str) ->Tuple[List[float], List[float], List[float]]:\n n_local = 5\n maxima = argrelextrema(values, np.greater, order=n_local)[0]\n minima = argrelextrema(values, np.less, order=n_local)[0]\n extrema = np.asarray(list(maxima) + list(minima))\n ext_distances = [distances[x] for x in extrema]\n ext_values = [values[x] for x in extrema]\n integrals = self._get_integrals(extrema, name)\n return ext_distances, ext_values, integrals\n\n def _get_integrals(self, indices: np.array, name: str) ->List[float]:\n arr = np.loadtxt('int-rdf-' + str(name) + '.dat')\n return [arr[:, 1][i] for i in indices]\n\n def _update_annot(self, ind, subplot_number: int):\n index = ind['ind'][0]\n integral = self.integrals[subplot_number][index]\n text = '{0:.2f} waters'.format(integral)\n annot = self.annots[subplot_number]\n annot.xy = self.scs[subplot_number].get_offsets()[index]\n annot.set_text(text)\n annot.get_bbox_patch().set_facecolor(self.display.colors['mark'])\n annot.get_bbox_patch().set_alpha(0.4)\n\n def _hover(self, event):\n for i, a in enumerate(self.axs):\n if event.inaxes == a:\n contains, ind = self.scs[i].contains(event)\n annot = self.annots[i]\n visible = annot.get_visible()\n if contains:\n self._update_annot(ind, i)\n annot.set_visible(True)\n self.fig.canvas.draw_idle()\n elif visible:\n annot.set_visible(False)\n self.fig.canvas.draw_idle()\n", "step-3": "__copyright__ = \"\"\"\nThis code is licensed under the MIT license.\nCopyright University Innsbruck, Institute for General, Inorganic, and Theoretical Chemistry, Podewitz Group\nSee LICENSE for details\n\"\"\"\n<mask token>\n\n\nclass ButtonActions(object):\n\n def __init__(self):\n self.axs = []\n self.integrals = []\n self.scs = []\n self.annots = []\n\n def plot_rdf(self, display):\n matplotlib.rcParams.update({'font.size': 10})\n self.fig = plt.figure(figsize=(display.width, display.height))\n self.display = display\n rows, cols = self._get_rows_and_cols(display)\n count = 0\n for existing, (symbol, name) in zip(display.existing_elements,\n display.rdf_names.items()):\n if existing:\n count += 1\n if os.path.exists('rdf-' + str(name) + '.dat'):\n arr = np.loadtxt('rdf-' + str(name) + '.dat')\n else:\n print('ERROR: RDF analysis for ' + str(name) +\n ' was not performed in this directory!')\n ax = self.fig.add_subplot(rows, cols, count)\n txt = ax.text(0.1, 0.5, '', transform=ax.transAxes)\n txt.set_text('ERROR: RDF analysis for ' + str(name) +\n \"\"\"\nwas not performed in this directory!\"\"\")\n plt.plot()\n continue\n x = arr[:, 0]\n y = arr[:, 1]\n ax = self.fig.add_subplot(rows, cols, count)\n self.axs.append(ax)\n sc_x, sc_y, integrals = self._find_local_minima_and_maxima(x,\n y, name)\n sc = plt.scatter(sc_x, sc_y, s=10, c=display.colors['mark'])\n self.integrals.append(integrals)\n self.scs.append(sc)\n annot = ax.annotate('', xy=(0, 0), xytext=(20, 20),\n textcoords='offset points', bbox=dict(boxstyle='round',\n fc='w'), arrowprops=dict(arrowstyle='->'))\n annot.set_visible(False)\n self.annots.append(annot)\n plt.xlabel('Distance of ' + str(name) +\n ' to oxygen atoms in water / Å')\n plt.ylabel('RDF')\n plt.xticks(np.arange(0, np.max(x) + 0.5, step=0.5))\n ax.set_xlim([0, np.max(x)])\n ax.axhline(y=1, ls='--', color=display.colors['mark'])\n plt.plot(x, y, linestyle='-', color='#80b1d3')\n plt.ion()\n self.fig.canvas.mpl_connect('motion_notify_event', lambda event:\n self._hover(event))\n plt.show()\n\n def _get_rows_and_cols(self, display) ->Tuple[int, int]:\n true_count = sum(display.existing_elements)\n if true_count % 2 == 0:\n rows = int(round(true_count / 2))\n cols = int(round(true_count / 2))\n if true_count == 2:\n rows = 2\n else:\n rows = int(round(true_count / 2 + 0.5))\n cols = int(round(true_count / 2 + 0.5))\n if true_count == 5:\n cols = 2\n return rows, cols\n\n def _find_local_minima_and_maxima(self, distances: np.array, values: np\n .array, name: str) ->Tuple[List[float], List[float], List[float]]:\n n_local = 5\n maxima = argrelextrema(values, np.greater, order=n_local)[0]\n minima = argrelextrema(values, np.less, order=n_local)[0]\n extrema = np.asarray(list(maxima) + list(minima))\n ext_distances = [distances[x] for x in extrema]\n ext_values = [values[x] for x in extrema]\n integrals = self._get_integrals(extrema, name)\n return ext_distances, ext_values, integrals\n\n def _get_integrals(self, indices: np.array, name: str) ->List[float]:\n arr = np.loadtxt('int-rdf-' + str(name) + '.dat')\n return [arr[:, 1][i] for i in indices]\n\n def _update_annot(self, ind, subplot_number: int):\n index = ind['ind'][0]\n integral = self.integrals[subplot_number][index]\n text = '{0:.2f} waters'.format(integral)\n annot = self.annots[subplot_number]\n annot.xy = self.scs[subplot_number].get_offsets()[index]\n annot.set_text(text)\n annot.get_bbox_patch().set_facecolor(self.display.colors['mark'])\n annot.get_bbox_patch().set_alpha(0.4)\n\n def _hover(self, event):\n for i, a in enumerate(self.axs):\n if event.inaxes == a:\n contains, ind = self.scs[i].contains(event)\n annot = self.annots[i]\n visible = annot.get_visible()\n if contains:\n self._update_annot(ind, i)\n annot.set_visible(True)\n self.fig.canvas.draw_idle()\n elif visible:\n annot.set_visible(False)\n self.fig.canvas.draw_idle()\n", "step-4": "__copyright__ = \"\"\"\nThis code is licensed under the MIT license.\nCopyright University Innsbruck, Institute for General, Inorganic, and Theoretical Chemistry, Podewitz Group\nSee LICENSE for details\n\"\"\"\nfrom scipy.signal import argrelextrema\nfrom typing import List, Tuple\nimport matplotlib\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport os\n\n\nclass ButtonActions(object):\n\n def __init__(self):\n self.axs = []\n self.integrals = []\n self.scs = []\n self.annots = []\n\n def plot_rdf(self, display):\n matplotlib.rcParams.update({'font.size': 10})\n self.fig = plt.figure(figsize=(display.width, display.height))\n self.display = display\n rows, cols = self._get_rows_and_cols(display)\n count = 0\n for existing, (symbol, name) in zip(display.existing_elements,\n display.rdf_names.items()):\n if existing:\n count += 1\n if os.path.exists('rdf-' + str(name) + '.dat'):\n arr = np.loadtxt('rdf-' + str(name) + '.dat')\n else:\n print('ERROR: RDF analysis for ' + str(name) +\n ' was not performed in this directory!')\n ax = self.fig.add_subplot(rows, cols, count)\n txt = ax.text(0.1, 0.5, '', transform=ax.transAxes)\n txt.set_text('ERROR: RDF analysis for ' + str(name) +\n \"\"\"\nwas not performed in this directory!\"\"\")\n plt.plot()\n continue\n x = arr[:, 0]\n y = arr[:, 1]\n ax = self.fig.add_subplot(rows, cols, count)\n self.axs.append(ax)\n sc_x, sc_y, integrals = self._find_local_minima_and_maxima(x,\n y, name)\n sc = plt.scatter(sc_x, sc_y, s=10, c=display.colors['mark'])\n self.integrals.append(integrals)\n self.scs.append(sc)\n annot = ax.annotate('', xy=(0, 0), xytext=(20, 20),\n textcoords='offset points', bbox=dict(boxstyle='round',\n fc='w'), arrowprops=dict(arrowstyle='->'))\n annot.set_visible(False)\n self.annots.append(annot)\n plt.xlabel('Distance of ' + str(name) +\n ' to oxygen atoms in water / Å')\n plt.ylabel('RDF')\n plt.xticks(np.arange(0, np.max(x) + 0.5, step=0.5))\n ax.set_xlim([0, np.max(x)])\n ax.axhline(y=1, ls='--', color=display.colors['mark'])\n plt.plot(x, y, linestyle='-', color='#80b1d3')\n plt.ion()\n self.fig.canvas.mpl_connect('motion_notify_event', lambda event:\n self._hover(event))\n plt.show()\n\n def _get_rows_and_cols(self, display) ->Tuple[int, int]:\n true_count = sum(display.existing_elements)\n if true_count % 2 == 0:\n rows = int(round(true_count / 2))\n cols = int(round(true_count / 2))\n if true_count == 2:\n rows = 2\n else:\n rows = int(round(true_count / 2 + 0.5))\n cols = int(round(true_count / 2 + 0.5))\n if true_count == 5:\n cols = 2\n return rows, cols\n\n def _find_local_minima_and_maxima(self, distances: np.array, values: np\n .array, name: str) ->Tuple[List[float], List[float], List[float]]:\n n_local = 5\n maxima = argrelextrema(values, np.greater, order=n_local)[0]\n minima = argrelextrema(values, np.less, order=n_local)[0]\n extrema = np.asarray(list(maxima) + list(minima))\n ext_distances = [distances[x] for x in extrema]\n ext_values = [values[x] for x in extrema]\n integrals = self._get_integrals(extrema, name)\n return ext_distances, ext_values, integrals\n\n def _get_integrals(self, indices: np.array, name: str) ->List[float]:\n arr = np.loadtxt('int-rdf-' + str(name) + '.dat')\n return [arr[:, 1][i] for i in indices]\n\n def _update_annot(self, ind, subplot_number: int):\n index = ind['ind'][0]\n integral = self.integrals[subplot_number][index]\n text = '{0:.2f} waters'.format(integral)\n annot = self.annots[subplot_number]\n annot.xy = self.scs[subplot_number].get_offsets()[index]\n annot.set_text(text)\n annot.get_bbox_patch().set_facecolor(self.display.colors['mark'])\n annot.get_bbox_patch().set_alpha(0.4)\n\n def _hover(self, event):\n for i, a in enumerate(self.axs):\n if event.inaxes == a:\n contains, ind = self.scs[i].contains(event)\n annot = self.annots[i]\n visible = annot.get_visible()\n if contains:\n self._update_annot(ind, i)\n annot.set_visible(True)\n self.fig.canvas.draw_idle()\n elif visible:\n annot.set_visible(False)\n self.fig.canvas.draw_idle()\n", "step-5": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n__copyright__ = \"\"\"\nThis code is licensed under the MIT license.\nCopyright University Innsbruck, Institute for General, Inorganic, and Theoretical Chemistry, Podewitz Group\nSee LICENSE for details\n\"\"\"\n\nfrom scipy.signal import argrelextrema\nfrom typing import List, Tuple\nimport matplotlib\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport os\n\n\nclass ButtonActions(object):\n def __init__(self):\n self.axs = []\n self.integrals = []\n self.scs = []\n self.annots = []\n\n def plot_rdf(self, display):\n matplotlib.rcParams.update({'font.size': 10})\n self.fig = plt.figure(figsize=(display.width, display.height))\n self.display = display\n\n rows, cols = self._get_rows_and_cols(display)\n\n count = 0 # only count existing -> not enumerate\n for existing, (symbol, name) in zip(display.existing_elements, display.rdf_names.items()):\n if existing:\n count += 1\n if os.path.exists('rdf-' + str(name) + '.dat'):\n arr = np.loadtxt(\"rdf-\" + str(name) + \".dat\")\n else:\n print(\"ERROR: RDF analysis for \" + str(name) + \" was not performed in this directory!\")\n ax = self.fig.add_subplot(rows, cols, count)\n txt = ax.text(0.1, 0.5, '', transform=ax.transAxes)\n txt.set_text(\"ERROR: RDF analysis for \" + str(name) + \"\\nwas not performed in this directory!\")\n plt.plot()\n continue\n\n x = arr[:, 0]\n y = arr[:, 1]\n ax = self.fig.add_subplot(rows, cols, count)\n self.axs.append(ax)\n\n # determine integrals\n sc_x, sc_y, integrals = self._find_local_minima_and_maxima(x, y, name)\n sc = plt.scatter(sc_x, sc_y, s=10, c=display.colors['mark'])\n self.integrals.append(integrals)\n self.scs.append(sc)\n annot = ax.annotate(\"\", xy=(0, 0), xytext=(20, 20), textcoords=\"offset points\",\n bbox=dict(boxstyle=\"round\", fc=\"w\"), arrowprops=dict(arrowstyle=\"->\"))\n annot.set_visible(False)\n self.annots.append(annot)\n\n # title and label specifications\n plt.xlabel(\"Distance of \" + str(name) + ' to oxygen atoms in water / \\u00c5')\n plt.ylabel('RDF')\n plt.xticks(np.arange(0, np.max(x) + 0.5, step=0.5))\n ax.set_xlim([0, np.max(x)])\n ax.axhline(y=1, ls='--', color=display.colors['mark'])\n plt.plot(x, y, linestyle=\"-\", color='#80b1d3')\n\n plt.ion() # avoids 'The event loop is already running' error message\n self.fig.canvas.mpl_connect('motion_notify_event', lambda event: self._hover(event))\n plt.show()\n\n def _get_rows_and_cols(self, display) -> Tuple[int, int]:\n true_count = sum(display.existing_elements)\n if true_count % 2 == 0:\n rows = int(round(true_count / 2))\n cols = int(round(true_count / 2))\n if true_count == 2:\n rows = 2\n else:\n rows = int(round(true_count / 2 + 0.5))\n cols = int(round(true_count / 2 + 0.5))\n if true_count == 5:\n cols = 2\n return rows, cols\n\n def _find_local_minima_and_maxima(self, distances: np.array, values: np.array, name: str) -> Tuple[List[float],\n List[float],\n List[float]]:\n n_local = 5\n maxima = argrelextrema(values, np.greater, order=n_local)[0]\n minima = argrelextrema(values, np.less, order=n_local)[0]\n extrema = np.asarray(list(maxima) + list(minima))\n ext_distances = [distances[x] for x in extrema]\n ext_values = [values[x] for x in extrema]\n integrals = self._get_integrals(extrema, name)\n return ext_distances, ext_values, integrals\n\n def _get_integrals(self, indices: np.array, name: str) -> List[float]:\n arr = np.loadtxt(\"int-rdf-\" + str(name) + \".dat\")\n return [arr[:, 1][i] for i in indices]\n\n def _update_annot(self, ind, subplot_number: int):\n index = ind['ind'][0]\n integral = self.integrals[subplot_number][index]\n text = \"{0:.2f} waters\".format(integral)\n annot = self.annots[subplot_number]\n annot.xy = self.scs[subplot_number].get_offsets()[index]\n annot.set_text(text)\n annot.get_bbox_patch().set_facecolor(self.display.colors['mark'])\n annot.get_bbox_patch().set_alpha(0.4)\n\n def _hover(self, event):\n for i, a in enumerate(self.axs):\n if event.inaxes == a:\n contains, ind = self.scs[i].contains(event)\n annot = self.annots[i]\n visible = annot.get_visible()\n if contains:\n self._update_annot(ind, i)\n annot.set_visible(True)\n self.fig.canvas.draw_idle()\n else:\n if visible:\n annot.set_visible(False)\n self.fig.canvas.draw_idle()\n", "step-ids": [ 3, 8, 9, 10, 11 ] }
[ 3, 8, 9, 10, 11 ]
# -*- coding: utf-8 -*- """ Created on Tue Mar 12 20:29:49 2019 @author: kzx789 """ from PIL import Image import os, glob, numpy as np import pandas as pd import matplotlib.pyplot as plt import math import cv2 import pymysql import MySQLdb as mysql """ #csv를 읽어서 영양정보 출력 def get_Nutrition(str) : nutrition = pd.read_csv('C:/식품영양정보/영양정보.csv') print(nutrition[nutrition['음식명'] == str]) """ #사용된 전체 이미지 출력 def drawing_plt(): thisImg = os.listdir(caltech_dir) row = 4 cols = int(math.ceil(len(thisImg)/4)) #반올림 fig = plt.figure() i = 1 for image in glob.glob("C:/cnnTest/*.jpg"): #glob를 사용해서 Test로 사용된 파일 가져오기 img = cv2.imread(image) subplot = fig.add_subplot(row, cols, i) subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) #기본컬러 subplot.set_title(thisImg[i-1]) #타이틀 붙이기 subplot.axis("off") i += 1 print('\t',"전체 이미지 리스트 ") plt.show() #조건에 맞는 개별 이미지 출력 def get_Image(str): imgPath = 'C:/cnnTest/' image = cv2.imread(imgPath+str) image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB) plt.imshow(image) plt.xticks([]) plt.yticks([]) plt.show() #데이터베이스에서 영양소 정보 가지고 오기 def get_DB_Nutrition(str): db = pymysql.connect(host="localhost", user = "yeha", password="", db="nutrition") cur = db.cursor() #Connection에서 Cursor생성 sql = "SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s" cur.execute(sql,(str)) data = cur.fetchall() #정보 전부 가져오기 df = pd.Series(data[0],data[1]) print(df) db.close() caltech_dir = "C:/cnnTest" #테스트할 데이터들을 128*128로 지정 image_w = 128 image_h = 128 pixels = image_h * image_w * 3 #픽셀 지정 X = [] #filenames = [] files = os.listdir(caltech_dir) #하위 디렉터리 파일 리스트 구하기 #print(files) #이미지 목록 확인 for i in range(len(files)): files[i]=caltech_dir+'/'+ files[i] #print(files) for f in files: img = Image.open(f) img = img.convert("RGB") img = img.resize((image_w, image_h)) data = np.asarray(img) # filenames.append(f) X.append(data) X = np.array(X) #print(X) #모델 불러오기 from keras.models import load_model model = load_model("C:/image/train/model/multi_img_classification.model") prediction = model.predict(X) #print(prediction) np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)}) print('프로그램을 실행합니다..') print('\n') thisImg = os.listdir(caltech_dir) cnt = 0 for i in prediction: pre_ans = i.argmax() # 예측 레이블//가장 큰 번째 수 #print(i) #print(pre_ans) pre_ans_str = '' if pre_ans == 0: pre_ans_str = "연어회" elif pre_ans == 1: pre_ans_str = "쌀국수" elif pre_ans == 2: pre_ans_str = "샌드위치" else: pre_ans_str = "새우튀김" if i[0] >= 0.8 : get_Image(thisImg[cnt]) print(thisImg[cnt]+" 이미지는 "+pre_ans_str+"(으)로 추정됩니다.") #get_Nutrition(pre_ans_str) get_DB_Nutrition(pre_ans_str) if i[1] >= 0.8: get_Image(thisImg[cnt]) print(thisImg[cnt]+" 이미지는 "+pre_ans_str+"(으)로 추정됩니다.") #get_Nutrition(pre_ans_str) get_DB_Nutrition(pre_ans_str) if i[2] >= 0.8: get_Image(thisImg[cnt]) print(thisImg[cnt]+" 이미지는 "+pre_ans_str+"(으)로 추정됩니다.") #get_Nutrition(pre_ans_str) get_DB_Nutrition(pre_ans_str) if i[3] >= 0.8: get_Image(thisImg[cnt]) print(thisImg[cnt]+" 이미지는 "+pre_ans_str+"(으)로 추정됩니다.") #get_Nutrition(pre_ans_str) get_DB_Nutrition(pre_ans_str) cnt += 1 drawing_plt()
normal
{ "blob_id": "1255a9df2fbe11d92991f3f0f7054b92cb017628", "index": 2941, "step-1": "<mask token>\n\n\ndef drawing_plt():\n thisImg = os.listdir(caltech_dir)\n row = 4\n cols = int(math.ceil(len(thisImg) / 4))\n fig = plt.figure()\n i = 1\n for image in glob.glob('C:/cnnTest/*.jpg'):\n img = cv2.imread(image)\n subplot = fig.add_subplot(row, cols, i)\n subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))\n subplot.set_title(thisImg[i - 1])\n subplot.axis('off')\n i += 1\n print('\\t', '전체 이미지 리스트 ')\n plt.show()\n\n\ndef get_Image(str):\n imgPath = 'C:/cnnTest/'\n image = cv2.imread(imgPath + str)\n image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n plt.imshow(image)\n plt.xticks([])\n plt.yticks([])\n plt.show()\n\n\ndef get_DB_Nutrition(str):\n db = pymysql.connect(host='localhost', user='yeha', password='', db=\n 'nutrition')\n cur = db.cursor()\n sql = (\n \"SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s\"\n )\n cur.execute(sql, str)\n data = cur.fetchall()\n df = pd.Series(data[0], data[1])\n print(df)\n db.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef drawing_plt():\n thisImg = os.listdir(caltech_dir)\n row = 4\n cols = int(math.ceil(len(thisImg) / 4))\n fig = plt.figure()\n i = 1\n for image in glob.glob('C:/cnnTest/*.jpg'):\n img = cv2.imread(image)\n subplot = fig.add_subplot(row, cols, i)\n subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))\n subplot.set_title(thisImg[i - 1])\n subplot.axis('off')\n i += 1\n print('\\t', '전체 이미지 리스트 ')\n plt.show()\n\n\ndef get_Image(str):\n imgPath = 'C:/cnnTest/'\n image = cv2.imread(imgPath + str)\n image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n plt.imshow(image)\n plt.xticks([])\n plt.yticks([])\n plt.show()\n\n\ndef get_DB_Nutrition(str):\n db = pymysql.connect(host='localhost', user='yeha', password='', db=\n 'nutrition')\n cur = db.cursor()\n sql = (\n \"SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s\"\n )\n cur.execute(sql, str)\n data = cur.fetchall()\n df = pd.Series(data[0], data[1])\n print(df)\n db.close()\n\n\n<mask token>\nfor i in range(len(files)):\n files[i] = caltech_dir + '/' + files[i]\nfor f in files:\n img = Image.open(f)\n img = img.convert('RGB')\n img = img.resize((image_w, image_h))\n data = np.asarray(img)\n X.append(data)\n<mask token>\nnp.set_printoptions(formatter={'float': lambda x: '{0:0.3f}'.format(x)})\nprint('프로그램을 실행합니다..')\nprint('\\n')\n<mask token>\nfor i in prediction:\n pre_ans = i.argmax()\n pre_ans_str = ''\n if pre_ans == 0:\n pre_ans_str = '연어회'\n elif pre_ans == 1:\n pre_ans_str = '쌀국수'\n elif pre_ans == 2:\n pre_ans_str = '샌드위치'\n else:\n pre_ans_str = '새우튀김'\n if i[0] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[1] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[2] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[3] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n cnt += 1\ndrawing_plt()\n", "step-3": "<mask token>\n\n\ndef drawing_plt():\n thisImg = os.listdir(caltech_dir)\n row = 4\n cols = int(math.ceil(len(thisImg) / 4))\n fig = plt.figure()\n i = 1\n for image in glob.glob('C:/cnnTest/*.jpg'):\n img = cv2.imread(image)\n subplot = fig.add_subplot(row, cols, i)\n subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))\n subplot.set_title(thisImg[i - 1])\n subplot.axis('off')\n i += 1\n print('\\t', '전체 이미지 리스트 ')\n plt.show()\n\n\ndef get_Image(str):\n imgPath = 'C:/cnnTest/'\n image = cv2.imread(imgPath + str)\n image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n plt.imshow(image)\n plt.xticks([])\n plt.yticks([])\n plt.show()\n\n\ndef get_DB_Nutrition(str):\n db = pymysql.connect(host='localhost', user='yeha', password='', db=\n 'nutrition')\n cur = db.cursor()\n sql = (\n \"SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s\"\n )\n cur.execute(sql, str)\n data = cur.fetchall()\n df = pd.Series(data[0], data[1])\n print(df)\n db.close()\n\n\ncaltech_dir = 'C:/cnnTest'\nimage_w = 128\nimage_h = 128\npixels = image_h * image_w * 3\nX = []\nfiles = os.listdir(caltech_dir)\nfor i in range(len(files)):\n files[i] = caltech_dir + '/' + files[i]\nfor f in files:\n img = Image.open(f)\n img = img.convert('RGB')\n img = img.resize((image_w, image_h))\n data = np.asarray(img)\n X.append(data)\nX = np.array(X)\n<mask token>\nmodel = load_model('C:/image/train/model/multi_img_classification.model')\nprediction = model.predict(X)\nnp.set_printoptions(formatter={'float': lambda x: '{0:0.3f}'.format(x)})\nprint('프로그램을 실행합니다..')\nprint('\\n')\nthisImg = os.listdir(caltech_dir)\ncnt = 0\nfor i in prediction:\n pre_ans = i.argmax()\n pre_ans_str = ''\n if pre_ans == 0:\n pre_ans_str = '연어회'\n elif pre_ans == 1:\n pre_ans_str = '쌀국수'\n elif pre_ans == 2:\n pre_ans_str = '샌드위치'\n else:\n pre_ans_str = '새우튀김'\n if i[0] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[1] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[2] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[3] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n cnt += 1\ndrawing_plt()\n", "step-4": "<mask token>\nfrom PIL import Image\nimport os, glob, numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nimport math\nimport cv2\nimport pymysql\nimport MySQLdb as mysql\n<mask token>\n\n\ndef drawing_plt():\n thisImg = os.listdir(caltech_dir)\n row = 4\n cols = int(math.ceil(len(thisImg) / 4))\n fig = plt.figure()\n i = 1\n for image in glob.glob('C:/cnnTest/*.jpg'):\n img = cv2.imread(image)\n subplot = fig.add_subplot(row, cols, i)\n subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))\n subplot.set_title(thisImg[i - 1])\n subplot.axis('off')\n i += 1\n print('\\t', '전체 이미지 리스트 ')\n plt.show()\n\n\ndef get_Image(str):\n imgPath = 'C:/cnnTest/'\n image = cv2.imread(imgPath + str)\n image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n plt.imshow(image)\n plt.xticks([])\n plt.yticks([])\n plt.show()\n\n\ndef get_DB_Nutrition(str):\n db = pymysql.connect(host='localhost', user='yeha', password='', db=\n 'nutrition')\n cur = db.cursor()\n sql = (\n \"SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s\"\n )\n cur.execute(sql, str)\n data = cur.fetchall()\n df = pd.Series(data[0], data[1])\n print(df)\n db.close()\n\n\ncaltech_dir = 'C:/cnnTest'\nimage_w = 128\nimage_h = 128\npixels = image_h * image_w * 3\nX = []\nfiles = os.listdir(caltech_dir)\nfor i in range(len(files)):\n files[i] = caltech_dir + '/' + files[i]\nfor f in files:\n img = Image.open(f)\n img = img.convert('RGB')\n img = img.resize((image_w, image_h))\n data = np.asarray(img)\n X.append(data)\nX = np.array(X)\nfrom keras.models import load_model\nmodel = load_model('C:/image/train/model/multi_img_classification.model')\nprediction = model.predict(X)\nnp.set_printoptions(formatter={'float': lambda x: '{0:0.3f}'.format(x)})\nprint('프로그램을 실행합니다..')\nprint('\\n')\nthisImg = os.listdir(caltech_dir)\ncnt = 0\nfor i in prediction:\n pre_ans = i.argmax()\n pre_ans_str = ''\n if pre_ans == 0:\n pre_ans_str = '연어회'\n elif pre_ans == 1:\n pre_ans_str = '쌀국수'\n elif pre_ans == 2:\n pre_ans_str = '샌드위치'\n else:\n pre_ans_str = '새우튀김'\n if i[0] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[1] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[2] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[3] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n cnt += 1\ndrawing_plt()\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Tue Mar 12 20:29:49 2019\n\n@author: kzx789\n\"\"\"\n\nfrom PIL import Image\nimport os, glob, numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nimport math\nimport cv2\nimport pymysql\nimport MySQLdb as mysql\n\n\"\"\"\n#csv를 읽어서 영양정보 출력\ndef get_Nutrition(str) :\n nutrition = pd.read_csv('C:/식품영양정보/영양정보.csv') \n print(nutrition[nutrition['음식명'] == str])\n\"\"\" \n#사용된 전체 이미지 출력\ndef drawing_plt():\n thisImg = os.listdir(caltech_dir)\n row = 4\n cols = int(math.ceil(len(thisImg)/4)) #반올림\n fig = plt.figure()\n i = 1\n \n for image in glob.glob(\"C:/cnnTest/*.jpg\"): #glob를 사용해서 Test로 사용된 파일 가져오기\n img = cv2.imread(image)\n subplot = fig.add_subplot(row, cols, i)\n subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) #기본컬러\n subplot.set_title(thisImg[i-1]) #타이틀 붙이기\n subplot.axis(\"off\") \n i += 1\n print('\\t',\"전체 이미지 리스트 \")\n plt.show()\n\n#조건에 맞는 개별 이미지 출력\ndef get_Image(str):\n imgPath = 'C:/cnnTest/'\n image = cv2.imread(imgPath+str)\n image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)\n plt.imshow(image)\n plt.xticks([])\n plt.yticks([])\n plt.show()\n\n#데이터베이스에서 영양소 정보 가지고 오기\ndef get_DB_Nutrition(str):\n db = pymysql.connect(host=\"localhost\", user = \"yeha\", password=\"\", db=\"nutrition\")\n cur = db.cursor() #Connection에서 Cursor생성\n sql = \"SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s\"\n cur.execute(sql,(str))\n data = cur.fetchall() #정보 전부 가져오기\n df = pd.Series(data[0],data[1])\n print(df)\n db.close()\n\n\ncaltech_dir = \"C:/cnnTest\"\n\n#테스트할 데이터들을 128*128로 지정\nimage_w = 128\nimage_h = 128\npixels = image_h * image_w * 3 #픽셀 지정\n\nX = []\n#filenames = []\n\nfiles = os.listdir(caltech_dir) #하위 디렉터리 파일 리스트 구하기\n\n#print(files) #이미지 목록 확인 \n\nfor i in range(len(files)):\n files[i]=caltech_dir+'/'+ files[i]\n#print(files) \n\nfor f in files:\n img = Image.open(f)\n img = img.convert(\"RGB\")\n img = img.resize((image_w, image_h))\n data = np.asarray(img)\n # filenames.append(f)\n X.append(data)\n\nX = np.array(X)\n#print(X)\n\n#모델 불러오기\nfrom keras.models import load_model\n\nmodel = load_model(\"C:/image/train/model/multi_img_classification.model\")\nprediction = model.predict(X)\n#print(prediction)\n\nnp.set_printoptions(formatter={'float': lambda x: \"{0:0.3f}\".format(x)})\n\n\nprint('프로그램을 실행합니다..')\nprint('\\n')\nthisImg = os.listdir(caltech_dir)\ncnt = 0\n\nfor i in prediction:\n pre_ans = i.argmax() # 예측 레이블//가장 큰 번째 수\n #print(i)\n #print(pre_ans)\n pre_ans_str = ''\n if pre_ans == 0: pre_ans_str = \"연어회\"\n elif pre_ans == 1: pre_ans_str = \"쌀국수\"\n elif pre_ans == 2: pre_ans_str = \"샌드위치\"\n else: pre_ans_str = \"새우튀김\"\n\n if i[0] >= 0.8 : \n get_Image(thisImg[cnt])\n print(thisImg[cnt]+\" 이미지는 \"+pre_ans_str+\"(으)로 추정됩니다.\")\n #get_Nutrition(pre_ans_str) \n get_DB_Nutrition(pre_ans_str)\n\n if i[1] >= 0.8: \n get_Image(thisImg[cnt])\n print(thisImg[cnt]+\" 이미지는 \"+pre_ans_str+\"(으)로 추정됩니다.\")\n #get_Nutrition(pre_ans_str) \n get_DB_Nutrition(pre_ans_str)\n\n\n if i[2] >= 0.8: \n get_Image(thisImg[cnt])\n print(thisImg[cnt]+\" 이미지는 \"+pre_ans_str+\"(으)로 추정됩니다.\")\n #get_Nutrition(pre_ans_str) \n get_DB_Nutrition(pre_ans_str)\n\n if i[3] >= 0.8: \n get_Image(thisImg[cnt])\n print(thisImg[cnt]+\" 이미지는 \"+pre_ans_str+\"(으)로 추정됩니다.\")\n #get_Nutrition(pre_ans_str) \n get_DB_Nutrition(pre_ans_str)\n cnt += 1\n \ndrawing_plt()\n\n ", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import configparser # CONFIG config = configparser.ConfigParser() config.read('dwh.cfg') # DROP TABLES drop_schema="DROP SCHEMA IF EXISTS sparkifydb;" set_search_path="SET SEARCH_PATH to sparkifydb;" staging_events_table_drop = "DROP TABLE IF EXISTS staging_events;" staging_songs_table_drop = "DROP TABLE IF EXISTS staging_songs;" songplay_table_drop = "DROP TABLE IF EXISTS songplay;" user_table_drop = "DROP TABLE IF EXISTS sparkifydb.users;" song_table_drop ="DROP TABLE IF EXISTS sparkifydb.songs;" artist_table_drop = "DROP TABLE IF EXISTS sparkifydb.artists;" time_table_drop = "DROP TABLE IF EXISTS sparkifydb.time;" #CREATE SCHEMA create_sparkify_schema="CREATE SCHEMA IF NOT EXISTS sparkifydb;" # CREATE TABLES staging_events_table_create= (""" CREATE TABLE staging_events ( event_id int identity(0,1) SORTKEY, artist_name text NULL DISTKEY, auth text NULL, firstName text NULL, gender varchar(5) NULL, itemInSession bigint NULL, lastName text NULL, length double precision NULL, level text NULL, location text NULL, method text NULL, page text NULL, registration text NULL, sessionId bigint NULL, song text NULL, status int NULL, ts text NULL, userAgent text NULL, userId bigint ); """) staging_songs_table_create = (""" CREATE TABLE staging_songs ( num_songs int, artist_id varchar(255) DISTKEY, artist_latitude varchar(255) NULL, artist_longitude varchar(255) NULL, artist_location varchar(255) NULL, artist_name text NOT NULL, song_id varchar(255) SORTKEY NOT NULL, title text NOT NULL, duration double precision NOT NULL, year int NULL ); """) songplay_table_create = (""" CREATE TABLE songplay ( songplay_id int identity(0,1) PRIMARY KEY SORTKEY NOT NULL, start_time timestamp NOT NULL, user_id text NOT NULL, level text, song_id text NOT NULL, artist_id text NOT NULL DISTKEY, session_id text, location text, user_agent text); """) user_table_create = (""" CREATE TABLE users( user_id bigint PRIMARY KEY SORTKEY NOT NULL , first_name text, last_name text, gender varchar(10), level text )diststyle all; """) song_table_create = (""" CREATE TABLE songs( song_id varchar(255) SORTKEY PRIMARY KEY NOT NULL, artist_id text NOT NULL, year int, duration double precision, level text )diststyle all; """) artist_table_create = (""" CREATE TABLE artists( artist_id text PRIMARY KEY SORTKEY, artist_name text, location text, lattitude text, longitude text ) diststyle all; """) time_table_create = (""" CREATE TABLE time( start_time timestamp PRIMARY KEY SORTKEY, hour int, day int, week int, month int, year int, weekday int ) diststyle all; """) # STAGING TABLES staging_events_copy = ("""copy staging_events from '{}' credentials 'aws_iam_role={}' compupdate off region 'us-west-2' JSON '{}' """).format(config['S3']['LOG_DATA'],config['IAM_ROLE']['ARN'],config['S3']['LOG_JSONPATH']) staging_songs_copy = ("""copy staging_songs from '{}' credentials 'aws_iam_role={}' compupdate off region 'us-west-2' JSON 'auto' """).format(config['S3']['SONG_DATA'],config['IAM_ROLE']['ARN']) # FINAL TABLES songplay_table_insert = (""" INSERT INTO songplay(start_time,user_id,level,song_id,artist_id,session_id,location,user_agent) SELECT TIMESTAMP 'epoch' + se.ts/1000 * INTERVAL '1 Second ' AS start_time, se.userId AS user_id, se.level AS level, ss.song_id AS song_id, ss.artist_id AS artist_id, se.sessionId AS session_id, ss.artist_location AS location, se.userAgent AS user_agent FROM staging_songs AS ss JOIN staging_events AS se ON (ss.title=se.song AND ss.artist_name=se.artist_name) AND se.page = 'NextSong'; """) user_table_insert = (""" INSERT INTO users(user_id,first_name,last_name,gender,level) SELECT DISTINCT(s.userId) AS user_id, s.firstName AS first_name, s.lastName AS last_name, s.gender AS gender, s.level AS level FROM staging_events as s WHERE s.page = 'NextSong' """) song_table_insert = (""" INSERT INTO songs (song_id,artist_id,year, duration) SELECT DISTINCT(ss.song_id) AS song_id, ss.artist_id AS artist_id, ss.year AS year, ss.duration AS duration FROM staging_songs AS ss """) artist_table_insert = (""" INSERT INTO artists (artist_id,artist_name,location,lattitude,longitude) SELECT DISTINCT(s.artist_id) AS artist_id, s.artist_name AS artist_name, s.artist_location AS location, s.artist_latitude AS lattitude, s.artist_longitude AS longitude FROM staging_songs AS s; """) time_table_insert = (""" INSERT INTO time (start_time,hour,day,week,month,year,weekday) SELECT DISTINCT(TIMESTAMP 'epoch' + s.ts/1000 * INTERVAL '1 Second ') AS start_time, EXTRACT(HOUR from start_time) AS hour, EXTRACT(DAY from start_time) AS day, EXTRACT(WEEK from start_time) AS week, EXTRACT(MONTH from start_time) AS month, EXTRACT(YEAR from start_time) AS year, EXTRACT(DOW from start_time) AS weekday FROM staging_events AS s WHERE s.page = 'NextSong'; """) # QUERY LISTS create_table_queries =[set_search_path,songplay_table_create, user_table_create, song_table_create, artist_table_create, time_table_create,staging_events_table_create,staging_songs_table_create] drop_table_queries = [create_sparkify_schema,set_search_path,staging_events_table_drop, staging_songs_table_drop, songplay_table_drop, user_table_drop, song_table_drop, artist_table_drop, time_table_drop] copy_table_queries = [set_search_path,staging_events_copy, staging_songs_copy] insert_table_queries = [set_search_path,user_table_insert, song_table_insert, artist_table_insert, time_table_insert,songplay_table_insert]
normal
{ "blob_id": "652918e09a3506869c939be39b71a06467459f8a", "index": 5992, "step-1": "<mask token>\n", "step-2": "<mask token>\nconfig.read('dwh.cfg')\n<mask token>\n", "step-3": "<mask token>\nconfig = configparser.ConfigParser()\nconfig.read('dwh.cfg')\ndrop_schema = 'DROP SCHEMA IF EXISTS sparkifydb;'\nset_search_path = 'SET SEARCH_PATH to sparkifydb;'\nstaging_events_table_drop = 'DROP TABLE IF EXISTS staging_events;'\nstaging_songs_table_drop = 'DROP TABLE IF EXISTS staging_songs;'\nsongplay_table_drop = 'DROP TABLE IF EXISTS songplay;'\nuser_table_drop = 'DROP TABLE IF EXISTS sparkifydb.users;'\nsong_table_drop = 'DROP TABLE IF EXISTS sparkifydb.songs;'\nartist_table_drop = 'DROP TABLE IF EXISTS sparkifydb.artists;'\ntime_table_drop = 'DROP TABLE IF EXISTS sparkifydb.time;'\ncreate_sparkify_schema = 'CREATE SCHEMA IF NOT EXISTS sparkifydb;'\nstaging_events_table_create = \"\"\"\nCREATE TABLE staging_events\n(\nevent_id int identity(0,1) SORTKEY,\nartist_name text NULL DISTKEY,\nauth text NULL,\nfirstName text NULL,\ngender varchar(5) NULL,\nitemInSession bigint NULL,\nlastName text NULL,\nlength double precision NULL,\nlevel text NULL,\nlocation text NULL,\nmethod text NULL,\npage text NULL,\nregistration text NULL,\nsessionId bigint NULL,\nsong text NULL,\nstatus int NULL,\nts text NULL,\nuserAgent text NULL,\nuserId bigint \n);\n\"\"\"\nstaging_songs_table_create = \"\"\"\nCREATE TABLE staging_songs\n(\nnum_songs int,\nartist_id varchar(255) DISTKEY,\nartist_latitude varchar(255) NULL,\nartist_longitude varchar(255) NULL,\nartist_location varchar(255) NULL,\nartist_name text NOT NULL,\nsong_id varchar(255) SORTKEY NOT NULL,\ntitle text NOT NULL,\nduration double precision NOT NULL,\nyear int NULL\n);\n\"\"\"\nsongplay_table_create = \"\"\"\nCREATE TABLE songplay\n(\nsongplay_id int identity(0,1) PRIMARY KEY SORTKEY NOT NULL, \nstart_time timestamp NOT NULL, \nuser_id text NOT NULL, \nlevel text, \nsong_id text NOT NULL, \nartist_id text NOT NULL DISTKEY, \nsession_id text, \nlocation text, \nuser_agent text);\n\"\"\"\nuser_table_create = \"\"\"\nCREATE TABLE users(\nuser_id bigint PRIMARY KEY SORTKEY NOT NULL ,\nfirst_name text,\nlast_name text, \ngender varchar(10),\nlevel text\n)diststyle all;\n\"\"\"\nsong_table_create = \"\"\"\nCREATE TABLE songs(\nsong_id varchar(255) SORTKEY PRIMARY KEY NOT NULL,\nartist_id text NOT NULL,\nyear int, \nduration double precision,\nlevel text\n)diststyle all;\n\"\"\"\nartist_table_create = \"\"\"\nCREATE TABLE artists(\nartist_id text PRIMARY KEY SORTKEY, \nartist_name text, \nlocation text, \nlattitude text, \nlongitude text\n) diststyle all;\n\n\"\"\"\ntime_table_create = \"\"\"\nCREATE TABLE time(\nstart_time timestamp PRIMARY KEY SORTKEY,\nhour int,\nday int,\nweek int,\nmonth int,\nyear int,\nweekday int\n) diststyle all;\n\"\"\"\nstaging_events_copy = (\n \"\"\"copy staging_events from '{}'\n credentials 'aws_iam_role={}'\n compupdate off \n region 'us-west-2'\n JSON '{}'\n\"\"\"\n .format(config['S3']['LOG_DATA'], config['IAM_ROLE']['ARN'], config[\n 'S3']['LOG_JSONPATH']))\nstaging_songs_copy = (\n \"\"\"copy staging_songs from '{}'\n credentials 'aws_iam_role={}'\n compupdate off \n region 'us-west-2' \n JSON 'auto'\n\"\"\"\n .format(config['S3']['SONG_DATA'], config['IAM_ROLE']['ARN']))\nsongplay_table_insert = \"\"\"\nINSERT INTO songplay(start_time,user_id,level,song_id,artist_id,session_id,location,user_agent)\n\nSELECT\n TIMESTAMP 'epoch' + se.ts/1000 * INTERVAL '1 Second ' AS start_time,\n se.userId AS user_id,\n se.level AS level,\n ss.song_id AS song_id,\n ss.artist_id AS artist_id,\n se.sessionId AS session_id,\n ss.artist_location AS location,\n se.userAgent AS user_agent\nFROM staging_songs AS ss \nJOIN staging_events AS se ON (ss.title=se.song AND ss.artist_name=se.artist_name)\nAND\n se.page = 'NextSong';\n \n\"\"\"\nuser_table_insert = \"\"\"\nINSERT INTO users(user_id,first_name,last_name,gender,level)\n\nSELECT DISTINCT(s.userId) AS user_id,\n s.firstName AS first_name,\n s.lastName AS last_name,\n s.gender AS gender,\n s.level AS level\n\nFROM\n staging_events as s\nWHERE s.page = 'NextSong' \n\n\"\"\"\nsong_table_insert = \"\"\"\nINSERT INTO songs (song_id,artist_id,year, duration)\n\nSELECT DISTINCT(ss.song_id) AS song_id,\n ss.artist_id AS artist_id,\n ss.year AS year,\n ss.duration AS duration\nFROM\n staging_songs AS ss\n\n\"\"\"\nartist_table_insert = \"\"\"\nINSERT INTO artists (artist_id,artist_name,location,lattitude,longitude)\n\nSELECT DISTINCT(s.artist_id) AS artist_id,\n s.artist_name AS artist_name,\n s.artist_location AS location,\n s.artist_latitude AS lattitude,\n s.artist_longitude AS longitude\nFROM\n staging_songs AS s;\n\"\"\"\ntime_table_insert = \"\"\"\nINSERT INTO time (start_time,hour,day,week,month,year,weekday)\n\nSELECT DISTINCT(TIMESTAMP 'epoch' + s.ts/1000 * INTERVAL '1 Second ') AS start_time,\n EXTRACT(HOUR from start_time) AS hour,\n EXTRACT(DAY from start_time) AS day,\n EXTRACT(WEEK from start_time) AS week,\n EXTRACT(MONTH from start_time) AS month,\n EXTRACT(YEAR from start_time) AS year,\n EXTRACT(DOW from start_time) AS weekday\nFROM \n staging_events AS s\nWHERE \n s.page = 'NextSong'; \n\n\"\"\"\ncreate_table_queries = [set_search_path, songplay_table_create,\n user_table_create, song_table_create, artist_table_create,\n time_table_create, staging_events_table_create, staging_songs_table_create]\ndrop_table_queries = [create_sparkify_schema, set_search_path,\n staging_events_table_drop, staging_songs_table_drop,\n songplay_table_drop, user_table_drop, song_table_drop,\n artist_table_drop, time_table_drop]\ncopy_table_queries = [set_search_path, staging_events_copy, staging_songs_copy]\ninsert_table_queries = [set_search_path, user_table_insert,\n song_table_insert, artist_table_insert, time_table_insert,\n songplay_table_insert]\n", "step-4": "import configparser\nconfig = configparser.ConfigParser()\nconfig.read('dwh.cfg')\ndrop_schema = 'DROP SCHEMA IF EXISTS sparkifydb;'\nset_search_path = 'SET SEARCH_PATH to sparkifydb;'\nstaging_events_table_drop = 'DROP TABLE IF EXISTS staging_events;'\nstaging_songs_table_drop = 'DROP TABLE IF EXISTS staging_songs;'\nsongplay_table_drop = 'DROP TABLE IF EXISTS songplay;'\nuser_table_drop = 'DROP TABLE IF EXISTS sparkifydb.users;'\nsong_table_drop = 'DROP TABLE IF EXISTS sparkifydb.songs;'\nartist_table_drop = 'DROP TABLE IF EXISTS sparkifydb.artists;'\ntime_table_drop = 'DROP TABLE IF EXISTS sparkifydb.time;'\ncreate_sparkify_schema = 'CREATE SCHEMA IF NOT EXISTS sparkifydb;'\nstaging_events_table_create = \"\"\"\nCREATE TABLE staging_events\n(\nevent_id int identity(0,1) SORTKEY,\nartist_name text NULL DISTKEY,\nauth text NULL,\nfirstName text NULL,\ngender varchar(5) NULL,\nitemInSession bigint NULL,\nlastName text NULL,\nlength double precision NULL,\nlevel text NULL,\nlocation text NULL,\nmethod text NULL,\npage text NULL,\nregistration text NULL,\nsessionId bigint NULL,\nsong text NULL,\nstatus int NULL,\nts text NULL,\nuserAgent text NULL,\nuserId bigint \n);\n\"\"\"\nstaging_songs_table_create = \"\"\"\nCREATE TABLE staging_songs\n(\nnum_songs int,\nartist_id varchar(255) DISTKEY,\nartist_latitude varchar(255) NULL,\nartist_longitude varchar(255) NULL,\nartist_location varchar(255) NULL,\nartist_name text NOT NULL,\nsong_id varchar(255) SORTKEY NOT NULL,\ntitle text NOT NULL,\nduration double precision NOT NULL,\nyear int NULL\n);\n\"\"\"\nsongplay_table_create = \"\"\"\nCREATE TABLE songplay\n(\nsongplay_id int identity(0,1) PRIMARY KEY SORTKEY NOT NULL, \nstart_time timestamp NOT NULL, \nuser_id text NOT NULL, \nlevel text, \nsong_id text NOT NULL, \nartist_id text NOT NULL DISTKEY, \nsession_id text, \nlocation text, \nuser_agent text);\n\"\"\"\nuser_table_create = \"\"\"\nCREATE TABLE users(\nuser_id bigint PRIMARY KEY SORTKEY NOT NULL ,\nfirst_name text,\nlast_name text, \ngender varchar(10),\nlevel text\n)diststyle all;\n\"\"\"\nsong_table_create = \"\"\"\nCREATE TABLE songs(\nsong_id varchar(255) SORTKEY PRIMARY KEY NOT NULL,\nartist_id text NOT NULL,\nyear int, \nduration double precision,\nlevel text\n)diststyle all;\n\"\"\"\nartist_table_create = \"\"\"\nCREATE TABLE artists(\nartist_id text PRIMARY KEY SORTKEY, \nartist_name text, \nlocation text, \nlattitude text, \nlongitude text\n) diststyle all;\n\n\"\"\"\ntime_table_create = \"\"\"\nCREATE TABLE time(\nstart_time timestamp PRIMARY KEY SORTKEY,\nhour int,\nday int,\nweek int,\nmonth int,\nyear int,\nweekday int\n) diststyle all;\n\"\"\"\nstaging_events_copy = (\n \"\"\"copy staging_events from '{}'\n credentials 'aws_iam_role={}'\n compupdate off \n region 'us-west-2'\n JSON '{}'\n\"\"\"\n .format(config['S3']['LOG_DATA'], config['IAM_ROLE']['ARN'], config[\n 'S3']['LOG_JSONPATH']))\nstaging_songs_copy = (\n \"\"\"copy staging_songs from '{}'\n credentials 'aws_iam_role={}'\n compupdate off \n region 'us-west-2' \n JSON 'auto'\n\"\"\"\n .format(config['S3']['SONG_DATA'], config['IAM_ROLE']['ARN']))\nsongplay_table_insert = \"\"\"\nINSERT INTO songplay(start_time,user_id,level,song_id,artist_id,session_id,location,user_agent)\n\nSELECT\n TIMESTAMP 'epoch' + se.ts/1000 * INTERVAL '1 Second ' AS start_time,\n se.userId AS user_id,\n se.level AS level,\n ss.song_id AS song_id,\n ss.artist_id AS artist_id,\n se.sessionId AS session_id,\n ss.artist_location AS location,\n se.userAgent AS user_agent\nFROM staging_songs AS ss \nJOIN staging_events AS se ON (ss.title=se.song AND ss.artist_name=se.artist_name)\nAND\n se.page = 'NextSong';\n \n\"\"\"\nuser_table_insert = \"\"\"\nINSERT INTO users(user_id,first_name,last_name,gender,level)\n\nSELECT DISTINCT(s.userId) AS user_id,\n s.firstName AS first_name,\n s.lastName AS last_name,\n s.gender AS gender,\n s.level AS level\n\nFROM\n staging_events as s\nWHERE s.page = 'NextSong' \n\n\"\"\"\nsong_table_insert = \"\"\"\nINSERT INTO songs (song_id,artist_id,year, duration)\n\nSELECT DISTINCT(ss.song_id) AS song_id,\n ss.artist_id AS artist_id,\n ss.year AS year,\n ss.duration AS duration\nFROM\n staging_songs AS ss\n\n\"\"\"\nartist_table_insert = \"\"\"\nINSERT INTO artists (artist_id,artist_name,location,lattitude,longitude)\n\nSELECT DISTINCT(s.artist_id) AS artist_id,\n s.artist_name AS artist_name,\n s.artist_location AS location,\n s.artist_latitude AS lattitude,\n s.artist_longitude AS longitude\nFROM\n staging_songs AS s;\n\"\"\"\ntime_table_insert = \"\"\"\nINSERT INTO time (start_time,hour,day,week,month,year,weekday)\n\nSELECT DISTINCT(TIMESTAMP 'epoch' + s.ts/1000 * INTERVAL '1 Second ') AS start_time,\n EXTRACT(HOUR from start_time) AS hour,\n EXTRACT(DAY from start_time) AS day,\n EXTRACT(WEEK from start_time) AS week,\n EXTRACT(MONTH from start_time) AS month,\n EXTRACT(YEAR from start_time) AS year,\n EXTRACT(DOW from start_time) AS weekday\nFROM \n staging_events AS s\nWHERE \n s.page = 'NextSong'; \n\n\"\"\"\ncreate_table_queries = [set_search_path, songplay_table_create,\n user_table_create, song_table_create, artist_table_create,\n