code
stringlengths
13
1.2M
order_type
stringclasses
1 value
original_example
dict
step_ids
listlengths
1
5
import tkinter import webbrowser ventana = tkinter.Tk() ventana.geometry("1920x1080") def test(): webbrowser.open_new_tab('Test.html') boton1 = tkinter.Button(ventana,text ="WEB", width = 10, height=5, command = test ); boton2 = tkinter.Button(ventana,text ="boton2", width = 10, height=5); boton3 = tkinter.Button(ventana,text ="boton3", width = 10, height=5); boton1.grid(row = 3, column = 0) boton2.grid(row = 4, column = 0) boton3.grid(row = 5, column = 0) ventana.mainloop()
normal
{ "blob_id": "8bf330dc7bee65ac9478722233477ebe5d0286c2", "index": 1102, "step-1": "<mask token>\n\n\ndef test():\n webbrowser.open_new_tab('Test.html')\n\n\n<mask token>\n", "step-2": "<mask token>\nventana.geometry('1920x1080')\n\n\ndef test():\n webbrowser.open_new_tab('Test.html')\n\n\n<mask token>\nboton1.grid(row=3, column=0)\nboton2.grid(row=4, column=0)\nboton3.grid(row=5, column=0)\nventana.mainloop()\n", "step-3": "<mask token>\nventana = tkinter.Tk()\nventana.geometry('1920x1080')\n\n\ndef test():\n webbrowser.open_new_tab('Test.html')\n\n\nboton1 = tkinter.Button(ventana, text='WEB', width=10, height=5, command=test)\nboton2 = tkinter.Button(ventana, text='boton2', width=10, height=5)\nboton3 = tkinter.Button(ventana, text='boton3', width=10, height=5)\nboton1.grid(row=3, column=0)\nboton2.grid(row=4, column=0)\nboton3.grid(row=5, column=0)\nventana.mainloop()\n", "step-4": "import tkinter\nimport webbrowser\nventana = tkinter.Tk()\nventana.geometry('1920x1080')\n\n\ndef test():\n webbrowser.open_new_tab('Test.html')\n\n\nboton1 = tkinter.Button(ventana, text='WEB', width=10, height=5, command=test)\nboton2 = tkinter.Button(ventana, text='boton2', width=10, height=5)\nboton3 = tkinter.Button(ventana, text='boton3', width=10, height=5)\nboton1.grid(row=3, column=0)\nboton2.grid(row=4, column=0)\nboton3.grid(row=5, column=0)\nventana.mainloop()\n", "step-5": "import tkinter\r\nimport webbrowser\r\nventana = tkinter.Tk()\r\nventana.geometry(\"1920x1080\")\r\n\r\ndef test():\r\n webbrowser.open_new_tab('Test.html')\r\n\r\nboton1 = tkinter.Button(ventana,text =\"WEB\", width = 10, height=5, command = test );\r\nboton2 = tkinter.Button(ventana,text =\"boton2\", width = 10, height=5);\r\nboton3 = tkinter.Button(ventana,text =\"boton3\", width = 10, height=5);\r\n\r\n\r\nboton1.grid(row = 3, column = 0)\r\nboton2.grid(row = 4, column = 0)\r\nboton3.grid(row = 5, column = 0)\r\n\r\nventana.mainloop()\r\n\r\n\r\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import gym import random import numpy as np import statistics from collections import Counter import tflearn from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.estimator import regression #setup the Cartpole environment env = gym.make("CartPole-v0") env.reset() #----------Explore CartPole-------------# #exploring the observations, rewards, actions def explore_cartpole(): for i_episode in range(2): observation = env.reset() for t in range(100): env.render() print(observation) action = env.action_space.sample() observation, reward, done, info = env.step(action) print("Action: ", action, "Rewards", reward) if done: print("Episode finished after {} timesteps".format(t+1)) break #explore_cartpole() #----------Collect Training Data-------------# #collect data from successful games by running x games #successful would be say, lasting more than 100 frames num_games = 20000 num_episodes = 201 #game would end at 200 episodes min_score = 75 def initial_games(): train_data = [] train_scores = [] #running our initial set of games for _ in range(num_games): game_data = [] prev_obs = [] score = 0 #running the game, frame by frame for _ in range(num_episodes): #choosing actions: randomly action = random.randrange(0,2) observation, reward, done, info = env.step(action) if len(prev_obs) > 0: game_data.append([prev_obs, action]) prev_obs = observation score += reward if done: #print("Score was: ", score) break #if the score was above the threshold #we will save the game in our training data #hence training on the better games if score >= min_score : train_scores.append(score) #converting the data into one-hot output for i in game_data: if i[1] == 0: output = [1, 0] else: output = [0, 1] train_data.append([i[0], output]) env.reset() return train_data #----------Build the FC NN model-------------# #building a simple multi-layer fully connected model #this model can be generally used to play games like cartpole #would try training