code
stringlengths
13
1.2M
order_type
stringclasses
1 value
original_example
dict
step_ids
listlengths
1
5
# hi :) import numpy as np import random from copy import deepcopy # initialization.... # see also prepare.sh header = np.loadtxt("header.txt", dtype=int) TIME = header[2] CARS = header[3] STARTPOINT = header[4] GRAPH = np.loadtxt("links.txt",dtype=int) number_of_links = GRAPH.shape[0] N = len(GRAPH[:,1]) VOIS=[] TPS=[] DIST=[] AWARD=[] for i in range(N): VOIS.append([]) TPS.append([]) DIST.append([]) for i in range(N): VOIS[GRAPH[i,0]].append(GRAPH[i,1]) TPS[GRAPH[i,0]].append(GRAPH[i,3]) DIST[GRAPH[i,0]].append(GRAPH[i,4]) if GRAPH[i,2] == 2: VOIS[GRAPH[i,1]].append(GRAPH[i,0]) TPS[GRAPH[i,1]].append(GRAPH[i,3]) DIST[GRAPH[i,1]].append(GRAPH[i,4]) # VOIS[2803] = [1231, 123,123] # TPS[2803] = [10s, 20s, 30s] # DIST[2803] = [10m, 200m, 300m] # the main code def best_neighbour(current_node, current_cost): # fix neighbours = VOIS[current_node] # filter very costly good_neighbours_indexes = [] for n in range(len(neighbours)): if current_cost + TPS[current_node][n] <= TIME: good_neighbours_indexes.append(n) if len(good_neighbours_indexes) > 0: for n in good_neighbours_indexes: possible_next_node = VOIS[current_node][n] possible_cost = TPS[current_node][n] bn = best_neighbour(possible_next_node, current_cost + possible_next_node) # awards = [DIST[current_node][ind] # for ind in good_neighbours_indexes] # maward = max(awards) # indexes = [ind for ind in good_neighbours_indexes # if DIST[current_node][ind] == maward] best_neighbour_index = random.choice(indexes) cost = TPS[current_node][best_neighbour_index] best_neighbour = neighbours[best_neighbour_index] else: # error cost = -100 best_neighbour = -100 return (best_neighbour, cost) def remove_award(current_node, next_node): next_node_index = VOIS[current_node].index(next_node) # the distance will be zero DIST[current_node][next_node_index] = 0 if current_node in VOIS[next_node]: current_node_index = VOIS[next_node].index(current_node) DIST[next_node][current_node_index] = 0 print CARS # CAR par CAR for CAR in range(CARS): visited_nodes = [] current_node = STARTPOINT current_time = 0 visited_nodes.append(current_node) while current_time < TIME: # choose a neighbour next_node, time = best_neighbour(current_node, current_time) if next_node == -100: break else: # we was here, so we remove award remove_award(current_node, next_node) visited_nodes.append(next_node) current_node = next_node current_time = current_time + time # output for that CAR # print len(visited_nodes) print len(visited_nodes) for n in visited_nodes: print n
normal
{ "blob_id": "9a9fdf0f3cfb876a384059f3dcf2508f960168c2", "index": 2167, "step-1": "# hi :)\nimport numpy as np\nimport random\nfrom copy import deepcopy\n\n\n# initialization....\n# see also prepare.sh\n\nheader = np.loadtxt(\"header.txt\", dtype=int)\nTIME = header[2]\nCARS = header[3]\nSTARTPOINT = header[4]\n\nGRAPH = np.loadtxt(\"links.txt\",dtype=int)\nnumber_of_links = GRAPH.shape[0]\nN = len(GRAPH[:,1])\n\nVOIS=[]\nTPS=[]\nDIST=[]\nAWARD=[]\nfor i in range(N):\n\tVOIS.append([])\n\tTPS.append([])\n\tDIST.append([])\n\nfor i in range(N):\n\tVOIS[GRAPH[i,0]].append(GRAPH[i,1])\n\tTPS[GRAPH[i,0]].append(GRAPH[i,3])\n\tDIST[GRAPH[i,0]].append(GRAPH[i,4])\n\tif GRAPH[i,2] == 2:\n\t\tVOIS[GRAPH[i,1]].append(GRAPH[i,0])\n\t\tTPS[GRAPH[i,1]].append(GRAPH[i,3])\n\t\tDIST[GRAPH[i,1]].append(GRAPH[i,4])\n\n# VOIS[2803] = [1231, 123,123]\n# TPS[2803] = [10s, 20s, 30s]\n# DIST[2803] = [10m, 200m, 300m]\n\n# the main code\n\ndef best_neighbour(current_node, current_cost):\n # fix \n neighbours = VOIS[current_node]\n # filter very costly\n good_neighbours_indexes = []\n for n in range(len(neighbours)):\n if current_cost + TPS[current_node][n] <= TIME:\n good_neighbours_indexes.append(n)\n\n\n if len(good_neighbours_indexes) > 0:\n for n in good_neighbours_indexes:\n possible_next_node = VOIS[current_node][n]\n possible_cost = TPS[current_node][n]\n bn = best_neighbour(possible_next_node, \n current_cost + possible_next_node)\n\n# awards = [DIST[current_node][ind] \n# for ind in good_neighbours_indexes]\n# maward = max(awards)\n# indexes = [ind for ind in good_neighbours_indexes\n# if DIST[current_node][ind] == maward]\n\n \n \n best_neighbour_index = random.choice(indexes)\n cost = TPS[current_node][best_neighbour_index]\n best_neighbour = neighbours[best_neighbour_index]\n else:\n # error\n cost = -100\n best_neighbour = -100\n return (best_neighbour, cost)\n\ndef remove_award(current_node, next_node):\n next_node_index = VOIS[current_node].index(next_node)\n # the distance will be zero \n DIST[current_node][next_node_index] = 0\n if current_node in VOIS[next_node]:\n current_node_index = VOIS[next_node].index(current_node)\n DIST[next_node][current_node_index] = 0\n\nprint CARS\n# CAR par CAR\nfor CAR in range(CARS):\n visited_nodes = [] \n current_node = STARTPOINT\n current_time = 0\n visited_nodes.append(current_node)\n while current_time < TIME:\n # choose a neighbour\n next_node, time = best_neighbour(current_node, current_time)\n if next_node == -100:\n break\n else:\n # we was here, so we remove award\n remove_award(current_node, next_node)\n visited_nodes.append(next_node)\n current_node = next_node\n current_time = current_time + time\n # output for that CAR\n # print len(visited_nodes)\n print len(visited_nodes)\n for n in visited_nodes:\n print n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from sys import stdin def IsPrime(x): for i in range(2, int(x ** 0.5) + 1): if not x % i: return False return True for x in stdin: x = x[:-1] y = x[::-1] a = IsPrime(int(x)) b = IsPrime(int(y)) if not a: print("%s is not prime." %x) elif (a and not b) or (a and x == y): print("%s is prime." %x) else: print("%s is emirp." %x)
normal
{ "blob_id": "fcfec521e071aa586febc74efb2deb0e9d0a331e", "index": 3358, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef IsPrime(x):\n for i in range(2, int(x ** 0.5) + 1):\n if not x % i:\n return False\n return True\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef IsPrime(x):\n for i in range(2, int(x ** 0.5) + 1):\n if not x % i:\n return False\n return True\n\n\nfor x in stdin:\n x = x[:-1]\n y = x[::-1]\n a = IsPrime(int(x))\n b = IsPrime(int(y))\n if not a:\n print('%s is not prime.' % x)\n elif a and not b or a and x == y:\n print('%s is prime.' % x)\n else:\n print('%s is emirp.' % x)\n", "step-4": "from sys import stdin\n\n\ndef IsPrime(x):\n for i in range(2, int(x ** 0.5) + 1):\n if not x % i:\n return False\n return True\n\n\nfor x in stdin:\n x = x[:-1]\n y = x[::-1]\n a = IsPrime(int(x))\n b = IsPrime(int(y))\n if not a:\n print('%s is not prime.' % x)\n elif a and not b or a and x == y:\n print('%s is prime.' % x)\n else:\n print('%s is emirp.' % x)\n", "step-5": "from sys import stdin\n\ndef IsPrime(x):\n for i in range(2, int(x ** 0.5) + 1):\n if not x % i:\n return False\n \n return True\n\nfor x in stdin:\n x = x[:-1]\n y = x[::-1]\n a = IsPrime(int(x))\n b = IsPrime(int(y))\n if not a:\n print(\"%s is not prime.\" %x)\n elif (a and not b) or (a and x == y):\n print(\"%s is prime.\" %x)\n else:\n print(\"%s is emirp.\" %x)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from pirates.teleport.AreaTeleportActor import AreaTeleportActor class DoorTeleportActor(AreaTeleportActor): pass
normal
{ "blob_id": "b679444fde7cd8eb819443922f37ee54c0f29de4", "index": 424, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass DoorTeleportActor(AreaTeleportActor):\n pass\n", "step-3": "from pirates.teleport.AreaTeleportActor import AreaTeleportActor\n\n\nclass DoorTeleportActor(AreaTeleportActor):\n pass\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
#-*- coding:UTF-8 -*- year = int(input('请输入一个年份:')) """ if(year % 4) == 0: if(year % 100) == 0: if(year % 400) == 0: print('{0}是润年'.format(year)) else: print('{0}不是润年'.format(year)) else: print('{0}是润年'.format(year)) else: print('{0}不是润年'.format(year)) """ if(year%4)==0 and (year%100)!=0 or (year%400)==0: print('{0}是润年'.format(year)) else: print('{0}不是润年'.format(year))
normal
{ "blob_id": "78178ec8474a3deb876ab7d3950cd427d7a795d5", "index": 2218, "step-1": "<mask token>\n", "step-2": "<mask token>\nif year % 4 == 0 and year % 100 != 0 or year % 400 == 0:\n print('{0}是润年'.format(year))\nelse:\n print('{0}不是润年'.format(year))\n", "step-3": "year = int(input('请输入一个年份:'))\n<mask token>\nif year % 4 == 0 and year % 100 != 0 or year % 400 == 0:\n print('{0}是润年'.format(year))\nelse:\n print('{0}不是润年'.format(year))\n", "step-4": "#-*- coding:UTF-8 -*- \n\nyear = int(input('请输入一个年份:'))\n\"\"\"\nif(year % 4) == 0:\n if(year % 100) == 0:\n if(year % 400) == 0:\n print('{0}是润年'.format(year))\n else:\n print('{0}不是润年'.format(year))\n else:\n print('{0}是润年'.format(year))\nelse:\n print('{0}不是润年'.format(year)) \n\n\"\"\"\nif(year%4)==0 and (year%100)!=0 or (year%400)==0:\n print('{0}是润年'.format(year))\nelse:\n print('{0}不是润年'.format(year)) \n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.urls import path from redjit.post.views import MyPost, PostView urlpatterns = [ path('newpost/', MyPost.as_view(), name='newpost') path('subredjit/<subredjit>/<post_id>/', PostView.as_view(), name='post') ]
normal
{ "blob_id": "e0fc7e5771f6cb8e0638bc8c9549cfe1a92d3d82", "index": 8719, "step-1": "from django.urls import path\nfrom redjit.post.views import MyPost, PostView\n\n\n\nurlpatterns = [\n path('newpost/', MyPost.as_view(), name='newpost')\n path('subredjit/<subredjit>/<post_id>/', PostView.as_view(), name='post')\n]", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# For better usage on ddp import torch from pytorch_lightning.metrics import Metric import cv2 import numpy as np import skimage import torch.tensor as Tensor class SegMetric(Metric): def __init__(self, iou_thr, prob_thr, img_size, dist_sync_on_step=False): super().__init__(dist_sync_on_step=dist_sync_on_step) # call `self.add_state`for every internal state that is needed for the metrics computations # dist_reduce_fx indicates the function that should be used to reduce # state from multiple processes self.iou_thr = iou_thr self.prob_thr = prob_thr self.img_size = img_size self.use_ddp = dist_sync_on_step self.add_state("csv_files", default=[], dist_reduce_fx="cat") def update(self, preds: torch.Tensor, target: torch.Tensor): logit_seg, _ = preds _, mask, mask_cls, _, img_path, _ = target assert logit_seg.shape == mask.shape pred_seg = torch.sigmoid(logit_seg).detach().cpu().numpy() gt_seg = mask.detach().cpu().numpy() gt_cls = mask_cls.detach().cpu().numpy()[:, 0].tolist() pred_seg = pred_seg.astype("float32") for idx, file_path in enumerate(img_path): pred = cv2.resize(pred_seg[idx][0], (self.img_size, self.img_size)) pred = np.expand_dims(pred, 0) gt = cv2.resize( gt_seg[idx][0], (self.img_size, self.img_size), interpolation=cv2.INTER_NEAREST, ) gt = np.expand_dims(gt, 0) gt_c = gt_cls[idx] is_p = int(gt_c == 1.0) is_n = 1 - is_p gt_nums_, pred_nums_, tp_nums_, fp_nums_ = evaluation( pred, gt, iou_th=self.iou_thr, prob_ths=[self.prob_thr] ) # csv = file_path.split("/")[5] csv = file_path.split("png_1024/")[1].split("/")[0] if not hasattr(self, f"{csv}_gt"): self.csv_files += [csv] self.add_state(f"{csv}_gt", default=Tensor(0), dist_reduce_fx="sum") self.add_state(f"{csv}_pred", default=Tensor(0), dist_reduce_fx="sum") self.add_state(f"{csv}_tp", default=Tensor(0), dist_reduce_fx="sum") self.add_state(f"{csv}_fp", default=Tensor(0), dist_reduce_fx="sum") self.add_state(f"{csv}_pos", default=Tensor(0), dist_reduce_fx="sum") self.add_state( f"{csv}_neg", default=torch.tensor(0), dist_reduce_fx="sum" ) # TODO: Need to be change if num_class > 1 # FIXME: 몬 생긴 포맷.. setattr(self, f"{csv}_gt", getattr(self, f"{csv}_gt") + gt_nums_[0]) setattr( self, f"{csv}_pred", getattr(self, f"{csv}_pred") + pred_nums_[0, 0] ) setattr(self, f"{csv}_tp", getattr(self, f"{csv}_tp") + tp_nums_[0, 0]) setattr(self, f"{csv}_fp", getattr(self, f"{csv}_fp") + fp_nums_[0, 0]) setattr(self, f"{csv}_pos", getattr(self, f"{csv}_pos") + is_p) setattr(self, f"{csv}_neg", getattr(self, f"{csv}_neg") + is_n) def update_each(self, preds: torch.Tensor, target: torch.Tensor): self.update(preds, target) def compute(self): gt = 0 tp = 0 fp = 0 pos = 0 neg = 0 for csv in self.csv_files: gt += getattr(self, f"{csv}_gt").item() tp += getattr(self, f"{csv}_tp").item() fp += getattr(self, f"{csv}_fp").item() pos += getattr(self, f"{csv}_pos").item() neg += getattr(self, f"{csv}_neg").item() pre = tp / (tp + fp * (pos / (neg + 1e-5)) + 1e-5) rec = tp / (gt + 1e-5) f1 = 2 * (pre * rec) / (pre + rec + 1e-5) myf1 = (pre + rec) / 2.0 lesion_metric_dict = { "pre": pre, "rec": rec, "f1": f1, "myf1": myf1, } # FIXME: DDP Error: https://github.com/PyTorchLightning/pytorch-lightning/discussions/2529 # Tensors must be CUDA and dense # if self.use_ddp: # lesion_metric_dict = torch.FloatTensor([myf1], device=self.device) return lesion_metric_dict def compute_each(self): metric_dict_each_csv = {} for csv in self.csv_files: gt = getattr(self, f"{csv}_gt").item() tp = getattr(self, f"{csv}_tp").item() fp = getattr(self, f"{csv}_fp").item() pos = getattr(self, f"{csv}_pos").item() neg = getattr(self, f"{csv}_neg").item() pre = tp / (tp + fp * (pos / (neg + 1e-5)) + 1e-5) rec = tp / (gt + 1e-5) f1 = 2 * (pre * rec) / (pre + rec + 1e-5) fppi = fp / (pos + neg + 1e-5) # myf1 = (pre + rec) / 2.0 lesion_metric_dict = { "gt": gt, "pos": pos, "neg": neg, "pre": pre, "rec": rec, "f1": f1, "fppi": fppi # "myf1": myf1, } metric_dict_each_csv[csv] = lesion_metric_dict return metric_dict_each_csv # Helper functions def calc_iou(bbox_a, bbox_b): """ :param a: bbox list [min_y, min_x, max_y, max_x] :param b: bbox list [min_y, min_x, max_y, max_x] :return: """ size_a = (bbox_a[2] - bbox_a[0]) * (bbox_a[3] - bbox_a[1]) size_b = (bbox_b[2] - bbox_b[0]) * (bbox_b[3] - bbox_b[1]) min_ab_y = max(bbox_a[0], bbox_b[0]) min_ab_x = max(bbox_a[1], bbox_b[1]) max_ab_y = min(bbox_a[2], bbox_b[2]) max_ab_x = min(bbox_a[3], bbox_b[3]) inter_ab = max(0, max_ab_y - min_ab_y) * max(0, max_ab_x - min_ab_x) return inter_ab / (size_a + size_b - inter_ab) def evaluation(pred, gt, iou_th=0.15, prob_ths=[0.5]): """ :param pred: Prediction Seg Map, shape = (1, num_classes, height, width) :param gt: Ground-truth Seg Map, shape = (1, num_classes, height, width) :param iou_th: Threshold for prediction and gt matching :return: gt_nums: Ground-truth region numbers pred_nums: Prediction region numbers tp_nums: True Positive region numbers fp_nums: False Positive region numbers # 필수 가정: batch_size=1 (regionprops 함수가 2차원 행렬에만 적용 가능함) # Region을 고려에서 제외하는 경우(2048x2048 이미지 기반, pixel spacing=0.2mm) # i) Region bbox 크기 < 400 pixels # ii) (현재 사용x) Region bbox 장축<4mm(20pixels), 단축<2mm(10 pixels) # issue: # 3. 영상사이즈는 디텍터 크기에 따라 달라질 수 있습니다. 완벽히 하기 위해선 pixel spacing 정보를 받아야 합니다. # # 따라서 영상 크기에 대해 기준이 변경되는 것은 현단계에서는 적용할 필요가 없어 보입니다. """ if len(pred.shape) > 3: pred = pred[0] gt = gt[0] num_classes = pred.shape[0] image_size = gt.shape[2] gt_regions = [ skimage.measure.regionprops(skimage.measure.label(gt[c, :, :])) for c in range(num_classes) ] for c in range(num_classes): gt_regions[c] = [ r for r in gt_regions[c] if r.area > (20 * (image_size / 2048)) ** 2 ] pred_regions = [ [ skimage.measure.regionprops(skimage.measure.label(pred[c, :, :] > th)) for c in range(num_classes) ] for th in prob_ths ] # shape - len(prob_th), num_classes # 초기화 gt_nums = np.array([len(gt_regions[c]) for c in range(num_classes)]) pred_nums = np.array( [ [len(pred_regions[thi][c]) for c in range(num_classes)] for thi in range(len(prob_ths)) ] ) tp_nums = np.zeros((len(prob_ths), num_classes)) fp_nums = pred_nums.copy() # .copy() 없으면 포인터가 같아짐 # Gt-Pred Bbox Iou Matrix for c in range(num_classes): for thi in range(len(prob_ths)): if (gt_nums[c] == 0) or (pred_nums[thi][c] == 0): # np array 이상함; continue iou_matrix = np.zeros((gt_nums[c], pred_nums[thi][c])) for gi, gr in enumerate(gt_regions[c]): for pi, pr in enumerate(pred_regions[thi][c]): iou_matrix[gi, pi] = calc_iou(gr.bbox, pr.bbox) tp_nums[thi][c] = np.sum(np.any((iou_matrix >= iou_th), axis=1)) fp_nums[thi][c] -= np.sum(np.any((iou_matrix > iou_th), axis=0)) return gt_nums, pred_nums, tp_nums, fp_nums
normal
{ "blob_id": "8d3f8872a3d5c4351551dc2d46839763d28ebd70", "index": 3586, "step-1": "<mask token>\n\n\nclass SegMetric(Metric):\n\n def __init__(self, iou_thr, prob_thr, img_size, dist_sync_on_step=False):\n super().__init__(dist_sync_on_step=dist_sync_on_step)\n self.iou_thr = iou_thr\n self.prob_thr = prob_thr\n self.img_size = img_size\n self.use_ddp = dist_sync_on_step\n self.add_state('csv_files', default=[], dist_reduce_fx='cat')\n <mask token>\n\n def update_each(self, preds: torch.Tensor, target: torch.Tensor):\n self.update(preds, target)\n\n def compute(self):\n gt = 0\n tp = 0\n fp = 0\n pos = 0\n neg = 0\n for csv in self.csv_files:\n gt += getattr(self, f'{csv}_gt').item()\n tp += getattr(self, f'{csv}_tp').item()\n fp += getattr(self, f'{csv}_fp').item()\n pos += getattr(self, f'{csv}_pos').item()\n neg += getattr(self, f'{csv}_neg').item()\n pre = tp / (tp + fp * (pos / (neg + 1e-05)) + 1e-05)\n rec = tp / (gt + 1e-05)\n f1 = 2 * (pre * rec) / (pre + rec + 1e-05)\n myf1 = (pre + rec) / 2.0\n lesion_metric_dict = {'pre': pre, 'rec': rec, 'f1': f1, 'myf1': myf1}\n return lesion_metric_dict\n\n def compute_each(self):\n metric_dict_each_csv = {}\n for csv in self.csv_files:\n gt = getattr(self, f'{csv}_gt').item()\n tp = getattr(self, f'{csv}_tp').item()\n fp = getattr(self, f'{csv}_fp').item()\n pos = getattr(self, f'{csv}_pos').item()\n neg = getattr(self, f'{csv}_neg').item()\n pre = tp / (tp + fp * (pos / (neg + 1e-05)) + 1e-05)\n rec = tp / (gt + 1e-05)\n f1 = 2 * (pre * rec) / (pre + rec + 1e-05)\n fppi = fp / (pos + neg + 1e-05)\n lesion_metric_dict = {'gt': gt, 'pos': pos, 'neg': neg, 'pre':\n pre, 'rec': rec, 'f1': f1, 'fppi': fppi}\n metric_dict_each_csv[csv] = lesion_metric_dict\n return metric_dict_each_csv\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass SegMetric(Metric):\n\n def __init__(self, iou_thr, prob_thr, img_size, dist_sync_on_step=False):\n super().__init__(dist_sync_on_step=dist_sync_on_step)\n self.iou_thr = iou_thr\n self.prob_thr = prob_thr\n self.img_size = img_size\n self.use_ddp = dist_sync_on_step\n self.add_state('csv_files', default=[], dist_reduce_fx='cat')\n\n def update(self, preds: torch.Tensor, target: torch.Tensor):\n logit_seg, _ = preds\n _, mask, mask_cls, _, img_path, _ = target\n assert logit_seg.shape == mask.shape\n pred_seg = torch.sigmoid(logit_seg).detach().cpu().numpy()\n gt_seg = mask.detach().cpu().numpy()\n gt_cls = mask_cls.detach().cpu().numpy()[:, 0].tolist()\n pred_seg = pred_seg.astype('float32')\n for idx, file_path in enumerate(img_path):\n pred = cv2.resize(pred_seg[idx][0], (self.img_size, self.img_size))\n pred = np.expand_dims(pred, 0)\n gt = cv2.resize(gt_seg[idx][0], (self.img_size, self.img_size),\n interpolation=cv2.INTER_NEAREST)\n gt = np.expand_dims(gt, 0)\n gt_c = gt_cls[idx]\n is_p = int(gt_c == 1.0)\n is_n = 1 - is_p\n gt_nums_, pred_nums_, tp_nums_, fp_nums_ = evaluation(pred, gt,\n iou_th=self.iou_thr, prob_ths=[self.prob_thr])\n csv = file_path.split('png_1024/')[1].split('/')[0]\n if not hasattr(self, f'{csv}_gt'):\n self.csv_files += [csv]\n self.add_state(f'{csv}_gt', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_pred', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_tp', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_fp', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_pos', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_neg', default=torch.tensor(0),\n dist_reduce_fx='sum')\n setattr(self, f'{csv}_gt', getattr(self, f'{csv}_gt') + gt_nums_[0]\n )\n setattr(self, f'{csv}_pred', getattr(self, f'{csv}_pred') +\n pred_nums_[0, 0])\n setattr(self, f'{csv}_tp', getattr(self, f'{csv}_tp') +\n tp_nums_[0, 0])\n setattr(self, f'{csv}_fp', getattr(self, f'{csv}_fp') +\n fp_nums_[0, 0])\n setattr(self, f'{csv}_pos', getattr(self, f'{csv}_pos') + is_p)\n setattr(self, f'{csv}_neg', getattr(self, f'{csv}_neg') + is_n)\n\n def update_each(self, preds: torch.Tensor, target: torch.Tensor):\n self.update(preds, target)\n\n def compute(self):\n gt = 0\n tp = 0\n fp = 0\n pos = 0\n neg = 0\n for csv in self.csv_files:\n gt += getattr(self, f'{csv}_gt').item()\n tp += getattr(self, f'{csv}_tp').item()\n fp += getattr(self, f'{csv}_fp').item()\n pos += getattr(self, f'{csv}_pos').item()\n neg += getattr(self, f'{csv}_neg').item()\n pre = tp / (tp + fp * (pos / (neg + 1e-05)) + 1e-05)\n rec = tp / (gt + 1e-05)\n f1 = 2 * (pre * rec) / (pre + rec + 1e-05)\n myf1 = (pre + rec) / 2.0\n lesion_metric_dict = {'pre': pre, 'rec': rec, 'f1': f1, 'myf1': myf1}\n return lesion_metric_dict\n\n def compute_each(self):\n metric_dict_each_csv = {}\n for csv in self.csv_files:\n gt = getattr(self, f'{csv}_gt').item()\n tp = getattr(self, f'{csv}_tp').item()\n fp = getattr(self, f'{csv}_fp').item()\n pos = getattr(self, f'{csv}_pos').item()\n neg = getattr(self, f'{csv}_neg').item()\n pre = tp / (tp + fp * (pos / (neg + 1e-05)) + 1e-05)\n rec = tp / (gt + 1e-05)\n f1 = 2 * (pre * rec) / (pre + rec + 1e-05)\n fppi = fp / (pos + neg + 1e-05)\n lesion_metric_dict = {'gt': gt, 'pos': pos, 'neg': neg, 'pre':\n pre, 'rec': rec, 'f1': f1, 'fppi': fppi}\n metric_dict_each_csv[csv] = lesion_metric_dict\n return metric_dict_each_csv\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass SegMetric(Metric):\n\n def __init__(self, iou_thr, prob_thr, img_size, dist_sync_on_step=False):\n super().__init__(dist_sync_on_step=dist_sync_on_step)\n self.iou_thr = iou_thr\n self.prob_thr = prob_thr\n self.img_size = img_size\n self.use_ddp = dist_sync_on_step\n self.add_state('csv_files', default=[], dist_reduce_fx='cat')\n\n def update(self, preds: torch.Tensor, target: torch.Tensor):\n logit_seg, _ = preds\n _, mask, mask_cls, _, img_path, _ = target\n assert logit_seg.shape == mask.shape\n pred_seg = torch.sigmoid(logit_seg).detach().cpu().numpy()\n gt_seg = mask.detach().cpu().numpy()\n gt_cls = mask_cls.detach().cpu().numpy()[:, 0].tolist()\n pred_seg = pred_seg.astype('float32')\n for idx, file_path in enumerate(img_path):\n pred = cv2.resize(pred_seg[idx][0], (self.img_size, self.img_size))\n pred = np.expand_dims(pred, 0)\n gt = cv2.resize(gt_seg[idx][0], (self.img_size, self.img_size),\n interpolation=cv2.INTER_NEAREST)\n gt = np.expand_dims(gt, 0)\n gt_c = gt_cls[idx]\n is_p = int(gt_c == 1.0)\n is_n = 1 - is_p\n gt_nums_, pred_nums_, tp_nums_, fp_nums_ = evaluation(pred, gt,\n iou_th=self.iou_thr, prob_ths=[self.prob_thr])\n csv = file_path.split('png_1024/')[1].split('/')[0]\n if not hasattr(self, f'{csv}_gt'):\n self.csv_files += [csv]\n self.add_state(f'{csv}_gt', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_pred', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_tp', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_fp', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_pos', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_neg', default=torch.tensor(0),\n dist_reduce_fx='sum')\n setattr(self, f'{csv}_gt', getattr(self, f'{csv}_gt') + gt_nums_[0]\n )\n setattr(self, f'{csv}_pred', getattr(self, f'{csv}_pred') +\n pred_nums_[0, 0])\n setattr(self, f'{csv}_tp', getattr(self, f'{csv}_tp') +\n tp_nums_[0, 0])\n setattr(self, f'{csv}_fp', getattr(self, f'{csv}_fp') +\n fp_nums_[0, 0])\n setattr(self, f'{csv}_pos', getattr(self, f'{csv}_pos') + is_p)\n setattr(self, f'{csv}_neg', getattr(self, f'{csv}_neg') + is_n)\n\n def update_each(self, preds: torch.Tensor, target: torch.Tensor):\n self.update(preds, target)\n\n def compute(self):\n gt = 0\n tp = 0\n fp = 0\n pos = 0\n neg = 0\n for csv in self.csv_files:\n gt += getattr(self, f'{csv}_gt').item()\n tp += getattr(self, f'{csv}_tp').item()\n fp += getattr(self, f'{csv}_fp').item()\n pos += getattr(self, f'{csv}_pos').item()\n neg += getattr(self, f'{csv}_neg').item()\n pre = tp / (tp + fp * (pos / (neg + 1e-05)) + 1e-05)\n rec = tp / (gt + 1e-05)\n f1 = 2 * (pre * rec) / (pre + rec + 1e-05)\n myf1 = (pre + rec) / 2.0\n lesion_metric_dict = {'pre': pre, 'rec': rec, 'f1': f1, 'myf1': myf1}\n return lesion_metric_dict\n\n def compute_each(self):\n metric_dict_each_csv = {}\n for csv in self.csv_files:\n gt = getattr(self, f'{csv}_gt').item()\n tp = getattr(self, f'{csv}_tp').item()\n fp = getattr(self, f'{csv}_fp').item()\n pos = getattr(self, f'{csv}_pos').item()\n neg = getattr(self, f'{csv}_neg').item()\n pre = tp / (tp + fp * (pos / (neg + 1e-05)) + 1e-05)\n rec = tp / (gt + 1e-05)\n f1 = 2 * (pre * rec) / (pre + rec + 1e-05)\n fppi = fp / (pos + neg + 1e-05)\n lesion_metric_dict = {'gt': gt, 'pos': pos, 'neg': neg, 'pre':\n pre, 'rec': rec, 'f1': f1, 'fppi': fppi}\n metric_dict_each_csv[csv] = lesion_metric_dict\n return metric_dict_each_csv\n\n\ndef calc_iou(bbox_a, bbox_b):\n \"\"\"\n :param a: bbox list [min_y, min_x, max_y, max_x]\n :param b: bbox list [min_y, min_x, max_y, max_x]\n :return:\n \"\"\"\n size_a = (bbox_a[2] - bbox_a[0]) * (bbox_a[3] - bbox_a[1])\n size_b = (bbox_b[2] - bbox_b[0]) * (bbox_b[3] - bbox_b[1])\n min_ab_y = max(bbox_a[0], bbox_b[0])\n min_ab_x = max(bbox_a[1], bbox_b[1])\n max_ab_y = min(bbox_a[2], bbox_b[2])\n max_ab_x = min(bbox_a[3], bbox_b[3])\n inter_ab = max(0, max_ab_y - min_ab_y) * max(0, max_ab_x - min_ab_x)\n return inter_ab / (size_a + size_b - inter_ab)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass SegMetric(Metric):\n\n def __init__(self, iou_thr, prob_thr, img_size, dist_sync_on_step=False):\n super().__init__(dist_sync_on_step=dist_sync_on_step)\n self.iou_thr = iou_thr\n self.prob_thr = prob_thr\n self.img_size = img_size\n self.use_ddp = dist_sync_on_step\n self.add_state('csv_files', default=[], dist_reduce_fx='cat')\n\n def update(self, preds: torch.Tensor, target: torch.Tensor):\n logit_seg, _ = preds\n _, mask, mask_cls, _, img_path, _ = target\n assert logit_seg.shape == mask.shape\n pred_seg = torch.sigmoid(logit_seg).detach().cpu().numpy()\n gt_seg = mask.detach().cpu().numpy()\n gt_cls = mask_cls.detach().cpu().numpy()[:, 0].tolist()\n pred_seg = pred_seg.astype('float32')\n for idx, file_path in enumerate(img_path):\n pred = cv2.resize(pred_seg[idx][0], (self.img_size, self.img_size))\n pred = np.expand_dims(pred, 0)\n gt = cv2.resize(gt_seg[idx][0], (self.img_size, self.img_size),\n interpolation=cv2.INTER_NEAREST)\n gt = np.expand_dims(gt, 0)\n gt_c = gt_cls[idx]\n is_p = int(gt_c == 1.0)\n is_n = 1 - is_p\n gt_nums_, pred_nums_, tp_nums_, fp_nums_ = evaluation(pred, gt,\n iou_th=self.iou_thr, prob_ths=[self.prob_thr])\n csv = file_path.split('png_1024/')[1].split('/')[0]\n if not hasattr(self, f'{csv}_gt'):\n self.csv_files += [csv]\n self.add_state(f'{csv}_gt', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_pred', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_tp', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_fp', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_pos', default=Tensor(0),\n dist_reduce_fx='sum')\n self.add_state(f'{csv}_neg', default=torch.tensor(0),\n dist_reduce_fx='sum')\n setattr(self, f'{csv}_gt', getattr(self, f'{csv}_gt') + gt_nums_[0]\n )\n setattr(self, f'{csv}_pred', getattr(self, f'{csv}_pred') +\n pred_nums_[0, 0])\n setattr(self, f'{csv}_tp', getattr(self, f'{csv}_tp') +\n tp_nums_[0, 0])\n setattr(self, f'{csv}_fp', getattr(self, f'{csv}_fp') +\n fp_nums_[0, 0])\n setattr(self, f'{csv}_pos', getattr(self, f'{csv}_pos') + is_p)\n setattr(self, f'{csv}_neg', getattr(self, f'{csv}_neg') + is_n)\n\n def update_each(self, preds: torch.Tensor, target: torch.Tensor):\n self.update(preds, target)\n\n def compute(self):\n gt = 0\n tp = 0\n fp = 0\n pos = 0\n neg = 0\n for csv in self.csv_files:\n gt += getattr(self, f'{csv}_gt').item()\n tp += getattr(self, f'{csv}_tp').item()\n fp += getattr(self, f'{csv}_fp').item()\n pos += getattr(self, f'{csv}_pos').item()\n neg += getattr(self, f'{csv}_neg').item()\n pre = tp / (tp + fp * (pos / (neg + 1e-05)) + 1e-05)\n rec = tp / (gt + 1e-05)\n f1 = 2 * (pre * rec) / (pre + rec + 1e-05)\n myf1 = (pre + rec) / 2.0\n lesion_metric_dict = {'pre': pre, 'rec': rec, 'f1': f1, 'myf1': myf1}\n return lesion_metric_dict\n\n def compute_each(self):\n metric_dict_each_csv = {}\n for csv in self.csv_files:\n gt = getattr(self, f'{csv}_gt').item()\n tp = getattr(self, f'{csv}_tp').item()\n fp = getattr(self, f'{csv}_fp').item()\n pos = getattr(self, f'{csv}_pos').item()\n neg = getattr(self, f'{csv}_neg').item()\n pre = tp / (tp + fp * (pos / (neg + 1e-05)) + 1e-05)\n rec = tp / (gt + 1e-05)\n f1 = 2 * (pre * rec) / (pre + rec + 1e-05)\n fppi = fp / (pos + neg + 1e-05)\n lesion_metric_dict = {'gt': gt, 'pos': pos, 'neg': neg, 'pre':\n pre, 'rec': rec, 'f1': f1, 'fppi': fppi}\n metric_dict_each_csv[csv] = lesion_metric_dict\n return metric_dict_each_csv\n\n\ndef calc_iou(bbox_a, bbox_b):\n \"\"\"\n :param a: bbox list [min_y, min_x, max_y, max_x]\n :param b: bbox list [min_y, min_x, max_y, max_x]\n :return:\n \"\"\"\n size_a = (bbox_a[2] - bbox_a[0]) * (bbox_a[3] - bbox_a[1])\n size_b = (bbox_b[2] - bbox_b[0]) * (bbox_b[3] - bbox_b[1])\n min_ab_y = max(bbox_a[0], bbox_b[0])\n min_ab_x = max(bbox_a[1], bbox_b[1])\n max_ab_y = min(bbox_a[2], bbox_b[2])\n max_ab_x = min(bbox_a[3], bbox_b[3])\n inter_ab = max(0, max_ab_y - min_ab_y) * max(0, max_ab_x - min_ab_x)\n return inter_ab / (size_a + size_b - inter_ab)\n\n\ndef evaluation(pred, gt, iou_th=0.15, prob_ths=[0.5]):\n \"\"\"\n :param pred: Prediction Seg Map, shape = (1, num_classes, height, width)\n :param gt: Ground-truth Seg Map, shape = (1, num_classes, height, width)\n :param iou_th: Threshold for prediction and gt matching\n :return:\n gt_nums: Ground-truth region numbers\n pred_nums: Prediction region numbers\n tp_nums: True Positive region numbers\n fp_nums: False Positive region numbers\n # 필수 가정: batch_size=1 (regionprops 함수가 2차원 행렬에만 적용 가능함)\n # Region을 고려에서 제외하는 경우(2048x2048 이미지 기반, pixel spacing=0.2mm)\n # i) Region bbox 크기 < 400 pixels\n # ii) (현재 사용x) Region bbox 장축<4mm(20pixels), 단축<2mm(10 pixels)\n # issue: # 3. 영상사이즈는 디텍터 크기에 따라 달라질 수 있습니다. 완벽히 하기 위해선 pixel spacing 정보를 받아야 합니다.\n # # 따라서 영상 크기에 대해 기준이 변경되는 것은 현단계에서는 적용할 필요가 없어 보입니다.\n \"\"\"\n if len(pred.shape) > 3:\n pred = pred[0]\n gt = gt[0]\n num_classes = pred.shape[0]\n image_size = gt.shape[2]\n gt_regions = [skimage.measure.regionprops(skimage.measure.label(gt[c, :,\n :])) for c in range(num_classes)]\n for c in range(num_classes):\n gt_regions[c] = [r for r in gt_regions[c] if r.area > (20 * (\n image_size / 2048)) ** 2]\n pred_regions = [[skimage.measure.regionprops(skimage.measure.label(pred\n [c, :, :] > th)) for c in range(num_classes)] for th in prob_ths]\n gt_nums = np.array([len(gt_regions[c]) for c in range(num_classes)])\n pred_nums = np.array([[len(pred_regions[thi][c]) for c in range(\n num_classes)] for thi in range(len(prob_ths))])\n tp_nums = np.zeros((len(prob_ths), num_classes))\n fp_nums = pred_nums.copy()\n for c in range(num_classes):\n for thi in range(len(prob_ths)):\n if gt_nums[c] == 0 or pred_nums[thi][c] == 0:\n continue\n iou_matrix = np.zeros((gt_nums[c], pred_nums[thi][c]))\n for gi, gr in enumerate(gt_regions[c]):\n for pi, pr in enumerate(pred_regions[thi][c]):\n iou_matrix[gi, pi] = calc_iou(gr.bbox, pr.bbox)\n tp_nums[thi][c] = np.sum(np.any(iou_matrix >= iou_th, axis=1))\n fp_nums[thi][c] -= np.sum(np.any(iou_matrix > iou_th, axis=0))\n return gt_nums, pred_nums, tp_nums, fp_nums\n", "step-5": "# For better usage on ddp\n\nimport torch\nfrom pytorch_lightning.metrics import Metric\nimport cv2\nimport numpy as np\nimport skimage\nimport torch.tensor as Tensor\n\n\nclass SegMetric(Metric):\n def __init__(self, iou_thr, prob_thr, img_size, dist_sync_on_step=False):\n super().__init__(dist_sync_on_step=dist_sync_on_step)\n # call `self.add_state`for every internal state that is needed for the metrics computations\n # dist_reduce_fx indicates the function that should be used to reduce\n # state from multiple processes\n self.iou_thr = iou_thr\n self.prob_thr = prob_thr\n self.img_size = img_size\n self.use_ddp = dist_sync_on_step\n self.add_state(\"csv_files\", default=[], dist_reduce_fx=\"cat\")\n\n def update(self, preds: torch.Tensor, target: torch.Tensor):\n logit_seg, _ = preds\n _, mask, mask_cls, _, img_path, _ = target\n\n assert logit_seg.shape == mask.shape\n\n pred_seg = torch.sigmoid(logit_seg).detach().cpu().numpy()\n gt_seg = mask.detach().cpu().numpy()\n gt_cls = mask_cls.detach().cpu().numpy()[:, 0].tolist()\n\n pred_seg = pred_seg.astype(\"float32\")\n for idx, file_path in enumerate(img_path):\n pred = cv2.resize(pred_seg[idx][0], (self.img_size, self.img_size))\n pred = np.expand_dims(pred, 0)\n gt = cv2.resize(\n gt_seg[idx][0],\n (self.img_size, self.img_size),\n interpolation=cv2.INTER_NEAREST,\n )\n gt = np.expand_dims(gt, 0)\n\n gt_c = gt_cls[idx]\n is_p = int(gt_c == 1.0)\n is_n = 1 - is_p\n\n gt_nums_, pred_nums_, tp_nums_, fp_nums_ = evaluation(\n pred, gt, iou_th=self.iou_thr, prob_ths=[self.prob_thr]\n )\n\n # csv = file_path.split(\"/\")[5]\n csv = file_path.split(\"png_1024/\")[1].split(\"/\")[0]\n if not hasattr(self, f\"{csv}_gt\"):\n self.csv_files += [csv]\n self.add_state(f\"{csv}_gt\", default=Tensor(0), dist_reduce_fx=\"sum\")\n self.add_state(f\"{csv}_pred\", default=Tensor(0), dist_reduce_fx=\"sum\")\n self.add_state(f\"{csv}_tp\", default=Tensor(0), dist_reduce_fx=\"sum\")\n self.add_state(f\"{csv}_fp\", default=Tensor(0), dist_reduce_fx=\"sum\")\n self.add_state(f\"{csv}_pos\", default=Tensor(0), dist_reduce_fx=\"sum\")\n self.add_state(\n f\"{csv}_neg\", default=torch.tensor(0), dist_reduce_fx=\"sum\"\n )\n\n # TODO: Need to be change if num_class > 1\n # FIXME: 몬 생긴 포맷..\n setattr(self, f\"{csv}_gt\", getattr(self, f\"{csv}_gt\") + gt_nums_[0])\n setattr(\n self, f\"{csv}_pred\", getattr(self, f\"{csv}_pred\") + pred_nums_[0, 0]\n )\n setattr(self, f\"{csv}_tp\", getattr(self, f\"{csv}_tp\") + tp_nums_[0, 0])\n setattr(self, f\"{csv}_fp\", getattr(self, f\"{csv}_fp\") + fp_nums_[0, 0])\n setattr(self, f\"{csv}_pos\", getattr(self, f\"{csv}_pos\") + is_p)\n setattr(self, f\"{csv}_neg\", getattr(self, f\"{csv}_neg\") + is_n)\n\n def update_each(self, preds: torch.Tensor, target: torch.Tensor):\n self.update(preds, target)\n\n def compute(self):\n gt = 0\n tp = 0\n fp = 0\n pos = 0\n neg = 0\n for csv in self.csv_files:\n gt += getattr(self, f\"{csv}_gt\").item()\n tp += getattr(self, f\"{csv}_tp\").item()\n fp += getattr(self, f\"{csv}_fp\").item()\n pos += getattr(self, f\"{csv}_pos\").item()\n neg += getattr(self, f\"{csv}_neg\").item()\n\n pre = tp / (tp + fp * (pos / (neg + 1e-5)) + 1e-5)\n rec = tp / (gt + 1e-5)\n f1 = 2 * (pre * rec) / (pre + rec + 1e-5)\n myf1 = (pre + rec) / 2.0\n\n lesion_metric_dict = {\n \"pre\": pre,\n \"rec\": rec,\n \"f1\": f1,\n \"myf1\": myf1,\n }\n\n # FIXME: DDP Error: https://github.com/PyTorchLightning/pytorch-lightning/discussions/2529\n # Tensors must be CUDA and dense\n # if self.use_ddp:\n # lesion_metric_dict = torch.FloatTensor([myf1], device=self.device)\n\n return lesion_metric_dict\n\n def compute_each(self):\n metric_dict_each_csv = {}\n for csv in self.csv_files:\n gt = getattr(self, f\"{csv}_gt\").item()\n tp = getattr(self, f\"{csv}_tp\").item()\n fp = getattr(self, f\"{csv}_fp\").item()\n pos = getattr(self, f\"{csv}_pos\").item()\n neg = getattr(self, f\"{csv}_neg\").item()\n\n pre = tp / (tp + fp * (pos / (neg + 1e-5)) + 1e-5)\n rec = tp / (gt + 1e-5)\n f1 = 2 * (pre * rec) / (pre + rec + 1e-5)\n fppi = fp / (pos + neg + 1e-5)\n # myf1 = (pre + rec) / 2.0\n\n lesion_metric_dict = {\n \"gt\": gt,\n \"pos\": pos,\n \"neg\": neg,\n \"pre\": pre,\n \"rec\": rec,\n \"f1\": f1,\n \"fppi\": fppi\n # \"myf1\": myf1,\n }\n\n metric_dict_each_csv[csv] = lesion_metric_dict\n\n return metric_dict_each_csv\n\n\n# Helper functions\ndef calc_iou(bbox_a, bbox_b):\n \"\"\"\n :param a: bbox list [min_y, min_x, max_y, max_x]\n :param b: bbox list [min_y, min_x, max_y, max_x]\n :return:\n \"\"\"\n size_a = (bbox_a[2] - bbox_a[0]) * (bbox_a[3] - bbox_a[1])\n size_b = (bbox_b[2] - bbox_b[0]) * (bbox_b[3] - bbox_b[1])\n\n min_ab_y = max(bbox_a[0], bbox_b[0])\n min_ab_x = max(bbox_a[1], bbox_b[1])\n max_ab_y = min(bbox_a[2], bbox_b[2])\n max_ab_x = min(bbox_a[3], bbox_b[3])\n\n inter_ab = max(0, max_ab_y - min_ab_y) * max(0, max_ab_x - min_ab_x)\n\n return inter_ab / (size_a + size_b - inter_ab)\n\n\ndef evaluation(pred, gt, iou_th=0.15, prob_ths=[0.5]):\n \"\"\"\n :param pred: Prediction Seg Map, shape = (1, num_classes, height, width)\n :param gt: Ground-truth Seg Map, shape = (1, num_classes, height, width)\n :param iou_th: Threshold for prediction and gt matching\n :return:\n gt_nums: Ground-truth region numbers\n pred_nums: Prediction region numbers\n tp_nums: True Positive region numbers\n fp_nums: False Positive region numbers\n # 필수 가정: batch_size=1 (regionprops 함수가 2차원 행렬에만 적용 가능함)\n # Region을 고려에서 제외하는 경우(2048x2048 이미지 기반, pixel spacing=0.2mm)\n # i) Region bbox 크기 < 400 pixels\n # ii) (현재 사용x) Region bbox 장축<4mm(20pixels), 단축<2mm(10 pixels)\n # issue: # 3. 영상사이즈는 디텍터 크기에 따라 달라질 수 있습니다. 완벽히 하기 위해선 pixel spacing 정보를 받아야 합니다.\n # # 따라서 영상 크기에 대해 기준이 변경되는 것은 현단계에서는 적용할 필요가 없어 보입니다.\n \"\"\"\n\n if len(pred.shape) > 3:\n pred = pred[0]\n gt = gt[0]\n\n num_classes = pred.shape[0]\n image_size = gt.shape[2]\n\n gt_regions = [\n skimage.measure.regionprops(skimage.measure.label(gt[c, :, :]))\n for c in range(num_classes)\n ]\n for c in range(num_classes):\n gt_regions[c] = [\n r for r in gt_regions[c] if r.area > (20 * (image_size / 2048)) ** 2\n ]\n\n pred_regions = [\n [\n skimage.measure.regionprops(skimage.measure.label(pred[c, :, :] > th))\n for c in range(num_classes)\n ]\n for th in prob_ths\n ] # shape - len(prob_th), num_classes\n\n # 초기화\n gt_nums = np.array([len(gt_regions[c]) for c in range(num_classes)])\n pred_nums = np.array(\n [\n [len(pred_regions[thi][c]) for c in range(num_classes)]\n for thi in range(len(prob_ths))\n ]\n )\n tp_nums = np.zeros((len(prob_ths), num_classes))\n fp_nums = pred_nums.copy() # .copy() 없으면 포인터가 같아짐\n\n # Gt-Pred Bbox Iou Matrix\n for c in range(num_classes):\n for thi in range(len(prob_ths)):\n if (gt_nums[c] == 0) or (pred_nums[thi][c] == 0): # np array 이상함;\n continue\n\n iou_matrix = np.zeros((gt_nums[c], pred_nums[thi][c]))\n for gi, gr in enumerate(gt_regions[c]):\n for pi, pr in enumerate(pred_regions[thi][c]):\n iou_matrix[gi, pi] = calc_iou(gr.bbox, pr.bbox)\n\n tp_nums[thi][c] = np.sum(np.any((iou_matrix >= iou_th), axis=1))\n fp_nums[thi][c] -= np.sum(np.any((iou_matrix > iou_th), axis=0))\n\n return gt_nums, pred_nums, tp_nums, fp_nums", "step-ids": [ 5, 6, 7, 8, 10 ] }
[ 5, 6, 7, 8, 10 ]
import sys import os import csv import urllib2, socket, time import gzip, StringIO import re, random, types from bs4 import BeautifulSoup from datetime import datetime import json from HTMLParser import HTMLParser class MLStripper(HTMLParser): def __init__(self): self.reset() self.fed = [] def handle_data(self, d): self.fed.append(d) def get_data(self): return ''.join(self.fed) def extractData(url,title): data="" req=urllib2.Request(url) response=urllib2.urlopen(req) html_data=response.read() soup=BeautifulSoup(html_data) [s.extract() for s in soup('script')] d=re.compile(r'.*%s.*' % title) last_elem=0 for elem in soup(text=d): last_elem=elem if last_elem!=0: p1=last_elem.parent try1=1 while len(data)<1000: parent=p1.parent p1=parent data="" for each_child in parent.findChildren(): data+=each_child.get_text().strip().replace('\n','') print try1 try1+=1 else: data="" for each_child in soup.body.findChildren(): data+=each_child.get_text().strip().replace('\n','') return data def readData(input_file): data=json.loads(input_file.read()) for each_r in data: if each_r['ID']>=1: s = MLStripper() s.feed(each_r['title']) title =s.get_data() val=len(title)/2 val=val/2 print title[:-val] article_data=extractData(each_r['url'],title) print 'url',each_r['url'] print article_data print '##############################################' raw_input() if __name__=="__main__": if sys.argv>=2: input_file=open(sys.argv[1],"r") readData(input_file) else: print "Usage: python extractnew.py <data_file_location>"
normal
{ "blob_id": "2d444c00e4dbdcb143d19752cd1a751169de73d3", "index": 5746, "step-1": "import sys\nimport os\nimport csv\nimport urllib2, socket, time\nimport gzip, StringIO\nimport re, random, types\nfrom bs4 import BeautifulSoup\nfrom datetime import datetime\nimport json\nfrom HTMLParser import HTMLParser\n\nclass MLStripper(HTMLParser):\n def __init__(self):\n self.reset()\n self.fed = []\n def handle_data(self, d):\n self.fed.append(d)\n def get_data(self):\n return ''.join(self.fed)\n\ndef extractData(url,title):\n data=\"\"\n req=urllib2.Request(url)\n response=urllib2.urlopen(req)\n html_data=response.read() \n soup=BeautifulSoup(html_data)\n [s.extract() for s in soup('script')]\n d=re.compile(r'.*%s.*' % title)\n last_elem=0\n for elem in soup(text=d):\n last_elem=elem\n if last_elem!=0: \n p1=last_elem.parent \n try1=1 \n while len(data)<1000: \n parent=p1.parent\n p1=parent\n data=\"\" \n for each_child in parent.findChildren():\n data+=each_child.get_text().strip().replace('\\n','') \n print try1\n try1+=1 \n else:\n data=\"\" \n for each_child in soup.body.findChildren():\n data+=each_child.get_text().strip().replace('\\n','') \n return data\n\n\ndef readData(input_file):\n data=json.loads(input_file.read())\n for each_r in data:\n if each_r['ID']>=1:\n s = MLStripper()\n s.feed(each_r['title'])\n title =s.get_data() \n val=len(title)/2\n val=val/2\n print title[:-val]\n article_data=extractData(each_r['url'],title)\n print 'url',each_r['url'] \n print article_data\n print '##############################################'\n raw_input() \nif __name__==\"__main__\":\n if sys.argv>=2:\n input_file=open(sys.argv[1],\"r\")\n readData(input_file)\n else:\n print \"Usage: python extractnew.py <data_file_location>\" \n \n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# -*- coding:utf-8 -*- from common import * import itertools def iteration_spider(): max_errors = 5 num_errors = 0 for page in itertools.count(1): url = 'http://example.webscraping.com/view/-{}'.format(page) html = download(url) if html is None: num_errors += 1 if num_errors == max_errors: break else: num_errors = 0 if __name__ == '__main__': iteration_spider()
normal
{ "blob_id": "0eaba8f570772de864f52168a597b47a4150d015", "index": 5924, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef iteration_spider():\n max_errors = 5\n num_errors = 0\n for page in itertools.count(1):\n url = 'http://example.webscraping.com/view/-{}'.format(page)\n html = download(url)\n if html is None:\n num_errors += 1\n if num_errors == max_errors:\n break\n else:\n num_errors = 0\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef iteration_spider():\n max_errors = 5\n num_errors = 0\n for page in itertools.count(1):\n url = 'http://example.webscraping.com/view/-{}'.format(page)\n html = download(url)\n if html is None:\n num_errors += 1\n if num_errors == max_errors:\n break\n else:\n num_errors = 0\n\n\nif __name__ == '__main__':\n iteration_spider()\n", "step-4": "from common import *\nimport itertools\n\n\ndef iteration_spider():\n max_errors = 5\n num_errors = 0\n for page in itertools.count(1):\n url = 'http://example.webscraping.com/view/-{}'.format(page)\n html = download(url)\n if html is None:\n num_errors += 1\n if num_errors == max_errors:\n break\n else:\n num_errors = 0\n\n\nif __name__ == '__main__':\n iteration_spider()\n", "step-5": "# -*- coding:utf-8 -*-\n\nfrom common import *\nimport itertools\n\ndef iteration_spider():\n\tmax_errors = 5\n\tnum_errors = 0\n\tfor page in itertools.count(1):\n\t\turl = 'http://example.webscraping.com/view/-{}'.format(page)\n\t\thtml = download(url)\n\t\tif html is None:\n\t\t\tnum_errors += 1\n\t\t\tif num_errors == max_errors:\n\t\t\t\tbreak\n\t\telse:\n\t\t\tnum_errors = 0\n\t\t\t\n\nif __name__ == '__main__':\n\titeration_spider()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import os import random readpath = './DBLP/' writepath = './DBLP/' dataname = 'dblp.txt' labelname = 'node2label.txt' testsetname = writepath + 'dblp_testset.txt' def run(save_rate): rdataname = readpath + dataname rlabelname = readpath + labelname wdataname = writepath + dataname wlabelname = writepath + labelname ordata = [] all_user = set() all_time = set() rename = dict() newdatasize = 0 with open(rdataname, 'r') as r: for line in r: x = line.strip('\n').split() x[2] = float(x[2]) ordata.append(x) ordata = sorted(ordata, key = lambda x:x[2]) datasize = len(ordata) savesize = int(datasize * save_rate) print("原始数据中共有 %d 条\n预计保留 %d 条" % (datasize, savesize)) while(savesize != datasize and ordata[savesize-1][2] == ordata[savesize][2]): savesize = savesize + 1 print("实际保留 %d 条" % savesize) print("实际切割比例" + str(savesize/datasize)) for i in range(savesize): x = ordata[i] a = str(x[0]) b = str(x[1]) all_user.update({a,b}) #print(len(all_user)) all_time.add(x[2]) print("实际保留数据中,用户数量 %d 个,不同时间节点 %d 个" %(len(all_user), len(all_time))) newdatasize = savesize list_all_user = list(all_user) list_all_user = [int(i) for i in list_all_user] list_all_user.sort() step = 0 for i in list_all_user: rename[i] = step #print(i, rename[i]) step = step + 1 flag = os.path.exists(writepath) if not flag: os.makedirs(writepath) with open(wdataname, 'w') as w: for i in range(newdatasize): x = ordata[i] a = str(rename[int(x[0])]) b = str(rename[int(x[1])]) w.write(a + ' ' + b + ' ' + str(x[2])+'\n') with open(testsetname, 'w') as w: index = 0 for i in range(newdatasize,datasize): x = ordata[i] if(int(x[0]) not in rename or int(x[1]) not in rename): continue a = str(rename[int(x[0])]) b = str(rename[int(x[1])]) w.write(a + ' ' + b + ' ' + str(x[2])+'\n') index = index+1 print('预计测试集剩余数量 %d'%(datasize-newdatasize+1)) print('测试集剩余数量 %d'%(index)) temp = 0 with open(rlabelname, 'r') as r: with open(wlabelname, 'w') as w: for line in r: x = line.strip('\n').split() if(x[0] in all_user): temp = temp + 1 a = str(rename[int(x[0])]) w.write(a + ' ' + x[1] + '\n') print("标签集数量 " + str(temp)+ " 个") if __name__ == '__main__': run(0.7)
normal
{ "blob_id": "4bd6a7c7fc6a788b2cb010f6513872bd3e0d396c", "index": 5011, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef run(save_rate):\n rdataname = readpath + dataname\n rlabelname = readpath + labelname\n wdataname = writepath + dataname\n wlabelname = writepath + labelname\n ordata = []\n all_user = set()\n all_time = set()\n rename = dict()\n newdatasize = 0\n with open(rdataname, 'r') as r:\n for line in r:\n x = line.strip('\\n').split()\n x[2] = float(x[2])\n ordata.append(x)\n ordata = sorted(ordata, key=lambda x: x[2])\n datasize = len(ordata)\n savesize = int(datasize * save_rate)\n print('原始数据中共有 %d 条\\n预计保留 %d 条' % (datasize, savesize))\n while savesize != datasize and ordata[savesize - 1][2] == ordata[\n savesize][2]:\n savesize = savesize + 1\n print('实际保留 %d 条' % savesize)\n print('实际切割比例' + str(savesize / datasize))\n for i in range(savesize):\n x = ordata[i]\n a = str(x[0])\n b = str(x[1])\n all_user.update({a, b})\n all_time.add(x[2])\n print('实际保留数据中,用户数量 %d 个,不同时间节点 %d 个' % (len(all_user), len(all_time)))\n newdatasize = savesize\n list_all_user = list(all_user)\n list_all_user = [int(i) for i in list_all_user]\n list_all_user.sort()\n step = 0\n for i in list_all_user:\n rename[i] = step\n step = step + 1\n flag = os.path.exists(writepath)\n if not flag:\n os.makedirs(writepath)\n with open(wdataname, 'w') as w:\n for i in range(newdatasize):\n x = ordata[i]\n a = str(rename[int(x[0])])\n b = str(rename[int(x[1])])\n w.write(a + ' ' + b + ' ' + str(x[2]) + '\\n')\n with open(testsetname, 'w') as w:\n index = 0\n for i in range(newdatasize, datasize):\n x = ordata[i]\n if int(x[0]) not in rename or int(x[1]) not in rename:\n continue\n a = str(rename[int(x[0])])\n b = str(rename[int(x[1])])\n w.write(a + ' ' + b + ' ' + str(x[2]) + '\\n')\n index = index + 1\n print('预计测试集剩余数量 %d' % (datasize - newdatasize + 1))\n print('测试集剩余数量 %d' % index)\n temp = 0\n with open(rlabelname, 'r') as r:\n with open(wlabelname, 'w') as w:\n for line in r:\n x = line.strip('\\n').split()\n if x[0] in all_user:\n temp = temp + 1\n a = str(rename[int(x[0])])\n w.write(a + ' ' + x[1] + '\\n')\n print('标签集数量 ' + str(temp) + ' 个')\n\n\nif __name__ == '__main__':\n run(0.7)\n", "step-3": "<mask token>\nreadpath = './DBLP/'\nwritepath = './DBLP/'\ndataname = 'dblp.txt'\nlabelname = 'node2label.txt'\ntestsetname = writepath + 'dblp_testset.txt'\n\n\ndef run(save_rate):\n rdataname = readpath + dataname\n rlabelname = readpath + labelname\n wdataname = writepath + dataname\n wlabelname = writepath + labelname\n ordata = []\n all_user = set()\n all_time = set()\n rename = dict()\n newdatasize = 0\n with open(rdataname, 'r') as r:\n for line in r:\n x = line.strip('\\n').split()\n x[2] = float(x[2])\n ordata.append(x)\n ordata = sorted(ordata, key=lambda x: x[2])\n datasize = len(ordata)\n savesize = int(datasize * save_rate)\n print('原始数据中共有 %d 条\\n预计保留 %d 条' % (datasize, savesize))\n while savesize != datasize and ordata[savesize - 1][2] == ordata[\n savesize][2]:\n savesize = savesize + 1\n print('实际保留 %d 条' % savesize)\n print('实际切割比例' + str(savesize / datasize))\n for i in range(savesize):\n x = ordata[i]\n a = str(x[0])\n b = str(x[1])\n all_user.update({a, b})\n all_time.add(x[2])\n print('实际保留数据中,用户数量 %d 个,不同时间节点 %d 个' % (len(all_user), len(all_time)))\n newdatasize = savesize\n list_all_user = list(all_user)\n list_all_user = [int(i) for i in list_all_user]\n list_all_user.sort()\n step = 0\n for i in list_all_user:\n rename[i] = step\n step = step + 1\n flag = os.path.exists(writepath)\n if not flag:\n os.makedirs(writepath)\n with open(wdataname, 'w') as w:\n for i in range(newdatasize):\n x = ordata[i]\n a = str(rename[int(x[0])])\n b = str(rename[int(x[1])])\n w.write(a + ' ' + b + ' ' + str(x[2]) + '\\n')\n with open(testsetname, 'w') as w:\n index = 0\n for i in range(newdatasize, datasize):\n x = ordata[i]\n if int(x[0]) not in rename or int(x[1]) not in rename:\n continue\n a = str(rename[int(x[0])])\n b = str(rename[int(x[1])])\n w.write(a + ' ' + b + ' ' + str(x[2]) + '\\n')\n index = index + 1\n print('预计测试集剩余数量 %d' % (datasize - newdatasize + 1))\n print('测试集剩余数量 %d' % index)\n temp = 0\n with open(rlabelname, 'r') as r:\n with open(wlabelname, 'w') as w:\n for line in r:\n x = line.strip('\\n').split()\n if x[0] in all_user:\n temp = temp + 1\n a = str(rename[int(x[0])])\n w.write(a + ' ' + x[1] + '\\n')\n print('标签集数量 ' + str(temp) + ' 个')\n\n\nif __name__ == '__main__':\n run(0.7)\n", "step-4": "import os\nimport random\nreadpath = './DBLP/'\nwritepath = './DBLP/'\ndataname = 'dblp.txt'\nlabelname = 'node2label.txt'\ntestsetname = writepath + 'dblp_testset.txt'\n\n\ndef run(save_rate):\n rdataname = readpath + dataname\n rlabelname = readpath + labelname\n wdataname = writepath + dataname\n wlabelname = writepath + labelname\n ordata = []\n all_user = set()\n all_time = set()\n rename = dict()\n newdatasize = 0\n with open(rdataname, 'r') as r:\n for line in r:\n x = line.strip('\\n').split()\n x[2] = float(x[2])\n ordata.append(x)\n ordata = sorted(ordata, key=lambda x: x[2])\n datasize = len(ordata)\n savesize = int(datasize * save_rate)\n print('原始数据中共有 %d 条\\n预计保留 %d 条' % (datasize, savesize))\n while savesize != datasize and ordata[savesize - 1][2] == ordata[\n savesize][2]:\n savesize = savesize + 1\n print('实际保留 %d 条' % savesize)\n print('实际切割比例' + str(savesize / datasize))\n for i in range(savesize):\n x = ordata[i]\n a = str(x[0])\n b = str(x[1])\n all_user.update({a, b})\n all_time.add(x[2])\n print('实际保留数据中,用户数量 %d 个,不同时间节点 %d 个' % (len(all_user), len(all_time)))\n newdatasize = savesize\n list_all_user = list(all_user)\n list_all_user = [int(i) for i in list_all_user]\n list_all_user.sort()\n step = 0\n for i in list_all_user:\n rename[i] = step\n step = step + 1\n flag = os.path.exists(writepath)\n if not flag:\n os.makedirs(writepath)\n with open(wdataname, 'w') as w:\n for i in range(newdatasize):\n x = ordata[i]\n a = str(rename[int(x[0])])\n b = str(rename[int(x[1])])\n w.write(a + ' ' + b + ' ' + str(x[2]) + '\\n')\n with open(testsetname, 'w') as w:\n index = 0\n for i in range(newdatasize, datasize):\n x = ordata[i]\n if int(x[0]) not in rename or int(x[1]) not in rename:\n continue\n a = str(rename[int(x[0])])\n b = str(rename[int(x[1])])\n w.write(a + ' ' + b + ' ' + str(x[2]) + '\\n')\n index = index + 1\n print('预计测试集剩余数量 %d' % (datasize - newdatasize + 1))\n print('测试集剩余数量 %d' % index)\n temp = 0\n with open(rlabelname, 'r') as r:\n with open(wlabelname, 'w') as w:\n for line in r:\n x = line.strip('\\n').split()\n if x[0] in all_user:\n temp = temp + 1\n a = str(rename[int(x[0])])\n w.write(a + ' ' + x[1] + '\\n')\n print('标签集数量 ' + str(temp) + ' 个')\n\n\nif __name__ == '__main__':\n run(0.7)\n", "step-5": "import os\nimport random\n\nreadpath = './DBLP/'\nwritepath = './DBLP/'\ndataname = 'dblp.txt'\nlabelname = 'node2label.txt'\ntestsetname = writepath + 'dblp_testset.txt'\n\ndef run(save_rate):\n\trdataname = readpath + dataname\n\trlabelname = readpath + labelname\n\twdataname = writepath + dataname\n\twlabelname = writepath + labelname\n\t\n\tordata = []\n\tall_user = set()\n\tall_time = set()\n\trename = dict()\n\tnewdatasize = 0\n\n\twith open(rdataname, 'r') as r:\n\t\tfor line in r:\n\t\t\tx = line.strip('\\n').split()\n\t\t\tx[2] = float(x[2])\n\t\t\tordata.append(x)\n\t\tordata = sorted(ordata, key = lambda x:x[2])\n\t\t\n\t\tdatasize = len(ordata)\n\t\tsavesize = int(datasize * save_rate)\n\t\tprint(\"原始数据中共有 %d 条\\n预计保留 %d 条\" % (datasize, savesize))\n\n\t\twhile(savesize != datasize and ordata[savesize-1][2] == ordata[savesize][2]):\n\t\t\tsavesize = savesize + 1\n\t\tprint(\"实际保留 %d 条\" % savesize)\n\t\tprint(\"实际切割比例\" + str(savesize/datasize))\n\t\t\n\t\tfor i in range(savesize):\n\t\t\tx = ordata[i]\n\t\t\ta = str(x[0])\n\t\t\tb = str(x[1])\n\t\t\tall_user.update({a,b})\n\t\t\t#print(len(all_user))\n\t\t\tall_time.add(x[2])\n\t\tprint(\"实际保留数据中,用户数量 %d 个,不同时间节点 %d 个\" %(len(all_user), len(all_time)))\n\t\tnewdatasize = savesize\n\t\t\n\n\t\tlist_all_user = list(all_user)\n\t\tlist_all_user = [int(i) for i in list_all_user]\n\t\tlist_all_user.sort()\n\t\tstep = 0\n\t\tfor i in list_all_user:\n\t\t\trename[i] = step\n\t\t\t#print(i, rename[i])\n\t\t\tstep = step + 1\n\t\t\t\n\t\t\n\n\t\tflag = os.path.exists(writepath)\n\t\tif not flag:\n\t\t\tos.makedirs(writepath)\n\n\t\twith open(wdataname, 'w') as w:\n\t\t\tfor i in range(newdatasize):\n\t\t\t\tx = ordata[i]\n\t\t\t\ta = str(rename[int(x[0])])\n\t\t\t\tb = str(rename[int(x[1])])\n\t\t\t\tw.write(a + ' ' + b + ' ' + str(x[2])+'\\n')\n\n\n\t\twith open(testsetname, 'w') as w:\n\t\t\tindex = 0\n\t\t\tfor i in range(newdatasize,datasize):\n\t\t\t\tx = ordata[i]\n\n\t\t\t\tif(int(x[0]) not in rename or int(x[1]) not in rename):\n\t\t\t\t\tcontinue\n\t\t\t\ta = str(rename[int(x[0])])\n\t\t\t\tb = str(rename[int(x[1])])\n\t\t\t\tw.write(a + ' ' + b + ' ' + str(x[2])+'\\n')\n\t\t\t\tindex = index+1\n\t\t\tprint('预计测试集剩余数量 %d'%(datasize-newdatasize+1))\n\t\t\tprint('测试集剩余数量 %d'%(index))\n\n\t\ttemp = 0\n\t\twith open(rlabelname, 'r') as r:\n\t\t\twith open(wlabelname, 'w') as w:\n\t\t\t\tfor line in r:\n\t\t\t\t\tx = line.strip('\\n').split()\n\t\t\t\t\tif(x[0] in all_user):\n\t\t\t\t\t\ttemp = temp + 1\n\t\t\t\t\t\ta = str(rename[int(x[0])])\n\t\t\t\t\t\tw.write(a + ' ' + x[1] + '\\n')\n\t\tprint(\"标签集数量 \" + str(temp)+ \" 个\")\n\t\nif __name__ == '__main__':\n\trun(0.7)\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
from .embedpeek import EmbedPeek __red_end_user_data_statement__ = "This cog does not persistently store data or metadata about users." def setup(bot): bot.add_cog(EmbedPeek(bot))
normal
{ "blob_id": "b66142e0b674d3920b8e3ad74e0d0b753f0a78c3", "index": 3471, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef setup(bot):\n bot.add_cog(EmbedPeek(bot))\n", "step-3": "<mask token>\n__red_end_user_data_statement__ = (\n 'This cog does not persistently store data or metadata about users.')\n\n\ndef setup(bot):\n bot.add_cog(EmbedPeek(bot))\n", "step-4": "from .embedpeek import EmbedPeek\n__red_end_user_data_statement__ = (\n 'This cog does not persistently store data or metadata about users.')\n\n\ndef setup(bot):\n bot.add_cog(EmbedPeek(bot))\n", "step-5": "from .embedpeek import EmbedPeek\n\n__red_end_user_data_statement__ = \"This cog does not persistently store data or metadata about users.\"\n\n\ndef setup(bot):\n bot.add_cog(EmbedPeek(bot))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" Question: You are given a string s consisting only of digits 0-9, commas ,, and dots . Your task is to complete the regex_pattern defined below, which will be used to re.split() all of the , and . symbols in s. It’s guaranteed that every comma and every dot in s is preceded and followed by a digit. Sample Input: 100,000,000.000 Sample Output: 100 000 000 000 """ # Solution: import re regex_pattern = r"[,.]" print("\n".join(re.split(regex_pattern, input())))
normal
{ "blob_id": "020691fe2c7e7092d45415b72ce1804618421a2a", "index": 9519, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('\\n'.join(re.split(regex_pattern, input())))\n", "step-3": "<mask token>\nregex_pattern = '[,.]'\nprint('\\n'.join(re.split(regex_pattern, input())))\n", "step-4": "<mask token>\nimport re\nregex_pattern = '[,.]'\nprint('\\n'.join(re.split(regex_pattern, input())))\n", "step-5": "\"\"\"\nQuestion:\n\nYou are given a string s consisting only of digits 0-9, commas ,, and dots .\n\nYour task is to complete the regex_pattern defined below, which will be used to\nre.split() all of the , and . symbols in s.\n\nIt’s guaranteed that every comma and every dot in s is preceded and followed\nby a digit.\n\nSample Input:\n 100,000,000.000\n\nSample Output:\n 100\n 000\n 000\n 000\n\"\"\"\n\n# Solution:\n\n\nimport re\n\nregex_pattern = r\"[,.]\"\n\nprint(\"\\n\".join(re.split(regex_pattern, input())))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
a=range(1,11) #1~10숫자를 에이에 저장 b=1 for i in a: #a에있는 원소를 b에 곱하고 비에 저장 b*=i print(b)
normal
{ "blob_id": "8cb7290792f9390dd350e0c79711e0dd72d6063b", "index": 9508, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in a:\n b *= i\nprint(b)\n", "step-3": "a = range(1, 11)\nb = 1\nfor i in a:\n b *= i\nprint(b)\n", "step-4": "a=range(1,11) #1~10숫자를 에이에 저장\nb=1\nfor i in a: #a에있는 원소를 b에 곱하고 비에 저장\n b*=i\nprint(b)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.shortcuts import render # Create your views here. from django.shortcuts import redirect from django.contrib.auth.mixins import LoginRequiredMixin from django.http import Http404, HttpResponseForbidden from django.shortcuts import render from django.urls import reverse from django.views.generic.edit import FormMixin from django.contrib.auth.decorators import login_required from django.views.generic import DetailView, ListView # from .forms import ComposeForm # from .models import Thread, ChatMessage from django.shortcuts import render import os import django os.environ["DJANGO_SETTINGS_MODULE"] = 'arizona.settings' django.setup() def index(request): return render(request, 'canyon/index.html') def results(request): return render(request, 'canyon/results.html')
normal
{ "blob_id": "c385fe2af9aebc9c4a42d4db5a341fcedeec3898", "index": 3579, "step-1": "<mask token>\n\n\ndef index(request):\n return render(request, 'canyon/index.html')\n\n\ndef results(request):\n return render(request, 'canyon/results.html')\n", "step-2": "<mask token>\ndjango.setup()\n\n\ndef index(request):\n return render(request, 'canyon/index.html')\n\n\ndef results(request):\n return render(request, 'canyon/results.html')\n", "step-3": "<mask token>\nos.environ['DJANGO_SETTINGS_MODULE'] = 'arizona.settings'\ndjango.setup()\n\n\ndef index(request):\n return render(request, 'canyon/index.html')\n\n\ndef results(request):\n return render(request, 'canyon/results.html')\n", "step-4": "from django.shortcuts import render\nfrom django.shortcuts import redirect\nfrom django.contrib.auth.mixins import LoginRequiredMixin\nfrom django.http import Http404, HttpResponseForbidden\nfrom django.shortcuts import render\nfrom django.urls import reverse\nfrom django.views.generic.edit import FormMixin\nfrom django.contrib.auth.decorators import login_required\nfrom django.views.generic import DetailView, ListView\nfrom django.shortcuts import render\nimport os\nimport django\nos.environ['DJANGO_SETTINGS_MODULE'] = 'arizona.settings'\ndjango.setup()\n\n\ndef index(request):\n return render(request, 'canyon/index.html')\n\n\ndef results(request):\n return render(request, 'canyon/results.html')\n", "step-5": "from django.shortcuts import render\n\n# Create your views here.\nfrom django.shortcuts import redirect\nfrom django.contrib.auth.mixins import LoginRequiredMixin\nfrom django.http import Http404, HttpResponseForbidden\nfrom django.shortcuts import render\nfrom django.urls import reverse\nfrom django.views.generic.edit import FormMixin\nfrom django.contrib.auth.decorators import login_required\nfrom django.views.generic import DetailView, ListView\n\n# from .forms import ComposeForm\n# from .models import Thread, ChatMessage\n\nfrom django.shortcuts import render\nimport os\nimport django\nos.environ[\"DJANGO_SETTINGS_MODULE\"] = 'arizona.settings'\ndjango.setup()\n\n\ndef index(request):\n return render(request, 'canyon/index.html')\n\n\ndef results(request):\n return render(request, 'canyon/results.html')\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import matplotlib.pyplot as plotOp import numpy as np from random import randint import re as regexOp
normal
{ "blob_id": "6c0a1d4ffd64e0566be53937d9b48975f2530852", "index": 7767, "step-1": "<mask token>\n", "step-2": "import matplotlib.pyplot as plotOp\nimport numpy as np\nfrom random import randint\nimport re as regexOp\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import stats # prevent numpy exponential # notation on print, default False np.set_printoptions(suppress=True) y_cord_df = pd.DataFrame(data=None, columns=['Time', 'Orien']) list_no = np.arange(0.0, 108000.0, 1.0) y_cord_df['Time'] = (list_no*(1/60))/60 rolling_avg_duration= 10 #in seconds def vel_det(file, legend_label, line_color): fps=60 data_df = pd.read_hdf(path_or_buf=file) bodyparts = data_df.columns.get_level_values(1) coords = data_df.columns.get_level_values(2) bodyparts2plot = bodyparts scorer = data_df.columns.get_level_values(0)[0] Time = np.arange(np.size(data_df[scorer][bodyparts2plot[0]]['x'].values)) column_title = bodyparts + "_" + coords data_df.columns = column_title # calculate the time elapsed per frame and append column data_df['Time Elapsed'] = Time / fps # print(data_df) # what's being plotted # plt.plot(data_df['Time Elapsed'], data_df['velocity_roll'], color=line_color, marker='o', markersize=0.4, linewidth=0.3, label=legend_label) # scatter plot with faint lines # plt.plot(data_df['Time Elapsed']/60, data_df['velocity_roll'], color=line_color, linewidth=1, label=legend_label) # plot formatting # plt.xlabel('time (seconds)') # plt.ylabel('velocity (pixels/second)') # plt.legend(loc=2) # plt.title('total distance traveled vs. time: ' + path) animal = [] animal[:] = ' '.join(file.split()[2:5]) # plt.title('Total Distance vs. Time for: ' + ' '.join(file.split()[:2]) + " "+ ''.join(animal[:2])) # plt.title(str(rolling_avg_duration)+' second Rolling Velocity Pretreat 3mkgNaltrexone+5mgkg U50') data_df['Time Elapsed'] = Time / fps y_cord_df[file] = data_df['head_y'] y_cord_df[file+'_orient'] = np.NaN i = 0 # rear_values = data_df['head_y'].values<=300 rear_values = data_df['head_y'].values <= 300 print(rear_values) data_df['Orientation']=rear_values data_df['GR'] = 'groom' data_df.loc[rear_values == True, 'GR'] = 'rear' # for time in Time: # if data_df['head_y'].iloc[time] >= 234: # data_df[file + '_orient'] = 'rear' # i=1+i # # using 1 for rear # else: # # 0 for groom/walk # data_df[file + '_orient'] = 'groom' # i=1+i # print(data_df) # for values in data_df['head_y']: # if values >= 234: # y_cord_df.insert(loc=data_df.loc[], column=file + '_orient', value=1, allow_duplicates=True) # else: # # 0 for groom/walk # y_cord_df.insert(loc=i, column=file+'_orient', value=0, allow_duplicates=True) # i = i+1 # print('iter'+str(i)) # print(data_df['Orientation']) filt_df = data_df['head_y'] > 400 print(data_df[filt_df]) plt.figure(figsize=(6, 9.5)) # plt.plot(data_df['Time Elapsed']/60, data_df["GR"], color=line_color, linewidth=1, label=legend_label) # plt.plot(data_df['Time Elapsed']/60, data_df['head_y']*-1, color=line_color, linewidth=1, label=legend_label) plt.plot(data_df[filt_df].head_y,data_df[filt_df].index/3600, color=line_color, linewidth=1, label=legend_label) # plt.axhline(y=-300) leg = plt.legend() font = {'family': 'Arial', 'size': 12} plt.rc('font', **font) plt.rc('lines', linewidth = 1) for i in leg.legendHandles: i.set_linewidth(3) plt.xlabel('y coordinate(pixels)', fontsize=12) plt.ylabel('time(minutes)', fontsize=12) plt.title(legend_label) plt.savefig(legend_label+'.jpg', format='jpg') plt.show() if __name__ == '__main__': """Saline Data""" # vel_det(file='Saline_Ai14_OPRK1_C1_F0_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='Saline F0', line_color='yellowgreen') # vel_det(file='Saline_Ai14_OPRK1_C2_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='Saline F1', line_color='lightgreen') # vel_det(file='Saline_Ai14_OPRK1_C1_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='Saline F2', line_color='lightgreen') # # vel_det(file='Saline_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='Saline M1', line_color='green') # vel_det(file='Saline_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='Saline M2', line_color='lightgreen') # vel_det(file='Saline_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='Saline M3', line_color='lightgreen') # vel_det(file='Saline_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='Saline M4', line_color='lime') # only_saline = y_cord_df.loc[:, ['Saline_Ai14_OPRK1_C1_M4_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Saline_Ai14_OPRK1_C1_M3_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Saline_Ai14_OPRK1_C2_F1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Saline_Ai14_OPRK1_C1_M1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Saline_Ai14_OPRK1_C1_M2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Saline_Ai14_OPRK1_C1_F0_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Saline_Ai14_OPRK1_C1_F2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5']] # y_cord_df['Avg Vel Saline'] = only_saline.mean(axis=1) # avg_df['Avg Vel Saline SEM'] = stats.sem(only_saline, axis=1) # plt.plot(avg_df['Time'], avg_df['Avg Vel Saline'], color='black', linewidth=1, label='Average Velocity Saline+Saline') # """Naltrexone Data""" # vel_det(file='Naltr_U50_Ai14_OPRK1_C2_F0_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='F0 Pretreat 3mkg Naltrexone+5mgkg U50', line_color='#ee4466') # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000filtered.h5', # legend_label='F1 Pretreat 3mgkg Naltrexone+5mgkg U50', line_color='orangered') # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='F2 Pretreat 3mgkg Naltrexone+5mgkg U50', line_color='darkred') # # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M1 Pretreat 3mgkg Naltrexone+5mgkg U50', line_color='red') # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M2 Pretreat 3mgkg Naltrexone+5mgkg U50', line_color='red') # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M3 Pretreat 3mgkg Naltrexone+5mgkg U50', line_color='firebrick') # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M4 Pretreat 3mgkg Naltrexone+5mkg U50', line_color='darksalmon') # only_naltr = avg_df.loc[:, # ['Nalt_U50_Ai14_OPRK1_C1_F2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Nalt_U50_Ai14_OPRK1_C1_M2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Nalt_U50_Ai14_OPRK1_C1_M3_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Nalt_U50_Ai14_OPRK1_C1_M1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Nalt_U50_Ai14_OPRK1_C1_M4_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Naltr_U50_Ai14_OPRK1_C2_F0_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'Nalt_U50_Ai14_OPRK1_C1_F1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5']] # avg_df['Avg Vel Naltr'] = only_naltr.mean(axis=1) # avg_df['Avg Vel Naltr SEM'] = stats.sem(only_naltr, axis=1) # plt.plot(avg_df['Time'], avg_df['Avg Vel Naltr'], color='red', linewidth=1, label='Average Velocity 3mgkg Naltr+5mgkg U50') # # """U50 Data""" vel_det(file='U50_Ai14_OPRK1_C1_F0_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', legend_label='F0 5mgkg U50', line_color='steelblue') vel_det(file='U50_Ai14_OPRK1_C1_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', legend_label='F1 5mgkg U50', line_color='deepskyblue') vel_det(file='U50_Ai14_OPRK1_C2_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', legend_label='F2 5mgkg U50', line_color='powderblue') vel_det(file='U50_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', legend_label='M1 5mgkg U50', line_color='blue') vel_det(file='U50_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', legend_label='M2 5mgkg U50', line_color='blue') vel_det(file='U50_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', legend_label='M3 5mgkg U50', line_color='lightblue') vel_det(file='U50_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', legend_label='M4 5mgkg U50', line_color='turquoise') # only_U50 = avg_df.loc[:, # ['U50_Ai14_OPRK1_C1_F1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'U50_Ai14_OPRK1_C1_F0_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'U50_Ai14_OPRK1_C1_M1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'U50_Ai14_OPRK1_C1_M2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'U50_Ai14_OPRK1_C2_F2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'U50_Ai14_OPRK1_C1_M3_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5', # 'U50_Ai14_OPRK1_C1_M4_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5']] # avg_df['Avg Vel U50'] = only_U50.mean(axis=1) # avg_df['Avg Vel U50 SEM'] = stats.sem(only_U50, axis=1) # plt.plot(avg_df['Time'], avg_df['Avg Vel U50'], color='orange', linewidth=1, label='Average Velocity Saline+5mgkg U50') # # """NORBNI U50 Data""" # # vel_det(file='NORBNI_U50_Ai14_OPRK1_C2_F0_sDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='F0 10mgkg NORBNI+5mgkg U50', line_color='orange') # vel_det(file='NORBNI_U50_Ai14_OPRK1_C2_F1_sDLC_resnet50_SideViewNov1shuffle1_180000filtered.h5', # legend_label='F1 10mgkg NORBNI+5mgkg U50', line_color='darkorange') # vel_det(file='NORBNI_U50_Ai14_OPRK1_C2_F2_sDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='F2 10mgkg NORBNI+5mgkg U50', line_color='coral') # # # vel_det(file='NORBNI_U50_Ai14_OPRK1_C1_M1_sDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M1 10mgkg NORBNI+5mgkg U50', line_color='orange') # vel_det(file='NORBNI_U50_Ai14_OPRK1_C1_M2_sDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M2 10mgkg NORBNI+5mgkg U50', line_color='orange') # vel_det(file='NORBNI_U50_Ai14_OPRK1_C1_M3_sDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M3 10mgkg NORBNI+5mgkg U50', line_color='orange') #tiger color # vel_det(file='NORBNI_U50_Ai14_OPRK1_C1_M4_SDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M4 10mgkg NORBNI+5mkg U50', line_color='#ed8203') #apricot color # only_NORBNI = avg_df.loc[:, # [ # 'NORBNI_U50_Ai14_OPRK1_C2_F1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered.h5', # 'NORBNI_U50_Ai14_OPRK1_C2_F2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered.h5', # 'NORBNI_U50_Ai14_OPRK1_C1_M3_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered.h5', # 'NORBNI_U50_Ai14_OPRK1_C1_M4_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered.h5' # ]] # avg_df['Avg Vel NORBNI'] = only_NORBNI.mean(axis=1) # avg_df['Avg Vel NORBNI SEM'] = stats.sem(only_NORBNI, axis=1) # plt.plot(avg_df['Time'], avg_df['Avg Vel NORBNI'], color='blue', linewidth=1, # label='Average Velocity 10mgkg NORBNI +5mgkg U50') # """NORBNI Saline""" # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C2_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='F1 10mgkg NORBNI+Saline', line_color='purple') # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C2_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='F2 10mgkg NORBNI+Saline', line_color='purple') # vel_det(file='NORBNI_U50_Ai14_OPRK1_C2_F0_sDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='F0 10mgkg NORBNI+Saline', line_color='violet') # # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M1 10mgkg NORBNI+Saline', line_color='blueviolet') # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M2 10mgkg NORBNI+Saline', line_color='blueviolet') # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M4 10mkg NORBNI+Saline', line_color='mediumorchid') # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5', # legend_label='M3 10mgkg NORBNI+Saline', line_color='purple') # # plt.fill_between(avg_df['Time'], avg_df["Avg Vel Saline"]-avg_df["Avg Vel Saline SEM"], # avg_df["Avg Vel Saline"]+avg_df["Avg Vel Saline SEM"], alpha=0.25, facecolor='black', edgecolor='black') # plt.fill_between(avg_df['Time'], avg_df["Avg Vel Naltr"]-avg_df["Avg Vel Naltr SEM"], # avg_df["Avg Vel Naltr"]+avg_df["Avg Vel Naltr SEM"], alpha=0.25, facecolor='red', edgecolor='red') # plt.fill_between(avg_df['Time'], avg_df["Avg Vel U50"]-avg_df["Avg Vel U50 SEM"], # avg_df["Avg Vel U50"]+avg_df["Avg Vel U50 SEM"], alpha=0.25, facecolor='orange', edgecolor='orange') # plt.fill_between(avg_df['Time'], avg_df["Avg Vel NORBNI"]-avg_df["Avg Vel NORBNI SEM"], # avg_df["Avg Vel NORBNI"]+avg_df["Avg Vel NORBNI SEM"], alpha=0.25, facecolor='blue', edgecolor='blue') # plt.plot() # leg = plt.legend() # font = {'family': 'Arial', # 'size': 12} # plt.rc('font', **font) # plt.rc('lines', linewidth = 1) # for i in leg.legendHandles: # i.set_linewidth(3) # plt.xlabel('time (minutes)', fontsize=12) # plt.ylabel('pixel', fontsize=12) # plt.title('F2 NORBNI, NORBNI+U50, Saline Head Inverted Y-coordinate') # plt.show()
normal
{ "blob_id": "ba5171d3de87ec01770a7174d9783d5058b0fced", "index": 9896, "step-1": "<mask token>\n\n\ndef vel_det(file, legend_label, line_color):\n fps = 60\n data_df = pd.read_hdf(path_or_buf=file)\n bodyparts = data_df.columns.get_level_values(1)\n coords = data_df.columns.get_level_values(2)\n bodyparts2plot = bodyparts\n scorer = data_df.columns.get_level_values(0)[0]\n Time = np.arange(np.size(data_df[scorer][bodyparts2plot[0]]['x'].values))\n column_title = bodyparts + '_' + coords\n data_df.columns = column_title\n data_df['Time Elapsed'] = Time / fps\n animal = []\n animal[:] = ' '.join(file.split()[2:5])\n data_df['Time Elapsed'] = Time / fps\n y_cord_df[file] = data_df['head_y']\n y_cord_df[file + '_orient'] = np.NaN\n i = 0\n rear_values = data_df['head_y'].values <= 300\n print(rear_values)\n data_df['Orientation'] = rear_values\n data_df['GR'] = 'groom'\n data_df.loc[rear_values == True, 'GR'] = 'rear'\n filt_df = data_df['head_y'] > 400\n print(data_df[filt_df])\n plt.figure(figsize=(6, 9.5))\n plt.plot(data_df[filt_df].head_y, data_df[filt_df].index / 3600, color=\n line_color, linewidth=1, label=legend_label)\n leg = plt.legend()\n font = {'family': 'Arial', 'size': 12}\n plt.rc('font', **font)\n plt.rc('lines', linewidth=1)\n for i in leg.legendHandles:\n i.set_linewidth(3)\n plt.xlabel('y coordinate(pixels)', fontsize=12)\n plt.ylabel('time(minutes)', fontsize=12)\n plt.title(legend_label)\n plt.savefig(legend_label + '.jpg', format='jpg')\n plt.show()\n\n\n<mask token>\n", "step-2": "<mask token>\nnp.set_printoptions(suppress=True)\n<mask token>\n\n\ndef vel_det(file, legend_label, line_color):\n fps = 60\n data_df = pd.read_hdf(path_or_buf=file)\n bodyparts = data_df.columns.get_level_values(1)\n coords = data_df.columns.get_level_values(2)\n bodyparts2plot = bodyparts\n scorer = data_df.columns.get_level_values(0)[0]\n Time = np.arange(np.size(data_df[scorer][bodyparts2plot[0]]['x'].values))\n column_title = bodyparts + '_' + coords\n data_df.columns = column_title\n data_df['Time Elapsed'] = Time / fps\n animal = []\n animal[:] = ' '.join(file.split()[2:5])\n data_df['Time Elapsed'] = Time / fps\n y_cord_df[file] = data_df['head_y']\n y_cord_df[file + '_orient'] = np.NaN\n i = 0\n rear_values = data_df['head_y'].values <= 300\n print(rear_values)\n data_df['Orientation'] = rear_values\n data_df['GR'] = 'groom'\n data_df.loc[rear_values == True, 'GR'] = 'rear'\n filt_df = data_df['head_y'] > 400\n print(data_df[filt_df])\n plt.figure(figsize=(6, 9.5))\n plt.plot(data_df[filt_df].head_y, data_df[filt_df].index / 3600, color=\n line_color, linewidth=1, label=legend_label)\n leg = plt.legend()\n font = {'family': 'Arial', 'size': 12}\n plt.rc('font', **font)\n plt.rc('lines', linewidth=1)\n for i in leg.legendHandles:\n i.set_linewidth(3)\n plt.xlabel('y coordinate(pixels)', fontsize=12)\n plt.ylabel('time(minutes)', fontsize=12)\n plt.title(legend_label)\n plt.savefig(legend_label + '.jpg', format='jpg')\n plt.show()\n\n\nif __name__ == '__main__':\n \"\"\"Saline Data\"\"\"\n \"\"\"Naltrexone Data\"\"\"\n \"\"\"U50 Data\"\"\"\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_F0_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='F0 5mgkg U50', line_color='steelblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='F1 5mgkg U50', line_color='deepskyblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C2_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='F2 5mgkg U50', line_color='powderblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M1 5mgkg U50', line_color='blue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M2 5mgkg U50', line_color='blue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M3 5mgkg U50', line_color='lightblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M4 5mgkg U50', line_color='turquoise')\n \"\"\"NORBNI U50 Data\"\"\"\n \"\"\"NORBNI Saline\"\"\"\n", "step-3": "<mask token>\nnp.set_printoptions(suppress=True)\ny_cord_df = pd.DataFrame(data=None, columns=['Time', 'Orien'])\nlist_no = np.arange(0.0, 108000.0, 1.0)\ny_cord_df['Time'] = list_no * (1 / 60) / 60\nrolling_avg_duration = 10\n\n\ndef vel_det(file, legend_label, line_color):\n fps = 60\n data_df = pd.read_hdf(path_or_buf=file)\n bodyparts = data_df.columns.get_level_values(1)\n coords = data_df.columns.get_level_values(2)\n bodyparts2plot = bodyparts\n scorer = data_df.columns.get_level_values(0)[0]\n Time = np.arange(np.size(data_df[scorer][bodyparts2plot[0]]['x'].values))\n column_title = bodyparts + '_' + coords\n data_df.columns = column_title\n data_df['Time Elapsed'] = Time / fps\n animal = []\n animal[:] = ' '.join(file.split()[2:5])\n data_df['Time Elapsed'] = Time / fps\n y_cord_df[file] = data_df['head_y']\n y_cord_df[file + '_orient'] = np.NaN\n i = 0\n rear_values = data_df['head_y'].values <= 300\n print(rear_values)\n data_df['Orientation'] = rear_values\n data_df['GR'] = 'groom'\n data_df.loc[rear_values == True, 'GR'] = 'rear'\n filt_df = data_df['head_y'] > 400\n print(data_df[filt_df])\n plt.figure(figsize=(6, 9.5))\n plt.plot(data_df[filt_df].head_y, data_df[filt_df].index / 3600, color=\n line_color, linewidth=1, label=legend_label)\n leg = plt.legend()\n font = {'family': 'Arial', 'size': 12}\n plt.rc('font', **font)\n plt.rc('lines', linewidth=1)\n for i in leg.legendHandles:\n i.set_linewidth(3)\n plt.xlabel('y coordinate(pixels)', fontsize=12)\n plt.ylabel('time(minutes)', fontsize=12)\n plt.title(legend_label)\n plt.savefig(legend_label + '.jpg', format='jpg')\n plt.show()\n\n\nif __name__ == '__main__':\n \"\"\"Saline Data\"\"\"\n \"\"\"Naltrexone Data\"\"\"\n \"\"\"U50 Data\"\"\"\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_F0_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='F0 5mgkg U50', line_color='steelblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='F1 5mgkg U50', line_color='deepskyblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C2_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='F2 5mgkg U50', line_color='powderblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M1 5mgkg U50', line_color='blue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M2 5mgkg U50', line_color='blue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M3 5mgkg U50', line_color='lightblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M4 5mgkg U50', line_color='turquoise')\n \"\"\"NORBNI U50 Data\"\"\"\n \"\"\"NORBNI Saline\"\"\"\n", "step-4": "import os\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom scipy import stats\nnp.set_printoptions(suppress=True)\ny_cord_df = pd.DataFrame(data=None, columns=['Time', 'Orien'])\nlist_no = np.arange(0.0, 108000.0, 1.0)\ny_cord_df['Time'] = list_no * (1 / 60) / 60\nrolling_avg_duration = 10\n\n\ndef vel_det(file, legend_label, line_color):\n fps = 60\n data_df = pd.read_hdf(path_or_buf=file)\n bodyparts = data_df.columns.get_level_values(1)\n coords = data_df.columns.get_level_values(2)\n bodyparts2plot = bodyparts\n scorer = data_df.columns.get_level_values(0)[0]\n Time = np.arange(np.size(data_df[scorer][bodyparts2plot[0]]['x'].values))\n column_title = bodyparts + '_' + coords\n data_df.columns = column_title\n data_df['Time Elapsed'] = Time / fps\n animal = []\n animal[:] = ' '.join(file.split()[2:5])\n data_df['Time Elapsed'] = Time / fps\n y_cord_df[file] = data_df['head_y']\n y_cord_df[file + '_orient'] = np.NaN\n i = 0\n rear_values = data_df['head_y'].values <= 300\n print(rear_values)\n data_df['Orientation'] = rear_values\n data_df['GR'] = 'groom'\n data_df.loc[rear_values == True, 'GR'] = 'rear'\n filt_df = data_df['head_y'] > 400\n print(data_df[filt_df])\n plt.figure(figsize=(6, 9.5))\n plt.plot(data_df[filt_df].head_y, data_df[filt_df].index / 3600, color=\n line_color, linewidth=1, label=legend_label)\n leg = plt.legend()\n font = {'family': 'Arial', 'size': 12}\n plt.rc('font', **font)\n plt.rc('lines', linewidth=1)\n for i in leg.legendHandles:\n i.set_linewidth(3)\n plt.xlabel('y coordinate(pixels)', fontsize=12)\n plt.ylabel('time(minutes)', fontsize=12)\n plt.title(legend_label)\n plt.savefig(legend_label + '.jpg', format='jpg')\n plt.show()\n\n\nif __name__ == '__main__':\n \"\"\"Saline Data\"\"\"\n \"\"\"Naltrexone Data\"\"\"\n \"\"\"U50 Data\"\"\"\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_F0_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='F0 5mgkg U50', line_color='steelblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='F1 5mgkg U50', line_color='deepskyblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C2_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='F2 5mgkg U50', line_color='powderblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M1 5mgkg U50', line_color='blue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M2 5mgkg U50', line_color='blue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M3 5mgkg U50', line_color='lightblue')\n vel_det(file=\n 'U50_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5'\n , legend_label='M4 5mgkg U50', line_color='turquoise')\n \"\"\"NORBNI U50 Data\"\"\"\n \"\"\"NORBNI Saline\"\"\"\n", "step-5": "import os\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom scipy import stats\n\n\n# prevent numpy exponential\n# notation on print, default False\nnp.set_printoptions(suppress=True)\n\ny_cord_df = pd.DataFrame(data=None, columns=['Time', 'Orien'])\nlist_no = np.arange(0.0, 108000.0, 1.0)\ny_cord_df['Time'] = (list_no*(1/60))/60\nrolling_avg_duration= 10 #in seconds\n\ndef vel_det(file, legend_label, line_color):\n fps=60\n\n data_df = pd.read_hdf(path_or_buf=file)\n bodyparts = data_df.columns.get_level_values(1)\n coords = data_df.columns.get_level_values(2)\n bodyparts2plot = bodyparts\n scorer = data_df.columns.get_level_values(0)[0]\n Time = np.arange(np.size(data_df[scorer][bodyparts2plot[0]]['x'].values))\n column_title = bodyparts + \"_\" + coords\n data_df.columns = column_title\n\n # calculate the time elapsed per frame and append column\n data_df['Time Elapsed'] = Time / fps\n\n # print(data_df)\n\n # what's being plotted\n # plt.plot(data_df['Time Elapsed'], data_df['velocity_roll'], color=line_color, marker='o', markersize=0.4, linewidth=0.3, label=legend_label) # scatter plot with faint lines\n # plt.plot(data_df['Time Elapsed']/60, data_df['velocity_roll'], color=line_color, linewidth=1, label=legend_label)\n # plot formatting\n # plt.xlabel('time (seconds)')\n # plt.ylabel('velocity (pixels/second)')\n # plt.legend(loc=2)\n # plt.title('total distance traveled vs. time: ' + path)\n animal = []\n animal[:] = ' '.join(file.split()[2:5])\n # plt.title('Total Distance vs. Time for: ' + ' '.join(file.split()[:2]) + \" \"+ ''.join(animal[:2]))\n # plt.title(str(rolling_avg_duration)+' second Rolling Velocity Pretreat 3mkgNaltrexone+5mgkg U50')\n\n data_df['Time Elapsed'] = Time / fps\n y_cord_df[file] = data_df['head_y']\n y_cord_df[file+'_orient'] = np.NaN\n\n i = 0\n\n # rear_values = data_df['head_y'].values<=300\n rear_values = data_df['head_y'].values <= 300\n print(rear_values)\n data_df['Orientation']=rear_values\n data_df['GR'] = 'groom'\n data_df.loc[rear_values == True, 'GR'] = 'rear'\n\n # for time in Time:\n # if data_df['head_y'].iloc[time] >= 234:\n # data_df[file + '_orient'] = 'rear'\n # i=1+i\n # # using 1 for rear\n # else:\n # # 0 for groom/walk\n # data_df[file + '_orient'] = 'groom'\n # i=1+i\n # print(data_df)\n # for values in data_df['head_y']:\n # if values >= 234:\n # y_cord_df.insert(loc=data_df.loc[], column=file + '_orient', value=1, allow_duplicates=True)\n # else:\n # # 0 for groom/walk\n # y_cord_df.insert(loc=i, column=file+'_orient', value=0, allow_duplicates=True)\n # i = i+1\n # print('iter'+str(i))\n # print(data_df['Orientation'])\n filt_df = data_df['head_y'] > 400\n print(data_df[filt_df])\n plt.figure(figsize=(6, 9.5))\n # plt.plot(data_df['Time Elapsed']/60, data_df[\"GR\"], color=line_color, linewidth=1, label=legend_label)\n # plt.plot(data_df['Time Elapsed']/60, data_df['head_y']*-1, color=line_color, linewidth=1, label=legend_label)\n plt.plot(data_df[filt_df].head_y,data_df[filt_df].index/3600, color=line_color, linewidth=1, label=legend_label)\n\n # plt.axhline(y=-300)\n\n\n leg = plt.legend()\n font = {'family': 'Arial',\n 'size': 12}\n plt.rc('font', **font)\n plt.rc('lines', linewidth = 1)\n for i in leg.legendHandles:\n i.set_linewidth(3)\n plt.xlabel('y coordinate(pixels)', fontsize=12)\n plt.ylabel('time(minutes)', fontsize=12)\n plt.title(legend_label)\n\n\n plt.savefig(legend_label+'.jpg', format='jpg')\n plt.show()\nif __name__ == '__main__':\n\n \"\"\"Saline Data\"\"\"\n # vel_det(file='Saline_Ai14_OPRK1_C1_F0_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='Saline F0', line_color='yellowgreen')\n # vel_det(file='Saline_Ai14_OPRK1_C2_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='Saline F1', line_color='lightgreen')\n # vel_det(file='Saline_Ai14_OPRK1_C1_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='Saline F2', line_color='lightgreen')\n #\n # vel_det(file='Saline_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='Saline M1', line_color='green')\n # vel_det(file='Saline_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='Saline M2', line_color='lightgreen')\n # vel_det(file='Saline_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='Saline M3', line_color='lightgreen')\n # vel_det(file='Saline_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='Saline M4', line_color='lime')\n\n\n # only_saline = y_cord_df.loc[:, ['Saline_Ai14_OPRK1_C1_M4_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Saline_Ai14_OPRK1_C1_M3_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Saline_Ai14_OPRK1_C2_F1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Saline_Ai14_OPRK1_C1_M1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Saline_Ai14_OPRK1_C1_M2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Saline_Ai14_OPRK1_C1_F0_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Saline_Ai14_OPRK1_C1_F2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5']]\n # y_cord_df['Avg Vel Saline'] = only_saline.mean(axis=1)\n # avg_df['Avg Vel Saline SEM'] = stats.sem(only_saline, axis=1)\n # plt.plot(avg_df['Time'], avg_df['Avg Vel Saline'], color='black', linewidth=1, label='Average Velocity Saline+Saline')\n #\n \"\"\"Naltrexone Data\"\"\"\n # vel_det(file='Naltr_U50_Ai14_OPRK1_C2_F0_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='F0 Pretreat 3mkg Naltrexone+5mgkg U50', line_color='#ee4466')\n # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000filtered.h5',\n # legend_label='F1 Pretreat 3mgkg Naltrexone+5mgkg U50', line_color='orangered')\n # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='F2 Pretreat 3mgkg Naltrexone+5mgkg U50', line_color='darkred')\n #\n # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M1 Pretreat 3mgkg Naltrexone+5mgkg U50', line_color='red')\n # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M2 Pretreat 3mgkg Naltrexone+5mgkg U50', line_color='red')\n # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M3 Pretreat 3mgkg Naltrexone+5mgkg U50', line_color='firebrick')\n # vel_det(file='Nalt_U50_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M4 Pretreat 3mgkg Naltrexone+5mkg U50', line_color='darksalmon')\n\n # only_naltr = avg_df.loc[:,\n # ['Nalt_U50_Ai14_OPRK1_C1_F2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Nalt_U50_Ai14_OPRK1_C1_M2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Nalt_U50_Ai14_OPRK1_C1_M3_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Nalt_U50_Ai14_OPRK1_C1_M1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Nalt_U50_Ai14_OPRK1_C1_M4_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Naltr_U50_Ai14_OPRK1_C2_F0_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'Nalt_U50_Ai14_OPRK1_C1_F1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5']]\n # avg_df['Avg Vel Naltr'] = only_naltr.mean(axis=1)\n # avg_df['Avg Vel Naltr SEM'] = stats.sem(only_naltr, axis=1)\n # plt.plot(avg_df['Time'], avg_df['Avg Vel Naltr'], color='red', linewidth=1, label='Average Velocity 3mgkg Naltr+5mgkg U50')\n #\n #\n \"\"\"U50 Data\"\"\"\n\n vel_det(file='U50_Ai14_OPRK1_C1_F0_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n legend_label='F0 5mgkg U50', line_color='steelblue')\n vel_det(file='U50_Ai14_OPRK1_C1_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n legend_label='F1 5mgkg U50', line_color='deepskyblue')\n vel_det(file='U50_Ai14_OPRK1_C2_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n legend_label='F2 5mgkg U50', line_color='powderblue')\n\n vel_det(file='U50_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n legend_label='M1 5mgkg U50', line_color='blue')\n vel_det(file='U50_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n legend_label='M2 5mgkg U50', line_color='blue')\n vel_det(file='U50_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n legend_label='M3 5mgkg U50', line_color='lightblue')\n vel_det(file='U50_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n legend_label='M4 5mgkg U50', line_color='turquoise')\n\n # only_U50 = avg_df.loc[:,\n # ['U50_Ai14_OPRK1_C1_F1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'U50_Ai14_OPRK1_C1_F0_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'U50_Ai14_OPRK1_C1_M1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'U50_Ai14_OPRK1_C1_M2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'U50_Ai14_OPRK1_C2_F2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'U50_Ai14_OPRK1_C1_M3_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5',\n # 'U50_Ai14_OPRK1_C1_M4_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered - Copy.h5']]\n # avg_df['Avg Vel U50'] = only_U50.mean(axis=1)\n # avg_df['Avg Vel U50 SEM'] = stats.sem(only_U50, axis=1)\n # plt.plot(avg_df['Time'], avg_df['Avg Vel U50'], color='orange', linewidth=1, label='Average Velocity Saline+5mgkg U50')\n #\n #\n \"\"\"NORBNI U50 Data\"\"\"\n #\n # vel_det(file='NORBNI_U50_Ai14_OPRK1_C2_F0_sDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='F0 10mgkg NORBNI+5mgkg U50', line_color='orange')\n # vel_det(file='NORBNI_U50_Ai14_OPRK1_C2_F1_sDLC_resnet50_SideViewNov1shuffle1_180000filtered.h5',\n # legend_label='F1 10mgkg NORBNI+5mgkg U50', line_color='darkorange')\n # vel_det(file='NORBNI_U50_Ai14_OPRK1_C2_F2_sDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='F2 10mgkg NORBNI+5mgkg U50', line_color='coral')\n #\n #\n # vel_det(file='NORBNI_U50_Ai14_OPRK1_C1_M1_sDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M1 10mgkg NORBNI+5mgkg U50', line_color='orange')\n # vel_det(file='NORBNI_U50_Ai14_OPRK1_C1_M2_sDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M2 10mgkg NORBNI+5mgkg U50', line_color='orange')\n # vel_det(file='NORBNI_U50_Ai14_OPRK1_C1_M3_sDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M3 10mgkg NORBNI+5mgkg U50', line_color='orange') #tiger color\n # vel_det(file='NORBNI_U50_Ai14_OPRK1_C1_M4_SDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M4 10mgkg NORBNI+5mkg U50', line_color='#ed8203') #apricot color\n\n # only_NORBNI = avg_df.loc[:,\n # [\n # 'NORBNI_U50_Ai14_OPRK1_C2_F1_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered.h5',\n # 'NORBNI_U50_Ai14_OPRK1_C2_F2_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered.h5',\n # 'NORBNI_U50_Ai14_OPRK1_C1_M3_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered.h5',\n # 'NORBNI_U50_Ai14_OPRK1_C1_M4_Top DownDLC_resnet50_BigBinTopSep17shuffle1_250000filtered.h5'\n # ]]\n # avg_df['Avg Vel NORBNI'] = only_NORBNI.mean(axis=1)\n # avg_df['Avg Vel NORBNI SEM'] = stats.sem(only_NORBNI, axis=1)\n # plt.plot(avg_df['Time'], avg_df['Avg Vel NORBNI'], color='blue', linewidth=1,\n # label='Average Velocity 10mgkg NORBNI +5mgkg U50')\n #\n \"\"\"NORBNI Saline\"\"\"\n # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C2_F1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='F1 10mgkg NORBNI+Saline', line_color='purple')\n # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C2_F2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='F2 10mgkg NORBNI+Saline', line_color='purple')\n # vel_det(file='NORBNI_U50_Ai14_OPRK1_C2_F0_sDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='F0 10mgkg NORBNI+Saline', line_color='violet')\n #\n # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C1_M1_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M1 10mgkg NORBNI+Saline', line_color='blueviolet')\n # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C1_M2_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M2 10mgkg NORBNI+Saline', line_color='blueviolet')\n # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C1_M4_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M4 10mkg NORBNI+Saline', line_color='mediumorchid')\n # vel_det(file='NORBNI_Saline_Ai14_OPRK1_C1_M3_side viewDLC_resnet50_SideViewNov1shuffle1_180000.h5',\n # legend_label='M3 10mgkg NORBNI+Saline', line_color='purple')\n #\n # plt.fill_between(avg_df['Time'], avg_df[\"Avg Vel Saline\"]-avg_df[\"Avg Vel Saline SEM\"],\n # avg_df[\"Avg Vel Saline\"]+avg_df[\"Avg Vel Saline SEM\"], alpha=0.25, facecolor='black', edgecolor='black')\n # plt.fill_between(avg_df['Time'], avg_df[\"Avg Vel Naltr\"]-avg_df[\"Avg Vel Naltr SEM\"],\n # avg_df[\"Avg Vel Naltr\"]+avg_df[\"Avg Vel Naltr SEM\"], alpha=0.25, facecolor='red', edgecolor='red')\n # plt.fill_between(avg_df['Time'], avg_df[\"Avg Vel U50\"]-avg_df[\"Avg Vel U50 SEM\"],\n # avg_df[\"Avg Vel U50\"]+avg_df[\"Avg Vel U50 SEM\"], alpha=0.25, facecolor='orange', edgecolor='orange')\n # plt.fill_between(avg_df['Time'], avg_df[\"Avg Vel NORBNI\"]-avg_df[\"Avg Vel NORBNI SEM\"],\n # avg_df[\"Avg Vel NORBNI\"]+avg_df[\"Avg Vel NORBNI SEM\"], alpha=0.25, facecolor='blue', edgecolor='blue')\n # plt.plot()\n # leg = plt.legend()\n # font = {'family': 'Arial',\n # 'size': 12}\n # plt.rc('font', **font)\n # plt.rc('lines', linewidth = 1)\n # for i in leg.legendHandles:\n # i.set_linewidth(3)\n # plt.xlabel('time (minutes)', fontsize=12)\n # plt.ylabel('pixel', fontsize=12)\n # plt.title('F2 NORBNI, NORBNI+U50, Saline Head Inverted Y-coordinate')\n # plt.show()", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import sys import os import utils def run(name, dim_k, dump='dump', add_cmd=''): res = all_res[name] model = 'ATT_ts' if res.split('_')[1] == 'att' else 'LastItem' cmd = f'python main.py -model={model} -ds=v3 -restore_model={res} -k={dim_k} -show_detail -{dump} -nb_topk=2000 -nb_rare_k=1000 -msg={name} {add_cmd}' print(cmd) ret = os.system(cmd) if ret != 0: input('Error!!!!!!') all_res = dict( id_att_3='id_att_3', id_last='id_last', c_att_5='c_att_5', c_last='c_last', ) def main(): run('id_att_3', 1024, dump='dump') run('id_last', 1024, dump='dump') run('c_att_5', 256, dump='dump', add_cmd='-seq_length=5') run('c_last', 256, dump='dump') run('id_att_3', 1024, dump='dump_all', add_cmd='-skip_vali') run('id_last', 1024, dump='dump_all', add_cmd='-skip_vali') run('c_att_5', 256, dump='dump_all', add_cmd='-skip_vali -seq_length=5') run('c_last', 256, dump='dump_all', add_cmd='-skip_vali') if __name__ == '__main__': main()
normal
{ "blob_id": "548a236c4c485091d312593dcb0fa331ff98f1a8", "index": 6359, "step-1": "<mask token>\n\n\ndef run(name, dim_k, dump='dump', add_cmd=''):\n res = all_res[name]\n model = 'ATT_ts' if res.split('_')[1] == 'att' else 'LastItem'\n cmd = (\n f'python main.py -model={model} -ds=v3 -restore_model={res} -k={dim_k} -show_detail -{dump} -nb_topk=2000 -nb_rare_k=1000 -msg={name} {add_cmd}'\n )\n print(cmd)\n ret = os.system(cmd)\n if ret != 0:\n input('Error!!!!!!')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef run(name, dim_k, dump='dump', add_cmd=''):\n res = all_res[name]\n model = 'ATT_ts' if res.split('_')[1] == 'att' else 'LastItem'\n cmd = (\n f'python main.py -model={model} -ds=v3 -restore_model={res} -k={dim_k} -show_detail -{dump} -nb_topk=2000 -nb_rare_k=1000 -msg={name} {add_cmd}'\n )\n print(cmd)\n ret = os.system(cmd)\n if ret != 0:\n input('Error!!!!!!')\n\n\n<mask token>\n\n\ndef main():\n run('id_att_3', 1024, dump='dump')\n run('id_last', 1024, dump='dump')\n run('c_att_5', 256, dump='dump', add_cmd='-seq_length=5')\n run('c_last', 256, dump='dump')\n run('id_att_3', 1024, dump='dump_all', add_cmd='-skip_vali')\n run('id_last', 1024, dump='dump_all', add_cmd='-skip_vali')\n run('c_att_5', 256, dump='dump_all', add_cmd='-skip_vali -seq_length=5')\n run('c_last', 256, dump='dump_all', add_cmd='-skip_vali')\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\n\n\ndef run(name, dim_k, dump='dump', add_cmd=''):\n res = all_res[name]\n model = 'ATT_ts' if res.split('_')[1] == 'att' else 'LastItem'\n cmd = (\n f'python main.py -model={model} -ds=v3 -restore_model={res} -k={dim_k} -show_detail -{dump} -nb_topk=2000 -nb_rare_k=1000 -msg={name} {add_cmd}'\n )\n print(cmd)\n ret = os.system(cmd)\n if ret != 0:\n input('Error!!!!!!')\n\n\nall_res = dict(id_att_3='id_att_3', id_last='id_last', c_att_5='c_att_5',\n c_last='c_last')\n\n\ndef main():\n run('id_att_3', 1024, dump='dump')\n run('id_last', 1024, dump='dump')\n run('c_att_5', 256, dump='dump', add_cmd='-seq_length=5')\n run('c_last', 256, dump='dump')\n run('id_att_3', 1024, dump='dump_all', add_cmd='-skip_vali')\n run('id_last', 1024, dump='dump_all', add_cmd='-skip_vali')\n run('c_att_5', 256, dump='dump_all', add_cmd='-skip_vali -seq_length=5')\n run('c_last', 256, dump='dump_all', add_cmd='-skip_vali')\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import sys\nimport os\nimport utils\n\n\ndef run(name, dim_k, dump='dump', add_cmd=''):\n res = all_res[name]\n model = 'ATT_ts' if res.split('_')[1] == 'att' else 'LastItem'\n cmd = (\n f'python main.py -model={model} -ds=v3 -restore_model={res} -k={dim_k} -show_detail -{dump} -nb_topk=2000 -nb_rare_k=1000 -msg={name} {add_cmd}'\n )\n print(cmd)\n ret = os.system(cmd)\n if ret != 0:\n input('Error!!!!!!')\n\n\nall_res = dict(id_att_3='id_att_3', id_last='id_last', c_att_5='c_att_5',\n c_last='c_last')\n\n\ndef main():\n run('id_att_3', 1024, dump='dump')\n run('id_last', 1024, dump='dump')\n run('c_att_5', 256, dump='dump', add_cmd='-seq_length=5')\n run('c_last', 256, dump='dump')\n run('id_att_3', 1024, dump='dump_all', add_cmd='-skip_vali')\n run('id_last', 1024, dump='dump_all', add_cmd='-skip_vali')\n run('c_att_5', 256, dump='dump_all', add_cmd='-skip_vali -seq_length=5')\n run('c_last', 256, dump='dump_all', add_cmd='-skip_vali')\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "import sys\nimport os\nimport utils\n\ndef run(name, dim_k, dump='dump', add_cmd=''):\n res = all_res[name]\n model = 'ATT_ts' if res.split('_')[1] == 'att' else 'LastItem'\n\n cmd = f'python main.py -model={model} -ds=v3 -restore_model={res} -k={dim_k} -show_detail -{dump} -nb_topk=2000 -nb_rare_k=1000 -msg={name} {add_cmd}'\n print(cmd)\n\n ret = os.system(cmd)\n if ret != 0:\n input('Error!!!!!!')\n\nall_res = dict(\n id_att_3='id_att_3',\n id_last='id_last',\n\n c_att_5='c_att_5',\n c_last='c_last',\n)\n\n\ndef main():\n run('id_att_3', 1024, dump='dump')\n run('id_last', 1024, dump='dump')\n run('c_att_5', 256, dump='dump', add_cmd='-seq_length=5')\n run('c_last', 256, dump='dump')\n\n run('id_att_3', 1024, dump='dump_all', add_cmd='-skip_vali')\n run('id_last', 1024, dump='dump_all', add_cmd='-skip_vali')\n run('c_att_5', 256, dump='dump_all', add_cmd='-skip_vali -seq_length=5')\n run('c_last', 256, dump='dump_all', add_cmd='-skip_vali')\n\n\n\nif __name__ == '__main__':\n main()", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
# Generated by Django 3.0.5 on 2020-04-30 06:26 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('products_app', '0003_auto_20200429_0739'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('email', models.EmailField(max_length=254)), ], ), migrations.RemoveField( model_name='item', name='stock', ), migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('items', models.ManyToManyField(to='products_app.Item')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='products_app.User')), ], ), ]
normal
{ "blob_id": "cdc8c8aba384b7b1b5e741ffe4309eaee30aaada", "index": 5405, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('products_app', '0003_auto_20200429_0739')]\n operations = [migrations.CreateModel(name='User', fields=[('id', models\n .AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('name', models.CharField(max_length=100)), (\n 'email', models.EmailField(max_length=254))]), migrations.\n RemoveField(model_name='item', name='stock'), migrations.\n CreateModel(name='Order', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('items', models.ManyToManyField(to='products_app.Item')),\n ('user', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, to='products_app.User'))])]\n", "step-4": "from django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n dependencies = [('products_app', '0003_auto_20200429_0739')]\n operations = [migrations.CreateModel(name='User', fields=[('id', models\n .AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('name', models.CharField(max_length=100)), (\n 'email', models.EmailField(max_length=254))]), migrations.\n RemoveField(model_name='item', name='stock'), migrations.\n CreateModel(name='Order', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('items', models.ManyToManyField(to='products_app.Item')),\n ('user', models.ForeignKey(on_delete=django.db.models.deletion.\n CASCADE, to='products_app.User'))])]\n", "step-5": "# Generated by Django 3.0.5 on 2020-04-30 06:26\n\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('products_app', '0003_auto_20200429_0739'),\n ]\n\n operations = [\n migrations.CreateModel(\n name='User',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('name', models.CharField(max_length=100)),\n ('email', models.EmailField(max_length=254)),\n ],\n ),\n migrations.RemoveField(\n model_name='item',\n name='stock',\n ),\n migrations.CreateModel(\n name='Order',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('items', models.ManyToManyField(to='products_app.Item')),\n ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='products_app.User')),\n ],\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from distutils.core import setup setup( name="zuknuft", version="0.1", author="riotbib", author_email="riotbib@github", scripts=["zukunft.py"], install_requires=[ 'bottle', ], )
normal
{ "blob_id": "638842cda666100ce197437cb354f66de77eb328", "index": 8065, "step-1": "<mask token>\n", "step-2": "<mask token>\nsetup(name='zuknuft', version='0.1', author='riotbib', author_email=\n 'riotbib@github', scripts=['zukunft.py'], install_requires=['bottle'])\n", "step-3": "from distutils.core import setup\nsetup(name='zuknuft', version='0.1', author='riotbib', author_email=\n 'riotbib@github', scripts=['zukunft.py'], install_requires=['bottle'])\n", "step-4": "from distutils.core import setup\n\nsetup(\n name=\"zuknuft\",\n version=\"0.1\",\n author=\"riotbib\",\n author_email=\"riotbib@github\",\n scripts=[\"zukunft.py\"],\n install_requires=[\n 'bottle',\n ],\n)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.uix.screenmanager import ScreenManager, Screen class Gerenciador(ScreenManager): pass class Menu(Screen): pass class Tarefas(Screen): def __init__(self, tarefas=[], **kwargs): super().__init__(**kwargs) for tarefa in tarefas: self.ids.box.add_widget(Tarefa(text=tarefa)) def addWidget(self): texto = self.ids.texto.text self.ids.box.add_widget(Tarefa(text=texto)) self.ids.texto.text = '' class Tarefa(BoxLayout): def __init__(self, text='', **kwargs): super().__init__(**kwargs) self.ids.label.text = text class Test(App): def build(self): return Gerenciador() Test().run()
normal
{ "blob_id": "66b42791325a53172d4514cdd16ccd58d4edb186", "index": 2409, "step-1": "<mask token>\n\n\nclass Tarefas(Screen):\n <mask token>\n <mask token>\n\n\nclass Tarefa(BoxLayout):\n\n def __init__(self, text='', **kwargs):\n super().__init__(**kwargs)\n self.ids.label.text = text\n\n\nclass Test(App):\n\n def build(self):\n return Gerenciador()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Menu(Screen):\n pass\n\n\nclass Tarefas(Screen):\n\n def __init__(self, tarefas=[], **kwargs):\n super().__init__(**kwargs)\n for tarefa in tarefas:\n self.ids.box.add_widget(Tarefa(text=tarefa))\n\n def addWidget(self):\n texto = self.ids.texto.text\n self.ids.box.add_widget(Tarefa(text=texto))\n self.ids.texto.text = ''\n\n\nclass Tarefa(BoxLayout):\n\n def __init__(self, text='', **kwargs):\n super().__init__(**kwargs)\n self.ids.label.text = text\n\n\nclass Test(App):\n\n def build(self):\n return Gerenciador()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Gerenciador(ScreenManager):\n pass\n\n\nclass Menu(Screen):\n pass\n\n\nclass Tarefas(Screen):\n\n def __init__(self, tarefas=[], **kwargs):\n super().__init__(**kwargs)\n for tarefa in tarefas:\n self.ids.box.add_widget(Tarefa(text=tarefa))\n\n def addWidget(self):\n texto = self.ids.texto.text\n self.ids.box.add_widget(Tarefa(text=texto))\n self.ids.texto.text = ''\n\n\nclass Tarefa(BoxLayout):\n\n def __init__(self, text='', **kwargs):\n super().__init__(**kwargs)\n self.ids.label.text = text\n\n\nclass Test(App):\n\n def build(self):\n return Gerenciador()\n\n\n<mask token>\n", "step-4": "from kivy.app import App\nfrom kivy.uix.boxlayout import BoxLayout\nfrom kivy.uix.screenmanager import ScreenManager, Screen\n\n\nclass Gerenciador(ScreenManager):\n pass\n\n\nclass Menu(Screen):\n pass\n\n\nclass Tarefas(Screen):\n\n def __init__(self, tarefas=[], **kwargs):\n super().__init__(**kwargs)\n for tarefa in tarefas:\n self.ids.box.add_widget(Tarefa(text=tarefa))\n\n def addWidget(self):\n texto = self.ids.texto.text\n self.ids.box.add_widget(Tarefa(text=texto))\n self.ids.texto.text = ''\n\n\nclass Tarefa(BoxLayout):\n\n def __init__(self, text='', **kwargs):\n super().__init__(**kwargs)\n self.ids.label.text = text\n\n\nclass Test(App):\n\n def build(self):\n return Gerenciador()\n\n\nTest().run()\n", "step-5": null, "step-ids": [ 5, 8, 9, 11 ] }
[ 5, 8, 9, 11 ]
import cv2 as cv img = cv.imread('images/gradient.png', 0) _,th1 = cv.threshold(img, 127,255, cv.THRESH_BINARY) _,th2 = cv.threshold(img, 127, 255, cv.THRESH_BINARY_INV) _,th3 = cv.threshold(img, 127, 255, cv.THRESH_TRUNC) #freeze the pixel color after the threshold _,th4 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO) #less to threshold will be zero _,th5 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO_INV) #if the value of the pixel is greater than threshold it will be zero cv.imshow("Threshold Trunc", th3) cv.imshow("Threshold2", th2) cv.imshow("Threshold", th1) cv.imshow("Image",img) cv.imshow("th4", th4) cv.imshow("th5", th5) cv.waitKey(0) cv.destroyAllWindows()
normal
{ "blob_id": "6f356840944e11f52a280262697d7e33b3cca650", "index": 2319, "step-1": "<mask token>\n", "step-2": "<mask token>\ncv.imshow('Threshold Trunc', th3)\ncv.imshow('Threshold2', th2)\ncv.imshow('Threshold', th1)\ncv.imshow('Image', img)\ncv.imshow('th4', th4)\ncv.imshow('th5', th5)\ncv.waitKey(0)\ncv.destroyAllWindows()\n", "step-3": "<mask token>\nimg = cv.imread('images/gradient.png', 0)\n_, th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)\n_, th2 = cv.threshold(img, 127, 255, cv.THRESH_BINARY_INV)\n_, th3 = cv.threshold(img, 127, 255, cv.THRESH_TRUNC)\n_, th4 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO)\n_, th5 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO_INV)\ncv.imshow('Threshold Trunc', th3)\ncv.imshow('Threshold2', th2)\ncv.imshow('Threshold', th1)\ncv.imshow('Image', img)\ncv.imshow('th4', th4)\ncv.imshow('th5', th5)\ncv.waitKey(0)\ncv.destroyAllWindows()\n", "step-4": "import cv2 as cv\nimg = cv.imread('images/gradient.png', 0)\n_, th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)\n_, th2 = cv.threshold(img, 127, 255, cv.THRESH_BINARY_INV)\n_, th3 = cv.threshold(img, 127, 255, cv.THRESH_TRUNC)\n_, th4 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO)\n_, th5 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO_INV)\ncv.imshow('Threshold Trunc', th3)\ncv.imshow('Threshold2', th2)\ncv.imshow('Threshold', th1)\ncv.imshow('Image', img)\ncv.imshow('th4', th4)\ncv.imshow('th5', th5)\ncv.waitKey(0)\ncv.destroyAllWindows()\n", "step-5": "import cv2 as cv\n\nimg = cv.imread('images/gradient.png', 0)\n_,th1 = cv.threshold(img, 127,255, cv.THRESH_BINARY)\n_,th2 = cv.threshold(img, 127, 255, cv.THRESH_BINARY_INV)\n_,th3 = cv.threshold(img, 127, 255, cv.THRESH_TRUNC) #freeze the pixel color after the threshold\n_,th4 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO) #less to threshold will be zero\n_,th5 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO_INV) #if the value of the pixel is greater than threshold it will be zero\n\ncv.imshow(\"Threshold Trunc\", th3)\ncv.imshow(\"Threshold2\", th2)\ncv.imshow(\"Threshold\", th1)\ncv.imshow(\"Image\",img)\ncv.imshow(\"th4\", th4)\ncv.imshow(\"th5\", th5)\n\ncv.waitKey(0)\ncv.destroyAllWindows()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import random import re from datetime import datetime, timedelta from threading import Lock from telegram.ext import run_async from src.models.user import UserDB from src.models.user_stat import UserStat from src.utils.cache import cache, USER_CACHE_EXPIRE from src.utils.logger_helpers import get_logger logger = get_logger(__name__) class PidorWeekly: lock = Lock() re_words = re.compile( r"\b(ге[йяи]|геев|анал|аналы|аналь\S+|анус|очко|жоп[ау]|жопой|поп[ау]|попой|попк[ау]|попкой|говн[оа]|говном|пенис\S*|член\S*|пизд\S+|гомос\S+|гомик\S*|\S+сексуал\S*|климов\S*|педерас\S+|пидор\S*|пидар\S*|педик\S+|подвор\S+|iphone\S*|айфон\S*|samsung|самсунг\S*|смузи|барбер\S*|рокет\S*|хипстер\S*|лгбт\S*|бабочк\S+|м[ао]к[ао]син\S*|ахтунг\S*|толерант\S+|политкорр?ект\S+|стрижк\S+|бород\S+|аниме\S*|саратов\S*|фемк\S+|\S+изм\S*|dtf|дтф|в[еэ]йп\S*|гироскутер\S*|мизог\S+|козел|козл\S+|муда[кч]\S*|сволоч\S+|ресторан\S*|кача[лт]\S+|мыло|читер\S*|читы?|культур\S+|сра[тл]\S+|насра[тл]\S+|гад\S*|блогг?ер\S*)\b", re.IGNORECASE) re_inside = re.compile(r"п[еи]д[оа]р\S*", re.IGNORECASE) @classmethod def get_top_pidor(cls, cid, date=None): monday = cls.__get_current_monday() if date is None else cls.__get_date_monday(date) db = cls.__get_db(monday, cid) stats = UserStat.get_chat_stats(cid, date) # подсчитаем всех по отношению пидор-слов к общему количеству слов этого участника pidor_by_count = {} for user_stat, user in stats: count = user_stat.all_messages_count # учитываем только тек, кто написал от 30 сообщений if count < 30 or user_stat.words_count < 500: continue if user.uid not in db: continue pidor_by_count[user.uid] = db[user.uid] / count if len(pidor_by_count) > 0: uid, _ = cls.__sort_dict(pidor_by_count)[0] elif len(stats) == 0: return None else: _, user = random.choice(stats) uid = user.uid return uid @classmethod @run_async def parse_message(cls, message): msg = message.text if msg is None: return uid = message.from_user.id cid = message.chat_id entities = message.parse_entities() if not cls.__has_pidor(msg): return cls.__add(uid, cid) if message.reply_to_message is not None: to_uid = message.reply_to_message.from_user.id cls.__add(to_uid, cid, replay=True) for entity, entity_text in entities.items(): if entity.type == 'mention': username = entity_text.lstrip('@').strip() try: mentioned_user_uid = UserDB.get_uid_by_username(username) if mentioned_user_uid: cls.__add(mentioned_user_uid, cid, replay=True) except Exception: pass continue if entity.type == 'text_mention': cls.__add(entity.user.id, cid, replay=True) continue @classmethod def __has_pidor(cls, msg): msg_lower = msg.lower().replace('ё', 'е') if cls.re_words.search(msg_lower): return True if cls.re_inside.search(msg_lower): return True return False @classmethod def __add(cls, uid, cid, date=None, replay=False): monday = cls.__get_current_monday() if date is None else cls.__get_date_monday(date) logger.debug(f'lock {cid}:{uid}') with cls.lock: db = cls.__get_db(monday, cid) value = 1 if replay is True: value = 0.4 if uid in db: db[uid] += value else: db[uid] = value cls.__set_db(db, monday, cid) @staticmethod def __sort_dict(d): return sorted(d.items(), key=lambda x: x[1], reverse=True) @staticmethod def __get_cache_key(monday, cid): return f'pidorweekly:{monday.strftime("%Y%m%d")}:{cid}' @staticmethod def __get_date_monday(date): monday = date - timedelta(days=date.weekday()) return monday.replace(hour=0, minute=0, second=0, microsecond=0) @classmethod def __get_current_monday(cls): return cls.__get_date_monday(datetime.today()) @classmethod def __get_db(cls, monday, cid): cached = cache.get(cls.__get_cache_key(monday, cid)) if cached: return cached return {} @classmethod def __set_db(cls, newdb, monday, cid): cache.set(cls.__get_cache_key(monday, cid), newdb, time=USER_CACHE_EXPIRE)
normal
{ "blob_id": "109ca06685eece74034f77a98b1d7172a17aca21", "index": 7469, "step-1": "<mask token>\n\n\nclass PidorWeekly:\n <mask token>\n <mask token>\n <mask token>\n\n @classmethod\n def get_top_pidor(cls, cid, date=None):\n monday = cls.__get_current_monday(\n ) if date is None else cls.__get_date_monday(date)\n db = cls.__get_db(monday, cid)\n stats = UserStat.get_chat_stats(cid, date)\n pidor_by_count = {}\n for user_stat, user in stats:\n count = user_stat.all_messages_count\n if count < 30 or user_stat.words_count < 500:\n continue\n if user.uid not in db:\n continue\n pidor_by_count[user.uid] = db[user.uid] / count\n if len(pidor_by_count) > 0:\n uid, _ = cls.__sort_dict(pidor_by_count)[0]\n elif len(stats) == 0:\n return None\n else:\n _, user = random.choice(stats)\n uid = user.uid\n return uid\n\n @classmethod\n @run_async\n def parse_message(cls, message):\n msg = message.text\n if msg is None:\n return\n uid = message.from_user.id\n cid = message.chat_id\n entities = message.parse_entities()\n if not cls.__has_pidor(msg):\n return\n cls.__add(uid, cid)\n if message.reply_to_message is not None:\n to_uid = message.reply_to_message.from_user.id\n cls.__add(to_uid, cid, replay=True)\n for entity, entity_text in entities.items():\n if entity.type == 'mention':\n username = entity_text.lstrip('@').strip()\n try:\n mentioned_user_uid = UserDB.get_uid_by_username(username)\n if mentioned_user_uid:\n cls.__add(mentioned_user_uid, cid, replay=True)\n except Exception:\n pass\n continue\n if entity.type == 'text_mention':\n cls.__add(entity.user.id, cid, replay=True)\n continue\n <mask token>\n\n @classmethod\n def __add(cls, uid, cid, date=None, replay=False):\n monday = cls.__get_current_monday(\n ) if date is None else cls.__get_date_monday(date)\n logger.debug(f'lock {cid}:{uid}')\n with cls.lock:\n db = cls.__get_db(monday, cid)\n value = 1\n if replay is True:\n value = 0.4\n if uid in db:\n db[uid] += value\n else:\n db[uid] = value\n cls.__set_db(db, monday, cid)\n\n @staticmethod\n def __sort_dict(d):\n return sorted(d.items(), key=lambda x: x[1], reverse=True)\n\n @staticmethod\n def __get_cache_key(monday, cid):\n return f\"pidorweekly:{monday.strftime('%Y%m%d')}:{cid}\"\n\n @staticmethod\n def __get_date_monday(date):\n monday = date - timedelta(days=date.weekday())\n return monday.replace(hour=0, minute=0, second=0, microsecond=0)\n\n @classmethod\n def __get_current_monday(cls):\n return cls.__get_date_monday(datetime.today())\n <mask token>\n\n @classmethod\n def __set_db(cls, newdb, monday, cid):\n cache.set(cls.__get_cache_key(monday, cid), newdb, time=\n USER_CACHE_EXPIRE)\n", "step-2": "<mask token>\n\n\nclass PidorWeekly:\n lock = Lock()\n re_words = re.compile(\n '\\\\b(ге[йяи]|геев|анал|аналы|аналь\\\\S+|анус|очко|жоп[ау]|жопой|поп[ау]|попой|попк[ау]|попкой|говн[оа]|говном|пенис\\\\S*|член\\\\S*|пизд\\\\S+|гомос\\\\S+|гомик\\\\S*|\\\\S+сексуал\\\\S*|климов\\\\S*|педерас\\\\S+|пидор\\\\S*|пидар\\\\S*|педик\\\\S+|подвор\\\\S+|iphone\\\\S*|айфон\\\\S*|samsung|самсунг\\\\S*|смузи|барбер\\\\S*|рокет\\\\S*|хипстер\\\\S*|лгбт\\\\S*|бабочк\\\\S+|м[ао]к[ао]син\\\\S*|ахтунг\\\\S*|толерант\\\\S+|политкорр?ект\\\\S+|стрижк\\\\S+|бород\\\\S+|аниме\\\\S*|саратов\\\\S*|фемк\\\\S+|\\\\S+изм\\\\S*|dtf|дтф|в[еэ]йп\\\\S*|гироскутер\\\\S*|мизог\\\\S+|козел|козл\\\\S+|муда[кч]\\\\S*|сволоч\\\\S+|ресторан\\\\S*|кача[лт]\\\\S+|мыло|читер\\\\S*|читы?|культур\\\\S+|сра[тл]\\\\S+|насра[тл]\\\\S+|гад\\\\S*|блогг?ер\\\\S*)\\\\b'\n , re.IGNORECASE)\n re_inside = re.compile('п[еи]д[оа]р\\\\S*', re.IGNORECASE)\n\n @classmethod\n def get_top_pidor(cls, cid, date=None):\n monday = cls.__get_current_monday(\n ) if date is None else cls.__get_date_monday(date)\n db = cls.__get_db(monday, cid)\n stats = UserStat.get_chat_stats(cid, date)\n pidor_by_count = {}\n for user_stat, user in stats:\n count = user_stat.all_messages_count\n if count < 30 or user_stat.words_count < 500:\n continue\n if user.uid not in db:\n continue\n pidor_by_count[user.uid] = db[user.uid] / count\n if len(pidor_by_count) > 0:\n uid, _ = cls.__sort_dict(pidor_by_count)[0]\n elif len(stats) == 0:\n return None\n else:\n _, user = random.choice(stats)\n uid = user.uid\n return uid\n\n @classmethod\n @run_async\n def parse_message(cls, message):\n msg = message.text\n if msg is None:\n return\n uid = message.from_user.id\n cid = message.chat_id\n entities = message.parse_entities()\n if not cls.__has_pidor(msg):\n return\n cls.__add(uid, cid)\n if message.reply_to_message is not None:\n to_uid = message.reply_to_message.from_user.id\n cls.__add(to_uid, cid, replay=True)\n for entity, entity_text in entities.items():\n if entity.type == 'mention':\n username = entity_text.lstrip('@').strip()\n try:\n mentioned_user_uid = UserDB.get_uid_by_username(username)\n if mentioned_user_uid:\n cls.__add(mentioned_user_uid, cid, replay=True)\n except Exception:\n pass\n continue\n if entity.type == 'text_mention':\n cls.__add(entity.user.id, cid, replay=True)\n continue\n\n @classmethod\n def __has_pidor(cls, msg):\n msg_lower = msg.lower().replace('ё', 'е')\n if cls.re_words.search(msg_lower):\n return True\n if cls.re_inside.search(msg_lower):\n return True\n return False\n\n @classmethod\n def __add(cls, uid, cid, date=None, replay=False):\n monday = cls.__get_current_monday(\n ) if date is None else cls.__get_date_monday(date)\n logger.debug(f'lock {cid}:{uid}')\n with cls.lock:\n db = cls.__get_db(monday, cid)\n value = 1\n if replay is True:\n value = 0.4\n if uid in db:\n db[uid] += value\n else:\n db[uid] = value\n cls.__set_db(db, monday, cid)\n\n @staticmethod\n def __sort_dict(d):\n return sorted(d.items(), key=lambda x: x[1], reverse=True)\n\n @staticmethod\n def __get_cache_key(monday, cid):\n return f\"pidorweekly:{monday.strftime('%Y%m%d')}:{cid}\"\n\n @staticmethod\n def __get_date_monday(date):\n monday = date - timedelta(days=date.weekday())\n return monday.replace(hour=0, minute=0, second=0, microsecond=0)\n\n @classmethod\n def __get_current_monday(cls):\n return cls.__get_date_monday(datetime.today())\n\n @classmethod\n def __get_db(cls, monday, cid):\n cached = cache.get(cls.__get_cache_key(monday, cid))\n if cached:\n return cached\n return {}\n\n @classmethod\n def __set_db(cls, newdb, monday, cid):\n cache.set(cls.__get_cache_key(monday, cid), newdb, time=\n USER_CACHE_EXPIRE)\n", "step-3": "<mask token>\nlogger = get_logger(__name__)\n\n\nclass PidorWeekly:\n lock = Lock()\n re_words = re.compile(\n '\\\\b(ге[йяи]|геев|анал|аналы|аналь\\\\S+|анус|очко|жоп[ау]|жопой|поп[ау]|попой|попк[ау]|попкой|говн[оа]|говном|пенис\\\\S*|член\\\\S*|пизд\\\\S+|гомос\\\\S+|гомик\\\\S*|\\\\S+сексуал\\\\S*|климов\\\\S*|педерас\\\\S+|пидор\\\\S*|пидар\\\\S*|педик\\\\S+|подвор\\\\S+|iphone\\\\S*|айфон\\\\S*|samsung|самсунг\\\\S*|смузи|барбер\\\\S*|рокет\\\\S*|хипстер\\\\S*|лгбт\\\\S*|бабочк\\\\S+|м[ао]к[ао]син\\\\S*|ахтунг\\\\S*|толерант\\\\S+|политкорр?ект\\\\S+|стрижк\\\\S+|бород\\\\S+|аниме\\\\S*|саратов\\\\S*|фемк\\\\S+|\\\\S+изм\\\\S*|dtf|дтф|в[еэ]йп\\\\S*|гироскутер\\\\S*|мизог\\\\S+|козел|козл\\\\S+|муда[кч]\\\\S*|сволоч\\\\S+|ресторан\\\\S*|кача[лт]\\\\S+|мыло|читер\\\\S*|читы?|культур\\\\S+|сра[тл]\\\\S+|насра[тл]\\\\S+|гад\\\\S*|блогг?ер\\\\S*)\\\\b'\n , re.IGNORECASE)\n re_inside = re.compile('п[еи]д[оа]р\\\\S*', re.IGNORECASE)\n\n @classmethod\n def get_top_pidor(cls, cid, date=None):\n monday = cls.__get_current_monday(\n ) if date is None else cls.__get_date_monday(date)\n db = cls.__get_db(monday, cid)\n stats = UserStat.get_chat_stats(cid, date)\n pidor_by_count = {}\n for user_stat, user in stats:\n count = user_stat.all_messages_count\n if count < 30 or user_stat.words_count < 500:\n continue\n if user.uid not in db:\n continue\n pidor_by_count[user.uid] = db[user.uid] / count\n if len(pidor_by_count) > 0:\n uid, _ = cls.__sort_dict(pidor_by_count)[0]\n elif len(stats) == 0:\n return None\n else:\n _, user = random.choice(stats)\n uid = user.uid\n return uid\n\n @classmethod\n @run_async\n def parse_message(cls, message):\n msg = message.text\n if msg is None:\n return\n uid = message.from_user.id\n cid = message.chat_id\n entities = message.parse_entities()\n if not cls.__has_pidor(msg):\n return\n cls.__add(uid, cid)\n if message.reply_to_message is not None:\n to_uid = message.reply_to_message.from_user.id\n cls.__add(to_uid, cid, replay=True)\n for entity, entity_text in entities.items():\n if entity.type == 'mention':\n username = entity_text.lstrip('@').strip()\n try:\n mentioned_user_uid = UserDB.get_uid_by_username(username)\n if mentioned_user_uid:\n cls.__add(mentioned_user_uid, cid, replay=True)\n except Exception:\n pass\n continue\n if entity.type == 'text_mention':\n cls.__add(entity.user.id, cid, replay=True)\n continue\n\n @classmethod\n def __has_pidor(cls, msg):\n msg_lower = msg.lower().replace('ё', 'е')\n if cls.re_words.search(msg_lower):\n return True\n if cls.re_inside.search(msg_lower):\n return True\n return False\n\n @classmethod\n def __add(cls, uid, cid, date=None, replay=False):\n monday = cls.__get_current_monday(\n ) if date is None else cls.__get_date_monday(date)\n logger.debug(f'lock {cid}:{uid}')\n with cls.lock:\n db = cls.__get_db(monday, cid)\n value = 1\n if replay is True:\n value = 0.4\n if uid in db:\n db[uid] += value\n else:\n db[uid] = value\n cls.__set_db(db, monday, cid)\n\n @staticmethod\n def __sort_dict(d):\n return sorted(d.items(), key=lambda x: x[1], reverse=True)\n\n @staticmethod\n def __get_cache_key(monday, cid):\n return f\"pidorweekly:{monday.strftime('%Y%m%d')}:{cid}\"\n\n @staticmethod\n def __get_date_monday(date):\n monday = date - timedelta(days=date.weekday())\n return monday.replace(hour=0, minute=0, second=0, microsecond=0)\n\n @classmethod\n def __get_current_monday(cls):\n return cls.__get_date_monday(datetime.today())\n\n @classmethod\n def __get_db(cls, monday, cid):\n cached = cache.get(cls.__get_cache_key(monday, cid))\n if cached:\n return cached\n return {}\n\n @classmethod\n def __set_db(cls, newdb, monday, cid):\n cache.set(cls.__get_cache_key(monday, cid), newdb, time=\n USER_CACHE_EXPIRE)\n", "step-4": "import random\nimport re\nfrom datetime import datetime, timedelta\nfrom threading import Lock\nfrom telegram.ext import run_async\nfrom src.models.user import UserDB\nfrom src.models.user_stat import UserStat\nfrom src.utils.cache import cache, USER_CACHE_EXPIRE\nfrom src.utils.logger_helpers import get_logger\nlogger = get_logger(__name__)\n\n\nclass PidorWeekly:\n lock = Lock()\n re_words = re.compile(\n '\\\\b(ге[йяи]|геев|анал|аналы|аналь\\\\S+|анус|очко|жоп[ау]|жопой|поп[ау]|попой|попк[ау]|попкой|говн[оа]|говном|пенис\\\\S*|член\\\\S*|пизд\\\\S+|гомос\\\\S+|гомик\\\\S*|\\\\S+сексуал\\\\S*|климов\\\\S*|педерас\\\\S+|пидор\\\\S*|пидар\\\\S*|педик\\\\S+|подвор\\\\S+|iphone\\\\S*|айфон\\\\S*|samsung|самсунг\\\\S*|смузи|барбер\\\\S*|рокет\\\\S*|хипстер\\\\S*|лгбт\\\\S*|бабочк\\\\S+|м[ао]к[ао]син\\\\S*|ахтунг\\\\S*|толерант\\\\S+|политкорр?ект\\\\S+|стрижк\\\\S+|бород\\\\S+|аниме\\\\S*|саратов\\\\S*|фемк\\\\S+|\\\\S+изм\\\\S*|dtf|дтф|в[еэ]йп\\\\S*|гироскутер\\\\S*|мизог\\\\S+|козел|козл\\\\S+|муда[кч]\\\\S*|сволоч\\\\S+|ресторан\\\\S*|кача[лт]\\\\S+|мыло|читер\\\\S*|читы?|культур\\\\S+|сра[тл]\\\\S+|насра[тл]\\\\S+|гад\\\\S*|блогг?ер\\\\S*)\\\\b'\n , re.IGNORECASE)\n re_inside = re.compile('п[еи]д[оа]р\\\\S*', re.IGNORECASE)\n\n @classmethod\n def get_top_pidor(cls, cid, date=None):\n monday = cls.__get_current_monday(\n ) if date is None else cls.__get_date_monday(date)\n db = cls.__get_db(monday, cid)\n stats = UserStat.get_chat_stats(cid, date)\n pidor_by_count = {}\n for user_stat, user in stats:\n count = user_stat.all_messages_count\n if count < 30 or user_stat.words_count < 500:\n continue\n if user.uid not in db:\n continue\n pidor_by_count[user.uid] = db[user.uid] / count\n if len(pidor_by_count) > 0:\n uid, _ = cls.__sort_dict(pidor_by_count)[0]\n elif len(stats) == 0:\n return None\n else:\n _, user = random.choice(stats)\n uid = user.uid\n return uid\n\n @classmethod\n @run_async\n def parse_message(cls, message):\n msg = message.text\n if msg is None:\n return\n uid = message.from_user.id\n cid = message.chat_id\n entities = message.parse_entities()\n if not cls.__has_pidor(msg):\n return\n cls.__add(uid, cid)\n if message.reply_to_message is not None:\n to_uid = message.reply_to_message.from_user.id\n cls.__add(to_uid, cid, replay=True)\n for entity, entity_text in entities.items():\n if entity.type == 'mention':\n username = entity_text.lstrip('@').strip()\n try:\n mentioned_user_uid = UserDB.get_uid_by_username(username)\n if mentioned_user_uid:\n cls.__add(mentioned_user_uid, cid, replay=True)\n except Exception:\n pass\n continue\n if entity.type == 'text_mention':\n cls.__add(entity.user.id, cid, replay=True)\n continue\n\n @classmethod\n def __has_pidor(cls, msg):\n msg_lower = msg.lower().replace('ё', 'е')\n if cls.re_words.search(msg_lower):\n return True\n if cls.re_inside.search(msg_lower):\n return True\n return False\n\n @classmethod\n def __add(cls, uid, cid, date=None, replay=False):\n monday = cls.__get_current_monday(\n ) if date is None else cls.__get_date_monday(date)\n logger.debug(f'lock {cid}:{uid}')\n with cls.lock:\n db = cls.__get_db(monday, cid)\n value = 1\n if replay is True:\n value = 0.4\n if uid in db:\n db[uid] += value\n else:\n db[uid] = value\n cls.__set_db(db, monday, cid)\n\n @staticmethod\n def __sort_dict(d):\n return sorted(d.items(), key=lambda x: x[1], reverse=True)\n\n @staticmethod\n def __get_cache_key(monday, cid):\n return f\"pidorweekly:{monday.strftime('%Y%m%d')}:{cid}\"\n\n @staticmethod\n def __get_date_monday(date):\n monday = date - timedelta(days=date.weekday())\n return monday.replace(hour=0, minute=0, second=0, microsecond=0)\n\n @classmethod\n def __get_current_monday(cls):\n return cls.__get_date_monday(datetime.today())\n\n @classmethod\n def __get_db(cls, monday, cid):\n cached = cache.get(cls.__get_cache_key(monday, cid))\n if cached:\n return cached\n return {}\n\n @classmethod\n def __set_db(cls, newdb, monday, cid):\n cache.set(cls.__get_cache_key(monday, cid), newdb, time=\n USER_CACHE_EXPIRE)\n", "step-5": "import random\nimport re\nfrom datetime import datetime, timedelta\nfrom threading import Lock\n\nfrom telegram.ext import run_async\n\nfrom src.models.user import UserDB\nfrom src.models.user_stat import UserStat\nfrom src.utils.cache import cache, USER_CACHE_EXPIRE\nfrom src.utils.logger_helpers import get_logger\n\nlogger = get_logger(__name__)\n\n\nclass PidorWeekly:\n lock = Lock()\n re_words = re.compile(\n r\"\\b(ге[йяи]|геев|анал|аналы|аналь\\S+|анус|очко|жоп[ау]|жопой|поп[ау]|попой|попк[ау]|попкой|говн[оа]|говном|пенис\\S*|член\\S*|пизд\\S+|гомос\\S+|гомик\\S*|\\S+сексуал\\S*|климов\\S*|педерас\\S+|пидор\\S*|пидар\\S*|педик\\S+|подвор\\S+|iphone\\S*|айфон\\S*|samsung|самсунг\\S*|смузи|барбер\\S*|рокет\\S*|хипстер\\S*|лгбт\\S*|бабочк\\S+|м[ао]к[ао]син\\S*|ахтунг\\S*|толерант\\S+|политкорр?ект\\S+|стрижк\\S+|бород\\S+|аниме\\S*|саратов\\S*|фемк\\S+|\\S+изм\\S*|dtf|дтф|в[еэ]йп\\S*|гироскутер\\S*|мизог\\S+|козел|козл\\S+|муда[кч]\\S*|сволоч\\S+|ресторан\\S*|кача[лт]\\S+|мыло|читер\\S*|читы?|культур\\S+|сра[тл]\\S+|насра[тл]\\S+|гад\\S*|блогг?ер\\S*)\\b\",\n re.IGNORECASE)\n re_inside = re.compile(r\"п[еи]д[оа]р\\S*\", re.IGNORECASE)\n\n @classmethod\n def get_top_pidor(cls, cid, date=None):\n monday = cls.__get_current_monday() if date is None else cls.__get_date_monday(date)\n db = cls.__get_db(monday, cid)\n stats = UserStat.get_chat_stats(cid, date)\n\n # подсчитаем всех по отношению пидор-слов к общему количеству слов этого участника\n pidor_by_count = {}\n for user_stat, user in stats:\n count = user_stat.all_messages_count\n # учитываем только тек, кто написал от 30 сообщений\n if count < 30 or user_stat.words_count < 500:\n continue\n if user.uid not in db:\n continue\n pidor_by_count[user.uid] = db[user.uid] / count\n\n if len(pidor_by_count) > 0:\n uid, _ = cls.__sort_dict(pidor_by_count)[0]\n elif len(stats) == 0:\n return None\n else:\n _, user = random.choice(stats)\n uid = user.uid\n return uid\n\n @classmethod\n @run_async\n def parse_message(cls, message):\n msg = message.text\n if msg is None:\n return\n uid = message.from_user.id\n cid = message.chat_id\n entities = message.parse_entities()\n\n if not cls.__has_pidor(msg):\n return\n cls.__add(uid, cid)\n\n if message.reply_to_message is not None:\n to_uid = message.reply_to_message.from_user.id\n cls.__add(to_uid, cid, replay=True)\n\n for entity, entity_text in entities.items():\n if entity.type == 'mention':\n username = entity_text.lstrip('@').strip()\n try:\n mentioned_user_uid = UserDB.get_uid_by_username(username)\n if mentioned_user_uid:\n cls.__add(mentioned_user_uid, cid, replay=True)\n except Exception:\n pass\n continue\n if entity.type == 'text_mention':\n cls.__add(entity.user.id, cid, replay=True)\n continue\n\n @classmethod\n def __has_pidor(cls, msg):\n msg_lower = msg.lower().replace('ё', 'е')\n if cls.re_words.search(msg_lower):\n return True\n if cls.re_inside.search(msg_lower):\n return True\n return False\n\n @classmethod\n def __add(cls, uid, cid, date=None, replay=False):\n monday = cls.__get_current_monday() if date is None else cls.__get_date_monday(date)\n logger.debug(f'lock {cid}:{uid}')\n with cls.lock:\n db = cls.__get_db(monday, cid)\n value = 1\n if replay is True:\n value = 0.4\n\n if uid in db:\n db[uid] += value\n else:\n db[uid] = value\n\n cls.__set_db(db, monday, cid)\n\n @staticmethod\n def __sort_dict(d):\n return sorted(d.items(), key=lambda x: x[1], reverse=True)\n\n @staticmethod\n def __get_cache_key(monday, cid):\n return f'pidorweekly:{monday.strftime(\"%Y%m%d\")}:{cid}'\n\n @staticmethod\n def __get_date_monday(date):\n monday = date - timedelta(days=date.weekday())\n return monday.replace(hour=0, minute=0, second=0, microsecond=0)\n\n @classmethod\n def __get_current_monday(cls):\n return cls.__get_date_monday(datetime.today())\n\n @classmethod\n def __get_db(cls, monday, cid):\n cached = cache.get(cls.__get_cache_key(monday, cid))\n if cached:\n return cached\n return {}\n\n @classmethod\n def __set_db(cls, newdb, monday, cid):\n cache.set(cls.__get_cache_key(monday, cid), newdb, time=USER_CACHE_EXPIRE)\n", "step-ids": [ 9, 12, 13, 14, 15 ] }
[ 9, 12, 13, 14, 15 ]
print ("Hello"*5)
normal
{ "blob_id": "9ae7b6d081529a5c70b7362c852647b3638e7e98", "index": 8105, "step-1": "<mask token>\n", "step-2": "print('Hello' * 5)\n", "step-3": "print (\"Hello\"*5)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from twisted.internet import reactor from scrapy.crawler import Crawler from scrapy.settings import CrawlerSettings from scrapy import log, signals from spiders.songspk_spider import SongsPKSpider from scrapy.xlib.pydispatch import dispatcher def stop_reactor(): reactor.stop() dispatcher.connect(stop_reactor, signal=signals.spider_closed) spider = SongsPKSpider(domain='aqaq.com') crawler = Crawler(CrawlerSettings()) crawler.configure() crawler.crawl(spider) crawler.start() log.start(loglevel=log.DEBUG) log.msg("------------>Running reactor") result = reactor.run() print result log.msg("------------>Running stoped")
normal
{ "blob_id": "0d14534b210b13ede4a687e418d05d756d221950", "index": 3297, "step-1": "from twisted.internet import reactor\nfrom scrapy.crawler import Crawler\nfrom scrapy.settings import CrawlerSettings\nfrom scrapy import log, signals\nfrom spiders.songspk_spider import SongsPKSpider\nfrom scrapy.xlib.pydispatch import dispatcher\n\ndef stop_reactor():\n reactor.stop()\n\ndispatcher.connect(stop_reactor, signal=signals.spider_closed)\n\nspider = SongsPKSpider(domain='aqaq.com')\ncrawler = Crawler(CrawlerSettings())\ncrawler.configure()\ncrawler.crawl(spider)\ncrawler.start()\nlog.start(loglevel=log.DEBUG)\nlog.msg(\"------------>Running reactor\")\nresult = reactor.run()\nprint result\nlog.msg(\"------------>Running stoped\")\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import pandas as pd import numpy as np import sys #Best Mean Test if len(sys.argv) <= 3: print("Not enough args usage: anova.py <*.csv> <rv1,rv2> <target to beat>") print("ex: best-mean.py testdata.csv nicdrop 95000") print("<rv> is response variable") exit() target_to_beat = int(sys.argv[3]) #factors rv = sys.argv[2].split(',') data = pd.read_csv(sys.argv[1], header=[0,1]) response_var = data[[rv[0],'factors']] response_var.columns = response_var.columns.get_level_values(1) print("Re-run factor means") print(response_var.groupby('code')[rv[1]].mean()) print("Lowest observed sample mean (target to beat)") print(response_var.groupby('code')[rv[1]].mean().min()) #print factors still remaining as viable candidiate_factors_index = response_var.groupby('code')[rv[1]].mean().index.array.to_numpy() #all factors from csv improved_factors_bools = (response_var.groupby('code')[rv[1]].mean() < target_to_beat).to_numpy() #boolean series all = "" i=0 for y in candidiate_factors_index: if improved_factors_bools[i]: all = all + y + "," i=i+1 print("Effects") if len(all) == 0: print("NONE") exit() print(all.rstrip(','))
normal
{ "blob_id": "b9e78629fe094d933fdc0ffa2f9d9d1880e78c12", "index": 9078, "step-1": "<mask token>\n", "step-2": "<mask token>\nif len(sys.argv) <= 3:\n print('Not enough args usage: anova.py <*.csv> <rv1,rv2> <target to beat>')\n print('ex: best-mean.py testdata.csv nicdrop 95000')\n print('<rv> is response variable')\n exit()\n<mask token>\nprint('Re-run factor means')\nprint(response_var.groupby('code')[rv[1]].mean())\nprint('Lowest observed sample mean (target to beat)')\nprint(response_var.groupby('code')[rv[1]].mean().min())\n<mask token>\nfor y in candidiate_factors_index:\n if improved_factors_bools[i]:\n all = all + y + ','\n i = i + 1\nprint('Effects')\nif len(all) == 0:\n print('NONE')\n exit()\nprint(all.rstrip(','))\n", "step-3": "<mask token>\nif len(sys.argv) <= 3:\n print('Not enough args usage: anova.py <*.csv> <rv1,rv2> <target to beat>')\n print('ex: best-mean.py testdata.csv nicdrop 95000')\n print('<rv> is response variable')\n exit()\ntarget_to_beat = int(sys.argv[3])\nrv = sys.argv[2].split(',')\ndata = pd.read_csv(sys.argv[1], header=[0, 1])\nresponse_var = data[[rv[0], 'factors']]\nresponse_var.columns = response_var.columns.get_level_values(1)\nprint('Re-run factor means')\nprint(response_var.groupby('code')[rv[1]].mean())\nprint('Lowest observed sample mean (target to beat)')\nprint(response_var.groupby('code')[rv[1]].mean().min())\ncandidiate_factors_index = response_var.groupby('code')[rv[1]].mean(\n ).index.array.to_numpy()\nimproved_factors_bools = (response_var.groupby('code')[rv[1]].mean() <\n target_to_beat).to_numpy()\nall = ''\ni = 0\nfor y in candidiate_factors_index:\n if improved_factors_bools[i]:\n all = all + y + ','\n i = i + 1\nprint('Effects')\nif len(all) == 0:\n print('NONE')\n exit()\nprint(all.rstrip(','))\n", "step-4": "import pandas as pd\nimport numpy as np\nimport sys\nif len(sys.argv) <= 3:\n print('Not enough args usage: anova.py <*.csv> <rv1,rv2> <target to beat>')\n print('ex: best-mean.py testdata.csv nicdrop 95000')\n print('<rv> is response variable')\n exit()\ntarget_to_beat = int(sys.argv[3])\nrv = sys.argv[2].split(',')\ndata = pd.read_csv(sys.argv[1], header=[0, 1])\nresponse_var = data[[rv[0], 'factors']]\nresponse_var.columns = response_var.columns.get_level_values(1)\nprint('Re-run factor means')\nprint(response_var.groupby('code')[rv[1]].mean())\nprint('Lowest observed sample mean (target to beat)')\nprint(response_var.groupby('code')[rv[1]].mean().min())\ncandidiate_factors_index = response_var.groupby('code')[rv[1]].mean(\n ).index.array.to_numpy()\nimproved_factors_bools = (response_var.groupby('code')[rv[1]].mean() <\n target_to_beat).to_numpy()\nall = ''\ni = 0\nfor y in candidiate_factors_index:\n if improved_factors_bools[i]:\n all = all + y + ','\n i = i + 1\nprint('Effects')\nif len(all) == 0:\n print('NONE')\n exit()\nprint(all.rstrip(','))\n", "step-5": "import pandas as pd\nimport numpy as np\nimport sys\n\n#Best Mean Test\nif len(sys.argv) <= 3:\n\tprint(\"Not enough args usage: anova.py <*.csv> <rv1,rv2> <target to beat>\")\n\tprint(\"ex: best-mean.py testdata.csv nicdrop 95000\")\n\tprint(\"<rv> is response variable\")\n\texit()\n\ntarget_to_beat = int(sys.argv[3]) #factors\nrv = sys.argv[2].split(',')\n\ndata = pd.read_csv(sys.argv[1], header=[0,1])\nresponse_var = data[[rv[0],'factors']]\nresponse_var.columns = response_var.columns.get_level_values(1)\n\nprint(\"Re-run factor means\")\nprint(response_var.groupby('code')[rv[1]].mean())\n\nprint(\"Lowest observed sample mean (target to beat)\")\nprint(response_var.groupby('code')[rv[1]].mean().min())\n\n#print factors still remaining as viable\ncandidiate_factors_index = response_var.groupby('code')[rv[1]].mean().index.array.to_numpy() #all factors from csv\nimproved_factors_bools = (response_var.groupby('code')[rv[1]].mean() < target_to_beat).to_numpy() #boolean series\nall = \"\"\ni=0\nfor y in candidiate_factors_index:\n\tif improved_factors_bools[i]:\n\t\tall = all + y + \",\"\n\ti=i+1\nprint(\"Effects\")\nif len(all) == 0:\n\tprint(\"NONE\")\n\texit()\nprint(all.rstrip(','))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from hops import constants class Cluster(object): """ Represents a Cluster in Cluster Analysis computed for a featuregroup or training dataset in the featurestore """ def __init__(self, cluster_json): """ Initialize the cluster object from JSON payload Args: :cluster_json: JSON data of the cluster """ self.datapoint_name = cluster_json[constants.REST_CONFIG. JSON_CLUSTERING_ANALYSIS_DATA_POINT_NAME] self.cluster = int(cluster_json[constants.REST_CONFIG. JSON_CLUSTERING_ANALYSIS_CLUSTER])