time_table_create, staging_events_table_create, staging_songs_table_create]\ndrop_table_queries = [create_sparkify_schema, set_search_path,\n staging_events_table_drop, staging_songs_table_drop,\n songplay_table_drop, user_table_drop, song_table_drop,\n artist_table_drop, time_table_drop]\ncopy_table_queries = [set_search_path, staging_events_copy, staging_songs_copy]\ninsert_table_queries = [set_search_path, user_table_insert,\n song_table_insert, artist_table_insert, time_table_insert,\n songplay_table_insert]\n", "step-5": "import configparser\n\n\n# CONFIG\nconfig = configparser.ConfigParser()\nconfig.read('dwh.cfg')\n\n# DROP TABLES\ndrop_schema=\"DROP SCHEMA IF EXISTS sparkifydb;\"\nset_search_path=\"SET SEARCH_PATH to sparkifydb;\"\nstaging_events_table_drop = \"DROP TABLE IF EXISTS staging_events;\"\nstaging_songs_table_drop = \"DROP TABLE IF EXISTS staging_songs;\"\nsongplay_table_drop = \"DROP TABLE IF EXISTS songplay;\"\nuser_table_drop = \"DROP TABLE IF EXISTS sparkifydb.users;\"\nsong_table_drop =\"DROP TABLE IF EXISTS sparkifydb.songs;\"\nartist_table_drop = \"DROP TABLE IF EXISTS sparkifydb.artists;\"\ntime_table_drop = \"DROP TABLE IF EXISTS sparkifydb.time;\"\n\n#CREATE SCHEMA\n\ncreate_sparkify_schema=\"CREATE SCHEMA IF NOT EXISTS sparkifydb;\"\n\n# CREATE TABLES\n\nstaging_events_table_create= (\"\"\"\nCREATE TABLE staging_events\n(\nevent_id int identity(0,1) SORTKEY,\nartist_name text NULL DISTKEY,\nauth text NULL,\nfirstName text NULL,\ngender varchar(5) NULL,\nitemInSession bigint NULL,\nlastName text NULL,\nlength double precision NULL,\nlevel text NULL,\nlocation text NULL,\nmethod text NULL,\npage text NULL,\nregistration text NULL,\nsessionId bigint NULL,\nsong text NULL,\nstatus int NULL,\nts text NULL,\nuserAgent text NULL,\nuserId bigint \n);\n\"\"\")\n\nstaging_songs_table_create = (\"\"\"\nCREATE TABLE staging_songs\n(\nnum_songs int,\nartist_id varchar(255) DISTKEY,\nartist_latitude varchar(255) NULL,\nartist_longitude varchar(255) NULL,\nartist_location varchar(255) NULL,\nartist_name text NOT NULL,\nsong_id varchar(255) SORTKEY NOT NULL,\ntitle text NOT NULL,\nduration double precision NOT NULL,\nyear int NULL\n);\n\"\"\")\n\nsongplay_table_create = (\"\"\"\nCREATE TABLE songplay\n(\nsongplay_id int identity(0,1) PRIMARY KEY SORTKEY NOT NULL, \nstart_time timestamp NOT NULL, \nuser_id text NOT NULL, \nlevel text, \nsong_id text NOT NULL, \nartist_id text NOT NULL DISTKEY, \nsession_id text, \nlocation text, \nuser_agent text);\n\"\"\")\n\nuser_table_create = (\"\"\"\nCREATE TABLE users(\nuser_id bigint PRIMARY KEY SORTKEY NOT NULL ,\nfirst_name text,\nlast_name text, \ngender varchar(10),\nlevel text\n)diststyle all;\n\"\"\")\n\nsong_table_create = (\"\"\"\nCREATE TABLE songs(\nsong_id varchar(255) SORTKEY PRIMARY KEY NOT NULL,\nartist_id text NOT NULL,\nyear int, \nduration double precision,\nlevel text\n)diststyle all;\n\"\"\")\n\nartist_table_create = (\"\"\"\nCREATE TABLE artists(\nartist_id text PRIMARY KEY SORTKEY, \nartist_name text, \nlocation text, \nlattitude text, \nlongitude text\n) diststyle all;\n\n\"\"\")\n\ntime_table_create = (\"\"\"\nCREATE TABLE time(\nstart_time timestamp PRIMARY KEY SORTKEY,\nhour int,\nday int,\nweek int,\nmonth int,\nyear int,\nweekday int\n) diststyle all;\n\"\"\")\n\n# STAGING TABLES\n\nstaging_events_copy = (\"\"\"copy staging_events from '{}'\n credentials 'aws_iam_role={}'\n compupdate off \n region 'us-west-2'\n JSON '{}'\n\"\"\").format(config['S3']['LOG_DATA'],config['IAM_ROLE']['ARN'],config['S3']['LOG_JSONPATH'])\n\nstaging_songs_copy = (\"\"\"copy staging_songs from '{}'\n credentials 'aws_iam_role={}'\n compupdate off \n region 'us-west-2' \n JSON 'auto'\n\"\"\").format(config['S3']['SONG_DATA'],config['IAM_ROLE']['ARN'])\n\n# FINAL TABLES\n\nsongplay_table_insert = (\"\"\"\nINSERT INTO songplay(start_time,user_id,level,song_id,artist_id,session_id,location,user_agent)\n\nSELECT\n TIMESTAMP 'epoch' + se.ts/1000 * INTERVAL '1 Second ' AS start_time,\n se.userId AS user_id,\n se.level AS level,\n ss.song_id AS song_id,\n ss.artist_id AS artist_id,\n se.sessionId AS session_id,\n ss.artist_location AS location,\n se.userAgent AS user_agent\nFROM staging_songs AS ss \nJOIN staging_events AS se ON (ss.title=se.song AND ss.artist_name=se.artist_name)\nAND\n se.page = 'NextSong';\n \n\"\"\")\n\nuser_table_insert = (\"\"\"\nINSERT INTO users(user_id,first_name,last_name,gender,level)\n\nSELECT DISTINCT(s.userId) AS user_id,\n s.firstName AS first_name,\n s.lastName AS last_name,\n s.gender AS gender,\n s.level AS level\n\nFROM\n staging_events as s\nWHERE s.page = 'NextSong' \n\n\"\"\")\n\nsong_table_insert = (\"\"\"\nINSERT INTO songs (song_id,artist_id,year, duration)\n\nSELECT DISTINCT(ss.song_id) AS song_id,\n ss.artist_id AS artist_id,\n ss.year AS year,\n ss.duration AS duration\nFROM\n staging_songs AS ss\n\n\"\"\")\n\nartist_table_insert = (\"\"\"\nINSERT INTO artists (artist_id,artist_name,location,lattitude,longitude)\n\nSELECT DISTINCT(s.artist_id) AS artist_id,\n s.artist_name AS artist_name,\n s.artist_location AS location,\n s.artist_latitude AS lattitude,\n s.artist_longitude AS longitude\nFROM\n staging_songs AS s;\n\"\"\")\n\ntime_table_insert = (\"\"\"\nINSERT INTO time (start_time,hour,day,week,month,year,weekday)\n\nSELECT DISTINCT(TIMESTAMP 'epoch' + s.ts/1000 * INTERVAL '1 Second ') AS start_time,\n EXTRACT(HOUR from start_time) AS hour,\n EXTRACT(DAY from start_time) AS day,\n EXTRACT(WEEK from start_time) AS week,\n EXTRACT(MONTH from start_time) AS month,\n EXTRACT(YEAR from start_time) AS year,\n EXTRACT(DOW from start_time) AS weekday\nFROM \n staging_events AS s\nWHERE \n s.page = 'NextSong'; \n\n\"\"\")\n\n# QUERY LISTS\n\ncreate_table_queries =[set_search_path,songplay_table_create, user_table_create, song_table_create, artist_table_create, time_table_create,staging_events_table_create,staging_songs_table_create]\n\ndrop_table_queries = [create_sparkify_schema,set_search_path,staging_events_table_drop, staging_songs_table_drop, songplay_table_drop, user_table_drop, song_table_drop, artist_table_drop, time_table_drop]\n\ncopy_table_queries = [set_search_path,staging_events_copy, staging_songs_copy]\n\ninsert_table_queries = [set_search_path,user_table_insert, song_table_insert, artist_table_insert, time_table_insert,songplay_table_insert]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- """ Created on Mon May 2 17:24:00 2016 @author: pasca """ # -*- coding: utf-8 -*- import os.path as op from nipype.utils.filemanip import split_filename as split_f from nipype.interfaces.base import BaseInterface, BaseInterfaceInputSpec from nipype.interfaces.base import traits, File, TraitedSpec from neuropype_ephy.compute_inv_problem import compute_ROIs_inv_sol from neuropype_ephy.preproc import create_reject_dict from mne import find_events, compute_covariance, pick_types, write_cov, Epochs from mne.io import Raw class InverseSolutionConnInputSpec(BaseInterfaceInputSpec): sbj_id = traits.String(desc='subject id', mandatory=True) sbj_dir = traits.Directory(exists=True, desc='Freesurfer main directory', mandatory=True) raw_filename = traits.File(exists=True, desc='raw filename', mandatory=True) cov_filename = traits.File(exists=True, desc='Noise Covariance matrix', mandatory=True) fwd_filename = traits.File(exists=True, desc='LF matrix', mandatory=True) is_epoched = traits.Bool(desc='if true raw data will be epoched', mandatory=False) events_id = traits.Dict(None, desc='the id of all events to consider.', mandatory=False) event_id = traits.Int(None, desc='the id of the event to consider.', mandatory=False) t_min = traits.Float(None, desc='start time before event', mandatory=False) t_max = traits.Float(None, desc='end time after event', mandatory=False) is_evoked = traits.Bool(desc='if true if we want to analyze evoked data', mandatory=False) inv_method = traits.String(desc='possible inverse methods are \ sLORETA, MNE, dSPM', mandatory=True) snr = traits.Float(1.0, usedefault=True, desc='use smaller SNR for \ raw data', mandatory=False) parc = traits.String('aparc', usedefault=True, desc='the parcellation to use: aparc vs aparc.a2009s', mandatory=False) aseg = traits.Bool(desc='if true sub structures will be considered', mandatory=False) aseg_labels = traits.List(desc='list of substructures in the src space', mandatory=False) is_blind = traits.Bool(desc='if in the source space there are ROI removed', mandatory=False) labels_removed = traits.List(desc='list of label we consider in the blind case', mandatory=False) class InverseSolutionConnOutputSpec(TraitedSpec): ts_file = File(exists=False, desc='source reconstruction in .npy format') labels = File(exists=False, desc='labels file in pickle format') label_names = File(exists=False, desc='labels name file in txt format') label_coords = File(exists=False, desc='labels coords file in txt format') class InverseSolution(BaseInterface): """ Compute the inverse solution on raw data considering N_r regions in source space based on a FreeSurfer cortical parcellation """ input_spec = InverseSolutionConnInputSpec output_spec = InverseSolutionConnOutputSpec def _run_interface(self, runtime): sbj_id = self.inputs.sbj_id sbj_dir = self.inputs.sbj_dir raw_filename = self.inputs.raw_filename cov_filename = self.inputs.cov_filename fwd_filename = self.inputs.fwd_filename is_epoched = self.inputs.is_epoched event_id = self.inputs.event_id t_min = self.inputs.t_min t_max = self.inputs.t_max is_evoked = self.inputs.is_evoked events_id = self.inputs.events_id inv_method = self.inputs.inv_method snr = self.inputs.snr parc = self.inputs.parc aseg = self.inputs.aseg aseg_labels = self.inputs.aseg_labels is_blind = self.inputs.is_blind labels_removed = self.inputs.labels_removed self.ts_file, self.labels , self.label_names, self.label_coords= compute_ROIs_inv_sol(raw_filename, sbj_id, sbj_dir, fwd_filename, cov_filename, is_epoched, event_id, t_min, t_max, is_evoked, events_id, snr, inv_method, parc, aseg, aseg_labels, is_blind, labels_removed) return runtime def _list_outputs(self): outputs = self._outputs().get() outputs['ts_file'] = self.ts_file outputs['labels'] = self.labels outputs['label_names'] = self.label_names outputs['label_coords'] = self.label_coords return outputs class NoiseCovarianceConnInputSpec(BaseInterfaceInputSpec): cov_fname_in = traits.File(exists=False, desc='file name for Noise Covariance Matrix') raw_filename = traits.File(exists=True, desc='raw data filename') is_epoched = traits.Bool(desc='if true if we want to epoch the data', mandatory=False) is_evoked = traits.Bool(desc='if true if we want to analyze evoked data', mandatory=False) events_id = traits.Dict(None, desc='the id of all events to consider.', mandatory=False) t_min = traits.Float(None, desc='start time before event', mandatory=False) t_max = traits.Float(None, desc='end time after event', mandatory=False) class NoiseCovarianceConnOutputSpec(TraitedSpec): cov_fname_out = File(exists=False, desc='LF matrix') class NoiseCovariance(BaseInterface): """ Compute the inverse solution on raw data considering N_r regions in source space based on a FreeSurfer cortical parcellation """ input_spec = NoiseCovarianceConnInputSpec output_spec = NoiseCovarianceConnOutputSpec def _run_interface(self, runtime): raw_filename = self.inputs.raw_filename cov_fname_in = self.inputs.cov_fname_in is_epoched = self.inputs.is_epoched is_evoked = self.inputs.is_evoked events_id = self.inputs.events_id t_min = self.inputs.t_min t_max = self.inputs.t_max if cov_fname_in == '' or not op.exists(cov_fname_in): if is_epoched and is_evoked: raw = Raw(raw_filename) events = find_events(raw) data_path, basename, ext = split_f(raw.info['filename']) self.cov_fname_out = op.join(data_path, '%s-cov.fif' % basename) if not op.exists(self.cov_fname_out): print '\n*** COMPUTE COV FROM EPOCHS ***\n' + self.cov_fname_out reject = create_reject_dict(raw.info) picks = pick_types(raw.info, meg=True, ref_meg=False, exclude='bads') epochs = Epochs(raw, events, events_id, t_min, t_max, picks=picks, baseline=(None, 0), reject=reject) # TODO method='auto'? too long!!! noise_cov = compute_covariance(epochs, tmax=0, method='diagonal_fixed') write_cov(self.cov_fname_out, noise_cov) else: print '\n *** NOISE cov file %s exists!!! \n' % self.cov_fname_out else: '\n *** NO EPOCH DATA \n' else: print '\n *** NOISE cov file %s exists!!! \n' % cov_fname_in self.cov_fname_out = cov_fname_in return runtime def _list_outputs(self): outputs = self._outputs().get() outputs['cov_fname_out'] = self.cov_fname_out return outputs
normal
{ "blob_id": "d9cdcf64042c3c6c4b45ec0e3334ba756dd43fcd", "index": 5066, "step-1": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Mon May 2 17:24:00 2016\n\n@author: pasca\n\"\"\"\n\n# -*- coding: utf-8 -*-\nimport os.path as op\n\nfrom nipype.utils.filemanip import split_filename as split_f\n\nfrom nipype.interfaces.base import BaseInterface, BaseInterfaceInputSpec\nfrom nipype.interfaces.base import traits, File, TraitedSpec\n\nfrom neuropype_ephy.compute_inv_problem import compute_ROIs_inv_sol\nfrom neuropype_ephy.preproc import create_reject_dict\nfrom mne import find_events, compute_covariance, pick_types, write_cov, Epochs\nfrom mne.io import Raw\n\n\nclass InverseSolutionConnInputSpec(BaseInterfaceInputSpec):\n\n sbj_id = traits.String(desc='subject id', mandatory=True)\n\n sbj_dir = traits.Directory(exists=True, desc='Freesurfer main directory',\n mandatory=True)\n\n raw_filename = traits.File(exists=True, desc='raw filename', mandatory=True)\n\n cov_filename = traits.File(exists=True, desc='Noise Covariance matrix',\n mandatory=True)\n\n fwd_filename = traits.File(exists=True, desc='LF matrix', mandatory=True)\n\n is_epoched = traits.Bool(desc='if true raw data will be epoched',\n mandatory=False)\n \n events_id = traits.Dict(None, desc='the id of all events to consider.', mandatory=False) \n \n event_id = traits.Int(None, desc='the id of the event to consider.', mandatory=False)\n \n t_min = traits.Float(None, desc='start time before event', mandatory=False)\n\n t_max = traits.Float(None, desc='end time after event', mandatory=False)\n \n is_evoked = traits.Bool(desc='if true if we want to analyze evoked data',\n mandatory=False)\n\n inv_method = traits.String(desc='possible inverse methods are \\\n sLORETA, MNE, dSPM', mandatory=True)\n\n snr = traits.Float(1.0, usedefault=True, desc='use smaller SNR for \\\n raw data', mandatory=False)\n\n parc = traits.String('aparc', usedefault=True,\n desc='the parcellation to use: aparc vs aparc.a2009s',\n mandatory=False)\n\n aseg = traits.Bool(desc='if true sub structures will be considered',\n mandatory=False)\n\n aseg_labels = traits.List(desc='list of substructures in the src space',\n mandatory=False)\n\n is_blind = traits.Bool(desc='if in the source space there are ROI removed',\n mandatory=False)\n\n labels_removed = traits.List(desc='list of label we consider in the blind case',\n mandatory=False)\n\n\nclass InverseSolutionConnOutputSpec(TraitedSpec):\n\n ts_file = File(exists=False, desc='source reconstruction in .npy format')\n labels = File(exists=False, desc='labels file in pickle format')\n label_names = File(exists=False, desc='labels name file in txt format')\n label_coords = File(exists=False, desc='labels coords file in txt format')\n\n\nclass InverseSolution(BaseInterface):\n \"\"\"\n Compute the inverse solution on raw data considering N_r regions in source\n space based on a FreeSurfer cortical parcellation\n \"\"\"\n input_spec = InverseSolutionConnInputSpec\n output_spec = InverseSolutionConnOutputSpec\n\n def _run_interface(self, runtime):\n\n sbj_id = self.inputs.sbj_id\n sbj_dir = self.inputs.sbj_dir\n raw_filename = self.inputs.raw_filename\n cov_filename = self.inputs.cov_filename\n fwd_filename = self.inputs.fwd_filename\n is_epoched = self.inputs.is_epoched\n event_id = self.inputs.event_id\n t_min = self.inputs.t_min\n t_max = self.inputs.t_max\n is_evoked = self.inputs.is_evoked\n events_id = self.inputs.events_id\n inv_method = self.inputs.inv_method\n snr = self.inputs.snr\n parc = self.inputs.parc\n aseg = self.inputs.aseg\n aseg_labels = self.inputs.aseg_labels\n is_blind = self.inputs.is_blind\n labels_removed = self.inputs.labels_removed\n\n self.ts_file, self.labels , self.label_names, self.label_coords= compute_ROIs_inv_sol(raw_filename, sbj_id, sbj_dir,\n fwd_filename,\n cov_filename,\n is_epoched,\n event_id, t_min, t_max,\n is_evoked,\n events_id,\n snr, inv_method, parc,\n aseg, aseg_labels,\n is_blind, labels_removed)\n\n return runtime\n\n def _list_outputs(self):\n\n outputs = self._outputs().get()\n\n outputs['ts_file'] = self.ts_file\n outputs['labels'] = self.labels\n outputs['label_names'] = self.label_names\n outputs['label_coords'] = self.label_coords\n\n return outputs\n\n\nclass NoiseCovarianceConnInputSpec(BaseInterfaceInputSpec):\n\n cov_fname_in = traits.File(exists=False, desc='file name for Noise Covariance Matrix')\n\n raw_filename = traits.File(exists=True, desc='raw data filename')\n\n is_epoched = traits.Bool(desc='if true if we want to epoch the data',\n mandatory=False)\n\n is_evoked = traits.Bool(desc='if true if we want to analyze evoked data',\n mandatory=False)\n\n events_id = traits.Dict(None, desc='the id of all events to consider.', mandatory=False)\n\n t_min = traits.Float(None, desc='start time before event', mandatory=False)\n\n t_max = traits.Float(None, desc='end time after event', mandatory=False)\n\n\nclass NoiseCovarianceConnOutputSpec(TraitedSpec):\n\n cov_fname_out = File(exists=False, desc='LF matrix')\n\n\nclass NoiseCovariance(BaseInterface):\n \"\"\"\n Compute the inverse solution on raw data considering N_r regions in source\n space based on a FreeSurfer cortical parcellation\n \"\"\"\n input_spec = NoiseCovarianceConnInputSpec\n output_spec = NoiseCovarianceConnOutputSpec\n\n def _run_interface(self, runtime):\n\n raw_filename = self.inputs.raw_filename\n cov_fname_in = self.inputs.cov_fname_in\n is_epoched = self.inputs.is_epoched\n is_evoked = self.inputs.is_evoked\n events_id = self.inputs.events_id\n t_min = self.inputs.t_min\n t_max = self.inputs.t_max\n\n if cov_fname_in == '' or not op.exists(cov_fname_in):\n\n if is_epoched and is_evoked:\n raw = Raw(raw_filename)\n events = find_events(raw)\n\n data_path, basename, ext = split_f(raw.info['filename'])\n self.cov_fname_out = op.join(data_path, '%s-cov.fif' % basename)\n\n if not op.exists(self.cov_fname_out):\n print '\\n*** COMPUTE COV FROM EPOCHS ***\\n' + self.cov_fname_out\n\n reject = create_reject_dict(raw.info)\n \n picks = pick_types(raw.info, meg=True, ref_meg=False,\n exclude='bads')\n\n epochs = Epochs(raw, events, events_id, t_min, t_max,\n picks=picks, baseline=(None, 0),\n reject=reject)\n\n # TODO method='auto'? too long!!!\n noise_cov = compute_covariance(epochs, tmax=0,\n method='diagonal_fixed')\n write_cov(self.cov_fname_out, noise_cov)\n else:\n print '\\n *** NOISE cov file %s exists!!! \\n' % self.cov_fname_out\n else:\n '\\n *** NO EPOCH DATA \\n'\n\n else:\n print '\\n *** NOISE cov file %s exists!!! \\n' % cov_fname_in\n self.cov_fname_out = cov_fname_in\n\n return runtime\n\n def _list_outputs(self):\n\n outputs = self._outputs().get()\n\n outputs['cov_fname_out'] = self.cov_fname_out\n\n return outputs\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> def create_sensor_input_file(rad, chunk_n): sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str( chunk_n) + '.pts') sensor_file = open(sensor_file_path, 'w') sensor_pts_data = py2radiance.write_rad.sensor_file(rad. sensor_positions, rad.sensor_normals) sensor_file.write(sensor_pts_data) sensor_file.close() rad.sensor_file_path = sensor_file_path def generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type, orientation, normal, intersection): mid_pt = py3dmodel.calculate.face_midpt(occface) location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01) moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move( mid_pt, location_pt, occface)) if srf_type == 'roofs': xdim = ydim = roof_dim else: xdim = ydim = wall_dim sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim) sensor_intersection = [intersection for x in sensor_surfaces] sensor_dir = [normal for x in sensor_surfaces] sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces] sensor_type = [srf_type for x in sensor_surfaces] sensor_orientation = [orientation for x in sensor_surfaces] sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in zip(sensor_surfaces, sensor_intersection)] return (sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection) <|reserved_special_token_0|> def calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir): sensors_coords_zone = [] sensors_dir_zone = [] sensors_total_number_list = [] names_zone = [] sensors_code_zone = [] sensor_intersection_zone = [] for building_name in building_names: building_geometry = BuildingGeometry.load(os.path.join( geometry_pickle_dir, 'zone', building_name)) (sensors_dir_building, sensors_coords_building, sensors_type_building, sensors_area_building, sensor_orientation_building, sensor_intersection_building ) = calc_sensors_building(building_geometry, grid_size) sensors_number = len(sensors_coords_building) sensors_total_number_list.append(sensors_number) sensors_code = [('srf' + str(x)) for x in range(sensors_number)] sensors_code_zone.append(sensors_code) sensors_coords_zone.extend(sensors_coords_building) sensors_dir_zone.extend(sensors_dir_building) sensor_intersection_zone.append(sensor_intersection_building) names_zone.append(building_name) pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code, 'orientation': sensor_orientation_building, 'intersection': sensor_intersection_building, 'Xcoor': [x[0] for x in sensors_coords_building], 'Ycoor': [x[1] for x in sensors_coords_building], 'Zcoor': [x[2] for x in sensors_coords_building], 'Xdir': [x[0] for x in sensors_dir_building], 'Ydir': [x[1] for x in sensors_dir_building], 'Zdir': [x[2] for x in sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE': sensors_type_building}).to_csv(locator.get_radiation_metadata( building_name), index=None) return (sensors_coords_zone, sensors_dir_zone, sensors_total_number_list, names_zone, sensors_code_zone, sensor_intersection_zone) def isolation_daysim(chunk_n, cea_daysim, building_names, locator, radiance_parameters, write_sensor_data, grid_size, max_global, weatherfile, geometry_pickle_dir): daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'. format(n=chunk_n)) print('Creating daysim project in: {daysim_dir}'.format(daysim_dir= daysim_project.project_path)) print('Calculating and sending sensor points') (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone, sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone( building_names, locator, grid_size, geometry_pickle_dir)) num_sensors = sum(sensors_number_zone) daysim_project.create_sensor_input_file(sensors_coords_zone, sensors_dir_zone, num_sensors, 'w/m2') print('Starting Daysim simulation for buildings: {buildings}'.format( buildings=names_zone)) print('Total number of sensors: {num_sensors}'.format(num_sensors= num_sensors)) print('Writing radiance parameters') daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'], radiance_parameters['rad_ad'], radiance_parameters['rad_as'], radiance_parameters['rad_ar'], radiance_parameters['rad_aa'], radiance_parameters['rad_lr'], radiance_parameters['rad_st'], radiance_parameters['rad_sj'], radiance_parameters['rad_lw'], radiance_parameters['rad_dj'], radiance_parameters['rad_ds'], radiance_parameters['rad_dr'], radiance_parameters['rad_dp']) print('Executing hourly solar isolation calculation') daysim_project.execute_gen_dc() daysim_project.execute_ds_illum() print('Reading results...') solar_res = daysim_project.eval_ill() print('Fixing inconsistencies, if any') solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global) if solar_res.shape[1] == HOURS_IN_YEAR + 24: print('Removing leap day') leap_day_hours = range(1416, 1440) solar_res = np.delete(solar_res, leap_day_hours, axis=1) print('Writing results to disk') index = 0 for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip( names_zone, sensors_number_zone, sensors_code_zone, sensor_intersection_zone): selection_of_results = solar_res[index:index + sensors_number_building] selection_of_results[np.array(sensor_intersection_building) == 1] = 0 items_sensor_name_and_result = dict(zip(sensor_code_building, selection_of_results.tolist())) index = index + sensors_number_building write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile) if write_sensor_data: write_sensor_results(building_name, items_sensor_name_and_result, locator) print('Removing results folder') daysim_project.cleanup_project() def write_sensor_results(building_name, items_sensor_name_and_result, locator): with open(locator.get_radiation_building_sensors(building_name), 'w' ) as outfile: json.dump(items_sensor_name_and_result, outfile) def write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile): geometry = pd.read_csv(locator.get_radiation_metadata(building_name)) geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW' solar_analysis_fields = ['windows_east_kW', 'windows_west_kW', 'windows_south_kW', 'windows_north_kW', 'walls_east_kW', 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW'] solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2', 'windows_south_m2', 'windows_north_m2', 'walls_east_m2', 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2'] dict_not_aggregated = {} for field, field_area in zip(solar_analysis_fields, solar_analysis_fields_area): select_sensors = geometry.loc[geometry['code'] == field].set_index( 'SURFACE') area_m2 = select_sensors['AREA_m2'].sum() array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] * np.array(items_sensor_name_and_result[surface])) for surface in select_sensors.index]).sum(axis=0) dict_not_aggregated[field] = array_field / 1000 dict_not_aggregated[field_area] = area_m2 data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2) data_aggregated_kW['Date'] = weatherfile['date'] data_aggregated_kW.set_index('Date', inplace=True) data_aggregated_kW.to_csv(locator.get_radiation_building(building_name)) <|reserved_special_token_1|> <|reserved_special_token_0|> def create_sensor_input_file(rad, chunk_n): sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str( chunk_n) + '.pts') sensor_file = open(sensor_file_path, 'w') sensor_pts_data = py2radiance.write_rad.sensor_file(rad. sensor_positions, rad.sensor_normals) sensor_file.write(sensor_pts_data) sensor_file.close() rad.sensor_file_path = sensor_file_path def generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type, orientation, normal, intersection): mid_pt = py3dmodel.calculate.face_midpt(occface) location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01) moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move( mid_pt, location_pt, occface)) if srf_type == 'roofs': xdim = ydim = roof_dim else: xdim = ydim = wall_dim sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim) sensor_intersection = [intersection for x in sensor_surfaces] sensor_dir = [normal for x in sensor_surfaces] sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces] sensor_type = [srf_type for x in sensor_surfaces] sensor_orientation = [orientation for x in sensor_surfaces] sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in zip(sensor_surfaces, sensor_intersection)] return (sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection) def calc_sensors_building(building_geometry, grid_size): sensor_dir_list = [] sensor_cord_list = [] sensor_type_list = [] sensor_area_list = [] sensor_orientation_list = [] sensor_intersection_list = [] surfaces_types = ['walls', 'windows', 'roofs'] sensor_vertical_grid_dim = grid_size['walls_grid'] sensor_horizontal_grid_dim = grid_size['roof_grid'] for srf_type in surfaces_types: occface_list = getattr(building_geometry, srf_type) if srf_type == 'roofs': orientation_list = ['top'] * len(occface_list) normals_list = [(0.0, 0.0, 1.0)] * len(occface_list) interesection_list = [0] * len(occface_list) elif srf_type == 'windows': orientation_list = getattr(building_geometry, 'orientation_{srf_type}'.format(srf_type=srf_type)) normals_list = getattr(building_geometry, 'normals_{srf_type}'. format(srf_type=srf_type)) interesection_list = [0] * len(occface_list) else: orientation_list = getattr(building_geometry, 'orientation_{srf_type}'.format(srf_type=srf_type)) normals_list = getattr(building_geometry, 'normals_{srf_type}'. format(srf_type=srf_type)) interesection_list = getattr(building_geometry, 'intersect_{srf_type}'.format(srf_type=srf_type)) for orientation, normal, face, intersection in zip(orientation_list, normals_list, occface_list, interesection_list): (sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection) = ( generate_sensor_surfaces(face, sensor_vertical_grid_dim, sensor_horizontal_grid_dim, srf_type, orientation, normal, intersection)) sensor_intersection_list.extend(sensor_intersection) sensor_dir_list.extend(sensor_dir) sensor_cord_list.extend(sensor_cord) sensor_type_list.extend(sensor_type) sensor_area_list.extend(sensor_area) sensor_orientation_list.extend(sensor_orientation) return (sensor_dir_list, sensor_cord_list, sensor_type_list, sensor_area_list, sensor_orientation_list, sensor_intersection_list) def calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir): sensors_coords_zone = [] sensors_dir_zone = [] sensors_total_number_list = [] names_zone = [] sensors_code_zone = [] sensor_intersection_zone = [] for building_name in building_names: building_geometry = BuildingGeometry.load(os.path.join( geometry_pickle_dir, 'zone', building_name)) (sensors_dir_building, sensors_coords_building, sensors_type_building, sensors_area_building, sensor_orientation_building, sensor_intersection_building ) = calc_sensors_building(building_geometry, grid_size) sensors_number = len(sensors_coords_building) sensors_total_number_list.append(sensors_number) sensors_code = [('srf' + str(x)) for x in range(sensors_number)] sensors_code_zone.append(sensors_code) sensors_coords_zone.extend(sensors_coords_building) sensors_dir_zone.extend(sensors_dir_building) sensor_intersection_zone.append(sensor_intersection_building) names_zone.append(building_name) pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code, 'orientation': sensor_orientation_building, 'intersection': sensor_intersection_building, 'Xcoor': [x[0] for x in sensors_coords_building], 'Ycoor': [x[1] for x in sensors_coords_building], 'Zcoor': [x[2] for x in sensors_coords_building], 'Xdir': [x[0] for x in sensors_dir_building], 'Ydir': [x[1] for x in sensors_dir_building], 'Zdir': [x[2] for x in sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE': sensors_type_building}).to_csv(locator.get_radiation_metadata( building_name), index=None) return (sensors_coords_zone, sensors_dir_zone, sensors_total_number_list, names_zone, sensors_code_zone, sensor_intersection_zone) def isolation_daysim(chunk_n, cea_daysim, building_names, locator, radiance_parameters, write_sensor_data, grid_size, max_global, weatherfile, geometry_pickle_dir): daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'. format(n=chunk_n)) print('Creating daysim project in: {daysim_dir}'.format(daysim_dir= daysim_project.project_path)) print('Calculating and sending sensor points') (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone, sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone( building_names, locator, grid_size, geometry_pickle_dir)) num_sensors = sum(sensors_number_zone) daysim_project.create_sensor_input_file(sensors_coords_zone, sensors_dir_zone, num_sensors, 'w/m2') print('Starting Daysim simulation for buildings: {buildings}'.format( buildings=names_zone)) print('Total number of sensors: {num_sensors}'.format(num_sensors= num_sensors)) print('Writing radiance parameters') daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'], radiance_parameters['rad_ad'], radiance_parameters['rad_as'], radiance_parameters['rad_ar'], radiance_parameters['rad_aa'], radiance_parameters['rad_lr'], radiance_parameters['rad_st'], radiance_parameters['rad_sj'], radiance_parameters['rad_lw'], radiance_parameters['rad_dj'], radiance_parameters['rad_ds'], radiance_parameters['rad_dr'], radiance_parameters['rad_dp']) print('Executing hourly solar isolation calculation') daysim_project.execute_gen_dc() daysim_project.execute_ds_illum() print('Reading results...') solar_res = daysim_project.eval_ill() print('Fixing inconsistencies, if any') solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global) if solar_res.shape[1] == HOURS_IN_YEAR + 24: print('Removing leap day') leap_day_hours = range(1416, 1440) solar_res = np.delete(solar_res, leap_day_hours, axis=1) print('Writing results to disk') index = 0 for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip( names_zone, sensors_number_zone, sensors_code_zone, sensor_intersection_zone): selection_of_results = solar_res[index:index + sensors_number_building] selection_of_results[np.array(sensor_intersection_building) == 1] = 0 items_sensor_name_and_result = dict(zip(sensor_code_building, selection_of_results.tolist())) index = index + sensors_number_building write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile) if write_sensor_data: write_sensor_results(building_name, items_sensor_name_and_result, locator) print('Removing results folder') daysim_project.cleanup_project() def write_sensor_results(building_name, items_sensor_name_and_result, locator): with open(locator.get_radiation_building_sensors(building_name), 'w' ) as outfile: json.dump(items_sensor_name_and_result, outfile) def write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile): geometry = pd.read_csv(locator.get_radiation_metadata(building_name)) geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW' solar_analysis_fields = ['windows_east_kW', 'windows_west_kW', 'windows_south_kW', 'windows_north_kW', 'walls_east_kW', 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW'] solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2', 'windows_south_m2', 'windows_north_m2', 'walls_east_m2', 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2'] dict_not_aggregated = {} for field, field_area in zip(solar_analysis_fields, solar_analysis_fields_area): select_sensors = geometry.loc[geometry['code'] == field].set_index( 'SURFACE') area_m2 = select_sensors['AREA_m2'].sum() array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] * np.array(items_sensor_name_and_result[surface])) for surface in select_sensors.index]).sum(axis=0) dict_not_aggregated[field] = array_field / 1000 dict_not_aggregated[field_area] = area_m2 data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2) data_aggregated_kW['Date'] = weatherfile['date'] data_aggregated_kW.set_index('Date', inplace=True) data_aggregated_kW.to_csv(locator.get_radiation_building(building_name)) <|reserved_special_token_1|> <|reserved_special_token_0|> __author__ = 'Jimeno A. Fonseca' __copyright__ = ( 'Copyright 2017, Architecture and Building Systems - ETH Zurich') __credits__ = ['Jimeno A. Fonseca', 'Kian Wee Chen'] __license__ = 'MIT' __version__ = '0.1' __maintainer__ = 'Daren Thomas' __email__ = '[email protected]' __status__ = 'Production' <|reserved_special_token_0|> suppress_3rd_party_debug_loggers() def create_sensor_input_file(rad, chunk_n): sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str( chunk_n) + '.pts') sensor_file = open(sensor_file_path, 'w') sensor_pts_data = py2radiance.write_rad.sensor_file(rad. sensor_positions, rad.sensor_normals) sensor_file.write(sensor_pts_data) sensor_file.close() rad.sensor_file_path = sensor_file_path def generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type, orientation, normal, intersection): mid_pt = py3dmodel.calculate.face_midpt(occface) location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01) moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move( mid_pt, location_pt, occface)) if srf_type == 'roofs': xdim = ydim = roof_dim else: xdim = ydim = wall_dim sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim) sensor_intersection = [intersection for x in sensor_surfaces] sensor_dir = [normal for x in sensor_surfaces] sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces] sensor_type = [srf_type for x in sensor_surfaces] sensor_orientation = [orientation for x in sensor_surfaces] sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in zip(sensor_surfaces, sensor_intersection)] return (sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection) def calc_sensors_building(building_geometry, grid_size): sensor_dir_list = [] sensor_cord_list = [] sensor_type_list = [] sensor_area_list = [] sensor_orientation_list = [] sensor_intersection_list = [] surfaces_types = ['walls', 'windows', 'roofs'] sensor_vertical_grid_dim = grid_size['walls_grid'] sensor_horizontal_grid_dim = grid_size['roof_grid'] for srf_type in surfaces_types: occface_list = getattr(building_geometry, srf_type) if srf_type == 'roofs': orientation_list = ['top'] * len(occface_list) normals_list = [(0.0, 0.0, 1.0)] * len(occface_list) interesection_list = [0] * len(occface_list) elif srf_type == 'windows': orientation_list = getattr(building_geometry, 'orientation_{srf_type}'.format(srf_type=srf_type)) normals_list = getattr(building_geometry, 'normals_{srf_type}'. format(srf_type=srf_type)) interesection_list = [0] * len(occface_list) else: orientation_list = getattr(building_geometry, 'orientation_{srf_type}'.format(srf_type=srf_type)) normals_list = getattr(building_geometry, 'normals_{srf_type}'. format(srf_type=srf_type)) interesection_list = getattr(building_geometry, 'intersect_{srf_type}'.format(srf_type=srf_type)) for orientation, normal, face, intersection in zip(orientation_list, normals_list, occface_list, interesection_list): (sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection) = ( generate_sensor_surfaces(face, sensor_vertical_grid_dim, sensor_horizontal_grid_dim, srf_type, orientation, normal, intersection)) sensor_intersection_list.extend(sensor_intersection) sensor_dir_list.extend(sensor_dir) sensor_cord_list.extend(sensor_cord) sensor_type_list.extend(sensor_type) sensor_area_list.extend(sensor_area) sensor_orientation_list.extend(sensor_orientation) return (sensor_dir_list, sensor_cord_list, sensor_type_list, sensor_area_list, sensor_orientation_list, sensor_intersection_list) def calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir): sensors_coords_zone = [] sensors_dir_zone = [] sensors_total_number_list = [] names_zone = [] sensors_code_zone = [] sensor_intersection_zone = [] for building_name in building_names: building_geometry = BuildingGeometry.load(os.path.join( geometry_pickle_dir, 'zone', building_name)) (sensors_dir_building, sensors_coords_building, sensors_type_building, sensors_area_building, sensor_orientation_building, sensor_intersection_building ) = calc_sensors_building(building_geometry, grid_size) sensors_number = len(sensors_coords_building) sensors_total_number_list.append(sensors_number) sensors_code = [('srf' + str(x)) for x in range(sensors_number)] sensors_code_zone.append(sensors_code) sensors_coords_zone.extend(sensors_coords_building) sensors_dir_zone.extend(sensors_dir_building) sensor_intersection_zone.append(sensor_intersection_building) names_zone.append(building_name) pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code, 'orientation': sensor_orientation_building, 'intersection': sensor_intersection_building, 'Xcoor': [x[0] for x in sensors_coords_building], 'Ycoor': [x[1] for x in sensors_coords_building], 'Zcoor': [x[2] for x in sensors_coords_building], 'Xdir': [x[0] for x in sensors_dir_building], 'Ydir': [x[1] for x in sensors_dir_building], 'Zdir': [x[2] for x in sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE': sensors_type_building}).to_csv(locator.get_radiation_metadata( building_name), index=None) return (sensors_coords_zone, sensors_dir_zone, sensors_total_number_list, names_zone, sensors_code_zone, sensor_intersection_zone) def isolation_daysim(chunk_n, cea_daysim, building_names, locator, radiance_parameters, write_sensor_data, grid_size, max_global, weatherfile, geometry_pickle_dir): daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'. format(n=chunk_n)) print('Creating daysim project in: {daysim_dir}'.format(daysim_dir= daysim_project.project_path)) print('Calculating and sending sensor points') (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone, sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone( building_names, locator, grid_size, geometry_pickle_dir)) num_sensors = sum(sensors_number_zone) daysim_project.create_sensor_input_file(sensors_coords_zone, sensors_dir_zone, num_sensors, 'w/m2') print('Starting Daysim simulation for buildings: {buildings}'.format( buildings=names_zone)) print('Total number of sensors: {num_sensors}'.format(num_sensors= num_sensors)) print('Writing radiance parameters') daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'], radiance_parameters['rad_ad'], radiance_parameters['rad_as'], radiance_parameters['rad_ar'], radiance_parameters['rad_aa'], radiance_parameters['rad_lr'], radiance_parameters['rad_st'], radiance_parameters['rad_sj'], radiance_parameters['rad_lw'], radiance_parameters['rad_dj'], radiance_parameters['rad_ds'], radiance_parameters['rad_dr'], radiance_parameters['rad_dp']) print('Executing hourly solar isolation calculation') daysim_project.execute_gen_dc() daysim_project.execute_ds_illum() print('Reading results...') solar_res = daysim_project.eval_ill() print('Fixing inconsistencies, if any') solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global) if solar_res.shape[1] == HOURS_IN_YEAR + 24: print('Removing leap day') leap_day_hours = range(1416, 1440) solar_res = np.delete(solar_res, leap_day_hours, axis=1) print('Writing results to disk') index = 0 for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip( names_zone, sensors_number_zone, sensors_code_zone, sensor_intersection_zone): selection_of_results = solar_res[index:index + sensors_number_building] selection_of_results[np.array(sensor_intersection_building) == 1] = 0 items_sensor_name_and_result = dict(zip(sensor_code_building, selection_of_results.tolist())) index = index + sensors_number_building write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile) if write_sensor_data: write_sensor_results(building_name, items_sensor_name_and_result, locator) print('Removing results folder') daysim_project.cleanup_project() def write_sensor_results(building_name, items_sensor_name_and_result, locator): with open(locator.get_radiation_building_sensors(building_name), 'w' ) as outfile: json.dump(items_sensor_name_and_result, outfile) def write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile): geometry = pd.read_csv(locator.get_radiation_metadata(building_name)) geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW' solar_analysis_fields = ['windows_east_kW', 'windows_west_kW', 'windows_south_kW', 'windows_north_kW', 'walls_east_kW', 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW'] solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2', 'windows_south_m2', 'windows_north_m2', 'walls_east_m2', 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2'] dict_not_aggregated = {} for field, field_area in zip(solar_analysis_fields, solar_analysis_fields_area): select_sensors = geometry.loc[geometry['code'] == field].set_index( 'SURFACE') area_m2 = select_sensors['AREA_m2'].sum() array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] * np.array(items_sensor_name_and_result[surface])) for surface in select_sensors.index]).sum(axis=0) dict_not_aggregated[field] = array_field / 1000 dict_not_aggregated[field_area] = area_m2 