the model on other games in OpenAI environment def nn_model(input_size): network = input_data(shape=[None, input_size, 1], name='input') network = fully_connected(network, 128, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 256, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 512, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 256, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 128, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 2, activation='softmax') network = regression(network, optimizer='adam', learning_rate=1e-3, loss='categorical_crossentropy', name='targets') model = tflearn.DNN(network, tensorboard_dir='log') return model #----------Train the model-------------# def train_model(train_data, model=False): x = np.array([i[0] for i in train_data]).reshape(-1, len(train_data[0][0]),1) y = [i[1] for i in train_data] if not model: model = nn_model(input_size = len(x[0])) model.fit({'input': x}, {'targets': y}, n_epoch = 5, snapshot_step=500, show_metric = True, run_id = 'openai_learning') return model train_data = initial_games() #print("Size of training data",len(train_data)) model = train_model(train_data) #----------Predict actions for the games-------------# num_final_games = 10 target_episodes = 201 all_rewards = [] all_actions = [] for _ in range(num_final_games): total_score = 0 prev_obs = [] env.reset() for _ in range(target_episodes): #env.render() #instead of randomly choosing the action, predict the actions if len(prev_obs) == 0: action = random.randrange(0,2) else: action = np.argmax(model.predict(prev_obs.reshape(-1,len(prev_obs),1))[0]) all_actions.append(action) #let's run the game observation, reward, done, info = env.step(action) prev_obs = observation total_score += reward if done: break all_rewards.append(total_score) #----------Print results-------------# print('Average reward:',np.mean(all_rewards), '+-', np.std(all_rewards)) print('Max reward:', max(all_rewards))
normal
{ "blob_id": "7789e54acc02fe0277ff80ce14efbcdc4ee6e7f1", "index": 8009, "step-1": "<mask token>\n\n\ndef explore_cartpole():\n for i_episode in range(2):\n observation = env.reset()\n for t in range(100):\n env.render()\n print(observation)\n action = env.action_space.sample()\n observation, reward, done, info = env.step(action)\n print('Action: ', action, 'Rewards', reward)\n if done:\n print('Episode finished after {} timesteps'.format(t + 1))\n break\n\n\n<mask token>\n\n\ndef initial_games():\n train_data = []\n train_scores = []\n for _ in range(num_games):\n game_data = []\n prev_obs = []\n score = 0\n for _ in range(num_episodes):\n action = random.randrange(0, 2)\n observation, reward, done, info = env.step(action)\n if len(prev_obs) > 0:\n game_data.append([prev_obs, action])\n prev_obs = observation\n score += reward\n if done:\n break\n if score >= min_score:\n train_scores.append(score)\n for i in game_data:\n if i[1] == 0:\n output = [1, 0]\n else:\n output = [0, 1]\n train_data.append([i[0], output])\n env.reset()\n return train_data\n\n\n<mask token>\n", "step-2": "<mask token>\nenv.reset()\n\n\ndef explore_cartpole():\n for i_episode in range(2):\n observation = env.reset()\n for t in range(100):\n env.render()\n print(observation)\n action = env.action_space.sample()\n observation, reward, done, info = env.step(action)\n print('Action: ', action, 'Rewards', reward)\n if done:\n print('Episode finished after {} timesteps'.format(t + 1))\n break\n\n\n<mask token>\n\n\ndef initial_games():\n train_data = []\n train_scores = []\n for _ in range(num_games):\n game_data = []\n prev_obs = []\n score = 0\n for _ in range(num_episodes):\n action = random.randrange(0, 2)\n observation, reward, done, info = env.step(action)\n if len(prev_obs) > 0:\n game_data.append([prev_obs, action])\n prev_obs = observation\n score += reward\n if done:\n break\n if score >= min_score:\n train_scores.append(score)\n for i in game_data:\n if i[1] == 0:\n output = [1, 0]\n else:\n output = [0, 1]\n train_data.append([i[0], output])\n env.reset()\n return train_data\n\n\ndef nn_model(input_size):\n network = input_data(shape=[None, input_size, 1], name='input')\n network = fully_connected(network, 128, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 256, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 512, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 256, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 128, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 2, activation='softmax')\n network = regression(network, optimizer='adam', learning_rate=0.001,\n