normal
{ "blob_id": "753c87a3d22aeca1001eb770831b846b175d873e", "index": 9139, "step-1": "<mask token>\n\n\nclass Cluster(object):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Cluster(object):\n <mask token>\n\n def __init__(self, cluster_json):\n \"\"\"\n Initialize the cluster object from JSON payload\n\n Args:\n :cluster_json: JSON data of the cluster\n \"\"\"\n self.datapoint_name = cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_DATA_POINT_NAME]\n self.cluster = int(cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_CLUSTER])\n", "step-3": "<mask token>\n\n\nclass Cluster(object):\n \"\"\"\n Represents a Cluster in Cluster Analysis computed for a featuregroup or training dataset in the featurestore\n \"\"\"\n\n def __init__(self, cluster_json):\n \"\"\"\n Initialize the cluster object from JSON payload\n\n Args:\n :cluster_json: JSON data of the cluster\n \"\"\"\n self.datapoint_name = cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_DATA_POINT_NAME]\n self.cluster = int(cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_CLUSTER])\n", "step-4": "from hops import constants\n\n\nclass Cluster(object):\n \"\"\"\n Represents a Cluster in Cluster Analysis computed for a featuregroup or training dataset in the featurestore\n \"\"\"\n\n def __init__(self, cluster_json):\n \"\"\"\n Initialize the cluster object from JSON payload\n\n Args:\n :cluster_json: JSON data of the cluster\n \"\"\"\n self.datapoint_name = cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_DATA_POINT_NAME]\n self.cluster = int(cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_CLUSTER])\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
def cubarea(l2,b2,h2): print("Area of cuboid =",2*(l2+b2+h2)) def cubperimeter(l2,b2,h2): print("Perimeter of cuboid =",4*(l2+b2+h2))
normal
{ "blob_id": "45a85ff765833fd62fc1670404d8994818788707", "index": 6873, "step-1": "<mask token>\n", "step-2": "def cubarea(l2, b2, h2):\n print('Area of cuboid =', 2 * (l2 + b2 + h2))\n\n\n<mask token>\n", "step-3": "def cubarea(l2, b2, h2):\n print('Area of cuboid =', 2 * (l2 + b2 + h2))\n\n\ndef cubperimeter(l2, b2, h2):\n print('Perimeter of cuboid =', 4 * (l2 + b2 + h2))\n", "step-4": "def cubarea(l2,b2,h2):\n print(\"Area of cuboid =\",2*(l2+b2+h2))\ndef cubperimeter(l2,b2,h2):\n print(\"Perimeter of cuboid =\",4*(l2+b2+h2)) \n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import math import random import pygame pygame.init() SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) clock = pygame.time.Clock() pygame.display.set_caption('space invaders') background = pygame.image.load('background.png') score = 0 previous_score = 0 score_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 32) textX = 10 testY = 10 # intro intro = True intro_text = "SpaceInvaders" intro_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 64) intro_font2 = pygame.font.Font('arcade_weknow/ARCADE.otf', 64) # PlayButton play_button = pygame.image.load('play-button.png') play_button_X = (SCREEN_WIDTH / 2) - play_button.get_width() play_button_Y = (SCREEN_HEIGHT / (4 / 3)) - play_button.get_height() # GameOver gameover = False gameover_text = "Game Over" replay_button = pygame.image.load('replay.png') # player player_image = pygame.image.load('spaceship.png') player_X = 370 player_Y = 480 player_movement = 0 # bullet bullet_image = pygame.image.load('hot.png') bullet_X = [] bullet_Y = [] bullet_movement = 0.7 bullet_fired = [] num_bullet = 1 for i in range(num_bullet): bullet_X.append(0) bullet_Y.append(player_Y) bullet_fired.append(False) # enemy enemy_image = pygame.image.load('ufo.png') enemy_X = [] enemy_Y = [] enemy_X_movement = [] enemy_Y_movement = 40 num_enemies = 2 # gamespeedincrement gamespeed = 0 gamespeed_increment = 0.05 for i in range(num_enemies): enemy_X.append(random.randint(0, 736)) enemy_Y.append(random.randint(50, 150)) enemy_X_movement.append(0.2) def player(x, y): screen.blit(player_image, (x, y)) def fire_bullet(x, y, n): global bullet_fired bullet_fired[n] = True screen.blit(bullet_image, (x + 16, y + 10)) def add_bullet(): global num_bullet num_bullet += 1 bullet_X.append(0) bullet_Y.append(player_Y) bullet_fired.append(False) def spawn_enemy(x, y): screen.blit(enemy_image, (x, y)) def add_enemy(): global num_enemies enemy_X.append(random.randint(0, 736)) enemy_Y.append(random.randint(50, 150)) enemy_X_movement.append(0.2) num_enemies += 1 def reset_enemy(index): enemy_X[index] = random.randint(0, 736) enemy_Y[index] = random.randint(50, 150) enemy_X_movement[index] = 0.2 def reset_bullet(n): global bullet_fired, bullet_Y bullet_fired[n] = False bullet_Y[n] = player_Y def isCollion(eX, eY, bX, bY): distance = math.sqrt(math.pow(eX - bX, 2) + (math.pow(eY - bY, 2))) if distance < 27: return True else: return False def show_score(): text = score_font.render("Score: " + str(score), True, (255, 255, 255)) screen.blit(text, (textX, testY)) def show_intro(): show_big_text(intro_text) show_play_button() def show_big_text(s): text = intro_font.render(s, True, (89, 203, 255)) text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2)) screen.blit(text, text_rect) text2 = intro_font2.render(s, True, (250, 50, 183)) text_rect2 = text.get_rect(center=((SCREEN_WIDTH / 2) + 3, (SCREEN_HEIGHT / 2) + 3)) screen.blit(text2, text_rect2) def show_play_button(): screen.blit(play_button, (play_button_X, play_button_Y)) def show_replay_button(): screen.blit(replay_button, (play_button_X, play_button_Y)) def play_button_clicked(): click = pygame.mouse.get_pressed() if click[0] == 1: pos = pygame.mouse.get_pos() if play_button_X < pos[0] < play_button_X + play_button.get_width(): if play_button_Y < pos[1] < play_button_Y + play_button.get_height(): return True return False def game_over_screen(): show_big_text(gameover_text) show_score() show_replay_button() def reset(): global num_enemies, enemy_X, enemy_Y, player_X, player_Y, score, bullet_fired, gamespeed, num_bullet, bullet_X, bullet_Y num_enemies = 2 enemy_X = [] enemy_Y = [] for i in range(num_enemies): enemy_X.append(random.randint(0, 736)) enemy_Y.append(random.randint(50, 150)) enemy_X_movement.append(2) player_X = 370 player_Y = 480 score = 0 bullet_fired = [] bullet_fired.append(False) gamespeed = 0 num_bullet = 1 bullet_X = [] bullet_X.append(0) bullet_Y = [] bullet_Y.append(player_Y) running = True while running: screen.fill((0, 0, 0)) screen.blit(background, (0, 0)) dt = clock.tick(60) while intro: show_intro() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() if play_button_clicked(): intro = False pygame.display.update() while gameover: game_over_screen() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() if play_button_clicked(): reset() gameover = False pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: player_movement = -0.2 - gamespeed if event.key == pygame.K_RIGHT: player_movement = 0.2 + gamespeed if event.key == pygame.K_SPACE: for i in range(num_bullet): if not bullet_fired[i]: bullet_X[i] = player_X fire_bullet(bullet_X[i], bullet_Y[i], i) break if event.type == pygame.KEYUP: if event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT: player_movement = 0 # playermovement player_X += player_movement * dt if player_X <= 1: player_X = 1 elif player_X >= 735: player_X = 735 # bulletmovement for i in range(num_bullet): if bullet_Y[i] <= 1: reset_bullet(i) if bullet_fired[i]: bullet_Y[i] -= bullet_movement * dt fire_bullet(bullet_X[i], bullet_Y[i], i) # enemy_movement for i in range(num_enemies): if enemy_Y[i] >= 440: gameover = True for j in range(num_bullet): if bullet_fired[j]: collision = isCollion(enemy_X[i], enemy_Y[i], bullet_X[j], bullet_Y[j]) if collision: reset_enemy(i) reset_bullet(j) score += 1 if score != 0 and previous_score != score: if score % 3 == 0: add_enemy() print("added enemy") if score % 10 == 0: gamespeed += gamespeed_increment print("increased gamespeed") if score % 20 == 0: add_bullet() print("added bullet") previous_score = score if enemy_X_movement[i] < 0: enemy_X[i] += (enemy_X_movement[i] - gamespeed) * dt else: enemy_X[i] += (enemy_X_movement[i] + gamespeed) * dt if enemy_X[i] <= 1: enemy_X[i] = 2 enemy_X_movement[i] = -enemy_X_movement[i] enemy_Y[i] += (enemy_Y_movement + gamespeed) elif enemy_X[i] >= 735: enemy_X[i] = 734 enemy_X_movement[i] = -enemy_X_movement[i] enemy_Y[i] += (enemy_Y_movement + gamespeed) spawn_enemy(enemy_X[i], enemy_Y[i]) player(player_X, player_Y) show_score() pygame.display.update()
normal
{ "blob_id": "f5dffa3c22bb35ed07cb5ca28f2ba02ea3c07dda", "index": 1083, "step-1": "<mask token>\n\n\ndef player(x, y):\n screen.blit(player_image, (x, y))\n\n\ndef fire_bullet(x, y, n):\n global bullet_fired\n bullet_fired[n] = True\n screen.blit(bullet_image, (x + 16, y + 10))\n\n\ndef add_bullet():\n global num_bullet\n num_bullet += 1\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n\ndef spawn_enemy(x, y):\n screen.blit(enemy_image, (x, y))\n\n\ndef add_enemy():\n global num_enemies\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n num_enemies += 1\n\n\ndef reset_enemy(index):\n enemy_X[index] = random.randint(0, 736)\n enemy_Y[index] = random.randint(50, 150)\n enemy_X_movement[index] = 0.2\n\n\ndef reset_bullet(n):\n global bullet_fired, bullet_Y\n bullet_fired[n] = False\n bullet_Y[n] = player_Y\n\n\ndef isCollion(eX, eY, bX, bY):\n distance = math.sqrt(math.pow(eX - bX, 2) + math.pow(eY - bY, 2))\n if distance < 27:\n return True\n else:\n return False\n\n\ndef show_score():\n text = score_font.render('Score: ' + str(score), True, (255, 255, 255))\n screen.blit(text, (textX, testY))\n\n\ndef show_intro():\n show_big_text(intro_text)\n show_play_button()\n\n\ndef show_big_text(s):\n text = intro_font.render(s, True, (89, 203, 255))\n text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2))\n screen.blit(text, text_rect)\n text2 = intro_font2.render(s, True, (250, 50, 183))\n text_rect2 = text.get_rect(center=(SCREEN_WIDTH / 2 + 3, SCREEN_HEIGHT /\n 2 + 3))\n screen.blit(text2, text_rect2)\n\n\ndef show_play_button():\n screen.blit(play_button, (play_button_X, play_button_Y))\n\n\ndef show_replay_button():\n screen.blit(replay_button, (play_button_X, play_button_Y))\n\n\ndef play_button_clicked():\n click = pygame.mouse.get_pressed()\n if click[0] == 1:\n pos = pygame.mouse.get_pos()\n if play_button_X < pos[0] < play_button_X + play_button.get_width():\n if play_button_Y < pos[1] < play_button_Y + play_button.get_height(\n ):\n return True\n return False\n\n\ndef game_over_screen():\n show_big_text(gameover_text)\n show_score()\n show_replay_button()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef player(x, y):\n screen.blit(player_image, (x, y))\n\n\ndef fire_bullet(x, y, n):\n global bullet_fired\n bullet_fired[n] = True\n screen.blit(bullet_image, (x + 16, y + 10))\n\n\ndef add_bullet():\n global num_bullet\n num_bullet += 1\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n\ndef spawn_enemy(x, y):\n screen.blit(enemy_image, (x, y))\n\n\ndef add_enemy():\n global num_enemies\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n num_enemies += 1\n\n\ndef reset_enemy(index):\n enemy_X[index] = random.randint(0, 736)\n enemy_Y[index] = random.randint(50, 150)\n enemy_X_movement[index] = 0.2\n\n\ndef reset_bullet(n):\n global bullet_fired, bullet_Y\n bullet_fired[n] = False\n bullet_Y[n] = player_Y\n\n\ndef isCollion(eX, eY, bX, bY):\n distance = math.sqrt(math.pow(eX - bX, 2) + math.pow(eY - bY, 2))\n if distance < 27:\n return True\n else:\n return False\n\n\ndef show_score():\n text = score_font.render('Score: ' + str(score), True, (255, 255, 255))\n screen.blit(text, (textX, testY))\n\n\ndef show_intro():\n show_big_text(intro_text)\n show_play_button()\n\n\ndef show_big_text(s):\n text = intro_font.render(s, True, (89, 203, 255))\n text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2))\n screen.blit(text, text_rect)\n text2 = intro_font2.render(s, True, (250, 50, 183))\n text_rect2 = text.get_rect(center=(SCREEN_WIDTH / 2 + 3, SCREEN_HEIGHT /\n 2 + 3))\n screen.blit(text2, text_rect2)\n\n\ndef show_play_button():\n screen.blit(play_button, (play_button_X, play_button_Y))\n\n\ndef show_replay_button():\n screen.blit(replay_button, (play_button_X, play_button_Y))\n\n\ndef play_button_clicked():\n click = pygame.mouse.get_pressed()\n if click[0] == 1:\n pos = pygame.mouse.get_pos()\n if play_button_X < pos[0] < play_button_X + play_button.get_width():\n if play_button_Y < pos[1] < play_button_Y + play_button.get_height(\n ):\n return True\n return False\n\n\ndef game_over_screen():\n show_big_text(gameover_text)\n show_score()\n show_replay_button()\n\n\ndef reset():\n global num_enemies, enemy_X, enemy_Y, player_X, player_Y, score, bullet_fired, gamespeed, num_bullet, bullet_X, bullet_Y\n num_enemies = 2\n enemy_X = []\n enemy_Y = []\n for i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(2)\n player_X = 370\n player_Y = 480\n score = 0\n bullet_fired = []\n bullet_fired.append(False)\n gamespeed = 0\n num_bullet = 1\n bullet_X = []\n bullet_X.append(0)\n bullet_Y = []\n bullet_Y.append(player_Y)\n\n\n<mask token>\n", "step-3": "<mask token>\npygame.init()\nSCREEN_WIDTH = 800\nSCREEN_HEIGHT = 600\nscreen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))\nclock = pygame.time.Clock()\npygame.display.set_caption('space invaders')\nbackground = pygame.image.load('background.png')\nscore = 0\nprevious_score = 0\nscore_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 32)\ntextX = 10\ntestY = 10\nintro = True\nintro_text = 'SpaceInvaders'\nintro_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\nintro_font2 = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\nplay_button = pygame.image.load('play-button.png')\nplay_button_X = SCREEN_WIDTH / 2 - play_button.get_width()\nplay_button_Y = SCREEN_HEIGHT / (4 / 3) - play_button.get_height()\ngameover = False\ngameover_text = 'Game Over'\nreplay_button = pygame.image.load('replay.png')\nplayer_image = pygame.image.load('spaceship.png')\nplayer_X = 370\nplayer_Y = 480\nplayer_movement = 0\nbullet_image = pygame.image.load('hot.png')\nbullet_X = []\nbullet_Y = []\nbullet_movement = 0.7\nbullet_fired = []\nnum_bullet = 1\nfor i in range(num_bullet):\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\nenemy_image = pygame.image.load('ufo.png')\nenemy_X = []\nenemy_Y = []\nenemy_X_movement = []\nenemy_Y_movement = 40\nnum_enemies = 2\ngamespeed = 0\ngamespeed_increment = 0.05\nfor i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n\n\ndef player(x, y):\n screen.blit(player_image, (x, y))\n\n\ndef fire_bullet(x, y, n):\n global bullet_fired\n bullet_fired[n] = True\n screen.blit(bullet_image, (x + 16, y + 10))\n\n\ndef add_bullet():\n global num_bullet\n num_bullet += 1\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n\ndef spawn_enemy(x, y):\n screen.blit(enemy_image, (x, y))\n\n\ndef add_enemy():\n global num_enemies\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n num_enemies += 1\n\n\ndef reset_enemy(index):\n enemy_X[index] = random.randint(0, 736)\n enemy_Y[index] = random.randint(50, 150)\n enemy_X_movement[index] = 0.2\n\n\ndef reset_bullet(n):\n global bullet_fired, bullet_Y\n bullet_fired[n] = False\n bullet_Y[n] = player_Y\n\n\ndef isCollion(eX, eY, bX, bY):\n distance = math.sqrt(math.pow(eX - bX, 2) + math.pow(eY - bY, 2))\n if distance < 27:\n return True\n else:\n return False\n\n\ndef show_score():\n text = score_font.render('Score: ' + str(score), True, (255, 255, 255))\n screen.blit(text, (textX, testY))\n\n\ndef show_intro():\n show_big_text(intro_text)\n show_play_button()\n\n\ndef show_big_text(s):\n text = intro_font.render(s, True, (89, 203, 255))\n text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2))\n screen.blit(text, text_rect)\n text2 = intro_font2.render(s, True, (250, 50, 183))\n text_rect2 = text.get_rect(center=(SCREEN_WIDTH / 2 + 3, SCREEN_HEIGHT /\n 2 + 3))\n screen.blit(text2, text_rect2)\n\n\ndef show_play_button():\n screen.blit(play_button, (play_button_X, play_button_Y))\n\n\ndef show_replay_button():\n screen.blit(replay_button, (play_button_X, play_button_Y))\n\n\ndef play_button_clicked():\n click = pygame.mouse.get_pressed()\n if click[0] == 1:\n pos = pygame.mouse.get_pos()\n if play_button_X < pos[0] < play_button_X + play_button.get_width():\n if play_button_Y < pos[1] < play_button_Y + play_button.get_height(\n ):\n return True\n return False\n\n\ndef game_over_screen():\n show_big_text(gameover_text)\n show_score()\n show_replay_button()\n\n\ndef reset():\n global num_enemies, enemy_X, enemy_Y, player_X, player_Y, score, bullet_fired, gamespeed, num_bullet, bullet_X, bullet_Y\n num_enemies = 2\n enemy_X = []\n enemy_Y = []\n for i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(2)\n player_X = 370\n player_Y = 480\n score = 0\n bullet_fired = []\n bullet_fired.append(False)\n gamespeed = 0\n num_bullet = 1\n bullet_X = []\n bullet_X.append(0)\n bullet_Y = []\n bullet_Y.append(player_Y)\n\n\nrunning = True\nwhile running:\n screen.fill((0, 0, 0))\n screen.blit(background, (0, 0))\n dt = clock.tick(60)\n while intro:\n show_intro()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n if play_button_clicked():\n intro = False\n pygame.display.update()\n while gameover:\n game_over_screen()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n if play_button_clicked():\n reset()\n gameover = False\n pygame.display.update()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n running = False\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_LEFT:\n player_movement = -0.2 - gamespeed\n if event.key == pygame.K_RIGHT:\n player_movement = 0.2 + gamespeed\n if event.key == pygame.K_SPACE:\n for i in range(num_bullet):\n if not bullet_fired[i]:\n bullet_X[i] = player_X\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n break\n if event.type == pygame.KEYUP:\n if event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT:\n player_movement = 0\n player_X += player_movement * dt\n if player_X <= 1:\n player_X = 1\n elif player_X >= 735:\n player_X = 735\n for i in range(num_bullet):\n if bullet_Y[i] <= 1:\n reset_bullet(i)\n if bullet_fired[i]:\n bullet_Y[i] -= bullet_movement * dt\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n for i in range(num_enemies):\n if enemy_Y[i] >= 440:\n gameover = True\n for j in range(num_bullet):\n if bullet_fired[j]:\n collision = isCollion(enemy_X[i], enemy_Y[i], bullet_X[j],\n bullet_Y[j])\n if collision:\n reset_enemy(i)\n reset_bullet(j)\n score += 1\n if score != 0 and previous_score != score:\n if score % 3 == 0:\n add_enemy()\n print('added enemy')\n if score % 10 == 0:\n gamespeed += gamespeed_increment\n print('increased gamespeed')\n if score % 20 == 0:\n add_bullet()\n print('added bullet')\n previous_score = score\n if enemy_X_movement[i] < 0:\n enemy_X[i] += (enemy_X_movement[i] - gamespeed) * dt\n else:\n enemy_X[i] += (enemy_X_movement[i] + gamespeed) * dt\n if enemy_X[i] <= 1:\n enemy_X[i] = 2\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += enemy_Y_movement + gamespeed\n elif enemy_X[i] >= 735:\n enemy_X[i] = 734\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += enemy_Y_movement + gamespeed\n spawn_enemy(enemy_X[i], enemy_Y[i])\n player(player_X, player_Y)\n show_score()\n pygame.display.update()\n", "step-4": "import math\nimport random\nimport pygame\npygame.init()\nSCREEN_WIDTH = 800\nSCREEN_HEIGHT = 600\nscreen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))\nclock = pygame.time.Clock()\npygame.display.set_caption('space invaders')\nbackground = pygame.image.load('background.png')\nscore = 0\nprevious_score = 0\nscore_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 32)\ntextX = 10\ntestY = 10\nintro = True\nintro_text = 'SpaceInvaders'\nintro_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\nintro_font2 = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\nplay_button = pygame.image.load('play-button.png')\nplay_button_X = SCREEN_WIDTH / 2 - play_button.get_width()\nplay_button_Y = SCREEN_HEIGHT / (4 / 3) - play_button.get_height()\ngameover = False\ngameover_text = 'Game Over'\nreplay_button = pygame.image.load('replay.png')\nplayer_image = pygame.image.load('spaceship.png')\nplayer_X = 370\nplayer_Y = 480\nplayer_movement = 0\nbullet_image = pygame.image.load('hot.png')\nbullet_X = []\nbullet_Y = []\nbullet_movement = 0.7\nbullet_fired = []\nnum_bullet = 1\nfor i in range(num_bullet):\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\nenemy_image = pygame.image.load('ufo.png')\nenemy_X = []\nenemy_Y = []\nenemy_X_movement = []\nenemy_Y_movement = 40\nnum_enemies = 2\ngamespeed = 0\ngamespeed_increment = 0.05\nfor i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n\n\ndef player(x, y):\n screen.blit(player_image, (x, y))\n\n\ndef fire_bullet(x, y, n):\n global bullet_fired\n bullet_fired[n] = True\n screen.blit(bullet_image, (x + 16, y + 10))\n\n\ndef add_bullet():\n global num_bullet\n num_bullet += 1\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n\ndef spawn_enemy(x, y):\n screen.blit(enemy_image, (x, y))\n\n\ndef add_enemy():\n global num_enemies\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n num_enemies += 1\n\n\ndef reset_enemy(index):\n enemy_X[index] = random.randint(0, 736)\n enemy_Y[index] = random.randint(50, 150)\n enemy_X_movement[index] = 0.2\n\n\ndef reset_bullet(n):\n global bullet_fired, bullet_Y\n bullet_fired[n] = False\n bullet_Y[n] = player_Y\n\n\ndef isCollion(eX, eY, bX, bY):\n distance = math.sqrt(math.pow(eX - bX, 2) + math.pow(eY - bY, 2))\n if distance < 27:\n return True\n else:\n return False\n\n\ndef show_score():\n text = score_font.render('Score: ' + str(score), True, (255, 255, 255))\n screen.blit(text, (textX, testY))\n\n\ndef show_intro():\n show_big_text(intro_text)\n show_play_button()\n\n\ndef show_big_text(s):\n text = intro_font.render(s, True, (89, 203, 255))\n text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2))\n screen.blit(text, text_rect)\n text2 = intro_font2.render(s, True, (250, 50, 183))\n text_rect2 = text.get_rect(center=(SCREEN_WIDTH / 2 + 3, SCREEN_HEIGHT /\n 2 + 3))\n screen.blit(text2, text_rect2)\n\n\ndef show_play_button():\n screen.blit(play_button, (play_button_X, play_button_Y))\n\n\ndef show_replay_button():\n screen.blit(replay_button, (play_button_X, play_button_Y))\n\n\ndef play_button_clicked():\n click = pygame.mouse.get_pressed()\n if click[0] == 1:\n pos = pygame.mouse.get_pos()\n if play_button_X < pos[0] < play_button_X + play_button.get_width():\n if play_button_Y < pos[1] < play_button_Y + play_button.get_height(\n ):\n return True\n return False\n\n\ndef game_over_screen():\n show_big_text(gameover_text)\n show_score()\n show_replay_button()\n\n\ndef reset():\n global num_enemies, enemy_X, enemy_Y, player_X, player_Y, score, bullet_fired, gamespeed, num_bullet, bullet_X, bullet_Y\n num_enemies = 2\n enemy_X = []\n enemy_Y = []\n for i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(2)\n player_X = 370\n player_Y = 480\n score = 0\n bullet_fired = []\n bullet_fired.append(False)\n gamespeed = 0\n num_bullet = 1\n bullet_X = []\n bullet_X.append(0)\n bullet_Y = []\n bullet_Y.append(player_Y)\n\n\nrunning = True\nwhile running:\n screen.fill((0, 0, 0))\n screen.blit(background, (0, 0))\n dt = clock.tick(60)\n while intro:\n show_intro()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n if play_button_clicked():\n intro = False\n pygame.display.update()\n while gameover:\n game_over_screen()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n if play_button_clicked():\n reset()\n gameover = False\n pygame.display.update()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n running = False\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_LEFT:\n player_movement = -0.2 - gamespeed\n if event.key == pygame.K_RIGHT:\n player_movement = 0.2 + gamespeed\n if event.key == pygame.K_SPACE:\n for i in range(num_bullet):\n if not bullet_fired[i]:\n bullet_X[i] = player_X\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n break\n if event.type == pygame.KEYUP:\n if event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT:\n player_movement = 0\n player_X += player_movement * dt\n if player_X <= 1:\n player_X = 1\n elif player_X >= 735:\n player_X = 735\n for i in range(num_bullet):\n if bullet_Y[i] <= 1:\n reset_bullet(i)\n if bullet_fired[i]:\n bullet_Y[i] -= bullet_movement * dt\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n for i in range(num_enemies):\n if enemy_Y[i] >= 440:\n gameover = True\n for j in range(num_bullet):\n if bullet_fired[j]:\n collision = isCollion(enemy_X[i], enemy_Y[i], bullet_X[j],\n bullet_Y[j])\n if collision:\n reset_enemy(i)\n reset_bullet(j)\n score += 1\n if score != 0 and previous_score != score:\n if score % 3 == 0:\n add_enemy()\n print('added enemy')\n if score % 10 == 0:\n gamespeed += gamespeed_increment\n print('increased gamespeed')\n if score % 20 == 0:\n add_bullet()\n print('added bullet')\n previous_score = score\n if enemy_X_movement[i] < 0:\n enemy_X[i] += (enemy_X_movement[i] - gamespeed) * dt\n else:\n enemy_X[i] += (enemy_X_movement[i] + gamespeed) * dt\n if enemy_X[i] <= 1:\n enemy_X[i] = 2\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += enemy_Y_movement + gamespeed\n elif enemy_X[i] >= 735:\n enemy_X[i] = 734\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += enemy_Y_movement + gamespeed\n spawn_enemy(enemy_X[i], enemy_Y[i])\n player(player_X, player_Y)\n show_score()\n pygame.display.update()\n", "step-5": "import math\nimport random\n\nimport pygame\n\npygame.init()\n\nSCREEN_WIDTH = 800\nSCREEN_HEIGHT = 600\nscreen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))\n\nclock = pygame.time.Clock()\n\npygame.display.set_caption('space invaders')\n\nbackground = pygame.image.load('background.png')\n\nscore = 0\nprevious_score = 0\nscore_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 32)\ntextX = 10\ntestY = 10\n\n# intro\nintro = True\nintro_text = \"SpaceInvaders\"\nintro_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\nintro_font2 = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\n\n# PlayButton\nplay_button = pygame.image.load('play-button.png')\nplay_button_X = (SCREEN_WIDTH / 2) - play_button.get_width()\nplay_button_Y = (SCREEN_HEIGHT / (4 / 3)) - play_button.get_height()\n\n# GameOver\ngameover = False\ngameover_text = \"Game Over\"\nreplay_button = pygame.image.load('replay.png')\n\n# player\nplayer_image = pygame.image.load('spaceship.png')\nplayer_X = 370\nplayer_Y = 480\nplayer_movement = 0\n\n# bullet\nbullet_image = pygame.image.load('hot.png')\nbullet_X = []\nbullet_Y = []\nbullet_movement = 0.7\nbullet_fired = []\nnum_bullet = 1\nfor i in range(num_bullet):\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n# enemy\nenemy_image = pygame.image.load('ufo.png')\nenemy_X = []\nenemy_Y = []\nenemy_X_movement = []\nenemy_Y_movement = 40\nnum_enemies = 2\n\n# gamespeedincrement\ngamespeed = 0\ngamespeed_increment = 0.05\n\nfor i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n\n\ndef player(x, y):\n screen.blit(player_image, (x, y))\n\n\ndef fire_bullet(x, y, n):\n global bullet_fired\n bullet_fired[n] = True\n screen.blit(bullet_image, (x + 16, y + 10))\n\n\ndef add_bullet():\n global num_bullet\n num_bullet += 1\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n\ndef spawn_enemy(x, y):\n screen.blit(enemy_image, (x, y))\n\n\ndef add_enemy():\n global num_enemies\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n num_enemies += 1\n\n\ndef reset_enemy(index):\n enemy_X[index] = random.randint(0, 736)\n enemy_Y[index] = random.randint(50, 150)\n enemy_X_movement[index] = 0.2\n\n\ndef reset_bullet(n):\n global bullet_fired, bullet_Y\n bullet_fired[n] = False\n bullet_Y[n] = player_Y\n\n\ndef isCollion(eX, eY, bX, bY):\n distance = math.sqrt(math.pow(eX - bX, 2) + (math.pow(eY - bY, 2)))\n if distance < 27:\n return True\n else:\n return False\n\n\ndef show_score():\n text = score_font.render(\"Score: \" + str(score), True, (255, 255, 255))\n screen.blit(text, (textX, testY))\n\n\ndef show_intro():\n show_big_text(intro_text)\n show_play_button()\n\n\ndef show_big_text(s):\n text = intro_font.render(s, True, (89, 203, 255))\n text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2))\n screen.blit(text, text_rect)\n text2 = intro_font2.render(s, True, (250, 50, 183))\n text_rect2 = text.get_rect(center=((SCREEN_WIDTH / 2) + 3, (SCREEN_HEIGHT / 2) + 3))\n screen.blit(text2, text_rect2)\n\n\ndef show_play_button():\n screen.blit(play_button, (play_button_X, play_button_Y))\n\n\ndef show_replay_button():\n screen.blit(replay_button, (play_button_X, play_button_Y))\n\n\ndef play_button_clicked():\n click = pygame.mouse.get_pressed()\n if click[0] == 1:\n pos = pygame.mouse.get_pos()\n if play_button_X < pos[0] < play_button_X + play_button.get_width():\n if play_button_Y < pos[1] < play_button_Y + play_button.get_height():\n return True\n return False\n\n\ndef game_over_screen():\n show_big_text(gameover_text)\n show_score()\n show_replay_button()\n\n\ndef reset():\n global num_enemies, enemy_X, enemy_Y, player_X, player_Y, score, bullet_fired, gamespeed, num_bullet, bullet_X, bullet_Y\n num_enemies = 2\n enemy_X = []\n enemy_Y = []\n for i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(2)\n player_X = 370\n player_Y = 480\n score = 0\n bullet_fired = []\n bullet_fired.append(False)\n gamespeed = 0\n num_bullet = 1\n bullet_X = []\n bullet_X.append(0)\n bullet_Y = []\n bullet_Y.append(player_Y)\n\n\nrunning = True\nwhile running:\n\n screen.fill((0, 0, 0))\n screen.blit(background, (0, 0))\n dt = clock.tick(60)\n\n while intro:\n show_intro()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n\n if play_button_clicked():\n intro = False\n\n pygame.display.update()\n\n while gameover:\n game_over_screen()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n\n if play_button_clicked():\n reset()\n gameover = False\n\n pygame.display.update()\n\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n running = False\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_LEFT:\n player_movement = -0.2 - gamespeed\n if event.key == pygame.K_RIGHT:\n player_movement = 0.2 + gamespeed\n if event.key == pygame.K_SPACE:\n for i in range(num_bullet):\n if not bullet_fired[i]:\n bullet_X[i] = player_X\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n break\n if event.type == pygame.KEYUP:\n if event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT:\n player_movement = 0\n\n # playermovement\n player_X += player_movement * dt\n if player_X <= 1:\n player_X = 1\n elif player_X >= 735:\n player_X = 735\n\n # bulletmovement\n for i in range(num_bullet):\n if bullet_Y[i] <= 1:\n reset_bullet(i)\n if bullet_fired[i]:\n bullet_Y[i] -= bullet_movement * dt\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n\n # enemy_movement\n for i in range(num_enemies):\n if enemy_Y[i] >= 440:\n gameover = True\n\n for j in range(num_bullet):\n if bullet_fired[j]:\n collision = isCollion(enemy_X[i], enemy_Y[i], bullet_X[j], bullet_Y[j])\n if collision:\n reset_enemy(i)\n reset_bullet(j)\n score += 1\n\n if score != 0 and previous_score != score:\n if score % 3 == 0:\n add_enemy()\n print(\"added enemy\")\n if score % 10 == 0:\n gamespeed += gamespeed_increment\n print(\"increased gamespeed\")\n if score % 20 == 0:\n add_bullet()\n print(\"added bullet\")\n previous_score = score\n\n if enemy_X_movement[i] < 0:\n enemy_X[i] += (enemy_X_movement[i] - gamespeed) * dt\n else:\n enemy_X[i] += (enemy_X_movement[i] + gamespeed) * dt\n if enemy_X[i] <= 1:\n enemy_X[i] = 2\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += (enemy_Y_movement + gamespeed)\n elif enemy_X[i] >= 735:\n enemy_X[i] = 734\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += (enemy_Y_movement + gamespeed)\n\n spawn_enemy(enemy_X[i], enemy_Y[i])\n\n player(player_X, player_Y)\n show_score()\n pygame.display.update()\n", "step-ids": [ 15, 16, 18, 19, 20 ] }
[ 15, 16, 18, 19, 20 ]
import sqlite3 import argparse import json import index_db from collections import defaultdict def query_doc(cursor, lang, title): cursor.execute(index_db.select_lang_title, (lang, title)) result = cursor.fetchone() if not result: return None return { 'lang': result[0], 'doc_id': result[1], 'doc_path': result[2], # 'url': result[3], # I don't think url is needed here... 'title': result[4], 'begin': result[5], 'end': result[6] } def locate_single_topic_texts(lang_title_dict, cursor): same_topic = (query_doc(cursor, l, t) for l, t in lang_title_dict.items()) return sorted( (i for i in same_topic if i), key=lambda x: x['lang'] ) def locate_interlanguage_texts(file_path, db_path): with open(file_path, 'rt') as f: interlangauge = json.load(f) with sqlite3.connect(db_path) as conn: c = conn.cursor() return [locate_single_topic_texts(pairs, c) for pairs in interlangauge] if __name__ == '__main__': parser = argparse.ArgumentParser( description='Locate same topic texts over multiple languages.') parser.add_argument('--db', dest='db_path', default=index_db.default_path, help='a sqlite database file generated by index.py') parser.add_argument('--input', dest='input_path', default='interlanguage_topics.json', help='a json file containing sets of topics over ' 'multiple languages') parser.add_argument('--output', dest='output_path', default='interlanguage_location.json', help='a json file locating same topic texts over ' 'multiple languages') args = parser.parse_args() location_infos = locate_interlanguage_texts(args.input_path, args.db_path) with open(args.output_path, 'wt') as f: json.dump(location_infos, f)
normal
{ "blob_id": "95e7e025660e71cbdf6a6a0812964fc26d4beec0", "index": 9657, "step-1": "<mask token>\n\n\ndef query_doc(cursor, lang, title):\n cursor.execute(index_db.select_lang_title, (lang, title))\n result = cursor.fetchone()\n if not result:\n return None\n return {'lang': result[0], 'doc_id': result[1], 'doc_path': result[2],\n 'title': result[4], 'begin': result[5], 'end': result[6]}\n\n\ndef locate_single_topic_texts(lang_title_dict, cursor):\n same_topic = (query_doc(cursor, l, t) for l, t in lang_title_dict.items())\n return sorted((i for i in same_topic if i), key=lambda x: x['lang'])\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef query_doc(cursor, lang, title):\n cursor.execute(index_db.select_lang_title, (lang, title))\n result = cursor.fetchone()\n if not result:\n return None\n return {'lang': result[0], 'doc_id': result[1], 'doc_path': result[2],\n 'title': result[4], 'begin': result[5], 'end': result[6]}\n\n\ndef locate_single_topic_texts(lang_title_dict, cursor):\n same_topic = (query_doc(cursor, l, t) for l, t in lang_title_dict.items())\n return sorted((i for i in same_topic if i), key=lambda x: x['lang'])\n\n\ndef locate_interlanguage_texts(file_path, db_path):\n with open(file_path, 'rt') as f:\n interlangauge = json.load(f)\n with sqlite3.connect(db_path) as conn:\n c = conn.cursor()\n return [locate_single_topic_texts(pairs, c) for pairs in interlangauge]\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef query_doc(cursor, lang, title):\n cursor.execute(index_db.select_lang_title, (lang, title))\n result = cursor.fetchone()\n if not result:\n return None\n return {'lang': result[0], 'doc_id': result[1], 'doc_path': result[2],\n 'title': result[4], 'begin': result[5], 'end': result[6]}\n\n\ndef locate_single_topic_texts(lang_title_dict, cursor):\n same_topic = (query_doc(cursor, l, t) for l, t in lang_title_dict.items())\n return sorted((i for i in same_topic if i), key=lambda x: x['lang'])\n\n\ndef locate_interlanguage_texts(file_path, db_path):\n with open(file_path, 'rt') as f:\n interlangauge = json.load(f)\n with sqlite3.connect(db_path) as conn:\n c = conn.cursor()\n return [locate_single_topic_texts(pairs, c) for pairs in interlangauge]\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description=\n 'Locate same topic texts over multiple languages.')\n parser.add_argument('--db', dest='db_path', default=index_db.\n default_path, help='a sqlite database file generated by index.py')\n parser.add_argument('--input', dest='input_path', default=\n 'interlanguage_topics.json', help=\n 'a json file containing sets of topics over multiple languages')\n parser.add_argument('--output', dest='output_path', default=\n 'interlanguage_location.json', help=\n 'a json file locating same topic texts over multiple languages')\n args = parser.parse_args()\n location_infos = locate_interlanguage_texts(args.input_path, args.db_path)\n with open(args.output_path, 'wt') as f:\n json.dump(location_infos, f)\n", "step-4": "import sqlite3\nimport argparse\nimport json\nimport index_db\nfrom collections import defaultdict\n\n\ndef query_doc(cursor, lang, title):\n cursor.execute(index_db.select_lang_title, (lang, title))\n result = cursor.fetchone()\n if not result:\n return None\n return {'lang': result[0], 'doc_id': result[1], 'doc_path': result[2],\n 'title': result[4], 'begin': result[5], 'end': result[6]}\n\n\ndef locate_single_topic_texts(lang_title_dict, cursor):\n same_topic = (query_doc(cursor, l, t) for l, t in lang_title_dict.items())\n return sorted((i for i in same_topic if i), key=lambda x: x['lang'])\n\n\ndef locate_interlanguage_texts(file_path, db_path):\n with open(file_path, 'rt') as f:\n interlangauge = json.load(f)\n with sqlite3.connect(db_path) as conn:\n c = conn.cursor()\n return [locate_single_topic_texts(pairs, c) for pairs in interlangauge]\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description=\n 'Locate same topic texts over multiple languages.')\n parser.add_argument('--db', dest='db_path', default=index_db.\n default_path, help='a sqlite database file generated by index.py')\n parser.add_argument('--input', dest='input_path', default=\n 'interlanguage_topics.json', help=\n 'a json file containing sets of topics over multiple languages')\n parser.add_argument('--output', dest='output_path', default=\n 'interlanguage_location.json', help=\n 'a json file locating same topic texts over multiple languages')\n args = parser.parse_args()\n location_infos = locate_interlanguage_texts(args.input_path, args.db_path)\n with open(args.output_path, 'wt') as f:\n json.dump(location_infos, f)\n", "step-5": "import sqlite3\nimport argparse\nimport json\nimport index_db\nfrom collections import defaultdict\n\n\ndef query_doc(cursor, lang, title):\n cursor.execute(index_db.select_lang_title, (lang, title))\n result = cursor.fetchone()\n if not result:\n return None\n return {\n 'lang': result[0],\n 'doc_id': result[1],\n 'doc_path': result[2],\n # 'url': result[3], # I don't think url is needed here...\n 'title': result[4],\n 'begin': result[5],\n 'end': result[6]\n }\n\n\ndef locate_single_topic_texts(lang_title_dict, cursor):\n same_topic = (query_doc(cursor, l, t) for l, t in lang_title_dict.items())\n return sorted(\n (i for i in same_topic if i),\n key=lambda x: x['lang']\n )\n\n\ndef locate_interlanguage_texts(file_path, db_path):\n with open(file_path, 'rt') as f:\n interlangauge = json.load(f)\n\n with sqlite3.connect(db_path) as conn:\n c = conn.cursor()\n return [locate_single_topic_texts(pairs, c) for pairs in interlangauge]\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(\n description='Locate same topic texts over multiple languages.')\n parser.add_argument('--db', dest='db_path', default=index_db.default_path,\n help='a sqlite database file generated by index.py')\n parser.add_argument('--input', dest='input_path',\n default='interlanguage_topics.json',\n help='a json file containing sets of topics over '\n 'multiple languages')\n parser.add_argument('--output', dest='output_path',\n default='interlanguage_location.json',\n help='a json file locating same topic texts over '\n 'multiple languages')\n args = parser.parse_args()\n location_infos = locate_interlanguage_texts(args.input_path, args.db_path)\n with open(args.output_path, 'wt') as f:\n json.dump(location_infos, f)\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from django.apps import AppConfig class ModuloConfig(AppConfig): name = 'modulo' verbose_name = 'TUM:JungeAkademie - Modulo' def ready(self): #start-up / initialization code here!!! from .recommender import Recommender Recommender.initialize()
normal
{ "blob_id": "31275ca9e20da9d2709ea396e55c113b3ff4f571", "index": 7738, "step-1": "<mask token>\n\n\nclass ModuloConfig(AppConfig):\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass ModuloConfig(AppConfig):\n <mask token>\n <mask token>\n\n def ready(self):\n from .recommender import Recommender\n Recommender.initialize()\n", "step-3": "<mask token>\n\n\nclass ModuloConfig(AppConfig):\n name = 'modulo'\n verbose_name = 'TUM:JungeAkademie - Modulo'\n\n def ready(self):\n from .recommender import Recommender\n Recommender.initialize()\n", "step-4": "from django.apps import AppConfig\n\n\nclass ModuloConfig(AppConfig):\n name = 'modulo'\n verbose_name = 'TUM:JungeAkademie - Modulo'\n\n def ready(self):\n from .recommender import Recommender\n Recommender.initialize()\n", "step-5": "from django.apps import AppConfig\n\n\nclass ModuloConfig(AppConfig):\n name = 'modulo'\n verbose_name = 'TUM:JungeAkademie - Modulo'\n \n def ready(self):\n #start-up / initialization code here!!!\n from .recommender import Recommender\n Recommender.initialize()", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from .cli import cli if __name__ == "__main__": exit(cli.main(prog_name="htmap"))
normal
{ "blob_id": "069338b188f3cf16357b2502cbb3130b69918bd9", "index": 286, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n exit(cli.main(prog_name='htmap'))\n", "step-3": "from .cli import cli\nif __name__ == '__main__':\n exit(cli.main(prog_name='htmap'))\n", "step-4": "from .cli import cli\n\nif __name__ == \"__main__\":\n exit(cli.main(prog_name=\"htmap\"))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
""" Download the full CHIRPS 2.0 data for a specific type (dekads, pentads, daily ...) with the possibility to automatically recut the data over Argentina. """ import os import requests import urllib.request import time from bs4 import BeautifulSoup import subprocess ############## # PARAMETERS to define # Set a pre-existing directory where the CHIRPS files must be saved download_dir = "" # Url for global dekad, change if you want another product url = 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_dekad/netcdf/' # Recut the data over Argentina argentina = False startindex = 5 ############## if download_dir != "": os.chdir(download_dir) response = requests.get(url) soup = BeautifulSoup(response.text,"html.parser") soup.findAll('a') # First link to download in the page # Here the index = 5 is valid for the dekad link but it may change if you download another product (ex : daily, dekad, monthly) # To be sure you can check the link and check that it is the first year one_a_tag = soup.findAll('a')[startindex:] links = [one_a_tag[i]['href'] for i in range(len(one_a_tag))] for link in links: print(link) download_url = url + link urllib.request.urlretrieve(download_url,"./"+link) # Section to recut CHIRPS over Argentina if argentina: subprocess.check_call(["cdo", "sellonlatbox,-80,-44,-60,-20", link, link.replace(".nc", "ARG.nc")]) subprocess.check_call(["rm", link]) time.sleep(1) else: print("Please enter a valid download direction")
normal
{ "blob_id": "ff0495ee1f4aa1f243c82b709a974d3d7c37e8bd", "index": 2425, "step-1": "<mask token>\n", "step-2": "<mask token>\nif download_dir != '':\n os.chdir(download_dir)\n response = requests.get(url)\n soup = BeautifulSoup(response.text, 'html.parser')\n soup.findAll('a')\n one_a_tag = soup.findAll('a')[startindex:]\n links = [one_a_tag[i]['href'] for i in range(len(one_a_tag))]\n for link in links:\n print(link)\n download_url = url + link\n urllib.request.urlretrieve(download_url, './' + link)\n if argentina:\n subprocess.check_call(['cdo', 'sellonlatbox,-80,-44,-60,-20',\n link, link.replace('.nc', 'ARG.nc')])\n subprocess.check_call(['rm', link])\n time.sleep(1)\nelse:\n print('Please enter a valid download direction')\n", "step-3": "<mask token>\ndownload_dir = ''\nurl = 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_dekad/netcdf/'\nargentina = False\nstartindex = 5\nif download_dir != '':\n os.chdir(download_dir)\n response = requests.get(url)\n soup = BeautifulSoup(response.text, 'html.parser')\n soup.findAll('a')\n one_a_tag = soup.findAll('a')[startindex:]\n links = [one_a_tag[i]['href'] for i in range(len(one_a_tag))]\n for link in links:\n print(link)\n download_url = url + link\n urllib.request.urlretrieve(download_url, './' + link)\n if argentina:\n subprocess.check_call(['cdo', 'sellonlatbox,-80,-44,-60,-20',\n link, link.replace('.nc', 'ARG.nc')])\n subprocess.check_call(['rm', link])\n time.sleep(1)\nelse:\n print('Please enter a valid download direction')\n", "step-4": "<mask token>\nimport os\nimport requests\nimport urllib.request\nimport time\nfrom bs4 import BeautifulSoup\nimport subprocess\ndownload_dir = ''\nurl = 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_dekad/netcdf/'\nargentina = False\nstartindex = 5\nif download_dir != '':\n os.chdir(download_dir)\n response = requests.get(url)\n soup = BeautifulSoup(response.text, 'html.parser')\n soup.findAll('a')\n one_a_tag = soup.findAll('a')[startindex:]\n links = [one_a_tag[i]['href'] for i in range(len(one_a_tag))]\n for link in links:\n print(link)\n download_url = url + link\n urllib.request.urlretrieve(download_url, './' + link)\n if argentina:\n subprocess.check_call(['cdo', 'sellonlatbox,-80,-44,-60,-20',\n link, link.replace('.nc', 'ARG.nc')])\n subprocess.check_call(['rm', link])\n time.sleep(1)\nelse:\n print('Please enter a valid download direction')\n", "step-5": "\"\"\"\nDownload the full CHIRPS 2.0 data for a specific type (dekads, pentads, daily ...)\nwith the possibility to automatically recut the data over Argentina.\n\"\"\"\nimport os\nimport requests\nimport urllib.request\nimport time\nfrom bs4 import BeautifulSoup\nimport subprocess\n\n##############\n\n# PARAMETERS to define\n\n# Set a pre-existing directory where the CHIRPS files must be saved\ndownload_dir = \"\"\n# Url for global dekad, change if you want another product\nurl = 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_dekad/netcdf/'\n# Recut the data over Argentina\nargentina = False\nstartindex = 5\n\n##############\nif download_dir != \"\":\n os.chdir(download_dir)\n\n response = requests.get(url)\n soup = BeautifulSoup(response.text,\"html.parser\")\n soup.findAll('a')\n \n # First link to download in the page\n # Here the index = 5 is valid for the dekad link but it may change if you download another product (ex : daily, dekad, monthly)\n # To be sure you can check the link and check that it is the first year\n one_a_tag = soup.findAll('a')[startindex:] \n links = [one_a_tag[i]['href'] for i in range(len(one_a_tag))]\n\n for link in links:\n print(link)\n download_url = url + link\n urllib.request.urlretrieve(download_url,\"./\"+link)\n # Section to recut CHIRPS over Argentina\n if argentina:\n subprocess.check_call([\"cdo\", \"sellonlatbox,-80,-44,-60,-20\", link, link.replace(\".nc\", \"ARG.nc\")])\n subprocess.check_call([\"rm\", link])\n time.sleep(1)\n\nelse:\n print(\"Please enter a valid download direction\")\n \n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from SPARQLWrapper import SPARQLWrapper, JSON sparql = SPARQLWrapper( 'http://localhost:3030/ds/query' ) #Pizzas def get_response_pizzas(): sparql.setQuery(''' PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#> SELECT DISTINCT ?name WHERE { ?s rdfs:subClassOf saidi:NamePizza . ?s rdfs:label ?name FILTER (lang(?name) = 'es') } ''') sparql.setReturnFormat(JSON) qres = sparql.query().convert() return qres #CarnesTopping def get_response_carnes(): sparql.setQuery(''' PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#> SELECT DISTINCT ?name WHERE { ?s rdfs:subClassOf saidi:CarnesTopping . ?s rdfs:label ?name FILTER (lang(?name) = 'es') } ''') sparql.setReturnFormat(JSON) qres = sparql.query().convert() return qres #EmbutidosTopping def get_response_embutidos(): sparql.setQuery(''' PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#> SELECT DISTINCT ?name WHERE { ?s rdfs:subClassOf saidi:EmbutidosTopping . ?s rdfs:label ?name FILTER (lang(?name) = 'es') } ''') sparql.setReturnFormat(JSON) qres = sparql.query().convert() return qres #EspeciasTopping def get_response_especias(): sparql.setQuery(''' PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#> SELECT DISTINCT ?name WHERE { ?s rdfs:subClassOf saidi:EspeciasTopping . ?s rdfs:label ?name FILTER (lang(?name) = 'es') } ''') sparql.setReturnFormat(JSON) qres = sparql.query().convert() return qres #FrutasTopping def get_response_frutas(): sparql.setQuery(''' PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#> SELECT DISTINCT ?name WHERE { ?s rdfs:subClassOf saidi:FrutasTopping . ?s rdfs:label ?name FILTER (lang(?name) = 'es') } ''') sparql.setReturnFormat(JSON) qres = sparql.query().convert() return qres #QuesosTopping def get_response_quesos(): sparql.setQuery(''' PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#> SELECT DISTINCT ?name WHERE { ?s rdfs:subClassOf saidi:QuesosTopping . ?s rdfs:label ?name FILTER (lang(?name) = 'es') } ''') sparql.setReturnFormat(JSON) qres = sparql.query().convert() return qres #SalsasTopping def get_response_salsas(): sparql.setQuery(''' PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#> SELECT DISTINCT ?name WHERE { ?s rdfs:subClassOf saidi:SalsasTopping . ?s rdfs:label ?name FILTER (lang(?name) = 'es') } ''') sparql.setReturnFormat(JSON) qres = sparql.query().convert() return qres #VegetalesTopping def get_response_vegetales(): sparql.setQuery(''' PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#> SELECT DISTINCT ?name WHERE { ?s rdfs:subClassOf saidi:VegetalesTopping . ?s rdfs:label ?name FILTER (lang(?name) = 'es') } ''') sparql.setReturnFormat(JSON) qres = sparql.query().convert() return qres if __name__ == '__main__': get_response_pizzas() get_response_carnes() get_response_embutidos() get_response_especias() get_response_frutas() get_response_quesos() get_response_salsas() get_response_vegetales()
normal
{ "blob_id": "9690366a88a87951f5c51902118888cce8159ffc", "index": 7219, "step-1": "<mask token>\n\n\ndef get_response_carnes():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:CarnesTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_embutidos():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:EmbutidosTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_especias():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:EspeciasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_frutas():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:FrutasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\n<mask token>\n\n\ndef get_response_salsas():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:SalsasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_vegetales():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:VegetalesTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_response_carnes():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:CarnesTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_embutidos():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:EmbutidosTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_especias():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:EspeciasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_frutas():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:FrutasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_quesos():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:QuesosTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_salsas():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:SalsasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_vegetales():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:VegetalesTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef get_response_pizzas():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:NamePizza .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_carnes():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:CarnesTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_embutidos():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:EmbutidosTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_especias():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:EspeciasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_frutas():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:FrutasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_quesos():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:QuesosTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_salsas():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:SalsasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_vegetales():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:VegetalesTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\n<mask token>\n", "step-4": "<mask token>\nsparql = SPARQLWrapper('http://localhost:3030/ds/query')\n\n\ndef get_response_pizzas():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:NamePizza .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_carnes():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:CarnesTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_embutidos():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:EmbutidosTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_especias():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:EspeciasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_frutas():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:FrutasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_quesos():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:QuesosTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_salsas():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:SalsasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\ndef get_response_vegetales():\n sparql.setQuery(\n \"\"\"\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:VegetalesTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n \"\"\"\n )\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\nif __name__ == '__main__':\n get_response_pizzas()\n get_response_carnes()\n get_response_embutidos()\n get_response_especias()\n get_response_frutas()\n get_response_quesos()\n get_response_salsas()\n get_response_vegetales()\n", "step-5": "from SPARQLWrapper import SPARQLWrapper, JSON\n\nsparql = SPARQLWrapper(\n 'http://localhost:3030/ds/query'\n \n )\n\n#Pizzas\ndef get_response_pizzas():\n sparql.setQuery('''\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:NamePizza .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n ''')\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n#CarnesTopping\ndef get_response_carnes():\n sparql.setQuery('''\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:CarnesTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n ''')\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n#EmbutidosTopping\ndef get_response_embutidos():\n sparql.setQuery('''\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:EmbutidosTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n ''')\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n#EspeciasTopping\ndef get_response_especias():\n sparql.setQuery('''\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:EspeciasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n ''')\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\n#FrutasTopping\ndef get_response_frutas():\n sparql.setQuery('''\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:FrutasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n ''')\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n#QuesosTopping\ndef get_response_quesos():\n sparql.setQuery('''\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:QuesosTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n ''')\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n#SalsasTopping\ndef get_response_salsas():\n sparql.setQuery('''\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:SalsasTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n ''')\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\n#VegetalesTopping\ndef get_response_vegetales():\n sparql.setQuery('''\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n PREFIX saidi: <http://www.semanticweb.org/japor/ontologies/2021/5/PizzasLojanitas#>\n SELECT DISTINCT ?name \n WHERE { \n ?s rdfs:subClassOf saidi:VegetalesTopping .\n ?s rdfs:label ?name\n FILTER (lang(?name) = 'es')\n }\n\n ''')\n sparql.setReturnFormat(JSON)\n qres = sparql.query().convert()\n return qres\n\n\nif __name__ == '__main__':\n get_response_pizzas()\n get_response_carnes()\n get_response_embutidos()\n get_response_especias()\n get_response_frutas()\n get_response_quesos()\n get_response_salsas()\n get_response_vegetales()\n\n", "step-ids": [ 6, 7, 8, 10, 12 ] }
[ 6, 7, 8, 10, 12 ]
from core.models import AnalyticsCacheSearchKeywordDay from datetime import datetime, timedelta def get_month(): return ["2017-10","2017-11","2017-12","2018-1","2018-2","2018-3","2018-4","2018-5","2018-6","2018-7","2018-8","2018-9","2018-10","2018-11", "2018-12"] def run(): day = datetime.strptime("2017-10", "%Y-%m") next_day = datetime.strptime("2017-11", "%Y-%m") last_day = datetime.strptime("2018-11", "%Y-%m") monthes = get_month() result_keyword = {} result_count = {} dict_total = {} idx = 1 while day < last_day: keyword_caches = AnalyticsCacheSearchKeywordDay.objects.filter(theday__gte=day, theday__lt=next_day) date = str(day.year) + "-" + str(day.month) result_keyword[date] = [] result_count[date] = [] dict_month = {} for keyword in keyword_caches: word = keyword.keyword.replace(" ", "") if dict_total.get(word) is None: dict_total[word] = 0 if dict_month.get(word) is None: dict_month[word] = 0 dict_total[word] += keyword.total_count dict_month[word] += keyword.total_count sort_ids = sorted(dict_month, key=lambda x:dict_month[x], reverse=True) cnt = 0 for id in sort_ids: if cnt > 99: break result_keyword[date].append(id) result_count[date].append(dict_month[id]) cnt+=1 day = datetime.strptime(monthes[idx], "%Y-%m") next_day = datetime.strptime(monthes[idx+1], "%Y-%m") idx+=1 sorted_ids = sorted(dict_total, key=lambda x: dict_total[x], reverse=True) total_rank_keyword = [] total_rank_count = [] for id in sorted_ids: total_rank_keyword.append(id) total_rank_count.append(dict_total[id]) with open("result.txt", "w") as f: monthes = get_month() for month in monthes: if month == "2018-11" or month == "2018-12": continue print(month, file=f, end='\t') print(" ", file=f, end='\t') print("합산TOP100", file=f, end='\n') for rank in range(0,100): for month in monthes: if month == "2018-11" or month == "2018-12": continue if result_keyword.get(month) is None: print(" ", file=f, end='\t') print(" ", file=f, end='\t') continue if len(result_keyword[month]) < rank+1: print(" ", file=f, end='\t') print(" ", file=f, end='\t') continue print(result_keyword[month][rank], file=f, end='\t') print(result_count[month][rank], file=f, end='\t') print(total_rank_keyword[rank], file=f, end='\t') print(total_rank_count[rank], file=f, end='\n')
normal
{ "blob_id": "b048319a2ed182e70aa7f8a736ff02953577ec39", "index": 2008, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef run():\n day = datetime.strptime('2017-10', '%Y-%m')\n next_day = datetime.strptime('2017-11', '%Y-%m')\n last_day = datetime.strptime('2018-11', '%Y-%m')\n monthes = get_month()\n result_keyword = {}\n result_count = {}\n dict_total = {}\n idx = 1\n while day < last_day:\n keyword_caches = AnalyticsCacheSearchKeywordDay.objects.filter(\n theday__gte=day, theday__lt=next_day)\n date = str(day.year) + '-' + str(day.month)\n result_keyword[date] = []\n result_count[date] = []\n dict_month = {}\n for keyword in keyword_caches:\n word = keyword.keyword.replace(' ', '')\n if dict_total.get(word) is None:\n dict_total[word] = 0\n if dict_month.get(word) is None:\n dict_month[word] = 0\n dict_total[word] += keyword.total_count\n dict_month[word] += keyword.total_count\n sort_ids = sorted(dict_month, key=lambda x: dict_month[x], reverse=True\n )\n cnt = 0\n for id in sort_ids:\n if cnt > 99:\n break\n result_keyword[date].append(id)\n result_count[date].append(dict_month[id])\n cnt += 1\n day = datetime.strptime(monthes[idx], '%Y-%m')\n next_day = datetime.strptime(monthes[idx + 1], '%Y-%m')\n idx += 1\n sorted_ids = sorted(dict_total, key=lambda x: dict_total[x], reverse=True)\n total_rank_keyword = []\n total_rank_count = []\n for id in sorted_ids:\n total_rank_keyword.append(id)\n total_rank_count.append(dict_total[id])\n with open('result.txt', 'w') as f:\n monthes = get_month()\n for month in monthes:\n if month == '2018-11' or month == '2018-12':\n continue\n print(month, file=f, end='\\t')\n print(' ', file=f, end='\\t')\n print('합산TOP100', file=f, end='\\n')\n for rank in range(0, 100):\n for month in monthes:\n if month == '2018-11' or month == '2018-12':\n continue\n if result_keyword.get(month) is None:\n print(' ', file=f, end='\\t')\n print(' ', file=f, end='\\t')\n continue\n if len(result_keyword[month]) < rank + 1:\n print(' ', file=f, end='\\t')\n print(' ', file=f, end='\\t')\n continue\n print(result_keyword[month][rank], file=f, end='\\t')\n print(result_count[month][rank], file=f, end='\\t')\n print(total_rank_keyword[rank], file=f, end='\\t')\n print(total_rank_count[rank], file=f, end='\\n')\n", "step-3": "<mask token>\n\n\ndef get_month():\n return ['2017-10', '2017-11', '2017-12', '2018-1', '2018-2', '2018-3',\n '2018-4', '2018-5', '2018-6', '2018-7', '2018-8', '2018-9',\n '2018-10', '2018-11', '2018-12']\n\n\ndef run():\n day = datetime.strptime('2017-10', '%Y-%m')\n next_day = datetime.strptime('2017-11', '%Y-%m')\n last_day = datetime.strptime('2018-11', '%Y-%m')\n monthes = get_month()\n result_keyword = {}\n result_count = {}\n dict_total = {}\n idx = 1\n while day < last_day:\n keyword_caches = AnalyticsCacheSearchKeywordDay.objects.filter(\n theday__gte=day, theday__lt=next_day)\n date = str(day.year) + '-' + str(day.month)\n result_keyword[date] = []\n result_count[date] = []\n dict_month = {}\n for keyword in keyword_caches:\n word = keyword.keyword.replace(' ', '')\n if dict_total.get(word) is None:\n dict_total[word] = 0\n if dict_month.get(word) is None:\n dict_month[word] = 0\n dict_total[word] += keyword.total_count\n dict_month[word] += keyword.total_count\n sort_ids = sorted(dict_month, key=lambda x: dict_month[x], reverse=True\n )\n cnt = 0\n for id in sort_ids:\n if cnt > 99:\n break\n result_keyword[date].append(id)\n result_count[date].append(dict_month[id])\n cnt += 1\n day = datetime.strptime(monthes[idx], '%Y-%m')\n next_day = datetime.strptime(monthes[idx + 1], '%Y-%m')\n idx += 1\n sorted_ids = sorted(dict_total, key=lambda x: dict_total[x], reverse=True)\n total_rank_keyword = []\n total_rank_count = []\n for id in sorted_ids:\n total_rank_keyword.append(id)\n total_rank_count.append(dict_total[id])\n with open('result.txt', 'w') as f:\n monthes = get_month()\n for month in monthes:\n if month == '2018-11' or month == '2018-12':\n continue\n print(month, file=f, end='\\t')\n print(' ', file=f, end='\\t')\n print('합산TOP100', file=f, end='\\n')\n for rank in range(0, 100):\n for month in monthes:\n if month == '2018-11' or month == '2018-12':\n continue\n if result_keyword.get(month) is None:\n print(' ', file=f, end='\\t')\n print(' ', file=f, end='\\t')\n continue\n if len(result_keyword[month]) < rank + 1:\n print(' ', file=f, end='\\t')\n print(' ', file=f, end='\\t')\n continue\n print(result_keyword[month][rank], file=f, end='\\t')\n print(result_count[month][rank], file=f, end='\\t')\n print(total_rank_keyword[rank], file=f, end='\\t')\n print(total_rank_count[rank], file=f, end='\\n')\n", "step-4": "from core.models import AnalyticsCacheSearchKeywordDay\nfrom datetime import datetime, timedelta\n\n\ndef get_month():\n return ['2017-10', '2017-11', '2017-12', '2018-1', '2018-2', '2018-3',\n '2018-4', '2018-5', '2018-6', '2018-7', '2018-8', '2018-9',\n '2018-10', '2018-11', '2018-12']\n\n\ndef run():\n day = datetime.strptime('2017-10', '%Y-%m')\n next_day = datetime.strptime('2017-11', '%Y-%m')\n last_day = datetime.strptime('2018-11', '%Y-%m')\n monthes = get_month()\n result_keyword = {}\n result_count = {}\n dict_total = {}\n idx = 1\n while day < last_day:\n keyword_caches = AnalyticsCacheSearchKeywordDay.objects.filter(\n theday__gte=day, theday__lt=next_day)\n date = str(day.year) + '-' + str(day.month)\n result_keyword[date] = []\n result_count[date] = []\n dict_month = {}\n for keyword in keyword_caches:\n word = keyword.keyword.replace(' ', '')\n if dict_total.get(word) is None:\n dict_total[word] = 0\n if dict_month.get(word) is None:\n dict_month[word] = 0\n dict_total[word] += keyword.total_count\n dict_month[word] += keyword.total_count\n sort_ids = sorted(dict_month, key=lambda x: dict_month[x], reverse=True\n )\n cnt = 0\n for id in sort_ids:\n if cnt > 99:\n break\n result_keyword[date].append(id)\n result_count[date].append(dict_month[id])\n cnt += 1\n day = datetime.strptime(monthes[idx], '%Y-%m')\n next_day = datetime.strptime(monthes[idx + 1], '%Y-%m')\n idx += 1\n sorted_ids = sorted(dict_total, key=lambda x: dict_total[x], reverse=True)\n total_rank_keyword = []\n total_rank_count = []\n for id in sorted_ids:\n total_rank_keyword.append(id)\n total_rank_count.append(dict_total[id])\n with open('result.txt', 'w') as f:\n monthes = get_month()\n for month in monthes:\n if month == '2018-11' or month == '2018-12':\n continue\n print(month, file=f, end='\\t')\n print(' ', file=f, end='\\t')\n print('합산TOP100', file=f, end='\\n')\n for rank in range(0, 100):\n for month in monthes:\n if month == '2018-11' or month == '2018-12':\n continue\n if result_keyword.get(month) is None:\n print(' ', file=f, end='\\t')\n print(' ', file=f, end='\\t')\n continue\n if len(result_keyword[month]) < rank + 1:\n print(' ', file=f, end='\\t')\n print(' ', file=f, end='\\t')\n continue\n print(result_keyword[month][rank], file=f, end='\\t')\n print(result_count[month][rank], file=f, end='\\t')\n print(total_rank_keyword[rank], file=f, end='\\t')\n print(total_rank_count[rank], file=f, end='\\n')\n", "step-5": "from core.models import AnalyticsCacheSearchKeywordDay\nfrom datetime import datetime, timedelta\n\n\ndef get_month():\n\n return [\"2017-10\",\"2017-11\",\"2017-12\",\"2018-1\",\"2018-2\",\"2018-3\",\"2018-4\",\"2018-5\",\"2018-6\",\"2018-7\",\"2018-8\",\"2018-9\",\"2018-10\",\"2018-11\", \"2018-12\"]\n\n\ndef run():\n\n day = datetime.strptime(\"2017-10\", \"%Y-%m\")\n next_day = datetime.strptime(\"2017-11\", \"%Y-%m\")\n last_day = datetime.strptime(\"2018-11\", \"%Y-%m\")\n monthes = get_month()\n result_keyword = {}\n result_count = {}\n dict_total = {}\n idx = 1\n while day < last_day:\n keyword_caches = AnalyticsCacheSearchKeywordDay.objects.filter(theday__gte=day, theday__lt=next_day)\n date = str(day.year) + \"-\" + str(day.month)\n result_keyword[date] = []\n result_count[date] = []\n dict_month = {}\n for keyword in keyword_caches:\n\n word = keyword.keyword.replace(\" \", \"\")\n if dict_total.get(word) is None:\n dict_total[word] = 0\n if dict_month.get(word) is None:\n dict_month[word] = 0\n dict_total[word] += keyword.total_count\n dict_month[word] += keyword.total_count\n\n sort_ids = sorted(dict_month, key=lambda x:dict_month[x], reverse=True)\n cnt = 0\n for id in sort_ids:\n if cnt > 99:\n break\n result_keyword[date].append(id)\n result_count[date].append(dict_month[id])\n cnt+=1\n\n day = datetime.strptime(monthes[idx], \"%Y-%m\")\n next_day = datetime.strptime(monthes[idx+1], \"%Y-%m\")\n idx+=1\n\n sorted_ids = sorted(dict_total, key=lambda x: dict_total[x], reverse=True)\n total_rank_keyword = []\n total_rank_count = []\n for id in sorted_ids:\n total_rank_keyword.append(id)\n total_rank_count.append(dict_total[id])\n\n with open(\"result.txt\", \"w\") as f:\n monthes = get_month()\n for month in monthes:\n if month == \"2018-11\" or month == \"2018-12\":\n continue\n print(month, file=f, end='\\t')\n print(\" \", file=f, end='\\t')\n print(\"합산TOP100\", file=f, end='\\n')\n for rank in range(0,100):\n for month in monthes:\n if month == \"2018-11\" or month == \"2018-12\":\n continue\n if result_keyword.get(month) is None:\n print(\" \", file=f, end='\\t')\n print(\" \", file=f, end='\\t')\n continue\n if len(result_keyword[month]) < rank+1:\n print(\" \", file=f, end='\\t')\n print(\" \", file=f, end='\\t')\n continue\n print(result_keyword[month][rank], file=f, end='\\t')\n print(result_count[month][rank], file=f, end='\\t')\n print(total_rank_keyword[rank], file=f, end='\\t')\n print(total_rank_count[rank], file=f, end='\\n')", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.http import HttpResponse from django.shortcuts import render from .models import game def index(request): all_games = game.objects.all() context = { 'all_games' : all_games } return render(request,'game/index.html',context) def gameview(response): return HttpResponse("<h1>Ludo King</h1>")
normal
{ "blob_id": "6623ac194e380c9554d72a1b20bf860b958dda97", "index": 5961, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef index(request):\n all_games = game.objects.all()\n context = {'all_games': all_games}\n return render(request, 'game/index.html', context)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef index(request):\n all_games = game.objects.all()\n context = {'all_games': all_games}\n return render(request, 'game/index.html', context)\n\n\ndef gameview(response):\n return HttpResponse('<h1>Ludo King</h1>')\n", "step-4": "from django.http import HttpResponse\nfrom django.shortcuts import render\nfrom .models import game\n\n\ndef index(request):\n all_games = game.objects.all()\n context = {'all_games': all_games}\n return render(request, 'game/index.html', context)\n\n\ndef gameview(response):\n return HttpResponse('<h1>Ludo King</h1>')\n", "step-5": "from django.http import HttpResponse\nfrom django.shortcuts import render\nfrom .models import game\n\ndef index(request):\n all_games = game.objects.all()\n context = {\n 'all_games' : all_games\n }\n return render(request,'game/index.html',context)\n\ndef gameview(response):\n return HttpResponse(\"<h1>Ludo King</h1>\")\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# Standard library # Third party library # Local library from warehouse.server import run_server from warehouse.server.config import log if __name__ == "__main__": log.initialize_logs() run_server()
normal
{ "blob_id": "8c8b5c1ff749a8563788b8d5be5332e273275be3", "index": 6450, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n log.initialize_logs()\n run_server()\n", "step-3": "from warehouse.server import run_server\nfrom warehouse.server.config import log\nif __name__ == '__main__':\n log.initialize_logs()\n run_server()\n", "step-4": "# Standard library\n# Third party library\n# Local library\nfrom warehouse.server import run_server\nfrom warehouse.server.config import log\n\n\nif __name__ == \"__main__\":\n log.initialize_logs()\n run_server()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from typing import Any, Dict, List import numpy as np from kedro.io import AbstractDataSet from msrest.exceptions import HttpOperationError from azureml.core import Workspace, Datastore from azureml.data.data_reference import DataReference class AZblob_datastore_data(AbstractDataSet): """``ImageDataSet`` loads / save image data from a given filepath as `numpy` array using Pillow. Example: :: >>> ImageDataSet(filepath='/img/file/path.png') """ def __init__(self, container_path: str, local_path : str, credentials: Dict[str, Any] = None): """Creates a new instance of ImageDataSet to load / save image data at the given filepath. Args: filepath: The location of the image file to load / save data. """ self._container_path = container_path self._local_path = local_path self._credentials = credentials def _load(self) -> np.ndarray: """Loads data from the image file. Returns: Data from the image file as a numpy array. """ # Initialis Workspace ws = Workspace.from_config() blob_datastore_name = self._credentials['storage_name'] account_name = self._credentials['storage_name'] # Storage account name container_name = self._credentials['container_name'] # Name of Azure blob container account_key = self._credentials['key'] # Storage account key # Register a new datastore try: blob_datastore = blob_datastore = Datastore.get(ws, blob_datastore_name) print("Found Blob Datastore with name: %s" % blob_datastore_name) except HttpOperationError: blob_datastore = Datastore.register_azure_blob_container(workspace = ws, datastore_name = blob_datastore_name, container_name = container_name, account_name = account_name, blob_datastore.download(target_path=self._local_path, prefix=self._container_path, show_progress=False) ... def _save(self, data: np.ndarray) -> None: """Saves image data to the specified filepath""" ... def _describe(self) -> Dict[str, Any]: """Returns a dict that describes the attributes of the dataset"""
normal
{ "blob_id": "eb981a2d7f0ff5e6cc4a4a76f269c93c547965ba", "index": 715, "step-1": "from typing import Any, Dict, List\n\nimport numpy as np\n\nfrom kedro.io import AbstractDataSet\nfrom msrest.exceptions import HttpOperationError\nfrom azureml.core import Workspace, Datastore\nfrom azureml.data.data_reference import DataReference\n\nclass AZblob_datastore_data(AbstractDataSet):\n \"\"\"``ImageDataSet`` loads / save image data from a given filepath as `numpy` array using Pillow.\n\n Example:\n ::\n\n >>> ImageDataSet(filepath='/img/file/path.png')\n \"\"\"\n\n def __init__(self,\n container_path: str,\n local_path : str,\n credentials: Dict[str, Any] = None):\n \"\"\"Creates a new instance of ImageDataSet to load / save image data at the given filepath.\n\n Args:\n filepath: The location of the image file to load / save data.\n \"\"\"\n self._container_path = container_path\n self._local_path = local_path\n self._credentials = credentials\n\n def _load(self) -> np.ndarray:\n \"\"\"Loads data from the image file.\n\n Returns:\n Data from the image file as a numpy array.\n \"\"\"\n # Initialis Workspace\n\n ws = Workspace.from_config()\n\n blob_datastore_name = self._credentials['storage_name']\n account_name = self._credentials['storage_name'] # Storage account name\n container_name = self._credentials['container_name'] # Name of Azure blob container\n account_key = self._credentials['key'] # Storage account key\n\n # Register a new datastore\n try:\n blob_datastore = blob_datastore = Datastore.get(ws, blob_datastore_name)\n print(\"Found Blob Datastore with name: %s\" % blob_datastore_name)\n\n except HttpOperationError:\n blob_datastore = Datastore.register_azure_blob_container(workspace = ws, \n datastore_name = blob_datastore_name, \n container_name = container_name,\n account_name = account_name,\n blob_datastore.download(target_path=self._local_path,\n prefix=self._container_path,\n show_progress=False) \n ...\n\n def _save(self, data: np.ndarray) -> None:\n \"\"\"Saves image data to the specified filepath\"\"\"\n ...\n\n def _describe(self) -> Dict[str, Any]:\n \n \"\"\"Returns a dict that describes the attributes of the dataset\"\"\"", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# -*- coding:utf-8 -*- from spider.driver.base.driver import Driver from spider.driver.base.mysql import Mysql import time from pyquery import PyQuery from spider.driver.base.field import Field,FieldName,Fieldlist,FieldType from spider.driver.base.page import Page from spider.driver.base.listcssselector import ListCssSelector from spider.driver.base.mongodb import Mongodb from spider.driver.base.tabsetup import TabSetup fl_weixin1 = Fieldlist( Field(fieldname='public_name', css_selector='div > div.txt-box > p.tit > a', regex=r'[^\u4e00-\u9fa5]*'), ) fl_weixin2 = Fieldlist( Field(fieldname='article_name', css_selector='div > div > h4'), Field(fieldname='article_time', css_selector='div > div > p.weui_media_extra_info'), ) page_weixin_1 = Page(name='微信公众号列表页面', fieldlist=fl_weixin1, listcssselector=ListCssSelector(list_css_selector='#main > div.news-box > ul > li')) page_weixin_2 = Page(name='微信公众号文章列表页面', fieldlist=fl_weixin2, tabsetup=TabSetup(click_css_selector='div > div.txt-box > p.tit > a'), listcssselector=ListCssSelector(list_css_selector='#history > div')) class WeixinSpider(Driver): def __init__(self,isheadless=False,ismobile=False,isvirtualdisplay=False,spider_id='',name=''): Driver.__init__(self, log_file_name=spider_id, ismobile=ismobile, isvirtualdisplay=isvirtualdisplay, isheadless=isheadless) self.name = name self.debug_log(name=name) def get_article(self, data_list=[]): article_list = self.until_presence_of_all_elements_located_by_css_selector(css_selector=page_weixin_2.listcssselector.list_css_selector) for i in range(1, len(article_list)+1): self.until_scroll_to_center_click_by_css_selector(css_selector='%s:nth-child(%s)'%(page_weixin_2.listcssselector.list_css_selector,i)) time.sleep(3) self.driver.back() def run_spider(self): for public in Mysql().query_data(table='weixin_public', field='public_name')[:1]: self.fast_get_page(url='http://weixin.sogou.com/', min_time_to_wait=15,max_time_to_wait=30) self.until_send_text_by_css_selector(css_selector='#query', text=public[0]) time.sleep(3) self.fast_enter_page_by_css_selector(css_selector='#query') time.sleep(2) self.fast_click_same_page_by_css_selector(click_css_selector='#scroll-header > form > div > input.swz2') public_name_list = self.from_page_get_data_list(page=page_weixin_1) article_name_list = self.from_page_add_data_list_to_data_list(page=page_weixin_2, pre_page=page_weixin_1,data_list=public_name_list, extra_page_func=self.get_article) # self.fast_click_page_by_css_selector(ele=item, click_css_selector='div > div.txt-box > p.tit > a') # self.driver.switch_to.window(self.driver.window_handles[-1]) # shop_data_list = self.from_page_get_data_list(page=page_weixin_1) # self.driver.close() # self.driver.switch_to.window(self.driver.window_handles[-1])
normal
{ "blob_id": "1a7a28a2264ed0204184ab1dd273b0b114657fa7", "index": 3004, "step-1": "<mask token>\n\n\nclass WeixinSpider(Driver):\n <mask token>\n\n def get_article(self, data_list=[]):\n article_list = (self.\n until_presence_of_all_elements_located_by_css_selector(\n css_selector=page_weixin_2.listcssselector.list_css_selector))\n for i in range(1, len(article_list) + 1):\n self.until_scroll_to_center_click_by_css_selector(css_selector=\n '%s:nth-child(%s)' % (page_weixin_2.listcssselector.\n list_css_selector, i))\n time.sleep(3)\n self.driver.back()\n\n def run_spider(self):\n for public in Mysql().query_data(table='weixin_public', field=\n 'public_name')[:1]:\n self.fast_get_page(url='http://weixin.sogou.com/',\n min_time_to_wait=15, max_time_to_wait=30)\n self.until_send_text_by_css_selector(css_selector='#query',\n text=public[0])\n time.sleep(3)\n self.fast_enter_page_by_css_selector(css_selector='#query')\n time.sleep(2)\n self.fast_click_same_page_by_css_selector(click_css_selector=\n '#scroll-header > form > div > input.swz2')\n public_name_list = self.from_page_get_data_list(page=page_weixin_1)\n article_name_list = self.from_page_add_data_list_to_data_list(page\n =page_weixin_2, pre_page=page_weixin_1, data_list=\n public_name_list, extra_page_func=self.get_article)\n", "step-2": "<mask token>\n\n\nclass WeixinSpider(Driver):\n\n def __init__(self, isheadless=False, ismobile=False, isvirtualdisplay=\n False, spider_id='', name=''):\n Driver.__init__(self, log_file_name=spider_id, ismobile=ismobile,\n isvirtualdisplay=isvirtualdisplay, isheadless=isheadless)\n self.name = name\n self.debug_log(name=name)\n\n def get_article(self, data_list=[]):\n article_list = (self.\n until_presence_of_all_elements_located_by_css_selector(\n css_selector=page_weixin_2.listcssselector.list_css_selector))\n for i in range(1, len(article_list) + 1):\n self.until_scroll_to_center_click_by_css_selector(css_selector=\n '%s:nth-child(%s)' % (page_weixin_2.listcssselector.\n list_css_selector, i))\n time.sleep(3)\n self.driver.back()\n\n def run_spider(self):\n for public in Mysql().query_data(table='weixin_public', field=\n 'public_name')[:1]:\n self.fast_get_page(url='http://weixin.sogou.com/',\n min_time_to_wait=15, max_time_to_wait=30)\n self.until_send_text_by_css_selector(css_selector='#query',\n text=public[0])\n time.sleep(3)\n self.fast_enter_page_by_css_selector(css_selector='#query')\n time.sleep(2)\n self.fast_click_same_page_by_css_selector(click_css_selector=\n '#scroll-header > form > div > input.swz2')\n public_name_list = self.from_page_get_data_list(page=page_weixin_1)\n article_name_list = self.from_page_add_data_list_to_data_list(page\n =page_weixin_2, pre_page=page_weixin_1, data_list=\n public_name_list, extra_page_func=self.get_article)\n", "step-3": "<mask token>\nfl_weixin1 = Fieldlist(Field(fieldname='public_name', css_selector=\n 'div > div.txt-box > p.tit > a', regex='[^\\\\u4e00-\\\\u9fa5]*'))\nfl_weixin2 = Fieldlist(Field(fieldname='article_name', css_selector=\n 'div > div > h4'), Field(fieldname='article_time', css_selector=\n 'div > div > p.weui_media_extra_info'))\npage_weixin_1 = Page(name='微信公众号列表页面', fieldlist=fl_weixin1,\n listcssselector=ListCssSelector(list_css_selector=\n '#main > div.news-box > ul > li'))\npage_weixin_2 = Page(name='微信公众号文章列表页面', fieldlist=fl_weixin2, tabsetup=\n TabSetup(click_css_selector='div > div.txt-box > p.tit > a'),\n listcssselector=ListCssSelector(list_css_selector='#history > div'))\n\n\nclass WeixinSpider(Driver):\n\n def __init__(self, isheadless=False, ismobile=False, isvirtualdisplay=\n False, spider_id='', name=''):\n Driver.__init__(self, log_file_name=spider_id, ismobile=ismobile,\n isvirtualdisplay=isvirtualdisplay, isheadless=isheadless)\n self.name = name\n self.debug_log(name=name)\n\n def get_article(self, data_list=[]):\n article_list = (self.\n until_presence_of_all_elements_located_by_css_selector(\n css_selector=page_weixin_2.listcssselector.list_css_selector))\n for i in range(1, len(article_list) + 1):\n self.until_scroll_to_center_click_by_css_selector(css_selector=\n '%s:nth-child(%s)' % (page_weixin_2.listcssselector.\n list_css_selector, i))\n time.sleep(3)\n self.driver.back()\n\n def run_spider(self):\n for public in Mysql().query_data(table='weixin_public', field=\n 'public_name')[:1]:\n self.fast_get_page(url='http://weixin.sogou.com/',\n min_time_to_wait=15, max_time_to_wait=30)\n self.until_send_text_by_css_selector(css_selector='#query',\n text=public[0])\n time.sleep(3)\n self.fast_enter_page_by_css_selector(css_selector='#query')\n time.sleep(2)\n self.fast_click_same_page_by_css_selector(click_css_selector=\n '#scroll-header > form > div > input.swz2')\n public_name_list = self.from_page_get_data_list(page=page_weixin_1)\n article_name_list = self.from_page_add_data_list_to_data_list(page\n =page_weixin_2, pre_page=page_weixin_1, data_list=\n public_name_list, extra_page_func=self.get_article)\n", "step-4": "from spider.driver.base.driver import Driver\nfrom spider.driver.base.mysql import Mysql\nimport time\nfrom pyquery import PyQuery\nfrom spider.driver.base.field import Field, FieldName, Fieldlist, FieldType\nfrom spider.driver.base.page import Page\nfrom spider.driver.base.listcssselector import ListCssSelector\nfrom spider.driver.base.mongodb import Mongodb\nfrom spider.driver.base.tabsetup import TabSetup\nfl_weixin1 = Fieldlist(Field(fieldname='public_name', css_selector=\n 'div > div.txt-box > p.tit > a', regex='[^\\\\u4e00-\\\\u9fa5]*'))\nfl_weixin2 = Fieldlist(Field(fieldname='article_name', css_selector=\n 'div > div > h4'), Field(fieldname='article_time', css_selector=\n 'div > div > p.weui_media_extra_info'))\npage_weixin_1 = Page(name='微信公众号列表页面', fieldlist=fl_weixin1,\n listcssselector=ListCssSelector(list_css_selector=\n '#main > div.news-box > ul > li'))\npage_weixin_2 = Page(name='微信公众号文章列表页面', fieldlist=fl_weixin2, tabsetup=\n TabSetup(click_css_selector='div > div.txt-box > p.tit > a'),\n listcssselector=ListCssSelector(list_css_selector='#history > div'))\n\n\nclass WeixinSpider(Driver):\n\n def __init__(self, isheadless=False, ismobile=False, isvirtualdisplay=\n False, spider_id='', name=''):\n Driver.__init__(self, log_file_name=spider_id, ismobile=ismobile,\n isvirtualdisplay=isvirtualdisplay, isheadless=isheadless)\n self.name = name\n self.debug_log(name=name)\n\n def get_article(self, data_list=[]):\n article_list = (self.\n until_presence_of_all_elements_located_by_css_selector(\n css_selector=page_weixin_2.listcssselector.list_css_selector))\n for i in range(1, len(article_list) + 1):\n self.until_scroll_to_center_click_by_css_selector(css_selector=\n '%s:nth-child(%s)' % (page_weixin_2.listcssselector.\n list_css_selector, i))\n time.sleep(3)\n self.driver.back()\n\n def run_spider(self):\n for public in Mysql().query_data(table='weixin_public', field=\n 'public_name')[:1]:\n self.fast_get_page(url='http://weixin.sogou.com/',\n min_time_to_wait=15, max_time_to_wait=30)\n self.until_send_text_by_css_selector(css_selector='#query',\n text=public[0])\n time.sleep(3)\n self.fast_enter_page_by_css_selector(css_selector='#query')\n time.sleep(2)\n self.fast_click_same_page_by_css_selector(click_css_selector=\n '#scroll-header > form > div > input.swz2')\n public_name_list = self.from_page_get_data_list(page=page_weixin_1)\n article_name_list = self.from_page_add_data_list_to_data_list(page\n =page_weixin_2, pre_page=page_weixin_1, data_list=\n public_name_list, extra_page_func=self.get_article)\n", "step-5": "# -*- coding:utf-8 -*-\nfrom spider.driver.base.driver import Driver\nfrom spider.driver.base.mysql import Mysql\nimport time\nfrom pyquery import PyQuery\nfrom spider.driver.base.field import Field,FieldName,Fieldlist,FieldType\nfrom spider.driver.base.page import Page\nfrom spider.driver.base.listcssselector import ListCssSelector\nfrom spider.driver.base.mongodb import Mongodb\nfrom spider.driver.base.tabsetup import TabSetup\n\nfl_weixin1 = Fieldlist(\n Field(fieldname='public_name', css_selector='div > div.txt-box > p.tit > a', regex=r'[^\\u4e00-\\u9fa5]*'),\n)\n\nfl_weixin2 = Fieldlist(\n Field(fieldname='article_name', css_selector='div > div > h4'),\n Field(fieldname='article_time', css_selector='div > div > p.weui_media_extra_info'),\n)\n\npage_weixin_1 = Page(name='微信公众号列表页面', fieldlist=fl_weixin1, listcssselector=ListCssSelector(list_css_selector='#main > div.news-box > ul > li'))\n\npage_weixin_2 = Page(name='微信公众号文章列表页面', fieldlist=fl_weixin2, tabsetup=TabSetup(click_css_selector='div > div.txt-box > p.tit > a'), listcssselector=ListCssSelector(list_css_selector='#history > div'))\n\nclass WeixinSpider(Driver):\n\n def __init__(self,isheadless=False,ismobile=False,isvirtualdisplay=False,spider_id='',name=''):\n Driver.__init__(self, log_file_name=spider_id, ismobile=ismobile, isvirtualdisplay=isvirtualdisplay,\n isheadless=isheadless)\n self.name = name\n self.debug_log(name=name)\n\n def get_article(self, data_list=[]):\n article_list = self.until_presence_of_all_elements_located_by_css_selector(css_selector=page_weixin_2.listcssselector.list_css_selector)\n for i in range(1, len(article_list)+1):\n self.until_scroll_to_center_click_by_css_selector(css_selector='%s:nth-child(%s)'%(page_weixin_2.listcssselector.list_css_selector,i))\n time.sleep(3)\n self.driver.back()\n\n def run_spider(self):\n for public in Mysql().query_data(table='weixin_public', field='public_name')[:1]:\n self.fast_get_page(url='http://weixin.sogou.com/', min_time_to_wait=15,max_time_to_wait=30)\n self.until_send_text_by_css_selector(css_selector='#query', text=public[0])\n time.sleep(3)\n self.fast_enter_page_by_css_selector(css_selector='#query')\n time.sleep(2)\n self.fast_click_same_page_by_css_selector(click_css_selector='#scroll-header > form > div > input.swz2')\n public_name_list = self.from_page_get_data_list(page=page_weixin_1)\n article_name_list = self.from_page_add_data_list_to_data_list(page=page_weixin_2, pre_page=page_weixin_1,data_list=public_name_list, extra_page_func=self.get_article)\n # self.fast_click_page_by_css_selector(ele=item, click_css_selector='div > div.txt-box > p.tit > a')\n # self.driver.switch_to.window(self.driver.window_handles[-1])\n # shop_data_list = self.from_page_get_data_list(page=page_weixin_1)\n # self.driver.close()\n # self.driver.switch_to.window(self.driver.window_handles[-1])", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
from marshmallow import ValidationError from werkzeug.exceptions import HTTPException from flask_jwt_extended.exceptions import JWTExtendedException from memedata.util import mk_errors from memedata import config def jwt_error_handler(error): code = 401 messages = list(getattr(error, 'args', [])) return mk_errors(code, messages) def http_error_handler(error): resp = error.response if resp is None: code = error.code messages = [error.description] else: code = getattr(resp, 'status_code', 500) json = resp.get_json() if 'errors' in json and json['errors']: messages = [e['message'] for e in json['errors'] if 'message' in e] else: messages = [str(resp.status)] return mk_errors(code, messages) def validation_error_handler(error): code = getattr(error, 'status_code', 500) messages = getattr(error, 'messages', []) return mk_errors(code, messages) def generic_error_handler(error): code = getattr(error, 'status_code', 500) if config.debug: messages = [str(error)] else: messages = ['something went wrong!'] return mk_errors(code, messages) def error_handler(error): try: if isinstance(error, JWTExtendedException): return jwt_error_handler(error) elif isinstance(error, HTTPException): return http_error_handler(error) elif isinstance(error, ValidationError): return validation_error_handler(error) else: return generic_error_handler(error) except: return mk_errors(500, 'something went wrong!') def register_handlers(app): app.errorhandler(Exception)(error_handler) app.errorhandler(HTTPException)(error_handler) app.handle_user_exception = error_handler
normal
{ "blob_id": "e1da3255668999c3b77aa8c9332b197a9203478e", "index": 8992, "step-1": "<mask token>\n\n\ndef jwt_error_handler(error):\n code = 401\n messages = list(getattr(error, 'args', []))\n return mk_errors(code, messages)\n\n\n<mask token>\n\n\ndef validation_error_handler(error):\n code = getattr(error, 'status_code', 500)\n messages = getattr(error, 'messages', [])\n return mk_errors(code, messages)\n\n\ndef generic_error_handler(error):\n code = getattr(error, 'status_code', 500)\n if config.debug:\n messages = [str(error)]\n else:\n messages = ['something went wrong!']\n return mk_errors(code, messages)\n\n\ndef error_handler(error):\n try:\n if isinstance(error, JWTExtendedException):\n return jwt_error_handler(error)\n elif isinstance(error, HTTPException):\n return http_error_handler(error)\n elif isinstance(error, ValidationError):\n return validation_error_handler(error)\n else:\n return generic_error_handler(error)\n except:\n return mk_errors(500, 'something went wrong!')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef jwt_error_handler(error):\n code = 401\n messages = list(getattr(error, 'args', []))\n return mk_errors(code, messages)\n\n\n<mask token>\n\n\ndef validation_error_handler(error):\n code = getattr(error, 'status_code', 500)\n messages = getattr(error, 'messages', [])\n return mk_errors(code, messages)\n\n\ndef generic_error_handler(error):\n code = getattr(error, 'status_code', 500)\n if config.debug:\n messages = [str(error)]\n else:\n messages = ['something went wrong!']\n return mk_errors(code, messages)\n\n\ndef error_handler(error):\n try:\n if isinstance(error, JWTExtendedException):\n return jwt_error_handler(error)\n elif isinstance(error, HTTPException):\n return http_error_handler(error)\n elif isinstance(error, ValidationError):\n return validation_error_handler(error)\n else:\n return generic_error_handler(error)\n except:\n return mk_errors(500, 'something went wrong!')\n\n\ndef register_handlers(app):\n app.errorhandler(Exception)(error_handler)\n app.errorhandler(HTTPException)(error_handler)\n app.handle_user_exception = error_handler\n", "step-3": "<mask token>\n\n\ndef jwt_error_handler(error):\n code = 401\n messages = list(getattr(error, 'args', []))\n return mk_errors(code, messages)\n\n\ndef http_error_handler(error):\n resp = error.response\n if resp is None:\n code = error.code\n messages = [error.description]\n else:\n code = getattr(resp, 'status_code', 500)\n json = resp.get_json()\n if 'errors' in json and json['errors']:\n messages = [e['message'] for e in json['errors'] if 'message' in e]\n else:\n messages = [str(resp.status)]\n return mk_errors(code, messages)\n\n\ndef validation_error_handler(error):\n code = getattr(error, 'status_code', 500)\n messages = getattr(error, 'messages', [])\n return mk_errors(code, messages)\n\n\ndef generic_error_handler(error):\n code = getattr(error, 'status_code', 500)\n if config.debug:\n messages = [str(error)]\n else:\n messages = ['something went wrong!']\n return mk_errors(code, messages)\n\n\ndef error_handler(error):\n try:\n if isinstance(error, JWTExtendedException):\n return jwt_error_handler(error)\n elif isinstance(error, HTTPException):\n return http_error_handler(error)\n elif isinstance(error, ValidationError):\n return validation_error_handler(error)\n else:\n return generic_error_handler(error)\n except:\n return mk_errors(500, 'something went wrong!')\n\n\ndef register_handlers(app):\n app.errorhandler(Exception)(error_handler)\n app.errorhandler(HTTPException)(error_handler)\n app.handle_user_exception = error_handler\n", "step-4": "from marshmallow import ValidationError\nfrom werkzeug.exceptions import HTTPException\nfrom flask_jwt_extended.exceptions import JWTExtendedException\nfrom memedata.util import mk_errors\nfrom memedata import config\n\n\ndef jwt_error_handler(error):\n code = 401\n messages = list(getattr(error, 'args', []))\n return mk_errors(code, messages)\n\n\ndef http_error_handler(error):\n resp = error.response\n if resp is None:\n code = error.code\n messages = [error.description]\n else:\n code = getattr(resp, 'status_code', 500)\n json = resp.get_json()\n if 'errors' in json and json['errors']:\n messages = [e['message'] for e in json['errors'] if 'message' in e]\n else:\n messages = [str(resp.status)]\n return mk_errors(code, messages)\n\n\ndef validation_error_handler(error):\n code = getattr(error, 'status_code', 500)\n messages = getattr(error, 'messages', [])\n return mk_errors(code, messages)\n\n\ndef generic_error_handler(error):\n code = getattr(error, 'status_code', 500)\n if config.debug:\n messages = [str(error)]\n else:\n messages = ['something went wrong!']\n return mk_errors(code, messages)\n\n\ndef error_handler(error):\n try:\n if isinstance(error, JWTExtendedException):\n return jwt_error_handler(error)\n elif isinstance(error, HTTPException):\n return http_error_handler(error)\n elif isinstance(error, ValidationError):\n return validation_error_handler(error)\n else:\n return generic_error_handler(error)\n except:\n return mk_errors(500, 'something went wrong!')\n\n\ndef register_handlers(app):\n app.errorhandler(Exception)(error_handler)\n app.errorhandler(HTTPException)(error_handler)\n app.handle_user_exception = error_handler\n", "step-5": null, "step-ids": [ 4, 5, 6, 7 ] }
[ 4, 5, 6, 7 ]
from typing import Dict, List from .power_bi_querier import PowerBiQuerier class DeathsByEthnicity(PowerBiQuerier): def __init__(self) ->None: self.source = 'd' self.name = 'deaths by race' self.property = 'race' super().__init__() def _parse_data(self, response_json: Dict[str, List]) ->Dict[str, int]: results = super()._parse_data(response_json) return {ethnicity.strip(): count for ethnicity, count in results}
normal
{ "blob_id": "d975b74370acc72101f808e70bef64cee39a5ab8", "index": 6204, "step-1": "<mask token>\n\n\nclass DeathsByEthnicity(PowerBiQuerier):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass DeathsByEthnicity(PowerBiQuerier):\n <mask token>\n\n def _parse_data(self, response_json: Dict[str, List]) ->Dict[str, int]:\n results = super()._parse_data(response_json)\n return {ethnicity.strip(): count for ethnicity, count in results}\n", "step-3": "<mask token>\n\n\nclass DeathsByEthnicity(PowerBiQuerier):\n\n def __init__(self) ->None:\n self.source = 'd'\n self.name = 'deaths by race'\n self.property = 'race'\n super().__init__()\n\n def _parse_data(self, response_json: Dict[str, List]) ->Dict[str, int]:\n results = super()._parse_data(response_json)\n return {ethnicity.strip(): count for ethnicity, count in results}\n", "step-4": "from typing import Dict, List\nfrom .power_bi_querier import PowerBiQuerier\n\n\nclass DeathsByEthnicity(PowerBiQuerier):\n\n def __init__(self) ->None:\n self.source = 'd'\n self.name = 'deaths by race'\n self.property = 'race'\n super().__init__()\n\n def _parse_data(self, response_json: Dict[str, List]) ->Dict[str, int]:\n results = super()._parse_data(response_json)\n return {ethnicity.strip(): count for ethnicity, count in results}\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
import PyInstaller.__main__ import os import shutil # Paths basePath = os.path.realpath(os.path.join(os.path.dirname(__file__), os.path.pardir)) srcPath = os.path.join(basePath, 'src') outPath = os.path.join(basePath, 'out') workPath = os.path.join(outPath, 'work') # Bundle PyInstaller.__main__.run([ '--clean', '--onefile', '--workpath', workPath, '--distpath', outPath, '--hidden-import', 'win32timezone', os.path.join(srcPath, 'service.py'), os.path.join(srcPath, 'bridge.py'), ]) # Copy config files shutil.copy2(os.path.join(srcPath, 'bridge.cfg'), outPath) shutil.copy2(os.path.join(srcPath, 'groups.cfg'), outPath) # Remove build artifacts shutil.rmtree(workPath)
normal
{ "blob_id": "16a95573c4fccc10bdc5e37b307d0c85714b328c", "index": 3548, "step-1": "<mask token>\n", "step-2": "<mask token>\nPyInstaller.__main__.run(['--clean', '--onefile', '--workpath', workPath,\n '--distpath', outPath, '--hidden-import', 'win32timezone', os.path.join\n (srcPath, 'service.py'), os.path.join(srcPath, 'bridge.py')])\nshutil.copy2(os.path.join(srcPath, 'bridge.cfg'), outPath)\nshutil.copy2(os.path.join(srcPath, 'groups.cfg'), outPath)\nshutil.rmtree(workPath)\n", "step-3": "<mask token>\nbasePath = os.path.realpath(os.path.join(os.path.dirname(__file__), os.path\n .pardir))\nsrcPath = os.path.join(basePath, 'src')\noutPath = os.path.join(basePath, 'out')\nworkPath = os.path.join(outPath, 'work')\nPyInstaller.__main__.run(['--clean', '--onefile', '--workpath', workPath,\n '--distpath', outPath, '--hidden-import', 'win32timezone', os.path.join\n (srcPath, 'service.py'), os.path.join(srcPath, 'bridge.py')])\nshutil.copy2(os.path.join(srcPath, 'bridge.cfg'), outPath)\nshutil.copy2(os.path.join(srcPath, 'groups.cfg'), outPath)\nshutil.rmtree(workPath)\n", "step-4": "import PyInstaller.__main__\nimport os\nimport shutil\nbasePath = os.path.realpath(os.path.join(os.path.dirname(__file__), os.path\n .pardir))\nsrcPath = os.path.join(basePath, 'src')\noutPath = os.path.join(basePath, 'out')\nworkPath = os.path.join(outPath, 'work')\nPyInstaller.__main__.run(['--clean', '--onefile', '--workpath', workPath,\n '--distpath', outPath, '--hidden-import', 'win32timezone', os.path.join\n (srcPath, 'service.py'), os.path.join(srcPath, 'bridge.py')])\nshutil.copy2(os.path.join(srcPath, 'bridge.cfg'), outPath)\nshutil.copy2(os.path.join(srcPath, 'groups.cfg'), outPath)\nshutil.rmtree(workPath)\n", "step-5": "import PyInstaller.__main__\nimport os\nimport shutil\n\n# Paths\nbasePath = os.path.realpath(os.path.join(os.path.dirname(__file__), os.path.pardir))\nsrcPath = os.path.join(basePath, 'src')\noutPath = os.path.join(basePath, 'out')\nworkPath = os.path.join(outPath, 'work')\n\n# Bundle\nPyInstaller.__main__.run([\n '--clean',\n '--onefile',\n '--workpath', workPath,\n '--distpath', outPath,\n '--hidden-import', 'win32timezone',\n os.path.join(srcPath, 'service.py'),\n os.path.join(srcPath, 'bridge.py'),\n])\n\n# Copy config files\nshutil.copy2(os.path.join(srcPath, 'bridge.cfg'), outPath)\nshutil.copy2(os.path.join(srcPath, 'groups.cfg'), outPath)\n\n# Remove build artifacts\nshutil.rmtree(workPath)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
class Solution: def isUgly(self, num): if num == 0: return False for n in [2, 3, 5]: while num % n == 0: num = num / n return num == 1 a = Solution() print(a.isUgly(14)) print(a.isUgly(8)) print(a.isUgly(6)) print(a.isUgly(0))
normal
{ "blob_id": "d39cc2dbbc83869e559f8355ceba5cf420adea5e", "index": 1662, "step-1": "class Solution:\n <mask token>\n\n\n<mask token>\n", "step-2": "class Solution:\n\n def isUgly(self, num):\n if num == 0:\n return False\n for n in [2, 3, 5]:\n while num % n == 0:\n num = num / n\n return num == 1\n\n\n<mask token>\n", "step-3": "class Solution:\n\n def isUgly(self, num):\n if num == 0:\n return False\n for n in [2, 3, 5]:\n while num % n == 0:\n num = num / n\n return num == 1\n\n\n<mask token>\nprint(a.isUgly(14))\nprint(a.isUgly(8))\nprint(a.isUgly(6))\nprint(a.isUgly(0))\n", "step-4": "class Solution:\n\n def isUgly(self, num):\n if num == 0:\n return False\n for n in [2, 3, 5]:\n while num % n == 0:\n num = num / n\n return num == 1\n\n\na = Solution()\nprint(a.isUgly(14))\nprint(a.isUgly(8))\nprint(a.isUgly(6))\nprint(a.isUgly(0))\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.utils.translation import ugettext_lazy as _ from django import forms from programs.models import * from programs.forms import CustomUserCreationForm, CustomUserChangeForm import pdb class ProgramAdmin(admin.ModelAdmin): list_display = ('description','get_university') search_fields=('description','department__university__code') list_filter = ('department__university',) def get_university(self,obj): return obj.department.university def save_model(self,request,obj,form,change): obj.code = obj.description.replace(' ','_') obj.save() get_university.short_description = 'University' def change_view(self,request,object_id,extra_content=None): self.exclude = ('',) return super(ProgramAdmin,self).change_view(request,object_id) def add_view(self,request,extra_content=None): self.exclude = ('code',) return super(ProgramAdmin,self).add_view(request) class ProgramInline(admin.TabularInline): model = Program extra = 0 fields = ('description',) class DepartmentAdmin(admin.ModelAdmin): fieldsets = [ (None, {'fields':['description','university','tenured','nonTenured']}), ] inlines = [ProgramInline] search_fields = ('university__description','description') list_filter = ('description','university') def save_model(self,request,obj,form,change): if obj.code == '': obj.code = obj.name.replace(' ','_') obj.save() class DepartmentInline(admin.TabularInline): model = Department extra = 0 fields = ('description',) class UniversityAdmin(admin.ModelAdmin): inlines = [DepartmentInline] search_fields = ('description',) def save_model(self,request,obj,form,change): obj.code = obj.description.replace(' ','_') obj.save() def change_view(self,request,object_id,extra_content=None): self.exclude = ('',) return super(UniversityAdmin,self).change_view(request,object_id) def add_view(self,request,extra_content=None): self.exclude = ('code',) return super(UniversityAdmin,self).add_view(request) class CourseForm(forms.ModelForm): class Meta: Model = Course def __init__(self,*args,**kwargs): super(CourseForm,self).__init__(*args,**kwargs) self.fields['prerequisite'].queryset = Course.objects.exclude(id__exact=self.instance.id) def clean(self): #Need to handle validation for unique_together cleaned_data = self.cleaned_data if self.instance.pk is None: if Course.objects.filter(code=cleaned_data['code'],university=cleaned_data['university']).exists(): raise forms.ValidationError('The course already exists at this university.') return cleaned_data class CourseAdmin(admin.ModelAdmin): form = CourseForm list_display = ('code','university',) list_filter = ('university',) search_fields = ('code',) def save_model(self,request,obj,form,change): if obj.code == '': obj.code = obj.name.replace(' ','_') obj.save() class dbAdmin(UserAdmin): fieldsets = ( (None, {'fields': ('email', 'password')}), (_('Personal info'), {'fields': ('first_name', 'last_name')}), (_('Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser', 'groups', 'user_permissions')}), (_('Important dates'), {'fields': ('last_login', 'date_joined')}), ) add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ('email', 'password1', 'password2')} ), ) form = CustomUserChangeForm add_form = CustomUserCreationForm list_display = ('email', 'first_name', 'last_name', 'is_staff') search_fields = ('email', 'first_name', 'last_name') ordering = ('email',) admin.site.register(dbUser, dbAdmin) admin.site.register(University,UniversityAdmin) admin.site.register(Program,ProgramAdmin) admin.site.register(Department,DepartmentAdmin) admin.site.register(Course,CourseAdmin)
normal
{ "blob_id": "77e4bbe625251254cdadaeeb23dddf51e729e747", "index": 832, "step-1": "<mask token>\n\n\nclass DepartmentAdmin(admin.ModelAdmin):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def save_model(self, request, obj, form, change):\n if obj.code == '':\n obj.code = obj.name.replace(' ', '_')\n obj.save()\n\n\nclass DepartmentInline(admin.TabularInline):\n model = Department\n extra = 0\n fields = 'description',\n\n\nclass UniversityAdmin(admin.ModelAdmin):\n inlines = [DepartmentInline]\n search_fields = 'description',\n\n def save_model(self, request, obj, form, change):\n obj.code = obj.description.replace(' ', '_')\n obj.save()\n\n def change_view(self, request, object_id, extra_content=None):\n self.exclude = '',\n return super(UniversityAdmin, self).change_view(request, object_id)\n\n def add_view(self, request, extra_content=None):\n self.exclude = 'code',\n return super(UniversityAdmin, self).add_view(request)\n\n\nclass CourseForm(forms.ModelForm):\n\n\n class Meta:\n Model = Course\n\n def __init__(self, *args, **kwargs):\n super(CourseForm, self).__init__(*args, **kwargs)\n self.fields['prerequisite'].queryset = Course.objects.exclude(id__exact\n =self.instance.id)\n\n def clean(self):\n cleaned_data = self.cleaned_data\n if self.instance.pk is None:\n if Course.objects.filter(code=cleaned_data['code'], university=\n cleaned_data['university']).exists():\n raise forms.ValidationError(\n 'The course already exists at this university.')\n return cleaned_data\n\n\nclass CourseAdmin(admin.ModelAdmin):\n form = CourseForm\n list_display = 'code', 'university'\n list_filter = 'university',\n search_fields = 'code',\n\n def save_model(self, request, obj, form, change):\n if obj.code == '':\n obj.code = obj.name.replace(' ', '_')\n obj.save()\n\n\nclass dbAdmin(UserAdmin):\n fieldsets = (None, {'fields': ('email', 'password')}), (_(\n 'Personal info'), {'fields': ('first_name', 'last_name')}), (_(\n 'Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser',\n 'groups', 'user_permissions')}), (_('Important dates'), {'fields':\n ('last_login', 'date_joined')})\n add_fieldsets = (None, {'classes': ('wide',), 'fields': ('email',\n 'password1', 'password2')}),\n form = CustomUserChangeForm\n add_form = CustomUserCreationForm\n list_display = 'email', 'first_name', 'last_name', 'is_staff'\n search_fields = 'email', 'first_name', 'last_name'\n ordering = 'email',\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ProgramAdmin(admin.ModelAdmin):\n <mask token>\n <mask token>\n <mask token>\n\n def get_university(self, obj):\n return obj.department.university\n <mask token>\n <mask token>\n <mask token>\n\n def add_view(self, request, extra_content=None):\n self.exclude = 'code',\n return super(ProgramAdmin, self).add_view(request)\n\n\nclass ProgramInline(admin.TabularInline):\n model = Program\n extra = 0\n fields = 'description',\n\n\nclass DepartmentAdmin(admin.ModelAdmin):\n fieldsets = [(None, {'fields': ['description', 'university', 'tenured',\n 'nonTenured']})]\n inlines = [ProgramInline]\n search_fields = 'university__description', 'description'\n list_filter = 'description', 'university'\n\n def save_model(self, request, obj, form, change):\n if obj.code == '':\n obj.code = obj.name.replace(' ', '_')\n obj.save()\n\n\nclass DepartmentInline(admin.TabularInline):\n model = Department\n extra = 0\n fields = 'description',\n\n\nclass UniversityAdmin(admin.ModelAdmin):\n inlines = [DepartmentInline]\n search_fields = 'description',\n\n def save_model(self, request, obj, form, change):\n obj.code = obj.description.replace(' ', '_')\n obj.save()\n\n def change_view(self, request, object_id, extra_content=None):\n self.exclude = '',\n return super(UniversityAdmin, self).change_view(request, object_id)\n\n def add_view(self, request, extra_content=None):\n self.exclude = 'code',\n return super(UniversityAdmin, self).add_view(request)\n\n\nclass CourseForm(forms.ModelForm):\n\n\n class Meta:\n Model = Course\n\n def __init__(self, *args, **kwargs):\n super(CourseForm, self).__init__(*args, **kwargs)\n self.fields['prerequisite'].queryset = Course.objects.exclude(id__exact\n =self.instance.id)\n\n def clean(self):\n cleaned_data = self.cleaned_data\n if self.instance.pk is None:\n if Course.objects.filter(code=cleaned_data['code'], university=\n cleaned_data['university']).exists():\n raise forms.ValidationError(\n 'The course already exists at this university.')\n return cleaned_data\n\n\nclass CourseAdmin(admin.ModelAdmin):\n form = CourseForm\n list_display = 'code', 'university'\n list_filter = 'university',\n search_fields = 'code',\n\n def save_model(self, request, obj, form, change):\n if obj.code == '':\n obj.code = obj.name.replace(' ', '_')\n obj.save()\n\n\nclass dbAdmin(UserAdmin):\n fieldsets = (None, {'fields': ('email', 'password')}), (_(\n 'Personal info'), {'fields': ('first_name', 'last_name')}), (_(\n 'Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser',\n 'groups', 'user_permissions')}), (_('Important dates'), {'fields':\n ('last_login', 'date_joined')})\n add_fieldsets = (None, {'classes': ('wide',), 'fields': ('email',\n 'password1', 'password2')}),\n form = CustomUserChangeForm\n add_form = CustomUserCreationForm\n list_display = 'email', 'first_name', 'last_name', 'is_staff'\n search_fields = 'email', 'first_name', 'last_name'\n ordering = 'email',\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ProgramAdmin(admin.ModelAdmin):\n <mask token>\n <mask token>\n <mask token>\n\n def get_university(self, obj):\n return obj.department.university\n <mask token>\n <mask token>\n\n def change_view(self, request, object_id, extra_content=None):\n self.exclude = '',\n return super(ProgramAdmin, self).change_view(request, object_id)\n\n def add_view(self, request, extra_content=None):\n self.exclude = 'code',\n return super(ProgramAdmin, self).add_view(request)\n\n\nclass ProgramInline(admin.TabularInline):\n model = Program\n extra = 0\n fields = 'description',\n\n\nclass DepartmentAdmin(admin.ModelAdmin):\n fieldsets = [(None, {'fields': ['description', 'university', 'tenured',\n 'nonTenured']})]\n inlines = [ProgramInline]\n search_fields = 'university__description', 'description'\n list_filter = 'description', 'university'\n\n def save_model(self, request, obj, form, change):\n if obj.code == '':\n obj.code = obj.name.replace(' ', '_')\n obj.save()\n\n\nclass DepartmentInline(admin.TabularInline):\n model = Department\n extra = 0\n fields = 'description',\n\n\nclass UniversityAdmin(admin.ModelAdmin):\n inlines = [DepartmentInline]\n search_fields = 'description',\n\n def save_model(self, request, obj, form, change):\n obj.code = obj.description.replace(' ', '_')\n obj.save()\n\n def change_view(self, request, object_id, extra_content=None):\n self.exclude = '',\n return super(UniversityAdmin, self).change_view(request, object_id)\n\n def add_view(self, request, extra_content=None):\n self.exclude = 'code',\n return super(UniversityAdmin, self).add_view(request)\n\n\nclass CourseForm(forms.ModelForm):\n\n\n class Meta:\n Model = Course\n\n def __init__(self, *args, **kwargs):\n super(CourseForm, self).__init__(*args, **kwargs)\n self.fields['prerequisite'].queryset = Course.objects.exclude(id__exact\n =self.instance.id)\n\n def clean(self):\n cleaned_data = self.cleaned_data\n if self.instance.pk is None:\n if Course.objects.filter(code=cleaned_data['code'], university=\n cleaned_data['university']).exists():\n raise forms.ValidationError(\n 'The course already exists at this university.')\n return cleaned_data\n\n\nclass CourseAdmin(admin.ModelAdmin):\n form = CourseForm\n list_display = 'code', 'university'\n list_filter = 'university',\n search_fields = 'code',\n\n def save_model(self, request, obj, form, change):\n if obj.code == '':\n obj.code = obj.name.replace(' ', '_')\n obj.save()\n\n\nclass dbAdmin(UserAdmin):\n fieldsets = (None, {'fields': ('email', 'password')}), (_(\n 'Personal info'), {'fields': ('first_name', 'last_name')}), (_(\n 'Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser',\n 'groups', 'user_permissions')}), (_('Important dates'), {'fields':\n ('last_login', 'date_joined')})\n add_fieldsets = (None, {'classes': ('wide',), 'fields': ('email',\n 'password1', 'password2')}),\n form = CustomUserChangeForm\n add_form = CustomUserCreationForm\n list_display = 'email', 'first_name', 'last_name', 'is_staff'\n search_fields = 'email', 'first_name', 'last_name'\n ordering = 'email',\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass ProgramAdmin(admin.ModelAdmin):\n list_display = 'description', 'get_university'\n search_fields = 'description', 'department__university__code'\n list_filter = 'department__university',\n\n def get_university(self, obj):\n return obj.department.university\n\n def save_model(self, request, obj, form, change):\n obj.code = obj.description.replace(' ', '_')\n obj.save()\n get_university.short_description = 'University'\n\n def change_view(self, request, object_id, extra_content=None):\n self.exclude = '',\n return super(ProgramAdmin, self).change_view(request, object_id)\n\n def add_view(self, request, extra_content=None):\n self.exclude = 'code',\n return super(ProgramAdmin, self).add_view(request)\n\n\nclass ProgramInline(admin.TabularInline):\n model = Program\n extra = 0\n fields = 'description',\n\n\nclass DepartmentAdmin(admin.ModelAdmin):\n fieldsets = [(None, {'fields': ['description', 'university', 'tenured',\n 'nonTenured']})]\n inlines = [ProgramInline]\n search_fields = 'university__description', 'description'\n list_filter = 'description', 'university'\n\n def save_model(self, request, obj, form, change):\n if obj.code == '':\n obj.code = obj.name.replace(' ', '_')\n obj.save()\n\n\nclass DepartmentInline(admin.TabularInline):\n model = Department\n extra = 0\n fields = 'description',\n\n\nclass UniversityAdmin(admin.ModelAdmin):\n inlines = [DepartmentInline]\n search_fields = 'description',\n\n def save_model(self, request, obj, form, change):\n obj.code = obj.description.replace(' ', '_')\n obj.save()\n\n def change_view(self, request, object_id, extra_content=None):\n self.exclude = '',\n return super(UniversityAdmin, self).change_view(request, object_id)\n\n def add_view(self, request, extra_content=None):\n self.exclude = 'code',\n return super(UniversityAdmin, self).add_view(request)\n\n\nclass CourseForm(forms.ModelForm):\n\n\n class Meta:\n Model = Course\n\n def __init__(self, *args, **kwargs):\n super(CourseForm, self).__init__(*args, **kwargs)\n self.fields['prerequisite'].queryset = Course.objects.exclude(id__exact\n =self.instance.id)\n\n def clean(self):\n cleaned_data = self.cleaned_data\n if self.instance.pk is None:\n if Course.objects.filter(code=cleaned_data['code'], university=\n cleaned_data['university']).exists():\n raise forms.ValidationError(\n 'The course already exists at this university.')\n return cleaned_data\n\n\nclass CourseAdmin(admin.ModelAdmin):\n form = CourseForm\n list_display = 'code', 'university'\n list_filter = 'university',\n search_fields = 'code',\n\n def save_model(self, request, obj, form, change):\n if obj.code == '':\n obj.code = obj.name.replace(' ', '_')\n obj.save()\n\n\nclass dbAdmin(UserAdmin):\n fieldsets = (None, {'fields': ('email', 'password')}), (_(\n 'Personal info'), {'fields': ('first_name', 'last_name')}), (_(\n 'Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser',\n 'groups', 'user_permissions')}), (_('Important dates'), {'fields':\n ('last_login', 'date_joined')})\n add_fieldsets = (None, {'classes': ('wide',), 'fields': ('email',\n 'password1', 'password2')}),\n form = CustomUserChangeForm\n add_form = CustomUserCreationForm\n list_display = 'email', 'first_name', 'last_name', 'is_staff'\n search_fields = 'email', 'first_name', 'last_name'\n ordering = 'email',\n\n\nadmin.site.register(dbUser, dbAdmin)\nadmin.site.register(University, UniversityAdmin)\nadmin.site.register(Program, ProgramAdmin)\nadmin.site.register(Department, DepartmentAdmin)\nadmin.site.register(Course, CourseAdmin)\n", "step-5": "from django.contrib import admin\nfrom django.contrib.auth.admin import UserAdmin\nfrom django.utils.translation import ugettext_lazy as _\nfrom django import forms\nfrom programs.models import *\nfrom programs.forms import CustomUserCreationForm, CustomUserChangeForm\nimport pdb\n\nclass ProgramAdmin(admin.ModelAdmin):\n\n\tlist_display = ('description','get_university')\n\tsearch_fields=('description','department__university__code')\n\tlist_filter = ('department__university',)\n\n\tdef get_university(self,obj):\n\t\treturn obj.department.university\n\n\tdef save_model(self,request,obj,form,change):\n\t\tobj.code = obj.description.replace(' ','_')\n\t\tobj.save()\n\n\tget_university.short_description = 'University'\n\n\tdef change_view(self,request,object_id,extra_content=None):\n\t\tself.exclude = ('',)\n\t\treturn super(ProgramAdmin,self).change_view(request,object_id)\n\n\tdef add_view(self,request,extra_content=None):\n\n\t\tself.exclude = ('code',)\n\t\treturn super(ProgramAdmin,self).add_view(request)\n\nclass ProgramInline(admin.TabularInline):\n\tmodel = Program\n\textra = 0\n\tfields = ('description',)\n\nclass DepartmentAdmin(admin.ModelAdmin):\n\n\tfieldsets = [\n\t(None, {'fields':['description','university','tenured','nonTenured']}),\n\t]\n\tinlines = [ProgramInline]\n\n\tsearch_fields = ('university__description','description')\n\tlist_filter = ('description','university')\n\n\tdef save_model(self,request,obj,form,change):\n\t\tif obj.code == '':\n\t\t\tobj.code = obj.name.replace(' ','_')\n\t\tobj.save()\n\n\nclass DepartmentInline(admin.TabularInline):\n\tmodel = Department\n\textra = 0\n\tfields = ('description',)\n\nclass UniversityAdmin(admin.ModelAdmin):\n\n\tinlines = [DepartmentInline]\n\n\tsearch_fields = ('description',)\n\n\tdef save_model(self,request,obj,form,change):\n\t\tobj.code = obj.description.replace(' ','_')\n\t\tobj.save()\n\n\tdef change_view(self,request,object_id,extra_content=None):\n\t\tself.exclude = ('',)\n\t\treturn super(UniversityAdmin,self).change_view(request,object_id)\n\n\tdef add_view(self,request,extra_content=None):\n\n\t\tself.exclude = ('code',)\n\t\treturn super(UniversityAdmin,self).add_view(request)\n\n\nclass CourseForm(forms.ModelForm):\n\n\tclass Meta:\n\t\tModel = Course\n\n\tdef __init__(self,*args,**kwargs):\n\t\tsuper(CourseForm,self).__init__(*args,**kwargs)\n\t\tself.fields['prerequisite'].queryset = Course.objects.exclude(id__exact=self.instance.id)\n\n\tdef clean(self):\n\t\t#Need to handle validation for unique_together\n\n\t\tcleaned_data = self.cleaned_data\n\t\tif self.instance.pk is None:\n\t\t\tif Course.objects.filter(code=cleaned_data['code'],university=cleaned_data['university']).exists():\n\t\t\t\traise forms.ValidationError('The course already exists at this university.')\n\n\t\treturn cleaned_data\n\nclass CourseAdmin(admin.ModelAdmin):\n\tform = CourseForm\n\n\tlist_display = ('code','university',)\n\tlist_filter = ('university',)\n\tsearch_fields = ('code',)\n\n\tdef save_model(self,request,obj,form,change):\n\t\tif obj.code == '':\n\t\t\tobj.code = obj.name.replace(' ','_')\n\n\t\tobj.save()\n\n\nclass dbAdmin(UserAdmin):\n\tfieldsets = (\n\t\t(None, {'fields': ('email', 'password')}),\n\t\t(_('Personal info'), {'fields': ('first_name', 'last_name')}),\n\t\t(_('Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser',\n\t\t\t'groups', 'user_permissions')}),\n\t\t(_('Important dates'), {'fields': ('last_login', 'date_joined')}),\n\t\t)\n\n\tadd_fieldsets = (\n\t\t(None, {\n\t\t\t'classes': ('wide',),\n\t\t\t'fields': ('email', 'password1', 'password2')}\n\t\t\t),\n\t\t)\n\tform = CustomUserChangeForm\n\tadd_form = CustomUserCreationForm\n\tlist_display = ('email', 'first_name', 'last_name', 'is_staff')\n\tsearch_fields = ('email', 'first_name', 'last_name')\n\tordering = ('email',)\n\nadmin.site.register(dbUser, dbAdmin)\nadmin.site.register(University,UniversityAdmin)\nadmin.site.register(Program,ProgramAdmin)\nadmin.site.register(Department,DepartmentAdmin)\nadmin.site.register(Course,CourseAdmin)\n\n", "step-ids": [ 17, 23, 24, 27, 29 ] }
[ 17, 23, 24, 27, 29 ]
# Stubs for torch.nn.utils (Python 3) # # NOTE: This dynamically typed stub was automatically generated by stubgen. from .clip_grad import clip_grad_norm, clip_grad_norm_, clip_grad_value_ from .convert_parameters import parameters_to_vector, vector_to_parameters from .spectral_norm import remove_spectral_norm, spectral_norm from .weight_norm import remove_weight_norm, weight_norm
normal
{ "blob_id": "5d9ace3b6c5b4e24fc3b20b5e5640f2fcdb252bb", "index": 9292, "step-1": "<mask token>\n", "step-2": "from .clip_grad import clip_grad_norm, clip_grad_norm_, clip_grad_value_\nfrom .convert_parameters import parameters_to_vector, vector_to_parameters\nfrom .spectral_norm import remove_spectral_norm, spectral_norm\nfrom .weight_norm import remove_weight_norm, weight_norm\n", "step-3": "# Stubs for torch.nn.utils (Python 3)\n#\n# NOTE: This dynamically typed stub was automatically generated by stubgen.\n\nfrom .clip_grad import clip_grad_norm, clip_grad_norm_, clip_grad_value_\nfrom .convert_parameters import parameters_to_vector, vector_to_parameters\nfrom .spectral_norm import remove_spectral_norm, spectral_norm\nfrom .weight_norm import remove_weight_norm, weight_norm\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# coding=utf-8 """ author: wlc function: 百科检索数据层 """ # 引入外部库 import json import re from bs4 import BeautifulSoup # 引入内部库 from src.util.reptile import * class EncyclopediaDao: @staticmethod def get_key_content (key: str) -> list: """ 获取指定关键字的百科内容检索内容 :param key: :return: """ # 1.参数设置 url = 'https://zh.wikipedia.org/w/api.php?' parm = { 'action': 'query', 'list': 'search', 'srsearch': key, 'format': 'json', 'formatversion': '2' } # 2.百科内容获取 reptile = Reptile() page_content = reptile.get_page_content(url + '&'.join([key + '=' + parm[key] for key in parm]), timeout=3) content_list = json.loads(page_content)['query']['search'] # 3.百科内容格式化 data = [] prefix = 'https://zh.wikipedia.org/wiki/' for index, item in enumerate(content_list): date, time = item['timestamp'].rstrip('Z').split('T') entry = { 'id': item['pageid'], 'index': index, 'create_date': date, 'create_time': time, 'title': item['title'], 'abstract': re.sub('[<span class=\"searchmatch\">,</span>]', '', item['snippet']), 'url': prefix + item['title'], } data.append(entry) return data @staticmethod def get_key_title(key: str) -> list: """ 获取指定关键字的百科内容检索标题 :param key: :return: """ # 1.参数设置 url = 'https://zh.wikipedia.org/w/api.php?' parm = { 'action': 'opensearch', 'search': key, 'format': 'json', 'formatversion': '2' } # 2.百科内容获取 reptile = Reptile() page_content = reptile.get_page_content(url + '&'.join([key + '=' + parm[key] for key in parm]), timeout=3) content_list = json.loads(page_content)[1] # 3.百科内容格式化 data = [] prefix = 'https://zh.wikipedia.org/wiki/' for index, item in enumerate(content_list): entry = { 'index': index, 'title': item, 'url': prefix + item, } data.append(entry) return data @staticmethod def get_faq_content(query: str, page: str) -> list: """ 获取指定query的faq检索内容 :param query: :param page: :return: """ # 1.参数设置 url = 'https://zhidao.baidu.com/search?' parm = { 'lm': '0', 'rn': '5', 'pn': page, 'fr': 'search', 'ie': 'gbk', 'word': query } # 2.百科内容获取 reptile = Reptile() page_content = reptile.get_page_content(url + '&'.join([key + '=' + parm[key] for key in parm]), timeout=3, is_cookie=True, charset='gbk') bs = BeautifulSoup(page_content, "html.parser") content_list = bs.body.find_all("dl", {'class': 'dl'}) # 3.百科内容格式化 data = [] for item in content_list: entry = { 'create_date': item.find("dd", {'class': 'dd explain f-light'}).span.text, 'title': item.a.text, 'abstract': item.find("dd", {'class': 'dd answer'}).text, 'url': item.a.get('href') } data.append(entry) return data
normal
{ "blob_id": "a7f348b258e1d6b02a79c60e4fe54b6d53801f70", "index": 3877, "step-1": "<mask token>\n\n\nclass EncyclopediaDao:\n <mask token>\n <mask token>\n\n @staticmethod\n def get_faq_content(query: str, page: str) ->list:\n \"\"\"\n\t\t获取指定query的faq检索内容\n\t\t:param query:\n\t\t:param page:\n\t\t:return:\n\t\t\"\"\"\n url = 'https://zhidao.baidu.com/search?'\n parm = {'lm': '0', 'rn': '5', 'pn': page, 'fr': 'search', 'ie':\n 'gbk', 'word': query}\n reptile = Reptile()\n page_content = reptile.get_page_content(url + '&'.join([(key + '=' +\n parm[key]) for key in parm]), timeout=3, is_cookie=True,\n charset='gbk')\n bs = BeautifulSoup(page_content, 'html.parser')\n content_list = bs.body.find_all('dl', {'class': 'dl'})\n data = []\n for item in content_list:\n entry = {'create_date': item.find('dd', {'class':\n 'dd explain f-light'}).span.text, 'title': item.a.text,\n 'abstract': item.find('dd', {'class': 'dd answer'}).text,\n 'url': item.a.get('href')}\n data.append(entry)\n return data\n", "step-2": "<mask token>\n\n\nclass EncyclopediaDao:\n <mask token>\n\n @staticmethod\n def get_key_title(key: str) ->list:\n \"\"\"\n\t\t获取指定关键字的百科内容检索标题\n\t\t:param key:\n\t\t:return:\n\t\t\"\"\"\n url = 'https://zh.wikipedia.org/w/api.php?'\n parm = {'action': 'opensearch', 'search': key, 'format': 'json',\n 'formatversion': '2'}\n reptile = Reptile()\n page_content = reptile.get_page_content(url + '&'.join([(key + '=' +\n parm[key]) for key in parm]), timeout=3)\n content_list = json.loads(page_content)[1]\n data = []\n prefix = 'https://zh.wikipedia.org/wiki/'\n for index, item in enumerate(content_list):\n entry = {'index': index, 'title': item, 'url': prefix + item}\n data.append(entry)\n return data\n\n @staticmethod\n def get_faq_content(query: str, page: str) ->list:\n \"\"\"\n\t\t获取指定query的faq检索内容\n\t\t:param query:\n\t\t:param page:\n\t\t:return:\n\t\t\"\"\"\n url = 'https://zhidao.baidu.com/search?'\n parm = {'lm': '0', 'rn': '5', 'pn': page, 'fr': 'search', 'ie':\n 'gbk', 'word': query}\n reptile = Reptile()\n page_content = reptile.get_page_content(url + '&'.join([(key + '=' +\n parm[key]) for key in parm]), timeout=3, is_cookie=True,\n charset='gbk')\n bs = BeautifulSoup(page_content, 'html.parser')\n content_list = bs.body.find_all('dl', {'class': 'dl'})\n data = []\n for item in content_list:\n entry = {'create_date': item.find('dd', {'class':\n 'dd explain f-light'}).span.text, 'title': item.a.text,\n 'abstract': item.find('dd', {'class': 'dd answer'}).text,\n 'url': item.a.get('href')}\n data.append(entry)\n return data\n", "step-3": "<mask token>\n\n\nclass EncyclopediaDao:\n\n @staticmethod\n def get_key_content(key: str) ->list:\n \"\"\"\n\t\t获取指定关键字的百科内容检索内容\n\t\t:param key:\n\t\t:return:\n\t\t\"\"\"\n url = 'https://zh.wikipedia.org/w/api.php?'\n parm = {'action': 'query', 'list': 'search', 'srsearch': key,\n 'format': 'json', 'formatversion': '2'}\n reptile = Reptile()\n page_content = reptile.get_page_content(url + '&'.join([(key + '=' +\n parm[key]) for key in parm]), timeout=3)\n content_list = json.loads(page_content)['query']['search']\n data = []\n prefix = 'https://zh.wikipedia.org/wiki/'\n for index, item in enumerate(content_list):\n date, time = item['timestamp'].rstrip('Z').split('T')\n entry = {'id': item['pageid'], 'index': index, 'create_date':\n date, 'create_time': time, 'title': item['title'],\n 'abstract': re.sub('[<span class=\"searchmatch\">,</span>]',\n '', item['snippet']), 'url': prefix + item['title']}\n data.append(entry)\n return data\n\n @staticmethod\n def get_key_title(key: str) ->list:\n \"\"\"\n\t\t获取指定关键字的百科内容检索标题\n\t\t:param key:\n\t\t:return:\n\t\t\"\"\"\n url = 'https://zh.wikipedia.org/w/api.php?'\n parm = {'action': 'opensearch', 'search': key, 'format': 'json',\n 'formatversion': '2'}\n reptile = Reptile()\n page_content = reptile.get_page_content(url + '&'.join([(key + '=' +\n parm[key]) for key in parm]), timeout=3)\n content_list = json.loads(page_content)[1]\n data = []\n prefix = 'https://zh.wikipedia.org/wiki/'\n for index, item in enumerate(content_list):\n entry = {'index': index, 'title': item, 'url': prefix + item}\n data.append(entry)\n return data\n\n @staticmethod\n def get_faq_content(query: str, page: str) ->list:\n \"\"\"\n\t\t获取指定query的faq检索内容\n\t\t:param query:\n\t\t:param page:\n\t\t:return:\n\t\t\"\"\"\n url = 'https://zhidao.baidu.com/search?'\n parm = {'lm': '0', 'rn': '5', 'pn': page, 'fr': 'search', 'ie':\n 'gbk', 'word': query}\n reptile = Reptile()\n page_content = reptile.get_page_content(url + '&'.join([(key + '=' +\n parm[key]) for key in parm]), timeout=3, is_cookie=True,\n charset='gbk')\n bs = BeautifulSoup(page_content, 'html.parser')\n content_list = bs.body.find_all('dl', {'class': 'dl'})\n data = []\n for item in content_list:\n entry = {'create_date': item.find('dd', {'class':\n 'dd explain f-light'}).span.text, 'title': item.a.text,\n 'abstract': item.find('dd', {'class': 'dd answer'}).text,\n 'url': item.a.get('href')}\n data.append(entry)\n return data\n", "step-4": "<mask token>\nimport json\nimport re\nfrom bs4 import BeautifulSoup\nfrom src.util.reptile import *\n\n\nclass EncyclopediaDao:\n\n @staticmethod\n def get_key_content(key: str) ->list:\n \"\"\"\n\t\t获取指定关键字的百科内容检索内容\n\t\t:param key:\n\t\t:return:\n\t\t\"\"\"\n url = 'https://zh.wikipedia.org/w/api.php?'\n parm = {'action': 'query', 'list': 'search', 'srsearch': key,\n 'format': 'json', 'formatversion': '2'}\n reptile = Reptile()\n page_content = reptile.get_page_content(url + '&'.join([(key + '=' +\n parm[key]) for key in parm]), timeout=3)\n content_list = json.loads(page_content)['query']['search']\n data = []\n prefix = 'https://zh.wikipedia.org/wiki/'\n for index, item in enumerate(content_list):\n date, time = item['timestamp'].rstrip('Z').split('T')\n entry = {'id': item['pageid'], 'index': index, 'create_date':\n date, 'create_time': time, 'title': item['title'],\n 'abstract': re.sub('[<span class=\"searchmatch\">,</span>]',\n '', item['snippet']), 'url': prefix + item['title']}\n data.append(entry)\n return data\n\n @staticmethod\n def get_key_title(key: str) ->list:\n \"\"\"\n\t\t获取指定关键字的百科内容检索标题\n\t\t:param key:\n\t\t:return:\n\t\t\"\"\"\n url = 'https://zh.wikipedia.org/w/api.php?'\n parm = {'action': 'opensearch', 'search': key, 'format': 'json',\n 'formatversion': '2'}\n reptile = Reptile()\n page_content = reptile.get_page_content(url + '&'.join([(key + '=' +\n parm[key]) for key in parm]), timeout=3)\n content_list = json.loads(page_content)[1]\n data = []\n prefix = 'https://zh.wikipedia.org/wiki/'\n for index, item in enumerate(content_list):\n entry = {'index': index, 'title': item, 'url': prefix + item}\n data.append(entry)\n return data\n\n @staticmethod\n def get_faq_content(query: str, page: str) ->list:\n \"\"\"\n\t\t获取指定query的faq检索内容\n\t\t:param query:\n\t\t:param page:\n\t\t:return:\n\t\t\"\"\"\n url = 'https://zhidao.baidu.com/search?'\n parm = {'lm': '0', 'rn': '5', 'pn': page, 'fr': 'search', 'ie':\n 'gbk', 'word': query}\n reptile = Reptile()\n page_content = reptile.get_page_content(url + '&'.join([(key + '=' +\n parm[key]) for key in parm]), timeout=3, is_cookie=True,\n charset='gbk')\n bs = BeautifulSoup(page_content, 'html.parser')\n content_list = bs.body.find_all('dl', {'class': 'dl'})\n data = []\n for item in content_list:\n entry = {'create_date': item.find('dd', {'class':\n 'dd explain f-light'}).span.text, 'title': item.a.text,\n 'abstract': item.find('dd', {'class': 'dd answer'}).text,\n 'url': item.a.get('href')}\n data.append(entry)\n return data\n", "step-5": "# coding=utf-8\n\n\"\"\"\nauthor: wlc\nfunction: 百科检索数据层\n\"\"\"\n\n# 引入外部库\nimport json\nimport re\nfrom bs4 import BeautifulSoup\n\n# 引入内部库\nfrom src.util.reptile import *\n\n\nclass EncyclopediaDao:\n\t@staticmethod\n\tdef get_key_content (key: str) -> list:\n\t\t\"\"\"\n\t\t获取指定关键字的百科内容检索内容\n\t\t:param key:\n\t\t:return:\n\t\t\"\"\"\n\t\t# 1.参数设置\n\t\turl = 'https://zh.wikipedia.org/w/api.php?'\n\t\tparm = {\n\t\t\t'action': 'query',\n\t\t\t'list': 'search',\n\t\t\t'srsearch': key,\n\t\t\t'format': 'json',\n\t\t\t'formatversion': '2'\n\t\t}\n\n\t\t# 2.百科内容获取\n\t\treptile = Reptile()\n\t\tpage_content = reptile.get_page_content(url + '&'.join([key + '=' + parm[key] for key in parm]), timeout=3)\n\t\tcontent_list = json.loads(page_content)['query']['search']\n\n\t\t# 3.百科内容格式化\n\t\tdata = []\n\t\tprefix = 'https://zh.wikipedia.org/wiki/'\n\t\tfor index, item in enumerate(content_list):\n\t\t\tdate, time = item['timestamp'].rstrip('Z').split('T')\n\t\t\tentry = {\n\t\t\t\t'id': item['pageid'],\n\t\t\t\t'index': index,\n\t\t\t\t'create_date': date,\n\t\t\t\t'create_time': time,\n\t\t\t\t'title': item['title'],\n\t\t\t\t'abstract': re.sub('[<span class=\\\"searchmatch\\\">,</span>]', '', item['snippet']),\n\t\t\t\t'url': prefix + item['title'],\n\t\t\t}\n\t\t\tdata.append(entry)\n\n\t\treturn data\n\n\t@staticmethod\n\tdef get_key_title(key: str) -> list:\n\t\t\"\"\"\n\t\t获取指定关键字的百科内容检索标题\n\t\t:param key:\n\t\t:return:\n\t\t\"\"\"\n\t\t# 1.参数设置\n\t\turl = 'https://zh.wikipedia.org/w/api.php?'\n\t\tparm = {\n\t\t\t'action': 'opensearch',\n\t\t\t'search': key,\n\t\t\t'format': 'json',\n\t\t\t'formatversion': '2'\n\t\t}\n\n\t\t# 2.百科内容获取\n\t\treptile = Reptile()\n\t\tpage_content = reptile.get_page_content(url + '&'.join([key + '=' + parm[key] for key in parm]), timeout=3)\n\t\tcontent_list = json.loads(page_content)[1]\n\n\t\t# 3.百科内容格式化\n\t\tdata = []\n\t\tprefix = 'https://zh.wikipedia.org/wiki/'\n\t\tfor index, item in enumerate(content_list):\n\t\t\tentry = {\n\t\t\t\t'index': index,\n\t\t\t\t'title': item,\n\t\t\t\t'url': prefix + item,\n\t\t\t}\n\t\t\tdata.append(entry)\n\n\t\treturn data\n\n\t@staticmethod\n\tdef get_faq_content(query: str, page: str) -> list:\n\t\t\"\"\"\n\t\t获取指定query的faq检索内容\n\t\t:param query:\n\t\t:param page:\n\t\t:return:\n\t\t\"\"\"\n\t\t# 1.参数设置\n\t\turl = 'https://zhidao.baidu.com/search?'\n\t\tparm = {\n\t\t\t'lm': '0',\n\t\t\t'rn': '5',\n\t\t\t'pn': page,\n\t\t\t'fr': 'search',\n\t\t\t'ie': 'gbk',\n\t\t\t'word': query\n\t\t}\n\n\t\t# 2.百科内容获取\n\t\treptile = Reptile()\n\t\tpage_content = reptile.get_page_content(url + '&'.join([key + '=' + parm[key] for key in parm]), timeout=3, is_cookie=True, charset='gbk')\n\t\tbs = BeautifulSoup(page_content, \"html.parser\")\n\t\tcontent_list = bs.body.find_all(\"dl\", {'class': 'dl'})\n\n\t\t# 3.百科内容格式化\n\t\tdata = []\n\t\tfor item in content_list:\n\t\t\tentry = {\n\t\t\t\t'create_date': item.find(\"dd\", {'class': 'dd explain f-light'}).span.text,\n\t\t\t\t'title': item.a.text,\n\t\t\t\t'abstract': item.find(\"dd\", {'class': 'dd answer'}).text,\n\t\t\t\t'url': item.a.get('href')\n\t\t\t}\n\t\t\tdata.append(entry)\n\n\t\treturn data\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from python_logging.Demo_CustomLogger import CustomLogger CustomLogger.init_log() # CustomLogger.info() log_str = '%s/%s/%s\n' % ("demo1", "demo2", "demo3") CustomLogger.info('[main]', log_str)
normal
{ "blob_id": "ed5653455062cb3468c232cf0fa3f1d18793626a", "index": 591, "step-1": "<mask token>\n", "step-2": "<mask token>\nCustomLogger.init_log()\n<mask token>\nCustomLogger.info('[main]', log_str)\n", "step-3": "<mask token>\nCustomLogger.init_log()\nlog_str = '%s/%s/%s\\n' % ('demo1', 'demo2', 'demo3')\nCustomLogger.info('[main]', log_str)\n", "step-4": "from python_logging.Demo_CustomLogger import CustomLogger\nCustomLogger.init_log()\nlog_str = '%s/%s/%s\\n' % ('demo1', 'demo2', 'demo3')\nCustomLogger.info('[main]', log_str)\n", "step-5": "from python_logging.Demo_CustomLogger import CustomLogger\n\nCustomLogger.init_log()\n# CustomLogger.info()\nlog_str = '%s/%s/%s\\n' % (\"demo1\", \"demo2\", \"demo3\")\nCustomLogger.info('[main]', log_str)\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# 8-7. Album: Write a function called make_album() that builds a dictionary # describing a music album. The function should take in an artist name and an # album title, and it should return a dictionary containing these two pieces # of information. Use the function to make three dictionaries representing # different albums. Print each return value to show that the dictionaries are # storing the album information correctly. Use None to add an optional # parameter to make_album() that allows you to store the number of songs on an # album. If the calling line includes a value for the number of songs, add # that value to the album’s dictionary. Make at least one new function call # that includes the number of songs on an album. # PART ONE def make_album(artist_name, album_title): """Build a dictionary describing a music album""" music_album = { 'Artist': artist_name.title(), 'Album': album_title.title() } return music_album print("Here's Part One:") cardi = make_album('cardi b', 'invasion of privacy') print(cardi) jhene = make_album('jhene aiko', 'souled out') print(jhene) lennon = make_album('lennon stella', 'three. two. one.') print(lennon) # PART TWO def make_album_two(artist_name, album_title, number_of_songs= None): """Build a dictionary describing a music album""" music_album = {'Artist': artist_name.title(), 'Album': album_title.title()} if number_of_songs: music_album['Number of Songs'] = number_of_songs return music_album print("\nHere's Part Two:") cardi = make_album_two('cardi b', 'invasion of privacy') print(cardi) jhene = make_album_two('jhene aiko', 'souled out') print(jhene) lennon = make_album_two('lennon stella', 'three. two. one.', 13) print(lennon)