data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2) data_aggregated_kW['Date'] = weatherfile['date'] data_aggregated_kW.set_index('Date', inplace=True) data_aggregated_kW.to_csv(locator.get_radiation_building(building_name)) <|reserved_special_token_1|> import json import os import numpy as np import pandas as pd import py4design.py2radiance as py2radiance import py4design.py3dmodel.calculate as calculate from py4design import py3dmodel __author__ = 'Jimeno A. Fonseca' __copyright__ = ( 'Copyright 2017, Architecture and Building Systems - ETH Zurich') __credits__ = ['Jimeno A. Fonseca', 'Kian Wee Chen'] __license__ = 'MIT' __version__ = '0.1' __maintainer__ = 'Daren Thomas' __email__ = '[email protected]' __status__ = 'Production' from cea.constants import HOURS_IN_YEAR from cea.resources.radiation_daysim.geometry_generator import BuildingGeometry from cea import suppress_3rd_party_debug_loggers suppress_3rd_party_debug_loggers() def create_sensor_input_file(rad, chunk_n): sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str( chunk_n) + '.pts') sensor_file = open(sensor_file_path, 'w') sensor_pts_data = py2radiance.write_rad.sensor_file(rad. sensor_positions, rad.sensor_normals) sensor_file.write(sensor_pts_data) sensor_file.close() rad.sensor_file_path = sensor_file_path def generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type, orientation, normal, intersection): mid_pt = py3dmodel.calculate.face_midpt(occface) location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01) moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move( mid_pt, location_pt, occface)) if srf_type == 'roofs': xdim = ydim = roof_dim else: xdim = ydim = wall_dim sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim) sensor_intersection = [intersection for x in sensor_surfaces] sensor_dir = [normal for x in sensor_surfaces] sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces] sensor_type = [srf_type for x in sensor_surfaces] sensor_orientation = [orientation for x in sensor_surfaces] sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in zip(sensor_surfaces, sensor_intersection)] return (sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection) def calc_sensors_building(building_geometry, grid_size): sensor_dir_list = [] sensor_cord_list = [] sensor_type_list = [] sensor_area_list = [] sensor_orientation_list = [] sensor_intersection_list = [] surfaces_types = ['walls', 'windows', 'roofs'] sensor_vertical_grid_dim = grid_size['walls_grid'] sensor_horizontal_grid_dim = grid_size['roof_grid'] for srf_type in surfaces_types: occface_list = getattr(building_geometry, srf_type) if srf_type == 'roofs': orientation_list = ['top'] * len(occface_list) normals_list = [(0.0, 0.0, 1.0)] * len(occface_list) interesection_list = [0] * len(occface_list) elif srf_type == 'windows': orientation_list = getattr(building_geometry, 'orientation_{srf_type}'.format(srf_type=srf_type)) normals_list = getattr(building_geometry, 'normals_{srf_type}'. format(srf_type=srf_type)) interesection_list = [0] * len(occface_list) else: orientation_list = getattr(building_geometry, 'orientation_{srf_type}'.format(srf_type=srf_type)) normals_list = getattr(building_geometry, 'normals_{srf_type}'. format(srf_type=srf_type)) interesection_list = getattr(building_geometry, 'intersect_{srf_type}'.format(srf_type=srf_type)) for orientation, normal, face, intersection in zip(orientation_list, normals_list, occface_list, interesection_list): (sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection) = ( generate_sensor_surfaces(face, sensor_vertical_grid_dim, sensor_horizontal_grid_dim, srf_type, orientation, normal, intersection)) sensor_intersection_list.extend(sensor_intersection) sensor_dir_list.extend(sensor_dir) sensor_cord_list.extend(sensor_cord) sensor_type_list.extend(sensor_type) sensor_area_list.extend(sensor_area) sensor_orientation_list.extend(sensor_orientation) return (sensor_dir_list, sensor_cord_list, sensor_type_list, sensor_area_list, sensor_orientation_list, sensor_intersection_list) def calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir): sensors_coords_zone = [] sensors_dir_zone = [] sensors_total_number_list = [] names_zone = [] sensors_code_zone = [] sensor_intersection_zone = [] for building_name in building_names: building_geometry = BuildingGeometry.load(os.path.join( geometry_pickle_dir, 'zone', building_name)) (sensors_dir_building, sensors_coords_building, sensors_type_building, sensors_area_building, sensor_orientation_building, sensor_intersection_building ) = calc_sensors_building(building_geometry, grid_size) sensors_number = len(sensors_coords_building) sensors_total_number_list.append(sensors_number) sensors_code = [('srf' + str(x)) for x in range(sensors_number)] sensors_code_zone.append(sensors_code) sensors_coords_zone.extend(sensors_coords_building) sensors_dir_zone.extend(sensors_dir_building) sensor_intersection_zone.append(sensor_intersection_building) names_zone.append(building_name) pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code, 'orientation': sensor_orientation_building, 'intersection': sensor_intersection_building, 'Xcoor': [x[0] for x in sensors_coords_building], 'Ycoor': [x[1] for x in sensors_coords_building], 'Zcoor': [x[2] for x in sensors_coords_building], 'Xdir': [x[0] for x in sensors_dir_building], 'Ydir': [x[1] for x in sensors_dir_building], 'Zdir': [x[2] for x in sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE': sensors_type_building}).to_csv(locator.get_radiation_metadata( building_name), index=None) return (sensors_coords_zone, sensors_dir_zone, sensors_total_number_list, names_zone, sensors_code_zone, sensor_intersection_zone) def isolation_daysim(chunk_n, cea_daysim, building_names, locator, radiance_parameters, write_sensor_data, grid_size, max_global, weatherfile, geometry_pickle_dir): daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'. format(n=chunk_n)) print('Creating daysim project in: {daysim_dir}'.format(daysim_dir= daysim_project.project_path)) print('Calculating and sending sensor points') (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone, sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone( building_names, locator, grid_size, geometry_pickle_dir)) num_sensors = sum(sensors_number_zone) daysim_project.create_sensor_input_file(sensors_coords_zone, sensors_dir_zone, num_sensors, 'w/m2') print('Starting Daysim simulation for buildings: {buildings}'.format( buildings=names_zone)) print('Total number of sensors: {num_sensors}'.format(num_sensors= num_sensors)) print('Writing radiance parameters') daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'], radiance_parameters['rad_ad'], radiance_parameters['rad_as'], radiance_parameters['rad_ar'], radiance_parameters['rad_aa'], radiance_parameters['rad_lr'], radiance_parameters['rad_st'], radiance_parameters['rad_sj'], radiance_parameters['rad_lw'], radiance_parameters['rad_dj'], radiance_parameters['rad_ds'], radiance_parameters['rad_dr'], radiance_parameters['rad_dp']) print('Executing hourly solar isolation calculation') daysim_project.execute_gen_dc() daysim_project.execute_ds_illum() print('Reading results...') solar_res = daysim_project.eval_ill() print('Fixing inconsistencies, if any') solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global) if solar_res.shape[1] == HOURS_IN_YEAR + 24: print('Removing leap day') leap_day_hours = range(1416, 1440) solar_res = np.delete(solar_res, leap_day_hours, axis=1) print('Writing results to disk') index = 0 for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip( names_zone, sensors_number_zone, sensors_code_zone, sensor_intersection_zone): selection_of_results = solar_res[index:index + sensors_number_building] selection_of_results[np.array(sensor_intersection_building) == 1] = 0 items_sensor_name_and_result = dict(zip(sensor_code_building, selection_of_results.tolist())) index = index + sensors_number_building write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile) if write_sensor_data: write_sensor_results(building_name, items_sensor_name_and_result, locator) print('Removing results folder') daysim_project.cleanup_project() def write_sensor_results(building_name, items_sensor_name_and_result, locator): with open(locator.get_radiation_building_sensors(building_name), 'w' ) as outfile: json.dump(items_sensor_name_and_result, outfile) def write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile): geometry = pd.read_csv(locator.get_radiation_metadata(building_name)) geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW' solar_analysis_fields = ['windows_east_kW', 'windows_west_kW', 'windows_south_kW', 'windows_north_kW', 'walls_east_kW', 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW'] solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2', 'windows_south_m2', 'windows_north_m2', 'walls_east_m2', 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2'] dict_not_aggregated = {} for field, field_area in zip(solar_analysis_fields, solar_analysis_fields_area): select_sensors = geometry.loc[geometry['code'] == field].set_index( 'SURFACE') area_m2 = select_sensors['AREA_m2'].sum() array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] * np.array(items_sensor_name_and_result[surface])) for surface in select_sensors.index]).sum(axis=0) dict_not_aggregated[field] = array_field / 1000 dict_not_aggregated[field_area] = area_m2 data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2) data_aggregated_kW['Date'] = weatherfile['date'] data_aggregated_kW.set_index('Date', inplace=True) data_aggregated_kW.to_csv(locator.get_radiation_building(building_name)) <|reserved_special_token_1|> import json import os import numpy as np import pandas as pd import py4design.py2radiance as py2radiance import py4design.py3dmodel.calculate as calculate from py4design import py3dmodel __author__ = "Jimeno A. Fonseca" __copyright__ = "Copyright 2017, Architecture and Building Systems - ETH Zurich" __credits__ = ["Jimeno A. Fonseca", "Kian Wee Chen"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "Daren Thomas" __email__ = "[email protected]" __status__ = "Production" from cea.constants import HOURS_IN_YEAR from cea.resources.radiation_daysim.geometry_generator import BuildingGeometry from cea import suppress_3rd_party_debug_loggers suppress_3rd_party_debug_loggers() def create_sensor_input_file(rad, chunk_n): sensor_file_path = os.path.join(rad.data_folder_path, "points_" + str(chunk_n) + ".pts") sensor_file = open(sensor_file_path, "w") sensor_pts_data = py2radiance.write_rad.sensor_file(rad.sensor_positions, rad.sensor_normals) sensor_file.write(sensor_pts_data) sensor_file.close() rad.sensor_file_path = sensor_file_path def generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type, orientation, normal, intersection): mid_pt = py3dmodel.calculate.face_midpt(occface) location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01) moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(mid_pt, location_pt, occface)) if srf_type == 'roofs': xdim = ydim = roof_dim else: xdim = ydim = wall_dim # put it into occ and subdivide surfaces sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim) # calculate list of properties per surface sensor_intersection = [intersection for x in sensor_surfaces] sensor_dir = [normal for x in sensor_surfaces] sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces] sensor_type = [srf_type for x in sensor_surfaces] sensor_orientation = [orientation for x in sensor_surfaces] sensor_area = [calculate.face_area(x) * (1.0 - scalar) for x, scalar in zip(sensor_surfaces, sensor_intersection)] return sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection def calc_sensors_building(building_geometry, grid_size): sensor_dir_list = [] sensor_cord_list = [] sensor_type_list = [] sensor_area_list = [] sensor_orientation_list = [] sensor_intersection_list = [] surfaces_types = ['walls', 'windows', 'roofs'] sensor_vertical_grid_dim = grid_size["walls_grid"] sensor_horizontal_grid_dim = grid_size["roof_grid"] for srf_type in surfaces_types: occface_list = getattr(building_geometry, srf_type) if srf_type == 'roofs': orientation_list = ['top'] * len(occface_list) normals_list = [(0.0, 0.0, 1.0)] * len(occface_list) interesection_list = [0] * len(occface_list) elif srf_type == 'windows': orientation_list = getattr(building_geometry, "orientation_{srf_type}".format(srf_type=srf_type)) normals_list = getattr(building_geometry, "normals_{srf_type}".format(srf_type=srf_type)) interesection_list = [0] * len(occface_list) else: orientation_list = getattr(building_geometry, "orientation_{srf_type}".format(srf_type=srf_type)) normals_list = getattr(building_geometry, "normals_{srf_type}".format(srf_type=srf_type)) interesection_list = getattr(building_geometry, "intersect_{srf_type}".format(srf_type=srf_type)) for orientation, normal, face, intersection in zip(orientation_list, normals_list, occface_list, interesection_list): sensor_dir, \ sensor_cord, \ sensor_type, \ sensor_area, \ sensor_orientation, \ sensor_intersection = generate_sensor_surfaces(face, sensor_vertical_grid_dim, sensor_horizontal_grid_dim, srf_type, orientation, normal, intersection) sensor_intersection_list.extend(sensor_intersection) sensor_dir_list.extend(sensor_dir) sensor_cord_list.extend(sensor_cord) sensor_type_list.extend(sensor_type) sensor_area_list.extend(sensor_area) sensor_orientation_list.extend(sensor_orientation) return sensor_dir_list, sensor_cord_list, sensor_type_list, sensor_area_list, sensor_orientation_list, sensor_intersection_list def calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir): sensors_coords_zone = [] sensors_dir_zone = [] sensors_total_number_list = [] names_zone = [] sensors_code_zone = [] sensor_intersection_zone = [] for building_name in building_names: building_geometry = BuildingGeometry.load(os.path.join(geometry_pickle_dir, 'zone', building_name)) # get sensors in the building sensors_dir_building, \ sensors_coords_building, \ sensors_type_building, \ sensors_area_building, \ sensor_orientation_building, \ sensor_intersection_building = calc_sensors_building(building_geometry, grid_size) # get the total number of sensors and store in lst sensors_number = len(sensors_coords_building) sensors_total_number_list.append(sensors_number) sensors_code = ['srf' + str(x) for x in range(sensors_number)] sensors_code_zone.append(sensors_code) # get the total list of coordinates and directions to send to daysim sensors_coords_zone.extend(sensors_coords_building) sensors_dir_zone.extend(sensors_dir_building) # get total list of intersections sensor_intersection_zone.append(sensor_intersection_building) # get the name of all buildings names_zone.append(building_name) # save sensors geometry result to disk pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code, 'orientation': sensor_orientation_building, 'intersection': sensor_intersection_building, 'Xcoor': [x[0] for x in sensors_coords_building], 'Ycoor': [x[1] for x in sensors_coords_building], 'Zcoor': [x[2] for x in sensors_coords_building], 'Xdir': [x[0] for x in sensors_dir_building], 'Ydir': [x[1] for x in sensors_dir_building], 'Zdir': [x[2] for x in sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE': sensors_type_building}).to_csv(locator.get_radiation_metadata(building_name), index=None) return sensors_coords_zone, sensors_dir_zone, sensors_total_number_list, names_zone, sensors_code_zone, sensor_intersection_zone def isolation_daysim(chunk_n, cea_daysim, building_names, locator, radiance_parameters, write_sensor_data, grid_size, max_global, weatherfile, geometry_pickle_dir): # initialize daysim project daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.format(n=chunk_n)) print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=daysim_project.project_path)) # calculate sensors print("Calculating and sending sensor points") sensors_coords_zone, \ sensors_dir_zone, \ sensors_number_zone, \ names_zone, \ sensors_code_zone, \ sensor_intersection_zone = calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir) num_sensors = sum(sensors_number_zone) daysim_project.create_sensor_input_file(sensors_coords_zone, sensors_dir_zone, num_sensors, "w/m2") print("Starting Daysim simulation for buildings: {buildings}".format(buildings=names_zone)) print("Total number of sensors: {num_sensors}".format(num_sensors=num_sensors)) print('Writing radiance parameters') daysim_project.write_radiance_parameters(radiance_parameters["rad_ab"], radiance_parameters["rad_ad"], radiance_parameters["rad_as"], radiance_parameters["rad_ar"], radiance_parameters["rad_aa"], radiance_parameters["rad_lr"], radiance_parameters["rad_st"], radiance_parameters["rad_sj"], radiance_parameters["rad_lw"], radiance_parameters["rad_dj"], radiance_parameters["rad_ds"], radiance_parameters["rad_dr"], radiance_parameters["rad_dp"]) print('Executing hourly solar isolation calculation') daysim_project.execute_gen_dc() daysim_project.execute_ds_illum() print('Reading results...') solar_res = daysim_project.eval_ill() # check inconsistencies and replace by max value of weather file print('Fixing inconsistencies, if any') solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global) # Check if leap year and remove extra day if solar_res.shape[1] == HOURS_IN_YEAR + 24: print('Removing leap day') leap_day_hours = range(1416, 1440) solar_res = np.delete(solar_res, leap_day_hours, axis=1) print("Writing results to disk") index = 0 for building_name, \ sensors_number_building, \ sensor_code_building, \ sensor_intersection_building in zip(names_zone, sensors_number_zone, sensors_code_zone, sensor_intersection_zone): # select sensors data selection_of_results = solar_res[index:index + sensors_number_building] selection_of_results[np.array(sensor_intersection_building) == 1] = 0 items_sensor_name_and_result = dict(zip(sensor_code_building, selection_of_results.tolist())) index = index + sensors_number_building # create summary and save to disk write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile) if write_sensor_data: write_sensor_results(building_name, items_sensor_name_and_result, locator) # erase daysim folder to avoid conflicts after every iteration print('Removing results folder') daysim_project.cleanup_project() def write_sensor_results(building_name, items_sensor_name_and_result, locator): with open(locator.get_radiation_building_sensors(building_name), 'w') as outfile: json.dump(items_sensor_name_and_result, outfile) def write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile): geometry = pd.read_csv(locator.get_radiation_metadata(building_name)) geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW' solar_analysis_fields = ['windows_east_kW', 'windows_west_kW', 'windows_south_kW', 'windows_north_kW', 'walls_east_kW', 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW'] solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2', 'windows_south_m2', 'windows_north_m2', 'walls_east_m2', 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2'] dict_not_aggregated = {} for field, field_area in zip(solar_analysis_fields, solar_analysis_fields_area): select_sensors = geometry.loc[geometry['code'] == field].set_index('SURFACE') area_m2 = select_sensors['AREA_m2'].sum() array_field = np.array([select_sensors.loc[surface, 'AREA_m2'] * np.array(items_sensor_name_and_result[surface]) for surface in select_sensors.index]).sum(axis=0) dict_not_aggregated[field] = array_field / 1000 # in kWh dict_not_aggregated[field_area] = area_m2 data_aggregated_kW = (pd.DataFrame(dict_not_aggregated)).round(2) data_aggregated_kW["Date"] = weatherfile["date"] data_aggregated_kW.set_index('Date', inplace=True) data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))
flexible
{ "blob_id": "164b0afde225119a8fbd4ccfccbbbc3550aa75fe", "index": 2634, "step-1": "<mask token>\n\n\ndef create_sensor_input_file(rad, chunk_n):\n sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str(\n chunk_n) + '.pts')\n sensor_file = open(sensor_file_path, 'w')\n sensor_pts_data = py2radiance.write_rad.sensor_file(rad.\n sensor_positions, rad.sensor_normals)\n sensor_file.write(sensor_pts_data)\n sensor_file.close()\n rad.sensor_file_path = sensor_file_path\n\n\ndef generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type,\n orientation, normal, intersection):\n mid_pt = py3dmodel.calculate.face_midpt(occface)\n location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01)\n moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(\n mid_pt, location_pt, occface))\n if srf_type == 'roofs':\n xdim = ydim = roof_dim\n else:\n xdim = ydim = wall_dim\n sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim)\n sensor_intersection = [intersection for x in sensor_surfaces]\n sensor_dir = [normal for x in sensor_surfaces]\n sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces]\n sensor_type = [srf_type for x in sensor_surfaces]\n sensor_orientation = [orientation for x in sensor_surfaces]\n sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in\n zip(sensor_surfaces, sensor_intersection)]\n return (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection)\n\n\n<mask token>\n\n\ndef calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir):\n sensors_coords_zone = []\n sensors_dir_zone = []\n sensors_total_number_list = []\n names_zone = []\n sensors_code_zone = []\n sensor_intersection_zone = []\n for building_name in building_names:\n building_geometry = BuildingGeometry.load(os.path.join(\n geometry_pickle_dir, 'zone', building_name))\n (sensors_dir_building, sensors_coords_building,\n sensors_type_building, sensors_area_building,\n sensor_orientation_building, sensor_intersection_building\n ) = calc_sensors_building(building_geometry, grid_size)\n sensors_number = len(sensors_coords_building)\n sensors_total_number_list.append(sensors_number)\n sensors_code = [('srf' + str(x)) for x in range(sensors_number)]\n sensors_code_zone.append(sensors_code)\n sensors_coords_zone.extend(sensors_coords_building)\n sensors_dir_zone.extend(sensors_dir_building)\n sensor_intersection_zone.append(sensor_intersection_building)\n names_zone.append(building_name)\n pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code,\n 'orientation': sensor_orientation_building, 'intersection':\n sensor_intersection_building, 'Xcoor': [x[0] for x in\n sensors_coords_building], 'Ycoor': [x[1] for x in\n sensors_coords_building], 'Zcoor': [x[2] for x in\n sensors_coords_building], 'Xdir': [x[0] for x in\n sensors_dir_building], 'Ydir': [x[1] for x in\n sensors_dir_building], 'Zdir': [x[2] for x in\n sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE':\n sensors_type_building}).to_csv(locator.get_radiation_metadata(\n building_name), index=None)\n return (sensors_coords_zone, sensors_dir_zone,\n sensors_total_number_list, names_zone, sensors_code_zone,\n sensor_intersection_zone)\n\n\ndef isolation_daysim(chunk_n, cea_daysim, building_names, locator,\n radiance_parameters, write_sensor_data, grid_size, max_global,\n weatherfile, geometry_pickle_dir):\n daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.\n format(n=chunk_n))\n print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=\n daysim_project.project_path))\n print('Calculating and sending sensor points')\n (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone,\n sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone(\n building_names, locator, grid_size, geometry_pickle_dir))\n num_sensors = sum(sensors_number_zone)\n daysim_project.create_sensor_input_file(sensors_coords_zone,\n sensors_dir_zone, num_sensors, 'w/m2')\n print('Starting Daysim simulation for buildings: {buildings}'.format(\n buildings=names_zone))\n print('Total number of sensors: {num_sensors}'.format(num_sensors=\n num_sensors))\n print('Writing radiance parameters')\n daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'],\n radiance_parameters['rad_ad'], radiance_parameters['rad_as'],\n radiance_parameters['rad_ar'], radiance_parameters['rad_aa'],\n radiance_parameters['rad_lr'], radiance_parameters['rad_st'],\n radiance_parameters['rad_sj'], radiance_parameters['rad_lw'],\n radiance_parameters['rad_dj'], radiance_parameters['rad_ds'],\n radiance_parameters['rad_dr'], radiance_parameters['rad_dp'])\n print('Executing hourly solar isolation calculation')\n daysim_project.execute_gen_dc()\n daysim_project.execute_ds_illum()\n print('Reading results...')\n solar_res = daysim_project.eval_ill()\n print('Fixing inconsistencies, if any')\n solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global)\n if solar_res.shape[1] == HOURS_IN_YEAR + 24:\n print('Removing leap day')\n leap_day_hours = range(1416, 1440)\n solar_res = np.delete(solar_res, leap_day_hours, axis=1)\n print('Writing results to disk')\n index = 0\n for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip(\n names_zone, sensors_number_zone, sensors_code_zone,\n sensor_intersection_zone):\n selection_of_results = solar_res[index:index + sensors_number_building]\n selection_of_results[np.array(sensor_intersection_building) == 1] = 0\n items_sensor_name_and_result = dict(zip(sensor_code_building,\n selection_of_results.tolist()))\n index = index + sensors_number_building\n write_aggregated_results(building_name,\n items_sensor_name_and_result, locator, weatherfile)\n if write_sensor_data:\n write_sensor_results(building_name,\n items_sensor_name_and_result, locator)\n print('Removing results folder')\n daysim_project.cleanup_project()\n\n\ndef write_sensor_results(building_name, items_sensor_name_and_result, locator):\n with open(locator.get_radiation_building_sensors(building_name), 'w'\n ) as outfile:\n json.dump(items_sensor_name_and_result, outfile)\n\n\ndef write_aggregated_results(building_name, items_sensor_name_and_result,\n locator, weatherfile):\n geometry = pd.read_csv(locator.get_radiation_metadata(building_name))\n geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW'\n solar_analysis_fields = ['windows_east_kW', 'windows_west_kW',\n 'windows_south_kW', 'windows_north_kW', 'walls_east_kW',\n 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW']\n solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2',\n 'windows_south_m2', 'windows_north_m2', 'walls_east_m2',\n 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2']\n dict_not_aggregated = {}\n for field, field_area in zip(solar_analysis_fields,\n solar_analysis_fields_area):\n select_sensors = geometry.loc[geometry['code'] == field].set_index(\n 'SURFACE')\n area_m2 = select_sensors['AREA_m2'].sum()\n array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] *\n np.array(items_sensor_name_and_result[surface])) for surface in\n select_sensors.index]).sum(axis=0)\n dict_not_aggregated[field] = array_field / 1000\n dict_not_aggregated[field_area] = area_m2\n data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2)\n data_aggregated_kW['Date'] = weatherfile['date']\n data_aggregated_kW.set_index('Date', inplace=True)\n data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))\n", "step-2": "<mask token>\n\n\ndef create_sensor_input_file(rad, chunk_n):\n sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str(\n chunk_n) + '.pts')\n sensor_file = open(sensor_file_path, 'w')\n sensor_pts_data = py2radiance.write_rad.sensor_file(rad.\n sensor_positions, rad.sensor_normals)\n sensor_file.write(sensor_pts_data)\n sensor_file.close()\n rad.sensor_file_path = sensor_file_path\n\n\ndef generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type,\n orientation, normal, intersection):\n mid_pt = py3dmodel.calculate.face_midpt(occface)\n location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01)\n moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(\n mid_pt, location_pt, occface))\n if srf_type == 'roofs':\n xdim = ydim = roof_dim\n else:\n xdim = ydim = wall_dim\n sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim)\n sensor_intersection = [intersection for x in sensor_surfaces]\n sensor_dir = [normal for x in sensor_surfaces]\n sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces]\n sensor_type = [srf_type for x in sensor_surfaces]\n sensor_orientation = [orientation for x in sensor_surfaces]\n sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in\n zip(sensor_surfaces, sensor_intersection)]\n return (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection)\n\n\ndef calc_sensors_building(building_geometry, grid_size):\n sensor_dir_list = []\n sensor_cord_list = []\n sensor_type_list = []\n sensor_area_list = []\n sensor_orientation_list = []\n sensor_intersection_list = []\n surfaces_types = ['walls', 'windows', 'roofs']\n sensor_vertical_grid_dim = grid_size['walls_grid']\n sensor_horizontal_grid_dim = grid_size['roof_grid']\n for srf_type in surfaces_types:\n occface_list = getattr(building_geometry, srf_type)\n if srf_type == 'roofs':\n orientation_list = ['top'] * len(occface_list)\n normals_list = [(0.0, 0.0, 1.0)] * len(occface_list)\n interesection_list = [0] * len(occface_list)\n elif srf_type == 'windows':\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = [0] * len(occface_list)\n else:\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = getattr(building_geometry,\n 'intersect_{srf_type}'.format(srf_type=srf_type))\n for orientation, normal, face, intersection in zip(orientation_list,\n normals_list, occface_list, interesection_list):\n (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection) = (\n generate_sensor_surfaces(face, sensor_vertical_grid_dim,\n sensor_horizontal_grid_dim, srf_type, orientation, normal,\n intersection))\n sensor_intersection_list.extend(sensor_intersection)\n sensor_dir_list.extend(sensor_dir)\n sensor_cord_list.extend(sensor_cord)\n sensor_type_list.extend(sensor_type)\n sensor_area_list.extend(sensor_area)\n sensor_orientation_list.extend(sensor_orientation)\n return (sensor_dir_list, sensor_cord_list, sensor_type_list,\n sensor_area_list, sensor_orientation_list, sensor_intersection_list)\n\n\ndef calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir):\n sensors_coords_zone = []\n sensors_dir_zone = []\n sensors_total_number_list = []\n names_zone = []\n sensors_code_zone = []\n sensor_intersection_zone = []\n for building_name in building_names:\n building_geometry = BuildingGeometry.load(os.path.join(\n geometry_pickle_dir, 'zone', building_name))\n (sensors_dir_building, sensors_coords_building,\n sensors_type_building, sensors_area_building,\n sensor_orientation_building, sensor_intersection_building\n ) = calc_sensors_building(building_geometry, grid_size)\n sensors_number = len(sensors_coords_building)\n sensors_total_number_list.append(sensors_number)\n sensors_code = [('srf' + str(x)) for x in range(sensors_number)]\n sensors_code_zone.append(sensors_code)\n sensors_coords_zone.extend(sensors_coords_building)\n sensors_dir_zone.extend(sensors_dir_building)\n sensor_intersection_zone.append(sensor_intersection_building)\n names_zone.append(building_name)\n pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code,\n 'orientation': sensor_orientation_building, 'intersection':\n sensor_intersection_building, 'Xcoor': [x[0] for x in\n sensors_coords_building], 'Ycoor': [x[1] for x in\n sensors_coords_building], 'Zcoor': [x[2] for x in\n sensors_coords_building], 'Xdir': [x[0] for x in\n sensors_dir_building], 'Ydir': [x[1] for x in\n sensors_dir_building], 'Zdir': [x[2] for x in\n sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE':\n sensors_type_building}).to_csv(locator.get_radiation_metadata(\n building_name), index=None)\n return (sensors_coords_zone, sensors_dir_zone,\n sensors_total_number_list, names_zone, sensors_code_zone,\n sensor_intersection_zone)\n\n\ndef isolation_daysim(chunk_n, cea_daysim, building_names, locator,\n radiance_parameters, write_sensor_data, grid_size, max_global,\n weatherfile, geometry_pickle_dir):\n daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.\n format(n=chunk_n))\n print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=\n daysim_project.project_path))\n print('Calculating and sending sensor points')\n (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone,\n sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone(\n building_names, locator, grid_size, geometry_pickle_dir))\n num_sensors = sum(sensors_number_zone)\n daysim_project.create_sensor_input_file(sensors_coords_zone,\n sensors_dir_zone, num_sensors, 'w/m2')\n print('Starting Daysim simulation for buildings: {buildings}'.format(\n buildings=names_zone))\n print('Total number of sensors: {num_sensors}'.format(num_sensors=\n num_sensors))\n print('Writing radiance parameters')\n daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'],\n radiance_parameters['rad_ad'], radiance_parameters['rad_as'],\n radiance_parameters['rad_ar'], radiance_parameters['rad_aa'],\n radiance_parameters['rad_lr'], radiance_parameters['rad_st'],\n radiance_parameters['rad_sj'], radiance_parameters['rad_lw'],\n radiance_parameters['rad_dj'], radiance_parameters['rad_ds'],\n radiance_parameters['rad_dr'], radiance_parameters['rad_dp'])\n print('Executing hourly solar isolation calculation')\n daysim_project.execute_gen_dc()\n daysim_project.execute_ds_illum()\n print('Reading results...')\n solar_res = daysim_project.eval_ill()\n print('Fixing inconsistencies, if any')\n solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global)\n if solar_res.shape[1] == HOURS_IN_YEAR + 24:\n print('Removing leap day')\n leap_day_hours = range(1416, 1440)\n solar_res = np.delete(solar_res, leap_day_hours, axis=1)\n print('Writing results to disk')\n index = 0\n for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip(\n names_zone, sensors_number_zone, sensors_code_zone,\n sensor_intersection_zone):\n selection_of_results = solar_res[index:index + sensors_number_building]\n selection_of_results[np.array(sensor_intersection_building) == 1] = 0\n items_sensor_name_and_result = dict(zip(sensor_code_building,\n selection_of_results.tolist()))\n index = index + sensors_number_building\n write_aggregated_results(building_name,\n items_sensor_name_and_result, locator, weatherfile)\n if write_sensor_data:\n write_sensor_results(building_name,\n items_sensor_name_and_result, locator)\n print('Removing results folder')\n daysim_project.cleanup_project()\n\n\ndef write_sensor_results(building_name, items_sensor_name_and_result, locator):\n with open(locator.get_radiation_building_sensors(building_name), 'w'\n ) as outfile:\n json.dump(items_sensor_name_and_result, outfile)\n\n\ndef write_aggregated_results(building_name, items_sensor_name_and_result,\n locator, weatherfile):\n geometry = pd.read_csv(locator.get_radiation_metadata(building_name))\n geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW'\n solar_analysis_fields = ['windows_east_kW', 'windows_west_kW',\n 'windows_south_kW', 'windows_north_kW', 'walls_east_kW',\n 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW']\n solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2',\n 'windows_south_m2', 'windows_north_m2', 'walls_east_m2',\n 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2']\n dict_not_aggregated = {}\n for field, field_area in zip(solar_analysis_fields,\n solar_analysis_fields_area):\n select_sensors = geometry.loc[geometry['code'] == field].set_index(\n 'SURFACE')\n area_m2 = select_sensors['AREA_m2'].sum()\n array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] *\n np.array(items_sensor_name_and_result[surface])) for surface in\n select_sensors.index]).sum(axis=0)\n dict_not_aggregated[field] = array_field / 1000\n dict_not_aggregated[field_area] = area_m2\n data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2)\n data_aggregated_kW['Date'] = weatherfile['date']\n data_aggregated_kW.set_index('Date', inplace=True)\n data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))\n", "step-3": "<mask token>\n__author__ = 'Jimeno A. Fonseca'\n__copyright__ = (\n 'Copyright 2017, Architecture and Building Systems - ETH Zurich')\n__credits__ = ['Jimeno A. Fonseca', 'Kian Wee Chen']\n__license__ = 'MIT'\n__version__ = '0.1'\n__maintainer__ = 'Daren Thomas'\n__email__ = '[email protected]'\n__status__ = 'Production'\n<mask token>\nsuppress_3rd_party_debug_loggers()\n\n\ndef create_sensor_input_file(rad, chunk_n):\n sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str(\n chunk_n) + '.pts')\n sensor_file = open(sensor_file_path, 'w')\n sensor_pts_data = py2radiance.write_rad.sensor_file(rad.\n sensor_positions, rad.sensor_normals)\n sensor_file.write(sensor_pts_data)\n sensor_file.close()\n rad.sensor_file_path = sensor_file_path\n\n\ndef generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type,\n orientation, normal, intersection):\n mid_pt = py3dmodel.calculate.face_midpt(occface)\n location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01)\n moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(\n mid_pt, location_pt, occface))\n if srf_type == 'roofs':\n xdim = ydim = roof_dim\n else:\n xdim = ydim = wall_dim\n sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim)\n sensor_intersection = [intersection for x in sensor_surfaces]\n sensor_dir = [normal for x in sensor_surfaces]\n sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces]\n sensor_type = [srf_type for x in sensor_surfaces]\n sensor_orientation = [orientation for x in sensor_surfaces]\n sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in\n zip(sensor_surfaces, sensor_intersection)]\n return (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection)\n\n\ndef calc_sensors_building(building_geometry, grid_size):\n sensor_dir_list = []\n sensor_cord_list = []\n sensor_type_list = []\n sensor_area_list = []\n sensor_orientation_list = []\n sensor_intersection_list = []\n surfaces_types = ['walls', 'windows', 'roofs']\n sensor_vertical_grid_dim = grid_size['walls_grid']\n sensor_horizontal_grid_dim = grid_size['roof_grid']\n for srf_type in surfaces_types:\n occface_list = getattr(building_geometry, srf_type)\n if srf_type == 'roofs':\n orientation_list = ['top'] * len(occface_list)\n normals_list = [(0.0, 0.0, 1.0)] * len(occface_list)\n interesection_list = [0] * len(occface_list)\n elif srf_type == 'windows':\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = [0] * len(occface_list)\n else:\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = getattr(building_geometry,\n 'intersect_{srf_type}'.format(srf_type=srf_type))\n for orientation, normal, face, intersection in zip(orientation_list,\n normals_list, occface_list, interesection_list):\n (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection) = (\n generate_sensor_surfaces(face, sensor_vertical_grid_dim,\n sensor_horizontal_grid_dim, srf_type, orientation, normal,\n intersection))\n sensor_intersection_list.extend(sensor_intersection)\n sensor_dir_list.extend(sensor_dir)\n sensor_cord_list.extend(sensor_cord)\n sensor_type_list.extend(sensor_type)\n sensor_area_list.extend(sensor_area)\n sensor_orientation_list.extend(sensor_orientation)\n return (sensor_dir_list, sensor_cord_list, sensor_type_list,\n sensor_area_list, sensor_orientation_list, sensor_intersection_list)\n\n\ndef calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir):\n sensors_coords_zone = []\n sensors_dir_zone = []\n sensors_total_number_list = []\n names_zone = []\n sensors_code_zone = []\n sensor_intersection_zone = []\n for building_name in building_names:\n building_geometry = BuildingGeometry.load(os.path.join(\n geometry_pickle_dir, 'zone', building_name))\n (sensors_dir_building, sensors_coords_building,\n sensors_type_building, sensors_area_building,\n sensor_orientation_building, sensor_intersection_building\n ) = calc_sensors_building(building_geometry, grid_size)\n sensors_number = len(sensors_coords_building)\n sensors_total_number_list.append(sensors_number)\n sensors_code = [('srf' + str(x)) for x in range(sensors_number)]\n sensors_code_zone.append(sensors_code)\n sensors_coords_zone.extend(sensors_coords_building)\n sensors_dir_zone.extend(sensors_dir_building)\n sensor_intersection_zone.append(sensor_intersection_building)\n names_zone.append(building_name)\n pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code,\n 'orientation': sensor_orientation_building, 'intersection':\n sensor_intersection_building, 'Xcoor': [x[0] for x in\n sensors_coords_building], 'Ycoor': [x[1] for x in\n sensors_coords_building], 'Zcoor': [x[2] for x in\n sensors_coords_building], 'Xdir': [x[0] for x in\n sensors_dir_building], 'Ydir': [x[1] for x in\n sensors_dir_building], 'Zdir': [x[2] for x in\n sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE':\n sensors_type_building}).to_csv(locator.get_radiation_metadata(\n building_name), index=None)\n return (sensors_coords_zone, sensors_dir_zone,\n sensors_total_number_list, names_zone, sensors_code_zone,\n sensor_intersection_zone)\n\n\ndef isolation_daysim(chunk_n, cea_daysim, building_names, locator,\n radiance_parameters, write_sensor_data, grid_size, max_global,\n weatherfile, geometry_pickle_dir):\n daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.\n format(n=chunk_n))\n print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=\n daysim_project.project_path))\n print('Calculating and sending sensor points')\n (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone,\n sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone(\n building_names, locator, grid_size, geometry_pickle_dir))\n num_sensors = sum(sensors_number_zone)\n daysim_project.create_sensor_input_file(sensors_coords_zone,\n sensors_dir_zone, num_sensors, 'w/m2')\n print('Starting Daysim simulation for buildings: {buildings}'.format(\n buildings=names_zone))\n print('Total number of sensors: {num_sensors}'.format(num_sensors=\n num_sensors))\n print('Writing radiance parameters')\n daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'],\n radiance_parameters['rad_ad'], radiance_parameters['rad_as'],\n radiance_parameters['rad_ar'], radiance_parameters['rad_aa'],\n radiance_parameters['rad_lr'], radiance_parameters['rad_st'],\n radiance_parameters['rad_sj'], radiance_parameters['rad_lw'],\n radiance_parameters['rad_dj'], radiance_parameters['rad_ds'],\n radiance_parameters['rad_dr'], radiance_parameters['rad_dp'])\n print('Executing hourly solar isolation calculation')\n daysim_project.execute_gen_dc()\n daysim_project.execute_ds_illum()\n print('Reading results...')