loss='categorical_crossentropy', name='targets')\n model = tflearn.DNN(network, tensorboard_dir='log')\n return model\n\n\ndef train_model(train_data, model=False):\n x = np.array([i[0] for i in train_data]).reshape(-1, len(train_data[0][\n 0]), 1)\n y = [i[1] for i in train_data]\n if not model:\n model = nn_model(input_size=len(x[0]))\n model.fit({'input': x}, {'targets': y}, n_epoch=5, snapshot_step=500,\n show_metric=True, run_id='openai_learning')\n return model\n\n\n<mask token>\nfor _ in range(num_final_games):\n total_score = 0\n prev_obs = []\n env.reset()\n for _ in range(target_episodes):\n if len(prev_obs) == 0:\n action = random.randrange(0, 2)\n else:\n action = np.argmax(model.predict(prev_obs.reshape(-1, len(\n prev_obs), 1))[0])\n all_actions.append(action)\n observation, reward, done, info = env.step(action)\n prev_obs = observation\n total_score += reward\n if done:\n break\n all_rewards.append(total_score)\nprint('Average reward:', np.mean(all_rewards), '+-', np.std(all_rewards))\nprint('Max reward:', max(all_rewards))\n", "step-3": "<mask token>\nenv = gym.make('CartPole-v0')\nenv.reset()\n\n\ndef explore_cartpole():\n for i_episode in range(2):\n observation = env.reset()\n for t in range(100):\n env.render()\n print(observation)\n action = env.action_space.sample()\n observation, reward, done, info = env.step(action)\n print('Action: ', action, 'Rewards', reward)\n if done:\n print('Episode finished after {} timesteps'.format(t + 1))\n break\n\n\nnum_games = 20000\nnum_episodes = 201\nmin_score = 75\n\n\ndef initial_games():\n train_data = []\n train_scores = []\n for _ in range(num_games):\n game_data = []\n prev_obs = []\n score = 0\n for _ in range(num_episodes):\n action = random.randrange(0, 2)\n observation, reward, done, info = env.step(action)\n if len(prev_obs) > 0:\n game_data.append([prev_obs, action])\n prev_obs = observation\n score += reward\n if done:\n break\n if score >= min_score:\n train_scores.append(score)\n for i in game_data:\n if i[1] == 0:\n output = [1, 0]\n else:\n output = [0, 1]\n train_data.append([i[0], output])\n env.reset()\n return train_data\n\n\ndef nn_model(input_size):\n network = input_data(shape=[None, input_size, 1], name='input')\n network = fully_connected(network, 128, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 256, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 512, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 256, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 128, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 2, activation='softmax')\n network = regression(network, optimizer='adam', learning_rate=0.001,\n loss='categorical_crossentropy', name='targets')\n model = tflearn.DNN(network, tensorboard_dir='log')\n return model\n\n\ndef train_model(train_data, model=False):\n x = np.array([i[0] for i in train_data]).reshape(-1, len(train_data[0][\n 0]), 1)\n y = [i[1] for i in train_data]\n if not model:\n model = nn_model(input_size=len(x[0]))\n model.fit({'input': x}, {'targets': y}, n_epoch=5, snapshot_step=500,\n show_metric=True, run_id='openai_learning')\n return model\n\n\ntrain_data = initial_games()\nmodel = train_model(train_data)\nnum_final_games = 10\ntarget_episodes = 201\nall_rewards = []\nall_actions = []\nfor _ in range(num_final_games):\n total_score = 0\n prev_obs = []\n env.reset()\n for _ in range(target_episodes):\n if len(prev_obs) == 0:\n action = random.randrange(0, 2)\n else:\n action = np.argmax(model.predict(prev_obs.reshape(-1, len(\n prev_obs), 1))[0])\n all_actions.append(action)\n observation, reward, done, info = env.step(action)\n prev_obs = observation\n total_score += reward\n if done:\n break\n all_rewards.append(total_score)\nprint('Average reward:', np.mean(all_rewards), '+-', np.std(all_rewards))\nprint('Max reward:', max(all_rewards))\n", "step-4": "import gym\nimport random\nimport numpy as np\nimport statistics\nfrom collections import Counter\nimport tflearn\nfrom tflearn.layers.core import input_data, dropout, fully_connected\nfrom tflearn.layers.estimator import regression\nenv = gym.make('CartPole-v0')\nenv.reset()\n\n\ndef explore_cartpole():\n for i_episode in range(2):\n observation = env.reset()\n for t in range(100):\n env.render()\n print(observation)\n action = env.action_space.sample()\n observation, reward, done, info = env.step(action)\n print('Action: ', action, 'Rewards', reward)\n if done:\n print('Episode finished after {} timesteps'.format(t + 1))\n break\n\n\nnum_games = 