normal
{ "blob_id": "19888c998e8787533e84413272da1183f16fcdb1", "index": 2974, "step-1": "<mask token>\n\n\ndef make_album_two(artist_name, album_title, number_of_songs=None):\n \"\"\"Build a dictionary describing a music album\"\"\"\n music_album = {'Artist': artist_name.title(), 'Album': album_title.title()}\n if number_of_songs:\n music_album['Number of Songs'] = number_of_songs\n return music_album\n\n\n<mask token>\n", "step-2": "def make_album(artist_name, album_title):\n \"\"\"Build a dictionary describing a music album\"\"\"\n music_album = {'Artist': artist_name.title(), 'Album': album_title.title()}\n return music_album\n\n\n<mask token>\n\n\ndef make_album_two(artist_name, album_title, number_of_songs=None):\n \"\"\"Build a dictionary describing a music album\"\"\"\n music_album = {'Artist': artist_name.title(), 'Album': album_title.title()}\n if number_of_songs:\n music_album['Number of Songs'] = number_of_songs\n return music_album\n\n\n<mask token>\n", "step-3": "def make_album(artist_name, album_title):\n \"\"\"Build a dictionary describing a music album\"\"\"\n music_album = {'Artist': artist_name.title(), 'Album': album_title.title()}\n return music_album\n\n\nprint(\"Here's Part One:\")\n<mask token>\nprint(cardi)\n<mask token>\nprint(jhene)\n<mask token>\nprint(lennon)\n\n\ndef make_album_two(artist_name, album_title, number_of_songs=None):\n \"\"\"Build a dictionary describing a music album\"\"\"\n music_album = {'Artist': artist_name.title(), 'Album': album_title.title()}\n if number_of_songs:\n music_album['Number of Songs'] = number_of_songs\n return music_album\n\n\nprint(\"\"\"\nHere's Part Two:\"\"\")\n<mask token>\nprint(cardi)\n<mask token>\nprint(jhene)\n<mask token>\nprint(lennon)\n", "step-4": "def make_album(artist_name, album_title):\n \"\"\"Build a dictionary describing a music album\"\"\"\n music_album = {'Artist': artist_name.title(), 'Album': album_title.title()}\n return music_album\n\n\nprint(\"Here's Part One:\")\ncardi = make_album('cardi b', 'invasion of privacy')\nprint(cardi)\njhene = make_album('jhene aiko', 'souled out')\nprint(jhene)\nlennon = make_album('lennon stella', 'three. two. one.')\nprint(lennon)\n\n\ndef make_album_two(artist_name, album_title, number_of_songs=None):\n \"\"\"Build a dictionary describing a music album\"\"\"\n music_album = {'Artist': artist_name.title(), 'Album': album_title.title()}\n if number_of_songs:\n music_album['Number of Songs'] = number_of_songs\n return music_album\n\n\nprint(\"\"\"\nHere's Part Two:\"\"\")\ncardi = make_album_two('cardi b', 'invasion of privacy')\nprint(cardi)\njhene = make_album_two('jhene aiko', 'souled out')\nprint(jhene)\nlennon = make_album_two('lennon stella', 'three. two. one.', 13)\nprint(lennon)\n", "step-5": "# 8-7. Album: Write a function called make_album() that builds a dictionary\n# describing a music album. The function should take in an artist name and an\n# album title, and it should return a dictionary containing these two pieces\n# of information. Use the function to make three dictionaries representing\n# different albums. Print each return value to show that the dictionaries are\n# storing the album information correctly. Use None to add an optional\n# parameter to make_album() that allows you to store the number of songs on an\n# album. If the calling line includes a value for the number of songs, add\n# that value to the album’s dictionary. Make at least one new function call\n# that includes the number of songs on an album.\n\n# PART ONE\n\ndef make_album(artist_name, album_title): \n \"\"\"Build a dictionary describing a music album\"\"\" \n music_album = {\n 'Artist': artist_name.title(),\n 'Album': album_title.title()\n }\n return music_album\n\nprint(\"Here's Part One:\")\ncardi = make_album('cardi b', 'invasion of privacy')\nprint(cardi)\n\njhene = make_album('jhene aiko', 'souled out')\nprint(jhene)\n\nlennon = make_album('lennon stella', 'three. two. one.')\nprint(lennon)\n\n# PART TWO\ndef make_album_two(artist_name, album_title, number_of_songs= None): \n \"\"\"Build a dictionary describing a music album\"\"\" \n music_album = {'Artist': artist_name.title(),\n 'Album': album_title.title()}\n if number_of_songs:\n music_album['Number of Songs'] = number_of_songs\n return music_album\n\nprint(\"\\nHere's Part Two:\")\ncardi = make_album_two('cardi b', 'invasion of privacy')\nprint(cardi)\n\njhene = make_album_two('jhene aiko', 'souled out')\nprint(jhene)\n\nlennon = make_album_two('lennon stella', 'three. two. one.', 13)\nprint(lennon)\n\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from nltk.corpus import stopwords from nltk.tokenize import word_tokenize #Print Stop words stop_words = set(stopwords.words("english")) print(stop_words) example_text = "This is general sentence to just clarify if stop words are working or not. I have some awesome projects coming up" words = word_tokenize(example_text) filtered_sentence = [] for w in words: for w not in stop_words: filtered_sentence.append(w) #print filtered sentences print(filtered_sentence) #print in a line filtered_sentence1 = [w for w in words if not w in stop_words] #print filtered sentences print(filtered_sentence1)
normal
{ "blob_id": "90f5629ac48edfccea57243ffb6188a98123367d", "index": 5197, "step-1": "from nltk.corpus import stopwords\r\nfrom nltk.tokenize import word_tokenize\r\n\r\n#Print Stop words\r\nstop_words = set(stopwords.words(\"english\"))\r\nprint(stop_words)\r\n\r\nexample_text = \"This is general sentence to just clarify if stop words are working or not. I have some awesome projects coming up\"\r\n\r\nwords = word_tokenize(example_text)\r\n\r\nfiltered_sentence = []\r\nfor w in words:\r\n for w not in stop_words:\r\n filtered_sentence.append(w)\r\n\r\n#print filtered sentences\r\nprint(filtered_sentence)\r\n\r\n#print in a line\r\nfiltered_sentence1 = [w for w in words if not w in stop_words]\r\n\r\n#print filtered sentences\r\nprint(filtered_sentence1)\r\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# !/usr/bin/env python3 # -*- coding:utf-8 -*- # @Time : 2021/05/08 20:06 # @Author : Yi # @FileName: show_slices.py import os import pydicom import glob import shutil import random import numpy as np import cv2 import skimage.io as io from data_Parameter import parse_args import matplotlib.pyplot as plt def dir_create(path): """创造新的文件夹。 :param path: 文件夹路径 :return: """ if (os.path.exists(path)) and (os.listdir(path) != []): shutil.rmtree(path) os.makedirs(path) if not os.path.exists(path): os.makedirs(path) def read_dicom(path): """读取一个病例所有的slices,并转成一个720*720*720的numpy.array. :param path: 一个病例dcm路径 :return: """ print(os.path.basename(path)) pi = os.path.basename(path).split("_")[1] dcm_size = len(glob.glob(path + "/*.dcm")) dcms = [ path + "/E" + pi + "S101I%d.dcm" % dicom_slicei for dicom_slicei in range(1, dcm_size + 1) ] length = int(len(dcms)) print(length) dcm_f = pydicom.read_file(dcms[0]).pixel_array dcm_size = max(max(dcm_f.shape), 720) # print(dcm_f.shape) dcm_img = np.zeros((dcm_size, dcm_size, dcm_size), dtype=np.float32) for dcmi in range(len(dcms)): cdcm = pydicom.read_file(dcms[dcmi]).pixel_array.astype(np.float32) cdcm -= np.mean(cdcm) cdcm /= np.std(cdcm) dcm_img[ dcm_size // 2 - cdcm.shape[0] // 2: dcm_size // 2 + cdcm.shape[0] // 2, dcm_size // 2 - cdcm.shape[1] // 2: dcm_size // 2 + cdcm.shape[1] // 2, dcmi, ] = cdcm return dcm_img def show_image(input_dir): """随机展示一个病例一些病理图像。 :param input_dir: :return: """ # special cases: "P556", "P576", "P887",160*640*640 for casei in os.listdir(input_dir)[5:6]: pi = casei.split("_")[1] dcm_img = read_dicom(input_dir + "/" + casei) print("Dcm shape: ", dcm_img.shape) # choices = random.sample(list(np.arange(0, 720, 1)), 10) # choices.append(316) choices = range(330,350) for i in choices: fig = plt.figure(num=i, figsize=(10, 10)) ax = fig.add_subplot(111) img=ax.imshow(dcm_img[:, :, i], cmap='gray') ax.set_title(pi + '_' + str(i)) plt.colorbar(img) plt.show() def show_image_avail(input_dir): """随机展示一个位置的一些有标注的病例图像。 :param input_dir: :return: """ choices = random.sample(os.listdir(input_dir), 15) for file in choices: image_numpy = np.load(input_dir + '/' + file) fig = plt.figure(figsize=(10, 5)) ax1 = fig.add_subplot(111) img1=ax1.imshow(image_numpy, cmap='gray') ax1.set_title(str(file)) plt.colorbar(img1) plt.show() def show_mask(input_dir): """随机展示一个位置标注的mask,2个channels. :param input_dir: :return: """ index = 0 choices = random.sample(os.listdir(input_dir), 10) for file in choices: mask_numpy = np.load(input_dir + '/' + file) fig = plt.figure(num=index, figsize=(10, 5)) ax1 = fig.add_subplot(211) ax1.imshow(mask_numpy[:, :, 0], cmap='gray') ax1.set_title(str(file) + '_outer') ax2 = fig.add_subplot(212) ax2.imshow(mask_numpy[:, :, 1], cmap='gray') ax2.set_title(str(file) + '_luman') plt.show() index += 1 def show_mask_circle(input_dir): """随机展示一个位置标注的mask环。 :param input_dir: :return: """ choices = random.sample(os.listdir(input_dir), 10) for file in choices: mask_numpy = np.load(input_dir + '/' + file) fig = plt.figure(figsize=(10, 5)) ax1 = fig.add_subplot(111) img1=ax1.imshow(mask_numpy[:, :], cmap='gray') ax1.set_title(str(file) + '_circle') plt.colorbar(img1) plt.show() def show_image_mask(image_path,mask_path): """随机展示一个位置的病例图像及其标注。 :param image_path: :param mask_path: :return: """ files_choice=random.sample(os.listdir(image_path),10) for file_name in files_choice: image_numpy=np.load(image_path+'/'+file_name) mask_numpy =np.load(mask_path+'/'+file_name) fig =plt.figure(figsize=(10,5)) ax1 =fig.add_subplot(211) img1=ax1.imshow(image_numpy,cmap='gray') ax1.set_title(str(file_name)) plt.colorbar(img1) ax2=fig.add_subplot(212) img2=ax2.imshow(mask_numpy,cmap='gray') # ax2.set_title(str(file_name)) plt.colorbar(img2) plt.show() def main(args): image_input_dir = args.datasets_path # image_avail_dir = args.image_save_sep_position + '/ICAR/positive' # image_avail_dir = args.image_save_sep_position + '/ICAR/negative' # circle_mask_dir=args.circle_mask_save_sep+'/ICAR/positive' circle_mask_dir = args.circle_mask_save_sep + '/ICAR/positive' # show_image(image_input_dir) # 随机展示一些病例图像。 # show_image_avail(image_avail_dir) show_mask_circle(circle_mask_dir) # show_image_mask(image_avail_dir,circle_mask_dir) if __name__ == '__main__': args = parse_args() main(args)
normal
{ "blob_id": "4905b820f33619a80a9915d0603bc39e0d0368d9", "index": 6175, "step-1": "<mask token>\n\n\ndef dir_create(path):\n \"\"\"创造新的文件夹。\n\n :param path: 文件夹路径\n :return:\n \"\"\"\n if os.path.exists(path) and os.listdir(path) != []:\n shutil.rmtree(path)\n os.makedirs(path)\n if not os.path.exists(path):\n os.makedirs(path)\n\n\ndef read_dicom(path):\n \"\"\"读取一个病例所有的slices,并转成一个720*720*720的numpy.array.\n\n :param path: 一个病例dcm路径\n :return:\n \"\"\"\n print(os.path.basename(path))\n pi = os.path.basename(path).split('_')[1]\n dcm_size = len(glob.glob(path + '/*.dcm'))\n dcms = [(path + '/E' + pi + 'S101I%d.dcm' % dicom_slicei) for\n dicom_slicei in range(1, dcm_size + 1)]\n length = int(len(dcms))\n print(length)\n dcm_f = pydicom.read_file(dcms[0]).pixel_array\n dcm_size = max(max(dcm_f.shape), 720)\n dcm_img = np.zeros((dcm_size, dcm_size, dcm_size), dtype=np.float32)\n for dcmi in range(len(dcms)):\n cdcm = pydicom.read_file(dcms[dcmi]).pixel_array.astype(np.float32)\n cdcm -= np.mean(cdcm)\n cdcm /= np.std(cdcm)\n dcm_img[dcm_size // 2 - cdcm.shape[0] // 2:dcm_size // 2 + cdcm.\n shape[0] // 2, dcm_size // 2 - cdcm.shape[1] // 2:dcm_size // 2 +\n cdcm.shape[1] // 2, dcmi] = cdcm\n return dcm_img\n\n\ndef show_image(input_dir):\n \"\"\"随机展示一个病例一些病理图像。\n\n :param input_dir:\n :return:\n \"\"\"\n for casei in os.listdir(input_dir)[5:6]:\n pi = casei.split('_')[1]\n dcm_img = read_dicom(input_dir + '/' + casei)\n print('Dcm shape: ', dcm_img.shape)\n choices = range(330, 350)\n for i in choices:\n fig = plt.figure(num=i, figsize=(10, 10))\n ax = fig.add_subplot(111)\n img = ax.imshow(dcm_img[:, :, i], cmap='gray')\n ax.set_title(pi + '_' + str(i))\n plt.colorbar(img)\n plt.show()\n\n\ndef show_image_avail(input_dir):\n \"\"\"随机展示一个位置的一些有标注的病例图像。\n\n :param input_dir:\n :return:\n \"\"\"\n choices = random.sample(os.listdir(input_dir), 15)\n for file in choices:\n image_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(111)\n img1 = ax1.imshow(image_numpy, cmap='gray')\n ax1.set_title(str(file))\n plt.colorbar(img1)\n plt.show()\n\n\ndef show_mask(input_dir):\n \"\"\"随机展示一个位置标注的mask,2个channels.\n\n :param input_dir:\n :return:\n \"\"\"\n index = 0\n choices = random.sample(os.listdir(input_dir), 10)\n for file in choices:\n mask_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(num=index, figsize=(10, 5))\n ax1 = fig.add_subplot(211)\n ax1.imshow(mask_numpy[:, :, 0], cmap='gray')\n ax1.set_title(str(file) + '_outer')\n ax2 = fig.add_subplot(212)\n ax2.imshow(mask_numpy[:, :, 1], cmap='gray')\n ax2.set_title(str(file) + '_luman')\n plt.show()\n index += 1\n\n\ndef show_mask_circle(input_dir):\n \"\"\"随机展示一个位置标注的mask环。\n\n :param input_dir:\n :return:\n \"\"\"\n choices = random.sample(os.listdir(input_dir), 10)\n for file in choices:\n mask_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(111)\n img1 = ax1.imshow(mask_numpy[:, :], cmap='gray')\n ax1.set_title(str(file) + '_circle')\n plt.colorbar(img1)\n plt.show()\n\n\n<mask token>\n\n\ndef main(args):\n image_input_dir = args.datasets_path\n circle_mask_dir = args.circle_mask_save_sep + '/ICAR/positive'\n show_mask_circle(circle_mask_dir)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef dir_create(path):\n \"\"\"创造新的文件夹。\n\n :param path: 文件夹路径\n :return:\n \"\"\"\n if os.path.exists(path) and os.listdir(path) != []:\n shutil.rmtree(path)\n os.makedirs(path)\n if not os.path.exists(path):\n os.makedirs(path)\n\n\ndef read_dicom(path):\n \"\"\"读取一个病例所有的slices,并转成一个720*720*720的numpy.array.\n\n :param path: 一个病例dcm路径\n :return:\n \"\"\"\n print(os.path.basename(path))\n pi = os.path.basename(path).split('_')[1]\n dcm_size = len(glob.glob(path + '/*.dcm'))\n dcms = [(path + '/E' + pi + 'S101I%d.dcm' % dicom_slicei) for\n dicom_slicei in range(1, dcm_size + 1)]\n length = int(len(dcms))\n print(length)\n dcm_f = pydicom.read_file(dcms[0]).pixel_array\n dcm_size = max(max(dcm_f.shape), 720)\n dcm_img = np.zeros((dcm_size, dcm_size, dcm_size), dtype=np.float32)\n for dcmi in range(len(dcms)):\n cdcm = pydicom.read_file(dcms[dcmi]).pixel_array.astype(np.float32)\n cdcm -= np.mean(cdcm)\n cdcm /= np.std(cdcm)\n dcm_img[dcm_size // 2 - cdcm.shape[0] // 2:dcm_size // 2 + cdcm.\n shape[0] // 2, dcm_size // 2 - cdcm.shape[1] // 2:dcm_size // 2 +\n cdcm.shape[1] // 2, dcmi] = cdcm\n return dcm_img\n\n\ndef show_image(input_dir):\n \"\"\"随机展示一个病例一些病理图像。\n\n :param input_dir:\n :return:\n \"\"\"\n for casei in os.listdir(input_dir)[5:6]:\n pi = casei.split('_')[1]\n dcm_img = read_dicom(input_dir + '/' + casei)\n print('Dcm shape: ', dcm_img.shape)\n choices = range(330, 350)\n for i in choices:\n fig = plt.figure(num=i, figsize=(10, 10))\n ax = fig.add_subplot(111)\n img = ax.imshow(dcm_img[:, :, i], cmap='gray')\n ax.set_title(pi + '_' + str(i))\n plt.colorbar(img)\n plt.show()\n\n\ndef show_image_avail(input_dir):\n \"\"\"随机展示一个位置的一些有标注的病例图像。\n\n :param input_dir:\n :return:\n \"\"\"\n choices = random.sample(os.listdir(input_dir), 15)\n for file in choices:\n image_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(111)\n img1 = ax1.imshow(image_numpy, cmap='gray')\n ax1.set_title(str(file))\n plt.colorbar(img1)\n plt.show()\n\n\ndef show_mask(input_dir):\n \"\"\"随机展示一个位置标注的mask,2个channels.\n\n :param input_dir:\n :return:\n \"\"\"\n index = 0\n choices = random.sample(os.listdir(input_dir), 10)\n for file in choices:\n mask_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(num=index, figsize=(10, 5))\n ax1 = fig.add_subplot(211)\n ax1.imshow(mask_numpy[:, :, 0], cmap='gray')\n ax1.set_title(str(file) + '_outer')\n ax2 = fig.add_subplot(212)\n ax2.imshow(mask_numpy[:, :, 1], cmap='gray')\n ax2.set_title(str(file) + '_luman')\n plt.show()\n index += 1\n\n\ndef show_mask_circle(input_dir):\n \"\"\"随机展示一个位置标注的mask环。\n\n :param input_dir:\n :return:\n \"\"\"\n choices = random.sample(os.listdir(input_dir), 10)\n for file in choices:\n mask_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(111)\n img1 = ax1.imshow(mask_numpy[:, :], cmap='gray')\n ax1.set_title(str(file) + '_circle')\n plt.colorbar(img1)\n plt.show()\n\n\ndef show_image_mask(image_path, mask_path):\n \"\"\"随机展示一个位置的病例图像及其标注。\n\n :param image_path:\n :param mask_path:\n :return:\n \"\"\"\n files_choice = random.sample(os.listdir(image_path), 10)\n for file_name in files_choice:\n image_numpy = np.load(image_path + '/' + file_name)\n mask_numpy = np.load(mask_path + '/' + file_name)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(211)\n img1 = ax1.imshow(image_numpy, cmap='gray')\n ax1.set_title(str(file_name))\n plt.colorbar(img1)\n ax2 = fig.add_subplot(212)\n img2 = ax2.imshow(mask_numpy, cmap='gray')\n plt.colorbar(img2)\n plt.show()\n\n\ndef main(args):\n image_input_dir = args.datasets_path\n circle_mask_dir = args.circle_mask_save_sep + '/ICAR/positive'\n show_mask_circle(circle_mask_dir)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef dir_create(path):\n \"\"\"创造新的文件夹。\n\n :param path: 文件夹路径\n :return:\n \"\"\"\n if os.path.exists(path) and os.listdir(path) != []:\n shutil.rmtree(path)\n os.makedirs(path)\n if not os.path.exists(path):\n os.makedirs(path)\n\n\ndef read_dicom(path):\n \"\"\"读取一个病例所有的slices,并转成一个720*720*720的numpy.array.\n\n :param path: 一个病例dcm路径\n :return:\n \"\"\"\n print(os.path.basename(path))\n pi = os.path.basename(path).split('_')[1]\n dcm_size = len(glob.glob(path + '/*.dcm'))\n dcms = [(path + '/E' + pi + 'S101I%d.dcm' % dicom_slicei) for\n dicom_slicei in range(1, dcm_size + 1)]\n length = int(len(dcms))\n print(length)\n dcm_f = pydicom.read_file(dcms[0]).pixel_array\n dcm_size = max(max(dcm_f.shape), 720)\n dcm_img = np.zeros((dcm_size, dcm_size, dcm_size), dtype=np.float32)\n for dcmi in range(len(dcms)):\n cdcm = pydicom.read_file(dcms[dcmi]).pixel_array.astype(np.float32)\n cdcm -= np.mean(cdcm)\n cdcm /= np.std(cdcm)\n dcm_img[dcm_size // 2 - cdcm.shape[0] // 2:dcm_size // 2 + cdcm.\n shape[0] // 2, dcm_size // 2 - cdcm.shape[1] // 2:dcm_size // 2 +\n cdcm.shape[1] // 2, dcmi] = cdcm\n return dcm_img\n\n\ndef show_image(input_dir):\n \"\"\"随机展示一个病例一些病理图像。\n\n :param input_dir:\n :return:\n \"\"\"\n for casei in os.listdir(input_dir)[5:6]:\n pi = casei.split('_')[1]\n dcm_img = read_dicom(input_dir + '/' + casei)\n print('Dcm shape: ', dcm_img.shape)\n choices = range(330, 350)\n for i in choices:\n fig = plt.figure(num=i, figsize=(10, 10))\n ax = fig.add_subplot(111)\n img = ax.imshow(dcm_img[:, :, i], cmap='gray')\n ax.set_title(pi + '_' + str(i))\n plt.colorbar(img)\n plt.show()\n\n\ndef show_image_avail(input_dir):\n \"\"\"随机展示一个位置的一些有标注的病例图像。\n\n :param input_dir:\n :return:\n \"\"\"\n choices = random.sample(os.listdir(input_dir), 15)\n for file in choices:\n image_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(111)\n img1 = ax1.imshow(image_numpy, cmap='gray')\n ax1.set_title(str(file))\n plt.colorbar(img1)\n plt.show()\n\n\ndef show_mask(input_dir):\n \"\"\"随机展示一个位置标注的mask,2个channels.\n\n :param input_dir:\n :return:\n \"\"\"\n index = 0\n choices = random.sample(os.listdir(input_dir), 10)\n for file in choices:\n mask_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(num=index, figsize=(10, 5))\n ax1 = fig.add_subplot(211)\n ax1.imshow(mask_numpy[:, :, 0], cmap='gray')\n ax1.set_title(str(file) + '_outer')\n ax2 = fig.add_subplot(212)\n ax2.imshow(mask_numpy[:, :, 1], cmap='gray')\n ax2.set_title(str(file) + '_luman')\n plt.show()\n index += 1\n\n\ndef show_mask_circle(input_dir):\n \"\"\"随机展示一个位置标注的mask环。\n\n :param input_dir:\n :return:\n \"\"\"\n choices = random.sample(os.listdir(input_dir), 10)\n for file in choices:\n mask_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(111)\n img1 = ax1.imshow(mask_numpy[:, :], cmap='gray')\n ax1.set_title(str(file) + '_circle')\n plt.colorbar(img1)\n plt.show()\n\n\ndef show_image_mask(image_path, mask_path):\n \"\"\"随机展示一个位置的病例图像及其标注。\n\n :param image_path:\n :param mask_path:\n :return:\n \"\"\"\n files_choice = random.sample(os.listdir(image_path), 10)\n for file_name in files_choice:\n image_numpy = np.load(image_path + '/' + file_name)\n mask_numpy = np.load(mask_path + '/' + file_name)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(211)\n img1 = ax1.imshow(image_numpy, cmap='gray')\n ax1.set_title(str(file_name))\n plt.colorbar(img1)\n ax2 = fig.add_subplot(212)\n img2 = ax2.imshow(mask_numpy, cmap='gray')\n plt.colorbar(img2)\n plt.show()\n\n\ndef main(args):\n image_input_dir = args.datasets_path\n circle_mask_dir = args.circle_mask_save_sep + '/ICAR/positive'\n show_mask_circle(circle_mask_dir)\n\n\nif __name__ == '__main__':\n args = parse_args()\n main(args)\n", "step-4": "import os\nimport pydicom\nimport glob\nimport shutil\nimport random\nimport numpy as np\nimport cv2\nimport skimage.io as io\nfrom data_Parameter import parse_args\nimport matplotlib.pyplot as plt\n\n\ndef dir_create(path):\n \"\"\"创造新的文件夹。\n\n :param path: 文件夹路径\n :return:\n \"\"\"\n if os.path.exists(path) and os.listdir(path) != []:\n shutil.rmtree(path)\n os.makedirs(path)\n if not os.path.exists(path):\n os.makedirs(path)\n\n\ndef read_dicom(path):\n \"\"\"读取一个病例所有的slices,并转成一个720*720*720的numpy.array.\n\n :param path: 一个病例dcm路径\n :return:\n \"\"\"\n print(os.path.basename(path))\n pi = os.path.basename(path).split('_')[1]\n dcm_size = len(glob.glob(path + '/*.dcm'))\n dcms = [(path + '/E' + pi + 'S101I%d.dcm' % dicom_slicei) for\n dicom_slicei in range(1, dcm_size + 1)]\n length = int(len(dcms))\n print(length)\n dcm_f = pydicom.read_file(dcms[0]).pixel_array\n dcm_size = max(max(dcm_f.shape), 720)\n dcm_img = np.zeros((dcm_size, dcm_size, dcm_size), dtype=np.float32)\n for dcmi in range(len(dcms)):\n cdcm = pydicom.read_file(dcms[dcmi]).pixel_array.astype(np.float32)\n cdcm -= np.mean(cdcm)\n cdcm /= np.std(cdcm)\n dcm_img[dcm_size // 2 - cdcm.shape[0] // 2:dcm_size // 2 + cdcm.\n shape[0] // 2, dcm_size // 2 - cdcm.shape[1] // 2:dcm_size // 2 +\n cdcm.shape[1] // 2, dcmi] = cdcm\n return dcm_img\n\n\ndef show_image(input_dir):\n \"\"\"随机展示一个病例一些病理图像。\n\n :param input_dir:\n :return:\n \"\"\"\n for casei in os.listdir(input_dir)[5:6]:\n pi = casei.split('_')[1]\n dcm_img = read_dicom(input_dir + '/' + casei)\n print('Dcm shape: ', dcm_img.shape)\n choices = range(330, 350)\n for i in choices:\n fig = plt.figure(num=i, figsize=(10, 10))\n ax = fig.add_subplot(111)\n img = ax.imshow(dcm_img[:, :, i], cmap='gray')\n ax.set_title(pi + '_' + str(i))\n plt.colorbar(img)\n plt.show()\n\n\ndef show_image_avail(input_dir):\n \"\"\"随机展示一个位置的一些有标注的病例图像。\n\n :param input_dir:\n :return:\n \"\"\"\n choices = random.sample(os.listdir(input_dir), 15)\n for file in choices:\n image_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(111)\n img1 = ax1.imshow(image_numpy, cmap='gray')\n ax1.set_title(str(file))\n plt.colorbar(img1)\n plt.show()\n\n\ndef show_mask(input_dir):\n \"\"\"随机展示一个位置标注的mask,2个channels.\n\n :param input_dir:\n :return:\n \"\"\"\n index = 0\n choices = random.sample(os.listdir(input_dir), 10)\n for file in choices:\n mask_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(num=index, figsize=(10, 5))\n ax1 = fig.add_subplot(211)\n ax1.imshow(mask_numpy[:, :, 0], cmap='gray')\n ax1.set_title(str(file) + '_outer')\n ax2 = fig.add_subplot(212)\n ax2.imshow(mask_numpy[:, :, 1], cmap='gray')\n ax2.set_title(str(file) + '_luman')\n plt.show()\n index += 1\n\n\ndef show_mask_circle(input_dir):\n \"\"\"随机展示一个位置标注的mask环。\n\n :param input_dir:\n :return:\n \"\"\"\n choices = random.sample(os.listdir(input_dir), 10)\n for file in choices:\n mask_numpy = np.load(input_dir + '/' + file)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(111)\n img1 = ax1.imshow(mask_numpy[:, :], cmap='gray')\n ax1.set_title(str(file) + '_circle')\n plt.colorbar(img1)\n plt.show()\n\n\ndef show_image_mask(image_path, mask_path):\n \"\"\"随机展示一个位置的病例图像及其标注。\n\n :param image_path:\n :param mask_path:\n :return:\n \"\"\"\n files_choice = random.sample(os.listdir(image_path), 10)\n for file_name in files_choice:\n image_numpy = np.load(image_path + '/' + file_name)\n mask_numpy = np.load(mask_path + '/' + file_name)\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(211)\n img1 = ax1.imshow(image_numpy, cmap='gray')\n ax1.set_title(str(file_name))\n plt.colorbar(img1)\n ax2 = fig.add_subplot(212)\n img2 = ax2.imshow(mask_numpy, cmap='gray')\n plt.colorbar(img2)\n plt.show()\n\n\ndef main(args):\n image_input_dir = args.datasets_path\n circle_mask_dir = args.circle_mask_save_sep + '/ICAR/positive'\n show_mask_circle(circle_mask_dir)\n\n\nif __name__ == '__main__':\n args = parse_args()\n main(args)\n", "step-5": "# !/usr/bin/env python3\n# -*- coding:utf-8 -*-\n\n# @Time : 2021/05/08 20:06\n# @Author : Yi\n# @FileName: show_slices.py\n\nimport os\nimport pydicom\nimport glob\nimport shutil\nimport random\nimport numpy as np\nimport cv2\nimport skimage.io as io\n\nfrom data_Parameter import parse_args\nimport matplotlib.pyplot as plt\n\n\ndef dir_create(path):\n \"\"\"创造新的文件夹。\n\n :param path: 文件夹路径\n :return:\n \"\"\"\n if (os.path.exists(path)) and (os.listdir(path) != []):\n shutil.rmtree(path)\n os.makedirs(path)\n if not os.path.exists(path):\n os.makedirs(path)\n\n\ndef read_dicom(path):\n \"\"\"读取一个病例所有的slices,并转成一个720*720*720的numpy.array.\n\n :param path: 一个病例dcm路径\n :return:\n \"\"\"\n print(os.path.basename(path))\n\n pi = os.path.basename(path).split(\"_\")[1]\n dcm_size = len(glob.glob(path + \"/*.dcm\"))\n dcms = [\n path + \"/E\" + pi + \"S101I%d.dcm\" % dicom_slicei\n for dicom_slicei in range(1, dcm_size + 1)\n ]\n\n length = int(len(dcms))\n print(length)\n\n dcm_f = pydicom.read_file(dcms[0]).pixel_array\n dcm_size = max(max(dcm_f.shape), 720)\n # print(dcm_f.shape)\n\n dcm_img = np.zeros((dcm_size, dcm_size, dcm_size), dtype=np.float32)\n\n for dcmi in range(len(dcms)):\n cdcm = pydicom.read_file(dcms[dcmi]).pixel_array.astype(np.float32)\n\n cdcm -= np.mean(cdcm)\n cdcm /= np.std(cdcm)\n\n dcm_img[\n dcm_size // 2 - cdcm.shape[0] // 2: dcm_size // 2 + cdcm.shape[0] // 2,\n dcm_size // 2 - cdcm.shape[1] // 2: dcm_size // 2 + cdcm.shape[1] // 2,\n dcmi,\n ] = cdcm\n\n return dcm_img\n\n\ndef show_image(input_dir):\n \"\"\"随机展示一个病例一些病理图像。\n\n :param input_dir:\n :return:\n \"\"\"\n\n # special cases: \"P556\", \"P576\", \"P887\",160*640*640\n for casei in os.listdir(input_dir)[5:6]:\n pi = casei.split(\"_\")[1]\n dcm_img = read_dicom(input_dir + \"/\" + casei)\n print(\"Dcm shape: \", dcm_img.shape)\n\n # choices = random.sample(list(np.arange(0, 720, 1)), 10)\n # choices.append(316)\n\n choices = range(330,350)\n\n for i in choices:\n fig = plt.figure(num=i, figsize=(10, 10))\n ax = fig.add_subplot(111)\n img=ax.imshow(dcm_img[:, :, i], cmap='gray')\n ax.set_title(pi + '_' + str(i))\n plt.colorbar(img)\n plt.show()\n\n\ndef show_image_avail(input_dir):\n \"\"\"随机展示一个位置的一些有标注的病例图像。\n\n :param input_dir:\n :return:\n \"\"\"\n\n choices = random.sample(os.listdir(input_dir), 15)\n for file in choices:\n image_numpy = np.load(input_dir + '/' + file)\n\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(111)\n img1=ax1.imshow(image_numpy, cmap='gray')\n ax1.set_title(str(file))\n plt.colorbar(img1)\n plt.show()\n\n\ndef show_mask(input_dir):\n \"\"\"随机展示一个位置标注的mask,2个channels.\n\n :param input_dir:\n :return:\n \"\"\"\n\n index = 0\n choices = random.sample(os.listdir(input_dir), 10)\n for file in choices:\n mask_numpy = np.load(input_dir + '/' + file)\n\n fig = plt.figure(num=index, figsize=(10, 5))\n ax1 = fig.add_subplot(211)\n ax1.imshow(mask_numpy[:, :, 0], cmap='gray')\n ax1.set_title(str(file) + '_outer')\n ax2 = fig.add_subplot(212)\n ax2.imshow(mask_numpy[:, :, 1], cmap='gray')\n ax2.set_title(str(file) + '_luman')\n plt.show()\n index += 1\n\n\ndef show_mask_circle(input_dir):\n \"\"\"随机展示一个位置标注的mask环。\n\n :param input_dir:\n :return:\n \"\"\"\n\n choices = random.sample(os.listdir(input_dir), 10)\n for file in choices:\n mask_numpy = np.load(input_dir + '/' + file)\n\n fig = plt.figure(figsize=(10, 5))\n ax1 = fig.add_subplot(111)\n img1=ax1.imshow(mask_numpy[:, :], cmap='gray')\n ax1.set_title(str(file) + '_circle')\n plt.colorbar(img1)\n\n plt.show()\n\n\ndef show_image_mask(image_path,mask_path):\n \"\"\"随机展示一个位置的病例图像及其标注。\n\n :param image_path:\n :param mask_path:\n :return:\n \"\"\"\n\n files_choice=random.sample(os.listdir(image_path),10)\n\n for file_name in files_choice:\n image_numpy=np.load(image_path+'/'+file_name)\n mask_numpy =np.load(mask_path+'/'+file_name)\n\n fig =plt.figure(figsize=(10,5))\n ax1 =fig.add_subplot(211)\n img1=ax1.imshow(image_numpy,cmap='gray')\n ax1.set_title(str(file_name))\n plt.colorbar(img1)\n\n ax2=fig.add_subplot(212)\n img2=ax2.imshow(mask_numpy,cmap='gray')\n # ax2.set_title(str(file_name))\n plt.colorbar(img2)\n plt.show()\n\n\ndef main(args):\n image_input_dir = args.datasets_path\n\n # image_avail_dir = args.image_save_sep_position + '/ICAR/positive'\n # image_avail_dir = args.image_save_sep_position + '/ICAR/negative'\n\n # circle_mask_dir=args.circle_mask_save_sep+'/ICAR/positive'\n circle_mask_dir = args.circle_mask_save_sep + '/ICAR/positive'\n\n # show_image(image_input_dir) # 随机展示一些病例图像。\n # show_image_avail(image_avail_dir)\n show_mask_circle(circle_mask_dir)\n\n # show_image_mask(image_avail_dir,circle_mask_dir)\n\n\nif __name__ == '__main__':\n args = parse_args()\n main(args)", "step-ids": [ 7, 8, 9, 10, 11 ] }
[ 7, 8, 9, 10, 11 ]
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-06-23 17:10 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('sepomex', '0006_auto_20151113_2154'), ] operations = [ migrations.CreateModel( name='MXCiudad', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(max_length=200)), ('mx_estado', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='ciudades', to='sepomex.MXEstado')), ], ), migrations.AddField( model_name='mxasentamiento', name='mx_ciudad', field=models.ForeignKey(default='', on_delete=django.db.models.deletion.CASCADE, related_name='ciudad', to='sepomex.MXCiudad'), preserve_default=False, ), ]
normal
{ "blob_id": "99c27d13349eba391866cfed25cc052b40910ea5", "index": 2837, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('sepomex', '0006_auto_20151113_2154')]\n operations = [migrations.CreateModel(name='MXCiudad', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('nombre', models.CharField(max_length=\n 200)), ('mx_estado', models.ForeignKey(on_delete=django.db.models.\n deletion.CASCADE, related_name='ciudades', to='sepomex.MXEstado'))]\n ), migrations.AddField(model_name='mxasentamiento', name=\n 'mx_ciudad', field=models.ForeignKey(default='', on_delete=django.\n db.models.deletion.CASCADE, related_name='ciudad', to=\n 'sepomex.MXCiudad'), preserve_default=False)]\n", "step-4": "from __future__ import unicode_literals\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n dependencies = [('sepomex', '0006_auto_20151113_2154')]\n operations = [migrations.CreateModel(name='MXCiudad', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('nombre', models.CharField(max_length=\n 200)), ('mx_estado', models.ForeignKey(on_delete=django.db.models.\n deletion.CASCADE, related_name='ciudades', to='sepomex.MXEstado'))]\n ), migrations.AddField(model_name='mxasentamiento', name=\n 'mx_ciudad', field=models.ForeignKey(default='', on_delete=django.\n db.models.deletion.CASCADE, related_name='ciudad', to=\n 'sepomex.MXCiudad'), preserve_default=False)]\n", "step-5": "# -*- coding: utf-8 -*-\n# Generated by Django 1.11.2 on 2017-06-23 17:10\nfrom __future__ import unicode_literals\n\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('sepomex', '0006_auto_20151113_2154'),\n ]\n\n operations = [\n migrations.CreateModel(\n name='MXCiudad',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('nombre', models.CharField(max_length=200)),\n ('mx_estado', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='ciudades', to='sepomex.MXEstado')),\n ],\n ),\n migrations.AddField(\n model_name='mxasentamiento',\n name='mx_ciudad',\n field=models.ForeignKey(default='', on_delete=django.db.models.deletion.CASCADE, related_name='ciudad', to='sepomex.MXCiudad'),\n preserve_default=False,\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import math def upsample1(d, p): # 普通结界 assert 1 <= p <= 10 return d + p def upsample2(d, p): # 倍增结界 assert 2 <= p <= 3 return d * p def downsample(d, p): # 聚集结界 assert 2 <= p <= 10 return math.ceil(d / p) # 初始化杀伤力范围 lethal_radius = 1 # 结界参数(z, p) config = [(1, 6), (2, 3), (3, 3), (2, 3), (2, 3), (3, 7)] for i in range(int(input())): z, p = list(map(int, input().strip().split())) if z == 1: lethal_radius = upsample1(lethal_radius, p) if z == 2: lethal_radius = upsample2(lethal_radius, p) if z == 3: lethal_radius = downsample(lethal_radius, p) print(lethal_radius)
normal
{ "blob_id": "cb6f68c8b8a6cead1d9fcd25fa2a4e60f7a8fb28", "index": 9746, "step-1": "<mask token>\n\n\ndef upsample1(d, p):\n assert 1 <= p <= 10\n return d + p\n\n\ndef upsample2(d, p):\n assert 2 <= p <= 3\n return d * p\n\n\ndef downsample(d, p):\n assert 2 <= p <= 10\n return math.ceil(d / p)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef upsample1(d, p):\n assert 1 <= p <= 10\n return d + p\n\n\ndef upsample2(d, p):\n assert 2 <= p <= 3\n return d * p\n\n\ndef downsample(d, p):\n assert 2 <= p <= 10\n return math.ceil(d / p)\n\n\n<mask token>\nfor i in range(int(input())):\n z, p = list(map(int, input().strip().split()))\n if z == 1:\n lethal_radius = upsample1(lethal_radius, p)\n if z == 2:\n lethal_radius = upsample2(lethal_radius, p)\n if z == 3:\n lethal_radius = downsample(lethal_radius, p)\nprint(lethal_radius)\n", "step-3": "<mask token>\n\n\ndef upsample1(d, p):\n assert 1 <= p <= 10\n return d + p\n\n\ndef upsample2(d, p):\n assert 2 <= p <= 3\n return d * p\n\n\ndef downsample(d, p):\n assert 2 <= p <= 10\n return math.ceil(d / p)\n\n\nlethal_radius = 1\nconfig = [(1, 6), (2, 3), (3, 3), (2, 3), (2, 3), (3, 7)]\nfor i in range(int(input())):\n z, p = list(map(int, input().strip().split()))\n if z == 1:\n lethal_radius = upsample1(lethal_radius, p)\n if z == 2:\n lethal_radius = upsample2(lethal_radius, p)\n if z == 3:\n lethal_radius = downsample(lethal_radius, p)\nprint(lethal_radius)\n", "step-4": "import math\n\n\ndef upsample1(d, p):\n assert 1 <= p <= 10\n return d + p\n\n\ndef upsample2(d, p):\n assert 2 <= p <= 3\n return d * p\n\n\ndef downsample(d, p):\n assert 2 <= p <= 10\n return math.ceil(d / p)\n\n\nlethal_radius = 1\nconfig = [(1, 6), (2, 3), (3, 3), (2, 3), (2, 3), (3, 7)]\nfor i in range(int(input())):\n z, p = list(map(int, input().strip().split()))\n if z == 1:\n lethal_radius = upsample1(lethal_radius, p)\n if z == 2:\n lethal_radius = upsample2(lethal_radius, p)\n if z == 3:\n lethal_radius = downsample(lethal_radius, p)\nprint(lethal_radius)\n", "step-5": "import math\n\n\ndef upsample1(d, p):\n # 普通结界\n assert 1 <= p <= 10\n return d + p\n\n\ndef upsample2(d, p):\n # 倍增结界\n assert 2 <= p <= 3\n return d * p\n\n\ndef downsample(d, p):\n # 聚集结界\n assert 2 <= p <= 10\n return math.ceil(d / p)\n\n\n# 初始化杀伤力范围\nlethal_radius = 1\n\n# 结界参数(z, p)\nconfig = [(1, 6),\n (2, 3),\n (3, 3),\n (2, 3),\n (2, 3),\n (3, 7)]\n\nfor i in range(int(input())):\n z, p = list(map(int, input().strip().split()))\n if z == 1:\n lethal_radius = upsample1(lethal_radius, p)\n if z == 2:\n lethal_radius = upsample2(lethal_radius, p)\n if z == 3:\n lethal_radius = downsample(lethal_radius, p)\nprint(lethal_radius)\n\n\n\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
''' 删除排序数组中的重复项: 给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。 示例 1: 给定数组 nums = [1,1,2], 函数应该返回新的长度 2, 并且原数组 nums 的前两个元素被修改为 1, 2。 你不需要考虑数组中超出新长度后面的元素。 示例 2: 给定 nums = [0,0,1,1,1,2,2,3,3,4], 函数应该返回新的长度 5, 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4。 你不需要考虑数组中超出新长度后面的元素。 ''' def delete_sort_array(origin_list): if len(origin_list) == 0: return 0 elif len(origin_list) == 1: return 1 else: for index,item in enumerate(origin_list[:]): if index+1 < len(origin_list): if origin_list[index] == origin_list[index+1]: origin_list.pop(index) return len(origin_list) print(delete_sort_array([1,1,5,5,6,6,13,14]))
normal
{ "blob_id": "ac0f0fbb9bcb450ac24198069ef8bea8b049ef47", "index": 5824, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef delete_sort_array(origin_list):\n if len(origin_list) == 0:\n return 0\n elif len(origin_list) == 1:\n return 1\n else:\n for index, item in enumerate(origin_list[:]):\n if index + 1 < len(origin_list):\n if origin_list[index] == origin_list[index + 1]:\n origin_list.pop(index)\n return len(origin_list)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef delete_sort_array(origin_list):\n if len(origin_list) == 0:\n return 0\n elif len(origin_list) == 1:\n return 1\n else:\n for index, item in enumerate(origin_list[:]):\n if index + 1 < len(origin_list):\n if origin_list[index] == origin_list[index + 1]:\n origin_list.pop(index)\n return len(origin_list)\n\n\nprint(delete_sort_array([1, 1, 5, 5, 6, 6, 13, 14]))\n", "step-4": "'''\n 删除排序数组中的重复项:\n\n给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。\n\n不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。\n\n示例 1:\n\n给定数组 nums = [1,1,2],\n\n函数应该返回新的长度 2, 并且原数组 nums 的前两个元素被修改为 1, 2。\n\n你不需要考虑数组中超出新长度后面的元素。\n示例 2:\n\n给定 nums = [0,0,1,1,1,2,2,3,3,4],\n\n函数应该返回新的长度 5, 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4。\n\n你不需要考虑数组中超出新长度后面的元素。\n\n'''\n\ndef delete_sort_array(origin_list):\n if len(origin_list) == 0:\n return 0\n elif len(origin_list) == 1:\n return 1\n else:\n for index,item in enumerate(origin_list[:]):\n if index+1 < len(origin_list):\n if origin_list[index] == origin_list[index+1]:\n origin_list.pop(index)\n return len(origin_list)\nprint(delete_sort_array([1,1,5,5,6,6,13,14]))\n\n\n\n\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.forms import ModelForm from django import forms from models import * from django.forms.widgets import * class CommentForm(ModelForm): # tags = TagField(widget=TagAutocomplete()) class Meta: model=Comment # fields = ('title', 'description', 'tags', 'enable_comments', 'owner')#, 'first_card' ) # widgets = { # 'slug': HiddenInput, # 'number_of_cards': HiddenInput, # }
normal
{ "blob_id": "81535b43437f9bcb18973ceaa5c3340ad9bd4f0f", "index": 4170, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass CommentForm(ModelForm):\n\n\n class Meta:\n model = Comment\n", "step-3": "from django.forms import ModelForm\nfrom django import forms\nfrom models import *\nfrom django.forms.widgets import *\n\n\nclass CommentForm(ModelForm):\n\n\n class Meta:\n model = Comment\n", "step-4": "from django.forms import ModelForm\nfrom django import forms\nfrom models import *\nfrom django.forms.widgets import *\n\nclass CommentForm(ModelForm):\n\t# tags = TagField(widget=TagAutocomplete())\n\tclass Meta:\n\t\tmodel=Comment\n\t\t# fields = ('title', 'description', 'tags', 'enable_comments', 'owner')#, 'first_card' )\n\t\t\n\t\t# widgets = {\n\t\t# \t'slug': HiddenInput,\n\t\t# \t'number_of_cards': HiddenInput,\n\t\t# \t}\n\t\t", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# Give a string that represents a polynomial (Ex: "3x ^ 3 + 5x ^ 2 - 2x - 5") and # a number (whole or float). Evaluate the polynomial for the given value. #Horner method def horner( poly, x): result = poly[0] for i in range(1 , len(poly)): result = result*x + poly[i] return result # Let us evaluate value of # 3x3 + 5x2 - 2x - 5 for x = 3 poly = [3 , 5 , -2 , -5 ] x = 3 print("Value of polynomial is " , horner(poly, x))
normal
{ "blob_id": "750565af03d945fbdc32e26347b28977b203e9dc", "index": 4858, "step-1": "<mask token>\n", "step-2": "def horner(poly, x):\n result = poly[0]\n for i in range(1, len(poly)):\n result = result * x + poly[i]\n return result\n\n\n<mask token>\n", "step-3": "def horner(poly, x):\n result = poly[0]\n for i in range(1, len(poly)):\n result = result * x + poly[i]\n return result\n\n\n<mask token>\nprint('Value of polynomial is ', horner(poly, x))\n", "step-4": "def horner(poly, x):\n result = poly[0]\n for i in range(1, len(poly)):\n result = result * x + poly[i]\n return result\n\n\npoly = [3, 5, -2, -5]\nx = 3\nprint('Value of polynomial is ', horner(poly, x))\n", "step-5": "# Give a string that represents a polynomial (Ex: \"3x ^ 3 + 5x ^ 2 - 2x - 5\") and\n# a number (whole or float). Evaluate the polynomial for the given value.\n#Horner method\n\ndef horner( poly, x):\n result = poly[0]\n for i in range(1 , len(poly)):\n result = result*x + poly[i]\n return result\n# Let us evaluate value of \n# 3x3 + 5x2 - 2x - 5 for x = 3 \npoly = [3 , 5 , -2 , -5 ] \nx = 3\n \nprint(\"Value of polynomial is \" , horner(poly, x)) ", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import os import pickle import collections import numpy as np import pandas as pd import matplotlib.pyplot as plt from IPython import embed from optimizers.utils_1 import Model_1, Architecture_1 from optimizers.utils import Model, Architecture colors={ 'BOHB-PC-DARTS': 'darkorange', 'BOHB-DARTS': 'dodgerblue', 'BOHB-GDAS' : 'forestgreen', 'RE': 'crimson', 'RS': 'darkorchid', 'RL': 'sienna', 'TPE': 'deepskyblue', 'SMAC': 'violet', 'HB': 'darkgray', 'BOHB': 'gold' } markers={ 'BOHB-DARTS': '^', 'BOHB-PC-DARTS': 'v', 'BOHB-GDAS' : 'x', 'RS': 'D', 'RE': 'o', 'RL': 's', 'SMAC': 'h', 'HB': '>', 'BOHB': '*', 'TPE': '<' } def get_incumbent(losses, time_stamps): return_dict = {'time_stamps': [], 'losses': [], } current_incumbent = float('inf') incumbent_budget = -float('inf') for l, t in zip(losses, time_stamps): if l < current_incumbent: current_incumbent = l return_dict['losses'].append(l) return_dict['time_stamps'].append(t) else: return_dict['losses'].append(return_dict['losses'][-1]) return_dict['time_stamps'].append(t) return return_dict.values() def get_trajectories(args, global_min, path='regularized_evolution', methods=['RE', 'RS']): all_trajectories = {} for m in methods: dfs = [] for seed in range(500): filename = os.path.join(path, m, 'algo_{}_0_ssp_{}_seed_{}.obj'.format(m, args.space, seed)) try: with open(filename, 'rb') as f: data = pickle.load(f) losses = [1 - x.test_accuracy - global_min for x in data] times = np.array([x.training_time for x in data]) times = [np.sum(times[:i+1]) for i in range(len(times))] if m in ['HB', 'BOHB']: costs = np.array([x.budget for x in data]) costs = np.array( [np.sum(costs[:i+1]) for i in range(len(costs))] ) n = len(np.where(costs <= 280*108)[0]) times, losses = get_incumbent(losses[:n], times[:n]) else: times, losses = get_incumbent(losses, times) print(seed, ' MIN: ', min(losses)) df = pd.DataFrame({str(seed): losses}, index=times) #embed() dfs.append(df) except FileNotFoundError: break df = merge_and_fill_trajectories(dfs, default_value=None) if df.empty: continue print(m, df.shape) all_trajectories[m] = { 'time_stamps': np.array(df.index), 'losses': np.array(df.T) } return all_trajectories def merge_and_fill_trajectories(pandas_data_frames, default_value=None): # merge all tracjectories keeping all time steps df = pd.DataFrame().join(pandas_data_frames, how='outer') # forward fill to make it a propper step function df=df.fillna(method='ffill') if default_value is None: # backward fill to replace the NaNs for the early times by # the performance of a random configuration df=df.fillna(method='bfill') else: df=df.fillna(default_value) return(df) def plot_losses(fig, ax, axins, incumbent_trajectories, regret=True, incumbent=None, show=True, linewidth=3, marker_size=10, xscale='log', xlabel='wall clock time [s]', yscale='log', ylabel=None, legend_loc = 'best', xlim=None, ylim=None, plot_mean=True, labels={}, markers=markers, colors=colors, figsize=(16,9)): if regret: if ylabel is None: ylabel = 'regret' # find lowest performance in the data to update incumbent if incumbent is None: incumbent = np.inf for tr in incumbent_trajectories.values(): incumbent = min(tr['losses'][:,-1].min(), incumbent) print('incumbent value: ', incumbent) for m,tr in incumbent_trajectories.items(): trajectory = np.copy(tr['losses']) if (trajectory.shape[0] == 0): continue if regret: trajectory -= incumbent sem = np.sqrt(trajectory.var(axis=0, ddof=1)/tr['losses'].shape[0]) if plot_mean: mean = trajectory.mean(axis=0) else: mean = np.median(trajectory,axis=0) sem *= 1.253 if 'DARTS' in m or 'GDAS' in m: ax.fill_between(tr['time_stamps'], mean-2*sem, mean+2*sem, color=colors[m], alpha=0.2) ax.plot(tr['time_stamps'],mean, label=labels.get(m, m), color=colors.get(m, None),linewidth=linewidth, marker=markers.get(m,None), markersize=marker_size, markevery=(0.1,0.1)) if axins is not None: axins.plot(tr['time_stamps'],mean, label=labels.get(m, m), color=colors.get(m, None),linewidth=linewidth, marker=markers.get(m,None), markersize=marker_size, markevery=(0.1,0.1)) return (fig, ax)
normal
{ "blob_id": "a757bbb9ad2f6f5bf04cdf4091b97841b8e40432", "index": 6601, "step-1": "<mask token>\n\n\ndef get_trajectories(args, global_min, path='regularized_evolution',\n methods=['RE', 'RS']):\n all_trajectories = {}\n for m in methods:\n dfs = []\n for seed in range(500):\n filename = os.path.join(path, m, 'algo_{}_0_ssp_{}_seed_{}.obj'\n .format(m, args.space, seed))\n try:\n with open(filename, 'rb') as f:\n data = pickle.load(f)\n losses = [(1 - x.test_accuracy - global_min) for x in data]\n times = np.array([x.training_time for x in data])\n times = [np.sum(times[:i + 1]) for i in range(len(times))]\n if m in ['HB', 'BOHB']:\n costs = np.array([x.budget for x in data])\n costs = np.array([np.sum(costs[:i + 1]) for i in\n range(len(costs))])\n n = len(np.where(costs <= 280 * 108)[0])\n times, losses = get_incumbent(losses[:n], times[:n])\n else:\n times, losses = get_incumbent(losses, times)\n print(seed, ' MIN: ', min(losses))\n df = pd.DataFrame({str(seed): losses}, index=times)\n dfs.append(df)\n except FileNotFoundError:\n break\n df = merge_and_fill_trajectories(dfs, default_value=None)\n if df.empty:\n continue\n print(m, df.shape)\n all_trajectories[m] = {'time_stamps': np.array(df.index), 'losses':\n np.array(df.T)}\n return all_trajectories\n\n\ndef merge_and_fill_trajectories(pandas_data_frames, default_value=None):\n df = pd.DataFrame().join(pandas_data_frames, how='outer')\n df = df.fillna(method='ffill')\n if default_value is None:\n df = df.fillna(method='bfill')\n else:\n df = df.fillna(default_value)\n return df\n\n\ndef plot_losses(fig, ax, axins, incumbent_trajectories, regret=True,\n incumbent=None, show=True, linewidth=3, marker_size=10, xscale='log',\n xlabel='wall clock time [s]', yscale='log', ylabel=None, legend_loc=\n 'best', xlim=None, ylim=None, plot_mean=True, labels={}, markers=\n markers, colors=colors, figsize=(16, 9)):\n if regret:\n if ylabel is None:\n ylabel = 'regret'\n if incumbent is None:\n incumbent = np.inf\n for tr in incumbent_trajectories.values():\n incumbent = min(tr['losses'][:, -1].min(), incumbent)\n print('incumbent value: ', incumbent)\n for m, tr in incumbent_trajectories.items():\n trajectory = np.copy(tr['losses'])\n if trajectory.shape[0] == 0:\n continue\n if regret:\n trajectory -= incumbent\n sem = np.sqrt(trajectory.var(axis=0, ddof=1) / tr['losses'].shape[0])\n if plot_mean:\n mean = trajectory.mean(axis=0)\n else:\n mean = np.median(trajectory, axis=0)\n sem *= 1.253\n if 'DARTS' in m or 'GDAS' in m:\n ax.fill_between(tr['time_stamps'], mean - 2 * sem, mean + 2 *\n sem, color=colors[m], alpha=0.2)\n ax.plot(tr['time_stamps'], mean, label=labels.get(m, m), color=\n colors.get(m, None), linewidth=linewidth, marker=markers.get(m,\n None), markersize=marker_size, markevery=(0.1, 0.1))\n if axins is not None:\n axins.plot(tr['time_stamps'], mean, label=labels.get(m, m),\n color=colors.get(m, None), linewidth=linewidth, marker=\n markers.get(m, None), markersize=marker_size, markevery=(\n 0.1, 0.1))\n return fig, ax\n", "step-2": "<mask token>\n\n\ndef get_incumbent(losses, time_stamps):\n return_dict = {'time_stamps': [], 'losses': []}\n current_incumbent = float('inf')\n incumbent_budget = -float('inf')\n for l, t in zip(losses, time_stamps):\n if l < current_incumbent:\n current_incumbent = l\n return_dict['losses'].append(l)\n return_dict['time_stamps'].append(t)\n else:\n return_dict['losses'].append(return_dict['losses'][-1])\n return_dict['time_stamps'].append(t)\n return return_dict.values()\n\n\ndef get_trajectories(args, global_min, path='regularized_evolution',\n methods=['RE', 'RS']):\n all_trajectories = {}\n for m in methods:\n dfs = []\n for seed in range(500):\n filename = os.path.join(path, m, 'algo_{}_0_ssp_{}_seed_{}.obj'\n .format(m, args.space, seed))\n try:\n with open(filename, 'rb') as f:\n data = pickle.load(f)\n losses = [(1 - x.test_accuracy - global_min) for x in data]\n times = np.array([x.training_time for x in data])\n times = [np.sum(times[:i + 1]) for i in range(len(times))]\n if m in ['HB', 'BOHB']:\n costs = np.array([x.budget for x in data])\n costs = np.array([np.sum(costs[:i + 1]) for i in\n range(len(costs))])\n n = len(np.where(costs <= 280 * 108)[0])\n times, losses = get_incumbent(losses[:n], times[:n])\n else:\n times, losses = get_incumbent(losses, times)\n print(seed, ' MIN: ', min(losses))\n df = pd.DataFrame({str(seed): losses}, index=times)\n dfs.append(df)\n except FileNotFoundError:\n break\n df = merge_and_fill_trajectories(dfs, default_value=None)\n if df.empty:\n continue\n print(m, df.shape)\n all_trajectories[m] = {'time_stamps': np.array(df.index), 'losses':\n np.array(df.T)}\n return all_trajectories\n\n\ndef merge_and_fill_trajectories(pandas_data_frames, default_value=None):\n df = pd.DataFrame().join(pandas_data_frames, how='outer')\n df = df.fillna(method='ffill')\n if default_value is None:\n df = df.fillna(method='bfill')\n else:\n df = df.fillna(default_value)\n return df\n\n\ndef plot_losses(fig, ax, axins, incumbent_trajectories, regret=True,\n incumbent=None, show=True, linewidth=3, marker_size=10, xscale='log',\n xlabel='wall clock time [s]', yscale='log', ylabel=None, legend_loc=\n 'best', xlim=None, ylim=None, plot_mean=True, labels={}, markers=\n markers, colors=colors, figsize=(16, 9)):\n if regret:\n if ylabel is None:\n ylabel = 'regret'\n if incumbent is None:\n incumbent = np.inf\n for tr in incumbent_trajectories.values():\n incumbent = min(tr['losses'][:, -1].min(), incumbent)\n print('incumbent value: ', incumbent)\n for m, tr in incumbent_trajectories.items():\n trajectory = np.copy(tr['losses'])\n if trajectory.shape[0] == 0:\n continue\n if regret:\n trajectory -= incumbent\n sem = np.sqrt(trajectory.var(axis=0, ddof=1) / tr['losses'].shape[0])\n if plot_mean:\n mean = trajectory.mean(axis=0)\n else:\n mean = np.median(trajectory, axis=0)\n sem *= 1.253\n if 'DARTS' in m or 'GDAS' in m:\n ax.fill_between(tr['time_stamps'], mean - 2 * sem, mean + 2 *\n sem, color=colors[m], alpha=0.2)\n ax.plot(tr['time_stamps'], mean, label=labels.get(m, m), color=\n colors.get(m, None), linewidth=linewidth, marker=markers.get(m,\n None), markersize=marker_size, markevery=(0.1, 0.1))\n if axins is not None:\n axins.plot(tr['time_stamps'], mean, label=labels.get(m, m),\n color=colors.get(m, None), linewidth=linewidth, marker=\n markers.get(m, None), markersize=marker_size, markevery=(\n 0.1, 0.1))\n return fig, ax\n", "step-3": "<mask token>\ncolors = {'BOHB-PC-DARTS': 'darkorange', 'BOHB-DARTS': 'dodgerblue',\n 'BOHB-GDAS': 'forestgreen', 'RE': 'crimson', 'RS': 'darkorchid', 'RL':\n 'sienna', 'TPE': 'deepskyblue', 'SMAC': 'violet', 'HB': 'darkgray',\n 'BOHB': 'gold'}\nmarkers = {'BOHB-DARTS': '^', 'BOHB-PC-DARTS': 'v', 'BOHB-GDAS': 'x', 'RS':\n 'D', 'RE': 'o', 'RL': 's', 'SMAC': 'h', 'HB': '>', 'BOHB': '*', 'TPE': '<'}\n\n\ndef get_incumbent(losses, time_stamps):\n return_dict = {'time_stamps': [], 'losses': []}\n current_incumbent = float('inf')\n incumbent_budget = -float('inf')\n for l, t in zip(losses, time_stamps):\n if l < current_incumbent:\n current_incumbent = l\n return_dict['losses'].append(l)\n return_dict['time_stamps'].append(t)\n else:\n return_dict['losses'].append(return_dict['losses'][-1])\n return_dict['time_stamps'].append(t)\n return return_dict.values()\n\n\ndef get_trajectories(args, global_min, path='regularized_evolution',\n methods=['RE', 'RS']):\n all_trajectories = {}\n for m in methods:\n dfs = []\n for seed in range(500):\n filename = os.path.join(path, m, 'algo_{}_0_ssp_{}_seed_{}.obj'\n .format(m, args.space, seed))\n try:\n with open(filename, 'rb') as f:\n data = pickle.load(f)\n losses = [(1 - x.test_accuracy - global_min) for x in data]\n times = np.array([x.training_time for x in data])\n times = [np.sum(times[:i + 1]) for i in range(len(times))]\n if m in ['HB', 'BOHB']:\n costs = np.array([x.budget for x in data])\n costs = np.array([np.sum(costs[:i + 1]) for i in\n range(len(costs))])\n n = len(np.where(costs <= 280 * 108)[0])\n times, losses = get_incumbent(losses[:n], times[:n])\n else:\n times, losses = get_incumbent(losses, times)\n print(seed, ' MIN: ', min(losses))\n df = pd.DataFrame({str(seed): losses}, index=times)\n dfs.append(df)\n except FileNotFoundError:\n break\n df = merge_and_fill_trajectories(dfs, default_value=None)\n if df.empty:\n continue\n print(m, df.shape)\n all_trajectories[m] = {'time_stamps': np.array(df.index), 'losses':\n np.array(df.T)}\n return all_trajectories\n\n\ndef merge_and_fill_trajectories(pandas_data_frames, default_value=None):\n df = pd.DataFrame().join(pandas_data_frames, how='outer')\n df = df.fillna(method='ffill')\n if default_value is None:\n df = df.fillna(method='bfill')\n else:\n df = df.fillna(default_value)\n return df\n\n\ndef plot_losses(fig, ax, axins, incumbent_trajectories, regret=True,\n incumbent=None, show=True, linewidth=3, marker_size=10, xscale='log',\n xlabel='wall clock time [s]', yscale='log', ylabel=None, legend_loc=\n 'best', xlim=None, ylim=None, plot_mean=True, labels={}, markers=\n markers, colors=colors, figsize=(16, 9)):\n if regret:\n if ylabel is None:\n ylabel = 'regret'\n if incumbent is None:\n incumbent = np.inf\n for tr in incumbent_trajectories.values():\n incumbent = min(tr['losses'][:, -1].min(), incumbent)\n print('incumbent value: ', incumbent)\n for m, tr in incumbent_trajectories.items():\n trajectory = np.copy(tr['losses'])\n if trajectory.shape[0] == 0:\n continue\n if regret:\n trajectory -= incumbent\n sem = np.sqrt(trajectory.var(axis=0, ddof=1) / tr['losses'].shape[0])\n if plot_mean:\n mean = trajectory.mean(axis=0)\n else:\n mean = np.median(trajectory, axis=0)\n sem *= 1.253\n if 'DARTS' in m or 'GDAS' in m:\n ax.fill_between(tr['time_stamps'], mean - 2 * sem, mean + 2 *\n sem, color=colors[m], alpha=0.2)\n ax.plot(tr['time_stamps'], mean, label=labels.get(m, m), color=\n colors.get(m, None), linewidth=linewidth, marker=markers.get(m,\n None), markersize=marker_size, markevery=(0.1, 0.1))\n if axins is not None:\n axins.plot(tr['time_stamps'], mean, label=labels.get(m, m),\n color=colors.get(m, None), linewidth=linewidth, marker=\n markers.get(m, None), markersize=marker_size, markevery=(\n 0.1, 0.1))\n return fig, ax\n", "step-4": "import os\nimport pickle\nimport collections\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom IPython import embed\nfrom optimizers.utils_1 import Model_1, Architecture_1\nfrom optimizers.utils import Model, Architecture\ncolors = {'BOHB-PC-DARTS': 'darkorange', 'BOHB-DARTS': 'dodgerblue',\n 'BOHB-GDAS': 'forestgreen', 'RE': 'crimson', 'RS': 'darkorchid', 'RL':\n 'sienna', 'TPE': 'deepskyblue', 'SMAC': 'violet', 'HB': 'darkgray',\n 'BOHB': 'gold'}\nmarkers = {'BOHB-DARTS': '^', 'BOHB-PC-DARTS': 'v', 'BOHB-GDAS': 'x', 'RS':\n 'D', 'RE': 'o', 'RL': 's', 'SMAC': 'h', 'HB': '>', 'BOHB': '*', 'TPE': '<'}\n\n\ndef get_incumbent(losses, time_stamps):\n return_dict = {'time_stamps': [], 'losses': []}\n current_incumbent = float('inf')\n incumbent_budget = -float('inf')\n for l, t in zip(losses, time_stamps):\n if l < current_incumbent:\n current_incumbent = l\n return_dict['losses'].append(l)\n return_dict['time_stamps'].append(t)\n else:\n return_dict['losses'].append(return_dict['losses'][-1])\n return_dict['time_stamps'].append(t)\n return return_dict.values()\n\n\ndef get_trajectories(args, global_min, path='regularized_evolution',\n methods=['RE', 'RS']):\n all_trajectories = {}\n for m in methods:\n dfs = []\n for seed in range(500):\n filename = os.path.join(path, m, 'algo_{}_0_ssp_{}_seed_{}.obj'\n .format(m, args.space, seed))\n try:\n with open(filename, 'rb') as f:\n data = pickle.load(f)\n losses = [(1 - x.test_accuracy - global_min) for x in data]\n times = np.array([x.training_time for x in data])\n times = [np.sum(times[:i + 1]) for i in range(len(times))]\n if m in ['HB', 'BOHB']:\n costs = np.array([x.budget for x in data])\n costs = np.array([np.sum(costs[:i + 1]) for i in\n range(len(costs))])\n n = len(np.where(costs <= 280 * 108)[0])\n times, losses = get_incumbent(losses[:n], times[:n])\n else:\n times, losses = get_incumbent(losses, times)\n print(seed, ' MIN: ', min(losses))\n df = pd.DataFrame({str(seed): losses}, index=times)\n dfs.append(df)\n except FileNotFoundError:\n break\n df = merge_and_fill_trajectories(dfs, default_value=None)\n if df.empty:\n continue\n print(m, df.shape)\n all_trajectories[m] = {'time_stamps': np.array(df.index), 'losses':\n np.array(df.T)}\n return all_trajectories\n\n\ndef merge_and_fill_trajectories(pandas_data_frames, default_value=None):\n df = pd.DataFrame().join(pandas_data_frames, how='outer')\n df = df.fillna(method='ffill')\n if default_value is None:\n df = df.fillna(method='bfill')\n else:\n df = df.fillna(default_value)\n return df\n\n\ndef plot_losses(fig, ax, axins, incumbent_trajectories, regret=True,\n incumbent=None, show=True, linewidth=3, marker_size=10, xscale='log',\n xlabel='wall clock time [s]', yscale='log', ylabel=None, legend_loc=\n 'best', xlim=None, ylim=None, plot_mean=True, labels={}, markers=\n markers, colors=colors, figsize=(16, 9)):\n if regret:\n if ylabel is None:\n ylabel = 'regret'\n if incumbent is None:\n incumbent = np.inf\n for tr in incumbent_trajectories.values():\n incumbent = min(tr['losses'][:, -1].min(), incumbent)\n print('incumbent value: ', incumbent)\n for m, tr in incumbent_trajectories.items():\n trajectory = np.copy(tr['losses'])\n if trajectory.shape[0] == 0:\n continue\n if regret:\n trajectory -= incumbent\n sem = np.sqrt(trajectory.var(axis=0, ddof=1) / tr['losses'].shape[0])\n if plot_mean:\n mean = trajectory.mean(axis=0)\n else:\n mean = np.median(trajectory, axis=0)\n sem *= 1.253\n if 'DARTS' in m or 'GDAS' in m:\n ax.fill_between(tr['time_stamps'], mean - 2 * sem, mean + 2 *\n sem, color=colors[m], alpha=0.2)\n ax.plot(tr['time_stamps'], mean, label=labels.get(m, m), color=\n colors.get(m, None), linewidth=linewidth, marker=markers.get(m,\n None), markersize=marker_size, markevery=(0.1, 0.1))\n if axins is not None:\n axins.plot(tr['time_stamps'], mean, label=labels.get(m, m),\n color=colors.get(m, None), linewidth=linewidth, marker=\n markers.get(m, None), markersize=marker_size, markevery=(\n 0.1, 0.1))\n return fig, ax\n", "step-5": "import os\nimport pickle\nimport collections\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom IPython import embed\n\nfrom optimizers.utils_1 import Model_1, Architecture_1\nfrom optimizers.utils import Model, Architecture\n\ncolors={\n 'BOHB-PC-DARTS': 'darkorange',\n 'BOHB-DARTS': 'dodgerblue',\n 'BOHB-GDAS' : 'forestgreen',\n 'RE': 'crimson',\n\t\t'RS': 'darkorchid',\n\t\t'RL': 'sienna',\n\t\t'TPE': 'deepskyblue',\n 'SMAC': 'violet',\n 'HB': 'darkgray',\n 'BOHB': 'gold'\n}\n\nmarkers={\n 'BOHB-DARTS': '^',\n 'BOHB-PC-DARTS': 'v',\n 'BOHB-GDAS' : 'x',\n 'RS': 'D',\n\t\t'RE': 'o',\n\t\t'RL': 's',\n\t\t'SMAC': 'h',\n 'HB': '>',\n 'BOHB': '*',\n 'TPE': '<'\n}\n\n\ndef get_incumbent(losses, time_stamps):\n return_dict = {'time_stamps': [],\n 'losses': [],\n }\n\n current_incumbent = float('inf')\n incumbent_budget = -float('inf')\n\n for l, t in zip(losses, time_stamps):\n if l < current_incumbent:\n current_incumbent = l\n return_dict['losses'].append(l)\n return_dict['time_stamps'].append(t)\n else:\n return_dict['losses'].append(return_dict['losses'][-1])\n return_dict['time_stamps'].append(t)\n return return_dict.values()\n\n\ndef get_trajectories(args, global_min, path='regularized_evolution',\n methods=['RE', 'RS']):\n all_trajectories = {}\n for m in methods:\n dfs = []\n for seed in range(500):\n filename = os.path.join(path, m,\n 'algo_{}_0_ssp_{}_seed_{}.obj'.format(m, args.space,\n seed))\n try:\n with open(filename, 'rb') as f:\n data = pickle.load(f)\n losses = [1 - x.test_accuracy - global_min for x in data]\n times = np.array([x.training_time for x in data])\n times = [np.sum(times[:i+1]) for i in range(len(times))]\n if m in ['HB', 'BOHB']:\n costs = np.array([x.budget for x in data])\n costs = np.array(\n [np.sum(costs[:i+1]) for i in range(len(costs))]\n )\n n = len(np.where(costs <= 280*108)[0])\n times, losses = get_incumbent(losses[:n], times[:n])\n else:\n times, losses = get_incumbent(losses, times)\n print(seed, ' MIN: ', min(losses))\n df = pd.DataFrame({str(seed): losses}, index=times)\n #embed()\n dfs.append(df)\n except FileNotFoundError:\n break\n df = merge_and_fill_trajectories(dfs, default_value=None)\n if df.empty:\n continue\n print(m, df.shape)\n\n all_trajectories[m] = {\n 'time_stamps': np.array(df.index),\n 'losses': np.array(df.T)\n }\n\n return all_trajectories\n\n\ndef merge_and_fill_trajectories(pandas_data_frames, default_value=None):\n\t# merge all tracjectories keeping all time steps\n\tdf = pd.DataFrame().join(pandas_data_frames, how='outer')\n\n\t# forward fill to make it a propper step function\n\tdf=df.fillna(method='ffill')\n\n\tif default_value is None:\n\t# backward fill to replace the NaNs for the early times by\n\t# the performance of a random configuration\n\t\tdf=df.fillna(method='bfill')\n\telse:\n\t\tdf=df.fillna(default_value)\n\n\treturn(df)\n\n\ndef plot_losses(fig, ax, axins, incumbent_trajectories, regret=True,\n incumbent=None, show=True, linewidth=3, marker_size=10,\n xscale='log', xlabel='wall clock time [s]', yscale='log',\n ylabel=None, legend_loc = 'best', xlim=None, ylim=None,\n plot_mean=True, labels={}, markers=markers, colors=colors,\n figsize=(16,9)):\n\n if regret:\n if ylabel is None: ylabel = 'regret'\n\t\t# find lowest performance in the data to update incumbent\n\n if incumbent is None:\n incumbent = np.inf\n for tr in incumbent_trajectories.values():\n incumbent = min(tr['losses'][:,-1].min(), incumbent)\n print('incumbent value: ', incumbent)\n\n for m,tr in incumbent_trajectories.items():\n trajectory = np.copy(tr['losses'])\n if (trajectory.shape[0] == 0): continue\n if regret: trajectory -= incumbent\n\n sem = np.sqrt(trajectory.var(axis=0, ddof=1)/tr['losses'].shape[0])\n if plot_mean:\n mean = trajectory.mean(axis=0)\n else:\n mean = np.median(trajectory,axis=0)\n sem *= 1.253\n\n if 'DARTS' in m or 'GDAS' in m:\n ax.fill_between(tr['time_stamps'], mean-2*sem, mean+2*sem,\n color=colors[m], alpha=0.2)\n\n ax.plot(tr['time_stamps'],mean,\n label=labels.get(m, m), color=colors.get(m, None),linewidth=linewidth,\n marker=markers.get(m,None), markersize=marker_size, markevery=(0.1,0.1))\n\n if axins is not None:\n axins.plot(tr['time_stamps'],mean,\n label=labels.get(m, m), color=colors.get(m, None),linewidth=linewidth,\n marker=markers.get(m,None), markersize=marker_size, markevery=(0.1,0.1))\n\n return (fig, ax)\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import os from apps.app_base.app_utils.cryp_key import decrypt, get_secret_key BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY = get_secret_key DEBUG = True ALLOWED_HOSTS = ['.localhost', '127.0.0.1', '[::1]'] # Application definition INSTALLED_APPS = [ 'corsheaders', 'django.contrib.sessions', ] MIDDLEWARE = [ # CORS 'corsheaders.middleware.CorsMiddleware', # Session 'django.contrib.sessions.middleware.SessionMiddleware', # Cache 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.cache.FetchFromCacheMiddleware', ] ROOT_URLCONF = 'apps.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'apps.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'luck', 'USER': 'postgres', 'PASSWORD': decrypt(b'gAAAAABfesT5OW3keTFXv6sUP_4NWJfG6U_ZEInkmCvJGdVSNA74VPJeG3lZLky8ZWEsjLsdxe_k_vgVCSIVCoTx1hOQsTb1kw=='), 'HOST': '127.0.0.1', 'PORT': '5432' } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True CACHES = { # Local Memory Cache https://docs.djangoproject.com/en/3.1/topics/cache/ "default": { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'local-memory-lru', }, "redis": { "BACKEND": "django_redis.cache.RedisCache", "LOCATION": "redis://127.0.0.1:6379/0", # db0 "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", "CONNECTION_POOL_KWARGS": {"max_connections": 100} } } } # Use Redis for session SESSION_ENGINE = "django.contrib.sessions.backends.cache" SESSION_CACHE_ALIAS = "redis" SESSION_COOKIE_AGE = 3600 * 24 # In seconds STATIC_URL = '/static/' CORS_ORIGIN_ALLOW_ALL = True CORS_ALLOW_CREDENTIALS = True
normal
{ "blob_id": "027a049ffced721f2cd697bc928bfdf718630623", "index": 4692, "step-1": "<mask token>\n", "step-2": "<mask token>\nBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\nSECRET_KEY = get_secret_key\nDEBUG = True\nALLOWED_HOSTS = ['.localhost', '127.0.0.1', '[::1]']\nINSTALLED_APPS = ['corsheaders', 'django.contrib.sessions']\nMIDDLEWARE = ['corsheaders.middleware.CorsMiddleware',\n 'django.contrib.sessions.middleware.SessionMiddleware',\n 'django.middleware.cache.UpdateCacheMiddleware',\n 'django.middleware.common.CommonMiddleware',\n 'django.middleware.cache.FetchFromCacheMiddleware']\nROOT_URLCONF = 'apps.urls'\nTEMPLATES = [{'BACKEND': 'django.template.backends.django.DjangoTemplates',\n 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': {'context_processors': [\n 'django.template.context_processors.debug',\n 'django.template.context_processors.request',\n 'django.contrib.auth.context_processors.auth',\n 'django.contrib.messages.context_processors.messages']}}]\nWSGI_APPLICATION = 'apps.wsgi.application'\nDATABASES = {'default': {'ENGINE': 'django.db.backends.postgresql', 'NAME':\n 'luck', 'USER': 'postgres', 'PASSWORD': decrypt(\n b'gAAAAABfesT5OW3keTFXv6sUP_4NWJfG6U_ZEInkmCvJGdVSNA74VPJeG3lZLky8ZWEsjLsdxe_k_vgVCSIVCoTx1hOQsTb1kw=='\n ), 'HOST': '127.0.0.1', 'PORT': '5432'}}\nAUTH_PASSWORD_VALIDATORS = [{'NAME':\n 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator'\n }, {'NAME':\n 'django.contrib.auth.password_validation.MinimumLengthValidator'}, {\n 'NAME':\n 'django.contrib.auth.password_validation.CommonPasswordValidator'}, {\n 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator'}\n ]\nLANGUAGE_CODE = 'en-us'\nTIME_ZONE = 'UTC'\nUSE_I18N = True\nUSE_L10N = True\nUSE_TZ = True\nCACHES = {'default': {'BACKEND':\n 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION':\n 'local-memory-lru'}, 'redis': {'BACKEND':\n 'django_redis.cache.RedisCache', 'LOCATION': 'redis://127.0.0.1:6379/0',\n 'OPTIONS': {'CLIENT_CLASS': 'django_redis.client.DefaultClient',\n 'CONNECTION_POOL_KWARGS': {'max_connections': 100}}}}\nSESSION_ENGINE = 'django.contrib.sessions.backends.cache'\nSESSION_CACHE_ALIAS = 'redis'\nSESSION_COOKIE_AGE = 3600 * 24\nSTATIC_URL = '/static/'\nCORS_ORIGIN_ALLOW_ALL = True\nCORS_ALLOW_CREDENTIALS = True\n", "step-3": "import os\nfrom apps.app_base.app_utils.cryp_key import decrypt, get_secret_key\nBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\nSECRET_KEY = get_secret_key\nDEBUG = True\nALLOWED_HOSTS = ['.localhost', '127.0.0.1', '[::1]']\nINSTALLED_APPS = ['corsheaders', 'django.contrib.sessions']\nMIDDLEWARE = ['corsheaders.middleware.CorsMiddleware',\n 'django.contrib.sessions.middleware.SessionMiddleware',\n 'django.middleware.cache.UpdateCacheMiddleware',\n 'django.middleware.common.CommonMiddleware',\n 'django.middleware.cache.FetchFromCacheMiddleware']\nROOT_URLCONF = 'apps.urls'\nTEMPLATES = [{'BACKEND': 'django.template.backends.django.DjangoTemplates',\n 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': {'context_processors': [\n 'django.template.context_processors.debug',\n 'django.template.context_processors.request',\n 'django.contrib.auth.context_processors.auth',\n 'django.contrib.messages.context_processors.messages']}}]\nWSGI_APPLICATION = 'apps.wsgi.application'\nDATABASES = {'default': {'ENGINE': 'django.db.backends.postgresql', 'NAME':\n 'luck', 'USER': 'postgres', 'PASSWORD': decrypt(\n b'gAAAAABfesT5OW3keTFXv6sUP_4NWJfG6U_ZEInkmCvJGdVSNA74VPJeG3lZLky8ZWEsjLsdxe_k_vgVCSIVCoTx1hOQsTb1kw=='\n ), 'HOST': '127.0.0.1', 'PORT': '5432'}}\nAUTH_PASSWORD_VALIDATORS = [{'NAME':\n 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator'\n }, {'NAME':\n 'django.contrib.auth.password_validation.MinimumLengthValidator'}, {\n 'NAME':\n 'django.contrib.auth.password_validation.CommonPasswordValidator'}, {\n 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator'}\n ]\nLANGUAGE_CODE = 'en-us'\nTIME_ZONE = 'UTC'\nUSE_I18N = True\nUSE_L10N = True\nUSE_TZ = True\nCACHES = {'default': {'BACKEND':\n 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION':\n 'local-memory-lru'}, 'redis': {'BACKEND':\n 'django_redis.cache.RedisCache', 'LOCATION': 'redis://127.0.0.1:6379/0',\n 'OPTIONS': {'CLIENT_CLASS': 'django_redis.client.DefaultClient',\n 'CONNECTION_POOL_KWARGS': {'max_connections': 100}}}}\nSESSION_ENGINE = 'django.contrib.sessions.backends.cache'\nSESSION_CACHE_ALIAS = 'redis'\nSESSION_COOKIE_AGE = 3600 * 24\nSTATIC_URL = '/static/'\nCORS_ORIGIN_ALLOW_ALL = True\nCORS_ALLOW_CREDENTIALS = True\n", "step-4": "import os\nfrom apps.app_base.app_utils.cryp_key import decrypt, get_secret_key\n\nBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\n\nSECRET_KEY = get_secret_key\n\nDEBUG = True\n\nALLOWED_HOSTS = ['.localhost', '127.0.0.1', '[::1]']\n\n\n# Application definition\n\nINSTALLED_APPS = [\n 'corsheaders',\n 'django.contrib.sessions',\n]\n\nMIDDLEWARE = [\n # CORS\n 'corsheaders.middleware.CorsMiddleware',\n # Session\n 'django.contrib.sessions.middleware.SessionMiddleware',\n # Cache\n 'django.middleware.cache.UpdateCacheMiddleware',\n 'django.middleware.common.CommonMiddleware',\n 'django.middleware.cache.FetchFromCacheMiddleware',\n]\n\nROOT_URLCONF = 'apps.urls'\n\nTEMPLATES = [\n {\n 'BACKEND': 'django.template.backends.django.DjangoTemplates',\n 'DIRS': [],\n 'APP_DIRS': True,\n 'OPTIONS': {\n 'context_processors': [\n 'django.template.context_processors.debug',\n 'django.template.context_processors.request',\n 'django.contrib.auth.context_processors.auth',\n 'django.contrib.messages.context_processors.messages',\n ],\n },\n },\n]\n\nWSGI_APPLICATION = 'apps.wsgi.application'\n\n\n# Database\n# https://docs.djangoproject.com/en/3.0/ref/settings/#databases\n\nDATABASES = {\n 'default': {\n 'ENGINE': 'django.db.backends.postgresql',\n 'NAME': 'luck',\n 'USER': 'postgres',\n 'PASSWORD': decrypt(b'gAAAAABfesT5OW3keTFXv6sUP_4NWJfG6U_ZEInkmCvJGdVSNA74VPJeG3lZLky8ZWEsjLsdxe_k_vgVCSIVCoTx1hOQsTb1kw=='),\n 'HOST': '127.0.0.1',\n 'PORT': '5432'\n }\n}\n\n\n# Password validation\n# https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators\n\nAUTH_PASSWORD_VALIDATORS = [\n {\n 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',\n },\n {\n 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',\n },\n {\n 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',\n },\n {\n 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',\n },\n]\n\n\n# Internationalization\n# https://docs.djangoproject.com/en/3.0/topics/i18n/\n\nLANGUAGE_CODE = 'en-us'\n\nTIME_ZONE = 'UTC'\n\nUSE_I18N = True\n\nUSE_L10N = True\n\nUSE_TZ = True\n\n\nCACHES = {\n # Local Memory Cache https://docs.djangoproject.com/en/3.1/topics/cache/\n \"default\": {\n 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',\n 'LOCATION': 'local-memory-lru',\n },\n \"redis\": {\n \"BACKEND\": \"django_redis.cache.RedisCache\",\n \"LOCATION\": \"redis://127.0.0.1:6379/0\", # db0\n \"OPTIONS\": {\n \"CLIENT_CLASS\": \"django_redis.client.DefaultClient\",\n \"CONNECTION_POOL_KWARGS\": {\"max_connections\": 100}\n }\n }\n}\n\n# Use Redis for session\nSESSION_ENGINE = \"django.contrib.sessions.backends.cache\"\nSESSION_CACHE_ALIAS = \"redis\"\nSESSION_COOKIE_AGE = 3600 * 24 # In seconds\n\n\nSTATIC_URL = '/static/'\n\nCORS_ORIGIN_ALLOW_ALL = True\nCORS_ALLOW_CREDENTIALS = True\n\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding: utf-8 -*- """ :copyright: (c) 2014-2016 by Mike Taylor :license: MIT, see LICENSE for more details. Micropub Tools """ import requests from bs4 import BeautifulSoup, SoupStrainer try: # Python v3 from urllib.parse import urlparse, urljoin except ImportError: from urlparse import urlparse, urljoin import ronkyuu _html_parser = 'lxml' # 'html.parser', 'lxml', 'lxml-xml', 'html5lib' def setParser(htmlParser='html5lib'): global _html_parser _html_parser = htmlParser # find an endpoint # look in headers for given domain for a HTTP Link header # if not found, look for an HTML <link> element in page returned from domain given def discoverEndpoint(domain, endpoint, content=None, look_in={'name': 'link'}, test_urls=True, validateCerts=True): """Find the given endpoint for the given domain. Only scan html element matching all criteria in look_in. optionally the content to be scanned can be given as an argument. :param domain: the URL of the domain to handle :param endpoint: list of endpoints to look for :param content: the content to be scanned for the endpoint :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned :param test_urls: optional flag to test URLs for validation :param validateCerts: optional flag to enforce HTTPS certificates if present :rtype: list of endpoints """ if test_urls: ronkyuu.URLValidator(message='invalid domain URL')(domain) if content: result = {'status': requests.codes.ok, 'headers': None, 'content': content } else: r = requests.get(domain, verify=validateCerts) result = {'status': r.status_code, 'headers': r.headers } # check for character encodings and use 'correct' data if 'charset' in r.headers.get('content-type', ''): result['content'] = r.text else: result['content'] = r.content for key in endpoint: result.update({key: set()}) result.update({'domain': domain}) if result['status'] == requests.codes.ok: if 'link' in r.headers: all_links = r.headers['link'].split(',', 1) for link in all_links: if ';' in link: href, rel = link.split(';') url = urlparse(href.strip()[1:-1]) if url.scheme in ('http', 'https') and rel in endpoint: result[rel].add(url) all_links = BeautifulSoup(result['content'], _html_parser, parse_only=SoupStrainer(**look_in)).find_all('link') for link in all_links: rel = link.get('rel', None)[0] if rel in endpoint: href = link.get('href', None) if href: url = urlparse(href) if url.scheme == '' or url.netloc == '': url = urlparse(urljoin(domain, href)) if url.scheme in ('http', 'https'): result[rel].add(url) return result def discoverMicropubEndpoints(domain, content=None, look_in={'name': 'link'}, test_urls=True, validateCerts=True): """Find the micropub for the given domain. Only scan html element matching all criteria in look_in. optionally the content to be scanned can be given as an argument. :param domain: the URL of the domain to handle :param content: the content to be scanned for the endpoint :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned :param test_urls: optional flag to test URLs for validation :param validateCerts: optional flag to enforce HTTPS certificates if present :rtype: list of endpoints """ return discoverEndpoint(domain, ('micropub',), content, look_in, test_urls, validateCerts) def discoverTokenEndpoints(domain, content=None, look_in={'name': 'link'}, test_urls=True, validateCerts=True): """Find the token for the given domain. Only scan html element matching all criteria in look_in. optionally the content to be scanned can be given as an argument. :param domain: the URL of the domain to handle :param content: the content to be scanned for the endpoint :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned :param test_urls: optional flag to test URLs for validation :param validateCerts: optional flag to enforce HTTPS certificates if present :rtype: list of endpoints """ return discoverEndpoint(domain, ('token_endpoint',), content, look_in, test_urls, validateCerts)
normal
{ "blob_id": "1bb82a24faed6079ec161d95eff22aa122295c13", "index": 3982, "step-1": "<mask token>\n\n\ndef setParser(htmlParser='html5lib'):\n global _html_parser\n _html_parser = htmlParser\n\n\ndef discoverEndpoint(domain, endpoint, content=None, look_in={'name':\n 'link'}, test_urls=True, validateCerts=True):\n \"\"\"Find the given endpoint for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param endpoint: list of endpoints to look for\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n if test_urls:\n ronkyuu.URLValidator(message='invalid domain URL')(domain)\n if content:\n result = {'status': requests.codes.ok, 'headers': None, 'content':\n content}\n else:\n r = requests.get(domain, verify=validateCerts)\n result = {'status': r.status_code, 'headers': r.headers}\n if 'charset' in r.headers.get('content-type', ''):\n result['content'] = r.text\n else:\n result['content'] = r.content\n for key in endpoint:\n result.update({key: set()})\n result.update({'domain': domain})\n if result['status'] == requests.codes.ok:\n if 'link' in r.headers:\n all_links = r.headers['link'].split(',', 1)\n for link in all_links:\n if ';' in link:\n href, rel = link.split(';')\n url = urlparse(href.strip()[1:-1])\n if url.scheme in ('http', 'https') and rel in endpoint:\n result[rel].add(url)\n all_links = BeautifulSoup(result['content'], _html_parser,\n parse_only=SoupStrainer(**look_in)).find_all('link')\n for link in all_links:\n rel = link.get('rel', None)[0]\n if rel in endpoint:\n href = link.get('href', None)\n if href:\n url = urlparse(href)\n if url.scheme == '' or url.netloc == '':\n url = urlparse(urljoin(domain, href))\n if url.scheme in ('http', 'https'):\n result[rel].add(url)\n return result\n\n\n<mask token>\n", "step-2": "<mask token>\ntry:\n from urllib.parse import urlparse, urljoin\nexcept ImportError:\n from urlparse import urlparse, urljoin\n<mask token>\n\n\ndef setParser(htmlParser='html5lib'):\n global _html_parser\n _html_parser = htmlParser\n\n\ndef discoverEndpoint(domain, endpoint, content=None, look_in={'name':\n 'link'}, test_urls=True, validateCerts=True):\n \"\"\"Find the given endpoint for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param endpoint: list of endpoints to look for\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n if test_urls:\n ronkyuu.URLValidator(message='invalid domain URL')(domain)\n if content:\n result = {'status': requests.codes.ok, 'headers': None, 'content':\n content}\n else:\n r = requests.get(domain, verify=validateCerts)\n result = {'status': r.status_code, 'headers': r.headers}\n if 'charset' in r.headers.get('content-type', ''):\n result['content'] = r.text\n else:\n result['content'] = r.content\n for key in endpoint:\n result.update({key: set()})\n result.update({'domain': domain})\n if result['status'] == requests.codes.ok:\n if 'link' in r.headers:\n all_links = r.headers['link'].split(',', 1)\n for link in all_links:\n if ';' in link:\n href, rel = link.split(';')\n url = urlparse(href.strip()[1:-1])\n if url.scheme in ('http', 'https') and rel in endpoint:\n result[rel].add(url)\n all_links = BeautifulSoup(result['content'], _html_parser,\n parse_only=SoupStrainer(**look_in)).find_all('link')\n for link in all_links:\n rel = link.get('rel', None)[0]\n if rel in endpoint:\n href = link.get('href', None)\n if href:\n url = urlparse(href)\n if url.scheme == '' or url.netloc == '':\n url = urlparse(urljoin(domain, href))\n if url.scheme in ('http', 'https'):\n result[rel].add(url)\n return result\n\n\ndef discoverMicropubEndpoints(domain, content=None, look_in={'name': 'link'\n }, test_urls=True, validateCerts=True):\n \"\"\"Find the micropub for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n return discoverEndpoint(domain, ('micropub',), content, look_in,\n test_urls, validateCerts)\n\n\ndef discoverTokenEndpoints(domain, content=None, look_in={'name': 'link'},\n test_urls=True, validateCerts=True):\n \"\"\"Find the token for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n return discoverEndpoint(domain, ('token_endpoint',), content, look_in,\n test_urls, validateCerts)\n", "step-3": "<mask token>\ntry:\n from urllib.parse import urlparse, urljoin\nexcept ImportError:\n from urlparse import urlparse, urljoin\n<mask token>\n_html_parser = 'lxml'\n\n\ndef setParser(htmlParser='html5lib'):\n global _html_parser\n _html_parser = htmlParser\n\n\ndef discoverEndpoint(domain, endpoint, content=None, look_in={'name':\n 'link'}, test_urls=True, validateCerts=True):\n \"\"\"Find the given endpoint for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param endpoint: list of endpoints to look for\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n if test_urls:\n ronkyuu.URLValidator(message='invalid domain URL')(domain)\n if content:\n result = {'status': requests.codes.ok, 'headers': None, 'content':\n content}\n else:\n r = requests.get(domain, verify=validateCerts)\n result = {'status': r.status_code, 'headers': r.headers}\n if 'charset' in r.headers.get('content-type', ''):\n result['content'] = r.text\n else:\n result['content'] = r.content\n for key in endpoint:\n result.update({key: set()})\n result.update({'domain': domain})\n if result['status'] == requests.codes.ok:\n if 'link' in r.headers:\n all_links = r.headers['link'].split(',', 1)\n for link in all_links:\n if ';' in link:\n href, rel = link.split(';')\n url = urlparse(href.strip()[1:-1])\n if url.scheme in ('http', 'https') and rel in endpoint:\n result[rel].add(url)\n all_links = BeautifulSoup(result['content'], _html_parser,\n parse_only=SoupStrainer(**look_in)).find_all('link')\n for link in all_links:\n rel = link.get('rel', None)[0]\n if rel in endpoint:\n href = link.get('href', None)\n if href:\n url = urlparse(href)\n if url.scheme == '' or url.netloc == '':\n url = urlparse(urljoin(domain, href))\n if url.scheme in ('http', 'https'):\n result[rel].add(url)\n return result\n\n\ndef discoverMicropubEndpoints(domain, content=None, look_in={'name': 'link'\n }, test_urls=True, validateCerts=True):\n \"\"\"Find the micropub for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n return discoverEndpoint(domain, ('micropub',), content, look_in,\n test_urls, validateCerts)\n\n\ndef discoverTokenEndpoints(domain, content=None, look_in={'name': 'link'},\n test_urls=True, validateCerts=True):\n \"\"\"Find the token for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n return discoverEndpoint(domain, ('token_endpoint',), content, look_in,\n test_urls, validateCerts)\n", "step-4": "<mask token>\nimport requests\nfrom bs4 import BeautifulSoup, SoupStrainer\ntry:\n from urllib.parse import urlparse, urljoin\nexcept ImportError:\n from urlparse import urlparse, urljoin\nimport ronkyuu\n_html_parser = 'lxml'\n\n\ndef setParser(htmlParser='html5lib'):\n global _html_parser\n _html_parser = htmlParser\n\n\ndef discoverEndpoint(domain, endpoint, content=None, look_in={'name':\n 'link'}, test_urls=True, validateCerts=True):\n \"\"\"Find the given endpoint for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param endpoint: list of endpoints to look for\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n if test_urls:\n ronkyuu.URLValidator(message='invalid domain URL')(domain)\n if content:\n result = {'status': requests.codes.ok, 'headers': None, 'content':\n content}\n else:\n r = requests.get(domain, verify=validateCerts)\n result = {'status': r.status_code, 'headers': r.headers}\n if 'charset' in r.headers.get('content-type', ''):\n result['content'] = r.text\n else:\n result['content'] = r.content\n for key in endpoint:\n result.update({key: set()})\n result.update({'domain': domain})\n if result['status'] == requests.codes.ok:\n if 'link' in r.headers:\n all_links = r.headers['link'].split(',', 1)\n for link in all_links:\n if ';' in link:\n href, rel = link.split(';')\n url = urlparse(href.strip()[1:-1])\n if url.scheme in ('http', 'https') and rel in endpoint:\n result[rel].add(url)\n all_links = BeautifulSoup(result['content'], _html_parser,\n parse_only=SoupStrainer(**look_in)).find_all('link')\n for link in all_links:\n rel = link.get('rel', None)[0]\n if rel in endpoint:\n href = link.get('href', None)\n if href:\n url = urlparse(href)\n if url.scheme == '' or url.netloc == '':\n url = urlparse(urljoin(domain, href))\n if url.scheme in ('http', 'https'):\n result[rel].add(url)\n return result\n\n\ndef discoverMicropubEndpoints(domain, content=None, look_in={'name': 'link'\n }, test_urls=True, validateCerts=True):\n \"\"\"Find the micropub for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n return discoverEndpoint(domain, ('micropub',), content, look_in,\n test_urls, validateCerts)\n\n\ndef discoverTokenEndpoints(domain, content=None, look_in={'name': 'link'},\n test_urls=True, validateCerts=True):\n \"\"\"Find the token for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n return discoverEndpoint(domain, ('token_endpoint',), content, look_in,\n test_urls, validateCerts)\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"\n:copyright: (c) 2014-2016 by Mike Taylor\n:license: MIT, see LICENSE for more details.\n\nMicropub Tools\n\"\"\"\n\nimport requests\nfrom bs4 import BeautifulSoup, SoupStrainer\n\ntry: # Python v3\n from urllib.parse import urlparse, urljoin\nexcept ImportError:\n from urlparse import urlparse, urljoin\n\nimport ronkyuu\n\n\n_html_parser = 'lxml' # 'html.parser', 'lxml', 'lxml-xml', 'html5lib'\n\ndef setParser(htmlParser='html5lib'):\n global _html_parser\n _html_parser = htmlParser\n\n\n# find an endpoint\n# look in headers for given domain for a HTTP Link header\n# if not found, look for an HTML <link> element in page returned from domain given\n\ndef discoverEndpoint(domain, endpoint, content=None, look_in={'name': 'link'}, test_urls=True, validateCerts=True):\n \"\"\"Find the given endpoint for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param endpoint: list of endpoints to look for\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n if test_urls:\n ronkyuu.URLValidator(message='invalid domain URL')(domain)\n\n if content:\n result = {'status': requests.codes.ok,\n 'headers': None,\n 'content': content\n }\n else:\n r = requests.get(domain, verify=validateCerts)\n result = {'status': r.status_code,\n 'headers': r.headers\n }\n # check for character encodings and use 'correct' data\n if 'charset' in r.headers.get('content-type', ''):\n result['content'] = r.text\n else:\n result['content'] = r.content\n\n for key in endpoint:\n result.update({key: set()})\n result.update({'domain': domain})\n\n if result['status'] == requests.codes.ok:\n if 'link' in r.headers:\n all_links = r.headers['link'].split(',', 1)\n for link in all_links:\n if ';' in link:\n href, rel = link.split(';')\n url = urlparse(href.strip()[1:-1])\n if url.scheme in ('http', 'https') and rel in endpoint:\n result[rel].add(url)\n\n all_links = BeautifulSoup(result['content'], _html_parser, parse_only=SoupStrainer(**look_in)).find_all('link')\n for link in all_links:\n rel = link.get('rel', None)[0]\n if rel in endpoint:\n href = link.get('href', None)\n if href:\n url = urlparse(href)\n if url.scheme == '' or url.netloc == '':\n url = urlparse(urljoin(domain, href))\n if url.scheme in ('http', 'https'):\n result[rel].add(url)\n return result\n\ndef discoverMicropubEndpoints(domain, content=None, look_in={'name': 'link'}, test_urls=True, validateCerts=True):\n \"\"\"Find the micropub for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n return discoverEndpoint(domain, ('micropub',), content, look_in, test_urls, validateCerts)\n\ndef discoverTokenEndpoints(domain, content=None, look_in={'name': 'link'}, test_urls=True, validateCerts=True):\n \"\"\"Find the token for the given domain.\n Only scan html element matching all criteria in look_in.\n\n optionally the content to be scanned can be given as an argument.\n\n :param domain: the URL of the domain to handle\n :param content: the content to be scanned for the endpoint\n :param look_in: dictionary with name, id and class_. only element matching all of these will be scanned\n :param test_urls: optional flag to test URLs for validation\n :param validateCerts: optional flag to enforce HTTPS certificates if present\n :rtype: list of endpoints\n \"\"\"\n return discoverEndpoint(domain, ('token_endpoint',), content, look_in, test_urls, validateCerts)\n", "step-ids": [ 2, 5, 6, 7, 8 ] }
[ 2, 5, 6, 7, 8 ]
#!/usr/bin/env python3 # coding=utf-8 import fire import json import os import time import requests import time import hashlib import random root_path, file_name = os.path.split(os.path.realpath(__file__)) ip_list_path = ''.join([root_path, os.path.sep, 'ip_list.json']) class ProxySwift(object): server_id = '1' def requerst_get(self, url, data, *p, **kwargs): SecretKey = '3JCx8fAF7Bpq5Aj4t9wS7cfVB7hpXZ7j' PartnerID = '2017061217350058' TimeStamp = int(time.time()) source_data = { 'partner_id': PartnerID, 'timestamp': TimeStamp } source_data.update(data) tmp_data = [i for i in source_data.items()] tmp_data = sorted(tmp_data, key=lambda i: i[0]) url_list = ['{}{}'.format(*i) for i in tmp_data] # url_list.reverse() # sign = ''.join(url_list) # sign = ''.join(sorted(sign)) sign = ''.join(url_list) # sign = ''.join(sorted(sign)) data = sign + SecretKey md_5 = hashlib.md5() md_5.update(data.encode("utf-8")) sign = md_5.hexdigest() source_data.update({'sign': sign}) return requests.get(url, params=source_data, verify=False, *p, **kwargs) def get_ip(self, interface_id='', pool_id=''): url = 'https://api.proxyswift.com/ip/get' data = { 'server_id': self.server_id, 'pool_id': pool_id, 'interface_id': interface_id, } r = self.requerst_get(url, data) response = r.json() return response def get_task(self, task_id): url = 'https://api.proxyswift.com/task/get' data = {'task_id': task_id} r = self.requerst_get(url, data) return r.json() def changes_ip(self, interface_id, filter=24): url = 'https://api.proxyswift.com/ip/change' data = { 'server_id': self.server_id, 'interface_id': interface_id, 'filter': filter, } r = self.requerst_get(url, data) task_id = r.json()['taskId'] #status = self(task_id)['status'] i = 1 while True: time.sleep(i%2+1) status = self.get_task(task_id)['status'] if status == 'success': ip_port = self.get_ip(interface_id) return ip_port class ProxyPool(object): def __init__(self, proxyswift=ProxySwift(), interval=4): self.interval = interval self.ps = proxyswift self.count = 0 self.index = 0 with open(ip_list_path, 'r', encoding='utf-8') as f: self.pool = json.loads(f.read()) def get(self): # 从 pool中随机取一个ip with open(ip_list_path, 'r', encoding='utf-8') as f: self.pool = json.loads(f.read()) ip = random.choice(self.pool) ip = "{0}:{1}".format(ip['ip'], ip['port']) print(ip) return ip def change_ip(self, proxy_server): for ip in self.pool: if proxy_server == "http://%(ip)s:%(port)s" % ip: self.pool.pop(0) self.ps.changes_ip(ip['id']) self.pool = self.ps.get_ip() time.sleep(1) break self.refresh_ip() def refresh_ip(self): time.sleep(5) self.pool = self.ps.get_ip() print(self.pool) # os.environ['ip_list'] = json.dumps(self.ps.get_ip()) with open(ip_list_path, 'w', encoding='utf-8') as f: f.write(json.dumps(self.ps.get_ip())) def main(): fire.Fire(ProxyPool) if __name__ == '__main__': main()
normal
{ "blob_id": "0ff96b2314927d7b3e763242e554fd561f3c9343", "index": 5872, "step-1": "<mask token>\n\n\nclass ProxySwift(object):\n <mask token>\n\n def requerst_get(self, url, data, *p, **kwargs):\n SecretKey = '3JCx8fAF7Bpq5Aj4t9wS7cfVB7hpXZ7j'\n PartnerID = '2017061217350058'\n TimeStamp = int(time.time())\n source_data = {'partner_id': PartnerID, 'timestamp': TimeStamp}\n source_data.update(data)\n tmp_data = [i for i in source_data.items()]\n tmp_data = sorted(tmp_data, key=lambda i: i[0])\n url_list = ['{}{}'.format(*i) for i in tmp_data]\n sign = ''.join(url_list)\n data = sign + SecretKey\n md_5 = hashlib.md5()\n md_5.update(data.encode('utf-8'))\n sign = md_5.hexdigest()\n source_data.update({'sign': sign})\n return requests.get(url, *p, params=source_data, verify=False, **kwargs\n )\n\n def get_ip(self, interface_id='', pool_id=''):\n url = 'https://api.proxyswift.com/ip/get'\n data = {'server_id': self.server_id, 'pool_id': pool_id,\n 'interface_id': interface_id}\n r = self.requerst_get(url, data)\n response = r.json()\n return response\n <mask token>\n\n def changes_ip(self, interface_id, filter=24):\n url = 'https://api.proxyswift.com/ip/change'\n data = {'server_id': self.server_id, 'interface_id': interface_id,\n 'filter': filter}\n r = self.requerst_get(url, data)\n task_id = r.json()['taskId']\n i = 1\n while True:\n time.sleep(i % 2 + 1)\n status = self.get_task(task_id)['status']\n if status == 'success':\n ip_port = self.get_ip(interface_id)\n return ip_port\n\n\nclass ProxyPool(object):\n\n def __init__(self, proxyswift=ProxySwift(), interval=4):\n self.interval = interval\n self.ps = proxyswift\n self.count = 0\n self.index = 0\n with open(ip_list_path, 'r', encoding='utf-8') as f:\n self.pool = json.loads(f.read())\n\n def get(self):\n with open(ip_list_path, 'r', encoding='utf-8') as f:\n self.pool = json.loads(f.read())\n ip = random.choice(self.pool)\n ip = '{0}:{1}'.format(ip['ip'], ip['port'])\n print(ip)\n return ip\n\n def change_ip(self, proxy_server):\n for ip in self.pool:\n if proxy_server == 'http://%(ip)s:%(port)s' % ip:\n self.pool.pop(0)\n self.ps.changes_ip(ip['id'])\n self.pool = self.ps.get_ip()\n time.sleep(1)\n break\n self.refresh_ip()\n\n def refresh_ip(self):\n time.sleep(5)\n self.pool = self.ps.get_ip()\n print(self.pool)\n with open(ip_list_path, 'w', encoding='utf-8') as f:\n f.write(json.dumps(self.ps.get_ip()))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ProxySwift(object):\n <mask token>\n\n def requerst_get(self, url, data, *p, **kwargs):\n SecretKey = '3JCx8fAF7Bpq5Aj4t9wS7cfVB7hpXZ7j'\n PartnerID = '2017061217350058'\n TimeStamp = int(time.time())\n source_data = {'partner_id': PartnerID, 'timestamp': TimeStamp}\n source_data.update(data)\n tmp_data = [i for i in source_data.items()]\n tmp_data = sorted(tmp_data, key=lambda i: i[0])\n url_list = ['{}{}'.format(*i) for i in tmp_data]\n sign = ''.join(url_list)\n data = sign + SecretKey\n md_5 = hashlib.md5()\n md_5.update(data.encode('utf-8'))\n sign = md_5.hexdigest()\n source_data.update({'sign': sign})\n return requests.get(url, *p, params=source_data, verify=False, **kwargs\n )\n\n def get_ip(self, interface_id='', pool_id=''):\n url = 'https://api.proxyswift.com/ip/get'\n data = {'server_id': self.server_id, 'pool_id': pool_id,\n 'interface_id': interface_id}\n r = self.requerst_get(url, data)\n response = r.json()\n return response\n\n def get_task(self, task_id):\n url = 'https://api.proxyswift.com/task/get'\n data = {'task_id': task_id}\n r = self.requerst_get(url, data)\n return r.json()\n\n def changes_ip(self, interface_id, filter=24):\n url = 'https://api.proxyswift.com/ip/change'\n data = {'server_id': self.server_id, 'interface_id': interface_id,\n 'filter': filter}\n r = self.requerst_get(url, data)\n task_id = r.json()['taskId']\n i = 1\n while True:\n time.sleep(i % 2 + 1)\n status = self.get_task(task_id)['status']\n if status == 'success':\n ip_port = self.get_ip(interface_id)\n return ip_port\n\n\nclass ProxyPool(object):\n\n def __init__(self, proxyswift=ProxySwift(), interval=4):\n self.interval = interval\n self.ps = proxyswift\n self.count = 0\n self.index = 0\n with open(ip_list_path, 'r', encoding='utf-8') as f:\n self.pool = json.loads(f.read())\n\n def get(self):\n with open(ip_list_path, 'r', encoding='utf-8') as f:\n self.pool = json.loads(f.read())\n ip = random.choice(self.pool)\n ip = '{0}:{1}'.format(ip['ip'], ip['port'])\n print(ip)\n return ip\n\n def change_ip(self, proxy_server):\n for ip in self.pool:\n if proxy_server == 'http://%(ip)s:%(port)s' % ip:\n self.pool.pop(0)\n self.ps.changes_ip(ip['id'])\n self.pool = self.ps.get_ip()\n time.sleep(1)\n break\n self.refresh_ip()\n\n def refresh_ip(self):\n time.sleep(5)\n self.pool = self.ps.get_ip()\n print(self.pool)\n with open(ip_list_path, 'w', encoding='utf-8') as f:\n f.write(json.dumps(self.ps.get_ip()))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ProxySwift(object):\n server_id = '1'\n\n def requerst_get(self, url, data, *p, **kwargs):\n SecretKey = '3JCx8fAF7Bpq5Aj4t9wS7cfVB7hpXZ7j'\n PartnerID = '2017061217350058'\n TimeStamp = int(time.time())\n source_data = {'partner_id': PartnerID, 'timestamp': TimeStamp}\n source_data.update(data)\n tmp_data = [i for i in source_data.items()]\n tmp_data = sorted(tmp_data, key=lambda i: i[0])\n url_list = ['{}{}'.format(*i) for i in tmp_data]\n sign = ''.join(url_list)\n data = sign + SecretKey\n md_5 = hashlib.md5()\n md_5.update(data.encode('utf-8'))\n sign = md_5.hexdigest()\n source_data.update({'sign': sign})\n return requests.get(url, *p, params=source_data, verify=False, **kwargs\n )\n\n def get_ip(self, interface_id='', pool_id=''):\n url = 'https://api.proxyswift.com/ip/get'\n data = {'server_id': self.server_id, 'pool_id': pool_id,\n 'interface_id': interface_id}\n r = self.requerst_get(url, data)\n response = r.json()\n return response\n\n def get_task(self, task_id):\n url = 'https://api.proxyswift.com/task/get'\n data = {'task_id': task_id}\n r = self.requerst_get(url, data)\n return r.json()\n\n def changes_ip(self, interface_id, filter=24):\n url = 'https://api.proxyswift.com/ip/change'\n data = {'server_id': self.server_id, 'interface_id': interface_id,\n 'filter': filter}\n r = self.requerst_get(url, data)\n task_id = r.json()['taskId']\n i = 1\n while True:\n time.sleep(i % 2 + 1)\n status = self.get_task(task_id)['status']\n if status == 'success':\n ip_port = self.get_ip(interface_id)\n return ip_port\n\n\nclass ProxyPool(object):\n\n def __init__(self, proxyswift=ProxySwift(), interval=4):\n self.interval = interval\n self.ps = proxyswift\n self.count = 0\n self.index = 0\n with open(ip_list_path, 'r', encoding='utf-8') as f:\n self.pool = json.loads(f.read())\n\n def get(self):\n with open(ip_list_path, 'r', encoding='utf-8') as f:\n self.pool = json.loads(f.read())\n ip = random.choice(self.pool)\n ip = '{0}:{1}'.format(ip['ip'], ip['port'])\n print(ip)\n return ip\n\n def change_ip(self, proxy_server):\n for ip in self.pool:\n if proxy_server == 'http://%(ip)s:%(port)s' % ip:\n self.pool.pop(0)\n self.ps.changes_ip(ip['id'])\n self.pool = self.ps.get_ip()\n time.sleep(1)\n break\n self.refresh_ip()\n\n def refresh_ip(self):\n time.sleep(5)\n self.pool = self.ps.get_ip()\n print(self.pool)\n with open(ip_list_path, 'w', encoding='utf-8') as f:\n f.write(json.dumps(self.ps.get_ip()))\n\n\ndef main():\n fire.Fire(ProxyPool)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nroot_path, file_name = os.path.split(os.path.realpath(__file__))\nip_list_path = ''.join([root_path, os.path.sep, 'ip_list.json'])\n\n\nclass ProxySwift(object):\n server_id = '1'\n\n def requerst_get(self, url, data, *p, **kwargs):\n SecretKey = '3JCx8fAF7Bpq5Aj4t9wS7cfVB7hpXZ7j'\n PartnerID = '2017061217350058'\n TimeStamp = int(time.time())\n source_data = {'partner_id': PartnerID, 'timestamp': TimeStamp}\n source_data.update(data)\n tmp_data = [i for i in source_data.items()]\n tmp_data = sorted(tmp_data, key=lambda i: i[0])\n url_list = ['{}{}'.format(*i) for i in tmp_data]\n sign = ''.join(url_list)\n data = sign + SecretKey\n md_5 = hashlib.md5()\n md_5.update(data.encode('utf-8'))\n sign = md_5.hexdigest()\n source_data.update({'sign': sign})\n return requests.get(url, *p, params=source_data, verify=False, **kwargs\n )\n\n def get_ip(self, interface_id='', pool_id=''):\n url = 'https://api.proxyswift.com/ip/get'\n data = {'server_id': self.server_id, 'pool_id': pool_id,\n 'interface_id': interface_id}\n r = self.requerst_get(url, data)\n response = r.json()\n return response\n\n def get_task(self, task_id):\n url = 'https://api.proxyswift.com/task/get'\n data = {'task_id': task_id}\n r = self.requerst_get(url, data)\n return r.json()\n\n def changes_ip(self, interface_id, filter=24):\n url = 'https://api.proxyswift.com/ip/change'\n data = {'server_id': self.server_id, 'interface_id': interface_id,\n 'filter': filter}\n r = self.requerst_get(url, data)\n task_id = r.json()['taskId']\n i = 1\n while True:\n time.sleep(i % 2 + 1)\n status = self.get_task(task_id)['status']\n if status == 'success':\n ip_port = self.get_ip(interface_id)\n return ip_port\n\n\nclass ProxyPool(object):\n\n def __init__(self, proxyswift=ProxySwift(), interval=4):\n self.interval = interval\n self.ps = proxyswift\n self.count = 0\n self.index = 0\n with open(ip_list_path, 'r', encoding='utf-8') as f:\n self.pool = json.loads(f.read())\n\n def get(self):\n with open(ip_list_path, 'r', encoding='utf-8') as f:\n self.pool = json.loads(f.read())\n ip = random.choice(self.pool)\n ip = '{0}:{1}'.format(ip['ip'], ip['port'])\n print(ip)\n return ip\n\n def change_ip(self, proxy_server):\n for ip in self.pool:\n if proxy_server == 'http://%(ip)s:%(port)s' % ip:\n self.pool.pop(0)\n self.ps.changes_ip(ip['id'])\n self.pool = self.ps.get_ip()\n time.sleep(1)\n break\n self.refresh_ip()\n\n def refresh_ip(self):\n time.sleep(5)\n self.pool = self.ps.get_ip()\n print(self.pool)\n with open(ip_list_path, 'w', encoding='utf-8') as f:\n f.write(json.dumps(self.ps.get_ip()))\n\n\ndef main():\n fire.Fire(ProxyPool)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python3\r\n# coding=utf-8\r\nimport fire\r\nimport json\r\nimport os\r\nimport time\r\nimport requests\r\nimport time\r\nimport hashlib\r\nimport random\r\n\r\nroot_path, file_name = os.path.split(os.path.realpath(__file__))\r\nip_list_path = ''.join([root_path, os.path.sep, 'ip_list.json'])\r\n\r\n\r\nclass ProxySwift(object):\r\n server_id = '1'\r\n\r\n def requerst_get(self, url, data, *p, **kwargs):\r\n SecretKey = '3JCx8fAF7Bpq5Aj4t9wS7cfVB7hpXZ7j'\r\n\r\n PartnerID = '2017061217350058'\r\n TimeStamp = int(time.time())\r\n\r\n\r\n source_data = {\r\n 'partner_id': PartnerID,\r\n 'timestamp': TimeStamp\r\n }\r\n\r\n source_data.update(data)\r\n\r\n tmp_data = [i for i in source_data.items()]\r\n tmp_data = sorted(tmp_data, key=lambda i: i[0])\r\n\r\n url_list = ['{}{}'.format(*i) for i in tmp_data]\r\n # url_list.reverse()\r\n # sign = ''.join(url_list)\r\n # sign = ''.join(sorted(sign))\r\n\r\n sign = ''.join(url_list)\r\n # sign = ''.join(sorted(sign))\r\n\r\n data = sign + SecretKey\r\n md_5 = hashlib.md5()\r\n md_5.update(data.encode(\"utf-8\"))\r\n sign = md_5.hexdigest()\r\n source_data.update({'sign': sign})\r\n return requests.get(url, params=source_data, verify=False, *p, **kwargs)\r\n\r\n def get_ip(self, interface_id='', pool_id=''):\r\n url = 'https://api.proxyswift.com/ip/get'\r\n data = {\r\n 'server_id': self.server_id,\r\n 'pool_id': pool_id,\r\n 'interface_id': interface_id,\r\n }\r\n r = self.requerst_get(url, data)\r\n response = r.json()\r\n return response\r\n\r\n def get_task(self, task_id):\r\n url = 'https://api.proxyswift.com/task/get'\r\n data = {'task_id': task_id}\r\n r = self.requerst_get(url, data)\r\n\r\n return r.json()\r\n\r\n def changes_ip(self, interface_id, filter=24):\r\n url = 'https://api.proxyswift.com/ip/change'\r\n data = {\r\n 'server_id': self.server_id,\r\n 'interface_id': interface_id,\r\n 'filter': filter,\r\n }\r\n\r\n r = self.requerst_get(url, data)\r\n task_id = r.json()['taskId']\r\n #status = self(task_id)['status']\r\n\r\n i = 1\r\n while True:\r\n time.sleep(i%2+1)\r\n status = self.get_task(task_id)['status']\r\n if status == 'success':\r\n ip_port = self.get_ip(interface_id)\r\n return ip_port\r\n\r\n\r\nclass ProxyPool(object):\r\n def __init__(self, proxyswift=ProxySwift(), interval=4):\r\n\r\n self.interval = interval\r\n self.ps = proxyswift\r\n self.count = 0\r\n self.index = 0\r\n\r\n with open(ip_list_path, 'r', encoding='utf-8') as f:\r\n self.pool = json.loads(f.read())\r\n\r\n def get(self):\r\n # 从 pool中随机取一个ip\r\n with open(ip_list_path, 'r', encoding='utf-8') as f:\r\n self.pool = json.loads(f.read())\r\n ip = random.choice(self.pool)\r\n ip = \"{0}:{1}\".format(ip['ip'], ip['port'])\r\n print(ip)\r\n return ip\r\n\r\n def change_ip(self, proxy_server):\r\n for ip in self.pool:\r\n if proxy_server == \"http://%(ip)s:%(port)s\" % ip:\r\n self.pool.pop(0)\r\n self.ps.changes_ip(ip['id'])\r\n self.pool = self.ps.get_ip()\r\n time.sleep(1)\r\n break\r\n self.refresh_ip()\r\n\r\n def refresh_ip(self):\r\n time.sleep(5)\r\n self.pool = self.ps.get_ip()\r\n print(self.pool)\r\n # os.environ['ip_list'] = json.dumps(self.ps.get_ip())\r\n with open(ip_list_path, 'w', encoding='utf-8') as f:\r\n f.write(json.dumps(self.ps.get_ip()))\r\n\r\n\r\ndef main():\r\n fire.Fire(ProxyPool)\r\n\r\nif __name__ == '__main__':\r\n main()", "step-ids": [ 9, 10, 13, 14, 16 ] }
[ 9, 10, 13, 14, 16 ]
from models import Sensor import mysql.connector as mariadb ## CREATE A DB WITH MARIADB ## mariadb_connection = mariadb.connect(user='web', password='raspberry', database='PlantHubDB') cursor = mariadb_connection.cursor() def closeConnection(): cursor.close() mariadb_connection.close() return def getTasks(amount): mariadb_connection = mariadb.connect(user='web', password='raspberry', database='PlantHubDB') cursor = mariadb_connection.cursor() all_data = [] cursor.execute("SELECT * FROM Sensor") all_entries = cursor.fetchall() for row in all_entries: entry = Sensor(row[0], row[1], row[2]) all_data.append(entry.data) closeConnection() return all_data def getTask(task_id): mariadb_connection = mariadb.connect(user='web', password='raspberry', database='PlantHubDB') cursor = mariadb_connection.cursor() cursor.execute("SELECT * FROM Sensor WHERE ID={}".format(task_id)) entry = cursor.fetchall() data = Sensor(entry[0][0], entry[0][1], entry[0][2]) closeConnection() return data.data
normal
{ "blob_id": "f471062573a5ec8cfeb194168edfba3d2700cac6", "index": 9845, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef closeConnection():\n cursor.close()\n mariadb_connection.close()\n return\n\n\ndef getTasks(amount):\n mariadb_connection = mariadb.connect(user='web', password='raspberry',\n database='PlantHubDB')\n cursor = mariadb_connection.cursor()\n all_data = []\n cursor.execute('SELECT * FROM Sensor')\n all_entries = cursor.fetchall()\n for row in all_entries:\n entry = Sensor(row[0], row[1], row[2])\n all_data.append(entry.data)\n closeConnection()\n return all_data\n\n\ndef getTask(task_id):\n mariadb_connection = mariadb.connect(user='web', password='raspberry',\n database='PlantHubDB')\n cursor = mariadb_connection.cursor()\n cursor.execute('SELECT * FROM Sensor WHERE ID={}'.format(task_id))\n entry = cursor.fetchall()\n data = Sensor(entry[0][0], entry[0][1], entry[0][2])\n closeConnection()\n return data.data\n", "step-3": "<mask token>\nmariadb_connection = mariadb.connect(user='web', password='raspberry',\n database='PlantHubDB')\ncursor = mariadb_connection.cursor()\n\n\ndef closeConnection():\n cursor.close()\n mariadb_connection.close()\n return\n\n\ndef getTasks(amount):\n mariadb_connection = mariadb.connect(user='web', password='raspberry',\n database='PlantHubDB')\n cursor = mariadb_connection.cursor()\n all_data = []\n cursor.execute('SELECT * FROM Sensor')\n all_entries = cursor.fetchall()\n for row in all_entries:\n entry = Sensor(row[0], row[1], row[2])\n all_data.append(entry.data)\n closeConnection()\n return all_data\n\n\ndef getTask(task_id):\n mariadb_connection = mariadb.connect(user='web', password='raspberry',\n database='PlantHubDB')\n cursor = mariadb_connection.cursor()\n cursor.execute('SELECT * FROM Sensor WHERE ID={}'.format(task_id))\n entry = cursor.fetchall()\n data = Sensor(entry[0][0], entry[0][1], entry[0][2])\n closeConnection()\n return data.data\n", "step-4": "from models import Sensor\nimport mysql.connector as mariadb\nmariadb_connection = mariadb.connect(user='web', password='raspberry',\n database='PlantHubDB')\ncursor = mariadb_connection.cursor()\n\n\ndef closeConnection():\n cursor.close()\n mariadb_connection.close()\n return\n\n\ndef getTasks(amount):\n mariadb_connection = mariadb.connect(user='web', password='raspberry',\n database='PlantHubDB')\n cursor = mariadb_connection.cursor()\n all_data = []\n cursor.execute('SELECT * FROM Sensor')\n all_entries = cursor.fetchall()\n for row in all_entries:\n entry = Sensor(row[0], row[1], row[2])\n all_data.append(entry.data)\n closeConnection()\n return all_data\n\n\ndef getTask(task_id):\n mariadb_connection = mariadb.connect(user='web', password='raspberry',\n database='PlantHubDB')\n cursor = mariadb_connection.cursor()\n cursor.execute('SELECT * FROM Sensor WHERE ID={}'.format(task_id))\n entry = cursor.fetchall()\n data = Sensor(entry[0][0], entry[0][1], entry[0][2])\n closeConnection()\n return data.data\n", "step-5": "from models import Sensor\nimport mysql.connector as mariadb\n\n## CREATE A DB WITH MARIADB ##\nmariadb_connection = mariadb.connect(user='web', password='raspberry', database='PlantHubDB')\ncursor = mariadb_connection.cursor()\n\ndef closeConnection():\n cursor.close()\n mariadb_connection.close()\n return\n\ndef getTasks(amount):\n mariadb_connection = mariadb.connect(user='web', password='raspberry', database='PlantHubDB')\n cursor = mariadb_connection.cursor()\n all_data = []\n cursor.execute(\"SELECT * FROM Sensor\")\n all_entries = cursor.fetchall()\n\n for row in all_entries:\n entry = Sensor(row[0], row[1], row[2])\n all_data.append(entry.data)\n\n closeConnection()\n return all_data\n\ndef getTask(task_id):\n mariadb_connection = mariadb.connect(user='web', password='raspberry', database='PlantHubDB')\n cursor = mariadb_connection.cursor()\n cursor.execute(\"SELECT * FROM Sensor WHERE ID={}\".format(task_id))\n entry = cursor.fetchall()\n\n data = Sensor(entry[0][0], entry[0][1], entry[0][2])\n\n closeConnection()\n return data.data\n ", "step-ids": [ 0, 3, 4, 5, 6 ] }
[ 0, 3, 4, 5, 6 ]
from web3 import Web3, HTTPProvider, IPCProvider from tcmb.tcmb_parser import TCMB_Processor from ecb.ecb_parser import ECB_Processor from web3.contract import ConciseContract from web3.middleware import geth_poa_middleware import json import time tcmb_currencies = ["TRY", "USD", "AUD", "DKK", "EUR", "GBP", "CHF", "SEK", "CAD", "KWD", "NOK", "SAR", "JPY", "BGN", "RON", "RUB", "IRR", "CNY", "PKR"] ecb_currencies = ["EUR", "USD", "JPY", "BGN", "CZK", "DKK", "GBP", "HUF", "PLN", "RON", "SEK", "CHF", "ISK", "NOK", "HRK", "RUB", "TRY", "AUD", "BRL", "CAD", "CNY", "HKD", "IDR", "ILS", "INR", "KRW", "MXN", "MYR", "NZD", "PHP", "SGD", "THB", "ZAR"] def epoch_day(epoch_time): epoch_time = int(epoch_time) return(epoch_time - (epoch_time % 86400)) with open('config_ebloc.json') as json_data_file: config_data = json.load(json_data_file) owner_address = config_data["owner"]["address"] owner_password = config_data["owner"]["password"] contract_address = config_data["contract"]["address"] contract_abi = config_data["contract"]["abi"] gas = int(config_data["price"]["gas"]) gas_price = Web3.toWei( int(config_data["price"]["gas_price"]), 'gwei') ecb_daily_log_path = config_data["log"]["ecb_daily"] tcmb_daily_log_path = config_data["log"]["tcmb_daily"] geth_ipc_path = config_data["geth"]["geth_ipc_path"] contract_address = Web3.toChecksumAddress(contract_address) web3 = Web3(IPCProvider(geth_ipc_path)) web3.middleware_stack.inject(geth_poa_middleware, layer=0) web3.eth.defaultAccount = web3.eth.accounts[0] web3.personal.unlockAccount(web3.eth.accounts[0], owner_password) contract_instance = web3.eth.contract(abi=contract_abi, address=contract_address, ContractFactoryClass=ConciseContract) unix_time = Web3.toInt(epoch_day(time.time())) def add_ecb(): unix_time = Web3.toInt(epoch_day(time.time())) ECB = ECB_Processor() f = open(ecb_daily_log_path, "a") if(time.strftime("%Y-%m-%d") == ECB.Currency_Dict["time"]): for curr in ecb_currencies: curr_code = bytes(curr, encoding='utf-8') curr_value = web3.toInt(int(float(ECB.Currency_Dict[curr])*(10**9))) tx_hash = contract_instance.add_ecb(unix_time, curr_code, curr_value, transact={'from': web3.eth.accounts[0]}) tx_hash = tx_hash.hex() print(time.strftime("%Y-%m-%d %H:%M"), unix_time, tx_hash, curr_code, file=f) else: print(time.strftime("%Y-%m-%d %H:%M"), unix_time, "Weekend", file=f) f.close() def add_tcmb(): unix_time = Web3.toInt(epoch_day(time.time())) TCMB = TCMB_Processor() f = open(tcmb_daily_log_path, "a") if(time.strftime("%m/%d/%Y") == TCMB.CURRENCY_DICT["Date"]): for curr in tcmb_currencies: curr_code = bytes(curr, encoding='utf-8') curr_value_fb = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr]["ForexBuying"])*(10**9))) curr_value_fs = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr]["ForexSelling"])*(10**9))) # forex buying tx_hash_fb = contract_instance.add_tcmb_forexbuying(unix_time, curr_code, curr_value_fb, transact={'from': web3.eth.accounts[0]}) tx_hash_fb = tx_hash_fb.hex() print(time.strftime("%Y-%m-%d %H:%M"), unix_time, tx_hash_fb, curr_code, file=f) # forex selling tx_hash_fs = contract_instance.add_tcmb_forexselling(unix_time, curr_code, curr_value_fs, transact={'from': web3.eth.accounts[0]}) tx_hash_fs = tx_hash_fs.hex() print(time.strftime("%Y-%m-%d %H:%M"), unix_time, tx_hash_fs, curr_code, file=f) else: print(time.strftime("%Y-%m-%d %H:%M"), unix_time, "Weekend", file=f) f.close() if __name__ == "__main__": add_ecb() add_tcmb() print(time.strftime("%Y-%m-%d %H:%M"), " DONE EBLOC add_ecb & add_tcmb")
normal
{ "blob_id": "ecd5097d9d497b62b89217ee3c46506f21fc15d2", "index": 5065, "step-1": "<mask token>\n\n\ndef epoch_day(epoch_time):\n epoch_time = int(epoch_time)\n return epoch_time - epoch_time % 86400\n\n\n<mask token>\n\n\ndef add_ecb():\n unix_time = Web3.toInt(epoch_day(time.time()))\n ECB = ECB_Processor()\n f = open(ecb_daily_log_path, 'a')\n if time.strftime('%Y-%m-%d') == ECB.Currency_Dict['time']:\n for curr in ecb_currencies:\n curr_code = bytes(curr, encoding='utf-8')\n curr_value = web3.toInt(int(float(ECB.Currency_Dict[curr]) * 10 **\n 9))\n tx_hash = contract_instance.add_ecb(unix_time, curr_code,\n curr_value, transact={'from': web3.eth.accounts[0]})\n tx_hash = tx_hash.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash,\n curr_code, file=f)\n else:\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, 'Weekend', file=f)\n f.close()\n\n\ndef add_tcmb():\n unix_time = Web3.toInt(epoch_day(time.time()))\n TCMB = TCMB_Processor()\n f = open(tcmb_daily_log_path, 'a')\n if time.strftime('%m/%d/%Y') == TCMB.CURRENCY_DICT['Date']:\n for curr in tcmb_currencies:\n curr_code = bytes(curr, encoding='utf-8')\n curr_value_fb = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr][\n 'ForexBuying']) * 10 ** 9))\n curr_value_fs = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr][\n 'ForexSelling']) * 10 ** 9))\n tx_hash_fb = contract_instance.add_tcmb_forexbuying(unix_time,\n curr_code, curr_value_fb, transact={'from': web3.eth.\n accounts[0]})\n tx_hash_fb = tx_hash_fb.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash_fb,\n curr_code, file=f)\n tx_hash_fs = contract_instance.add_tcmb_forexselling(unix_time,\n curr_code, curr_value_fs, transact={'from': web3.eth.\n accounts[0]})\n tx_hash_fs = tx_hash_fs.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash_fs,\n curr_code, file=f)\n else:\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, 'Weekend', file=f)\n f.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef epoch_day(epoch_time):\n epoch_time = int(epoch_time)\n return epoch_time - epoch_time % 86400\n\n\nwith open('config_ebloc.json') as json_data_file:\n config_data = json.load(json_data_file)\n<mask token>\nweb3.middleware_stack.inject(geth_poa_middleware, layer=0)\n<mask token>\nweb3.personal.unlockAccount(web3.eth.accounts[0], owner_password)\n<mask token>\n\n\ndef add_ecb():\n unix_time = Web3.toInt(epoch_day(time.time()))\n ECB = ECB_Processor()\n f = open(ecb_daily_log_path, 'a')\n if time.strftime('%Y-%m-%d') == ECB.Currency_Dict['time']:\n for curr in ecb_currencies:\n curr_code = bytes(curr, encoding='utf-8')\n curr_value = web3.toInt(int(float(ECB.Currency_Dict[curr]) * 10 **\n 9))\n tx_hash = contract_instance.add_ecb(unix_time, curr_code,\n curr_value, transact={'from': web3.eth.accounts[0]})\n tx_hash = tx_hash.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash,\n curr_code, file=f)\n else:\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, 'Weekend', file=f)\n f.close()\n\n\ndef add_tcmb():\n unix_time = Web3.toInt(epoch_day(time.time()))\n TCMB = TCMB_Processor()\n f = open(tcmb_daily_log_path, 'a')\n if time.strftime('%m/%d/%Y') == TCMB.CURRENCY_DICT['Date']:\n for curr in tcmb_currencies:\n curr_code = bytes(curr, encoding='utf-8')\n curr_value_fb = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr][\n 'ForexBuying']) * 10 ** 9))\n curr_value_fs = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr][\n 'ForexSelling']) * 10 ** 9))\n tx_hash_fb = contract_instance.add_tcmb_forexbuying(unix_time,\n curr_code, curr_value_fb, transact={'from': web3.eth.\n accounts[0]})\n tx_hash_fb = tx_hash_fb.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash_fb,\n curr_code, file=f)\n tx_hash_fs = contract_instance.add_tcmb_forexselling(unix_time,\n curr_code, curr_value_fs, transact={'from': web3.eth.\n accounts[0]})\n tx_hash_fs = tx_hash_fs.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash_fs,\n curr_code, file=f)\n else:\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, 'Weekend', file=f)\n f.close()\n\n\nif __name__ == '__main__':\n add_ecb()\n add_tcmb()\n print(time.strftime('%Y-%m-%d %H:%M'), ' DONE EBLOC add_ecb & add_tcmb')\n", "step-3": "<mask token>\ntcmb_currencies = ['TRY', 'USD', 'AUD', 'DKK', 'EUR', 'GBP', 'CHF', 'SEK',\n 'CAD', 'KWD', 'NOK', 'SAR', 'JPY', 'BGN', 'RON', 'RUB', 'IRR', 'CNY', 'PKR'\n ]\necb_currencies = ['EUR', 'USD', 'JPY', 'BGN', 'CZK', 'DKK', 'GBP', 'HUF',\n 'PLN', 'RON', 'SEK', 'CHF', 'ISK', 'NOK', 'HRK', 'RUB', 'TRY', 'AUD',\n 'BRL', 'CAD', 'CNY', 'HKD', 'IDR', 'ILS', 'INR', 'KRW', 'MXN', 'MYR',\n 'NZD', 'PHP', 'SGD', 'THB', 'ZAR']\n\n\ndef epoch_day(epoch_time):\n epoch_time = int(epoch_time)\n return epoch_time - epoch_time % 86400\n\n\nwith open('config_ebloc.json') as json_data_file:\n config_data = json.load(json_data_file)\nowner_address = config_data['owner']['address']\nowner_password = config_data['owner']['password']\ncontract_address = config_data['contract']['address']\ncontract_abi = config_data['contract']['abi']\ngas = int(config_data['price']['gas'])\ngas_price = Web3.toWei(int(config_data['price']['gas_price']), 'gwei')\necb_daily_log_path = config_data['log']['ecb_daily']\ntcmb_daily_log_path = config_data['log']['tcmb_daily']\ngeth_ipc_path = config_data['geth']['geth_ipc_path']\ncontract_address = Web3.toChecksumAddress(contract_address)\nweb3 = Web3(IPCProvider(geth_ipc_path))\nweb3.middleware_stack.inject(geth_poa_middleware, layer=0)\nweb3.eth.defaultAccount = web3.eth.accounts[0]\nweb3.personal.unlockAccount(web3.eth.accounts[0], owner_password)\ncontract_instance = web3.eth.contract(abi=contract_abi, address=\n contract_address, ContractFactoryClass=ConciseContract)\nunix_time = Web3.toInt(epoch_day(time.time()))\n\n\ndef add_ecb():\n unix_time = Web3.toInt(epoch_day(time.time()))\n ECB = ECB_Processor()\n f = open(ecb_daily_log_path, 'a')\n if time.strftime('%Y-%m-%d') == ECB.Currency_Dict['time']:\n for curr in ecb_currencies:\n curr_code = bytes(curr, encoding='utf-8')\n curr_value = web3.toInt(int(float(ECB.Currency_Dict[curr]) * 10 **\n 9))\n tx_hash = contract_instance.add_ecb(unix_time, curr_code,\n curr_value, transact={'from': web3.eth.accounts[0]})\n tx_hash = tx_hash.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash,\n curr_code, file=f)\n else:\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, 'Weekend', file=f)\n f.close()\n\n\ndef add_tcmb():\n unix_time = Web3.toInt(epoch_day(time.time()))\n TCMB = TCMB_Processor()\n f = open(tcmb_daily_log_path, 'a')\n if time.strftime('%m/%d/%Y') == TCMB.CURRENCY_DICT['Date']:\n for curr in tcmb_currencies:\n curr_code = bytes(curr, encoding='utf-8')\n curr_value_fb = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr][\n 'ForexBuying']) * 10 ** 9))\n curr_value_fs = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr][\n 'ForexSelling']) * 10 ** 9))\n tx_hash_fb = contract_instance.add_tcmb_forexbuying(unix_time,\n curr_code, curr_value_fb, transact={'from': web3.eth.\n accounts[0]})\n tx_hash_fb = tx_hash_fb.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash_fb,\n curr_code, file=f)\n tx_hash_fs = contract_instance.add_tcmb_forexselling(unix_time,\n curr_code, curr_value_fs, transact={'from': web3.eth.\n accounts[0]})\n tx_hash_fs = tx_hash_fs.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash_fs,\n curr_code, file=f)\n else:\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, 'Weekend', file=f)\n f.close()\n\n\nif __name__ == '__main__':\n add_ecb()\n add_tcmb()\n print(time.strftime('%Y-%m-%d %H:%M'), ' DONE EBLOC add_ecb & add_tcmb')\n", "step-4": "from web3 import Web3, HTTPProvider, IPCProvider\nfrom tcmb.tcmb_parser import TCMB_Processor\nfrom ecb.ecb_parser import ECB_Processor\nfrom web3.contract import ConciseContract\nfrom web3.middleware import geth_poa_middleware\nimport json\nimport time\ntcmb_currencies = ['TRY', 'USD', 'AUD', 'DKK', 'EUR', 'GBP', 'CHF', 'SEK',\n 'CAD', 'KWD', 'NOK', 'SAR', 'JPY', 'BGN', 'RON', 'RUB', 'IRR', 'CNY', 'PKR'\n ]\necb_currencies = ['EUR', 'USD', 'JPY', 'BGN', 'CZK', 'DKK', 'GBP', 'HUF',\n 'PLN', 'RON', 'SEK', 'CHF', 'ISK', 'NOK', 'HRK', 'RUB', 'TRY', 'AUD',\n 'BRL', 'CAD', 'CNY', 'HKD', 'IDR', 'ILS', 'INR', 'KRW', 'MXN', 'MYR',\n 'NZD', 'PHP', 'SGD', 'THB', 'ZAR']\n\n\ndef epoch_day(epoch_time):\n epoch_time = int(epoch_time)\n return epoch_time - epoch_time % 86400\n\n\nwith open('config_ebloc.json') as json_data_file:\n config_data = json.load(json_data_file)\nowner_address = config_data['owner']['address']\nowner_password = config_data['owner']['password']\ncontract_address = config_data['contract']['address']\ncontract_abi = config_data['contract']['abi']\ngas = int(config_data['price']['gas'])\ngas_price = Web3.toWei(int(config_data['price']['gas_price']), 'gwei')\necb_daily_log_path = config_data['log']['ecb_daily']\ntcmb_daily_log_path = config_data['log']['tcmb_daily']\ngeth_ipc_path = config_data['geth']['geth_ipc_path']\ncontract_address = Web3.toChecksumAddress(contract_address)\nweb3 = Web3(IPCProvider(geth_ipc_path))\nweb3.middleware_stack.inject(geth_poa_middleware, layer=0)\nweb3.eth.defaultAccount = web3.eth.accounts[0]\nweb3.personal.unlockAccount(web3.eth.accounts[0], owner_password)\ncontract_instance = web3.eth.contract(abi=contract_abi, address=\n contract_address, ContractFactoryClass=ConciseContract)\nunix_time = Web3.toInt(epoch_day(time.time()))\n\n\ndef add_ecb():\n unix_time = Web3.toInt(epoch_day(time.time()))\n ECB = ECB_Processor()\n f = open(ecb_daily_log_path, 'a')\n if time.strftime('%Y-%m-%d') == ECB.Currency_Dict['time']:\n for curr in ecb_currencies:\n curr_code = bytes(curr, encoding='utf-8')\n curr_value = web3.toInt(int(float(ECB.Currency_Dict[curr]) * 10 **\n 9))\n tx_hash = contract_instance.add_ecb(unix_time, curr_code,\n curr_value, transact={'from': web3.eth.accounts[0]})\n tx_hash = tx_hash.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash,\n curr_code, file=f)\n else:\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, 'Weekend', file=f)\n f.close()\n\n\ndef add_tcmb():\n unix_time = Web3.toInt(epoch_day(time.time()))\n TCMB = TCMB_Processor()\n f = open(tcmb_daily_log_path, 'a')\n if time.strftime('%m/%d/%Y') == TCMB.CURRENCY_DICT['Date']:\n for curr in tcmb_currencies:\n curr_code = bytes(curr, encoding='utf-8')\n curr_value_fb = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr][\n 'ForexBuying']) * 10 ** 9))\n curr_value_fs = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr][\n 'ForexSelling']) * 10 ** 9))\n tx_hash_fb = contract_instance.add_tcmb_forexbuying(unix_time,\n curr_code, curr_value_fb, transact={'from': web3.eth.\n accounts[0]})\n tx_hash_fb = tx_hash_fb.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash_fb,\n curr_code, file=f)\n tx_hash_fs = contract_instance.add_tcmb_forexselling(unix_time,\n curr_code, curr_value_fs, transact={'from': web3.eth.\n accounts[0]})\n tx_hash_fs = tx_hash_fs.hex()\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, tx_hash_fs,\n curr_code, file=f)\n else:\n print(time.strftime('%Y-%m-%d %H:%M'), unix_time, 'Weekend', file=f)\n f.close()\n\n\nif __name__ == '__main__':\n add_ecb()\n add_tcmb()\n print(time.strftime('%Y-%m-%d %H:%M'), ' DONE EBLOC add_ecb & add_tcmb')\n", "step-5": "from web3 import Web3, HTTPProvider, IPCProvider\nfrom tcmb.tcmb_parser import TCMB_Processor\nfrom ecb.ecb_parser import ECB_Processor\nfrom web3.contract import ConciseContract\nfrom web3.middleware import geth_poa_middleware\nimport json\nimport time\n\ntcmb_currencies = [\"TRY\", \"USD\", \"AUD\", \"DKK\", \"EUR\", \"GBP\", \"CHF\", \"SEK\", \"CAD\", \n\t\t\"KWD\", \"NOK\", \"SAR\", \"JPY\", \"BGN\", \"RON\", \"RUB\", \"IRR\", \"CNY\", \"PKR\"]\n\necb_currencies = [\"EUR\", \"USD\", \"JPY\", \"BGN\", \"CZK\", \"DKK\", \"GBP\", \"HUF\", \"PLN\", \n\t\t\"RON\", \"SEK\", \"CHF\", \"ISK\", \"NOK\", \"HRK\", \"RUB\", \"TRY\", \"AUD\", \"BRL\", \n\t\t\"CAD\", \"CNY\", \"HKD\", \"IDR\", \"ILS\", \"INR\", \"KRW\", \"MXN\", \"MYR\", \"NZD\", \n\t\t\"PHP\", \"SGD\", \"THB\", \"ZAR\"]\n\ndef epoch_day(epoch_time):\n\tepoch_time = int(epoch_time)\n\treturn(epoch_time - (epoch_time % 86400))\n\nwith open('config_ebloc.json') as json_data_file:\n\tconfig_data = json.load(json_data_file)\n\nowner_address = config_data[\"owner\"][\"address\"]\nowner_password = config_data[\"owner\"][\"password\"]\ncontract_address = config_data[\"contract\"][\"address\"]\ncontract_abi = config_data[\"contract\"][\"abi\"]\ngas = int(config_data[\"price\"][\"gas\"])\ngas_price = Web3.toWei( int(config_data[\"price\"][\"gas_price\"]), 'gwei')\necb_daily_log_path = config_data[\"log\"][\"ecb_daily\"]\ntcmb_daily_log_path = config_data[\"log\"][\"tcmb_daily\"]\ngeth_ipc_path = config_data[\"geth\"][\"geth_ipc_path\"]\n\ncontract_address = Web3.toChecksumAddress(contract_address)\n\nweb3 = Web3(IPCProvider(geth_ipc_path))\nweb3.middleware_stack.inject(geth_poa_middleware, layer=0)\n\nweb3.eth.defaultAccount = web3.eth.accounts[0]\nweb3.personal.unlockAccount(web3.eth.accounts[0], owner_password)\n\ncontract_instance = web3.eth.contract(abi=contract_abi, address=contract_address, ContractFactoryClass=ConciseContract)\n\nunix_time = Web3.toInt(epoch_day(time.time()))\n\ndef add_ecb():\n\tunix_time = Web3.toInt(epoch_day(time.time()))\n\tECB = ECB_Processor()\n\tf = open(ecb_daily_log_path, \"a\")\n\tif(time.strftime(\"%Y-%m-%d\") == ECB.Currency_Dict[\"time\"]):\n\t\tfor curr in ecb_currencies:\n\t\t\tcurr_code = bytes(curr, encoding='utf-8')\n\t\t\tcurr_value = web3.toInt(int(float(ECB.Currency_Dict[curr])*(10**9)))\n\t\t\ttx_hash = contract_instance.add_ecb(unix_time, curr_code, curr_value, transact={'from': web3.eth.accounts[0]})\n\t\t\ttx_hash = tx_hash.hex()\n\t\t\tprint(time.strftime(\"%Y-%m-%d %H:%M\"), unix_time, tx_hash, curr_code, file=f)\n\telse:\n\t\tprint(time.strftime(\"%Y-%m-%d %H:%M\"), unix_time, \"Weekend\", file=f)\n\tf.close()\n\ndef add_tcmb():\n\tunix_time = Web3.toInt(epoch_day(time.time()))\n\tTCMB = TCMB_Processor()\n\tf = open(tcmb_daily_log_path, \"a\")\n\tif(time.strftime(\"%m/%d/%Y\") == TCMB.CURRENCY_DICT[\"Date\"]):\n\t\tfor curr in tcmb_currencies:\n\t\t\tcurr_code = bytes(curr, encoding='utf-8')\n\t\t\tcurr_value_fb = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr][\"ForexBuying\"])*(10**9)))\n\t\t\tcurr_value_fs = web3.toInt(int(float(TCMB.CURRENCY_DICT[curr][\"ForexSelling\"])*(10**9)))\n\t\t\t# forex buying\n\t\t\ttx_hash_fb = contract_instance.add_tcmb_forexbuying(unix_time, curr_code, curr_value_fb, transact={'from': web3.eth.accounts[0]})\n\t\t\ttx_hash_fb = tx_hash_fb.hex()\n\t\t\tprint(time.strftime(\"%Y-%m-%d %H:%M\"), unix_time, tx_hash_fb, curr_code, file=f)\n\t\t\t# forex selling\n\t\t\ttx_hash_fs = contract_instance.add_tcmb_forexselling(unix_time, curr_code, curr_value_fs, transact={'from': web3.eth.accounts[0]})\n\t\t\ttx_hash_fs = tx_hash_fs.hex()\n\t\t\tprint(time.strftime(\"%Y-%m-%d %H:%M\"), unix_time, tx_hash_fs, curr_code, file=f)\n\telse:\n\t\tprint(time.strftime(\"%Y-%m-%d %H:%M\"), unix_time, \"Weekend\", file=f)\n\tf.close()\n\n\nif __name__ == \"__main__\":\n\tadd_ecb()\n\tadd_tcmb()\n\tprint(time.strftime(\"%Y-%m-%d %H:%M\"), \" DONE EBLOC add_ecb & add_tcmb\")", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
"""GI on fast.""" import logging from mpf.core.utility_functions import Util from mpf.platforms.interfaces.gi_platform_interface import GIPlatformInterface class FASTGIString(GIPlatformInterface): """A FAST GI string in a WPC machine.""" def __init__(self, number, sender): """Initialise GI string. TODO: Need to implement the enable_relay and control which strings are dimmable. """ self.log = logging.getLogger('FASTGIString.0x' + str(number)) self.number = number self.send = sender def off(self): """Turn off GI string.""" self.log.debug("Turning Off GI String") self.send('GI:' + self.number + ',00') def on(self, brightness=255): """Turn on GI string.""" if brightness >= 255: brightness = 255 self.log.debug("Turning On GI String to brightness %s", brightness) # self.send('GI:' + self.number + ',' + Util.int_to_hex_string(brightness)) self.send('GI:{},{}'.format(self.number, Util.int_to_hex_string(brightness)))
normal
{ "blob_id": "91cf6d08be2ad86c08de4dd48b2f35dedc55b4bb", "index": 2177, "step-1": "<mask token>\n\n\nclass FASTGIString(GIPlatformInterface):\n <mask token>\n\n def __init__(self, number, sender):\n \"\"\"Initialise GI string.\n\n TODO: Need to implement the enable_relay and control which strings are\n dimmable.\n \"\"\"\n self.log = logging.getLogger('FASTGIString.0x' + str(number))\n self.number = number\n self.send = sender\n <mask token>\n\n def on(self, brightness=255):\n \"\"\"Turn on GI string.\"\"\"\n if brightness >= 255:\n brightness = 255\n self.log.debug('Turning On GI String to brightness %s', brightness)\n self.send('GI:{},{}'.format(self.number, Util.int_to_hex_string(\n brightness)))\n", "step-2": "<mask token>\n\n\nclass FASTGIString(GIPlatformInterface):\n <mask token>\n\n def __init__(self, number, sender):\n \"\"\"Initialise GI string.\n\n TODO: Need to implement the enable_relay and control which strings are\n dimmable.\n \"\"\"\n self.log = logging.getLogger('FASTGIString.0x' + str(number))\n self.number = number\n self.send = sender\n\n def off(self):\n \"\"\"Turn off GI string.\"\"\"\n self.log.debug('Turning Off GI String')\n self.send('GI:' + self.number + ',00')\n\n def on(self, brightness=255):\n \"\"\"Turn on GI string.\"\"\"\n if brightness >= 255:\n brightness = 255\n self.log.debug('Turning On GI String to brightness %s', brightness)\n self.send('GI:{},{}'.format(self.number, Util.int_to_hex_string(\n brightness)))\n", "step-3": "<mask token>\n\n\nclass FASTGIString(GIPlatformInterface):\n \"\"\"A FAST GI string in a WPC machine.\"\"\"\n\n def __init__(self, number, sender):\n \"\"\"Initialise GI string.\n\n TODO: Need to implement the enable_relay and control which strings are\n dimmable.\n \"\"\"\n self.log = logging.getLogger('FASTGIString.0x' + str(number))\n self.number = number\n self.send = sender\n\n def off(self):\n \"\"\"Turn off GI string.\"\"\"\n self.log.debug('Turning Off GI String')\n self.send('GI:' + self.number + ',00')\n\n def on(self, brightness=255):\n \"\"\"Turn on GI string.\"\"\"\n if brightness >= 255:\n brightness = 255\n self.log.debug('Turning On GI String to brightness %s', brightness)\n self.send('GI:{},{}'.format(self.number, Util.int_to_hex_string(\n brightness)))\n", "step-4": "<mask token>\nimport logging\nfrom mpf.core.utility_functions import Util\nfrom mpf.platforms.interfaces.gi_platform_interface import GIPlatformInterface\n\n\nclass FASTGIString(GIPlatformInterface):\n \"\"\"A FAST GI string in a WPC machine.\"\"\"\n\n def __init__(self, number, sender):\n \"\"\"Initialise GI string.\n\n TODO: Need to implement the enable_relay and control which strings are\n dimmable.\n \"\"\"\n self.log = logging.getLogger('FASTGIString.0x' + str(number))\n self.number = number\n self.send = sender\n\n def off(self):\n \"\"\"Turn off GI string.\"\"\"\n self.log.debug('Turning Off GI String')\n self.send('GI:' + self.number + ',00')\n\n def on(self, brightness=255):\n \"\"\"Turn on GI string.\"\"\"\n if brightness >= 255:\n brightness = 255\n self.log.debug('Turning On GI String to brightness %s', brightness)\n self.send('GI:{},{}'.format(self.number, Util.int_to_hex_string(\n brightness)))\n", "step-5": "\"\"\"GI on fast.\"\"\"\nimport logging\n\nfrom mpf.core.utility_functions import Util\nfrom mpf.platforms.interfaces.gi_platform_interface import GIPlatformInterface\n\n\nclass FASTGIString(GIPlatformInterface):\n\n \"\"\"A FAST GI string in a WPC machine.\"\"\"\n\n def __init__(self, number, sender):\n \"\"\"Initialise GI string.\n\n TODO: Need to implement the enable_relay and control which strings are\n dimmable.\n \"\"\"\n self.log = logging.getLogger('FASTGIString.0x' + str(number))\n self.number = number\n self.send = sender\n\n def off(self):\n \"\"\"Turn off GI string.\"\"\"\n self.log.debug(\"Turning Off GI String\")\n self.send('GI:' + self.number + ',00')\n\n def on(self, brightness=255):\n \"\"\"Turn on GI string.\"\"\"\n if brightness >= 255:\n brightness = 255\n\n self.log.debug(\"Turning On GI String to brightness %s\", brightness)\n # self.send('GI:' + self.number + ',' + Util.int_to_hex_string(brightness))\n\n self.send('GI:{},{}'.format(self.number,\n Util.int_to_hex_string(brightness)))\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import cv2 print(cv2.__version__) image = cv2.imread("download.jpeg", 1) print(image) print(image.shape) print(image[0]) print("~~~~~~~~~~~~~~~") print(image.shape[0]) print("~~~~~~~~~~~~~~~") print(len(image))
normal
{ "blob_id": "0b0ae6101fd80bdbcf37b935268f3e49230599fb", "index": 5715, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(cv2.__version__)\n<mask token>\nprint(image)\nprint(image.shape)\nprint(image[0])\nprint('~~~~~~~~~~~~~~~')\nprint(image.shape[0])\nprint('~~~~~~~~~~~~~~~')\nprint(len(image))\n", "step-3": "<mask token>\nprint(cv2.__version__)\nimage = cv2.imread('download.jpeg', 1)\nprint(image)\nprint(image.shape)\nprint(image[0])\nprint('~~~~~~~~~~~~~~~')\nprint(image.shape[0])\nprint('~~~~~~~~~~~~~~~')\nprint(len(image))\n", "step-4": "import cv2\nprint(cv2.__version__)\nimage = cv2.imread('download.jpeg', 1)\nprint(image)\nprint(image.shape)\nprint(image[0])\nprint('~~~~~~~~~~~~~~~')\nprint(image.shape[0])\nprint('~~~~~~~~~~~~~~~')\nprint(len(image))\n", "step-5": "import cv2\nprint(cv2.__version__)\n\nimage = cv2.imread(\"download.jpeg\", 1)\nprint(image)\nprint(image.shape)\n\nprint(image[0])\nprint(\"~~~~~~~~~~~~~~~\")\nprint(image.shape[0])\nprint(\"~~~~~~~~~~~~~~~\")\nprint(len(image))", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import json subjects = [] with open("sub.json", 'r') as subject_file: subjects = json.load(subject_file) print(json.dumps(subjects, separators=(',',':')))
normal
{ "blob_id": "98bd4eb25a76fb9184f9abfcb920a6fbe46b9394", "index": 631, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('sub.json', 'r') as subject_file:\n subjects = json.load(subject_file)\nprint(json.dumps(subjects, separators=(',', ':')))\n", "step-3": "<mask token>\nsubjects = []\nwith open('sub.json', 'r') as subject_file:\n subjects = json.load(subject_file)\nprint(json.dumps(subjects, separators=(',', ':')))\n", "step-4": "import json\nsubjects = []\nwith open('sub.json', 'r') as subject_file:\n subjects = json.load(subject_file)\nprint(json.dumps(subjects, separators=(',', ':')))\n", "step-5": "import json\n\nsubjects = []\n\nwith open(\"sub.json\", 'r') as subject_file:\n\tsubjects = json.load(subject_file)\n\nprint(json.dumps(subjects, separators=(',',':')))\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
__title__ = 'FUCKTHEINTRUDERS' __description__ = 'Checking for Intruders in my locality' __version__ = '0.0.1' __author__ = 'Shivam Jalotra' __email__ = '[email protected]' __license__ = 'MIT 1.0'
normal
{ "blob_id": "ba94a69ac356969ab593afc922a2517f4713771f", "index": 5536, "step-1": "<mask token>\n", "step-2": "__title__ = 'FUCKTHEINTRUDERS'\n__description__ = 'Checking for Intruders in my locality'\n__version__ = '0.0.1'\n__author__ = 'Shivam Jalotra'\n__email__ = '[email protected]'\n__license__ = 'MIT 1.0'\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
import items import grupo class Conexion: def __init__(self, direccion, destino): self.set_direccion(direccion) self.set_destino(destino) def __repr__(self): return str(self.direccion()) + ' => ' + str(self.destino()) def direccion(self): return self._direccion def set_direccion(self, direccion): self._direccion = direccion def destino(self): return self._destino def set_destino(self, destino): self._destino = destino class GrupoConexiones(grupo.Grupo): def conexiones(self): return self.coleccion() def conecta_al(self, direccion): for conexion in self.conexiones(): if conexion.direccion() == direccion: return conexion.destino() return localidad_nula class Localidad: def __init__(self, nombre, descripcion, conexiones=None, contiene=None): self.set_nombre(nombre) self.set_descripcion(descripcion) self._conexiones = GrupoConexiones(conexiones) self._grupo_items = items.GrupoItems(contiene) def __repr__(self): return self.nombre() def nombre(self): return self._nombre def set_nombre(self, nombre): self._nombre = nombre def descripcion(self): return self._descripcion def set_descripcion(self, descripcion): self._descripcion = descripcion def conexiones(self): return self._conexiones def items(self): return self._grupo_items def describir(self): print(self.nombre()) print(self.descripcion()) if not self.items().esta_vacio(): print('También puedes ver:') for item in self.items(): print('-', item.nombre()) def conecta_con(self, iterable): self.conexiones().meter_masivo(iterable) def conecta_al(self, direccion): return self.conexiones().conecta_al(direccion) def meter_conexion(self, conexion): self.conexiones().meter(conexion) def contiene_token(self, token): return self.items().contiene_token(token) # def meter_item(self, item): # self._grupo_items.meter(item) # def sacar_item(self, item): # self._grupo_items.sacar(item) # def contiene_item(self, item): # return self._grupo_items.contiene(item) # def tiene_items(self): # return self._grupo_items.esta_vacio() localidad_nula = Localidad('NULA', 'Localidad nula.')