\n solar_res = daysim_project.eval_ill()\n print('Fixing inconsistencies, if any')\n solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global)\n if solar_res.shape[1] == HOURS_IN_YEAR + 24:\n print('Removing leap day')\n leap_day_hours = range(1416, 1440)\n solar_res = np.delete(solar_res, leap_day_hours, axis=1)\n print('Writing results to disk')\n index = 0\n for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip(\n names_zone, sensors_number_zone, sensors_code_zone,\n sensor_intersection_zone):\n selection_of_results = solar_res[index:index + sensors_number_building]\n selection_of_results[np.array(sensor_intersection_building) == 1] = 0\n items_sensor_name_and_result = dict(zip(sensor_code_building,\n selection_of_results.tolist()))\n index = index + sensors_number_building\n write_aggregated_results(building_name,\n items_sensor_name_and_result, locator, weatherfile)\n if write_sensor_data:\n write_sensor_results(building_name,\n items_sensor_name_and_result, locator)\n print('Removing results folder')\n daysim_project.cleanup_project()\n\n\ndef write_sensor_results(building_name, items_sensor_name_and_result, locator):\n with open(locator.get_radiation_building_sensors(building_name), 'w'\n ) as outfile:\n json.dump(items_sensor_name_and_result, outfile)\n\n\ndef write_aggregated_results(building_name, items_sensor_name_and_result,\n locator, weatherfile):\n geometry = pd.read_csv(locator.get_radiation_metadata(building_name))\n geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW'\n solar_analysis_fields = ['windows_east_kW', 'windows_west_kW',\n 'windows_south_kW', 'windows_north_kW', 'walls_east_kW',\n 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW']\n solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2',\n 'windows_south_m2', 'windows_north_m2', 'walls_east_m2',\n 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2']\n dict_not_aggregated = {}\n for field, field_area in zip(solar_analysis_fields,\n solar_analysis_fields_area):\n select_sensors = geometry.loc[geometry['code'] == field].set_index(\n 'SURFACE')\n area_m2 = select_sensors['AREA_m2'].sum()\n array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] *\n np.array(items_sensor_name_and_result[surface])) for surface in\n select_sensors.index]).sum(axis=0)\n dict_not_aggregated[field] = array_field / 1000\n dict_not_aggregated[field_area] = area_m2\n data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2)\n data_aggregated_kW['Date'] = weatherfile['date']\n data_aggregated_kW.set_index('Date', inplace=True)\n data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))\n", "step-4": "import json\nimport os\nimport numpy as np\nimport pandas as pd\nimport py4design.py2radiance as py2radiance\nimport py4design.py3dmodel.calculate as calculate\nfrom py4design import py3dmodel\n__author__ = 'Jimeno A. Fonseca'\n__copyright__ = (\n 'Copyright 2017, Architecture and Building Systems - ETH Zurich')\n__credits__ = ['Jimeno A. Fonseca', 'Kian Wee Chen']\n__license__ = 'MIT'\n__version__ = '0.1'\n__maintainer__ = 'Daren Thomas'\n__email__ = '[email protected]'\n__status__ = 'Production'\nfrom cea.constants import HOURS_IN_YEAR\nfrom cea.resources.radiation_daysim.geometry_generator import BuildingGeometry\nfrom cea import suppress_3rd_party_debug_loggers\nsuppress_3rd_party_debug_loggers()\n\n\ndef create_sensor_input_file(rad, chunk_n):\n sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str(\n chunk_n) + '.pts')\n sensor_file = open(sensor_file_path, 'w')\n sensor_pts_data = py2radiance.write_rad.sensor_file(rad.\n sensor_positions, rad.sensor_normals)\n sensor_file.write(sensor_pts_data)\n sensor_file.close()\n rad.sensor_file_path = sensor_file_path\n\n\ndef generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type,\n orientation, normal, intersection):\n mid_pt = py3dmodel.calculate.face_midpt(occface)\n location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01)\n moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(\n mid_pt, location_pt, occface))\n if srf_type == 'roofs':\n xdim = ydim = roof_dim\n else:\n xdim = ydim = wall_dim\n sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim)\n sensor_intersection = [intersection for x in sensor_surfaces]\n sensor_dir = [normal for x in sensor_surfaces]\n sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces]\n sensor_type = [srf_type for x in sensor_surfaces]\n sensor_orientation = [orientation for x in sensor_surfaces]\n sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in\n zip(sensor_surfaces, sensor_intersection)]\n return (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection)\n\n\ndef calc_sensors_building(building_geometry, grid_size):\n sensor_dir_list = []\n sensor_cord_list = []\n sensor_type_list = []\n sensor_area_list = []\n sensor_orientation_list = []\n sensor_intersection_list = []\n surfaces_types = ['walls', 'windows', 'roofs']\n sensor_vertical_grid_dim = grid_size['walls_grid']\n sensor_horizontal_grid_dim = grid_size['roof_grid']\n for srf_type in surfaces_types:\n occface_list = getattr(building_geometry, srf_type)\n if srf_type == 'roofs':\n orientation_list = ['top'] * len(occface_list)\n normals_list = [(0.0, 0.0, 1.0)] * len(occface_list)\n interesection_list = [0] * len(occface_list)\n elif srf_type == 'windows':\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = [0] * len(occface_list)\n else:\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = getattr(building_geometry,\n 'intersect_{srf_type}'.format(srf_type=srf_type))\n for orientation, normal, face, intersection in zip(orientation_list,\n normals_list, occface_list, interesection_list):\n (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection) = (\n generate_sensor_surfaces(face, sensor_vertical_grid_dim,\n sensor_horizontal_grid_dim, srf_type, orientation, normal,\n intersection))\n sensor_intersection_list.extend(sensor_intersection)\n sensor_dir_list.extend(sensor_dir)\n sensor_cord_list.extend(sensor_cord)\n sensor_type_list.extend(sensor_type)\n sensor_area_list.extend(sensor_area)\n sensor_orientation_list.extend(sensor_orientation)\n return (sensor_dir_list, sensor_cord_list, sensor_type_list,\n sensor_area_list, sensor_orientation_list, sensor_intersection_list)\n\n\ndef calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir):\n sensors_coords_zone = []\n sensors_dir_zone = []\n sensors_total_number_list = []\n names_zone = []\n sensors_code_zone = []\n sensor_intersection_zone = []\n for building_name in building_names:\n building_geometry = BuildingGeometry.load(os.path.join(\n geometry_pickle_dir, 'zone', building_name))\n (sensors_dir_building, sensors_coords_building,\n sensors_type_building, sensors_area_building,\n sensor_orientation_building, sensor_intersection_building\n ) = calc_sensors_building(building_geometry, grid_size)\n sensors_number = len(sensors_coords_building)\n sensors_total_number_list.append(sensors_number)\n sensors_code = [('srf' + str(x)) for x in range(sensors_number)]\n sensors_code_zone.append(sensors_code)\n sensors_coords_zone.extend(sensors_coords_building)\n sensors_dir_zone.extend(sensors_dir_building)\n sensor_intersection_zone.append(sensor_intersection_building)\n names_zone.append(building_name)\n pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code,\n 'orientation': sensor_orientation_building, 'intersection':\n sensor_intersection_building, 'Xcoor': [x[0] for x in\n sensors_coords_building], 'Ycoor': [x[1] for x in\n sensors_coords_building], 'Zcoor': [x[2] for x in\n sensors_coords_building], 'Xdir': [x[0] for x in\n sensors_dir_building], 'Ydir': [x[1] for x in\n sensors_dir_building], 'Zdir': [x[2] for x in\n sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE':\n sensors_type_building}).to_csv(locator.get_radiation_metadata(\n building_name), index=None)\n return (sensors_coords_zone, sensors_dir_zone,\n sensors_total_number_list, names_zone, sensors_code_zone,\n sensor_intersection_zone)\n\n\ndef isolation_daysim(chunk_n, cea_daysim, building_names, locator,\n radiance_parameters, write_sensor_data, grid_size, max_global,\n weatherfile, geometry_pickle_dir):\n daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.\n format(n=chunk_n))\n print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=\n daysim_project.project_path))\n print('Calculating and sending sensor points')\n (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone,\n sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone(\n building_names, locator, grid_size, geometry_pickle_dir))\n num_sensors = sum(sensors_number_zone)\n daysim_project.create_sensor_input_file(sensors_coords_zone,\n sensors_dir_zone, num_sensors, 'w/m2')\n print('Starting Daysim simulation for buildings: {buildings}'.format(\n buildings=names_zone))\n print('Total number of sensors: {num_sensors}'.format(num_sensors=\n num_sensors))\n print('Writing radiance parameters')\n daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'],\n radiance_parameters['rad_ad'], radiance_parameters['rad_as'],\n radiance_parameters['rad_ar'], radiance_parameters['rad_aa'],\n radiance_parameters['rad_lr'], radiance_parameters['rad_st'],\n radiance_parameters['rad_sj'], radiance_parameters['rad_lw'],\n radiance_parameters['rad_dj'], radiance_parameters['rad_ds'],\n radiance_parameters['rad_dr'], radiance_parameters['rad_dp'])\n print('Executing hourly solar isolation calculation')\n daysim_project.execute_gen_dc()\n daysim_project.execute_ds_illum()\n print('Reading results...')\n solar_res = daysim_project.eval_ill()\n print('Fixing inconsistencies, if any')\n solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global)\n if solar_res.shape[1] == HOURS_IN_YEAR + 24:\n print('Removing leap day')\n leap_day_hours = range(1416, 1440)\n solar_res = np.delete(solar_res, leap_day_hours, axis=1)\n print('Writing results to disk')\n index = 0\n for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip(\n names_zone, sensors_number_zone, sensors_code_zone,\n sensor_intersection_zone):\n selection_of_results = solar_res[index:index + sensors_number_building]\n selection_of_results[np.array(sensor_intersection_building) == 1] = 0\n items_sensor_name_and_result = dict(zip(sensor_code_building,\n selection_of_results.tolist()))\n index = index + sensors_number_building\n write_aggregated_results(building_name,\n items_sensor_name_and_result, locator, weatherfile)\n if write_sensor_data:\n write_sensor_results(building_name,\n items_sensor_name_and_result, locator)\n print('Removing results folder')\n daysim_project.cleanup_project()\n\n\ndef write_sensor_results(building_name, items_sensor_name_and_result, locator):\n with open(locator.get_radiation_building_sensors(building_name), 'w'\n ) as outfile:\n json.dump(items_sensor_name_and_result, outfile)\n\n\ndef write_aggregated_results(building_name, items_sensor_name_and_result,\n locator, weatherfile):\n geometry = pd.read_csv(locator.get_radiation_metadata(building_name))\n geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW'\n solar_analysis_fields = ['windows_east_kW', 'windows_west_kW',\n 'windows_south_kW', 'windows_north_kW', 'walls_east_kW',\n 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW']\n solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2',\n 'windows_south_m2', 'windows_north_m2', 'walls_east_m2',\n 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2']\n dict_not_aggregated = {}\n for field, field_area in zip(solar_analysis_fields,\n solar_analysis_fields_area):\n select_sensors = geometry.loc[geometry['code'] == field].set_index(\n 'SURFACE')\n area_m2 = select_sensors['AREA_m2'].sum()\n array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] *\n np.array(items_sensor_name_and_result[surface])) for surface in\n select_sensors.index]).sum(axis=0)\n dict_not_aggregated[field] = array_field / 1000\n dict_not_aggregated[field_area] = area_m2\n data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2)\n data_aggregated_kW['Date'] = weatherfile['date']\n data_aggregated_kW.set_index('Date', inplace=True)\n data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))\n", "step-5": "import json\nimport os\n\nimport numpy as np\nimport pandas as pd\nimport py4design.py2radiance as py2radiance\nimport py4design.py3dmodel.calculate as calculate\nfrom py4design import py3dmodel\n\n__author__ = \"Jimeno A. Fonseca\"\n__copyright__ = \"Copyright 2017, Architecture and Building Systems - ETH Zurich\"\n__credits__ = [\"Jimeno A. Fonseca\", \"Kian Wee Chen\"]\n__license__ = \"MIT\"\n__version__ = \"0.1\"\n__maintainer__ = \"Daren Thomas\"\n__email__ = \"[email protected]\"\n__status__ = \"Production\"\n\nfrom cea.constants import HOURS_IN_YEAR\nfrom cea.resources.radiation_daysim.geometry_generator import BuildingGeometry\nfrom cea import suppress_3rd_party_debug_loggers\n\nsuppress_3rd_party_debug_loggers()\n\n\ndef create_sensor_input_file(rad, chunk_n):\n sensor_file_path = os.path.join(rad.data_folder_path, \"points_\" + str(chunk_n) + \".pts\")\n sensor_file = open(sensor_file_path, \"w\")\n sensor_pts_data = py2radiance.write_rad.sensor_file(rad.sensor_positions, rad.sensor_normals)\n sensor_file.write(sensor_pts_data)\n sensor_file.close()\n rad.sensor_file_path = sensor_file_path\n\n\ndef generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type, orientation, normal, intersection):\n mid_pt = py3dmodel.calculate.face_midpt(occface)\n location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01)\n moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(mid_pt, location_pt, occface))\n if srf_type == 'roofs':\n xdim = ydim = roof_dim\n else:\n xdim = ydim = wall_dim\n # put it into occ and subdivide surfaces\n sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim)\n\n # calculate list of properties per surface\n sensor_intersection = [intersection for x in sensor_surfaces]\n sensor_dir = [normal for x in sensor_surfaces]\n sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces]\n sensor_type = [srf_type for x in sensor_surfaces]\n sensor_orientation = [orientation for x in sensor_surfaces]\n sensor_area = [calculate.face_area(x) * (1.0 - scalar) for x, scalar in zip(sensor_surfaces, sensor_intersection)]\n\n return sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection\n\n\ndef calc_sensors_building(building_geometry, grid_size):\n sensor_dir_list = []\n sensor_cord_list = []\n sensor_type_list = []\n sensor_area_list = []\n sensor_orientation_list = []\n sensor_intersection_list = []\n surfaces_types = ['walls', 'windows', 'roofs']\n sensor_vertical_grid_dim = grid_size[\"walls_grid\"]\n sensor_horizontal_grid_dim = grid_size[\"roof_grid\"]\n for srf_type in surfaces_types:\n occface_list = getattr(building_geometry, srf_type)\n if srf_type == 'roofs':\n orientation_list = ['top'] * len(occface_list)\n normals_list = [(0.0, 0.0, 1.0)] * len(occface_list)\n interesection_list = [0] * len(occface_list)\n elif srf_type == 'windows':\n orientation_list = getattr(building_geometry, \"orientation_{srf_type}\".format(srf_type=srf_type))\n normals_list = getattr(building_geometry, \"normals_{srf_type}\".format(srf_type=srf_type))\n interesection_list = [0] * len(occface_list)\n else:\n orientation_list = getattr(building_geometry, \"orientation_{srf_type}\".format(srf_type=srf_type))\n normals_list = getattr(building_geometry, \"normals_{srf_type}\".format(srf_type=srf_type))\n interesection_list = getattr(building_geometry, \"intersect_{srf_type}\".format(srf_type=srf_type))\n for orientation, normal, face, intersection in zip(orientation_list, normals_list, occface_list,\n interesection_list):\n sensor_dir, \\\n sensor_cord, \\\n sensor_type, \\\n sensor_area, \\\n sensor_orientation, \\\n sensor_intersection = generate_sensor_surfaces(face,\n sensor_vertical_grid_dim,\n sensor_horizontal_grid_dim,\n srf_type,\n orientation,\n normal,\n intersection)\n sensor_intersection_list.extend(sensor_intersection)\n sensor_dir_list.extend(sensor_dir)\n sensor_cord_list.extend(sensor_cord)\n sensor_type_list.extend(sensor_type)\n sensor_area_list.extend(sensor_area)\n sensor_orientation_list.extend(sensor_orientation)\n\n return sensor_dir_list, sensor_cord_list, sensor_type_list, sensor_area_list, sensor_orientation_list, sensor_intersection_list\n\n\ndef calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir):\n sensors_coords_zone = []\n sensors_dir_zone = []\n sensors_total_number_list = []\n names_zone = []\n sensors_code_zone = []\n sensor_intersection_zone = []\n for building_name in building_names:\n building_geometry = BuildingGeometry.load(os.path.join(geometry_pickle_dir, 'zone', building_name))\n # get sensors in the building\n sensors_dir_building, \\\n sensors_coords_building, \\\n sensors_type_building, \\\n sensors_area_building, \\\n sensor_orientation_building, \\\n sensor_intersection_building = calc_sensors_building(building_geometry, grid_size)\n\n # get the total number of sensors and store in lst\n sensors_number = len(sensors_coords_building)\n sensors_total_number_list.append(sensors_number)\n\n sensors_code = ['srf' + str(x) for x in range(sensors_number)]\n sensors_code_zone.append(sensors_code)\n\n # get the total list of coordinates and directions to send to daysim\n sensors_coords_zone.extend(sensors_coords_building)\n sensors_dir_zone.extend(sensors_dir_building)\n\n # get total list of intersections\n sensor_intersection_zone.append(sensor_intersection_building)\n\n # get the name of all buildings\n names_zone.append(building_name)\n\n # save sensors geometry result to disk\n pd.DataFrame({'BUILDING': building_name,\n 'SURFACE': sensors_code,\n 'orientation': sensor_orientation_building,\n 'intersection': sensor_intersection_building,\n 'Xcoor': [x[0] for x in sensors_coords_building],\n 'Ycoor': [x[1] for x in sensors_coords_building],\n 'Zcoor': [x[2] for x in sensors_coords_building],\n 'Xdir': [x[0] for x in sensors_dir_building],\n 'Ydir': [x[1] for x in sensors_dir_building],\n 'Zdir': [x[2] for x in sensors_dir_building],\n 'AREA_m2': sensors_area_building,\n 'TYPE': sensors_type_building}).to_csv(locator.get_radiation_metadata(building_name), index=None)\n\n return sensors_coords_zone, sensors_dir_zone, sensors_total_number_list, names_zone, sensors_code_zone, sensor_intersection_zone\n\n\ndef isolation_daysim(chunk_n, cea_daysim, building_names, locator, radiance_parameters, write_sensor_data, grid_size,\n max_global, weatherfile, geometry_pickle_dir):\n # initialize daysim project\n daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.format(n=chunk_n))\n print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=daysim_project.project_path))\n\n # calculate sensors\n print(\"Calculating and sending sensor points\")\n sensors_coords_zone, \\\n sensors_dir_zone, \\\n sensors_number_zone, \\\n names_zone, \\\n sensors_code_zone, \\\n sensor_intersection_zone = calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir)\n\n num_sensors = sum(sensors_number_zone)\n daysim_project.create_sensor_input_file(sensors_coords_zone, sensors_dir_zone, num_sensors, \"w/m2\")\n\n print(\"Starting Daysim simulation for buildings: {buildings}\".format(buildings=names_zone))\n print(\"Total number of sensors: {num_sensors}\".format(num_sensors=num_sensors))\n\n print('Writing radiance parameters')\n daysim_project.write_radiance_parameters(radiance_parameters[\"rad_ab\"], radiance_parameters[\"rad_ad\"],\n radiance_parameters[\"rad_as\"], radiance_parameters[\"rad_ar\"],\n radiance_parameters[\"rad_aa\"], radiance_parameters[\"rad_lr\"],\n radiance_parameters[\"rad_st\"], radiance_parameters[\"rad_sj\"],\n radiance_parameters[\"rad_lw\"], radiance_parameters[\"rad_dj\"],\n radiance_parameters[\"rad_ds\"], radiance_parameters[\"rad_dr\"],\n radiance_parameters[\"rad_dp\"])\n\n print('Executing hourly solar isolation calculation')\n daysim_project.execute_gen_dc()\n daysim_project.execute_ds_illum()\n\n print('Reading results...')\n solar_res = daysim_project.eval_ill()\n\n # check inconsistencies and replace by max value of weather file\n print('Fixing inconsistencies, if any')\n solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global)\n\n # Check if leap year and remove extra day\n if solar_res.shape[1] == HOURS_IN_YEAR + 24:\n print('Removing leap day')\n leap_day_hours = range(1416, 1440)\n solar_res = np.delete(solar_res, leap_day_hours, axis=1)\n\n print(\"Writing results to disk\")\n index = 0\n for building_name, \\\n sensors_number_building, \\\n sensor_code_building, \\\n sensor_intersection_building in zip(names_zone,\n sensors_number_zone,\n sensors_code_zone,\n sensor_intersection_zone):\n # select sensors data\n selection_of_results = solar_res[index:index + sensors_number_building]\n selection_of_results[np.array(sensor_intersection_building) == 1] = 0\n items_sensor_name_and_result = dict(zip(sensor_code_building, selection_of_results.tolist()))\n index = index + sensors_number_building\n\n # create summary and save to disk\n write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile)\n\n if write_sensor_data:\n write_sensor_results(building_name, items_sensor_name_and_result, locator)\n\n # erase daysim folder to avoid conflicts after every iteration\n print('Removing results folder')\n daysim_project.cleanup_project()\n\n\ndef write_sensor_results(building_name, items_sensor_name_and_result, locator):\n with open(locator.get_radiation_building_sensors(building_name), 'w') as outfile:\n json.dump(items_sensor_name_and_result, outfile)\n\n\ndef write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile):\n geometry = pd.read_csv(locator.get_radiation_metadata(building_name))\n geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW'\n solar_analysis_fields = ['windows_east_kW',\n 'windows_west_kW',\n 'windows_south_kW',\n 'windows_north_kW',\n 'walls_east_kW',\n 'walls_west_kW',\n 'walls_south_kW',\n 'walls_north_kW',\n 'roofs_top_kW']\n solar_analysis_fields_area = ['windows_east_m2',\n 'windows_west_m2',\n 'windows_south_m2',\n 'windows_north_m2',\n 'walls_east_m2',\n 'walls_west_m2',\n 'walls_south_m2',\n 'walls_north_m2',\n 'roofs_top_m2']\n dict_not_aggregated = {}\n\n for field, field_area in zip(solar_analysis_fields, solar_analysis_fields_area):\n select_sensors = geometry.loc[geometry['code'] == field].set_index('SURFACE')\n area_m2 = select_sensors['AREA_m2'].sum()\n array_field = np.array([select_sensors.loc[surface, 'AREA_m2'] *\n np.array(items_sensor_name_and_result[surface])\n for surface in select_sensors.index]).sum(axis=0)\n dict_not_aggregated[field] = array_field / 1000 # in kWh\n dict_not_aggregated[field_area] = area_m2\n\n data_aggregated_kW = (pd.DataFrame(dict_not_aggregated)).round(2)\n data_aggregated_kW[\"Date\"] = weatherfile[\"date\"]\n data_aggregated_kW.set_index('Date', inplace=True)\n data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))\n", "step-ids": [ 6, 7, 9, 10, 11 ] }
[ 6, 7, 9, 10, 11 ]
# coding: utf-8 """ SevOne API Documentation Supported endpoints by the new RESTful API # noqa: E501 OpenAPI spec version: 2.1.18, Hash: db562e6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.data_aggregation_setting import DataAggregationSetting # noqa: F401,E501 from swagger_client.models.raw_data_setting_v1 import RawDataSettingV1 # noqa: F401,E501 from swagger_client.models.units_setting import UnitsSetting # noqa: F401,E501 from swagger_client.models.work_hours_setting import WorkHoursSetting # noqa: F401,E501 class RawDataSettingsV1(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'data_aggregation_setting': 'DataAggregationSetting', 'raw_data_setting': 'RawDataSettingV1', 'units_setting': 'UnitsSetting', 'work_hours_setting': 'WorkHoursSetting' } attribute_map = { 'data_aggregation_setting': 'dataAggregationSetting', 'raw_data_setting': 'rawDataSetting', 'units_setting': 'unitsSetting', 'work_hours_setting': 'workHoursSetting' } def __init__(self, data_aggregation_setting=None, raw_data_setting=None, units_setting=None, work_hours_setting=None): # noqa: E501 """RawDataSettingsV1 - a model defined in Swagger""" # noqa: E501 self._data_aggregation_setting = None self._raw_data_setting = None self._units_setting = None self._work_hours_setting = None self.discriminator = None if data_aggregation_setting is not None: self.data_aggregation_setting = data_aggregation_setting if raw_data_setting is not None: self.raw_data_setting = raw_data_setting if units_setting is not None: self.units_setting = units_setting if work_hours_setting is not None: self.work_hours_setting = work_hours_setting @property def data_aggregation_setting(self): """Gets the data_aggregation_setting of this RawDataSettingsV1. # noqa: E501 :return: The data_aggregation_setting of this RawDataSettingsV1. # noqa: E501 :rtype: DataAggregationSetting """ return self._data_aggregation_setting @data_aggregation_setting.setter def data_aggregation_setting(self, data_aggregation_setting): """Sets the data_aggregation_setting of this RawDataSettingsV1. :param data_aggregation_setting: The data_aggregation_setting of this RawDataSettingsV1. # noqa: E501 :type: DataAggregationSetting """ self._data_aggregation_setting = data_aggregation_setting @property def raw_data_setting(self): """Gets the raw_data_setting of this RawDataSettingsV1. # noqa: E501 :return: The raw_data_setting of this RawDataSettingsV1. # noqa: E501 :rtype: RawDataSettingV1 """ return self._raw_data_setting @raw_data_setting.setter def raw_data_setting(self, raw_data_setting): """Sets the raw_data_setting of this RawDataSettingsV1. :param raw_data_setting: The raw_data_setting of this RawDataSettingsV1. # noqa: E501 :type: RawDataSettingV1 """ self._raw_data_setting = raw_data_setting @property def units_setting(self): """Gets the units_setting of this RawDataSettingsV1. # noqa: E501 :return: The units_setting of this RawDataSettingsV1. # noqa: E501 :rtype: UnitsSetting """ return self._units_setting @units_setting.setter def units_setting(self, units_setting): """Sets the units_setting of this RawDataSettingsV1. :param units_setting: The units_setting of this RawDataSettingsV1. # noqa: E501 :type: UnitsSetting """ self._units_setting = units_setting @property def work_hours_setting(self): """Gets the work_hours_setting of this RawDataSettingsV1. # noqa: E501 :return: The work_hours_setting of this RawDataSettingsV1. # noqa: E501 :rtype: WorkHoursSetting """ return self._work_hours_setting @work_hours_setting.setter def work_hours_setting(self, work_hours_setting): """Sets the work_hours_setting of this RawDataSettingsV1. :param work_hours_setting: The work_hours_setting of this RawDataSettingsV1. # noqa: E501 :type: WorkHoursSetting """ self._work_hours_setting = work_hours_setting def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(RawDataSettingsV1, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RawDataSettingsV1): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
normal
{ "blob_id": "25d4fa44cb17048301076391d5d67ae0b0812ac7", "index": 3988, "step-1": "<mask token>\n\n\nclass RawDataSettingsV1(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, data_aggregation_setting=None, raw_data_setting=None,\n units_setting=None, work_hours_setting=None):\n \"\"\"RawDataSettingsV1 - a model defined in Swagger\"\"\"\n self._data_aggregation_setting = None\n self._raw_data_setting = None\n self._units_setting = None\n self._work_hours_setting = None\n self.discriminator = None\n if data_aggregation_setting is not None:\n self.data_aggregation_setting = data_aggregation_setting\n if raw_data_setting is not None:\n self.raw_data_setting = raw_data_setting\n if units_setting is not None:\n self.units_setting = units_setting\n if work_hours_setting is not None:\n self.work_hours_setting = work_hours_setting\n <mask token>\n <mask token>\n\n @property\n def raw_data_setting(self):\n \"\"\"Gets the raw_data_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The raw_data_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: RawDataSettingV1\n \"\"\"\n return self._raw_data_setting\n <mask token>\n\n @property\n def units_setting(self):\n \"\"\"Gets the units_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The units_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: UnitsSetting\n \"\"\"\n return self._units_setting\n\n @units_setting.setter\n def units_setting(self, units_setting):\n \"\"\"Sets the units_setting of this RawDataSettingsV1.\n\n\n :param units_setting: The units_setting of this RawDataSettingsV1. # noqa: E501\n :type: UnitsSetting\n \"\"\"\n self._units_setting = units_setting\n\n @property\n def work_hours_setting(self):\n \"\"\"Gets the work_hours_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The work_hours_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: WorkHoursSetting\n \"\"\"\n return self._work_hours_setting\n <mask token>\n <mask token>\n <mask token>\n\n def __repr__(self):\n \"\"\"For `print` and `pprint`\"\"\"\n return self.to_str()\n\n def __eq__(self, other):\n \"\"\"Returns true if both objects are equal\"\"\"\n if not isinstance(other, RawDataSettingsV1):\n return False\n return self.__dict__ == other.__dict__\n <mask token>\n", "step-2": "<mask token>\n\n\nclass RawDataSettingsV1(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, data_aggregation_setting=None, raw_data_setting=None,\n units_setting=None, work_hours_setting=None):\n \"\"\"RawDataSettingsV1 - a model defined in Swagger\"\"\"\n self._data_aggregation_setting = None\n self._raw_data_setting = None\n self._units_setting = None\n self._work_hours_setting = None\n self.discriminator = None\n if data_aggregation_setting is not None:\n self.data_aggregation_setting = data_aggregation_setting\n if raw_data_setting is not None:\n self.raw_data_setting = raw_data_setting\n if units_setting is not None:\n self.units_setting = units_setting\n if work_hours_setting is not None:\n self.work_hours_setting = work_hours_setting\n\n @property\n def data_aggregation_setting(self):\n \"\"\"Gets the data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: DataAggregationSetting\n \"\"\"\n return self._data_aggregation_setting\n\n @data_aggregation_setting.setter\n def data_aggregation_setting(self, data_aggregation_setting):\n \"\"\"Sets the data_aggregation_setting of this RawDataSettingsV1.\n\n\n :param data_aggregation_setting: The data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n :type: DataAggregationSetting\n \"\"\"\n self._data_aggregation_setting = data_aggregation_setting\n\n @property\n def raw_data_setting(self):\n \"\"\"Gets the raw_data_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The raw_data_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: RawDataSettingV1\n \"\"\"\n return self._raw_data_setting\n\n @raw_data_setting.setter\n def raw_data_setting(self, raw_data_setting):\n \"\"\"Sets the raw_data_setting of this RawDataSettingsV1.\n\n\n :param raw_data_setting: The raw_data_setting of this RawDataSettingsV1. # noqa: E501\n :type: RawDataSettingV1\n \"\"\"\n self._raw_data_setting = raw_data_setting\n\n @property\n def units_setting(self):\n \"\"\"Gets the units_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The units_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: UnitsSetting\n \"\"\"\n return self._units_setting\n\n @units_setting.setter\n def units_setting(self, units_setting):\n \"\"\"Sets the units_setting of this RawDataSettingsV1.\n\n\n :param units_setting: The units_setting of this RawDataSettingsV1. # noqa: E501\n :type: UnitsSetting\n \"\"\"\n self._units_setting = units_setting\n\n @property\n def work_hours_setting(self):\n \"\"\"Gets the work_hours_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The work_hours_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: WorkHoursSetting\n \"\"\"\n return self._work_hours_setting\n\n @work_hours_setting.setter\n def work_hours_setting(self, work_hours_setting):\n \"\"\"Sets the work_hours_setting of this RawDataSettingsV1.\n\n\n :param work_hours_setting: The work_hours_setting of this RawDataSettingsV1. # noqa: E501\n :type: WorkHoursSetting\n \"\"\"\n self._work_hours_setting = work_hours_setting\n\n def to_dict(self):\n \"\"\"Returns the model properties as a dict\"\"\"\n result = {}\n for attr, _ in six.iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n if issubclass(RawDataSettingsV1, dict):\n for key, value in self.items():\n result[key] = value\n return result\n\n def to_str(self):\n \"\"\"Returns the string representation of the model\"\"\"\n return pprint.pformat(self.to_dict())\n\n def __repr__(self):\n \"\"\"For `print` and `pprint`\"\"\"\n return self.to_str()\n\n def __eq__(self, other):\n \"\"\"Returns true if both objects are equal\"\"\"\n if not isinstance(other, RawDataSettingsV1):\n return False\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"Returns true if both objects are not equal\"\"\"\n return not self == other\n", "step-3": "<mask token>\n\n\nclass RawDataSettingsV1(object):\n \"\"\"NOTE: This class is auto generated by the swagger code generator program.\n\n Do not edit the class manually.\n \"\"\"\n \"\"\"\n Attributes:\n swagger_types (dict): The key is attribute name\n and the value is attribute type.\n attribute_map (dict): The key is attribute name\n and the value is json key in definition.\n \"\"\"\n swagger_types = {'data_aggregation_setting': 'DataAggregationSetting',\n 'raw_data_setting': 'RawDataSettingV1', 'units_setting':\n 'UnitsSetting', 'work_hours_setting': 'WorkHoursSetting'}\n attribute_map = {'data_aggregation_setting': 'dataAggregationSetting',\n 'raw_data_setting': 'rawDataSetting', 'units_setting':\n 'unitsSetting', 'work_hours_setting': 'workHoursSetting'}\n\n def __init__(self, data_aggregation_setting=None, raw_data_setting=None,\n units_setting=None, work_hours_setting=None):\n \"\"\"RawDataSettingsV1 - a model defined in Swagger\"\"\"\n self._data_aggregation_setting = None\n self._raw_data_setting = None\n self._units_setting = None\n self._work_hours_setting = None\n self.discriminator = None\n if data_aggregation_setting is not None:\n self.data_aggregation_setting = data_aggregation_setting\n if raw_data_setting is not None:\n self.raw_data_setting = raw_data_setting\n if units_setting is not None:\n self.units_setting = units_setting\n if work_hours_setting is not None:\n self.work_hours_setting = work_hours_setting\n\n @property\n def data_aggregation_setting(self):\n \"\"\"Gets the data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: DataAggregationSetting\n \"\"\"\n return self._data_aggregation_setting\n\n @data_aggregation_setting.setter\n def data_aggregation_setting(self, data_aggregation_setting):\n \"\"\"Sets the data_aggregation_setting of this RawDataSettingsV1.\n\n\n :param data_aggregation_setting: The data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n :type: DataAggregationSetting\n \"\"\"\n self._data_aggregation_setting = data_aggregation_setting\n\n @property\n def raw_data_setting(self):\n \"\"\"Gets the raw_data_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The raw_data_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: RawDataSettingV1\n \"\"\"\n return self._raw_data_setting\n\n @raw_data_setting.setter\n def raw_data_setting(self, raw_data_setting):\n \"\"\"Sets the raw_data_setting of this RawDataSettingsV1.\n\n\n :param raw_data_setting: The raw_data_setting of this RawDataSettingsV1. # noqa: E501\n :type: RawDataSettingV1\n \"\"\"\n self._raw_data_setting = raw_data_setting\n\n @property\n def units_setting(self):\n \"\"\"Gets the units_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The units_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: UnitsSetting\n \"\"\"\n return self._units_setting\n\n @units_setting.setter\n def units_setting(self, units_setting):\n \"\"\"Sets the units_setting of this RawDataSettingsV1.\n\n\n :param units_setting: The units_setting of this RawDataSettingsV1. # noqa: E501\n :type: UnitsSetting\n \"\"\"\n self._units_setting = units_setting\n\n @property\n def work_hours_setting(self):\n \"\"\"Gets the work_hours_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The work_hours_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: WorkHoursSetting\n \"\"\"\n return self._work_hours_setting\n\n @work_hours_setting.setter\n def work_hours_setting(self, work_hours_setting):\n \"\"\"Sets the work_hours_setting of this RawDataSettingsV1.\n\n\n :param work_hours_setting: The work_hours_setting of this RawDataSettingsV1. # noqa: E501\n :type: WorkHoursSetting\n \"\"\"\n self._work_hours_setting = work_hours_setting\n\n def to_dict(self):\n \"\"\"Returns the model properties as a dict\"\"\"\n result = {}\n for attr, _ in six.iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n if issubclass(RawDataSettingsV1, dict):\n for key, value in self.items():\n result[key] = value\n return result\n\n def to_str(self):\n \"\"\"Returns the string representation of the model\"\"\"\n return pprint.pformat(self.to_dict())\n\n def __repr__(self):\n \"\"\"For `print` and `pprint`\"\"\"\n return self.to_str()\n\n def __eq__(self, other):\n \"\"\"Returns true if both objects are equal\"\"\"\n if not isinstance(other, RawDataSettingsV1):\n return False\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"Returns true if both objects are not equal\"\"\"\n return not self == other\n", "step-4": "<mask token>\nimport pprint\nimport re\nimport six\nfrom swagger_client.models.data_aggregation_setting import DataAggregationSetting\nfrom swagger_client.models.raw_data_setting_v1 import RawDataSettingV1\nfrom swagger_client.models.units_setting import UnitsSetting\nfrom swagger_client.models.work_hours_setting import WorkHoursSetting\n\n\nclass RawDataSettingsV1(object):\n \"\"\"NOTE: This class is auto generated by the swagger code generator program.\n\n Do not edit the class manually.\n \"\"\"\n \"\"\"\n Attributes:\n swagger_types (dict): The key is attribute name\n and the value is attribute type.\n attribute_map (dict): The key is attribute name\n and the value is json key in definition.\n \"\"\"\n swagger_types = {'data_aggregation_setting': 'DataAggregationSetting',\n 'raw_data_setting': 'RawDataSettingV1', 'units_setting':\n 'UnitsSetting', 'work_hours_setting': 'WorkHoursSetting'}\n attribute_map = {'data_aggregation_setting': 'dataAggregationSetting',\n 'raw_data_setting': 'rawDataSetting', 'units_setting':\n 'unitsSetting', 'work_hours_setting': 'workHoursSetting'}\n\n def __init__(self, data_aggregation_setting=None, raw_data_setting=None,\n units_setting=None, work_hours_setting=None):\n \"\"\"RawDataSettingsV1 - a model defined in Swagger\"\"\"\n self._data_aggregation_setting = None\n self._raw_data_setting = None\n self._units_setting = None\n self._work_hours_setting = None\n self.discriminator = None\n if data_aggregation_setting is not None:\n self.data_aggregation_setting = data_aggregation_setting\n if raw_data_setting is not None:\n self.raw_data_setting = raw_data_setting\n if units_setting is not None:\n self.units_setting = units_setting\n if work_hours_setting is not None:\n self.work_hours_setting = work_hours_setting\n\n @property\n def data_aggregation_setting(self):\n \"\"\"Gets the data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: DataAggregationSetting\n \"\"\"\n return self._data_aggregation_setting\n\n @data_aggregation_setting.setter\n def data_aggregation_setting(self, data_aggregation_setting):\n \"\"\"Sets the data_aggregation_setting of this RawDataSettingsV1.\n\n\n :param data_aggregation_setting: The data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n :type: DataAggregationSetting\n \"\"\"\n self._data_aggregation_setting = data_aggregation_setting\n\n @property\n def raw_data_setting(self):\n \"\"\"Gets the raw_data_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The raw_data_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: RawDataSettingV1\n \"\"\"\n return self._raw_data_setting\n\n @raw_data_setting.setter\n def raw_data_setting(self, raw_data_setting):\n \"\"\"Sets the raw_data_setting of this RawDataSettingsV1.\n\n\n :param raw_data_setting: The raw_data_setting of this RawDataSettingsV1. # noqa: E501\n :type: RawDataSettingV1\n \"\"\"\n self._raw_data_setting = raw_data_setting\n\n @property\n def units_setting(self):\n \"\"\"Gets the units_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The units_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: UnitsSetting\n \"\"\"\n return self._units_setting\n\n @units_setting.setter\n def units_setting(self, units_setting):\n \"\"\"Sets the units_setting of this RawDataSettingsV1.\n\n\n :param units_setting: The units_setting of this RawDataSettingsV1. # noqa: E501\n :type: UnitsSetting\n \"\"\"\n self._units_setting = units_setting\n\n @property\n def work_hours_setting(self):\n \"\"\"Gets the work_hours_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The work_hours_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: WorkHoursSetting\n \"\"\"\n return self._work_hours_setting\n\n @work_hours_setting.setter\n def work_hours_setting(self, work_hours_setting):\n \"\"\"Sets the work_hours_setting of this RawDataSettingsV1.\n\n\n :param work_hours_setting: The work_hours_setting of this RawDataSettingsV1. # noqa: E501\n :type: WorkHoursSetting\n \"\"\"\n self._work_hours_setting = work_hours_setting\n\n def to_dict(self):\n \"\"\"Returns the model properties as a dict\"\"\"\n result = {}\n for attr, _ in six.iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n if issubclass(RawDataSettingsV1, dict):\n for key, value in self.items():\n result[key] = value\n return result\n\n def to_str(self):\n \"\"\"Returns the string representation of the model\"\"\"\n return pprint.pformat(self.to_dict())\n\n def __repr__(self):\n \"\"\"For `print` and `pprint`\"\"\"\n return self.to_str()\n\n def __eq__(self, other):\n \"\"\"Returns true if both objects are equal\"\"\"\n if not isinstance(other, RawDataSettingsV1):\n return False\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"Returns true if both objects are not equal\"\"\"\n return not self == other\n", "step-5": "# coding: utf-8\n\n\"\"\"\n SevOne API Documentation\n\n Supported endpoints by the new RESTful API # noqa: E501\n\n OpenAPI spec version: 2.1.18, Hash: db562e6\n \n Generated by: https://github.com/swagger-api/swagger-codegen.git\n\"\"\"\n\n\nimport pprint\nimport re # noqa: F401\n\nimport six\n\nfrom swagger_client.models.data_aggregation_setting import DataAggregationSetting # noqa: F401,E501\nfrom swagger_client.models.raw_data_setting_v1 import RawDataSettingV1 # noqa: F401,E501\nfrom swagger_client.models.units_setting import UnitsSetting # noqa: F401,E501\nfrom swagger_client.models.work_hours_setting import WorkHoursSetting # noqa: F401,E501\n\n\nclass RawDataSettingsV1(object):\n \"\"\"NOTE: This class is auto generated by the swagger code generator program.\n\n Do not edit the class manually.\n \"\"\"\n\n \"\"\"\n Attributes:\n swagger_types (dict): The key is attribute name\n and the value is attribute type.\n attribute_map (dict): The key is attribute name\n and the value is json key in definition.\n \"\"\"\n swagger_types = {\n 'data_aggregation_setting': 'DataAggregationSetting',\n 'raw_data_setting': 'RawDataSettingV1',\n 'units_setting': 'UnitsSetting',\n 'work_hours_setting': 'WorkHoursSetting'\n }\n\n attribute_map = {\n 'data_aggregation_setting': 'dataAggregationSetting',\n 'raw_data_setting': 'rawDataSetting',\n 'units_setting': 'unitsSetting',\n 'work_hours_setting': 'workHoursSetting'\n }\n\n def __init__(self, data_aggregation_setting=None, raw_data_setting=None, units_setting=None, work_hours_setting=None): # noqa: E501\n \"\"\"RawDataSettingsV1 - a model defined in Swagger\"\"\" # noqa: E501\n\n self._data_aggregation_setting = None\n self._raw_data_setting = None\n self._units_setting = None\n self._work_hours_setting = None\n self.discriminator = None\n\n if data_aggregation_setting is not None:\n self.data_aggregation_setting = data_aggregation_setting\n if raw_data_setting is not None:\n self.raw_data_setting = raw_data_setting\n if units_setting is not None:\n self.units_setting = units_setting\n if work_hours_setting is not None:\n self.work_hours_setting = work_hours_setting\n\n @property\n def data_aggregation_setting(self):\n \"\"\"Gets the data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: DataAggregationSetting\n \"\"\"\n return self._data_aggregation_setting\n\n @data_aggregation_setting.setter\n def data_aggregation_setting(self, data_aggregation_setting):\n \"\"\"Sets the data_aggregation_setting of this RawDataSettingsV1.\n\n\n :param data_aggregation_setting: The data_aggregation_setting of this RawDataSettingsV1. # noqa: E501\n :type: DataAggregationSetting\n \"\"\"\n\n self._data_aggregation_setting = data_aggregation_setting\n\n @property\n def raw_data_setting(self):\n \"\"\"Gets the raw_data_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The raw_data_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: RawDataSettingV1\n \"\"\"\n return self._raw_data_setting\n\n @raw_data_setting.setter\n def raw_data_setting(self, raw_data_setting):\n \"\"\"Sets the raw_data_setting of this RawDataSettingsV1.\n\n\n :param raw_data_setting: The raw_data_setting of this RawDataSettingsV1. # noqa: E501\n :type: RawDataSettingV1\n \"\"\"\n\n self._raw_data_setting = raw_data_setting\n\n @property\n def units_setting(self):\n \"\"\"Gets the units_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The units_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: UnitsSetting\n \"\"\"\n return self._units_setting\n\n @units_setting.setter\n def units_setting(self, units_setting):\n \"\"\"Sets the units_setting of this RawDataSettingsV1.\n\n\n :param units_setting: The units_setting of this RawDataSettingsV1. # noqa: E501\n :type: UnitsSetting\n \"\"\"\n\n self._units_setting = units_setting\n\n @property\n def work_hours_setting(self):\n \"\"\"Gets the work_hours_setting of this RawDataSettingsV1. # noqa: E501\n\n\n :return: The work_hours_setting of this RawDataSettingsV1. # noqa: E501\n :rtype: WorkHoursSetting\n \"\"\"\n return self._work_hours_setting\n\n @work_hours_setting.setter\n def work_hours_setting(self, work_hours_setting):\n \"\"\"Sets the work_hours_setting of this RawDataSettingsV1.\n\n\n :param work_hours_setting: The work_hours_setting of this RawDataSettingsV1. # noqa: E501\n :type: WorkHoursSetting\n \"\"\"\n\n self._work_hours_setting = work_hours_setting\n\n def to_dict(self):\n \"\"\"Returns the model properties as a dict\"\"\"\n result = {}\n\n for attr, _ in six.iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(\n lambda x: x.to_dict() if hasattr(x, \"to_dict\") else x,\n value\n ))\n elif hasattr(value, \"to_dict\"):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(\n lambda item: (item[0], item[1].to_dict())\n if hasattr(item[1], \"to_dict\") else item,\n value.items()\n ))\n else:\n result[attr] = value\n if issubclass(RawDataSettingsV1, dict):\n for key, value in self.items():\n result[key] = value\n\n return result\n\n def to_str(self):\n \"\"\"Returns the string representation of the model\"\"\"\n return pprint.pformat(self.to_dict())\n\n def __repr__(self):\n \"\"\"For `print` and `pprint`\"\"\"\n return self.to_str()\n\n def __eq__(self, other):\n \"\"\"Returns true if both objects are equal\"\"\"\n if not isinstance(other, RawDataSettingsV1):\n return False\n\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"Returns true if both objects are not equal\"\"\"\n return not self == other\n", "step-ids": [ 8, 15, 17, 18, 19 ] }