20000\nnum_episodes = 201\nmin_score = 75\n\n\ndef initial_games():\n train_data = []\n train_scores = []\n for _ in range(num_games):\n game_data = []\n prev_obs = []\n score = 0\n for _ in range(num_episodes):\n action = random.randrange(0, 2)\n observation, reward, done, info = env.step(action)\n if len(prev_obs) > 0:\n game_data.append([prev_obs, action])\n prev_obs = observation\n score += reward\n if done:\n break\n if score >= min_score:\n train_scores.append(score)\n for i in game_data:\n if i[1] == 0:\n output = [1, 0]\n else:\n output = [0, 1]\n train_data.append([i[0], output])\n env.reset()\n return train_data\n\n\ndef nn_model(input_size):\n network = input_data(shape=[None, input_size, 1], name='input')\n network = fully_connected(network, 128, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 256, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 512, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 256, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 128, activation='relu')\n network = dropout(network, 0.8)\n network = fully_connected(network, 2, activation='softmax')\n network = regression(network, optimizer='adam', learning_rate=0.001,\n loss='categorical_crossentropy', name='targets')\n model = tflearn.DNN(network, tensorboard_dir='log')\n return model\n\n\ndef train_model(train_data, model=False):\n x = np.array([i[0] for i in train_data]).reshape(-1, len(train_data[0][\n 0]), 1)\n y = [i[1] for i in train_data]\n if not model:\n model = nn_model(input_size=len(x[0]))\n model.fit({'input': x}, {'targets': y}, n_epoch=5, snapshot_step=500,\n show_metric=True, run_id='openai_learning')\n return model\n\n\ntrain_data = initial_games()\nmodel = train_model(train_data)\nnum_final_games = 10\ntarget_episodes = 201\nall_rewards = []\nall_actions = []\nfor _ in range(num_final_games):\n total_score = 0\n prev_obs = []\n env.reset()\n for _ in range(target_episodes):\n if len(prev_obs) == 0:\n action = random.randrange(0, 2)\n else:\n action = np.argmax(model.predict(prev_obs.reshape(-1, len(\n prev_obs), 1))[0])\n all_actions.append(action)\n observation, reward, done, info = env.step(action)\n prev_obs = observation\n total_score += reward\n if done:\n break\n all_rewards.append(total_score)\nprint('Average reward:', np.mean(all_rewards), '+-', np.std(all_rewards))\nprint('Max reward:', max(all_rewards))\n", "step-5": "import gym\nimport random \nimport numpy as np\nimport statistics\nfrom collections import Counter\n\nimport tflearn\nfrom tflearn.layers.core import input_data, dropout, fully_connected\nfrom tflearn.layers.estimator import regression\n\n#setup the Cartpole environment\nenv = gym.make(\"CartPole-v0\")\nenv.reset()\n\n\n#----------Explore CartPole-------------#\n#exploring the observations, rewards, actions\ndef explore_cartpole():\n\tfor i_episode in range(2):\n\t observation = env.reset()\n\t for t in range(100):\n\t env.render()\n\t print(observation)\n\t action = env.action_space.sample()\n\t observation, reward, done, info = env.step(action)\n\t print(\"Action: \", action, \"Rewards\", reward)\n\t if done:\n\t print(\"Episode finished after {} timesteps\".format(t+1))\n\t break\n\n#explore_cartpole() \n\n#----------Collect Training Data-------------#\n#collect data from successful games by running x games\n#successful would be say, lasting more than 100 frames\nnum_games = 20000\nnum_episodes = 201 #game would end at 200 episodes\nmin_score = 75\n\ndef initial_games():\n\n\ttrain_data = []\n\ttrain_scores = []\n\n\t#running our initial set of games\n\tfor _ in range(num_games):\n\t\tgame_data = []\n\t\tprev_obs = []\n\t\tscore = 0\n\n\t\t#running the game, frame by frame\n\t\tfor _ in range(num_episodes):\n\t\t\t#choosing actions: randomly\n\t\t\taction = random.randrange(0,2)\n\t\t\tobservation, reward, done, info = env.step(action)\n\n\t\t\tif len(prev_obs) > 0: \n\t\t\t\tgame_data.append([prev_obs, action])\n\n\t\t\tprev_obs = observation\n\t\t\tscore += reward\n\n\t\t\tif done:\n\t\t\t\t#print(\"Score was: \", score)\n\t\t\t\tbreak\n\n\t\t#if the score was above the threshold\n\t\t#we will save the game in our training data\n\t\t#hence training on the better games\n\t\tif score >= min_score :\n\t\t\ttrain_scores.append(score)\n\t\t\t#converting the data into one-hot output\t\t\n\t\t\tfor i in game_data:\t\t\t\n\t\t\t\tif i[1] == 0:\n\t\t\t\t\toutput = [1, 0]\n\t\t\t\telse:\n\t\t\t\t\toutput = [0, 1]\n\t\t\t\t\n\t\t\t\ttrain_data.append([i[0], output])\n\n\t\tenv.reset()\n\n\treturn train_data\n\n\n#----------Build