normal
{ "blob_id": "f59e61977f7c72ab191aadccbd72d23f831b3a1c", "index": 7050, "step-1": "<mask token>\n\n\nclass Conexion:\n\n def __init__(self, direccion, destino):\n self.set_direccion(direccion)\n self.set_destino(destino)\n <mask token>\n <mask token>\n\n def set_direccion(self, direccion):\n self._direccion = direccion\n <mask token>\n <mask token>\n\n\nclass GrupoConexiones(grupo.Grupo):\n\n def conexiones(self):\n return self.coleccion()\n\n def conecta_al(self, direccion):\n for conexion in self.conexiones():\n if conexion.direccion() == direccion:\n return conexion.destino()\n return localidad_nula\n\n\nclass Localidad:\n\n def __init__(self, nombre, descripcion, conexiones=None, contiene=None):\n self.set_nombre(nombre)\n self.set_descripcion(descripcion)\n self._conexiones = GrupoConexiones(conexiones)\n self._grupo_items = items.GrupoItems(contiene)\n\n def __repr__(self):\n return self.nombre()\n\n def nombre(self):\n return self._nombre\n\n def set_nombre(self, nombre):\n self._nombre = nombre\n\n def descripcion(self):\n return self._descripcion\n\n def set_descripcion(self, descripcion):\n self._descripcion = descripcion\n\n def conexiones(self):\n return self._conexiones\n\n def items(self):\n return self._grupo_items\n\n def describir(self):\n print(self.nombre())\n print(self.descripcion())\n if not self.items().esta_vacio():\n print('También puedes ver:')\n for item in self.items():\n print('-', item.nombre())\n\n def conecta_con(self, iterable):\n self.conexiones().meter_masivo(iterable)\n\n def conecta_al(self, direccion):\n return self.conexiones().conecta_al(direccion)\n\n def meter_conexion(self, conexion):\n self.conexiones().meter(conexion)\n\n def contiene_token(self, token):\n return self.items().contiene_token(token)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Conexion:\n\n def __init__(self, direccion, destino):\n self.set_direccion(direccion)\n self.set_destino(destino)\n <mask token>\n\n def direccion(self):\n return self._direccion\n\n def set_direccion(self, direccion):\n self._direccion = direccion\n <mask token>\n\n def set_destino(self, destino):\n self._destino = destino\n\n\nclass GrupoConexiones(grupo.Grupo):\n\n def conexiones(self):\n return self.coleccion()\n\n def conecta_al(self, direccion):\n for conexion in self.conexiones():\n if conexion.direccion() == direccion:\n return conexion.destino()\n return localidad_nula\n\n\nclass Localidad:\n\n def __init__(self, nombre, descripcion, conexiones=None, contiene=None):\n self.set_nombre(nombre)\n self.set_descripcion(descripcion)\n self._conexiones = GrupoConexiones(conexiones)\n self._grupo_items = items.GrupoItems(contiene)\n\n def __repr__(self):\n return self.nombre()\n\n def nombre(self):\n return self._nombre\n\n def set_nombre(self, nombre):\n self._nombre = nombre\n\n def descripcion(self):\n return self._descripcion\n\n def set_descripcion(self, descripcion):\n self._descripcion = descripcion\n\n def conexiones(self):\n return self._conexiones\n\n def items(self):\n return self._grupo_items\n\n def describir(self):\n print(self.nombre())\n print(self.descripcion())\n if not self.items().esta_vacio():\n print('También puedes ver:')\n for item in self.items():\n print('-', item.nombre())\n\n def conecta_con(self, iterable):\n self.conexiones().meter_masivo(iterable)\n\n def conecta_al(self, direccion):\n return self.conexiones().conecta_al(direccion)\n\n def meter_conexion(self, conexion):\n self.conexiones().meter(conexion)\n\n def contiene_token(self, token):\n return self.items().contiene_token(token)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Conexion:\n\n def __init__(self, direccion, destino):\n self.set_direccion(direccion)\n self.set_destino(destino)\n\n def __repr__(self):\n return str(self.direccion()) + ' => ' + str(self.destino())\n\n def direccion(self):\n return self._direccion\n\n def set_direccion(self, direccion):\n self._direccion = direccion\n\n def destino(self):\n return self._destino\n\n def set_destino(self, destino):\n self._destino = destino\n\n\nclass GrupoConexiones(grupo.Grupo):\n\n def conexiones(self):\n return self.coleccion()\n\n def conecta_al(self, direccion):\n for conexion in self.conexiones():\n if conexion.direccion() == direccion:\n return conexion.destino()\n return localidad_nula\n\n\nclass Localidad:\n\n def __init__(self, nombre, descripcion, conexiones=None, contiene=None):\n self.set_nombre(nombre)\n self.set_descripcion(descripcion)\n self._conexiones = GrupoConexiones(conexiones)\n self._grupo_items = items.GrupoItems(contiene)\n\n def __repr__(self):\n return self.nombre()\n\n def nombre(self):\n return self._nombre\n\n def set_nombre(self, nombre):\n self._nombre = nombre\n\n def descripcion(self):\n return self._descripcion\n\n def set_descripcion(self, descripcion):\n self._descripcion = descripcion\n\n def conexiones(self):\n return self._conexiones\n\n def items(self):\n return self._grupo_items\n\n def describir(self):\n print(self.nombre())\n print(self.descripcion())\n if not self.items().esta_vacio():\n print('También puedes ver:')\n for item in self.items():\n print('-', item.nombre())\n\n def conecta_con(self, iterable):\n self.conexiones().meter_masivo(iterable)\n\n def conecta_al(self, direccion):\n return self.conexiones().conecta_al(direccion)\n\n def meter_conexion(self, conexion):\n self.conexiones().meter(conexion)\n\n def contiene_token(self, token):\n return self.items().contiene_token(token)\n\n\nlocalidad_nula = Localidad('NULA', 'Localidad nula.')\n", "step-4": "import items\nimport grupo\n\n\nclass Conexion:\n\n def __init__(self, direccion, destino):\n self.set_direccion(direccion)\n self.set_destino(destino)\n\n def __repr__(self):\n return str(self.direccion()) + ' => ' + str(self.destino())\n\n def direccion(self):\n return self._direccion\n\n def set_direccion(self, direccion):\n self._direccion = direccion\n\n def destino(self):\n return self._destino\n\n def set_destino(self, destino):\n self._destino = destino\n\n\nclass GrupoConexiones(grupo.Grupo):\n\n def conexiones(self):\n return self.coleccion()\n\n def conecta_al(self, direccion):\n for conexion in self.conexiones():\n if conexion.direccion() == direccion:\n return conexion.destino()\n return localidad_nula\n\n\nclass Localidad:\n\n def __init__(self, nombre, descripcion, conexiones=None, contiene=None):\n self.set_nombre(nombre)\n self.set_descripcion(descripcion)\n self._conexiones = GrupoConexiones(conexiones)\n self._grupo_items = items.GrupoItems(contiene)\n\n def __repr__(self):\n return self.nombre()\n\n def nombre(self):\n return self._nombre\n\n def set_nombre(self, nombre):\n self._nombre = nombre\n\n def descripcion(self):\n return self._descripcion\n\n def set_descripcion(self, descripcion):\n self._descripcion = descripcion\n\n def conexiones(self):\n return self._conexiones\n\n def items(self):\n return self._grupo_items\n\n def describir(self):\n print(self.nombre())\n print(self.descripcion())\n if not self.items().esta_vacio():\n print('También puedes ver:')\n for item in self.items():\n print('-', item.nombre())\n\n def conecta_con(self, iterable):\n self.conexiones().meter_masivo(iterable)\n\n def conecta_al(self, direccion):\n return self.conexiones().conecta_al(direccion)\n\n def meter_conexion(self, conexion):\n self.conexiones().meter(conexion)\n\n def contiene_token(self, token):\n return self.items().contiene_token(token)\n\n\nlocalidad_nula = Localidad('NULA', 'Localidad nula.')\n", "step-5": "import items\nimport grupo\n\nclass Conexion:\n def __init__(self, direccion, destino):\n self.set_direccion(direccion)\n self.set_destino(destino)\n\n def __repr__(self):\n return str(self.direccion()) + ' => ' + str(self.destino())\n\n def direccion(self):\n return self._direccion\n\n def set_direccion(self, direccion):\n self._direccion = direccion\n\n def destino(self):\n return self._destino\n\n def set_destino(self, destino):\n self._destino = destino\n\nclass GrupoConexiones(grupo.Grupo):\n def conexiones(self):\n return self.coleccion()\n\n def conecta_al(self, direccion):\n for conexion in self.conexiones():\n if conexion.direccion() == direccion:\n return conexion.destino()\n return localidad_nula\n\nclass Localidad:\n def __init__(self, nombre, descripcion, conexiones=None, contiene=None):\n self.set_nombre(nombre)\n self.set_descripcion(descripcion)\n self._conexiones = GrupoConexiones(conexiones)\n self._grupo_items = items.GrupoItems(contiene)\n\n def __repr__(self):\n return self.nombre()\n\n def nombre(self):\n return self._nombre\n\n def set_nombre(self, nombre):\n self._nombre = nombre\n\n def descripcion(self):\n return self._descripcion\n\n def set_descripcion(self, descripcion):\n self._descripcion = descripcion\n\n def conexiones(self):\n return self._conexiones\n\n def items(self):\n return self._grupo_items\n\n def describir(self):\n print(self.nombre())\n print(self.descripcion())\n if not self.items().esta_vacio():\n print('También puedes ver:')\n for item in self.items():\n print('-', item.nombre())\n\n def conecta_con(self, iterable):\n self.conexiones().meter_masivo(iterable)\n\n def conecta_al(self, direccion):\n return self.conexiones().conecta_al(direccion)\n\n def meter_conexion(self, conexion):\n self.conexiones().meter(conexion)\n\n def contiene_token(self, token):\n return self.items().contiene_token(token)\n\n # def meter_item(self, item):\n # self._grupo_items.meter(item)\n\n # def sacar_item(self, item):\n # self._grupo_items.sacar(item)\n\n # def contiene_item(self, item):\n # return self._grupo_items.contiene(item)\n\n # def tiene_items(self):\n # return self._grupo_items.esta_vacio()\n\nlocalidad_nula = Localidad('NULA', 'Localidad nula.')\n", "step-ids": [ 20, 22, 25, 26, 27 ] }
[ 20, 22, 25, 26, 27 ]
# VGGNet import numpy as np np.random.seed(317) from glob import glob from itertools import cycle from keras.applications.vgg19 import VGG19 from keras.optimizers import Adam from keras.models import Model from keras.layers import Input, BatchNormalization, Flatten, Dropout, Dense from keras.utils import plot_model from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping, Callback from keras.losses import kullback_leibler_divergence from math import ceil from os import path, mkdir, listdir from skimage.transform import resize from scipy.misc import imread, imsave from time import time import argparse import logging import keras.backend as K import pandas as pd import tifffile as tif import sys sys.path.append('.') from planet.utils.data_utils import tagset_to_ints, random_transforms from planet.utils.keras_utils import HistoryPlot from planet.utils.runtime import funcname class VGGNet(object): def __init__(self, checkpoint_name='VGGNet'): self.config = { 'image_shape': [256, 256, 3], 'input_shape': [224, 224, 3], 'output_shape': [17, ], 'batch_size': 60, 'trn_steps': 680, 'trn_nb_epochs': 200, 'trn_transform': True, 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir': 'data/train-jpg', 'tst_imgs_csv': 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg' } self.checkpoint_name = checkpoint_name self.imgs = [] self.lbls = [] self.net = None self.rng = np.random @property def cpdir(self): cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str(x) for x in self.config['input_shape']])) if not path.exists(cpdir): mkdir(cpdir) return cpdir def create_net(self): x = inputs = Input(shape=self.config['input_shape']) vgg = VGG19(include_top=False, input_tensor=x) outputs = Flatten()(vgg.output) outputs = Dropout(0.1)(outputs) outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(outputs) def true_pos(yt, yp): return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1)) def pred_pos(yt, yp): return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1)) def F2(yt, yp): yt, yp = K.round(yt), K.round(yp) tp = K.sum(yt * yp) fp = K.sum(K.clip(yp - yt, 0, 1)) fn = K.sum(K.clip(yt - yp, 0, 1)) p = tp / (tp + fp) r = tp / (tp + fn) b = 2.0 return (1 + b**2) * ((p * r) / (b**2 * p + r + K.epsilon())) self.net = Model(inputs, outputs) self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy', metrics=['binary_accuracy', F2, true_pos, pred_pos]) self.net.summary() plot_model(self.net, to_file='%s/net.png' % self.cpdir) return def train(self): batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.config[ 'trn_imgs_dir'], self.config['trn_transform']) cb = [ HistoryPlot('%s/history.png' % self.cpdir), CSVLogger('%s/history.csv' % self.cpdir), ModelCheckpoint('%s/loss.weights' % self.cpdir, monitor='loss', verbose=1, save_best_only=True, mode='min', save_weights_only=True), ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2', verbose=1, save_best_only=True, mode='max', save_weights_only=True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2, epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor='F2', min_delta=0.01, patience=10, verbose=1, mode='max') ] self.net.fit_generator(batch_gen, steps_per_epoch=self.config['trn_steps'], verbose=1, callbacks=cb, epochs=self.config['trn_nb_epochs'], workers=2, pickle_safe=True) return def get_mean_img(self, imgs_paths, mean_img_path): '''Compute the mean image from the given paths and save it to the given path.''' logger = logging.getLogger(funcname()) if not path.exists(mean_img_path): mean_img = np.zeros(self.config['image_shape'], dtype=np.float32) for idx, img_path in enumerate(imgs_paths): mean_img += imread(img_path, mode='RGB').astype(np.float32) / len(imgs_paths) if idx % 1000 == 0: logger.info('%d/%d' % (idx, len(imgs_paths))) imsave(mean_img_path, mean_img) return imread(mean_img_path) def train_batch_gen(self, imgs_csv, imgs_dir, transform): logger = logging.getLogger(funcname()) # Read the CSV and extract image names and tags. df = pd.read_csv(imgs_csv) imgs_paths = ['%s/%s.jpg' % (imgs_dir, n) for n in df['image_name'].values] tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values] # Compute the mean image for pre-processing. mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' % self.cpdir) mean_img = mean_img.astype(np.float32) / 255. mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean while True: imgs_batch = np.zeros([self.config['batch_size'], ] + self.config['input_shape']) tags_batch = np.zeros([self.config['batch_size'], ] + self.config['output_shape']) random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)), len(imgs_paths))) for batch_idx in range(self.config['batch_size']): data_idx = next(random_idxs) img = imread(imgs_paths[data_idx], mode='RGB') img = img_preprocess(img) img = resize(img, self.config['input_shape'], preserve_range=True, mode='constant') if transform: img = random_transforms(img, nb_min=0, nb_max=6) imgs_batch[batch_idx] = img tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx]) yield imgs_batch, tags_batch def predict(self, img_batch): # Get the mean image imgs_paths = listdir(self.config['trn_imgs_dir']) mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.float32) / 255. mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean for idx in range(len(img_batch)): img_batch[idx] = img_preprocess(img_batch[idx]) tags_pred = self.net.predict(img_batch) tags_pred = tags_pred.round().astype(np.uint8) return tags_pred if __name__ == "__main__": from planet.model_runner import model_runner model = VGGNet() model_runner(model)
normal
{ "blob_id": "c6a4d566460a06504abf7e2c54be4f2ea36e01fb", "index": 7735, "step-1": "<mask token>\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n <mask token>\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.\n config['trn_imgs_dir'], self.config['trn_transform'])\n cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger(\n '%s/history.csv' % self.cpdir), ModelCheckpoint(\n '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=\n True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2,\n epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor=\n 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')]\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config[\n 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[\n 'trn_nb_epochs'], workers=2, pickle_safe=True)\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\n<mask token>\n", "step-3": "<mask token>\nnp.random.seed(317)\n<mask token>\nsys.path.append('.')\n<mask token>\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.\n config['trn_imgs_dir'], self.config['trn_transform'])\n cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger(\n '%s/history.csv' % self.cpdir), ModelCheckpoint(\n '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=\n True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2,\n epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor=\n 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')]\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config[\n 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[\n 'trn_nb_epochs'], workers=2, pickle_safe=True)\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\nif __name__ == '__main__':\n from planet.model_runner import model_runner\n model = VGGNet()\n model_runner(model)\n", "step-4": "import numpy as np\nnp.random.seed(317)\nfrom glob import glob\nfrom itertools import cycle\nfrom keras.applications.vgg19 import VGG19\nfrom keras.optimizers import Adam\nfrom keras.models import Model\nfrom keras.layers import Input, BatchNormalization, Flatten, Dropout, Dense\nfrom keras.utils import plot_model\nfrom keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping, Callback\nfrom keras.losses import kullback_leibler_divergence\nfrom math import ceil\nfrom os import path, mkdir, listdir\nfrom skimage.transform import resize\nfrom scipy.misc import imread, imsave\nfrom time import time\nimport argparse\nimport logging\nimport keras.backend as K\nimport pandas as pd\nimport tifffile as tif\nimport sys\nsys.path.append('.')\nfrom planet.utils.data_utils import tagset_to_ints, random_transforms\nfrom planet.utils.keras_utils import HistoryPlot\nfrom planet.utils.runtime import funcname\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.\n config['trn_imgs_dir'], self.config['trn_transform'])\n cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger(\n '%s/history.csv' % self.cpdir), ModelCheckpoint(\n '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=\n True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2,\n epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor=\n 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')]\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config[\n 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[\n 'trn_nb_epochs'], workers=2, pickle_safe=True)\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\nif __name__ == '__main__':\n from planet.model_runner import model_runner\n model = VGGNet()\n model_runner(model)\n", "step-5": "# VGGNet\nimport numpy as np\nnp.random.seed(317)\n\nfrom glob import glob\nfrom itertools import cycle\nfrom keras.applications.vgg19 import VGG19\nfrom keras.optimizers import Adam\nfrom keras.models import Model\nfrom keras.layers import Input, BatchNormalization, Flatten, Dropout, Dense\nfrom keras.utils import plot_model\nfrom keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping, Callback\nfrom keras.losses import kullback_leibler_divergence\nfrom math import ceil\nfrom os import path, mkdir, listdir\nfrom skimage.transform import resize\nfrom scipy.misc import imread, imsave\nfrom time import time\nimport argparse\nimport logging\nimport keras.backend as K\nimport pandas as pd\nimport tifffile as tif\n\nimport sys\nsys.path.append('.')\nfrom planet.utils.data_utils import tagset_to_ints, random_transforms\nfrom planet.utils.keras_utils import HistoryPlot\nfrom planet.utils.runtime import funcname\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n\n self.config = {\n 'image_shape': [256, 256, 3],\n 'input_shape': [224, 224, 3],\n 'output_shape': [17, ],\n 'batch_size': 60,\n 'trn_steps': 680,\n 'trn_nb_epochs': 200,\n 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv',\n 'trn_imgs_dir': 'data/train-jpg',\n 'tst_imgs_csv': 'data/sample_submission_v2.csv',\n 'tst_imgs_dir': 'data/test-jpg'\n }\n\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str(x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b**2) * ((p * r) / (b**2 * p + r + K.epsilon()))\n\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.config[\n 'trn_imgs_dir'], self.config['trn_transform'])\n\n cb = [\n HistoryPlot('%s/history.png' % self.cpdir),\n CSVLogger('%s/history.csv' % self.cpdir),\n ModelCheckpoint('%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=True),\n ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2, epsilon=0.005, verbose=1, mode='min'),\n EarlyStopping(monitor='F2', min_delta=0.01, patience=10, verbose=1, mode='max')\n ]\n\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config['trn_steps'], verbose=1, callbacks=cb,\n epochs=self.config['trn_nb_epochs'], workers=2, pickle_safe=True)\n\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n '''Compute the mean image from the given paths and save it to the given path.'''\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n\n logger = logging.getLogger(funcname())\n\n # Read the CSV and extract image names and tags.\n df = pd.read_csv(imgs_csv)\n imgs_paths = ['%s/%s.jpg' % (imgs_dir, n) for n in df['image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n\n # Compute the mean image for pre-processing.\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' % self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean\n\n while True:\n\n imgs_batch = np.zeros([self.config['batch_size'], ] + self.config['input_shape'])\n tags_batch = np.zeros([self.config['batch_size'], ] + self.config['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)), len(imgs_paths)))\n\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'], preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n\n # Get the mean image\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.float32) / 255.\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean\n\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\nif __name__ == \"__main__\":\n from planet.model_runner import model_runner\n model = VGGNet()\n model_runner(model)\n", "step-ids": [ 7, 8, 9, 10, 11 ] }
[ 7, 8, 9, 10, 11 ]
import numpy as n, pylab as p from scipy import stats as st a=st.norm(0,1) b=st.norm(0.1,1) domain=n.linspace(-4,4,10000) avals=a.cdf(domain) bvals=b.cdf(domain) diffN=n.abs(avals-bvals).max() a=st.norm(0,1) b=st.norm(0,1.2) domain=n.linspace(-4,4,10000) avals=a.cdf(domain) bvals=b.cdf(domain) diffN2=n.abs(avals-bvals).max() a=st.uniform(0,1) b=st.uniform(0.05,1.0) domain=n.linspace(0,1.05,10000) avals=a.cdf(domain) bvals=b.cdf(domain) diffU=n.abs(avals-bvals).max() a=st.uniform(0,1) b=st.uniform(-0.05,1.05) domain=n.linspace(0,1.05,10000) avals=a.cdf(domain) bvals=b.cdf(domain) diffU2=n.abs(avals-bvals).max() #a=st.weibull(1.5) #b=st.weibull(1.7) #domain=n.linspace(0,1.05,10000) #avals=a.cdf(domain) #bvals=b.cdf(domain) #diffW=n.abs(avals-bvals).max() #a=st.power(1.5) #b=st.power(1.7) #domain=n.linspace(0,1.05,10000) #avals=a.cdf(domain) #bvals=b.cdf(domain) #diffP=n.abs(avals-bvals).max() #x = n.arange(1,100.)/50. x=n.linspace(0,20,100000) step=x[1]-x[0] def weib(x,nn,a): return (a / nn) * (x / nn)**(a - 1) * n.exp(-(x / nn)**a) #count, bins, ignored = p.hist(n.random.weibull(5.,1000)) #x = n.arange(1,100.)/50. #scale = count.max()/weib(x, 1., 5.).max() W=weib(x, 1., 1.5) W_=W/(W*step).sum() W__=n.cumsum(W_) W2=weib(x, 1., 1.7) W2_=W2/(W2*step).sum() W2__=n.cumsum(W2_) diffW=n.abs(W_-W2_).max() #p.plot(x, W_) #p.plot(x, W2_) ##p.plot(x, weib(x, 1., 5.)*scale) #p.show() a=st.powerlaw(1.5) b=st.powerlaw(1.7) domain=n.linspace(0,5.05,10000) avals=a.cdf(domain) bvals=b.cdf(domain) diffP=n.abs(avals-bvals).max() print("distancias de KS para os modelos matematicos:", diffN,diffN2,diffU,diffU2,diffW,diffP) # distancias de KS para os modelos matematicos: # 0.0398776116762 0.0439947104098 0.0952338090952 0.047619047619 0.128565475845 0.0460149130584 # X = (-n.ln(U))^{1/a} lb,rb,NE,shape1,shape2=0,10,10000,1.5,1.7 x=n.linspace(lb,rb,NE) step=x[1]-x[0] W=weib(x, 1., shape1) W_=W/((W*step).sum()) W__=n.cumsum(W_) W2=weib(x, 1., shape2) W2_=W2/((W2*step).sum()) W2__=n.cumsum(W2_) diffW=n.abs(W__-W2__).max() lb,rb,NE,shape1,shape2=0,10,10000,1.5,1.7 x=n.linspace(lb,rb,NE) step=x[1]-x[0] W=weib(x, 1., shape1) W_=W/((W).sum()) W__=n.cumsum(W_) W2=weib(x, 1., shape2) W2_=W2/((W2).sum()) W2__=n.cumsum(W2_) diffW=n.abs(W__-W2__).max()
normal
{ "blob_id": "647258ee5f2f6f1cb8118bcf146b8959c65b70cd", "index": 8045, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef weib(x, nn, a):\n return a / nn * (x / nn) ** (a - 1) * n.exp(-(x / nn) ** a)\n\n\n<mask token>\nprint('distancias de KS para os modelos matematicos:', diffN, diffN2, diffU,\n diffU2, diffW, diffP)\n<mask token>\n", "step-3": "<mask token>\na = st.norm(0, 1)\nb = st.norm(0.1, 1)\ndomain = n.linspace(-4, 4, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffN = n.abs(avals - bvals).max()\na = st.norm(0, 1)\nb = st.norm(0, 1.2)\ndomain = n.linspace(-4, 4, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffN2 = n.abs(avals - bvals).max()\na = st.uniform(0, 1)\nb = st.uniform(0.05, 1.0)\ndomain = n.linspace(0, 1.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffU = n.abs(avals - bvals).max()\na = st.uniform(0, 1)\nb = st.uniform(-0.05, 1.05)\ndomain = n.linspace(0, 1.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffU2 = n.abs(avals - bvals).max()\nx = n.linspace(0, 20, 100000)\nstep = x[1] - x[0]\n\n\ndef weib(x, nn, a):\n return a / nn * (x / nn) ** (a - 1) * n.exp(-(x / nn) ** a)\n\n\nW = weib(x, 1.0, 1.5)\nW_ = W / (W * step).sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, 1.7)\nW2_ = W2 / (W2 * step).sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W_ - W2_).max()\na = st.powerlaw(1.5)\nb = st.powerlaw(1.7)\ndomain = n.linspace(0, 5.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffP = n.abs(avals - bvals).max()\nprint('distancias de KS para os modelos matematicos:', diffN, diffN2, diffU,\n diffU2, diffW, diffP)\nlb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7\nx = n.linspace(lb, rb, NE)\nstep = x[1] - x[0]\nW = weib(x, 1.0, shape1)\nW_ = W / (W * step).sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, shape2)\nW2_ = W2 / (W2 * step).sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W__ - W2__).max()\nlb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7\nx = n.linspace(lb, rb, NE)\nstep = x[1] - x[0]\nW = weib(x, 1.0, shape1)\nW_ = W / W.sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, shape2)\nW2_ = W2 / W2.sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W__ - W2__).max()\n", "step-4": "import numpy as n, pylab as p\nfrom scipy import stats as st\na = st.norm(0, 1)\nb = st.norm(0.1, 1)\ndomain = n.linspace(-4, 4, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffN = n.abs(avals - bvals).max()\na = st.norm(0, 1)\nb = st.norm(0, 1.2)\ndomain = n.linspace(-4, 4, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffN2 = n.abs(avals - bvals).max()\na = st.uniform(0, 1)\nb = st.uniform(0.05, 1.0)\ndomain = n.linspace(0, 1.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffU = n.abs(avals - bvals).max()\na = st.uniform(0, 1)\nb = st.uniform(-0.05, 1.05)\ndomain = n.linspace(0, 1.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffU2 = n.abs(avals - bvals).max()\nx = n.linspace(0, 20, 100000)\nstep = x[1] - x[0]\n\n\ndef weib(x, nn, a):\n return a / nn * (x / nn) ** (a - 1) * n.exp(-(x / nn) ** a)\n\n\nW = weib(x, 1.0, 1.5)\nW_ = W / (W * step).sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, 1.7)\nW2_ = W2 / (W2 * step).sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W_ - W2_).max()\na = st.powerlaw(1.5)\nb = st.powerlaw(1.7)\ndomain = n.linspace(0, 5.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffP = n.abs(avals - bvals).max()\nprint('distancias de KS para os modelos matematicos:', diffN, diffN2, diffU,\n diffU2, diffW, diffP)\nlb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7\nx = n.linspace(lb, rb, NE)\nstep = x[1] - x[0]\nW = weib(x, 1.0, shape1)\nW_ = W / (W * step).sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, shape2)\nW2_ = W2 / (W2 * step).sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W__ - W2__).max()\nlb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7\nx = n.linspace(lb, rb, NE)\nstep = x[1] - x[0]\nW = weib(x, 1.0, shape1)\nW_ = W / W.sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, shape2)\nW2_ = W2 / W2.sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W__ - W2__).max()\n", "step-5": "import numpy as n, pylab as p\nfrom scipy import stats as st\na=st.norm(0,1)\nb=st.norm(0.1,1)\ndomain=n.linspace(-4,4,10000)\navals=a.cdf(domain)\nbvals=b.cdf(domain)\ndiffN=n.abs(avals-bvals).max()\n\na=st.norm(0,1)\nb=st.norm(0,1.2)\ndomain=n.linspace(-4,4,10000)\navals=a.cdf(domain)\nbvals=b.cdf(domain)\ndiffN2=n.abs(avals-bvals).max()\n\na=st.uniform(0,1)\nb=st.uniform(0.05,1.0)\ndomain=n.linspace(0,1.05,10000)\navals=a.cdf(domain)\nbvals=b.cdf(domain)\ndiffU=n.abs(avals-bvals).max()\n\na=st.uniform(0,1)\nb=st.uniform(-0.05,1.05)\ndomain=n.linspace(0,1.05,10000)\navals=a.cdf(domain)\nbvals=b.cdf(domain)\ndiffU2=n.abs(avals-bvals).max()\n\n#a=st.weibull(1.5)\n#b=st.weibull(1.7)\n#domain=n.linspace(0,1.05,10000)\n#avals=a.cdf(domain)\n#bvals=b.cdf(domain)\n#diffW=n.abs(avals-bvals).max()\n\n#a=st.power(1.5)\n#b=st.power(1.7)\n#domain=n.linspace(0,1.05,10000)\n#avals=a.cdf(domain)\n#bvals=b.cdf(domain)\n#diffP=n.abs(avals-bvals).max()\n\n#x = n.arange(1,100.)/50.\nx=n.linspace(0,20,100000)\nstep=x[1]-x[0]\ndef weib(x,nn,a):\n return (a / nn) * (x / nn)**(a - 1) * n.exp(-(x / nn)**a)\n\n#count, bins, ignored = p.hist(n.random.weibull(5.,1000))\n#x = n.arange(1,100.)/50.\n#scale = count.max()/weib(x, 1., 5.).max()\nW=weib(x, 1., 1.5)\nW_=W/(W*step).sum()\nW__=n.cumsum(W_)\nW2=weib(x, 1., 1.7)\nW2_=W2/(W2*step).sum()\nW2__=n.cumsum(W2_)\ndiffW=n.abs(W_-W2_).max()\n#p.plot(x, W_)\n#p.plot(x, W2_)\n##p.plot(x, weib(x, 1., 5.)*scale)\n#p.show()\n\na=st.powerlaw(1.5)\nb=st.powerlaw(1.7)\ndomain=n.linspace(0,5.05,10000)\navals=a.cdf(domain)\nbvals=b.cdf(domain)\ndiffP=n.abs(avals-bvals).max()\n\nprint(\"distancias de KS para os modelos matematicos:\", diffN,diffN2,diffU,diffU2,diffW,diffP)\n# distancias de KS para os modelos matematicos:\n# 0.0398776116762 0.0439947104098 0.0952338090952 0.047619047619 0.128565475845 0.0460149130584\n\n\n# X = (-n.ln(U))^{1/a}\nlb,rb,NE,shape1,shape2=0,10,10000,1.5,1.7\nx=n.linspace(lb,rb,NE)\nstep=x[1]-x[0]\nW=weib(x, 1., shape1)\nW_=W/((W*step).sum())\nW__=n.cumsum(W_)\nW2=weib(x, 1., shape2)\nW2_=W2/((W2*step).sum())\nW2__=n.cumsum(W2_)\ndiffW=n.abs(W__-W2__).max()\n\n\nlb,rb,NE,shape1,shape2=0,10,10000,1.5,1.7\nx=n.linspace(lb,rb,NE)\nstep=x[1]-x[0]\nW=weib(x, 1., shape1)\nW_=W/((W).sum())\nW__=n.cumsum(W_)\nW2=weib(x, 1., shape2)\nW2_=W2/((W2).sum())\nW2__=n.cumsum(W2_)\ndiffW=n.abs(W__-W2__).max()\n\n\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
_base_ = [ '../models/cascade_rcnn_r50_fpn.py', #'coco_instance.py', '../datasets/dataset.py', '../runtime/valid_search_wandb_runtime.py', '../schedules/schedule_1x.py' ] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa model = dict( type='CascadeRCNN', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[96, 192, 384, 768]) #[256, 512, 1024, 2048] ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='AutoAugment', policies=[[ dict( type='Resize', img_scale=[(480, 1024), (512, 1024), (544, 1024), (576, 1024), (608, 1024), (640, 1024), (672, 1024), (704, 1024), (736, 1024), (768, 1024), (800, 1024)], multiscale_mode='value', keep_ratio=True) ], [ dict( type='Resize', img_scale=[(400, 1024), (500, 1024), (600, 1024)], multiscale_mode='value', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='Resize', img_scale=[(480, 1024), (512, 1024), (544, 1024), (576, 1024), (608, 1024), (640, 1024), (672, 1024), (704, 1024), (736, 1024), (768, 1024), (800, 1024)], multiscale_mode='value', override=True, keep_ratio=True) ]]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='AutoAugment', policies=[[ dict( type='Resize', img_scale=[(480, 1024), (512, 1024), (544, 1024), (576, 1024), (608, 1024), (640, 1024), (672, 1024), (704, 1024), (736, 1024), (768, 1024), (800, 1024)], multiscale_mode='value', keep_ratio=True) ], [ dict( type='Resize', img_scale=[(400, 1024), (500, 1024), (600, 1024)], multiscale_mode='value', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='Resize', img_scale=[(480, 1024), (512, 1024), (544, 1024), (576, 1024), (608, 1024), (640, 1024), (672, 1024), (704, 1024), (736, 1024), (768, 1024), (800, 1024)], multiscale_mode='value', override=True, keep_ratio=True) ]]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] data = dict(train=dict(pipeline=train_pipeline),val=dict(pipeline=val_pipeline)) evaluation = dict(interval=1, metric='bbox', save_best='bbox_mAP_50') checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict( # type='WandbLoggerHook', # init_kwargs=dict( # project='valid_search', # name='YOUR_EXP' # )) ]) # yapf:enable custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] optimizer = dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) })) lr_config = dict(warmup_iters=1000, step=[27, 33]) runner = dict(max_epochs=36)
normal
{ "blob_id": "2874e05d6d5e0f13924e5920db22ea3343707dfa", "index": 3898, "step-1": "<mask token>\n", "step-2": "_base_ = ['../models/cascade_rcnn_r50_fpn.py', '../datasets/dataset.py',\n '../runtime/valid_search_wandb_runtime.py', '../schedules/schedule_1x.py']\npretrained = (\n 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth'\n )\nmodel = dict(type='CascadeRCNN', backbone=dict(_delete_=True, type=\n 'SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6,\n 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None,\n drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.2, patch_norm=True,\n out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg\n =dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels\n =[96, 192, 384, 768]))\nimg_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, \n 57.375], to_rgb=True)\ntrain_pipeline = [dict(type='LoadImageFromFile'), dict(type=\n 'LoadAnnotations', with_bbox=True), dict(type='RandomFlip', flip_ratio=\n 0.5), dict(type='AutoAugment', policies=[[dict(type='Resize', img_scale\n =[(480, 1024), (512, 1024), (544, 1024), (576, 1024), (608, 1024), (640,\n 1024), (672, 1024), (704, 1024), (736, 1024), (768, 1024), (800, 1024)],\n multiscale_mode='value', keep_ratio=True)], [dict(type='Resize',\n img_scale=[(400, 1024), (500, 1024), (600, 1024)], multiscale_mode=\n 'value', keep_ratio=True), dict(type='RandomCrop', crop_type=\n 'absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict\n (type='Resize', img_scale=[(480, 1024), (512, 1024), (544, 1024), (576,\n 1024), (608, 1024), (640, 1024), (672, 1024), (704, 1024), (736, 1024),\n (768, 1024), (800, 1024)], multiscale_mode='value', override=True,\n keep_ratio=True)]]), dict(type='Normalize', **img_norm_cfg), dict(type=\n 'Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type=\n 'Collect', keys=['img', 'gt_bboxes', 'gt_labels'])]\nval_pipeline = [dict(type='LoadImageFromFile'), dict(type='LoadAnnotations',\n with_bbox=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type=\n 'AutoAugment', policies=[[dict(type='Resize', img_scale=[(480, 1024), (\n 512, 1024), (544, 1024), (576, 1024), (608, 1024), (640, 1024), (672, \n 1024), (704, 1024), (736, 1024), (768, 1024), (800, 1024)],\n multiscale_mode='value', keep_ratio=True)], [dict(type='Resize',\n img_scale=[(400, 1024), (500, 1024), (600, 1024)], multiscale_mode=\n 'value', keep_ratio=True), dict(type='RandomCrop', crop_type=\n 'absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict\n (type='Resize', img_scale=[(480, 1024), (512, 1024), (544, 1024), (576,\n 1024), (608, 1024), (640, 1024), (672, 1024), (704, 1024), (736, 1024),\n (768, 1024), (800, 1024)], multiscale_mode='value', override=True,\n keep_ratio=True)]]), dict(type='Normalize', **img_norm_cfg), dict(type=\n 'Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type=\n 'Collect', keys=['img', 'gt_bboxes', 'gt_labels'])]\ndata = dict(train=dict(pipeline=train_pipeline), val=dict(pipeline=\n val_pipeline))\nevaluation = dict(interval=1, metric='bbox', save_best='bbox_mAP_50')\ncheckpoint_config = dict(interval=1)\nlog_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])\ncustom_hooks = [dict(type='NumClassCheckHook')]\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\noptimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999),\n weight_decay=0.05, paramwise_cfg=dict(custom_keys={'absolute_pos_embed':\n dict(decay_mult=0.0), 'relative_position_bias_table': dict(decay_mult=\n 0.0), 'norm': dict(decay_mult=0.0)}))\nlr_config = dict(warmup_iters=1000, step=[27, 33])\nrunner = dict(max_epochs=36)\n", "step-3": "_base_ = [\n '../models/cascade_rcnn_r50_fpn.py',\n #'coco_instance.py',\n '../datasets/dataset.py',\n '../runtime/valid_search_wandb_runtime.py',\n '../schedules/schedule_1x.py'\n]\npretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa\nmodel = dict(\n type='CascadeRCNN',\n backbone=dict(\n _delete_=True,\n type='SwinTransformer',\n embed_dims=96,\n depths=[2, 2, 6, 2],\n num_heads=[3, 6, 12, 24],\n window_size=7,\n mlp_ratio=4,\n qkv_bias=True,\n qk_scale=None,\n drop_rate=0.,\n attn_drop_rate=0.,\n drop_path_rate=0.2,\n patch_norm=True,\n out_indices=(0, 1, 2, 3),\n with_cp=False,\n convert_weights=True,\n init_cfg=dict(type='Pretrained', checkpoint=pretrained)),\n neck=dict(in_channels=[96, 192, 384, 768])\n #[256, 512, 1024, 2048]\n)\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\n\n# augmentation strategy originates from DETR / Sparse RCNN\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', with_bbox=True),\n dict(type='RandomFlip', flip_ratio=0.5),\n dict(\n type='AutoAugment',\n policies=[[\n dict(\n type='Resize',\n img_scale=[(480, 1024), (512, 1024), (544, 1024), (576, 1024),\n (608, 1024), (640, 1024), (672, 1024), (704, 1024),\n (736, 1024), (768, 1024), (800, 1024)],\n multiscale_mode='value',\n keep_ratio=True)\n ],\n [\n dict(\n type='Resize',\n img_scale=[(400, 1024), (500, 1024), (600, 1024)],\n multiscale_mode='value',\n keep_ratio=True),\n dict(\n type='RandomCrop',\n crop_type='absolute_range',\n crop_size=(384, 600),\n allow_negative_crop=True),\n dict(\n type='Resize',\n img_scale=[(480, 1024), (512, 1024), (544, 1024),\n (576, 1024), (608, 1024), (640, 1024),\n (672, 1024), (704, 1024), (736, 1024),\n (768, 1024), (800, 1024)],\n multiscale_mode='value',\n override=True,\n keep_ratio=True)\n ]]),\n dict(type='Normalize', **img_norm_cfg),\n dict(type='Pad', size_divisor=32),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),\n]\nval_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', with_bbox=True),\n dict(type='RandomFlip', flip_ratio=0.5),\n dict(\n type='AutoAugment',\n policies=[[\n dict(\n type='Resize',\n img_scale=[(480, 1024), (512, 1024), (544, 1024), (576, 1024),\n (608, 1024), (640, 1024), (672, 1024), (704, 1024),\n (736, 1024), (768, 1024), (800, 1024)],\n multiscale_mode='value',\n keep_ratio=True)\n ],\n [\n dict(\n type='Resize',\n img_scale=[(400, 1024), (500, 1024), (600, 1024)],\n multiscale_mode='value',\n keep_ratio=True),\n dict(\n type='RandomCrop',\n crop_type='absolute_range',\n crop_size=(384, 600),\n allow_negative_crop=True),\n dict(\n type='Resize',\n img_scale=[(480, 1024), (512, 1024), (544, 1024),\n (576, 1024), (608, 1024), (640, 1024),\n (672, 1024), (704, 1024), (736, 1024),\n (768, 1024), (800, 1024)],\n multiscale_mode='value',\n override=True,\n keep_ratio=True)\n ]]),\n dict(type='Normalize', **img_norm_cfg),\n dict(type='Pad', size_divisor=32),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),\n]\ndata = dict(train=dict(pipeline=train_pipeline),val=dict(pipeline=val_pipeline))\nevaluation = dict(interval=1, metric='bbox', save_best='bbox_mAP_50')\n\ncheckpoint_config = dict(interval=1)\n# yapf:disable\nlog_config = dict(\n interval=50,\n hooks=[\n dict(type='TextLoggerHook'),\n # dict(\n # type='WandbLoggerHook',\n # init_kwargs=dict(\n # project='valid_search',\n # name='YOUR_EXP'\n # ))\n ])\n# yapf:enable\ncustom_hooks = [dict(type='NumClassCheckHook')]\n\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\n\noptimizer = dict(\n _delete_=True,\n type='AdamW',\n lr=0.0001,\n betas=(0.9, 0.999),\n weight_decay=0.05,\n paramwise_cfg=dict(\n custom_keys={\n 'absolute_pos_embed': dict(decay_mult=0.),\n 'relative_position_bias_table': dict(decay_mult=0.),\n 'norm': dict(decay_mult=0.)\n }))\nlr_config = dict(warmup_iters=1000, step=[27, 33])\nrunner = dict(max_epochs=36)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
########################################################################## # # Copyright (c) 2007-2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import os import unittest import IECore import IECoreScene class TestMotionPrimitive( unittest.TestCase ) : def test( self ) : m = IECoreScene.MotionPrimitive() self.assertTrue( m.isInstanceOf( "MotionPrimitive" ) ) self.assertTrue( m.isInstanceOf( "VisibleRenderable" ) ) self.assertEqual( m.keys(), [] ) self.assertEqual( m.values(), [] ) self.assertEqual( len( m ), 0 ) self.assertRaises( Exception, m.__setitem__, "notAFloat", IECoreScene.PointsPrimitive( 1 ) ) m[0] = IECoreScene.PointsPrimitive( 1 ) self.assertEqual( len( m ), 1 ) self.assertEqual( m.keys(), [ 0 ] ) self.assertEqual( m.values(), [ IECoreScene.PointsPrimitive( 1 ) ] ) m[1] = IECoreScene.PointsPrimitive( 1 ) self.assertEqual( len( m ), 2 ) self.assertEqual( m.keys(), [ 0, 1 ] ) self.assertEqual( m.values(), [ IECoreScene.PointsPrimitive( 1 ), IECoreScene.PointsPrimitive( 1 ) ] ) iface = IECore.IndexedIO.create( os.path.join( "test", "motionPrimitive.fio" ), IECore.IndexedIO.OpenMode.Write ) m.save( iface, "test" ) mm = IECore.Object.load( iface, "test" ) self.assertEqual( m, mm ) mmm = m.copy() self.assertEqual( m, mmm ) del m[0] self.assertEqual( len( m ), 1 ) self.assertEqual( m.keys(), [ 1 ] ) self.assertEqual( m.values(), [ IECoreScene.PointsPrimitive( 1 ) ] ) del m[1] self.assertEqual( m.keys(), [] ) self.assertEqual( m.values(), [] ) self.assertEqual( len( m ), 0 ) def testItems( self ) : m = IECoreScene.MotionPrimitive() m[0] = IECoreScene.PointsPrimitive( 1 ) m[1] = IECoreScene.PointsPrimitive( 2 ) self.assertEqual( m.items(), [ ( 0, IECoreScene.PointsPrimitive( 1 ) ), ( 1, IECoreScene.PointsPrimitive( 2 ) ) ] ) def testHash( self ) : m = IECoreScene.MotionPrimitive() m2 = IECoreScene.MotionPrimitive() self.assertEqual( m.hash(), m2.hash() ) m[0] = IECoreScene.SpherePrimitive() self.assertNotEqual( m.hash(), m2.hash() ) m2[0] = IECoreScene.SpherePrimitive() self.assertEqual( m.hash(), m2.hash() ) m[1] = IECoreScene.SpherePrimitive() self.assertNotEqual( m.hash(), m2.hash() ) m2[2] = IECoreScene.SpherePrimitive() self.assertNotEqual( m.hash(), m2.hash() ) def tearDown( self ) : if os.path.isfile( os.path.join( "test", "motionPrimitive.fio" ) ): os.remove( os.path.join( "test", "motionPrimitive.fio" ) ) if __name__ == "__main__": unittest.main()
normal
{ "blob_id": "d4c297af395581c6d955eb31a842ab86e599d23c", "index": 4576, "step-1": "<mask token>\n\n\nclass TestMotionPrimitive(unittest.TestCase):\n <mask token>\n\n def testItems(self):\n m = IECoreScene.MotionPrimitive()\n m[0] = IECoreScene.PointsPrimitive(1)\n m[1] = IECoreScene.PointsPrimitive(2)\n self.assertEqual(m.items(), [(0, IECoreScene.PointsPrimitive(1)), (\n 1, IECoreScene.PointsPrimitive(2))])\n\n def testHash(self):\n m = IECoreScene.MotionPrimitive()\n m2 = IECoreScene.MotionPrimitive()\n self.assertEqual(m.hash(), m2.hash())\n m[0] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n m2[0] = IECoreScene.SpherePrimitive()\n self.assertEqual(m.hash(), m2.hash())\n m[1] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n m2[2] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n\n def tearDown(self):\n if os.path.isfile(os.path.join('test', 'motionPrimitive.fio')):\n os.remove(os.path.join('test', 'motionPrimitive.fio'))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestMotionPrimitive(unittest.TestCase):\n\n def test(self):\n m = IECoreScene.MotionPrimitive()\n self.assertTrue(m.isInstanceOf('MotionPrimitive'))\n self.assertTrue(m.isInstanceOf('VisibleRenderable'))\n self.assertEqual(m.keys(), [])\n self.assertEqual(m.values(), [])\n self.assertEqual(len(m), 0)\n self.assertRaises(Exception, m.__setitem__, 'notAFloat',\n IECoreScene.PointsPrimitive(1))\n m[0] = IECoreScene.PointsPrimitive(1)\n self.assertEqual(len(m), 1)\n self.assertEqual(m.keys(), [0])\n self.assertEqual(m.values(), [IECoreScene.PointsPrimitive(1)])\n m[1] = IECoreScene.PointsPrimitive(1)\n self.assertEqual(len(m), 2)\n self.assertEqual(m.keys(), [0, 1])\n self.assertEqual(m.values(), [IECoreScene.PointsPrimitive(1),\n IECoreScene.PointsPrimitive(1)])\n iface = IECore.IndexedIO.create(os.path.join('test',\n 'motionPrimitive.fio'), IECore.IndexedIO.OpenMode.Write)\n m.save(iface, 'test')\n mm = IECore.Object.load(iface, 'test')\n self.assertEqual(m, mm)\n mmm = m.copy()\n self.assertEqual(m, mmm)\n del m[0]\n self.assertEqual(len(m), 1)\n self.assertEqual(m.keys(), [1])\n self.assertEqual(m.values(), [IECoreScene.PointsPrimitive(1)])\n del m[1]\n self.assertEqual(m.keys(), [])\n self.assertEqual(m.values(), [])\n self.assertEqual(len(m), 0)\n\n def testItems(self):\n m = IECoreScene.MotionPrimitive()\n m[0] = IECoreScene.PointsPrimitive(1)\n m[1] = IECoreScene.PointsPrimitive(2)\n self.assertEqual(m.items(), [(0, IECoreScene.PointsPrimitive(1)), (\n 1, IECoreScene.PointsPrimitive(2))])\n\n def testHash(self):\n m = IECoreScene.MotionPrimitive()\n m2 = IECoreScene.MotionPrimitive()\n self.assertEqual(m.hash(), m2.hash())\n m[0] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n m2[0] = IECoreScene.SpherePrimitive()\n self.assertEqual(m.hash(), m2.hash())\n m[1] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n m2[2] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n\n def tearDown(self):\n if os.path.isfile(os.path.join('test', 'motionPrimitive.fio')):\n os.remove(os.path.join('test', 'motionPrimitive.fio'))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TestMotionPrimitive(unittest.TestCase):\n\n def test(self):\n m = IECoreScene.MotionPrimitive()\n self.assertTrue(m.isInstanceOf('MotionPrimitive'))\n self.assertTrue(m.isInstanceOf('VisibleRenderable'))\n self.assertEqual(m.keys(), [])\n self.assertEqual(m.values(), [])\n self.assertEqual(len(m), 0)\n self.assertRaises(Exception, m.__setitem__, 'notAFloat',\n IECoreScene.PointsPrimitive(1))\n m[0] = IECoreScene.PointsPrimitive(1)\n self.assertEqual(len(m), 1)\n self.assertEqual(m.keys(), [0])\n self.assertEqual(m.values(), [IECoreScene.PointsPrimitive(1)])\n m[1] = IECoreScene.PointsPrimitive(1)\n self.assertEqual(len(m), 2)\n self.assertEqual(m.keys(), [0, 1])\n self.assertEqual(m.values(), [IECoreScene.PointsPrimitive(1),\n IECoreScene.PointsPrimitive(1)])\n iface = IECore.IndexedIO.create(os.path.join('test',\n 'motionPrimitive.fio'), IECore.IndexedIO.OpenMode.Write)\n m.save(iface, 'test')\n mm = IECore.Object.load(iface, 'test')\n self.assertEqual(m, mm)\n mmm = m.copy()\n self.assertEqual(m, mmm)\n del m[0]\n self.assertEqual(len(m), 1)\n self.assertEqual(m.keys(), [1])\n self.assertEqual(m.values(), [IECoreScene.PointsPrimitive(1)])\n del m[1]\n self.assertEqual(m.keys(), [])\n self.assertEqual(m.values(), [])\n self.assertEqual(len(m), 0)\n\n def testItems(self):\n m = IECoreScene.MotionPrimitive()\n m[0] = IECoreScene.PointsPrimitive(1)\n m[1] = IECoreScene.PointsPrimitive(2)\n self.assertEqual(m.items(), [(0, IECoreScene.PointsPrimitive(1)), (\n 1, IECoreScene.PointsPrimitive(2))])\n\n def testHash(self):\n m = IECoreScene.MotionPrimitive()\n m2 = IECoreScene.MotionPrimitive()\n self.assertEqual(m.hash(), m2.hash())\n m[0] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n m2[0] = IECoreScene.SpherePrimitive()\n self.assertEqual(m.hash(), m2.hash())\n m[1] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n m2[2] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n\n def tearDown(self):\n if os.path.isfile(os.path.join('test', 'motionPrimitive.fio')):\n os.remove(os.path.join('test', 'motionPrimitive.fio'))\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-4": "import os\nimport unittest\nimport IECore\nimport IECoreScene\n\n\nclass TestMotionPrimitive(unittest.TestCase):\n\n def test(self):\n m = IECoreScene.MotionPrimitive()\n self.assertTrue(m.isInstanceOf('MotionPrimitive'))\n self.assertTrue(m.isInstanceOf('VisibleRenderable'))\n self.assertEqual(m.keys(), [])\n self.assertEqual(m.values(), [])\n self.assertEqual(len(m), 0)\n self.assertRaises(Exception, m.__setitem__, 'notAFloat',\n IECoreScene.PointsPrimitive(1))\n m[0] = IECoreScene.PointsPrimitive(1)\n self.assertEqual(len(m), 1)\n self.assertEqual(m.keys(), [0])\n self.assertEqual(m.values(), [IECoreScene.PointsPrimitive(1)])\n m[1] = IECoreScene.PointsPrimitive(1)\n self.assertEqual(len(m), 2)\n self.assertEqual(m.keys(), [0, 1])\n self.assertEqual(m.values(), [IECoreScene.PointsPrimitive(1),\n IECoreScene.PointsPrimitive(1)])\n iface = IECore.IndexedIO.create(os.path.join('test',\n 'motionPrimitive.fio'), IECore.IndexedIO.OpenMode.Write)\n m.save(iface, 'test')\n mm = IECore.Object.load(iface, 'test')\n self.assertEqual(m, mm)\n mmm = m.copy()\n self.assertEqual(m, mmm)\n del m[0]\n self.assertEqual(len(m), 1)\n self.assertEqual(m.keys(), [1])\n self.assertEqual(m.values(), [IECoreScene.PointsPrimitive(1)])\n del m[1]\n self.assertEqual(m.keys(), [])\n self.assertEqual(m.values(), [])\n self.assertEqual(len(m), 0)\n\n def testItems(self):\n m = IECoreScene.MotionPrimitive()\n m[0] = IECoreScene.PointsPrimitive(1)\n m[1] = IECoreScene.PointsPrimitive(2)\n self.assertEqual(m.items(), [(0, IECoreScene.PointsPrimitive(1)), (\n 1, IECoreScene.PointsPrimitive(2))])\n\n def testHash(self):\n m = IECoreScene.MotionPrimitive()\n m2 = IECoreScene.MotionPrimitive()\n self.assertEqual(m.hash(), m2.hash())\n m[0] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n m2[0] = IECoreScene.SpherePrimitive()\n self.assertEqual(m.hash(), m2.hash())\n m[1] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n m2[2] = IECoreScene.SpherePrimitive()\n self.assertNotEqual(m.hash(), m2.hash())\n\n def tearDown(self):\n if os.path.isfile(os.path.join('test', 'motionPrimitive.fio')):\n os.remove(os.path.join('test', 'motionPrimitive.fio'))\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-5": "##########################################################################\n#\n# Copyright (c) 2007-2013, Image Engine Design Inc. All rights reserved.\n#\n# Redistribution and use in source and binary forms, with or without\n# modification, are permitted provided that the following conditions are\n# met:\n#\n# * Redistributions of source code must retain the above copyright\n# notice, this list of conditions and the following disclaimer.\n#\n# * Redistributions in binary form must reproduce the above copyright\n# notice, this list of conditions and the following disclaimer in the\n# documentation and/or other materials provided with the distribution.\n#\n# * Neither the name of Image Engine Design nor the names of any\n# other contributors to this software may be used to endorse or\n# promote products derived from this software without specific prior\n# written permission.\n#\n# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS\n# IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,\n# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR\n# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR\n# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,\n# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,\n# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR\n# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF\n# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING\n# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\n# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n#\n##########################################################################\n\nimport os\nimport unittest\n\nimport IECore\nimport IECoreScene\n\nclass TestMotionPrimitive( unittest.TestCase ) :\n\n\tdef test( self ) :\n\n\t\tm = IECoreScene.MotionPrimitive()\n\t\tself.assertTrue( m.isInstanceOf( \"MotionPrimitive\" ) )\n\t\tself.assertTrue( m.isInstanceOf( \"VisibleRenderable\" ) )\n\n\t\tself.assertEqual( m.keys(), [] )\n\t\tself.assertEqual( m.values(), [] )\n\t\tself.assertEqual( len( m ), 0 )\n\n\t\tself.assertRaises( Exception, m.__setitem__, \"notAFloat\", IECoreScene.PointsPrimitive( 1 ) )\n\n\t\tm[0] = IECoreScene.PointsPrimitive( 1 )\n\t\tself.assertEqual( len( m ), 1 )\n\t\tself.assertEqual( m.keys(), [ 0 ] )\n\t\tself.assertEqual( m.values(), [ IECoreScene.PointsPrimitive( 1 ) ] )\n\n\t\tm[1] = IECoreScene.PointsPrimitive( 1 )\n\t\tself.assertEqual( len( m ), 2 )\n\t\tself.assertEqual( m.keys(), [ 0, 1 ] )\n\t\tself.assertEqual( m.values(), [ IECoreScene.PointsPrimitive( 1 ), IECoreScene.PointsPrimitive( 1 ) ] )\n\n\t\tiface = IECore.IndexedIO.create( os.path.join( \"test\", \"motionPrimitive.fio\" ), IECore.IndexedIO.OpenMode.Write )\n\t\tm.save( iface, \"test\" )\n\n\t\tmm = IECore.Object.load( iface, \"test\" )\n\t\tself.assertEqual( m, mm )\n\n\t\tmmm = m.copy()\n\t\tself.assertEqual( m, mmm )\n\n\t\tdel m[0]\n\t\tself.assertEqual( len( m ), 1 )\n\t\tself.assertEqual( m.keys(), [ 1 ] )\n\t\tself.assertEqual( m.values(), [ IECoreScene.PointsPrimitive( 1 ) ] )\n\n\t\tdel m[1]\n\t\tself.assertEqual( m.keys(), [] )\n\t\tself.assertEqual( m.values(), [] )\n\t\tself.assertEqual( len( m ), 0 )\n\n\tdef testItems( self ) :\n\n\t\tm = IECoreScene.MotionPrimitive()\n\t\tm[0] = IECoreScene.PointsPrimitive( 1 )\n\t\tm[1] = IECoreScene.PointsPrimitive( 2 )\n\t\tself.assertEqual( m.items(), [ ( 0, IECoreScene.PointsPrimitive( 1 ) ), ( 1, IECoreScene.PointsPrimitive( 2 ) ) ] )\n\n\tdef testHash( self ) :\n\n\t\tm = IECoreScene.MotionPrimitive()\n\t\tm2 = IECoreScene.MotionPrimitive()\n\t\tself.assertEqual( m.hash(), m2.hash() )\n\n\t\tm[0] = IECoreScene.SpherePrimitive()\n\t\tself.assertNotEqual( m.hash(), m2.hash() )\n\n\t\tm2[0] = IECoreScene.SpherePrimitive()\n\t\tself.assertEqual( m.hash(), m2.hash() )\n\n\t\tm[1] = IECoreScene.SpherePrimitive()\n\t\tself.assertNotEqual( m.hash(), m2.hash() )\n\n\t\tm2[2] = IECoreScene.SpherePrimitive()\n\t\tself.assertNotEqual( m.hash(), m2.hash() )\n\n\tdef tearDown( self ) :\n\n\t\tif os.path.isfile( os.path.join( \"test\", \"motionPrimitive.fio\" ) ):\n\t\t\tos.remove( os.path.join( \"test\", \"motionPrimitive.fio\" ) )\n\nif __name__ == \"__main__\":\n unittest.main()\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
import os import pathlib import enum import warnings import colorama import requests with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) import invoke class MoleculeDriver(enum.Enum): docker = 1 lxd = 2 vagrant = 3 class TestPlatform(enum.Enum): linux = 1 ubuntu = 2 centos = 3 def print_header(header_text): print( colorama.Fore.CYAN + colorama.Style.BRIGHT + f" {header_text} ".center(80, "=") + colorama.Style.RESET_ALL ) def print_sub_header(sub_header_text): print( colorama.Fore.CYAN + colorama.Style.BRIGHT + "--" + f" {sub_header_text} ".ljust(78, "-") + colorama.Style.RESET_ALL ) def print_success_message(success_message_text): print( colorama.Fore.GREEN + colorama.Style.BRIGHT + f" {success_message_text}: Success ".center(80, "=") + colorama.Style.RESET_ALL ) def run_command(context, *args, **kwargs): try: return context.run(*args, **kwargs) except invoke.exceptions.Failure: print( colorama.Fore.RED + colorama.Style.BRIGHT + "Failure: error executing '" + args[0] + "' command" + colorama.Style.RESET_ALL ) raise def get_base_config_path(driver_code, platform_code): base_config = "molecule/molecule_base_{driver}_{platform}.yml".format( driver=driver_code.name, platform=platform_code.name ) return str(pathlib.Path(__file__).resolve().parent / base_config) def get_molecule_scenarios(context): scenarios = [] for child_obj in (pathlib.Path.cwd() / "molecule").iterdir(): if child_obj.is_dir(): if (child_obj / "molecule.yml").exists(): scenarios.append(child_obj.name) return sorted(scenarios) def run_molecule(context, command, scenario, driver, platform="linux", env={}): driver_code = MoleculeDriver[driver.lower()] platform_code = TestPlatform[platform.lower()] molecule_env = env.copy() if driver_code == MoleculeDriver.lxd: molecule_env.update({"MOLECULE_USER_NAME": "root"}) elif driver_code == MoleculeDriver.vagrant: molecule_env.update({"MOLECULE_USER_NAME": "vagrant"}) molecule_command = ( f"molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}" ) if scenario is not None: molecule_command += f" -s {scenario}" run_command(context, molecule_command, env=molecule_env, echo=True) def get_parameter_value(host, ansible_var_name, param_value, default_value): if host.backend.HAS_RUN_ANSIBLE: ansible_var_value = host.ansible.get_variables().get(ansible_var_name, None) else: ansible_var_value = None return_value = ansible_var_value if param_value is None else param_value if return_value is None: return_value = default_value return return_value def get_github_release_info(release_url): if "AO_GITHUB_OAUTH_TOKEN" in os.environ: headers = {"Authorization": "token " + os.environ["AO_GITHUB_OAUTH_TOKEN"]} else: headers = None return requests.get( "https://api.github.com/repos/" + release_url, headers=headers ).json()
normal
{ "blob_id": "5bdc08b66916959d462314b8a6e5794e5fa12b55", "index": 7986, "step-1": "<mask token>\n\n\nclass MoleculeDriver(enum.Enum):\n docker = 1\n lxd = 2\n vagrant = 3\n\n\nclass TestPlatform(enum.Enum):\n linux = 1\n ubuntu = 2\n centos = 3\n\n\n<mask token>\n\n\ndef print_sub_header(sub_header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' +\n f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL)\n\n\ndef print_success_message(success_message_text):\n print(colorama.Fore.GREEN + colorama.Style.BRIGHT +\n f' {success_message_text}: Success '.center(80, '=') + colorama.\n Style.RESET_ALL)\n\n\n<mask token>\n\n\ndef get_base_config_path(driver_code, platform_code):\n base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format(\n driver=driver_code.name, platform=platform_code.name)\n return str(pathlib.Path(__file__).resolve().parent / base_config)\n\n\ndef get_molecule_scenarios(context):\n scenarios = []\n for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir():\n if child_obj.is_dir():\n if (child_obj / 'molecule.yml').exists():\n scenarios.append(child_obj.name)\n return sorted(scenarios)\n\n\n<mask token>\n\n\ndef get_parameter_value(host, ansible_var_name, param_value, default_value):\n if host.backend.HAS_RUN_ANSIBLE:\n ansible_var_value = host.ansible.get_variables().get(ansible_var_name,\n None)\n else:\n ansible_var_value = None\n return_value = ansible_var_value if param_value is None else param_value\n if return_value is None:\n return_value = default_value\n return return_value\n\n\ndef get_github_release_info(release_url):\n if 'AO_GITHUB_OAUTH_TOKEN' in os.environ:\n headers = {'Authorization': 'token ' + os.environ[\n 'AO_GITHUB_OAUTH_TOKEN']}\n else:\n headers = None\n return requests.get('https://api.github.com/repos/' + release_url,\n headers=headers).json()\n", "step-2": "<mask token>\n\n\nclass MoleculeDriver(enum.Enum):\n docker = 1\n lxd = 2\n vagrant = 3\n\n\nclass TestPlatform(enum.Enum):\n linux = 1\n ubuntu = 2\n centos = 3\n\n\n<mask token>\n\n\ndef print_sub_header(sub_header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' +\n f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL)\n\n\ndef print_success_message(success_message_text):\n print(colorama.Fore.GREEN + colorama.Style.BRIGHT +\n f' {success_message_text}: Success '.center(80, '=') + colorama.\n Style.RESET_ALL)\n\n\n<mask token>\n\n\ndef get_base_config_path(driver_code, platform_code):\n base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format(\n driver=driver_code.name, platform=platform_code.name)\n return str(pathlib.Path(__file__).resolve().parent / base_config)\n\n\ndef get_molecule_scenarios(context):\n scenarios = []\n for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir():\n if child_obj.is_dir():\n if (child_obj / 'molecule.yml').exists():\n scenarios.append(child_obj.name)\n return sorted(scenarios)\n\n\ndef run_molecule(context, command, scenario, driver, platform='linux', env={}):\n driver_code = MoleculeDriver[driver.lower()]\n platform_code = TestPlatform[platform.lower()]\n molecule_env = env.copy()\n if driver_code == MoleculeDriver.lxd:\n molecule_env.update({'MOLECULE_USER_NAME': 'root'})\n elif driver_code == MoleculeDriver.vagrant:\n molecule_env.update({'MOLECULE_USER_NAME': 'vagrant'})\n molecule_command = (\n f'molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}'\n )\n if scenario is not None:\n molecule_command += f' -s {scenario}'\n run_command(context, molecule_command, env=molecule_env, echo=True)\n\n\ndef get_parameter_value(host, ansible_var_name, param_value, default_value):\n if host.backend.HAS_RUN_ANSIBLE:\n ansible_var_value = host.ansible.get_variables().get(ansible_var_name,\n None)\n else:\n ansible_var_value = None\n return_value = ansible_var_value if param_value is None else param_value\n if return_value is None:\n return_value = default_value\n return return_value\n\n\ndef get_github_release_info(release_url):\n if 'AO_GITHUB_OAUTH_TOKEN' in os.environ:\n headers = {'Authorization': 'token ' + os.environ[\n 'AO_GITHUB_OAUTH_TOKEN']}\n else:\n headers = None\n return requests.get('https://api.github.com/repos/' + release_url,\n headers=headers).json()\n", "step-3": "<mask token>\n\n\nclass MoleculeDriver(enum.Enum):\n docker = 1\n lxd = 2\n vagrant = 3\n\n\nclass TestPlatform(enum.Enum):\n linux = 1\n ubuntu = 2\n centos = 3\n\n\ndef print_header(header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + f' {header_text} '.\n center(80, '=') + colorama.Style.RESET_ALL)\n\n\ndef print_sub_header(sub_header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' +\n f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL)\n\n\ndef print_success_message(success_message_text):\n print(colorama.Fore.GREEN + colorama.Style.BRIGHT +\n f' {success_message_text}: Success '.center(80, '=') + colorama.\n Style.RESET_ALL)\n\n\ndef run_command(context, *args, **kwargs):\n try:\n return context.run(*args, **kwargs)\n except invoke.exceptions.Failure:\n print(colorama.Fore.RED + colorama.Style.BRIGHT +\n \"Failure: error executing '\" + args[0] + \"' command\" + colorama\n .Style.RESET_ALL)\n raise\n\n\ndef get_base_config_path(driver_code, platform_code):\n base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format(\n driver=driver_code.name, platform=platform_code.name)\n return str(pathlib.Path(__file__).resolve().parent / base_config)\n\n\ndef get_molecule_scenarios(context):\n scenarios = []\n for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir():\n if child_obj.is_dir():\n if (child_obj / 'molecule.yml').exists():\n scenarios.append(child_obj.name)\n return sorted(scenarios)\n\n\ndef run_molecule(context, command, scenario, driver, platform='linux', env={}):\n driver_code = MoleculeDriver[driver.lower()]\n platform_code = TestPlatform[platform.lower()]\n molecule_env = env.copy()\n if driver_code == MoleculeDriver.lxd:\n molecule_env.update({'MOLECULE_USER_NAME': 'root'})\n elif driver_code == MoleculeDriver.vagrant:\n molecule_env.update({'MOLECULE_USER_NAME': 'vagrant'})\n molecule_command = (\n f'molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}'\n )\n if scenario is not None:\n molecule_command += f' -s {scenario}'\n run_command(context, molecule_command, env=molecule_env, echo=True)\n\n\ndef get_parameter_value(host, ansible_var_name, param_value, default_value):\n if host.backend.HAS_RUN_ANSIBLE:\n ansible_var_value = host.ansible.get_variables().get(ansible_var_name,\n None)\n else:\n ansible_var_value = None\n return_value = ansible_var_value if param_value is None else param_value\n if return_value is None:\n return_value = default_value\n return return_value\n\n\ndef get_github_release_info(release_url):\n if 'AO_GITHUB_OAUTH_TOKEN' in os.environ:\n headers = {'Authorization': 'token ' + os.environ[\n 'AO_GITHUB_OAUTH_TOKEN']}\n else:\n headers = None\n return requests.get('https://api.github.com/repos/' + release_url,\n headers=headers).json()\n", "step-4": "<mask token>\nwith warnings.catch_warnings():\n warnings.filterwarnings('ignore', category=DeprecationWarning)\n import invoke\n\n\nclass MoleculeDriver(enum.Enum):\n docker = 1\n lxd = 2\n vagrant = 3\n\n\nclass TestPlatform(enum.Enum):\n linux = 1\n ubuntu = 2\n centos = 3\n\n\ndef print_header(header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + f' {header_text} '.\n center(80, '=') + colorama.Style.RESET_ALL)\n\n\ndef print_sub_header(sub_header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' +\n f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL)\n\n\ndef print_success_message(success_message_text):\n print(colorama.Fore.GREEN + colorama.Style.BRIGHT +\n f' {success_message_text}: Success '.center(80, '=') + colorama.\n Style.RESET_ALL)\n\n\ndef run_command(context, *args, **kwargs):\n try:\n return context.run(*args, **kwargs)\n except invoke.exceptions.Failure:\n print(colorama.Fore.RED + colorama.Style.BRIGHT +\n \"Failure: error executing '\" + args[0] + \"' command\" + colorama\n .Style.RESET_ALL)\n raise\n\n\ndef get_base_config_path(driver_code, platform_code):\n base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format(\n driver=driver_code.name, platform=platform_code.name)\n return str(pathlib.Path(__file__).resolve().parent / base_config)\n\n\ndef get_molecule_scenarios(context):\n scenarios = []\n for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir():\n if child_obj.is_dir():\n if (child_obj / 'molecule.yml').exists():\n scenarios.append(child_obj.name)\n return sorted(scenarios)\n\n\ndef run_molecule(context, command, scenario, driver, platform='linux', env={}):\n driver_code = MoleculeDriver[driver.lower()]\n platform_code = TestPlatform[platform.lower()]\n molecule_env = env.copy()\n if driver_code == MoleculeDriver.lxd:\n molecule_env.update({'MOLECULE_USER_NAME': 'root'})\n elif driver_code == MoleculeDriver.vagrant:\n molecule_env.update({'MOLECULE_USER_NAME': 'vagrant'})\n molecule_command = (\n f'molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}'\n )\n if scenario is not None:\n molecule_command += f' -s {scenario}'\n run_command(context, molecule_command, env=molecule_env, echo=True)\n\n\ndef get_parameter_value(host, ansible_var_name, param_value, default_value):\n if host.backend.HAS_RUN_ANSIBLE:\n ansible_var_value = host.ansible.get_variables().get(ansible_var_name,\n None)\n else:\n ansible_var_value = None\n return_value = ansible_var_value if param_value is None else param_value\n if return_value is None:\n return_value = default_value\n return return_value\n\n\ndef get_github_release_info(release_url):\n if 'AO_GITHUB_OAUTH_TOKEN' in os.environ:\n headers = {'Authorization': 'token ' + os.environ[\n 'AO_GITHUB_OAUTH_TOKEN']}\n else:\n headers = None\n return requests.get('https://api.github.com/repos/' + release_url,\n headers=headers).json()\n", "step-5": "import os\nimport pathlib\nimport enum\nimport warnings\nimport colorama\nimport requests\nwith warnings.catch_warnings():\n warnings.filterwarnings(\"ignore\", category=DeprecationWarning)\n import invoke\n\nclass MoleculeDriver(enum.Enum):\n docker = 1\n lxd = 2\n vagrant = 3\n\nclass TestPlatform(enum.Enum):\n linux = 1\n ubuntu = 2\n centos = 3\n\ndef print_header(header_text):\n print(\n colorama.Fore.CYAN + colorama.Style.BRIGHT +\n f\" {header_text} \".center(80, \"=\") +\n colorama.Style.RESET_ALL\n )\n\n\ndef print_sub_header(sub_header_text):\n print(\n colorama.Fore.CYAN + colorama.Style.BRIGHT + \"--\" +\n f\" {sub_header_text} \".ljust(78, \"-\") +\n colorama.Style.RESET_ALL\n )\n\n\ndef print_success_message(success_message_text):\n print(\n colorama.Fore.GREEN + colorama.Style.BRIGHT +\n f\" {success_message_text}: Success \".center(80, \"=\") +\n colorama.Style.RESET_ALL\n )\n\n\ndef run_command(context, *args, **kwargs):\n try:\n return context.run(*args, **kwargs)\n except invoke.exceptions.Failure:\n print(\n colorama.Fore.RED + colorama.Style.BRIGHT +\n \"Failure: error executing '\" + args[0] + \"' command\" +\n colorama.Style.RESET_ALL\n )\n raise\n\ndef get_base_config_path(driver_code, platform_code):\n base_config = \"molecule/molecule_base_{driver}_{platform}.yml\".format(\n driver=driver_code.name, platform=platform_code.name\n )\n return str(pathlib.Path(__file__).resolve().parent / base_config)\n\ndef get_molecule_scenarios(context):\n scenarios = []\n for child_obj in (pathlib.Path.cwd() / \"molecule\").iterdir():\n if child_obj.is_dir():\n if (child_obj / \"molecule.yml\").exists():\n scenarios.append(child_obj.name)\n return sorted(scenarios)\n\n\ndef run_molecule(context, command, scenario, driver, platform=\"linux\", env={}):\n driver_code = MoleculeDriver[driver.lower()]\n platform_code = TestPlatform[platform.lower()]\n molecule_env = env.copy()\n if driver_code == MoleculeDriver.lxd:\n molecule_env.update({\"MOLECULE_USER_NAME\": \"root\"})\n elif driver_code == MoleculeDriver.vagrant:\n molecule_env.update({\"MOLECULE_USER_NAME\": \"vagrant\"})\n molecule_command = (\n f\"molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}\"\n )\n if scenario is not None:\n molecule_command += f\" -s {scenario}\"\n run_command(context, molecule_command, env=molecule_env, echo=True)\n\ndef get_parameter_value(host, ansible_var_name, param_value, default_value):\n if host.backend.HAS_RUN_ANSIBLE:\n ansible_var_value = host.ansible.get_variables().get(ansible_var_name, None)\n else:\n ansible_var_value = None\n return_value = ansible_var_value if param_value is None else param_value\n if return_value is None:\n return_value = default_value\n return return_value\n\ndef get_github_release_info(release_url):\n if \"AO_GITHUB_OAUTH_TOKEN\" in os.environ:\n headers = {\"Authorization\": \"token \" + os.environ[\"AO_GITHUB_OAUTH_TOKEN\"]}\n else:\n headers = None\n return requests.get(\n \"https://api.github.com/repos/\" + release_url, headers=headers\n ).json()\n", "step-ids": [ 10, 11, 13, 14, 16 ] }
[ 10, 11, 13, 14, 16 ]
# coding: utf-8 # In[1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt # In[2]: import os GFE_PATH = "C:\Haely\MS2017\sem2\EE 259\Project\grammatical_facial_expression" def load_a_affirm_data(gfe_path=GFE_PATH): csv_patha = os.path.join(gfe_path, "a_affirmative_datapoints.csv") print(gfe_path) return pd.read_csv(csv_patha) def load_a_affirm_target(gfe_path=GFE_PATH): csv_targeta = os.path.join(gfe_path, "a_affirmative_targets.csv") print(gfe_path) return pd.read_csv(csv_targeta) def load_a_cond_data(gfe_path=GFE_PATH): csv_pathc = os.path.join(gfe_path, "a_conditional_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathc) def load_a_cond_target(gfe_path=GFE_PATH): csv_targetc = os.path.join(gfe_path, "a_conditional_targets.csv") print(gfe_path) return pd.read_csv(csv_targetc) def load_a_doubtq_data(gfe_path=GFE_PATH): csv_pathd = os.path.join(gfe_path, "a_doubt_question_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathd) def load_a_doubtq_target(gfe_path=GFE_PATH): csv_targetd = os.path.join(gfe_path, "a_doubts_question_targets.csv") print(gfe_path) return pd.read_csv(csv_targetd) def load_a_emphasis_data(gfe_path=GFE_PATH): csv_pathe = os.path.join(gfe_path, "a_emphasis_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathe) def load_a_emphasis_target(gfe_path=GFE_PATH): csv_targete = os.path.join(gfe_path, "a_emphasis_targets.csv") print(gfe_path) return pd.read_csv(csv_targete) def load_a_neg_data(gfe_path=GFE_PATH): csv_pathn = os.path.join(gfe_path, "a_negative_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathn) def load_a_neg_target(gfe_path=GFE_PATH): csv_targetn = os.path.join(gfe_path, "a_negative_targets.csv") print(gfe_path) return pd.read_csv(csv_targetn) def load_a_rel_data(gfe_path=GFE_PATH): csv_pathr = os.path.join(gfe_path, "a_relative_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathr) def load_a_rel_target(gfe_path=GFE_PATH): csv_targetr = os.path.join(gfe_path, "a_relative_targets.csv") print(gfe_path) return pd.read_csv(csv_targetr) def load_a_topics_data(gfe_path=GFE_PATH): csv_patht = os.path.join(gfe_path, "a_topics_datapoints.csv") print(gfe_path) return pd.read_csv(csv_patht) def load_a_topics_target(gfe_path=GFE_PATH): csv_targett = os.path.join(gfe_path, "a_topics_targets.csv") print(gfe_path) return pd.read_csv(csv_targett) def load_a_wh_data(gfe_path=GFE_PATH): csv_pathw = os.path.join(gfe_path, "a_wh_question_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathw) def load_a_wh_target(gfe_path=GFE_PATH): csv_targetw = os.path.join(gfe_path, "a_wh_question_targets.csv") print(gfe_path) return pd.read_csv(csv_targetw) def load_a_yn_data(gfe_path=GFE_PATH): csv_pathy = os.path.join(gfe_path, "a_yn_question_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathy) def load_a_yn_target(gfe_path=GFE_PATH): csv_targety = os.path.join(gfe_path, "a_yn_question_targets.csv") print(gfe_path) return pd.read_csv(csv_targety) # In[3]: def load_b_affirm_data(gfe_path=GFE_PATH): csv_pathab = os.path.join(gfe_path, "b_affirmative_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathab) def load_b_affirm_target(gfe_path=GFE_PATH): csv_targetab = os.path.join(gfe_path, "b_affirmative_targets.csv") print(gfe_path) return pd.read_csv(csv_targetab) def load_b_cond_data(gfe_path=GFE_PATH): csv_pathcb = os.path.join(gfe_path, "b_conditional_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathcb) def load_b_cond_target(gfe_path=GFE_PATH): csv_targetcb = os.path.join(gfe_path, "b_conditional_targets.csv") print(gfe_path) return pd.read_csv(csv_targetcb) def load_b_doubtq_data(gfe_path=GFE_PATH): csv_pathdb = os.path.join(gfe_path, "b_doubt_question_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathdb) def load_b_doubtq_target(gfe_path=GFE_PATH): csv_targetdb = os.path.join(gfe_path, "b_doubt_question_targets.csv") print(gfe_path) return pd.read_csv(csv_targetdb) def load_b_emphasis_data(gfe_path=GFE_PATH): csv_patheb = os.path.join(gfe_path, "b_emphasis_datapoints.csv") print(gfe_path) return pd.read_csv(csv_patheb) def load_b_emphasis_target(gfe_path=GFE_PATH): csv_targeteb = os.path.join(gfe_path, "b_emphasis_targets.csv") print(gfe_path) return pd.read_csv(csv_targeteb) def load_b_neg_data(gfe_path=GFE_PATH): csv_pathnb = os.path.join(gfe_path, "b_negative_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathnb) def load_b_neg_target(gfe_path=GFE_PATH): csv_targetnb = os.path.join(gfe_path, "b_negative_targets.csv") print(gfe_path) return pd.read_csv(csv_targetnb) def load_b_rel_data(gfe_path=GFE_PATH): csv_pathrb = os.path.join(gfe_path, "b_relative_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathrb) def load_b_rel_target(gfe_path=GFE_PATH): csv_targetrb = os.path.join(gfe_path, "b_relative_targets.csv") print(gfe_path) return pd.read_csv(csv_targetrb) def load_b_topics_data(gfe_path=GFE_PATH): csv_pathtb = os.path.join(gfe_path, "b_topics_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathtb) def load_b_topics_target(gfe_path=GFE_PATH): csv_targettb = os.path.join(gfe_path, "b_topics_targets.csv") print(gfe_path) return pd.read_csv(csv_targettb) def load_b_wh_data(gfe_path=GFE_PATH): csv_pathwb = os.path.join(gfe_path, "b_wh_question_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathwb) def load_b_wh_target(gfe_path=GFE_PATH): csv_targetwb = os.path.join(gfe_path, "b_wh_question_targets.csv") print(gfe_path) return pd.read_csv(csv_targetwb) def load_b_yn_data(gfe_path=GFE_PATH): csv_pathyb = os.path.join(gfe_path, "b_yn_question_datapoints.csv") print(gfe_path) return pd.read_csv(csv_pathyb) def load_b_yn_target(gfe_path=GFE_PATH): csv_targetyb = os.path.join(gfe_path, "b_yn_question_targets.csv") print(gfe_path) return pd.read_csv(csv_targetyb) # In[4]: affirmda = load_a_affirm_data() affirmta = load_a_affirm_target() condda = load_a_cond_data() condta = load_a_cond_target() doubtqda = load_a_doubtq_data() doubtqta = load_a_doubtq_target() emphda = load_a_emphasis_data() emphta = load_a_emphasis_target() negda = load_a_neg_data() negta = load_a_neg_target() relda = load_a_rel_data() relta = load_a_rel_target() topicsda = load_a_topics_data() topicsta = load_a_topics_target() whda = load_a_wh_data() whta = load_a_wh_target() ynda = load_a_yn_data() ynta = load_a_yn_target() # In[5]: affirmdb = load_b_affirm_data() affirmtb = load_b_affirm_target() conddb = load_b_cond_data() condtb = load_b_cond_target() doubtqdb = load_b_doubtq_data() doubtqtb = load_b_doubtq_target() emphdb = load_b_emphasis_data() emphtb = load_b_emphasis_target() negdb = load_b_neg_data() negtb = load_b_neg_target() reldb = load_b_rel_data() reltb = load_b_rel_target() topicsdb = load_b_topics_data() topicstb = load_b_topics_target() whdb = load_b_wh_data() whtb = load_b_wh_target() yndb = load_b_yn_data() yntb = load_b_yn_target() # In[8]: users_combine_affirmd = pd.concat([affirmda, affirmdb],ignore_index=True) affirm_y = pd.concat([affirmta,affirmtb],ignore_index=True) users_combine_condd = pd.concat([condda, conddb],ignore_index=True) cond_y = pd.concat([condta, condtb],ignore_index=True) users_combine_doubtqd = pd.concat([doubtqda, doubtqdb],ignore_index=True) doubtq_y = pd.concat([doubtqta, doubtqtb],ignore_index=True) users_combine_emphd = pd.concat([emphda, emphdb],ignore_index=True) emph_y = pd.concat([emphta, emphtb],ignore_index=True) users_combine_negd = pd.concat([negda, negdb],ignore_index=True) neg_y = pd.concat([negta, negtb],ignore_index=True) users_combine_reld = pd.concat([relda, reldb],ignore_index=True) rel_y = pd.concat([relta, reltb],ignore_index=True) users_combine_topicsd = pd.concat([topicsda, topicsdb],ignore_index=True) topics_y = pd.concat([topicsta, topicstb],ignore_index=True) users_combine_whd = pd.concat([whda, whdb],ignore_index=True) wh_y = pd.concat([whta, whtb],ignore_index=True) users_combine_ynd = pd.concat([ynda, yndb],ignore_index=True) yn_y = pd.concat([ynta, yntb],ignore_index=True) # In[11]: users_combine_affirmd['affirm_y']=affirm_y affirm_y.drop([10]) # In[12]: users_combine_condd['cond_y']=cond_y cond_y.drop([10]) # In[13]: users_combine_doubtqd['doubtq_y']=doubtq_y doubtq_y.drop([10]) # In[14]: users_combine_emphd['emph_y']=emph_y emph_y.drop([10]) # In[15]: users_combine_negd['neg_y']=neg_y neg_y.drop([10]) # In[16]: users_combine_reld['rel_y']=rel_y rel_y.drop([10]) # In[17]: users_combine_topicsd['topics_y']=topics_y topics_y.drop([10]) # In[18]: users_combine_whd['wh_y']=wh_y wh_y.drop([10]) # In[19]: users_combine_ynd['yn_y']=yn_y yn_y.drop([10]) # In[22]: from sklearn.model_selection import train_test_split ya=users_combine_affirmd['affirm_y'] Xa_train,Xa_test,ya_train,ya_test = train_test_split(users_combine_affirmd.iloc[:,1:],ya,stratify=ya) yc=users_combine_condd['cond_y'] Xc_train,Xc_test,yc_train,yc_test = train_test_split(users_combine_condd.iloc[:,1:],yc,stratify=yc) yd=users_combine_doubtqd['doubtq_y'] Xd_train,Xd_test,yd_train,yd_test = train_test_split(users_combine_doubtqd.iloc[:,1:],yd,stratify=yd) ye=users_combine_emphd['emph_y'] Xe_train,Xe_test,ye_train,ye_test = train_test_split(users_combine_emphd.iloc[:,1:],ye,stratify=ye) yn=users_combine_negd['neg_y'] Xn_train,Xn_test,yn_train,yn_test = train_test_split(users_combine_negd.iloc[:,1:],yn,stratify=yn) yr=users_combine_reld['rel_y'] Xr_train,Xr_test,yr_train,yr_test = train_test_split(users_combine_reld.iloc[:,1:],yr,stratify=yr) yt=users_combine_topicsd['topics_y'] Xt_train,Xt_test,yt_train,yt_test = train_test_split(users_combine_topicsd.iloc[:,1:],yt,stratify=yt) yw=users_combine_whd['wh_y'] Xw_train,Xw_test,yw_train,yw_test = train_test_split(users_combine_whd.iloc[:,1:],yw,stratify=yw) yy=users_combine_ynd['yn_y'] Xy_train,Xy_test,yy_train,yy_test = train_test_split(users_combine_ynd.iloc[:,1:],yy,stratify=yy) # In[25]: from sklearn.preprocessing import scale from scipy import stats from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda_clf = LDA(solver='lsqr',store_covariance=True) lda_clf.fit(Xa_train,ya_train) ya_predicted = lda_clf.predict(Xa_test) print('\n The error rate of the LDA model for affirm is {0:.2f}% '.format(100*np.mean(ya_predicted!=ya_test))) lda_clf.fit(Xc_train,yc_train) yc_predicted = lda_clf.predict(Xc_test) print('\n The error rate of the LDA model for conditional is {0:.2f}% '.format(100*np.mean(yc_predicted!=yc_test))) lda_clf.fit(Xd_train,yd_train) yd_predicted = lda_clf.predict(Xd_test) print('\n The error rate of the LDA model for doubt questions is {0:.2f}% '.format(100*np.mean(yd_predicted!=yd_test))) lda_clf.fit(Xe_train,ye_train) ye_predicted = lda_clf.predict(Xe_test) print('\n The error rate of the LDA model for emphasis is {0:.2f}% '.format(100*np.mean(ye_predicted!=ye_test))) lda_clf.fit(Xn_train,yn_train) yn_predicted = lda_clf.predict(Xn_test) print('\n The error rate of the LDA model for negative is {0:.2f}% '.format(100*np.mean(yn_predicted!=yn_test))) lda_clf.fit(Xr_train,yr_train) yr_predicted = lda_clf.predict(Xr_test) print('\n The error rate of the LDA model for relativr is {0:.2f}% '.format(100*np.mean(yr_predicted!=yr_test))) lda_clf.fit(Xt_train,yt_train) yt_predicted = lda_clf.predict(Xt_test) print('\n The error rate of the LDA model for topics is {0:.2f}% '.format(100*np.mean(yt_predicted!=yt_test))) lda_clf.fit(Xw_train,yw_train) yw_predicted = lda_clf.predict(Xw_test) print('\n The error rate of the LDA model for wh questions is {0:.2f}% '.format(100*np.mean(yw_predicted!=yw_test))) lda_clf.fit(Xy_train,yy_train) yy_predicted = lda_clf.predict(Xy_test) print('\n The error rate of the LDA model for yes or no is {0:.2f}% '.format(100*np.mean(yy_predicted!=yy_test)))
normal
{ "blob_id": "2fb8bce3a64787dbaf5a3bb3da53f70005048467", "index": 4104, "step-1": "<mask token>\n\n\ndef load_a_affirm_target(gfe_path=GFE_PATH):\n csv_targeta = os.path.join(gfe_path, 'a_affirmative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targeta)\n\n\ndef load_a_cond_data(gfe_path=GFE_PATH):\n csv_pathc = os.path.join(gfe_path, 'a_conditional_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathc)\n\n\ndef load_a_cond_target(gfe_path=GFE_PATH):\n csv_targetc = os.path.join(gfe_path, 'a_conditional_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetc)\n\n\n<mask token>\n\n\ndef load_a_emphasis_target(gfe_path=GFE_PATH):\n csv_targete = os.path.join(gfe_path, 'a_emphasis_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targete)\n\n\ndef load_a_neg_data(gfe_path=GFE_PATH):\n csv_pathn = os.path.join(gfe_path, 'a_negative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathn)\n\n\ndef load_a_neg_target(gfe_path=GFE_PATH):\n csv_targetn = os.path.join(gfe_path, 'a_negative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetn)\n\n\ndef load_a_rel_data(gfe_path=GFE_PATH):\n csv_pathr = os.path.join(gfe_path, 'a_relative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathr)\n\n\n<mask token>\n\n\ndef load_a_topics_data(gfe_path=GFE_PATH):\n csv_patht = os.path.join(gfe_path, 'a_topics_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_patht)\n\n\n<mask token>\n\n\ndef load_a_wh_target(gfe_path=GFE_PATH):\n csv_targetw = os.path.join(gfe_path, 'a_wh_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetw)\n\n\n<mask token>\n\n\ndef load_b_affirm_data(gfe_path=GFE_PATH):\n csv_pathab = os.path.join(gfe_path, 'b_affirmative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathab)\n\n\n<mask token>\n\n\ndef load_b_cond_target(gfe_path=GFE_PATH):\n csv_targetcb = os.path.join(gfe_path, 'b_conditional_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetcb)\n\n\ndef load_b_doubtq_data(gfe_path=GFE_PATH):\n csv_pathdb = os.path.join(gfe_path, 'b_doubt_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathdb)\n\n\ndef load_b_doubtq_target(gfe_path=GFE_PATH):\n csv_targetdb = os.path.join(gfe_path, 'b_doubt_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetdb)\n\n\n<mask token>\n\n\ndef load_b_emphasis_target(gfe_path=GFE_PATH):\n csv_targeteb = os.path.join(gfe_path, 'b_emphasis_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targeteb)\n\n\ndef load_b_neg_data(gfe_path=GFE_PATH):\n csv_pathnb = os.path.join(gfe_path, 'b_negative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathnb)\n\n\ndef load_b_neg_target(gfe_path=GFE_PATH):\n csv_targetnb = os.path.join(gfe_path, 'b_negative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetnb)\n\n\n<mask token>\n\n\ndef load_b_wh_target(gfe_path=GFE_PATH):\n csv_targetwb = os.path.join(gfe_path, 'b_wh_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetwb)\n\n\ndef load_b_yn_data(gfe_path=GFE_PATH):\n csv_pathyb = os.path.join(gfe_path, 'b_yn_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathyb)\n\n\ndef load_b_yn_target(gfe_path=GFE_PATH):\n csv_targetyb = os.path.join(gfe_path, 'b_yn_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetyb)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef load_a_affirm_data(gfe_path=GFE_PATH):\n csv_patha = os.path.join(gfe_path, 'a_affirmative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_patha)\n\n\ndef load_a_affirm_target(gfe_path=GFE_PATH):\n csv_targeta = os.path.join(gfe_path, 'a_affirmative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targeta)\n\n\ndef load_a_cond_data(gfe_path=GFE_PATH):\n csv_pathc = os.path.join(gfe_path, 'a_conditional_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathc)\n\n\ndef load_a_cond_target(gfe_path=GFE_PATH):\n csv_targetc = os.path.join(gfe_path, 'a_conditional_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetc)\n\n\n<mask token>\n\n\ndef load_a_emphasis_target(gfe_path=GFE_PATH):\n csv_targete = os.path.join(gfe_path, 'a_emphasis_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targete)\n\n\ndef load_a_neg_data(gfe_path=GFE_PATH):\n csv_pathn = os.path.join(gfe_path, 'a_negative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathn)\n\n\ndef load_a_neg_target(gfe_path=GFE_PATH):\n csv_targetn = os.path.join(gfe_path, 'a_negative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetn)\n\n\ndef load_a_rel_data(gfe_path=GFE_PATH):\n csv_pathr = os.path.join(gfe_path, 'a_relative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathr)\n\n\ndef load_a_rel_target(gfe_path=GFE_PATH):\n csv_targetr = os.path.join(gfe_path, 'a_relative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetr)\n\n\ndef load_a_topics_data(gfe_path=GFE_PATH):\n csv_patht = os.path.join(gfe_path, 'a_topics_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_patht)\n\n\n<mask token>\n\n\ndef load_a_wh_target(gfe_path=GFE_PATH):\n csv_targetw = os.path.join(gfe_path, 'a_wh_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetw)\n\n\ndef load_a_yn_data(gfe_path=GFE_PATH):\n csv_pathy = os.path.join(gfe_path, 'a_yn_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathy)\n\n\ndef load_a_yn_target(gfe_path=GFE_PATH):\n csv_targety = os.path.join(gfe_path, 'a_yn_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targety)\n\n\ndef load_b_affirm_data(gfe_path=GFE_PATH):\n csv_pathab = os.path.join(gfe_path, 'b_affirmative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathab)\n\n\n<mask token>\n\n\ndef load_b_cond_data(gfe_path=GFE_PATH):\n csv_pathcb = os.path.join(gfe_path, 'b_conditional_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathcb)\n\n\ndef load_b_cond_target(gfe_path=GFE_PATH):\n csv_targetcb = os.path.join(gfe_path, 'b_conditional_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetcb)\n\n\ndef load_b_doubtq_data(gfe_path=GFE_PATH):\n csv_pathdb = os.path.join(gfe_path, 'b_doubt_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathdb)\n\n\ndef load_b_doubtq_target(gfe_path=GFE_PATH):\n csv_targetdb = os.path.join(gfe_path, 'b_doubt_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetdb)\n\n\ndef load_b_emphasis_data(gfe_path=GFE_PATH):\n csv_patheb = os.path.join(gfe_path, 'b_emphasis_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_patheb)\n\n\ndef load_b_emphasis_target(gfe_path=GFE_PATH):\n csv_targeteb = os.path.join(gfe_path, 'b_emphasis_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targeteb)\n\n\ndef load_b_neg_data(gfe_path=GFE_PATH):\n csv_pathnb = os.path.join(gfe_path, 'b_negative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathnb)\n\n\ndef load_b_neg_target(gfe_path=GFE_PATH):\n csv_targetnb = os.path.join(gfe_path, 'b_negative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetnb)\n\n\ndef load_b_rel_data(gfe_path=GFE_PATH):\n csv_pathrb = os.path.join(gfe_path, 'b_relative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathrb)\n\n\n<mask token>\n\n\ndef load_b_topics_data(gfe_path=GFE_PATH):\n csv_pathtb = os.path.join(gfe_path, 'b_topics_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathtb)\n\n\n<mask token>\n\n\ndef load_b_wh_target(gfe_path=GFE_PATH):\n csv_targetwb = os.path.join(gfe_path, 'b_wh_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetwb)\n\n\ndef load_b_yn_data(gfe_path=GFE_PATH):\n csv_pathyb = os.path.join(gfe_path, 'b_yn_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathyb)\n\n\ndef load_b_yn_target(gfe_path=GFE_PATH):\n csv_targetyb = os.path.join(gfe_path, 'b_yn_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetyb)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef load_a_affirm_data(gfe_path=GFE_PATH):\n csv_patha = os.path.join(gfe_path, 'a_affirmative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_patha)\n\n\ndef load_a_affirm_target(gfe_path=GFE_PATH):\n csv_targeta = os.path.join(gfe_path, 'a_affirmative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targeta)\n\n\ndef load_a_cond_data(gfe_path=GFE_PATH):\n csv_pathc = os.path.join(gfe_path, 'a_conditional_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathc)\n\n\ndef load_a_cond_target(gfe_path=GFE_PATH):\n csv_targetc = os.path.join(gfe_path, 'a_conditional_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetc)\n\n\ndef load_a_doubtq_data(gfe_path=GFE_PATH):\n csv_pathd = os.path.join(gfe_path, 'a_doubt_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathd)\n\n\n<mask token>\n\n\ndef load_a_emphasis_target(gfe_path=GFE_PATH):\n csv_targete = os.path.join(gfe_path, 'a_emphasis_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targete)\n\n\ndef load_a_neg_data(gfe_path=GFE_PATH):\n csv_pathn = os.path.join(gfe_path, 'a_negative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathn)\n\n\ndef load_a_neg_target(gfe_path=GFE_PATH):\n csv_targetn = os.path.join(gfe_path, 'a_negative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetn)\n\n\ndef load_a_rel_data(gfe_path=GFE_PATH):\n csv_pathr = os.path.join(gfe_path, 'a_relative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathr)\n\n\ndef load_a_rel_target(gfe_path=GFE_PATH):\n csv_targetr = os.path.join(gfe_path, 'a_relative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetr)\n\n\ndef load_a_topics_data(gfe_path=GFE_PATH):\n csv_patht = os.path.join(gfe_path, 'a_topics_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_patht)\n\n\n<mask token>\n\n\ndef load_a_wh_target(gfe_path=GFE_PATH):\n csv_targetw = os.path.join(gfe_path, 'a_wh_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetw)\n\n\ndef load_a_yn_data(gfe_path=GFE_PATH):\n csv_pathy = os.path.join(gfe_path, 'a_yn_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathy)\n\n\ndef load_a_yn_target(gfe_path=GFE_PATH):\n csv_targety = os.path.join(gfe_path, 'a_yn_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targety)\n\n\ndef load_b_affirm_data(gfe_path=GFE_PATH):\n csv_pathab = os.path.join(gfe_path, 'b_affirmative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathab)\n\n\n<mask token>\n\n\ndef load_b_cond_data(gfe_path=GFE_PATH):\n csv_pathcb = os.path.join(gfe_path, 'b_conditional_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathcb)\n\n\ndef load_b_cond_target(gfe_path=GFE_PATH):\n csv_targetcb = os.path.join(gfe_path, 'b_conditional_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetcb)\n\n\ndef load_b_doubtq_data(gfe_path=GFE_PATH):\n csv_pathdb = os.path.join(gfe_path, 'b_doubt_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathdb)\n\n\ndef load_b_doubtq_target(gfe_path=GFE_PATH):\n csv_targetdb = os.path.join(gfe_path, 'b_doubt_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetdb)\n\n\ndef load_b_emphasis_data(gfe_path=GFE_PATH):\n csv_patheb = os.path.join(gfe_path, 'b_emphasis_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_patheb)\n\n\ndef load_b_emphasis_target(gfe_path=GFE_PATH):\n csv_targeteb = os.path.join(gfe_path, 'b_emphasis_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targeteb)\n\n\ndef load_b_neg_data(gfe_path=GFE_PATH):\n csv_pathnb = os.path.join(gfe_path, 'b_negative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathnb)\n\n\ndef load_b_neg_target(gfe_path=GFE_PATH):\n csv_targetnb = os.path.join(gfe_path, 'b_negative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetnb)\n\n\ndef load_b_rel_data(gfe_path=GFE_PATH):\n csv_pathrb = os.path.join(gfe_path, 'b_relative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathrb)\n\n\ndef load_b_rel_target(gfe_path=GFE_PATH):\n csv_targetrb = os.path.join(gfe_path, 'b_relative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetrb)\n\n\ndef load_b_topics_data(gfe_path=GFE_PATH):\n csv_pathtb = os.path.join(gfe_path, 'b_topics_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathtb)\n\n\n<mask token>\n\n\ndef load_b_wh_target(gfe_path=GFE_PATH):\n csv_targetwb = os.path.join(gfe_path, 'b_wh_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetwb)\n\n\ndef load_b_yn_data(gfe_path=GFE_PATH):\n csv_pathyb = os.path.join(gfe_path, 'b_yn_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathyb)\n\n\ndef load_b_yn_target(gfe_path=GFE_PATH):\n csv_targetyb = os.path.join(gfe_path, 'b_yn_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetyb)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef load_a_affirm_data(gfe_path=GFE_PATH):\n csv_patha = os.path.join(gfe_path, 'a_affirmative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_patha)\n\n\ndef load_a_affirm_target(gfe_path=GFE_PATH):\n csv_targeta = os.path.join(gfe_path, 'a_affirmative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targeta)\n\n\ndef load_a_cond_data(gfe_path=GFE_PATH):\n csv_pathc = os.path.join(gfe_path, 'a_conditional_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathc)\n\n\ndef load_a_cond_target(gfe_path=GFE_PATH):\n csv_targetc = os.path.join(gfe_path, 'a_conditional_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetc)\n\n\ndef load_a_doubtq_data(gfe_path=GFE_PATH):\n csv_pathd = os.path.join(gfe_path, 'a_doubt_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathd)\n\n\n<mask token>\n\n\ndef load_a_emphasis_data(gfe_path=GFE_PATH):\n csv_pathe = os.path.join(gfe_path, 'a_emphasis_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathe)\n\n\ndef load_a_emphasis_target(gfe_path=GFE_PATH):\n csv_targete = os.path.join(gfe_path, 'a_emphasis_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targete)\n\n\ndef load_a_neg_data(gfe_path=GFE_PATH):\n csv_pathn = os.path.join(gfe_path, 'a_negative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathn)\n\n\ndef load_a_neg_target(gfe_path=GFE_PATH):\n csv_targetn = os.path.join(gfe_path, 'a_negative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetn)\n\n\ndef load_a_rel_data(gfe_path=GFE_PATH):\n csv_pathr = os.path.join(gfe_path, 'a_relative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathr)\n\n\ndef load_a_rel_target(gfe_path=GFE_PATH):\n csv_targetr = os.path.join(gfe_path, 'a_relative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetr)\n\n\ndef load_a_topics_data(gfe_path=GFE_PATH):\n csv_patht = os.path.join(gfe_path, 'a_topics_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_patht)\n\n\n<mask token>\n\n\ndef load_a_wh_target(gfe_path=GFE_PATH):\n csv_targetw = os.path.join(gfe_path, 'a_wh_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetw)\n\n\ndef load_a_yn_data(gfe_path=GFE_PATH):\n csv_pathy = os.path.join(gfe_path, 'a_yn_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathy)\n\n\ndef load_a_yn_target(gfe_path=GFE_PATH):\n csv_targety = os.path.join(gfe_path, 'a_yn_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targety)\n\n\ndef load_b_affirm_data(gfe_path=GFE_PATH):\n csv_pathab = os.path.join(gfe_path, 'b_affirmative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathab)\n\n\n<mask token>\n\n\ndef load_b_cond_data(gfe_path=GFE_PATH):\n csv_pathcb = os.path.join(gfe_path, 'b_conditional_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathcb)\n\n\ndef load_b_cond_target(gfe_path=GFE_PATH):\n csv_targetcb = os.path.join(gfe_path, 'b_conditional_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetcb)\n\n\ndef load_b_doubtq_data(gfe_path=GFE_PATH):\n csv_pathdb = os.path.join(gfe_path, 'b_doubt_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathdb)\n\n\ndef load_b_doubtq_target(gfe_path=GFE_PATH):\n csv_targetdb = os.path.join(gfe_path, 'b_doubt_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetdb)\n\n\ndef load_b_emphasis_data(gfe_path=GFE_PATH):\n csv_patheb = os.path.join(gfe_path, 'b_emphasis_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_patheb)\n\n\ndef load_b_emphasis_target(gfe_path=GFE_PATH):\n csv_targeteb = os.path.join(gfe_path, 'b_emphasis_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targeteb)\n\n\ndef load_b_neg_data(gfe_path=GFE_PATH):\n csv_pathnb = os.path.join(gfe_path, 'b_negative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathnb)\n\n\ndef load_b_neg_target(gfe_path=GFE_PATH):\n csv_targetnb = os.path.join(gfe_path, 'b_negative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetnb)\n\n\ndef load_b_rel_data(gfe_path=GFE_PATH):\n csv_pathrb = os.path.join(gfe_path, 'b_relative_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathrb)\n\n\ndef load_b_rel_target(gfe_path=GFE_PATH):\n csv_targetrb = os.path.join(gfe_path, 'b_relative_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetrb)\n\n\ndef load_b_topics_data(gfe_path=GFE_PATH):\n csv_pathtb = os.path.join(gfe_path, 'b_topics_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathtb)\n\n\n<mask token>\n\n\ndef load_b_wh_target(gfe_path=GFE_PATH):\n csv_targetwb = os.path.join(gfe_path, 'b_wh_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetwb)\n\n\ndef load_b_yn_data(gfe_path=GFE_PATH):\n csv_pathyb = os.path.join(gfe_path, 'b_yn_question_datapoints.csv')\n print(gfe_path)\n return pd.read_csv(csv_pathyb)\n\n\ndef load_b_yn_target(gfe_path=GFE_PATH):\n csv_targetyb = os.path.join(gfe_path, 'b_yn_question_targets.csv')\n print(gfe_path)\n return pd.read_csv(csv_targetyb)\n\n\n<mask token>\n", "step-5": "\n# coding: utf-8\n\n# In[1]:\n\n\nimport pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n\n# In[2]:\n\n\nimport os\nGFE_PATH = \"C:\\Haely\\MS2017\\sem2\\EE 259\\Project\\grammatical_facial_expression\"\n\ndef load_a_affirm_data(gfe_path=GFE_PATH):\n csv_patha = os.path.join(gfe_path, \"a_affirmative_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_patha)\ndef load_a_affirm_target(gfe_path=GFE_PATH):\n csv_targeta = os.path.join(gfe_path, \"a_affirmative_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targeta)\n\ndef load_a_cond_data(gfe_path=GFE_PATH):\n csv_pathc = os.path.join(gfe_path, \"a_conditional_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathc)\ndef load_a_cond_target(gfe_path=GFE_PATH):\n csv_targetc = os.path.join(gfe_path, \"a_conditional_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetc)\n\ndef load_a_doubtq_data(gfe_path=GFE_PATH):\n csv_pathd = os.path.join(gfe_path, \"a_doubt_question_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathd)\ndef load_a_doubtq_target(gfe_path=GFE_PATH):\n csv_targetd = os.path.join(gfe_path, \"a_doubts_question_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetd)\n\ndef load_a_emphasis_data(gfe_path=GFE_PATH):\n csv_pathe = os.path.join(gfe_path, \"a_emphasis_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathe)\ndef load_a_emphasis_target(gfe_path=GFE_PATH):\n csv_targete = os.path.join(gfe_path, \"a_emphasis_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targete)\n\ndef load_a_neg_data(gfe_path=GFE_PATH):\n csv_pathn = os.path.join(gfe_path, \"a_negative_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathn)\ndef load_a_neg_target(gfe_path=GFE_PATH):\n csv_targetn = os.path.join(gfe_path, \"a_negative_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetn)\n\ndef load_a_rel_data(gfe_path=GFE_PATH):\n csv_pathr = os.path.join(gfe_path, \"a_relative_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathr)\ndef load_a_rel_target(gfe_path=GFE_PATH):\n csv_targetr = os.path.join(gfe_path, \"a_relative_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetr)\n\ndef load_a_topics_data(gfe_path=GFE_PATH):\n csv_patht = os.path.join(gfe_path, \"a_topics_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_patht)\ndef load_a_topics_target(gfe_path=GFE_PATH):\n csv_targett = os.path.join(gfe_path, \"a_topics_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targett)\n\ndef load_a_wh_data(gfe_path=GFE_PATH):\n csv_pathw = os.path.join(gfe_path, \"a_wh_question_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathw)\ndef load_a_wh_target(gfe_path=GFE_PATH):\n csv_targetw = os.path.join(gfe_path, \"a_wh_question_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetw)\n\ndef load_a_yn_data(gfe_path=GFE_PATH):\n csv_pathy = os.path.join(gfe_path, \"a_yn_question_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathy)\ndef load_a_yn_target(gfe_path=GFE_PATH):\n csv_targety = os.path.join(gfe_path, \"a_yn_question_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targety)\n\n\n# In[3]:\n\n\ndef load_b_affirm_data(gfe_path=GFE_PATH):\n csv_pathab = os.path.join(gfe_path, \"b_affirmative_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathab)\ndef load_b_affirm_target(gfe_path=GFE_PATH):\n csv_targetab = os.path.join(gfe_path, \"b_affirmative_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetab)\n\ndef load_b_cond_data(gfe_path=GFE_PATH):\n csv_pathcb = os.path.join(gfe_path, \"b_conditional_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathcb)\ndef load_b_cond_target(gfe_path=GFE_PATH):\n csv_targetcb = os.path.join(gfe_path, \"b_conditional_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetcb)\n\ndef load_b_doubtq_data(gfe_path=GFE_PATH):\n csv_pathdb = os.path.join(gfe_path, \"b_doubt_question_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathdb)\ndef load_b_doubtq_target(gfe_path=GFE_PATH):\n csv_targetdb = os.path.join(gfe_path, \"b_doubt_question_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetdb)\n\ndef load_b_emphasis_data(gfe_path=GFE_PATH):\n csv_patheb = os.path.join(gfe_path, \"b_emphasis_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_patheb)\ndef load_b_emphasis_target(gfe_path=GFE_PATH):\n csv_targeteb = os.path.join(gfe_path, \"b_emphasis_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targeteb)\n\ndef load_b_neg_data(gfe_path=GFE_PATH):\n csv_pathnb = os.path.join(gfe_path, \"b_negative_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathnb)\ndef load_b_neg_target(gfe_path=GFE_PATH):\n csv_targetnb = os.path.join(gfe_path, \"b_negative_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetnb)\n\ndef load_b_rel_data(gfe_path=GFE_PATH):\n csv_pathrb = os.path.join(gfe_path, \"b_relative_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathrb)\ndef load_b_rel_target(gfe_path=GFE_PATH):\n csv_targetrb = os.path.join(gfe_path, \"b_relative_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetrb)\n\ndef load_b_topics_data(gfe_path=GFE_PATH):\n csv_pathtb = os.path.join(gfe_path, \"b_topics_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathtb)\ndef load_b_topics_target(gfe_path=GFE_PATH):\n csv_targettb = os.path.join(gfe_path, \"b_topics_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targettb)\n\ndef load_b_wh_data(gfe_path=GFE_PATH):\n csv_pathwb = os.path.join(gfe_path, \"b_wh_question_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathwb)\ndef load_b_wh_target(gfe_path=GFE_PATH):\n csv_targetwb = os.path.join(gfe_path, \"b_wh_question_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetwb)\n\ndef load_b_yn_data(gfe_path=GFE_PATH):\n csv_pathyb = os.path.join(gfe_path, \"b_yn_question_datapoints.csv\")\n print(gfe_path)\n return pd.read_csv(csv_pathyb)\ndef load_b_yn_target(gfe_path=GFE_PATH):\n csv_targetyb = os.path.join(gfe_path, \"b_yn_question_targets.csv\")\n print(gfe_path)\n return pd.read_csv(csv_targetyb)\n\n\n# In[4]:\n\n\naffirmda = load_a_affirm_data()\naffirmta = load_a_affirm_target()\n\ncondda = load_a_cond_data()\ncondta = load_a_cond_target()\n\ndoubtqda = load_a_doubtq_data()\ndoubtqta = load_a_doubtq_target()\n\nemphda = load_a_emphasis_data()\nemphta = load_a_emphasis_target()\n\nnegda = load_a_neg_data()\nnegta = load_a_neg_target()\n\nrelda = load_a_rel_data()\nrelta = load_a_rel_target()\n\ntopicsda = load_a_topics_data()\ntopicsta = load_a_topics_target()\n\nwhda = load_a_wh_data()\nwhta = load_a_wh_target()\n\nynda = load_a_yn_data()\nynta = load_a_yn_target()\n\n\n# In[5]:\n\n\naffirmdb = load_b_affirm_data()\naffirmtb = load_b_affirm_target()\n\nconddb = load_b_cond_data()\ncondtb = load_b_cond_target()\n\ndoubtqdb = load_b_doubtq_data()\ndoubtqtb = load_b_doubtq_target()\n\nemphdb = load_b_emphasis_data()\nemphtb = load_b_emphasis_target()\n\nnegdb = load_b_neg_data()\nnegtb = load_b_neg_target()\n\nreldb = load_b_rel_data()\nreltb = load_b_rel_target()\n\ntopicsdb = load_b_topics_data()\ntopicstb = load_b_topics_target()\n\nwhdb = load_b_wh_data()\nwhtb = load_b_wh_target()\n\nyndb = load_b_yn_data()\nyntb = load_b_yn_target()\n\n\n# In[8]:\n\n\nusers_combine_affirmd = pd.concat([affirmda, affirmdb],ignore_index=True)\naffirm_y = pd.concat([affirmta,affirmtb],ignore_index=True)\n\nusers_combine_condd = pd.concat([condda, conddb],ignore_index=True)\ncond_y = pd.concat([condta, condtb],ignore_index=True)\n\nusers_combine_doubtqd = pd.concat([doubtqda, doubtqdb],ignore_index=True)\ndoubtq_y = pd.concat([doubtqta, doubtqtb],ignore_index=True)\n\nusers_combine_emphd = pd.concat([emphda, emphdb],ignore_index=True)\nemph_y = pd.concat([emphta, emphtb],ignore_index=True)\n\nusers_combine_negd = pd.concat([negda, negdb],ignore_index=True)\nneg_y = pd.concat([negta, negtb],ignore_index=True)\n\nusers_combine_reld = pd.concat([relda, reldb],ignore_index=True)\nrel_y = pd.concat([relta, reltb],ignore_index=True)\n\nusers_combine_topicsd = pd.concat([topicsda, topicsdb],ignore_index=True)\ntopics_y = pd.concat([topicsta, topicstb],ignore_index=True)\n\nusers_combine_whd = pd.concat([whda, whdb],ignore_index=True)\nwh_y = pd.concat([whta, whtb],ignore_index=True)\n\nusers_combine_ynd = pd.concat([ynda, yndb],ignore_index=True)\nyn_y = pd.concat([ynta, yntb],ignore_index=True)\n\n\n# In[11]:\n\n\nusers_combine_affirmd['affirm_y']=affirm_y\naffirm_y.drop([10]) \n\n\n\n# In[12]:\n\n\nusers_combine_condd['cond_y']=cond_y\ncond_y.drop([10]) \n\n\n# In[13]:\n\n\nusers_combine_doubtqd['doubtq_y']=doubtq_y\ndoubtq_y.drop([10]) \n\n\n# In[14]:\n\n\nusers_combine_emphd['emph_y']=emph_y\nemph_y.drop([10]) \n\n\n# In[15]:\n\n\nusers_combine_negd['neg_y']=neg_y\nneg_y.drop([10]) \n\n\n# In[16]:\n\n\nusers_combine_reld['rel_y']=rel_y\nrel_y.drop([10]) \n\n\n# In[17]:\n\n\nusers_combine_topicsd['topics_y']=topics_y\ntopics_y.drop([10]) \n\n\n# In[18]:\n\n\nusers_combine_whd['wh_y']=wh_y\nwh_y.drop([10]) \n\n\n# In[19]:\n\n\nusers_combine_ynd['yn_y']=yn_y\nyn_y.drop([10]) \n\n\n# In[22]:\n\n\nfrom sklearn.model_selection import train_test_split\nya=users_combine_affirmd['affirm_y']\nXa_train,Xa_test,ya_train,ya_test = train_test_split(users_combine_affirmd.iloc[:,1:],ya,stratify=ya)\n\nyc=users_combine_condd['cond_y']\nXc_train,Xc_test,yc_train,yc_test = train_test_split(users_combine_condd.iloc[:,1:],yc,stratify=yc)\n\nyd=users_combine_doubtqd['doubtq_y']\nXd_train,Xd_test,yd_train,yd_test = train_test_split(users_combine_doubtqd.iloc[:,1:],yd,stratify=yd)\n\nye=users_combine_emphd['emph_y']\nXe_train,Xe_test,ye_train,ye_test = train_test_split(users_combine_emphd.iloc[:,1:],ye,stratify=ye)\n\nyn=users_combine_negd['neg_y']\nXn_train,Xn_test,yn_train,yn_test = train_test_split(users_combine_negd.iloc[:,1:],yn,stratify=yn)\n\nyr=users_combine_reld['rel_y']\nXr_train,Xr_test,yr_train,yr_test = train_test_split(users_combine_reld.iloc[:,1:],yr,stratify=yr)\n\nyt=users_combine_topicsd['topics_y']\nXt_train,Xt_test,yt_train,yt_test = train_test_split(users_combine_topicsd.iloc[:,1:],yt,stratify=yt)\n\nyw=users_combine_whd['wh_y']\nXw_train,Xw_test,yw_train,yw_test = train_test_split(users_combine_whd.iloc[:,1:],yw,stratify=yw)\n\nyy=users_combine_ynd['yn_y']\nXy_train,Xy_test,yy_train,yy_test = train_test_split(users_combine_ynd.iloc[:,1:],yy,stratify=yy)\n\n\n\n# In[25]:\n\n\nfrom sklearn.preprocessing import scale\nfrom scipy import stats\nfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\nlda_clf = LDA(solver='lsqr',store_covariance=True)\n\nlda_clf.fit(Xa_train,ya_train)\nya_predicted = lda_clf.predict(Xa_test)\nprint('\\n The error rate of the LDA model for affirm is {0:.2f}% '.format(100*np.mean(ya_predicted!=ya_test)))\n\nlda_clf.fit(Xc_train,yc_train)\nyc_predicted = lda_clf.predict(Xc_test)\nprint('\\n The error rate of the LDA model for conditional is {0:.2f}% '.format(100*np.mean(yc_predicted!=yc_test)))\n\nlda_clf.fit(Xd_train,yd_train)\nyd_predicted = lda_clf.predict(Xd_test)\nprint('\\n The error rate of the LDA model for doubt questions is {0:.2f}% '.format(100*np.mean(yd_predicted!=yd_test)))\n\nlda_clf.fit(Xe_train,ye_train)\nye_predicted = lda_clf.predict(Xe_test)\nprint('\\n The error rate of the LDA model for emphasis is {0:.2f}% '.format(100*np.mean(ye_predicted!=ye_test)))\n\nlda_clf.fit(Xn_train,yn_train)\nyn_predicted = lda_clf.predict(Xn_test)\nprint('\\n The error rate of the LDA model for negative is {0:.2f}% '.format(100*np.mean(yn_predicted!=yn_test)))\n\nlda_clf.fit(Xr_train,yr_train)\nyr_predicted = lda_clf.predict(Xr_test)\nprint('\\n The error rate of the LDA model for relativr is {0:.2f}% '.format(100*np.mean(yr_predicted!=yr_test)))\n\nlda_clf.fit(Xt_train,yt_train)\nyt_predicted = lda_clf.predict(Xt_test)\nprint('\\n The error rate of the LDA model for topics is {0:.2f}% '.format(100*np.mean(yt_predicted!=yt_test)))\n\nlda_clf.fit(Xw_train,yw_train)\nyw_predicted = lda_clf.predict(Xw_test)\nprint('\\n The error rate of the LDA model for wh questions is {0:.2f}% '.format(100*np.mean(yw_predicted!=yw_test)))\n\nlda_clf.fit(Xy_train,yy_train)\nyy_predicted = lda_clf.predict(Xy_test)\nprint('\\n The error rate of the LDA model for yes or no is {0:.2f}% '.format(100*np.mean(yy_predicted!=yy_test)))\n\n", "step-ids": [ 19, 27, 29, 30, 40 ] }
[ 19, 27, 29, 30, 40 ]
import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np from dataset.mnist import load_mnist from controller import Controller # データの読み込み (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True) # instance controller = Controller() # accuracy trycount = 1000 accuracy_cnt = 0 result = np.zeros((10, 10)) for i in range(len(x_test)): p = controller.accuracy(x_test[i]) a = np.argmax(t_test[i]) #print("p = " + str(p)) #print("a = " + str(a)) result[p][a] += 1 #print(t_test[i]) if p == a: accuracy_cnt += 1 if (i == trycount): break print("Accuracy:" + str(float(accuracy_cnt) / trycount)) print(result)
normal
{ "blob_id": "c2d8e34ab0b449a971c920fc86f259f093f16cc5", "index": 7156, "step-1": "<mask token>\n", "step-2": "<mask token>\nsys.path.append(os.pardir)\n<mask token>\nfor i in range(len(x_test)):\n p = controller.accuracy(x_test[i])\n a = np.argmax(t_test[i])\n result[p][a] += 1\n if p == a:\n accuracy_cnt += 1\n if i == trycount:\n break\nprint('Accuracy:' + str(float(accuracy_cnt) / trycount))\nprint(result)\n", "step-3": "<mask token>\nsys.path.append(os.pardir)\n<mask token>\n(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True,\n one_hot_label=True)\ncontroller = Controller()\ntrycount = 1000\naccuracy_cnt = 0\nresult = np.zeros((10, 10))\nfor i in range(len(x_test)):\n p = controller.accuracy(x_test[i])\n a = np.argmax(t_test[i])\n result[p][a] += 1\n if p == a:\n accuracy_cnt += 1\n if i == trycount:\n break\nprint('Accuracy:' + str(float(accuracy_cnt) / trycount))\nprint(result)\n", "step-4": "import sys, os\nsys.path.append(os.pardir)\nimport numpy as np\nfrom dataset.mnist import load_mnist\nfrom controller import Controller\n(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True,\n one_hot_label=True)\ncontroller = Controller()\ntrycount = 1000\naccuracy_cnt = 0\nresult = np.zeros((10, 10))\nfor i in range(len(x_test)):\n p = controller.accuracy(x_test[i])\n a = np.argmax(t_test[i])\n result[p][a] += 1\n if p == a:\n accuracy_cnt += 1\n if i == trycount:\n break\nprint('Accuracy:' + str(float(accuracy_cnt) / trycount))\nprint(result)\n", "step-5": "import sys, os\nsys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定\nimport numpy as np\nfrom dataset.mnist import load_mnist\nfrom controller import Controller\n\n# データの読み込み\n(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True)\n\n# instance\ncontroller = Controller()\n\n# accuracy\ntrycount = 1000\naccuracy_cnt = 0\nresult = np.zeros((10, 10))\n\nfor i in range(len(x_test)):\n p = controller.accuracy(x_test[i])\n a = np.argmax(t_test[i])\n\n #print(\"p = \" + str(p))\n #print(\"a = \" + str(a))\n result[p][a] += 1\n #print(t_test[i])\n if p == a:\n accuracy_cnt += 1\n\n if (i == trycount):\n break\nprint(\"Accuracy:\" + str(float(accuracy_cnt) / trycount))\nprint(result)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import pymysql class DB: def __init__(self, host='localhost', port=3306, db_='test', user='wj', passwd='', charset='utf8'): self.db = db_ self.conn = pymysql.connect(host=host, port=port, db=db_, user=user, passwd=passwd, charset=charset) self.cur = self.conn.cursor(cursor=pymysql.cursors.DictCursor) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.conn.commit() self.cur.close() self.conn.close() def write(self, data): sql = "INSERT INTO {}({}) VALUES ('%s')".format('data', 'a') % data self.cur.execute(sql) self.conn.commit() def read(self): sql = "SELECT * FROM {}".format('data') self.cur.execute(sql) results = self.cur.fetchall() return results[0]['a'] if __name__ == '__main__': test = [1, 2, 3, 4, 5, 6, 7] with DB() as db: db.write(str(test)) a = eval(db.read()) print(a[2:])
normal
{ "blob_id": "80ad4459436e2e1cc44509e7dae18d1539bf2bc0", "index": 8139, "step-1": "<mask token>\n\n\nclass DB:\n <mask token>\n\n def __enter__(self):\n return self\n <mask token>\n\n def write(self, data):\n sql = \"INSERT INTO {}({}) VALUES ('%s')\".format('data', 'a') % data\n self.cur.execute(sql)\n self.conn.commit()\n\n def read(self):\n sql = 'SELECT * FROM {}'.format('data')\n self.cur.execute(sql)\n results = self.cur.fetchall()\n return results[0]['a']\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass DB:\n\n def __init__(self, host='localhost', port=3306, db_='test', user='wj',\n passwd='', charset='utf8'):\n self.db = db_\n self.conn = pymysql.connect(host=host, port=port, db=db_, user=user,\n passwd=passwd, charset=charset)\n self.cur = self.conn.cursor(cursor=pymysql.cursors.DictCursor)\n\n def __enter__(self):\n return self\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n self.conn.commit()\n self.cur.close()\n self.conn.close()\n\n def write(self, data):\n sql = \"INSERT INTO {}({}) VALUES ('%s')\".format('data', 'a') % data\n self.cur.execute(sql)\n self.conn.commit()\n\n def read(self):\n sql = 'SELECT * FROM {}'.format('data')\n self.cur.execute(sql)\n results = self.cur.fetchall()\n return results[0]['a']\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass DB:\n\n def __init__(self, host='localhost', port=3306, db_='test', user='wj',\n passwd='', charset='utf8'):\n self.db = db_\n self.conn = pymysql.connect(host=host, port=port, db=db_, user=user,\n passwd=passwd, charset=charset)\n self.cur = self.conn.cursor(cursor=pymysql.cursors.DictCursor)\n\n def __enter__(self):\n return self\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n self.conn.commit()\n self.cur.close()\n self.conn.close()\n\n def write(self, data):\n sql = \"INSERT INTO {}({}) VALUES ('%s')\".format('data', 'a') % data\n self.cur.execute(sql)\n self.conn.commit()\n\n def read(self):\n sql = 'SELECT * FROM {}'.format('data')\n self.cur.execute(sql)\n results = self.cur.fetchall()\n return results[0]['a']\n\n\nif __name__ == '__main__':\n test = [1, 2, 3, 4, 5, 6, 7]\n with DB() as db:\n db.write(str(test))\n a = eval(db.read())\n print(a[2:])\n", "step-4": "import pymysql\n\n\nclass DB:\n\n def __init__(self, host='localhost', port=3306, db_='test', user='wj',\n passwd='', charset='utf8'):\n self.db = db_\n self.conn = pymysql.connect(host=host, port=port, db=db_, user=user,\n passwd=passwd, charset=charset)\n self.cur = self.conn.cursor(cursor=pymysql.cursors.DictCursor)\n\n def __enter__(self):\n return self\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n self.conn.commit()\n self.cur.close()\n self.conn.close()\n\n def write(self, data):\n sql = \"INSERT INTO {}({}) VALUES ('%s')\".format('data', 'a') % data\n self.cur.execute(sql)\n self.conn.commit()\n\n def read(self):\n sql = 'SELECT * FROM {}'.format('data')\n self.cur.execute(sql)\n results = self.cur.fetchall()\n return results[0]['a']\n\n\nif __name__ == '__main__':\n test = [1, 2, 3, 4, 5, 6, 7]\n with DB() as db:\n db.write(str(test))\n a = eval(db.read())\n print(a[2:])\n", "step-5": "import pymysql\r\n\r\n\r\nclass DB:\r\n def __init__(self, host='localhost', port=3306, db_='test', user='wj',\r\n passwd='', charset='utf8'):\r\n self.db = db_\r\n self.conn = pymysql.connect(host=host, port=port, db=db_, user=user, passwd=passwd, charset=charset)\r\n self.cur = self.conn.cursor(cursor=pymysql.cursors.DictCursor)\r\n\r\n def __enter__(self):\r\n return self\r\n\r\n def __exit__(self, exc_type, exc_val, exc_tb):\r\n self.conn.commit()\r\n self.cur.close()\r\n self.conn.close()\r\n\r\n def write(self, data):\r\n sql = \"INSERT INTO {}({}) VALUES ('%s')\".format('data', 'a') % data\r\n self.cur.execute(sql)\r\n self.conn.commit()\r\n\r\n def read(self):\r\n sql = \"SELECT * FROM {}\".format('data')\r\n self.cur.execute(sql)\r\n results = self.cur.fetchall()\r\n return results[0]['a']\r\n\r\n\r\nif __name__ == '__main__':\r\n test = [1, 2, 3, 4, 5, 6, 7]\r\n with DB() as db:\r\n db.write(str(test))\r\n a = eval(db.read())\r\n print(a[2:])\r\n", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]
import sklearn.metrics as metrics import sklearn.cross_validation as cv from sklearn.externals import joblib import MachineLearning.Reinforcement.InternalSQLManager as sqlManager class ReinforcementLearner: def __init__(self, clf=None, load=False, clfName=None): """ Initialise the Classifier, either from the provided model or from the stored classifier :param clf: The current classifier, not yet fitted to the data :param load: Set to True in order to load a previously saved model """ if load: self.clf = joblib.load("model.pkl") self.reTrain = True else: self.clf = clf self.reTrain = False if clfName == None: self.name = self.clf.__class__.__name__ else: self.name = clfName def fit(self, X, y, scoring="accuracy", crossval=5): """ Fit the Reinforcement classifier with data, either adding to previous previous data or learning for first time. :param X: Input Features :param y: Class Labels :param scoring: Scoring used for cross validation :param crossval: Cross Validation number of folds :return: True if a new model is fit to the data, or a previous model is updated False if old model when fit to new data performs poorly in comparison to earlier data """ if not self.reTrain: # Train first time score = cv.cross_val_score(self.clf, X, y, scoring, cv=crossval) sqlManager.insertValue(self.name, 0.0, score.mean(), 0, len(y), 1) # Store the first result of clf self.clf.fit(X, y) joblib.dump(self.clf, "model.pkl") # Store the CLF print("Data Fit") return True else: previousData = sqlManager.selectNewestRecord(self.name) # Check the last entry of CLF if len(previousData) > 0: oldSize = previousData[5] newSize = len(y) accScore = previousData[3] score = cv.cross_val_score(self.clf, X, y, scoring, cv=crossval) newAccScore = score.mean() print("Old Accuracy Score : ", accScore) print("New Accuracy Score : ", newAccScore) if accScore <= newAccScore: # If new data is benefitial, increases accuracy print("Reinforcement Learning : Newer model is superior. Saving Model.") self.clf.fit(X, y) sqlManager.insertValue(self.name, accScore, newAccScore, oldSize, newSize, 1) joblib.dump(self.clf, "model.pkl") return True else: print("Reinforcement Learning : Newer model is inferior. Not saving model.") return False def predict(self, X): return self.clf.predict(X) def __exit__(self, exc_type, exc_val, exc_tb): sqlManager.close() if __name__ == "__main__": pass
normal
{ "blob_id": "c9be3d25824093528e2bee51c045d05e036daa67", "index": 9715, "step-1": "<mask token>\n\n\nclass ReinforcementLearner:\n\n def __init__(self, clf=None, load=False, clfName=None):\n \"\"\"\n Initialise the Classifier, either from the provided model or from the stored classifier\n\n :param clf: The current classifier, not yet fitted to the data\n :param load: Set to True in order to load a previously saved model\n \"\"\"\n if load:\n self.clf = joblib.load('model.pkl')\n self.reTrain = True\n else:\n self.clf = clf\n self.reTrain = False\n if clfName == None:\n self.name = self.clf.__class__.__name__\n else:\n self.name = clfName\n <mask token>\n <mask token>\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n sqlManager.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ReinforcementLearner:\n\n def __init__(self, clf=None, load=False, clfName=None):\n \"\"\"\n Initialise the Classifier, either from the provided model or from the stored classifier\n\n :param clf: The current classifier, not yet fitted to the data\n :param load: Set to True in order to load a previously saved model\n \"\"\"\n if load:\n self.clf = joblib.load('model.pkl')\n self.reTrain = True\n else:\n self.clf = clf\n self.reTrain = False\n if clfName == None:\n self.name = self.clf.__class__.__name__\n else:\n self.name = clfName\n <mask token>\n\n def predict(self, X):\n return self.clf.predict(X)\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n sqlManager.close()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ReinforcementLearner:\n\n def __init__(self, clf=None, load=False, clfName=None):\n \"\"\"\n Initialise the Classifier, either from the provided model or from the stored classifier\n\n :param clf: The current classifier, not yet fitted to the data\n :param load: Set to True in order to load a previously saved model\n \"\"\"\n if load:\n self.clf = joblib.load('model.pkl')\n self.reTrain = True\n else:\n self.clf = clf\n self.reTrain = False\n if clfName == None:\n self.name = self.clf.__class__.__name__\n else:\n self.name = clfName\n\n def fit(self, X, y, scoring='accuracy', crossval=5):\n \"\"\"\n Fit the Reinforcement classifier with data, either adding to previous previous data or learning for first time.\n\n :param X: Input Features\n :param y: Class Labels\n :param scoring: Scoring used for cross validation\n :param crossval: Cross Validation number of folds\n :return: True if a new model is fit to the data, or a previous model is updated\n False if old model when fit to new data performs poorly in comparison to\n earlier data\n \"\"\"\n if not self.reTrain:\n score = cv.cross_val_score(self.clf, X, y, scoring, cv=crossval)\n sqlManager.insertValue(self.name, 0.0, score.mean(), 0, len(y), 1)\n self.clf.fit(X, y)\n joblib.dump(self.clf, 'model.pkl')\n print('Data Fit')\n return True\n else:\n previousData = sqlManager.selectNewestRecord(self.name)\n if len(previousData) > 0:\n oldSize = previousData[5]\n newSize = len(y)\n accScore = previousData[3]\n score = cv.cross_val_score(self.clf, X, y, scoring, cv=crossval\n )\n newAccScore = score.mean()\n print('Old Accuracy Score : ', accScore)\n print('New Accuracy Score : ', newAccScore)\n if accScore <= newAccScore:\n print(\n 'Reinforcement Learning : Newer model is superior. Saving Model.'\n )\n self.clf.fit(X, y)\n sqlManager.insertValue(self.name, accScore, newAccScore,\n oldSize, newSize, 1)\n joblib.dump(self.clf, 'model.pkl')\n return True\n else:\n print(\n 'Reinforcement Learning : Newer model is inferior. Not saving model.'\n )\n return False\n\n def predict(self, X):\n return self.clf.predict(X)\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n sqlManager.close()\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass ReinforcementLearner:\n\n def __init__(self, clf=None, load=False, clfName=None):\n \"\"\"\n Initialise the Classifier, either from the provided model or from the stored classifier\n\n :param clf: The current classifier, not yet fitted to the data\n :param load: Set to True in order to load a previously saved model\n \"\"\"\n if load:\n self.clf = joblib.load('model.pkl')\n self.reTrain = True\n else:\n self.clf = clf\n self.reTrain = False\n if clfName == None:\n self.name = self.clf.__class__.__name__\n else:\n self.name = clfName\n\n def fit(self, X, y, scoring='accuracy', crossval=5):\n \"\"\"\n Fit the Reinforcement classifier with data, either adding to previous previous data or learning for first time.\n\n :param X: Input Features\n :param y: Class Labels\n :param scoring: Scoring used for cross validation\n :param crossval: Cross Validation number of folds\n :return: True if a new model is fit to the data, or a previous model is updated\n False if old model when fit to new data performs poorly in comparison to\n earlier data\n \"\"\"\n if not self.reTrain:\n score = cv.cross_val_score(self.clf, X, y, scoring, cv=crossval)\n sqlManager.insertValue(self.name, 0.0, score.mean(), 0, len(y), 1)\n self.clf.fit(X, y)\n joblib.dump(self.clf, 'model.pkl')\n print('Data Fit')\n return True\n else:\n previousData = sqlManager.selectNewestRecord(self.name)\n if len(previousData) > 0:\n oldSize = previousData[5]\n newSize = len(y)\n accScore = previousData[3]\n score = cv.cross_val_score(self.clf, X, y, scoring, cv=crossval\n )\n newAccScore = score.mean()\n print('Old Accuracy Score : ', accScore)\n print('New Accuracy Score : ', newAccScore)\n if accScore <= newAccScore:\n print(\n 'Reinforcement Learning : Newer model is superior. Saving Model.'\n )\n self.clf.fit(X, y)\n sqlManager.insertValue(self.name, accScore, newAccScore,\n oldSize, newSize, 1)\n joblib.dump(self.clf, 'model.pkl')\n return True\n else:\n print(\n 'Reinforcement Learning : Newer model is inferior. Not saving model.'\n )\n return False\n\n def predict(self, X):\n return self.clf.predict(X)\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n sqlManager.close()\n\n\nif __name__ == '__main__':\n pass\n", "step-5": "import sklearn.metrics as metrics\nimport sklearn.cross_validation as cv\nfrom sklearn.externals import joblib\nimport MachineLearning.Reinforcement.InternalSQLManager as sqlManager\n\nclass ReinforcementLearner:\n\n def __init__(self, clf=None, load=False, clfName=None):\n \"\"\"\n Initialise the Classifier, either from the provided model or from the stored classifier\n\n :param clf: The current classifier, not yet fitted to the data\n :param load: Set to True in order to load a previously saved model\n \"\"\"\n\n if load:\n self.clf = joblib.load(\"model.pkl\")\n self.reTrain = True\n else:\n self.clf = clf\n self.reTrain = False\n\n if clfName == None:\n self.name = self.clf.__class__.__name__\n else:\n self.name = clfName\n\n def fit(self, X, y, scoring=\"accuracy\", crossval=5):\n \"\"\"\n Fit the Reinforcement classifier with data, either adding to previous previous data or learning for first time.\n\n :param X: Input Features\n :param y: Class Labels\n :param scoring: Scoring used for cross validation\n :param crossval: Cross Validation number of folds\n :return: True if a new model is fit to the data, or a previous model is updated\n False if old model when fit to new data performs poorly in comparison to\n earlier data\n \"\"\"\n if not self.reTrain: # Train first time\n score = cv.cross_val_score(self.clf, X, y, scoring, cv=crossval)\n\n sqlManager.insertValue(self.name, 0.0, score.mean(), 0, len(y), 1) # Store the first result of clf\n self.clf.fit(X, y)\n\n joblib.dump(self.clf, \"model.pkl\") # Store the CLF\n print(\"Data Fit\")\n return True\n else:\n previousData = sqlManager.selectNewestRecord(self.name) # Check the last entry of CLF\n if len(previousData) > 0:\n oldSize = previousData[5]\n newSize = len(y)\n\n accScore = previousData[3]\n\n score = cv.cross_val_score(self.clf, X, y, scoring, cv=crossval)\n newAccScore = score.mean()\n print(\"Old Accuracy Score : \", accScore)\n print(\"New Accuracy Score : \", newAccScore)\n\n if accScore <= newAccScore: # If new data is benefitial, increases accuracy\n print(\"Reinforcement Learning : Newer model is superior. Saving Model.\")\n self.clf.fit(X, y)\n\n sqlManager.insertValue(self.name, accScore, newAccScore, oldSize, newSize, 1)\n joblib.dump(self.clf, \"model.pkl\")\n return True\n else:\n print(\"Reinforcement Learning : Newer model is inferior. Not saving model.\")\n return False\n\n def predict(self, X):\n return self.clf.predict(X)\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n sqlManager.close()\n\nif __name__ == \"__main__\":\n pass\n\n", "step-ids": [ 3, 4, 5, 6, 8 ] }