[ 8, 15, 17, 18, 19 ]
'''给定一个只包含小写字母的有序数组letters 和一个目标字母 target,寻找有序数组里面比目标字母大的最小字母。 数组里字母的顺序是循环的。举个例子,如果目标字母target = 'z' 并且有序数组为 letters = ['a', 'b'],则答案返回 'a'。输入: 示例: letters = ["c", "f", "j"] target = "a" 输出: "c" ''' class Solution(object): def nextGreatestLetter(self, letters, target): """ :type letters: List[str] :type target: str :rtype: str """ list_a = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] index_target = list_a.index(target) for i in range(index_target + 1,len(list_a)): if list_a[i] in letters: return list_a[i] return letters[0] #以上查询没找到以后,输出列表第一项 class SolutionBest(object): def nextGreatestLetter(self, letters, target): """ :type letters: List[str] :type target: str :rtype: str """ for i in letters: #题目都说了,有序数组,直接迭代就好 if i > target:#惊不惊喜,字母之间在python是可以直接“比较大小”的 return i return letters[0]
normal
{ "blob_id": "9cb3d8bc7af0061047136d57abfe68cbb5ae0cd7", "index": 3344, "step-1": "<mask token>\n\n\nclass SolutionBest(object):\n <mask token>\n", "step-2": "<mask token>\n\n\nclass SolutionBest(object):\n\n def nextGreatestLetter(self, letters, target):\n \"\"\"\n :type letters: List[str]\n :type target: str\n :rtype: str\n \"\"\"\n for i in letters:\n if i > target:\n return i\n return letters[0]\n", "step-3": "<mask token>\n\n\nclass Solution(object):\n <mask token>\n\n\nclass SolutionBest(object):\n\n def nextGreatestLetter(self, letters, target):\n \"\"\"\n :type letters: List[str]\n :type target: str\n :rtype: str\n \"\"\"\n for i in letters:\n if i > target:\n return i\n return letters[0]\n", "step-4": "<mask token>\n\n\nclass Solution(object):\n\n def nextGreatestLetter(self, letters, target):\n \"\"\"\n :type letters: List[str]\n :type target: str\n :rtype: str\n \"\"\"\n list_a = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',\n 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x',\n 'y', 'z']\n index_target = list_a.index(target)\n for i in range(index_target + 1, len(list_a)):\n if list_a[i] in letters:\n return list_a[i]\n return letters[0]\n\n\nclass SolutionBest(object):\n\n def nextGreatestLetter(self, letters, target):\n \"\"\"\n :type letters: List[str]\n :type target: str\n :rtype: str\n \"\"\"\n for i in letters:\n if i > target:\n return i\n return letters[0]\n", "step-5": "'''给定一个只包含小写字母的有序数组letters 和一个目标字母 target,寻找有序数组里面比目标字母大的最小字母。\n\n数组里字母的顺序是循环的。举个例子,如果目标字母target = 'z' 并且有序数组为 letters = ['a', 'b'],则答案返回 'a'。输入:\n\n示例:\nletters = [\"c\", \"f\", \"j\"]\ntarget = \"a\"\n输出: \"c\"\n'''\nclass Solution(object):\n def nextGreatestLetter(self, letters, target):\n \"\"\"\n :type letters: List[str]\n :type target: str\n :rtype: str\n \"\"\"\n list_a = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']\n index_target = list_a.index(target)\n for i in range(index_target + 1,len(list_a)):\n if list_a[i] in letters:\n return list_a[i]\n return letters[0] #以上查询没找到以后,输出列表第一项\n\nclass SolutionBest(object):\n def nextGreatestLetter(self, letters, target):\n \"\"\"\n :type letters: List[str]\n :type target: str\n :rtype: str\n \"\"\"\n for i in letters: #题目都说了,有序数组,直接迭代就好\n if i > target:#惊不惊喜,字母之间在python是可以直接“比较大小”的\n return i\n return letters[0]", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
class Solution: def commonFactors(self, a: int, b: int) ->int: gcd = math.gcd(a, b) return sum(a % i == 0 and b % i == 0 for i in range(1, gcd + 1))
normal
{ "blob_id": "ea696329a0cfd558fb592ffaf6339a35e8950a3c", "index": 6721, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def commonFactors(self, a: int, b: int) ->int:\n gcd = math.gcd(a, b)\n return sum(a % i == 0 and b % i == 0 for i in range(1, gcd + 1))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# (c) Copyright 2015-2016 Hewlett Packard Enterprise Development LP # (c) Copyright 2017 SUSE LLC import json from bll.plugins import service import logging import pecan import pymysql.cursors LOG = logging.getLogger(__name__) class PreferencesSvc(service.SvcBase): """ Simple service to manage user preferences. User preferences are stored as JSON in a mysql database. The ``target`` value for this plugin is ``preferences``. See :ref:`rest-api` for a full description of the request and response formats. """ def __init__(self, *args, **kwargs): super(PreferencesSvc, self).__init__(*args, **kwargs) config = pecan.conf.db.to_dict() config['cursorclass'] = pymysql.cursors.DictCursor self.connection = pymysql.connect(**config) @service.expose(action='GET') def _get(self): return self._get_mysql(self.data.get("user")) @service.expose(action='POST') def _post(self): self._post_mysql(self.data.get("user"), self.data.get("prefs")) @service.expose(action='PUT') def _put(self): self._put_mysql(self.data.get("user"), self.data.get("prefs")) @service.expose(action='DELETE') def _delete(self): self._delete_mysql(self.data.get("user")) # Functions for writing def _get_mysql(self, user): with self.connection.cursor() as cursor: sql = "SELECT `prefs` from `preferences` WHERE `username`=%s" cursor.execute(sql, user) row = cursor.fetchone() cursor.close() if row is None: message = self._("User {} does not exist").format(user) LOG.warn(message) self.response.error(message) return prefs = row.get("prefs") if isinstance(prefs, dict): return prefs return json.loads(prefs) def _post_mysql(self, user, prefs): with self.connection.cursor() as cursor: sql = "INSERT INTO `preferences` (`username`, `prefs`) " + \ "VALUES (%s,%s)" cursor.execute(sql, [user, json.dumps(prefs)]) cursor.close() self.connection.commit() def _put_mysql(self, user, prefs): with self.connection.cursor() as cursor: sql = "select count(*) from preferences where username=%s" cursor.execute(sql, user) user_found = (cursor.fetchone()['count(*)'] == 1) if user_found: sql = "UPDATE `preferences` SET `prefs`=%s WHERE `username`=%s" cursor.execute(sql, [json.dumps(prefs), user]) cursor.close() self.connection.commit() if not user_found: message = self._( "Cannot update non-existent user {}").format(user) LOG.warn(message) self.response.error(message) def _delete_mysql(self, user): with self.connection.cursor() as cursor: sql = "DELETE FROM `preferences` WHERE `username`=%s" cursor.execute(sql, user) cursor.close() self.connection.commit()
normal
{ "blob_id": "fb787e688da975d37f9fcc39bf5e02957b186982", "index": 7512, "step-1": "<mask token>\n\n\nclass PreferencesSvc(service.SvcBase):\n <mask token>\n\n def __init__(self, *args, **kwargs):\n super(PreferencesSvc, self).__init__(*args, **kwargs)\n config = pecan.conf.db.to_dict()\n config['cursorclass'] = pymysql.cursors.DictCursor\n self.connection = pymysql.connect(**config)\n\n @service.expose(action='GET')\n def _get(self):\n return self._get_mysql(self.data.get('user'))\n\n @service.expose(action='POST')\n def _post(self):\n self._post_mysql(self.data.get('user'), self.data.get('prefs'))\n <mask token>\n\n @service.expose(action='DELETE')\n def _delete(self):\n self._delete_mysql(self.data.get('user'))\n\n def _get_mysql(self, user):\n with self.connection.cursor() as cursor:\n sql = 'SELECT `prefs` from `preferences` WHERE `username`=%s'\n cursor.execute(sql, user)\n row = cursor.fetchone()\n cursor.close()\n if row is None:\n message = self._('User {} does not exist').format(user)\n LOG.warn(message)\n self.response.error(message)\n return\n prefs = row.get('prefs')\n if isinstance(prefs, dict):\n return prefs\n return json.loads(prefs)\n\n def _post_mysql(self, user, prefs):\n with self.connection.cursor() as cursor:\n sql = ('INSERT INTO `preferences` (`username`, `prefs`) ' +\n 'VALUES (%s,%s)')\n cursor.execute(sql, [user, json.dumps(prefs)])\n cursor.close()\n self.connection.commit()\n\n def _put_mysql(self, user, prefs):\n with self.connection.cursor() as cursor:\n sql = 'select count(*) from preferences where username=%s'\n cursor.execute(sql, user)\n user_found = cursor.fetchone()['count(*)'] == 1\n if user_found:\n sql = 'UPDATE `preferences` SET `prefs`=%s WHERE `username`=%s'\n cursor.execute(sql, [json.dumps(prefs), user])\n cursor.close()\n self.connection.commit()\n if not user_found:\n message = self._('Cannot update non-existent user {}').format(user)\n LOG.warn(message)\n self.response.error(message)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass PreferencesSvc(service.SvcBase):\n <mask token>\n\n def __init__(self, *args, **kwargs):\n super(PreferencesSvc, self).__init__(*args, **kwargs)\n config = pecan.conf.db.to_dict()\n config['cursorclass'] = pymysql.cursors.DictCursor\n self.connection = pymysql.connect(**config)\n\n @service.expose(action='GET')\n def _get(self):\n return self._get_mysql(self.data.get('user'))\n\n @service.expose(action='POST')\n def _post(self):\n self._post_mysql(self.data.get('user'), self.data.get('prefs'))\n\n @service.expose(action='PUT')\n def _put(self):\n self._put_mysql(self.data.get('user'), self.data.get('prefs'))\n\n @service.expose(action='DELETE')\n def _delete(self):\n self._delete_mysql(self.data.get('user'))\n\n def _get_mysql(self, user):\n with self.connection.cursor() as cursor:\n sql = 'SELECT `prefs` from `preferences` WHERE `username`=%s'\n cursor.execute(sql, user)\n row = cursor.fetchone()\n cursor.close()\n if row is None:\n message = self._('User {} does not exist').format(user)\n LOG.warn(message)\n self.response.error(message)\n return\n prefs = row.get('prefs')\n if isinstance(prefs, dict):\n return prefs\n return json.loads(prefs)\n\n def _post_mysql(self, user, prefs):\n with self.connection.cursor() as cursor:\n sql = ('INSERT INTO `preferences` (`username`, `prefs`) ' +\n 'VALUES (%s,%s)')\n cursor.execute(sql, [user, json.dumps(prefs)])\n cursor.close()\n self.connection.commit()\n\n def _put_mysql(self, user, prefs):\n with self.connection.cursor() as cursor:\n sql = 'select count(*) from preferences where username=%s'\n cursor.execute(sql, user)\n user_found = cursor.fetchone()['count(*)'] == 1\n if user_found:\n sql = 'UPDATE `preferences` SET `prefs`=%s WHERE `username`=%s'\n cursor.execute(sql, [json.dumps(prefs), user])\n cursor.close()\n self.connection.commit()\n if not user_found:\n message = self._('Cannot update non-existent user {}').format(user)\n LOG.warn(message)\n self.response.error(message)\n\n def _delete_mysql(self, user):\n with self.connection.cursor() as cursor:\n sql = 'DELETE FROM `preferences` WHERE `username`=%s'\n cursor.execute(sql, user)\n cursor.close()\n self.connection.commit()\n", "step-3": "<mask token>\n\n\nclass PreferencesSvc(service.SvcBase):\n \"\"\"\n Simple service to manage user preferences. User preferences are stored as\n JSON in a mysql database.\n\n The ``target`` value for this plugin is ``preferences``. See\n :ref:`rest-api` for a full description of the request and response formats.\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n super(PreferencesSvc, self).__init__(*args, **kwargs)\n config = pecan.conf.db.to_dict()\n config['cursorclass'] = pymysql.cursors.DictCursor\n self.connection = pymysql.connect(**config)\n\n @service.expose(action='GET')\n def _get(self):\n return self._get_mysql(self.data.get('user'))\n\n @service.expose(action='POST')\n def _post(self):\n self._post_mysql(self.data.get('user'), self.data.get('prefs'))\n\n @service.expose(action='PUT')\n def _put(self):\n self._put_mysql(self.data.get('user'), self.data.get('prefs'))\n\n @service.expose(action='DELETE')\n def _delete(self):\n self._delete_mysql(self.data.get('user'))\n\n def _get_mysql(self, user):\n with self.connection.cursor() as cursor:\n sql = 'SELECT `prefs` from `preferences` WHERE `username`=%s'\n cursor.execute(sql, user)\n row = cursor.fetchone()\n cursor.close()\n if row is None:\n message = self._('User {} does not exist').format(user)\n LOG.warn(message)\n self.response.error(message)\n return\n prefs = row.get('prefs')\n if isinstance(prefs, dict):\n return prefs\n return json.loads(prefs)\n\n def _post_mysql(self, user, prefs):\n with self.connection.cursor() as cursor:\n sql = ('INSERT INTO `preferences` (`username`, `prefs`) ' +\n 'VALUES (%s,%s)')\n cursor.execute(sql, [user, json.dumps(prefs)])\n cursor.close()\n self.connection.commit()\n\n def _put_mysql(self, user, prefs):\n with self.connection.cursor() as cursor:\n sql = 'select count(*) from preferences where username=%s'\n cursor.execute(sql, user)\n user_found = cursor.fetchone()['count(*)'] == 1\n if user_found:\n sql = 'UPDATE `preferences` SET `prefs`=%s WHERE `username`=%s'\n cursor.execute(sql, [json.dumps(prefs), user])\n cursor.close()\n self.connection.commit()\n if not user_found:\n message = self._('Cannot update non-existent user {}').format(user)\n LOG.warn(message)\n self.response.error(message)\n\n def _delete_mysql(self, user):\n with self.connection.cursor() as cursor:\n sql = 'DELETE FROM `preferences` WHERE `username`=%s'\n cursor.execute(sql, user)\n cursor.close()\n self.connection.commit()\n", "step-4": "import json\nfrom bll.plugins import service\nimport logging\nimport pecan\nimport pymysql.cursors\nLOG = logging.getLogger(__name__)\n\n\nclass PreferencesSvc(service.SvcBase):\n \"\"\"\n Simple service to manage user preferences. User preferences are stored as\n JSON in a mysql database.\n\n The ``target`` value for this plugin is ``preferences``. See\n :ref:`rest-api` for a full description of the request and response formats.\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n super(PreferencesSvc, self).__init__(*args, **kwargs)\n config = pecan.conf.db.to_dict()\n config['cursorclass'] = pymysql.cursors.DictCursor\n self.connection = pymysql.connect(**config)\n\n @service.expose(action='GET')\n def _get(self):\n return self._get_mysql(self.data.get('user'))\n\n @service.expose(action='POST')\n def _post(self):\n self._post_mysql(self.data.get('user'), self.data.get('prefs'))\n\n @service.expose(action='PUT')\n def _put(self):\n self._put_mysql(self.data.get('user'), self.data.get('prefs'))\n\n @service.expose(action='DELETE')\n def _delete(self):\n self._delete_mysql(self.data.get('user'))\n\n def _get_mysql(self, user):\n with self.connection.cursor() as cursor:\n sql = 'SELECT `prefs` from `preferences` WHERE `username`=%s'\n cursor.execute(sql, user)\n row = cursor.fetchone()\n cursor.close()\n if row is None:\n message = self._('User {} does not exist').format(user)\n LOG.warn(message)\n self.response.error(message)\n return\n prefs = row.get('prefs')\n if isinstance(prefs, dict):\n return prefs\n return json.loads(prefs)\n\n def _post_mysql(self, user, prefs):\n with self.connection.cursor() as cursor:\n sql = ('INSERT INTO `preferences` (`username`, `prefs`) ' +\n 'VALUES (%s,%s)')\n cursor.execute(sql, [user, json.dumps(prefs)])\n cursor.close()\n self.connection.commit()\n\n def _put_mysql(self, user, prefs):\n with self.connection.cursor() as cursor:\n sql = 'select count(*) from preferences where username=%s'\n cursor.execute(sql, user)\n user_found = cursor.fetchone()['count(*)'] == 1\n if user_found:\n sql = 'UPDATE `preferences` SET `prefs`=%s WHERE `username`=%s'\n cursor.execute(sql, [json.dumps(prefs), user])\n cursor.close()\n self.connection.commit()\n if not user_found:\n message = self._('Cannot update non-existent user {}').format(user)\n LOG.warn(message)\n self.response.error(message)\n\n def _delete_mysql(self, user):\n with self.connection.cursor() as cursor:\n sql = 'DELETE FROM `preferences` WHERE `username`=%s'\n cursor.execute(sql, user)\n cursor.close()\n self.connection.commit()\n", "step-5": "# (c) Copyright 2015-2016 Hewlett Packard Enterprise Development LP\n# (c) Copyright 2017 SUSE LLC\nimport json\nfrom bll.plugins import service\nimport logging\nimport pecan\nimport pymysql.cursors\n\nLOG = logging.getLogger(__name__)\n\n\nclass PreferencesSvc(service.SvcBase):\n \"\"\"\n Simple service to manage user preferences. User preferences are stored as\n JSON in a mysql database.\n\n The ``target`` value for this plugin is ``preferences``. See\n :ref:`rest-api` for a full description of the request and response formats.\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n super(PreferencesSvc, self).__init__(*args, **kwargs)\n config = pecan.conf.db.to_dict()\n config['cursorclass'] = pymysql.cursors.DictCursor\n self.connection = pymysql.connect(**config)\n\n @service.expose(action='GET')\n def _get(self):\n return self._get_mysql(self.data.get(\"user\"))\n\n @service.expose(action='POST')\n def _post(self):\n self._post_mysql(self.data.get(\"user\"),\n self.data.get(\"prefs\"))\n\n @service.expose(action='PUT')\n def _put(self):\n self._put_mysql(self.data.get(\"user\"),\n self.data.get(\"prefs\"))\n\n @service.expose(action='DELETE')\n def _delete(self):\n self._delete_mysql(self.data.get(\"user\"))\n\n # Functions for writing\n def _get_mysql(self, user):\n with self.connection.cursor() as cursor:\n sql = \"SELECT `prefs` from `preferences` WHERE `username`=%s\"\n cursor.execute(sql, user)\n row = cursor.fetchone()\n cursor.close()\n if row is None:\n message = self._(\"User {} does not exist\").format(user)\n LOG.warn(message)\n self.response.error(message)\n return\n prefs = row.get(\"prefs\")\n if isinstance(prefs, dict):\n return prefs\n return json.loads(prefs)\n\n def _post_mysql(self, user, prefs):\n with self.connection.cursor() as cursor:\n sql = \"INSERT INTO `preferences` (`username`, `prefs`) \" + \\\n \"VALUES (%s,%s)\"\n cursor.execute(sql, [user, json.dumps(prefs)])\n cursor.close()\n self.connection.commit()\n\n def _put_mysql(self, user, prefs):\n with self.connection.cursor() as cursor:\n sql = \"select count(*) from preferences where username=%s\"\n cursor.execute(sql, user)\n user_found = (cursor.fetchone()['count(*)'] == 1)\n if user_found:\n sql = \"UPDATE `preferences` SET `prefs`=%s WHERE `username`=%s\"\n cursor.execute(sql, [json.dumps(prefs), user])\n cursor.close()\n self.connection.commit()\n if not user_found:\n message = self._(\n \"Cannot update non-existent user {}\").format(user)\n LOG.warn(message)\n self.response.error(message)\n\n def _delete_mysql(self, user):\n with self.connection.cursor() as cursor:\n sql = \"DELETE FROM `preferences` WHERE `username`=%s\"\n cursor.execute(sql, user)\n cursor.close()\n self.connection.commit()\n", "step-ids": [ 8, 10, 11, 13, 14 ] }
[ 8, 10, 11, 13, 14 ]
<|reserved_special_token_0|> class AdminCityTable(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class AdminAreaModel(models.Model): area_id = models.AutoField(primary_key=True) area_name = models.CharField(max_length=30, unique=True) city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE) def __str__(self): return self.area_name class AdminRestaurantTypeModel(models.Model): restaurant_type_id = models.AutoField(primary_key=True) restaurant_type_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.restaurant_type_name <|reserved_special_token_1|> <|reserved_special_token_0|> class AdminStateModel(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class AdminCityTable(models.Model): city_id = models.AutoField(primary_key=True) city_name = models.CharField(max_length=30, unique=True) state = models.ForeignKey(AdminStateModel, on_delete=models.CASCADE) def __str__(self): return self.city_name class AdminAreaModel(models.Model): area_id = models.AutoField(primary_key=True) area_name = models.CharField(max_length=30, unique=True) city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE) def __str__(self): return self.area_name class AdminRestaurantTypeModel(models.Model): restaurant_type_id = models.AutoField(primary_key=True) restaurant_type_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.restaurant_type_name <|reserved_special_token_1|> <|reserved_special_token_0|> class AdminLoginModel(models.Model): user_name = models.CharField(max_length=30, unique=True) password = models.CharField(max_length=16) class AdminStateModel(models.Model): state_id = models.AutoField(primary_key=True) state_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.state_name class AdminCityTable(models.Model): city_id = models.AutoField(primary_key=True) city_name = models.CharField(max_length=30, unique=True) state = models.ForeignKey(AdminStateModel, on_delete=models.CASCADE) def __str__(self): return self.city_name class AdminAreaModel(models.Model): area_id = models.AutoField(primary_key=True) area_name = models.CharField(max_length=30, unique=True) city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE) def __str__(self): return self.area_name class AdminRestaurantTypeModel(models.Model): restaurant_type_id = models.AutoField(primary_key=True) restaurant_type_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.restaurant_type_name <|reserved_special_token_1|> from django.db import models class AdminLoginModel(models.Model): user_name = models.CharField(max_length=30, unique=True) password = models.CharField(max_length=16) class AdminStateModel(models.Model): state_id = models.AutoField(primary_key=True) state_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.state_name class AdminCityTable(models.Model): city_id = models.AutoField(primary_key=True) city_name = models.CharField(max_length=30, unique=True) state = models.ForeignKey(AdminStateModel, on_delete=models.CASCADE) def __str__(self): return self.city_name class AdminAreaModel(models.Model): area_id = models.AutoField(primary_key=True) area_name = models.CharField(max_length=30, unique=True) city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE) def __str__(self): return self.area_name class AdminRestaurantTypeModel(models.Model): restaurant_type_id = models.AutoField(primary_key=True) restaurant_type_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.restaurant_type_name <|reserved_special_token_1|> from django.db import models # Login Admin Model class AdminLoginModel(models.Model): user_name = models.CharField(max_length=30,unique=True) password = models.CharField(max_length=16) # Swiggy Admin State Table class AdminStateModel(models.Model): state_id = models.AutoField(primary_key=True) state_name = models.CharField(max_length=30,unique=True) def __str__(self): return self.state_name # Admin City Table class AdminCityTable(models.Model): city_id = models.AutoField(primary_key = True) city_name = models.CharField(max_length=30,unique=True) state = models.ForeignKey(AdminStateModel,on_delete=models.CASCADE) def __str__(self): return self.city_name #Admin Area Models for Area Operations class AdminAreaModel(models.Model): area_id = models.AutoField(primary_key = True) area_name = models.CharField(max_length=30,unique=True) city = models.ForeignKey(AdminCityTable,on_delete=models.CASCADE) def __str__(self): return self.area_name #Admin Restaurant type Model class AdminRestaurantTypeModel(models.Model): restaurant_type_id = models.AutoField(primary_key = True) restaurant_type_name = models.CharField(max_length=30,unique=True) def __str__(self): return self.restaurant_type_name
flexible
{ "blob_id": "5d4ef314bb7169f5de4795e5c1aca62a1a060bae", "index": 772, "step-1": "<mask token>\n\n\nclass AdminCityTable(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass AdminAreaModel(models.Model):\n area_id = models.AutoField(primary_key=True)\n area_name = models.CharField(max_length=30, unique=True)\n city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.area_name\n\n\nclass AdminRestaurantTypeModel(models.Model):\n restaurant_type_id = models.AutoField(primary_key=True)\n restaurant_type_name = models.CharField(max_length=30, unique=True)\n\n def __str__(self):\n return self.restaurant_type_name\n", "step-2": "<mask token>\n\n\nclass AdminStateModel(models.Model):\n <mask token>\n <mask token>\n <mask token>\n\n\nclass AdminCityTable(models.Model):\n city_id = models.AutoField(primary_key=True)\n city_name = models.CharField(max_length=30, unique=True)\n state = models.ForeignKey(AdminStateModel, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.city_name\n\n\nclass AdminAreaModel(models.Model):\n area_id = models.AutoField(primary_key=True)\n area_name = models.CharField(max_length=30, unique=True)\n city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.area_name\n\n\nclass AdminRestaurantTypeModel(models.Model):\n restaurant_type_id = models.AutoField(primary_key=True)\n restaurant_type_name = models.CharField(max_length=30, unique=True)\n\n def __str__(self):\n return self.restaurant_type_name\n", "step-3": "<mask token>\n\n\nclass AdminLoginModel(models.Model):\n user_name = models.CharField(max_length=30, unique=True)\n password = models.CharField(max_length=16)\n\n\nclass AdminStateModel(models.Model):\n state_id = models.AutoField(primary_key=True)\n state_name = models.CharField(max_length=30, unique=True)\n\n def __str__(self):\n return self.state_name\n\n\nclass AdminCityTable(models.Model):\n city_id = models.AutoField(primary_key=True)\n city_name = models.CharField(max_length=30, unique=True)\n state = models.ForeignKey(AdminStateModel, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.city_name\n\n\nclass AdminAreaModel(models.Model):\n area_id = models.AutoField(primary_key=True)\n area_name = models.CharField(max_length=30, unique=True)\n city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.area_name\n\n\nclass AdminRestaurantTypeModel(models.Model):\n restaurant_type_id = models.AutoField(primary_key=True)\n restaurant_type_name = models.CharField(max_length=30, unique=True)\n\n def __str__(self):\n return self.restaurant_type_name\n", "step-4": "from django.db import models\n\n\nclass AdminLoginModel(models.Model):\n user_name = models.CharField(max_length=30, unique=True)\n password = models.CharField(max_length=16)\n\n\nclass AdminStateModel(models.Model):\n state_id = models.AutoField(primary_key=True)\n state_name = models.CharField(max_length=30, unique=True)\n\n def __str__(self):\n return self.state_name\n\n\nclass AdminCityTable(models.Model):\n city_id = models.AutoField(primary_key=True)\n city_name = models.CharField(max_length=30, unique=True)\n state = models.ForeignKey(AdminStateModel, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.city_name\n\n\nclass AdminAreaModel(models.Model):\n area_id = models.AutoField(primary_key=True)\n area_name = models.CharField(max_length=30, unique=True)\n city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE)\n\n def __str__(self):\n return self.area_name\n\n\nclass AdminRestaurantTypeModel(models.Model):\n restaurant_type_id = models.AutoField(primary_key=True)\n restaurant_type_name = models.CharField(max_length=30, unique=True)\n\n def __str__(self):\n return self.restaurant_type_name\n", "step-5": "from django.db import models\n\n\n# Login Admin Model\nclass AdminLoginModel(models.Model):\n user_name = models.CharField(max_length=30,unique=True)\n password = models.CharField(max_length=16)\n\n\n\n# Swiggy Admin State Table\n\nclass AdminStateModel(models.Model):\n state_id = models.AutoField(primary_key=True)\n state_name = models.CharField(max_length=30,unique=True)\n\n def __str__(self):\n return self.state_name\n\n# Admin City Table\nclass AdminCityTable(models.Model):\n city_id = models.AutoField(primary_key = True)\n city_name = models.CharField(max_length=30,unique=True)\n state = models.ForeignKey(AdminStateModel,on_delete=models.CASCADE)\n\n def __str__(self):\n return self.city_name\n \n#Admin Area Models for Area Operations\nclass AdminAreaModel(models.Model):\n area_id = models.AutoField(primary_key = True)\n area_name = models.CharField(max_length=30,unique=True)\n\n city = models.ForeignKey(AdminCityTable,on_delete=models.CASCADE)\n def __str__(self):\n return self.area_name\n\n#Admin Restaurant type Model\n\nclass AdminRestaurantTypeModel(models.Model):\n restaurant_type_id = models.AutoField(primary_key = True)\n restaurant_type_name = models.CharField(max_length=30,unique=True)\n\n def __str__(self):\n return self.restaurant_type_name\n\n\n\n\n\n", "step-ids": [ 7, 10, 14, 15, 16 ] }
[ 7, 10, 14, 15, 16 ]
<|reserved_special_token_0|> class Sudoku: def __init__(self, grid): """ Initializes the grid """ self.grid = grid self.sub_grid = self.create_sub_grid(self.grid) def create_sub_grid(self, grid): """ Creates a Sub grid, containing the possible numbers within a cell Returns a Sub grid """ sub_grid = [] for i in range(9): sub = [] for j in range(9): if grid[i][j] == 0: sub.append(self.missing_numbers(i, j)) else: sub.append([grid[i][j]]) sub_grid.append(sub) del sub return sub_grid def missing_numbers(self, row, column): """ Returs the possible set of numbers of a particular row and column """ rrow, ccolumn = self.row_and_column(self.grid, row, column) cell = self.cell_3by3(row, column) missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn + cell)) return missing_num def cell_3by3(self, row, column): """ Returns grid of 3 X 3 """ cell = [] a = row // 3 b = column // 3 for i in range(9): for j in range(9): if i // 3 == a and j // 3 == b: cell.append(grid[i][j]) return cell def row_and_column(self, grid, row, column): """ Returns rows and columns """ r = grid[row] c = [] for j in range(9): c.append(grid[j][column]) return r, c def step_1(self, sub_grid, num): """ Reducing a list of clues to a single value based on row and column elimination Returns a refined sub grid """ row, column = self.row_and_column(sub_grid, num, num) row_flatten = sum(row, []) single_values = [i for i, j in Counter(row_flatten).items() if j == 1] for i in range(len(sub_grid)): for j in single_values: if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1: sub_grid[num][i] = [j] column_flatten = sum(column, []) column_single_values = [i for i, j in Counter(column_flatten).items () if j == 1] for i in range(len(sub_grid)): for j in column_single_values: if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1: sub_grid[i][num] = [j] return sub_grid <|reserved_special_token_0|> def step_3(self, sub_grid, num): pass def perform(self): """ Performs the step_1 and step_2 untill the Sub grid is solved Returns None """ temp = [] while self.sub_grid != temp: temp = deepcopy(self.sub_grid) for i in range(len(grid)): self.sub_grid = self.step_1(self.sub_grid, i) self.sub_grid = self.step_2(self.sub_grid, i) def solve(self): """ Solves the Sub grid and prints the sub grid Returns None """ self.perform() for i in range(9): for j in range(9): print(self.sub_grid[i][j], end=' ') print() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Sudoku: def __init__(self, grid): """ Initializes the grid """ self.grid = grid self.sub_grid = self.create_sub_grid(self.grid) def create_sub_grid(self, grid): """ Creates a Sub grid, containing the possible numbers within a cell Returns a Sub grid """ sub_grid = [] for i in range(9): sub = [] for j in range(9): if grid[i][j] == 0: sub.append(self.missing_numbers(i, j)) else: sub.append([grid[i][j]]) sub_grid.append(sub) del sub return sub_grid def missing_numbers(self, row, column): """ Returs the possible set of numbers of a particular row and column """ rrow, ccolumn = self.row_and_column(self.grid, row, column) cell = self.cell_3by3(row, column) missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn + cell)) return missing_num def cell_3by3(self, row, column): """ Returns grid of 3 X 3 """ cell = [] a = row // 3 b = column // 3 for i in range(9): for j in range(9): if i // 3 == a and j // 3 == b: cell.append(grid[i][j]) return cell def row_and_column(self, grid, row, column): """ Returns rows and columns """ r = grid[row] c = [] for j in range(9): c.append(grid[j][column]) return r, c def step_1(self, sub_grid, num): """ Reducing a list of clues to a single value based on row and column elimination Returns a refined sub grid """ row, column = self.row_and_column(sub_grid, num, num) row_flatten = sum(row, []) single_values = [i for i, j in Counter(row_flatten).items() if j == 1] for i in range(len(sub_grid)): for j in single_values: if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1: sub_grid[num][i] = [j] column_flatten = sum(column, []) column_single_values = [i for i, j in Counter(column_flatten).items () if j == 1] for i in range(len(sub_grid)): for j in column_single_values: if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1: sub_grid[i][num] = [j] return sub_grid def step_2(self, sub_grid, num): """ Removes a number 'n' that fits at its correct position from other lists corresponding its row and column Returns refined sub grid """ row, column = self.row_and_column(sub_grid, num, num) single_value_list = [] for i in range(len(row)): if len(sub_grid[num][i]) == 1: single_value_list.append(sub_grid[num][i]) single_value_list_flatten = sum(single_value_list, []) for i in range(len(sub_grid)): if len(sub_grid[num][i]) != 1: for j in single_value_list_flatten: if j in sub_grid[num][i]: sub_grid[num][i].remove(j) single_value_list = [] for i in range(len(column)): if len(sub_grid[i][num]) == 1: single_value_list.append(sub_grid[i][num]) single_value_list_flatten = sum(single_value_list, []) for i in range(len(sub_grid)): if len(sub_grid[i][num]) != 1: for j in single_value_list_flatten: if j in sub_grid[i][num]: sub_grid[i][num].remove(j) return sub_grid def step_3(self, sub_grid, num): pass def perform(self): """ Performs the step_1 and step_2 untill the Sub grid is solved Returns None """ temp = [] while self.sub_grid != temp: temp = deepcopy(self.sub_grid) for i in range(len(grid)): self.sub_grid = self.step_1(self.sub_grid, i) self.sub_grid = self.step_2(self.sub_grid, i) def solve(self): """ Solves the Sub grid and prints the sub grid Returns None """ self.perform() for i in range(9): for j in range(9): print(self.sub_grid[i][j], end=' ') print() <|reserved_special_token_0|> mat.solve() <|reserved_special_token_1|> <|reserved_special_token_0|> class Sudoku: def __init__(self, grid): """ Initializes the grid """ self.grid = grid self.sub_grid = self.create_sub_grid(self.grid) def create_sub_grid(self, grid): """ Creates a Sub grid, containing the possible numbers within a cell Returns a Sub grid """ sub_grid = [] for i in range(9): sub = [] for j in range(9): if grid[i][j] == 0: sub.append(self.missing_numbers(i, j)) else: sub.append([grid[i][j]]) sub_grid.append(sub) del sub return sub_grid def missing_numbers(self, row, column): """ Returs the possible set of numbers of a particular row and column """ rrow, ccolumn = self.row_and_column(self.grid, row, column) cell = self.cell_3by3(row, column) missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn + cell)) return missing_num def cell_3by3(self, row, column): """ Returns grid of 3 X 3 """ cell = [] a = row // 3 b = column // 3 for i in range(9): for j in range(9): if i // 3 == a and j // 3 == b: cell.append(grid[i][j]) return cell def row_and_column(self, grid, row, column): """ Returns rows and columns """ r = grid[row] c = [] for j in range(9): c.append(grid[j][column]) return r, c def step_1(self, sub_grid, num): """ Reducing a list of clues to a single value based on row and column elimination Returns a refined sub grid """ row, column = self.row_and_column(sub_grid, num, num) row_flatten = sum(row, []) single_values = [i for i, j in Counter(row_flatten).items() if j == 1] for i in range(len(sub_grid)): for j in single_values: if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1: sub_grid[num][i] = [j] column_flatten = sum(column, []) column_single_values = [i for i, j in Counter(column_flatten).items () if j == 1] for i in range(len(sub_grid)): for j in column_single_values: if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1: sub_grid[i][num] = [j] return sub_grid def step_2(self, sub_grid, num): """ Removes a number 'n' that fits at its correct position from other lists corresponding its row and column Returns refined sub grid """ row, column = self.row_and_column(sub_grid, num, num) single_value_list = [] for i in range(len(row)): if len(sub_grid[num][i]) == 1: single_value_list.append(sub_grid[num][i]) single_value_list_flatten = sum(single_value_list, []) for i in range(len(sub_grid)): if len(sub_grid[num][i]) != 1: for j in single_value_list_flatten: if j in sub_grid[num][i]: sub_grid[num][i].remove(j) single_value_list = [] for i in range(len(column)): if len(sub_grid[i][num]) == 1: single_value_list.append(sub_grid[i][num]) single_value_list_flatten = sum(single_value_list, []) for i in range(len(sub_grid)): if len(sub_grid[i][num]) != 1: for j in single_value_list_flatten: if j in sub_grid[i][num]: sub_grid[i][num].remove(j) return sub_grid def step_3(self, sub_grid, num): pass def perform(self): """ Performs the step_1 and step_2 untill the Sub grid is solved Returns None """ temp = [] while self.sub_grid != temp: temp = deepcopy(self.sub_grid) for i in range(len(grid)): self.sub_grid = self.step_1(self.sub_grid, i) self.sub_grid = self.step_2(self.sub_grid, i) def solve(self): """ Solves the Sub grid and prints the sub grid Returns None """ self.perform() for i in range(9): for j in range(9): print(self.sub_grid[i][j], end=' ') print() grid = [[8, 0, 6, 0, 0, 0, 4, 0, 9], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 9, 2, 0, 0, 0, 5, 0, 8], [0, 0, 9, 0, 7, 1, 3, 0, 0], [5, 0, 8, 0, 0, 0, 0, 2, 0], [0, 0, 4, 0, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 7, 9, 1, 0], [0, 0, 0, 9, 0, 0, 0, 0, 7], [0, 7, 0, 0, 0, 3, 0, 0, 4]] mat = Sudoku(grid) mat.solve() <|reserved_special_token_1|> from pprint import pprint from collections import Counter from copy import deepcopy class Sudoku: def __init__(self, grid): """ Initializes the grid """ self.grid = grid self.sub_grid = self.create_sub_grid(self.grid) def create_sub_grid(self, grid): """ Creates a Sub grid, containing the possible numbers within a cell Returns a Sub grid """ sub_grid = [] for i in range(9): sub = [] for j in range(9): if grid[i][j] == 0: sub.append(self.missing_numbers(i, j)) else: sub.append([grid[i][j]]) sub_grid.append(sub) del sub return sub_grid def missing_numbers(self, row, column): """ Returs the possible set of numbers of a particular row and column """ rrow, ccolumn = self.row_and_column(self.grid, row, column) cell = self.cell_3by3(row, column) missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn + cell)) return missing_num def cell_3by3(self, row, column): """ Returns grid of 3 X 3 """ cell = [] a = row // 3 b = column // 3 for i in range(9): for j in range(9): if i // 3 == a and j // 3 == b: cell.append(grid[i][j]) return cell def row_and_column(self, grid, row, column): """ Returns rows and columns """ r = grid[row] c = [] for j in range(9): c.append(grid[j][column]) return r, c def step_1(self, sub_grid, num): """ Reducing a list of clues to a single value based on row and column elimination Returns a refined sub grid """ row, column = self.row_and_column(sub_grid, num, num) row_flatten = sum(row, []) single_values = [i for i, j in Counter(row_flatten).items() if j == 1] for i in range(len(sub_grid)): for j in single_values: if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1: sub_grid[num][i] = [j] column_flatten = sum(column, []) column_single_values = [i for i, j in Counter(column_flatten).items () if j == 1] for i in range(len(sub_grid)): for j in column_single_values: if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1: sub_grid[i][num] = [j] return sub_grid def step_2(self, sub_grid, num): """ Removes a number 'n' that fits at its correct position from other lists corresponding its row and column Returns refined sub grid """ row, column = self.row_and_column(sub_grid, num, num) single_value_list = [] for i in range(len(row)): if len(sub_grid[num][i]) == 1: single_value_list.append(sub_grid[num][i]) single_value_list_flatten = sum(single_value_list, []) for i in range(len(sub_grid)): if len(sub_grid[num][i]) != 1: for j in single_value_list_flatten: if j in sub_grid[num][i]: sub_grid[num][i].remove(j) single_value_list = [] for i in range(len(column)): if len(sub_grid[i][num]) == 1: single_value_list.append(sub_grid[i][num]) single_value_list_flatten = sum(single_value_list, []) for i in range(len(sub_grid)): if len(sub_grid[i][num]) != 1: for j in single_value_list_flatten: if j in sub_grid[i][num]: sub_grid[i][num].remove(j) return sub_grid def step_3(self, sub_grid, num): pass def perform(self): """ Performs the step_1 and step_2 untill the Sub grid is solved Returns None """ temp = [] while self.sub_grid != temp: temp = deepcopy(self.sub_grid) for i in range(len(grid)): self.sub_grid = self.step_1(self.sub_grid, i) self.sub_grid = self.step_2(self.sub_grid, i) def solve(self): """ Solves the Sub grid and prints the sub grid Returns None """ self.perform() for i in range(9): for j in range(9): print(self.sub_grid[i][j], end=' ') print() grid = [[8, 0, 6, 0, 0, 0, 4, 0, 9], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 9, 2, 0, 0, 0, 5, 0, 8], [0, 0, 9, 0, 7, 1, 3, 0, 0], [5, 0, 8, 0, 0, 0, 0, 2, 0], [0, 0, 4, 0, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 7, 9, 1, 0], [0, 0, 0, 9, 0, 0, 0, 0, 7], [0, 7, 0, 0, 0, 3, 0, 0, 4]] mat = Sudoku(grid) mat.solve() <|reserved_special_token_1|> from pprint import pprint from collections import Counter from copy import deepcopy class Sudoku(): def __init__(self, grid): ''' Initializes the grid ''' self.grid = grid self.sub_grid = self.create_sub_grid(self.grid) def create_sub_grid(self, grid): ''' Creates a Sub grid, containing the possible numbers within a cell Returns a Sub grid ''' sub_grid = [] for i in range(9): sub = [] for j in range(9): if grid[i][j] == 0: sub.append(self.missing_numbers(i,j)) else: sub.append([grid[i][j]]) sub_grid.append(sub) del sub return sub_grid def missing_numbers(self, row, column): ''' Returs the possible set of numbers of a particular row and column ''' rrow, ccolumn = self.row_and_column(self.grid, row, column) cell = self.cell_3by3(row, column) missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn + cell)) return missing_num def cell_3by3(self, row, column): ''' Returns grid of 3 X 3 ''' cell = [] a = row // 3 b = column // 3 for i in range(9): for j in range(9): if i // 3 == a and j // 3 == b : cell.append(grid[i][j]) return cell def row_and_column(self, grid, row, column): ''' Returns rows and columns ''' r = grid[row] c = [] for j in range(9): c.append(grid[j][column]) return r, c def step_1(self, sub_grid, num): ''' Reducing a list of clues to a single value based on row and column elimination Returns a refined sub grid ''' row,column = self.row_and_column(sub_grid,num,num) row_flatten = sum(row,[]) single_values = [i for i,j in Counter(row_flatten).items() if j == 1 ] # For Rows for i in range(len(sub_grid)): for j in single_values: if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1: sub_grid[num][i] = [j] # For Columns column_flatten = sum(column, []) column_single_values = [i for i,j in Counter(column_flatten).items() if j == 1 ] for i in range(len(sub_grid)): for j in column_single_values: if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1: sub_grid[i][num] = [j] return sub_grid def step_2(self, sub_grid, num): ''' Removes a number 'n' that fits at its correct position from other lists corresponding its row and column Returns refined sub grid ''' row,column = self.row_and_column(sub_grid,num,num) # For Rows single_value_list = [] for i in range(len(row)): if len(sub_grid[num][i]) == 1: single_value_list.append(sub_grid[num][i]) single_value_list_flatten = sum(single_value_list, []) for i in range(len(sub_grid)): if len(sub_grid[num][i]) != 1: for j in single_value_list_flatten: if j in sub_grid[num][i]: sub_grid[num][i].remove(j) # For Columns single_value_list = [] for i in range(len(column)): if len(sub_grid[i][num]) == 1: single_value_list.append(sub_grid[i][num]) single_value_list_flatten = sum(single_value_list, []) for i in range(len(sub_grid)): if len(sub_grid[i][num]) != 1: for j in single_value_list_flatten: if j in sub_grid[i][num]: sub_grid[i][num].remove(j) return sub_grid def step_3(self, sub_grid, num): pass def perform(self): ''' Performs the step_1 and step_2 untill the Sub grid is solved Returns None ''' temp = [] while self.sub_grid != temp: temp = deepcopy(self.sub_grid) for i in range(len(grid)): self.sub_grid = self.step_1(self.sub_grid, i) self.sub_grid = self.step_2(self.sub_grid, i) def solve(self): ''' Solves the Sub grid and prints the sub grid Returns None ''' self.perform() for i in range(9): for j in range(9): print(self.sub_grid[i][j], end=' ') print() # grid = [ # [0,3,0,0,1,0,0,6,0], # [7,5,0,0,3,0,0,4,8], # [0,0,6,9,8,4,3,0,0], # [0,0,3,0,0,0,8,0,0], # [9,1,2,0,0,0,6,7,4], # [0,0,4,0,0,0,5,0,0], # [0,0,1,6,7,5,2,0,0], # [6,8,0,0,9,0,0,1,5], # [0,9,0,0,4,0,0,3,0] # ] # grid = [ # [6,0,0,1,0,8,2,0,3], # [0,2,0,0,4,0,0,9,0], # [8,0,3,0,0,5,4,0,0], # [5,0,4,6,0,7,0,0,9], # [0,3,0,0,0,0,0,5,0], # [7,0,0,8,0,3,1,0,2], # [0,0,1,7,0,0,9,0,6], # [0,8,0,0,3,0,0,2,0], # [3,0,2,9,0,4,0,0,5] # ] grid = [ [8,0,6,0,0,0,4,0,9], [0,0,0,0,0,0,0,0,0], [0,9,2,0,0,0,5,0,8], [0,0,9,0,7,1,3,0,0], [5,0,8,0,0,0,0,2,0], [0,0,4,0,5,0,0,0,0], [0,0,0,0,0,7,9,1,0], [0,0,0,9,0,0,0,0,7], [0,7,0,0,0,3,0,0,4], ] mat = Sudoku(grid) mat.solve()