the FC NN model-------------#\n#building a simple multi-layer fully connected model\n#this model can be generally used to play games like cartpole\n#would try training the model on other games in OpenAI environment\n\ndef nn_model(input_size):\n\n network = input_data(shape=[None, input_size, 1], name='input')\n\n network = fully_connected(network, 128, activation='relu')\n network = dropout(network, 0.8)\n\n network = fully_connected(network, 256, activation='relu')\n network = dropout(network, 0.8)\n\n network = fully_connected(network, 512, activation='relu')\n network = dropout(network, 0.8)\n\n network = fully_connected(network, 256, activation='relu')\n network = dropout(network, 0.8)\n\n network = fully_connected(network, 128, activation='relu')\n network = dropout(network, 0.8)\n\n network = fully_connected(network, 2, activation='softmax')\n network = regression(network, optimizer='adam', learning_rate=1e-3, loss='categorical_crossentropy', name='targets')\n model = tflearn.DNN(network, tensorboard_dir='log')\n\n return model\n\n\n\n#----------Train the model-------------#\ndef train_model(train_data, model=False):\n\n\tx = np.array([i[0] for i in train_data]).reshape(-1, len(train_data[0][0]),1)\n\ty = [i[1] for i in train_data]\n\n\tif not model:\n\t\tmodel = nn_model(input_size = len(x[0]))\n\n\tmodel.fit({'input': x}, {'targets': y}, n_epoch = 5, snapshot_step=500, \n\t\tshow_metric = True, run_id = 'openai_learning')\n\treturn model\n\ntrain_data = initial_games()\n#print(\"Size of training data\",len(train_data))\n\nmodel = train_model(train_data)\n\n#----------Predict actions for the games-------------#\nnum_final_games = 10\ntarget_episodes = 201\nall_rewards = []\nall_actions = []\n\nfor _ in range(num_final_games):\n\ttotal_score = 0\n\tprev_obs = []\n\tenv.reset()\n\n\tfor _ in range(target_episodes):\n\n\t\t#env.render()\n\n\t\t#instead of randomly choosing the action, predict the actions\n\t\tif len(prev_obs) == 0:\n\t\t\taction = random.randrange(0,2)\n\t\telse:\n\t\t\taction = np.argmax(model.predict(prev_obs.reshape(-1,len(prev_obs),1))[0])\n\t\t\n\t\tall_actions.append(action)\n\n\t\t#let's run the game\n\t\tobservation, reward, done, info = env.step(action)\n\t\t\n\t\tprev_obs = observation\n\t\ttotal_score += reward\n\n\t\tif done: \n\t\t\tbreak\n\n\tall_rewards.append(total_score)\n\n#----------Print results-------------#\nprint('Average reward:',np.mean(all_rewards), '+-', np.std(all_rewards))\nprint('Max reward:', max(all_rewards))\n", "step-ids": [ 2, 5, 6, 7, 8 ] }
[ 2, 5, 6, 7, 8 ]
import time,random,os from tkinter import * def restart(): root.destroy() os.startfile(r"data\programs\game with tkinter.py") def disableButton(): global l,restartButton,start b1.config(state="disabled") b2.config(state="disabled") b3.config(state="disabled") b4.config(state="disabled") b5.config(state="disabled") b6.config(state="disabled") b7.config(state="disabled") b8.config(state="disabled") b9.config(state="disabled") start.config(state="disabled") restartButton.config(state="normal",command=restart,text=" --->press to restart<--- ") def funForB1(): global notPresentList,element,l,start ans = notPresentList[0] == element if ans: l.config(image=image1) else: l.config(image=image2) disableButton() def funForB2(): global notPresentList,element,l ans = notPresentList[1] == element if ans: l.config(image=image1) else: l.config(image=image2) disableButton() def funForB3(): global notPresentList,element,l ans = notPresentList[2] == element if ans: l.config(image=image1) else: l.config(image=image2) disableButton() def funForB4(): global notPresentList,element,l ans = notPresentList[3] == element if ans: l.config(image=image1) else: l.config(image=image2) disableButton() def funForB5(): global notPresentList,element,l ans = notPresentList[4] == element if ans: l.config(image=image1) else: l.config(image=image2) disableButton() def funForB6(): global notPresentList,element,l ans = notPresentList[5] == element if ans: l.config(image=image1) else: l.config(image=image2) disableButton() def funForB7(): global notPresentList,element,l ans = notPresentList[6] == element if ans: l.config(image=image1) else: l.config(image=image2) disableButton() def funForB8(): global notPresentList,element,l ans = notPresentList[7] == element if ans: l.config(image=image1) else: l.config(image=image2) disableButton() def funForB9(): global notPresentList,element,l ans = notPresentList[8] == element if ans: l.config(image=image1) else: l.config(image=image2) disableButton() def