[ 3, 4, 5, 6, 8 ]
#!/usr/bin/env python """ ############################################################################## Software Package Risk Analysis Development Environment Specific Work Book View ############################################################################## """ # -*- coding: utf-8 -*- # # rtk.software.__gui.gtk.DevelopmentEnvironment.py is part of The RTK # Project # # All rights reserved. import sys # Import modules for localization support. import gettext import locale # Modules required for the GUI. try: import pygtk pygtk.require('2.0') except ImportError: sys.exit(1) try: import gtk except ImportError: sys.exit(1) try: import gtk.glade except ImportError: sys.exit(1) # Import other RTK modules. try: import Configuration import gui.gtk.Widgets as Widgets except ImportError: import rtk.Configuration as Configuration import rtk.gui.gtk.Widgets as Widgets __author__ = 'Andrew Rowland' __email__ = '[email protected]' __organization__ = 'ReliaQual Associates, LLC' __copyright__ = 'Copyright 2007 - 2015 Andrew "weibullguy" Rowland' try: locale.setlocale(locale.LC_ALL, Configuration.LOCALE) except locale.Error: locale.setlocale(locale.LC_ALL, '') _ = gettext.gettext class RiskAnalysis(gtk.VPaned): """ The Work Book view for analyzing and displaying the risk associated with the development environment. The attributes of a development environment Work Book view are: :ivar list _lst_handler_id: the list of gtk.Widget() signal handler IDs. :ivar _software_model: the :py:class:`rtk.software.Software.Model` to display. """ def __init__(self): """ Method to initialize the development environment risk analysis questions Work Book page. """ gtk.VPaned.__init__(self) # Define private dictionary attributes. # Define private list attributes. self._lst_handler_id = [] # Define private scalar attributes. self._software_model = None # Define public dictionary attributes. # Define public list attributes. # Define public scalar attributes. self.chkDevEnvQ1 = Widgets.make_check_button() self.chkDevEnvQ2 = Widgets.make_check_button() self.chkDevEnvQ3 = Widgets.make_check_button() self.chkDevEnvQ4 = Widgets.make_check_button() self.chkDevEnvQ5 = Widgets.make_check_button() self.chkDevEnvQ6 = Widgets.make_check_button() self.chkDevEnvQ7 = Widgets.make_check_button() self.chkDevEnvQ8 = Widgets.make_check_button() self.chkDevEnvQ9 = Widgets.make_check_button() self.chkDevEnvQ10 = Widgets.make_check_button() self.chkDevEnvQ11 = Widgets.make_check_button() self.chkDevEnvQ12 = Widgets.make_check_button() self.chkDevEnvQ13 = Widgets.make_check_button() self.chkDevEnvQ14 = Widgets.make_check_button() self.chkDevEnvQ15 = Widgets.make_check_button() self.chkDevEnvQ16 = Widgets.make_check_button() self.chkDevEnvQ17 = Widgets.make_check_button() self.chkDevEnvQ18 = Widgets.make_check_button() self.chkDevEnvQ19 = Widgets.make_check_button() self.chkDevEnvQ20 = Widgets.make_check_button() self.chkDevEnvQ21 = Widgets.make_check_button() self.chkDevEnvQ22 = Widgets.make_check_button() self.chkDevEnvQ23 = Widgets.make_check_button() self.chkDevEnvQ24 = Widgets.make_check_button() self.chkDevEnvQ25 = Widgets.make_check_button() self.chkDevEnvQ26 = Widgets.make_check_button() self.chkDevEnvQ27 = Widgets.make_check_button() self.chkDevEnvQ28 = Widgets.make_check_button() self.chkDevEnvQ29 = Widgets.make_check_button() self.chkDevEnvQ30 = Widgets.make_check_button() self.chkDevEnvQ31 = Widgets.make_check_button() self.chkDevEnvQ32 = Widgets.make_check_button() self.chkDevEnvQ33 = Widgets.make_check_button() self.chkDevEnvQ34 = Widgets.make_check_button() self.chkDevEnvQ35 = Widgets.make_check_button() self.chkDevEnvQ36 = Widgets.make_check_button() self.chkDevEnvQ37 = Widgets.make_check_button() self.chkDevEnvQ38 = Widgets.make_check_button() self.chkDevEnvQ39 = Widgets.make_check_button() self.chkDevEnvQ40 = Widgets.make_check_button() self.chkDevEnvQ41 = Widgets.make_check_button() self.chkDevEnvQ42 = Widgets.make_check_button() self.chkDevEnvQ43 = Widgets.make_check_button() # Connect gtk.Widget() signals to callback methods. self._lst_handler_id.append( self.chkDevEnvQ1.connect('toggled', self._on_toggled, 0)) self._lst_handler_id.append( self.chkDevEnvQ2.connect('toggled', self._on_toggled, 1)) self._lst_handler_id.append( self.chkDevEnvQ3.connect('toggled', self._on_toggled, 2)) self._lst_handler_id.append( self.chkDevEnvQ4.connect('toggled', self._on_toggled, 3)) self._lst_handler_id.append( self.chkDevEnvQ5.connect('toggled', self._on_toggled, 4)) self._lst_handler_id.append( self.chkDevEnvQ6.connect('toggled', self._on_toggled, 5)) self._lst_handler_id.append( self.chkDevEnvQ7.connect('toggled', self._on_toggled, 6)) self._lst_handler_id.append( self.chkDevEnvQ8.connect('toggled', self._on_toggled, 7)) self._lst_handler_id.append( self.chkDevEnvQ9.connect('toggled', self._on_toggled, 8)) self._lst_handler_id.append( self.chkDevEnvQ10.connect('toggled', self._on_toggled, 9)) self._lst_handler_id.append( self.chkDevEnvQ11.connect('toggled', self._on_toggled, 10)) self._lst_handler_id.append( self.chkDevEnvQ12.connect('toggled', self._on_toggled, 11)) self._lst_handler_id.append( self.chkDevEnvQ13.connect('toggled', self._on_toggled, 12)) self._lst_handler_id.append( self.chkDevEnvQ14.connect('toggled', self._on_toggled, 13)) self._lst_handler_id.append( self.chkDevEnvQ15.connect('toggled', self._on_toggled, 14)) self._lst_handler_id.append( self.chkDevEnvQ16.connect('toggled', self._on_toggled, 15)) self._lst_handler_id.append( self.chkDevEnvQ17.connect('toggled', self._on_toggled, 16)) self._lst_handler_id.append( self.chkDevEnvQ18.connect('toggled', self._on_toggled, 17)) self._lst_handler_id.append( self.chkDevEnvQ19.connect('toggled', self._on_toggled, 18)) self._lst_handler_id.append( self.chkDevEnvQ20.connect('toggled', self._on_toggled, 19)) self._lst_handler_id.append( self.chkDevEnvQ21.connect('toggled', self._on_toggled, 20)) self._lst_handler_id.append( self.chkDevEnvQ22.connect('toggled', self._on_toggled, 21)) self._lst_handler_id.append( self.chkDevEnvQ23.connect('toggled', self._on_toggled, 22)) self._lst_handler_id.append( self.chkDevEnvQ24.connect('toggled', self._on_toggled, 23)) self._lst_handler_id.append( self.chkDevEnvQ25.connect('toggled', self._on_toggled, 24)) self._lst_handler_id.append( self.chkDevEnvQ26.connect('toggled', self._on_toggled, 25)) self._lst_handler_id.append( self.chkDevEnvQ27.connect('toggled', self._on_toggled, 26)) self._lst_handler_id.append( self.chkDevEnvQ28.connect('toggled', self._on_toggled, 27)) self._lst_handler_id.append( self.chkDevEnvQ29.connect('toggled', self._on_toggled, 28)) self._lst_handler_id.append( self.chkDevEnvQ30.connect('toggled', self._on_toggled, 29)) self._lst_handler_id.append( self.chkDevEnvQ31.connect('toggled', self._on_toggled, 30)) self._lst_handler_id.append( self.chkDevEnvQ32.connect('toggled', self._on_toggled, 31)) self._lst_handler_id.append( self.chkDevEnvQ33.connect('toggled', self._on_toggled, 32)) self._lst_handler_id.append( self.chkDevEnvQ34.connect('toggled', self._on_toggled, 33)) self._lst_handler_id.append( self.chkDevEnvQ35.connect('toggled', self._on_toggled, 34)) self._lst_handler_id.append( self.chkDevEnvQ36.connect('toggled', self._on_toggled, 35)) self._lst_handler_id.append( self.chkDevEnvQ37.connect('toggled', self._on_toggled, 36)) self._lst_handler_id.append( self.chkDevEnvQ38.connect('toggled', self._on_toggled, 37)) self._lst_handler_id.append( self.chkDevEnvQ39.connect('toggled', self._on_toggled, 38)) self._lst_handler_id.append( self.chkDevEnvQ40.connect('toggled', self._on_toggled, 39)) self._lst_handler_id.append( self.chkDevEnvQ41.connect('toggled', self._on_toggled, 40)) self._lst_handler_id.append( self.chkDevEnvQ42.connect('toggled', self._on_toggled, 41)) self._lst_handler_id.append( self.chkDevEnvQ43.connect('toggled', self._on_toggled, 42)) def create_risk_analysis_page(self, notebook): """ Method to create the development environment risk analysis page and add it to the risk analysis gtk.Notebook(). :param gtk.Notebook notebook: the gtk.Notebook() instance that will hold the development environment risk analysis questions. :return: False if successful or True if an error is encountered. :rtype: bool """ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # Build-up the containers for the tab. # # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # _hpaned = gtk.HPaned() self.pack1(_hpaned, resize=True, shrink=True) # Create the organizational risk pane. _fixed = gtk.Fixed() _scrollwindow = gtk.ScrolledWindow() _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) _scrollwindow.add_with_viewport(_fixed) _frame = Widgets.make_frame(label=_(u"Organization")) _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT) _frame.add(_scrollwindow) _hpaned.pack1(_frame, True, True) _labels = [_(u"1. There are separate design and coding " u"organizations."), _(u"2. There is an independent software test " u"organization."), _(u"3. There is an independent software quality " u"assurance organization."), _(u"4. There is an independent software configuration " u"management organization."), _(u"5. There is an independent software verification " u"and validation organization."), _(u"6. A structured programming team will develop the " u"software."), _(u"7. The educational level of the software team members " u"is above average."), _(u"8. The experience level of the software team members " u"is above average.")] (_x_pos, _y_pos) = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False) _x_pos += 125 _fixed.put(self.chkDevEnvQ1, _x_pos, _y_pos[0]) _fixed.put(self.chkDevEnvQ2, _x_pos, _y_pos[1]) _fixed.put(self.chkDevEnvQ3, _x_pos, _y_pos[2]) _fixed.put(self.chkDevEnvQ4, _x_pos, _y_pos[3]) _fixed.put(self.chkDevEnvQ5, _x_pos, _y_pos[4]) _fixed.put(self.chkDevEnvQ6, _x_pos, _y_pos[5]) _fixed.put(self.chkDevEnvQ7, _x_pos, _y_pos[6]) _fixed.put(self.chkDevEnvQ8, _x_pos, _y_pos[7]) # Create the methods risk pane. _fixed = gtk.Fixed() _scrollwindow = gtk.ScrolledWindow() _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) _scrollwindow.add_with_viewport(_fixed) _frame = Widgets.make_frame(label=_(u"Methods")) _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT) _frame.add(_scrollwindow) _hpaned.pack2(_frame, True, True) _labels = [_(u"1. Standards are defined and will be enforced."), _(u"2. Software will be developed using a higher order " u"language."), _(u"3. The development process will include formal " u"reviews (PDR, CDR, etc.)."), _(u"4. The development process will include frequent " u"walkthroughs."), _(u"5. Development will take a top-down and " u"structured approach."), _(u"6. Unit development folders will be used."), _(u"7. A software development library will be used."), _(u"8. A formal change and error reporting process " u"will be used."), _(u"9. Progress and status will routinely be " u"reported.")] (__, _y_pos) = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False) _fixed.put(self.chkDevEnvQ9, _x_pos, _y_pos[0]) _fixed.put(self.chkDevEnvQ10, _x_pos, _y_pos[1]) _fixed.put(self.chkDevEnvQ11, _x_pos, _y_pos[2]) _fixed.put(self.chkDevEnvQ12, _x_pos, _y_pos[3]) _fixed.put(self.chkDevEnvQ13, _x_pos, _y_pos[4]) _fixed.put(self.chkDevEnvQ14, _x_pos, _y_pos[5]) _fixed.put(self.chkDevEnvQ15, _x_pos, _y_pos[6]) _fixed.put(self.chkDevEnvQ16, _x_pos, _y_pos[7]) _fixed.put(self.chkDevEnvQ17, _x_pos, _y_pos[8]) # Create the documentation risk pane. _hpaned = gtk.HPaned() self.pack2(_hpaned, resize=True, shrink=True) _fixed = gtk.Fixed() _scrollwindow = gtk.ScrolledWindow() _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) _scrollwindow.add_with_viewport(_fixed) _frame = Widgets.make_frame(label=_(u"Documentation")) _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT) _frame.add(_scrollwindow) _hpaned.pack1(_frame, True, True) _labels = [_(u" 1. System requirements specifications will be " u"documented."), _(u" 2. Software requirements specifications will be " u"documented."), _(u" 3. Interface design specifications will be " u"documented."), _(u" 4. Software design specification will be " u"documented."), _(u" 5. Test plans, procedures, and reports will be " u"documented."), _(u" 6. The software development plan will be " u"documented."), _(u" 7. The software quality assurance plan will be " u"documented."), _(u" 8. The software configuration management plan will " u"be documented."), _(u" 9. A requirements traceability matrix will be " u"used."), _(u"10. The software version description will be " u"documented."), _(u"11. All software discrepancies will be " u"documented.")] (__, _y_pos) = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False) _fixed.put(self.chkDevEnvQ18, _x_pos, _y_pos[0]) _fixed.put(self.chkDevEnvQ19, _x_pos, _y_pos[1]) _fixed.put(self.chkDevEnvQ20, _x_pos, _y_pos[2]) _fixed.put(self.chkDevEnvQ21, _x_pos, _y_pos[3]) _fixed.put(self.chkDevEnvQ22, _x_pos, _y_pos[4]) _fixed.put(self.chkDevEnvQ23, _x_pos, _y_pos[5]) _fixed.put(self.chkDevEnvQ24, _x_pos, _y_pos[6]) _fixed.put(self.chkDevEnvQ25, _x_pos, _y_pos[7]) _fixed.put(self.chkDevEnvQ26, _x_pos, _y_pos[8]) _fixed.put(self.chkDevEnvQ27, _x_pos, _y_pos[9]) _fixed.put(self.chkDevEnvQ28, _x_pos, _y_pos[10]) # Create the tools and test techniques risk pane. _fixed = gtk.Fixed() _scrollwindow = gtk.ScrolledWindow() _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) _scrollwindow.add_with_viewport(_fixed) _frame = Widgets.make_frame(label=_(u"Tools &amp; Test Techniques")) _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT) _frame.add(_scrollwindow) _hpaned.pack2(_frame, True, True) _labels = [_(u" 1. The software language requirements will be " u"specified."), _(u" 2. Formal program design language will be used."), _(u" 3. Program design graphical techniques " u"(flowcharts, HIPO, etc.) will be used."), _(u" 4. Simulation/emulation tools will be used."), _(u" 5. Configuration management tools will be used."), _(u" 6. A code auditing tool will be used."), _(u" 7. A data flow analyzer will be used."), _(u" 8. A programmer's workbench will be used."), _(u" 9. Measurement tools will be used."), _(u"10. Software code reviews will be used."), _(u"11. Software branch testing will be used."), _(u"12. Random testing will be used."), _(u"13. Functional testing will be used."), _(u"14. Error and anomaly detection testing will be " u"used."), _(u"15. Structure analysis will be used.")] (__, _y_pos) = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False) _fixed.put(self.chkDevEnvQ29, _x_pos, _y_pos[0]) _fixed.put(self.chkDevEnvQ30, _x_pos, _y_pos[1]) _fixed.put(self.chkDevEnvQ31, _x_pos, _y_pos[2]) _fixed.put(self.chkDevEnvQ32, _x_pos, _y_pos[3]) _fixed.put(self.chkDevEnvQ33, _x_pos, _y_pos[4]) _fixed.put(self.chkDevEnvQ34, _x_pos, _y_pos[5]) _fixed.put(self.chkDevEnvQ35, _x_pos, _y_pos[6]) _fixed.put(self.chkDevEnvQ36, _x_pos, _y_pos[7]) _fixed.put(self.chkDevEnvQ37, _x_pos, _y_pos[8]) _fixed.put(self.chkDevEnvQ38, _x_pos, _y_pos[9]) _fixed.put(self.chkDevEnvQ39, _x_pos, _y_pos[10]) _fixed.put(self.chkDevEnvQ40, _x_pos, _y_pos[11]) _fixed.put(self.chkDevEnvQ41, _x_pos, _y_pos[12]) _fixed.put(self.chkDevEnvQ42, _x_pos, _y_pos[13]) _fixed.put(self.chkDevEnvQ43, _x_pos, _y_pos[14]) _label = gtk.Label() _label.set_markup("<span weight='bold'>" + _(u"Development\nEnvironment") + "</span>") _label.set_alignment(xalign=0.5, yalign=0.5) _label.set_justify(gtk.JUSTIFY_CENTER) _label.set_angle(0) _label.show_all() _label.set_tooltip_text(_(u"Assesses risk due to the development " u"environment.")) notebook.insert_page(self, tab_label=_label, position=-1) return False def load(self, model): """ Method to load the Development Environment Risk Analysis answers. :param `rtk.software.Software` model: the Software data model to load the gtk.ToggleButton() from. :return: False if successful or True if an error is encountered. :rtype: bool """ self._software_model = model self.chkDevEnvQ1.set_active(model.lst_development[0]) self.chkDevEnvQ2.set_active(model.lst_development[1]) self.chkDevEnvQ3.set_active(model.lst_development[2]) self.chkDevEnvQ4.set_active(model.lst_development[3]) self.chkDevEnvQ5.set_active(model.lst_development[4]) self.chkDevEnvQ6.set_active(model.lst_development[5]) self.chkDevEnvQ7.set_active(model.lst_development[6]) self.chkDevEnvQ8.set_active(model.lst_development[7]) self.chkDevEnvQ9.set_active(model.lst_development[8]) self.chkDevEnvQ10.set_active(model.lst_development[9]) self.chkDevEnvQ11.set_active(model.lst_development[10]) self.chkDevEnvQ12.set_active(model.lst_development[11]) self.chkDevEnvQ13.set_active(model.lst_development[12]) self.chkDevEnvQ14.set_active(model.lst_development[13]) self.chkDevEnvQ15.set_active(model.lst_development[14]) self.chkDevEnvQ16.set_active(model.lst_development[15]) self.chkDevEnvQ17.set_active(model.lst_development[16]) self.chkDevEnvQ18.set_active(model.lst_development[17]) self.chkDevEnvQ19.set_active(model.lst_development[18]) self.chkDevEnvQ20.set_active(model.lst_development[19]) self.chkDevEnvQ21.set_active(model.lst_development[20]) self.chkDevEnvQ22.set_active(model.lst_development[21]) self.chkDevEnvQ23.set_active(model.lst_development[22]) self.chkDevEnvQ24.set_active(model.lst_development[23]) self.chkDevEnvQ25.set_active(model.lst_development[24]) self.chkDevEnvQ26.set_active(model.lst_development[25]) self.chkDevEnvQ27.set_active(model.lst_development[26]) self.chkDevEnvQ28.set_active(model.lst_development[27]) self.chkDevEnvQ29.set_active(model.lst_development[28]) self.chkDevEnvQ30.set_active(model.lst_development[29]) self.chkDevEnvQ31.set_active(model.lst_development[30]) self.chkDevEnvQ32.set_active(model.lst_development[31]) self.chkDevEnvQ33.set_active(model.lst_development[32]) self.chkDevEnvQ34.set_active(model.lst_development[33]) self.chkDevEnvQ35.set_active(model.lst_development[34]) self.chkDevEnvQ36.set_active(model.lst_development[35]) self.chkDevEnvQ37.set_active(model.lst_development[36]) self.chkDevEnvQ38.set_active(model.lst_development[37]) self.chkDevEnvQ39.set_active(model.lst_development[38]) self.chkDevEnvQ40.set_active(model.lst_development[39]) self.chkDevEnvQ41.set_active(model.lst_development[40]) self.chkDevEnvQ42.set_active(model.lst_development[41]) self.chkDevEnvQ43.set_active(model.lst_development[42]) return False def _on_toggled(self, check, index): """ Callback method for gtk.CheckButton() 'toggled' event. :param gtk.CheckButton check: the gtk.CheckButton() that called this method. :param int index: the index of the Development Environment question associated with the gtk.CheckButton() that was toggled. :return: False if successful or True if an error is encountered. :rtype: bool """ check.handler_block(self._lst_handler_id[index]) self._software_model.lst_development[index] = int(check.get_active()) check.handler_unblock(self._lst_handler_id[index]) return False
normal
{ "blob_id": "327371d373819273a2f77f63e0cedee6950dbc46", "index": 976, "step-1": "<mask token>\n\n\nclass RiskAnalysis(gtk.VPaned):\n <mask token>\n <mask token>\n\n def create_risk_analysis_page(self, notebook):\n \"\"\"\n Method to create the development environment risk analysis page and add\n it to the risk analysis gtk.Notebook().\n\n :param gtk.Notebook notebook: the gtk.Notebook() instance that will\n hold the development environment risk\n analysis questions.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n _hpaned = gtk.HPaned()\n self.pack1(_hpaned, resize=True, shrink=True)\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Organization'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack1(_frame, True, True)\n _labels = [_(\n u'1. There are separate design and coding organizations.'), _(\n u'2. There is an independent software test organization.'), _(\n u'3. There is an independent software quality assurance organization.'\n ), _(\n u'4. There is an independent software configuration management organization.'\n ), _(\n u'5. There is an independent software verification and validation organization.'\n ), _(\n u'6. A structured programming team will develop the software.'),\n _(\n u'7. The educational level of the software team members is above average.'\n ), _(\n u'8. The experience level of the software team members is above average.'\n )]\n _x_pos, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _x_pos += 125\n _fixed.put(self.chkDevEnvQ1, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ2, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ3, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ4, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ5, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ6, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ7, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ8, _x_pos, _y_pos[7])\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Methods'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack2(_frame, True, True)\n _labels = [_(u'1. Standards are defined and will be enforced.'), _(\n u'2. Software will be developed using a higher order language.'\n ), _(\n u'3. The development process will include formal reviews (PDR, CDR, etc.).'\n ), _(\n u'4. The development process will include frequent walkthroughs.'\n ), _(\n u'5. Development will take a top-down and structured approach.'\n ), _(u'6. Unit development folders will be used.'), _(\n u'7. A software development library will be used.'), _(\n u'8. A formal change and error reporting process will be used.'\n ), _(u'9. Progress and status will routinely be reported.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ9, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ10, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ11, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ12, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ13, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ14, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ15, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ16, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ17, _x_pos, _y_pos[8])\n _hpaned = gtk.HPaned()\n self.pack2(_hpaned, resize=True, shrink=True)\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Documentation'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack1(_frame, True, True)\n _labels = [_(\n u' 1. System requirements specifications will be documented.'),\n _(\n u' 2. Software requirements specifications will be documented.'\n ), _(u' 3. Interface design specifications will be documented.'\n ), _(u' 4. Software design specification will be documented.'),\n _(\n u' 5. Test plans, procedures, and reports will be documented.'),\n _(u' 6. The software development plan will be documented.'), _(\n u' 7. The software quality assurance plan will be documented.'),\n _(\n u' 8. The software configuration management plan will be documented.'\n ), _(u' 9. A requirements traceability matrix will be used.'),\n _(u'10. The software version description will be documented.'),\n _(u'11. All software discrepancies will be documented.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ18, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ19, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ20, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ21, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ22, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ23, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ24, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ25, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ26, _x_pos, _y_pos[8])\n _fixed.put(self.chkDevEnvQ27, _x_pos, _y_pos[9])\n _fixed.put(self.chkDevEnvQ28, _x_pos, _y_pos[10])\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Tools &amp; Test Techniques'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack2(_frame, True, True)\n _labels = [_(\n u' 1. The software language requirements will be specified.'),\n _(u' 2. Formal program design language will be used.'), _(\n u' 3. Program design graphical techniques (flowcharts, HIPO, etc.) will be used.'\n ), _(u' 4. Simulation/emulation tools will be used.'), _(\n u' 5. Configuration management tools will be used.'), _(\n u' 6. A code auditing tool will be used.'), _(\n u' 7. A data flow analyzer will be used.'), _(\n u\" 8. A programmer's workbench will be used.\"), _(\n u' 9. Measurement tools will be used.'), _(\n u'10. Software code reviews will be used.'), _(\n u'11. Software branch testing will be used.'), _(\n u'12. Random testing will be used.'), _(\n u'13. Functional testing will be used.'), _(\n u'14. Error and anomaly detection testing will be used.'), _(\n u'15. Structure analysis will be used.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ29, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ30, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ31, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ32, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ33, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ34, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ35, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ36, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ37, _x_pos, _y_pos[8])\n _fixed.put(self.chkDevEnvQ38, _x_pos, _y_pos[9])\n _fixed.put(self.chkDevEnvQ39, _x_pos, _y_pos[10])\n _fixed.put(self.chkDevEnvQ40, _x_pos, _y_pos[11])\n _fixed.put(self.chkDevEnvQ41, _x_pos, _y_pos[12])\n _fixed.put(self.chkDevEnvQ42, _x_pos, _y_pos[13])\n _fixed.put(self.chkDevEnvQ43, _x_pos, _y_pos[14])\n _label = gtk.Label()\n _label.set_markup(\"<span weight='bold'>\" + _(\n u'Development\\nEnvironment') + '</span>')\n _label.set_alignment(xalign=0.5, yalign=0.5)\n _label.set_justify(gtk.JUSTIFY_CENTER)\n _label.set_angle(0)\n _label.show_all()\n _label.set_tooltip_text(_(\n u'Assesses risk due to the development environment.'))\n notebook.insert_page(self, tab_label=_label, position=-1)\n return False\n\n def load(self, model):\n \"\"\"\n Method to load the Development Environment Risk Analysis answers.\n\n :param `rtk.software.Software` model: the Software data model to load\n the gtk.ToggleButton() from.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n self._software_model = model\n self.chkDevEnvQ1.set_active(model.lst_development[0])\n self.chkDevEnvQ2.set_active(model.lst_development[1])\n self.chkDevEnvQ3.set_active(model.lst_development[2])\n self.chkDevEnvQ4.set_active(model.lst_development[3])\n self.chkDevEnvQ5.set_active(model.lst_development[4])\n self.chkDevEnvQ6.set_active(model.lst_development[5])\n self.chkDevEnvQ7.set_active(model.lst_development[6])\n self.chkDevEnvQ8.set_active(model.lst_development[7])\n self.chkDevEnvQ9.set_active(model.lst_development[8])\n self.chkDevEnvQ10.set_active(model.lst_development[9])\n self.chkDevEnvQ11.set_active(model.lst_development[10])\n self.chkDevEnvQ12.set_active(model.lst_development[11])\n self.chkDevEnvQ13.set_active(model.lst_development[12])\n self.chkDevEnvQ14.set_active(model.lst_development[13])\n self.chkDevEnvQ15.set_active(model.lst_development[14])\n self.chkDevEnvQ16.set_active(model.lst_development[15])\n self.chkDevEnvQ17.set_active(model.lst_development[16])\n self.chkDevEnvQ18.set_active(model.lst_development[17])\n self.chkDevEnvQ19.set_active(model.lst_development[18])\n self.chkDevEnvQ20.set_active(model.lst_development[19])\n self.chkDevEnvQ21.set_active(model.lst_development[20])\n self.chkDevEnvQ22.set_active(model.lst_development[21])\n self.chkDevEnvQ23.set_active(model.lst_development[22])\n self.chkDevEnvQ24.set_active(model.lst_development[23])\n self.chkDevEnvQ25.set_active(model.lst_development[24])\n self.chkDevEnvQ26.set_active(model.lst_development[25])\n self.chkDevEnvQ27.set_active(model.lst_development[26])\n self.chkDevEnvQ28.set_active(model.lst_development[27])\n self.chkDevEnvQ29.set_active(model.lst_development[28])\n self.chkDevEnvQ30.set_active(model.lst_development[29])\n self.chkDevEnvQ31.set_active(model.lst_development[30])\n self.chkDevEnvQ32.set_active(model.lst_development[31])\n self.chkDevEnvQ33.set_active(model.lst_development[32])\n self.chkDevEnvQ34.set_active(model.lst_development[33])\n self.chkDevEnvQ35.set_active(model.lst_development[34])\n self.chkDevEnvQ36.set_active(model.lst_development[35])\n self.chkDevEnvQ37.set_active(model.lst_development[36])\n self.chkDevEnvQ38.set_active(model.lst_development[37])\n self.chkDevEnvQ39.set_active(model.lst_development[38])\n self.chkDevEnvQ40.set_active(model.lst_development[39])\n self.chkDevEnvQ41.set_active(model.lst_development[40])\n self.chkDevEnvQ42.set_active(model.lst_development[41])\n self.chkDevEnvQ43.set_active(model.lst_development[42])\n return False\n\n def _on_toggled(self, check, index):\n \"\"\"\n Callback method for gtk.CheckButton() 'toggled' event.\n\n :param gtk.CheckButton check: the gtk.CheckButton() that called this\n method.\n :param int index: the index of the Development Environment question\n associated with the gtk.CheckButton() that was\n toggled.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n check.handler_block(self._lst_handler_id[index])\n self._software_model.lst_development[index] = int(check.get_active())\n check.handler_unblock(self._lst_handler_id[index])\n return False\n", "step-2": "<mask token>\n\n\nclass RiskAnalysis(gtk.VPaned):\n <mask token>\n\n def __init__(self):\n \"\"\"\n Method to initialize the development environment risk analysis\n questions Work Book page.\n \"\"\"\n gtk.VPaned.__init__(self)\n self._lst_handler_id = []\n self._software_model = None\n self.chkDevEnvQ1 = Widgets.make_check_button()\n self.chkDevEnvQ2 = Widgets.make_check_button()\n self.chkDevEnvQ3 = Widgets.make_check_button()\n self.chkDevEnvQ4 = Widgets.make_check_button()\n self.chkDevEnvQ5 = Widgets.make_check_button()\n self.chkDevEnvQ6 = Widgets.make_check_button()\n self.chkDevEnvQ7 = Widgets.make_check_button()\n self.chkDevEnvQ8 = Widgets.make_check_button()\n self.chkDevEnvQ9 = Widgets.make_check_button()\n self.chkDevEnvQ10 = Widgets.make_check_button()\n self.chkDevEnvQ11 = Widgets.make_check_button()\n self.chkDevEnvQ12 = Widgets.make_check_button()\n self.chkDevEnvQ13 = Widgets.make_check_button()\n self.chkDevEnvQ14 = Widgets.make_check_button()\n self.chkDevEnvQ15 = Widgets.make_check_button()\n self.chkDevEnvQ16 = Widgets.make_check_button()\n self.chkDevEnvQ17 = Widgets.make_check_button()\n self.chkDevEnvQ18 = Widgets.make_check_button()\n self.chkDevEnvQ19 = Widgets.make_check_button()\n self.chkDevEnvQ20 = Widgets.make_check_button()\n self.chkDevEnvQ21 = Widgets.make_check_button()\n self.chkDevEnvQ22 = Widgets.make_check_button()\n self.chkDevEnvQ23 = Widgets.make_check_button()\n self.chkDevEnvQ24 = Widgets.make_check_button()\n self.chkDevEnvQ25 = Widgets.make_check_button()\n self.chkDevEnvQ26 = Widgets.make_check_button()\n self.chkDevEnvQ27 = Widgets.make_check_button()\n self.chkDevEnvQ28 = Widgets.make_check_button()\n self.chkDevEnvQ29 = Widgets.make_check_button()\n self.chkDevEnvQ30 = Widgets.make_check_button()\n self.chkDevEnvQ31 = Widgets.make_check_button()\n self.chkDevEnvQ32 = Widgets.make_check_button()\n self.chkDevEnvQ33 = Widgets.make_check_button()\n self.chkDevEnvQ34 = Widgets.make_check_button()\n self.chkDevEnvQ35 = Widgets.make_check_button()\n self.chkDevEnvQ36 = Widgets.make_check_button()\n self.chkDevEnvQ37 = Widgets.make_check_button()\n self.chkDevEnvQ38 = Widgets.make_check_button()\n self.chkDevEnvQ39 = Widgets.make_check_button()\n self.chkDevEnvQ40 = Widgets.make_check_button()\n self.chkDevEnvQ41 = Widgets.make_check_button()\n self.chkDevEnvQ42 = Widgets.make_check_button()\n self.chkDevEnvQ43 = Widgets.make_check_button()\n self._lst_handler_id.append(self.chkDevEnvQ1.connect('toggled',\n self._on_toggled, 0))\n self._lst_handler_id.append(self.chkDevEnvQ2.connect('toggled',\n self._on_toggled, 1))\n self._lst_handler_id.append(self.chkDevEnvQ3.connect('toggled',\n self._on_toggled, 2))\n self._lst_handler_id.append(self.chkDevEnvQ4.connect('toggled',\n self._on_toggled, 3))\n self._lst_handler_id.append(self.chkDevEnvQ5.connect('toggled',\n self._on_toggled, 4))\n self._lst_handler_id.append(self.chkDevEnvQ6.connect('toggled',\n self._on_toggled, 5))\n self._lst_handler_id.append(self.chkDevEnvQ7.connect('toggled',\n self._on_toggled, 6))\n self._lst_handler_id.append(self.chkDevEnvQ8.connect('toggled',\n self._on_toggled, 7))\n self._lst_handler_id.append(self.chkDevEnvQ9.connect('toggled',\n self._on_toggled, 8))\n self._lst_handler_id.append(self.chkDevEnvQ10.connect('toggled',\n self._on_toggled, 9))\n self._lst_handler_id.append(self.chkDevEnvQ11.connect('toggled',\n self._on_toggled, 10))\n self._lst_handler_id.append(self.chkDevEnvQ12.connect('toggled',\n self._on_toggled, 11))\n self._lst_handler_id.append(self.chkDevEnvQ13.connect('toggled',\n self._on_toggled, 12))\n self._lst_handler_id.append(self.chkDevEnvQ14.connect('toggled',\n self._on_toggled, 13))\n self._lst_handler_id.append(self.chkDevEnvQ15.connect('toggled',\n self._on_toggled, 14))\n self._lst_handler_id.append(self.chkDevEnvQ16.connect('toggled',\n self._on_toggled, 15))\n self._lst_handler_id.append(self.chkDevEnvQ17.connect('toggled',\n self._on_toggled, 16))\n self._lst_handler_id.append(self.chkDevEnvQ18.connect('toggled',\n self._on_toggled, 17))\n self._lst_handler_id.append(self.chkDevEnvQ19.connect('toggled',\n self._on_toggled, 18))\n self._lst_handler_id.append(self.chkDevEnvQ20.connect('toggled',\n self._on_toggled, 19))\n self._lst_handler_id.append(self.chkDevEnvQ21.connect('toggled',\n self._on_toggled, 20))\n self._lst_handler_id.append(self.chkDevEnvQ22.connect('toggled',\n self._on_toggled, 21))\n self._lst_handler_id.append(self.chkDevEnvQ23.connect('toggled',\n self._on_toggled, 22))\n self._lst_handler_id.append(self.chkDevEnvQ24.connect('toggled',\n self._on_toggled, 23))\n self._lst_handler_id.append(self.chkDevEnvQ25.connect('toggled',\n self._on_toggled, 24))\n self._lst_handler_id.append(self.chkDevEnvQ26.connect('toggled',\n self._on_toggled, 25))\n self._lst_handler_id.append(self.chkDevEnvQ27.connect('toggled',\n self._on_toggled, 26))\n self._lst_handler_id.append(self.chkDevEnvQ28.connect('toggled',\n self._on_toggled, 27))\n self._lst_handler_id.append(self.chkDevEnvQ29.connect('toggled',\n self._on_toggled, 28))\n self._lst_handler_id.append(self.chkDevEnvQ30.connect('toggled',\n self._on_toggled, 29))\n self._lst_handler_id.append(self.chkDevEnvQ31.connect('toggled',\n self._on_toggled, 30))\n self._lst_handler_id.append(self.chkDevEnvQ32.connect('toggled',\n self._on_toggled, 31))\n self._lst_handler_id.append(self.chkDevEnvQ33.connect('toggled',\n self._on_toggled, 32))\n self._lst_handler_id.append(self.chkDevEnvQ34.connect('toggled',\n self._on_toggled, 33))\n self._lst_handler_id.append(self.chkDevEnvQ35.connect('toggled',\n self._on_toggled, 34))\n self._lst_handler_id.append(self.chkDevEnvQ36.connect('toggled',\n self._on_toggled, 35))\n self._lst_handler_id.append(self.chkDevEnvQ37.connect('toggled',\n self._on_toggled, 36))\n self._lst_handler_id.append(self.chkDevEnvQ38.connect('toggled',\n self._on_toggled, 37))\n self._lst_handler_id.append(self.chkDevEnvQ39.connect('toggled',\n self._on_toggled, 38))\n self._lst_handler_id.append(self.chkDevEnvQ40.connect('toggled',\n self._on_toggled, 39))\n self._lst_handler_id.append(self.chkDevEnvQ41.connect('toggled',\n self._on_toggled, 40))\n self._lst_handler_id.append(self.chkDevEnvQ42.connect('toggled',\n self._on_toggled, 41))\n self._lst_handler_id.append(self.chkDevEnvQ43.connect('toggled',\n self._on_toggled, 42))\n\n def create_risk_analysis_page(self, notebook):\n \"\"\"\n Method to create the development environment risk analysis page and add\n it to the risk analysis gtk.Notebook().\n\n :param gtk.Notebook notebook: the gtk.Notebook() instance that will\n hold the development environment risk\n analysis questions.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n _hpaned = gtk.HPaned()\n self.pack1(_hpaned, resize=True, shrink=True)\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Organization'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack1(_frame, True, True)\n _labels = [_(\n u'1. There are separate design and coding organizations.'), _(\n u'2. There is an independent software test organization.'), _(\n u'3. There is an independent software quality assurance organization.'\n ), _(\n u'4. There is an independent software configuration management organization.'\n ), _(\n u'5. There is an independent software verification and validation organization.'\n ), _(\n u'6. A structured programming team will develop the software.'),\n _(\n u'7. The educational level of the software team members is above average.'\n ), _(\n u'8. The experience level of the software team members is above average.'\n )]\n _x_pos, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _x_pos += 125\n _fixed.put(self.chkDevEnvQ1, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ2, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ3, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ4, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ5, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ6, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ7, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ8, _x_pos, _y_pos[7])\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Methods'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack2(_frame, True, True)\n _labels = [_(u'1. Standards are defined and will be enforced.'), _(\n u'2. Software will be developed using a higher order language.'\n ), _(\n u'3. The development process will include formal reviews (PDR, CDR, etc.).'\n ), _(\n u'4. The development process will include frequent walkthroughs.'\n ), _(\n u'5. Development will take a top-down and structured approach.'\n ), _(u'6. Unit development folders will be used.'), _(\n u'7. A software development library will be used.'), _(\n u'8. A formal change and error reporting process will be used.'\n ), _(u'9. Progress and status will routinely be reported.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ9, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ10, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ11, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ12, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ13, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ14, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ15, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ16, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ17, _x_pos, _y_pos[8])\n _hpaned = gtk.HPaned()\n self.pack2(_hpaned, resize=True, shrink=True)\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Documentation'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack1(_frame, True, True)\n _labels = [_(\n u' 1. System requirements specifications will be documented.'),\n _(\n u' 2. Software requirements specifications will be documented.'\n ), _(u' 3. Interface design specifications will be documented.'\n ), _(u' 4. Software design specification will be documented.'),\n _(\n u' 5. Test plans, procedures, and reports will be documented.'),\n _(u' 6. The software development plan will be documented.'), _(\n u' 7. The software quality assurance plan will be documented.'),\n _(\n u' 8. The software configuration management plan will be documented.'\n ), _(u' 9. A requirements traceability matrix will be used.'),\n _(u'10. The software version description will be documented.'),\n _(u'11. All software discrepancies will be documented.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ18, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ19, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ20, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ21, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ22, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ23, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ24, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ25, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ26, _x_pos, _y_pos[8])\n _fixed.put(self.chkDevEnvQ27, _x_pos, _y_pos[9])\n _fixed.put(self.chkDevEnvQ28, _x_pos, _y_pos[10])\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Tools &amp; Test Techniques'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack2(_frame, True, True)\n _labels = [_(\n u' 1. The software language requirements will be specified.'),\n _(u' 2. Formal program design language will be used.'), _(\n u' 3. Program design graphical techniques (flowcharts, HIPO, etc.) will be used.'\n ), _(u' 4. Simulation/emulation tools will be used.'), _(\n u' 5. Configuration management tools will be used.'), _(\n u' 6. A code auditing tool will be used.'), _(\n u' 7. A data flow analyzer will be used.'), _(\n u\" 8. A programmer's workbench will be used.\"), _(\n u' 9. Measurement tools will be used.'), _(\n u'10. Software code reviews will be used.'), _(\n u'11. Software branch testing will be used.'), _(\n u'12. Random testing will be used.'), _(\n u'13. Functional testing will be used.'), _(\n u'14. Error and anomaly detection testing will be used.'), _(\n u'15. Structure analysis will be used.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ29, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ30, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ31, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ32, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ33, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ34, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ35, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ36, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ37, _x_pos, _y_pos[8])\n _fixed.put(self.chkDevEnvQ38, _x_pos, _y_pos[9])\n _fixed.put(self.chkDevEnvQ39, _x_pos, _y_pos[10])\n _fixed.put(self.chkDevEnvQ40, _x_pos, _y_pos[11])\n _fixed.put(self.chkDevEnvQ41, _x_pos, _y_pos[12])\n _fixed.put(self.chkDevEnvQ42, _x_pos, _y_pos[13])\n _fixed.put(self.chkDevEnvQ43, _x_pos, _y_pos[14])\n _label = gtk.Label()\n _label.set_markup(\"<span weight='bold'>\" + _(\n u'Development\\nEnvironment') + '</span>')\n _label.set_alignment(xalign=0.5, yalign=0.5)\n _label.set_justify(gtk.JUSTIFY_CENTER)\n _label.set_angle(0)\n _label.show_all()\n _label.set_tooltip_text(_(\n u'Assesses risk due to the development environment.'))\n notebook.insert_page(self, tab_label=_label, position=-1)\n return False\n\n def load(self, model):\n \"\"\"\n Method to load the Development Environment Risk Analysis answers.\n\n :param `rtk.software.Software` model: the Software data model to load\n the gtk.ToggleButton() from.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n self._software_model = model\n self.chkDevEnvQ1.set_active(model.lst_development[0])\n self.chkDevEnvQ2.set_active(model.lst_development[1])\n self.chkDevEnvQ3.set_active(model.lst_development[2])\n self.chkDevEnvQ4.set_active(model.lst_development[3])\n self.chkDevEnvQ5.set_active(model.lst_development[4])\n self.chkDevEnvQ6.set_active(model.lst_development[5])\n self.chkDevEnvQ7.set_active(model.lst_development[6])\n self.chkDevEnvQ8.set_active(model.lst_development[7])\n self.chkDevEnvQ9.set_active(model.lst_development[8])\n self.chkDevEnvQ10.set_active(model.lst_development[9])\n self.chkDevEnvQ11.set_active(model.lst_development[10])\n self.chkDevEnvQ12.set_active(model.lst_development[11])\n self.chkDevEnvQ13.set_active(model.lst_development[12])\n self.chkDevEnvQ14.set_active(model.lst_development[13])\n self.chkDevEnvQ15.set_active(model.lst_development[14])\n self.chkDevEnvQ16.set_active(model.lst_development[15])\n self.chkDevEnvQ17.set_active(model.lst_development[16])\n self.chkDevEnvQ18.set_active(model.lst_development[17])\n self.chkDevEnvQ19.set_active(model.lst_development[18])\n self.chkDevEnvQ20.set_active(model.lst_development[19])\n self.chkDevEnvQ21.set_active(model.lst_development[20])\n self.chkDevEnvQ22.set_active(model.lst_development[21])\n self.chkDevEnvQ23.set_active(model.lst_development[22])\n self.chkDevEnvQ24.set_active(model.lst_development[23])\n self.chkDevEnvQ25.set_active(model.lst_development[24])\n self.chkDevEnvQ26.set_active(model.lst_development[25])\n self.chkDevEnvQ27.set_active(model.lst_development[26])\n self.chkDevEnvQ28.set_active(model.lst_development[27])\n self.chkDevEnvQ29.set_active(model.lst_development[28])\n self.chkDevEnvQ30.set_active(model.lst_development[29])\n self.chkDevEnvQ31.set_active(model.lst_development[30])\n self.chkDevEnvQ32.set_active(model.lst_development[31])\n self.chkDevEnvQ33.set_active(model.lst_development[32])\n self.chkDevEnvQ34.set_active(model.lst_development[33])\n self.chkDevEnvQ35.set_active(model.lst_development[34])\n self.chkDevEnvQ36.set_active(model.lst_development[35])\n self.chkDevEnvQ37.set_active(model.lst_development[36])\n self.chkDevEnvQ38.set_active(model.lst_development[37])\n self.chkDevEnvQ39.set_active(model.lst_development[38])\n self.chkDevEnvQ40.set_active(model.lst_development[39])\n self.chkDevEnvQ41.set_active(model.lst_development[40])\n self.chkDevEnvQ42.set_active(model.lst_development[41])\n self.chkDevEnvQ43.set_active(model.lst_development[42])\n return False\n\n def _on_toggled(self, check, index):\n \"\"\"\n Callback method for gtk.CheckButton() 'toggled' event.\n\n :param gtk.CheckButton check: the gtk.CheckButton() that called this\n method.\n :param int index: the index of the Development Environment question\n associated with the gtk.CheckButton() that was\n toggled.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n check.handler_block(self._lst_handler_id[index])\n self._software_model.lst_development[index] = int(check.get_active())\n check.handler_unblock(self._lst_handler_id[index])\n return False\n", "step-3": "<mask token>\ntry:\n import pygtk\n pygtk.require('2.0')\nexcept ImportError:\n sys.exit(1)\ntry:\n import gtk\nexcept ImportError:\n sys.exit(1)\ntry:\n import gtk.glade\nexcept ImportError:\n sys.exit(1)\ntry:\n import Configuration\n import gui.gtk.Widgets as Widgets\nexcept ImportError:\n import rtk.Configuration as Configuration\n import rtk.gui.gtk.Widgets as Widgets\n<mask token>\ntry:\n locale.setlocale(locale.LC_ALL, Configuration.LOCALE)\nexcept locale.Error:\n locale.setlocale(locale.LC_ALL, '')\n<mask token>\n\n\nclass RiskAnalysis(gtk.VPaned):\n \"\"\"\n The Work Book view for analyzing and displaying the risk associated with\n the development environment. The attributes of a development environment\n Work Book view are:\n\n :ivar list _lst_handler_id: the list of gtk.Widget() signal handler IDs.\n :ivar _software_model: the :py:class:`rtk.software.Software.Model` to\n display.\n \"\"\"\n\n def __init__(self):\n \"\"\"\n Method to initialize the development environment risk analysis\n questions Work Book page.\n \"\"\"\n gtk.VPaned.__init__(self)\n self._lst_handler_id = []\n self._software_model = None\n self.chkDevEnvQ1 = Widgets.make_check_button()\n self.chkDevEnvQ2 = Widgets.make_check_button()\n self.chkDevEnvQ3 = Widgets.make_check_button()\n self.chkDevEnvQ4 = Widgets.make_check_button()\n self.chkDevEnvQ5 = Widgets.make_check_button()\n self.chkDevEnvQ6 = Widgets.make_check_button()\n self.chkDevEnvQ7 = Widgets.make_check_button()\n self.chkDevEnvQ8 = Widgets.make_check_button()\n self.chkDevEnvQ9 = Widgets.make_check_button()\n self.chkDevEnvQ10 = Widgets.make_check_button()\n self.chkDevEnvQ11 = Widgets.make_check_button()\n self.chkDevEnvQ12 = Widgets.make_check_button()\n self.chkDevEnvQ13 = Widgets.make_check_button()\n self.chkDevEnvQ14 = Widgets.make_check_button()\n self.chkDevEnvQ15 = Widgets.make_check_button()\n self.chkDevEnvQ16 = Widgets.make_check_button()\n self.chkDevEnvQ17 = Widgets.make_check_button()\n self.chkDevEnvQ18 = Widgets.make_check_button()\n self.chkDevEnvQ19 = Widgets.make_check_button()\n self.chkDevEnvQ20 = Widgets.make_check_button()\n self.chkDevEnvQ21 = Widgets.make_check_button()\n self.chkDevEnvQ22 = Widgets.make_check_button()\n self.chkDevEnvQ23 = Widgets.make_check_button()\n self.chkDevEnvQ24 = Widgets.make_check_button()\n self.chkDevEnvQ25 = Widgets.make_check_button()\n self.chkDevEnvQ26 = Widgets.make_check_button()\n self.chkDevEnvQ27 = Widgets.make_check_button()\n self.chkDevEnvQ28 = Widgets.make_check_button()\n self.chkDevEnvQ29 = Widgets.make_check_button()\n self.chkDevEnvQ30 = Widgets.make_check_button()\n self.chkDevEnvQ31 = Widgets.make_check_button()\n self.chkDevEnvQ32 = Widgets.make_check_button()\n self.chkDevEnvQ33 = Widgets.make_check_button()\n self.chkDevEnvQ34 = Widgets.make_check_button()\n self.chkDevEnvQ35 = Widgets.make_check_button()\n self.chkDevEnvQ36 = Widgets.make_check_button()\n self.chkDevEnvQ37 = Widgets.make_check_button()\n self.chkDevEnvQ38 = Widgets.make_check_button()\n self.chkDevEnvQ39 = Widgets.make_check_button()\n self.chkDevEnvQ40 = Widgets.make_check_button()\n self.chkDevEnvQ41 = Widgets.make_check_button()\n self.chkDevEnvQ42 = Widgets.make_check_button()\n self.chkDevEnvQ43 = Widgets.make_check_button()\n self._lst_handler_id.append(self.chkDevEnvQ1.connect('toggled',\n self._on_toggled, 0))\n self._lst_handler_id.append(self.chkDevEnvQ2.connect('toggled',\n self._on_toggled, 1))\n self._lst_handler_id.append(self.chkDevEnvQ3.connect('toggled',\n self._on_toggled, 2))\n self._lst_handler_id.append(self.chkDevEnvQ4.connect('toggled',\n self._on_toggled, 3))\n self._lst_handler_id.append(self.chkDevEnvQ5.connect('toggled',\n self._on_toggled, 4))\n self._lst_handler_id.append(self.chkDevEnvQ6.connect('toggled',\n self._on_toggled, 5))\n self._lst_handler_id.append(self.chkDevEnvQ7.connect('toggled',\n self._on_toggled, 6))\n self._lst_handler_id.append(self.chkDevEnvQ8.connect('toggled',\n self._on_toggled, 7))\n self._lst_handler_id.append(self.chkDevEnvQ9.connect('toggled',\n self._on_toggled, 8))\n self._lst_handler_id.append(self.chkDevEnvQ10.connect('toggled',\n self._on_toggled, 9))\n self._lst_handler_id.append(self.chkDevEnvQ11.connect('toggled',\n self._on_toggled, 10))\n self._lst_handler_id.append(self.chkDevEnvQ12.connect('toggled',\n self._on_toggled, 11))\n self._lst_handler_id.append(self.chkDevEnvQ13.connect('toggled',\n self._on_toggled, 12))\n self._lst_handler_id.append(self.chkDevEnvQ14.connect('toggled',\n self._on_toggled, 13))\n self._lst_handler_id.append(self.chkDevEnvQ15.connect('toggled',\n self._on_toggled, 14))\n self._lst_handler_id.append(self.chkDevEnvQ16.connect('toggled',\n self._on_toggled, 15))\n self._lst_handler_id.append(self.chkDevEnvQ17.connect('toggled',\n self._on_toggled, 16))\n self._lst_handler_id.append(self.chkDevEnvQ18.connect('toggled',\n self._on_toggled, 17))\n self._lst_handler_id.append(self.chkDevEnvQ19.connect('toggled',\n self._on_toggled, 18))\n self._lst_handler_id.append(self.chkDevEnvQ20.connect('toggled',\n self._on_toggled, 19))\n self._lst_handler_id.append(self.chkDevEnvQ21.connect('toggled',\n self._on_toggled, 20))\n self._lst_handler_id.append(self.chkDevEnvQ22.connect('toggled',\n self._on_toggled, 21))\n self._lst_handler_id.append(self.chkDevEnvQ23.connect('toggled',\n self._on_toggled, 22))\n self._lst_handler_id.append(self.chkDevEnvQ24.connect('toggled',\n self._on_toggled, 23))\n self._lst_handler_id.append(self.chkDevEnvQ25.connect('toggled',\n self._on_toggled, 24))\n self._lst_handler_id.append(self.chkDevEnvQ26.connect('toggled',\n self._on_toggled, 25))\n self._lst_handler_id.append(self.chkDevEnvQ27.connect('toggled',\n self._on_toggled, 26))\n self._lst_handler_id.append(self.chkDevEnvQ28.connect('toggled',\n self._on_toggled, 27))\n self._lst_handler_id.append(self.chkDevEnvQ29.connect('toggled',\n self._on_toggled, 28))\n self._lst_handler_id.append(self.chkDevEnvQ30.connect('toggled',\n self._on_toggled, 29))\n self._lst_handler_id.append(self.chkDevEnvQ31.connect('toggled',\n self._on_toggled, 30))\n self._lst_handler_id.append(self.chkDevEnvQ32.connect('toggled',\n self._on_toggled, 31))\n self._lst_handler_id.append(self.chkDevEnvQ33.connect('toggled',\n self._on_toggled, 32))\n self._lst_handler_id.append(self.chkDevEnvQ34.connect('toggled',\n self._on_toggled, 33))\n self._lst_handler_id.append(self.chkDevEnvQ35.connect('toggled',\n self._on_toggled, 34))\n self._lst_handler_id.append(self.chkDevEnvQ36.connect('toggled',\n self._on_toggled, 35))\n self._lst_handler_id.append(self.chkDevEnvQ37.connect('toggled',\n self._on_toggled, 36))\n self._lst_handler_id.append(self.chkDevEnvQ38.connect('toggled',\n self._on_toggled, 37))\n self._lst_handler_id.append(self.chkDevEnvQ39.connect('toggled',\n self._on_toggled, 38))\n self._lst_handler_id.append(self.chkDevEnvQ40.connect('toggled',\n self._on_toggled, 39))\n self._lst_handler_id.append(self.chkDevEnvQ41.connect('toggled',\n self._on_toggled, 40))\n self._lst_handler_id.append(self.chkDevEnvQ42.connect('toggled',\n self._on_toggled, 41))\n self._lst_handler_id.append(self.chkDevEnvQ43.connect('toggled',\n self._on_toggled, 42))\n\n def create_risk_analysis_page(self, notebook):\n \"\"\"\n Method to create the development environment risk analysis page and add\n it to the risk analysis gtk.Notebook().\n\n :param gtk.Notebook notebook: the gtk.Notebook() instance that will\n hold the development environment risk\n analysis questions.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n _hpaned = gtk.HPaned()\n self.pack1(_hpaned, resize=True, shrink=True)\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Organization'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack1(_frame, True, True)\n _labels = [_(\n u'1. There are separate design and coding organizations.'), _(\n u'2. There is an independent software test organization.'), _(\n u'3. There is an independent software quality assurance organization.'\n ), _(\n u'4. There is an independent software configuration management organization.'\n ), _(\n u'5. There is an independent software verification and validation organization.'\n ), _(\n u'6. A structured programming team will develop the software.'),\n _(\n u'7. The educational level of the software team members is above average.'\n ), _(\n u'8. The experience level of the software team members is above average.'\n )]\n _x_pos, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _x_pos += 125\n _fixed.put(self.chkDevEnvQ1, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ2, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ3, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ4, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ5, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ6, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ7, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ8, _x_pos, _y_pos[7])\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Methods'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack2(_frame, True, True)\n _labels = [_(u'1. Standards are defined and will be enforced.'), _(\n u'2. Software will be developed using a higher order language.'\n ), _(\n u'3. The development process will include formal reviews (PDR, CDR, etc.).'\n ), _(\n u'4. The development process will include frequent walkthroughs.'\n ), _(\n u'5. Development will take a top-down and structured approach.'\n ), _(u'6. Unit development folders will be used.'), _(\n u'7. A software development library will be used.'), _(\n u'8. A formal change and error reporting process will be used.'\n ), _(u'9. Progress and status will routinely be reported.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ9, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ10, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ11, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ12, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ13, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ14, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ15, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ16, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ17, _x_pos, _y_pos[8])\n _hpaned = gtk.HPaned()\n self.pack2(_hpaned, resize=True, shrink=True)\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Documentation'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack1(_frame, True, True)\n _labels = [_(\n u' 1. System requirements specifications will be documented.'),\n _(\n u' 2. Software requirements specifications will be documented.'\n ), _(u' 3. Interface design specifications will be documented.'\n ), _(u' 4. Software design specification will be documented.'),\n _(\n u' 5. Test plans, procedures, and reports will be documented.'),\n _(u' 6. The software development plan will be documented.'), _(\n u' 7. The software quality assurance plan will be documented.'),\n _(\n u' 8. The software configuration management plan will be documented.'\n ), _(u' 9. A requirements traceability matrix will be used.'),\n _(u'10. The software version description will be documented.'),\n _(u'11. All software discrepancies will be documented.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ18, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ19, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ20, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ21, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ22, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ23, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ24, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ25, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ26, _x_pos, _y_pos[8])\n _fixed.put(self.chkDevEnvQ27, _x_pos, _y_pos[9])\n _fixed.put(self.chkDevEnvQ28, _x_pos, _y_pos[10])\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Tools &amp; Test Techniques'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack2(_frame, True, True)\n _labels = [_(\n u' 1. The software language requirements will be specified.'),\n _(u' 2. Formal program design language will be used.'), _(\n u' 3. Program design graphical techniques (flowcharts, HIPO, etc.) will be used.'\n ), _(u' 4. Simulation/emulation tools will be used.'), _(\n u' 5. Configuration management tools will be used.'), _(\n u' 6. A code auditing tool will be used.'), _(\n u' 7. A data flow analyzer will be used.'), _(\n u\" 8. A programmer's workbench will be used.\"), _(\n u' 9. Measurement tools will be used.'), _(\n u'10. Software code reviews will be used.'), _(\n u'11. Software branch testing will be used.'), _(\n u'12. Random testing will be used.'), _(\n u'13. Functional testing will be used.'), _(\n u'14. Error and anomaly detection testing will be used.'), _(\n u'15. Structure analysis will be used.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ29, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ30, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ31, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ32, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ33, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ34, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ35, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ36, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ37, _x_pos, _y_pos[8])\n _fixed.put(self.chkDevEnvQ38, _x_pos, _y_pos[9])\n _fixed.put(self.chkDevEnvQ39, _x_pos, _y_pos[10])\n _fixed.put(self.chkDevEnvQ40, _x_pos, _y_pos[11])\n _fixed.put(self.chkDevEnvQ41, _x_pos, _y_pos[12])\n _fixed.put(self.chkDevEnvQ42, _x_pos, _y_pos[13])\n _fixed.put(self.chkDevEnvQ43, _x_pos, _y_pos[14])\n _label = gtk.Label()\n _label.set_markup(\"<span weight='bold'>\" + _(\n u'Development\\nEnvironment') + '</span>')\n _label.set_alignment(xalign=0.5, yalign=0.5)\n _label.set_justify(gtk.JUSTIFY_CENTER)\n _label.set_angle(0)\n _label.show_all()\n _label.set_tooltip_text(_(\n u'Assesses risk due to the development environment.'))\n notebook.insert_page(self, tab_label=_label, position=-1)\n return False\n\n def load(self, model):\n \"\"\"\n Method to load the Development Environment Risk Analysis answers.\n\n :param `rtk.software.Software` model: the Software data model to load\n the gtk.ToggleButton() from.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n self._software_model = model\n self.chkDevEnvQ1.set_active(model.lst_development[0])\n self.chkDevEnvQ2.set_active(model.lst_development[1])\n self.chkDevEnvQ3.set_active(model.lst_development[2])\n self.chkDevEnvQ4.set_active(model.lst_development[3])\n self.chkDevEnvQ5.set_active(model.lst_development[4])\n self.chkDevEnvQ6.set_active(model.lst_development[5])\n self.chkDevEnvQ7.set_active(model.lst_development[6])\n self.chkDevEnvQ8.set_active(model.lst_development[7])\n self.chkDevEnvQ9.set_active(model.lst_development[8])\n self.chkDevEnvQ10.set_active(model.lst_development[9])\n self.chkDevEnvQ11.set_active(model.lst_development[10])\n self.chkDevEnvQ12.set_active(model.lst_development[11])\n self.chkDevEnvQ13.set_active(model.lst_development[12])\n self.chkDevEnvQ14.set_active(model.lst_development[13])\n self.chkDevEnvQ15.set_active(model.lst_development[14])\n self.chkDevEnvQ16.set_active(model.lst_development[15])\n self.chkDevEnvQ17.set_active(model.lst_development[16])\n self.chkDevEnvQ18.set_active(model.lst_development[17])\n self.chkDevEnvQ19.set_active(model.lst_development[18])\n self.chkDevEnvQ20.set_active(model.lst_development[19])\n self.chkDevEnvQ21.set_active(model.lst_development[20])\n self.chkDevEnvQ22.set_active(model.lst_development[21])\n self.chkDevEnvQ23.set_active(model.lst_development[22])\n self.chkDevEnvQ24.set_active(model.lst_development[23])\n self.chkDevEnvQ25.set_active(model.lst_development[24])\n self.chkDevEnvQ26.set_active(model.lst_development[25])\n self.chkDevEnvQ27.set_active(model.lst_development[26])\n self.chkDevEnvQ28.set_active(model.lst_development[27])\n self.chkDevEnvQ29.set_active(model.lst_development[28])\n self.chkDevEnvQ30.set_active(model.lst_development[29])\n self.chkDevEnvQ31.set_active(model.lst_development[30])\n self.chkDevEnvQ32.set_active(model.lst_development[31])\n self.chkDevEnvQ33.set_active(model.lst_development[32])\n self.chkDevEnvQ34.set_active(model.lst_development[33])\n self.chkDevEnvQ35.set_active(model.lst_development[34])\n self.chkDevEnvQ36.set_active(model.lst_development[35])\n self.chkDevEnvQ37.set_active(model.lst_development[36])\n self.chkDevEnvQ38.set_active(model.lst_development[37])\n self.chkDevEnvQ39.set_active(model.lst_development[38])\n self.chkDevEnvQ40.set_active(model.lst_development[39])\n self.chkDevEnvQ41.set_active(model.lst_development[40])\n self.chkDevEnvQ42.set_active(model.lst_development[41])\n self.chkDevEnvQ43.set_active(model.lst_development[42])\n return False\n\n def _on_toggled(self, check, index):\n \"\"\"\n Callback method for gtk.CheckButton() 'toggled' event.\n\n :param gtk.CheckButton check: the gtk.CheckButton() that called this\n method.\n :param int index: the index of the Development Environment question\n associated with the gtk.CheckButton() that was\n toggled.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n check.handler_block(self._lst_handler_id[index])\n self._software_model.lst_development[index] = int(check.get_active())\n check.handler_unblock(self._lst_handler_id[index])\n return False\n", "step-4": "<mask token>\nimport sys\nimport gettext\nimport locale\ntry:\n import pygtk\n pygtk.require('2.0')\nexcept ImportError:\n sys.exit(1)\ntry:\n import gtk\nexcept ImportError:\n sys.exit(1)\ntry:\n import gtk.glade\nexcept ImportError:\n sys.exit(1)\ntry:\n import Configuration\n import gui.gtk.Widgets as Widgets\nexcept ImportError:\n import rtk.Configuration as Configuration\n import rtk.gui.gtk.Widgets as Widgets\n__author__ = 'Andrew Rowland'\n__email__ = '[email protected]'\n__organization__ = 'ReliaQual Associates, LLC'\n__copyright__ = 'Copyright 2007 - 2015 Andrew \"weibullguy\" Rowland'\ntry:\n locale.setlocale(locale.LC_ALL, Configuration.LOCALE)\nexcept locale.Error:\n locale.setlocale(locale.LC_ALL, '')\n_ = gettext.gettext\n\n\nclass RiskAnalysis(gtk.VPaned):\n \"\"\"\n The Work Book view for analyzing and displaying the risk associated with\n the development environment. The attributes of a development environment\n Work Book view are:\n\n :ivar list _lst_handler_id: the list of gtk.Widget() signal handler IDs.\n :ivar _software_model: the :py:class:`rtk.software.Software.Model` to\n display.\n \"\"\"\n\n def __init__(self):\n \"\"\"\n Method to initialize the development environment risk analysis\n questions Work Book page.\n \"\"\"\n gtk.VPaned.__init__(self)\n self._lst_handler_id = []\n self._software_model = None\n self.chkDevEnvQ1 = Widgets.make_check_button()\n self.chkDevEnvQ2 = Widgets.make_check_button()\n self.chkDevEnvQ3 = Widgets.make_check_button()\n self.chkDevEnvQ4 = Widgets.make_check_button()\n self.chkDevEnvQ5 = Widgets.make_check_button()\n self.chkDevEnvQ6 = Widgets.make_check_button()\n self.chkDevEnvQ7 = Widgets.make_check_button()\n self.chkDevEnvQ8 = Widgets.make_check_button()\n self.chkDevEnvQ9 = Widgets.make_check_button()\n self.chkDevEnvQ10 = Widgets.make_check_button()\n self.chkDevEnvQ11 = Widgets.make_check_button()\n self.chkDevEnvQ12 = Widgets.make_check_button()\n self.chkDevEnvQ13 = Widgets.make_check_button()\n self.chkDevEnvQ14 = Widgets.make_check_button()\n self.chkDevEnvQ15 = Widgets.make_check_button()\n self.chkDevEnvQ16 = Widgets.make_check_button()\n self.chkDevEnvQ17 = Widgets.make_check_button()\n self.chkDevEnvQ18 = Widgets.make_check_button()\n self.chkDevEnvQ19 = Widgets.make_check_button()\n self.chkDevEnvQ20 = Widgets.make_check_button()\n self.chkDevEnvQ21 = Widgets.make_check_button()\n self.chkDevEnvQ22 = Widgets.make_check_button()\n self.chkDevEnvQ23 = Widgets.make_check_button()\n self.chkDevEnvQ24 = Widgets.make_check_button()\n self.chkDevEnvQ25 = Widgets.make_check_button()\n self.chkDevEnvQ26 = Widgets.make_check_button()\n self.chkDevEnvQ27 = Widgets.make_check_button()\n self.chkDevEnvQ28 = Widgets.make_check_button()\n self.chkDevEnvQ29 = Widgets.make_check_button()\n self.chkDevEnvQ30 = Widgets.make_check_button()\n self.chkDevEnvQ31 = Widgets.make_check_button()\n self.chkDevEnvQ32 = Widgets.make_check_button()\n self.chkDevEnvQ33 = Widgets.make_check_button()\n self.chkDevEnvQ34 = Widgets.make_check_button()\n self.chkDevEnvQ35 = Widgets.make_check_button()\n self.chkDevEnvQ36 = Widgets.make_check_button()\n self.chkDevEnvQ37 = Widgets.make_check_button()\n self.chkDevEnvQ38 = Widgets.make_check_button()\n self.chkDevEnvQ39 = Widgets.make_check_button()\n self.chkDevEnvQ40 = Widgets.make_check_button()\n self.chkDevEnvQ41 = Widgets.make_check_button()\n self.chkDevEnvQ42 = Widgets.make_check_button()\n self.chkDevEnvQ43 = Widgets.make_check_button()\n self._lst_handler_id.append(self.chkDevEnvQ1.connect('toggled',\n self._on_toggled, 0))\n self._lst_handler_id.append(self.chkDevEnvQ2.connect('toggled',\n self._on_toggled, 1))\n self._lst_handler_id.append(self.chkDevEnvQ3.connect('toggled',\n self._on_toggled, 2))\n self._lst_handler_id.append(self.chkDevEnvQ4.connect('toggled',\n self._on_toggled, 3))\n self._lst_handler_id.append(self.chkDevEnvQ5.connect('toggled',\n self._on_toggled, 4))\n self._lst_handler_id.append(self.chkDevEnvQ6.connect('toggled',\n self._on_toggled, 5))\n self._lst_handler_id.append(self.chkDevEnvQ7.connect('toggled',\n self._on_toggled, 6))\n self._lst_handler_id.append(self.chkDevEnvQ8.connect('toggled',\n self._on_toggled, 7))\n self._lst_handler_id.append(self.chkDevEnvQ9.connect('toggled',\n self._on_toggled, 8))\n self._lst_handler_id.append(self.chkDevEnvQ10.connect('toggled',\n self._on_toggled, 9))\n self._lst_handler_id.append(self.chkDevEnvQ11.connect('toggled',\n self._on_toggled, 10))\n self._lst_handler_id.append(self.chkDevEnvQ12.connect('toggled',\n self._on_toggled, 11))\n self._lst_handler_id.append(self.chkDevEnvQ13.connect('toggled',\n self._on_toggled, 12))\n self._lst_handler_id.append(self.chkDevEnvQ14.connect('toggled',\n self._on_toggled, 13))\n self._lst_handler_id.append(self.chkDevEnvQ15.connect('toggled',\n self._on_toggled, 14))\n self._lst_handler_id.append(self.chkDevEnvQ16.connect('toggled',\n self._on_toggled, 15))\n self._lst_handler_id.append(self.chkDevEnvQ17.connect('toggled',\n self._on_toggled, 16))\n self._lst_handler_id.append(self.chkDevEnvQ18.connect('toggled',\n self._on_toggled, 17))\n self._lst_handler_id.append(self.chkDevEnvQ19.connect('toggled',\n self._on_toggled, 18))\n self._lst_handler_id.append(self.chkDevEnvQ20.connect('toggled',\n self._on_toggled, 19))\n self._lst_handler_id.append(self.chkDevEnvQ21.connect('toggled',\n self._on_toggled, 20))\n self._lst_handler_id.append(self.chkDevEnvQ22.connect('toggled',\n self._on_toggled, 21))\n self._lst_handler_id.append(self.chkDevEnvQ23.connect('toggled',\n self._on_toggled, 22))\n self._lst_handler_id.append(self.chkDevEnvQ24.connect('toggled',\n self._on_toggled, 23))\n self._lst_handler_id.append(self.chkDevEnvQ25.connect('toggled',\n self._on_toggled, 24))\n self._lst_handler_id.append(self.chkDevEnvQ26.connect('toggled',\n self._on_toggled, 25))\n self._lst_handler_id.append(self.chkDevEnvQ27.connect('toggled',\n self._on_toggled, 26))\n self._lst_handler_id.append(self.chkDevEnvQ28.connect('toggled',\n self._on_toggled, 27))\n self._lst_handler_id.append(self.chkDevEnvQ29.connect('toggled',\n self._on_toggled, 28))\n self._lst_handler_id.append(self.chkDevEnvQ30.connect('toggled',\n self._on_toggled, 29))\n self._lst_handler_id.append(self.chkDevEnvQ31.connect('toggled',\n self._on_toggled, 30))\n self._lst_handler_id.append(self.chkDevEnvQ32.connect('toggled',\n self._on_toggled, 31))\n self._lst_handler_id.append(self.chkDevEnvQ33.connect('toggled',\n self._on_toggled, 32))\n self._lst_handler_id.append(self.chkDevEnvQ34.connect('toggled',\n self._on_toggled, 33))\n self._lst_handler_id.append(self.chkDevEnvQ35.connect('toggled',\n self._on_toggled, 34))\n self._lst_handler_id.append(self.chkDevEnvQ36.connect('toggled',\n self._on_toggled, 35))\n self._lst_handler_id.append(self.chkDevEnvQ37.connect('toggled',\n self._on_toggled, 36))\n self._lst_handler_id.append(self.chkDevEnvQ38.connect('toggled',\n self._on_toggled, 37))\n self._lst_handler_id.append(self.chkDevEnvQ39.connect('toggled',\n self._on_toggled, 38))\n self._lst_handler_id.append(self.chkDevEnvQ40.connect('toggled',\n self._on_toggled, 39))\n self._lst_handler_id.append(self.chkDevEnvQ41.connect('toggled',\n self._on_toggled, 40))\n self._lst_handler_id.append(self.chkDevEnvQ42.connect('toggled',\n self._on_toggled, 41))\n self._lst_handler_id.append(self.chkDevEnvQ43.connect('toggled',\n self._on_toggled, 42))\n\n def create_risk_analysis_page(self, notebook):\n \"\"\"\n Method to create the development environment risk analysis page and add\n it to the risk analysis gtk.Notebook().\n\n :param gtk.Notebook notebook: the gtk.Notebook() instance that will\n hold the development environment risk\n analysis questions.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n _hpaned = gtk.HPaned()\n self.pack1(_hpaned, resize=True, shrink=True)\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Organization'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack1(_frame, True, True)\n _labels = [_(\n u'1. There are separate design and coding organizations.'), _(\n u'2. There is an independent software test organization.'), _(\n u'3. There is an independent software quality assurance organization.'\n ), _(\n u'4. There is an independent software configuration management organization.'\n ), _(\n u'5. There is an independent software verification and validation organization.'\n ), _(\n u'6. A structured programming team will develop the software.'),\n _(\n u'7. The educational level of the software team members is above average.'\n ), _(\n u'8. The experience level of the software team members is above average.'\n )]\n _x_pos, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _x_pos += 125\n _fixed.put(self.chkDevEnvQ1, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ2, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ3, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ4, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ5, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ6, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ7, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ8, _x_pos, _y_pos[7])\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Methods'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack2(_frame, True, True)\n _labels = [_(u'1. Standards are defined and will be enforced.'), _(\n u'2. Software will be developed using a higher order language.'\n ), _(\n u'3. The development process will include formal reviews (PDR, CDR, etc.).'\n ), _(\n u'4. The development process will include frequent walkthroughs.'\n ), _(\n u'5. Development will take a top-down and structured approach.'\n ), _(u'6. Unit development folders will be used.'), _(\n u'7. A software development library will be used.'), _(\n u'8. A formal change and error reporting process will be used.'\n ), _(u'9. Progress and status will routinely be reported.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ9, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ10, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ11, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ12, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ13, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ14, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ15, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ16, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ17, _x_pos, _y_pos[8])\n _hpaned = gtk.HPaned()\n self.pack2(_hpaned, resize=True, shrink=True)\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Documentation'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack1(_frame, True, True)\n _labels = [_(\n u' 1. System requirements specifications will be documented.'),\n _(\n u' 2. Software requirements specifications will be documented.'\n ), _(u' 3. Interface design specifications will be documented.'\n ), _(u' 4. Software design specification will be documented.'),\n _(\n u' 5. Test plans, procedures, and reports will be documented.'),\n _(u' 6. The software development plan will be documented.'), _(\n u' 7. The software quality assurance plan will be documented.'),\n _(\n u' 8. The software configuration management plan will be documented.'\n ), _(u' 9. A requirements traceability matrix will be used.'),\n _(u'10. The software version description will be documented.'),\n _(u'11. All software discrepancies will be documented.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ18, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ19, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ20, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ21, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ22, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ23, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ24, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ25, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ26, _x_pos, _y_pos[8])\n _fixed.put(self.chkDevEnvQ27, _x_pos, _y_pos[9])\n _fixed.put(self.chkDevEnvQ28, _x_pos, _y_pos[10])\n _fixed = gtk.Fixed()\n _scrollwindow = gtk.ScrolledWindow()\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\n _scrollwindow.add_with_viewport(_fixed)\n _frame = Widgets.make_frame(label=_(u'Tools &amp; Test Techniques'))\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\n _frame.add(_scrollwindow)\n _hpaned.pack2(_frame, True, True)\n _labels = [_(\n u' 1. The software language requirements will be specified.'),\n _(u' 2. Formal program design language will be used.'), _(\n u' 3. Program design graphical techniques (flowcharts, HIPO, etc.) will be used.'\n ), _(u' 4. Simulation/emulation tools will be used.'), _(\n u' 5. Configuration management tools will be used.'), _(\n u' 6. A code auditing tool will be used.'), _(\n u' 7. A data flow analyzer will be used.'), _(\n u\" 8. A programmer's workbench will be used.\"), _(\n u' 9. Measurement tools will be used.'), _(\n u'10. Software code reviews will be used.'), _(\n u'11. Software branch testing will be used.'), _(\n u'12. Random testing will be used.'), _(\n u'13. Functional testing will be used.'), _(\n u'14. Error and anomaly detection testing will be used.'), _(\n u'15. Structure analysis will be used.')]\n __, _y_pos = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\n _fixed.put(self.chkDevEnvQ29, _x_pos, _y_pos[0])\n _fixed.put(self.chkDevEnvQ30, _x_pos, _y_pos[1])\n _fixed.put(self.chkDevEnvQ31, _x_pos, _y_pos[2])\n _fixed.put(self.chkDevEnvQ32, _x_pos, _y_pos[3])\n _fixed.put(self.chkDevEnvQ33, _x_pos, _y_pos[4])\n _fixed.put(self.chkDevEnvQ34, _x_pos, _y_pos[5])\n _fixed.put(self.chkDevEnvQ35, _x_pos, _y_pos[6])\n _fixed.put(self.chkDevEnvQ36, _x_pos, _y_pos[7])\n _fixed.put(self.chkDevEnvQ37, _x_pos, _y_pos[8])\n _fixed.put(self.chkDevEnvQ38, _x_pos, _y_pos[9])\n _fixed.put(self.chkDevEnvQ39, _x_pos, _y_pos[10])\n _fixed.put(self.chkDevEnvQ40, _x_pos, _y_pos[11])\n _fixed.put(self.chkDevEnvQ41, _x_pos, _y_pos[12])\n _fixed.put(self.chkDevEnvQ42, _x_pos, _y_pos[13])\n _fixed.put(self.chkDevEnvQ43, _x_pos, _y_pos[14])\n _label = gtk.Label()\n _label.set_markup(\"<span weight='bold'>\" + _(\n u'Development\\nEnvironment') + '</span>')\n _label.set_alignment(xalign=0.5, yalign=0.5)\n _label.set_justify(gtk.JUSTIFY_CENTER)\n _label.set_angle(0)\n _label.show_all()\n _label.set_tooltip_text(_(\n u'Assesses risk due to the development environment.'))\n notebook.insert_page(self, tab_label=_label, position=-1)\n return False\n\n def load(self, model):\n \"\"\"\n Method to load the Development Environment Risk Analysis answers.\n\n :param `rtk.software.Software` model: the Software data model to load\n the gtk.ToggleButton() from.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n self._software_model = model\n self.chkDevEnvQ1.set_active(model.lst_development[0])\n self.chkDevEnvQ2.set_active(model.lst_development[1])\n self.chkDevEnvQ3.set_active(model.lst_development[2])\n self.chkDevEnvQ4.set_active(model.lst_development[3])\n self.chkDevEnvQ5.set_active(model.lst_development[4])\n self.chkDevEnvQ6.set_active(model.lst_development[5])\n self.chkDevEnvQ7.set_active(model.lst_development[6])\n self.chkDevEnvQ8.set_active(model.lst_development[7])\n self.chkDevEnvQ9.set_active(model.lst_development[8])\n self.chkDevEnvQ10.set_active(model.lst_development[9])\n self.chkDevEnvQ11.set_active(model.lst_development[10])\n self.chkDevEnvQ12.set_active(model.lst_development[11])\n self.chkDevEnvQ13.set_active(model.lst_development[12])\n self.chkDevEnvQ14.set_active(model.lst_development[13])\n self.chkDevEnvQ15.set_active(model.lst_development[14])\n self.chkDevEnvQ16.set_active(model.lst_development[15])\n self.chkDevEnvQ17.set_active(model.lst_development[16])\n self.chkDevEnvQ18.set_active(model.lst_development[17])\n self.chkDevEnvQ19.set_active(model.lst_development[18])\n self.chkDevEnvQ20.set_active(model.lst_development[19])\n self.chkDevEnvQ21.set_active(model.lst_development[20])\n self.chkDevEnvQ22.set_active(model.lst_development[21])\n self.chkDevEnvQ23.set_active(model.lst_development[22])\n self.chkDevEnvQ24.set_active(model.lst_development[23])\n self.chkDevEnvQ25.set_active(model.lst_development[24])\n self.chkDevEnvQ26.set_active(model.lst_development[25])\n self.chkDevEnvQ27.set_active(model.lst_development[26])\n self.chkDevEnvQ28.set_active(model.lst_development[27])\n self.chkDevEnvQ29.set_active(model.lst_development[28])\n self.chkDevEnvQ30.set_active(model.lst_development[29])\n self.chkDevEnvQ31.set_active(model.lst_development[30])\n self.chkDevEnvQ32.set_active(model.lst_development[31])\n self.chkDevEnvQ33.set_active(model.lst_development[32])\n self.chkDevEnvQ34.set_active(model.lst_development[33])\n self.chkDevEnvQ35.set_active(model.lst_development[34])\n self.chkDevEnvQ36.set_active(model.lst_development[35])\n self.chkDevEnvQ37.set_active(model.lst_development[36])\n self.chkDevEnvQ38.set_active(model.lst_development[37])\n self.chkDevEnvQ39.set_active(model.lst_development[38])\n self.chkDevEnvQ40.set_active(model.lst_development[39])\n self.chkDevEnvQ41.set_active(model.lst_development[40])\n self.chkDevEnvQ42.set_active(model.lst_development[41])\n self.chkDevEnvQ43.set_active(model.lst_development[42])\n return False\n\n def _on_toggled(self, check, index):\n \"\"\"\n Callback method for gtk.CheckButton() 'toggled' event.\n\n :param gtk.CheckButton check: the gtk.CheckButton() that called this\n method.\n :param int index: the index of the Development Environment question\n associated with the gtk.CheckButton() that was\n toggled.\n :return: False if successful or True if an error is encountered.\n :rtype: bool\n \"\"\"\n check.handler_block(self._lst_handler_id[index])\n self._software_model.lst_development[index] = int(check.get_active())\n check.handler_unblock(self._lst_handler_id[index])\n return False\n", "step-5": "#!/usr/bin/env python\r\n\"\"\"\r\n##############################################################################\r\nSoftware Package Risk Analysis Development Environment Specific Work Book View\r\n##############################################################################\r\n\"\"\"\r\n\r\n# -*- coding: utf-8 -*-\r\n#\r\n# rtk.software.__gui.gtk.DevelopmentEnvironment.py is part of The RTK\r\n# Project\r\n#\r\n# All rights reserved.\r\n\r\nimport sys\r\n\r\n# Import modules for localization support.\r\nimport gettext\r\nimport locale\r\n\r\n# Modules required for the GUI.\r\ntry:\r\n import pygtk\r\n pygtk.require('2.0')\r\nexcept ImportError:\r\n sys.exit(1)\r\ntry:\r\n import gtk\r\nexcept ImportError:\r\n sys.exit(1)\r\ntry:\r\n import gtk.glade\r\nexcept ImportError:\r\n sys.exit(1)\r\n\r\n# Import other RTK modules.\r\ntry:\r\n import Configuration\r\n import gui.gtk.Widgets as Widgets\r\nexcept ImportError:\r\n import rtk.Configuration as Configuration\r\n import rtk.gui.gtk.Widgets as Widgets\r\n\r\n__author__ = 'Andrew Rowland'\r\n__email__ = '[email protected]'\r\n__organization__ = 'ReliaQual Associates, LLC'\r\n__copyright__ = 'Copyright 2007 - 2015 Andrew \"weibullguy\" Rowland'\r\n\r\ntry:\r\n locale.setlocale(locale.LC_ALL, Configuration.LOCALE)\r\nexcept locale.Error:\r\n locale.setlocale(locale.LC_ALL, '')\r\n\r\n_ = gettext.gettext\r\n\r\n\r\nclass RiskAnalysis(gtk.VPaned):\r\n \"\"\"\r\n The Work Book view for analyzing and displaying the risk associated with\r\n the development environment. The attributes of a development environment\r\n Work Book view are:\r\n\r\n :ivar list _lst_handler_id: the list of gtk.Widget() signal handler IDs.\r\n :ivar _software_model: the :py:class:`rtk.software.Software.Model` to\r\n display.\r\n \"\"\"\r\n\r\n def __init__(self):\r\n \"\"\"\r\n Method to initialize the development environment risk analysis\r\n questions Work Book page.\r\n \"\"\"\r\n\r\n gtk.VPaned.__init__(self)\r\n\r\n # Define private dictionary attributes.\r\n\r\n # Define private list attributes.\r\n self._lst_handler_id = []\r\n\r\n # Define private scalar attributes.\r\n self._software_model = None\r\n\r\n # Define public dictionary attributes.\r\n\r\n # Define public list attributes.\r\n\r\n # Define public scalar attributes.\r\n self.chkDevEnvQ1 = Widgets.make_check_button()\r\n self.chkDevEnvQ2 = Widgets.make_check_button()\r\n self.chkDevEnvQ3 = Widgets.make_check_button()\r\n self.chkDevEnvQ4 = Widgets.make_check_button()\r\n self.chkDevEnvQ5 = Widgets.make_check_button()\r\n self.chkDevEnvQ6 = Widgets.make_check_button()\r\n self.chkDevEnvQ7 = Widgets.make_check_button()\r\n self.chkDevEnvQ8 = Widgets.make_check_button()\r\n self.chkDevEnvQ9 = Widgets.make_check_button()\r\n self.chkDevEnvQ10 = Widgets.make_check_button()\r\n self.chkDevEnvQ11 = Widgets.make_check_button()\r\n self.chkDevEnvQ12 = Widgets.make_check_button()\r\n self.chkDevEnvQ13 = Widgets.make_check_button()\r\n self.chkDevEnvQ14 = Widgets.make_check_button()\r\n self.chkDevEnvQ15 = Widgets.make_check_button()\r\n self.chkDevEnvQ16 = Widgets.make_check_button()\r\n self.chkDevEnvQ17 = Widgets.make_check_button()\r\n self.chkDevEnvQ18 = Widgets.make_check_button()\r\n self.chkDevEnvQ19 = Widgets.make_check_button()\r\n self.chkDevEnvQ20 = Widgets.make_check_button()\r\n self.chkDevEnvQ21 = Widgets.make_check_button()\r\n self.chkDevEnvQ22 = Widgets.make_check_button()\r\n self.chkDevEnvQ23 = Widgets.make_check_button()\r\n self.chkDevEnvQ24 = Widgets.make_check_button()\r\n self.chkDevEnvQ25 = Widgets.make_check_button()\r\n self.chkDevEnvQ26 = Widgets.make_check_button()\r\n self.chkDevEnvQ27 = Widgets.make_check_button()\r\n self.chkDevEnvQ28 = Widgets.make_check_button()\r\n self.chkDevEnvQ29 = Widgets.make_check_button()\r\n self.chkDevEnvQ30 = Widgets.make_check_button()\r\n self.chkDevEnvQ31 = Widgets.make_check_button()\r\n self.chkDevEnvQ32 = Widgets.make_check_button()\r\n self.chkDevEnvQ33 = Widgets.make_check_button()\r\n self.chkDevEnvQ34 = Widgets.make_check_button()\r\n self.chkDevEnvQ35 = Widgets.make_check_button()\r\n self.chkDevEnvQ36 = Widgets.make_check_button()\r\n self.chkDevEnvQ37 = Widgets.make_check_button()\r\n self.chkDevEnvQ38 = Widgets.make_check_button()\r\n self.chkDevEnvQ39 = Widgets.make_check_button()\r\n self.chkDevEnvQ40 = Widgets.make_check_button()\r\n self.chkDevEnvQ41 = Widgets.make_check_button()\r\n self.chkDevEnvQ42 = Widgets.make_check_button()\r\n self.chkDevEnvQ43 = Widgets.make_check_button()\r\n\r\n # Connect gtk.Widget() signals to callback methods.\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ1.connect('toggled', self._on_toggled, 0))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ2.connect('toggled', self._on_toggled, 1))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ3.connect('toggled', self._on_toggled, 2))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ4.connect('toggled', self._on_toggled, 3))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ5.connect('toggled', self._on_toggled, 4))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ6.connect('toggled', self._on_toggled, 5))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ7.connect('toggled', self._on_toggled, 6))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ8.connect('toggled', self._on_toggled, 7))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ9.connect('toggled', self._on_toggled, 8))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ10.connect('toggled', self._on_toggled, 9))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ11.connect('toggled', self._on_toggled, 10))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ12.connect('toggled', self._on_toggled, 11))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ13.connect('toggled', self._on_toggled, 12))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ14.connect('toggled', self._on_toggled, 13))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ15.connect('toggled', self._on_toggled, 14))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ16.connect('toggled', self._on_toggled, 15))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ17.connect('toggled', self._on_toggled, 16))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ18.connect('toggled', self._on_toggled, 17))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ19.connect('toggled', self._on_toggled, 18))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ20.connect('toggled', self._on_toggled, 19))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ21.connect('toggled', self._on_toggled, 20))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ22.connect('toggled', self._on_toggled, 21))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ23.connect('toggled', self._on_toggled, 22))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ24.connect('toggled', self._on_toggled, 23))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ25.connect('toggled', self._on_toggled, 24))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ26.connect('toggled', self._on_toggled, 25))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ27.connect('toggled', self._on_toggled, 26))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ28.connect('toggled', self._on_toggled, 27))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ29.connect('toggled', self._on_toggled, 28))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ30.connect('toggled', self._on_toggled, 29))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ31.connect('toggled', self._on_toggled, 30))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ32.connect('toggled', self._on_toggled, 31))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ33.connect('toggled', self._on_toggled, 32))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ34.connect('toggled', self._on_toggled, 33))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ35.connect('toggled', self._on_toggled, 34))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ36.connect('toggled', self._on_toggled, 35))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ37.connect('toggled', self._on_toggled, 36))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ38.connect('toggled', self._on_toggled, 37))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ39.connect('toggled', self._on_toggled, 38))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ40.connect('toggled', self._on_toggled, 39))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ41.connect('toggled', self._on_toggled, 40))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ42.connect('toggled', self._on_toggled, 41))\r\n self._lst_handler_id.append(\r\n self.chkDevEnvQ43.connect('toggled', self._on_toggled, 42))\r\n\r\n def create_risk_analysis_page(self, notebook):\r\n \"\"\"\r\n Method to create the development environment risk analysis page and add\r\n it to the risk analysis gtk.Notebook().\r\n\r\n :param gtk.Notebook notebook: the gtk.Notebook() instance that will\r\n hold the development environment risk\r\n analysis questions.\r\n :return: False if successful or True if an error is encountered.\r\n :rtype: bool\r\n \"\"\"\r\n\r\n # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #\r\n # Build-up the containers for the tab. #\r\n # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #\r\n _hpaned = gtk.HPaned()\r\n self.pack1(_hpaned, resize=True, shrink=True)\r\n\r\n # Create the organizational risk pane.\r\n _fixed = gtk.Fixed()\r\n\r\n _scrollwindow = gtk.ScrolledWindow()\r\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\r\n _scrollwindow.add_with_viewport(_fixed)\r\n\r\n _frame = Widgets.make_frame(label=_(u\"Organization\"))\r\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\r\n _frame.add(_scrollwindow)\r\n\r\n _hpaned.pack1(_frame, True, True)\r\n\r\n _labels = [_(u\"1. There are separate design and coding \"\r\n u\"organizations.\"),\r\n _(u\"2. There is an independent software test \"\r\n u\"organization.\"),\r\n _(u\"3. There is an independent software quality \"\r\n u\"assurance organization.\"),\r\n _(u\"4. There is an independent software configuration \"\r\n u\"management organization.\"),\r\n _(u\"5. There is an independent software verification \"\r\n u\"and validation organization.\"),\r\n _(u\"6. A structured programming team will develop the \"\r\n u\"software.\"),\r\n _(u\"7. The educational level of the software team members \"\r\n u\"is above average.\"),\r\n _(u\"8. The experience level of the software team members \"\r\n u\"is above average.\")]\r\n (_x_pos,\r\n _y_pos) = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\r\n _x_pos += 125\r\n\r\n _fixed.put(self.chkDevEnvQ1, _x_pos, _y_pos[0])\r\n _fixed.put(self.chkDevEnvQ2, _x_pos, _y_pos[1])\r\n _fixed.put(self.chkDevEnvQ3, _x_pos, _y_pos[2])\r\n _fixed.put(self.chkDevEnvQ4, _x_pos, _y_pos[3])\r\n _fixed.put(self.chkDevEnvQ5, _x_pos, _y_pos[4])\r\n _fixed.put(self.chkDevEnvQ6, _x_pos, _y_pos[5])\r\n _fixed.put(self.chkDevEnvQ7, _x_pos, _y_pos[6])\r\n _fixed.put(self.chkDevEnvQ8, _x_pos, _y_pos[7])\r\n\r\n # Create the methods risk pane.\r\n _fixed = gtk.Fixed()\r\n\r\n _scrollwindow = gtk.ScrolledWindow()\r\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\r\n _scrollwindow.add_with_viewport(_fixed)\r\n\r\n _frame = Widgets.make_frame(label=_(u\"Methods\"))\r\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\r\n _frame.add(_scrollwindow)\r\n\r\n _hpaned.pack2(_frame, True, True)\r\n\r\n _labels = [_(u\"1. Standards are defined and will be enforced.\"),\r\n _(u\"2. Software will be developed using a higher order \"\r\n u\"language.\"),\r\n _(u\"3. The development process will include formal \"\r\n u\"reviews (PDR, CDR, etc.).\"),\r\n _(u\"4. The development process will include frequent \"\r\n u\"walkthroughs.\"),\r\n _(u\"5. Development will take a top-down and \"\r\n u\"structured approach.\"),\r\n _(u\"6. Unit development folders will be used.\"),\r\n _(u\"7. A software development library will be used.\"),\r\n _(u\"8. A formal change and error reporting process \"\r\n u\"will be used.\"),\r\n _(u\"9. Progress and status will routinely be \"\r\n u\"reported.\")]\r\n (__, _y_pos) = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\r\n\r\n _fixed.put(self.chkDevEnvQ9, _x_pos, _y_pos[0])\r\n _fixed.put(self.chkDevEnvQ10, _x_pos, _y_pos[1])\r\n _fixed.put(self.chkDevEnvQ11, _x_pos, _y_pos[2])\r\n _fixed.put(self.chkDevEnvQ12, _x_pos, _y_pos[3])\r\n _fixed.put(self.chkDevEnvQ13, _x_pos, _y_pos[4])\r\n _fixed.put(self.chkDevEnvQ14, _x_pos, _y_pos[5])\r\n _fixed.put(self.chkDevEnvQ15, _x_pos, _y_pos[6])\r\n _fixed.put(self.chkDevEnvQ16, _x_pos, _y_pos[7])\r\n _fixed.put(self.chkDevEnvQ17, _x_pos, _y_pos[8])\r\n\r\n # Create the documentation risk pane.\r\n _hpaned = gtk.HPaned()\r\n self.pack2(_hpaned, resize=True, shrink=True)\r\n\r\n _fixed = gtk.Fixed()\r\n\r\n _scrollwindow = gtk.ScrolledWindow()\r\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\r\n _scrollwindow.add_with_viewport(_fixed)\r\n\r\n _frame = Widgets.make_frame(label=_(u\"Documentation\"))\r\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\r\n _frame.add(_scrollwindow)\r\n\r\n _hpaned.pack1(_frame, True, True)\r\n\r\n _labels = [_(u\" 1. System requirements specifications will be \"\r\n u\"documented.\"),\r\n _(u\" 2. Software requirements specifications will be \"\r\n u\"documented.\"),\r\n _(u\" 3. Interface design specifications will be \"\r\n u\"documented.\"),\r\n _(u\" 4. Software design specification will be \"\r\n u\"documented.\"),\r\n _(u\" 5. Test plans, procedures, and reports will be \"\r\n u\"documented.\"),\r\n _(u\" 6. The software development plan will be \"\r\n u\"documented.\"),\r\n _(u\" 7. The software quality assurance plan will be \"\r\n u\"documented.\"),\r\n _(u\" 8. The software configuration management plan will \"\r\n u\"be documented.\"),\r\n _(u\" 9. A requirements traceability matrix will be \"\r\n u\"used.\"),\r\n _(u\"10. The software version description will be \"\r\n u\"documented.\"),\r\n _(u\"11. All software discrepancies will be \"\r\n u\"documented.\")]\r\n (__, _y_pos) = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\r\n\r\n _fixed.put(self.chkDevEnvQ18, _x_pos, _y_pos[0])\r\n _fixed.put(self.chkDevEnvQ19, _x_pos, _y_pos[1])\r\n _fixed.put(self.chkDevEnvQ20, _x_pos, _y_pos[2])\r\n _fixed.put(self.chkDevEnvQ21, _x_pos, _y_pos[3])\r\n _fixed.put(self.chkDevEnvQ22, _x_pos, _y_pos[4])\r\n _fixed.put(self.chkDevEnvQ23, _x_pos, _y_pos[5])\r\n _fixed.put(self.chkDevEnvQ24, _x_pos, _y_pos[6])\r\n _fixed.put(self.chkDevEnvQ25, _x_pos, _y_pos[7])\r\n _fixed.put(self.chkDevEnvQ26, _x_pos, _y_pos[8])\r\n _fixed.put(self.chkDevEnvQ27, _x_pos, _y_pos[9])\r\n _fixed.put(self.chkDevEnvQ28, _x_pos, _y_pos[10])\r\n\r\n # Create the tools and test techniques risk pane.\r\n _fixed = gtk.Fixed()\r\n\r\n _scrollwindow = gtk.ScrolledWindow()\r\n _scrollwindow.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)\r\n _scrollwindow.add_with_viewport(_fixed)\r\n\r\n _frame = Widgets.make_frame(label=_(u\"Tools &amp; Test Techniques\"))\r\n _frame.set_shadow_type(gtk.SHADOW_ETCHED_OUT)\r\n _frame.add(_scrollwindow)\r\n\r\n _hpaned.pack2(_frame, True, True)\r\n\r\n _labels = [_(u\" 1. The software language requirements will be \"\r\n u\"specified.\"),\r\n _(u\" 2. Formal program design language will be used.\"),\r\n _(u\" 3. Program design graphical techniques \"\r\n u\"(flowcharts, HIPO, etc.) will be used.\"),\r\n _(u\" 4. Simulation/emulation tools will be used.\"),\r\n _(u\" 5. Configuration management tools will be used.\"),\r\n _(u\" 6. A code auditing tool will be used.\"),\r\n _(u\" 7. A data flow analyzer will be used.\"),\r\n _(u\" 8. A programmer's workbench will be used.\"),\r\n _(u\" 9. Measurement tools will be used.\"),\r\n _(u\"10. Software code reviews will be used.\"),\r\n _(u\"11. Software branch testing will be used.\"),\r\n _(u\"12. Random testing will be used.\"),\r\n _(u\"13. Functional testing will be used.\"),\r\n _(u\"14. Error and anomaly detection testing will be \"\r\n u\"used.\"),\r\n _(u\"15. Structure analysis will be used.\")]\r\n (__, _y_pos) = Widgets.make_labels(_labels, _fixed, 5, 5, wrap=False)\r\n\r\n _fixed.put(self.chkDevEnvQ29, _x_pos, _y_pos[0])\r\n _fixed.put(self.chkDevEnvQ30, _x_pos, _y_pos[1])\r\n _fixed.put(self.chkDevEnvQ31, _x_pos, _y_pos[2])\r\n _fixed.put(self.chkDevEnvQ32, _x_pos, _y_pos[3])\r\n _fixed.put(self.chkDevEnvQ33, _x_pos, _y_pos[4])\r\n _fixed.put(self.chkDevEnvQ34, _x_pos, _y_pos[5])\r\n _fixed.put(self.chkDevEnvQ35, _x_pos, _y_pos[6])\r\n _fixed.put(self.chkDevEnvQ36, _x_pos, _y_pos[7])\r\n _fixed.put(self.chkDevEnvQ37, _x_pos, _y_pos[8])\r\n _fixed.put(self.chkDevEnvQ38, _x_pos, _y_pos[9])\r\n _fixed.put(self.chkDevEnvQ39, _x_pos, _y_pos[10])\r\n _fixed.put(self.chkDevEnvQ40, _x_pos, _y_pos[11])\r\n _fixed.put(self.chkDevEnvQ41, _x_pos, _y_pos[12])\r\n _fixed.put(self.chkDevEnvQ42, _x_pos, _y_pos[13])\r\n _fixed.put(self.chkDevEnvQ43, _x_pos, _y_pos[14])\r\n\r\n _label = gtk.Label()\r\n _label.set_markup(\"<span weight='bold'>\" +\r\n _(u\"Development\\nEnvironment\") +\r\n \"</span>\")\r\n _label.set_alignment(xalign=0.5, yalign=0.5)\r\n _label.set_justify(gtk.JUSTIFY_CENTER)\r\n _label.set_angle(0)\r\n _label.show_all()\r\n _label.set_tooltip_text(_(u\"Assesses risk due to the development \"\r\n u\"environment.\"))\r\n notebook.insert_page(self, tab_label=_label, position=-1)\r\n\r\n return False\r\n\r\n def load(self, model):\r\n \"\"\"\r\n Method to load the Development Environment Risk Analysis answers.\r\n\r\n :param `rtk.software.Software` model: the Software data model to load\r\n the gtk.ToggleButton() from.\r\n :return: False if successful or True if an error is encountered.\r\n :rtype: bool\r\n \"\"\"\r\n\r\n self._software_model = model\r\n\r\n self.chkDevEnvQ1.set_active(model.lst_development[0])\r\n self.chkDevEnvQ2.set_active(model.lst_development[1])\r\n self.chkDevEnvQ3.set_active(model.lst_development[2])\r\n self.chkDevEnvQ4.set_active(model.lst_development[3])\r\n self.chkDevEnvQ5.set_active(model.lst_development[4])\r\n self.chkDevEnvQ6.set_active(model.lst_development[5])\r\n self.chkDevEnvQ7.set_active(model.lst_development[6])\r\n self.chkDevEnvQ8.set_active(model.lst_development[7])\r\n self.chkDevEnvQ9.set_active(model.lst_development[8])\r\n self.chkDevEnvQ10.set_active(model.lst_development[9])\r\n self.chkDevEnvQ11.set_active(model.lst_development[10])\r\n self.chkDevEnvQ12.set_active(model.lst_development[11])\r\n self.chkDevEnvQ13.set_active(model.lst_development[12])\r\n self.chkDevEnvQ14.set_active(model.lst_development[13])\r\n self.chkDevEnvQ15.set_active(model.lst_development[14])\r\n self.chkDevEnvQ16.set_active(model.lst_development[15])\r\n self.chkDevEnvQ17.set_active(model.lst_development[16])\r\n self.chkDevEnvQ18.set_active(model.lst_development[17])\r\n self.chkDevEnvQ19.set_active(model.lst_development[18])\r\n self.chkDevEnvQ20.set_active(model.lst_development[19])\r\n self.chkDevEnvQ21.set_active(model.lst_development[20])\r\n self.chkDevEnvQ22.set_active(model.lst_development[21])\r\n self.chkDevEnvQ23.set_active(model.lst_development[22])\r\n self.chkDevEnvQ24.set_active(model.lst_development[23])\r\n self.chkDevEnvQ25.set_active(model.lst_development[24])\r\n self.chkDevEnvQ26.set_active(model.lst_development[25])\r\n self.chkDevEnvQ27.set_active(model.lst_development[26])\r\n self.chkDevEnvQ28.set_active(model.lst_development[27])\r\n self.chkDevEnvQ29.set_active(model.lst_development[28])\r\n self.chkDevEnvQ30.set_active(model.lst_development[29])\r\n self.chkDevEnvQ31.set_active(model.lst_development[30])\r\n self.chkDevEnvQ32.set_active(model.lst_development[31])\r\n self.chkDevEnvQ33.set_active(model.lst_development[32])\r\n self.chkDevEnvQ34.set_active(model.lst_development[33])\r\n self.chkDevEnvQ35.set_active(model.lst_development[34])\r\n self.chkDevEnvQ36.set_active(model.lst_development[35])\r\n self.chkDevEnvQ37.set_active(model.lst_development[36])\r\n self.chkDevEnvQ38.set_active(model.lst_development[37])\r\n self.chkDevEnvQ39.set_active(model.lst_development[38])\r\n self.chkDevEnvQ40.set_active(model.lst_development[39])\r\n self.chkDevEnvQ41.set_active(model.lst_development[40])\r\n self.chkDevEnvQ42.set_active(model.lst_development[41])\r\n self.chkDevEnvQ43.set_active(model.lst_development[42])\r\n\r\n return False\r\n\r\n def _on_toggled(self, check, index):\r\n \"\"\"\r\n Callback method for gtk.CheckButton() 'toggled' event.\r\n\r\n :param gtk.CheckButton check: the gtk.CheckButton() that called this\r\n method.\r\n :param int index: the index of the Development Environment question\r\n associated with the gtk.CheckButton() that was\r\n toggled.\r\n :return: False if successful or True if an error is encountered.\r\n :rtype: bool\r\n \"\"\"\r\n\r\n check.handler_block(self._lst_handler_id[index])\r\n\r\n self._software_model.lst_development[index] = int(check.get_active())\r\n\r\n check.handler_unblock(self._lst_handler_id[index])\r\n\r\n return False\r\n", "step-ids": [ 4, 5, 7, 9, 10 ] }
[ 4, 5, 7, 9, 10 ]
''' * @file IntQueue.py * @author (original JAVA) William Fiset, [email protected] * liujingkun, [email protected] * (conversion to Python) Armin Zare Zadeh, [email protected] * @date 23 Jun 2020 * @version 0.1 * @brief This file contains an implementation of an integer only queue. * ''' import time from array import array as arr from collections import deque from Queue import Queue class IntQueue(Queue): ''' An integer only implementation of a queue ''' def __init__(self, maxSize): """ maxSize is the maximum number of items that can be in the queue at any given time """ self.front = 0 self.end = 0 self.qSize = 0 self.data = arr('i', (0 for i in range(maxSize))) def isEmpty(self): """ Return true/false on whether the queue is empty """ return self.qSize == 0 def size(self): """ Return the number of elements inside the queue """ return self.qSize def peek(self): if self.isEmpty(): raise Exception('Queue is empty') self.front = self.front % len(self.data) return self.data[self.front] def isFull(self): return self.qSize == len(self.data) def offer(self, value): """ Add an element to the queue """ if self.isFull(): raise Exception("Queue too small!") self.data[self.end] = value self.end += 1 self.qSize += 1 self.end = self.end % len(self.data) def poll(self): """ Make sure you check is the queue is not empty before calling poll! """ if self.isEmpty(): raise Exception('Queue is empty') self.qSize -= 1 self.front = self.front % len(self.data) d = self.data[self.front] self.front += 1 return d def benchMarkTest(): """ BenchMark IntQueue vs ArrayDeque. """ n = 10000000 intQ = IntQueue(n) # IntQueue times at around 12.109375 seconds start = time.process_time() for i in range(0, n): intQ.offer(i) for i in range(0, n): intQ.poll() end = time.process_time() print("IntQueue Time: ", (end - start)) # ArrayDeque times at around 1.1875 seconds arrayDeque = deque() start = time.process_time() for i in range(0, n): arrayDeque.append(i) for i in range(0, n): arrayDeque.popleft() end = time.process_time() print("ArrayDeque Time: ", (end - start)) if __name__ == '__main__': """ Example usage """ q = IntQueue(5) q.offer(1) q.offer(2) q.offer(3) q.offer(4) q.offer(5) print(q.poll()) # 1 print(q.poll()) # 2 print(q.poll()) # 3 print(q.poll()) # 4 print(q.isEmpty()) # false q.offer(1); q.offer(2); q.offer(3); print(q.poll()) # 5 print(q.poll()) # 1 print(q.poll()) # 2 print(q.poll()) # 3 print(q.isEmpty()) # true benchMarkTest()
normal
{ "blob_id": "0ed99037d7ff708b7931fbc3553b1aeb19a20f53", "index": 810, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass IntQueue(Queue):\n <mask token>\n\n def __init__(self, maxSize):\n \"\"\"\n maxSize is the maximum number of items\n that can be in the queue at any given time\n \"\"\"\n self.front = 0\n self.end = 0\n self.qSize = 0\n self.data = arr('i', (0 for i in range(maxSize)))\n\n def isEmpty(self):\n \"\"\"\n Return true/false on whether the queue is empty\n \"\"\"\n return self.qSize == 0\n\n def size(self):\n \"\"\"\n Return the number of elements inside the queue\n \"\"\"\n return self.qSize\n\n def peek(self):\n if self.isEmpty():\n raise Exception('Queue is empty')\n self.front = self.front % len(self.data)\n return self.data[self.front]\n\n def isFull(self):\n return self.qSize == len(self.data)\n\n def offer(self, value):\n \"\"\"\n Add an element to the queue\n \"\"\"\n if self.isFull():\n raise Exception('Queue too small!')\n self.data[self.end] = value\n self.end += 1\n self.qSize += 1\n self.end = self.end % len(self.data)\n\n def poll(self):\n \"\"\"\n Make sure you check is the queue is not empty before calling poll!\n \"\"\"\n if self.isEmpty():\n raise Exception('Queue is empty')\n self.qSize -= 1\n self.front = self.front % len(self.data)\n d = self.data[self.front]\n self.front += 1\n return d\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass IntQueue(Queue):\n \"\"\" \n An integer only implementation of a queue\n \"\"\"\n\n def __init__(self, maxSize):\n \"\"\"\n maxSize is the maximum number of items\n that can be in the queue at any given time\n \"\"\"\n self.front = 0\n self.end = 0\n self.qSize = 0\n self.data = arr('i', (0 for i in range(maxSize)))\n\n def isEmpty(self):\n \"\"\"\n Return true/false on whether the queue is empty\n \"\"\"\n return self.qSize == 0\n\n def size(self):\n \"\"\"\n Return the number of elements inside the queue\n \"\"\"\n return self.qSize\n\n def peek(self):\n if self.isEmpty():\n raise Exception('Queue is empty')\n self.front = self.front % len(self.data)\n return self.data[self.front]\n\n def isFull(self):\n return self.qSize == len(self.data)\n\n def offer(self, value):\n \"\"\"\n Add an element to the queue\n \"\"\"\n if self.isFull():\n raise Exception('Queue too small!')\n self.data[self.end] = value\n self.end += 1\n self.qSize += 1\n self.end = self.end % len(self.data)\n\n def poll(self):\n \"\"\"\n Make sure you check is the queue is not empty before calling poll!\n \"\"\"\n if self.isEmpty():\n raise Exception('Queue is empty')\n self.qSize -= 1\n self.front = self.front % len(self.data)\n d = self.data[self.front]\n self.front += 1\n return d\n\n\ndef benchMarkTest():\n \"\"\"\n BenchMark IntQueue vs ArrayDeque.\n \"\"\"\n n = 10000000\n intQ = IntQueue(n)\n start = time.process_time()\n for i in range(0, n):\n intQ.offer(i)\n for i in range(0, n):\n intQ.poll()\n end = time.process_time()\n print('IntQueue Time: ', end - start)\n arrayDeque = deque()\n start = time.process_time()\n for i in range(0, n):\n arrayDeque.append(i)\n for i in range(0, n):\n arrayDeque.popleft()\n end = time.process_time()\n print('ArrayDeque Time: ', end - start)\n\n\nif __name__ == '__main__':\n \"\"\"\n Example usage\n \"\"\"\n q = IntQueue(5)\n q.offer(1)\n q.offer(2)\n q.offer(3)\n q.offer(4)\n q.offer(5)\n print(q.poll())\n print(q.poll())\n print(q.poll())\n print(q.poll())\n print(q.isEmpty())\n q.offer(1)\n q.offer(2)\n q.offer(3)\n print(q.poll())\n print(q.poll())\n print(q.poll())\n print(q.poll())\n print(q.isEmpty())\n benchMarkTest()\n", "step-4": "<mask token>\nimport time\nfrom array import array as arr\nfrom collections import deque\nfrom Queue import Queue\n\n\nclass IntQueue(Queue):\n \"\"\" \n An integer only implementation of a queue\n \"\"\"\n\n def __init__(self, maxSize):\n \"\"\"\n maxSize is the maximum number of items\n that can be in the queue at any given time\n \"\"\"\n self.front = 0\n self.end = 0\n self.qSize = 0\n self.data = arr('i', (0 for i in range(maxSize)))\n\n def isEmpty(self):\n \"\"\"\n Return true/false on whether the queue is empty\n \"\"\"\n return self.qSize == 0\n\n def size(self):\n \"\"\"\n Return the number of elements inside the queue\n \"\"\"\n return self.qSize\n\n def peek(self):\n if self.isEmpty():\n raise Exception('Queue is empty')\n self.front = self.front % len(self.data)\n return self.data[self.front]\n\n def isFull(self):\n return self.qSize == len(self.data)\n\n def offer(self, value):\n \"\"\"\n Add an element to the queue\n \"\"\"\n if self.isFull():\n raise Exception('Queue too small!')\n self.data[self.end] = value\n self.end += 1\n self.qSize += 1\n self.end = self.end % len(self.data)\n\n def poll(self):\n \"\"\"\n Make sure you check is the queue is not empty before calling poll!\n \"\"\"\n if self.isEmpty():\n raise Exception('Queue is empty')\n self.qSize -= 1\n self.front = self.front % len(self.data)\n d = self.data[self.front]\n self.front += 1\n return d\n\n\ndef benchMarkTest():\n \"\"\"\n BenchMark IntQueue vs ArrayDeque.\n \"\"\"\n n = 10000000\n intQ = IntQueue(n)\n start = time.process_time()\n for i in range(0, n):\n intQ.offer(i)\n for i in range(0, n):\n intQ.poll()\n end = time.process_time()\n print('IntQueue Time: ', end - start)\n arrayDeque = deque()\n start = time.process_time()\n for i in range(0, n):\n arrayDeque.append(i)\n for i in range(0, n):\n arrayDeque.popleft()\n end = time.process_time()\n print('ArrayDeque Time: ', end - start)\n\n\nif __name__ == '__main__':\n \"\"\"\n Example usage\n \"\"\"\n q = IntQueue(5)\n q.offer(1)\n q.offer(2)\n q.offer(3)\n q.offer(4)\n q.offer(5)\n print(q.poll())\n print(q.poll())\n print(q.poll())\n print(q.poll())\n print(q.isEmpty())\n q.offer(1)\n q.offer(2)\n q.offer(3)\n print(q.poll())\n print(q.poll())\n print(q.poll())\n print(q.poll())\n print(q.isEmpty())\n benchMarkTest()\n", "step-5": "'''\n * @file IntQueue.py\n * @author (original JAVA) William Fiset, [email protected]\n * liujingkun, [email protected]\n * (conversion to Python) Armin Zare Zadeh, [email protected]\n * @date 23 Jun 2020\n * @version 0.1\n * @brief This file contains an implementation of an integer only queue.\n * \n'''\n\nimport time\nfrom array import array as arr\nfrom collections import deque\nfrom Queue import Queue\n\n\nclass IntQueue(Queue):\n ''' \n An integer only implementation of a queue\n '''\n def __init__(self, maxSize):\n \"\"\"\n maxSize is the maximum number of items\n that can be in the queue at any given time\n \"\"\" \n self.front = 0\n self.end = 0\n self.qSize = 0\n self.data = arr('i', (0 for i in range(maxSize)))\n\n\n def isEmpty(self):\n \"\"\"\n Return true/false on whether the queue is empty\n \"\"\"\n return self.qSize == 0\n\n\n def size(self):\n \"\"\"\n Return the number of elements inside the queue\n \"\"\" \n return self.qSize\n\n\n def peek(self):\n if self.isEmpty():\n raise Exception('Queue is empty')\n \n self.front = self.front % len(self.data)\n return self.data[self.front]\n\n\n def isFull(self):\n return self.qSize == len(self.data)\n\n\n def offer(self, value):\n \"\"\"\n Add an element to the queue\n \"\"\"\n if self.isFull():\n raise Exception(\"Queue too small!\")\n \n self.data[self.end] = value\n self.end += 1\n self.qSize += 1\n self.end = self.end % len(self.data)\n\n\n def poll(self):\n \"\"\"\n Make sure you check is the queue is not empty before calling poll!\n \"\"\"\n if self.isEmpty():\n raise Exception('Queue is empty')\n \n self.qSize -= 1\n self.front = self.front % len(self.data)\n d = self.data[self.front]\n self.front += 1\n return d\n\n\n\ndef benchMarkTest():\n \"\"\"\n BenchMark IntQueue vs ArrayDeque.\n \"\"\" \n\n n = 10000000\n intQ = IntQueue(n)\n\n # IntQueue times at around 12.109375 seconds\n start = time.process_time()\n for i in range(0, n):\n intQ.offer(i)\n for i in range(0, n):\n intQ.poll()\n end = time.process_time()\n print(\"IntQueue Time: \", (end - start))\n\n # ArrayDeque times at around 1.1875 seconds\n arrayDeque = deque()\n start = time.process_time()\n for i in range(0, n):\n arrayDeque.append(i)\n for i in range(0, n):\n arrayDeque.popleft()\n end = time.process_time()\n print(\"ArrayDeque Time: \", (end - start))\n\n\n\nif __name__ == '__main__':\n \"\"\"\n Example usage\n \"\"\"\n\n q = IntQueue(5)\n\n q.offer(1)\n q.offer(2)\n q.offer(3)\n q.offer(4)\n q.offer(5)\n\n print(q.poll()) # 1\n print(q.poll()) # 2\n print(q.poll()) # 3\n print(q.poll()) # 4\n\n print(q.isEmpty()) # false\n\n q.offer(1);\n q.offer(2);\n q.offer(3);\n\n print(q.poll()) # 5\n print(q.poll()) # 1\n print(q.poll()) # 2\n print(q.poll()) # 3\n\n print(q.isEmpty()) # true\n\n benchMarkTest()\n", "step-ids": [ 0, 8, 11, 12, 13 ] }
[ 0, 8, 11, 12, 13 ]
from random import randint import matplotlib.pyplot as plt def generate_list(length: int) -> list: """Generate a list with given length with random integer values in the interval [0, length] Args: length (int): List length Returns: list: List generated with random values """ return [randint(0, length + 1) for _ in range(length)] def plot_table(timestamps: dict, threadList: list, mList: list) -> None: """Plot standard deviation chart Args: k (list): Threads/Process used deviation (list): Standard deviation of the timestamps label (str): "Threads" or "Processos" """ plt.plot(threadList, timestamps.values(), 'o-') plt.legend(mList, title = 'Total valores', loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5)) plt.xlabel('Número de processos') plt.ylabel('Tempo de Execução (s)') plt.title('Tempo de Execução por Total de Processos e Valores') plt.show()
normal
{ "blob_id": "8804bfc5bed8b93e50279f0cbab561fe09d92a64", "index": 6522, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef plot_table(timestamps: dict, threadList: list, mList: list) ->None:\n \"\"\"Plot standard deviation chart\n\n Args:\n k (list): Threads/Process used\n deviation (list): Standard deviation of the timestamps\n label (str): \"Threads\" or \"Processos\"\n \"\"\"\n plt.plot(threadList, timestamps.values(), 'o-')\n plt.legend(mList, title='Total valores', loc='best', bbox_to_anchor=(\n 0.5, 0.0, 0.5, 0.5))\n plt.xlabel('Número de processos')\n plt.ylabel('Tempo de Execução (s)')\n plt.title('Tempo de Execução por Total de Processos e Valores')\n plt.show()\n", "step-3": "<mask token>\n\n\ndef generate_list(length: int) ->list:\n \"\"\"Generate a list with given length with random integer values in the interval [0, length]\n\n Args:\n length (int): List length\n\n Returns:\n list: List generated with random values\n \"\"\"\n return [randint(0, length + 1) for _ in range(length)]\n\n\ndef plot_table(timestamps: dict, threadList: list, mList: list) ->None:\n \"\"\"Plot standard deviation chart\n\n Args:\n k (list): Threads/Process used\n deviation (list): Standard deviation of the timestamps\n label (str): \"Threads\" or \"Processos\"\n \"\"\"\n plt.plot(threadList, timestamps.values(), 'o-')\n plt.legend(mList, title='Total valores', loc='best', bbox_to_anchor=(\n 0.5, 0.0, 0.5, 0.5))\n plt.xlabel('Número de processos')\n plt.ylabel('Tempo de Execução (s)')\n plt.title('Tempo de Execução por Total de Processos e Valores')\n plt.show()\n", "step-4": "from random import randint\nimport matplotlib.pyplot as plt\n\n\ndef generate_list(length: int) ->list:\n \"\"\"Generate a list with given length with random integer values in the interval [0, length]\n\n Args:\n length (int): List length\n\n Returns:\n list: List generated with random values\n \"\"\"\n return [randint(0, length + 1) for _ in range(length)]\n\n\ndef plot_table(timestamps: dict, threadList: list, mList: list) ->None:\n \"\"\"Plot standard deviation chart\n\n Args:\n k (list): Threads/Process used\n deviation (list): Standard deviation of the timestamps\n label (str): \"Threads\" or \"Processos\"\n \"\"\"\n plt.plot(threadList, timestamps.values(), 'o-')\n plt.legend(mList, title='Total valores', loc='best', bbox_to_anchor=(\n 0.5, 0.0, 0.5, 0.5))\n plt.xlabel('Número de processos')\n plt.ylabel('Tempo de Execução (s)')\n plt.title('Tempo de Execução por Total de Processos e Valores')\n plt.show()\n", "step-5": "from random import randint\nimport matplotlib.pyplot as plt\n\ndef generate_list(length: int) -> list:\n \"\"\"Generate a list with given length with random integer values in the interval [0, length]\n\n Args:\n length (int): List length\n\n Returns:\n list: List generated with random values\n \"\"\"\n\n return [randint(0, length + 1) for _ in range(length)]\n\ndef plot_table(timestamps: dict, threadList: list, mList: list) -> None:\n \"\"\"Plot standard deviation chart\n\n Args:\n k (list): Threads/Process used\n deviation (list): Standard deviation of the timestamps\n label (str): \"Threads\" or \"Processos\"\n \"\"\"\n plt.plot(threadList, timestamps.values(), 'o-')\n plt.legend(mList, title = 'Total valores', loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5))\n plt.xlabel('Número de processos')\n plt.ylabel('Tempo de Execução (s)')\n plt.title('Tempo de Execução por Total de Processos e Valores')\n plt.show()\n ", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
N = int(input()) A_list = list(map(int, input().split())) B_list = list(map(int, input().split())) C_list = list(map(int, input().split())) ans = 0 for i in range(N): ans += B_list[A_list[i] - 1] if i < N - 1: if A_list[i] + 1 == A_list[i + 1]: ans += C_list[A_list[i] - 1] print(ans)
normal
{ "blob_id": "cc160b1b0478446ba0daec4a0fe9e63453df3d96", "index": 5029, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(N):\n ans += B_list[A_list[i] - 1]\n if i < N - 1:\n if A_list[i] + 1 == A_list[i + 1]:\n ans += C_list[A_list[i] - 1]\nprint(ans)\n", "step-3": "N = int(input())\nA_list = list(map(int, input().split()))\nB_list = list(map(int, input().split()))\nC_list = list(map(int, input().split()))\nans = 0\nfor i in range(N):\n ans += B_list[A_list[i] - 1]\n if i < N - 1:\n if A_list[i] + 1 == A_list[i + 1]:\n ans += C_list[A_list[i] - 1]\nprint(ans)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import tensorflow as tf import settings import numpy as np slim = tf.contrib.slim class Model: def __init__(self, training = True): self.classes = settings.classes_name self.num_classes = len(settings.classes_name) self.image_size = settings.image_size self.cell_size = settings.cell_size self.boxes_per_cell = settings.box_per_cell self.output_size = (self.cell_size * self.cell_size) * (self.num_classes + self.boxes_per_cell * 5) self.scale = 1.0 * self.image_size / self.cell_size self.boundary1 = self.cell_size * self.cell_size * self.num_classes self.boundary2 = self.boundary1 + self.cell_size * self.cell_size * self.boxes_per_cell self.object_scale = settings.object_scale self.no_object_scale = settings.no_object_scale self.class_scale = settings.class_scale self.coord_scale = settings.coordinate_scale self.offset = np.transpose(np.reshape(np.array([np.arange(self.cell_size)] * self.cell_size * self.boxes_per_cell), (self.boxes_per_cell, self.cell_size, self.cell_size)), (1, 2, 0)) self.images = tf.placeholder(tf.float32, [None, settings.image_size, settings.image_size, 3]) if settings.model_type == 'normal': self.logits = self.build_network(self.images, num_outputs = self.output_size, alpha = settings.alpha_relu, training = training) if settings.model_type == 'fast': self.logits = self.build_fast_network(self.images, num_outputs = self.output_size, alpha = settings.alpha_relu, training = training) if training: self.batch = tf.Variable(0) self.labels = tf.placeholder(tf.float32, [None, self.cell_size, self.cell_size, 5 + self.num_classes]) self.loss_layer(self.logits, self.labels) self.total_loss = tf.contrib.losses.get_total_loss() self.learning_rate = tf.train.exponential_decay(settings.learning_rate, self.batch * settings.batch_size, settings.decay_step, settings.decay_rate, True) self.optimizer = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self.total_loss, global_step = self.batch) def build_network(self, images, num_outputs, alpha, keep_prob = settings.dropout, training = True, scope = 'yolo'): with tf.variable_scope(scope): with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn = leaky_relu(alpha), weights_initializer = tf.truncated_normal_initializer(0.0, 0.01), weights_regularizer = slim.l2_regularizer(0.0005)): net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, 0]]), name = 'pad_1') net = slim.conv2d(net, 64, 7, 2, padding = 'VALID', scope = 'conv_2') net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_3') net = slim.conv2d(net, 192, 3, scope = 'conv_4') net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_5') net = slim.conv2d(net, 128, 1, scope = 'conv_6') net = slim.conv2d(net, 256, 3, scope = 'conv_7') net = slim.conv2d(net, 256, 1, scope = 'conv_8') net = slim.conv2d(net, 512, 3, scope = 'conv_9') net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_10') net = slim.conv2d(net, 256, 1, scope = 'conv_11') net = slim.conv2d(net, 512, 3, scope = 'conv_12') net = slim.conv2d(net, 256, 1, scope = 'conv_13') net = slim.conv2d(net, 512, 3, scope = 'conv_14') net = slim.conv2d(net, 256, 1, scope = 'conv_15') net = slim.conv2d(net, 512, 3, scope = 'conv_16') net = slim.conv2d(net, 256, 1, scope = 'conv_17') net = slim.conv2d(net, 512, 3, scope = 'conv_18') net = slim.conv2d(net, 512, 1, scope = 'conv_19') net = slim.conv2d(net, 1024, 3, scope = 'conv_20') net = slim.max_pool2d(net, 2, padding='SAME', scope = 'pool_21') net = slim.conv2d(net, 512, 1, scope = 'conv_22') net = slim.conv2d(net, 1024, 3, scope = 'conv_23') net = slim.conv2d(net, 512, 1, scope = 'conv_24') net = slim.conv2d(net, 1024, 3, scope = 'conv_25') net = slim.conv2d(net, 1024, 3, scope = 'conv_26') net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]), name = 'pad_27') net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope = 'conv_28') net = slim.conv2d(net, 1024, 3, scope = 'conv_29') net = slim.conv2d(net, 1024, 3, scope = 'conv_30') net = tf.transpose(net, [0, 3, 1, 2], name='trans_31') net = slim.flatten(net, scope = 'flat_32') net = slim.fully_connected(net, 512, scope = 'fc_33') net = slim.fully_connected(net, 4096, scope = 'fc_34') net = slim.dropout(net, keep_prob = keep_prob, is_training = training, scope = 'dropout_35') net = slim.fully_connected(net, num_outputs, activation_fn = None, scope = 'fc_36') return net def build_fast_network(self, images, num_outputs, alpha, keep_prob = settings.dropout, training = True, scope = 'yolo'): with tf.variable_scope(scope): with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn = leaky_relu(alpha), weights_initializer = tf.truncated_normal_initializer(0.0, 0.01), weights_regularizer = slim.l2_regularizer(0.0005)): net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, 0]]), name = 'pad_1') net = slim.conv2d(net, 64, 7, 2, padding = 'VALID', scope = 'conv_2') net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_3') net = slim.conv2d(net, 192, 3, scope = 'conv_4') net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_5') net = slim.conv2d(net, 128, 1, scope = 'conv_6') net = slim.conv2d(net, 256, 3, scope = 'conv_7') net = slim.conv2d(net, 512, 3, scope = 'conv_9') net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_10') net = slim.conv2d(net, 256, 1, scope = 'conv_11') net = slim.conv2d(net, 512, 3, scope = 'conv_12') net = slim.conv2d(net, 1024, 3, scope = 'conv_20') net = slim.max_pool2d(net, 2, padding='SAME', scope = 'pool_21') net = slim.conv2d(net, 512, 1, scope = 'conv_22') net = slim.conv2d(net, 1024, 3, scope = 'conv_23') net = slim.conv2d(net, 1024, 3, scope = 'conv_26') net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]), name = 'pad_27') net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope = 'conv_28') net = tf.transpose(net, [0, 3, 1, 2], name='trans_31') net = slim.flatten(net, scope = 'flat_32') net = slim.fully_connected(net, 512, scope = 'fc_33') net = slim.fully_connected(net, 4096, scope = 'fc_34') net = slim.dropout(net, keep_prob = keep_prob, is_training = training, scope = 'dropout_35') net = slim.fully_connected(net, num_outputs, activation_fn = None, scope = 'fc_36') return net def calc_iou(self, boxes1, boxes2, scope = 'iou'): with tf.variable_scope(scope): boxes1 = tf.stack([boxes1[:, :, :, :, 0] - boxes1[:, :, :, :, 2] / 2.0, boxes1[:, :, :, :, 1] - boxes1[:, :, :, :, 3] / 2.0, boxes1[:, :, :, :, 0] + boxes1[:, :, :, :, 2] / 2.0, boxes1[:, :, :, :, 1] + boxes1[:, :, :, :, 3] / 2.0]) boxes1 = tf.transpose(boxes1, [1, 2, 3, 4, 0]) boxes2 = tf.stack([boxes2[:, :, :, :, 0] - boxes2[:, :, :, :, 2] / 2.0, boxes2[:, :, :, :, 1] - boxes2[:, :, :, :, 3] / 2.0, boxes2[:, :, :, :, 0] + boxes2[:, :, :, :, 2] / 2.0, boxes2[:, :, :, :, 1] + boxes2[:, :, :, :, 3] / 2.0]) boxes2 = tf.transpose(boxes2, [1, 2, 3, 4, 0]) lu = tf.maximum(boxes1[:, :, :, :, :2], boxes2[:, :, :, :, :2]) rd = tf.minimum(boxes1[:, :, :, :, 2:], boxes2[:, :, :, :, 2:]) intersection = tf.maximum(0.0, rd - lu) inter_square = intersection[:, :, :, :, 0] * intersection[:, :, :, :, 1] square1 = (boxes1[:, :, :, :, 2] - boxes1[:, :, :, :, 0]) * (boxes1[:, :, :, :, 3] - boxes1[:, :, :, :, 1]) square2 = (boxes2[:, :, :, :, 2] - boxes2[:, :, :, :, 0]) * (boxes2[:, :, :, :, 3] - boxes2[:, :, :, :, 1]) union_square = tf.maximum(square1 + square2 - inter_square, 1e-10) return tf.clip_by_value(inter_square / union_square, 0.0, 1.0) def loss_layer(self, predicts, labels, scope = 'loss_layer'): with tf.variable_scope(scope): predict_classes = tf.reshape(predicts[:, :self.boundary1], [settings.batch_size, self.cell_size, self.cell_size, self.num_classes]) predict_scales = tf.reshape(predicts[:, self.boundary1:self.boundary2], [settings.batch_size, self.cell_size, self.cell_size, self.boxes_per_cell]) predict_boxes = tf.reshape(predicts[:, self.boundary2:], [settings.batch_size, self.cell_size, self.cell_size, self.boxes_per_cell, 4]) response = tf.reshape(labels[:, :, :, 0], [settings.batch_size, self.cell_size, self.cell_size, 1]) boxes = tf.reshape(labels[:, :, :, 1:5], [settings.batch_size, self.cell_size, self.cell_size, 1, 4]) boxes = tf.tile(boxes, [1, 1, 1, self.boxes_per_cell, 1]) / self.image_size classes = labels[:, :, :, 5:] offset = tf.constant(self.offset, dtype = tf.float32) offset = tf.reshape(offset, [1, self.cell_size, self.cell_size, self.boxes_per_cell]) offset = tf.tile(offset, [settings.batch_size, 1, 1, 1]) predict_boxes_tran = tf.stack([(predict_boxes[:, :, :, :, 0] + offset) / self.cell_size, (predict_boxes[:, :, :, :, 1] + tf.transpose(offset, (0, 2, 1, 3))) / self.cell_size, tf.square(predict_boxes[:, :, :, :, 2]), tf.square(predict_boxes[:, :, :, :, 3])]) predict_boxes_tran = tf.transpose(predict_boxes_tran, [1, 2, 3, 4, 0]) iou_predict_truth = self.calc_iou(predict_boxes_tran, boxes) object_mask = tf.reduce_max(iou_predict_truth, 3, keep_dims=True) object_mask = tf.cast((iou_predict_truth >= object_mask), tf.float32) * response noobject_mask = tf.ones_like(object_mask, dtype=tf.float32) - object_mask boxes_tran = tf.stack([boxes[:, :, :, :, 0] * self.cell_size - offset, boxes[:, :, :, :, 1] * self.cell_size - tf.transpose(offset, (0, 2, 1, 3)), tf.sqrt(boxes[:, :, :, :, 2]), tf.sqrt(boxes[:, :, :, :, 3])]) boxes_tran = tf.transpose(boxes_tran, [1, 2, 3, 4, 0]) class_delta = response * (predict_classes - classes) class_loss = tf.reduce_mean(tf.reduce_sum(tf.square(class_delta), axis=[1, 2, 3]), name = 'class_loss') * self.class_scale object_delta = object_mask * (predict_scales - iou_predict_truth) object_loss = tf.reduce_mean(tf.reduce_sum(tf.square(object_delta), axis=[1, 2, 3]), name = 'object_loss') * self.object_scale noobject_delta = noobject_mask * predict_scales noobject_loss = tf.reduce_mean(tf.reduce_sum(tf.square(noobject_delta), axis=[1, 2, 3]), name = 'noobject_loss') * self.no_object_scale coord_mask = tf.expand_dims(object_mask, 4) boxes_delta = coord_mask * (predict_boxes - boxes_tran) coord_loss = tf.reduce_mean(tf.reduce_sum(tf.square(boxes_delta), axis=[1, 2, 3, 4]), name = 'coord_loss') * self.coord_scale tf.contrib.losses.add_loss(class_loss) tf.contrib.losses.add_loss(object_loss) tf.contrib.losses.add_loss(noobject_loss) tf.contrib.losses.add_loss(coord_loss) def leaky_relu(alpha): def op(inputs): return tf.maximum(alpha * inputs, inputs) return op