flexible
{ "blob_id": "4032503bba8a1dd273015d503f52b6ea2d932d1d", "index": 3564, "step-1": "<mask token>\n\n\nclass Sudoku:\n\n def __init__(self, grid):\n \"\"\"\n Initializes the grid\n \"\"\"\n self.grid = grid\n self.sub_grid = self.create_sub_grid(self.grid)\n\n def create_sub_grid(self, grid):\n \"\"\" \n Creates a Sub grid, containing the possible numbers within a cell\n Returns a Sub grid\n \"\"\"\n sub_grid = []\n for i in range(9):\n sub = []\n for j in range(9):\n if grid[i][j] == 0:\n sub.append(self.missing_numbers(i, j))\n else:\n sub.append([grid[i][j]])\n sub_grid.append(sub)\n del sub\n return sub_grid\n\n def missing_numbers(self, row, column):\n \"\"\"\n Returs the possible set of numbers of a particular row and column\n \"\"\"\n rrow, ccolumn = self.row_and_column(self.grid, row, column)\n cell = self.cell_3by3(row, column)\n missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn +\n cell))\n return missing_num\n\n def cell_3by3(self, row, column):\n \"\"\"\n Returns grid of 3 X 3\n \"\"\"\n cell = []\n a = row // 3\n b = column // 3\n for i in range(9):\n for j in range(9):\n if i // 3 == a and j // 3 == b:\n cell.append(grid[i][j])\n return cell\n\n def row_and_column(self, grid, row, column):\n \"\"\"\n Returns rows and columns\n \"\"\"\n r = grid[row]\n c = []\n for j in range(9):\n c.append(grid[j][column])\n return r, c\n\n def step_1(self, sub_grid, num):\n \"\"\"\n Reducing a list of clues to a single value based on row and column elimination\n Returns a refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n row_flatten = sum(row, [])\n single_values = [i for i, j in Counter(row_flatten).items() if j == 1]\n for i in range(len(sub_grid)):\n for j in single_values:\n if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1:\n sub_grid[num][i] = [j]\n column_flatten = sum(column, [])\n column_single_values = [i for i, j in Counter(column_flatten).items\n () if j == 1]\n for i in range(len(sub_grid)):\n for j in column_single_values:\n if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1:\n sub_grid[i][num] = [j]\n return sub_grid\n <mask token>\n\n def step_3(self, sub_grid, num):\n pass\n\n def perform(self):\n \"\"\"\n Performs the step_1 and step_2 untill the Sub grid is solved\n Returns None\n \"\"\"\n temp = []\n while self.sub_grid != temp:\n temp = deepcopy(self.sub_grid)\n for i in range(len(grid)):\n self.sub_grid = self.step_1(self.sub_grid, i)\n self.sub_grid = self.step_2(self.sub_grid, i)\n\n def solve(self):\n \"\"\"\n Solves the Sub grid and prints the sub grid\n Returns None\n \"\"\"\n self.perform()\n for i in range(9):\n for j in range(9):\n print(self.sub_grid[i][j], end=' ')\n print()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Sudoku:\n\n def __init__(self, grid):\n \"\"\"\n Initializes the grid\n \"\"\"\n self.grid = grid\n self.sub_grid = self.create_sub_grid(self.grid)\n\n def create_sub_grid(self, grid):\n \"\"\" \n Creates a Sub grid, containing the possible numbers within a cell\n Returns a Sub grid\n \"\"\"\n sub_grid = []\n for i in range(9):\n sub = []\n for j in range(9):\n if grid[i][j] == 0:\n sub.append(self.missing_numbers(i, j))\n else:\n sub.append([grid[i][j]])\n sub_grid.append(sub)\n del sub\n return sub_grid\n\n def missing_numbers(self, row, column):\n \"\"\"\n Returs the possible set of numbers of a particular row and column\n \"\"\"\n rrow, ccolumn = self.row_and_column(self.grid, row, column)\n cell = self.cell_3by3(row, column)\n missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn +\n cell))\n return missing_num\n\n def cell_3by3(self, row, column):\n \"\"\"\n Returns grid of 3 X 3\n \"\"\"\n cell = []\n a = row // 3\n b = column // 3\n for i in range(9):\n for j in range(9):\n if i // 3 == a and j // 3 == b:\n cell.append(grid[i][j])\n return cell\n\n def row_and_column(self, grid, row, column):\n \"\"\"\n Returns rows and columns\n \"\"\"\n r = grid[row]\n c = []\n for j in range(9):\n c.append(grid[j][column])\n return r, c\n\n def step_1(self, sub_grid, num):\n \"\"\"\n Reducing a list of clues to a single value based on row and column elimination\n Returns a refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n row_flatten = sum(row, [])\n single_values = [i for i, j in Counter(row_flatten).items() if j == 1]\n for i in range(len(sub_grid)):\n for j in single_values:\n if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1:\n sub_grid[num][i] = [j]\n column_flatten = sum(column, [])\n column_single_values = [i for i, j in Counter(column_flatten).items\n () if j == 1]\n for i in range(len(sub_grid)):\n for j in column_single_values:\n if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1:\n sub_grid[i][num] = [j]\n return sub_grid\n\n def step_2(self, sub_grid, num):\n \"\"\"\n Removes a number 'n' that fits at its correct position from other lists corresponding its row and column\n Returns refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n single_value_list = []\n for i in range(len(row)):\n if len(sub_grid[num][i]) == 1:\n single_value_list.append(sub_grid[num][i])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[num][i]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[num][i]:\n sub_grid[num][i].remove(j)\n single_value_list = []\n for i in range(len(column)):\n if len(sub_grid[i][num]) == 1:\n single_value_list.append(sub_grid[i][num])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[i][num]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[i][num]:\n sub_grid[i][num].remove(j)\n return sub_grid\n\n def step_3(self, sub_grid, num):\n pass\n\n def perform(self):\n \"\"\"\n Performs the step_1 and step_2 untill the Sub grid is solved\n Returns None\n \"\"\"\n temp = []\n while self.sub_grid != temp:\n temp = deepcopy(self.sub_grid)\n for i in range(len(grid)):\n self.sub_grid = self.step_1(self.sub_grid, i)\n self.sub_grid = self.step_2(self.sub_grid, i)\n\n def solve(self):\n \"\"\"\n Solves the Sub grid and prints the sub grid\n Returns None\n \"\"\"\n self.perform()\n for i in range(9):\n for j in range(9):\n print(self.sub_grid[i][j], end=' ')\n print()\n\n\n<mask token>\nmat.solve()\n", "step-3": "<mask token>\n\n\nclass Sudoku:\n\n def __init__(self, grid):\n \"\"\"\n Initializes the grid\n \"\"\"\n self.grid = grid\n self.sub_grid = self.create_sub_grid(self.grid)\n\n def create_sub_grid(self, grid):\n \"\"\" \n Creates a Sub grid, containing the possible numbers within a cell\n Returns a Sub grid\n \"\"\"\n sub_grid = []\n for i in range(9):\n sub = []\n for j in range(9):\n if grid[i][j] == 0:\n sub.append(self.missing_numbers(i, j))\n else:\n sub.append([grid[i][j]])\n sub_grid.append(sub)\n del sub\n return sub_grid\n\n def missing_numbers(self, row, column):\n \"\"\"\n Returs the possible set of numbers of a particular row and column\n \"\"\"\n rrow, ccolumn = self.row_and_column(self.grid, row, column)\n cell = self.cell_3by3(row, column)\n missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn +\n cell))\n return missing_num\n\n def cell_3by3(self, row, column):\n \"\"\"\n Returns grid of 3 X 3\n \"\"\"\n cell = []\n a = row // 3\n b = column // 3\n for i in range(9):\n for j in range(9):\n if i // 3 == a and j // 3 == b:\n cell.append(grid[i][j])\n return cell\n\n def row_and_column(self, grid, row, column):\n \"\"\"\n Returns rows and columns\n \"\"\"\n r = grid[row]\n c = []\n for j in range(9):\n c.append(grid[j][column])\n return r, c\n\n def step_1(self, sub_grid, num):\n \"\"\"\n Reducing a list of clues to a single value based on row and column elimination\n Returns a refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n row_flatten = sum(row, [])\n single_values = [i for i, j in Counter(row_flatten).items() if j == 1]\n for i in range(len(sub_grid)):\n for j in single_values:\n if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1:\n sub_grid[num][i] = [j]\n column_flatten = sum(column, [])\n column_single_values = [i for i, j in Counter(column_flatten).items\n () if j == 1]\n for i in range(len(sub_grid)):\n for j in column_single_values:\n if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1:\n sub_grid[i][num] = [j]\n return sub_grid\n\n def step_2(self, sub_grid, num):\n \"\"\"\n Removes a number 'n' that fits at its correct position from other lists corresponding its row and column\n Returns refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n single_value_list = []\n for i in range(len(row)):\n if len(sub_grid[num][i]) == 1:\n single_value_list.append(sub_grid[num][i])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[num][i]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[num][i]:\n sub_grid[num][i].remove(j)\n single_value_list = []\n for i in range(len(column)):\n if len(sub_grid[i][num]) == 1:\n single_value_list.append(sub_grid[i][num])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[i][num]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[i][num]:\n sub_grid[i][num].remove(j)\n return sub_grid\n\n def step_3(self, sub_grid, num):\n pass\n\n def perform(self):\n \"\"\"\n Performs the step_1 and step_2 untill the Sub grid is solved\n Returns None\n \"\"\"\n temp = []\n while self.sub_grid != temp:\n temp = deepcopy(self.sub_grid)\n for i in range(len(grid)):\n self.sub_grid = self.step_1(self.sub_grid, i)\n self.sub_grid = self.step_2(self.sub_grid, i)\n\n def solve(self):\n \"\"\"\n Solves the Sub grid and prints the sub grid\n Returns None\n \"\"\"\n self.perform()\n for i in range(9):\n for j in range(9):\n print(self.sub_grid[i][j], end=' ')\n print()\n\n\ngrid = [[8, 0, 6, 0, 0, 0, 4, 0, 9], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 9, 2,\n 0, 0, 0, 5, 0, 8], [0, 0, 9, 0, 7, 1, 3, 0, 0], [5, 0, 8, 0, 0, 0, 0, 2,\n 0], [0, 0, 4, 0, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 7, 9, 1, 0], [0, 0, 0,\n 9, 0, 0, 0, 0, 7], [0, 7, 0, 0, 0, 3, 0, 0, 4]]\nmat = Sudoku(grid)\nmat.solve()\n", "step-4": "from pprint import pprint\nfrom collections import Counter\nfrom copy import deepcopy\n\n\nclass Sudoku:\n\n def __init__(self, grid):\n \"\"\"\n Initializes the grid\n \"\"\"\n self.grid = grid\n self.sub_grid = self.create_sub_grid(self.grid)\n\n def create_sub_grid(self, grid):\n \"\"\" \n Creates a Sub grid, containing the possible numbers within a cell\n Returns a Sub grid\n \"\"\"\n sub_grid = []\n for i in range(9):\n sub = []\n for j in range(9):\n if grid[i][j] == 0:\n sub.append(self.missing_numbers(i, j))\n else:\n sub.append([grid[i][j]])\n sub_grid.append(sub)\n del sub\n return sub_grid\n\n def missing_numbers(self, row, column):\n \"\"\"\n Returs the possible set of numbers of a particular row and column\n \"\"\"\n rrow, ccolumn = self.row_and_column(self.grid, row, column)\n cell = self.cell_3by3(row, column)\n missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn +\n cell))\n return missing_num\n\n def cell_3by3(self, row, column):\n \"\"\"\n Returns grid of 3 X 3\n \"\"\"\n cell = []\n a = row // 3\n b = column // 3\n for i in range(9):\n for j in range(9):\n if i // 3 == a and j // 3 == b:\n cell.append(grid[i][j])\n return cell\n\n def row_and_column(self, grid, row, column):\n \"\"\"\n Returns rows and columns\n \"\"\"\n r = grid[row]\n c = []\n for j in range(9):\n c.append(grid[j][column])\n return r, c\n\n def step_1(self, sub_grid, num):\n \"\"\"\n Reducing a list of clues to a single value based on row and column elimination\n Returns a refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n row_flatten = sum(row, [])\n single_values = [i for i, j in Counter(row_flatten).items() if j == 1]\n for i in range(len(sub_grid)):\n for j in single_values:\n if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1:\n sub_grid[num][i] = [j]\n column_flatten = sum(column, [])\n column_single_values = [i for i, j in Counter(column_flatten).items\n () if j == 1]\n for i in range(len(sub_grid)):\n for j in column_single_values:\n if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1:\n sub_grid[i][num] = [j]\n return sub_grid\n\n def step_2(self, sub_grid, num):\n \"\"\"\n Removes a number 'n' that fits at its correct position from other lists corresponding its row and column\n Returns refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n single_value_list = []\n for i in range(len(row)):\n if len(sub_grid[num][i]) == 1:\n single_value_list.append(sub_grid[num][i])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[num][i]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[num][i]:\n sub_grid[num][i].remove(j)\n single_value_list = []\n for i in range(len(column)):\n if len(sub_grid[i][num]) == 1:\n single_value_list.append(sub_grid[i][num])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[i][num]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[i][num]:\n sub_grid[i][num].remove(j)\n return sub_grid\n\n def step_3(self, sub_grid, num):\n pass\n\n def perform(self):\n \"\"\"\n Performs the step_1 and step_2 untill the Sub grid is solved\n Returns None\n \"\"\"\n temp = []\n while self.sub_grid != temp:\n temp = deepcopy(self.sub_grid)\n for i in range(len(grid)):\n self.sub_grid = self.step_1(self.sub_grid, i)\n self.sub_grid = self.step_2(self.sub_grid, i)\n\n def solve(self):\n \"\"\"\n Solves the Sub grid and prints the sub grid\n Returns None\n \"\"\"\n self.perform()\n for i in range(9):\n for j in range(9):\n print(self.sub_grid[i][j], end=' ')\n print()\n\n\ngrid = [[8, 0, 6, 0, 0, 0, 4, 0, 9], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 9, 2,\n 0, 0, 0, 5, 0, 8], [0, 0, 9, 0, 7, 1, 3, 0, 0], [5, 0, 8, 0, 0, 0, 0, 2,\n 0], [0, 0, 4, 0, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 7, 9, 1, 0], [0, 0, 0,\n 9, 0, 0, 0, 0, 7], [0, 7, 0, 0, 0, 3, 0, 0, 4]]\nmat = Sudoku(grid)\nmat.solve()\n", "step-5": "\r\n\r\n\r\nfrom pprint import pprint\r\nfrom collections import Counter\r\nfrom copy import deepcopy\r\n\r\n\r\nclass Sudoku():\r\n def __init__(self, grid):\r\n '''\r\n Initializes the grid\r\n '''\r\n self.grid = grid\r\n self.sub_grid = self.create_sub_grid(self.grid)\r\n\r\n def create_sub_grid(self, grid):\r\n ''' \r\n Creates a Sub grid, containing the possible numbers within a cell\r\n Returns a Sub grid\r\n '''\r\n sub_grid = []\r\n for i in range(9):\r\n sub = []\r\n for j in range(9):\r\n if grid[i][j] == 0:\r\n sub.append(self.missing_numbers(i,j))\r\n else:\r\n sub.append([grid[i][j]])\r\n sub_grid.append(sub)\r\n del sub\r\n return sub_grid\r\n\r\n\r\n def missing_numbers(self, row, column):\r\n '''\r\n Returs the possible set of numbers of a particular row and column\r\n '''\r\n\r\n rrow, ccolumn = self.row_and_column(self.grid, row, column)\r\n cell = self.cell_3by3(row, column)\r\n \r\n missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn + cell))\r\n return missing_num\r\n\r\n\r\n\r\n def cell_3by3(self, row, column):\r\n '''\r\n Returns grid of 3 X 3\r\n '''\r\n\r\n cell = []\r\n a = row // 3\r\n b = column // 3\r\n for i in range(9):\r\n for j in range(9):\r\n if i // 3 == a and j // 3 == b : \r\n cell.append(grid[i][j])\r\n return cell\r\n\r\n def row_and_column(self, grid, row, column): \r\n '''\r\n Returns rows and columns\r\n '''\r\n r = grid[row]\r\n c = []\r\n for j in range(9):\r\n c.append(grid[j][column])\r\n return r, c\r\n\r\n\r\n\r\n\r\n def step_1(self, sub_grid, num):\r\n '''\r\n Reducing a list of clues to a single value based on row and column elimination\r\n Returns a refined sub grid\r\n '''\r\n\r\n\r\n row,column = self.row_and_column(sub_grid,num,num)\r\n\r\n row_flatten = sum(row,[])\r\n single_values = [i for i,j in Counter(row_flatten).items() if j == 1 ]\r\n\r\n # For Rows\r\n for i in range(len(sub_grid)):\r\n for j in single_values:\r\n if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1:\r\n sub_grid[num][i] = [j] \r\n\r\n # For Columns\r\n column_flatten = sum(column, [])\r\n column_single_values = [i for i,j in Counter(column_flatten).items() if j == 1 ]\r\n for i in range(len(sub_grid)):\r\n for j in column_single_values:\r\n if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1:\r\n sub_grid[i][num] = [j]\r\n\r\n\r\n\r\n return sub_grid\r\n\r\n def step_2(self, sub_grid, num):\r\n '''\r\n Removes a number 'n' that fits at its correct position from other lists corresponding its row and column\r\n Returns refined sub grid\r\n '''\r\n\r\n row,column = self.row_and_column(sub_grid,num,num)\r\n\r\n # For Rows\r\n single_value_list = []\r\n for i in range(len(row)):\r\n if len(sub_grid[num][i]) == 1:\r\n single_value_list.append(sub_grid[num][i])\r\n single_value_list_flatten = sum(single_value_list, [])\r\n\r\n for i in range(len(sub_grid)):\r\n if len(sub_grid[num][i]) != 1: \r\n for j in single_value_list_flatten:\r\n if j in sub_grid[num][i]:\r\n sub_grid[num][i].remove(j)\r\n\r\n # For Columns\r\n single_value_list = []\r\n for i in range(len(column)):\r\n if len(sub_grid[i][num]) == 1:\r\n single_value_list.append(sub_grid[i][num])\r\n single_value_list_flatten = sum(single_value_list, [])\r\n\r\n for i in range(len(sub_grid)):\r\n if len(sub_grid[i][num]) != 1: \r\n for j in single_value_list_flatten:\r\n if j in sub_grid[i][num]:\r\n sub_grid[i][num].remove(j)\r\n\r\n return sub_grid\r\n\r\n def step_3(self, sub_grid, num):\r\n pass\r\n\r\n \r\n\r\n\r\n def perform(self):\r\n '''\r\n Performs the step_1 and step_2 untill the Sub grid is solved\r\n Returns None\r\n '''\r\n\r\n temp = []\r\n while self.sub_grid != temp: \r\n temp = deepcopy(self.sub_grid) \r\n for i in range(len(grid)):\r\n self.sub_grid = self.step_1(self.sub_grid, i)\r\n self.sub_grid = self.step_2(self.sub_grid, i)\r\n\r\n\r\n def solve(self):\r\n '''\r\n Solves the Sub grid and prints the sub grid\r\n Returns None\r\n '''\r\n\r\n self.perform()\r\n for i in range(9):\r\n for j in range(9):\r\n print(self.sub_grid[i][j], end=' ')\r\n print()\r\n\r\n\r\n# grid = [\r\n# [0,3,0,0,1,0,0,6,0],\r\n# [7,5,0,0,3,0,0,4,8],\r\n# [0,0,6,9,8,4,3,0,0],\r\n# [0,0,3,0,0,0,8,0,0],\r\n# [9,1,2,0,0,0,6,7,4],\r\n# [0,0,4,0,0,0,5,0,0],\r\n# [0,0,1,6,7,5,2,0,0],\r\n# [6,8,0,0,9,0,0,1,5],\r\n# [0,9,0,0,4,0,0,3,0]\r\n# ]\r\n\r\n# grid = [\r\n# [6,0,0,1,0,8,2,0,3],\r\n# [0,2,0,0,4,0,0,9,0],\r\n# [8,0,3,0,0,5,4,0,0],\r\n# [5,0,4,6,0,7,0,0,9],\r\n# [0,3,0,0,0,0,0,5,0],\r\n# [7,0,0,8,0,3,1,0,2],\r\n# [0,0,1,7,0,0,9,0,6],\r\n# [0,8,0,0,3,0,0,2,0],\r\n# [3,0,2,9,0,4,0,0,5]\r\n# ]\r\ngrid = [\r\n [8,0,6,0,0,0,4,0,9],\r\n [0,0,0,0,0,0,0,0,0],\r\n [0,9,2,0,0,0,5,0,8],\r\n [0,0,9,0,7,1,3,0,0],\r\n [5,0,8,0,0,0,0,2,0],\r\n [0,0,4,0,5,0,0,0,0],\r\n [0,0,0,0,0,7,9,1,0],\r\n [0,0,0,9,0,0,0,0,7],\r\n [0,7,0,0,0,3,0,0,4],\r\n]\r\n\r\nmat = Sudoku(grid)\r\nmat.solve()\r\n", "step-ids": [ 10, 12, 13, 14, 15 ] }
[ 10, 12, 13, 14, 15 ]
''' Created on June 24, 2019 @author: Andrew Habib ''' import json import jsonref import sys from jsonsubschema.api import isSubschema def main(): assert len( sys.argv) == 3, "jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema" s1_file = sys.argv[1] s2_file = sys.argv[2] with open(s1_file, 'r') as f1: s1 = json.load(f1) # s1 = jsonref.load(f1) with open(s2_file, 'r') as f2: s2 = json.load(f2) # s2 = jsonref.load(f2) print("LHS <: RHS", isSubschema(s1, s2)) print("RHS <: LHS", isSubschema(s2, s1)) if __name__ == "__main__": main()
normal
{ "blob_id": "ba78a1e29736c4f109a0efc6f5b9993994661058", "index": 3527, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n assert len(sys.argv\n ) == 3, 'jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema'\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n print('LHS <: RHS', isSubschema(s1, s2))\n print('RHS <: LHS', isSubschema(s2, s1))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n assert len(sys.argv\n ) == 3, 'jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema'\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n print('LHS <: RHS', isSubschema(s1, s2))\n print('RHS <: LHS', isSubschema(s2, s1))\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nimport json\nimport jsonref\nimport sys\nfrom jsonsubschema.api import isSubschema\n\n\ndef main():\n assert len(sys.argv\n ) == 3, 'jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema'\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n print('LHS <: RHS', isSubschema(s1, s2))\n print('RHS <: LHS', isSubschema(s2, s1))\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "'''\nCreated on June 24, 2019\n@author: Andrew Habib\n'''\n\nimport json\nimport jsonref\nimport sys\n\nfrom jsonsubschema.api import isSubschema\n\n\ndef main():\n\n assert len(\n sys.argv) == 3, \"jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema\"\n\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n # s1 = jsonref.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n # s2 = jsonref.load(f2)\n\n print(\"LHS <: RHS\", isSubschema(s1, s2))\n print(\"RHS <: LHS\", isSubschema(s2, s1))\n\n\nif __name__ == \"__main__\":\n\n main()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> urlpatterns = [path('news/', NewsCreateListView.as_view()), path( 'news_detailed/<int:id>/', NewsDetailGenericView.as_view())] <|reserved_special_token_1|> from django.contrib import admin from django.urls import path from .views import NewsCreateListView, NewsDetailGenericView urlpatterns = [path('news/', NewsCreateListView.as_view()), path( 'news_detailed/<int:id>/', NewsDetailGenericView.as_view())] <|reserved_special_token_1|> from django.contrib import admin from django.urls import path from .views import NewsCreateListView, NewsDetailGenericView urlpatterns = [ path('news/', NewsCreateListView.as_view()), path('news_detailed/<int:id>/', NewsDetailGenericView.as_view()), ]
flexible
{ "blob_id": "afdb14d60374049753b3c980c717a13456c7ff5c", "index": 9745, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [path('news/', NewsCreateListView.as_view()), path(\n 'news_detailed/<int:id>/', NewsDetailGenericView.as_view())]\n", "step-3": "from django.contrib import admin\nfrom django.urls import path\nfrom .views import NewsCreateListView, NewsDetailGenericView\nurlpatterns = [path('news/', NewsCreateListView.as_view()), path(\n 'news_detailed/<int:id>/', NewsDetailGenericView.as_view())]\n", "step-4": "from django.contrib import admin\nfrom django.urls import path\nfrom .views import NewsCreateListView, NewsDetailGenericView\n\n\nurlpatterns = [\n path('news/', NewsCreateListView.as_view()),\n path('news_detailed/<int:id>/', NewsDetailGenericView.as_view()),\n\n]", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python import crawl import logging from elasticsearch import Elasticsearch if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logging.getLogger("crawl").setLevel(logging.INFO) logging.getLogger("elasticsearch").setLevel(logging.ERROR) es = Elasticsearch() crawl.crawl_domain(es, "aaronparecki.com")
normal
{ "blob_id": "21d07c2b80aa00d0c75da342d37195b6829593b6", "index": 1110, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n logging.basicConfig(level=logging.INFO)\n logging.getLogger('crawl').setLevel(logging.INFO)\n logging.getLogger('elasticsearch').setLevel(logging.ERROR)\n es = Elasticsearch()\n crawl.crawl_domain(es, 'aaronparecki.com')\n", "step-3": "import crawl\nimport logging\nfrom elasticsearch import Elasticsearch\nif __name__ == '__main__':\n logging.basicConfig(level=logging.INFO)\n logging.getLogger('crawl').setLevel(logging.INFO)\n logging.getLogger('elasticsearch').setLevel(logging.ERROR)\n es = Elasticsearch()\n crawl.crawl_domain(es, 'aaronparecki.com')\n", "step-4": "#!/usr/bin/env python \nimport crawl\nimport logging\nfrom elasticsearch import Elasticsearch\n\n\nif __name__ == '__main__':\n logging.basicConfig(level=logging.INFO)\n logging.getLogger(\"crawl\").setLevel(logging.INFO)\n logging.getLogger(\"elasticsearch\").setLevel(logging.ERROR)\n \n es = Elasticsearch()\n crawl.crawl_domain(es, \"aaronparecki.com\")", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from function import * from .propogation import optimize from .initialize import initialize_with_zeros def predict(weight, intercept, x_vector): """ Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Returns: Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X """ m = x_vector.shape[1] y_prediction = np.zeros((1, m)) weight = weight.reshape(x_vector.shape[0], 1) # Compute vector "A" predicting the probabilities of a cat being present in the picture yhat = sigmoid(np.dot(weight.T, x_vector) + intercept) for i in range(yhat.shape[1]): # Convert probabilities A[0,i] to actual predictions p[0,i] if yhat[0][i] > 0.5: y_prediction[0][i] = 1 else: y_prediction[0][i] = 0 assert (y_prediction.shape == (1, m)) return y_prediction class Logistic(object): """ This class provides the flexibility to run logistic regression to your data set """ def __init__(self, *args, **kwargs): """ Initializing the model parameter :param args: :param kwargs: X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5 """ # Initializing the test & training set self._x_train = kwargs['X_train'] self._y_train = kwargs['Y_train'] self._x_test = kwargs['X_test'] self._y_test = kwargs['Y_test'] self.num_iteration = kwargs['num_iteration'] self.learning_rate = kwargs['learning_rate'] def fit(self): """ function will fit the model with initialized parameter :return: costs, y_prediction_test, y_prediction_train, weight, intercept, self.learning_rate, self.num_iteration """ # initialize parameters with zeros (≈ 1 line of code) weight, intercept = initialize_with_zeros(self._x_train.shape[0]) # Gradient descent (≈ 1 line of code) parameters, grads, costs = optimize(weight, intercept, self._x_train, self._y_train, self.num_iteration, self.learning_rate ) # Retrieve parameters w and b from dictionary "parameters" weight = parameters["w"] intercept = parameters["b"] # Predict test/train set examples (≈ 2 lines of code) y_prediction_test = predict(weight, intercept, self._x_test) y_prediction_train = predict(weight, intercept, self._x_train) # Print train/test Errors print("train accuracy: {} %".format(100 - np.mean(np.abs(y_prediction_train - self._y_train)) * 100)) print("test accuracy: {} %".format(100 - np.mean(np.abs(y_prediction_test - self._x_test)) * 100)) return {"costs": costs, "Y_prediction_test": y_prediction_test, "Y_prediction_train": y_prediction_train, "w": weight, "b": intercept, "learning_rate": self.learning_rate, "num_iterations": self.num_iteration}
normal
{ "blob_id": "63360ec9693a916375b49d0881008b1d7d4ec953", "index": 4546, "step-1": "<mask token>\n\n\nclass Logistic(object):\n <mask token>\n\n def __init__(self, *args, **kwargs):\n \"\"\"\n Initializing the model parameter\n :param args:\n :param kwargs:\n X_train,\n Y_train,\n X_test,\n Y_test,\n num_iterations = 2000,\n learning_rate = 0.5\n \"\"\"\n self._x_train = kwargs['X_train']\n self._y_train = kwargs['Y_train']\n self._x_test = kwargs['X_test']\n self._y_test = kwargs['Y_test']\n self.num_iteration = kwargs['num_iteration']\n self.learning_rate = kwargs['learning_rate']\n\n def fit(self):\n \"\"\"\n function will fit the model with initialized parameter\n :return:\n costs,\n y_prediction_test,\n y_prediction_train,\n weight,\n intercept,\n self.learning_rate,\n self.num_iteration\n \"\"\"\n weight, intercept = initialize_with_zeros(self._x_train.shape[0])\n parameters, grads, costs = optimize(weight, intercept, self.\n _x_train, self._y_train, self.num_iteration, self.learning_rate)\n weight = parameters['w']\n intercept = parameters['b']\n y_prediction_test = predict(weight, intercept, self._x_test)\n y_prediction_train = predict(weight, intercept, self._x_train)\n print('train accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_train - self._y_train)) * 100))\n print('test accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_test - self._x_test)) * 100))\n return {'costs': costs, 'Y_prediction_test': y_prediction_test,\n 'Y_prediction_train': y_prediction_train, 'w': weight, 'b':\n intercept, 'learning_rate': self.learning_rate,\n 'num_iterations': self.num_iteration}\n", "step-2": "<mask token>\n\n\nclass Logistic(object):\n \"\"\"\n This class provides the flexibility to run\n logistic regression to your data set\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n \"\"\"\n Initializing the model parameter\n :param args:\n :param kwargs:\n X_train,\n Y_train,\n X_test,\n Y_test,\n num_iterations = 2000,\n learning_rate = 0.5\n \"\"\"\n self._x_train = kwargs['X_train']\n self._y_train = kwargs['Y_train']\n self._x_test = kwargs['X_test']\n self._y_test = kwargs['Y_test']\n self.num_iteration = kwargs['num_iteration']\n self.learning_rate = kwargs['learning_rate']\n\n def fit(self):\n \"\"\"\n function will fit the model with initialized parameter\n :return:\n costs,\n y_prediction_test,\n y_prediction_train,\n weight,\n intercept,\n self.learning_rate,\n self.num_iteration\n \"\"\"\n weight, intercept = initialize_with_zeros(self._x_train.shape[0])\n parameters, grads, costs = optimize(weight, intercept, self.\n _x_train, self._y_train, self.num_iteration, self.learning_rate)\n weight = parameters['w']\n intercept = parameters['b']\n y_prediction_test = predict(weight, intercept, self._x_test)\n y_prediction_train = predict(weight, intercept, self._x_train)\n print('train accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_train - self._y_train)) * 100))\n print('test accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_test - self._x_test)) * 100))\n return {'costs': costs, 'Y_prediction_test': y_prediction_test,\n 'Y_prediction_train': y_prediction_train, 'w': weight, 'b':\n intercept, 'learning_rate': self.learning_rate,\n 'num_iterations': self.num_iteration}\n", "step-3": "<mask token>\n\n\ndef predict(weight, intercept, x_vector):\n \"\"\"\n Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)\n\n Arguments:\n w -- weights, a numpy array of size (num_px * num_px * 3, 1)\n b -- bias, a scalar\n X -- data of size (num_px * num_px * 3, number of examples)\n\n Returns:\n Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X\n \"\"\"\n m = x_vector.shape[1]\n y_prediction = np.zeros((1, m))\n weight = weight.reshape(x_vector.shape[0], 1)\n yhat = sigmoid(np.dot(weight.T, x_vector) + intercept)\n for i in range(yhat.shape[1]):\n if yhat[0][i] > 0.5:\n y_prediction[0][i] = 1\n else:\n y_prediction[0][i] = 0\n assert y_prediction.shape == (1, m)\n return y_prediction\n\n\nclass Logistic(object):\n \"\"\"\n This class provides the flexibility to run\n logistic regression to your data set\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n \"\"\"\n Initializing the model parameter\n :param args:\n :param kwargs:\n X_train,\n Y_train,\n X_test,\n Y_test,\n num_iterations = 2000,\n learning_rate = 0.5\n \"\"\"\n self._x_train = kwargs['X_train']\n self._y_train = kwargs['Y_train']\n self._x_test = kwargs['X_test']\n self._y_test = kwargs['Y_test']\n self.num_iteration = kwargs['num_iteration']\n self.learning_rate = kwargs['learning_rate']\n\n def fit(self):\n \"\"\"\n function will fit the model with initialized parameter\n :return:\n costs,\n y_prediction_test,\n y_prediction_train,\n weight,\n intercept,\n self.learning_rate,\n self.num_iteration\n \"\"\"\n weight, intercept = initialize_with_zeros(self._x_train.shape[0])\n parameters, grads, costs = optimize(weight, intercept, self.\n _x_train, self._y_train, self.num_iteration, self.learning_rate)\n weight = parameters['w']\n intercept = parameters['b']\n y_prediction_test = predict(weight, intercept, self._x_test)\n y_prediction_train = predict(weight, intercept, self._x_train)\n print('train accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_train - self._y_train)) * 100))\n print('test accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_test - self._x_test)) * 100))\n return {'costs': costs, 'Y_prediction_test': y_prediction_test,\n 'Y_prediction_train': y_prediction_train, 'w': weight, 'b':\n intercept, 'learning_rate': self.learning_rate,\n 'num_iterations': self.num_iteration}\n", "step-4": "from function import *\nfrom .propogation import optimize\nfrom .initialize import initialize_with_zeros\n\n\ndef predict(weight, intercept, x_vector):\n \"\"\"\n Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)\n\n Arguments:\n w -- weights, a numpy array of size (num_px * num_px * 3, 1)\n b -- bias, a scalar\n X -- data of size (num_px * num_px * 3, number of examples)\n\n Returns:\n Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X\n \"\"\"\n m = x_vector.shape[1]\n y_prediction = np.zeros((1, m))\n weight = weight.reshape(x_vector.shape[0], 1)\n yhat = sigmoid(np.dot(weight.T, x_vector) + intercept)\n for i in range(yhat.shape[1]):\n if yhat[0][i] > 0.5:\n y_prediction[0][i] = 1\n else:\n y_prediction[0][i] = 0\n assert y_prediction.shape == (1, m)\n return y_prediction\n\n\nclass Logistic(object):\n \"\"\"\n This class provides the flexibility to run\n logistic regression to your data set\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n \"\"\"\n Initializing the model parameter\n :param args:\n :param kwargs:\n X_train,\n Y_train,\n X_test,\n Y_test,\n num_iterations = 2000,\n learning_rate = 0.5\n \"\"\"\n self._x_train = kwargs['X_train']\n self._y_train = kwargs['Y_train']\n self._x_test = kwargs['X_test']\n self._y_test = kwargs['Y_test']\n self.num_iteration = kwargs['num_iteration']\n self.learning_rate = kwargs['learning_rate']\n\n def fit(self):\n \"\"\"\n function will fit the model with initialized parameter\n :return:\n costs,\n y_prediction_test,\n y_prediction_train,\n weight,\n intercept,\n self.learning_rate,\n self.num_iteration\n \"\"\"\n weight, intercept = initialize_with_zeros(self._x_train.shape[0])\n parameters, grads, costs = optimize(weight, intercept, self.\n _x_train, self._y_train, self.num_iteration, self.learning_rate)\n weight = parameters['w']\n intercept = parameters['b']\n y_prediction_test = predict(weight, intercept, self._x_test)\n y_prediction_train = predict(weight, intercept, self._x_train)\n print('train accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_train - self._y_train)) * 100))\n print('test accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_test - self._x_test)) * 100))\n return {'costs': costs, 'Y_prediction_test': y_prediction_test,\n 'Y_prediction_train': y_prediction_train, 'w': weight, 'b':\n intercept, 'learning_rate': self.learning_rate,\n 'num_iterations': self.num_iteration}\n", "step-5": "from function import *\nfrom .propogation import optimize\nfrom .initialize import initialize_with_zeros\n\n\ndef predict(weight, intercept, x_vector):\n \"\"\"\n Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)\n\n Arguments:\n w -- weights, a numpy array of size (num_px * num_px * 3, 1)\n b -- bias, a scalar\n X -- data of size (num_px * num_px * 3, number of examples)\n\n Returns:\n Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X\n \"\"\"\n\n m = x_vector.shape[1]\n y_prediction = np.zeros((1, m))\n weight = weight.reshape(x_vector.shape[0], 1)\n\n # Compute vector \"A\" predicting the probabilities of a cat being present in the picture\n yhat = sigmoid(np.dot(weight.T, x_vector) + intercept)\n for i in range(yhat.shape[1]):\n\n # Convert probabilities A[0,i] to actual predictions p[0,i]\n if yhat[0][i] > 0.5:\n y_prediction[0][i] = 1\n else:\n y_prediction[0][i] = 0\n\n assert (y_prediction.shape == (1, m))\n\n return y_prediction\n\n\nclass Logistic(object):\n \"\"\"\n This class provides the flexibility to run\n logistic regression to your data set\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n \"\"\"\n Initializing the model parameter\n :param args:\n :param kwargs:\n X_train,\n Y_train,\n X_test,\n Y_test,\n num_iterations = 2000,\n learning_rate = 0.5\n \"\"\"\n # Initializing the test & training set\n self._x_train = kwargs['X_train']\n self._y_train = kwargs['Y_train']\n self._x_test = kwargs['X_test']\n self._y_test = kwargs['Y_test']\n\n self.num_iteration = kwargs['num_iteration']\n self.learning_rate = kwargs['learning_rate']\n\n def fit(self):\n \"\"\"\n function will fit the model with initialized parameter\n :return:\n costs,\n y_prediction_test,\n y_prediction_train,\n weight,\n intercept,\n self.learning_rate,\n self.num_iteration\n \"\"\"\n # initialize parameters with zeros (≈ 1 line of code)\n weight, intercept = initialize_with_zeros(self._x_train.shape[0])\n\n # Gradient descent (≈ 1 line of code)\n parameters, grads, costs = optimize(weight,\n intercept,\n self._x_train,\n self._y_train,\n self.num_iteration,\n self.learning_rate\n )\n\n # Retrieve parameters w and b from dictionary \"parameters\"\n weight = parameters[\"w\"]\n intercept = parameters[\"b\"]\n\n # Predict test/train set examples (≈ 2 lines of code)\n y_prediction_test = predict(weight, intercept, self._x_test)\n y_prediction_train = predict(weight, intercept, self._x_train)\n\n # Print train/test Errors\n print(\"train accuracy: {} %\".format(100 - np.mean(np.abs(y_prediction_train - self._y_train)) * 100))\n print(\"test accuracy: {} %\".format(100 - np.mean(np.abs(y_prediction_test - self._x_test)) * 100))\n\n return {\"costs\": costs,\n \"Y_prediction_test\": y_prediction_test,\n \"Y_prediction_train\": y_prediction_train,\n \"w\": weight,\n \"b\": intercept,\n \"learning_rate\": self.learning_rate,\n \"num_iterations\": self.num_iteration}\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def dot_product(a, b): ans = 0 for i in range(len(a)): ans += a[i] * b[i] return ans <|reserved_special_token_0|> <|reserved_special_token_1|> def dot_product(a, b): ans = 0 for i in range(len(a)): ans += a[i] * b[i] return ans <|reserved_special_token_0|> print(dot_product(a, b)) <|reserved_special_token_1|> def dot_product(a, b): ans = 0 for i in range(len(a)): ans += a[i] * b[i] return ans n = int(input()) a = sorted(list(map(int, input().split()))) b = sorted(list(map(int, input().split()))) print(dot_product(a, b))
flexible
{ "blob_id": "fc273a286a462cb673edaa2de2ecc6b9ca631004", "index": 9824, "step-1": "<mask token>\n", "step-2": "def dot_product(a, b):\n ans = 0\n for i in range(len(a)):\n ans += a[i] * b[i]\n return ans\n\n\n<mask token>\n", "step-3": "def dot_product(a, b):\n ans = 0\n for i in range(len(a)):\n ans += a[i] * b[i]\n return ans\n\n\n<mask token>\nprint(dot_product(a, b))\n", "step-4": "def dot_product(a, b):\n ans = 0\n for i in range(len(a)):\n ans += a[i] * b[i]\n return ans\n\n\nn = int(input())\na = sorted(list(map(int, input().split())))\nb = sorted(list(map(int, input().split())))\nprint(dot_product(a, b))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding: utf-8 -*- # @Time : 2018/12/13 21:32 # @Author : sundongjian # @Email : [email protected] # @File : __init__.py.py # @Software: PyCharm
normal
{ "blob_id": "00ec56420831d8f4ab14259c7b07f1be0bcb7d78", "index": 9161, "step-1": "# -*- coding: utf-8 -*-\r\n# @Time : 2018/12/13 21:32\r\n# @Author : sundongjian\r\n# @Email : [email protected]\r\n# @File : __init__.py.py\r\n# @Software: PyCharm", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 1 ] }
[ 1 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> rc('font', family=font_name) <|reserved_special_token_0|> print(df1) df1.plot() plt.show() <|reserved_special_token_1|> <|reserved_special_token_0|> font_name = font_manager.FontProperties(fname='c:/windows/Fonts/malgun.ttf' ).get_name() rc('font', family=font_name) rcParams['axes.unicode_minus'] = False df1 = pd.DataFrame(np.random.randn(100, 3), index=pd.date_range('1/1/2019', periods=100), columns=['A', 'B', 'C']).cumsum() print(df1) df1.plot() plt.show() <|reserved_special_token_1|> import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import font_manager, rc, rcParams font_name = font_manager.FontProperties(fname='c:/windows/Fonts/malgun.ttf' ).get_name() rc('font', family=font_name) rcParams['axes.unicode_minus'] = False df1 = pd.DataFrame(np.random.randn(100, 3), index=pd.date_range('1/1/2019', periods=100), columns=['A', 'B', 'C']).cumsum() print(df1) df1.plot() plt.show() <|reserved_special_token_1|> import pandas as pd import numpy as np import matplotlib.pyplot as plt #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # 차트에 한글 가능하도록 from matplotlib import font_manager, rc, rcParams font_name = font_manager.FontProperties( fname="c:/windows/Fonts/malgun.ttf").get_name() rc('font',family=font_name) rcParams['axes.unicode_minus'] = False # 부호표시 (-,+) 사용할때 ### #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # 100행 3열 랜덤생성 2019,1,1 부터 100일 df1 = pd.DataFrame(np.random.randn(100, 3), index=pd.date_range('1/1/2019', periods=100), columns=['A','B','C']).cumsum() # 값을 누적 시켜 넣는다. print(df1) # pandas 의 DataFrame 에서 내부적으로 matplotlib 를 import 해서 연결되어 있기때문에 plot 함수를 사용해서 그려준다. df1.plot() plt.show()