present(): with open(r"data\database\present.txt", "r") as file: content = file.read().split("\n") presentList = [ content[random.randint(0,400)], content[random.randint(0,400)], content[random.randint(0,400)], content[random.randint(0,400)], content[random.randint(0,400)], content[random.randint(0,400)], content[random.randint(0,400)], content[random.randint(0,400)], content[random.randint(0,400)] ] element = presentList[random.randint(0,8)] return (presentList,element) def notPresent(): global buttonList,start with open(r"data\database\notpresent.txt","r") as file: content = file.read().split("\n") notPresentList = [ content[random.randint(0,35)], content[random.randint(0,35)], content[random.randint(0,35)], content[random.randint(0,35)], content[random.randint(0,35)], content[random.randint(0,35)], content[random.randint(0,35)], content[random.randint(0,35)], ] start.config(state="normal") obj = present() presentList,element = obj[0],obj[1] for i in range(9): buttonList[i].config(text = presentList[i], state="disabled") notPresentList.insert(random.randint(0,9),element) return (notPresentList,element) def start(): global buttonList,start,notPresentList,element start.config(state="disabled") for i in range(9): buttonList[i].config(text = notPresentList[i], state="normal") # main root =Tk() root.title("Memory Game") root.geometry("400x500") root.resizable(0,0) root.config(bg="white") image1 = PhotoImage(file=r"data\img\smiley.png") image2 = PhotoImage(file=r"data\img\pleading.png") start = Button(root, bg="black", fg="white", text="-->Start<--", font="comicsansms 15 bold", command=start, relief="raised",state="normal", bd=2) start.place(x=150,y=110) frameMain = Frame(root, relief="flat", bd=1, background="white", width=400, height=417) frameMain.place(x=10, y=150) image=PhotoImage(file=r"data\img\emoji.png") l=Label(root,image=image ,font="comicsansms 15 bold", fg="black", bg="white") l.place(x=180,y=5) b1=Button(frameMain, bg='cyan', text="plz start", fg="white", width=10, height=5, relief='raised',bd=3, state="normal",disabledforeground="white",command = funForB1) b2=Button(frameMain, bg='teal', text="plz start", fg="white", width=10, height=5, relief='raised',bd=3, state="normal",disabledforeground="white",command = funForB2) b3=Button(frameMain, bg='cyan', text="plz start", fg="white", width=10, height=5, relief='raised',bd=3, state="normal",disabledforeground="white",command = funForB3) b4=Button(frameMain, bg='teal', text="plz start", fg="white", width=10, height=5, relief='raised',bd=3, state="normal",disabledforeground="white",command = funForB4) b5=Button(frameMain, bg='cyan', text="plz start", fg="white", width=10, height=5, relief='raised',bd=3, state="normal",disabledforeground="white",command = funForB5) b6=Button(frameMain, bg='teal', text="plz start", fg="white", width=10, height=5, relief='raised',bd=3, state="normal",disabledforeground="white",command = funForB6) b7=Button(frameMain, bg='cyan', text="plz start", fg="white", width=10, height=5, relief='raised',bd=3, state="normal",disabledforeground="white",command = funForB7) b8=Button(frameMain, bg='teal', text="plz start", fg="white", width=10, height=5, relief='raised',bd=3, state="normal",disabledforeground="white",command = funForB8) b9=Button(frameMain, bg='cyan', text="plz start", fg="white", width=10, height=5, relief='raised',bd=3, state="normal",disabledforeground="white",command = funForB9) b1.place(x=10,y=16) b2.place(x=150,y=16) b3.place(x=290,y=16) b4.place(x=10,y=110) b5.place(x=150,y=110) b6.place(x=290,y=110) b7.place(x=10,y=204) b8.place(x=150,y=204) b9.place(x=290,y=204) buttonList = [b1,b2,b3,b4,b5,b6,b7,b8,b9] restartButton = Button(root, bg="teal", fg="white", text="!!! Remember these items !!!", font="comicsansms 15 bold", relief="raised",state="disabled",disabledforeground="white") restartButton.place(x=60,y=460) obj = notPresent() notPresentList,element = obj[0],obj[1] root.mainloop()
normal