normal
{ "blob_id": "8ccec24e1a7060269ffbb376ba0c480da9eabe0a", "index": 819, "step-1": "<mask token>\n\n\nclass Model:\n\n def __init__(self, training=True):\n self.classes = settings.classes_name\n self.num_classes = len(settings.classes_name)\n self.image_size = settings.image_size\n self.cell_size = settings.cell_size\n self.boxes_per_cell = settings.box_per_cell\n self.output_size = self.cell_size * self.cell_size * (self.\n num_classes + self.boxes_per_cell * 5)\n self.scale = 1.0 * self.image_size / self.cell_size\n self.boundary1 = self.cell_size * self.cell_size * self.num_classes\n self.boundary2 = (self.boundary1 + self.cell_size * self.cell_size *\n self.boxes_per_cell)\n self.object_scale = settings.object_scale\n self.no_object_scale = settings.no_object_scale\n self.class_scale = settings.class_scale\n self.coord_scale = settings.coordinate_scale\n self.offset = np.transpose(np.reshape(np.array([np.arange(self.\n cell_size)] * self.cell_size * self.boxes_per_cell), (self.\n boxes_per_cell, self.cell_size, self.cell_size)), (1, 2, 0))\n self.images = tf.placeholder(tf.float32, [None, settings.image_size,\n settings.image_size, 3])\n if settings.model_type == 'normal':\n self.logits = self.build_network(self.images, num_outputs=self.\n output_size, alpha=settings.alpha_relu, training=training)\n if settings.model_type == 'fast':\n self.logits = self.build_fast_network(self.images, num_outputs=\n self.output_size, alpha=settings.alpha_relu, training=training)\n if training:\n self.batch = tf.Variable(0)\n self.labels = tf.placeholder(tf.float32, [None, self.cell_size,\n self.cell_size, 5 + self.num_classes])\n self.loss_layer(self.logits, self.labels)\n self.total_loss = tf.contrib.losses.get_total_loss()\n self.learning_rate = tf.train.exponential_decay(settings.\n learning_rate, self.batch * settings.batch_size, settings.\n decay_step, settings.decay_rate, True)\n self.optimizer = tf.train.GradientDescentOptimizer(self.\n learning_rate).minimize(self.total_loss, global_step=self.batch\n )\n\n def build_network(self, images, num_outputs, alpha, keep_prob=settings.\n dropout, training=True, scope='yolo'):\n with tf.variable_scope(scope):\n with slim.arg_scope([slim.conv2d, slim.fully_connected],\n activation_fn=leaky_relu(alpha), weights_initializer=tf.\n truncated_normal_initializer(0.0, 0.01),\n weights_regularizer=slim.l2_regularizer(0.0005)):\n net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, \n 0]]), name='pad_1')\n net = slim.conv2d(net, 64, 7, 2, padding='VALID', scope=\n 'conv_2')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_3')\n net = slim.conv2d(net, 192, 3, scope='conv_4')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_5')\n net = slim.conv2d(net, 128, 1, scope='conv_6')\n net = slim.conv2d(net, 256, 3, scope='conv_7')\n net = slim.conv2d(net, 256, 1, scope='conv_8')\n net = slim.conv2d(net, 512, 3, scope='conv_9')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_10')\n net = slim.conv2d(net, 256, 1, scope='conv_11')\n net = slim.conv2d(net, 512, 3, scope='conv_12')\n net = slim.conv2d(net, 256, 1, scope='conv_13')\n net = slim.conv2d(net, 512, 3, scope='conv_14')\n net = slim.conv2d(net, 256, 1, scope='conv_15')\n net = slim.conv2d(net, 512, 3, scope='conv_16')\n net = slim.conv2d(net, 256, 1, scope='conv_17')\n net = slim.conv2d(net, 512, 3, scope='conv_18')\n net = slim.conv2d(net, 512, 1, scope='conv_19')\n net = slim.conv2d(net, 1024, 3, scope='conv_20')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_21')\n net = slim.conv2d(net, 512, 1, scope='conv_22')\n net = slim.conv2d(net, 1024, 3, scope='conv_23')\n net = slim.conv2d(net, 512, 1, scope='conv_24')\n net = slim.conv2d(net, 1024, 3, scope='conv_25')\n net = slim.conv2d(net, 1024, 3, scope='conv_26')\n net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]\n ), name='pad_27')\n net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope=\n 'conv_28')\n net = slim.conv2d(net, 1024, 3, scope='conv_29')\n net = slim.conv2d(net, 1024, 3, scope='conv_30')\n net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')\n net = slim.flatten(net, scope='flat_32')\n net = slim.fully_connected(net, 512, scope='fc_33')\n net = slim.fully_connected(net, 4096, scope='fc_34')\n net = slim.dropout(net, keep_prob=keep_prob, is_training=\n training, scope='dropout_35')\n net = slim.fully_connected(net, num_outputs, activation_fn=\n None, scope='fc_36')\n return net\n\n def build_fast_network(self, images, num_outputs, alpha, keep_prob=\n settings.dropout, training=True, scope='yolo'):\n with tf.variable_scope(scope):\n with slim.arg_scope([slim.conv2d, slim.fully_connected],\n activation_fn=leaky_relu(alpha), weights_initializer=tf.\n truncated_normal_initializer(0.0, 0.01),\n weights_regularizer=slim.l2_regularizer(0.0005)):\n net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, \n 0]]), name='pad_1')\n net = slim.conv2d(net, 64, 7, 2, padding='VALID', scope=\n 'conv_2')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_3')\n net = slim.conv2d(net, 192, 3, scope='conv_4')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_5')\n net = slim.conv2d(net, 128, 1, scope='conv_6')\n net = slim.conv2d(net, 256, 3, scope='conv_7')\n net = slim.conv2d(net, 512, 3, scope='conv_9')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_10')\n net = slim.conv2d(net, 256, 1, scope='conv_11')\n net = slim.conv2d(net, 512, 3, scope='conv_12')\n net = slim.conv2d(net, 1024, 3, scope='conv_20')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_21')\n net = slim.conv2d(net, 512, 1, scope='conv_22')\n net = slim.conv2d(net, 1024, 3, scope='conv_23')\n net = slim.conv2d(net, 1024, 3, scope='conv_26')\n net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]\n ), name='pad_27')\n net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope=\n 'conv_28')\n net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')\n net = slim.flatten(net, scope='flat_32')\n net = slim.fully_connected(net, 512, scope='fc_33')\n net = slim.fully_connected(net, 4096, scope='fc_34')\n net = slim.dropout(net, keep_prob=keep_prob, is_training=\n training, scope='dropout_35')\n net = slim.fully_connected(net, num_outputs, activation_fn=\n None, scope='fc_36')\n return net\n\n def calc_iou(self, boxes1, boxes2, scope='iou'):\n with tf.variable_scope(scope):\n boxes1 = tf.stack([boxes1[:, :, :, :, 0] - boxes1[:, :, :, :, 2\n ] / 2.0, boxes1[:, :, :, :, 1] - boxes1[:, :, :, :, 3] / \n 2.0, boxes1[:, :, :, :, 0] + boxes1[:, :, :, :, 2] / 2.0, \n boxes1[:, :, :, :, 1] + boxes1[:, :, :, :, 3] / 2.0])\n boxes1 = tf.transpose(boxes1, [1, 2, 3, 4, 0])\n boxes2 = tf.stack([boxes2[:, :, :, :, 0] - boxes2[:, :, :, :, 2\n ] / 2.0, boxes2[:, :, :, :, 1] - boxes2[:, :, :, :, 3] / \n 2.0, boxes2[:, :, :, :, 0] + boxes2[:, :, :, :, 2] / 2.0, \n boxes2[:, :, :, :, 1] + boxes2[:, :, :, :, 3] / 2.0])\n boxes2 = tf.transpose(boxes2, [1, 2, 3, 4, 0])\n lu = tf.maximum(boxes1[:, :, :, :, :2], boxes2[:, :, :, :, :2])\n rd = tf.minimum(boxes1[:, :, :, :, 2:], boxes2[:, :, :, :, 2:])\n intersection = tf.maximum(0.0, rd - lu)\n inter_square = intersection[:, :, :, :, 0] * intersection[:, :,\n :, :, 1]\n square1 = (boxes1[:, :, :, :, 2] - boxes1[:, :, :, :, 0]) * (boxes1\n [:, :, :, :, 3] - boxes1[:, :, :, :, 1])\n square2 = (boxes2[:, :, :, :, 2] - boxes2[:, :, :, :, 0]) * (boxes2\n [:, :, :, :, 3] - boxes2[:, :, :, :, 1])\n union_square = tf.maximum(square1 + square2 - inter_square, 1e-10)\n return tf.clip_by_value(inter_square / union_square, 0.0, 1.0)\n\n def loss_layer(self, predicts, labels, scope='loss_layer'):\n with tf.variable_scope(scope):\n predict_classes = tf.reshape(predicts[:, :self.boundary1], [\n settings.batch_size, self.cell_size, self.cell_size, self.\n num_classes])\n predict_scales = tf.reshape(predicts[:, self.boundary1:self.\n boundary2], [settings.batch_size, self.cell_size, self.\n cell_size, self.boxes_per_cell])\n predict_boxes = tf.reshape(predicts[:, self.boundary2:], [\n settings.batch_size, self.cell_size, self.cell_size, self.\n boxes_per_cell, 4])\n response = tf.reshape(labels[:, :, :, 0], [settings.batch_size,\n self.cell_size, self.cell_size, 1])\n boxes = tf.reshape(labels[:, :, :, 1:5], [settings.batch_size,\n self.cell_size, self.cell_size, 1, 4])\n boxes = tf.tile(boxes, [1, 1, 1, self.boxes_per_cell, 1]\n ) / self.image_size\n classes = labels[:, :, :, 5:]\n offset = tf.constant(self.offset, dtype=tf.float32)\n offset = tf.reshape(offset, [1, self.cell_size, self.cell_size,\n self.boxes_per_cell])\n offset = tf.tile(offset, [settings.batch_size, 1, 1, 1])\n predict_boxes_tran = tf.stack([(predict_boxes[:, :, :, :, 0] +\n offset) / self.cell_size, (predict_boxes[:, :, :, :, 1] +\n tf.transpose(offset, (0, 2, 1, 3))) / self.cell_size, tf.\n square(predict_boxes[:, :, :, :, 2]), tf.square(\n predict_boxes[:, :, :, :, 3])])\n predict_boxes_tran = tf.transpose(predict_boxes_tran, [1, 2, 3,\n 4, 0])\n iou_predict_truth = self.calc_iou(predict_boxes_tran, boxes)\n object_mask = tf.reduce_max(iou_predict_truth, 3, keep_dims=True)\n object_mask = tf.cast(iou_predict_truth >= object_mask, tf.float32\n ) * response\n noobject_mask = tf.ones_like(object_mask, dtype=tf.float32\n ) - object_mask\n boxes_tran = tf.stack([boxes[:, :, :, :, 0] * self.cell_size -\n offset, boxes[:, :, :, :, 1] * self.cell_size - tf.\n transpose(offset, (0, 2, 1, 3)), tf.sqrt(boxes[:, :, :, :, \n 2]), tf.sqrt(boxes[:, :, :, :, 3])])\n boxes_tran = tf.transpose(boxes_tran, [1, 2, 3, 4, 0])\n class_delta = response * (predict_classes - classes)\n class_loss = tf.reduce_mean(tf.reduce_sum(tf.square(class_delta\n ), axis=[1, 2, 3]), name='class_loss') * self.class_scale\n object_delta = object_mask * (predict_scales - iou_predict_truth)\n object_loss = tf.reduce_mean(tf.reduce_sum(tf.square(\n object_delta), axis=[1, 2, 3]), name='object_loss'\n ) * self.object_scale\n noobject_delta = noobject_mask * predict_scales\n noobject_loss = tf.reduce_mean(tf.reduce_sum(tf.square(\n noobject_delta), axis=[1, 2, 3]), name='noobject_loss'\n ) * self.no_object_scale\n coord_mask = tf.expand_dims(object_mask, 4)\n boxes_delta = coord_mask * (predict_boxes - boxes_tran)\n coord_loss = tf.reduce_mean(tf.reduce_sum(tf.square(boxes_delta\n ), axis=[1, 2, 3, 4]), name='coord_loss') * self.coord_scale\n tf.contrib.losses.add_loss(class_loss)\n tf.contrib.losses.add_loss(object_loss)\n tf.contrib.losses.add_loss(noobject_loss)\n tf.contrib.losses.add_loss(coord_loss)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Model:\n\n def __init__(self, training=True):\n self.classes = settings.classes_name\n self.num_classes = len(settings.classes_name)\n self.image_size = settings.image_size\n self.cell_size = settings.cell_size\n self.boxes_per_cell = settings.box_per_cell\n self.output_size = self.cell_size * self.cell_size * (self.\n num_classes + self.boxes_per_cell * 5)\n self.scale = 1.0 * self.image_size / self.cell_size\n self.boundary1 = self.cell_size * self.cell_size * self.num_classes\n self.boundary2 = (self.boundary1 + self.cell_size * self.cell_size *\n self.boxes_per_cell)\n self.object_scale = settings.object_scale\n self.no_object_scale = settings.no_object_scale\n self.class_scale = settings.class_scale\n self.coord_scale = settings.coordinate_scale\n self.offset = np.transpose(np.reshape(np.array([np.arange(self.\n cell_size)] * self.cell_size * self.boxes_per_cell), (self.\n boxes_per_cell, self.cell_size, self.cell_size)), (1, 2, 0))\n self.images = tf.placeholder(tf.float32, [None, settings.image_size,\n settings.image_size, 3])\n if settings.model_type == 'normal':\n self.logits = self.build_network(self.images, num_outputs=self.\n output_size, alpha=settings.alpha_relu, training=training)\n if settings.model_type == 'fast':\n self.logits = self.build_fast_network(self.images, num_outputs=\n self.output_size, alpha=settings.alpha_relu, training=training)\n if training:\n self.batch = tf.Variable(0)\n self.labels = tf.placeholder(tf.float32, [None, self.cell_size,\n self.cell_size, 5 + self.num_classes])\n self.loss_layer(self.logits, self.labels)\n self.total_loss = tf.contrib.losses.get_total_loss()\n self.learning_rate = tf.train.exponential_decay(settings.\n learning_rate, self.batch * settings.batch_size, settings.\n decay_step, settings.decay_rate, True)\n self.optimizer = tf.train.GradientDescentOptimizer(self.\n learning_rate).minimize(self.total_loss, global_step=self.batch\n )\n\n def build_network(self, images, num_outputs, alpha, keep_prob=settings.\n dropout, training=True, scope='yolo'):\n with tf.variable_scope(scope):\n with slim.arg_scope([slim.conv2d, slim.fully_connected],\n activation_fn=leaky_relu(alpha), weights_initializer=tf.\n truncated_normal_initializer(0.0, 0.01),\n weights_regularizer=slim.l2_regularizer(0.0005)):\n net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, \n 0]]), name='pad_1')\n net = slim.conv2d(net, 64, 7, 2, padding='VALID', scope=\n 'conv_2')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_3')\n net = slim.conv2d(net, 192, 3, scope='conv_4')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_5')\n net = slim.conv2d(net, 128, 1, scope='conv_6')\n net = slim.conv2d(net, 256, 3, scope='conv_7')\n net = slim.conv2d(net, 256, 1, scope='conv_8')\n net = slim.conv2d(net, 512, 3, scope='conv_9')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_10')\n net = slim.conv2d(net, 256, 1, scope='conv_11')\n net = slim.conv2d(net, 512, 3, scope='conv_12')\n net = slim.conv2d(net, 256, 1, scope='conv_13')\n net = slim.conv2d(net, 512, 3, scope='conv_14')\n net = slim.conv2d(net, 256, 1, scope='conv_15')\n net = slim.conv2d(net, 512, 3, scope='conv_16')\n net = slim.conv2d(net, 256, 1, scope='conv_17')\n net = slim.conv2d(net, 512, 3, scope='conv_18')\n net = slim.conv2d(net, 512, 1, scope='conv_19')\n net = slim.conv2d(net, 1024, 3, scope='conv_20')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_21')\n net = slim.conv2d(net, 512, 1, scope='conv_22')\n net = slim.conv2d(net, 1024, 3, scope='conv_23')\n net = slim.conv2d(net, 512, 1, scope='conv_24')\n net = slim.conv2d(net, 1024, 3, scope='conv_25')\n net = slim.conv2d(net, 1024, 3, scope='conv_26')\n net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]\n ), name='pad_27')\n net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope=\n 'conv_28')\n net = slim.conv2d(net, 1024, 3, scope='conv_29')\n net = slim.conv2d(net, 1024, 3, scope='conv_30')\n net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')\n net = slim.flatten(net, scope='flat_32')\n net = slim.fully_connected(net, 512, scope='fc_33')\n net = slim.fully_connected(net, 4096, scope='fc_34')\n net = slim.dropout(net, keep_prob=keep_prob, is_training=\n training, scope='dropout_35')\n net = slim.fully_connected(net, num_outputs, activation_fn=\n None, scope='fc_36')\n return net\n\n def build_fast_network(self, images, num_outputs, alpha, keep_prob=\n settings.dropout, training=True, scope='yolo'):\n with tf.variable_scope(scope):\n with slim.arg_scope([slim.conv2d, slim.fully_connected],\n activation_fn=leaky_relu(alpha), weights_initializer=tf.\n truncated_normal_initializer(0.0, 0.01),\n weights_regularizer=slim.l2_regularizer(0.0005)):\n net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, \n 0]]), name='pad_1')\n net = slim.conv2d(net, 64, 7, 2, padding='VALID', scope=\n 'conv_2')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_3')\n net = slim.conv2d(net, 192, 3, scope='conv_4')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_5')\n net = slim.conv2d(net, 128, 1, scope='conv_6')\n net = slim.conv2d(net, 256, 3, scope='conv_7')\n net = slim.conv2d(net, 512, 3, scope='conv_9')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_10')\n net = slim.conv2d(net, 256, 1, scope='conv_11')\n net = slim.conv2d(net, 512, 3, scope='conv_12')\n net = slim.conv2d(net, 1024, 3, scope='conv_20')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_21')\n net = slim.conv2d(net, 512, 1, scope='conv_22')\n net = slim.conv2d(net, 1024, 3, scope='conv_23')\n net = slim.conv2d(net, 1024, 3, scope='conv_26')\n net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]\n ), name='pad_27')\n net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope=\n 'conv_28')\n net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')\n net = slim.flatten(net, scope='flat_32')\n net = slim.fully_connected(net, 512, scope='fc_33')\n net = slim.fully_connected(net, 4096, scope='fc_34')\n net = slim.dropout(net, keep_prob=keep_prob, is_training=\n training, scope='dropout_35')\n net = slim.fully_connected(net, num_outputs, activation_fn=\n None, scope='fc_36')\n return net\n\n def calc_iou(self, boxes1, boxes2, scope='iou'):\n with tf.variable_scope(scope):\n boxes1 = tf.stack([boxes1[:, :, :, :, 0] - boxes1[:, :, :, :, 2\n ] / 2.0, boxes1[:, :, :, :, 1] - boxes1[:, :, :, :, 3] / \n 2.0, boxes1[:, :, :, :, 0] + boxes1[:, :, :, :, 2] / 2.0, \n boxes1[:, :, :, :, 1] + boxes1[:, :, :, :, 3] / 2.0])\n boxes1 = tf.transpose(boxes1, [1, 2, 3, 4, 0])\n boxes2 = tf.stack([boxes2[:, :, :, :, 0] - boxes2[:, :, :, :, 2\n ] / 2.0, boxes2[:, :, :, :, 1] - boxes2[:, :, :, :, 3] / \n 2.0, boxes2[:, :, :, :, 0] + boxes2[:, :, :, :, 2] / 2.0, \n boxes2[:, :, :, :, 1] + boxes2[:, :, :, :, 3] / 2.0])\n boxes2 = tf.transpose(boxes2, [1, 2, 3, 4, 0])\n lu = tf.maximum(boxes1[:, :, :, :, :2], boxes2[:, :, :, :, :2])\n rd = tf.minimum(boxes1[:, :, :, :, 2:], boxes2[:, :, :, :, 2:])\n intersection = tf.maximum(0.0, rd - lu)\n inter_square = intersection[:, :, :, :, 0] * intersection[:, :,\n :, :, 1]\n square1 = (boxes1[:, :, :, :, 2] - boxes1[:, :, :, :, 0]) * (boxes1\n [:, :, :, :, 3] - boxes1[:, :, :, :, 1])\n square2 = (boxes2[:, :, :, :, 2] - boxes2[:, :, :, :, 0]) * (boxes2\n [:, :, :, :, 3] - boxes2[:, :, :, :, 1])\n union_square = tf.maximum(square1 + square2 - inter_square, 1e-10)\n return tf.clip_by_value(inter_square / union_square, 0.0, 1.0)\n\n def loss_layer(self, predicts, labels, scope='loss_layer'):\n with tf.variable_scope(scope):\n predict_classes = tf.reshape(predicts[:, :self.boundary1], [\n settings.batch_size, self.cell_size, self.cell_size, self.\n num_classes])\n predict_scales = tf.reshape(predicts[:, self.boundary1:self.\n boundary2], [settings.batch_size, self.cell_size, self.\n cell_size, self.boxes_per_cell])\n predict_boxes = tf.reshape(predicts[:, self.boundary2:], [\n settings.batch_size, self.cell_size, self.cell_size, self.\n boxes_per_cell, 4])\n response = tf.reshape(labels[:, :, :, 0], [settings.batch_size,\n self.cell_size, self.cell_size, 1])\n boxes = tf.reshape(labels[:, :, :, 1:5], [settings.batch_size,\n self.cell_size, self.cell_size, 1, 4])\n boxes = tf.tile(boxes, [1, 1, 1, self.boxes_per_cell, 1]\n ) / self.image_size\n classes = labels[:, :, :, 5:]\n offset = tf.constant(self.offset, dtype=tf.float32)\n offset = tf.reshape(offset, [1, self.cell_size, self.cell_size,\n self.boxes_per_cell])\n offset = tf.tile(offset, [settings.batch_size, 1, 1, 1])\n predict_boxes_tran = tf.stack([(predict_boxes[:, :, :, :, 0] +\n offset) / self.cell_size, (predict_boxes[:, :, :, :, 1] +\n tf.transpose(offset, (0, 2, 1, 3))) / self.cell_size, tf.\n square(predict_boxes[:, :, :, :, 2]), tf.square(\n predict_boxes[:, :, :, :, 3])])\n predict_boxes_tran = tf.transpose(predict_boxes_tran, [1, 2, 3,\n 4, 0])\n iou_predict_truth = self.calc_iou(predict_boxes_tran, boxes)\n object_mask = tf.reduce_max(iou_predict_truth, 3, keep_dims=True)\n object_mask = tf.cast(iou_predict_truth >= object_mask, tf.float32\n ) * response\n noobject_mask = tf.ones_like(object_mask, dtype=tf.float32\n ) - object_mask\n boxes_tran = tf.stack([boxes[:, :, :, :, 0] * self.cell_size -\n offset, boxes[:, :, :, :, 1] * self.cell_size - tf.\n transpose(offset, (0, 2, 1, 3)), tf.sqrt(boxes[:, :, :, :, \n 2]), tf.sqrt(boxes[:, :, :, :, 3])])\n boxes_tran = tf.transpose(boxes_tran, [1, 2, 3, 4, 0])\n class_delta = response * (predict_classes - classes)\n class_loss = tf.reduce_mean(tf.reduce_sum(tf.square(class_delta\n ), axis=[1, 2, 3]), name='class_loss') * self.class_scale\n object_delta = object_mask * (predict_scales - iou_predict_truth)\n object_loss = tf.reduce_mean(tf.reduce_sum(tf.square(\n object_delta), axis=[1, 2, 3]), name='object_loss'\n ) * self.object_scale\n noobject_delta = noobject_mask * predict_scales\n noobject_loss = tf.reduce_mean(tf.reduce_sum(tf.square(\n noobject_delta), axis=[1, 2, 3]), name='noobject_loss'\n ) * self.no_object_scale\n coord_mask = tf.expand_dims(object_mask, 4)\n boxes_delta = coord_mask * (predict_boxes - boxes_tran)\n coord_loss = tf.reduce_mean(tf.reduce_sum(tf.square(boxes_delta\n ), axis=[1, 2, 3, 4]), name='coord_loss') * self.coord_scale\n tf.contrib.losses.add_loss(class_loss)\n tf.contrib.losses.add_loss(object_loss)\n tf.contrib.losses.add_loss(noobject_loss)\n tf.contrib.losses.add_loss(coord_loss)\n\n\ndef leaky_relu(alpha):\n\n def op(inputs):\n return tf.maximum(alpha * inputs, inputs)\n return op\n", "step-3": "<mask token>\nslim = tf.contrib.slim\n\n\nclass Model:\n\n def __init__(self, training=True):\n self.classes = settings.classes_name\n self.num_classes = len(settings.classes_name)\n self.image_size = settings.image_size\n self.cell_size = settings.cell_size\n self.boxes_per_cell = settings.box_per_cell\n self.output_size = self.cell_size * self.cell_size * (self.\n num_classes + self.boxes_per_cell * 5)\n self.scale = 1.0 * self.image_size / self.cell_size\n self.boundary1 = self.cell_size * self.cell_size * self.num_classes\n self.boundary2 = (self.boundary1 + self.cell_size * self.cell_size *\n self.boxes_per_cell)\n self.object_scale = settings.object_scale\n self.no_object_scale = settings.no_object_scale\n self.class_scale = settings.class_scale\n self.coord_scale = settings.coordinate_scale\n self.offset = np.transpose(np.reshape(np.array([np.arange(self.\n cell_size)] * self.cell_size * self.boxes_per_cell), (self.\n boxes_per_cell, self.cell_size, self.cell_size)), (1, 2, 0))\n self.images = tf.placeholder(tf.float32, [None, settings.image_size,\n settings.image_size, 3])\n if settings.model_type == 'normal':\n self.logits = self.build_network(self.images, num_outputs=self.\n output_size, alpha=settings.alpha_relu, training=training)\n if settings.model_type == 'fast':\n self.logits = self.build_fast_network(self.images, num_outputs=\n self.output_size, alpha=settings.alpha_relu, training=training)\n if training:\n self.batch = tf.Variable(0)\n self.labels = tf.placeholder(tf.float32, [None, self.cell_size,\n self.cell_size, 5 + self.num_classes])\n self.loss_layer(self.logits, self.labels)\n self.total_loss = tf.contrib.losses.get_total_loss()\n self.learning_rate = tf.train.exponential_decay(settings.\n learning_rate, self.batch * settings.batch_size, settings.\n decay_step, settings.decay_rate, True)\n self.optimizer = tf.train.GradientDescentOptimizer(self.\n learning_rate).minimize(self.total_loss, global_step=self.batch\n )\n\n def build_network(self, images, num_outputs, alpha, keep_prob=settings.\n dropout, training=True, scope='yolo'):\n with tf.variable_scope(scope):\n with slim.arg_scope([slim.conv2d, slim.fully_connected],\n activation_fn=leaky_relu(alpha), weights_initializer=tf.\n truncated_normal_initializer(0.0, 0.01),\n weights_regularizer=slim.l2_regularizer(0.0005)):\n net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, \n 0]]), name='pad_1')\n net = slim.conv2d(net, 64, 7, 2, padding='VALID', scope=\n 'conv_2')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_3')\n net = slim.conv2d(net, 192, 3, scope='conv_4')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_5')\n net = slim.conv2d(net, 128, 1, scope='conv_6')\n net = slim.conv2d(net, 256, 3, scope='conv_7')\n net = slim.conv2d(net, 256, 1, scope='conv_8')\n net = slim.conv2d(net, 512, 3, scope='conv_9')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_10')\n net = slim.conv2d(net, 256, 1, scope='conv_11')\n net = slim.conv2d(net, 512, 3, scope='conv_12')\n net = slim.conv2d(net, 256, 1, scope='conv_13')\n net = slim.conv2d(net, 512, 3, scope='conv_14')\n net = slim.conv2d(net, 256, 1, scope='conv_15')\n net = slim.conv2d(net, 512, 3, scope='conv_16')\n net = slim.conv2d(net, 256, 1, scope='conv_17')\n net = slim.conv2d(net, 512, 3, scope='conv_18')\n net = slim.conv2d(net, 512, 1, scope='conv_19')\n net = slim.conv2d(net, 1024, 3, scope='conv_20')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_21')\n net = slim.conv2d(net, 512, 1, scope='conv_22')\n net = slim.conv2d(net, 1024, 3, scope='conv_23')\n net = slim.conv2d(net, 512, 1, scope='conv_24')\n net = slim.conv2d(net, 1024, 3, scope='conv_25')\n net = slim.conv2d(net, 1024, 3, scope='conv_26')\n net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]\n ), name='pad_27')\n net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope=\n 'conv_28')\n net = slim.conv2d(net, 1024, 3, scope='conv_29')\n net = slim.conv2d(net, 1024, 3, scope='conv_30')\n net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')\n net = slim.flatten(net, scope='flat_32')\n net = slim.fully_connected(net, 512, scope='fc_33')\n net = slim.fully_connected(net, 4096, scope='fc_34')\n net = slim.dropout(net, keep_prob=keep_prob, is_training=\n training, scope='dropout_35')\n net = slim.fully_connected(net, num_outputs, activation_fn=\n None, scope='fc_36')\n return net\n\n def build_fast_network(self, images, num_outputs, alpha, keep_prob=\n settings.dropout, training=True, scope='yolo'):\n with tf.variable_scope(scope):\n with slim.arg_scope([slim.conv2d, slim.fully_connected],\n activation_fn=leaky_relu(alpha), weights_initializer=tf.\n truncated_normal_initializer(0.0, 0.01),\n weights_regularizer=slim.l2_regularizer(0.0005)):\n net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, \n 0]]), name='pad_1')\n net = slim.conv2d(net, 64, 7, 2, padding='VALID', scope=\n 'conv_2')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_3')\n net = slim.conv2d(net, 192, 3, scope='conv_4')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_5')\n net = slim.conv2d(net, 128, 1, scope='conv_6')\n net = slim.conv2d(net, 256, 3, scope='conv_7')\n net = slim.conv2d(net, 512, 3, scope='conv_9')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_10')\n net = slim.conv2d(net, 256, 1, scope='conv_11')\n net = slim.conv2d(net, 512, 3, scope='conv_12')\n net = slim.conv2d(net, 1024, 3, scope='conv_20')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_21')\n net = slim.conv2d(net, 512, 1, scope='conv_22')\n net = slim.conv2d(net, 1024, 3, scope='conv_23')\n net = slim.conv2d(net, 1024, 3, scope='conv_26')\n net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]\n ), name='pad_27')\n net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope=\n 'conv_28')\n net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')\n net = slim.flatten(net, scope='flat_32')\n net = slim.fully_connected(net, 512, scope='fc_33')\n net = slim.fully_connected(net, 4096, scope='fc_34')\n net = slim.dropout(net, keep_prob=keep_prob, is_training=\n training, scope='dropout_35')\n net = slim.fully_connected(net, num_outputs, activation_fn=\n None, scope='fc_36')\n return net\n\n def calc_iou(self, boxes1, boxes2, scope='iou'):\n with tf.variable_scope(scope):\n boxes1 = tf.stack([boxes1[:, :, :, :, 0] - boxes1[:, :, :, :, 2\n ] / 2.0, boxes1[:, :, :, :, 1] - boxes1[:, :, :, :, 3] / \n 2.0, boxes1[:, :, :, :, 0] + boxes1[:, :, :, :, 2] / 2.0, \n boxes1[:, :, :, :, 1] + boxes1[:, :, :, :, 3] / 2.0])\n boxes1 = tf.transpose(boxes1, [1, 2, 3, 4, 0])\n boxes2 = tf.stack([boxes2[:, :, :, :, 0] - boxes2[:, :, :, :, 2\n ] / 2.0, boxes2[:, :, :, :, 1] - boxes2[:, :, :, :, 3] / \n 2.0, boxes2[:, :, :, :, 0] + boxes2[:, :, :, :, 2] / 2.0, \n boxes2[:, :, :, :, 1] + boxes2[:, :, :, :, 3] / 2.0])\n boxes2 = tf.transpose(boxes2, [1, 2, 3, 4, 0])\n lu = tf.maximum(boxes1[:, :, :, :, :2], boxes2[:, :, :, :, :2])\n rd = tf.minimum(boxes1[:, :, :, :, 2:], boxes2[:, :, :, :, 2:])\n intersection = tf.maximum(0.0, rd - lu)\n inter_square = intersection[:, :, :, :, 0] * intersection[:, :,\n :, :, 1]\n square1 = (boxes1[:, :, :, :, 2] - boxes1[:, :, :, :, 0]) * (boxes1\n [:, :, :, :, 3] - boxes1[:, :, :, :, 1])\n square2 = (boxes2[:, :, :, :, 2] - boxes2[:, :, :, :, 0]) * (boxes2\n [:, :, :, :, 3] - boxes2[:, :, :, :, 1])\n union_square = tf.maximum(square1 + square2 - inter_square, 1e-10)\n return tf.clip_by_value(inter_square / union_square, 0.0, 1.0)\n\n def loss_layer(self, predicts, labels, scope='loss_layer'):\n with tf.variable_scope(scope):\n predict_classes = tf.reshape(predicts[:, :self.boundary1], [\n settings.batch_size, self.cell_size, self.cell_size, self.\n num_classes])\n predict_scales = tf.reshape(predicts[:, self.boundary1:self.\n boundary2], [settings.batch_size, self.cell_size, self.\n cell_size, self.boxes_per_cell])\n predict_boxes = tf.reshape(predicts[:, self.boundary2:], [\n settings.batch_size, self.cell_size, self.cell_size, self.\n boxes_per_cell, 4])\n response = tf.reshape(labels[:, :, :, 0], [settings.batch_size,\n self.cell_size, self.cell_size, 1])\n boxes = tf.reshape(labels[:, :, :, 1:5], [settings.batch_size,\n self.cell_size, self.cell_size, 1, 4])\n boxes = tf.tile(boxes, [1, 1, 1, self.boxes_per_cell, 1]\n ) / self.image_size\n classes = labels[:, :, :, 5:]\n offset = tf.constant(self.offset, dtype=tf.float32)\n offset = tf.reshape(offset, [1, self.cell_size, self.cell_size,\n self.boxes_per_cell])\n offset = tf.tile(offset, [settings.batch_size, 1, 1, 1])\n predict_boxes_tran = tf.stack([(predict_boxes[:, :, :, :, 0] +\n offset) / self.cell_size, (predict_boxes[:, :, :, :, 1] +\n tf.transpose(offset, (0, 2, 1, 3))) / self.cell_size, tf.\n square(predict_boxes[:, :, :, :, 2]), tf.square(\n predict_boxes[:, :, :, :, 3])])\n predict_boxes_tran = tf.transpose(predict_boxes_tran, [1, 2, 3,\n 4, 0])\n iou_predict_truth = self.calc_iou(predict_boxes_tran, boxes)\n object_mask = tf.reduce_max(iou_predict_truth, 3, keep_dims=True)\n object_mask = tf.cast(iou_predict_truth >= object_mask, tf.float32\n ) * response\n noobject_mask = tf.ones_like(object_mask, dtype=tf.float32\n ) - object_mask\n boxes_tran = tf.stack([boxes[:, :, :, :, 0] * self.cell_size -\n offset, boxes[:, :, :, :, 1] * self.cell_size - tf.\n transpose(offset, (0, 2, 1, 3)), tf.sqrt(boxes[:, :, :, :, \n 2]), tf.sqrt(boxes[:, :, :, :, 3])])\n boxes_tran = tf.transpose(boxes_tran, [1, 2, 3, 4, 0])\n class_delta = response * (predict_classes - classes)\n class_loss = tf.reduce_mean(tf.reduce_sum(tf.square(class_delta\n ), axis=[1, 2, 3]), name='class_loss') * self.class_scale\n object_delta = object_mask * (predict_scales - iou_predict_truth)\n object_loss = tf.reduce_mean(tf.reduce_sum(tf.square(\n object_delta), axis=[1, 2, 3]), name='object_loss'\n ) * self.object_scale\n noobject_delta = noobject_mask * predict_scales\n noobject_loss = tf.reduce_mean(tf.reduce_sum(tf.square(\n noobject_delta), axis=[1, 2, 3]), name='noobject_loss'\n ) * self.no_object_scale\n coord_mask = tf.expand_dims(object_mask, 4)\n boxes_delta = coord_mask * (predict_boxes - boxes_tran)\n coord_loss = tf.reduce_mean(tf.reduce_sum(tf.square(boxes_delta\n ), axis=[1, 2, 3, 4]), name='coord_loss') * self.coord_scale\n tf.contrib.losses.add_loss(class_loss)\n tf.contrib.losses.add_loss(object_loss)\n tf.contrib.losses.add_loss(noobject_loss)\n tf.contrib.losses.add_loss(coord_loss)\n\n\ndef leaky_relu(alpha):\n\n def op(inputs):\n return tf.maximum(alpha * inputs, inputs)\n return op\n", "step-4": "import tensorflow as tf\nimport settings\nimport numpy as np\nslim = tf.contrib.slim\n\n\nclass Model:\n\n def __init__(self, training=True):\n self.classes = settings.classes_name\n self.num_classes = len(settings.classes_name)\n self.image_size = settings.image_size\n self.cell_size = settings.cell_size\n self.boxes_per_cell = settings.box_per_cell\n self.output_size = self.cell_size * self.cell_size * (self.\n num_classes + self.boxes_per_cell * 5)\n self.scale = 1.0 * self.image_size / self.cell_size\n self.boundary1 = self.cell_size * self.cell_size * self.num_classes\n self.boundary2 = (self.boundary1 + self.cell_size * self.cell_size *\n self.boxes_per_cell)\n self.object_scale = settings.object_scale\n self.no_object_scale = settings.no_object_scale\n self.class_scale = settings.class_scale\n self.coord_scale = settings.coordinate_scale\n self.offset = np.transpose(np.reshape(np.array([np.arange(self.\n cell_size)] * self.cell_size * self.boxes_per_cell), (self.\n boxes_per_cell, self.cell_size, self.cell_size)), (1, 2, 0))\n self.images = tf.placeholder(tf.float32, [None, settings.image_size,\n settings.image_size, 3])\n if settings.model_type == 'normal':\n self.logits = self.build_network(self.images, num_outputs=self.\n output_size, alpha=settings.alpha_relu, training=training)\n if settings.model_type == 'fast':\n self.logits = self.build_fast_network(self.images, num_outputs=\n self.output_size, alpha=settings.alpha_relu, training=training)\n if training:\n self.batch = tf.Variable(0)\n self.labels = tf.placeholder(tf.float32, [None, self.cell_size,\n self.cell_size, 5 + self.num_classes])\n self.loss_layer(self.logits, self.labels)\n self.total_loss = tf.contrib.losses.get_total_loss()\n self.learning_rate = tf.train.exponential_decay(settings.\n learning_rate, self.batch * settings.batch_size, settings.\n decay_step, settings.decay_rate, True)\n self.optimizer = tf.train.GradientDescentOptimizer(self.\n learning_rate).minimize(self.total_loss, global_step=self.batch\n )\n\n def build_network(self, images, num_outputs, alpha, keep_prob=settings.\n dropout, training=True, scope='yolo'):\n with tf.variable_scope(scope):\n with slim.arg_scope([slim.conv2d, slim.fully_connected],\n activation_fn=leaky_relu(alpha), weights_initializer=tf.\n truncated_normal_initializer(0.0, 0.01),\n weights_regularizer=slim.l2_regularizer(0.0005)):\n net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, \n 0]]), name='pad_1')\n net = slim.conv2d(net, 64, 7, 2, padding='VALID', scope=\n 'conv_2')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_3')\n net = slim.conv2d(net, 192, 3, scope='conv_4')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_5')\n net = slim.conv2d(net, 128, 1, scope='conv_6')\n net = slim.conv2d(net, 256, 3, scope='conv_7')\n net = slim.conv2d(net, 256, 1, scope='conv_8')\n net = slim.conv2d(net, 512, 3, scope='conv_9')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_10')\n net = slim.conv2d(net, 256, 1, scope='conv_11')\n net = slim.conv2d(net, 512, 3, scope='conv_12')\n net = slim.conv2d(net, 256, 1, scope='conv_13')\n net = slim.conv2d(net, 512, 3, scope='conv_14')\n net = slim.conv2d(net, 256, 1, scope='conv_15')\n net = slim.conv2d(net, 512, 3, scope='conv_16')\n net = slim.conv2d(net, 256, 1, scope='conv_17')\n net = slim.conv2d(net, 512, 3, scope='conv_18')\n net = slim.conv2d(net, 512, 1, scope='conv_19')\n net = slim.conv2d(net, 1024, 3, scope='conv_20')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_21')\n net = slim.conv2d(net, 512, 1, scope='conv_22')\n net = slim.conv2d(net, 1024, 3, scope='conv_23')\n net = slim.conv2d(net, 512, 1, scope='conv_24')\n net = slim.conv2d(net, 1024, 3, scope='conv_25')\n net = slim.conv2d(net, 1024, 3, scope='conv_26')\n net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]\n ), name='pad_27')\n net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope=\n 'conv_28')\n net = slim.conv2d(net, 1024, 3, scope='conv_29')\n net = slim.conv2d(net, 1024, 3, scope='conv_30')\n net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')\n net = slim.flatten(net, scope='flat_32')\n net = slim.fully_connected(net, 512, scope='fc_33')\n net = slim.fully_connected(net, 4096, scope='fc_34')\n net = slim.dropout(net, keep_prob=keep_prob, is_training=\n training, scope='dropout_35')\n net = slim.fully_connected(net, num_outputs, activation_fn=\n None, scope='fc_36')\n return net\n\n def build_fast_network(self, images, num_outputs, alpha, keep_prob=\n settings.dropout, training=True, scope='yolo'):\n with tf.variable_scope(scope):\n with slim.arg_scope([slim.conv2d, slim.fully_connected],\n activation_fn=leaky_relu(alpha), weights_initializer=tf.\n truncated_normal_initializer(0.0, 0.01),\n weights_regularizer=slim.l2_regularizer(0.0005)):\n net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, \n 0]]), name='pad_1')\n net = slim.conv2d(net, 64, 7, 2, padding='VALID', scope=\n 'conv_2')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_3')\n net = slim.conv2d(net, 192, 3, scope='conv_4')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_5')\n net = slim.conv2d(net, 128, 1, scope='conv_6')\n net = slim.conv2d(net, 256, 3, scope='conv_7')\n net = slim.conv2d(net, 512, 3, scope='conv_9')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_10')\n net = slim.conv2d(net, 256, 1, scope='conv_11')\n net = slim.conv2d(net, 512, 3, scope='conv_12')\n net = slim.conv2d(net, 1024, 3, scope='conv_20')\n net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_21')\n net = slim.conv2d(net, 512, 1, scope='conv_22')\n net = slim.conv2d(net, 1024, 3, scope='conv_23')\n net = slim.conv2d(net, 1024, 3, scope='conv_26')\n net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]\n ), name='pad_27')\n net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope=\n 'conv_28')\n net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')\n net = slim.flatten(net, scope='flat_32')\n net = slim.fully_connected(net, 512, scope='fc_33')\n net = slim.fully_connected(net, 4096, scope='fc_34')\n net = slim.dropout(net, keep_prob=keep_prob, is_training=\n training, scope='dropout_35')\n net = slim.fully_connected(net, num_outputs, activation_fn=\n None, scope='fc_36')\n return net\n\n def calc_iou(self, boxes1, boxes2, scope='iou'):\n with tf.variable_scope(scope):\n boxes1 = tf.stack([boxes1[:, :, :, :, 0] - boxes1[:, :, :, :, 2\n ] / 2.0, boxes1[:, :, :, :, 1] - boxes1[:, :, :, :, 3] / \n 2.0, boxes1[:, :, :, :, 0] + boxes1[:, :, :, :, 2] / 2.0, \n boxes1[:, :, :, :, 1] + boxes1[:, :, :, :, 3] / 2.0])\n boxes1 = tf.transpose(boxes1, [1, 2, 3, 4, 0])\n boxes2 = tf.stack([boxes2[:, :, :, :, 0] - boxes2[:, :, :, :, 2\n ] / 2.0, boxes2[:, :, :, :, 1] - boxes2[:, :, :, :, 3] / \n 2.0, boxes2[:, :, :, :, 0] + boxes2[:, :, :, :, 2] / 2.0, \n boxes2[:, :, :, :, 1] + boxes2[:, :, :, :, 3] / 2.0])\n boxes2 = tf.transpose(boxes2, [1, 2, 3, 4, 0])\n lu = tf.maximum(boxes1[:, :, :, :, :2], boxes2[:, :, :, :, :2])\n rd = tf.minimum(boxes1[:, :, :, :, 2:], boxes2[:, :, :, :, 2:])\n intersection = tf.maximum(0.0, rd - lu)\n inter_square = intersection[:, :, :, :, 0] * intersection[:, :,\n :, :, 1]\n square1 = (boxes1[:, :, :, :, 2] - boxes1[:, :, :, :, 0]) * (boxes1\n [:, :, :, :, 3] - boxes1[:, :, :, :, 1])\n square2 = (boxes2[:, :, :, :, 2] - boxes2[:, :, :, :, 0]) * (boxes2\n [:, :, :, :, 3] - boxes2[:, :, :, :, 1])\n union_square = tf.maximum(square1 + square2 - inter_square, 1e-10)\n return tf.clip_by_value(inter_square / union_square, 0.0, 1.0)\n\n def loss_layer(self, predicts, labels, scope='loss_layer'):\n with tf.variable_scope(scope):\n predict_classes = tf.reshape(predicts[:, :self.boundary1], [\n settings.batch_size, self.cell_size, self.cell_size, self.\n num_classes])\n predict_scales = tf.reshape(predicts[:, self.boundary1:self.\n boundary2], [settings.batch_size, self.cell_size, self.\n cell_size, self.boxes_per_cell])\n predict_boxes = tf.reshape(predicts[:, self.boundary2:], [\n settings.batch_size, self.cell_size, self.cell_size, self.\n boxes_per_cell, 4])\n response = tf.reshape(labels[:, :, :, 0], [settings.batch_size,\n self.cell_size, self.cell_size, 1])\n boxes = tf.reshape(labels[:, :, :, 1:5], [settings.batch_size,\n self.cell_size, self.cell_size, 1, 4])\n boxes = tf.tile(boxes, [1, 1, 1, self.boxes_per_cell, 1]\n ) / self.image_size\n classes = labels[:, :, :, 5:]\n offset = tf.constant(self.offset, dtype=tf.float32)\n offset = tf.reshape(offset, [1, self.cell_size, self.cell_size,\n self.boxes_per_cell])\n offset = tf.tile(offset, [settings.batch_size, 1, 1, 1])\n predict_boxes_tran = tf.stack([(predict_boxes[:, :, :, :, 0] +\n offset) / self.cell_size, (predict_boxes[:, :, :, :, 1] +\n tf.transpose(offset, (0, 2, 1, 3))) / self.cell_size, tf.\n square(predict_boxes[:, :, :, :, 2]), tf.square(\n predict_boxes[:, :, :, :, 3])])\n predict_boxes_tran = tf.transpose(predict_boxes_tran, [1, 2, 3,\n 4, 0])\n iou_predict_truth = self.calc_iou(predict_boxes_tran, boxes)\n object_mask = tf.reduce_max(iou_predict_truth, 3, keep_dims=True)\n object_mask = tf.cast(iou_predict_truth >= object_mask, tf.float32\n ) * response\n noobject_mask = tf.ones_like(object_mask, dtype=tf.float32\n ) - object_mask\n boxes_tran = tf.stack([boxes[:, :, :, :, 0] * self.cell_size -\n offset, boxes[:, :, :, :, 1] * self.cell_size - tf.\n transpose(offset, (0, 2, 1, 3)), tf.sqrt(boxes[:, :, :, :, \n 2]), tf.sqrt(boxes[:, :, :, :, 3])])\n boxes_tran = tf.transpose(boxes_tran, [1, 2, 3, 4, 0])\n class_delta = response * (predict_classes - classes)\n class_loss = tf.reduce_mean(tf.reduce_sum(tf.square(class_delta\n ), axis=[1, 2, 3]), name='class_loss') * self.class_scale\n object_delta = object_mask * (predict_scales - iou_predict_truth)\n object_loss = tf.reduce_mean(tf.reduce_sum(tf.square(\n object_delta), axis=[1, 2, 3]), name='object_loss'\n ) * self.object_scale\n noobject_delta = noobject_mask * predict_scales\n noobject_loss = tf.reduce_mean(tf.reduce_sum(tf.square(\n noobject_delta), axis=[1, 2, 3]), name='noobject_loss'\n ) * self.no_object_scale\n coord_mask = tf.expand_dims(object_mask, 4)\n boxes_delta = coord_mask * (predict_boxes - boxes_tran)\n coord_loss = tf.reduce_mean(tf.reduce_sum(tf.square(boxes_delta\n ), axis=[1, 2, 3, 4]), name='coord_loss') * self.coord_scale\n tf.contrib.losses.add_loss(class_loss)\n tf.contrib.losses.add_loss(object_loss)\n tf.contrib.losses.add_loss(noobject_loss)\n tf.contrib.losses.add_loss(coord_loss)\n\n\ndef leaky_relu(alpha):\n\n def op(inputs):\n return tf.maximum(alpha * inputs, inputs)\n return op\n", "step-5": "import tensorflow as tf\nimport settings\nimport numpy as np\n\nslim = tf.contrib.slim\n\nclass Model:\n \n def __init__(self, training = True):\n self.classes = settings.classes_name\n self.num_classes = len(settings.classes_name)\n self.image_size = settings.image_size\n self.cell_size = settings.cell_size\n self.boxes_per_cell = settings.box_per_cell\n self.output_size = (self.cell_size * self.cell_size) * (self.num_classes + self.boxes_per_cell * 5)\n self.scale = 1.0 * self.image_size / self.cell_size\n self.boundary1 = self.cell_size * self.cell_size * self.num_classes\n self.boundary2 = self.boundary1 + self.cell_size * self.cell_size * self.boxes_per_cell\n\n self.object_scale = settings.object_scale\n self.no_object_scale = settings.no_object_scale\n self.class_scale = settings.class_scale\n self.coord_scale = settings.coordinate_scale\n \n self.offset = np.transpose(np.reshape(np.array([np.arange(self.cell_size)] * self.cell_size * self.boxes_per_cell), (self.boxes_per_cell, self.cell_size, self.cell_size)), (1, 2, 0))\n\n self.images = tf.placeholder(tf.float32, [None, settings.image_size, settings.image_size, 3])\n \n if settings.model_type == 'normal':\n self.logits = self.build_network(self.images, num_outputs = self.output_size, alpha = settings.alpha_relu, training = training)\n if settings.model_type == 'fast':\n self.logits = self.build_fast_network(self.images, num_outputs = self.output_size, alpha = settings.alpha_relu, training = training)\n \n if training:\n self.batch = tf.Variable(0)\n self.labels = tf.placeholder(tf.float32, [None, self.cell_size, self.cell_size, 5 + self.num_classes])\n self.loss_layer(self.logits, self.labels)\n self.total_loss = tf.contrib.losses.get_total_loss()\n self.learning_rate = tf.train.exponential_decay(settings.learning_rate, self.batch * settings.batch_size, settings.decay_step, settings.decay_rate, True)\n self.optimizer = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self.total_loss, global_step = self.batch)\n \n def build_network(self, images, num_outputs, alpha, keep_prob = settings.dropout, training = True, scope = 'yolo'):\n with tf.variable_scope(scope):\n with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn = leaky_relu(alpha), weights_initializer = tf.truncated_normal_initializer(0.0, 0.01), weights_regularizer = slim.l2_regularizer(0.0005)):\n net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, 0]]), name = 'pad_1')\n net = slim.conv2d(net, 64, 7, 2, padding = 'VALID', scope = 'conv_2')\n net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_3')\n net = slim.conv2d(net, 192, 3, scope = 'conv_4')\n net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_5')\n net = slim.conv2d(net, 128, 1, scope = 'conv_6')\n net = slim.conv2d(net, 256, 3, scope = 'conv_7')\n net = slim.conv2d(net, 256, 1, scope = 'conv_8')\n net = slim.conv2d(net, 512, 3, scope = 'conv_9')\n net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_10')\n net = slim.conv2d(net, 256, 1, scope = 'conv_11')\n net = slim.conv2d(net, 512, 3, scope = 'conv_12')\n net = slim.conv2d(net, 256, 1, scope = 'conv_13')\n net = slim.conv2d(net, 512, 3, scope = 'conv_14')\n net = slim.conv2d(net, 256, 1, scope = 'conv_15')\n net = slim.conv2d(net, 512, 3, scope = 'conv_16')\n net = slim.conv2d(net, 256, 1, scope = 'conv_17')\n net = slim.conv2d(net, 512, 3, scope = 'conv_18')\n net = slim.conv2d(net, 512, 1, scope = 'conv_19')\n net = slim.conv2d(net, 1024, 3, scope = 'conv_20')\n net = slim.max_pool2d(net, 2, padding='SAME', scope = 'pool_21')\n net = slim.conv2d(net, 512, 1, scope = 'conv_22')\n net = slim.conv2d(net, 1024, 3, scope = 'conv_23')\n net = slim.conv2d(net, 512, 1, scope = 'conv_24')\n net = slim.conv2d(net, 1024, 3, scope = 'conv_25')\n net = slim.conv2d(net, 1024, 3, scope = 'conv_26')\n net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]), name = 'pad_27')\n net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope = 'conv_28')\n net = slim.conv2d(net, 1024, 3, scope = 'conv_29')\n net = slim.conv2d(net, 1024, 3, scope = 'conv_30')\n net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')\n net = slim.flatten(net, scope = 'flat_32')\n net = slim.fully_connected(net, 512, scope = 'fc_33')\n net = slim.fully_connected(net, 4096, scope = 'fc_34')\n net = slim.dropout(net, keep_prob = keep_prob, is_training = training, scope = 'dropout_35')\n net = slim.fully_connected(net, num_outputs, activation_fn = None, scope = 'fc_36')\n return net\n \n def build_fast_network(self, images, num_outputs, alpha, keep_prob = settings.dropout, training = True, scope = 'yolo'):\n with tf.variable_scope(scope):\n with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn = leaky_relu(alpha), weights_initializer = tf.truncated_normal_initializer(0.0, 0.01), weights_regularizer = slim.l2_regularizer(0.0005)):\n net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, 0]]), name = 'pad_1')\n net = slim.conv2d(net, 64, 7, 2, padding = 'VALID', scope = 'conv_2')\n net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_3')\n net = slim.conv2d(net, 192, 3, scope = 'conv_4')\n net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_5')\n net = slim.conv2d(net, 128, 1, scope = 'conv_6')\n net = slim.conv2d(net, 256, 3, scope = 'conv_7')\n net = slim.conv2d(net, 512, 3, scope = 'conv_9')\n net = slim.max_pool2d(net, 2, padding = 'SAME', scope = 'pool_10')\n net = slim.conv2d(net, 256, 1, scope = 'conv_11')\n net = slim.conv2d(net, 512, 3, scope = 'conv_12')\n net = slim.conv2d(net, 1024, 3, scope = 'conv_20')\n net = slim.max_pool2d(net, 2, padding='SAME', scope = 'pool_21')\n net = slim.conv2d(net, 512, 1, scope = 'conv_22')\n net = slim.conv2d(net, 1024, 3, scope = 'conv_23')\n net = slim.conv2d(net, 1024, 3, scope = 'conv_26')\n net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]), name = 'pad_27')\n net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope = 'conv_28')\n net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')\n net = slim.flatten(net, scope = 'flat_32')\n net = slim.fully_connected(net, 512, scope = 'fc_33')\n net = slim.fully_connected(net, 4096, scope = 'fc_34')\n net = slim.dropout(net, keep_prob = keep_prob, is_training = training, scope = 'dropout_35')\n net = slim.fully_connected(net, num_outputs, activation_fn = None, scope = 'fc_36')\n return net\n \n \n def calc_iou(self, boxes1, boxes2, scope = 'iou'):\n with tf.variable_scope(scope):\n boxes1 = tf.stack([boxes1[:, :, :, :, 0] - boxes1[:, :, :, :, 2] / 2.0,\n boxes1[:, :, :, :, 1] - boxes1[:, :, :, :, 3] / 2.0,\n boxes1[:, :, :, :, 0] + boxes1[:, :, :, :, 2] / 2.0,\n boxes1[:, :, :, :, 1] + boxes1[:, :, :, :, 3] / 2.0])\n boxes1 = tf.transpose(boxes1, [1, 2, 3, 4, 0])\n\n boxes2 = tf.stack([boxes2[:, :, :, :, 0] - boxes2[:, :, :, :, 2] / 2.0,\n boxes2[:, :, :, :, 1] - boxes2[:, :, :, :, 3] / 2.0,\n boxes2[:, :, :, :, 0] + boxes2[:, :, :, :, 2] / 2.0,\n boxes2[:, :, :, :, 1] + boxes2[:, :, :, :, 3] / 2.0])\n boxes2 = tf.transpose(boxes2, [1, 2, 3, 4, 0])\n\n lu = tf.maximum(boxes1[:, :, :, :, :2], boxes2[:, :, :, :, :2])\n rd = tf.minimum(boxes1[:, :, :, :, 2:], boxes2[:, :, :, :, 2:])\n\n intersection = tf.maximum(0.0, rd - lu)\n inter_square = intersection[:, :, :, :, 0] * intersection[:, :, :, :, 1]\n\n square1 = (boxes1[:, :, :, :, 2] - boxes1[:, :, :, :, 0]) * (boxes1[:, :, :, :, 3] - boxes1[:, :, :, :, 1])\n square2 = (boxes2[:, :, :, :, 2] - boxes2[:, :, :, :, 0]) * (boxes2[:, :, :, :, 3] - boxes2[:, :, :, :, 1])\n\n union_square = tf.maximum(square1 + square2 - inter_square, 1e-10)\n\n return tf.clip_by_value(inter_square / union_square, 0.0, 1.0)\n\n def loss_layer(self, predicts, labels, scope = 'loss_layer'):\n with tf.variable_scope(scope):\n predict_classes = tf.reshape(predicts[:, :self.boundary1], [settings.batch_size, self.cell_size, self.cell_size, self.num_classes])\n predict_scales = tf.reshape(predicts[:, self.boundary1:self.boundary2], [settings.batch_size, self.cell_size, self.cell_size, self.boxes_per_cell])\n predict_boxes = tf.reshape(predicts[:, self.boundary2:], [settings.batch_size, self.cell_size, self.cell_size, self.boxes_per_cell, 4])\n\n response = tf.reshape(labels[:, :, :, 0], [settings.batch_size, self.cell_size, self.cell_size, 1])\n boxes = tf.reshape(labels[:, :, :, 1:5], [settings.batch_size, self.cell_size, self.cell_size, 1, 4])\n boxes = tf.tile(boxes, [1, 1, 1, self.boxes_per_cell, 1]) / self.image_size\n classes = labels[:, :, :, 5:]\n\n offset = tf.constant(self.offset, dtype = tf.float32)\n offset = tf.reshape(offset, [1, self.cell_size, self.cell_size, self.boxes_per_cell])\n offset = tf.tile(offset, [settings.batch_size, 1, 1, 1])\n predict_boxes_tran = tf.stack([(predict_boxes[:, :, :, :, 0] + offset) / self.cell_size,\n (predict_boxes[:, :, :, :, 1] + tf.transpose(offset, (0, 2, 1, 3))) / self.cell_size,\n tf.square(predict_boxes[:, :, :, :, 2]),\n tf.square(predict_boxes[:, :, :, :, 3])])\n predict_boxes_tran = tf.transpose(predict_boxes_tran, [1, 2, 3, 4, 0])\n\n iou_predict_truth = self.calc_iou(predict_boxes_tran, boxes)\n\n object_mask = tf.reduce_max(iou_predict_truth, 3, keep_dims=True)\n object_mask = tf.cast((iou_predict_truth >= object_mask), tf.float32) * response\n\n noobject_mask = tf.ones_like(object_mask, dtype=tf.float32) - object_mask\n\n boxes_tran = tf.stack([boxes[:, :, :, :, 0] * self.cell_size - offset,\n boxes[:, :, :, :, 1] * self.cell_size - tf.transpose(offset, (0, 2, 1, 3)),\n tf.sqrt(boxes[:, :, :, :, 2]),\n tf.sqrt(boxes[:, :, :, :, 3])])\n boxes_tran = tf.transpose(boxes_tran, [1, 2, 3, 4, 0])\n\n class_delta = response * (predict_classes - classes)\n class_loss = tf.reduce_mean(tf.reduce_sum(tf.square(class_delta), axis=[1, 2, 3]), name = 'class_loss') * self.class_scale\n\n object_delta = object_mask * (predict_scales - iou_predict_truth)\n object_loss = tf.reduce_mean(tf.reduce_sum(tf.square(object_delta), axis=[1, 2, 3]), name = 'object_loss') * self.object_scale\n\n noobject_delta = noobject_mask * predict_scales\n noobject_loss = tf.reduce_mean(tf.reduce_sum(tf.square(noobject_delta), axis=[1, 2, 3]), name = 'noobject_loss') * self.no_object_scale\n\n coord_mask = tf.expand_dims(object_mask, 4)\n boxes_delta = coord_mask * (predict_boxes - boxes_tran)\n coord_loss = tf.reduce_mean(tf.reduce_sum(tf.square(boxes_delta), axis=[1, 2, 3, 4]), name = 'coord_loss') * self.coord_scale\n\n tf.contrib.losses.add_loss(class_loss)\n tf.contrib.losses.add_loss(object_loss)\n tf.contrib.losses.add_loss(noobject_loss)\n tf.contrib.losses.add_loss(coord_loss)\n\ndef leaky_relu(alpha):\n \n def op(inputs):\n return tf.maximum(alpha * inputs, inputs)\n return op\n", "step-ids": [ 6, 7, 8, 9, 10 ] }
[ 6, 7, 8, 9, 10 ]
from yama.record import Record class MongoStorage(object): _collection = None _connection = None _root_id = None _roots = None def __init__(self, connection): self._connection = connection self._collection = connection.objects self._roots = connection.roots root_doc = self._roots.find_one() if root_doc is None: self._root_id = self._roots.save({'list': []}) else: self._root_id = root_doc['_id'] def add_to_roots(self, container_id): self._roots.update({'_id': self._root_id}, {'$push': {'list': container_id}}) def store_new_item(self, doc): """Save the new document.""" self._collection.save(doc.document) def store_child(self, child_id, parent_id): self._collection.update({'_id': parent_id}, {'$push': {'contents': child_id}}) def get_root_ids(self): return self._roots.find_one(self._root_id)['list'] def load_one_item(self, item_id): return Record.from_document(self._collection.find_one(item_id)) def load_many_items(self, item_ids): query = {'_id': {'$in': item_ids}} results = dict((d['_id'], Record.from_document(d)) for d in self. _collection.find(query)) return (results[i] for i in item_ids)
normal
{ "blob_id": "816c11717c4f26b9013f7a83e1dfb2c0578cbcf8", "index": 1269, "step-1": "<mask token>\n\n\nclass MongoStorage(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, connection):\n self._connection = connection\n self._collection = connection.objects\n self._roots = connection.roots\n root_doc = self._roots.find_one()\n if root_doc is None:\n self._root_id = self._roots.save({'list': []})\n else:\n self._root_id = root_doc['_id']\n\n def add_to_roots(self, container_id):\n self._roots.update({'_id': self._root_id}, {'$push': {'list':\n container_id}})\n\n def store_new_item(self, doc):\n \"\"\"Save the new document.\"\"\"\n self._collection.save(doc.document)\n\n def store_child(self, child_id, parent_id):\n self._collection.update({'_id': parent_id}, {'$push': {'contents':\n child_id}})\n <mask token>\n\n def load_one_item(self, item_id):\n return Record.from_document(self._collection.find_one(item_id))\n\n def load_many_items(self, item_ids):\n query = {'_id': {'$in': item_ids}}\n results = dict((d['_id'], Record.from_document(d)) for d in self.\n _collection.find(query))\n return (results[i] for i in item_ids)\n", "step-2": "<mask token>\n\n\nclass MongoStorage(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, connection):\n self._connection = connection\n self._collection = connection.objects\n self._roots = connection.roots\n root_doc = self._roots.find_one()\n if root_doc is None:\n self._root_id = self._roots.save({'list': []})\n else:\n self._root_id = root_doc['_id']\n\n def add_to_roots(self, container_id):\n self._roots.update({'_id': self._root_id}, {'$push': {'list':\n container_id}})\n\n def store_new_item(self, doc):\n \"\"\"Save the new document.\"\"\"\n self._collection.save(doc.document)\n\n def store_child(self, child_id, parent_id):\n self._collection.update({'_id': parent_id}, {'$push': {'contents':\n child_id}})\n\n def get_root_ids(self):\n return self._roots.find_one(self._root_id)['list']\n\n def load_one_item(self, item_id):\n return Record.from_document(self._collection.find_one(item_id))\n\n def load_many_items(self, item_ids):\n query = {'_id': {'$in': item_ids}}\n results = dict((d['_id'], Record.from_document(d)) for d in self.\n _collection.find(query))\n return (results[i] for i in item_ids)\n", "step-3": "<mask token>\n\n\nclass MongoStorage(object):\n _collection = None\n _connection = None\n _root_id = None\n _roots = None\n\n def __init__(self, connection):\n self._connection = connection\n self._collection = connection.objects\n self._roots = connection.roots\n root_doc = self._roots.find_one()\n if root_doc is None:\n self._root_id = self._roots.save({'list': []})\n else:\n self._root_id = root_doc['_id']\n\n def add_to_roots(self, container_id):\n self._roots.update({'_id': self._root_id}, {'$push': {'list':\n container_id}})\n\n def store_new_item(self, doc):\n \"\"\"Save the new document.\"\"\"\n self._collection.save(doc.document)\n\n def store_child(self, child_id, parent_id):\n self._collection.update({'_id': parent_id}, {'$push': {'contents':\n child_id}})\n\n def get_root_ids(self):\n return self._roots.find_one(self._root_id)['list']\n\n def load_one_item(self, item_id):\n return Record.from_document(self._collection.find_one(item_id))\n\n def load_many_items(self, item_ids):\n query = {'_id': {'$in': item_ids}}\n results = dict((d['_id'], Record.from_document(d)) for d in self.\n _collection.find(query))\n return (results[i] for i in item_ids)\n", "step-4": "from yama.record import Record\n\n\nclass MongoStorage(object):\n _collection = None\n _connection = None\n _root_id = None\n _roots = None\n\n def __init__(self, connection):\n self._connection = connection\n self._collection = connection.objects\n self._roots = connection.roots\n root_doc = self._roots.find_one()\n if root_doc is None:\n self._root_id = self._roots.save({'list': []})\n else:\n self._root_id = root_doc['_id']\n\n def add_to_roots(self, container_id):\n self._roots.update({'_id': self._root_id}, {'$push': {'list':\n container_id}})\n\n def store_new_item(self, doc):\n \"\"\"Save the new document.\"\"\"\n self._collection.save(doc.document)\n\n def store_child(self, child_id, parent_id):\n self._collection.update({'_id': parent_id}, {'$push': {'contents':\n child_id}})\n\n def get_root_ids(self):\n return self._roots.find_one(self._root_id)['list']\n\n def load_one_item(self, item_id):\n return Record.from_document(self._collection.find_one(item_id))\n\n def load_many_items(self, item_ids):\n query = {'_id': {'$in': item_ids}}\n results = dict((d['_id'], Record.from_document(d)) for d in self.\n _collection.find(query))\n return (results[i] for i in item_ids)\n", "step-5": null, "step-ids": [ 7, 8, 9, 10 ] }
[ 7, 8, 9, 10 ]
''' Copyright Jelen forráskód a Budapesti Műszaki és Gazdaságtudományi Egyetemen tartott "Deep Learning a gyakorlatban Python és LUA alapon" tantárgy segédanyagaként készült. A tantárgy honlapja: http://smartlab.tmit.bme.hu/oktatas-deep-learning Deep Learning kutatás: http://smartlab.tmit.bme.hu/deep-learning A forráskódot GPLv3 licensz védi. Újrafelhasználás esetén lehetőség szerint kérjük az alábbi szerzőt értesíteni. 2018 (c) Csapó Tamás Gábor (csapot kukac tmit pont bme pont hu), Gyires-Tóth Bálint, Zainkó Csaba Links: [hyperas] https://github.com/maxpumperla/hyperas ''' # !pip3 install hyperas # based on https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py import hyperas import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.optimizers import SGD from keras.callbacks import EarlyStopping, CSVLogger import numpy as np # do not use all GPU memory import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config)) from keras.datasets import cifar10 # hiperparaméter optimalizálás hyperas-sal (https://github.com/maxpumperla/hyperas) # a hyperas-nak kell két függvény: # -- data() : adatok betöltése # -- create_model() : hálózat modell def data(): (x_train, y_train), (x_test, y_test) = cifar10.load_data() num_classes = 10 # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) # reshape for FC-DNN x_train = np.reshape(x_train,(50000,3072)) # 32x32x3 x_test = np.reshape(x_test,(10000,3072)) x_train = x_train.astype('float32') x_test = x_test.astype('float32') # Normalization of pixel values (to [0-1] range) x_train /= 255 x_test /= 255 return x_train, y_train, x_test, y_test def create_model(x_train, y_train, x_test, y_test): n_layer1 = {{choice([128, 256, 512])}} n_layer2 = {{choice([128, 256, 512])}} dropout_1 = {{uniform(0, 1)}} dropout_2 = {{uniform(0, 1)}} optim = {{choice(['rmsprop', 'adam', 'sgd'])}} n_batch = {{choice([64, 128, 256])}} print('Model hyperparameters: ', n_layer1, n_layer2, dropout_1, dropout_2, optim, n_batch) # 3 x 3 x [0-1]x[0-1] x 3 x 3 = kb 8100 kombináció model = Sequential() model.add(Dense(n_layer1, activation='relu', input_dim=3072)) model.add(Dropout(dropout_1)) model.add(Dense(n_layer2, activation='relu')) model.add(Dropout(dropout_2)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=optim, loss='categorical_crossentropy', metrics=['accuracy']) import datetime current_date = '{date:%Y-%m-%d_%H-%M-%S}'.format(date=datetime.datetime.now()) print(current_date) csv_name = '13_hyperas_cifar10_' + current_date + '_' + \ str(n_layer1) + '_' + str(n_layer2) + '_' + \ str(dropout_1) + '_' + str(dropout_2) + '_' + \ str(optim) + '_' + str(n_batch) + '.csv' callbacks = [EarlyStopping(monitor='val_loss', patience=3, verbose=0), \ CSVLogger(csv_name, append=True, separator=';')] result = model.fit(x_train, y_train, batch_size=n_batch, epochs=100, verbose=2, validation_data=(x_test, y_test), callbacks=callbacks, shuffle=True) validation_acc = np.amax(result.history['val_acc']) print('Best validation acc of epoch:', validation_acc) return {'loss': -validation_acc, 'status': STATUS_OK, 'model': model} from hyperopt import Trials, STATUS_OK, tpe from hyperas import optim from hyperas.distributions import choice, uniform # main hyperopt part # az algoritmus lehet: # -- random.suggest -> random search # -- tpe.suggest -> tree parsen estimator best_run, best_model = optim.minimize(model=create_model, data=data, algo=tpe.suggest, max_evals=5, trials=Trials()) x_train, y_train, x_test, y_test = data() print("Evalutation of best performing model:") print(best_model.evaluate(x_test, y_test)) print("Best performing model chosen hyper-parameters:") print(best_run)
normal
{ "blob_id": "cc097b4d2a5a521a0adb83ca1b58470b4ce84f39", "index": 7143, "step-1": "<mask token>\n\n\ndef data():\n (x_train, y_train), (x_test, y_test) = cifar10.load_data()\n num_classes = 10\n y_train = keras.utils.to_categorical(y_train, num_classes)\n y_test = keras.utils.to_categorical(y_test, num_classes)\n x_train = np.reshape(x_train, (50000, 3072))\n x_test = np.reshape(x_test, (10000, 3072))\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n x_train /= 255\n x_test /= 255\n return x_train, y_train, x_test, y_test\n\n\ndef create_model(x_train, y_train, x_test, y_test):\n n_layer1 = {{choice([128, 256, 512])}}\n n_layer2 = {{choice([128, 256, 512])}}\n dropout_1 = {{uniform(0, 1)}}\n dropout_2 = {{uniform(0, 1)}}\n optim = {{choice(['rmsprop', 'adam', 'sgd'])}}\n n_batch = {{choice([64, 128, 256])}}\n print('Model hyperparameters: ', n_layer1, n_layer2, dropout_1,\n dropout_2, optim, n_batch)\n model = Sequential()\n model.add(Dense(n_layer1, activation='relu', input_dim=3072))\n model.add(Dropout(dropout_1))\n model.add(Dense(n_layer2, activation='relu'))\n model.add(Dropout(dropout_2))\n model.add(Dense(10, activation='softmax'))\n model.compile(optimizer=optim, loss='categorical_crossentropy', metrics\n =['accuracy'])\n import datetime\n current_date = '{date:%Y-%m-%d_%H-%M-%S}'.format(date=datetime.datetime\n .now())\n print(current_date)\n csv_name = '13_hyperas_cifar10_' + current_date + '_' + str(n_layer1\n ) + '_' + str(n_layer2) + '_' + str(dropout_1) + '_' + str(dropout_2\n ) + '_' + str(optim) + '_' + str(n_batch) + '.csv'\n callbacks = [EarlyStopping(monitor='val_loss', patience=3, verbose=0),\n CSVLogger(csv_name, append=True, separator=';')]\n result = model.fit(x_train, y_train, batch_size=n_batch, epochs=100,\n verbose=2, validation_data=(x_test, y_test), callbacks=callbacks,\n shuffle=True)\n validation_acc = np.amax(result.history['val_acc'])\n print('Best validation acc of epoch:', validation_acc)\n return {'loss': -validation_acc, 'status': STATUS_OK, 'model': model}\n\n\n<mask token>\n", "step-2": "<mask token>\nset_session(tf.Session(config=config))\n<mask token>\n\n\ndef data():\n (x_train, y_train), (x_test, y_test) = cifar10.load_data()\n num_classes = 10\n y_train = keras.utils.to_categorical(y_train, num_classes)\n y_test = keras.utils.to_categorical(y_test, num_classes)\n x_train = np.reshape(x_train, (50000, 3072))\n x_test = np.reshape(x_test, (10000, 3072))\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n x_train /= 255\n x_test /= 255\n return x_train, y_train, x_test, y_test\n\n\ndef create_model(x_train, y_train, x_test, y_test):\n n_layer1 = {{choice([128, 256, 512])}}\n n_layer2 = {{choice([128, 256, 512])}}\n dropout_1 = {{uniform(0, 1)}}\n dropout_2 = {{uniform(0, 1)}}\n optim = {{choice(['rmsprop', 'adam', 'sgd'])}}\n n_batch = {{choice([64, 128, 256])}}\n print('Model hyperparameters: ', n_layer1, n_layer2, dropout_1,\n dropout_2, optim, n_batch)\n model = Sequential()\n model.add(Dense(n_layer1, activation='relu', input_dim=3072))\n model.add(Dropout(dropout_1))\n model.add(Dense(n_layer2, activation='relu'))\n model.add(Dropout(dropout_2))\n model.add(Dense(10, activation='softmax'))\n model.compile(optimizer=optim, loss='categorical_crossentropy', metrics\n =['accuracy'])\n import datetime\n current_date = '{date:%Y-%m-%d_%H-%M-%S}'.format(date=datetime.datetime\n .now())\n print(current_date)\n csv_name = '13_hyperas_cifar10_' + current_date + '_' + str(n_layer1\n ) + '_' + str(n_layer2) + '_' + str(dropout_1) + '_' + str(dropout_2\n ) + '_' + str(optim) + '_' + str(n_batch) + '.csv'\n callbacks = [EarlyStopping(monitor='val_loss', patience=3, verbose=0),\n CSVLogger(csv_name, append=True, separator=';')]\n result = model.fit(x_train, y_train, batch_size=n_batch, epochs=100,\n verbose=2, validation_data=(x_test, y_test), callbacks=callbacks,\n shuffle=True)\n validation_acc = np.amax(result.history['val_acc'])\n print('Best validation acc of epoch:', validation_acc)\n return {'loss': -validation_acc, 'status': STATUS_OK, 'model': model}\n\n\n<mask token>\nprint('Evalutation of best performing model:')\nprint(best_model.evaluate(x_test, y_test))\nprint('Best performing model chosen hyper-parameters:')\nprint(best_run)\n", "step-3": "<mask token>\nconfig = tf.ConfigProto()\nconfig.gpu_options.allow_growth = True\nset_session(tf.Session(config=config))\n<mask token>\n\n\ndef data():\n (x_train, y_train), (x_test, y_test) = cifar10.load_data()\n num_classes = 10\n y_train = keras.utils.to_categorical(y_train, num_classes)\n y_test = keras.utils.to_categorical(y_test, num_classes)\n x_train = np.reshape(x_train, (50000, 3072))\n x_test = np.reshape(x_test, (10000, 3072))\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n x_train /= 255\n x_test /= 255\n return x_train, y_train, x_test, y_test\n\n\ndef create_model(x_train, y_train, x_test, y_test):\n n_layer1 = {{choice([128, 256, 512])}}\n n_layer2 = {{choice([128, 256, 512])}}\n dropout_1 = {{uniform(0, 1)}}\n dropout_2 = {{uniform(0, 1)}}\n optim = {{choice(['rmsprop', 'adam', 'sgd'])}}\n n_batch = {{choice([64, 128, 256])}}\n print('Model hyperparameters: ', n_layer1, n_layer2, dropout_1,\n dropout_2, optim, n_batch)\n model = Sequential()\n model.add(Dense(n_layer1, activation='relu', input_dim=3072))\n model.add(Dropout(dropout_1))\n model.add(Dense(n_layer2, activation='relu'))\n model.add(Dropout(dropout_2))\n model.add(Dense(10, activation='softmax'))\n model.compile(optimizer=optim, loss='categorical_crossentropy', metrics\n =['accuracy'])\n import datetime\n current_date = '{date:%Y-%m-%d_%H-%M-%S}'.format(date=datetime.datetime\n .now())\n print(current_date)\n csv_name = '13_hyperas_cifar10_' + current_date + '_' + str(n_layer1\n ) + '_' + str(n_layer2) + '_' + str(dropout_1) + '_' + str(dropout_2\n ) + '_' + str(optim) + '_' + str(n_batch) + '.csv'\n callbacks = [EarlyStopping(monitor='val_loss', patience=3, verbose=0),\n CSVLogger(csv_name, append=True, separator=';')]\n result = model.fit(x_train, y_train, batch_size=n_batch, epochs=100,\n verbose=2, validation_data=(x_test, y_test), callbacks=callbacks,\n shuffle=True)\n validation_acc = np.amax(result.history['val_acc'])\n print('Best validation acc of epoch:', validation_acc)\n return {'loss': -validation_acc, 'status': STATUS_OK, 'model': model}\n\n\n<mask token>\nbest_run, best_model = optim.minimize(model=create_model, data=data, algo=\n tpe.suggest, max_evals=5, trials=Trials())\nx_train, y_train, x_test, y_test = data()\nprint('Evalutation of best performing model:')\nprint(best_model.evaluate(x_test, y_test))\nprint('Best performing model chosen hyper-parameters:')\nprint(best_run)\n", "step-4": "<mask token>\nimport hyperas\nimport keras\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, Activation\nfrom keras.optimizers import SGD\nfrom keras.callbacks import EarlyStopping, CSVLogger\nimport numpy as np\nimport tensorflow as tf\nfrom keras.backend.tensorflow_backend import set_session\nconfig = tf.ConfigProto()\nconfig.gpu_options.allow_growth = True\nset_session(tf.Session(config=config))\nfrom keras.datasets import cifar10\n\n\ndef data():\n (x_train, y_train), (x_test, y_test) = cifar10.load_data()\n num_classes = 10\n y_train = keras.utils.to_categorical(y_train, num_classes)\n y_test = keras.utils.to_categorical(y_test, num_classes)\n x_train = np.reshape(x_train, (50000, 3072))\n x_test = np.reshape(x_test, (10000, 3072))\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n x_train /= 255\n x_test /= 255\n return x_train, y_train, x_test, y_test\n\n\ndef create_model(x_train, y_train, x_test, y_test):\n n_layer1 = {{choice([128, 256, 512])}}\n n_layer2 = {{choice([128, 256, 512])}}\n dropout_1 = {{uniform(0, 1)}}\n dropout_2 = {{uniform(0, 1)}}\n optim = {{choice(['rmsprop', 'adam', 'sgd'])}}\n n_batch = {{choice([64, 128, 256])}}\n print('Model hyperparameters: ', n_layer1, n_layer2, dropout_1,\n dropout_2, optim, n_batch)\n model = Sequential()\n model.add(Dense(n_layer1, activation='relu', input_dim=3072))\n model.add(Dropout(dropout_1))\n model.add(Dense(n_layer2, activation='relu'))\n model.add(Dropout(dropout_2))\n model.add(Dense(10, activation='softmax'))\n model.compile(optimizer=optim, loss='categorical_crossentropy', metrics\n =['accuracy'])\n import datetime\n current_date = '{date:%Y-%m-%d_%H-%M-%S}'.format(date=datetime.datetime\n .now())\n print(current_date)\n csv_name = '13_hyperas_cifar10_' + current_date + '_' + str(n_layer1\n ) + '_' + str(n_layer2) + '_' + str(dropout_1) + '_' + str(dropout_2\n ) + '_' + str(optim) + '_' + str(n_batch) + '.csv'\n callbacks = [EarlyStopping(monitor='val_loss', patience=3, verbose=0),\n CSVLogger(csv_name, append=True, separator=';')]\n result = model.fit(x_train, y_train, batch_size=n_batch, epochs=100,\n verbose=2, validation_data=(x_test, y_test), callbacks=callbacks,\n shuffle=True)\n validation_acc = np.amax(result.history['val_acc'])\n print('Best validation acc of epoch:', validation_acc)\n return {'loss': -validation_acc, 'status': STATUS_OK, 'model': model}\n\n\nfrom hyperopt import Trials, STATUS_OK, tpe\nfrom hyperas import optim\nfrom hyperas.distributions import choice, uniform\nbest_run, best_model = optim.minimize(model=create_model, data=data, algo=\n tpe.suggest, max_evals=5, trials=Trials())\nx_train, y_train, x_test, y_test = data()\nprint('Evalutation of best performing model:')\nprint(best_model.evaluate(x_test, y_test))\nprint('Best performing model chosen hyper-parameters:')\nprint(best_run)\n", "step-5": "'''\nCopyright\n\nJelen forráskód a Budapesti Műszaki és Gazdaságtudományi Egyetemen tartott\n\"Deep Learning a gyakorlatban Python és LUA alapon\" tantárgy segédanyagaként készült.\n\nA tantárgy honlapja: http://smartlab.tmit.bme.hu/oktatas-deep-learning\nDeep Learning kutatás: http://smartlab.tmit.bme.hu/deep-learning\n\nA forráskódot GPLv3 licensz védi. Újrafelhasználás esetén lehetőség szerint kérjük\naz alábbi szerzőt értesíteni.\n\n2018 (c) Csapó Tamás Gábor (csapot kukac tmit pont bme pont hu),\nGyires-Tóth Bálint, Zainkó Csaba\n\n\nLinks:\n [hyperas] https://github.com/maxpumperla/hyperas\n'''\n\n# !pip3 install hyperas\n\n# based on https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py\n\nimport hyperas\n\nimport keras\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, Activation\nfrom keras.optimizers import SGD\nfrom keras.callbacks import EarlyStopping, CSVLogger\nimport numpy as np\n\n# do not use all GPU memory\nimport tensorflow as tf\nfrom keras.backend.tensorflow_backend import set_session\nconfig = tf.ConfigProto()\nconfig.gpu_options.allow_growth = True\nset_session(tf.Session(config=config))\n\n\nfrom keras.datasets import cifar10\n\n\n# hiperparaméter optimalizálás hyperas-sal (https://github.com/maxpumperla/hyperas)\n\n# a hyperas-nak kell két függvény:\n# -- data() : adatok betöltése\n# -- create_model() : hálózat modell\n\ndef data():\n (x_train, y_train), (x_test, y_test) = cifar10.load_data()\n\n num_classes = 10\n\n # Convert class vectors to binary class matrices.\n y_train = keras.utils.to_categorical(y_train, num_classes)\n y_test = keras.utils.to_categorical(y_test, num_classes)\n\n # reshape for FC-DNN\n x_train = np.reshape(x_train,(50000,3072)) # 32x32x3\n x_test = np.reshape(x_test,(10000,3072))\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n\n # Normalization of pixel values (to [0-1] range)\n\n x_train /= 255\n x_test /= 255\n\n return x_train, y_train, x_test, y_test\n\n\ndef create_model(x_train, y_train, x_test, y_test):\n \n n_layer1 = {{choice([128, 256, 512])}}\n n_layer2 = {{choice([128, 256, 512])}}\n dropout_1 = {{uniform(0, 1)}}\n dropout_2 = {{uniform(0, 1)}}\n optim = {{choice(['rmsprop', 'adam', 'sgd'])}}\n n_batch = {{choice([64, 128, 256])}}\n \n print('Model hyperparameters: ', n_layer1, n_layer2, dropout_1, dropout_2, optim, n_batch)\n # 3 x 3 x [0-1]x[0-1] x 3 x 3 = kb 8100 kombináció\n \n model = Sequential()\n model.add(Dense(n_layer1, activation='relu', input_dim=3072))\n model.add(Dropout(dropout_1))\n model.add(Dense(n_layer2, activation='relu'))\n model.add(Dropout(dropout_2))\n model.add(Dense(10, activation='softmax'))\n \n model.compile(optimizer=optim,\n loss='categorical_crossentropy',\n metrics=['accuracy'])\n\n import datetime\n current_date = '{date:%Y-%m-%d_%H-%M-%S}'.format(date=datetime.datetime.now())\n print(current_date)\n csv_name = '13_hyperas_cifar10_' + current_date + '_' + \\\n str(n_layer1) + '_' + str(n_layer2) + '_' + \\\n str(dropout_1) + '_' + str(dropout_2) + '_' + \\\n str(optim) + '_' + str(n_batch) + '.csv'\n callbacks = [EarlyStopping(monitor='val_loss', patience=3, verbose=0), \\\n CSVLogger(csv_name, append=True, separator=';')]\n \n result = model.fit(x_train, y_train,\n batch_size=n_batch,\n epochs=100,\n verbose=2,\n validation_data=(x_test, y_test),\n callbacks=callbacks,\n shuffle=True)\n \n validation_acc = np.amax(result.history['val_acc']) \n print('Best validation acc of epoch:', validation_acc)\n return {'loss': -validation_acc, 'status': STATUS_OK, 'model': model}\n\nfrom hyperopt import Trials, STATUS_OK, tpe\nfrom hyperas import optim\nfrom hyperas.distributions import choice, uniform\n\n# main hyperopt part\n# az algoritmus lehet:\n# -- random.suggest -> random search\n# -- tpe.suggest -> tree parsen estimator\nbest_run, best_model = optim.minimize(model=create_model,\n data=data,\n algo=tpe.suggest,\n max_evals=5,\n trials=Trials())\nx_train, y_train, x_test, y_test = data()\nprint(\"Evalutation of best performing model:\")\nprint(best_model.evaluate(x_test, y_test))\nprint(\"Best performing model chosen hyper-parameters:\")\nprint(best_run)\n\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# app/__init__.py import json from flask_api import FlaskAPI, status import graphene from graphene import relay from graphene_sqlalchemy import SQLAlchemyConnectionField, SQLAlchemyObjectType from flask_sqlalchemy import SQLAlchemy from sqlalchemy import func from flask import request, jsonify, abort, make_response from flask_graphql import GraphQLView from shapely.geometry import shape, Point # local import from instance.config import app_config # For password hashing from flask_bcrypt import Bcrypt # initialize db db = SQLAlchemy() from app.models import Date, Area, LTESighting, SmallCell, Site, SightingsPerHourPerCountry, SightingsNew, SightingsBase, WideSighting, Journey from app.models import Department as DepartmentModel from app.ng_event_models import ZoneDistrict, AttractionTotal, Profile, PurchDistrict, DOWFrequency class Department(SQLAlchemyObjectType): class Meta: model = DepartmentModel interfaces = (relay.Node, ) class Query(graphene.ObjectType): node = relay.Node.Field() all_employees = SQLAlchemyConnectionField(Department) def create_app(config_name): app = FlaskAPI(__name__, instance_relative_config=True) # overriding Werkzeugs built-in password hashing utilities using Bcrypt. bcrypt = Bcrypt(app) schema = graphene.Schema(query=Query) app.add_url_rule('/graphql', view_func=GraphQLView.as_view('graphql', schema=schema, graphiql=True)) app.config.from_object(app_config[config_name]) app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db.init_app(app) @app.route('/api/areas/create', methods=['POST']) def create_areas(): # get the access token name = request.data.get('name', '') geodata = request.data.get('geodata', '') center_lat = request.data.get('center_lat') center_lng = request.data.get('center_lng') zoom = request.data.get('zoom') area = Area(name=name, geodata=geodata, center_lat=center_lat, center_lng=center_lng, zoom=zoom) area.save() response = jsonify({ 'id': area.id, 'name': area.name, 'geodata': area.geodata, 'center_lat' : area.center_lat, 'center_lng' : area.center_lng, 'zoom' : area.zoom, 'date_created': area.date_created, 'date_modified': area.date_modified }) return make_response(response), 201 @app.route('/api/areas/delete', methods=['POST']) def delete_areas(): # get the access token id = request.data.get('id', 0) area = Area.query.filter_by(id=id).first() if (area is not None): area.delete() return make_response(jsonify({'id':id})), 200 @app.route('/api/sightingsperhour', methods=['GET']) def get_sightingsperhour(): # get all the areas sightings = SightingsPerHourPerCountry.query.all() results = [] for sighting in sightings: results.append({'country' : sighting.country, 'hour' : sighting.hour, 'count' : sighting.count}) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/sightingsnew', methods=['POST']) def sightingsnew(): sightings = db.session.query(SightingsBase.site_id, SightingsBase.country, func.count(SightingsBase.roundedtoday))\ .filter(SightingsBase.site_id.in_(request.data['selectedRow']))\ .filter(SightingsBase.roundedtoday.between(request.data['selectedDates'][0], request.data['selectedDates'][1]))\ .group_by(SightingsBase.site_id, SightingsBase.country)\ .order_by(SightingsBase.site_id, func.count(SightingsBase.roundedtoday).desc())\ results = [] for sighting in sightings.all(): results.append({'country' : sighting.country, 'site_id' : sighting.site_id, 'count' : sighting[2]}) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/widesightingsnew', methods=['POST', 'GET']) def widesightingsnew(): sightings = db.session.query(WideSighting.site_id, WideSighting.gender, func.count(WideSighting.gender))\ .filter(WideSighting.site_id.in_([138, 134]))\ .group_by(WideSighting.site_id, WideSighting.gender) results = [] for sighting in sightings.all(): #gender = sighting.gender if len(sighting.gender) else 'unknown' results.append({'site_id' : sighting.site_id, 'gender' : sighting.gender, 'count' : sighting[2]}) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/widesightings', methods=['GET']) def widesightings(): sightings = WideSighting.get_all() results = [] for sighting in sightings: results.append(sighting.serialise()) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/sites', methods=['GET']) def get_sites(): # get all the areas sites = Site.get_all() results = [] for site in sites: results.append(site.serialise()) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/dates', methods=['GET']) def get_dates(): # get all the areas dates = Date.get_all() results = [] for date in dates: results.append(date.serialise()) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/areas', methods=['GET']) def get_areas(): # get all the areas areas = Area.get_all() allSmallCells = SmallCell.get_all() results = [] for area in areas: smallcellInArea = [] for smallcell in allSmallCells: smallcellInArea.append(smallcell.serialise()) obj = { 'id': area.id, 'name': area.name, 'date_created': area.date_created, 'date_modified': area.date_modified, 'center_lat' : area.center_lat, 'center_lng' : area.center_lng, 'zoom' : area.zoom, 'geodata': area.geodata, 'smallcells' : smallcellInArea } results.append(obj) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/smallcells', methods=['GET']) def get_smallcells(): allSmallCells = SmallCell.query.order_by(SmallCell.id).all() results = [] for smallcell in allSmallCells: results.append(smallcell.serialise()) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/smallcells/update', methods=['POST']) def update_smallcell(): smallcell_id = request.data.get('id', '') site_id = request.data.get('site_id', '') smallcell = SmallCell.query.filter_by(id=smallcell_id).first() smallcell.site_id = site_id smallcell.save() return make_response(jsonify({ 'smallcell_id' : smallcell.id, 'site_id' : smallcell.site_id })), 200 @app.route('/api/sighting/byarea/<areaid>', methods=['GET']) def get_sighting(areaid): import string area = Area.query.filter_by(id=areaid).first() if area is None : return make_response(jsonify({ 'list' : [] })), 200 sites = [] for site in Site.get_all(): if area.contains(site): sites.append(str(site.id)) def generate_random_data(num_rows): import random latitude = 51.51451110408478 longitude = -0.12620388576521444 result = [] for _ in range(num_rows): dec_lat = random.random()/10 dec_lon = random.random()/10 result.append({'lat' : latitude + dec_lat, 'lng' : longitude + dec_lon}) return result results = [] if (len(sites) > 0): for row in db.session.execute('select * from get_gender_crossfilter(ARRAY[' + ','.join(sites) + '])'): results.append(({ 'geos': generate_random_data(5), 'gender' : row['__gender'], 'age_range' : row['__age_range'], 'timestamp' : row['__sighting_date'], 'count' : row['__count'] })) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/sighting/getgender/', methods=['POST']) def get_gender(): site_ids = str(request.data.get('site_ids', '')) from_sighting_date = request.data.get('selectedDates')[0] to_sighting_date = request.data.get('selectedDates')[1] import string results = [] for row in db.session.execute("select * from get_gender(ARRAY[" + site_ids + "]," + "'" + from_sighting_date + "'" + "," + "'" + to_sighting_date + "'" + ")"): results.append(({ 'site_id' : row['__site_id'], 'date_month' : row['__date_month'], 'gender' : row['__gender'], 'age_range' : row['__age_range'], 'perc_visits' : row['__perc_visits'], 'scaled_visits' : row['__scaled_visits'] })) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/sighting/getgendertotals/', methods=['POST']) def get_gender_age_totals(): site_ids = str(request.data.get('site_ids', '')) from_sighting_date = request.data.get('selectedDates')[0] to_sighting_date = request.data.get('selectedDates')[1] import string results = [] for row in db.session.execute("select * from get_gender_age_totals(ARRAY[" + site_ids + "]," + "'" + from_sighting_date + "'" + "," + "'" + to_sighting_date + "'" + ")"): results.append(({ 'site_id' : row['__site_id'], 'gender' : row['__gender'], 'age_range' : row['__age_range'], '__visits' : row['__visits'] })) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/sighting', methods=['GET']) def get_sightings(): results = [] for sighting in LTESighting.get_all(): results.append(sighting.serialise()) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/sitescomparison', methods=['POST']) def get_sitescomparison(): sightings = LTESighting.query\ .filter(LTESighting.smallcell.has(SmallCell.site_id.in_(request.data['selectedRow'])))\ .filter(LTESighting.timestamp.between(request.data['selectedDates'][0], request.data['selectedDates'][1])) return make_response(jsonify({ 'list' : [sighting.serialise() for sighting in sightings] })), 200 @app.route('/api/sighting/bysite', methods=['GET']) def get_sightings_by_site(): site_ids = (request.args.getlist('site_id')) results = [] #should do this better with joins! for sighting in LTESighting.query: if (str(sighting.smallcell.site_id)) in site_ids : results.append(sighting.serialise()) return make_response(jsonify({ 'list' : results })), 200 @app.route('/api/origindestination/all', methods=['GET']) def get_all(): journeys = Journey.query.all() thing = {} for journey in journeys: if (journey.origin_id not in thing) : thing[journey.origin_id] = {} if (journey.destination_id not in thing[journey.origin_id] and journey.destination_id != journey.origin_id) : thing[journey.origin_id][journey.destination_id] = journey.data['total'] return make_response(jsonify(thing)), 200 @app.route('/api/origindestination/<origin_id>', methods=['GET']) def get_od(origin_id): journeys = Journey.query.all()#.filter_by(origin_id=origin_id).all() _j = [] for journey in journeys: _j.append({'origin_id' : journey.origin_id, 'destination_id' : journey.destination_id, 'total' : journey.data['total']}) #_j.append({'origin_id' : journey.origin_id, 'data' : (journey.data)}) return make_response(jsonify({ 'list' : _j })), 200 @app.route('/api/ng_event/purchase/<home_district_name>/<type_visitor>', methods=['GET']) def purchase(home_district_name, type_visitor): days_sql = db.session.query(PurchDistrict.start_dow, func.count(PurchDistrict.start_dow))\ .group_by(PurchDistrict.start_dow)\ .filter(PurchDistrict.home_district_name.in_([home_district_name]))\ .filter(PurchDistrict.type_visitor.in_([type_visitor]))\ .order_by(func.count(PurchDistrict.start_dow).desc())\ .all() gender_sql = db.session.query(PurchDistrict.gender, func.count(PurchDistrict.gender))\ .group_by(PurchDistrict.gender)\ .filter(PurchDistrict.home_district_name.in_([home_district_name]))\ .filter(PurchDistrict.type_visitor.in_([type_visitor])).all() gender_age_sql = db.session.query(PurchDistrict.gender, PurchDistrict.age, func.count(PurchDistrict.gender))\ .group_by(PurchDistrict.gender, PurchDistrict.age)\ .filter(PurchDistrict.gender.isnot(None))\ .filter(PurchDistrict.age.isnot(None))\ .filter(PurchDistrict.home_district_name.in_([home_district_name]))\ .filter(PurchDistrict.type_visitor.in_([type_visitor])).all() gender_age_rent_sql = db.session.query(PurchDistrict.gender, PurchDistrict.age, PurchDistrict.rent, func.count(PurchDistrict.gender))\ .group_by(PurchDistrict.gender, PurchDistrict.age, PurchDistrict.rent)\ .filter(PurchDistrict.gender.isnot(None))\ .filter(PurchDistrict.age.isnot(None))\ .filter(PurchDistrict.type_visitor.in_([type_visitor])).all() days_total = sum(i[1] for i in days_sql) gender_total = sum(i[1] for i in gender_sql) gender_age_total = sum(i[2] for i in gender_age_sql) days_results = [] for result in days_sql: days_results.append({ 'start_dow' : result.start_dow, 'count' : result[1], 'percent' : float(result[1])/float(days_total), 'total' : days_total}) gender_results = [] for result in gender_sql: gender_results.append({'gender' : result.gender, 'count' : result[1], 'percent' : float(result[1])/float(gender_total)}) gender_age_results = [] for result in gender_age_sql: gender_age_results.append({'gender' : result.gender, 'age' : result.age, 'count' : result[2], 'percent' : float(result[2])/float(gender_age_total)}) return make_response(jsonify({'days' : days_results, 'gender' : gender_results, 'gender_age' : gender_age_results})), 200 @app.route('/api/ng_event/purchase_affluence/<type_visitor>', methods=['GET']) def purchase_rent(type_visitor): gender_sql = db.session.query(PurchDistrict.gender, func.count(PurchDistrict.gender))\ .group_by(PurchDistrict.gender)\ .filter(PurchDistrict.type_visitor.in_([type_visitor])).all() gender_age_rent_sql = db.session.query(PurchDistrict.gender, PurchDistrict.age, PurchDistrict.rent, func.count(PurchDistrict.gender))\ .group_by(PurchDistrict.gender, PurchDistrict.age, PurchDistrict.rent)\ .filter(PurchDistrict.gender.isnot(None))\ .filter(PurchDistrict.age.isnot(None))\ .filter(PurchDistrict.type_visitor.in_([type_visitor])).all() gender_total = sum(i[1] for i in gender_sql) gender_results = [] for result in gender_sql: gender_results.append({'gender' : result.gender, 'count' : result[1], 'percent' : float(result[1])/float(gender_total)}) gender_age_rent_results = [] for result in gender_age_rent_sql: gender_age_rent_results.append({'gender' : result.gender, 'age' : result.age, 'rent' : result.rent, 'count' : result[3]}) return make_response(jsonify({'gender' : gender_results, 'gender_age_rent' : gender_age_rent_results})), 200 @app.route('/api/ng_event/districts', methods=['GET']) def districts(): home_results = [] for result in db.session.query(ZoneDistrict.home_district_code, ZoneDistrict.home_district_name, func.sum(ZoneDistrict.visitors)).group_by(ZoneDistrict.home_district_code, ZoneDistrict.home_district_name).all(): home_results.append({'district_code' : result.home_district_code, 'district_name' : result.home_district_name, 'visitors' : result[2]}) work_results = [] for result in db.session.query(ZoneDistrict.work_district_code, ZoneDistrict.work_district_name, func.sum(ZoneDistrict.visitors)).group_by(ZoneDistrict.work_district_code, ZoneDistrict.work_district_name).all(): work_results.append({'district_code' : result.work_district_code, 'district_name' : result.work_district_name, 'visitors' : result[2]}) return make_response(jsonify({'work' : { 'list' : work_results }, 'home' : { 'list' : home_results }})), 200 @app.route('/api/ng_event/attractiontotals', methods=['GET']) def attractiontotals(): results = [] for result in db.session.query(AttractionTotal.zone_visitors, AttractionTotal.num_visitors).all(): results.append({'zone_visitors' : result.zone_visitors, 'num_visitors' : result.num_visitors}) return make_response(jsonify({'totals' : { 'list' : results }})), 200 @app.route('/api/ng_event/profiles', methods=['GET']) def profiles(): results = [] for result in db.session.query(Profile.country, Profile.nationality, Profile.name_province, Profile.gender, Profile.age, Profile.rent, Profile.type_visitor, Profile.date, Profile.day, Profile.period, Profile.name_tur_zone).limit(10000): district = '' if result.name_tur_zone == 'Zone 1' : district = 'Chamartin' if result.name_tur_zone == 'Zone 2' : district = 'Chamberi' if result.name_tur_zone == 'Zone 3' : district = 'Salamanca' day = '' if result.day == 'Monday' : day = 'Mon' if result.day == 'Tuesday' : day = 'Tue' if result.day == 'Wednesday' : day = 'Wed' if result.day == 'Thursday' : day = 'Thu' if result.day == 'Friday' : day = 'Fri' if result.day == 'Saturday' : day = 'Sat' if result.day == 'Sunday' : day = 'Sun' results.append({'country' : result.country, 'nationality' : result.nationality, 'name_province' : district, 'gender' : result.gender, 'age' : result.age, 'rent' : result.rent, 'type_visitor' : result.type_visitor, 'date' : result.date, 'day' : day, 'period' : result.period, 'zone' : result.name_tur_zone }) return make_response(jsonify(results)), 200 @app.route('/api/ng_event/dowfreq', methods=['GET']) def dowfreq(): results = [] for result in db.session.query(DOWFrequency.type_visitor, DOWFrequency.start_dow, DOWFrequency.start_hour, DOWFrequency.count).all(): results.append({'type_visitor' : result.type_visitor, 'start_dow' : result.start_dow, 'start_hour' : result.start_hour, 'count' : result.count }) return make_response(jsonify(results)), 200 return app
normal
{ "blob_id": "2f76bcfde11597f87bb9e058f7617e95c78ed383", "index": 7950, "step-1": "<mask token>\n\n\nclass Department(SQLAlchemyObjectType):\n\n\n class Meta:\n model = DepartmentModel\n interfaces = relay.Node,\n\n\nclass Query(graphene.ObjectType):\n node = relay.Node.Field()\n all_employees = SQLAlchemyConnectionField(Department)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Department(SQLAlchemyObjectType):\n\n\n class Meta:\n model = DepartmentModel\n interfaces = relay.Node,\n\n\nclass Query(graphene.ObjectType):\n node = relay.Node.Field()\n all_employees = SQLAlchemyConnectionField(Department)\n\n\ndef create_app(config_name):\n app = FlaskAPI(__name__, instance_relative_config=True)\n bcrypt = Bcrypt(app)\n schema = graphene.Schema(query=Query)\n app.add_url_rule('/graphql', view_func=GraphQLView.as_view('graphql',\n schema=schema, graphiql=True))\n app.config.from_object(app_config[config_name])\n app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\n db.init_app(app)\n\n @app.route('/api/areas/create', methods=['POST'])\n def create_areas():\n name = request.data.get('name', '')\n geodata = request.data.get('geodata', '')\n center_lat = request.data.get('center_lat')\n center_lng = request.data.get('center_lng')\n zoom = request.data.get('zoom')\n area = Area(name=name, geodata=geodata, center_lat=center_lat,\n center_lng=center_lng, zoom=zoom)\n area.save()\n response = jsonify({'id': area.id, 'name': area.name, 'geodata':\n area.geodata, 'center_lat': area.center_lat, 'center_lng': area\n .center_lng, 'zoom': area.zoom, 'date_created': area.\n date_created, 'date_modified': area.date_modified})\n return make_response(response), 201\n\n @app.route('/api/areas/delete', methods=['POST'])\n def delete_areas():\n id = request.data.get('id', 0)\n area = Area.query.filter_by(id=id).first()\n if area is not None:\n area.delete()\n return make_response(jsonify({'id': id})), 200\n\n @app.route('/api/sightingsperhour', methods=['GET'])\n def get_sightingsperhour():\n sightings = SightingsPerHourPerCountry.query.all()\n results = []\n for sighting in sightings:\n results.append({'country': sighting.country, 'hour': sighting.\n hour, 'count': sighting.count})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sightingsnew', methods=['POST'])\n def sightingsnew():\n sightings = db.session.query(SightingsBase.site_id, SightingsBase.\n country, func.count(SightingsBase.roundedtoday)).filter(\n SightingsBase.site_id.in_(request.data['selectedRow'])).filter(\n SightingsBase.roundedtoday.between(request.data['selectedDates'\n ][0], request.data['selectedDates'][1])).group_by(SightingsBase\n .site_id, SightingsBase.country).order_by(SightingsBase.site_id,\n func.count(SightingsBase.roundedtoday).desc())\n results = []\n for sighting in sightings.all():\n results.append({'country': sighting.country, 'site_id':\n sighting.site_id, 'count': sighting[2]})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/widesightingsnew', methods=['POST', 'GET'])\n def widesightingsnew():\n sightings = db.session.query(WideSighting.site_id, WideSighting.\n gender, func.count(WideSighting.gender)).filter(WideSighting.\n site_id.in_([138, 134])).group_by(WideSighting.site_id,\n WideSighting.gender)\n results = []\n for sighting in sightings.all():\n results.append({'site_id': sighting.site_id, 'gender': sighting\n .gender, 'count': sighting[2]})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/widesightings', methods=['GET'])\n def widesightings():\n sightings = WideSighting.get_all()\n results = []\n for sighting in sightings:\n results.append(sighting.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sites', methods=['GET'])\n def get_sites():\n sites = Site.get_all()\n results = []\n for site in sites:\n results.append(site.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/dates', methods=['GET'])\n def get_dates():\n dates = Date.get_all()\n results = []\n for date in dates:\n results.append(date.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/areas', methods=['GET'])\n def get_areas():\n areas = Area.get_all()\n allSmallCells = SmallCell.get_all()\n results = []\n for area in areas:\n smallcellInArea = []\n for smallcell in allSmallCells:\n smallcellInArea.append(smallcell.serialise())\n obj = {'id': area.id, 'name': area.name, 'date_created': area.\n date_created, 'date_modified': area.date_modified,\n 'center_lat': area.center_lat, 'center_lng': area.\n center_lng, 'zoom': area.zoom, 'geodata': area.geodata,\n 'smallcells': smallcellInArea}\n results.append(obj)\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/smallcells', methods=['GET'])\n def get_smallcells():\n allSmallCells = SmallCell.query.order_by(SmallCell.id).all()\n results = []\n for smallcell in allSmallCells:\n results.append(smallcell.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/smallcells/update', methods=['POST'])\n def update_smallcell():\n smallcell_id = request.data.get('id', '')\n site_id = request.data.get('site_id', '')\n smallcell = SmallCell.query.filter_by(id=smallcell_id).first()\n smallcell.site_id = site_id\n smallcell.save()\n return make_response(jsonify({'smallcell_id': smallcell.id,\n 'site_id': smallcell.site_id})), 200\n\n @app.route('/api/sighting/byarea/<areaid>', methods=['GET'])\n def get_sighting(areaid):\n import string\n area = Area.query.filter_by(id=areaid).first()\n if area is None:\n return make_response(jsonify({'list': []})), 200\n sites = []\n for site in Site.get_all():\n if area.contains(site):\n sites.append(str(site.id))\n\n def generate_random_data(num_rows):\n import random\n latitude = 51.51451110408478\n longitude = -0.12620388576521444\n result = []\n for _ in range(num_rows):\n dec_lat = random.random() / 10\n dec_lon = random.random() / 10\n result.append({'lat': latitude + dec_lat, 'lng': longitude +\n dec_lon})\n return result\n results = []\n if len(sites) > 0:\n for row in db.session.execute(\n 'select * from get_gender_crossfilter(ARRAY[' + ','.join(\n sites) + '])'):\n results.append({'geos': generate_random_data(5), 'gender':\n row['__gender'], 'age_range': row['__age_range'],\n 'timestamp': row['__sighting_date'], 'count': row[\n '__count']})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sighting/getgender/', methods=['POST'])\n def get_gender():\n site_ids = str(request.data.get('site_ids', ''))\n from_sighting_date = request.data.get('selectedDates')[0]\n to_sighting_date = request.data.get('selectedDates')[1]\n import string\n results = []\n for row in db.session.execute('select * from get_gender(ARRAY[' +\n site_ids + '],' + \"'\" + from_sighting_date + \"'\" + ',' + \"'\" +\n to_sighting_date + \"'\" + ')'):\n results.append({'site_id': row['__site_id'], 'date_month': row[\n '__date_month'], 'gender': row['__gender'], 'age_range':\n row['__age_range'], 'perc_visits': row['__perc_visits'],\n 'scaled_visits': row['__scaled_visits']})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sighting/getgendertotals/', methods=['POST'])\n def get_gender_age_totals():\n site_ids = str(request.data.get('site_ids', ''))\n from_sighting_date = request.data.get('selectedDates')[0]\n to_sighting_date = request.data.get('selectedDates')[1]\n import string\n results = []\n for row in db.session.execute(\n 'select * from get_gender_age_totals(ARRAY[' + site_ids + '],' +\n \"'\" + from_sighting_date + \"'\" + ',' + \"'\" + to_sighting_date +\n \"'\" + ')'):\n results.append({'site_id': row['__site_id'], 'gender': row[\n '__gender'], 'age_range': row['__age_range'], '__visits':\n row['__visits']})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sighting', methods=['GET'])\n def get_sightings():\n results = []\n for sighting in LTESighting.get_all():\n results.append(sighting.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sitescomparison', methods=['POST'])\n def get_sitescomparison():\n sightings = LTESighting.query.filter(LTESighting.smallcell.has(\n SmallCell.site_id.in_(request.data['selectedRow']))).filter(\n LTESighting.timestamp.between(request.data['selectedDates'][0],\n request.data['selectedDates'][1]))\n return make_response(jsonify({'list': [sighting.serialise() for\n sighting in sightings]})), 200\n\n @app.route('/api/sighting/bysite', methods=['GET'])\n def get_sightings_by_site():\n site_ids = request.args.getlist('site_id')\n results = []\n for sighting in LTESighting.query:\n if str(sighting.smallcell.site_id) in site_ids:\n results.append(sighting.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/origindestination/all', methods=['GET'])\n def get_all():\n journeys = Journey.query.all()\n thing = {}\n for journey in journeys:\n if journey.origin_id not in thing:\n thing[journey.origin_id] = {}\n if journey.destination_id not in thing[journey.origin_id\n ] and journey.destination_id != journey.origin_id:\n thing[journey.origin_id][journey.destination_id\n ] = journey.data['total']\n return make_response(jsonify(thing)), 200\n\n @app.route('/api/origindestination/<origin_id>', methods=['GET'])\n def get_od(origin_id):\n journeys = Journey.query.all()\n _j = []\n for journey in journeys:\n _j.append({'origin_id': journey.origin_id, 'destination_id':\n journey.destination_id, 'total': journey.data['total']})\n return make_response(jsonify({'list': _j})), 200\n\n @app.route('/api/ng_event/purchase/<home_district_name>/<type_visitor>',\n methods=['GET'])\n def purchase(home_district_name, type_visitor):\n days_sql = db.session.query(PurchDistrict.start_dow, func.count(\n PurchDistrict.start_dow)).group_by(PurchDistrict.start_dow).filter(\n PurchDistrict.home_district_name.in_([home_district_name])).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).order_by(func.\n count(PurchDistrict.start_dow).desc()).all()\n gender_sql = db.session.query(PurchDistrict.gender, func.count(\n PurchDistrict.gender)).group_by(PurchDistrict.gender).filter(\n PurchDistrict.home_district_name.in_([home_district_name])).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).all()\n gender_age_sql = db.session.query(PurchDistrict.gender,\n PurchDistrict.age, func.count(PurchDistrict.gender)).group_by(\n PurchDistrict.gender, PurchDistrict.age).filter(PurchDistrict.\n gender.isnot(None)).filter(PurchDistrict.age.isnot(None)).filter(\n PurchDistrict.home_district_name.in_([home_district_name])).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).all()\n gender_age_rent_sql = db.session.query(PurchDistrict.gender,\n PurchDistrict.age, PurchDistrict.rent, func.count(PurchDistrict\n .gender)).group_by(PurchDistrict.gender, PurchDistrict.age,\n PurchDistrict.rent).filter(PurchDistrict.gender.isnot(None)\n ).filter(PurchDistrict.age.isnot(None)).filter(PurchDistrict.\n type_visitor.in_([type_visitor])).all()\n days_total = sum(i[1] for i in days_sql)\n gender_total = sum(i[1] for i in gender_sql)\n gender_age_total = sum(i[2] for i in gender_age_sql)\n days_results = []\n for result in days_sql:\n days_results.append({'start_dow': result.start_dow, 'count':\n result[1], 'percent': float(result[1]) / float(days_total),\n 'total': days_total})\n gender_results = []\n for result in gender_sql:\n gender_results.append({'gender': result.gender, 'count': result\n [1], 'percent': float(result[1]) / float(gender_total)})\n gender_age_results = []\n for result in gender_age_sql:\n gender_age_results.append({'gender': result.gender, 'age':\n result.age, 'count': result[2], 'percent': float(result[2]) /\n float(gender_age_total)})\n return make_response(jsonify({'days': days_results, 'gender':\n gender_results, 'gender_age': gender_age_results})), 200\n\n @app.route('/api/ng_event/purchase_affluence/<type_visitor>', methods=[\n 'GET'])\n def purchase_rent(type_visitor):\n gender_sql = db.session.query(PurchDistrict.gender, func.count(\n PurchDistrict.gender)).group_by(PurchDistrict.gender).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).all()\n gender_age_rent_sql = db.session.query(PurchDistrict.gender,\n PurchDistrict.age, PurchDistrict.rent, func.count(PurchDistrict\n .gender)).group_by(PurchDistrict.gender, PurchDistrict.age,\n PurchDistrict.rent).filter(PurchDistrict.gender.isnot(None)\n ).filter(PurchDistrict.age.isnot(None)).filter(PurchDistrict.\n type_visitor.in_([type_visitor])).all()\n gender_total = sum(i[1] for i in gender_sql)\n gender_results = []\n for result in gender_sql:\n gender_results.append({'gender': result.gender, 'count': result\n [1], 'percent': float(result[1]) / float(gender_total)})\n gender_age_rent_results = []\n for result in gender_age_rent_sql:\n gender_age_rent_results.append({'gender': result.gender, 'age':\n result.age, 'rent': result.rent, 'count': result[3]})\n return make_response(jsonify({'gender': gender_results,\n 'gender_age_rent': gender_age_rent_results})), 200\n\n @app.route('/api/ng_event/districts', methods=['GET'])\n def districts():\n home_results = []\n for result in db.session.query(ZoneDistrict.home_district_code,\n ZoneDistrict.home_district_name, func.sum(ZoneDistrict.visitors)\n ).group_by(ZoneDistrict.home_district_code, ZoneDistrict.\n home_district_name).all():\n home_results.append({'district_code': result.home_district_code,\n 'district_name': result.home_district_name, 'visitors':\n result[2]})\n work_results = []\n for result in db.session.query(ZoneDistrict.work_district_code,\n ZoneDistrict.work_district_name, func.sum(ZoneDistrict.visitors)\n ).group_by(ZoneDistrict.work_district_code, ZoneDistrict.\n work_district_name).all():\n work_results.append({'district_code': result.work_district_code,\n 'district_name': result.work_district_name, 'visitors':\n result[2]})\n return make_response(jsonify({'work': {'list': work_results},\n 'home': {'list': home_results}})), 200\n\n @app.route('/api/ng_event/attractiontotals', methods=['GET'])\n def attractiontotals():\n results = []\n for result in db.session.query(AttractionTotal.zone_visitors,\n AttractionTotal.num_visitors).all():\n results.append({'zone_visitors': result.zone_visitors,\n 'num_visitors': result.num_visitors})\n return make_response(jsonify({'totals': {'list': results}})), 200\n\n @app.route('/api/ng_event/profiles', methods=['GET'])\n def profiles():\n results = []\n for result in db.session.query(Profile.country, Profile.nationality,\n Profile.name_province, Profile.gender, Profile.age, Profile.\n rent, Profile.type_visitor, Profile.date, Profile.day, Profile.\n period, Profile.name_tur_zone).limit(10000):\n district = ''\n if result.name_tur_zone == 'Zone 1':\n district = 'Chamartin'\n if result.name_tur_zone == 'Zone 2':\n district = 'Chamberi'\n if result.name_tur_zone == 'Zone 3':\n district = 'Salamanca'\n day = ''\n if result.day == 'Monday':\n day = 'Mon'\n if result.day == 'Tuesday':\n day = 'Tue'\n if result.day == 'Wednesday':\n day = 'Wed'\n if result.day == 'Thursday':\n day = 'Thu'\n if result.day == 'Friday':\n day = 'Fri'\n if result.day == 'Saturday':\n day = 'Sat'\n if result.day == 'Sunday':\n day = 'Sun'\n results.append({'country': result.country, 'nationality':\n result.nationality, 'name_province': district, 'gender':\n result.gender, 'age': result.age, 'rent': result.rent,\n 'type_visitor': result.type_visitor, 'date': result.date,\n 'day': day, 'period': result.period, 'zone': result.\n name_tur_zone})\n return make_response(jsonify(results)), 200\n\n @app.route('/api/ng_event/dowfreq', methods=['GET'])\n def dowfreq():\n results = []\n for result in db.session.query(DOWFrequency.type_visitor,\n DOWFrequency.start_dow, DOWFrequency.start_hour, DOWFrequency.count\n ).all():\n results.append({'type_visitor': result.type_visitor,\n 'start_dow': result.start_dow, 'start_hour': result.\n start_hour, 'count': result.count})\n return make_response(jsonify(results)), 200\n return app\n", "step-3": "<mask token>\ndb = SQLAlchemy()\n<mask token>\n\n\nclass Department(SQLAlchemyObjectType):\n\n\n class Meta:\n model = DepartmentModel\n interfaces = relay.Node,\n\n\nclass Query(graphene.ObjectType):\n node = relay.Node.Field()\n all_employees = SQLAlchemyConnectionField(Department)\n\n\ndef create_app(config_name):\n app = FlaskAPI(__name__, instance_relative_config=True)\n bcrypt = Bcrypt(app)\n schema = graphene.Schema(query=Query)\n app.add_url_rule('/graphql', view_func=GraphQLView.as_view('graphql',\n schema=schema, graphiql=True))\n app.config.from_object(app_config[config_name])\n app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\n db.init_app(app)\n\n @app.route('/api/areas/create', methods=['POST'])\n def create_areas():\n name = request.data.get('name', '')\n geodata = request.data.get('geodata', '')\n center_lat = request.data.get('center_lat')\n center_lng = request.data.get('center_lng')\n zoom = request.data.get('zoom')\n area = Area(name=name, geodata=geodata, center_lat=center_lat,\n center_lng=center_lng, zoom=zoom)\n area.save()\n response = jsonify({'id': area.id, 'name': area.name, 'geodata':\n area.geodata, 'center_lat': area.center_lat, 'center_lng': area\n .center_lng, 'zoom': area.zoom, 'date_created': area.\n date_created, 'date_modified': area.date_modified})\n return make_response(response), 201\n\n @app.route('/api/areas/delete', methods=['POST'])\n def delete_areas():\n id = request.data.get('id', 0)\n area = Area.query.filter_by(id=id).first()\n if area is not None:\n area.delete()\n return make_response(jsonify({'id': id})), 200\n\n @app.route('/api/sightingsperhour', methods=['GET'])\n def get_sightingsperhour():\n sightings = SightingsPerHourPerCountry.query.all()\n results = []\n for sighting in sightings:\n results.append({'country': sighting.country, 'hour': sighting.\n hour, 'count': sighting.count})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sightingsnew', methods=['POST'])\n def sightingsnew():\n sightings = db.session.query(SightingsBase.site_id, SightingsBase.\n country, func.count(SightingsBase.roundedtoday)).filter(\n SightingsBase.site_id.in_(request.data['selectedRow'])).filter(\n SightingsBase.roundedtoday.between(request.data['selectedDates'\n ][0], request.data['selectedDates'][1])).group_by(SightingsBase\n .site_id, SightingsBase.country).order_by(SightingsBase.site_id,\n func.count(SightingsBase.roundedtoday).desc())\n results = []\n for sighting in sightings.all():\n results.append({'country': sighting.country, 'site_id':\n sighting.site_id, 'count': sighting[2]})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/widesightingsnew', methods=['POST', 'GET'])\n def widesightingsnew():\n sightings = db.session.query(WideSighting.site_id, WideSighting.\n gender, func.count(WideSighting.gender)).filter(WideSighting.\n site_id.in_([138, 134])).group_by(WideSighting.site_id,\n WideSighting.gender)\n results = []\n for sighting in sightings.all():\n results.append({'site_id': sighting.site_id, 'gender': sighting\n .gender, 'count': sighting[2]})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/widesightings', methods=['GET'])\n def widesightings():\n sightings = WideSighting.get_all()\n results = []\n for sighting in sightings:\n results.append(sighting.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sites', methods=['GET'])\n def get_sites():\n sites = Site.get_all()\n results = []\n for site in sites:\n results.append(site.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/dates', methods=['GET'])\n def get_dates():\n dates = Date.get_all()\n results = []\n for date in dates:\n results.append(date.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/areas', methods=['GET'])\n def get_areas():\n areas = Area.get_all()\n allSmallCells = SmallCell.get_all()\n results = []\n for area in areas:\n smallcellInArea = []\n for smallcell in allSmallCells:\n smallcellInArea.append(smallcell.serialise())\n obj = {'id': area.id, 'name': area.name, 'date_created': area.\n date_created, 'date_modified': area.date_modified,\n 'center_lat': area.center_lat, 'center_lng': area.\n center_lng, 'zoom': area.zoom, 'geodata': area.geodata,\n 'smallcells': smallcellInArea}\n results.append(obj)\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/smallcells', methods=['GET'])\n def get_smallcells():\n allSmallCells = SmallCell.query.order_by(SmallCell.id).all()\n results = []\n for smallcell in allSmallCells:\n results.append(smallcell.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/smallcells/update', methods=['POST'])\n def update_smallcell():\n smallcell_id = request.data.get('id', '')\n site_id = request.data.get('site_id', '')\n smallcell = SmallCell.query.filter_by(id=smallcell_id).first()\n smallcell.site_id = site_id\n smallcell.save()\n return make_response(jsonify({'smallcell_id': smallcell.id,\n 'site_id': smallcell.site_id})), 200\n\n @app.route('/api/sighting/byarea/<areaid>', methods=['GET'])\n def get_sighting(areaid):\n import string\n area = Area.query.filter_by(id=areaid).first()\n if area is None:\n return make_response(jsonify({'list': []})), 200\n sites = []\n for site in Site.get_all():\n if area.contains(site):\n sites.append(str(site.id))\n\n def generate_random_data(num_rows):\n import random\n latitude = 51.51451110408478\n longitude = -0.12620388576521444\n result = []\n for _ in range(num_rows):\n dec_lat = random.random() / 10\n dec_lon = random.random() / 10\n result.append({'lat': latitude + dec_lat, 'lng': longitude +\n dec_lon})\n return result\n results = []\n if len(sites) > 0:\n for row in db.session.execute(\n 'select * from get_gender_crossfilter(ARRAY[' + ','.join(\n sites) + '])'):\n results.append({'geos': generate_random_data(5), 'gender':\n row['__gender'], 'age_range': row['__age_range'],\n 'timestamp': row['__sighting_date'], 'count': row[\n '__count']})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sighting/getgender/', methods=['POST'])\n def get_gender():\n site_ids = str(request.data.get('site_ids', ''))\n from_sighting_date = request.data.get('selectedDates')[0]\n to_sighting_date = request.data.get('selectedDates')[1]\n import string\n results = []\n for row in db.session.execute('select * from get_gender(ARRAY[' +\n site_ids + '],' + \"'\" + from_sighting_date + \"'\" + ',' + \"'\" +\n to_sighting_date + \"'\" + ')'):\n results.append({'site_id': row['__site_id'], 'date_month': row[\n '__date_month'], 'gender': row['__gender'], 'age_range':\n row['__age_range'], 'perc_visits': row['__perc_visits'],\n 'scaled_visits': row['__scaled_visits']})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sighting/getgendertotals/', methods=['POST'])\n def get_gender_age_totals():\n site_ids = str(request.data.get('site_ids', ''))\n from_sighting_date = request.data.get('selectedDates')[0]\n to_sighting_date = request.data.get('selectedDates')[1]\n import string\n results = []\n for row in db.session.execute(\n 'select * from get_gender_age_totals(ARRAY[' + site_ids + '],' +\n \"'\" + from_sighting_date + \"'\" + ',' + \"'\" + to_sighting_date +\n \"'\" + ')'):\n results.append({'site_id': row['__site_id'], 'gender': row[\n '__gender'], 'age_range': row['__age_range'], '__visits':\n row['__visits']})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sighting', methods=['GET'])\n def get_sightings():\n results = []\n for sighting in LTESighting.get_all():\n results.append(sighting.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sitescomparison', methods=['POST'])\n def get_sitescomparison():\n sightings = LTESighting.query.filter(LTESighting.smallcell.has(\n SmallCell.site_id.in_(request.data['selectedRow']))).filter(\n LTESighting.timestamp.between(request.data['selectedDates'][0],\n request.data['selectedDates'][1]))\n return make_response(jsonify({'list': [sighting.serialise() for\n sighting in sightings]})), 200\n\n @app.route('/api/sighting/bysite', methods=['GET'])\n def get_sightings_by_site():\n site_ids = request.args.getlist('site_id')\n results = []\n for sighting in LTESighting.query:\n if str(sighting.smallcell.site_id) in site_ids:\n results.append(sighting.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/origindestination/all', methods=['GET'])\n def get_all():\n journeys = Journey.query.all()\n thing = {}\n for journey in journeys:\n if journey.origin_id not in thing:\n thing[journey.origin_id] = {}\n if journey.destination_id not in thing[journey.origin_id\n ] and journey.destination_id != journey.origin_id:\n thing[journey.origin_id][journey.destination_id\n ] = journey.data['total']\n return make_response(jsonify(thing)), 200\n\n @app.route('/api/origindestination/<origin_id>', methods=['GET'])\n def get_od(origin_id):\n journeys = Journey.query.all()\n _j = []\n for journey in journeys:\n _j.append({'origin_id': journey.origin_id, 'destination_id':\n journey.destination_id, 'total': journey.data['total']})\n return make_response(jsonify({'list': _j})), 200\n\n @app.route('/api/ng_event/purchase/<home_district_name>/<type_visitor>',\n methods=['GET'])\n def purchase(home_district_name, type_visitor):\n days_sql = db.session.query(PurchDistrict.start_dow, func.count(\n PurchDistrict.start_dow)).group_by(PurchDistrict.start_dow).filter(\n PurchDistrict.home_district_name.in_([home_district_name])).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).order_by(func.\n count(PurchDistrict.start_dow).desc()).all()\n gender_sql = db.session.query(PurchDistrict.gender, func.count(\n PurchDistrict.gender)).group_by(PurchDistrict.gender).filter(\n PurchDistrict.home_district_name.in_([home_district_name])).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).all()\n gender_age_sql = db.session.query(PurchDistrict.gender,\n PurchDistrict.age, func.count(PurchDistrict.gender)).group_by(\n PurchDistrict.gender, PurchDistrict.age).filter(PurchDistrict.\n gender.isnot(None)).filter(PurchDistrict.age.isnot(None)).filter(\n PurchDistrict.home_district_name.in_([home_district_name])).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).all()\n gender_age_rent_sql = db.session.query(PurchDistrict.gender,\n PurchDistrict.age, PurchDistrict.rent, func.count(PurchDistrict\n .gender)).group_by(PurchDistrict.gender, PurchDistrict.age,\n PurchDistrict.rent).filter(PurchDistrict.gender.isnot(None)\n ).filter(PurchDistrict.age.isnot(None)).filter(PurchDistrict.\n type_visitor.in_([type_visitor])).all()\n days_total = sum(i[1] for i in days_sql)\n gender_total = sum(i[1] for i in gender_sql)\n gender_age_total = sum(i[2] for i in gender_age_sql)\n days_results = []\n for result in days_sql:\n days_results.append({'start_dow': result.start_dow, 'count':\n result[1], 'percent': float(result[1]) / float(days_total),\n 'total': days_total})\n gender_results = []\n for result in gender_sql:\n gender_results.append({'gender': result.gender, 'count': result\n [1], 'percent': float(result[1]) / float(gender_total)})\n gender_age_results = []\n for result in gender_age_sql:\n gender_age_results.append({'gender': result.gender, 'age':\n result.age, 'count': result[2], 'percent': float(result[2]) /\n float(gender_age_total)})\n return make_response(jsonify({'days': days_results, 'gender':\n gender_results, 'gender_age': gender_age_results})), 200\n\n @app.route('/api/ng_event/purchase_affluence/<type_visitor>', methods=[\n 'GET'])\n def purchase_rent(type_visitor):\n gender_sql = db.session.query(PurchDistrict.gender, func.count(\n PurchDistrict.gender)).group_by(PurchDistrict.gender).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).all()\n gender_age_rent_sql = db.session.query(PurchDistrict.gender,\n PurchDistrict.age, PurchDistrict.rent, func.count(PurchDistrict\n .gender)).group_by(PurchDistrict.gender, PurchDistrict.age,\n PurchDistrict.rent).filter(PurchDistrict.gender.isnot(None)\n ).filter(PurchDistrict.age.isnot(None)).filter(PurchDistrict.\n type_visitor.in_([type_visitor])).all()\n gender_total = sum(i[1] for i in gender_sql)\n gender_results = []\n for result in gender_sql:\n gender_results.append({'gender': result.gender, 'count': result\n [1], 'percent': float(result[1]) / float(gender_total)})\n gender_age_rent_results = []\n for result in gender_age_rent_sql:\n gender_age_rent_results.append({'gender': result.gender, 'age':\n result.age, 'rent': result.rent, 'count': result[3]})\n return make_response(jsonify({'gender': gender_results,\n 'gender_age_rent': gender_age_rent_results})), 200\n\n @app.route('/api/ng_event/districts', methods=['GET'])\n def districts():\n home_results = []\n for result in db.session.query(ZoneDistrict.home_district_code,\n ZoneDistrict.home_district_name, func.sum(ZoneDistrict.visitors)\n ).group_by(ZoneDistrict.home_district_code, ZoneDistrict.\n home_district_name).all():\n home_results.append({'district_code': result.home_district_code,\n 'district_name': result.home_district_name, 'visitors':\n result[2]})\n work_results = []\n for result in db.session.query(ZoneDistrict.work_district_code,\n ZoneDistrict.work_district_name, func.sum(ZoneDistrict.visitors)\n ).group_by(ZoneDistrict.work_district_code, ZoneDistrict.\n work_district_name).all():\n work_results.append({'district_code': result.work_district_code,\n 'district_name': result.work_district_name, 'visitors':\n result[2]})\n return make_response(jsonify({'work': {'list': work_results},\n 'home': {'list': home_results}})), 200\n\n @app.route('/api/ng_event/attractiontotals', methods=['GET'])\n def attractiontotals():\n results = []\n for result in db.session.query(AttractionTotal.zone_visitors,\n AttractionTotal.num_visitors).all():\n results.append({'zone_visitors': result.zone_visitors,\n 'num_visitors': result.num_visitors})\n return make_response(jsonify({'totals': {'list': results}})), 200\n\n @app.route('/api/ng_event/profiles', methods=['GET'])\n def profiles():\n results = []\n for result in db.session.query(Profile.country, Profile.nationality,\n Profile.name_province, Profile.gender, Profile.age, Profile.\n rent, Profile.type_visitor, Profile.date, Profile.day, Profile.\n period, Profile.name_tur_zone).limit(10000):\n district = ''\n if result.name_tur_zone == 'Zone 1':\n district = 'Chamartin'\n if result.name_tur_zone == 'Zone 2':\n district = 'Chamberi'\n if result.name_tur_zone == 'Zone 3':\n district = 'Salamanca'\n day = ''\n if result.day == 'Monday':\n day = 'Mon'\n if result.day == 'Tuesday':\n day = 'Tue'\n if result.day == 'Wednesday':\n day = 'Wed'\n if result.day == 'Thursday':\n day = 'Thu'\n if result.day == 'Friday':\n day = 'Fri'\n if result.day == 'Saturday':\n day = 'Sat'\n if result.day == 'Sunday':\n day = 'Sun'\n results.append({'country': result.country, 'nationality':\n result.nationality, 'name_province': district, 'gender':\n result.gender, 'age': result.age, 'rent': result.rent,\n 'type_visitor': result.type_visitor, 'date': result.date,\n 'day': day, 'period': result.period, 'zone': result.\n name_tur_zone})\n return make_response(jsonify(results)), 200\n\n @app.route('/api/ng_event/dowfreq', methods=['GET'])\n def dowfreq():\n results = []\n for result in db.session.query(DOWFrequency.type_visitor,\n DOWFrequency.start_dow, DOWFrequency.start_hour, DOWFrequency.count\n ).all():\n results.append({'type_visitor': result.type_visitor,\n 'start_dow': result.start_dow, 'start_hour': result.