flexible
{ "blob_id": "fb82724aab7e0819c9921d41dcb612b304b25753", "index": 9723, "step-1": "<mask token>\n", "step-2": "<mask token>\nrc('font', family=font_name)\n<mask token>\nprint(df1)\ndf1.plot()\nplt.show()\n", "step-3": "<mask token>\nfont_name = font_manager.FontProperties(fname='c:/windows/Fonts/malgun.ttf'\n ).get_name()\nrc('font', family=font_name)\nrcParams['axes.unicode_minus'] = False\ndf1 = pd.DataFrame(np.random.randn(100, 3), index=pd.date_range('1/1/2019',\n periods=100), columns=['A', 'B', 'C']).cumsum()\nprint(df1)\ndf1.plot()\nplt.show()\n", "step-4": "import pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom matplotlib import font_manager, rc, rcParams\nfont_name = font_manager.FontProperties(fname='c:/windows/Fonts/malgun.ttf'\n ).get_name()\nrc('font', family=font_name)\nrcParams['axes.unicode_minus'] = False\ndf1 = pd.DataFrame(np.random.randn(100, 3), index=pd.date_range('1/1/2019',\n periods=100), columns=['A', 'B', 'C']).cumsum()\nprint(df1)\ndf1.plot()\nplt.show()\n", "step-5": "import pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n# 차트에 한글 가능하도록\nfrom matplotlib import font_manager, rc, rcParams\nfont_name = font_manager.FontProperties(\n fname=\"c:/windows/Fonts/malgun.ttf\").get_name()\nrc('font',family=font_name)\nrcParams['axes.unicode_minus'] = False # 부호표시 (-,+) 사용할때\n###\n#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n\n# 100행 3열 랜덤생성 2019,1,1 부터 100일\ndf1 = pd.DataFrame(np.random.randn(100, 3), index=pd.date_range('1/1/2019', periods=100),\n columns=['A','B','C']).cumsum() # 값을 누적 시켜 넣는다.\n\nprint(df1)\n\n# pandas 의 DataFrame 에서 내부적으로 matplotlib 를 import 해서 연결되어 있기때문에 plot 함수를 사용해서 그려준다.\ndf1.plot()\nplt.show()\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def merge_model(model_1, model_2): """ keras将两个独立的模型融合起来 :param model_1: :param model_2: :return: """ inp1 = model_1.input inp2 = model_2.input r1 = model_1.output r2 = model_2.output x = keras.layers.Concatenate(axis=1)([r1, r2]) model = Model(inputs=[inp1, inp2], outputs=x) return model def addLayers_model(model): """ 修改模型(模型加层) 采用 keras 的 Concatenate 进行特征融合之后,模型加层的 add 将无效,所以采用这种方案进行加层 :param model: 待扩层的模型 :return: """ origin_model = model for layer in origin_model.layers: layer.trainable = False inp = origin_model.input x = origin_model.output den = Dense(512, name='fine_dense')(x) l = Dropout(0.5)(den) result = Dense(10, activation='softmax')(l) model = Model(input=inp, outputs=result) return model <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def merge_model(model_1, model_2): """ keras将两个独立的模型融合起来 :param model_1: :param model_2: :return: """ inp1 = model_1.input inp2 = model_2.input r1 = model_1.output r2 = model_2.output x = keras.layers.Concatenate(axis=1)([r1, r2]) model = Model(inputs=[inp1, inp2], outputs=x) return model def addLayers_model(model): """ 修改模型(模型加层) 采用 keras 的 Concatenate 进行特征融合之后,模型加层的 add 将无效,所以采用这种方案进行加层 :param model: 待扩层的模型 :return: """ origin_model = model for layer in origin_model.layers: layer.trainable = False inp = origin_model.input x = origin_model.output den = Dense(512, name='fine_dense')(x) l = Dropout(0.5)(den) result = Dense(10, activation='softmax')(l) model = Model(input=inp, outputs=result) return model <|reserved_special_token_0|> model1.add(Conv1D(filters=8, kernel_size=3, input_shape=input_shape_1D, padding='same', activation='relu')) model1.add(MaxPooling1D(pool_size=2, padding='same')) model1.add(Conv1D(filters=16, kernel_size=3, input_shape=(1, 512), padding= 'same', activation='relu')) model1.add(MaxPooling1D(pool_size=2, padding='same')) <|reserved_special_token_0|> model1.add(LSTM(32, return_sequences=True)) model1.add(Flatten()) <|reserved_special_token_0|> model2.add(Conv2D(filters=8, kernel_size=(3, 3), input_shape=input_shape_2D, padding='same', activation='relu')) model2.add(MaxPooling2D(pool_size=(2, 2), padding='same')) model2.add(Conv2D(filters=16, kernel_size=(3, 3), input_shape=(16, 16, 1), padding='same', activation='relu')) model2.add(MaxPooling2D(pool_size=(2, 2), padding='same')) <|reserved_special_token_0|> print('model2两层卷积后的输出形状:', model2.output_shape) model2.add(Reshape((64, 16))) model2.add(LSTM(32, return_sequences=True)) model2.add(Flatten()) <|reserved_special_token_0|> model.summary() print('model.outputs:', model.output.shape) <|reserved_special_token_0|> print(model.summary()) plot_model(model, to_file='model/1D2DLSTM_cross.png') <|reserved_special_token_0|> model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[ 'accuracy']) model.save('model/1D2DLSTM_cross.h5') <|reserved_special_token_1|> <|reserved_special_token_0|> def merge_model(model_1, model_2): """ keras将两个独立的模型融合起来 :param model_1: :param model_2: :return: """ inp1 = model_1.input inp2 = model_2.input r1 = model_1.output r2 = model_2.output x = keras.layers.Concatenate(axis=1)([r1, r2]) model = Model(inputs=[inp1, inp2], outputs=x) return model def addLayers_model(model): """ 修改模型(模型加层) 采用 keras 的 Concatenate 进行特征融合之后,模型加层的 add 将无效,所以采用这种方案进行加层 :param model: 待扩层的模型 :return: """ origin_model = model for layer in origin_model.layers: layer.trainable = False inp = origin_model.input x = origin_model.output den = Dense(512, name='fine_dense')(x) l = Dropout(0.5)(den) result = Dense(10, activation='softmax')(l) model = Model(input=inp, outputs=result) return model input_shape_1D = 1024, 1 input_shape_2D = 32, 32, 1 model1 = Sequential() model1.add(Conv1D(filters=8, kernel_size=3, input_shape=input_shape_1D, padding='same', activation='relu')) model1.add(MaxPooling1D(pool_size=2, padding='same')) model1.add(Conv1D(filters=16, kernel_size=3, input_shape=(1, 512), padding= 'same', activation='relu')) model1.add(MaxPooling1D(pool_size=2, padding='same')) <|reserved_special_token_0|> model1.add(LSTM(32, return_sequences=True)) model1.add(Flatten()) model2 = Sequential() model2.add(Conv2D(filters=8, kernel_size=(3, 3), input_shape=input_shape_2D, padding='same', activation='relu')) model2.add(MaxPooling2D(pool_size=(2, 2), padding='same')) model2.add(Conv2D(filters=16, kernel_size=(3, 3), input_shape=(16, 16, 1), padding='same', activation='relu')) model2.add(MaxPooling2D(pool_size=(2, 2), padding='same')) <|reserved_special_token_0|> print('model2两层卷积后的输出形状:', model2.output_shape) model2.add(Reshape((64, 16))) model2.add(LSTM(32, return_sequences=True)) model2.add(Flatten()) model = merge_model(model1, model2) model.summary() print('model.outputs:', model.output.shape) model = addLayers_model(model) print(model.summary()) plot_model(model, to_file='model/1D2DLSTM_cross.png') adam = keras.optimizers.Adam() model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[ 'accuracy']) model.save('model/1D2DLSTM_cross.h5') <|reserved_special_token_1|> <|reserved_special_token_0|> import keras from keras.models import Sequential from keras.layers import Conv1D, Conv2D, MaxPooling1D, MaxPooling2D, Flatten, Dense, Dropout, LSTM, Reshape from keras import Model from keras.utils import plot_model def merge_model(model_1, model_2): """ keras将两个独立的模型融合起来 :param model_1: :param model_2: :return: """ inp1 = model_1.input inp2 = model_2.input r1 = model_1.output r2 = model_2.output x = keras.layers.Concatenate(axis=1)([r1, r2]) model = Model(inputs=[inp1, inp2], outputs=x) return model def addLayers_model(model): """ 修改模型(模型加层) 采用 keras 的 Concatenate 进行特征融合之后,模型加层的 add 将无效,所以采用这种方案进行加层 :param model: 待扩层的模型 :return: """ origin_model = model for layer in origin_model.layers: layer.trainable = False inp = origin_model.input x = origin_model.output den = Dense(512, name='fine_dense')(x) l = Dropout(0.5)(den) result = Dense(10, activation='softmax')(l) model = Model(input=inp, outputs=result) return model input_shape_1D = 1024, 1 input_shape_2D = 32, 32, 1 model1 = Sequential() model1.add(Conv1D(filters=8, kernel_size=3, input_shape=input_shape_1D, padding='same', activation='relu')) model1.add(MaxPooling1D(pool_size=2, padding='same')) model1.add(Conv1D(filters=16, kernel_size=3, input_shape=(1, 512), padding= 'same', activation='relu')) model1.add(MaxPooling1D(pool_size=2, padding='same')) <|reserved_special_token_0|> model1.add(LSTM(32, return_sequences=True)) model1.add(Flatten()) model2 = Sequential() model2.add(Conv2D(filters=8, kernel_size=(3, 3), input_shape=input_shape_2D, padding='same', activation='relu')) model2.add(MaxPooling2D(pool_size=(2, 2), padding='same')) model2.add(Conv2D(filters=16, kernel_size=(3, 3), input_shape=(16, 16, 1), padding='same', activation='relu')) model2.add(MaxPooling2D(pool_size=(2, 2), padding='same')) <|reserved_special_token_0|> print('model2两层卷积后的输出形状:', model2.output_shape) model2.add(Reshape((64, 16))) model2.add(LSTM(32, return_sequences=True)) model2.add(Flatten()) model = merge_model(model1, model2) model.summary() print('model.outputs:', model.output.shape) model = addLayers_model(model) print(model.summary()) plot_model(model, to_file='model/1D2DLSTM_cross.png') adam = keras.optimizers.Adam() model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[ 'accuracy']) model.save('model/1D2DLSTM_cross.h5') <|reserved_special_token_1|> #!/usr/bin/env python # encoding: utf-8 ''' 1D2DCNN抽取特征,LSTM后提取特征,最后将提取的特征进行拼接,CNN与LSTM是交叉在一起的 ''' # 导入相关的包 import keras # 导入相关层的结构 from keras.models import Sequential from keras.layers import Conv1D, Conv2D, MaxPooling1D, MaxPooling2D, Flatten, Dense, Dropout,LSTM,Reshape from keras import Model # 可视化神经网络 from keras.utils import plot_model def merge_model(model_1, model_2): ''' keras将两个独立的模型融合起来 :param model_1: :param model_2: :return: ''' # model_1.load_weights('model_1_weight.h5')#这里可以加载各自权重 # model_2.load_weights('model_2_weight.h5')#可以是预训练好的模型权重(迁移学习) inp1 = model_1.input # 第一个模型的参数 inp2 = model_2.input # 第二个模型的参数 r1 = model_1.output r2 = model_2.output x = keras.layers.Concatenate(axis=1)([r1, r2]) model = Model(inputs=[inp1, inp2], outputs=x) return model def addLayers_model(model): ''' 修改模型(模型加层) 采用 keras 的 Concatenate 进行特征融合之后,模型加层的 add 将无效,所以采用这种方案进行加层 :param model: 待扩层的模型 :return: ''' origin_model = model for layer in origin_model.layers: layer.trainable = False # 原来的不训练,冻结网络层 inp = origin_model.input x = origin_model.output den = Dense(512, name="fine_dense")(x) l = Dropout(0.5)(den) result = Dense(10, activation="softmax")(l) model = Model(input=inp, outputs=result) return model input_shape_1D = (1024, 1) input_shape_2D = (32, 32, 1) # 构建模型 # 网络结构(卷积层:relu - 池化层 - 卷积层 - 池化层 - Flatten - 汇聚层 - 全连接层 - Dropout - softmax) # ====================1、 1D部分 ============================== model1 = Sequential() # Conv1D:8 @ 1*1024。8个过滤器(卷积核),卷积核大小设置为3 model1.add(Conv1D(filters=8, kernel_size=(3), input_shape=input_shape_1D, padding='same', activation='relu')) # MaxPooling1D:8 @ 1*512。 model1.add(MaxPooling1D(pool_size=(2), padding='same')) # Conv1D:16 @ 1*512。16个过滤器,大小设置为3 model1.add(Conv1D(filters=16, kernel_size=(3), input_shape=(1, 512), padding='same', activation='relu')) # MaxPooling1D:16 @ 1*256。 model1.add(MaxPooling1D(pool_size=(2), padding='same')) ''' # Conv1D: 16 @ 1*256 。16个过滤器,大小设置为3 model1.add(Conv1D(filters=16, kernel_size=(3), input_shape=(1, 512), padding='same', activation='relu')) # MaxPooling1D:16 @ 1*128。 model1.add(MaxPooling1D(pool_size=(2), padding='same')) ''' model1.add(LSTM(32,return_sequences=True)) model1.add(Flatten()) # 压平:将输出压平为1维 # ============================================================= # ============ ======== 2、 2D部分 ============================ model2 = Sequential() # Conv2D:8 @ 32*32。8个过滤器(卷积核),卷积核大小设置为3*3 model2.add(Conv2D(filters=8, kernel_size=(3, 3), input_shape=input_shape_2D, padding='same', activation='relu')) # MaxPooling2D:8 @ 16*16。 model2.add(MaxPooling2D(pool_size=(2, 2), padding='same')) # Conv2D:16 @ 16*16。16个过滤器,卷积核大小设置为3*3 model2.add(Conv2D(filters=16, kernel_size=(3, 3), input_shape=(16, 16, 1), padding='same', activation='relu')) # MaxPooling2D:16 @ 8*8。 model2.add(MaxPooling2D(pool_size=(2, 2), padding='same')) ''' # Conv2D:16 @ 8*8。16个过滤器,卷积核大小设置为3*3 model2.add(Conv2D(filters=16, kernel_size=(3, 3), input_shape=(8, 8, 1), padding='same', activation='relu')) # MaxPooling2D:16 @ 4*4。 model2.add(MaxPooling2D(pool_size=(2, 2), padding='same')) ''' print("model2两层卷积后的输出形状:",model2.output_shape) # (None,4,4,16) model2.add(Reshape((64,16))) #(None,16,16) model2.add(LSTM(32,return_sequences=True)) model2.add(Flatten()) # ============================================================= # ==================== 3、汇聚层 =============================== # 融合部分 model = merge_model(model1, model2) model.summary() # ============================================================= print("model.outputs:",model.output.shape) # ============= 4、 全连接层,dropout,分类层 ==================== model = addLayers_model(model) print(model.summary()) plot_model(model, to_file='model/1D2DLSTM_cross.png') # ============================================================= # ==================== 5、模型训练指标 ========================== # adam优化器, lr:初始学习率为0.1,学习率下降递减采用:ReduceLROnPlateau,在 model.fit 的回调函数中设置 # adam = keras.optimizers.Adam(lr=0.1) adam = keras.optimizers.Adam() model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) # ============================================================= # 保存模型结构 model.save('model/1D2DLSTM_cross.h5')
flexible
{ "blob_id": "cce1b6f8e4b3f78adfa2243fe49b4994d35c5a38", "index": 9898, "step-1": "<mask token>\n\n\ndef merge_model(model_1, model_2):\n \"\"\"\n keras将两个独立的模型融合起来\n :param model_1:\n :param model_2:\n :return:\n \"\"\"\n inp1 = model_1.input\n inp2 = model_2.input\n r1 = model_1.output\n r2 = model_2.output\n x = keras.layers.Concatenate(axis=1)([r1, r2])\n model = Model(inputs=[inp1, inp2], outputs=x)\n return model\n\n\ndef addLayers_model(model):\n \"\"\"\n 修改模型(模型加层)\n 采用 keras 的 Concatenate 进行特征融合之后,模型加层的 add 将无效,所以采用这种方案进行加层\n :param model: 待扩层的模型\n :return:\n \"\"\"\n origin_model = model\n for layer in origin_model.layers:\n layer.trainable = False\n inp = origin_model.input\n x = origin_model.output\n den = Dense(512, name='fine_dense')(x)\n l = Dropout(0.5)(den)\n result = Dense(10, activation='softmax')(l)\n model = Model(input=inp, outputs=result)\n return model\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef merge_model(model_1, model_2):\n \"\"\"\n keras将两个独立的模型融合起来\n :param model_1:\n :param model_2:\n :return:\n \"\"\"\n inp1 = model_1.input\n inp2 = model_2.input\n r1 = model_1.output\n r2 = model_2.output\n x = keras.layers.Concatenate(axis=1)([r1, r2])\n model = Model(inputs=[inp1, inp2], outputs=x)\n return model\n\n\ndef addLayers_model(model):\n \"\"\"\n 修改模型(模型加层)\n 采用 keras 的 Concatenate 进行特征融合之后,模型加层的 add 将无效,所以采用这种方案进行加层\n :param model: 待扩层的模型\n :return:\n \"\"\"\n origin_model = model\n for layer in origin_model.layers:\n layer.trainable = False\n inp = origin_model.input\n x = origin_model.output\n den = Dense(512, name='fine_dense')(x)\n l = Dropout(0.5)(den)\n result = Dense(10, activation='softmax')(l)\n model = Model(input=inp, outputs=result)\n return model\n\n\n<mask token>\nmodel1.add(Conv1D(filters=8, kernel_size=3, input_shape=input_shape_1D,\n padding='same', activation='relu'))\nmodel1.add(MaxPooling1D(pool_size=2, padding='same'))\nmodel1.add(Conv1D(filters=16, kernel_size=3, input_shape=(1, 512), padding=\n 'same', activation='relu'))\nmodel1.add(MaxPooling1D(pool_size=2, padding='same'))\n<mask token>\nmodel1.add(LSTM(32, return_sequences=True))\nmodel1.add(Flatten())\n<mask token>\nmodel2.add(Conv2D(filters=8, kernel_size=(3, 3), input_shape=input_shape_2D,\n padding='same', activation='relu'))\nmodel2.add(MaxPooling2D(pool_size=(2, 2), padding='same'))\nmodel2.add(Conv2D(filters=16, kernel_size=(3, 3), input_shape=(16, 16, 1),\n padding='same', activation='relu'))\nmodel2.add(MaxPooling2D(pool_size=(2, 2), padding='same'))\n<mask token>\nprint('model2两层卷积后的输出形状:', model2.output_shape)\nmodel2.add(Reshape((64, 16)))\nmodel2.add(LSTM(32, return_sequences=True))\nmodel2.add(Flatten())\n<mask token>\nmodel.summary()\nprint('model.outputs:', model.output.shape)\n<mask token>\nprint(model.summary())\nplot_model(model, to_file='model/1D2DLSTM_cross.png')\n<mask token>\nmodel.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[\n 'accuracy'])\nmodel.save('model/1D2DLSTM_cross.h5')\n", "step-3": "<mask token>\n\n\ndef merge_model(model_1, model_2):\n \"\"\"\n keras将两个独立的模型融合起来\n :param model_1:\n :param model_2:\n :return:\n \"\"\"\n inp1 = model_1.input\n inp2 = model_2.input\n r1 = model_1.output\n r2 = model_2.output\n x = keras.layers.Concatenate(axis=1)([r1, r2])\n model = Model(inputs=[inp1, inp2], outputs=x)\n return model\n\n\ndef addLayers_model(model):\n \"\"\"\n 修改模型(模型加层)\n 采用 keras 的 Concatenate 进行特征融合之后,模型加层的 add 将无效,所以采用这种方案进行加层\n :param model: 待扩层的模型\n :return:\n \"\"\"\n origin_model = model\n for layer in origin_model.layers:\n layer.trainable = False\n inp = origin_model.input\n x = origin_model.output\n den = Dense(512, name='fine_dense')(x)\n l = Dropout(0.5)(den)\n result = Dense(10, activation='softmax')(l)\n model = Model(input=inp, outputs=result)\n return model\n\n\ninput_shape_1D = 1024, 1\ninput_shape_2D = 32, 32, 1\nmodel1 = Sequential()\nmodel1.add(Conv1D(filters=8, kernel_size=3, input_shape=input_shape_1D,\n padding='same', activation='relu'))\nmodel1.add(MaxPooling1D(pool_size=2, padding='same'))\nmodel1.add(Conv1D(filters=16, kernel_size=3, input_shape=(1, 512), padding=\n 'same', activation='relu'))\nmodel1.add(MaxPooling1D(pool_size=2, padding='same'))\n<mask token>\nmodel1.add(LSTM(32, return_sequences=True))\nmodel1.add(Flatten())\nmodel2 = Sequential()\nmodel2.add(Conv2D(filters=8, kernel_size=(3, 3), input_shape=input_shape_2D,\n padding='same', activation='relu'))\nmodel2.add(MaxPooling2D(pool_size=(2, 2), padding='same'))\nmodel2.add(Conv2D(filters=16, kernel_size=(3, 3), input_shape=(16, 16, 1),\n padding='same', activation='relu'))\nmodel2.add(MaxPooling2D(pool_size=(2, 2), padding='same'))\n<mask token>\nprint('model2两层卷积后的输出形状:', model2.output_shape)\nmodel2.add(Reshape((64, 16)))\nmodel2.add(LSTM(32, return_sequences=True))\nmodel2.add(Flatten())\nmodel = merge_model(model1, model2)\nmodel.summary()\nprint('model.outputs:', model.output.shape)\nmodel = addLayers_model(model)\nprint(model.summary())\nplot_model(model, to_file='model/1D2DLSTM_cross.png')\nadam = keras.optimizers.Adam()\nmodel.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[\n 'accuracy'])\nmodel.save('model/1D2DLSTM_cross.h5')\n", "step-4": "<mask token>\nimport keras\nfrom keras.models import Sequential\nfrom keras.layers import Conv1D, Conv2D, MaxPooling1D, MaxPooling2D, Flatten, Dense, Dropout, LSTM, Reshape\nfrom keras import Model\nfrom keras.utils import plot_model\n\n\ndef merge_model(model_1, model_2):\n \"\"\"\n keras将两个独立的模型融合起来\n :param model_1:\n :param model_2:\n :return:\n \"\"\"\n inp1 = model_1.input\n inp2 = model_2.input\n r1 = model_1.output\n r2 = model_2.output\n x = keras.layers.Concatenate(axis=1)([r1, r2])\n model = Model(inputs=[inp1, inp2], outputs=x)\n return model\n\n\ndef addLayers_model(model):\n \"\"\"\n 修改模型(模型加层)\n 采用 keras 的 Concatenate 进行特征融合之后,模型加层的 add 将无效,所以采用这种方案进行加层\n :param model: 待扩层的模型\n :return:\n \"\"\"\n origin_model = model\n for layer in origin_model.layers:\n layer.trainable = False\n inp = origin_model.input\n x = origin_model.output\n den = Dense(512, name='fine_dense')(x)\n l = Dropout(0.5)(den)\n result = Dense(10, activation='softmax')(l)\n model = Model(input=inp, outputs=result)\n return model\n\n\ninput_shape_1D = 1024, 1\ninput_shape_2D = 32, 32, 1\nmodel1 = Sequential()\nmodel1.add(Conv1D(filters=8, kernel_size=3, input_shape=input_shape_1D,\n padding='same', activation='relu'))\nmodel1.add(MaxPooling1D(pool_size=2, padding='same'))\nmodel1.add(Conv1D(filters=16, kernel_size=3, input_shape=(1, 512), padding=\n 'same', activation='relu'))\nmodel1.add(MaxPooling1D(pool_size=2, padding='same'))\n<mask token>\nmodel1.add(LSTM(32, return_sequences=True))\nmodel1.add(Flatten())\nmodel2 = Sequential()\nmodel2.add(Conv2D(filters=8, kernel_size=(3, 3), input_shape=input_shape_2D,\n padding='same', activation='relu'))\nmodel2.add(MaxPooling2D(pool_size=(2, 2), padding='same'))\nmodel2.add(Conv2D(filters=16, kernel_size=(3, 3), input_shape=(16, 16, 1),\n padding='same', activation='relu'))\nmodel2.add(MaxPooling2D(pool_size=(2, 2), padding='same'))\n<mask token>\nprint('model2两层卷积后的输出形状:', model2.output_shape)\nmodel2.add(Reshape((64, 16)))\nmodel2.add(LSTM(32, return_sequences=True))\nmodel2.add(Flatten())\nmodel = merge_model(model1, model2)\nmodel.summary()\nprint('model.outputs:', model.output.shape)\nmodel = addLayers_model(model)\nprint(model.summary())\nplot_model(model, to_file='model/1D2DLSTM_cross.png')\nadam = keras.optimizers.Adam()\nmodel.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[\n 'accuracy'])\nmodel.save('model/1D2DLSTM_cross.h5')\n", "step-5": "#!/usr/bin/env python\n# encoding: utf-8\n'''\n 1D2DCNN抽取特征,LSTM后提取特征,最后将提取的特征进行拼接,CNN与LSTM是交叉在一起的\n'''\n\n# 导入相关的包\nimport keras\n\n# 导入相关层的结构\nfrom keras.models import Sequential\nfrom keras.layers import Conv1D, Conv2D, MaxPooling1D, MaxPooling2D, Flatten, Dense, Dropout,LSTM,Reshape\nfrom keras import Model\n\n# 可视化神经网络\nfrom keras.utils import plot_model\n\n\ndef merge_model(model_1, model_2):\n '''\n keras将两个独立的模型融合起来\n :param model_1:\n :param model_2:\n :return:\n '''\n\n # model_1.load_weights('model_1_weight.h5')#这里可以加载各自权重\n # model_2.load_weights('model_2_weight.h5')#可以是预训练好的模型权重(迁移学习)\n\n inp1 = model_1.input # 第一个模型的参数\n inp2 = model_2.input # 第二个模型的参数\n r1 = model_1.output\n r2 = model_2.output\n x = keras.layers.Concatenate(axis=1)([r1, r2])\n model = Model(inputs=[inp1, inp2], outputs=x)\n return model\n\n\ndef addLayers_model(model):\n '''\n 修改模型(模型加层)\n 采用 keras 的 Concatenate 进行特征融合之后,模型加层的 add 将无效,所以采用这种方案进行加层\n :param model: 待扩层的模型\n :return:\n '''\n origin_model = model\n for layer in origin_model.layers:\n layer.trainable = False # 原来的不训练,冻结网络层\n\n inp = origin_model.input\n x = origin_model.output\n den = Dense(512, name=\"fine_dense\")(x)\n l = Dropout(0.5)(den)\n result = Dense(10, activation=\"softmax\")(l)\n model = Model(input=inp, outputs=result)\n return model\n\n\ninput_shape_1D = (1024, 1)\ninput_shape_2D = (32, 32, 1)\n\n# 构建模型\n# 网络结构(卷积层:relu - 池化层 - 卷积层 - 池化层 - Flatten - 汇聚层 - 全连接层 - Dropout - softmax)\n# ====================1、 1D部分 ==============================\nmodel1 = Sequential()\n# Conv1D:8 @ 1*1024。8个过滤器(卷积核),卷积核大小设置为3\nmodel1.add(Conv1D(filters=8,\n kernel_size=(3),\n input_shape=input_shape_1D,\n padding='same',\n activation='relu'))\n\n# MaxPooling1D:8 @ 1*512。\nmodel1.add(MaxPooling1D(pool_size=(2), padding='same'))\n\n# Conv1D:16 @ 1*512。16个过滤器,大小设置为3\nmodel1.add(Conv1D(filters=16,\n kernel_size=(3),\n input_shape=(1, 512),\n padding='same',\n activation='relu'))\n\n# MaxPooling1D:16 @ 1*256。\nmodel1.add(MaxPooling1D(pool_size=(2), padding='same'))\n'''\n# Conv1D: 16 @ 1*256 。16个过滤器,大小设置为3\nmodel1.add(Conv1D(filters=16,\n kernel_size=(3),\n input_shape=(1, 512),\n padding='same',\n activation='relu'))\n\n# MaxPooling1D:16 @ 1*128。\nmodel1.add(MaxPooling1D(pool_size=(2), padding='same'))\n'''\n\nmodel1.add(LSTM(32,return_sequences=True))\nmodel1.add(Flatten()) # 压平:将输出压平为1维\n\n# =============================================================\n\n# ============ ======== 2、 2D部分 ============================\nmodel2 = Sequential()\n# Conv2D:8 @ 32*32。8个过滤器(卷积核),卷积核大小设置为3*3\nmodel2.add(Conv2D(filters=8,\n kernel_size=(3, 3),\n input_shape=input_shape_2D,\n padding='same',\n activation='relu'))\n\n# MaxPooling2D:8 @ 16*16。\nmodel2.add(MaxPooling2D(pool_size=(2, 2), padding='same'))\n\n# Conv2D:16 @ 16*16。16个过滤器,卷积核大小设置为3*3\nmodel2.add(Conv2D(filters=16,\n kernel_size=(3, 3),\n input_shape=(16, 16, 1),\n padding='same',\n activation='relu'))\n\n# MaxPooling2D:16 @ 8*8。\nmodel2.add(MaxPooling2D(pool_size=(2, 2), padding='same'))\n\n'''\n# Conv2D:16 @ 8*8。16个过滤器,卷积核大小设置为3*3\nmodel2.add(Conv2D(filters=16,\n kernel_size=(3, 3),\n input_shape=(8, 8, 1),\n padding='same',\n activation='relu'))\n\n# MaxPooling2D:16 @ 4*4。\nmodel2.add(MaxPooling2D(pool_size=(2, 2), padding='same'))\n'''\nprint(\"model2两层卷积后的输出形状:\",model2.output_shape) # (None,4,4,16)\nmodel2.add(Reshape((64,16))) #(None,16,16)\nmodel2.add(LSTM(32,return_sequences=True))\nmodel2.add(Flatten())\n# =============================================================\n\n\n# ==================== 3、汇聚层 ===============================\n# 融合部分\nmodel = merge_model(model1, model2)\nmodel.summary()\n# =============================================================\n\nprint(\"model.outputs:\",model.output.shape)\n\n# ============= 4、 全连接层,dropout,分类层 ====================\nmodel = addLayers_model(model)\nprint(model.summary())\n\nplot_model(model, to_file='model/1D2DLSTM_cross.png')\n# =============================================================\n\n# ==================== 5、模型训练指标 ==========================\n# adam优化器, lr:初始学习率为0.1,学习率下降递减采用:ReduceLROnPlateau,在 model.fit 的回调函数中设置\n# adam = keras.optimizers.Adam(lr=0.1)\nadam = keras.optimizers.Adam()\nmodel.compile(loss='categorical_crossentropy',\n optimizer=adam,\n metrics=['accuracy'])\n# =============================================================\n\n# 保存模型结构\nmodel.save('model/1D2DLSTM_cross.h5')\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def vol_shell(r1, r2): a = abs(4 / 3 * math.pi * (r1 ** 3 - r2 ** 3)) return round(a, 3) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def vol_shell(r1, r2): a = abs(4 / 3 * math.pi * (r1 ** 3 - r2 ** 3)) return round(a, 3) print(vol_shell(3, 3)) <|reserved_special_token_1|> import math def vol_shell(r1, r2): a = abs(4 / 3 * math.pi * (r1 ** 3 - r2 ** 3)) return round(a, 3) print(vol_shell(3, 3)) <|reserved_special_token_1|> import math def vol_shell(r1, r2): a=abs((4/3)*math.pi*((r1**3)-(r2**3))) return round(a,3) print(vol_shell(3,3))
flexible
{ "blob_id": "cd234911c1f990b8029dfa792d132847bf39a6aa", "index": 445, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef vol_shell(r1, r2):\n a = abs(4 / 3 * math.pi * (r1 ** 3 - r2 ** 3))\n return round(a, 3)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef vol_shell(r1, r2):\n a = abs(4 / 3 * math.pi * (r1 ** 3 - r2 ** 3))\n return round(a, 3)\n\n\nprint(vol_shell(3, 3))\n", "step-4": "import math\n\n\ndef vol_shell(r1, r2):\n a = abs(4 / 3 * math.pi * (r1 ** 3 - r2 ** 3))\n return round(a, 3)\n\n\nprint(vol_shell(3, 3))\n", "step-5": "\nimport math\ndef vol_shell(r1, r2):\n a=abs((4/3)*math.pi*((r1**3)-(r2**3)))\n return round(a,3)\nprint(vol_shell(3,3))\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/python3 """ Test of Rectangle class """ from contextlib import redirect_stdout import io import unittest from random import randrange from models.base import Base from models.rectangle import Rectangle from models.square import Square class TestRectangle(unittest.TestCase): """ Test Rectangle methods """ def setUp(self): """ setUp """ Base._Base__nb_objects = 0 def tearDown(self): """ tearDown destroys any existing objects and processes """ pass def test_type(self): """ Test type """ r1 = Rectangle(1, 2) self.assertTrue(type(r1) is Rectangle) def test_inheritance(self): """Tests if Rectangle inherits Base.""" self.assertTrue(issubclass(Rectangle, Base)) def test_constructor_no_args(self): """Tests constructor signature.""" with self.assertRaises(TypeError) as e: r = Rectangle() s = "__init__() missing 2 required positional arguments: 'width' \ and 'height'" self.assertEqual(str(e.exception), s) def test_constructor_many_args(self): """Tests constructor signature.""" with self.assertRaises(TypeError) as e: r = Rectangle(1, 2, 3, 4, 5, 6) s = "__init__() takes from 3 to 6 positional arguments but 7 were \ given" self.assertEqual(str(e.exception), s) def test_constructor_one_args(self): """Tests constructor signature.""" with self.assertRaises(TypeError) as e: r = Rectangle(1) s = "__init__() missing 1 required positional argument: 'height'" self.assertEqual(str(e.exception), s) def test_instantiation(self): """Tests instantiation.""" r = Rectangle(10, 20) self.assertEqual(str(type(r)), "<class 'models.rectangle.Rectangle'>") self.assertTrue(isinstance(r, Base)) d = {'_Rectangle__height': 20, '_Rectangle__width': 10, '_Rectangle__x': 0, '_Rectangle__y': 0, 'id': 1} self.assertDictEqual(r.__dict__, d) with self.assertRaises(TypeError) as e: r = Rectangle("1", 2) msg = "width must be an integer" self.assertEqual(str(e.exception), msg) with self.assertRaises(TypeError) as e: r = Rectangle(1, "2") msg = "height must be an integer" self.assertEqual(str(e.exception), msg) with self.assertRaises(TypeError) as e: r = Rectangle(1, 2, "3") msg = "x must be an integer" self.assertEqual(str(e.exception), msg) with self.assertRaises(TypeError) as e: r = Rectangle(1, 2, 3, "4") msg = "y must be an integer" self.assertEqual(str(e.exception), msg) with self.assertRaises(ValueError) as e: r = Rectangle(-1, 2) msg = "width must be > 0" self.assertEqual(str(e.exception), msg) with self.assertRaises(ValueError) as e: r = Rectangle(1, -2) msg = "height must be > 0" self.assertEqual(str(e.exception), msg) with self.assertRaises(ValueError) as e: r = Rectangle(0, 2) msg = "width must be > 0" self.assertEqual(str(e.exception), msg) with self.assertRaises(ValueError) as e: r = Rectangle(1, 0) msg = "height must be > 0" self.assertEqual(str(e.exception), msg) with self.assertRaises(ValueError) as e: r = Rectangle(1, 2, -3) msg = "x must be >= 0" self.assertEqual(str(e.exception), msg) with self.assertRaises(ValueError) as e: r = Rectangle(1, 2, 3, -4) msg = "y must be >= 0" self.assertEqual(str(e.exception), msg) def test_id_inherited(self): """Tests if id is inherited from Base.""" Base._Base__nb_objects = 98 r = Rectangle(2, 4) self.assertEqual(r.id, 99) # -- # def test_validate_type(self): """Tests property validation.""" r = Rectangle(1, 2) attributes = ["x", "y", "width", "height"] t = (3.14, -1.1, float('inf'), float('-inf'), True, "str", (2,), [4], {5}, {6: 7}, None) for attribute in attributes: s = "{} must be an integer".format(attribute) for invalid_type in t: with self.assertRaises(TypeError) as e: setattr(r, attribute, invalid_type) self.assertEqual(str(e.exception), s) def test_validate_value_negative_gt(self): """Tests property validation.""" r = Rectangle(1, 2) attributes = ["width", "height"] for attribute in attributes: s = "{} must be > 0".format(attribute) with self.assertRaises(ValueError) as e: setattr(r, attribute, -(randrange(10) + 1)) self.assertEqual(str(e.exception), s) def test_validate_value_negative_ge(self): """Tests property validation.""" r = Rectangle(1, 2) attributes = ["x", "y"] for attribute in attributes: s = "{} must be >= 0".format(attribute) with self.assertRaises(ValueError) as e: setattr(r, attribute, -(randrange(10) + 1)) self.assertEqual(str(e.exception), s) def test_validate_value_zero(self): """Tests property validation.""" r = Rectangle(1, 2) attributes = ["width", "height"] for attribute in attributes: s = "{} must be > 0".format(attribute) with self.assertRaises(ValueError) as e: setattr(r, attribute, 0) self.assertEqual(str(e.exception), s) def test_property(self): """Tests property setting/getting.""" r = Rectangle(1, 2) attributes = ["x", "y", "width", "height"] for attribute in attributes: n = randrange(10) + 1 setattr(r, attribute, n) self.assertEqual(getattr(r, attribute), n) def test_property_range_zero(self): """Tests property setting/getting.""" r = Rectangle(1, 2) r.x = 0 r.y = 0 self.assertEqual(r.x, 0) self.assertEqual(r.y, 0) def test_area_no_args(self): """Tests area() method signature.""" r = Rectangle(5, 6) with self.assertRaises(TypeError) as e: Rectangle.area() s = "area() missing 1 required positional argument: 'self'" self.assertEqual(str(e.exception), s) def test_area(self): """Tests area() method compuation.""" r = Rectangle(5, 6) self.assertEqual(r.area(), 30) w = randrange(10) + 1 h = randrange(10) + 1 r.width = w r.height = h self.assertEqual(r.area(), w * h) w = randrange(10) + 1 h = randrange(10) + 1 r = Rectangle(w, h, 7, 8, 9) self.assertEqual(r.area(), w * h) w = randrange(10) + 1 h = randrange(10) + 1 r = Rectangle(w, h, y=7, x=8, id=9) self.assertEqual(r.area(), w * h) def test_display_no_args(self): """Tests display() method signature.""" r = Rectangle(9, 8) with self.assertRaises(TypeError) as e: Rectangle.display() s = "display() missing 1 required positional argument: 'self'" self.assertEqual(str(e.exception), s) def test_display_simple(self): """Tests display() method output.""" r = Rectangle(1, 1) f = io.StringIO() with redirect_stdout(f): r.display() s = "#\n" self.assertEqual(f.getvalue(), s) r.width = 2 r.height = 2 f = io.StringIO() with redirect_stdout(f): r.display() s = "##\n##\n" self.assertEqual(f.getvalue(), s) r = Rectangle(2, 2, 2, 2) f = io.StringIO() with redirect_stdout(f): r.display() s = "\n\n ##\n ##\n" self.assertEqual(f.getvalue(), s) def test_K_str_no_args(self): """Tests __str__() method signature.""" r = Rectangle(5, 2) with self.assertRaises(TypeError) as e: Rectangle.__str__() s = "__str__() missing 1 required positional argument: 'self'" self.assertEqual(str(e.exception), s) def test_K_str(self): """Tests __str__() method return.""" r = Rectangle(5, 2) s = '[Rectangle] (1) 0/0 - 5/2' self.assertEqual(str(r), s) r = Rectangle(1, 1, 1) s = '[Rectangle] (2) 1/0 - 1/1' self.assertEqual(str(r), s) r = Rectangle(3, 4, 5, 6) s = '[Rectangle] (3) 5/6 - 3/4' self.assertEqual(str(r), s) Base._Base__nb_objects = 0 r1 = Rectangle(4, 6, 2, 1, 12) self.assertEqual(str(r1), "[Rectangle] (12) 2/1 - 4/6") r2 = Rectangle(5, 5, 1) self.assertEqual(str(r2), "[Rectangle] (1) 1/0 - 5/5") def test_update_no_args(self): """Tests update() method """ r = Rectangle(5, 2) with self.assertRaises(TypeError) as e: Rectangle.update() s = "update() missing 1 required positional argument: 'self'" self.assertEqual(str(e.exception), s) d = r.__dict__.copy() r.update() self.assertEqual(r.__dict__, d) def test_update_args(self): """Tests update() postional args.""" r = Rectangle(5, 2) d = r.__dict__.copy() r.update(10) d["id"] = 10 self.assertEqual(r.__dict__, d) r.update(10, 5) d["_Rectangle__width"] = 5 self.assertEqual(r.__dict__, d) r.update(10, 5, 17) d["_Rectangle__height"] = 17 self.assertEqual(r.__dict__, d) r.update(10, 5, 17, 20) d["_Rectangle__x"] = 20 self.assertEqual(r.__dict__, d) r.update(10, 5, 17, 20, 25) d["_Rectangle__y"] = 25 self.assertEqual(r.__dict__, d) def test_update_args_bad(self): """Tests update() positional arg bad values.""" r = Rectangle(5, 2) d = r.__dict__.copy() r.update(10) d["id"] = 10 self.assertEqual(r.__dict__, d) with self.assertRaises(ValueError) as e: r.update(10, -5) s = "width must be > 0" self.assertEqual(str(e.exception), s) with self.assertRaises(ValueError) as e: r.update(10, 5, -17) s = "height must be > 0" self.assertEqual(str(e.exception), s) with self.assertRaises(ValueError) as e: r.update(10, 5, 17, -20) s = "x must be >= 0" self.assertEqual(str(e.exception), s) with self.assertRaises(ValueError) as e: r.update(10, 5, 17, 20, -25) s = "y must be >= 0" self.assertEqual(str(e.exception), s) def test_update_kwargs(self): """Tests update() keyword args.""" r = Rectangle(5, 2) d = r.__dict__.copy() r.update(id=10) d["id"] = 10 self.assertEqual(r.__dict__, d) r.update(width=5) d["_Rectangle__width"] = 5 self.assertEqual(r.__dict__, d) r.update(height=17) d["_Rectangle__height"] = 17 self.assertEqual(r.__dict__, d) r.update(x=20) d["_Rectangle__x"] = 20 self.assertEqual(r.__dict__, d) r.update(y=25) d["_Rectangle__y"] = 25 self.assertEqual(r.__dict__, d) def test_update_kwargs_2(self): """Tests update() keyword args.""" r = Rectangle(5, 2) d = r.__dict__.copy() r.update(id=10) d["id"] = 10 self.assertEqual(r.__dict__, d) r.update(id=10, width=5) d["_Rectangle__width"] = 5 self.assertEqual(r.__dict__, d) r.update(id=10, width=5, height=17) d["_Rectangle__height"] = 17 self.assertEqual(r.__dict__, d) r.update(id=10, width=5, height=17, x=20) d["_Rectangle__x"] = 20 self.assertEqual(r.__dict__, d) r.update(id=10, width=5, height=17, x=20, y=25) d["_Rectangle__y"] = 25 self.assertEqual(r.__dict__, d) r.update(y=25, id=10, height=17, x=20, width=5) self.assertEqual(r.__dict__, d) Base._Base__nb_objects = 0 r1 = Rectangle(10, 10, 10, 10) self.assertEqual(str(r1), "[Rectangle] (1) 10/10 - 10/10") r1.update(height=1) self.assertEqual(str(r1), "[Rectangle] (1) 10/10 - 10/1") r1.update(width=1, x=2) self.assertEqual(str(r1), "[Rectangle] (1) 2/10 - 1/1") r1.update(y=1, width=2, x=3, id=89) self.assertEqual(str(r1), "[Rectangle] (89) 3/1 - 2/1") r1.update(x=1, height=2, y=3, width=4) self.assertEqual(str(r1), "[Rectangle] (89) 1/3 - 4/2") Base._Base__nb_objects = 0 r1 = Rectangle(10, 10, 10, 10) self.assertEqual(str(r1), "[Rectangle] (1) 10/10 - 10/10") r1.update(89) self.assertEqual(str(r1), "[Rectangle] (89) 10/10 - 10/10") r1.update(89, 2) self.assertEqual(str(r1), "[Rectangle] (89) 10/10 - 2/10") r1.update(89, 2, 3) self.assertEqual(str(r1), "[Rectangle] (89) 10/10 - 2/3") r1.update(89, 2, 3, 4) self.assertEqual(str(r1), "[Rectangle] (89) 4/10 - 2/3") r1.update(89, 2, 3, 4, 5) self.assertEqual(str(r1), "[Rectangle] (89) 4/5 - 2/3") def test_to_dictionary(self): """Tests to_dictionary() """ with self.assertRaises(TypeError) as e: Rectangle.to_dictionary() s = "to_dictionary() missing 1 required positional argument: 'self'" self.assertEqual(str(e.exception), s) r = Rectangle(1, 2) d = {'x': 0, 'y': 0, 'width': 1, 'id': 1, 'height': 2} self.assertEqual(r.to_dictionary(), d) r = Rectangle(1, 2, 3, 4, 5) d = {'x': 3, 'y': 4, 'width': 1, 'id': 5, 'height': 2} self.assertEqual(r.to_dictionary(), d) r.x = 10 r.y = 20 r.width = 30 r.height = 40 d = {'x': 10, 'y': 20, 'width': 30, 'id': 5, 'height': 40} self.assertEqual(r.to_dictionary(), d) r1 = Rectangle(10, 2, 1, 9) r1_dictionary = r1.to_dictionary() r2 = Rectangle(1, 1) r2.update(**r1_dictionary) self.assertEqual(str(r1), str(r2)) self.assertNotEqual(r1, r2)
normal