{ "blob_id": "e70c5c9a62faa4c501c0f103ce0a0a419aaf4301", "index": 2096, "step-1": "<mask token>\n\n\ndef restart():\n root.destroy()\n os.startfile('data\\\\programs\\\\game with tkinter.py')\n\n\ndef disableButton():\n global l, restartButton, start\n b1.config(state='disabled')\n b2.config(state='disabled')\n b3.config(state='disabled')\n b4.config(state='disabled')\n b5.config(state='disabled')\n b6.config(state='disabled')\n b7.config(state='disabled')\n b8.config(state='disabled')\n b9.config(state='disabled')\n start.config(state='disabled')\n restartButton.config(state='normal', command=restart, text=\n ' --->press to restart<--- ')\n\n\n<mask token>\n\n\ndef funForB3():\n global notPresentList, element, l\n ans = notPresentList[2] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB4():\n global notPresentList, element, l\n ans = notPresentList[3] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB5():\n global notPresentList, element, l\n ans = notPresentList[4] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB6():\n global notPresentList, element, l\n ans = notPresentList[5] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB7():\n global notPresentList, element, l\n ans = notPresentList[6] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB8():\n global notPresentList, element, l\n ans = notPresentList[7] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB9():\n global notPresentList, element, l\n ans = notPresentList[8] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef present():\n with open('data\\\\database\\\\present.txt', 'r') as file:\n content = file.read().split('\\n')\n presentList = [content[random.randint(0, 400)], content[random.\n randint(0, 400)], content[random.randint(0, 400)], content[\n random.randint(0, 400)], content[random.randint(0, 400)],\n content[random.randint(0, 400)], content[random.randint(0, 400)\n ], content[random.randint(0, 400)], content[random.randint(0, 400)]\n ]\n element = presentList[random.randint(0, 8)]\n return presentList, element\n\n\ndef notPresent():\n global buttonList, start\n with open('data\\\\database\\\\notpresent.txt', 'r') as file:\n content = file.read().split('\\n')\n notPresentList = [content[random.randint(0, 35)], content[random.\n randint(0, 35)], content[random.randint(0, 35)], content[random\n .randint(0, 35)], content[random.randint(0, 35)], content[\n random.randint(0, 35)], content[random.randint(0, 35)], content\n [random.randint(0, 35)]]\n start.config(state='normal')\n obj = present()\n presentList, element = obj[0], obj[1]\n for i in range(9):\n buttonList[i].config(text=presentList[i], state='disabled')\n notPresentList.insert(random.randint(0, 9), element)\n return notPresentList, element\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef restart():\n root.destroy()\n os.startfile('data\\\\programs\\\\game with tkinter.py')\n\n\ndef disableButton():\n global l, restartButton, start\n b1.config(state='disabled')\n b2.config(state='disabled')\n b3.config(state='disabled')\n b4.config(state='disabled')\n b5.config(state='disabled')\n b6.config(state='disabled')\n b7.config(state='disabled')\n b8.config(state='disabled')\n b9.config(state='disabled')\n start.config(state='disabled')\n restartButton.config(state='normal', command=restart, text=\n ' --->press to restart<--- ')\n\n\n<mask token>\n\n\ndef funForB2():\n global notPresentList, element, l\n ans = notPresentList[1] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB3():\n global notPresentList, element, l\n ans = notPresentList[2] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB4():\n global notPresentList, element, l\n ans = notPresentList[3] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB5():\n global notPresentList, element, l\n ans = notPresentList[4] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB6():\n global notPresentList, element, l\n ans = notPresentList[5] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB7():\n global notPresentList, element, l\n ans = notPresentList[6] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB8():\n global notPresentList, element, l\n ans = notPresentList[7] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB9():\n global notPresentList, element, l\n ans = notPresentList[8] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef present():\n with open('data\\\\database\\\\present.txt', 'r') as file:\n content = file.read().split('\\n')\n presentList = [content[random.randint(0, 400)], content[random.\n randint(0, 400)], content[random.randint(0, 400)], content[\n random.randint(0, 400)], content[random.randint(0, 400)],\n content[random.randint(0, 400)], content[random.randint(0, 400)\n ], content[random.randint(0, 400)], content[random.randint(0, 400)]\n ]\n element = presentList[random.randint(0, 8)]\n return presentList, element\n\n\ndef notPresent():\n global buttonList, start\n with open('data\\\\database\\\\notpresent.txt', 'r') as file:\n content = file.read().split('\\n')\n notPresentList = [content[random.randint(0, 35)], content[random.