\n start_hour, 'count': result.count})\n return make_response(jsonify(results)), 200\n return app\n", "step-4": "import json\nfrom flask_api import FlaskAPI, status\nimport graphene\nfrom graphene import relay\nfrom graphene_sqlalchemy import SQLAlchemyConnectionField, SQLAlchemyObjectType\nfrom flask_sqlalchemy import SQLAlchemy\nfrom sqlalchemy import func\nfrom flask import request, jsonify, abort, make_response\nfrom flask_graphql import GraphQLView\nfrom shapely.geometry import shape, Point\nfrom instance.config import app_config\nfrom flask_bcrypt import Bcrypt\ndb = SQLAlchemy()\nfrom app.models import Date, Area, LTESighting, SmallCell, Site, SightingsPerHourPerCountry, SightingsNew, SightingsBase, WideSighting, Journey\nfrom app.models import Department as DepartmentModel\nfrom app.ng_event_models import ZoneDistrict, AttractionTotal, Profile, PurchDistrict, DOWFrequency\n\n\nclass Department(SQLAlchemyObjectType):\n\n\n class Meta:\n model = DepartmentModel\n interfaces = relay.Node,\n\n\nclass Query(graphene.ObjectType):\n node = relay.Node.Field()\n all_employees = SQLAlchemyConnectionField(Department)\n\n\ndef create_app(config_name):\n app = FlaskAPI(__name__, instance_relative_config=True)\n bcrypt = Bcrypt(app)\n schema = graphene.Schema(query=Query)\n app.add_url_rule('/graphql', view_func=GraphQLView.as_view('graphql',\n schema=schema, graphiql=True))\n app.config.from_object(app_config[config_name])\n app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\n db.init_app(app)\n\n @app.route('/api/areas/create', methods=['POST'])\n def create_areas():\n name = request.data.get('name', '')\n geodata = request.data.get('geodata', '')\n center_lat = request.data.get('center_lat')\n center_lng = request.data.get('center_lng')\n zoom = request.data.get('zoom')\n area = Area(name=name, geodata=geodata, center_lat=center_lat,\n center_lng=center_lng, zoom=zoom)\n area.save()\n response = jsonify({'id': area.id, 'name': area.name, 'geodata':\n area.geodata, 'center_lat': area.center_lat, 'center_lng': area\n .center_lng, 'zoom': area.zoom, 'date_created': area.\n date_created, 'date_modified': area.date_modified})\n return make_response(response), 201\n\n @app.route('/api/areas/delete', methods=['POST'])\n def delete_areas():\n id = request.data.get('id', 0)\n area = Area.query.filter_by(id=id).first()\n if area is not None:\n area.delete()\n return make_response(jsonify({'id': id})), 200\n\n @app.route('/api/sightingsperhour', methods=['GET'])\n def get_sightingsperhour():\n sightings = SightingsPerHourPerCountry.query.all()\n results = []\n for sighting in sightings:\n results.append({'country': sighting.country, 'hour': sighting.\n hour, 'count': sighting.count})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sightingsnew', methods=['POST'])\n def sightingsnew():\n sightings = db.session.query(SightingsBase.site_id, SightingsBase.\n country, func.count(SightingsBase.roundedtoday)).filter(\n SightingsBase.site_id.in_(request.data['selectedRow'])).filter(\n SightingsBase.roundedtoday.between(request.data['selectedDates'\n ][0], request.data['selectedDates'][1])).group_by(SightingsBase\n .site_id, SightingsBase.country).order_by(SightingsBase.site_id,\n func.count(SightingsBase.roundedtoday).desc())\n results = []\n for sighting in sightings.all():\n results.append({'country': sighting.country, 'site_id':\n sighting.site_id, 'count': sighting[2]})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/widesightingsnew', methods=['POST', 'GET'])\n def widesightingsnew():\n sightings = db.session.query(WideSighting.site_id, WideSighting.\n gender, func.count(WideSighting.gender)).filter(WideSighting.\n site_id.in_([138, 134])).group_by(WideSighting.site_id,\n WideSighting.gender)\n results = []\n for sighting in sightings.all():\n results.append({'site_id': sighting.site_id, 'gender': sighting\n .gender, 'count': sighting[2]})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/widesightings', methods=['GET'])\n def widesightings():\n sightings = WideSighting.get_all()\n results = []\n for sighting in sightings:\n results.append(sighting.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sites', methods=['GET'])\n def get_sites():\n sites = Site.get_all()\n results = []\n for site in sites:\n results.append(site.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/dates', methods=['GET'])\n def get_dates():\n dates = Date.get_all()\n results = []\n for date in dates:\n results.append(date.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/areas', methods=['GET'])\n def get_areas():\n areas = Area.get_all()\n allSmallCells = SmallCell.get_all()\n results = []\n for area in areas:\n smallcellInArea = []\n for smallcell in allSmallCells:\n smallcellInArea.append(smallcell.serialise())\n obj = {'id': area.id, 'name': area.name, 'date_created': area.\n date_created, 'date_modified': area.date_modified,\n 'center_lat': area.center_lat, 'center_lng': area.\n center_lng, 'zoom': area.zoom, 'geodata': area.geodata,\n 'smallcells': smallcellInArea}\n results.append(obj)\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/smallcells', methods=['GET'])\n def get_smallcells():\n allSmallCells = SmallCell.query.order_by(SmallCell.id).all()\n results = []\n for smallcell in allSmallCells:\n results.append(smallcell.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/smallcells/update', methods=['POST'])\n def update_smallcell():\n smallcell_id = request.data.get('id', '')\n site_id = request.data.get('site_id', '')\n smallcell = SmallCell.query.filter_by(id=smallcell_id).first()\n smallcell.site_id = site_id\n smallcell.save()\n return make_response(jsonify({'smallcell_id': smallcell.id,\n 'site_id': smallcell.site_id})), 200\n\n @app.route('/api/sighting/byarea/<areaid>', methods=['GET'])\n def get_sighting(areaid):\n import string\n area = Area.query.filter_by(id=areaid).first()\n if area is None:\n return make_response(jsonify({'list': []})), 200\n sites = []\n for site in Site.get_all():\n if area.contains(site):\n sites.append(str(site.id))\n\n def generate_random_data(num_rows):\n import random\n latitude = 51.51451110408478\n longitude = -0.12620388576521444\n result = []\n for _ in range(num_rows):\n dec_lat = random.random() / 10\n dec_lon = random.random() / 10\n result.append({'lat': latitude + dec_lat, 'lng': longitude +\n dec_lon})\n return result\n results = []\n if len(sites) > 0:\n for row in db.session.execute(\n 'select * from get_gender_crossfilter(ARRAY[' + ','.join(\n sites) + '])'):\n results.append({'geos': generate_random_data(5), 'gender':\n row['__gender'], 'age_range': row['__age_range'],\n 'timestamp': row['__sighting_date'], 'count': row[\n '__count']})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sighting/getgender/', methods=['POST'])\n def get_gender():\n site_ids = str(request.data.get('site_ids', ''))\n from_sighting_date = request.data.get('selectedDates')[0]\n to_sighting_date = request.data.get('selectedDates')[1]\n import string\n results = []\n for row in db.session.execute('select * from get_gender(ARRAY[' +\n site_ids + '],' + \"'\" + from_sighting_date + \"'\" + ',' + \"'\" +\n to_sighting_date + \"'\" + ')'):\n results.append({'site_id': row['__site_id'], 'date_month': row[\n '__date_month'], 'gender': row['__gender'], 'age_range':\n row['__age_range'], 'perc_visits': row['__perc_visits'],\n 'scaled_visits': row['__scaled_visits']})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sighting/getgendertotals/', methods=['POST'])\n def get_gender_age_totals():\n site_ids = str(request.data.get('site_ids', ''))\n from_sighting_date = request.data.get('selectedDates')[0]\n to_sighting_date = request.data.get('selectedDates')[1]\n import string\n results = []\n for row in db.session.execute(\n 'select * from get_gender_age_totals(ARRAY[' + site_ids + '],' +\n \"'\" + from_sighting_date + \"'\" + ',' + \"'\" + to_sighting_date +\n \"'\" + ')'):\n results.append({'site_id': row['__site_id'], 'gender': row[\n '__gender'], 'age_range': row['__age_range'], '__visits':\n row['__visits']})\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sighting', methods=['GET'])\n def get_sightings():\n results = []\n for sighting in LTESighting.get_all():\n results.append(sighting.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/sitescomparison', methods=['POST'])\n def get_sitescomparison():\n sightings = LTESighting.query.filter(LTESighting.smallcell.has(\n SmallCell.site_id.in_(request.data['selectedRow']))).filter(\n LTESighting.timestamp.between(request.data['selectedDates'][0],\n request.data['selectedDates'][1]))\n return make_response(jsonify({'list': [sighting.serialise() for\n sighting in sightings]})), 200\n\n @app.route('/api/sighting/bysite', methods=['GET'])\n def get_sightings_by_site():\n site_ids = request.args.getlist('site_id')\n results = []\n for sighting in LTESighting.query:\n if str(sighting.smallcell.site_id) in site_ids:\n results.append(sighting.serialise())\n return make_response(jsonify({'list': results})), 200\n\n @app.route('/api/origindestination/all', methods=['GET'])\n def get_all():\n journeys = Journey.query.all()\n thing = {}\n for journey in journeys:\n if journey.origin_id not in thing:\n thing[journey.origin_id] = {}\n if journey.destination_id not in thing[journey.origin_id\n ] and journey.destination_id != journey.origin_id:\n thing[journey.origin_id][journey.destination_id\n ] = journey.data['total']\n return make_response(jsonify(thing)), 200\n\n @app.route('/api/origindestination/<origin_id>', methods=['GET'])\n def get_od(origin_id):\n journeys = Journey.query.all()\n _j = []\n for journey in journeys:\n _j.append({'origin_id': journey.origin_id, 'destination_id':\n journey.destination_id, 'total': journey.data['total']})\n return make_response(jsonify({'list': _j})), 200\n\n @app.route('/api/ng_event/purchase/<home_district_name>/<type_visitor>',\n methods=['GET'])\n def purchase(home_district_name, type_visitor):\n days_sql = db.session.query(PurchDistrict.start_dow, func.count(\n PurchDistrict.start_dow)).group_by(PurchDistrict.start_dow).filter(\n PurchDistrict.home_district_name.in_([home_district_name])).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).order_by(func.\n count(PurchDistrict.start_dow).desc()).all()\n gender_sql = db.session.query(PurchDistrict.gender, func.count(\n PurchDistrict.gender)).group_by(PurchDistrict.gender).filter(\n PurchDistrict.home_district_name.in_([home_district_name])).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).all()\n gender_age_sql = db.session.query(PurchDistrict.gender,\n PurchDistrict.age, func.count(PurchDistrict.gender)).group_by(\n PurchDistrict.gender, PurchDistrict.age).filter(PurchDistrict.\n gender.isnot(None)).filter(PurchDistrict.age.isnot(None)).filter(\n PurchDistrict.home_district_name.in_([home_district_name])).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).all()\n gender_age_rent_sql = db.session.query(PurchDistrict.gender,\n PurchDistrict.age, PurchDistrict.rent, func.count(PurchDistrict\n .gender)).group_by(PurchDistrict.gender, PurchDistrict.age,\n PurchDistrict.rent).filter(PurchDistrict.gender.isnot(None)\n ).filter(PurchDistrict.age.isnot(None)).filter(PurchDistrict.\n type_visitor.in_([type_visitor])).all()\n days_total = sum(i[1] for i in days_sql)\n gender_total = sum(i[1] for i in gender_sql)\n gender_age_total = sum(i[2] for i in gender_age_sql)\n days_results = []\n for result in days_sql:\n days_results.append({'start_dow': result.start_dow, 'count':\n result[1], 'percent': float(result[1]) / float(days_total),\n 'total': days_total})\n gender_results = []\n for result in gender_sql:\n gender_results.append({'gender': result.gender, 'count': result\n [1], 'percent': float(result[1]) / float(gender_total)})\n gender_age_results = []\n for result in gender_age_sql:\n gender_age_results.append({'gender': result.gender, 'age':\n result.age, 'count': result[2], 'percent': float(result[2]) /\n float(gender_age_total)})\n return make_response(jsonify({'days': days_results, 'gender':\n gender_results, 'gender_age': gender_age_results})), 200\n\n @app.route('/api/ng_event/purchase_affluence/<type_visitor>', methods=[\n 'GET'])\n def purchase_rent(type_visitor):\n gender_sql = db.session.query(PurchDistrict.gender, func.count(\n PurchDistrict.gender)).group_by(PurchDistrict.gender).filter(\n PurchDistrict.type_visitor.in_([type_visitor])).all()\n gender_age_rent_sql = db.session.query(PurchDistrict.gender,\n PurchDistrict.age, PurchDistrict.rent, func.count(PurchDistrict\n .gender)).group_by(PurchDistrict.gender, PurchDistrict.age,\n PurchDistrict.rent).filter(PurchDistrict.gender.isnot(None)\n ).filter(PurchDistrict.age.isnot(None)).filter(PurchDistrict.\n type_visitor.in_([type_visitor])).all()\n gender_total = sum(i[1] for i in gender_sql)\n gender_results = []\n for result in gender_sql:\n gender_results.append({'gender': result.gender, 'count': result\n [1], 'percent': float(result[1]) / float(gender_total)})\n gender_age_rent_results = []\n for result in gender_age_rent_sql:\n gender_age_rent_results.append({'gender': result.gender, 'age':\n result.age, 'rent': result.rent, 'count': result[3]})\n return make_response(jsonify({'gender': gender_results,\n 'gender_age_rent': gender_age_rent_results})), 200\n\n @app.route('/api/ng_event/districts', methods=['GET'])\n def districts():\n home_results = []\n for result in db.session.query(ZoneDistrict.home_district_code,\n ZoneDistrict.home_district_name, func.sum(ZoneDistrict.visitors)\n ).group_by(ZoneDistrict.home_district_code, ZoneDistrict.\n home_district_name).all():\n home_results.append({'district_code': result.home_district_code,\n 'district_name': result.home_district_name, 'visitors':\n result[2]})\n work_results = []\n for result in db.session.query(ZoneDistrict.work_district_code,\n ZoneDistrict.work_district_name, func.sum(ZoneDistrict.visitors)\n ).group_by(ZoneDistrict.work_district_code, ZoneDistrict.\n work_district_name).all():\n work_results.append({'district_code': result.work_district_code,\n 'district_name': result.work_district_name, 'visitors':\n result[2]})\n return make_response(jsonify({'work': {'list': work_results},\n 'home': {'list': home_results}})), 200\n\n @app.route('/api/ng_event/attractiontotals', methods=['GET'])\n def attractiontotals():\n results = []\n for result in db.session.query(AttractionTotal.zone_visitors,\n AttractionTotal.num_visitors).all():\n results.append({'zone_visitors': result.zone_visitors,\n 'num_visitors': result.num_visitors})\n return make_response(jsonify({'totals': {'list': results}})), 200\n\n @app.route('/api/ng_event/profiles', methods=['GET'])\n def profiles():\n results = []\n for result in db.session.query(Profile.country, Profile.nationality,\n Profile.name_province, Profile.gender, Profile.age, Profile.\n rent, Profile.type_visitor, Profile.date, Profile.day, Profile.\n period, Profile.name_tur_zone).limit(10000):\n district = ''\n if result.name_tur_zone == 'Zone 1':\n district = 'Chamartin'\n if result.name_tur_zone == 'Zone 2':\n district = 'Chamberi'\n if result.name_tur_zone == 'Zone 3':\n district = 'Salamanca'\n day = ''\n if result.day == 'Monday':\n day = 'Mon'\n if result.day == 'Tuesday':\n day = 'Tue'\n if result.day == 'Wednesday':\n day = 'Wed'\n if result.day == 'Thursday':\n day = 'Thu'\n if result.day == 'Friday':\n day = 'Fri'\n if result.day == 'Saturday':\n day = 'Sat'\n if result.day == 'Sunday':\n day = 'Sun'\n results.append({'country': result.country, 'nationality':\n result.nationality, 'name_province': district, 'gender':\n result.gender, 'age': result.age, 'rent': result.rent,\n 'type_visitor': result.type_visitor, 'date': result.date,\n 'day': day, 'period': result.period, 'zone': result.\n name_tur_zone})\n return make_response(jsonify(results)), 200\n\n @app.route('/api/ng_event/dowfreq', methods=['GET'])\n def dowfreq():\n results = []\n for result in db.session.query(DOWFrequency.type_visitor,\n DOWFrequency.start_dow, DOWFrequency.start_hour, DOWFrequency.count\n ).all():\n results.append({'type_visitor': result.type_visitor,\n 'start_dow': result.start_dow, 'start_hour': result.\n start_hour, 'count': result.count})\n return make_response(jsonify(results)), 200\n return app\n", "step-5": "# app/__init__.py\nimport json\nfrom flask_api import FlaskAPI, status\nimport graphene\nfrom graphene import relay\nfrom graphene_sqlalchemy import SQLAlchemyConnectionField, SQLAlchemyObjectType\nfrom flask_sqlalchemy import SQLAlchemy\nfrom sqlalchemy import func\nfrom flask import request, jsonify, abort, make_response\n\nfrom flask_graphql import GraphQLView\n\nfrom shapely.geometry import shape, Point\n\n# local import\n\nfrom instance.config import app_config\n\n# For password hashing\nfrom flask_bcrypt import Bcrypt\n\n# initialize db\ndb = SQLAlchemy()\n\nfrom app.models import Date, Area, LTESighting, SmallCell, Site, SightingsPerHourPerCountry, SightingsNew, SightingsBase, WideSighting, Journey\nfrom app.models import Department as DepartmentModel\nfrom app.ng_event_models import ZoneDistrict, AttractionTotal, Profile, PurchDistrict, DOWFrequency\n\nclass Department(SQLAlchemyObjectType):\n\n class Meta:\n model = DepartmentModel\n interfaces = (relay.Node, )\n\nclass Query(graphene.ObjectType):\n node = relay.Node.Field()\n all_employees = SQLAlchemyConnectionField(Department)\n\ndef create_app(config_name):\n\n app = FlaskAPI(__name__, instance_relative_config=True)\n # overriding Werkzeugs built-in password hashing utilities using Bcrypt.\n bcrypt = Bcrypt(app)\n\n schema = graphene.Schema(query=Query)\n\n app.add_url_rule('/graphql', view_func=GraphQLView.as_view('graphql', schema=schema, graphiql=True))\n\n app.config.from_object(app_config[config_name])\n app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\n db.init_app(app)\n\n @app.route('/api/areas/create', methods=['POST'])\n def create_areas():\n # get the access token\n\n name = request.data.get('name', '')\n geodata = request.data.get('geodata', '')\n center_lat = request.data.get('center_lat')\n center_lng = request.data.get('center_lng')\n zoom = request.data.get('zoom')\n\n area = Area(name=name, geodata=geodata, center_lat=center_lat, center_lng=center_lng, zoom=zoom)\n area.save()\n response = jsonify({\n 'id': area.id,\n 'name': area.name,\n 'geodata': area.geodata,\n 'center_lat' : area.center_lat,\n 'center_lng' : area.center_lng,\n 'zoom' : area.zoom,\n 'date_created': area.date_created,\n 'date_modified': area.date_modified\n })\n\n return make_response(response), 201\n\n @app.route('/api/areas/delete', methods=['POST'])\n def delete_areas():\n # get the access token\n id = request.data.get('id', 0)\n area = Area.query.filter_by(id=id).first()\n\n if (area is not None):\n area.delete()\n\n return make_response(jsonify({'id':id})), 200\n\n\n @app.route('/api/sightingsperhour', methods=['GET'])\n def get_sightingsperhour():\n # get all the areas\n sightings = SightingsPerHourPerCountry.query.all()\n results = []\n for sighting in sightings:\n results.append({'country' : sighting.country, 'hour' : sighting.hour, 'count' : sighting.count})\n\n return make_response(jsonify({ 'list' : results })), 200\n\n @app.route('/api/sightingsnew', methods=['POST'])\n def sightingsnew():\n\n sightings = db.session.query(SightingsBase.site_id, SightingsBase.country, func.count(SightingsBase.roundedtoday))\\\n .filter(SightingsBase.site_id.in_(request.data['selectedRow']))\\\n .filter(SightingsBase.roundedtoday.between(request.data['selectedDates'][0], request.data['selectedDates'][1]))\\\n .group_by(SightingsBase.site_id, SightingsBase.country)\\\n .order_by(SightingsBase.site_id, func.count(SightingsBase.roundedtoday).desc())\\\n\n results = []\n for sighting in sightings.all():\n results.append({'country' : sighting.country, 'site_id' : sighting.site_id, 'count' : sighting[2]})\n\n return make_response(jsonify({ 'list' : results })), 200\n\n\n @app.route('/api/widesightingsnew', methods=['POST', 'GET'])\n def widesightingsnew():\n\n sightings = db.session.query(WideSighting.site_id, WideSighting.gender, func.count(WideSighting.gender))\\\n .filter(WideSighting.site_id.in_([138, 134]))\\\n .group_by(WideSighting.site_id, WideSighting.gender)\n\n results = []\n for sighting in sightings.all():\n #gender = sighting.gender if len(sighting.gender) else 'unknown'\n results.append({'site_id' : sighting.site_id, 'gender' : sighting.gender, 'count' : sighting[2]})\n\n return make_response(jsonify({ 'list' : results })), 200\n\n\n @app.route('/api/widesightings', methods=['GET'])\n def widesightings():\n\n sightings = WideSighting.get_all()\n\n results = []\n for sighting in sightings:\n results.append(sighting.serialise())\n\n return make_response(jsonify({ 'list' : results })), 200\n\n @app.route('/api/sites', methods=['GET'])\n def get_sites():\n # get all the areas\n sites = Site.get_all()\n results = []\n for site in sites:\n results.append(site.serialise())\n\n return make_response(jsonify({ 'list' : results })), 200\n\n @app.route('/api/dates', methods=['GET'])\n def get_dates():\n # get all the areas\n dates = Date.get_all()\n results = []\n for date in dates:\n results.append(date.serialise())\n\n return make_response(jsonify({ 'list' : results })), 200\n\n @app.route('/api/areas', methods=['GET'])\n def get_areas():\n # get all the areas\n areas = Area.get_all()\n allSmallCells = SmallCell.get_all()\n\n results = []\n\n for area in areas:\n\n smallcellInArea = []\n for smallcell in allSmallCells:\n smallcellInArea.append(smallcell.serialise())\n\n obj = {\n 'id': area.id,\n 'name': area.name,\n 'date_created': area.date_created,\n 'date_modified': area.date_modified,\n 'center_lat' : area.center_lat,\n 'center_lng' : area.center_lng,\n 'zoom' : area.zoom,\n 'geodata': area.geodata,\n 'smallcells' : smallcellInArea\n }\n results.append(obj)\n\n return make_response(jsonify({ 'list' : results })), 200\n\n @app.route('/api/smallcells', methods=['GET'])\n def get_smallcells():\n allSmallCells = SmallCell.query.order_by(SmallCell.id).all()\n\n results = []\n for smallcell in allSmallCells:\n results.append(smallcell.serialise())\n\n return make_response(jsonify({ 'list' : results })), 200\n\n @app.route('/api/smallcells/update', methods=['POST'])\n def update_smallcell():\n smallcell_id = request.data.get('id', '')\n site_id = request.data.get('site_id', '')\n\n smallcell = SmallCell.query.filter_by(id=smallcell_id).first()\n smallcell.site_id = site_id\n smallcell.save()\n\n return make_response(jsonify({ 'smallcell_id' : smallcell.id, 'site_id' : smallcell.site_id })), 200\n\n @app.route('/api/sighting/byarea/<areaid>', methods=['GET'])\n def get_sighting(areaid):\n import string\n area = Area.query.filter_by(id=areaid).first()\n if area is None : return make_response(jsonify({ 'list' : [] })), 200\n\n sites = []\n for site in Site.get_all():\n if area.contains(site):\n sites.append(str(site.id))\n\n def generate_random_data(num_rows):\n import random\n latitude = 51.51451110408478\n longitude = -0.12620388576521444\n result = []\n for _ in range(num_rows):\n dec_lat = random.random()/10\n dec_lon = random.random()/10\n result.append({'lat' : latitude + dec_lat, 'lng' : longitude + dec_lon})\n return result\n\n results = []\n if (len(sites) > 0):\n for row in db.session.execute('select * from get_gender_crossfilter(ARRAY[' + ','.join(sites) + '])'):\n\n results.append(({ 'geos': generate_random_data(5), 'gender' : row['__gender'], 'age_range' : row['__age_range'], 'timestamp' : row['__sighting_date'], 'count' : row['__count'] }))\n\n return make_response(jsonify({ 'list' : results })), 200\n\n\n\n @app.route('/api/sighting/getgender/', methods=['POST'])\n def get_gender():\n\n site_ids = str(request.data.get('site_ids', ''))\n from_sighting_date = request.data.get('selectedDates')[0]\n to_sighting_date = request.data.get('selectedDates')[1]\n\n import string\n\n results = []\n\n for row in db.session.execute(\"select * from get_gender(ARRAY[\" + site_ids + \"],\" + \"'\" + from_sighting_date + \"'\" + \",\" + \"'\" + to_sighting_date + \"'\" + \")\"):\n results.append(({ 'site_id' : row['__site_id'], 'date_month' : row['__date_month'], 'gender' : row['__gender'], 'age_range' : row['__age_range'], 'perc_visits' : row['__perc_visits'], 'scaled_visits' : row['__scaled_visits'] }))\n\n return make_response(jsonify({ 'list' : results })), 200\n\n\n @app.route('/api/sighting/getgendertotals/', methods=['POST'])\n def get_gender_age_totals():\n\n site_ids = str(request.data.get('site_ids', ''))\n from_sighting_date = request.data.get('selectedDates')[0]\n to_sighting_date = request.data.get('selectedDates')[1]\n\n import string\n\n results = []\n\n for row in db.session.execute(\"select * from get_gender_age_totals(ARRAY[\" + site_ids + \"],\" + \"'\" + from_sighting_date + \"'\" + \",\" + \"'\" + to_sighting_date + \"'\" + \")\"):\n results.append(({ 'site_id' : row['__site_id'], 'gender' : row['__gender'], 'age_range' : row['__age_range'], '__visits' : row['__visits'] }))\n\n return make_response(jsonify({ 'list' : results })), 200\n\n\n\n @app.route('/api/sighting', methods=['GET'])\n def get_sightings():\n\n results = []\n for sighting in LTESighting.get_all():\n results.append(sighting.serialise())\n\n return make_response(jsonify({ 'list' : results })), 200\n\n @app.route('/api/sitescomparison', methods=['POST'])\n def get_sitescomparison():\n\n sightings = LTESighting.query\\\n .filter(LTESighting.smallcell.has(SmallCell.site_id.in_(request.data['selectedRow'])))\\\n .filter(LTESighting.timestamp.between(request.data['selectedDates'][0], request.data['selectedDates'][1]))\n\n return make_response(jsonify({ 'list' : [sighting.serialise() for sighting in sightings] })), 200\n\n @app.route('/api/sighting/bysite', methods=['GET'])\n def get_sightings_by_site():\n\n site_ids = (request.args.getlist('site_id'))\n\n results = []\n #should do this better with joins!\n for sighting in LTESighting.query:\n if (str(sighting.smallcell.site_id)) in site_ids : results.append(sighting.serialise())\n\n return make_response(jsonify({ 'list' : results })), 200\n\n @app.route('/api/origindestination/all', methods=['GET'])\n def get_all():\n journeys = Journey.query.all()\n thing = {}\n for journey in journeys:\n if (journey.origin_id not in thing) :\n thing[journey.origin_id] = {}\n if (journey.destination_id not in thing[journey.origin_id] and journey.destination_id != journey.origin_id) :\n thing[journey.origin_id][journey.destination_id] = journey.data['total']\n\n return make_response(jsonify(thing)), 200\n\n @app.route('/api/origindestination/<origin_id>', methods=['GET'])\n def get_od(origin_id):\n journeys = Journey.query.all()#.filter_by(origin_id=origin_id).all()\n _j = []\n for journey in journeys:\n _j.append({'origin_id' : journey.origin_id, 'destination_id' : journey.destination_id, 'total' : journey.data['total']})\n #_j.append({'origin_id' : journey.origin_id, 'data' : (journey.data)})\n\n return make_response(jsonify({ 'list' : _j })), 200\n\n @app.route('/api/ng_event/purchase/<home_district_name>/<type_visitor>', methods=['GET'])\n def purchase(home_district_name, type_visitor):\n\n days_sql = db.session.query(PurchDistrict.start_dow, func.count(PurchDistrict.start_dow))\\\n .group_by(PurchDistrict.start_dow)\\\n .filter(PurchDistrict.home_district_name.in_([home_district_name]))\\\n .filter(PurchDistrict.type_visitor.in_([type_visitor]))\\\n .order_by(func.count(PurchDistrict.start_dow).desc())\\\n .all()\n\n gender_sql = db.session.query(PurchDistrict.gender, func.count(PurchDistrict.gender))\\\n .group_by(PurchDistrict.gender)\\\n .filter(PurchDistrict.home_district_name.in_([home_district_name]))\\\n .filter(PurchDistrict.type_visitor.in_([type_visitor])).all()\n\n gender_age_sql = db.session.query(PurchDistrict.gender, PurchDistrict.age, func.count(PurchDistrict.gender))\\\n .group_by(PurchDistrict.gender, PurchDistrict.age)\\\n .filter(PurchDistrict.gender.isnot(None))\\\n .filter(PurchDistrict.age.isnot(None))\\\n .filter(PurchDistrict.home_district_name.in_([home_district_name]))\\\n .filter(PurchDistrict.type_visitor.in_([type_visitor])).all()\n\n\n gender_age_rent_sql = db.session.query(PurchDistrict.gender, PurchDistrict.age, PurchDistrict.rent, func.count(PurchDistrict.gender))\\\n .group_by(PurchDistrict.gender, PurchDistrict.age, PurchDistrict.rent)\\\n .filter(PurchDistrict.gender.isnot(None))\\\n .filter(PurchDistrict.age.isnot(None))\\\n .filter(PurchDistrict.type_visitor.in_([type_visitor])).all()\n\n days_total = sum(i[1] for i in days_sql)\n gender_total = sum(i[1] for i in gender_sql)\n gender_age_total = sum(i[2] for i in gender_age_sql)\n\n days_results = []\n for result in days_sql:\n days_results.append({ 'start_dow' : result.start_dow, 'count' : result[1], 'percent' : float(result[1])/float(days_total), 'total' : days_total})\n\n gender_results = []\n for result in gender_sql:\n gender_results.append({'gender' : result.gender, 'count' : result[1], 'percent' : float(result[1])/float(gender_total)})\n\n gender_age_results = []\n for result in gender_age_sql:\n gender_age_results.append({'gender' : result.gender, 'age' : result.age, 'count' : result[2], 'percent' : float(result[2])/float(gender_age_total)})\n\n return make_response(jsonify({'days' : days_results, 'gender' : gender_results, 'gender_age' : gender_age_results})), 200\n\n\n @app.route('/api/ng_event/purchase_affluence/<type_visitor>', methods=['GET'])\n def purchase_rent(type_visitor):\n\n gender_sql = db.session.query(PurchDistrict.gender, func.count(PurchDistrict.gender))\\\n .group_by(PurchDistrict.gender)\\\n .filter(PurchDistrict.type_visitor.in_([type_visitor])).all()\n\n gender_age_rent_sql = db.session.query(PurchDistrict.gender, PurchDistrict.age, PurchDistrict.rent, func.count(PurchDistrict.gender))\\\n .group_by(PurchDistrict.gender, PurchDistrict.age, PurchDistrict.rent)\\\n .filter(PurchDistrict.gender.isnot(None))\\\n .filter(PurchDistrict.age.isnot(None))\\\n .filter(PurchDistrict.type_visitor.in_([type_visitor])).all()\n\n gender_total = sum(i[1] for i in gender_sql)\n\n gender_results = []\n for result in gender_sql:\n gender_results.append({'gender' : result.gender, 'count' : result[1], 'percent' : float(result[1])/float(gender_total)})\n\n gender_age_rent_results = []\n for result in gender_age_rent_sql:\n gender_age_rent_results.append({'gender' : result.gender, 'age' : result.age, 'rent' : result.rent, 'count' : result[3]})\n\n return make_response(jsonify({'gender' : gender_results, 'gender_age_rent' : gender_age_rent_results})), 200\n\n\n @app.route('/api/ng_event/districts', methods=['GET'])\n def districts():\n\n home_results = []\n for result in db.session.query(ZoneDistrict.home_district_code, ZoneDistrict.home_district_name, func.sum(ZoneDistrict.visitors)).group_by(ZoneDistrict.home_district_code, ZoneDistrict.home_district_name).all():\n home_results.append({'district_code' : result.home_district_code, 'district_name' : result.home_district_name, 'visitors' : result[2]})\n\n work_results = []\n for result in db.session.query(ZoneDistrict.work_district_code, ZoneDistrict.work_district_name, func.sum(ZoneDistrict.visitors)).group_by(ZoneDistrict.work_district_code, ZoneDistrict.work_district_name).all():\n work_results.append({'district_code' : result.work_district_code, 'district_name' : result.work_district_name, 'visitors' : result[2]})\n\n return make_response(jsonify({'work' : { 'list' : work_results }, 'home' : { 'list' : home_results }})), 200\n\n\n @app.route('/api/ng_event/attractiontotals', methods=['GET'])\n def attractiontotals():\n\n results = []\n for result in db.session.query(AttractionTotal.zone_visitors, AttractionTotal.num_visitors).all():\n results.append({'zone_visitors' : result.zone_visitors, 'num_visitors' : result.num_visitors})\n\n return make_response(jsonify({'totals' : { 'list' : results }})), 200\n\n\n @app.route('/api/ng_event/profiles', methods=['GET'])\n def profiles():\n\n results = []\n for result in db.session.query(Profile.country, Profile.nationality, Profile.name_province, Profile.gender, Profile.age, Profile.rent, Profile.type_visitor, Profile.date, Profile.day, Profile.period, Profile.name_tur_zone).limit(10000):\n district = ''\n if result.name_tur_zone == 'Zone 1' : district = 'Chamartin'\n if result.name_tur_zone == 'Zone 2' : district = 'Chamberi'\n if result.name_tur_zone == 'Zone 3' : district = 'Salamanca'\n\n day = ''\n if result.day == 'Monday' : day = 'Mon'\n if result.day == 'Tuesday' : day = 'Tue'\n if result.day == 'Wednesday' : day = 'Wed'\n if result.day == 'Thursday' : day = 'Thu'\n if result.day == 'Friday' : day = 'Fri'\n if result.day == 'Saturday' : day = 'Sat'\n if result.day == 'Sunday' : day = 'Sun'\n\n results.append({'country' : result.country, 'nationality' : result.nationality, 'name_province' : district, 'gender' : result.gender, 'age' : result.age, 'rent' : result.rent, 'type_visitor' : result.type_visitor, 'date' : result.date, 'day' : day, 'period' : result.period, 'zone' : result.name_tur_zone })\n\n return make_response(jsonify(results)), 200\n\n @app.route('/api/ng_event/dowfreq', methods=['GET'])\n def dowfreq():\n\n results = []\n for result in db.session.query(DOWFrequency.type_visitor, DOWFrequency.start_dow, DOWFrequency.start_hour, DOWFrequency.count).all():\n results.append({'type_visitor' : result.type_visitor, 'start_dow' : result.start_dow, 'start_hour' : result.start_hour, 'count' : result.count })\n\n return make_response(jsonify(results)), 200\n\n return app\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
from collections import deque warp = dict() u, v = map(int, input().split()) for _ in range(u + v): s, e = map(int, input().split()) warp[s] = e q = deque() q.append(1) check = [-1] * 101 check[1] = 0 while q: now = q.popleft() for k in range(1, 7): if now + k <= 100 and check[now + k] == -1: check[now + k] = check[now] + 1 if now + k in warp: if check[warp[now + k]] == -1: check[warp[now + k]] = check[now] + 1 q.append(warp[now + k]) else: q.append(now + k) print(check[100])
normal
{ "blob_id": "dd792c502317288644d4bf5d247999bb08d5f401", "index": 5369, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor _ in range(u + v):\n s, e = map(int, input().split())\n warp[s] = e\n<mask token>\nq.append(1)\n<mask token>\nwhile q:\n now = q.popleft()\n for k in range(1, 7):\n if now + k <= 100 and check[now + k] == -1:\n check[now + k] = check[now] + 1\n if now + k in warp:\n if check[warp[now + k]] == -1:\n check[warp[now + k]] = check[now] + 1\n q.append(warp[now + k])\n else:\n q.append(now + k)\nprint(check[100])\n", "step-3": "<mask token>\nwarp = dict()\nu, v = map(int, input().split())\nfor _ in range(u + v):\n s, e = map(int, input().split())\n warp[s] = e\nq = deque()\nq.append(1)\ncheck = [-1] * 101\ncheck[1] = 0\nwhile q:\n now = q.popleft()\n for k in range(1, 7):\n if now + k <= 100 and check[now + k] == -1:\n check[now + k] = check[now] + 1\n if now + k in warp:\n if check[warp[now + k]] == -1:\n check[warp[now + k]] = check[now] + 1\n q.append(warp[now + k])\n else:\n q.append(now + k)\nprint(check[100])\n", "step-4": "from collections import deque\nwarp = dict()\nu, v = map(int, input().split())\nfor _ in range(u + v):\n s, e = map(int, input().split())\n warp[s] = e\nq = deque()\nq.append(1)\ncheck = [-1] * 101\ncheck[1] = 0\nwhile q:\n now = q.popleft()\n for k in range(1, 7):\n if now + k <= 100 and check[now + k] == -1:\n check[now + k] = check[now] + 1\n if now + k in warp:\n if check[warp[now + k]] == -1:\n check[warp[now + k]] = check[now] + 1\n q.append(warp[now + k])\n else:\n q.append(now + k)\nprint(check[100])\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
ii = [('CoolWHM.py', 1), ('SoutRD.py', 1), ('BrewDTO.py', 2), ( 'FitzRNS2.py', 1), ('LyelCPG3.py', 1), ('TaylIF.py', 2)]
normal
{ "blob_id": "fbba928d51ccd08dbac25fcf2098be3a0d494d34", "index": 6659, "step-1": "<mask token>\n", "step-2": "ii = [('CoolWHM.py', 1), ('SoutRD.py', 1), ('BrewDTO.py', 2), (\n 'FitzRNS2.py', 1), ('LyelCPG3.py', 1), ('TaylIF.py', 2)]\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
import pkg_resources from twisted.enterprise import adbapi from twisted.internet import defer # Start a logger with a namespace for a particular subsystem of our application. from twisted.logger import Logger log = Logger("database") class Database: def __init__(self, context, db_filename="database.sqlite"): # Get full path and filename for database session_files = context["session_files"] db_filename = session_files.session_dir / db_filename # Note if database already exists database_exists = db_filename.is_file() # Callback for every connection that is established to the # database def setup_connection(connection): # Turn on foreign key constraints cursor = connection.cursor() cursor.execute("PRAGMA foreign_keys = ON;") # # Turn on column names in rows # import sqlite3 # connection.row_factory = sqlite3.Row # Open a connection to the database. SQLite will create the file if # it doesn't already exist. dbpool = adbapi.ConnectionPool( "sqlite3", db_filename, cp_openfun=setup_connection, check_same_thread=False # See https://twistedmatrix.com/trac/ticket/3629 ) # If the database did not exist, initialise the database if not database_exists: print("Database requires initialisation") self._db_ready = dbpool.runInteraction(self._initialise_database) def on_success(data): log.info("Database successfully initialised") return dbpool def on_error(data): log.error(f"Failed to initialise the server's database: {data}") reactor = context["reactor"] reactor.stop() self._db_ready.addCallback(on_success) self._db_ready.addErrback(on_error) else: # Database exists already self._db_ready = defer.Deferred() self._db_ready.callback(dbpool) # Check that database is the correct version expected_version = 4 def check_version(cursor): cursor.execute("SELECT version FROM Version") row = cursor.fetchone() if row is None: raise Exception("No version found in Version table of database") if row[0] == expected_version: log.info(f"Server database version {expected_version}") return dbpool else: reactor = context["reactor"] reactor.stop() raise Exception(f"Database version ({row[0]}) did not match expected version ({expected_version}). Terminating.") def run_check_version(dbpool): return dbpool.runInteraction(check_version) d = self.get_dbpool() d.addCallback(run_check_version) def on_error(error): log.error("Failed to verify the database: "+str(error)) reactor = context["reactor"] reactor.stop() d.addErrback(on_error) # Initialise the database structure from instructions in file def _initialise_database(self, cursor): log.info("Initialising database") initialisation_commands_filename = \ pkg_resources.resource_filename( "singtserver", "database.sql" ) f = open(initialisation_commands_filename, "r") initialisation_commands = f.read() return cursor.executescript(initialisation_commands) def get_dbpool(self): d = defer.Deferred() def db_ready(db): d.callback(db) return db self._db_ready.addCallback(db_ready) return d def get_combination(self, track_id=None, take_ids=[]): # Sanity check arguments if (track_id is None and len(take_ids) == 0): raise Exception( "Getting a combination from the database requires "+ "at least a Track ID or at least one Take ID" ) # Get combination from database. # See answers to https://stackoverflow.com/questions/63356820/sql-select-from-many-to-one # and https://stackoverflow.com/a/5766293/562930 def get_combo(cursor): if track_id is None: assert len(take_ids) > 0 sql = ( "SELECT id\n"+ "FROM Combinations\n"+ "WHERE backingTrackId IS NULL\n"+ " AND id IN\n"+ " (SELECT combinationId\n"+ " FROM CombinationsDetail\n"+ " GROUP BY combinationId\n" + " HAVING SUM(CASE WHEN takeId IN ({seq}) THEN 1 ELSE 0) = ?".format( seq=",".join(["?"]*len(take_ids)) ) ) cursor.execute( sql, (*take_ids, len(take_ids)) ) elif len(take_ids) == 0: sql = ( "SELECT id\n"+ "FROM Combinations\n"+ "WHERE backingTrackId = ?\n"+ " AND NOT EXISTS\n"+ " (SELECT * \n"+ " FROM CombinationsDetail\n"+ " WHERE combinationId = Combinations.id)" ) cursor.execute( sql, (track_id, ) ) else: sql = ("SELECT id\n"+ "FROM Combinations\n"+ "WHERE backingTrackId = ?\n"+ " AND id IN\n"+ " (SELECT combinationId\n"+ " FROM CombinationsDetail\n"+ " GROUP BY combinationId\n" + " HAVING SUM(CASE WHEN takeId IN ({seq}) THEN 1 ELSE 0 END) = ?)").format( seq=",".join(['?']*len(take_ids)) ) cursor.execute( sql, (track_id, *take_ids, len(take_ids)) ) # Although there should be at most only one combo id that # matches the track and takes specification, even if there # are more than one, we'll just return the first (or None # if there aren't any). row = cursor.fetchone() if row is None: return None combo_id = row[0] return combo_id def when_ready(dbpool): return dbpool.runInteraction(get_combo) d = self.get_dbpool() d.addCallback(when_ready) def on_success(data): log.info("Successfully added combination to database; combination id: "+str(data)) return data d.addCallback(on_success) def on_error(error): log.error("Failed to add combination to the database: "+str(error)) raise Exception("Failed to add combination to the database") d.addErrback(on_error) return d def add_combination(self, track_id=None, take_ids=[]): """Adds combination into database. Returns combo_id. """ log.info(f"Adding combination to database with track id = {track_id} and take_ids = {take_ids}") # Sanity check arguments if (track_id is None and len(take_ids) == 0): raise Exception( "Adding a combination to the database requires "+ "at least a Track ID or at least one Take ID" ) # Create combination in database def add_combo(cursor): # Create audio id cursor.execute("INSERT INTO AudioIdentifiers DEFAULT VALUES") audio_id = cursor.lastrowid print("track_id:", track_id) cursor.execute( "INSERT INTO Combinations (audioId, backingTrackId) VALUES (?, ?)", (audio_id, track_id) ) combo_id = cursor.lastrowid for take_id in take_ids: cursor.execute( "INSERT INTO CombinationsDetail (combinationId, takeId) "+ "VALUES (?,?)", (combo_id, take_id) ) return combo_id def when_ready(dbpool): return dbpool.runInteraction(add_combo) d = self.get_dbpool() d.addCallback(when_ready) def on_success(data): log.info("Successfully added combination to database; combination id: "+str(data)) return data def on_error(error): log.error("Failed to add combination to the database: "+str(error)) raise Exception("Failed to add combination to the database") d.addCallback(on_success) d.addErrback(on_error) return d def get_track_audio_id(self, track_id): """Returns track's audio id or None.""" def execute_sql(cursor): cursor.execute("SELECT audioId FROM BackingTracks WHERE id = ?", (track_id,)) results = cursor.fetchone() if results is None: return None else: return results[0] def when_ready(dbpool): return dbpool.runInteraction(execute_sql) d = self.get_dbpool() d.addCallback(when_ready) def on_error(error): log.warn("Failed to get audio ID for track id ({track_id}): "+ str(error) ) return error d.addErrback(on_error) return d def get_take_audio_id(self, take_id): """Returns take's audio id or None.""" def execute_sql(cursor): cursor.execute("SELECT audioId FROM Takes WHERE id = ?", (take_id,)) results = cursor.fetchone() if results is None: return None else: return results[0] def when_ready(dbpool): return dbpool.runInteraction(execute_sql) d = self.get_dbpool() d.addCallback(when_ready) def on_error(error): log.warn("Failed to get audio ID for take id ({take_id}): "+ str(error) ) return error d.addErrback(on_error) return d def assign_participant(self, client_id, name): """Assigns the name to the client id.""" def execute_sql(cursor): # First, check if the id already exists cursor.execute( "SELECT participantName FROM Participants WHERE id = ?", (client_id,) ) row = cursor.fetchone() if row is None: # We don't currently have this ID, insert it cursor.execute( "INSERT INTO Participants (id, participantName) "+ "VALUES (?, ?)", (client_id, name) ) return client_id # Otherwise, a row does already exist current_name = row[0] if name == current_name: # We have nothing to do, the database is already # correct return client_id # Otherwise, we need to update the database cursor.execute( "UPDATE Participants SET participantName = ? WHERE id = ?", (name, client_id) ) return client_id def when_ready(dbpool): return dbpool.runInteraction(execute_sql) d = self.get_dbpool() d.addCallback(when_ready) def on_error(error): log.warn( "Failed to add participant given name '{name}' and id '{client_id}': "+ str(error) ) return error d.addErrback(on_error) return d def get_participants(self): def execute_sql(cursor): cursor.execute("SELECT id, participantName FROM Participants") rows = cursor.fetchall() results = [{"id":id_, "name":name} for id_, name in rows] return results def when_ready(dbpool): return dbpool.runInteraction(execute_sql) d = self.get_dbpool() d.addCallback(when_ready) def on_error(error): log.warn( "Failed to get participant list: "+ str(error) ) return error d.addErrback(on_error) return d def get_audio_ids_from_combination_id(self, combination_id): def execute_sql(cursor): # Get Track ID. There should be either zero or one, but # not more. cursor.execute( "SELECT BackingTracks.audioId\n"+ "FROM Combinations\n"+ "LEFT JOIN BackingTracks\n"+ "ON Combinations.backingTrackId = BackingTracks.id\n"+ "WHERE combinations.id = ?", (combination_id,) ) rows = cursor.fetchall() if len(rows) == 0: # We don't have a backing track; that's fine, move on # to the takes. backing_audio_ids = [] elif len(rows) == 1: # We have one backing track row = rows[0] audio_id = row[0] backing_audio_ids = [audio_id] else: # We have more than one backing track; error. raise Exception( f"More than one backing track matched "+ f"combination id {combination_id}; this "+ f"shouldn't be possible" ) # Get the Take IDs. There may be many of these. But if # there wasn't a backing track id, then there needs to be # at least one Take ID. cursor.execute( "SELECT audioId\n"+ "FROM CombinationsDetail\n"+ "LEFT JOIN Takes\n"+ "ON CombinationsDetail.id = Takes.combinationId\n"+ "WHERE CombinationsDetail.combinationId = ?", (combination_id,) ) rows = cursor.fetchall() if len(rows) == 0: # This is only as issue if we don't have any backing # tracks either if len(backing_audio_ids) == 0: raise Exception( f"We have neither a backing track nor takes "+ f"for the given combination id ({combination_id});"+ f"this shouldn't be possible" ) else: # Add the Take IDs to the list takes_audio_ids = [row[0] for row in rows] backing_audio_ids += takes_audio_ids return backing_audio_ids def when_ready(dbpool): return dbpool.runInteraction(execute_sql) d = self.get_dbpool() d.addCallback(when_ready) def on_error(error): log.warn( "Failed to get backing audio ids from combination id: "+ str(error) ) return error d.addErrback(on_error) return d def add_take(self, take_name, combination_id): def execute_sql(cursor): # Create audio id cursor.execute("INSERT INTO AudioIdentifiers DEFAULT VALUES") audio_id = cursor.lastrowid # Create take cursor.execute( "INSERT INTO Takes (audioId, combinationId, takeName, complete) "+ "VALUES (?, ?, ?, 0)", (audio_id, combination_id, take_name) ) take_id = cursor.lastrowid return take_id def when_ready(dbpool): return dbpool.runInteraction(execute_sql) d = self.get_dbpool() d.addCallback(when_ready) def on_error(error): log.warn( "Failed to add take: "+ str(error) ) return error d.addErrback(on_error) return d def add_recording_audio_ids(self, take_id, participants): def execute_sql(cursor): audio_ids = {} for participant_id in participants: # Create audio id cursor.execute("INSERT INTO AudioIdentifiers DEFAULT VALUES") audio_id = cursor.lastrowid # Add entry into Recordings cursor.execute( "INSERT INTO Recordings "+ "(audioId, participantId, takeId, complete) "+ "VALUES (?, ?, ?, 0)", (audio_id, participant_id, take_id) ) audio_ids[participant_id] = audio_id return audio_ids def when_ready(dbpool): return dbpool.runInteraction(execute_sql) d = self.get_dbpool() d.addCallback(when_ready) def on_error(error): log.warn( "Failed to add recordings for participants: "+ str(error) ) return error d.addErrback(on_error) return d
normal
{ "blob_id": "45c1510d19af0979326a1b9975ec363b0b80a291", "index": 8123, "step-1": "<mask token>\n\n\nclass Database:\n\n def __init__(self, context, db_filename='database.sqlite'):\n session_files = context['session_files']\n db_filename = session_files.session_dir / db_filename\n database_exists = db_filename.is_file()\n\n def setup_connection(connection):\n cursor = connection.cursor()\n cursor.execute('PRAGMA foreign_keys = ON;')\n dbpool = adbapi.ConnectionPool('sqlite3', db_filename, cp_openfun=\n setup_connection, check_same_thread=False)\n if not database_exists:\n print('Database requires initialisation')\n self._db_ready = dbpool.runInteraction(self._initialise_database)\n\n def on_success(data):\n log.info('Database successfully initialised')\n return dbpool\n\n def on_error(data):\n log.error(f\"Failed to initialise the server's database: {data}\"\n )\n reactor = context['reactor']\n reactor.stop()\n self._db_ready.addCallback(on_success)\n self._db_ready.addErrback(on_error)\n else:\n self._db_ready = defer.Deferred()\n self._db_ready.callback(dbpool)\n expected_version = 4\n\n def check_version(cursor):\n cursor.execute('SELECT version FROM Version')\n row = cursor.fetchone()\n if row is None:\n raise Exception('No version found in Version table of database'\n )\n if row[0] == expected_version:\n log.info(f'Server database version {expected_version}')\n return dbpool\n else:\n reactor = context['reactor']\n reactor.stop()\n raise Exception(\n f'Database version ({row[0]}) did not match expected version ({expected_version}). Terminating.'\n )\n\n def run_check_version(dbpool):\n return dbpool.runInteraction(check_version)\n d = self.get_dbpool()\n d.addCallback(run_check_version)\n\n def on_error(error):\n log.error('Failed to verify the database: ' + str(error))\n reactor = context['reactor']\n reactor.stop()\n d.addErrback(on_error)\n\n def _initialise_database(self, cursor):\n log.info('Initialising database')\n initialisation_commands_filename = pkg_resources.resource_filename(\n 'singtserver', 'database.sql')\n f = open(initialisation_commands_filename, 'r')\n initialisation_commands = f.read()\n return cursor.executescript(initialisation_commands)\n <mask token>\n <mask token>\n <mask token>\n\n def get_track_audio_id(self, track_id):\n \"\"\"Returns track's audio id or None.\"\"\"\n\n def execute_sql(cursor):\n cursor.execute('SELECT audioId FROM BackingTracks WHERE id = ?',\n (track_id,))\n results = cursor.fetchone()\n if results is None:\n return None\n else:\n return results[0]\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to get audio ID for track id ({track_id}): ' +\n str(error))\n return error\n d.addErrback(on_error)\n return d\n <mask token>\n\n def assign_participant(self, client_id, name):\n \"\"\"Assigns the name to the client id.\"\"\"\n\n def execute_sql(cursor):\n cursor.execute(\n 'SELECT participantName FROM Participants WHERE id = ?', (\n client_id,))\n row = cursor.fetchone()\n if row is None:\n cursor.execute(\n 'INSERT INTO Participants (id, participantName) ' +\n 'VALUES (?, ?)', (client_id, name))\n return client_id\n current_name = row[0]\n if name == current_name:\n return client_id\n cursor.execute(\n 'UPDATE Participants SET participantName = ? WHERE id = ?',\n (name, client_id))\n return client_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n \"Failed to add participant given name '{name}' and id '{client_id}': \"\n + str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def get_participants(self):\n\n def execute_sql(cursor):\n cursor.execute('SELECT id, participantName FROM Participants')\n rows = cursor.fetchall()\n results = [{'id': id_, 'name': name} for id_, name in rows]\n return results\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to get participant list: ' + str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def get_audio_ids_from_combination_id(self, combination_id):\n\n def execute_sql(cursor):\n cursor.execute('SELECT BackingTracks.audioId\\n' +\n 'FROM Combinations\\n' + \"\"\"LEFT JOIN BackingTracks\n\"\"\" +\n 'ON Combinations.backingTrackId = BackingTracks.id\\n' +\n 'WHERE combinations.id = ?', (combination_id,))\n rows = cursor.fetchall()\n if len(rows) == 0:\n backing_audio_ids = []\n elif len(rows) == 1:\n row = rows[0]\n audio_id = row[0]\n backing_audio_ids = [audio_id]\n else:\n raise Exception(f'More than one backing track matched ' +\n f'combination id {combination_id}; this ' +\n f\"shouldn't be possible\")\n cursor.execute('SELECT audioId\\n' + 'FROM CombinationsDetail\\n' +\n 'LEFT JOIN Takes\\n' +\n \"\"\"ON CombinationsDetail.id = Takes.combinationId\n\"\"\" +\n 'WHERE CombinationsDetail.combinationId = ?', (combination_id,)\n )\n rows = cursor.fetchall()\n if len(rows) == 0:\n if len(backing_audio_ids) == 0:\n raise Exception(\n f'We have neither a backing track nor takes ' +\n f'for the given combination id ({combination_id});' +\n f\"this shouldn't be possible\")\n else:\n takes_audio_ids = [row[0] for row in rows]\n backing_audio_ids += takes_audio_ids\n return backing_audio_ids\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n 'Failed to get backing audio ids from combination id: ' +\n str(error))\n return error\n d.addErrback(on_error)\n return d\n <mask token>\n\n def add_recording_audio_ids(self, take_id, participants):\n\n def execute_sql(cursor):\n audio_ids = {}\n for participant_id in participants:\n cursor.execute('INSERT INTO AudioIdentifiers DEFAULT VALUES')\n audio_id = cursor.lastrowid\n cursor.execute('INSERT INTO Recordings ' +\n '(audioId, participantId, takeId, complete) ' +\n 'VALUES (?, ?, ?, 0)', (audio_id, participant_id, take_id))\n audio_ids[participant_id] = audio_id\n return audio_ids\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to add recordings for participants: ' + str(error)\n )\n return error\n d.addErrback(on_error)\n return d\n", "step-2": "<mask token>\n\n\nclass Database:\n\n def __init__(self, context, db_filename='database.sqlite'):\n session_files = context['session_files']\n db_filename = session_files.session_dir / db_filename\n database_exists = db_filename.is_file()\n\n def setup_connection(connection):\n cursor = connection.cursor()\n cursor.execute('PRAGMA foreign_keys = ON;')\n dbpool = adbapi.ConnectionPool('sqlite3', db_filename, cp_openfun=\n setup_connection, check_same_thread=False)\n if not database_exists:\n print('Database requires initialisation')\n self._db_ready = dbpool.runInteraction(self._initialise_database)\n\n def on_success(data):\n log.info('Database successfully initialised')\n return dbpool\n\n def on_error(data):\n log.error(f\"Failed to initialise the server's database: {data}\"\n )\n reactor = context['reactor']\n reactor.stop()\n self._db_ready.addCallback(on_success)\n self._db_ready.addErrback(on_error)\n else:\n self._db_ready = defer.Deferred()\n self._db_ready.callback(dbpool)\n expected_version = 4\n\n def check_version(cursor):\n cursor.execute('SELECT version FROM Version')\n row = cursor.fetchone()\n if row is None:\n raise Exception('No version found in Version table of database'\n )\n if row[0] == expected_version:\n log.info(f'Server database version {expected_version}')\n return dbpool\n else:\n reactor = context['reactor']\n reactor.stop()\n raise Exception(\n f'Database version ({row[0]}) did not match expected version ({expected_version}). Terminating.'\n )\n\n def run_check_version(dbpool):\n return dbpool.runInteraction(check_version)\n d = self.get_dbpool()\n d.addCallback(run_check_version)\n\n def on_error(error):\n log.error('Failed to verify the database: ' + str(error))\n reactor = context['reactor']\n reactor.stop()\n d.addErrback(on_error)\n\n def _initialise_database(self, cursor):\n log.info('Initialising database')\n initialisation_commands_filename = pkg_resources.resource_filename(\n 'singtserver', 'database.sql')\n f = open(initialisation_commands_filename, 'r')\n initialisation_commands = f.read()\n return cursor.executescript(initialisation_commands)\n\n def get_dbpool(self):\n d = defer.Deferred()\n\n def db_ready(db):\n d.callback(db)\n return db\n self._db_ready.addCallback(db_ready)\n return d\n <mask token>\n <mask token>\n\n def get_track_audio_id(self, track_id):\n \"\"\"Returns track's audio id or None.\"\"\"\n\n def execute_sql(cursor):\n cursor.execute('SELECT audioId FROM BackingTracks WHERE id = ?',\n (track_id,))\n results = cursor.fetchone()\n if results is None:\n return None\n else:\n return results[0]\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to get audio ID for track id ({track_id}): ' +\n str(error))\n return error\n d.addErrback(on_error)\n return d\n <mask token>\n\n def assign_participant(self, client_id, name):\n \"\"\"Assigns the name to the client id.\"\"\"\n\n def execute_sql(cursor):\n cursor.execute(\n 'SELECT participantName FROM Participants WHERE id = ?', (\n client_id,))\n row = cursor.fetchone()\n if row is None:\n cursor.execute(\n 'INSERT INTO Participants (id, participantName) ' +\n 'VALUES (?, ?)', (client_id, name))\n return client_id\n current_name = row[0]\n if name == current_name:\n return client_id\n cursor.execute(\n 'UPDATE Participants SET participantName = ? WHERE id = ?',\n (name, client_id))\n return client_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n \"Failed to add participant given name '{name}' and id '{client_id}': \"\n + str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def get_participants(self):\n\n def execute_sql(cursor):\n cursor.execute('SELECT id, participantName FROM Participants')\n rows = cursor.fetchall()\n results = [{'id': id_, 'name': name} for id_, name in rows]\n return results\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to get participant list: ' + str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def get_audio_ids_from_combination_id(self, combination_id):\n\n def execute_sql(cursor):\n cursor.execute('SELECT BackingTracks.audioId\\n' +\n 'FROM Combinations\\n' + \"\"\"LEFT JOIN BackingTracks\n\"\"\" +\n 'ON Combinations.backingTrackId = BackingTracks.id\\n' +\n 'WHERE combinations.id = ?', (combination_id,))\n rows = cursor.fetchall()\n if len(rows) == 0:\n backing_audio_ids = []\n elif len(rows) == 1:\n row = rows[0]\n audio_id = row[0]\n backing_audio_ids = [audio_id]\n else:\n raise Exception(f'More than one backing track matched ' +\n f'combination id {combination_id}; this ' +\n f\"shouldn't be possible\")\n cursor.execute('SELECT audioId\\n' + 'FROM CombinationsDetail\\n' +\n 'LEFT JOIN Takes\\n' +\n \"\"\"ON CombinationsDetail.id = Takes.combinationId\n\"\"\" +\n 'WHERE CombinationsDetail.combinationId = ?', (combination_id,)\n )\n rows = cursor.fetchall()\n if len(rows) == 0:\n if len(backing_audio_ids) == 0:\n raise Exception(\n f'We have neither a backing track nor takes ' +\n f'for the given combination id ({combination_id});' +\n f\"this shouldn't be possible\")\n else:\n takes_audio_ids = [row[0] for row in rows]\n backing_audio_ids += takes_audio_ids\n return backing_audio_ids\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n 'Failed to get backing audio ids from combination id: ' +\n str(error))\n return error\n d.addErrback(on_error)\n return d\n <mask token>\n\n def add_recording_audio_ids(self, take_id, participants):\n\n def execute_sql(cursor):\n audio_ids = {}\n for participant_id in participants:\n cursor.execute('INSERT INTO AudioIdentifiers DEFAULT VALUES')\n audio_id = cursor.lastrowid\n cursor.execute('INSERT INTO Recordings ' +\n '(audioId, participantId, takeId, complete) ' +\n 'VALUES (?, ?, ?, 0)', (audio_id, participant_id, take_id))\n audio_ids[participant_id] = audio_id\n return audio_ids\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to add recordings for participants: ' + str(error)\n )\n return error\n d.addErrback(on_error)\n return d\n", "step-3": "<mask token>\n\n\nclass Database:\n\n def __init__(self, context, db_filename='database.sqlite'):\n session_files = context['session_files']\n db_filename = session_files.session_dir / db_filename\n database_exists = db_filename.is_file()\n\n def setup_connection(connection):\n cursor = connection.cursor()\n cursor.execute('PRAGMA foreign_keys = ON;')\n dbpool = adbapi.ConnectionPool('sqlite3', db_filename, cp_openfun=\n setup_connection, check_same_thread=False)\n if not database_exists:\n print('Database requires initialisation')\n self._db_ready = dbpool.runInteraction(self._initialise_database)\n\n def on_success(data):\n log.info('Database successfully initialised')\n return dbpool\n\n def on_error(data):\n log.error(f\"Failed to initialise the server's database: {data}\"\n )\n reactor = context['reactor']\n reactor.stop()\n self._db_ready.addCallback(on_success)\n self._db_ready.addErrback(on_error)\n else:\n self._db_ready = defer.Deferred()\n self._db_ready.callback(dbpool)\n expected_version = 4\n\n def check_version(cursor):\n cursor.execute('SELECT version FROM Version')\n row = cursor.fetchone()\n if row is None:\n raise Exception('No version found in Version table of database'\n )\n if row[0] == expected_version:\n log.info(f'Server database version {expected_version}')\n return dbpool\n else:\n reactor = context['reactor']\n reactor.stop()\n raise Exception(\n f'Database version ({row[0]}) did not match expected version ({expected_version}). Terminating.'\n )\n\n def run_check_version(dbpool):\n return dbpool.runInteraction(check_version)\n d = self.get_dbpool()\n d.addCallback(run_check_version)\n\n def on_error(error):\n log.error('Failed to verify the database: ' + str(error))\n reactor = context['reactor']\n reactor.stop()\n d.addErrback(on_error)\n\n def _initialise_database(self, cursor):\n log.info('Initialising database')\n initialisation_commands_filename = pkg_resources.resource_filename(\n 'singtserver', 'database.sql')\n f = open(initialisation_commands_filename, 'r')\n initialisation_commands = f.read()\n return cursor.executescript(initialisation_commands)\n\n def get_dbpool(self):\n d = defer.Deferred()\n\n def db_ready(db):\n d.callback(db)\n return db\n self._db_ready.addCallback(db_ready)\n return d\n\n def get_combination(self, track_id=None, take_ids=[]):\n if track_id is None and len(take_ids) == 0:\n raise Exception(\n 'Getting a combination from the database requires ' +\n 'at least a Track ID or at least one Take ID')\n\n def get_combo(cursor):\n if track_id is None:\n assert len(take_ids) > 0\n sql = ('SELECT id\\n' + 'FROM Combinations\\n' +\n \"\"\"WHERE backingTrackId IS NULL\n\"\"\" +\n ' AND id IN\\n' + ' (SELECT combinationId\\n' +\n ' FROM CombinationsDetail\\n' +\n \"\"\" GROUP BY combinationId\n\"\"\" +\n ' HAVING SUM(CASE WHEN takeId IN ({seq}) THEN 1 ELSE 0) = ?'\n .format(seq=','.join(['?'] * len(take_ids))))\n cursor.execute(sql, (*take_ids, len(take_ids)))\n elif len(take_ids) == 0:\n sql = ('SELECT id\\n' + 'FROM Combinations\\n' +\n 'WHERE backingTrackId = ?\\n' +\n \"\"\" AND NOT EXISTS\n\"\"\" + ' (SELECT * \\n' +\n ' FROM CombinationsDetail\\n' +\n ' WHERE combinationId = Combinations.id)')\n cursor.execute(sql, (track_id,))\n else:\n sql = ('SELECT id\\n' + 'FROM Combinations\\n' +\n 'WHERE backingTrackId = ?\\n' + ' AND id IN\\n' +\n \"\"\" (SELECT combinationId\n\"\"\" +\n ' FROM CombinationsDetail\\n' +\n ' GROUP BY combinationId\\n' +\n ' HAVING SUM(CASE WHEN takeId IN ({seq}) THEN 1 ELSE 0 END) = ?)'\n ).format(seq=','.join(['?'] * len(take_ids)))\n cursor.execute(sql, (track_id, *take_ids, len(take_ids)))\n row = cursor.fetchone()\n if row is None:\n return None\n combo_id = row[0]\n return combo_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(get_combo)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_success(data):\n log.info(\n 'Successfully added combination to database; combination id: '\n + str(data))\n return data\n d.addCallback(on_success)\n\n def on_error(error):\n log.error('Failed to add combination to the database: ' + str(\n error))\n raise Exception('Failed to add combination to the database')\n d.addErrback(on_error)\n return d\n <mask token>\n\n def get_track_audio_id(self, track_id):\n \"\"\"Returns track's audio id or None.\"\"\"\n\n def execute_sql(cursor):\n cursor.execute('SELECT audioId FROM BackingTracks WHERE id = ?',\n (track_id,))\n results = cursor.fetchone()\n if results is None:\n return None\n else:\n return results[0]\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to get audio ID for track id ({track_id}): ' +\n str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def get_take_audio_id(self, take_id):\n \"\"\"Returns take's audio id or None.\"\"\"\n\n def execute_sql(cursor):\n cursor.execute('SELECT audioId FROM Takes WHERE id = ?', (take_id,)\n )\n results = cursor.fetchone()\n if results is None:\n return None\n else:\n return results[0]\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to get audio ID for take id ({take_id}): ' +\n str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def assign_participant(self, client_id, name):\n \"\"\"Assigns the name to the client id.\"\"\"\n\n def execute_sql(cursor):\n cursor.execute(\n 'SELECT participantName FROM Participants WHERE id = ?', (\n client_id,))\n row = cursor.fetchone()\n if row is None:\n cursor.execute(\n 'INSERT INTO Participants (id, participantName) ' +\n 'VALUES (?, ?)', (client_id, name))\n return client_id\n current_name = row[0]\n if name == current_name:\n return client_id\n cursor.execute(\n 'UPDATE Participants SET participantName = ? WHERE id = ?',\n (name, client_id))\n return client_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n \"Failed to add participant given name '{name}' and id '{client_id}': \"\n + str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def get_participants(self):\n\n def execute_sql(cursor):\n cursor.execute('SELECT id, participantName FROM Participants')\n rows = cursor.fetchall()\n results = [{'id': id_, 'name': name} for id_, name in rows]\n return results\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to get participant list: ' + str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def get_audio_ids_from_combination_id(self, combination_id):\n\n def execute_sql(cursor):\n cursor.execute('SELECT BackingTracks.audioId\\n' +\n 'FROM Combinations\\n' + \"\"\"LEFT JOIN BackingTracks\n\"\"\" +\n 'ON Combinations.backingTrackId = BackingTracks.id\\n' +\n 'WHERE combinations.id = ?', (combination_id,))\n rows = cursor.fetchall()\n if len(rows) == 0:\n backing_audio_ids = []\n elif len(rows) == 1:\n row = rows[0]\n audio_id = row[0]\n backing_audio_ids = [audio_id]\n else:\n raise Exception(f'More than one backing track matched ' +\n f'combination id {combination_id}; this ' +\n f\"shouldn't be possible\")\n cursor.execute('SELECT audioId\\n' + 'FROM CombinationsDetail\\n' +\n 'LEFT JOIN Takes\\n' +\n \"\"\"ON CombinationsDetail.id = Takes.combinationId\n\"\"\" +\n 'WHERE CombinationsDetail.combinationId = ?', (combination_id,)\n )\n rows = cursor.fetchall()\n if len(rows) == 0:\n if len(backing_audio_ids) == 0:\n raise Exception(\n f'We have neither a backing track nor takes ' +\n f'for the given combination id ({combination_id});' +\n f\"this shouldn't be possible\")\n else:\n takes_audio_ids = [row[0] for row in rows]\n backing_audio_ids += takes_audio_ids\n return backing_audio_ids\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n 'Failed to get backing audio ids from combination id: ' +\n str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def add_take(self, take_name, combination_id):\n\n def execute_sql(cursor):\n cursor.execute('INSERT INTO AudioIdentifiers DEFAULT VALUES')\n audio_id = cursor.lastrowid\n cursor.execute(\n 'INSERT INTO Takes (audioId, combinationId, takeName, complete) '\n + 'VALUES (?, ?, ?, 0)', (audio_id, combination_id, take_name)\n )\n take_id = cursor.lastrowid\n return take_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to add take: ' + str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def add_recording_audio_ids(self, take_id, participants):\n\n def execute_sql(cursor):\n audio_ids = {}\n for participant_id in participants:\n cursor.execute('INSERT INTO AudioIdentifiers DEFAULT VALUES')\n audio_id = cursor.lastrowid\n cursor.execute('INSERT INTO Recordings ' +\n '(audioId, participantId, takeId, complete) ' +\n 'VALUES (?, ?, ?, 0)', (audio_id, participant_id, take_id))\n audio_ids[participant_id] = audio_id\n return audio_ids\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to add recordings for participants: ' + str(error)\n )\n return error\n d.addErrback(on_error)\n return d\n", "step-4": "import pkg_resources\nfrom twisted.enterprise import adbapi\nfrom twisted.internet import defer\nfrom twisted.logger import Logger\nlog = Logger('database')\n\n\nclass Database:\n\n def __init__(self, context, db_filename='database.sqlite'):\n session_files = context['session_files']\n db_filename = session_files.session_dir / db_filename\n database_exists = db_filename.is_file()\n\n def setup_connection(connection):\n cursor = connection.cursor()\n cursor.execute('PRAGMA foreign_keys = ON;')\n dbpool = adbapi.ConnectionPool('sqlite3', db_filename, cp_openfun=\n setup_connection, check_same_thread=False)\n if not database_exists:\n print('Database requires initialisation')\n self._db_ready = dbpool.runInteraction(self._initialise_database)\n\n def on_success(data):\n log.info('Database successfully initialised')\n return dbpool\n\n def on_error(data):\n log.error(f\"Failed to initialise the server's database: {data}\"\n )\n reactor = context['reactor']\n reactor.stop()\n self._db_ready.addCallback(on_success)\n self._db_ready.addErrback(on_error)\n else:\n self._db_ready = defer.Deferred()\n self._db_ready.callback(dbpool)\n expected_version = 4\n\n def check_version(cursor):\n cursor.execute('SELECT version FROM Version')\n row = cursor.fetchone()\n if row is None:\n raise Exception('No version found in Version table of database'\n )\n if row[0] == expected_version:\n log.info(f'Server database version {expected_version}')\n return dbpool\n else:\n reactor = context['reactor']\n reactor.stop()\n raise Exception(\n f'Database version ({row[0]}) did not match expected version ({expected_version}). Terminating.'\n )\n\n def run_check_version(dbpool):\n return dbpool.runInteraction(check_version)\n d = self.get_dbpool()\n d.addCallback(run_check_version)\n\n def on_error(error):\n log.error('Failed to verify the database: ' + str(error))\n reactor = context['reactor']\n reactor.stop()\n d.addErrback(on_error)\n\n def _initialise_database(self, cursor):\n log.info('Initialising database')\n initialisation_commands_filename = pkg_resources.resource_filename(\n 'singtserver', 'database.sql')\n f = open(initialisation_commands_filename, 'r')\n initialisation_commands = f.read()\n return cursor.executescript(initialisation_commands)\n\n def get_dbpool(self):\n d = defer.Deferred()\n\n def db_ready(db):\n d.callback(db)\n return db\n self._db_ready.addCallback(db_ready)\n return d\n\n def get_combination(self, track_id=None, take_ids=[]):\n if track_id is None and len(take_ids) == 0:\n raise Exception(\n 'Getting a combination from the database requires ' +\n 'at least a Track ID or at least one Take ID')\n\n def get_combo(cursor):\n if track_id is None:\n assert len(take_ids) > 0\n sql = ('SELECT id\\n' + 'FROM Combinations\\n' +\n \"\"\"WHERE backingTrackId IS NULL\n\"\"\" +\n ' AND id IN\\n' + ' (SELECT combinationId\\n' +\n ' FROM CombinationsDetail\\n' +\n \"\"\" GROUP BY combinationId\n\"\"\" +\n ' HAVING SUM(CASE WHEN takeId IN ({seq}) THEN 1 ELSE 0) = ?'\n .format(seq=','.join(['?'] * len(take_ids))))\n cursor.execute(sql, (*take_ids, len(take_ids)))\n elif len(take_ids) == 0:\n sql = ('SELECT id\\n' + 'FROM Combinations\\n' +\n 'WHERE backingTrackId = ?\\n' +\n \"\"\" AND NOT EXISTS\n\"\"\" + ' (SELECT * \\n' +\n ' FROM CombinationsDetail\\n' +\n ' WHERE combinationId = Combinations.id)')\n cursor.execute(sql, (track_id,))\n else:\n sql = ('SELECT id\\n' + 'FROM Combinations\\n' +\n 'WHERE backingTrackId = ?\\n' + ' AND id IN\\n' +\n \"\"\" (SELECT combinationId\n\"\"\" +\n ' FROM CombinationsDetail\\n' +\n ' GROUP BY combinationId\\n' +\n ' HAVING SUM(CASE WHEN takeId IN ({seq}) THEN 1 ELSE 0 END) = ?)'\n ).format(seq=','.join(['?'] * len(take_ids)))\n cursor.execute(sql, (track_id, *take_ids, len(take_ids)))\n row = cursor.fetchone()\n if row is None:\n return None\n combo_id = row[0]\n return combo_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(get_combo)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_success(data):\n log.info(\n 'Successfully added combination to database; combination id: '\n + str(data))\n return data\n d.addCallback(on_success)\n\n def on_error(error):\n log.error('Failed to add combination to the database: ' + str(\n error))\n raise Exception('Failed to add combination to the database')\n d.addErrback(on_error)\n return d\n\n def add_combination(self, track_id=None, take_ids=[]):\n \"\"\"Adds combination into database.\n\n Returns combo_id.\n \"\"\"\n log.info(\n f'Adding combination to database with track id = {track_id} and take_ids = {take_ids}'\n )\n if track_id is None and len(take_ids) == 0:\n raise Exception(\n 'Adding a combination to the database requires ' +\n 'at least a Track ID or at least one Take ID')\n\n def add_combo(cursor):\n cursor.execute('INSERT INTO AudioIdentifiers DEFAULT VALUES')\n audio_id = cursor.lastrowid\n print('track_id:', track_id)\n cursor.execute(\n 'INSERT INTO Combinations (audioId, backingTrackId) VALUES (?, ?)'\n , (audio_id, track_id))\n combo_id = cursor.lastrowid\n for take_id in take_ids:\n cursor.execute(\n 'INSERT INTO CombinationsDetail (combinationId, takeId) ' +\n 'VALUES (?,?)', (combo_id, take_id))\n return combo_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(add_combo)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_success(data):\n log.info(\n 'Successfully added combination to database; combination id: '\n + str(data))\n return data\n\n def on_error(error):\n log.error('Failed to add combination to the database: ' + str(\n error))\n raise Exception('Failed to add combination to the database')\n d.addCallback(on_success)\n d.addErrback(on_error)\n return d\n\n def get_track_audio_id(self, track_id):\n \"\"\"Returns track's audio id or None.\"\"\"\n\n def execute_sql(cursor):\n cursor.execute('SELECT audioId FROM BackingTracks WHERE id = ?',\n (track_id,))\n results = cursor.fetchone()\n if results is None:\n return None\n else:\n return results[0]\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to get audio ID for track id ({track_id}): ' +\n str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def get_take_audio_id(self, take_id):\n \"\"\"Returns take's audio id or None.\"\"\"\n\n def execute_sql(cursor):\n cursor.execute('SELECT audioId FROM Takes WHERE id = ?', (take_id,)\n )\n results = cursor.fetchone()\n if results is None:\n return None\n else:\n return results[0]\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to get audio ID for take id ({take_id}): ' +\n str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def assign_participant(self, client_id, name):\n \"\"\"Assigns the name to the client id.\"\"\"\n\n def execute_sql(cursor):\n cursor.execute(\n 'SELECT participantName FROM Participants WHERE id = ?', (\n client_id,))\n row = cursor.fetchone()\n if row is None:\n cursor.execute(\n 'INSERT INTO Participants (id, participantName) ' +\n 'VALUES (?, ?)', (client_id, name))\n return client_id\n current_name = row[0]\n if name == current_name:\n return client_id\n cursor.execute(\n 'UPDATE Participants SET participantName = ? WHERE id = ?',\n (name, client_id))\n return client_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n \"Failed to add participant given name '{name}' and id '{client_id}': \"\n + str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def get_participants(self):\n\n def execute_sql(cursor):\n cursor.execute('SELECT id, participantName FROM Participants')\n rows = cursor.fetchall()\n results = [{'id': id_, 'name': name} for id_, name in rows]\n return results\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to get participant list: ' + str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def get_audio_ids_from_combination_id(self, combination_id):\n\n def execute_sql(cursor):\n cursor.execute('SELECT BackingTracks.audioId\\n' +\n 'FROM Combinations\\n' + \"\"\"LEFT JOIN BackingTracks\n\"\"\" +\n 'ON Combinations.backingTrackId = BackingTracks.id\\n' +\n 'WHERE combinations.id = ?', (combination_id,))\n rows = cursor.fetchall()\n if len(rows) == 0:\n backing_audio_ids = []\n elif len(rows) == 1:\n row = rows[0]\n audio_id = row[0]\n backing_audio_ids = [audio_id]\n else:\n raise Exception(f'More than one backing track matched ' +\n f'combination id {combination_id}; this ' +\n f\"shouldn't be possible\")\n cursor.execute('SELECT audioId\\n' + 'FROM CombinationsDetail\\n' +\n 'LEFT JOIN Takes\\n' +\n \"\"\"ON CombinationsDetail.id = Takes.combinationId\n\"\"\" +\n 'WHERE CombinationsDetail.combinationId = ?', (combination_id,)\n )\n rows = cursor.fetchall()\n if len(rows) == 0:\n if len(backing_audio_ids) == 0:\n raise Exception(\n f'We have neither a backing track nor takes ' +\n f'for the given combination id ({combination_id});' +\n f\"this shouldn't be possible\")\n else:\n takes_audio_ids = [row[0] for row in rows]\n backing_audio_ids += takes_audio_ids\n return backing_audio_ids\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n 'Failed to get backing audio ids from combination id: ' +\n str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def add_take(self, take_name, combination_id):\n\n def execute_sql(cursor):\n cursor.execute('INSERT INTO AudioIdentifiers DEFAULT VALUES')\n audio_id = cursor.lastrowid\n cursor.execute(\n 'INSERT INTO Takes (audioId, combinationId, takeName, complete) '\n + 'VALUES (?, ?, ?, 0)', (audio_id, combination_id, take_name)\n )\n take_id = cursor.lastrowid\n return take_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to add take: ' + str(error))\n return error\n d.addErrback(on_error)\n return d\n\n def add_recording_audio_ids(self, take_id, participants):\n\n def execute_sql(cursor):\n audio_ids = {}\n for participant_id in participants:\n cursor.execute('INSERT INTO AudioIdentifiers DEFAULT VALUES')\n audio_id = cursor.lastrowid\n cursor.execute('INSERT INTO Recordings ' +\n '(audioId, participantId, takeId, complete) ' +\n 'VALUES (?, ?, ?, 0)', (audio_id, participant_id, take_id))\n audio_ids[participant_id] = audio_id\n return audio_ids\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn('Failed to add recordings for participants: ' + str(error)\n )\n return error\n d.addErrback(on_error)\n return d\n", "step-5": "import pkg_resources\nfrom twisted.enterprise import adbapi\nfrom twisted.internet import defer\n\n# Start a logger with a namespace for a particular subsystem of our application.\nfrom twisted.logger import Logger\nlog = Logger(\"database\")\n\nclass Database:\n def __init__(self, context, db_filename=\"database.sqlite\"):\n # Get full path and filename for database\n session_files = context[\"session_files\"]\n db_filename = session_files.session_dir / db_filename\n \n # Note if database already exists\n database_exists = db_filename.is_file()\n\n # Callback for every connection that is established to the\n # database\n def setup_connection(connection):\n # Turn on foreign key constraints\n cursor = connection.cursor()\n cursor.execute(\"PRAGMA foreign_keys = ON;\")\n\n # # Turn on column names in rows\n # import sqlite3\n # connection.row_factory = sqlite3.Row\n \n # Open a connection to the database. SQLite will create the file if\n # it doesn't already exist.\n dbpool = adbapi.ConnectionPool(\n \"sqlite3\",\n db_filename,\n cp_openfun=setup_connection,\n check_same_thread=False # See https://twistedmatrix.com/trac/ticket/3629\n )\n\n # If the database did not exist, initialise the database\n if not database_exists:\n print(\"Database requires initialisation\")\n self._db_ready = dbpool.runInteraction(self._initialise_database)\n def on_success(data):\n log.info(\"Database successfully initialised\")\n return dbpool\n def on_error(data):\n log.error(f\"Failed to initialise the server's database: {data}\")\n reactor = context[\"reactor\"]\n reactor.stop()\n\n self._db_ready.addCallback(on_success)\n self._db_ready.addErrback(on_error)\n else:\n # Database exists already\n self._db_ready = defer.Deferred()\n self._db_ready.callback(dbpool)\n\n # Check that database is the correct version\n expected_version = 4\n def check_version(cursor):\n cursor.execute(\"SELECT version FROM Version\")\n row = cursor.fetchone()\n if row is None:\n raise Exception(\"No version found in Version table of database\")\n if row[0] == expected_version:\n log.info(f\"Server database version {expected_version}\")\n return dbpool\n else:\n reactor = context[\"reactor\"]\n reactor.stop()\n raise Exception(f\"Database version ({row[0]}) did not match expected version ({expected_version}). Terminating.\")\n\n def run_check_version(dbpool):\n return dbpool.runInteraction(check_version)\n d = self.get_dbpool()\n d.addCallback(run_check_version)\n\n def on_error(error):\n log.error(\"Failed to verify the database: \"+str(error))\n reactor = context[\"reactor\"]\n reactor.stop()\n d.addErrback(on_error)\n\n \n # Initialise the database structure from instructions in file\n def _initialise_database(self, cursor):\n log.info(\"Initialising database\")\n initialisation_commands_filename = \\\n pkg_resources.resource_filename(\n \"singtserver\",\n \"database.sql\"\n )\n f = open(initialisation_commands_filename, \"r\")\n initialisation_commands = f.read()\n return cursor.executescript(initialisation_commands)\n\n\n def get_dbpool(self):\n d = defer.Deferred()\n def db_ready(db):\n d.callback(db)\n return db\n self._db_ready.addCallback(db_ready)\n \n return d\n\n \n def get_combination(self, track_id=None, take_ids=[]):\n # Sanity check arguments\n if (track_id is None\n and len(take_ids) == 0):\n raise Exception(\n \"Getting a combination from the database requires \"+\n \"at least a Track ID or at least one Take ID\"\n )\n\n # Get combination from database.\n # See answers to https://stackoverflow.com/questions/63356820/sql-select-from-many-to-one\n # and https://stackoverflow.com/a/5766293/562930\n def get_combo(cursor):\n if track_id is None:\n assert len(take_ids) > 0\n sql = (\n \"SELECT id\\n\"+\n \"FROM Combinations\\n\"+\n \"WHERE backingTrackId IS NULL\\n\"+\n \" AND id IN\\n\"+\n \" (SELECT combinationId\\n\"+\n \" FROM CombinationsDetail\\n\"+\n \" GROUP BY combinationId\\n\" +\n \" HAVING SUM(CASE WHEN takeId IN ({seq}) THEN 1 ELSE 0) = ?\".format(\n seq=\",\".join([\"?\"]*len(take_ids))\n )\n )\n cursor.execute(\n sql,\n (*take_ids, len(take_ids))\n )\n \n elif len(take_ids) == 0:\n sql = (\n \"SELECT id\\n\"+\n \"FROM Combinations\\n\"+\n \"WHERE backingTrackId = ?\\n\"+\n \" AND NOT EXISTS\\n\"+\n \" (SELECT * \\n\"+\n \" FROM CombinationsDetail\\n\"+\n \" WHERE combinationId = Combinations.id)\"\n )\n cursor.execute(\n sql,\n (track_id, )\n )\n \n else:\n sql = (\"SELECT id\\n\"+\n \"FROM Combinations\\n\"+\n \"WHERE backingTrackId = ?\\n\"+\n \" AND id IN\\n\"+\n \" (SELECT combinationId\\n\"+\n \" FROM CombinationsDetail\\n\"+\n \" GROUP BY combinationId\\n\" +\n \" HAVING SUM(CASE WHEN takeId IN ({seq}) THEN 1 ELSE 0 END) = ?)\").format(\n seq=\",\".join(['?']*len(take_ids))\n )\n cursor.execute(\n sql,\n (track_id, *take_ids, len(take_ids))\n )\n\n # Although there should be at most only one combo id that\n # matches the track and takes specification, even if there\n # are more than one, we'll just return the first (or None\n # if there aren't any).\n row = cursor.fetchone()\n if row is None:\n return None\n combo_id = row[0]\n return combo_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(get_combo)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_success(data):\n log.info(\"Successfully added combination to database; combination id: \"+str(data))\n return data\n d.addCallback(on_success)\n \n def on_error(error):\n log.error(\"Failed to add combination to the database: \"+str(error))\n raise Exception(\"Failed to add combination to the database\")\n d.addErrback(on_error)\n\n return d\n\n\n def add_combination(self, track_id=None, take_ids=[]):\n \"\"\"Adds combination into database.\n\n Returns combo_id.\n \"\"\"\n log.info(f\"Adding combination to database with track id = {track_id} and take_ids = {take_ids}\")\n # Sanity check arguments\n if (track_id is None\n and len(take_ids) == 0):\n raise Exception(\n \"Adding a combination to the database requires \"+\n \"at least a Track ID or at least one Take ID\"\n )\n\n # Create combination in database\n def add_combo(cursor):\n # Create audio id\n cursor.execute(\"INSERT INTO AudioIdentifiers DEFAULT VALUES\")\n audio_id = cursor.lastrowid\n \n print(\"track_id:\", track_id)\n cursor.execute(\n \"INSERT INTO Combinations (audioId, backingTrackId) VALUES (?, ?)\",\n (audio_id, track_id)\n )\n combo_id = cursor.lastrowid\n\n for take_id in take_ids:\n cursor.execute(\n \"INSERT INTO CombinationsDetail (combinationId, takeId) \"+\n \"VALUES (?,?)\",\n (combo_id, take_id)\n )\n \n return combo_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(add_combo)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_success(data):\n log.info(\"Successfully added combination to database; combination id: \"+str(data))\n return data\n def on_error(error):\n log.error(\"Failed to add combination to the database: \"+str(error))\n raise Exception(\"Failed to add combination to the database\")\n\n d.addCallback(on_success)\n d.addErrback(on_error)\n\n return d\n \n\n def get_track_audio_id(self, track_id):\n \"\"\"Returns track's audio id or None.\"\"\"\n def execute_sql(cursor):\n cursor.execute(\"SELECT audioId FROM BackingTracks WHERE id = ?\",\n (track_id,))\n results = cursor.fetchone()\n if results is None:\n return None\n else:\n return results[0]\n \n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\"Failed to get audio ID for track id ({track_id}): \"+\n str(error)\n )\n return error\n d.addErrback(on_error)\n\n return d\n \n\n def get_take_audio_id(self, take_id):\n \"\"\"Returns take's audio id or None.\"\"\"\n def execute_sql(cursor):\n cursor.execute(\"SELECT audioId FROM Takes WHERE id = ?\",\n (take_id,))\n results = cursor.fetchone()\n if results is None:\n return None\n else:\n return results[0]\n \n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\"Failed to get audio ID for take id ({take_id}): \"+\n str(error)\n )\n return error\n d.addErrback(on_error)\n\n return d\n\n \n def assign_participant(self, client_id, name):\n \"\"\"Assigns the name to the client id.\"\"\"\n\n def execute_sql(cursor):\n # First, check if the id already exists\n cursor.execute(\n \"SELECT participantName FROM Participants WHERE id = ?\",\n (client_id,)\n )\n row = cursor.fetchone()\n if row is None:\n # We don't currently have this ID, insert it\n cursor.execute(\n \"INSERT INTO Participants (id, participantName) \"+\n \"VALUES (?, ?)\",\n (client_id, name)\n )\n return client_id\n\n # Otherwise, a row does already exist\n current_name = row[0]\n if name == current_name:\n # We have nothing to do, the database is already\n # correct\n return client_id\n\n # Otherwise, we need to update the database\n cursor.execute(\n \"UPDATE Participants SET participantName = ? WHERE id = ?\",\n (name, client_id)\n )\n return client_id\n \n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n \"Failed to add participant given name '{name}' and id '{client_id}': \"+\n str(error)\n )\n return error\n d.addErrback(on_error)\n\n return d\n\n \n def get_participants(self):\n def execute_sql(cursor):\n cursor.execute(\"SELECT id, participantName FROM Participants\")\n rows = cursor.fetchall()\n results = [{\"id\":id_, \"name\":name} for id_, name in rows]\n return results\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n \"Failed to get participant list: \"+\n str(error)\n )\n return error\n d.addErrback(on_error)\n\n return d\n \n def get_audio_ids_from_combination_id(self, combination_id):\n def execute_sql(cursor):\n # Get Track ID. There should be either zero or one, but\n # not more.\n cursor.execute(\n \"SELECT BackingTracks.audioId\\n\"+\n \"FROM Combinations\\n\"+\n \"LEFT JOIN BackingTracks\\n\"+\n \"ON Combinations.backingTrackId = BackingTracks.id\\n\"+\n \"WHERE combinations.id = ?\",\n (combination_id,)\n )\n rows = cursor.fetchall()\n if len(rows) == 0:\n # We don't have a backing track; that's fine, move on\n # to the takes.\n backing_audio_ids = []\n elif len(rows) == 1:\n # We have one backing track\n row = rows[0]\n audio_id = row[0]\n backing_audio_ids = [audio_id]\n else:\n # We have more than one backing track; error.\n raise Exception(\n f\"More than one backing track matched \"+\n f\"combination id {combination_id}; this \"+\n f\"shouldn't be possible\"\n )\n\n # Get the Take IDs. There may be many of these. But if\n # there wasn't a backing track id, then there needs to be\n # at least one Take ID.\n cursor.execute(\n \"SELECT audioId\\n\"+\n \"FROM CombinationsDetail\\n\"+\n \"LEFT JOIN Takes\\n\"+\n \"ON CombinationsDetail.id = Takes.combinationId\\n\"+\n \"WHERE CombinationsDetail.combinationId = ?\",\n (combination_id,)\n )\n rows = cursor.fetchall()\n if len(rows) == 0:\n # This is only as issue if we don't have any backing\n # tracks either\n if len(backing_audio_ids) == 0:\n raise Exception(\n f\"We have neither a backing track nor takes \"+\n f\"for the given combination id ({combination_id});\"+\n f\"this shouldn't be possible\"\n )\n else:\n # Add the Take IDs to the list \n takes_audio_ids = [row[0] for row in rows]\n backing_audio_ids += takes_audio_ids\n \n return backing_audio_ids\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n \"Failed to get backing audio ids from combination id: \"+\n str(error)\n )\n return error\n d.addErrback(on_error)\n\n return d\n \n def add_take(self, take_name, combination_id):\n def execute_sql(cursor):\n # Create audio id\n cursor.execute(\"INSERT INTO AudioIdentifiers DEFAULT VALUES\")\n audio_id = cursor.lastrowid\n\n # Create take\n cursor.execute(\n \"INSERT INTO Takes (audioId, combinationId, takeName, complete) \"+\n \"VALUES (?, ?, ?, 0)\",\n (audio_id, combination_id, take_name)\n )\n take_id = cursor.lastrowid\n\n return take_id\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n \"Failed to add take: \"+\n str(error)\n )\n return error\n d.addErrback(on_error)\n\n return d\n \n def add_recording_audio_ids(self, take_id, participants):\n def execute_sql(cursor):\n audio_ids = {}\n for participant_id in participants:\n # Create audio id\n cursor.execute(\"INSERT INTO AudioIdentifiers DEFAULT VALUES\")\n audio_id = cursor.lastrowid\n\n # Add entry into Recordings\n cursor.execute(\n \"INSERT INTO Recordings \"+\n \"(audioId, participantId, takeId, complete) \"+\n \"VALUES (?, ?, ?, 0)\",\n (audio_id, participant_id, take_id)\n )\n \n audio_ids[participant_id] = audio_id\n return audio_ids\n\n def when_ready(dbpool):\n return dbpool.runInteraction(execute_sql)\n d = self.get_dbpool()\n d.addCallback(when_ready)\n\n def on_error(error):\n log.warn(\n \"Failed to add recordings for participants: \"+\n str(error)\n )\n return error\n d.addErrback(on_error)\n\n return d\n\n", "step-ids": [ 8, 9, 12, 15, 16 ] }
[ 8, 9, 12, 15, 16 ]
""" util - other functions """ import torch import numpy as np from common_labelme import Config from torch.autograd import Variable I = torch.FloatTensor(np.eye(Config.batch_size),) E = torch.FloatTensor(np.ones((Config.batch_size, Config.batch_size))) normalize_1 = Config.batch_size normalize_2 = Config.batch_size * Config.batch_size - Config.batch_size def mig_loss_function(output1, output2, p): new_output = output1 / p m = (new_output @ output2.transpose(1,0)) noise = torch.rand(1)*0.0001 m1 = torch.log(m*I+ I*noise + E - I) m2 = m*(E-I) return -(sum(sum(m1)) + Config.batch_size)/normalize_1 + sum(sum(m2)) / normalize_2 def tvd_loss_function(output1, output2, p): new_output = output1 / p m = (new_output @ output2.transpose(1,0)) noise = torch.rand(1)*0.0001 m1 = torch.log(m*I + I * noise + E - I) m2 = torch.log(m*(E-I) + I ) return -(sum(sum(torch.sign(m1))))/normalize_1 + sum(sum(torch.sign(m2))) / normalize_2 def pearson_loss_function(output1, output2, p): new_output = output1 / p m = (new_output @ output2.transpose(1,0)) m1 = m*I m2 = m*(E-I) m2 = m2*m2 return -(2 * sum(sum(m1)) - 2 * Config.batch_size) / normalize_1 + (sum(sum(m2)) - normalize_2) / normalize_2 def reverse_kl_loss_function(output1, output2, p): new_output = output1 / p m = (new_output @ output2.transpose(1,0)) m1 = m*I m1 = -I/(m1.float() + E - I) m2 = torch.log(m*(E-I) + I) return -(sum(sum(m1)))/normalize_1 + (-sum(sum(m2)) - normalize_2) / normalize_2 def sh_loss_function(output1, output2, p): new_output = output1 / p m = (new_output @ output2.transpose(1,0)) m1 = m*I m1 = torch.sqrt(I/(m1.float() + E - I)) m2 = torch.sqrt(m*(E-I)) return -(-sum(sum(m1)) + Config.batch_size)/normalize_1 + sum(sum(m2)) / normalize_2 def entropy_loss(outputs): num = outputs.size()[0] temp = -outputs * torch.log(outputs+0.0001) loss = torch.sum(temp) loss /= num return loss def M_step(expert_label,mu): #---------------------------------------------------------------# # # # expert_label size : batch_size * expert_num # # mu : batch_size * num_classes # # expert_parameters = expert_num * num_classes * num_classes # # # #---------------------------------------------------------------# if not Config.missing: normalize = torch.sum(mu, 0).float() expert_label = expert_label.long() expert_parameters = torch.zeros((Config.expert_num, Config.num_classes, Config.num_classes)) for i in range(mu.size()[0]): for R in range(Config.expert_num): expert_parameters[R, :, expert_label[i, R]] += mu[i].float() expert_parameters = expert_parameters / normalize.unsqueeze(1) else: normalize = torch.zeros(Config.expert_num,Config.num_classes) expert_label = expert_label.long() expert_parameters = torch.zeros((Config.expert_num, Config.num_classes, Config.num_classes)) for i in range(mu.size()[0]): for R in range(Config.expert_num): if expert_label[i,R] < 0: continue expert_parameters[R, :, expert_label[i, R]] += mu[i].float() normalize[R] += mu[i].float() normalize = normalize + 1 * (normalize == 0).float() for R in range(Config.expert_num): expert_parameters[R] = expert_parameters[R] / normalize[R].unsqueeze(1) expert_parameters = expert_parameters.cuda() return expert_parameters def M_step_p_mbem(t): p = torch.zeros(Config.num_classes) t = t.long() for i in range(t.size(0)): p[t[i]] += 1 p /= t.size()[0] return p def M_step_mbem(expert_label,t): #---------------------------------------------------------------# # # # expert_label size : batch_size * expert_num # # t : batch_size # # expert_parameters = expert_num * num_classes * num_classes # # # #---------------------------------------------------------------# normalize = torch.zeros(Config.expert_num, Config.num_classes) expert_label = expert_label.long() t = t.long() expert_parameters = torch.zeros((Config.expert_num, Config.num_classes, Config.num_classes)) for i in range(t.size()[0]): for R in range(Config.expert_num): if expert_label[i, R] < 0: continue expert_parameters[R, t[i], expert_label[i, R]] += 1 normalize[R,t[i]] += 1 normalize = normalize + 1 * (normalize == 0).float() for R in range(Config.expert_num): expert_parameters[R] = expert_parameters[R] / normalize[R].unsqueeze(1) expert_parameters = expert_parameters.cuda() return expert_parameters def print_recons_result(right_model, confusion_matrix): confusion_loss = 0 for i in range(1,len(list(right_model.parameters()))): para = list(right_model.parameters())[i].detach().cpu() #print("Expert %d" %i) local_confusion_matrix = torch.nn.functional.softmax(para, dim=1) #print(local_confusion_matrix) residual_matrix = local_confusion_matrix - confusion_matrix[i-1, :, :] residual = torch.sum(abs(residual_matrix)) confusion_loss += residual print("Total variation:", confusion_loss.item()) def initial_priori(train_loader): p = torch.zeros((Config.num_classes)) total = 0 for batch_idx, (left_data, right_data, label) in enumerate(train_loader): linear_sum = torch.sum(right_data, dim=1) _, majority = torch.max(linear_sum, 1) majority = Variable(majority).long() total += label.size()[0] for i in range(Config.num_classes): p[i] += torch.sum(majority == i).float() p = p/float(total) return p def update_priori(model, train_loader): # waiting for solution p = torch.zeros((Config.num_classes)) # updating priori by posteri total = 0 for batch_idx, (left_data, right_data, label) in enumerate(train_loader): ep = Variable(right_data).float().cuda() images = Variable(left_data).float().cuda() outputs = model(images) _, predicts = torch.max(outputs.data, 1) total += ep.size()[0] predicts = predicts.detach().cpu() for i in range(Config.num_classes): p[i] += torch.sum(predicts == i).float() p = p/float(total) ''' # updating priori by loss pri = priori pri = Variable(pri, requires_grad=True) loss = mig_loss_function(left_outputs.detach(),right_outputs.detach(),p) loss.backward() grad = pri.grad pri = pri.detach() - Config.alpha * grad pri = torch.exp(pri) pri = pri / torch.sum(pri) ''' ''' # true priori p[0] = 0.5 p[1] = 0.5 ''' return p
normal
{ "blob_id": "be9179b33991ba743e6e6b7d5dd4dc85ffc09fc3", "index": 6331, "step-1": "<mask token>\n\n\ndef mig_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n noise = torch.rand(1) * 0.0001\n m1 = torch.log(m * I + I * noise + E - I)\n m2 = m * (E - I)\n return -(sum(sum(m1)) + Config.batch_size) / normalize_1 + sum(sum(m2)\n ) / normalize_2\n\n\ndef tvd_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n noise = torch.rand(1) * 0.0001\n m1 = torch.log(m * I + I * noise + E - I)\n m2 = torch.log(m * (E - I) + I)\n return -sum(sum(torch.sign(m1))) / normalize_1 + sum(sum(torch.sign(m2))\n ) / normalize_2\n\n\ndef pearson_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m2 = m * (E - I)\n m2 = m2 * m2\n return -(2 * sum(sum(m1)) - 2 * Config.batch_size) / normalize_1 + (sum\n (sum(m2)) - normalize_2) / normalize_2\n\n\ndef reverse_kl_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m1 = -I / (m1.float() + E - I)\n m2 = torch.log(m * (E - I) + I)\n return -sum(sum(m1)) / normalize_1 + (-sum(sum(m2)) - normalize_2\n ) / normalize_2\n\n\ndef sh_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m1 = torch.sqrt(I / (m1.float() + E - I))\n m2 = torch.sqrt(m * (E - I))\n return -(-sum(sum(m1)) + Config.batch_size) / normalize_1 + sum(sum(m2)\n ) / normalize_2\n\n\ndef entropy_loss(outputs):\n num = outputs.size()[0]\n temp = -outputs * torch.log(outputs + 0.0001)\n loss = torch.sum(temp)\n loss /= num\n return loss\n\n\ndef M_step(expert_label, mu):\n if not Config.missing:\n normalize = torch.sum(mu, 0).float()\n expert_label = expert_label.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.\n num_classes, Config.num_classes))\n for i in range(mu.size()[0]):\n for R in range(Config.expert_num):\n expert_parameters[R, :, expert_label[i, R]] += mu[i].float()\n expert_parameters = expert_parameters / normalize.unsqueeze(1)\n else:\n normalize = torch.zeros(Config.expert_num, Config.num_classes)\n expert_label = expert_label.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.\n num_classes, Config.num_classes))\n for i in range(mu.size()[0]):\n for R in range(Config.expert_num):\n if expert_label[i, R] < 0:\n continue\n expert_parameters[R, :, expert_label[i, R]] += mu[i].float()\n normalize[R] += mu[i].float()\n normalize = normalize + 1 * (normalize == 0).float()\n for R in range(Config.expert_num):\n expert_parameters[R] = expert_parameters[R] / normalize[R\n ].unsqueeze(1)\n expert_parameters = expert_parameters.cuda()\n return expert_parameters\n\n\ndef M_step_p_mbem(t):\n p = torch.zeros(Config.num_classes)\n t = t.long()\n for i in range(t.size(0)):\n p[t[i]] += 1\n p /= t.size()[0]\n return p\n\n\ndef M_step_mbem(expert_label, t):\n normalize = torch.zeros(Config.expert_num, Config.num_classes)\n expert_label = expert_label.long()\n t = t.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.num_classes,\n Config.num_classes))\n for i in range(t.size()[0]):\n for R in range(Config.expert_num):\n if expert_label[i, R] < 0:\n continue\n expert_parameters[R, t[i], expert_label[i, R]] += 1\n normalize[R, t[i]] += 1\n normalize = normalize + 1 * (normalize == 0).float()\n for R in range(Config.expert_num):\n expert_parameters[R] = expert_parameters[R] / normalize[R].unsqueeze(1)\n expert_parameters = expert_parameters.cuda()\n return expert_parameters\n\n\ndef print_recons_result(right_model, confusion_matrix):\n confusion_loss = 0\n for i in range(1, len(list(right_model.parameters()))):\n para = list(right_model.parameters())[i].detach().cpu()\n local_confusion_matrix = torch.nn.functional.softmax(para, dim=1)\n residual_matrix = local_confusion_matrix - confusion_matrix[i - 1, :, :\n ]\n residual = torch.sum(abs(residual_matrix))\n confusion_loss += residual\n print('Total variation:', confusion_loss.item())\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef mig_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n noise = torch.rand(1) * 0.0001\n m1 = torch.log(m * I + I * noise + E - I)\n m2 = m * (E - I)\n return -(sum(sum(m1)) + Config.batch_size) / normalize_1 + sum(sum(m2)\n ) / normalize_2\n\n\ndef tvd_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n noise = torch.rand(1) * 0.0001\n m1 = torch.log(m * I + I * noise + E - I)\n m2 = torch.log(m * (E - I) + I)\n return -sum(sum(torch.sign(m1))) / normalize_1 + sum(sum(torch.sign(m2))\n ) / normalize_2\n\n\ndef pearson_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m2 = m * (E - I)\n m2 = m2 * m2\n return -(2 * sum(sum(m1)) - 2 * Config.batch_size) / normalize_1 + (sum\n (sum(m2)) - normalize_2) / normalize_2\n\n\ndef reverse_kl_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m1 = -I / (m1.float() + E - I)\n m2 = torch.log(m * (E - I) + I)\n return -sum(sum(m1)) / normalize_1 + (-sum(sum(m2)) - normalize_2\n ) / normalize_2\n\n\ndef sh_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m1 = torch.sqrt(I / (m1.float() + E - I))\n m2 = torch.sqrt(m * (E - I))\n return -(-sum(sum(m1)) + Config.batch_size) / normalize_1 + sum(sum(m2)\n ) / normalize_2\n\n\ndef entropy_loss(outputs):\n num = outputs.size()[0]\n temp = -outputs * torch.log(outputs + 0.0001)\n loss = torch.sum(temp)\n loss /= num\n return loss\n\n\ndef M_step(expert_label, mu):\n if not Config.missing:\n normalize = torch.sum(mu, 0).float()\n expert_label = expert_label.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.\n num_classes, Config.num_classes))\n for i in range(mu.size()[0]):\n for R in range(Config.expert_num):\n expert_parameters[R, :, expert_label[i, R]] += mu[i].float()\n expert_parameters = expert_parameters / normalize.unsqueeze(1)\n else:\n normalize = torch.zeros(Config.expert_num, Config.num_classes)\n expert_label = expert_label.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.\n num_classes, Config.num_classes))\n for i in range(mu.size()[0]):\n for R in range(Config.expert_num):\n if expert_label[i, R] < 0:\n continue\n expert_parameters[R, :, expert_label[i, R]] += mu[i].float()\n normalize[R] += mu[i].float()\n normalize = normalize + 1 * (normalize == 0).float()\n for R in range(Config.expert_num):\n expert_parameters[R] = expert_parameters[R] / normalize[R\n ].unsqueeze(1)\n expert_parameters = expert_parameters.cuda()\n return expert_parameters\n\n\ndef M_step_p_mbem(t):\n p = torch.zeros(Config.num_classes)\n t = t.long()\n for i in range(t.size(0)):\n p[t[i]] += 1\n p /= t.size()[0]\n return p\n\n\ndef M_step_mbem(expert_label, t):\n normalize = torch.zeros(Config.expert_num, Config.num_classes)\n expert_label = expert_label.long()\n t = t.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.num_classes,\n Config.num_classes))\n for i in range(t.size()[0]):\n for R in range(Config.expert_num):\n if expert_label[i, R] < 0:\n continue\n expert_parameters[R, t[i], expert_label[i, R]] += 1\n normalize[R, t[i]] += 1\n normalize = normalize + 1 * (normalize == 0).float()\n for R in range(Config.expert_num):\n expert_parameters[R] = expert_parameters[R] / normalize[R].unsqueeze(1)\n expert_parameters = expert_parameters.cuda()\n return expert_parameters\n\n\ndef print_recons_result(right_model, confusion_matrix):\n confusion_loss = 0\n for i in range(1, len(list(right_model.parameters()))):\n para = list(right_model.parameters())[i].detach().cpu()\n local_confusion_matrix = torch.nn.functional.softmax(para, dim=1)\n residual_matrix = local_confusion_matrix - confusion_matrix[i - 1, :, :\n ]\n residual = torch.sum(abs(residual_matrix))\n confusion_loss += residual\n print('Total variation:', confusion_loss.item())\n\n\ndef initial_priori(train_loader):\n p = torch.zeros(Config.num_classes)\n total = 0\n for batch_idx, (left_data, right_data, label) in enumerate(train_loader):\n linear_sum = torch.sum(right_data, dim=1)\n _, majority = torch.max(linear_sum, 1)\n majority = Variable(majority).long()\n total += label.size()[0]\n for i in range(Config.num_classes):\n p[i] += torch.sum(majority == i).float()\n p = p / float(total)\n return p\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef mig_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n noise = torch.rand(1) * 0.0001\n m1 = torch.log(m * I + I * noise + E - I)\n m2 = m * (E - I)\n return -(sum(sum(m1)) + Config.batch_size) / normalize_1 + sum(sum(m2)\n ) / normalize_2\n\n\ndef tvd_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n noise = torch.rand(1) * 0.0001\n m1 = torch.log(m * I + I * noise + E - I)\n m2 = torch.log(m * (E - I) + I)\n return -sum(sum(torch.sign(m1))) / normalize_1 + sum(sum(torch.sign(m2))\n ) / normalize_2\n\n\ndef pearson_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m2 = m * (E - I)\n m2 = m2 * m2\n return -(2 * sum(sum(m1)) - 2 * Config.batch_size) / normalize_1 + (sum\n (sum(m2)) - normalize_2) / normalize_2\n\n\ndef reverse_kl_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m1 = -I / (m1.float() + E - I)\n m2 = torch.log(m * (E - I) + I)\n return -sum(sum(m1)) / normalize_1 + (-sum(sum(m2)) - normalize_2\n ) / normalize_2\n\n\ndef sh_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m1 = torch.sqrt(I / (m1.float() + E - I))\n m2 = torch.sqrt(m * (E - I))\n return -(-sum(sum(m1)) + Config.batch_size) / normalize_1 + sum(sum(m2)\n ) / normalize_2\n\n\ndef entropy_loss(outputs):\n num = outputs.size()[0]\n temp = -outputs * torch.log(outputs + 0.0001)\n loss = torch.sum(temp)\n loss /= num\n return loss\n\n\ndef M_step(expert_label, mu):\n if not Config.missing:\n normalize = torch.sum(mu, 0).float()\n expert_label = expert_label.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.\n num_classes, Config.num_classes))\n for i in range(mu.size()[0]):\n for R in range(Config.expert_num):\n expert_parameters[R, :, expert_label[i, R]] += mu[i].float()\n expert_parameters = expert_parameters / normalize.unsqueeze(1)\n else:\n normalize = torch.zeros(Config.expert_num, Config.num_classes)\n expert_label = expert_label.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.\n num_classes, Config.num_classes))\n for i in range(mu.size()[0]):\n for R in range(Config.expert_num):\n if expert_label[i, R] < 0:\n continue\n expert_parameters[R, :, expert_label[i, R]] += mu[i].float()\n normalize[R] += mu[i].float()\n normalize = normalize + 1 * (normalize == 0).float()\n for R in range(Config.expert_num):\n expert_parameters[R] = expert_parameters[R] / normalize[R\n ].unsqueeze(1)\n expert_parameters = expert_parameters.cuda()\n return expert_parameters\n\n\ndef M_step_p_mbem(t):\n p = torch.zeros(Config.num_classes)\n t = t.long()\n for i in range(t.size(0)):\n p[t[i]] += 1\n p /= t.size()[0]\n return p\n\n\ndef M_step_mbem(expert_label, t):\n normalize = torch.zeros(Config.expert_num, Config.num_classes)\n expert_label = expert_label.long()\n t = t.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.num_classes,\n Config.num_classes))\n for i in range(t.size()[0]):\n for R in range(Config.expert_num):\n if expert_label[i, R] < 0:\n continue\n expert_parameters[R, t[i], expert_label[i, R]] += 1\n normalize[R, t[i]] += 1\n normalize = normalize + 1 * (normalize == 0).float()\n for R in range(Config.expert_num):\n expert_parameters[R] = expert_parameters[R] / normalize[R].unsqueeze(1)\n expert_parameters = expert_parameters.cuda()\n return expert_parameters\n\n\ndef print_recons_result(right_model, confusion_matrix):\n confusion_loss = 0\n for i in range(1, len(list(right_model.parameters()))):\n para = list(right_model.parameters())[i].detach().cpu()\n local_confusion_matrix = torch.nn.functional.softmax(para, dim=1)\n residual_matrix = local_confusion_matrix - confusion_matrix[i - 1, :, :\n ]\n residual = torch.sum(abs(residual_matrix))\n confusion_loss += residual\n print('Total variation:', confusion_loss.item())\n\n\ndef initial_priori(train_loader):\n p = torch.zeros(Config.num_classes)\n total = 0\n for batch_idx, (left_data, right_data, label) in enumerate(train_loader):\n linear_sum = torch.sum(right_data, dim=1)\n _, majority = torch.max(linear_sum, 1)\n majority = Variable(majority).long()\n total += label.size()[0]\n for i in range(Config.num_classes):\n p[i] += torch.sum(majority == i).float()\n p = p / float(total)\n return p\n\n\ndef update_priori(model, train_loader):\n p = torch.zeros(Config.num_classes)\n total = 0\n for batch_idx, (left_data, right_data, label) in enumerate(train_loader):\n ep = Variable(right_data).float().cuda()\n images = Variable(left_data).float().cuda()\n outputs = model(images)\n _, predicts = torch.max(outputs.data, 1)\n total += ep.size()[0]\n predicts = predicts.detach().cpu()\n for i in range(Config.num_classes):\n p[i] += torch.sum(predicts == i).float()\n p = p / float(total)\n \"\"\"\n # updating priori by loss\n pri = priori\n pri = Variable(pri, requires_grad=True)\n loss = mig_loss_function(left_outputs.detach(),right_outputs.detach(),p)\n loss.backward()\n grad = pri.grad\n pri = pri.detach() - Config.alpha * grad\n pri = torch.exp(pri)\n pri = pri / torch.sum(pri)\n \n \"\"\"\n \"\"\"\n # true priori\n p[0] = 0.5\n p[1] = 0.5\n \"\"\"\n return p\n", "step-4": "<mask token>\nimport torch\nimport numpy as np\nfrom common_labelme import Config\nfrom torch.autograd import Variable\nI = torch.FloatTensor(np.eye(Config.batch_size))\nE = torch.FloatTensor(np.ones((Config.batch_size, Config.batch_size)))\nnormalize_1 = Config.batch_size\nnormalize_2 = Config.batch_size * Config.batch_size - Config.batch_size\n\n\ndef mig_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n noise = torch.rand(1) * 0.0001\n m1 = torch.log(m * I + I * noise + E - I)\n m2 = m * (E - I)\n return -(sum(sum(m1)) + Config.batch_size) / normalize_1 + sum(sum(m2)\n ) / normalize_2\n\n\ndef tvd_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n noise = torch.rand(1) * 0.0001\n m1 = torch.log(m * I + I * noise + E - I)\n m2 = torch.log(m * (E - I) + I)\n return -sum(sum(torch.sign(m1))) / normalize_1 + sum(sum(torch.sign(m2))\n ) / normalize_2\n\n\ndef pearson_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m2 = m * (E - I)\n m2 = m2 * m2\n return -(2 * sum(sum(m1)) - 2 * Config.batch_size) / normalize_1 + (sum\n (sum(m2)) - normalize_2) / normalize_2\n\n\ndef reverse_kl_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m1 = -I / (m1.float() + E - I)\n m2 = torch.log(m * (E - I) + I)\n return -sum(sum(m1)) / normalize_1 + (-sum(sum(m2)) - normalize_2\n ) / normalize_2\n\n\ndef sh_loss_function(output1, output2, p):\n new_output = output1 / p\n m = new_output @ output2.transpose(1, 0)\n m1 = m * I\n m1 = torch.sqrt(I / (m1.float() + E - I))\n m2 = torch.sqrt(m * (E - I))\n return -(-sum(sum(m1)) + Config.batch_size) / normalize_1 + sum(sum(m2)\n ) / normalize_2\n\n\ndef entropy_loss(outputs):\n num = outputs.size()[0]\n temp = -outputs * torch.log(outputs + 0.0001)\n loss = torch.sum(temp)\n loss /= num\n return loss\n\n\ndef M_step(expert_label, mu):\n if not Config.missing:\n normalize = torch.sum(mu, 0).float()\n expert_label = expert_label.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.\n num_classes, Config.num_classes))\n for i in range(mu.size()[0]):\n for R in range(Config.expert_num):\n expert_parameters[R, :, expert_label[i, R]] += mu[i].float()\n expert_parameters = expert_parameters / normalize.unsqueeze(1)\n else:\n normalize = torch.zeros(Config.expert_num, Config.num_classes)\n expert_label = expert_label.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.\n num_classes, Config.num_classes))\n for i in range(mu.size()[0]):\n for R in range(Config.expert_num):\n if expert_label[i, R] < 0:\n continue\n expert_parameters[R, :, expert_label[i, R]] += mu[i].float()\n normalize[R] += mu[i].float()\n normalize = normalize + 1 * (normalize == 0).float()\n for R in range(Config.expert_num):\n expert_parameters[R] = expert_parameters[R] / normalize[R\n ].unsqueeze(1)\n expert_parameters = expert_parameters.cuda()\n return expert_parameters\n\n\ndef M_step_p_mbem(t):\n p = torch.zeros(Config.num_classes)\n t = t.long()\n for i in range(t.size(0)):\n p[t[i]] += 1\n p /= t.size()[0]\n return p\n\n\ndef M_step_mbem(expert_label, t):\n normalize = torch.zeros(Config.expert_num, Config.num_classes)\n expert_label = expert_label.long()\n t = t.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.num_classes,\n Config.num_classes))\n for i in range(t.size()[0]):\n for R in range(Config.expert_num):\n if expert_label[i, R] < 0:\n continue\n expert_parameters[R, t[i], expert_label[i, R]] += 1\n normalize[R, t[i]] += 1\n normalize = normalize + 1 * (normalize == 0).float()\n for R in range(Config.expert_num):\n expert_parameters[R] = expert_parameters[R] / normalize[R].unsqueeze(1)\n expert_parameters = expert_parameters.cuda()\n return expert_parameters\n\n\ndef print_recons_result(right_model, confusion_matrix):\n confusion_loss = 0\n for i in range(1, len(list(right_model.parameters()))):\n para = list(right_model.parameters())[i].detach().cpu()\n local_confusion_matrix = torch.nn.functional.softmax(para, dim=1)\n residual_matrix = local_confusion_matrix - confusion_matrix[i - 1, :, :\n ]\n residual = torch.sum(abs(residual_matrix))\n confusion_loss += residual\n print('Total variation:', confusion_loss.item())\n\n\ndef initial_priori(train_loader):\n p = torch.zeros(Config.num_classes)\n total = 0\n for batch_idx, (left_data, right_data, label) in enumerate(train_loader):\n linear_sum = torch.sum(right_data, dim=1)\n _, majority = torch.max(linear_sum, 1)\n majority = Variable(majority).long()\n total += label.size()[0]\n for i in range(Config.num_classes):\n p[i] += torch.sum(majority == i).float()\n p = p / float(total)\n return p\n\n\ndef update_priori(model, train_loader):\n p = torch.zeros(Config.num_classes)\n total = 0\n for batch_idx, (left_data, right_data, label) in enumerate(train_loader):\n ep = Variable(right_data).float().cuda()\n images = Variable(left_data).float().cuda()\n outputs = model(images)\n _, predicts = torch.max(outputs.data, 1)\n total += ep.size()[0]\n predicts = predicts.detach().cpu()\n for i in range(Config.num_classes):\n p[i] += torch.sum(predicts == i).float()\n p = p / float(total)\n \"\"\"\n # updating priori by loss\n pri = priori\n pri = Variable(pri, requires_grad=True)\n loss = mig_loss_function(left_outputs.detach(),right_outputs.detach(),p)\n loss.backward()\n grad = pri.grad\n pri = pri.detach() - Config.alpha * grad\n pri = torch.exp(pri)\n pri = pri / torch.sum(pri)\n \n \"\"\"\n \"\"\"\n # true priori\n p[0] = 0.5\n p[1] = 0.5\n \"\"\"\n return p\n", "step-5": "\"\"\"\nutil - other functions\n\"\"\"\nimport torch\nimport numpy as np\nfrom common_labelme import Config\nfrom torch.autograd import Variable\n\nI = torch.FloatTensor(np.eye(Config.batch_size),)\nE = torch.FloatTensor(np.ones((Config.batch_size, Config.batch_size)))\nnormalize_1 = Config.batch_size\nnormalize_2 = Config.batch_size * Config.batch_size - Config.batch_size\n\ndef mig_loss_function(output1, output2, p):\n new_output = output1 / p\n m = (new_output @ output2.transpose(1,0))\n noise = torch.rand(1)*0.0001\n m1 = torch.log(m*I+ I*noise + E - I)\n m2 = m*(E-I)\n return -(sum(sum(m1)) + Config.batch_size)/normalize_1 + sum(sum(m2)) / normalize_2\n\ndef tvd_loss_function(output1, output2, p):\n new_output = output1 / p\n m = (new_output @ output2.transpose(1,0))\n noise = torch.rand(1)*0.0001\n m1 = torch.log(m*I + I * noise + E - I)\n m2 = torch.log(m*(E-I) + I )\n\n return -(sum(sum(torch.sign(m1))))/normalize_1 + sum(sum(torch.sign(m2))) / normalize_2\n\ndef pearson_loss_function(output1, output2, p):\n new_output = output1 / p\n m = (new_output @ output2.transpose(1,0))\n\n m1 = m*I\n m2 = m*(E-I)\n m2 = m2*m2\n return -(2 * sum(sum(m1)) - 2 * Config.batch_size) / normalize_1 + (sum(sum(m2)) - normalize_2) / normalize_2\n\ndef reverse_kl_loss_function(output1, output2, p):\n new_output = output1 / p\n m = (new_output @ output2.transpose(1,0))\n m1 = m*I\n m1 = -I/(m1.float() + E - I)\n m2 = torch.log(m*(E-I) + I)\n return -(sum(sum(m1)))/normalize_1 + (-sum(sum(m2)) - normalize_2) / normalize_2\n\ndef sh_loss_function(output1, output2, p):\n new_output = output1 / p\n m = (new_output @ output2.transpose(1,0))\n m1 = m*I\n m1 = torch.sqrt(I/(m1.float() + E - I))\n m2 = torch.sqrt(m*(E-I))\n return -(-sum(sum(m1)) + Config.batch_size)/normalize_1 + sum(sum(m2)) / normalize_2\n\ndef entropy_loss(outputs):\n num = outputs.size()[0]\n temp = -outputs * torch.log(outputs+0.0001)\n loss = torch.sum(temp)\n loss /= num\n return loss\n\ndef M_step(expert_label,mu):\n\n #---------------------------------------------------------------#\n # #\n # expert_label size : batch_size * expert_num #\n # mu : batch_size * num_classes #\n # expert_parameters = expert_num * num_classes * num_classes #\n # #\n #---------------------------------------------------------------#\n\n if not Config.missing:\n normalize = torch.sum(mu, 0).float()\n expert_label = expert_label.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.num_classes, Config.num_classes))\n for i in range(mu.size()[0]):\n for R in range(Config.expert_num):\n expert_parameters[R, :, expert_label[i, R]] += mu[i].float()\n\n expert_parameters = expert_parameters / normalize.unsqueeze(1)\n else:\n normalize = torch.zeros(Config.expert_num,Config.num_classes)\n expert_label = expert_label.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.num_classes, Config.num_classes))\n for i in range(mu.size()[0]):\n for R in range(Config.expert_num):\n if expert_label[i,R] < 0:\n continue\n expert_parameters[R, :, expert_label[i, R]] += mu[i].float()\n normalize[R] += mu[i].float()\n\n normalize = normalize + 1 * (normalize == 0).float()\n\n for R in range(Config.expert_num):\n expert_parameters[R] = expert_parameters[R] / normalize[R].unsqueeze(1)\n\n expert_parameters = expert_parameters.cuda()\n return expert_parameters\n\ndef M_step_p_mbem(t):\n\n p = torch.zeros(Config.num_classes)\n t = t.long()\n for i in range(t.size(0)):\n p[t[i]] += 1\n p /= t.size()[0]\n return p\n\n\ndef M_step_mbem(expert_label,t):\n\n #---------------------------------------------------------------#\n # #\n # expert_label size : batch_size * expert_num #\n # t : batch_size #\n # expert_parameters = expert_num * num_classes * num_classes #\n # #\n #---------------------------------------------------------------#\n\n normalize = torch.zeros(Config.expert_num, Config.num_classes)\n expert_label = expert_label.long()\n t = t.long()\n expert_parameters = torch.zeros((Config.expert_num, Config.num_classes, Config.num_classes))\n\n\n for i in range(t.size()[0]):\n for R in range(Config.expert_num):\n if expert_label[i, R] < 0:\n continue\n expert_parameters[R, t[i], expert_label[i, R]] += 1\n normalize[R,t[i]] += 1\n normalize = normalize + 1 * (normalize == 0).float()\n\n for R in range(Config.expert_num):\n expert_parameters[R] = expert_parameters[R] / normalize[R].unsqueeze(1)\n\n expert_parameters = expert_parameters.cuda()\n return expert_parameters\n\n\ndef print_recons_result(right_model, confusion_matrix):\n\n confusion_loss = 0\n for i in range(1,len(list(right_model.parameters()))):\n para = list(right_model.parameters())[i].detach().cpu()\n #print(\"Expert %d\" %i)\n local_confusion_matrix = torch.nn.functional.softmax(para, dim=1)\n #print(local_confusion_matrix)\n residual_matrix = local_confusion_matrix - confusion_matrix[i-1, :, :]\n residual = torch.sum(abs(residual_matrix))\n confusion_loss += residual\n\n print(\"Total variation:\", confusion_loss.item())\n\ndef initial_priori(train_loader):\n p = torch.zeros((Config.num_classes))\n\n\n total = 0\n for batch_idx, (left_data, right_data, label) in enumerate(train_loader):\n linear_sum = torch.sum(right_data, dim=1)\n _, majority = torch.max(linear_sum, 1)\n majority = Variable(majority).long()\n total += label.size()[0]\n for i in range(Config.num_classes):\n p[i] += torch.sum(majority == i).float()\n p = p/float(total)\n return p\n\ndef update_priori(model, train_loader):\n # waiting for solution\n p = torch.zeros((Config.num_classes))\n\n # updating priori by posteri\n\n total = 0\n for batch_idx, (left_data, right_data, label) in enumerate(train_loader):\n ep = Variable(right_data).float().cuda()\n images = Variable(left_data).float().cuda()\n outputs = model(images)\n _, predicts = torch.max(outputs.data, 1)\n total += ep.size()[0]\n predicts = predicts.detach().cpu()\n for i in range(Config.num_classes):\n p[i] += torch.sum(predicts == i).float()\n\n p = p/float(total)\n '''\n # updating priori by loss\n pri = priori\n pri = Variable(pri, requires_grad=True)\n loss = mig_loss_function(left_outputs.detach(),right_outputs.detach(),p)\n loss.backward()\n grad = pri.grad\n pri = pri.detach() - Config.alpha * grad\n pri = torch.exp(pri)\n pri = pri / torch.sum(pri)\n \n '''\n\n '''\n # true priori\n p[0] = 0.5\n p[1] = 0.5\n '''\n return p", "step-ids": [ 10, 11, 12, 14, 15 ] }
[ 10, 11, 12, 14, 15 ]
# #River Sheppard # # from PIL import Image if __name__ == "__main__": scale = 768 # creating the new image in RGB mode bitmap = Image.new("RGB", (scale, scale), "white") # Allocating the storage for the image and # loading the pixel data. pix = bitmap.load() # setting up the variables according to # the equation to create the fractal c = complex(-0.585, 0.85) move = 0.0 maxIter = 255 for x in range(scale): for y in range(scale): zx = 1.5*(x - scale/2)/(0.5*scale) + move zy = 1.0*(y - scale/2)/(0.5*scale) + move z = complex(zx,zy) i = maxIter while abs(z*z) < 4 and i > 1: z = z**2 + c i -= 1 # convert byte to RGB (3 bytes), kinda # magic to get nice colors pix[x,y] = (i << 21) + (i << 10) + i*8 # to display the created fractal bitmap.show()
normal
{ "blob_id": "507251113d80eaa3684081f7814470053b04dda9", "index": 1436, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n scale = 768\n bitmap = Image.new('RGB', (scale, scale), 'white')\n pix = bitmap.load()\n c = complex(-0.585, 0.85)\n move = 0.0\n maxIter = 255\n for x in range(scale):\n for y in range(scale):\n zx = 1.5 * (x - scale / 2) / (0.5 * scale) + move\n zy = 1.0 * (y - scale / 2) / (0.5 * scale) + move\n z = complex(zx, zy)\n i = maxIter\n while abs(z * z) < 4 and i > 1:\n z = z ** 2 + c\n i -= 1\n pix[x, y] = (i << 21) + (i << 10) + i * 8\n bitmap.show()\n", "step-3": "from PIL import Image\nif __name__ == '__main__':\n scale = 768\n bitmap = Image.new('RGB', (scale, scale), 'white')\n pix = bitmap.load()\n c = complex(-0.585, 0.85)\n move = 0.0\n maxIter = 255\n for x in range(scale):\n for y in range(scale):\n zx = 1.5 * (x - scale / 2) / (0.5 * scale) + move\n zy = 1.0 * (y - scale / 2) / (0.5 * scale) + move\n z = complex(zx, zy)\n i = maxIter\n while abs(z * z) < 4 and i > 1:\n z = z ** 2 + c\n i -= 1\n pix[x, y] = (i << 21) + (i << 10) + i * 8\n bitmap.show()\n", "step-4": "#\r\n#River Sheppard\r\n#\r\n#\r\n\r\nfrom PIL import Image\r\n\r\nif __name__ == \"__main__\":\r\n scale = 768\r\n \r\n # creating the new image in RGB mode\r\n bitmap = Image.new(\"RGB\", (scale, scale), \"white\")\r\n \r\n # Allocating the storage for the image and\r\n # loading the pixel data.\r\n pix = bitmap.load()\r\n \r\n # setting up the variables according to \r\n # the equation to create the fractal\r\n c = complex(-0.585, 0.85)\r\n move = 0.0\r\n maxIter = 255\r\n \r\n for x in range(scale):\r\n for y in range(scale):\r\n zx = 1.5*(x - scale/2)/(0.5*scale) + move\r\n zy = 1.0*(y - scale/2)/(0.5*scale) + move\r\n z = complex(zx,zy)\r\n i = maxIter\r\n while abs(z*z) < 4 and i > 1:\r\n z = z**2 + c\r\n i -= 1\r\n \r\n # convert byte to RGB (3 bytes), kinda \r\n # magic to get nice colors\r\n pix[x,y] = (i << 21) + (i << 10) + i*8\r\n \r\n # to display the created fractal\r\n bitmap.show()\r\n \r\n \r\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
""" Class: Dataset This class is responsible of loading datasets After initializing using load method the class results two parameter: train: contains train set test: contains test set It's able of returning data structure in form of three lists: - users - items - values (which are ratings) """ import pandas as pd from Ratings import Ratings class DatasetLoader(object): # Default path where dataset files are located base_path = './dataset/' def __init__(self, ds_id, ds_name, ds_desc, ds_columns=None): if ds_columns is None: columns = ['user_id', 'item_id', 'values', 'timestamp'] else: columns = ds_columns self.id = ds_id self.name = ds_name self.desc = ds_desc train_path = self.base_path + self.name + str(self.id) + '.base' test_path = self.base_path + self.name + str(self.id) + '.test' self.train = pd.read_csv(train_path, header=None, delim_whitespace=True) self.train.columns = columns self.test = pd.read_csv(test_path, header=None, delim_whitespace=True) self.test.columns = columns self.train_ratings = Ratings(self.to_lists(self.train)) self.test_ratings = Ratings(self.to_lists(self.test)) def to_lists(self, ds): """ :param ds_type: str [train || test] :return: dataset in form of three list saved in a dict {users:u, items:i, values:v} """ #ds = getattr(self, ds_type) lists = { 'users': ds['user_id'].values, 'items': ds['item_id'].values, 'values': ds['values'].values } return lists def __str__(self): return f'Dataset Id: {self.id}, File Name: {self.name}, Description: {self.desc}. \ train size: {len(self.train)}, test size: {len(self.test)}' # Testing Area # m_lens = Loader(2, 'u', 'MovieLens dataset, fold 1') # print(len(m_lens.train)) # print(len(m_lens.test)) # print(m_lens)
normal