{ "blob_id": "ca00091b7ebcb9ee45b77c919c458c75e3db5b1e", "index": 4783, "step-1": "<mask token>\n\n\nclass TestRectangle(unittest.TestCase):\n <mask token>\n\n def setUp(self):\n \"\"\" setUp \"\"\"\n Base._Base__nb_objects = 0\n\n def tearDown(self):\n \"\"\" tearDown destroys any existing objects and processes \"\"\"\n pass\n\n def test_type(self):\n \"\"\" Test type \"\"\"\n r1 = Rectangle(1, 2)\n self.assertTrue(type(r1) is Rectangle)\n\n def test_inheritance(self):\n \"\"\"Tests if Rectangle inherits Base.\"\"\"\n self.assertTrue(issubclass(Rectangle, Base))\n <mask token>\n <mask token>\n\n def test_constructor_one_args(self):\n \"\"\"Tests constructor signature.\"\"\"\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1)\n s = \"__init__() missing 1 required positional argument: 'height'\"\n self.assertEqual(str(e.exception), s)\n\n def test_instantiation(self):\n \"\"\"Tests instantiation.\"\"\"\n r = Rectangle(10, 20)\n self.assertEqual(str(type(r)), \"<class 'models.rectangle.Rectangle'>\")\n self.assertTrue(isinstance(r, Base))\n d = {'_Rectangle__height': 20, '_Rectangle__width': 10,\n '_Rectangle__x': 0, '_Rectangle__y': 0, 'id': 1}\n self.assertDictEqual(r.__dict__, d)\n with self.assertRaises(TypeError) as e:\n r = Rectangle('1', 2)\n msg = 'width must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, '2')\n msg = 'height must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, '3')\n msg = 'x must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, 3, '4')\n msg = 'y must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(-1, 2)\n msg = 'width must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, -2)\n msg = 'height must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(0, 2)\n msg = 'width must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 0)\n msg = 'height must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 2, -3)\n msg = 'x must be >= 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 2, 3, -4)\n msg = 'y must be >= 0'\n self.assertEqual(str(e.exception), msg)\n\n def test_id_inherited(self):\n \"\"\"Tests if id is inherited from Base.\"\"\"\n Base._Base__nb_objects = 98\n r = Rectangle(2, 4)\n self.assertEqual(r.id, 99)\n\n def test_validate_type(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y', 'width', 'height']\n t = 3.14, -1.1, float('inf'), float('-inf'), True, 'str', (2,), [4], {5\n }, {(6): 7}, None\n for attribute in attributes:\n s = '{} must be an integer'.format(attribute)\n for invalid_type in t:\n with self.assertRaises(TypeError) as e:\n setattr(r, attribute, invalid_type)\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_negative_gt(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['width', 'height']\n for attribute in attributes:\n s = '{} must be > 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, -(randrange(10) + 1))\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_negative_ge(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y']\n for attribute in attributes:\n s = '{} must be >= 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, -(randrange(10) + 1))\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_zero(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['width', 'height']\n for attribute in attributes:\n s = '{} must be > 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, 0)\n self.assertEqual(str(e.exception), s)\n\n def test_property(self):\n \"\"\"Tests property setting/getting.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y', 'width', 'height']\n for attribute in attributes:\n n = randrange(10) + 1\n setattr(r, attribute, n)\n self.assertEqual(getattr(r, attribute), n)\n\n def test_property_range_zero(self):\n \"\"\"Tests property setting/getting.\"\"\"\n r = Rectangle(1, 2)\n r.x = 0\n r.y = 0\n self.assertEqual(r.x, 0)\n self.assertEqual(r.y, 0)\n\n def test_area_no_args(self):\n \"\"\"Tests area() method signature.\"\"\"\n r = Rectangle(5, 6)\n with self.assertRaises(TypeError) as e:\n Rectangle.area()\n s = \"area() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n <mask token>\n\n def test_display_no_args(self):\n \"\"\"Tests display() method signature.\"\"\"\n r = Rectangle(9, 8)\n with self.assertRaises(TypeError) as e:\n Rectangle.display()\n s = \"display() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_display_simple(self):\n \"\"\"Tests display() method output.\"\"\"\n r = Rectangle(1, 1)\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '#\\n'\n self.assertEqual(f.getvalue(), s)\n r.width = 2\n r.height = 2\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '##\\n##\\n'\n self.assertEqual(f.getvalue(), s)\n r = Rectangle(2, 2, 2, 2)\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '\\n\\n ##\\n ##\\n'\n self.assertEqual(f.getvalue(), s)\n <mask token>\n\n def test_K_str(self):\n \"\"\"Tests __str__() method return.\"\"\"\n r = Rectangle(5, 2)\n s = '[Rectangle] (1) 0/0 - 5/2'\n self.assertEqual(str(r), s)\n r = Rectangle(1, 1, 1)\n s = '[Rectangle] (2) 1/0 - 1/1'\n self.assertEqual(str(r), s)\n r = Rectangle(3, 4, 5, 6)\n s = '[Rectangle] (3) 5/6 - 3/4'\n self.assertEqual(str(r), s)\n Base._Base__nb_objects = 0\n r1 = Rectangle(4, 6, 2, 1, 12)\n self.assertEqual(str(r1), '[Rectangle] (12) 2/1 - 4/6')\n r2 = Rectangle(5, 5, 1)\n self.assertEqual(str(r2), '[Rectangle] (1) 1/0 - 5/5')\n\n def test_update_no_args(self):\n \"\"\"Tests update() method \"\"\"\n r = Rectangle(5, 2)\n with self.assertRaises(TypeError) as e:\n Rectangle.update()\n s = \"update() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n d = r.__dict__.copy()\n r.update()\n self.assertEqual(r.__dict__, d)\n\n def test_update_args(self):\n \"\"\"Tests update() postional args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n r.update(10, 5)\n d['_Rectangle__width'] = 5\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17)\n d['_Rectangle__height'] = 17\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17, 20)\n d['_Rectangle__x'] = 20\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17, 20, 25)\n d['_Rectangle__y'] = 25\n self.assertEqual(r.__dict__, d)\n\n def test_update_args_bad(self):\n \"\"\"Tests update() positional arg bad values.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n with self.assertRaises(ValueError) as e:\n r.update(10, -5)\n s = 'width must be > 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, -17)\n s = 'height must be > 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, 17, -20)\n s = 'x must be >= 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, 17, 20, -25)\n s = 'y must be >= 0'\n self.assertEqual(str(e.exception), s)\n\n def test_update_kwargs(self):\n \"\"\"Tests update() keyword args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(id=10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n r.update(width=5)\n d['_Rectangle__width'] = 5\n self.assertEqual(r.__dict__, d)\n r.update(height=17)\n d['_Rectangle__height'] = 17\n self.assertEqual(r.__dict__, d)\n r.update(x=20)\n d['_Rectangle__x'] = 20\n self.assertEqual(r.__dict__, d)\n r.update(y=25)\n d['_Rectangle__y'] = 25\n self.assertEqual(r.__dict__, d)\n <mask token>\n\n def test_to_dictionary(self):\n \"\"\"Tests to_dictionary() \"\"\"\n with self.assertRaises(TypeError) as e:\n Rectangle.to_dictionary()\n s = \"to_dictionary() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n r = Rectangle(1, 2)\n d = {'x': 0, 'y': 0, 'width': 1, 'id': 1, 'height': 2}\n self.assertEqual(r.to_dictionary(), d)\n r = Rectangle(1, 2, 3, 4, 5)\n d = {'x': 3, 'y': 4, 'width': 1, 'id': 5, 'height': 2}\n self.assertEqual(r.to_dictionary(), d)\n r.x = 10\n r.y = 20\n r.width = 30\n r.height = 40\n d = {'x': 10, 'y': 20, 'width': 30, 'id': 5, 'height': 40}\n self.assertEqual(r.to_dictionary(), d)\n r1 = Rectangle(10, 2, 1, 9)\n r1_dictionary = r1.to_dictionary()\n r2 = Rectangle(1, 1)\n r2.update(**r1_dictionary)\n self.assertEqual(str(r1), str(r2))\n self.assertNotEqual(r1, r2)\n", "step-2": "<mask token>\n\n\nclass TestRectangle(unittest.TestCase):\n <mask token>\n\n def setUp(self):\n \"\"\" setUp \"\"\"\n Base._Base__nb_objects = 0\n\n def tearDown(self):\n \"\"\" tearDown destroys any existing objects and processes \"\"\"\n pass\n\n def test_type(self):\n \"\"\" Test type \"\"\"\n r1 = Rectangle(1, 2)\n self.assertTrue(type(r1) is Rectangle)\n\n def test_inheritance(self):\n \"\"\"Tests if Rectangle inherits Base.\"\"\"\n self.assertTrue(issubclass(Rectangle, Base))\n <mask token>\n <mask token>\n\n def test_constructor_one_args(self):\n \"\"\"Tests constructor signature.\"\"\"\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1)\n s = \"__init__() missing 1 required positional argument: 'height'\"\n self.assertEqual(str(e.exception), s)\n\n def test_instantiation(self):\n \"\"\"Tests instantiation.\"\"\"\n r = Rectangle(10, 20)\n self.assertEqual(str(type(r)), \"<class 'models.rectangle.Rectangle'>\")\n self.assertTrue(isinstance(r, Base))\n d = {'_Rectangle__height': 20, '_Rectangle__width': 10,\n '_Rectangle__x': 0, '_Rectangle__y': 0, 'id': 1}\n self.assertDictEqual(r.__dict__, d)\n with self.assertRaises(TypeError) as e:\n r = Rectangle('1', 2)\n msg = 'width must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, '2')\n msg = 'height must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, '3')\n msg = 'x must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, 3, '4')\n msg = 'y must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(-1, 2)\n msg = 'width must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, -2)\n msg = 'height must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(0, 2)\n msg = 'width must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 0)\n msg = 'height must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 2, -3)\n msg = 'x must be >= 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 2, 3, -4)\n msg = 'y must be >= 0'\n self.assertEqual(str(e.exception), msg)\n\n def test_id_inherited(self):\n \"\"\"Tests if id is inherited from Base.\"\"\"\n Base._Base__nb_objects = 98\n r = Rectangle(2, 4)\n self.assertEqual(r.id, 99)\n\n def test_validate_type(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y', 'width', 'height']\n t = 3.14, -1.1, float('inf'), float('-inf'), True, 'str', (2,), [4], {5\n }, {(6): 7}, None\n for attribute in attributes:\n s = '{} must be an integer'.format(attribute)\n for invalid_type in t:\n with self.assertRaises(TypeError) as e:\n setattr(r, attribute, invalid_type)\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_negative_gt(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['width', 'height']\n for attribute in attributes:\n s = '{} must be > 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, -(randrange(10) + 1))\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_negative_ge(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y']\n for attribute in attributes:\n s = '{} must be >= 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, -(randrange(10) + 1))\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_zero(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['width', 'height']\n for attribute in attributes:\n s = '{} must be > 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, 0)\n self.assertEqual(str(e.exception), s)\n\n def test_property(self):\n \"\"\"Tests property setting/getting.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y', 'width', 'height']\n for attribute in attributes:\n n = randrange(10) + 1\n setattr(r, attribute, n)\n self.assertEqual(getattr(r, attribute), n)\n\n def test_property_range_zero(self):\n \"\"\"Tests property setting/getting.\"\"\"\n r = Rectangle(1, 2)\n r.x = 0\n r.y = 0\n self.assertEqual(r.x, 0)\n self.assertEqual(r.y, 0)\n\n def test_area_no_args(self):\n \"\"\"Tests area() method signature.\"\"\"\n r = Rectangle(5, 6)\n with self.assertRaises(TypeError) as e:\n Rectangle.area()\n s = \"area() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_area(self):\n \"\"\"Tests area() method compuation.\"\"\"\n r = Rectangle(5, 6)\n self.assertEqual(r.area(), 30)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r.width = w\n r.height = h\n self.assertEqual(r.area(), w * h)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r = Rectangle(w, h, 7, 8, 9)\n self.assertEqual(r.area(), w * h)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r = Rectangle(w, h, y=7, x=8, id=9)\n self.assertEqual(r.area(), w * h)\n\n def test_display_no_args(self):\n \"\"\"Tests display() method signature.\"\"\"\n r = Rectangle(9, 8)\n with self.assertRaises(TypeError) as e:\n Rectangle.display()\n s = \"display() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_display_simple(self):\n \"\"\"Tests display() method output.\"\"\"\n r = Rectangle(1, 1)\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '#\\n'\n self.assertEqual(f.getvalue(), s)\n r.width = 2\n r.height = 2\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '##\\n##\\n'\n self.assertEqual(f.getvalue(), s)\n r = Rectangle(2, 2, 2, 2)\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '\\n\\n ##\\n ##\\n'\n self.assertEqual(f.getvalue(), s)\n\n def test_K_str_no_args(self):\n \"\"\"Tests __str__() method signature.\"\"\"\n r = Rectangle(5, 2)\n with self.assertRaises(TypeError) as e:\n Rectangle.__str__()\n s = \"__str__() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_K_str(self):\n \"\"\"Tests __str__() method return.\"\"\"\n r = Rectangle(5, 2)\n s = '[Rectangle] (1) 0/0 - 5/2'\n self.assertEqual(str(r), s)\n r = Rectangle(1, 1, 1)\n s = '[Rectangle] (2) 1/0 - 1/1'\n self.assertEqual(str(r), s)\n r = Rectangle(3, 4, 5, 6)\n s = '[Rectangle] (3) 5/6 - 3/4'\n self.assertEqual(str(r), s)\n Base._Base__nb_objects = 0\n r1 = Rectangle(4, 6, 2, 1, 12)\n self.assertEqual(str(r1), '[Rectangle] (12) 2/1 - 4/6')\n r2 = Rectangle(5, 5, 1)\n self.assertEqual(str(r2), '[Rectangle] (1) 1/0 - 5/5')\n\n def test_update_no_args(self):\n \"\"\"Tests update() method \"\"\"\n r = Rectangle(5, 2)\n with self.assertRaises(TypeError) as e:\n Rectangle.update()\n s = \"update() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n d = r.__dict__.copy()\n r.update()\n self.assertEqual(r.__dict__, d)\n\n def test_update_args(self):\n \"\"\"Tests update() postional args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n r.update(10, 5)\n d['_Rectangle__width'] = 5\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17)\n d['_Rectangle__height'] = 17\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17, 20)\n d['_Rectangle__x'] = 20\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17, 20, 25)\n d['_Rectangle__y'] = 25\n self.assertEqual(r.__dict__, d)\n\n def test_update_args_bad(self):\n \"\"\"Tests update() positional arg bad values.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n with self.assertRaises(ValueError) as e:\n r.update(10, -5)\n s = 'width must be > 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, -17)\n s = 'height must be > 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, 17, -20)\n s = 'x must be >= 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, 17, 20, -25)\n s = 'y must be >= 0'\n self.assertEqual(str(e.exception), s)\n\n def test_update_kwargs(self):\n \"\"\"Tests update() keyword args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(id=10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n r.update(width=5)\n d['_Rectangle__width'] = 5\n self.assertEqual(r.__dict__, d)\n r.update(height=17)\n d['_Rectangle__height'] = 17\n self.assertEqual(r.__dict__, d)\n r.update(x=20)\n d['_Rectangle__x'] = 20\n self.assertEqual(r.__dict__, d)\n r.update(y=25)\n d['_Rectangle__y'] = 25\n self.assertEqual(r.__dict__, d)\n <mask token>\n\n def test_to_dictionary(self):\n \"\"\"Tests to_dictionary() \"\"\"\n with self.assertRaises(TypeError) as e:\n Rectangle.to_dictionary()\n s = \"to_dictionary() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n r = Rectangle(1, 2)\n d = {'x': 0, 'y': 0, 'width': 1, 'id': 1, 'height': 2}\n self.assertEqual(r.to_dictionary(), d)\n r = Rectangle(1, 2, 3, 4, 5)\n d = {'x': 3, 'y': 4, 'width': 1, 'id': 5, 'height': 2}\n self.assertEqual(r.to_dictionary(), d)\n r.x = 10\n r.y = 20\n r.width = 30\n r.height = 40\n d = {'x': 10, 'y': 20, 'width': 30, 'id': 5, 'height': 40}\n self.assertEqual(r.to_dictionary(), d)\n r1 = Rectangle(10, 2, 1, 9)\n r1_dictionary = r1.to_dictionary()\n r2 = Rectangle(1, 1)\n r2.update(**r1_dictionary)\n self.assertEqual(str(r1), str(r2))\n self.assertNotEqual(r1, r2)\n", "step-3": "<mask token>\n\n\nclass TestRectangle(unittest.TestCase):\n <mask token>\n\n def setUp(self):\n \"\"\" setUp \"\"\"\n Base._Base__nb_objects = 0\n\n def tearDown(self):\n \"\"\" tearDown destroys any existing objects and processes \"\"\"\n pass\n\n def test_type(self):\n \"\"\" Test type \"\"\"\n r1 = Rectangle(1, 2)\n self.assertTrue(type(r1) is Rectangle)\n\n def test_inheritance(self):\n \"\"\"Tests if Rectangle inherits Base.\"\"\"\n self.assertTrue(issubclass(Rectangle, Base))\n <mask token>\n <mask token>\n\n def test_constructor_one_args(self):\n \"\"\"Tests constructor signature.\"\"\"\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1)\n s = \"__init__() missing 1 required positional argument: 'height'\"\n self.assertEqual(str(e.exception), s)\n\n def test_instantiation(self):\n \"\"\"Tests instantiation.\"\"\"\n r = Rectangle(10, 20)\n self.assertEqual(str(type(r)), \"<class 'models.rectangle.Rectangle'>\")\n self.assertTrue(isinstance(r, Base))\n d = {'_Rectangle__height': 20, '_Rectangle__width': 10,\n '_Rectangle__x': 0, '_Rectangle__y': 0, 'id': 1}\n self.assertDictEqual(r.__dict__, d)\n with self.assertRaises(TypeError) as e:\n r = Rectangle('1', 2)\n msg = 'width must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, '2')\n msg = 'height must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, '3')\n msg = 'x must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, 3, '4')\n msg = 'y must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(-1, 2)\n msg = 'width must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, -2)\n msg = 'height must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(0, 2)\n msg = 'width must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 0)\n msg = 'height must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 2, -3)\n msg = 'x must be >= 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 2, 3, -4)\n msg = 'y must be >= 0'\n self.assertEqual(str(e.exception), msg)\n\n def test_id_inherited(self):\n \"\"\"Tests if id is inherited from Base.\"\"\"\n Base._Base__nb_objects = 98\n r = Rectangle(2, 4)\n self.assertEqual(r.id, 99)\n\n def test_validate_type(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y', 'width', 'height']\n t = 3.14, -1.1, float('inf'), float('-inf'), True, 'str', (2,), [4], {5\n }, {(6): 7}, None\n for attribute in attributes:\n s = '{} must be an integer'.format(attribute)\n for invalid_type in t:\n with self.assertRaises(TypeError) as e:\n setattr(r, attribute, invalid_type)\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_negative_gt(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['width', 'height']\n for attribute in attributes:\n s = '{} must be > 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, -(randrange(10) + 1))\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_negative_ge(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y']\n for attribute in attributes:\n s = '{} must be >= 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, -(randrange(10) + 1))\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_zero(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['width', 'height']\n for attribute in attributes:\n s = '{} must be > 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, 0)\n self.assertEqual(str(e.exception), s)\n\n def test_property(self):\n \"\"\"Tests property setting/getting.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y', 'width', 'height']\n for attribute in attributes:\n n = randrange(10) + 1\n setattr(r, attribute, n)\n self.assertEqual(getattr(r, attribute), n)\n\n def test_property_range_zero(self):\n \"\"\"Tests property setting/getting.\"\"\"\n r = Rectangle(1, 2)\n r.x = 0\n r.y = 0\n self.assertEqual(r.x, 0)\n self.assertEqual(r.y, 0)\n\n def test_area_no_args(self):\n \"\"\"Tests area() method signature.\"\"\"\n r = Rectangle(5, 6)\n with self.assertRaises(TypeError) as e:\n Rectangle.area()\n s = \"area() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_area(self):\n \"\"\"Tests area() method compuation.\"\"\"\n r = Rectangle(5, 6)\n self.assertEqual(r.area(), 30)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r.width = w\n r.height = h\n self.assertEqual(r.area(), w * h)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r = Rectangle(w, h, 7, 8, 9)\n self.assertEqual(r.area(), w * h)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r = Rectangle(w, h, y=7, x=8, id=9)\n self.assertEqual(r.area(), w * h)\n\n def test_display_no_args(self):\n \"\"\"Tests display() method signature.\"\"\"\n r = Rectangle(9, 8)\n with self.assertRaises(TypeError) as e:\n Rectangle.display()\n s = \"display() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_display_simple(self):\n \"\"\"Tests display() method output.\"\"\"\n r = Rectangle(1, 1)\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '#\\n'\n self.assertEqual(f.getvalue(), s)\n r.width = 2\n r.height = 2\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '##\\n##\\n'\n self.assertEqual(f.getvalue(), s)\n r = Rectangle(2, 2, 2, 2)\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '\\n\\n ##\\n ##\\n'\n self.assertEqual(f.getvalue(), s)\n\n def test_K_str_no_args(self):\n \"\"\"Tests __str__() method signature.\"\"\"\n r = Rectangle(5, 2)\n with self.assertRaises(TypeError) as e:\n Rectangle.__str__()\n s = \"__str__() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_K_str(self):\n \"\"\"Tests __str__() method return.\"\"\"\n r = Rectangle(5, 2)\n s = '[Rectangle] (1) 0/0 - 5/2'\n self.assertEqual(str(r), s)\n r = Rectangle(1, 1, 1)\n s = '[Rectangle] (2) 1/0 - 1/1'\n self.assertEqual(str(r), s)\n r = Rectangle(3, 4, 5, 6)\n s = '[Rectangle] (3) 5/6 - 3/4'\n self.assertEqual(str(r), s)\n Base._Base__nb_objects = 0\n r1 = Rectangle(4, 6, 2, 1, 12)\n self.assertEqual(str(r1), '[Rectangle] (12) 2/1 - 4/6')\n r2 = Rectangle(5, 5, 1)\n self.assertEqual(str(r2), '[Rectangle] (1) 1/0 - 5/5')\n\n def test_update_no_args(self):\n \"\"\"Tests update() method \"\"\"\n r = Rectangle(5, 2)\n with self.assertRaises(TypeError) as e:\n Rectangle.update()\n s = \"update() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n d = r.__dict__.copy()\n r.update()\n self.assertEqual(r.__dict__, d)\n\n def test_update_args(self):\n \"\"\"Tests update() postional args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n r.update(10, 5)\n d['_Rectangle__width'] = 5\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17)\n d['_Rectangle__height'] = 17\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17, 20)\n d['_Rectangle__x'] = 20\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17, 20, 25)\n d['_Rectangle__y'] = 25\n self.assertEqual(r.__dict__, d)\n\n def test_update_args_bad(self):\n \"\"\"Tests update() positional arg bad values.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n with self.assertRaises(ValueError) as e:\n r.update(10, -5)\n s = 'width must be > 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, -17)\n s = 'height must be > 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, 17, -20)\n s = 'x must be >= 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, 17, 20, -25)\n s = 'y must be >= 0'\n self.assertEqual(str(e.exception), s)\n\n def test_update_kwargs(self):\n \"\"\"Tests update() keyword args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(id=10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n r.update(width=5)\n d['_Rectangle__width'] = 5\n self.assertEqual(r.__dict__, d)\n r.update(height=17)\n d['_Rectangle__height'] = 17\n self.assertEqual(r.__dict__, d)\n r.update(x=20)\n d['_Rectangle__x'] = 20\n self.assertEqual(r.__dict__, d)\n r.update(y=25)\n d['_Rectangle__y'] = 25\n self.assertEqual(r.__dict__, d)\n\n def test_update_kwargs_2(self):\n \"\"\"Tests update() keyword args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(id=10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n r.update(id=10, width=5)\n d['_Rectangle__width'] = 5\n self.assertEqual(r.__dict__, d)\n r.update(id=10, width=5, height=17)\n d['_Rectangle__height'] = 17\n self.assertEqual(r.__dict__, d)\n r.update(id=10, width=5, height=17, x=20)\n d['_Rectangle__x'] = 20\n self.assertEqual(r.__dict__, d)\n r.update(id=10, width=5, height=17, x=20, y=25)\n d['_Rectangle__y'] = 25\n self.assertEqual(r.__dict__, d)\n r.update(y=25, id=10, height=17, x=20, width=5)\n self.assertEqual(r.__dict__, d)\n Base._Base__nb_objects = 0\n r1 = Rectangle(10, 10, 10, 10)\n self.assertEqual(str(r1), '[Rectangle] (1) 10/10 - 10/10')\n r1.update(height=1)\n self.assertEqual(str(r1), '[Rectangle] (1) 10/10 - 10/1')\n r1.update(width=1, x=2)\n self.assertEqual(str(r1), '[Rectangle] (1) 2/10 - 1/1')\n r1.update(y=1, width=2, x=3, id=89)\n self.assertEqual(str(r1), '[Rectangle] (89) 3/1 - 2/1')\n r1.update(x=1, height=2, y=3, width=4)\n self.assertEqual(str(r1), '[Rectangle] (89) 1/3 - 4/2')\n Base._Base__nb_objects = 0\n r1 = Rectangle(10, 10, 10, 10)\n self.assertEqual(str(r1), '[Rectangle] (1) 10/10 - 10/10')\n r1.update(89)\n self.assertEqual(str(r1), '[Rectangle] (89) 10/10 - 10/10')\n r1.update(89, 2)\n self.assertEqual(str(r1), '[Rectangle] (89) 10/10 - 2/10')\n r1.update(89, 2, 3)\n self.assertEqual(str(r1), '[Rectangle] (89) 10/10 - 2/3')\n r1.update(89, 2, 3, 4)\n self.assertEqual(str(r1), '[Rectangle] (89) 4/10 - 2/3')\n r1.update(89, 2, 3, 4, 5)\n self.assertEqual(str(r1), '[Rectangle] (89) 4/5 - 2/3')\n\n def test_to_dictionary(self):\n \"\"\"Tests to_dictionary() \"\"\"\n with self.assertRaises(TypeError) as e:\n Rectangle.to_dictionary()\n s = \"to_dictionary() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n r = Rectangle(1, 2)\n d = {'x': 0, 'y': 0, 'width': 1, 'id': 1, 'height': 2}\n self.assertEqual(r.to_dictionary(), d)\n r = Rectangle(1, 2, 3, 4, 5)\n d = {'x': 3, 'y': 4, 'width': 1, 'id': 5, 'height': 2}\n self.assertEqual(r.to_dictionary(), d)\n r.x = 10\n r.y = 20\n r.width = 30\n r.height = 40\n d = {'x': 10, 'y': 20, 'width': 30, 'id': 5, 'height': 40}\n self.assertEqual(r.to_dictionary(), d)\n r1 = Rectangle(10, 2, 1, 9)\n r1_dictionary = r1.to_dictionary()\n r2 = Rectangle(1, 1)\n r2.update(**r1_dictionary)\n self.assertEqual(str(r1), str(r2))\n self.assertNotEqual(r1, r2)\n", "step-4": "<mask token>\n\n\nclass TestRectangle(unittest.TestCase):\n <mask token>\n\n def setUp(self):\n \"\"\" setUp \"\"\"\n Base._Base__nb_objects = 0\n\n def tearDown(self):\n \"\"\" tearDown destroys any existing objects and processes \"\"\"\n pass\n\n def test_type(self):\n \"\"\" Test type \"\"\"\n r1 = Rectangle(1, 2)\n self.assertTrue(type(r1) is Rectangle)\n\n def test_inheritance(self):\n \"\"\"Tests if Rectangle inherits Base.\"\"\"\n self.assertTrue(issubclass(Rectangle, Base))\n\n def test_constructor_no_args(self):\n \"\"\"Tests constructor signature.\"\"\"\n with self.assertRaises(TypeError) as e:\n r = Rectangle()\n s = (\n \"__init__() missing 2 required positional arguments: 'width' and 'height'\"\n )\n self.assertEqual(str(e.exception), s)\n\n def test_constructor_many_args(self):\n \"\"\"Tests constructor signature.\"\"\"\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, 3, 4, 5, 6)\n s = (\n '__init__() takes from 3 to 6 positional arguments but 7 were given'\n )\n self.assertEqual(str(e.exception), s)\n\n def test_constructor_one_args(self):\n \"\"\"Tests constructor signature.\"\"\"\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1)\n s = \"__init__() missing 1 required positional argument: 'height'\"\n self.assertEqual(str(e.exception), s)\n\n def test_instantiation(self):\n \"\"\"Tests instantiation.\"\"\"\n r = Rectangle(10, 20)\n self.assertEqual(str(type(r)), \"<class 'models.rectangle.Rectangle'>\")\n self.assertTrue(isinstance(r, Base))\n d = {'_Rectangle__height': 20, '_Rectangle__width': 10,\n '_Rectangle__x': 0, '_Rectangle__y': 0, 'id': 1}\n self.assertDictEqual(r.__dict__, d)\n with self.assertRaises(TypeError) as e:\n r = Rectangle('1', 2)\n msg = 'width must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, '2')\n msg = 'height must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, '3')\n msg = 'x must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, 3, '4')\n msg = 'y must be an integer'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(-1, 2)\n msg = 'width must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, -2)\n msg = 'height must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(0, 2)\n msg = 'width must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 0)\n msg = 'height must be > 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 2, -3)\n msg = 'x must be >= 0'\n self.assertEqual(str(e.exception), msg)\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 2, 3, -4)\n msg = 'y must be >= 0'\n self.assertEqual(str(e.exception), msg)\n\n def test_id_inherited(self):\n \"\"\"Tests if id is inherited from Base.\"\"\"\n Base._Base__nb_objects = 98\n r = Rectangle(2, 4)\n self.assertEqual(r.id, 99)\n\n def test_validate_type(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y', 'width', 'height']\n t = 3.14, -1.1, float('inf'), float('-inf'), True, 'str', (2,), [4], {5\n }, {(6): 7}, None\n for attribute in attributes:\n s = '{} must be an integer'.format(attribute)\n for invalid_type in t:\n with self.assertRaises(TypeError) as e:\n setattr(r, attribute, invalid_type)\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_negative_gt(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['width', 'height']\n for attribute in attributes:\n s = '{} must be > 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, -(randrange(10) + 1))\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_negative_ge(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y']\n for attribute in attributes:\n s = '{} must be >= 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, -(randrange(10) + 1))\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_zero(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['width', 'height']\n for attribute in attributes:\n s = '{} must be > 0'.format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, 0)\n self.assertEqual(str(e.exception), s)\n\n def test_property(self):\n \"\"\"Tests property setting/getting.\"\"\"\n r = Rectangle(1, 2)\n attributes = ['x', 'y', 'width', 'height']\n for attribute in attributes:\n n = randrange(10) + 1\n setattr(r, attribute, n)\n self.assertEqual(getattr(r, attribute), n)\n\n def test_property_range_zero(self):\n \"\"\"Tests property setting/getting.\"\"\"\n r = Rectangle(1, 2)\n r.x = 0\n r.y = 0\n self.assertEqual(r.x, 0)\n self.assertEqual(r.y, 0)\n\n def test_area_no_args(self):\n \"\"\"Tests area() method signature.\"\"\"\n r = Rectangle(5, 6)\n with self.assertRaises(TypeError) as e:\n Rectangle.area()\n s = \"area() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_area(self):\n \"\"\"Tests area() method compuation.\"\"\"\n r = Rectangle(5, 6)\n self.assertEqual(r.area(), 30)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r.width = w\n r.height = h\n self.assertEqual(r.area(), w * h)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r = Rectangle(w, h, 7, 8, 9)\n self.assertEqual(r.area(), w * h)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r = Rectangle(w, h, y=7, x=8, id=9)\n self.assertEqual(r.area(), w * h)\n\n def test_display_no_args(self):\n \"\"\"Tests display() method signature.\"\"\"\n r = Rectangle(9, 8)\n with self.assertRaises(TypeError) as e:\n Rectangle.display()\n s = \"display() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_display_simple(self):\n \"\"\"Tests display() method output.\"\"\"\n r = Rectangle(1, 1)\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '#\\n'\n self.assertEqual(f.getvalue(), s)\n r.width = 2\n r.height = 2\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '##\\n##\\n'\n self.assertEqual(f.getvalue(), s)\n r = Rectangle(2, 2, 2, 2)\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = '\\n\\n ##\\n ##\\n'\n self.assertEqual(f.getvalue(), s)\n\n def test_K_str_no_args(self):\n \"\"\"Tests __str__() method signature.\"\"\"\n r = Rectangle(5, 2)\n with self.assertRaises(TypeError) as e:\n Rectangle.__str__()\n s = \"__str__() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_K_str(self):\n \"\"\"Tests __str__() method return.\"\"\"\n r = Rectangle(5, 2)\n s = '[Rectangle] (1) 0/0 - 5/2'\n self.assertEqual(str(r), s)\n r = Rectangle(1, 1, 1)\n s = '[Rectangle] (2) 1/0 - 1/1'\n self.assertEqual(str(r), s)\n r = Rectangle(3, 4, 5, 6)\n s = '[Rectangle] (3) 5/6 - 3/4'\n self.assertEqual(str(r), s)\n Base._Base__nb_objects = 0\n r1 = Rectangle(4, 6, 2, 1, 12)\n self.assertEqual(str(r1), '[Rectangle] (12) 2/1 - 4/6')\n r2 = Rectangle(5, 5, 1)\n self.assertEqual(str(r2), '[Rectangle] (1) 1/0 - 5/5')\n\n def test_update_no_args(self):\n \"\"\"Tests update() method \"\"\"\n r = Rectangle(5, 2)\n with self.assertRaises(TypeError) as e:\n Rectangle.update()\n s = \"update() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n d = r.__dict__.copy()\n r.update()\n self.assertEqual(r.__dict__, d)\n\n def test_update_args(self):\n \"\"\"Tests update() postional args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n r.update(10, 5)\n d['_Rectangle__width'] = 5\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17)\n d['_Rectangle__height'] = 17\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17, 20)\n d['_Rectangle__x'] = 20\n self.assertEqual(r.__dict__, d)\n r.update(10, 5, 17, 20, 25)\n d['_Rectangle__y'] = 25\n self.assertEqual(r.__dict__, d)\n\n def test_update_args_bad(self):\n \"\"\"Tests update() positional arg bad values.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n with self.assertRaises(ValueError) as e:\n r.update(10, -5)\n s = 'width must be > 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, -17)\n s = 'height must be > 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, 17, -20)\n s = 'x must be >= 0'\n self.assertEqual(str(e.exception), s)\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, 17, 20, -25)\n s = 'y must be >= 0'\n self.assertEqual(str(e.exception), s)\n\n def test_update_kwargs(self):\n \"\"\"Tests update() keyword args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(id=10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n r.update(width=5)\n d['_Rectangle__width'] = 5\n self.assertEqual(r.__dict__, d)\n r.update(height=17)\n d['_Rectangle__height'] = 17\n self.assertEqual(r.__dict__, d)\n r.update(x=20)\n d['_Rectangle__x'] = 20\n self.assertEqual(r.__dict__, d)\n r.update(y=25)\n d['_Rectangle__y'] = 25\n self.assertEqual(r.__dict__, d)\n\n def test_update_kwargs_2(self):\n \"\"\"Tests update() keyword args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n r.update(id=10)\n d['id'] = 10\n self.assertEqual(r.__dict__, d)\n r.update(id=10, width=5)\n d['_Rectangle__width'] = 5\n self.assertEqual(r.__dict__, d)\n r.update(id=10, width=5, height=17)\n d['_Rectangle__height'] = 17\n self.assertEqual(r.__dict__, d)\n r.update(id=10, width=5, height=17, x=20)\n d['_Rectangle__x'] = 20\n self.assertEqual(r.__dict__, d)\n r.update(id=10, width=5, height=17, x=20, y=25)\n d['_Rectangle__y'] = 25\n self.assertEqual(r.__dict__, d)\n r.update(y=25, id=10, height=17, x=20, width=5)\n self.assertEqual(r.__dict__, d)\n Base._Base__nb_objects = 0\n r1 = Rectangle(10, 10, 10, 10)\n self.assertEqual(str(r1), '[Rectangle] (1) 10/10 - 10/10')\n r1.update(height=1)\n self.assertEqual(str(r1), '[Rectangle] (1) 10/10 - 10/1')\n r1.update(width=1, x=2)\n self.assertEqual(str(r1), '[Rectangle] (1) 2/10 - 1/1')\n r1.update(y=1, width=2, x=3, id=89)\n self.assertEqual(str(r1), '[Rectangle] (89) 3/1 - 2/1')\n r1.update(x=1, height=2, y=3, width=4)\n self.assertEqual(str(r1), '[Rectangle] (89) 1/3 - 4/2')\n Base._Base__nb_objects = 0\n r1 = Rectangle(10, 10, 10, 10)\n self.assertEqual(str(r1), '[Rectangle] (1) 10/10 - 10/10')\n r1.update(89)\n self.assertEqual(str(r1), '[Rectangle] (89) 10/10 - 10/10')\n r1.update(89, 2)\n self.assertEqual(str(r1), '[Rectangle] (89) 10/10 - 2/10')\n r1.update(89, 2, 3)\n self.assertEqual(str(r1), '[Rectangle] (89) 10/10 - 2/3')\n r1.update(89, 2, 3, 4)\n self.assertEqual(str(r1), '[Rectangle] (89) 4/10 - 2/3')\n r1.update(89, 2, 3, 4, 5)\n self.assertEqual(str(r1), '[Rectangle] (89) 4/5 - 2/3')\n\n def test_to_dictionary(self):\n \"\"\"Tests to_dictionary() \"\"\"\n with self.assertRaises(TypeError) as e:\n Rectangle.to_dictionary()\n s = \"to_dictionary() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n r = Rectangle(1, 2)\n d = {'x': 0, 'y': 0, 'width': 1, 'id': 1, 'height': 2}\n self.assertEqual(r.to_dictionary(), d)\n r = Rectangle(1, 2, 3, 4, 5)\n d = {'x': 3, 'y': 4, 'width': 1, 'id': 5, 'height': 2}\n self.assertEqual(r.to_dictionary(), d)\n r.x = 10\n r.y = 20\n r.width = 30\n r.height = 40\n d = {'x': 10, 'y': 20, 'width': 30, 'id': 5, 'height': 40}\n self.assertEqual(r.to_dictionary(), d)\n r1 = Rectangle(10, 2, 1, 9)\n r1_dictionary = r1.to_dictionary()\n r2 = Rectangle(1, 1)\n r2.update(**r1_dictionary)\n self.assertEqual(str(r1), str(r2))\n self.assertNotEqual(r1, r2)\n", "step-5": "#!/usr/bin/python3\n\"\"\"\nTest of Rectangle class\n\"\"\"\nfrom contextlib import redirect_stdout\nimport io\nimport unittest\nfrom random import randrange\nfrom models.base import Base\nfrom models.rectangle import Rectangle\nfrom models.square import Square\n\n\nclass TestRectangle(unittest.TestCase):\n \"\"\" Test Rectangle methods \"\"\"\n\n def setUp(self):\n \"\"\" setUp \"\"\"\n Base._Base__nb_objects = 0\n\n def tearDown(self):\n \"\"\" tearDown destroys any existing objects and processes \"\"\"\n pass\n\n def test_type(self):\n \"\"\" Test type \"\"\"\n r1 = Rectangle(1, 2)\n self.assertTrue(type(r1) is Rectangle)\n\n def test_inheritance(self):\n \"\"\"Tests if Rectangle inherits Base.\"\"\"\n self.assertTrue(issubclass(Rectangle, Base))\n\n def test_constructor_no_args(self):\n \"\"\"Tests constructor signature.\"\"\"\n with self.assertRaises(TypeError) as e:\n r = Rectangle()\n s = \"__init__() missing 2 required positional arguments: 'width' \\\nand 'height'\"\n self.assertEqual(str(e.exception), s)\n\n def test_constructor_many_args(self):\n \"\"\"Tests constructor signature.\"\"\"\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, 3, 4, 5, 6)\n s = \"__init__() takes from 3 to 6 positional arguments but 7 were \\\ngiven\"\n self.assertEqual(str(e.exception), s)\n\n def test_constructor_one_args(self):\n \"\"\"Tests constructor signature.\"\"\"\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1)\n s = \"__init__() missing 1 required positional argument: 'height'\"\n self.assertEqual(str(e.exception), s)\n\n def test_instantiation(self):\n \"\"\"Tests instantiation.\"\"\"\n r = Rectangle(10, 20)\n self.assertEqual(str(type(r)), \"<class 'models.rectangle.Rectangle'>\")\n self.assertTrue(isinstance(r, Base))\n d = {'_Rectangle__height': 20, '_Rectangle__width': 10,\n '_Rectangle__x': 0, '_Rectangle__y': 0, 'id': 1}\n self.assertDictEqual(r.__dict__, d)\n\n with self.assertRaises(TypeError) as e:\n r = Rectangle(\"1\", 2)\n msg = \"width must be an integer\"\n self.assertEqual(str(e.exception), msg)\n\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, \"2\")\n msg = \"height must be an integer\"\n self.assertEqual(str(e.exception), msg)\n\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, \"3\")\n msg = \"x must be an integer\"\n self.assertEqual(str(e.exception), msg)\n\n with self.assertRaises(TypeError) as e:\n r = Rectangle(1, 2, 3, \"4\")\n msg = \"y must be an integer\"\n self.assertEqual(str(e.exception), msg)\n\n with self.assertRaises(ValueError) as e:\n r = Rectangle(-1, 2)\n msg = \"width must be > 0\"\n self.assertEqual(str(e.exception), msg)\n\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, -2)\n msg = \"height must be > 0\"\n self.assertEqual(str(e.exception), msg)\n\n with self.assertRaises(ValueError) as e:\n r = Rectangle(0, 2)\n msg = \"width must be > 0\"\n self.assertEqual(str(e.exception), msg)\n\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 0)\n msg = \"height must be > 0\"\n self.assertEqual(str(e.exception), msg)\n\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 2, -3)\n msg = \"x must be >= 0\"\n self.assertEqual(str(e.exception), msg)\n\n with self.assertRaises(ValueError) as e:\n r = Rectangle(1, 2, 3, -4)\n msg = \"y must be >= 0\"\n self.assertEqual(str(e.exception), msg)\n\n def test_id_inherited(self):\n \"\"\"Tests if id is inherited from Base.\"\"\"\n Base._Base__nb_objects = 98\n r = Rectangle(2, 4)\n self.assertEqual(r.id, 99)\n\n # -- #\n\n def test_validate_type(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = [\"x\", \"y\", \"width\", \"height\"]\n t = (3.14, -1.1, float('inf'), float('-inf'), True, \"str\", (2,),\n [4], {5}, {6: 7}, None)\n\n for attribute in attributes:\n s = \"{} must be an integer\".format(attribute)\n for invalid_type in t:\n with self.assertRaises(TypeError) as e:\n setattr(r, attribute, invalid_type)\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_negative_gt(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = [\"width\", \"height\"]\n for attribute in attributes:\n s = \"{} must be > 0\".format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, -(randrange(10) + 1))\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_negative_ge(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = [\"x\", \"y\"]\n for attribute in attributes:\n s = \"{} must be >= 0\".format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, -(randrange(10) + 1))\n self.assertEqual(str(e.exception), s)\n\n def test_validate_value_zero(self):\n \"\"\"Tests property validation.\"\"\"\n r = Rectangle(1, 2)\n attributes = [\"width\", \"height\"]\n for attribute in attributes:\n s = \"{} must be > 0\".format(attribute)\n with self.assertRaises(ValueError) as e:\n setattr(r, attribute, 0)\n self.assertEqual(str(e.exception), s)\n\n def test_property(self):\n \"\"\"Tests property setting/getting.\"\"\"\n r = Rectangle(1, 2)\n attributes = [\"x\", \"y\", \"width\", \"height\"]\n for attribute in attributes:\n n = randrange(10) + 1\n setattr(r, attribute, n)\n self.assertEqual(getattr(r, attribute), n)\n\n def test_property_range_zero(self):\n \"\"\"Tests property setting/getting.\"\"\"\n r = Rectangle(1, 2)\n r.x = 0\n r.y = 0\n self.assertEqual(r.x, 0)\n self.assertEqual(r.y, 0)\n\n def test_area_no_args(self):\n \"\"\"Tests area() method signature.\"\"\"\n r = Rectangle(5, 6)\n with self.assertRaises(TypeError) as e:\n Rectangle.area()\n s = \"area() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_area(self):\n \"\"\"Tests area() method compuation.\"\"\"\n r = Rectangle(5, 6)\n self.assertEqual(r.area(), 30)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r.width = w\n r.height = h\n self.assertEqual(r.area(), w * h)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r = Rectangle(w, h, 7, 8, 9)\n self.assertEqual(r.area(), w * h)\n w = randrange(10) + 1\n h = randrange(10) + 1\n r = Rectangle(w, h, y=7, x=8, id=9)\n self.assertEqual(r.area(), w * h)\n\n def test_display_no_args(self):\n \"\"\"Tests display() method signature.\"\"\"\n r = Rectangle(9, 8)\n with self.assertRaises(TypeError) as e:\n Rectangle.display()\n s = \"display() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_display_simple(self):\n \"\"\"Tests display() method output.\"\"\"\n r = Rectangle(1, 1)\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = \"#\\n\"\n self.assertEqual(f.getvalue(), s)\n r.width = 2\n r.height = 2\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = \"##\\n##\\n\"\n self.assertEqual(f.getvalue(), s)\n\n r = Rectangle(2, 2, 2, 2)\n f = io.StringIO()\n with redirect_stdout(f):\n r.display()\n s = \"\\n\\n ##\\n ##\\n\"\n self.assertEqual(f.getvalue(), s)\n\n def test_K_str_no_args(self):\n \"\"\"Tests __str__() method signature.\"\"\"\n r = Rectangle(5, 2)\n with self.assertRaises(TypeError) as e:\n Rectangle.__str__()\n s = \"__str__() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n def test_K_str(self):\n \"\"\"Tests __str__() method return.\"\"\"\n r = Rectangle(5, 2)\n s = '[Rectangle] (1) 0/0 - 5/2'\n self.assertEqual(str(r), s)\n r = Rectangle(1, 1, 1)\n s = '[Rectangle] (2) 1/0 - 1/1'\n self.assertEqual(str(r), s)\n r = Rectangle(3, 4, 5, 6)\n s = '[Rectangle] (3) 5/6 - 3/4'\n self.assertEqual(str(r), s)\n\n Base._Base__nb_objects = 0\n r1 = Rectangle(4, 6, 2, 1, 12)\n self.assertEqual(str(r1), \"[Rectangle] (12) 2/1 - 4/6\")\n\n r2 = Rectangle(5, 5, 1)\n self.assertEqual(str(r2), \"[Rectangle] (1) 1/0 - 5/5\")\n\n def test_update_no_args(self):\n \"\"\"Tests update() method \"\"\"\n r = Rectangle(5, 2)\n with self.assertRaises(TypeError) as e:\n Rectangle.update()\n s = \"update() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n d = r.__dict__.copy()\n r.update()\n self.assertEqual(r.__dict__, d)\n\n def test_update_args(self):\n \"\"\"Tests update() postional args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n\n r.update(10)\n d[\"id\"] = 10\n self.assertEqual(r.__dict__, d)\n\n r.update(10, 5)\n d[\"_Rectangle__width\"] = 5\n self.assertEqual(r.__dict__, d)\n\n r.update(10, 5, 17)\n d[\"_Rectangle__height\"] = 17\n self.assertEqual(r.__dict__, d)\n\n r.update(10, 5, 17, 20)\n d[\"_Rectangle__x\"] = 20\n self.assertEqual(r.__dict__, d)\n\n r.update(10, 5, 17, 20, 25)\n d[\"_Rectangle__y\"] = 25\n self.assertEqual(r.__dict__, d)\n\n def test_update_args_bad(self):\n \"\"\"Tests update() positional arg bad values.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n\n r.update(10)\n d[\"id\"] = 10\n self.assertEqual(r.__dict__, d)\n\n with self.assertRaises(ValueError) as e:\n r.update(10, -5)\n s = \"width must be > 0\"\n self.assertEqual(str(e.exception), s)\n\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, -17)\n s = \"height must be > 0\"\n self.assertEqual(str(e.exception), s)\n\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, 17, -20)\n s = \"x must be >= 0\"\n self.assertEqual(str(e.exception), s)\n\n with self.assertRaises(ValueError) as e:\n r.update(10, 5, 17, 20, -25)\n s = \"y must be >= 0\"\n self.assertEqual(str(e.exception), s)\n\n def test_update_kwargs(self):\n \"\"\"Tests update() keyword args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n\n r.update(id=10)\n d[\"id\"] = 10\n self.assertEqual(r.__dict__, d)\n\n r.update(width=5)\n d[\"_Rectangle__width\"] = 5\n self.assertEqual(r.__dict__, d)\n\n r.update(height=17)\n d[\"_Rectangle__height\"] = 17\n self.assertEqual(r.__dict__, d)\n\n r.update(x=20)\n d[\"_Rectangle__x\"] = 20\n self.assertEqual(r.__dict__, d)\n\n r.update(y=25)\n d[\"_Rectangle__y\"] = 25\n self.assertEqual(r.__dict__, d)\n\n def test_update_kwargs_2(self):\n \"\"\"Tests update() keyword args.\"\"\"\n r = Rectangle(5, 2)\n d = r.__dict__.copy()\n\n r.update(id=10)\n d[\"id\"] = 10\n self.assertEqual(r.__dict__, d)\n\n r.update(id=10, width=5)\n d[\"_Rectangle__width\"] = 5\n self.assertEqual(r.__dict__, d)\n\n r.update(id=10, width=5, height=17)\n d[\"_Rectangle__height\"] = 17\n self.assertEqual(r.__dict__, d)\n\n r.update(id=10, width=5, height=17, x=20)\n d[\"_Rectangle__x\"] = 20\n self.assertEqual(r.__dict__, d)\n\n r.update(id=10, width=5, height=17, x=20, y=25)\n d[\"_Rectangle__y\"] = 25\n self.assertEqual(r.__dict__, d)\n\n r.update(y=25, id=10, height=17, x=20, width=5)\n self.assertEqual(r.__dict__, d)\n\n Base._Base__nb_objects = 0\n r1 = Rectangle(10, 10, 10, 10)\n self.assertEqual(str(r1), \"[Rectangle] (1) 10/10 - 10/10\")\n\n r1.update(height=1)\n self.assertEqual(str(r1), \"[Rectangle] (1) 10/10 - 10/1\")\n\n r1.update(width=1, x=2)\n self.assertEqual(str(r1), \"[Rectangle] (1) 2/10 - 1/1\")\n\n r1.update(y=1, width=2, x=3, id=89)\n self.assertEqual(str(r1), \"[Rectangle] (89) 3/1 - 2/1\")\n\n r1.update(x=1, height=2, y=3, width=4)\n self.assertEqual(str(r1), \"[Rectangle] (89) 1/3 - 4/2\")\n\n Base._Base__nb_objects = 0\n r1 = Rectangle(10, 10, 10, 10)\n self.assertEqual(str(r1), \"[Rectangle] (1) 10/10 - 10/10\")\n\n r1.update(89)\n self.assertEqual(str(r1), \"[Rectangle] (89) 10/10 - 10/10\")\n\n r1.update(89, 2)\n self.assertEqual(str(r1), \"[Rectangle] (89) 10/10 - 2/10\")\n\n r1.update(89, 2, 3)\n self.assertEqual(str(r1), \"[Rectangle] (89) 10/10 - 2/3\")\n\n r1.update(89, 2, 3, 4)\n self.assertEqual(str(r1), \"[Rectangle] (89) 4/10 - 2/3\")\n\n r1.update(89, 2, 3, 4, 5)\n self.assertEqual(str(r1), \"[Rectangle] (89) 4/5 - 2/3\")\n\n def test_to_dictionary(self):\n \"\"\"Tests to_dictionary() \"\"\"\n with self.assertRaises(TypeError) as e:\n Rectangle.to_dictionary()\n s = \"to_dictionary() missing 1 required positional argument: 'self'\"\n self.assertEqual(str(e.exception), s)\n\n r = Rectangle(1, 2)\n d = {'x': 0, 'y': 0, 'width': 1, 'id': 1, 'height': 2}\n self.assertEqual(r.to_dictionary(), d)\n\n r = Rectangle(1, 2, 3, 4, 5)\n d = {'x': 3, 'y': 4, 'width': 1, 'id': 5, 'height': 2}\n self.assertEqual(r.to_dictionary(), d)\n\n r.x = 10\n r.y = 20\n r.width = 30\n r.height = 40\n d = {'x': 10, 'y': 20, 'width': 30, 'id': 5, 'height': 40}\n self.assertEqual(r.to_dictionary(), d)\n\n r1 = Rectangle(10, 2, 1, 9)\n r1_dictionary = r1.to_dictionary()\n r2 = Rectangle(1, 1)\n r2.update(**r1_dictionary)\n self.assertEqual(str(r1), str(r2))\n self.assertNotEqual(r1, r2)\n", "step-ids": [ 23, 25, 26, 28, 31 ] }
[ 23, 25, 26, 28, 31 ]