{ "blob_id": "b668945820abe893b92fdf26ccd8563ccff804ee", "index": 1981, "step-1": "<mask token>\n\n\nclass DatasetLoader(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass DatasetLoader(object):\n <mask token>\n\n def __init__(self, ds_id, ds_name, ds_desc, ds_columns=None):\n if ds_columns is None:\n columns = ['user_id', 'item_id', 'values', 'timestamp']\n else:\n columns = ds_columns\n self.id = ds_id\n self.name = ds_name\n self.desc = ds_desc\n train_path = self.base_path + self.name + str(self.id) + '.base'\n test_path = self.base_path + self.name + str(self.id) + '.test'\n self.train = pd.read_csv(train_path, header=None, delim_whitespace=True\n )\n self.train.columns = columns\n self.test = pd.read_csv(test_path, header=None, delim_whitespace=True)\n self.test.columns = columns\n self.train_ratings = Ratings(self.to_lists(self.train))\n self.test_ratings = Ratings(self.to_lists(self.test))\n\n def to_lists(self, ds):\n \"\"\"\n :param ds_type: str [train || test]\n :return: dataset in form of three list saved in a dict {users:u, items:i, values:v}\n \"\"\"\n lists = {'users': ds['user_id'].values, 'items': ds['item_id'].\n values, 'values': ds['values'].values}\n return lists\n\n def __str__(self):\n return (\n f'Dataset Id: {self.id}, File Name: {self.name}, Description: {self.desc}. train size: {len(self.train)}, test size: {len(self.test)}'\n )\n", "step-3": "<mask token>\n\n\nclass DatasetLoader(object):\n base_path = './dataset/'\n\n def __init__(self, ds_id, ds_name, ds_desc, ds_columns=None):\n if ds_columns is None:\n columns = ['user_id', 'item_id', 'values', 'timestamp']\n else:\n columns = ds_columns\n self.id = ds_id\n self.name = ds_name\n self.desc = ds_desc\n train_path = self.base_path + self.name + str(self.id) + '.base'\n test_path = self.base_path + self.name + str(self.id) + '.test'\n self.train = pd.read_csv(train_path, header=None, delim_whitespace=True\n )\n self.train.columns = columns\n self.test = pd.read_csv(test_path, header=None, delim_whitespace=True)\n self.test.columns = columns\n self.train_ratings = Ratings(self.to_lists(self.train))\n self.test_ratings = Ratings(self.to_lists(self.test))\n\n def to_lists(self, ds):\n \"\"\"\n :param ds_type: str [train || test]\n :return: dataset in form of three list saved in a dict {users:u, items:i, values:v}\n \"\"\"\n lists = {'users': ds['user_id'].values, 'items': ds['item_id'].\n values, 'values': ds['values'].values}\n return lists\n\n def __str__(self):\n return (\n f'Dataset Id: {self.id}, File Name: {self.name}, Description: {self.desc}. train size: {len(self.train)}, test size: {len(self.test)}'\n )\n", "step-4": "<mask token>\nimport pandas as pd\nfrom Ratings import Ratings\n\n\nclass DatasetLoader(object):\n base_path = './dataset/'\n\n def __init__(self, ds_id, ds_name, ds_desc, ds_columns=None):\n if ds_columns is None:\n columns = ['user_id', 'item_id', 'values', 'timestamp']\n else:\n columns = ds_columns\n self.id = ds_id\n self.name = ds_name\n self.desc = ds_desc\n train_path = self.base_path + self.name + str(self.id) + '.base'\n test_path = self.base_path + self.name + str(self.id) + '.test'\n self.train = pd.read_csv(train_path, header=None, delim_whitespace=True\n )\n self.train.columns = columns\n self.test = pd.read_csv(test_path, header=None, delim_whitespace=True)\n self.test.columns = columns\n self.train_ratings = Ratings(self.to_lists(self.train))\n self.test_ratings = Ratings(self.to_lists(self.test))\n\n def to_lists(self, ds):\n \"\"\"\n :param ds_type: str [train || test]\n :return: dataset in form of three list saved in a dict {users:u, items:i, values:v}\n \"\"\"\n lists = {'users': ds['user_id'].values, 'items': ds['item_id'].\n values, 'values': ds['values'].values}\n return lists\n\n def __str__(self):\n return (\n f'Dataset Id: {self.id}, File Name: {self.name}, Description: {self.desc}. train size: {len(self.train)}, test size: {len(self.test)}'\n )\n", "step-5": "\"\"\"\nClass: Dataset\n\nThis class is responsible of loading datasets\n\nAfter initializing using load method the class results two parameter:\n train: contains train set\n test: contains test set\n\nIt's able of returning data structure in form of three lists:\n - users\n - items\n - values (which are ratings)\n\"\"\"\n\nimport pandas as pd\nfrom Ratings import Ratings\n\n\nclass DatasetLoader(object):\n\n # Default path where dataset files are located\n base_path = './dataset/'\n\n def __init__(self, ds_id, ds_name, ds_desc, ds_columns=None):\n\n if ds_columns is None:\n columns = ['user_id', 'item_id', 'values', 'timestamp']\n else:\n columns = ds_columns\n\n self.id = ds_id\n self.name = ds_name\n self.desc = ds_desc\n\n train_path = self.base_path + self.name + str(self.id) + '.base'\n test_path = self.base_path + self.name + str(self.id) + '.test'\n\n self.train = pd.read_csv(train_path, header=None, delim_whitespace=True)\n self.train.columns = columns\n\n self.test = pd.read_csv(test_path, header=None, delim_whitespace=True)\n self.test.columns = columns\n\n self.train_ratings = Ratings(self.to_lists(self.train))\n self.test_ratings = Ratings(self.to_lists(self.test))\n\n def to_lists(self, ds):\n \"\"\"\n :param ds_type: str [train || test]\n :return: dataset in form of three list saved in a dict {users:u, items:i, values:v}\n \"\"\"\n #ds = getattr(self, ds_type)\n\n lists = {\n 'users': ds['user_id'].values,\n 'items': ds['item_id'].values,\n 'values': ds['values'].values\n }\n\n return lists\n\n def __str__(self):\n return f'Dataset Id: {self.id}, File Name: {self.name}, Description: {self.desc}. \\\n train size: {len(self.train)}, test size: {len(self.test)}'\n\n\n# Testing Area\n# m_lens = Loader(2, 'u', 'MovieLens dataset, fold 1')\n# print(len(m_lens.train))\n# print(len(m_lens.test))\n# print(m_lens)\n", "step-ids": [ 1, 4, 5, 6, 7 ] }
[ 1, 4, 5, 6, 7 ]
#!/usr/local/bin/python import requests as rq import sqlite3 as sq from dateutil import parser import datetime import pytz import json from os.path import expanduser import shutil from os.path import isfile import time #FRED Config urls = {'FRED':"http://api.stlouisfed.org/fred"} urls['FRED_SER'] = urls['FRED'] + "/series" urls['FRED_OBS'] = urls['FRED_SER'] + "/observations" api_key = "fc359838e2193d76d75f8a850c41fbd7" args = {"api_key":api_key, "series_id":0, "file_type":"json", "frequency":"sa", "aggregation_method" : "avg"} #initial arguments for FRED requests home = expanduser("~") #change this DB location #db = "/Volumes/Pylos/Projects/FED/projection.db" # bu = home+"/exhibit/unemployment"+str(time.time())+".db" db = home+"/exhibit/unemployment.db" if isfile(db): print "making backup at "+bu shutil.copyfile(db,bu) #DB config #db = 'unemployment.db' conn = sq.connect(db) #connection is open conn.row_factory = sq.Row force = True; #setup vars today = datetime.datetime.now() today = pytz.utc.localize(today); stamp = today.strftime("%Y-%m-%d %H:%M:%S%z") #get string date for one decade ago tmpStamp = today.strftime("%Y-%m-%d") lDate = tmpStamp.split("-") lDate[0] = str(int(lDate[0]) - 10); startDate = datetime.date(int(lDate[0]),int(lDate[1]),int(lDate[2])) startStr = lDate[0]+"-"+lDate[1]+"-"+lDate[2] args["observation_start"] = startStr def get_ids(): c = conn.cursor() c.execute("SELECT series_id FROM ser_id"); rows = c.fetchall() return rows #check that all series are present, and up to date. def check_series(): if force == True: delete_rows() print "Forced, deleting rows" ids = get_ids() #get all ids from db #print ids c = conn.cursor() for id in ids: i = (id["series_id"],) if i[0] != "N/A": c.execute("SELECT * FROM ser_data WHERE ser_id=?",i) data = c.fetchone(); if data is None or force == True: #this id is not in db print('There is no series named %s in database, syncing with FRED...'%i) create_series(i) else: #id is found date_check = check_date(data["date"]) #check if up to date if date_check: update_series(i) def get_series(id): args["series_id"] = id; r = rq.get(urls["FRED_SER"], params=args) j = r.json(); _date = j["seriess"][0]["last_updated"] return {"series":j, 'date':_date} def get_obs(id): args["series_id"] = id; r = rq.get(urls["FRED_OBS"], params=args) j = r.json(); _obs = j["observations"] nullItems = [] for (oi, ob) in enumerate(_obs): if ob["value"] == ".": nullItems.append(oi) print("Null Items found at "+str(oi)) _obs[oi] = "null" for (ni, nn) in enumerate(nullItems): _obs.remove("null") # print _obs return _obs def create_series(id): c = conn.cursor() obs = get_obs(id) ser = get_series(id) date = ser["date"] ser = ser["series"] q = (id,ser,obs,date); c.execute("INSERT INTO ser_data VALUES(?,?,?,?,?)", (stamp,str(id[0]),json.dumps(ser),json.dumps(obs),date)) conn.commit() def delete_rows(): c = conn.cursor() c.execute("DELETE FROM ser_data") conn.commit() def check_date(d): data_date = parser.parse(d); data_utc = data_date.astimezone(pytz.utc); check = today < data_utc return check def update_series(id): c = conn.cursor() obs = get_obs(id) ser = get_series(id) date = ser["date"] ser = ser["series"] q = (id,ser,obs,date); c.execute("UPDATE ser_data SET series = ?, observations = ?, date = ?, updated = ? WHERE ser_id = ? ", (json.dumps(ser),json.dumps(obs),date,stamp, str(id[0]))) conn.commit(); print("seriess updated") check_series()
normal
{ "blob_id": "8dfb1312d82bb10f2376eb726f75a4a596319acb", "index": 3143, "step-1": "#!/usr/local/bin/python\nimport requests as rq\nimport sqlite3 as sq\nfrom dateutil import parser\nimport datetime\nimport pytz\nimport json\nfrom os.path import expanduser\nimport shutil\nfrom os.path import isfile\nimport time\n#FRED Config\nurls = {'FRED':\"http://api.stlouisfed.org/fred\"}\nurls['FRED_SER'] = urls['FRED'] + \"/series\"\nurls['FRED_OBS'] = urls['FRED_SER'] + \"/observations\"\napi_key = \"fc359838e2193d76d75f8a850c41fbd7\"\nargs = {\"api_key\":api_key, \"series_id\":0, \"file_type\":\"json\", \"frequency\":\"sa\", \"aggregation_method\" : \"avg\"} #initial arguments for FRED requests\n\n\nhome = expanduser(\"~\")\n#change this DB location\n#db = \"/Volumes/Pylos/Projects/FED/projection.db\"\n#\nbu = home+\"/exhibit/unemployment\"+str(time.time())+\".db\"\ndb = home+\"/exhibit/unemployment.db\"\n\nif isfile(db):\n\tprint \"making backup at \"+bu\n\tshutil.copyfile(db,bu)\n\n\n#DB config\n#db = 'unemployment.db'\nconn = sq.connect(db) #connection is open\nconn.row_factory = sq.Row\nforce = True;\n#setup vars\ntoday = datetime.datetime.now()\ntoday = pytz.utc.localize(today);\nstamp = today.strftime(\"%Y-%m-%d %H:%M:%S%z\")\n\n#get string date for one decade ago\ntmpStamp = today.strftime(\"%Y-%m-%d\")\nlDate = tmpStamp.split(\"-\")\nlDate[0] = str(int(lDate[0]) - 10);\nstartDate = datetime.date(int(lDate[0]),int(lDate[1]),int(lDate[2]))\nstartStr = lDate[0]+\"-\"+lDate[1]+\"-\"+lDate[2]\nargs[\"observation_start\"] = startStr\n\ndef get_ids():\n\tc = conn.cursor()\n\tc.execute(\"SELECT series_id FROM ser_id\");\n\trows = c.fetchall()\n\treturn rows\n\n#check that all series are present, and up to date.\ndef check_series():\n\tif force == True:\n\t\tdelete_rows()\n\t\tprint \"Forced, deleting rows\"\n\tids = get_ids() #get all ids from db\n\t#print ids\n\tc = conn.cursor()\n\tfor id in ids:\n\t\ti = (id[\"series_id\"],)\n\t\tif i[0] != \"N/A\":\n\t\t\tc.execute(\"SELECT * FROM ser_data WHERE ser_id=?\",i)\n\t\t\tdata = c.fetchone();\n\t\t\tif data is None or force == True: #this id is not in db\n\t\t\t\tprint('There is no series named %s in database, syncing with FRED...'%i)\n\t\t\t\tcreate_series(i)\n\t\t\telse: #id is found\n\t\t\t\tdate_check = check_date(data[\"date\"]) #check if up to date\n\t\t\t\tif date_check: \n\t\t\t\t\tupdate_series(i)\n\n\n\ndef get_series(id):\n\targs[\"series_id\"] = id;\n\tr = rq.get(urls[\"FRED_SER\"], params=args)\n\tj = r.json();\n\t_date = j[\"seriess\"][0][\"last_updated\"]\n\treturn {\"series\":j, 'date':_date}\n\ndef get_obs(id):\n\targs[\"series_id\"] = id;\n\tr = rq.get(urls[\"FRED_OBS\"], params=args)\n\tj = r.json();\n\t_obs = j[\"observations\"]\n\tnullItems = []\n\tfor (oi, ob) in enumerate(_obs):\n\t\tif ob[\"value\"] == \".\":\n\t\t\tnullItems.append(oi)\n\t\t\tprint(\"Null Items found at \"+str(oi))\n\t\t\t_obs[oi] = \"null\"\n\tfor (ni, nn) in enumerate(nullItems):\n\t\t_obs.remove(\"null\")\n#\tprint _obs\n\treturn _obs\n\t\ndef create_series(id):\n\tc = conn.cursor()\n\tobs = get_obs(id)\n\tser = get_series(id)\n\tdate = ser[\"date\"]\n\tser = ser[\"series\"]\n\tq = (id,ser,obs,date);\n\tc.execute(\"INSERT INTO ser_data VALUES(?,?,?,?,?)\", (stamp,str(id[0]),json.dumps(ser),json.dumps(obs),date))\n\tconn.commit()\n\ndef delete_rows():\n\tc = conn.cursor()\n\tc.execute(\"DELETE FROM ser_data\")\n\tconn.commit()\n\t\ndef check_date(d):\n\tdata_date = parser.parse(d);\n\tdata_utc = data_date.astimezone(pytz.utc);\n\tcheck = today < data_utc\n\treturn check\n\ndef update_series(id):\n\tc = conn.cursor()\n\tobs = get_obs(id)\n\tser = get_series(id)\n\tdate = ser[\"date\"]\n\tser = ser[\"series\"]\n\tq = (id,ser,obs,date);\n\tc.execute(\"UPDATE ser_data SET series = ?, observations = ?, date = ?, updated = ? WHERE ser_id = ? \", (json.dumps(ser),json.dumps(obs),date,stamp, str(id[0])))\n\tconn.commit();\n\tprint(\"seriess updated\")\n\t\ncheck_series()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from distutils.core import setup, Extension setup(name='supermodule', version='1.0', \ ext_modules=[Extension('supermodule', ['main.c'])])
normal
{ "blob_id": "78c8f953b924f3e664570b844bf736a788e9cfb7", "index": 3607, "step-1": "<mask token>\n", "step-2": "<mask token>\nsetup(name='supermodule', version='1.0', ext_modules=[Extension(\n 'supermodule', ['main.c'])])\n", "step-3": "from distutils.core import setup, Extension\nsetup(name='supermodule', version='1.0', ext_modules=[Extension(\n 'supermodule', ['main.c'])])\n", "step-4": "from distutils.core import setup, Extension\nsetup(name='supermodule', version='1.0', \\\n ext_modules=[Extension('supermodule', ['main.c'])])\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import string import random file_one_time_pad = open("encryption_file.txt","r") p_text = file_one_time_pad.read() file_one_time_pad.close() print(p_text) p_text = str.lower(p_text) main_text = [] p_text_numerical = [] temp_key = [21,25,20,15,16,14,10,26,24,9,8,13] alphabets = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] main_key = [] cipher_text = [] cipher_text_numerical = [] length_p_text = len(p_text) length_temp_key = len(temp_key) random_alpha = 0 decipher_text = [] decipher_numerical = [] ##Getting the numerical values of the text for i in p_text: main_text.append(i) for i in range(length_p_text): for j in range(25): if main_text[i] == alphabets[j]: p_text_numerical.append(j) break ##Generating keys dynamically if length_p_text == length_temp_key: for i in range(length_temp_key-1): main_key.append(temp_key[i]) elif length_p_text < length_temp_key: for i in range(length_p_text-1): main_key.append(temp_key[i]) else: for i in range(length_temp_key-1): main_key.append(temp_key[i]) diff = length_p_text - length_temp_key for i in range(diff): random_alpha = random.choice(temp_key) main_key.append(random_alpha) print("The main key is :: \n") print(main_key) print("The length of p_text_numerical:: \t",len(p_text_numerical)) print("\n") print("The length of the main_key is :: \t",len(main_key)) ## Ciphering algorithm for i in range(length_p_text-1): cipher_text_numerical.append(abs(p_text_numerical[i]+main_key[i])) print("The cipherred text is :: \n") print(cipher_text_numerical) ## Deciphering algorithm length_cipher = len(cipher_text_numerical) for i in range(length_cipher): decipher_numerical.append(cipher_text_numerical[i] - main_key[i]) print("The decipherred numerical::\n") print(decipher_numerical) temp = 0 for i in range(length_p_text-1): temp = decipher_numerical[i] decipher_text.append(alphabets[temp]) deciphered_one = "" for i in decipher_text: deciphered_one = deciphered_one + i file_encrypt = open("encryption_file.txt","w") file_encrypt.write(deciphered_one) file_encrypt.close() print("The deciphered text is ::\n") print(decipher_text)
normal
{ "blob_id": "4b647d37d390a4df42f29bbfc7e4bae4e77c5828", "index": 8935, "step-1": "<mask token>\n", "step-2": "<mask token>\nfile_one_time_pad.close()\nprint(p_text)\n<mask token>\nfor i in p_text:\n main_text.append(i)\nfor i in range(length_p_text):\n for j in range(25):\n if main_text[i] == alphabets[j]:\n p_text_numerical.append(j)\n break\nif length_p_text == length_temp_key:\n for i in range(length_temp_key - 1):\n main_key.append(temp_key[i])\nelif length_p_text < length_temp_key:\n for i in range(length_p_text - 1):\n main_key.append(temp_key[i])\nelse:\n for i in range(length_temp_key - 1):\n main_key.append(temp_key[i])\n diff = length_p_text - length_temp_key\n for i in range(diff):\n random_alpha = random.choice(temp_key)\n main_key.append(random_alpha)\nprint('The main key is :: \\n')\nprint(main_key)\nprint('The length of p_text_numerical:: \\t', len(p_text_numerical))\nprint('\\n')\nprint('The length of the main_key is :: \\t', len(main_key))\nfor i in range(length_p_text - 1):\n cipher_text_numerical.append(abs(p_text_numerical[i] + main_key[i]))\nprint('The cipherred text is :: \\n')\nprint(cipher_text_numerical)\n<mask token>\nfor i in range(length_cipher):\n decipher_numerical.append(cipher_text_numerical[i] - main_key[i])\nprint('The decipherred numerical::\\n')\nprint(decipher_numerical)\n<mask token>\nfor i in range(length_p_text - 1):\n temp = decipher_numerical[i]\n decipher_text.append(alphabets[temp])\n<mask token>\nfor i in decipher_text:\n deciphered_one = deciphered_one + i\n<mask token>\nfile_encrypt.write(deciphered_one)\nfile_encrypt.close()\nprint('The deciphered text is ::\\n')\nprint(decipher_text)\n", "step-3": "<mask token>\nfile_one_time_pad = open('encryption_file.txt', 'r')\np_text = file_one_time_pad.read()\nfile_one_time_pad.close()\nprint(p_text)\np_text = str.lower(p_text)\nmain_text = []\np_text_numerical = []\ntemp_key = [21, 25, 20, 15, 16, 14, 10, 26, 24, 9, 8, 13]\nalphabets = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',\n 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']\nmain_key = []\ncipher_text = []\ncipher_text_numerical = []\nlength_p_text = len(p_text)\nlength_temp_key = len(temp_key)\nrandom_alpha = 0\ndecipher_text = []\ndecipher_numerical = []\nfor i in p_text:\n main_text.append(i)\nfor i in range(length_p_text):\n for j in range(25):\n if main_text[i] == alphabets[j]:\n p_text_numerical.append(j)\n break\nif length_p_text == length_temp_key:\n for i in range(length_temp_key - 1):\n main_key.append(temp_key[i])\nelif length_p_text < length_temp_key:\n for i in range(length_p_text - 1):\n main_key.append(temp_key[i])\nelse:\n for i in range(length_temp_key - 1):\n main_key.append(temp_key[i])\n diff = length_p_text - length_temp_key\n for i in range(diff):\n random_alpha = random.choice(temp_key)\n main_key.append(random_alpha)\nprint('The main key is :: \\n')\nprint(main_key)\nprint('The length of p_text_numerical:: \\t', len(p_text_numerical))\nprint('\\n')\nprint('The length of the main_key is :: \\t', len(main_key))\nfor i in range(length_p_text - 1):\n cipher_text_numerical.append(abs(p_text_numerical[i] + main_key[i]))\nprint('The cipherred text is :: \\n')\nprint(cipher_text_numerical)\nlength_cipher = len(cipher_text_numerical)\nfor i in range(length_cipher):\n decipher_numerical.append(cipher_text_numerical[i] - main_key[i])\nprint('The decipherred numerical::\\n')\nprint(decipher_numerical)\ntemp = 0\nfor i in range(length_p_text - 1):\n temp = decipher_numerical[i]\n decipher_text.append(alphabets[temp])\ndeciphered_one = ''\nfor i in decipher_text:\n deciphered_one = deciphered_one + i\nfile_encrypt = open('encryption_file.txt', 'w')\nfile_encrypt.write(deciphered_one)\nfile_encrypt.close()\nprint('The deciphered text is ::\\n')\nprint(decipher_text)\n", "step-4": "import string\nimport random\nfile_one_time_pad = open('encryption_file.txt', 'r')\np_text = file_one_time_pad.read()\nfile_one_time_pad.close()\nprint(p_text)\np_text = str.lower(p_text)\nmain_text = []\np_text_numerical = []\ntemp_key = [21, 25, 20, 15, 16, 14, 10, 26, 24, 9, 8, 13]\nalphabets = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',\n 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']\nmain_key = []\ncipher_text = []\ncipher_text_numerical = []\nlength_p_text = len(p_text)\nlength_temp_key = len(temp_key)\nrandom_alpha = 0\ndecipher_text = []\ndecipher_numerical = []\nfor i in p_text:\n main_text.append(i)\nfor i in range(length_p_text):\n for j in range(25):\n if main_text[i] == alphabets[j]:\n p_text_numerical.append(j)\n break\nif length_p_text == length_temp_key:\n for i in range(length_temp_key - 1):\n main_key.append(temp_key[i])\nelif length_p_text < length_temp_key:\n for i in range(length_p_text - 1):\n main_key.append(temp_key[i])\nelse:\n for i in range(length_temp_key - 1):\n main_key.append(temp_key[i])\n diff = length_p_text - length_temp_key\n for i in range(diff):\n random_alpha = random.choice(temp_key)\n main_key.append(random_alpha)\nprint('The main key is :: \\n')\nprint(main_key)\nprint('The length of p_text_numerical:: \\t', len(p_text_numerical))\nprint('\\n')\nprint('The length of the main_key is :: \\t', len(main_key))\nfor i in range(length_p_text - 1):\n cipher_text_numerical.append(abs(p_text_numerical[i] + main_key[i]))\nprint('The cipherred text is :: \\n')\nprint(cipher_text_numerical)\nlength_cipher = len(cipher_text_numerical)\nfor i in range(length_cipher):\n decipher_numerical.append(cipher_text_numerical[i] - main_key[i])\nprint('The decipherred numerical::\\n')\nprint(decipher_numerical)\ntemp = 0\nfor i in range(length_p_text - 1):\n temp = decipher_numerical[i]\n decipher_text.append(alphabets[temp])\ndeciphered_one = ''\nfor i in decipher_text:\n deciphered_one = deciphered_one + i\nfile_encrypt = open('encryption_file.txt', 'w')\nfile_encrypt.write(deciphered_one)\nfile_encrypt.close()\nprint('The deciphered text is ::\\n')\nprint(decipher_text)\n", "step-5": "import string\nimport random\n\nfile_one_time_pad = open(\"encryption_file.txt\",\"r\")\np_text = file_one_time_pad.read()\nfile_one_time_pad.close()\nprint(p_text)\np_text = str.lower(p_text)\nmain_text = []\np_text_numerical = []\ntemp_key = [21,25,20,15,16,14,10,26,24,9,8,13]\nalphabets = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']\nmain_key = []\ncipher_text = []\ncipher_text_numerical = []\nlength_p_text = len(p_text)\nlength_temp_key = len(temp_key)\nrandom_alpha = 0\ndecipher_text = []\ndecipher_numerical = []\n\n\n\n##Getting the numerical values of the text\nfor i in p_text:\n\tmain_text.append(i)\n\nfor i in range(length_p_text):\n\tfor j in range(25):\n\t\tif main_text[i] == alphabets[j]:\n\t\t\tp_text_numerical.append(j)\n\t\t\tbreak \n\n\n##Generating keys dynamically\nif length_p_text == length_temp_key:\n\tfor i in range(length_temp_key-1):\n\t\tmain_key.append(temp_key[i])\nelif length_p_text < length_temp_key:\n\tfor i in range(length_p_text-1):\n\t\tmain_key.append(temp_key[i])\nelse:\n\tfor i in range(length_temp_key-1):\n\t\tmain_key.append(temp_key[i])\n\tdiff = length_p_text - length_temp_key\n\tfor i in range(diff):\n\t\trandom_alpha = random.choice(temp_key)\n\t\tmain_key.append(random_alpha)\nprint(\"The main key is :: \\n\")\nprint(main_key)\nprint(\"The length of p_text_numerical:: \\t\",len(p_text_numerical))\nprint(\"\\n\")\nprint(\"The length of the main_key is :: \\t\",len(main_key))\n\n## Ciphering algorithm\n\nfor i in range(length_p_text-1):\n\tcipher_text_numerical.append(abs(p_text_numerical[i]+main_key[i]))\nprint(\"The cipherred text is :: \\n\")\nprint(cipher_text_numerical)\n\n\n## Deciphering algorithm\nlength_cipher = len(cipher_text_numerical)\nfor i in range(length_cipher):\n\tdecipher_numerical.append(cipher_text_numerical[i] - main_key[i])\nprint(\"The decipherred numerical::\\n\")\nprint(decipher_numerical)\n\ntemp = 0\nfor i in range(length_p_text-1):\n\ttemp = decipher_numerical[i]\t\n\tdecipher_text.append(alphabets[temp])\n\ndeciphered_one = \"\"\nfor i in decipher_text:\n\tdeciphered_one = deciphered_one + i\n\nfile_encrypt = open(\"encryption_file.txt\",\"w\")\nfile_encrypt.write(deciphered_one)\nfile_encrypt.close()\nprint(\"The deciphered text is ::\\n\")\nprint(decipher_text)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from flask import (Flask, g, render_template, flash, redirect, url_for) from flask_login import (LoginManager, login_user, logout_user, login_required, current_user) import forms import models import sqlite3 DEBUG = True app = Flask(__name__) app.secret_key = 'auoesh.bouoastuh.43,uoausoehuoshuosth3ououea.auoub!' login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = 'login' @login_manager.user_loader def load_user(userid): try: return models.user.get(models.User.id == userid) except models.DoesNotExist: return None def initialize(): models.DATABASE.connect() models.DATABASE.create_tables([models.User], safe=True) models.DATABASE.closer() @app.before_request def before_request(): """"Connect to the database before each request.""" g.db = models.DATABASE g.db.connect() g.user = current_user @app.after_request def after_request(response): """""Close the database connection after request. """ g.db.close() return response @app.route('/register', methods=('GET', 'POST')) def register(): form = forms.RegistrationForm() if form.validate_on_submit(): flash("Yay, you registered", "sucess") models.User.create_user( username=form.username.data, email=form.email.data, password=form.password.data, confrimpassword=form.password.data ) return redirect(url_for('index')) return render_template('register.html', form=form) def check_password_hash(password, data): pass @app.route('/login', methods=('GET', 'POST')) def login(): form = forms.LoginForm() if form.validate_on_submit(): try: user = models.User.get(models.User.emails == form.email.data) except models.DoesNOtExit: flash("Your email or password doesn't match !", "error") else: if check_password_hash(user.password, form.password.data): login_user(user) flash("You've been logged in:", "Sucess") return redirect(url_for('index')) else: flash("Your email or password doesn't match!", "error") return render_template('login.html', form=form) @app.route('/logout') @login_required def logout(): logout_user() flash("You.ve been logged out! Come back soon!", "sucess") return redirect(url_for('index')) @app.route('/new_post', methods=('GET', 'POST')) @login_required #makes sures the user is logged in before been able to post def post(): form = forms.PostForm() if form.validate_on_submit(): models.Post.create(user=g.user._get_current_object(), content=form.content.data.strip()) flash("Message Posted! Thanks!", "sucess") return redirect(url_for('index')) return render_template('post.html', form=form) @app.route('/') def index(): return 'Hey!' """ models.initialize() try: models.User.create_user( username='Steve', email='[email protected]', password='passsword', admin=True ) except ValueError: pass """ if __name__ == '__main__': app.run(debug=DEBUG)
normal
{ "blob_id": "849c468e4890c19806c678089ec8668576538b12", "index": 2717, "step-1": "<mask token>\n\n\n@login_manager.user_loader\ndef load_user(userid):\n try:\n return models.user.get(models.User.id == userid)\n except models.DoesNotExist:\n return None\n\n\ndef initialize():\n models.DATABASE.connect()\n models.DATABASE.create_tables([models.User], safe=True)\n models.DATABASE.closer()\n\n\[email protected]_request\ndef before_request():\n \"\"\"\"Connect to the database before each request.\"\"\"\n g.db = models.DATABASE\n g.db.connect()\n g.user = current_user\n\n\n<mask token>\n\n\[email protected]('/register', methods=('GET', 'POST'))\ndef register():\n form = forms.RegistrationForm()\n if form.validate_on_submit():\n flash('Yay, you registered', 'sucess')\n models.User.create_user(username=form.username.data, email=form.\n email.data, password=form.password.data, confrimpassword=form.\n password.data)\n return redirect(url_for('index'))\n return render_template('register.html', form=form)\n\n\ndef check_password_hash(password, data):\n pass\n\n\n<mask token>\n\n\[email protected]('/logout')\n@login_required\ndef logout():\n logout_user()\n flash('You.ve been logged out! Come back soon!', 'sucess')\n return redirect(url_for('index'))\n\n\[email protected]('/new_post', methods=('GET', 'POST'))\n@login_required\ndef post():\n form = forms.PostForm()\n if form.validate_on_submit():\n models.Post.create(user=g.user._get_current_object(), content=form.\n content.data.strip())\n flash('Message Posted! Thanks!', 'sucess')\n return redirect(url_for('index'))\n return render_template('post.html', form=form)\n\n\[email protected]('/')\ndef index():\n return 'Hey!'\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\n@login_manager.user_loader\ndef load_user(userid):\n try:\n return models.user.get(models.User.id == userid)\n except models.DoesNotExist:\n return None\n\n\ndef initialize():\n models.DATABASE.connect()\n models.DATABASE.create_tables([models.User], safe=True)\n models.DATABASE.closer()\n\n\[email protected]_request\ndef before_request():\n \"\"\"\"Connect to the database before each request.\"\"\"\n g.db = models.DATABASE\n g.db.connect()\n g.user = current_user\n\n\n<mask token>\n\n\[email protected]('/register', methods=('GET', 'POST'))\ndef register():\n form = forms.RegistrationForm()\n if form.validate_on_submit():\n flash('Yay, you registered', 'sucess')\n models.User.create_user(username=form.username.data, email=form.\n email.data, password=form.password.data, confrimpassword=form.\n password.data)\n return redirect(url_for('index'))\n return render_template('register.html', form=form)\n\n\ndef check_password_hash(password, data):\n pass\n\n\[email protected]('/login', methods=('GET', 'POST'))\ndef login():\n form = forms.LoginForm()\n if form.validate_on_submit():\n try:\n user = models.User.get(models.User.emails == form.email.data)\n except models.DoesNOtExit:\n flash(\"Your email or password doesn't match !\", 'error')\n else:\n if check_password_hash(user.password, form.password.data):\n login_user(user)\n flash(\"You've been logged in:\", 'Sucess')\n return redirect(url_for('index'))\n else:\n flash(\"Your email or password doesn't match!\", 'error')\n return render_template('login.html', form=form)\n\n\[email protected]('/logout')\n@login_required\ndef logout():\n logout_user()\n flash('You.ve been logged out! Come back soon!', 'sucess')\n return redirect(url_for('index'))\n\n\[email protected]('/new_post', methods=('GET', 'POST'))\n@login_required\ndef post():\n form = forms.PostForm()\n if form.validate_on_submit():\n models.Post.create(user=g.user._get_current_object(), content=form.\n content.data.strip())\n flash('Message Posted! Thanks!', 'sucess')\n return redirect(url_for('index'))\n return render_template('post.html', form=form)\n\n\[email protected]('/')\ndef index():\n return 'Hey!'\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\n@login_manager.user_loader\ndef load_user(userid):\n try:\n return models.user.get(models.User.id == userid)\n except models.DoesNotExist:\n return None\n\n\ndef initialize():\n models.DATABASE.connect()\n models.DATABASE.create_tables([models.User], safe=True)\n models.DATABASE.closer()\n\n\[email protected]_request\ndef before_request():\n \"\"\"\"Connect to the database before each request.\"\"\"\n g.db = models.DATABASE\n g.db.connect()\n g.user = current_user\n\n\[email protected]_request\ndef after_request(response):\n \"\"\"\"\"Close the database connection after request. \"\"\"\n g.db.close()\n return response\n\n\[email protected]('/register', methods=('GET', 'POST'))\ndef register():\n form = forms.RegistrationForm()\n if form.validate_on_submit():\n flash('Yay, you registered', 'sucess')\n models.User.create_user(username=form.username.data, email=form.\n email.data, password=form.password.data, confrimpassword=form.\n password.data)\n return redirect(url_for('index'))\n return render_template('register.html', form=form)\n\n\ndef check_password_hash(password, data):\n pass\n\n\[email protected]('/login', methods=('GET', 'POST'))\ndef login():\n form = forms.LoginForm()\n if form.validate_on_submit():\n try:\n user = models.User.get(models.User.emails == form.email.data)\n except models.DoesNOtExit:\n flash(\"Your email or password doesn't match !\", 'error')\n else:\n if check_password_hash(user.password, form.password.data):\n login_user(user)\n flash(\"You've been logged in:\", 'Sucess')\n return redirect(url_for('index'))\n else:\n flash(\"Your email or password doesn't match!\", 'error')\n return render_template('login.html', form=form)\n\n\[email protected]('/logout')\n@login_required\ndef logout():\n logout_user()\n flash('You.ve been logged out! Come back soon!', 'sucess')\n return redirect(url_for('index'))\n\n\[email protected]('/new_post', methods=('GET', 'POST'))\n@login_required\ndef post():\n form = forms.PostForm()\n if form.validate_on_submit():\n models.Post.create(user=g.user._get_current_object(), content=form.\n content.data.strip())\n flash('Message Posted! Thanks!', 'sucess')\n return redirect(url_for('index'))\n return render_template('post.html', form=form)\n\n\[email protected]('/')\ndef index():\n return 'Hey!'\n\n\n<mask token>\n", "step-4": "from flask import Flask, g, render_template, flash, redirect, url_for\nfrom flask_login import LoginManager, login_user, logout_user, login_required, current_user\nimport forms\nimport models\nimport sqlite3\nDEBUG = True\napp = Flask(__name__)\napp.secret_key = 'auoesh.bouoastuh.43,uoausoehuoshuosth3ououea.auoub!'\nlogin_manager = LoginManager()\nlogin_manager.init_app(app)\nlogin_manager.login_view = 'login'\n\n\n@login_manager.user_loader\ndef load_user(userid):\n try:\n return models.user.get(models.User.id == userid)\n except models.DoesNotExist:\n return None\n\n\ndef initialize():\n models.DATABASE.connect()\n models.DATABASE.create_tables([models.User], safe=True)\n models.DATABASE.closer()\n\n\[email protected]_request\ndef before_request():\n \"\"\"\"Connect to the database before each request.\"\"\"\n g.db = models.DATABASE\n g.db.connect()\n g.user = current_user\n\n\[email protected]_request\ndef after_request(response):\n \"\"\"\"\"Close the database connection after request. \"\"\"\n g.db.close()\n return response\n\n\[email protected]('/register', methods=('GET', 'POST'))\ndef register():\n form = forms.RegistrationForm()\n if form.validate_on_submit():\n flash('Yay, you registered', 'sucess')\n models.User.create_user(username=form.username.data, email=form.\n email.data, password=form.password.data, confrimpassword=form.\n password.data)\n return redirect(url_for('index'))\n return render_template('register.html', form=form)\n\n\ndef check_password_hash(password, data):\n pass\n\n\[email protected]('/login', methods=('GET', 'POST'))\ndef login():\n form = forms.LoginForm()\n if form.validate_on_submit():\n try:\n user = models.User.get(models.User.emails == form.email.data)\n except models.DoesNOtExit:\n flash(\"Your email or password doesn't match !\", 'error')\n else:\n if check_password_hash(user.password, form.password.data):\n login_user(user)\n flash(\"You've been logged in:\", 'Sucess')\n return redirect(url_for('index'))\n else:\n flash(\"Your email or password doesn't match!\", 'error')\n return render_template('login.html', form=form)\n\n\[email protected]('/logout')\n@login_required\ndef logout():\n logout_user()\n flash('You.ve been logged out! Come back soon!', 'sucess')\n return redirect(url_for('index'))\n\n\[email protected]('/new_post', methods=('GET', 'POST'))\n@login_required\ndef post():\n form = forms.PostForm()\n if form.validate_on_submit():\n models.Post.create(user=g.user._get_current_object(), content=form.\n content.data.strip())\n flash('Message Posted! Thanks!', 'sucess')\n return redirect(url_for('index'))\n return render_template('post.html', form=form)\n\n\[email protected]('/')\ndef index():\n return 'Hey!'\n\n\n<mask token>\nif __name__ == '__main__':\n app.run(debug=DEBUG)\n", "step-5": "from flask import (Flask, g, render_template, flash, redirect, url_for)\nfrom flask_login import (LoginManager, login_user, logout_user,\n login_required, current_user)\n\nimport forms\nimport models\nimport sqlite3\n\nDEBUG = True\n\napp = Flask(__name__)\napp.secret_key = 'auoesh.bouoastuh.43,uoausoehuoshuosth3ououea.auoub!'\n\nlogin_manager = LoginManager()\nlogin_manager.init_app(app)\nlogin_manager.login_view = 'login'\n\n\n@login_manager.user_loader\ndef load_user(userid):\n try:\n return models.user.get(models.User.id == userid)\n except models.DoesNotExist:\n return None\n\n\ndef initialize():\n models.DATABASE.connect()\n models.DATABASE.create_tables([models.User], safe=True)\n models.DATABASE.closer()\n\n\[email protected]_request\ndef before_request():\n \"\"\"\"Connect to the database before each request.\"\"\"\n g.db = models.DATABASE\n g.db.connect()\n g.user = current_user\n\[email protected]_request\ndef after_request(response):\n \"\"\"\"\"Close the database connection after request. \"\"\"\n g.db.close()\n return response\n\[email protected]('/register', methods=('GET', 'POST'))\ndef register():\n form = forms.RegistrationForm()\n if form.validate_on_submit():\n flash(\"Yay, you registered\", \"sucess\")\n models.User.create_user(\n username=form.username.data,\n email=form.email.data,\n password=form.password.data,\n confrimpassword=form.password.data\n )\n return redirect(url_for('index'))\n return render_template('register.html', form=form)\n\n\ndef check_password_hash(password, data):\n pass\n\n\[email protected]('/login', methods=('GET', 'POST'))\ndef login():\n form = forms.LoginForm()\n if form.validate_on_submit():\n try:\n user = models.User.get(models.User.emails == form.email.data)\n except models.DoesNOtExit:\n flash(\"Your email or password doesn't match !\", \"error\")\n else:\n if check_password_hash(user.password, form.password.data):\n login_user(user)\n flash(\"You've been logged in:\", \"Sucess\")\n return redirect(url_for('index'))\n else:\n flash(\"Your email or password doesn't match!\", \"error\")\n return render_template('login.html', form=form)\n\[email protected]('/logout')\n@login_required\ndef logout():\n logout_user()\n flash(\"You.ve been logged out! Come back soon!\", \"sucess\")\n return redirect(url_for('index'))\n\[email protected]('/new_post', methods=('GET', 'POST'))\n@login_required #makes sures the user is logged in before been able to post\ndef post():\n form = forms.PostForm()\n if form.validate_on_submit():\n models.Post.create(user=g.user._get_current_object(),\n content=form.content.data.strip())\n flash(\"Message Posted! Thanks!\", \"sucess\")\n return redirect(url_for('index'))\n return render_template('post.html', form=form)\n\[email protected]('/')\ndef index():\n return 'Hey!'\n\n\"\"\"\nmodels.initialize()\ntry:\n models.User.create_user(\n username='Steve',\n email='[email protected]',\n password='passsword',\n admin=True\n )\n except ValueError:\n pass\n\"\"\" \nif __name__ == '__main__':\n app.run(debug=DEBUG)\n", "step-ids": [ 8, 9, 10, 13, 14 ] }
[ 8, 9, 10, 13, 14 ]
from keras.models import Sequential from keras.layers import Convolution2D # for 2d images from keras.layers import MaxPool2D from keras.layers import Flatten from keras.layers import Dense import tensorflow as tf from keras_preprocessing.image import ImageDataGenerator cnn = Sequential() rgb = 64 # step 1: convolution # slide feature detectors ("filters") along image # results feature maps that form convolutional layer cnn.add(Convolution2D(32, 3, 3, input_shape=(rgb, rgb, 3), activation='relu')) # 32, 3x3 filters # step 2: pooling cnn.add(MaxPool2D(pool_size=(2, 2))) # step 3: flatten # this vector will be the input of a future ann cnn.add(Flatten()) # step 4: full connection cnn.add(Dense(output_dim=128, activation='relu')) # add hidden layers cnn.add(Dense(output_dim=1, activation='sigmoid')) # sigmoid for binary output # compile cnn cnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # image augmentation - prevent overfitting train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) train_set = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(rgb, rgb), batch_size=32, class_mode='binary') test_set = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(rgb, rgb), batch_size=32, class_mode='binary') cnn.fit_generator( train_set, steps_per_epoch=8000, # we have 8k images in our training set epochs=10, validation_data=test_set, validation_steps=2000) print(cnn.summary()) cnn.save('CatDogModel.h5')
normal
{ "blob_id": "9fa5f4b4aeb7fe42d313a0ec4e57ce15acbfcf46", "index": 3960, "step-1": "<mask token>\n", "step-2": "<mask token>\ncnn.add(Convolution2D(32, 3, 3, input_shape=(rgb, rgb, 3), activation='relu'))\ncnn.add(MaxPool2D(pool_size=(2, 2)))\ncnn.add(Flatten())\ncnn.add(Dense(output_dim=128, activation='relu'))\ncnn.add(Dense(output_dim=1, activation='sigmoid'))\ncnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n<mask token>\ncnn.fit_generator(train_set, steps_per_epoch=8000, epochs=10,\n validation_data=test_set, validation_steps=2000)\nprint(cnn.summary())\ncnn.save('CatDogModel.h5')\n", "step-3": "<mask token>\ncnn = Sequential()\nrgb = 64\ncnn.add(Convolution2D(32, 3, 3, input_shape=(rgb, rgb, 3), activation='relu'))\ncnn.add(MaxPool2D(pool_size=(2, 2)))\ncnn.add(Flatten())\ncnn.add(Dense(output_dim=128, activation='relu'))\ncnn.add(Dense(output_dim=1, activation='sigmoid'))\ncnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\ntrain_datagen = ImageDataGenerator(rescale=1.0 / 255, shear_range=0.2,\n zoom_range=0.2, horizontal_flip=True)\ntest_datagen = ImageDataGenerator(rescale=1.0 / 255)\ntrain_set = train_datagen.flow_from_directory('dataset/training_set',\n target_size=(rgb, rgb), batch_size=32, class_mode='binary')\ntest_set = test_datagen.flow_from_directory('dataset/test_set', target_size\n =(rgb, rgb), batch_size=32, class_mode='binary')\ncnn.fit_generator(train_set, steps_per_epoch=8000, epochs=10,\n validation_data=test_set, validation_steps=2000)\nprint(cnn.summary())\ncnn.save('CatDogModel.h5')\n", "step-4": "from keras.models import Sequential\nfrom keras.layers import Convolution2D\nfrom keras.layers import MaxPool2D\nfrom keras.layers import Flatten\nfrom keras.layers import Dense\nimport tensorflow as tf\nfrom keras_preprocessing.image import ImageDataGenerator\ncnn = Sequential()\nrgb = 64\ncnn.add(Convolution2D(32, 3, 3, input_shape=(rgb, rgb, 3), activation='relu'))\ncnn.add(MaxPool2D(pool_size=(2, 2)))\ncnn.add(Flatten())\ncnn.add(Dense(output_dim=128, activation='relu'))\ncnn.add(Dense(output_dim=1, activation='sigmoid'))\ncnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\ntrain_datagen = ImageDataGenerator(rescale=1.0 / 255, shear_range=0.2,\n zoom_range=0.2, horizontal_flip=True)\ntest_datagen = ImageDataGenerator(rescale=1.0 / 255)\ntrain_set = train_datagen.flow_from_directory('dataset/training_set',\n target_size=(rgb, rgb), batch_size=32, class_mode='binary')\ntest_set = test_datagen.flow_from_directory('dataset/test_set', target_size\n =(rgb, rgb), batch_size=32, class_mode='binary')\ncnn.fit_generator(train_set, steps_per_epoch=8000, epochs=10,\n validation_data=test_set, validation_steps=2000)\nprint(cnn.summary())\ncnn.save('CatDogModel.h5')\n", "step-5": "from keras.models import Sequential\nfrom keras.layers import Convolution2D # for 2d images\nfrom keras.layers import MaxPool2D\nfrom keras.layers import Flatten\nfrom keras.layers import Dense\nimport tensorflow as tf\nfrom keras_preprocessing.image import ImageDataGenerator\n\ncnn = Sequential()\n\nrgb = 64\n\n# step 1: convolution\n# slide feature detectors (\"filters\") along image\n# results feature maps that form convolutional layer\ncnn.add(Convolution2D(32, 3, 3, input_shape=(rgb, rgb, 3), activation='relu')) # 32, 3x3 filters\n\n# step 2: pooling\ncnn.add(MaxPool2D(pool_size=(2, 2)))\n\n# step 3: flatten\n# this vector will be the input of a future ann\ncnn.add(Flatten())\n\n# step 4: full connection\ncnn.add(Dense(output_dim=128, activation='relu')) # add hidden layers\ncnn.add(Dense(output_dim=1, activation='sigmoid')) # sigmoid for binary output\n\n# compile cnn\ncnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n\n# image augmentation - prevent overfitting\ntrain_datagen = ImageDataGenerator(\n rescale=1./255,\n shear_range=0.2,\n zoom_range=0.2,\n horizontal_flip=True)\n\ntest_datagen = ImageDataGenerator(rescale=1./255)\n\ntrain_set = train_datagen.flow_from_directory(\n 'dataset/training_set',\n target_size=(rgb, rgb),\n batch_size=32,\n class_mode='binary')\n\ntest_set = test_datagen.flow_from_directory(\n 'dataset/test_set',\n target_size=(rgb, rgb),\n batch_size=32,\n class_mode='binary')\n\ncnn.fit_generator(\n train_set,\n steps_per_epoch=8000, # we have 8k images in our training set\n epochs=10,\n validation_data=test_set,\n validation_steps=2000)\n\nprint(cnn.summary())\n\ncnn.save('CatDogModel.h5')\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.shortcuts import render, HttpResponse, redirect from ..login.models import * from ..dashboard.models import * def display(request, id): context = {'job': Job.objects.get(id=int(id))} return render(request, 'handy_helper_exam/display.html', context)
normal
{ "blob_id": "f1fdba1c07a29aa22ee8d0dcbd6f902aa2e8b4c2", "index": 9342, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef display(request, id):\n context = {'job': Job.objects.get(id=int(id))}\n return render(request, 'handy_helper_exam/display.html', context)\n", "step-3": "from django.shortcuts import render, HttpResponse, redirect\nfrom ..login.models import *\nfrom ..dashboard.models import *\n\n\ndef display(request, id):\n context = {'job': Job.objects.get(id=int(id))}\n return render(request, 'handy_helper_exam/display.html', context)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
#!/usr/bin/python import os import sys fdatadir = "/fdata/hepx/store/user/taohuang/NANOAOD/" datasets = []; NumSample = []; sampleN_short = [] Nanodatasets = []; localdirs = {} MCxsections = [] #doTT=True; doDY=True; doVV=True; doSingleT=True; doWjets=True; dottV=True ##DoubleEG datasets.append('/DoubleEG/Run2016B-05Feb2018_ver1-v1/NANOAOD') NumSample.append('-1'); sampleN_short.append('DoubleEGRun2016Bver1') MCxsections.append(-1.0) datasets.append('/DoubleEG/Run2016B-05Feb2018_ver2-v1/NANOAOD') NumSample.append('-2'); sampleN_short.append('DoubleEGRun2016Bver2') MCxsections.append(-1.0) datasets.append('/DoubleEG/Run2016C-05Feb2018-v1/NANOAOD') NumSample.append('-3'); sampleN_short.append('DoubleEGRun2016C') MCxsections.append(-1.0) datasets.append('/DoubleEG/Run2016D-05Feb2018-v1/NANOAOD') NumSample.append('-4'); sampleN_short.append('DoubleEGRun2016D') MCxsections.append(-1.0) datasets.append('/DoubleEG/Run2016E-05Feb2018-v1/NANOAOD') NumSample.append('-5'); sampleN_short.append('DoubleEGRun2016E') MCxsections.append(-1.0) datasets.append('/DoubleEG/Run2016F-05Feb2018-v1/NANOAOD') NumSample.append('-6'); sampleN_short.append('DoubleEGRun2016F') MCxsections.append(-1.0) datasets.append('/DoubleEG/Run2016G-05Feb2018-v1/NANOAOD') NumSample.append('-7'); sampleN_short.append('DoubleEGRun2016G') MCxsections.append(-1.0) datasets.append('/DoubleEG/Run2016H-05Feb2018_ver2-v1/NANOAOD') NumSample.append('-8'); sampleN_short.append('DoubleEGRun2016Hver2') MCxsections.append(-1.0) datasets.append('/DoubleEG/Run2016H-05Feb2018_ver3-v1/NANOAOD') NumSample.append('-9'); sampleN_short.append('DoubleEGRun2016Hver3') MCxsections.append(-1.0) ##DoubleMuon datasets.append('/DoubleMuon/Run2016B-05Feb2018_ver1-v1/NANOAOD') NumSample.append('-10'); sampleN_short.append('DoubleMuonRun2016Bver1') MCxsections.append(-1.0) datasets.append('/DoubleMuon/Run2016B-05Feb2018_ver2-v1/NANOAOD') NumSample.append('-11'); sampleN_short.append('DoubleMuonRun2016Bver2') MCxsections.append(-1.0) datasets.append('/DoubleMuon/Run2016C-05Feb2018-v1/NANOAOD') NumSample.append('-12'); sampleN_short.append('DoubleMuonRun2016C') MCxsections.append(-1.0) datasets.append('/DoubleMuon/Run2016D-05Feb2018-v1/NANOAOD') NumSample.append('-13'); sampleN_short.append('DoubleMuonRun2016D') MCxsections.append(-1.0) datasets.append('/DoubleMuon/Run2016E-05Feb2018-v1/NANOAOD') NumSample.append('-14'); sampleN_short.append('DoubleMuonRun2016E') MCxsections.append(-1.0) datasets.append('/DoubleMuon/Run2016F-05Feb2018-v1/NANOAOD') NumSample.append('-15'); sampleN_short.append('DoubleMuonRun2016F') MCxsections.append(-1.0) datasets.append('/DoubleMuon/Run2016G-05Feb2018-v1/NANOAOD') NumSample.append('-16'); sampleN_short.append('DoubleMuonRun2016G') MCxsections.append(-1.0) datasets.append('/DoubleMuon/Run2016H-05Feb2018_ver2-v1/NANOAOD') NumSample.append('-17'); sampleN_short.append('DoubleMuonRun2016Hver2') MCxsections.append(-1.0) datasets.append('/DoubleMuon/Run2016H-05Feb2018_ver3-v1/NANOAOD') NumSample.append('-18'); sampleN_short.append('DoubleMuonRun2016Hver3') MCxsections.append(-1.0) #MuonEG datasets.append('/MuonEG/Run2016B-05Feb2018_ver1-v1/NANOAOD') NumSample.append('-19'); sampleN_short.append('MuonEGRun2016Bver2') MCxsections.append(-1.0) datasets.append('/MuonEG/Run2016B-05Feb2018_ver2-v1/NANOAOD') NumSample.append('-20'); sampleN_short.append('MuonEGRun2016Bver2') MCxsections.append(-1.0) datasets.append('/MuonEG/Run2016C-05Feb2018-v1/NANOAOD') NumSample.append('-21'); sampleN_short.append('MuonEGRun2016C') MCxsections.append(-1.0) datasets.append('/MuonEG/Run2016D-05Feb2018-v1/NANOAOD') NumSample.append('-22'); sampleN_short.append('MuonEGRun2016D') MCxsections.append(-1.0) datasets.append('/MuonEG/Run2016E-05Feb2018-v1/NANOAOD') NumSample.append('-23'); sampleN_short.append('MuonEGRun2016E') MCxsections.append(-1.0) datasets.append('/MuonEG/Run2016F-05Feb2018-v1/NANOAOD') NumSample.append('-24'); sampleN_short.append('MuonEGRun2016F') MCxsections.append(-1.0) datasets.append('/MuonEG/Run2016G-05Feb2018-v1/NANOAOD') NumSample.append('-25'); sampleN_short.append('MuonEGRun2016G') MCxsections.append(-1.0) datasets.append('/MuonEG/Run2016H-05Feb2018_ver2-v1/NANOAOD') NumSample.append('-26'); sampleN_short.append('MuonEGRun2016Hver2') MCxsections.append(-1.0) datasets.append('/MuonEG/Run2016H-05Feb2018_ver3-v1/NANOAOD') NumSample.append('-27'); sampleN_short.append('MuonEGRun2016Hver3') MCxsections.append(-1.0) masspoints = [260, 270, 300, 350, 400, 450, 500, 550, 600, 650, 750, 800, 900] for mass in masspoints: datasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-%d_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM"%mass) NumSample.append(masspoints.index(mass)); sampleN_short.append('RadionM%d'%mass) MCxsections.append(5.0)#by default, assume the cross section for signal is 5pb #datasets.append("/GluGluToBulkGravitonToHHTo2B2VTo2L2Nu_M-*_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") #NumSample.append('2'); sampleN_short.append('Graviton') # TT## FIXME, use official one later #datasets.append('/TTTo2L2Nu_13TeV-powheg/RunIISpring16MiniAODv2-PUSpring16_80X_mcRun2_asymptotic_2016_miniAODv2_v0_ext1-v1/MINIAODSIM') datasets.append('/TTTo2L2Nu_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') #datasets.append('/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/arizzi-RunIIFall17MiniAOD-94X-Nano01Fall17-e273b12d9f89d622a34e4bc98b05ee29/USER') NumSample.append('13'); sampleN_short.append('TT') #MCxsections.append(72.1) #MCxsections.append(76.7) MCxsections.append(87.31) # DY #datasets.append('/DYJetsToLL_M-10to50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') datasets.append('/DYJetsToLL_M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('14'); sampleN_short.append('DY') MCxsections.append(18610.0) datasets.append('/DYToLL_0J_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM') NumSample.append('15'); sampleN_short.append('DY') MCxsections.append(4758.9) datasets.append('/DYToLL_1J_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM') NumSample.append('16'); sampleN_short.append('DY') MCxsections.append(929.1) datasets.append('/DYToLL_2J_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM') NumSample.append('17'); sampleN_short.append('DY') MCxsections.append(337.1) # VV datasets.append('/ZZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('18'); sampleN_short.append('VV') MCxsections.append(3.22) datasets.append('/ZZTo2L2Nu_13TeV_powheg_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('19'); sampleN_short.append('VV') MCxsections.append(0.564) datasets.append('/ZZTo4L_13TeV_powheg_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('20'); sampleN_short.append('VV') MCxsections.append(1.256) #datasets.append('/WWToLNuQQ_aTGC_13TeV-madgraph-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') #NumSample.append('21'); sampleN_short.append('VV') #MCxsections.append(49.997)# ## not available now because of pdf uncertainty #FIXME #datasets.append('/WWTo2L2Nu_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') #datasets.append('/WWTo2L2Nu_13TeV-powheg/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') #NumSample.append('22'); sampleN_short.append('VV') ### not available now #MCxsections.append(12.178) datasets.append('/WZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('23'); sampleN_short.append('VV') MCxsections.append(5.595) #FIXME #datasets.append('/WZTo1L3Nu_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') #NumSample.append('24'); sampleN_short.append('VV') ### not available now #MCxsections.append(3.033) datasets.append('/WZTo1L1Nu2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v3/MINIAODSIM') NumSample.append('25'); sampleN_short.append('VV') MCxsections.append(10.71) datasets.append('/WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('26'); sampleN_short.append('VV') MCxsections.append(4.42965) ##sT datasets.append('/ST_t-channel_top_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('27'); sampleN_short.append('sT') MCxsections.append(136.02) datasets.append('/ST_t-channel_antitop_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('28'); sampleN_short.append('sT') MCxsections.append(80.95) datasets.append('/ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('29'); sampleN_short.append('sT') MCxsections.append(3.36) datasets.append('/ST_tW_antitop_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM') NumSample.append('30'); sampleN_short.append('sT') MCxsections.append(19.5545) datasets.append('/ST_tW_top_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM') NumSample.append('31'); sampleN_short.append('sT') MCxsections.append(19.5545) # W + Jets datasets.append('/WJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('32'); sampleN_short.append('Wjet') MCxsections.append(61526.7) datasets.append('/WJetsToLNu_HT-100To200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext2-v1/MINIAODSIM') NumSample.append('33'); sampleN_short.append('Wjet') MCxsections.append(1627.45) datasets.append('/WJetsToLNu_HT-200To400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext2-v1/MINIAODSIM') NumSample.append('34'); sampleN_short.append('Wjet') MCxsections.append(435.237) datasets.append('/WJetsToLNu_HT-400To600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM') NumSample.append('35'); sampleN_short.append('Wjet') MCxsections.append(59.181) #FIXME #datasets.append('/WJetsToLNu_HT-600To800_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM') #NumSample.append('36'); sampleN_short.append('Wjet')### not available now MCxsections.append(14.58) datasets.append('/WJetsToLNu_HT-800To1200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM') NumSample.append('37'); sampleN_short.append('Wjet') MCxsections.append(6.656) datasets.append('/WJetsToLNu_HT-1200To2500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM') NumSample.append('38'); sampleN_short.append('Wjet') MCxsections.append(1.608) datasets.append('/WJetsToLNu_HT-2500ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM') NumSample.append('39'); sampleN_short.append('Wjet') MCxsections.append(0.0389) # tt + V datasets.append('/TTWJetsToQQ_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('40'); sampleN_short.append('ttV') MCxsections.append(0.4062) datasets.append('/TTWJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext2-v1/MINIAODSIM') NumSample.append('41'); sampleN_short.append('ttV') MCxsections.append(0.2043) datasets.append('/TTZToQQ_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM') NumSample.append('42'); sampleN_short.append('ttV') MCxsections.append(0.5297) datasets.append('/TTZToLLNuNu_M-10_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext3-v1/MINIAODSIM') NumSample.append('43'); sampleN_short.append('ttV') MCxsections.append(0.2529) alljobtypes = set(sampleN_short) for job in alljobtypes: localdirs[job] = [] for ijob, job in enumerate(datasets): nsample = int(NumSample[ijob]) jobtype = sampleN_short[ijob] dataname = "" datadir = " " #print "nsample ",nsample, " jobtype ",jobtype if nsample < 0: datadir = sampleN_short[ijob] dataname = job #print "real data nsample ",nsample, " datadir ",datadir elif nsample > 0: datadir = job.split('/')[1] #print "MC nsample ",nsample, " datadir ",datadir, "MiniAOD dataset ",job.split('/') #query = "dataset dataset=/%s/*/NANOAODSIM"%(datadir) #pdata = os.popen("dasgoclient -limit=0 -query='{query}'".format(query = query)) #founddataset = False #for line in pdata: # #print "dataset ",line," datatype ",datadir # if datadir in line: # founddataset = True # dataname = line[:-1] #if not(founddataset): # print "WARNING!!!!! no dataset found for ",datadir localdirs[jobtype].append(os.path.join(fdatadir, datadir)) Nanodatasets.append("/DoubleEG/Run2016B-05Feb2018_ver1-v1/NANOAOD") Nanodatasets.append("/DoubleEG/Run2016B-05Feb2018_ver2-v1/NANOAOD") Nanodatasets.append("/DoubleEG/Run2016C-05Feb2018-v1/NANOAOD") Nanodatasets.append("/DoubleEG/Run2016D-05Feb2018-v1/NANOAOD") Nanodatasets.append("/DoubleEG/Run2016E-05Feb2018-v1/NANOAOD") Nanodatasets.append("/DoubleEG/Run2016F-05Feb2018-v1/NANOAOD") Nanodatasets.append("/DoubleEG/Run2016G-05Feb2018-v1/NANOAOD") Nanodatasets.append("/DoubleEG/Run2016H-05Feb2018_ver2-v1/NANOAOD") Nanodatasets.append("/DoubleEG/Run2016H-05Feb2018_ver3-v1/NANOAOD") Nanodatasets.append("/DoubleMuon/Run2016B-05Feb2018_ver1-v1/NANOAOD") Nanodatasets.append("/DoubleMuon/Run2016B-05Feb2018_ver2-v1/NANOAOD") Nanodatasets.append("/DoubleMuon/Run2016C-05Feb2018-v1/NANOAOD") Nanodatasets.append("/DoubleMuon/Run2016D-05Feb2018-v1/NANOAOD") Nanodatasets.append("/DoubleMuon/Run2016E-05Feb2018-v1/NANOAOD") Nanodatasets.append("/DoubleMuon/Run2016F-05Feb2018-v1/NANOAOD") Nanodatasets.append("/DoubleMuon/Run2016G-05Feb2018-v1/NANOAOD") Nanodatasets.append("/DoubleMuon/Run2016H-05Feb2018_ver2-v1/NANOAOD") Nanodatasets.append("/DoubleMuon/Run2016H-05Feb2018_ver3-v1/NANOAOD") Nanodatasets.append("/MuonEG/Run2016B-05Feb2018_ver1-v1/NANOAOD") Nanodatasets.append("/MuonEG/Run2016B-05Feb2018_ver2-v1/NANOAOD") Nanodatasets.append("/MuonEG/Run2016C-05Feb2018-v1/NANOAOD") Nanodatasets.append("/MuonEG/Run2016D-05Feb2018-v1/NANOAOD") Nanodatasets.append("/MuonEG/Run2016E-05Feb2018-v1/NANOAOD") Nanodatasets.append("/MuonEG/Run2016F-05Feb2018-v1/NANOAOD") Nanodatasets.append("/MuonEG/Run2016G-05Feb2018-v1/NANOAOD") Nanodatasets.append("/MuonEG/Run2016H-05Feb2018_ver2-v1/NANOAOD") Nanodatasets.append("/MuonEG/Run2016H-05Feb2018_ver3-v1/NANOAOD") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-260_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-270_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-300_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-350_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-400_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-450_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-500_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-550_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-600_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-650_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-750_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-800_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/GluGluToRadionToHHTo2B2VTo2L2Nu_M-900_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") #TTbar #Nanodatasets.append("/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/arizzi-RunIIFall17MiniAOD-94X-Nano01Fall17-e273b12d9f89d622a34e4bc98b05ee29/USER") Nanodatasets.append('/TTTo2L2Nu_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM') # DY Nanodatasets.append("/DYJetsToLL_M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/DYToLL_0J_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM") Nanodatasets.append("/DYToLL_1J_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM") Nanodatasets.append("/DYToLL_2J_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM") # VV Nanodatasets.append("/ZZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/ZZTo2L2Nu_13TeV_powheg_pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/ZZTo4L_13TeV_powheg_pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") #Nanodatasets.append("/WWToLNuQQ_aTGC_13TeV-madgraph-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/WZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/WZTo1L1Nu2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM") #sT Nanodatasets.append("/ST_t-channel_top_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/ST_t-channel_antitop_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/ST_tW_antitop_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/ST_tW_top_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") #W+jets Nanodatasets.append("/WJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext2-v1/NANOAODSIM") Nanodatasets.append("/WJetsToLNu_HT-100To200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext2-v1/NANOAODSIM") Nanodatasets.append("/WJetsToLNu_HT-200To400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext2-v1/NANOAODSIM") Nanodatasets.append("/WJetsToLNu_HT-400To600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM") Nanodatasets.append("/WJetsToLNu_HT-800To1200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM") Nanodatasets.append("/WJetsToLNu_HT-1200To2500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/WJetsToLNu_HT-2500ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM") # tt + V Nanodatasets.append("/TTWJetsToQQ_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/TTWJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext2-v1/NANOAODSIM") Nanodatasets.append("/TTZToQQ_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM") Nanodatasets.append("/TTZToLLNuNu_M-10_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext3-v1/NANOAODSIM") outAnalist = {} outAnadir = "/fdata/hepx/store/user/taohuang/HHNtuple_20180328_fixedleptonDZeff/" for i,datasetname in enumerate( Nanodatasets ): sampleName = sampleN_short[i] if NumSample[i] < 0: sampleName = "Data" outAnafile = os.path.join(outAnadir, Nanodatasets[i].split('/')[1]) if hasattr(outAnalist, sampleName): outAnalist[sampleName].append(outAnafile) else: outAnalist[sampleName] = [] outAnalist[sampleName].append(outAnafile) dataintxt = open("2016MCSamplelist.txt","w+") for dataset in datasets: dataintxt.write(dataset+"\n") dataintxt.close()
normal
{ "blob_id": "72b5e76f63e347d7275b0b711fa02b7f327785f6", "index": 7369, "step-1": "#!/usr/bin/python\nimport os\nimport sys\n\nfdatadir = \"/fdata/hepx/store/user/taohuang/NANOAOD/\"\ndatasets = []; NumSample = []; sampleN_short = []\nNanodatasets = []; localdirs = {}\nMCxsections = []\n#doTT=True; doDY=True; doVV=True; doSingleT=True; doWjets=True; dottV=True\n\n##DoubleEG\ndatasets.append('/DoubleEG/Run2016B-05Feb2018_ver1-v1/NANOAOD')\nNumSample.append('-1'); sampleN_short.append('DoubleEGRun2016Bver1')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleEG/Run2016B-05Feb2018_ver2-v1/NANOAOD')\nNumSample.append('-2'); sampleN_short.append('DoubleEGRun2016Bver2')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleEG/Run2016C-05Feb2018-v1/NANOAOD')\nNumSample.append('-3'); sampleN_short.append('DoubleEGRun2016C')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleEG/Run2016D-05Feb2018-v1/NANOAOD')\nNumSample.append('-4'); sampleN_short.append('DoubleEGRun2016D')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleEG/Run2016E-05Feb2018-v1/NANOAOD')\nNumSample.append('-5'); sampleN_short.append('DoubleEGRun2016E')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleEG/Run2016F-05Feb2018-v1/NANOAOD')\nNumSample.append('-6'); sampleN_short.append('DoubleEGRun2016F')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleEG/Run2016G-05Feb2018-v1/NANOAOD')\nNumSample.append('-7'); sampleN_short.append('DoubleEGRun2016G')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleEG/Run2016H-05Feb2018_ver2-v1/NANOAOD')\nNumSample.append('-8'); sampleN_short.append('DoubleEGRun2016Hver2')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleEG/Run2016H-05Feb2018_ver3-v1/NANOAOD')\nNumSample.append('-9'); sampleN_short.append('DoubleEGRun2016Hver3')\nMCxsections.append(-1.0)\n##DoubleMuon\ndatasets.append('/DoubleMuon/Run2016B-05Feb2018_ver1-v1/NANOAOD')\nNumSample.append('-10'); sampleN_short.append('DoubleMuonRun2016Bver1')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleMuon/Run2016B-05Feb2018_ver2-v1/NANOAOD')\nNumSample.append('-11'); sampleN_short.append('DoubleMuonRun2016Bver2')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleMuon/Run2016C-05Feb2018-v1/NANOAOD')\nNumSample.append('-12'); sampleN_short.append('DoubleMuonRun2016C')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleMuon/Run2016D-05Feb2018-v1/NANOAOD')\nNumSample.append('-13'); sampleN_short.append('DoubleMuonRun2016D')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleMuon/Run2016E-05Feb2018-v1/NANOAOD')\nNumSample.append('-14'); sampleN_short.append('DoubleMuonRun2016E')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleMuon/Run2016F-05Feb2018-v1/NANOAOD')\nNumSample.append('-15'); sampleN_short.append('DoubleMuonRun2016F')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleMuon/Run2016G-05Feb2018-v1/NANOAOD')\nNumSample.append('-16'); sampleN_short.append('DoubleMuonRun2016G')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleMuon/Run2016H-05Feb2018_ver2-v1/NANOAOD')\nNumSample.append('-17'); sampleN_short.append('DoubleMuonRun2016Hver2')\nMCxsections.append(-1.0)\ndatasets.append('/DoubleMuon/Run2016H-05Feb2018_ver3-v1/NANOAOD')\nNumSample.append('-18'); sampleN_short.append('DoubleMuonRun2016Hver3')\nMCxsections.append(-1.0)\n#MuonEG\ndatasets.append('/MuonEG/Run2016B-05Feb2018_ver1-v1/NANOAOD')\nNumSample.append('-19'); sampleN_short.append('MuonEGRun2016Bver2')\nMCxsections.append(-1.0)\ndatasets.append('/MuonEG/Run2016B-05Feb2018_ver2-v1/NANOAOD')\nNumSample.append('-20'); sampleN_short.append('MuonEGRun2016Bver2')\nMCxsections.append(-1.0)\ndatasets.append('/MuonEG/Run2016C-05Feb2018-v1/NANOAOD')\nNumSample.append('-21'); sampleN_short.append('MuonEGRun2016C')\nMCxsections.append(-1.0)\ndatasets.append('/MuonEG/Run2016D-05Feb2018-v1/NANOAOD')\nNumSample.append('-22'); sampleN_short.append('MuonEGRun2016D')\nMCxsections.append(-1.0)\ndatasets.append('/MuonEG/Run2016E-05Feb2018-v1/NANOAOD')\nNumSample.append('-23'); sampleN_short.append('MuonEGRun2016E')\nMCxsections.append(-1.0)\ndatasets.append('/MuonEG/Run2016F-05Feb2018-v1/NANOAOD')\nNumSample.append('-24'); sampleN_short.append('MuonEGRun2016F')\nMCxsections.append(-1.0)\ndatasets.append('/MuonEG/Run2016G-05Feb2018-v1/NANOAOD')\nNumSample.append('-25'); sampleN_short.append('MuonEGRun2016G')\nMCxsections.append(-1.0)\ndatasets.append('/MuonEG/Run2016H-05Feb2018_ver2-v1/NANOAOD')\nNumSample.append('-26'); sampleN_short.append('MuonEGRun2016Hver2')\nMCxsections.append(-1.0)\ndatasets.append('/MuonEG/Run2016H-05Feb2018_ver3-v1/NANOAOD')\nNumSample.append('-27'); sampleN_short.append('MuonEGRun2016Hver3')\nMCxsections.append(-1.0)\n\n\nmasspoints = [260, 270, 300, 350, 400, 450, 500, 550, 600, 650, 750, 800, 900]\nfor mass in masspoints:\n datasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-%d_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\"%mass)\n NumSample.append(masspoints.index(mass)); sampleN_short.append('RadionM%d'%mass)\n MCxsections.append(5.0)#by default, assume the cross section for signal is 5pb\n#datasets.append(\"/GluGluToBulkGravitonToHHTo2B2VTo2L2Nu_M-*_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\n#NumSample.append('2'); sampleN_short.append('Graviton')\n\n# TT## FIXME, use official one later\n#datasets.append('/TTTo2L2Nu_13TeV-powheg/RunIISpring16MiniAODv2-PUSpring16_80X_mcRun2_asymptotic_2016_miniAODv2_v0_ext1-v1/MINIAODSIM')\ndatasets.append('/TTTo2L2Nu_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\n#datasets.append('/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/arizzi-RunIIFall17MiniAOD-94X-Nano01Fall17-e273b12d9f89d622a34e4bc98b05ee29/USER')\nNumSample.append('13'); sampleN_short.append('TT')\n#MCxsections.append(72.1)\n#MCxsections.append(76.7)\nMCxsections.append(87.31)\n# DY\n#datasets.append('/DYJetsToLL_M-10to50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\n\ndatasets.append('/DYJetsToLL_M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('14'); sampleN_short.append('DY')\nMCxsections.append(18610.0)\ndatasets.append('/DYToLL_0J_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM')\nNumSample.append('15'); sampleN_short.append('DY')\nMCxsections.append(4758.9)\ndatasets.append('/DYToLL_1J_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM')\nNumSample.append('16'); sampleN_short.append('DY')\nMCxsections.append(929.1)\ndatasets.append('/DYToLL_2J_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM')\nNumSample.append('17'); sampleN_short.append('DY')\nMCxsections.append(337.1)\n# VV\ndatasets.append('/ZZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('18'); sampleN_short.append('VV')\nMCxsections.append(3.22)\ndatasets.append('/ZZTo2L2Nu_13TeV_powheg_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('19'); sampleN_short.append('VV')\nMCxsections.append(0.564)\ndatasets.append('/ZZTo4L_13TeV_powheg_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('20'); sampleN_short.append('VV')\nMCxsections.append(1.256)\n#datasets.append('/WWToLNuQQ_aTGC_13TeV-madgraph-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\n#NumSample.append('21'); sampleN_short.append('VV')\n#MCxsections.append(49.997)# ## not available now because of pdf uncertainty\n#FIXME\n#datasets.append('/WWTo2L2Nu_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\n#datasets.append('/WWTo2L2Nu_13TeV-powheg/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\n#NumSample.append('22'); sampleN_short.append('VV') ### not available now\n#MCxsections.append(12.178)\ndatasets.append('/WZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('23'); sampleN_short.append('VV')\nMCxsections.append(5.595)\n#FIXME\n#datasets.append('/WZTo1L3Nu_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\n#NumSample.append('24'); sampleN_short.append('VV') ### not available now \n#MCxsections.append(3.033)\ndatasets.append('/WZTo1L1Nu2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v3/MINIAODSIM')\nNumSample.append('25'); sampleN_short.append('VV')\nMCxsections.append(10.71)\ndatasets.append('/WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('26'); sampleN_short.append('VV')\nMCxsections.append(4.42965)\n##sT\ndatasets.append('/ST_t-channel_top_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('27'); sampleN_short.append('sT')\nMCxsections.append(136.02)\ndatasets.append('/ST_t-channel_antitop_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('28'); sampleN_short.append('sT')\nMCxsections.append(80.95)\ndatasets.append('/ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('29'); sampleN_short.append('sT')\nMCxsections.append(3.36)\ndatasets.append('/ST_tW_antitop_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM')\nNumSample.append('30'); sampleN_short.append('sT')\nMCxsections.append(19.5545)\ndatasets.append('/ST_tW_top_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM')\nNumSample.append('31'); sampleN_short.append('sT')\nMCxsections.append(19.5545)\n# W + Jets\ndatasets.append('/WJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('32'); sampleN_short.append('Wjet')\nMCxsections.append(61526.7)\ndatasets.append('/WJetsToLNu_HT-100To200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext2-v1/MINIAODSIM')\nNumSample.append('33'); sampleN_short.append('Wjet')\nMCxsections.append(1627.45)\n\ndatasets.append('/WJetsToLNu_HT-200To400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext2-v1/MINIAODSIM')\nNumSample.append('34'); sampleN_short.append('Wjet')\nMCxsections.append(435.237)\ndatasets.append('/WJetsToLNu_HT-400To600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM')\nNumSample.append('35'); sampleN_short.append('Wjet')\nMCxsections.append(59.181)\n#FIXME\n#datasets.append('/WJetsToLNu_HT-600To800_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM')\n#NumSample.append('36'); sampleN_short.append('Wjet')### not available now\nMCxsections.append(14.58)\ndatasets.append('/WJetsToLNu_HT-800To1200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM')\nNumSample.append('37'); sampleN_short.append('Wjet')\nMCxsections.append(6.656)\ndatasets.append('/WJetsToLNu_HT-1200To2500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM')\nNumSample.append('38'); sampleN_short.append('Wjet')\nMCxsections.append(1.608)\ndatasets.append('/WJetsToLNu_HT-2500ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext1-v1/MINIAODSIM')\nNumSample.append('39'); sampleN_short.append('Wjet')\nMCxsections.append(0.0389)\n# tt + V\ndatasets.append('/TTWJetsToQQ_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('40'); sampleN_short.append('ttV')\nMCxsections.append(0.4062)\ndatasets.append('/TTWJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext2-v1/MINIAODSIM')\nNumSample.append('41'); sampleN_short.append('ttV')\nMCxsections.append(0.2043)\ndatasets.append('/TTZToQQ_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM')\nNumSample.append('42'); sampleN_short.append('ttV')\nMCxsections.append(0.5297)\ndatasets.append('/TTZToLLNuNu_M-10_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6_ext3-v1/MINIAODSIM')\nNumSample.append('43'); sampleN_short.append('ttV')\nMCxsections.append(0.2529)\n\nalljobtypes = set(sampleN_short)\nfor job in alljobtypes:\n localdirs[job] = []\n\nfor ijob, job in enumerate(datasets):\n nsample = int(NumSample[ijob])\n jobtype = sampleN_short[ijob]\n dataname = \"\"\n datadir = \" \"\n #print \"nsample \",nsample, \" jobtype \",jobtype\n if nsample < 0:\n datadir = sampleN_short[ijob]\n\tdataname = job\n #print \"real data nsample \",nsample, \" datadir \",datadir\n elif nsample > 0:\n datadir = job.split('/')[1]\n #print \"MC nsample \",nsample, \" datadir \",datadir, \"MiniAOD dataset \",job.split('/')\n\t#query = \"dataset dataset=/%s/*/NANOAODSIM\"%(datadir)\n #pdata = os.popen(\"dasgoclient -limit=0 -query='{query}'\".format(query = query))\t\n #founddataset = False\n\t#for line in pdata:\n\t# #print \"dataset \",line,\" datatype \",datadir\n\t# if datadir in line:\n\t# founddataset = True\n\t# dataname = line[:-1]\t\n\t#if not(founddataset): \n\t# print \"WARNING!!!!! no dataset found for \",datadir\n localdirs[jobtype].append(os.path.join(fdatadir, datadir))\n\nNanodatasets.append(\"/DoubleEG/Run2016B-05Feb2018_ver1-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleEG/Run2016B-05Feb2018_ver2-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleEG/Run2016C-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleEG/Run2016D-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleEG/Run2016E-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleEG/Run2016F-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleEG/Run2016G-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleEG/Run2016H-05Feb2018_ver2-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleEG/Run2016H-05Feb2018_ver3-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleMuon/Run2016B-05Feb2018_ver1-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleMuon/Run2016B-05Feb2018_ver2-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleMuon/Run2016C-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleMuon/Run2016D-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleMuon/Run2016E-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleMuon/Run2016F-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleMuon/Run2016G-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleMuon/Run2016H-05Feb2018_ver2-v1/NANOAOD\")\nNanodatasets.append(\"/DoubleMuon/Run2016H-05Feb2018_ver3-v1/NANOAOD\")\nNanodatasets.append(\"/MuonEG/Run2016B-05Feb2018_ver1-v1/NANOAOD\")\nNanodatasets.append(\"/MuonEG/Run2016B-05Feb2018_ver2-v1/NANOAOD\")\nNanodatasets.append(\"/MuonEG/Run2016C-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/MuonEG/Run2016D-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/MuonEG/Run2016E-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/MuonEG/Run2016F-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/MuonEG/Run2016G-05Feb2018-v1/NANOAOD\")\nNanodatasets.append(\"/MuonEG/Run2016H-05Feb2018_ver2-v1/NANOAOD\")\nNanodatasets.append(\"/MuonEG/Run2016H-05Feb2018_ver3-v1/NANOAOD\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-260_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-270_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-300_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-350_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-400_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-450_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-500_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-550_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-600_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-650_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-750_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-800_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/GluGluToRadionToHHTo2B2VTo2L2Nu_M-900_narrow_13TeV-madgraph-v2/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\n#TTbar\n#Nanodatasets.append(\"/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/arizzi-RunIIFall17MiniAOD-94X-Nano01Fall17-e273b12d9f89d622a34e4bc98b05ee29/USER\")\nNanodatasets.append('/TTTo2L2Nu_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM')\n\n# DY\nNanodatasets.append(\"/DYJetsToLL_M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/DYToLL_0J_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM\")\nNanodatasets.append(\"/DYToLL_1J_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM\")\nNanodatasets.append(\"/DYToLL_2J_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM\")\n# VV\nNanodatasets.append(\"/ZZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/ZZTo2L2Nu_13TeV_powheg_pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/ZZTo4L_13TeV_powheg_pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\n#Nanodatasets.append(\"/WWToLNuQQ_aTGC_13TeV-madgraph-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/WZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/WZTo1L1Nu2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM\")\n#sT\nNanodatasets.append(\"/ST_t-channel_top_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/ST_t-channel_antitop_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/ST_tW_antitop_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/ST_tW_top_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\n#W+jets\nNanodatasets.append(\"/WJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext2-v1/NANOAODSIM\")\nNanodatasets.append(\"/WJetsToLNu_HT-100To200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext2-v1/NANOAODSIM\")\nNanodatasets.append(\"/WJetsToLNu_HT-200To400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext2-v1/NANOAODSIM\")\nNanodatasets.append(\"/WJetsToLNu_HT-400To600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM\")\nNanodatasets.append(\"/WJetsToLNu_HT-800To1200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM\")\nNanodatasets.append(\"/WJetsToLNu_HT-1200To2500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/WJetsToLNu_HT-2500ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext1-v1/NANOAODSIM\")\n# tt + V\nNanodatasets.append(\"/TTWJetsToQQ_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/TTWJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext2-v1/NANOAODSIM\")\nNanodatasets.append(\"/TTZToQQ_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2-v1/NANOAODSIM\")\nNanodatasets.append(\"/TTZToLLNuNu_M-10_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16NanoAOD-PUMoriond17_05Feb2018_94X_mcRun2_asymptotic_v2_ext3-v1/NANOAODSIM\")\n\n\n\noutAnalist = {}\noutAnadir = \"/fdata/hepx/store/user/taohuang/HHNtuple_20180328_fixedleptonDZeff/\"\nfor i,datasetname in enumerate( Nanodatasets ):\n sampleName = sampleN_short[i]\n if NumSample[i] < 0:\n \tsampleName = \"Data\"\n outAnafile = os.path.join(outAnadir, Nanodatasets[i].split('/')[1])\n if hasattr(outAnalist, sampleName):\n\toutAnalist[sampleName].append(outAnafile)\n else:\n\toutAnalist[sampleName] = []\n\toutAnalist[sampleName].append(outAnafile)\n\ndataintxt = open(\"2016MCSamplelist.txt\",\"w+\")\nfor dataset in datasets:\n dataintxt.write(dataset+\"\\n\")\ndataintxt.close()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python ''' State Machine for the Flare task ''' import roslib import rospy import actionlib from rospy.timer import sleep import smach import smach_ros from dynamic_reconfigure.server import Server import math import os import sys import numpy as np from bbauv_msgs.msg import * from bbauv_msgs.srv import * from flare_vision import Flare #Global variables isStart = False isEnd = False isTestMode = False #If test mode then don't wait for mission call rosRate = None flare = None VisionLoopCount = 0 #Counter for number of times the image is being processed flareSeen = False mani_pub = None movement_client = None locomotionGoal = None flare_params = {'flare_area':0, 'centering_x':0, 'centering_y':0} #Starts off in disengage class class Disengage(smach.State): def __init__(self, flare_task): smach.State.__init__(self, outcomes=['start_complete', 'complete_outcome', 'aborted']) self.flare = flare_task def execute(self, userdata): # self.flare.unregister() if self.flare.isKilled: rospy.signal_shutdown("Bye") return 'aborted' while self.flare.isAborted: rospy.sleep(rospy.Duration(0.2)) if self.flare.testing: self.flare.register() rospy.loginfo("Starting Flare") return 'start_complete' #Searches for the flare class Search(smach.State): timeout = 10000 #5s timeout before aborting task def __init__(self, flare_task): smach.State.__init__(self, outcomes=['search_complete', 'aborted', 'mission_abort']) self.flare = flare_task if self.flare.testing: self.flare.unregisterHeading() #rospy.loginfo(self.flare.curHeading) def execute(self, userdata): #Check for abort signal if self.flare.isAborted: rospy.signal_shutdown("Bye!") return 'aborted' #Check if flare found or timeout already timecount = 0 while not self.flare.rectData['detected']: if timecount > self.timeout or rospy.is_shutdown() or self.flare.isKilled: self.flare.abortMission() self.flare.failedTask(); return 'aborted' self.flare.sendMovement(forward=1.0) rospy.sleep(rospy.Duration(0.5)) timecount += 1 return 'search_complete' #Bash towards the flare! class Manuoevre(smach.State): def __init__(self, flare_task): smach.State.__init__(self, outcomes=['manuoevring', 'manuoevre_complete', 'aborted', 'mission_abort']) self.flare = flare_task self.deltaThresh = 0.15 self.prevAngle = [] self.count = 0 self.flareSeen = True def execute(self,userdata): #Check for aborted signal if self.flare.isAborted: rospy.signal_shutdown("Bye!") return 'aborted' # #Cannot detect already # if not self.flare.rectData['detected']: # self.count += 1 # if self.count > 4: # self.flare.taskComplete() # return 'manuoevre_complete' # if not self.flare.rectData['detected'] and self.flareSeen: # self.flare.sendMovement(forward=2.0) # rospy.sleep(rospy.Duration(3)) # self.flare.taskComplete() # return 'manuoevre_complete' #Get to the flare screenWidth = self.flare.screen['width'] screenCenterX = screenWidth / 2 deltaX = (self.flare.rectData['centroids'][0] - screenCenterX) / screenWidth #rospy.loginfo("Delta X {}".format(deltaX)) rospy.loginfo("Area {}".format(self.flare.rectData['area'])) #Forward if center rospy.loginfo("Delta X: {}".format(deltaX)) if abs(deltaX) < 0.15: self.flare.sendMovement(forward=self.flare.forwardOffset) rospy.sleep(rospy.Duration(0.5)) else: #Sidemove if too far off center sidemove = math.copysign(deltaX*self.flare.deltaXMultiplier, deltaX) #Random number # sidemove = math.copysign(0.5, deltaX) self.flare.sendMovement(forward=0.10, sidemove=sidemove) rospy.sleep(rospy.Duration(0.5)) #Shoot straight and aim if self.flare.rectData['area'] > self.flare.headOnArea: return 'manuoevre_complete' return 'manuoevring' #return 'manuoevre_complete' class Completing(smach.State): def __init__(self, flare_task): smach.State.__init__(self, outcomes=['complete_complete', 'completing', 'aborted', 'mission_abort']) self.flare = flare_task self.count = 0 def execute(self,userdata): #Check for aborted signal if self.flare.isAborted: self.flare.isKilled = True rospy.signal_shutdown("Bye!") return 'aborted' screenWidth = self.flare.screen['width'] screenCenterX = screenWidth / 2 deltaX = (self.flare.rectData['centroids'][0] - screenCenterX) / screenWidth deltaXMult =2.0 rospy.loginfo("Delta X:{}".format(deltaX)) if abs(deltaX) < 0.03: self.count += 1 rospy.loginfo("Count: {}".format(self.count)) return 'completing' if self.count >= 2000: self.flare.sendMovement(forward=4.0) rospy.loginfo("Hitting the flare") self.flare.locomotionClient.wait_for_result() self.flare.sendMovement(forward=-2.0) #Retract self.flare.locomotionClient.wait_for_result() self.flare.taskComplete() return 'complete_complete' else: self.count = 0 sidemove = math.copysign(deltaX*deltaXMult, deltaX) #Random number self.flare.sendMovement(forward=0.00, sidemove=sidemove) rospy.sleep(rospy.Duration(0.5)) return 'completing' #self.flare.taskComplete() #return 'complete_complete' ''' Main python thread ''' def handle_srv(req): global isStart global isAbort global locomotionGoal global flare rospy.loginfo("Flare service handled") if req.start_request: rospy.loginfo("Flare is Start") isStart = True isAbort = False #locomotionGoal = req.start_ctrl if req.abort_reqest: rospy.loginfo("Flare abort received") isAbort = True isStart = False flare.unregister() #To fill accordingly return mission_to_visionResponse(isStart, isAbort) #Param config callback def flareCallback(conig, level): for param in flare.yellow_params: flare.yellow_params[param] = config['yellow_' + param] isTestMode = config["testing"] return config #Utility function for normalising heading def normHeading(heading): if heading > 360: return heading - 360 elif heading < 0: return heading + 360 else: return heading if __name__ == '__main__': rospy.init_node("Flare", anonymous=False) rosRate = rospy.Rate(20) flare_task = Flare() rospy.loginfo("Flare loaded!") #Create state machine container sm = smach.StateMachine(outcomes=['complete_flare', 'aborted']) #Disengage, Search, Manuoevre with sm: smach.StateMachine.add("DISENGAGE", Disengage(flare_task), transitions={'start_complete': "SEARCH", 'complete_outcome': 'complete_flare', 'aborted': 'aborted'}) smach.StateMachine.add("SEARCH", Search(flare_task), transitions={'search_complete': "MANUOEVRE", 'aborted': 'aborted', 'mission_abort': "DISENGAGE"}) smach.StateMachine.add("MANUOEVRE", Manuoevre(flare_task), transitions = {'manuoevring': "MANUOEVRE", 'manuoevre_complete': "COMPLETING", 'aborted': 'aborted', 'mission_abort': "DISENGAGE"}) smach.StateMachine.add("COMPLETING", Completing(flare_task), transitions = {'complete_complete': "DISENGAGE", 'completing': "COMPLETING", 'aborted': 'aborted', 'mission_abort': "DISENGAGE"}) sis = smach_ros.IntrospectionServer('flare_task', sm, '/SM_ROOT') sis.start() outcomes = sm.execute() #wait for ctrl-c rospy.spin() sis.stop()
normal
{ "blob_id": "0bb2a6ebbf75fae3466c34a435a531fabdc07f62", "index": 2984, "step-1": "<mask token>\n\n\nclass Disengage(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['start_complete',\n 'complete_outcome', 'aborted'])\n self.flare = flare_task\n <mask token>\n\n\nclass Search(smach.State):\n timeout = 10000\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['search_complete', 'aborted',\n 'mission_abort'])\n self.flare = flare_task\n if self.flare.testing:\n self.flare.unregisterHeading()\n\n def execute(self, userdata):\n if self.flare.isAborted:\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n timecount = 0\n while not self.flare.rectData['detected']:\n if timecount > self.timeout or rospy.is_shutdown(\n ) or self.flare.isKilled:\n self.flare.abortMission()\n self.flare.failedTask()\n return 'aborted'\n self.flare.sendMovement(forward=1.0)\n rospy.sleep(rospy.Duration(0.5))\n timecount += 1\n return 'search_complete'\n\n\nclass Manuoevre(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['manuoevring',\n 'manuoevre_complete', 'aborted', 'mission_abort'])\n self.flare = flare_task\n self.deltaThresh = 0.15\n self.prevAngle = []\n self.count = 0\n self.flareSeen = True\n\n def execute(self, userdata):\n if self.flare.isAborted:\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n screenWidth = self.flare.screen['width']\n screenCenterX = screenWidth / 2\n deltaX = (self.flare.rectData['centroids'][0] - screenCenterX\n ) / screenWidth\n rospy.loginfo('Area {}'.format(self.flare.rectData['area']))\n rospy.loginfo('Delta X: {}'.format(deltaX))\n if abs(deltaX) < 0.15:\n self.flare.sendMovement(forward=self.flare.forwardOffset)\n rospy.sleep(rospy.Duration(0.5))\n else:\n sidemove = math.copysign(deltaX * self.flare.deltaXMultiplier,\n deltaX)\n self.flare.sendMovement(forward=0.1, sidemove=sidemove)\n rospy.sleep(rospy.Duration(0.5))\n if self.flare.rectData['area'] > self.flare.headOnArea:\n return 'manuoevre_complete'\n return 'manuoevring'\n\n\nclass Completing(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['complete_complete',\n 'completing', 'aborted', 'mission_abort'])\n self.flare = flare_task\n self.count = 0\n\n def execute(self, userdata):\n if self.flare.isAborted:\n self.flare.isKilled = True\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n screenWidth = self.flare.screen['width']\n screenCenterX = screenWidth / 2\n deltaX = (self.flare.rectData['centroids'][0] - screenCenterX\n ) / screenWidth\n deltaXMult = 2.0\n rospy.loginfo('Delta X:{}'.format(deltaX))\n if abs(deltaX) < 0.03:\n self.count += 1\n rospy.loginfo('Count: {}'.format(self.count))\n return 'completing'\n if self.count >= 2000:\n self.flare.sendMovement(forward=4.0)\n rospy.loginfo('Hitting the flare')\n self.flare.locomotionClient.wait_for_result()\n self.flare.sendMovement(forward=-2.0)\n self.flare.locomotionClient.wait_for_result()\n self.flare.taskComplete()\n return 'complete_complete'\n else:\n self.count = 0\n sidemove = math.copysign(deltaX * deltaXMult, deltaX)\n self.flare.sendMovement(forward=0.0, sidemove=sidemove)\n rospy.sleep(rospy.Duration(0.5))\n return 'completing'\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Disengage(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['start_complete',\n 'complete_outcome', 'aborted'])\n self.flare = flare_task\n\n def execute(self, userdata):\n if self.flare.isKilled:\n rospy.signal_shutdown('Bye')\n return 'aborted'\n while self.flare.isAborted:\n rospy.sleep(rospy.Duration(0.2))\n if self.flare.testing:\n self.flare.register()\n rospy.loginfo('Starting Flare')\n return 'start_complete'\n\n\nclass Search(smach.State):\n timeout = 10000\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['search_complete', 'aborted',\n 'mission_abort'])\n self.flare = flare_task\n if self.flare.testing:\n self.flare.unregisterHeading()\n\n def execute(self, userdata):\n if self.flare.isAborted:\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n timecount = 0\n while not self.flare.rectData['detected']:\n if timecount > self.timeout or rospy.is_shutdown(\n ) or self.flare.isKilled:\n self.flare.abortMission()\n self.flare.failedTask()\n return 'aborted'\n self.flare.sendMovement(forward=1.0)\n rospy.sleep(rospy.Duration(0.5))\n timecount += 1\n return 'search_complete'\n\n\nclass Manuoevre(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['manuoevring',\n 'manuoevre_complete', 'aborted', 'mission_abort'])\n self.flare = flare_task\n self.deltaThresh = 0.15\n self.prevAngle = []\n self.count = 0\n self.flareSeen = True\n\n def execute(self, userdata):\n if self.flare.isAborted:\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n screenWidth = self.flare.screen['width']\n screenCenterX = screenWidth / 2\n deltaX = (self.flare.rectData['centroids'][0] - screenCenterX\n ) / screenWidth\n rospy.loginfo('Area {}'.format(self.flare.rectData['area']))\n rospy.loginfo('Delta X: {}'.format(deltaX))\n if abs(deltaX) < 0.15:\n self.flare.sendMovement(forward=self.flare.forwardOffset)\n rospy.sleep(rospy.Duration(0.5))\n else:\n sidemove = math.copysign(deltaX * self.flare.deltaXMultiplier,\n deltaX)\n self.flare.sendMovement(forward=0.1, sidemove=sidemove)\n rospy.sleep(rospy.Duration(0.5))\n if self.flare.rectData['area'] > self.flare.headOnArea:\n return 'manuoevre_complete'\n return 'manuoevring'\n\n\nclass Completing(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['complete_complete',\n 'completing', 'aborted', 'mission_abort'])\n self.flare = flare_task\n self.count = 0\n\n def execute(self, userdata):\n if self.flare.isAborted:\n self.flare.isKilled = True\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n screenWidth = self.flare.screen['width']\n screenCenterX = screenWidth / 2\n deltaX = (self.flare.rectData['centroids'][0] - screenCenterX\n ) / screenWidth\n deltaXMult = 2.0\n rospy.loginfo('Delta X:{}'.format(deltaX))\n if abs(deltaX) < 0.03:\n self.count += 1\n rospy.loginfo('Count: {}'.format(self.count))\n return 'completing'\n if self.count >= 2000:\n self.flare.sendMovement(forward=4.0)\n rospy.loginfo('Hitting the flare')\n self.flare.locomotionClient.wait_for_result()\n self.flare.sendMovement(forward=-2.0)\n self.flare.locomotionClient.wait_for_result()\n self.flare.taskComplete()\n return 'complete_complete'\n else:\n self.count = 0\n sidemove = math.copysign(deltaX * deltaXMult, deltaX)\n self.flare.sendMovement(forward=0.0, sidemove=sidemove)\n rospy.sleep(rospy.Duration(0.5))\n return 'completing'\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Disengage(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['start_complete',\n 'complete_outcome', 'aborted'])\n self.flare = flare_task\n\n def execute(self, userdata):\n if self.flare.isKilled:\n rospy.signal_shutdown('Bye')\n return 'aborted'\n while self.flare.isAborted:\n rospy.sleep(rospy.Duration(0.2))\n if self.flare.testing:\n self.flare.register()\n rospy.loginfo('Starting Flare')\n return 'start_complete'\n\n\nclass Search(smach.State):\n timeout = 10000\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['search_complete', 'aborted',\n 'mission_abort'])\n self.flare = flare_task\n if self.flare.testing:\n self.flare.unregisterHeading()\n\n def execute(self, userdata):\n if self.flare.isAborted:\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n timecount = 0\n while not self.flare.rectData['detected']:\n if timecount > self.timeout or rospy.is_shutdown(\n ) or self.flare.isKilled:\n self.flare.abortMission()\n self.flare.failedTask()\n return 'aborted'\n self.flare.sendMovement(forward=1.0)\n rospy.sleep(rospy.Duration(0.5))\n timecount += 1\n return 'search_complete'\n\n\nclass Manuoevre(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['manuoevring',\n 'manuoevre_complete', 'aborted', 'mission_abort'])\n self.flare = flare_task\n self.deltaThresh = 0.15\n self.prevAngle = []\n self.count = 0\n self.flareSeen = True\n\n def execute(self, userdata):\n if self.flare.isAborted:\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n screenWidth = self.flare.screen['width']\n screenCenterX = screenWidth / 2\n deltaX = (self.flare.rectData['centroids'][0] - screenCenterX\n ) / screenWidth\n rospy.loginfo('Area {}'.format(self.flare.rectData['area']))\n rospy.loginfo('Delta X: {}'.format(deltaX))\n if abs(deltaX) < 0.15:\n self.flare.sendMovement(forward=self.flare.forwardOffset)\n rospy.sleep(rospy.Duration(0.5))\n else:\n sidemove = math.copysign(deltaX * self.flare.deltaXMultiplier,\n deltaX)\n self.flare.sendMovement(forward=0.1, sidemove=sidemove)\n rospy.sleep(rospy.Duration(0.5))\n if self.flare.rectData['area'] > self.flare.headOnArea:\n return 'manuoevre_complete'\n return 'manuoevring'\n\n\nclass Completing(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['complete_complete',\n 'completing', 'aborted', 'mission_abort'])\n self.flare = flare_task\n self.count = 0\n\n def execute(self, userdata):\n if self.flare.isAborted:\n self.flare.isKilled = True\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n screenWidth = self.flare.screen['width']\n screenCenterX = screenWidth / 2\n deltaX = (self.flare.rectData['centroids'][0] - screenCenterX\n ) / screenWidth\n deltaXMult = 2.0\n rospy.loginfo('Delta X:{}'.format(deltaX))\n if abs(deltaX) < 0.03:\n self.count += 1\n rospy.loginfo('Count: {}'.format(self.count))\n return 'completing'\n if self.count >= 2000:\n self.flare.sendMovement(forward=4.0)\n rospy.loginfo('Hitting the flare')\n self.flare.locomotionClient.wait_for_result()\n self.flare.sendMovement(forward=-2.0)\n self.flare.locomotionClient.wait_for_result()\n self.flare.taskComplete()\n return 'complete_complete'\n else:\n self.count = 0\n sidemove = math.copysign(deltaX * deltaXMult, deltaX)\n self.flare.sendMovement(forward=0.0, sidemove=sidemove)\n rospy.sleep(rospy.Duration(0.5))\n return 'completing'\n\n\n<mask token>\n\n\ndef flareCallback(conig, level):\n for param in flare.yellow_params:\n flare.yellow_params[param] = config['yellow_' + param]\n isTestMode = config['testing']\n return config\n\n\ndef normHeading(heading):\n if heading > 360:\n return heading - 360\n elif heading < 0:\n return heading + 360\n else:\n return heading\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass Disengage(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['start_complete',\n 'complete_outcome', 'aborted'])\n self.flare = flare_task\n\n def execute(self, userdata):\n if self.flare.isKilled:\n rospy.signal_shutdown('Bye')\n return 'aborted'\n while self.flare.isAborted:\n rospy.sleep(rospy.Duration(0.2))\n if self.flare.testing:\n self.flare.register()\n rospy.loginfo('Starting Flare')\n return 'start_complete'\n\n\nclass Search(smach.State):\n timeout = 10000\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['search_complete', 'aborted',\n 'mission_abort'])\n self.flare = flare_task\n if self.flare.testing:\n self.flare.unregisterHeading()\n\n def execute(self, userdata):\n if self.flare.isAborted:\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n timecount = 0\n while not self.flare.rectData['detected']:\n if timecount > self.timeout or rospy.is_shutdown(\n ) or self.flare.isKilled:\n self.flare.abortMission()\n self.flare.failedTask()\n return 'aborted'\n self.flare.sendMovement(forward=1.0)\n rospy.sleep(rospy.Duration(0.5))\n timecount += 1\n return 'search_complete'\n\n\nclass Manuoevre(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['manuoevring',\n 'manuoevre_complete', 'aborted', 'mission_abort'])\n self.flare = flare_task\n self.deltaThresh = 0.15\n self.prevAngle = []\n self.count = 0\n self.flareSeen = True\n\n def execute(self, userdata):\n if self.flare.isAborted:\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n screenWidth = self.flare.screen['width']\n screenCenterX = screenWidth / 2\n deltaX = (self.flare.rectData['centroids'][0] - screenCenterX\n ) / screenWidth\n rospy.loginfo('Area {}'.format(self.flare.rectData['area']))\n rospy.loginfo('Delta X: {}'.format(deltaX))\n if abs(deltaX) < 0.15:\n self.flare.sendMovement(forward=self.flare.forwardOffset)\n rospy.sleep(rospy.Duration(0.5))\n else:\n sidemove = math.copysign(deltaX * self.flare.deltaXMultiplier,\n deltaX)\n self.flare.sendMovement(forward=0.1, sidemove=sidemove)\n rospy.sleep(rospy.Duration(0.5))\n if self.flare.rectData['area'] > self.flare.headOnArea:\n return 'manuoevre_complete'\n return 'manuoevring'\n\n\nclass Completing(smach.State):\n\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['complete_complete',\n 'completing', 'aborted', 'mission_abort'])\n self.flare = flare_task\n self.count = 0\n\n def execute(self, userdata):\n if self.flare.isAborted:\n self.flare.isKilled = True\n rospy.signal_shutdown('Bye!')\n return 'aborted'\n screenWidth = self.flare.screen['width']\n screenCenterX = screenWidth / 2\n deltaX = (self.flare.rectData['centroids'][0] - screenCenterX\n ) / screenWidth\n deltaXMult = 2.0\n rospy.loginfo('Delta X:{}'.format(deltaX))\n if abs(deltaX) < 0.03:\n self.count += 1\n rospy.loginfo('Count: {}'.format(self.count))\n return 'completing'\n if self.count >= 2000:\n self.flare.sendMovement(forward=4.0)\n rospy.loginfo('Hitting the flare')\n self.flare.locomotionClient.wait_for_result()\n self.flare.sendMovement(forward=-2.0)\n self.flare.locomotionClient.wait_for_result()\n self.flare.taskComplete()\n return 'complete_complete'\n else:\n self.count = 0\n sidemove = math.copysign(deltaX * deltaXMult, deltaX)\n self.flare.sendMovement(forward=0.0, sidemove=sidemove)\n rospy.sleep(rospy.Duration(0.5))\n return 'completing'\n\n\n<mask token>\n\n\ndef handle_srv(req):\n global isStart\n global isAbort\n global locomotionGoal\n global flare\n rospy.loginfo('Flare service handled')\n if req.start_request:\n rospy.loginfo('Flare is Start')\n isStart = True\n isAbort = False\n if req.abort_reqest:\n rospy.loginfo('Flare abort received')\n isAbort = True\n isStart = False\n flare.unregister()\n return mission_to_visionResponse(isStart, isAbort)\n\n\ndef flareCallback(conig, level):\n for param in flare.yellow_params:\n flare.yellow_params[param] = config['yellow_' + param]\n isTestMode = config['testing']\n return config\n\n\ndef normHeading(heading):\n if heading > 360:\n return heading - 360\n elif heading < 0:\n return heading + 360\n else:\n return heading\n\n\n<mask token>\n", "step-5": "#!/usr/bin/env python\n'''\nState Machine for the Flare task\n'''\n\nimport roslib\nimport rospy\nimport actionlib\nfrom rospy.timer import sleep\n\nimport smach\nimport smach_ros\n\nfrom dynamic_reconfigure.server import Server\n\nimport math\nimport os\nimport sys\n\n\nimport numpy as np\n\nfrom bbauv_msgs.msg import *\nfrom bbauv_msgs.srv import *\nfrom flare_vision import Flare\n\n#Global variables \nisStart = False\nisEnd = False\nisTestMode = False #If test mode then don't wait for mission call \nrosRate = None \nflare = None\nVisionLoopCount = 0 #Counter for number of times the image is being processed\nflareSeen = False\n\nmani_pub = None\nmovement_client = None\nlocomotionGoal = None\n\nflare_params = {'flare_area':0, 'centering_x':0, 'centering_y':0}\n\n\n#Starts off in disengage class\nclass Disengage(smach.State):\n \n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['start_complete', 'complete_outcome', 'aborted'])\n self.flare = flare_task\n \n def execute(self, userdata):\n# self.flare.unregister()\n\n if self.flare.isKilled:\n rospy.signal_shutdown(\"Bye\")\n return 'aborted'\n\n while self.flare.isAborted:\n rospy.sleep(rospy.Duration(0.2))\n \n if self.flare.testing:\n self.flare.register()\n rospy.loginfo(\"Starting Flare\")\n \n return 'start_complete'\n \n#Searches for the flare\nclass Search(smach.State):\n timeout = 10000 #5s timeout before aborting task\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['search_complete', 'aborted', 'mission_abort'])\n self.flare = flare_task\n \n if self.flare.testing:\n self.flare.unregisterHeading()\n #rospy.loginfo(self.flare.curHeading)\n \n def execute(self, userdata):\n #Check for abort signal\n if self.flare.isAborted:\n rospy.signal_shutdown(\"Bye!\")\n return 'aborted'\n \n #Check if flare found or timeout already\n timecount = 0\n while not self.flare.rectData['detected']:\n if timecount > self.timeout or rospy.is_shutdown() or self.flare.isKilled:\n self.flare.abortMission()\n self.flare.failedTask();\n return 'aborted'\n self.flare.sendMovement(forward=1.0)\n rospy.sleep(rospy.Duration(0.5))\n timecount += 1\n \n return 'search_complete'\n\n#Bash towards the flare!\nclass Manuoevre(smach.State):\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['manuoevring', 'manuoevre_complete',\n 'aborted', 'mission_abort'])\n self.flare = flare_task\n self.deltaThresh = 0.15\n self.prevAngle = []\n self.count = 0\n self.flareSeen = True\n \n def execute(self,userdata):\n #Check for aborted signal\n if self.flare.isAborted:\n rospy.signal_shutdown(\"Bye!\")\n return 'aborted'\n \n# #Cannot detect already\n# if not self.flare.rectData['detected']:\n# self.count += 1\n# if self.count > 4:\n# self.flare.taskComplete()\n# return 'manuoevre_complete'\n \n# if not self.flare.rectData['detected'] and self.flareSeen:\n# self.flare.sendMovement(forward=2.0)\n# rospy.sleep(rospy.Duration(3))\n# self.flare.taskComplete()\n# return 'manuoevre_complete'\n \n #Get to the flare\n screenWidth = self.flare.screen['width']\n screenCenterX = screenWidth / 2\n deltaX = (self.flare.rectData['centroids'][0] - screenCenterX) / screenWidth\n #rospy.loginfo(\"Delta X {}\".format(deltaX))\n rospy.loginfo(\"Area {}\".format(self.flare.rectData['area']))\n \n #Forward if center\n rospy.loginfo(\"Delta X: {}\".format(deltaX))\n if abs(deltaX) < 0.15:\n self.flare.sendMovement(forward=self.flare.forwardOffset)\n rospy.sleep(rospy.Duration(0.5))\n else:\n #Sidemove if too far off center\n sidemove = math.copysign(deltaX*self.flare.deltaXMultiplier, deltaX) #Random number\n# sidemove = math.copysign(0.5, deltaX)\n self.flare.sendMovement(forward=0.10, sidemove=sidemove)\n rospy.sleep(rospy.Duration(0.5))\n \n #Shoot straight and aim\n if self.flare.rectData['area'] > self.flare.headOnArea:\n return 'manuoevre_complete'\n \n return 'manuoevring'\n\n #return 'manuoevre_complete'\n \nclass Completing(smach.State):\n def __init__(self, flare_task):\n smach.State.__init__(self, outcomes=['complete_complete', 'completing',\n 'aborted', 'mission_abort'])\n self.flare = flare_task\n self.count = 0\n \n def execute(self,userdata):\n #Check for aborted signal\n if self.flare.isAborted:\n self.flare.isKilled = True\n rospy.signal_shutdown(\"Bye!\")\n return 'aborted'\n \n screenWidth = self.flare.screen['width']\n screenCenterX = screenWidth / 2\n deltaX = (self.flare.rectData['centroids'][0] - screenCenterX) / screenWidth\n \n deltaXMult =2.0\n rospy.loginfo(\"Delta X:{}\".format(deltaX))\n \n if abs(deltaX) < 0.03:\n self.count += 1\n rospy.loginfo(\"Count: {}\".format(self.count))\n return 'completing'\n \n if self.count >= 2000:\n self.flare.sendMovement(forward=4.0)\n rospy.loginfo(\"Hitting the flare\")\n self.flare.locomotionClient.wait_for_result()\n self.flare.sendMovement(forward=-2.0) #Retract\n self.flare.locomotionClient.wait_for_result()\n self.flare.taskComplete()\n return 'complete_complete'\n \n else:\n self.count = 0\n sidemove = math.copysign(deltaX*deltaXMult, deltaX) #Random number\n self.flare.sendMovement(forward=0.00, sidemove=sidemove)\n rospy.sleep(rospy.Duration(0.5))\n return 'completing'\n\n #self.flare.taskComplete()\n #return 'complete_complete'\n\n'''\nMain python thread\n'''\n \ndef handle_srv(req):\n global isStart\n global isAbort\n global locomotionGoal\n global flare\n \n rospy.loginfo(\"Flare service handled\")\n \n if req.start_request:\n rospy.loginfo(\"Flare is Start\")\n isStart = True\n isAbort = False \n #locomotionGoal = req.start_ctrl\n if req.abort_reqest:\n rospy.loginfo(\"Flare abort received\")\n isAbort = True\n isStart = False\n flare.unregister()\n \n #To fill accordingly\n return mission_to_visionResponse(isStart, isAbort)\n \n#Param config callback\ndef flareCallback(conig, level):\n for param in flare.yellow_params:\n flare.yellow_params[param] = config['yellow_' + param]\n isTestMode = config[\"testing\"]\n return config\n\n#Utility function for normalising heading \ndef normHeading(heading):\n if heading > 360:\n return heading - 360\n elif heading < 0:\n return heading + 360\n else:\n return heading \n\nif __name__ == '__main__':\n rospy.init_node(\"Flare\", anonymous=False)\n rosRate = rospy.Rate(20)\n flare_task = Flare()\n rospy.loginfo(\"Flare loaded!\")\n \n #Create state machine container \n sm = smach.StateMachine(outcomes=['complete_flare', 'aborted'])\n \n #Disengage, Search, Manuoevre\n with sm:\n smach.StateMachine.add(\"DISENGAGE\", Disengage(flare_task),\n transitions={'start_complete': \"SEARCH\", \n 'complete_outcome': 'complete_flare', \n 'aborted': 'aborted'})\n \n smach.StateMachine.add(\"SEARCH\", Search(flare_task),\n transitions={'search_complete': \"MANUOEVRE\", 'aborted': 'aborted', \n 'mission_abort': \"DISENGAGE\"})\n \n smach.StateMachine.add(\"MANUOEVRE\", Manuoevre(flare_task),\n transitions = {'manuoevring': \"MANUOEVRE\",\n 'manuoevre_complete': \"COMPLETING\",\n 'aborted': 'aborted',\n 'mission_abort': \"DISENGAGE\"})\n \n smach.StateMachine.add(\"COMPLETING\", Completing(flare_task),\n transitions = {'complete_complete': \"DISENGAGE\",\n 'completing': \"COMPLETING\",\n 'aborted': 'aborted',\n 'mission_abort': \"DISENGAGE\"})\n \n sis = smach_ros.IntrospectionServer('flare_task', sm, '/SM_ROOT')\n sis.start()\n outcomes = sm.execute()\n \n #wait for ctrl-c\n rospy.spin()\n sis.stop()\n \n", "step-ids": [ 12, 13, 15, 16, 20 ] }
[ 12, 13, 15, 16, 20 ]
""" Given two strings A and B of lowercase letters, return true if and only if we can swap two letters in A so that the result equals B. Example 1: Input: A = "ab", B = "ba" Output: true """ class Solution: def buddyStrings(self, A: str, B: str) -> bool: if len(A) != len(B): return False if A == B and len(A) > len(set(A)): return True re1 = "" re2 = "" for i in range(len(A)): if A[i] != B[i]: re1 += A[i] re2 += B[i] if len(re1) == len(re2) == 2 and re1 == re2[::-1]: return True return False
normal
{ "blob_id": "dd902f99ee8dc23f56641b8e75544a2d4576c19a", "index": 4437, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Solution:\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Solution:\n\n def buddyStrings(self, A: str, B: str) ->bool:\n if len(A) != len(B):\n return False\n if A == B and len(A) > len(set(A)):\n return True\n re1 = ''\n re2 = ''\n for i in range(len(A)):\n if A[i] != B[i]:\n re1 += A[i]\n re2 += B[i]\n if len(re1) == len(re2) == 2 and re1 == re2[::-1]:\n return True\n return False\n", "step-4": "\"\"\"\nGiven two strings A and B of lowercase letters, return true \nif and only if we can swap two letters in A so that the result \nequals B.\n\n Example 1:\n\n Input: A = \"ab\", B = \"ba\"\n Output: true\n\"\"\"\n\nclass Solution:\n def buddyStrings(self, A: str, B: str) -> bool:\n if len(A) != len(B):\n return False\n \n if A == B and len(A) > len(set(A)):\n return True\n \n re1 = \"\"\n re2 = \"\"\n for i in range(len(A)):\n if A[i] != B[i]:\n re1 += A[i]\n re2 += B[i] \n \n if len(re1) == len(re2) == 2 and re1 == re2[::-1]: \n return True\n \n return False\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
def func(i): if(i % 2 != 0): return False visited = [0,0,0,0,0,0,0,0,0,0] temp = i while(i): x = i%10 if (visited[x] == 1) or (x == 0): break visited[x] = 1; i = (int)(i / 10); if(i == 0): for y in str(temp): if(temp % int(y) != 0): return False else: return False return True n,m = map(int, input().split()) print(sum([1 for i in range(n,m) if func(i)]))
normal
{ "blob_id": "1a8c9be389aad37a36630a962c20a0a36c449bdd", "index": 3809, "step-1": "<mask token>\n", "step-2": "def func(i):\n if i % 2 != 0:\n return False\n visited = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n temp = i\n while i:\n x = i % 10\n if visited[x] == 1 or x == 0:\n break\n visited[x] = 1\n i = int(i / 10)\n if i == 0:\n for y in str(temp):\n if temp % int(y) != 0:\n return False\n else:\n return False\n return True\n\n\n<mask token>\n", "step-3": "def func(i):\n if i % 2 != 0:\n return False\n visited = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n temp = i\n while i:\n x = i % 10\n if visited[x] == 1 or x == 0:\n break\n visited[x] = 1\n i = int(i / 10)\n if i == 0:\n for y in str(temp):\n if temp % int(y) != 0:\n return False\n else:\n return False\n return True\n\n\n<mask token>\nprint(sum([(1) for i in range(n, m) if func(i)]))\n", "step-4": "def func(i):\n if i % 2 != 0:\n return False\n visited = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n temp = i\n while i:\n x = i % 10\n if visited[x] == 1 or x == 0:\n break\n visited[x] = 1\n i = int(i / 10)\n if i == 0:\n for y in str(temp):\n if temp % int(y) != 0:\n return False\n else:\n return False\n return True\n\n\nn, m = map(int, input().split())\nprint(sum([(1) for i in range(n, m) if func(i)]))\n", "step-5": "def func(i):\r\n if(i % 2 != 0): return False\r\n visited = [0,0,0,0,0,0,0,0,0,0]\r\n temp = i\r\n while(i):\r\n x = i%10\r\n if (visited[x] == 1) or (x == 0): break\r\n visited[x] = 1; \r\n i = (int)(i / 10); \r\n\r\n if(i == 0):\r\n for y in str(temp):\r\n if(temp % int(y) != 0): return False\r\n\r\n else: return False\r\n return True\r\n\r\nn,m = map(int, input().split())\r\n\r\nprint(sum([1 for i in range(n,m) if func(i)]))", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.conf.urls import patterns, url urlpatterns = patterns( '', url( r'^create_new/$', 'hx_lti_assignment.views.create_new_assignment', name="create_new_assignment", ), url( r'^(?P<id>[0-9]+)/edit/', 'hx_lti_assignment.views.edit_assignment', name="edit_assignment", ), url( r'^(?P<id>[0-9]+)/delete/', 'hx_lti_assignment.views.delete_assignment', name="delete_assignment", ), url( r'^import_assignment/$', 'hx_lti_assignment.views.import_assignment', name="import_assignment", ), url( r'^(?P<course_id>[0-9]+)/get_assignments', 'hx_lti_assignment.views.assignments_from_course', name="assignments_from_course", ), url( r'^(?P<old_course_id>[0-9]+)/(?P<new_course_id>[0-9]+)/(?P<assignment_id>[0-9]+)/import', 'hx_lti_assignment.views.moving_assignment', name="moving_assignment", ), )
normal
{ "blob_id": "2194fb4f0b0618f1c8db39f659a4890457f45b1d", "index": 3963, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = patterns('', url('^create_new/$',\n 'hx_lti_assignment.views.create_new_assignment', name=\n 'create_new_assignment'), url('^(?P<id>[0-9]+)/edit/',\n 'hx_lti_assignment.views.edit_assignment', name='edit_assignment'), url\n ('^(?P<id>[0-9]+)/delete/', 'hx_lti_assignment.views.delete_assignment',\n name='delete_assignment'), url('^import_assignment/$',\n 'hx_lti_assignment.views.import_assignment', name='import_assignment'),\n url('^(?P<course_id>[0-9]+)/get_assignments',\n 'hx_lti_assignment.views.assignments_from_course', name=\n 'assignments_from_course'), url(\n '^(?P<old_course_id>[0-9]+)/(?P<new_course_id>[0-9]+)/(?P<assignment_id>[0-9]+)/import'\n , 'hx_lti_assignment.views.moving_assignment', name='moving_assignment'))\n", "step-3": "from django.conf.urls import patterns, url\nurlpatterns = patterns('', url('^create_new/$',\n 'hx_lti_assignment.views.create_new_assignment', name=\n 'create_new_assignment'), url('^(?P<id>[0-9]+)/edit/',\n 'hx_lti_assignment.views.edit_assignment', name='edit_assignment'), url\n ('^(?P<id>[0-9]+)/delete/', 'hx_lti_assignment.views.delete_assignment',\n name='delete_assignment'), url('^import_assignment/$',\n 'hx_lti_assignment.views.import_assignment', name='import_assignment'),\n url('^(?P<course_id>[0-9]+)/get_assignments',\n 'hx_lti_assignment.views.assignments_from_course', name=\n 'assignments_from_course'), url(\n '^(?P<old_course_id>[0-9]+)/(?P<new_course_id>[0-9]+)/(?P<assignment_id>[0-9]+)/import'\n , 'hx_lti_assignment.views.moving_assignment', name='moving_assignment'))\n", "step-4": "from django.conf.urls import patterns, url\n\nurlpatterns = patterns(\n '',\n url(\n r'^create_new/$',\n 'hx_lti_assignment.views.create_new_assignment',\n name=\"create_new_assignment\",\n ),\n url(\n r'^(?P<id>[0-9]+)/edit/',\n 'hx_lti_assignment.views.edit_assignment',\n name=\"edit_assignment\",\n ),\n url(\n r'^(?P<id>[0-9]+)/delete/',\n 'hx_lti_assignment.views.delete_assignment',\n name=\"delete_assignment\",\n ),\n url(\n r'^import_assignment/$',\n 'hx_lti_assignment.views.import_assignment',\n name=\"import_assignment\",\n ),\n url(\n r'^(?P<course_id>[0-9]+)/get_assignments',\n 'hx_lti_assignment.views.assignments_from_course',\n name=\"assignments_from_course\",\n ),\n url(\n r'^(?P<old_course_id>[0-9]+)/(?P<new_course_id>[0-9]+)/(?P<assignment_id>[0-9]+)/import',\n 'hx_lti_assignment.views.moving_assignment',\n name=\"moving_assignment\",\n ),\n)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
''' leetcode 338. 比特位计数 给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。 ''' class Solution(object): def countBits(self, n): """ :type n: int :rtype: List[int] """ out = [0] * (n+1) for i in range(1,n+1,1): if i%2==1: out[i]=out[i-1]+1 else: out[i]=out[i>>1] return out
normal
{ "blob_id": "4cd1e385d18086b1045b1149d5f4573eaf9270c3", "index": 6223, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Solution(object):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Solution(object):\n\n def countBits(self, n):\n \"\"\"\n :type n: int\n :rtype: List[int]\n \"\"\"\n out = [0] * (n + 1)\n for i in range(1, n + 1, 1):\n if i % 2 == 1:\n out[i] = out[i - 1] + 1\n else:\n out[i] = out[i >> 1]\n return out\n", "step-4": "'''\r\nleetcode 338. 比特位计数\r\n给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。\r\n'''\r\nclass Solution(object):\r\n def countBits(self, n):\r\n \"\"\"\r\n :type n: int\r\n :rtype: List[int]\r\n \"\"\"\r\n out = [0] * (n+1)\r\n for i in range(1,n+1,1):\r\n if i%2==1: out[i]=out[i-1]+1\r\n else:\r\n out[i]=out[i>>1]\r\n \r\n return out", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2016-03-15 16:39:32 # @Author : Your Name ([email protected]) # @Link : http://example.org # @Version : $Id$ from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtGui import * from widgets.favorits.favorit_win import Ui_DialogFavorit import json import re from widgets.input_link import def_url #from favorit_win import Ui_DialogFavorit class Favorits(QDialog, Ui_DialogFavorit): """docstring for Favorits""" def __init__(self): super(Favorits, self).__init__() self.setupUi(self) self.buttonBox.button(QDialogButtonBox.Save).setText("Сохранить") self.buttonBox.button(QDialogButtonBox.Cancel).setText("Отмена") self.path = 'setting.json' self.setStyleSheet(open('static/style.qss').read()) self.list_fav() self.plus_pb.setIcon(QIcon(":/icons/icons/plus.png")) self.minus_pb.setIcon(QIcon(":/icons/icons/minus.png")) self.plus_pb.clicked.connect(self.addfav) self.minus_pb.clicked.connect(self.delfav) def list_fav(self): try: self.data = json.load(open(self.path)) for i in self.data['favorit']: self.favlist_listWidget.addItem(i) except FileNotFoundError: print("File with setting not found") except KeyError: self.data['favorit'] = [] json.dump(self.data, open(self.path, 'w')) self.list_fav() def addfav(self): name = def_url.Input_stream() if name.exec_(): link = name.url_stream_le.text() reg = "http[s]?://" if re.match(reg, link) is not None: self.data['favorit'].append(link) json.dump(self.data, open(self.path, 'w')) self.favlist_listWidget.clear() self.list_fav() def delfav(self): buf = self.favlist_listWidget.currentItem().text() self.data['favorit'].remove(buf) json.dump(self.data, open(self.path, 'w')) self.favlist_listWidget.clear() self.list_fav() if __name__ == '__main__': app = QApplication([]) w = Favorits() w.show() app.exec_()
normal
{ "blob_id": "14023785983f493af57189b3d96254efef2e33ae", "index": 8180, "step-1": "<mask token>\n\n\nclass Favorits(QDialog, Ui_DialogFavorit):\n <mask token>\n\n def __init__(self):\n super(Favorits, self).__init__()\n self.setupUi(self)\n self.buttonBox.button(QDialogButtonBox.Save).setText('Сохранить')\n self.buttonBox.button(QDialogButtonBox.Cancel).setText('Отмена')\n self.path = 'setting.json'\n self.setStyleSheet(open('static/style.qss').read())\n self.list_fav()\n self.plus_pb.setIcon(QIcon(':/icons/icons/plus.png'))\n self.minus_pb.setIcon(QIcon(':/icons/icons/minus.png'))\n self.plus_pb.clicked.connect(self.addfav)\n self.minus_pb.clicked.connect(self.delfav)\n\n def list_fav(self):\n try:\n self.data = json.load(open(self.path))\n for i in self.data['favorit']:\n self.favlist_listWidget.addItem(i)\n except FileNotFoundError:\n print('File with setting not found')\n except KeyError:\n self.data['favorit'] = []\n json.dump(self.data, open(self.path, 'w'))\n self.list_fav()\n <mask token>\n\n def delfav(self):\n buf = self.favlist_listWidget.currentItem().text()\n self.data['favorit'].remove(buf)\n json.dump(self.data, open(self.path, 'w'))\n self.favlist_listWidget.clear()\n self.list_fav()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Favorits(QDialog, Ui_DialogFavorit):\n <mask token>\n\n def __init__(self):\n super(Favorits, self).__init__()\n self.setupUi(self)\n self.buttonBox.button(QDialogButtonBox.Save).setText('Сохранить')\n self.buttonBox.button(QDialogButtonBox.Cancel).setText('Отмена')\n self.path = 'setting.json'\n self.setStyleSheet(open('static/style.qss').read())\n self.list_fav()\n self.plus_pb.setIcon(QIcon(':/icons/icons/plus.png'))\n self.minus_pb.setIcon(QIcon(':/icons/icons/minus.png'))\n self.plus_pb.clicked.connect(self.addfav)\n self.minus_pb.clicked.connect(self.delfav)\n\n def list_fav(self):\n try:\n self.data = json.load(open(self.path))\n for i in self.data['favorit']:\n self.favlist_listWidget.addItem(i)\n except FileNotFoundError:\n print('File with setting not found')\n except KeyError:\n self.data['favorit'] = []\n json.dump(self.data, open(self.path, 'w'))\n self.list_fav()\n\n def addfav(self):\n name = def_url.Input_stream()\n if name.exec_():\n link = name.url_stream_le.text()\n reg = 'http[s]?://'\n if re.match(reg, link) is not None:\n self.data['favorit'].append(link)\n json.dump(self.data, open(self.path, 'w'))\n self.favlist_listWidget.clear()\n self.list_fav()\n\n def delfav(self):\n buf = self.favlist_listWidget.currentItem().text()\n self.data['favorit'].remove(buf)\n json.dump(self.data, open(self.path, 'w'))\n self.favlist_listWidget.clear()\n self.list_fav()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Favorits(QDialog, Ui_DialogFavorit):\n \"\"\"docstring for Favorits\"\"\"\n\n def __init__(self):\n super(Favorits, self).__init__()\n self.setupUi(self)\n self.buttonBox.button(QDialogButtonBox.Save).setText('Сохранить')\n self.buttonBox.button(QDialogButtonBox.Cancel).setText('Отмена')\n self.path = 'setting.json'\n self.setStyleSheet(open('static/style.qss').read())\n self.list_fav()\n self.plus_pb.setIcon(QIcon(':/icons/icons/plus.png'))\n self.minus_pb.setIcon(QIcon(':/icons/icons/minus.png'))\n self.plus_pb.clicked.connect(self.addfav)\n self.minus_pb.clicked.connect(self.delfav)\n\n def list_fav(self):\n try:\n self.data = json.load(open(self.path))\n for i in self.data['favorit']:\n self.favlist_listWidget.addItem(i)\n except FileNotFoundError:\n print('File with setting not found')\n except KeyError:\n self.data['favorit'] = []\n json.dump(self.data, open(self.path, 'w'))\n self.list_fav()\n\n def addfav(self):\n name = def_url.Input_stream()\n if name.exec_():\n link = name.url_stream_le.text()\n reg = 'http[s]?://'\n if re.match(reg, link) is not None:\n self.data['favorit'].append(link)\n json.dump(self.data, open(self.path, 'w'))\n self.favlist_listWidget.clear()\n self.list_fav()\n\n def delfav(self):\n buf = self.favlist_listWidget.currentItem().text()\n self.data['favorit'].remove(buf)\n json.dump(self.data, open(self.path, 'w'))\n self.favlist_listWidget.clear()\n self.list_fav()\n\n\nif __name__ == '__main__':\n app = QApplication([])\n w = Favorits()\n w.show()\n app.exec_()\n", "step-4": "from PyQt5.QtWidgets import *\nfrom PyQt5.QtCore import *\nfrom PyQt5.QtGui import *\nfrom widgets.favorits.favorit_win import Ui_DialogFavorit\nimport json\nimport re\nfrom widgets.input_link import def_url\n\n\nclass Favorits(QDialog, Ui_DialogFavorit):\n \"\"\"docstring for Favorits\"\"\"\n\n def __init__(self):\n super(Favorits, self).__init__()\n self.setupUi(self)\n self.buttonBox.button(QDialogButtonBox.Save).setText('Сохранить')\n self.buttonBox.button(QDialogButtonBox.Cancel).setText('Отмена')\n self.path = 'setting.json'\n self.setStyleSheet(open('static/style.qss').read())\n self.list_fav()\n self.plus_pb.setIcon(QIcon(':/icons/icons/plus.png'))\n self.minus_pb.setIcon(QIcon(':/icons/icons/minus.png'))\n self.plus_pb.clicked.connect(self.addfav)\n self.minus_pb.clicked.connect(self.delfav)\n\n def list_fav(self):\n try:\n self.data = json.load(open(self.path))\n for i in self.data['favorit']:\n self.favlist_listWidget.addItem(i)\n except FileNotFoundError:\n print('File with setting not found')\n except KeyError:\n self.data['favorit'] = []\n json.dump(self.data, open(self.path, 'w'))\n self.list_fav()\n\n def addfav(self):\n name = def_url.Input_stream()\n if name.exec_():\n link = name.url_stream_le.text()\n reg = 'http[s]?://'\n if re.match(reg, link) is not None:\n self.data['favorit'].append(link)\n json.dump(self.data, open(self.path, 'w'))\n self.favlist_listWidget.clear()\n self.list_fav()\n\n def delfav(self):\n buf = self.favlist_listWidget.currentItem().text()\n self.data['favorit'].remove(buf)\n json.dump(self.data, open(self.path, 'w'))\n self.favlist_listWidget.clear()\n self.list_fav()\n\n\nif __name__ == '__main__':\n app = QApplication([])\n w = Favorits()\n w.show()\n app.exec_()\n", "step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n# @Date : 2016-03-15 16:39:32\n# @Author : Your Name ([email protected])\n# @Link : http://example.org\n# @Version : $Id$\n\nfrom PyQt5.QtWidgets import *\nfrom PyQt5.QtCore import *\nfrom PyQt5.QtGui import *\nfrom widgets.favorits.favorit_win import Ui_DialogFavorit\nimport json\nimport re\nfrom widgets.input_link import def_url\n#from favorit_win import Ui_DialogFavorit\n\n\nclass Favorits(QDialog, Ui_DialogFavorit):\n \"\"\"docstring for Favorits\"\"\"\n\n def __init__(self):\n super(Favorits, self).__init__()\n self.setupUi(self)\n self.buttonBox.button(QDialogButtonBox.Save).setText(\"Сохранить\")\n self.buttonBox.button(QDialogButtonBox.Cancel).setText(\"Отмена\")\n self.path = 'setting.json'\n self.setStyleSheet(open('static/style.qss').read())\n self.list_fav()\n self.plus_pb.setIcon(QIcon(\":/icons/icons/plus.png\"))\n self.minus_pb.setIcon(QIcon(\":/icons/icons/minus.png\"))\n self.plus_pb.clicked.connect(self.addfav)\n self.minus_pb.clicked.connect(self.delfav)\n\n def list_fav(self):\n try:\n self.data = json.load(open(self.path))\n for i in self.data['favorit']:\n self.favlist_listWidget.addItem(i)\n except FileNotFoundError:\n print(\"File with setting not found\")\n except KeyError:\n self.data['favorit'] = []\n json.dump(self.data, open(self.path, 'w'))\n self.list_fav()\n\n def addfav(self):\n name = def_url.Input_stream()\n if name.exec_():\n link = name.url_stream_le.text()\n reg = \"http[s]?://\"\n if re.match(reg, link) is not None:\n self.data['favorit'].append(link)\n json.dump(self.data, open(self.path, 'w'))\n\n self.favlist_listWidget.clear()\n self.list_fav()\n\n def delfav(self):\n buf = self.favlist_listWidget.currentItem().text()\n self.data['favorit'].remove(buf)\n json.dump(self.data, open(self.path, 'w'))\n self.favlist_listWidget.clear()\n self.list_fav()\n\n\nif __name__ == '__main__':\n app = QApplication([])\n w = Favorits()\n w.show()\n app.exec_()\n", "step-ids": [ 4, 5, 7, 8, 9 ] }
[ 4, 5, 7, 8, 9 ]