\n randint(0, 35)], content[random.randint(0, 35)], content[random\n .randint(0, 35)], content[random.randint(0, 35)], content[\n random.randint(0, 35)], content[random.randint(0, 35)], content\n [random.randint(0, 35)]]\n start.config(state='normal')\n obj = present()\n presentList, element = obj[0], obj[1]\n for i in range(9):\n buttonList[i].config(text=presentList[i], state='disabled')\n notPresentList.insert(random.randint(0, 9), element)\n return notPresentList, element\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef restart():\n root.destroy()\n os.startfile('data\\\\programs\\\\game with tkinter.py')\n\n\ndef disableButton():\n global l, restartButton, start\n b1.config(state='disabled')\n b2.config(state='disabled')\n b3.config(state='disabled')\n b4.config(state='disabled')\n b5.config(state='disabled')\n b6.config(state='disabled')\n b7.config(state='disabled')\n b8.config(state='disabled')\n b9.config(state='disabled')\n start.config(state='disabled')\n restartButton.config(state='normal', command=restart, text=\n ' --->press to restart<--- ')\n\n\ndef funForB1():\n global notPresentList, element, l, start\n ans = notPresentList[0] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB2():\n global notPresentList, element, l\n ans = notPresentList[1] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB3():\n global notPresentList, element, l\n ans = notPresentList[2] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB4():\n global notPresentList, element, l\n ans = notPresentList[3] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB5():\n global notPresentList, element, l\n ans = notPresentList[4] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB6():\n global notPresentList, element, l\n ans = notPresentList[5] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB7():\n global notPresentList, element, l\n ans = notPresentList[6] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB8():\n global notPresentList, element, l\n ans = notPresentList[7] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB9():\n global notPresentList, element, l\n ans = notPresentList[8] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef present():\n with open('data\\\\database\\\\present.txt', 'r') as file:\n content = file.read().split('\\n')\n presentList = [content[random.randint(0, 400)], content[random.\n randint(0, 400)], content[random.randint(0, 400)], content[\n random.randint(0, 400)], content[random.randint(0, 400)],\n content[random.randint(0, 400)], content[random.randint(0, 400)\n ], content[random.randint(0, 400)], content[random.randint(0, 400)]\n ]\n element = presentList[random.randint(0, 8)]\n return presentList, element\n\n\ndef notPresent():\n global buttonList, start\n with open('data\\\\database\\\\notpresent.txt', 'r') as file:\n content = file.read().split('\\n')\n notPresentList = [content[random.randint(0, 35)], content[random.\n randint(0, 35)], content[random.randint(0, 35)], content[random\n .randint(0, 35)], content[random.randint(0, 35)], content[\n random.randint(0, 35)], content[random.randint(0, 35)], content\n [random.randint(0, 35)]]\n start.config(state='normal')\n obj = present()\n presentList, element = obj[0], obj[1]\n for i in range(9):\n buttonList[i].config(text=presentList[i], state='disabled')\n notPresentList.insert(random.randint(0, 9), element)\n return notPresentList, element\n\n\ndef start():\n global buttonList, start, notPresentList, element\n start.config(state='disabled')\n for i in range(9):\n buttonList[i].config(text=notPresentList[i], state='normal')\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef restart():\n root.destroy()\n os.startfile('data\\\\programs\\\\game with tkinter.py')\n\n\ndef disableButton():\n global l, restartButton, start\n b1.config(state='disabled')\n b2.config(state='disabled')\n b3.config(state='disabled')\n b4.config(state='disabled')\n b5.config(state='disabled')\n b6.config(state='disabled')\n b7.config(state='disabled')\n b8.config(state='disabled')\n b9.config(state='disabled')\n start.config(state='disabled')\n restartButton.config(state='normal', command=restart, text=\n ' --->press to restart<--- ')\n\n\ndef funForB1():\n global notPresentList, element, l, start\n ans = notPresentList[0] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB2():\n global notPresentList, element, l\n ans = notPresentList[1] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB3():\n global notPresentList, element, l\n ans = notPresentList[2] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB4():\n global notPresentList, element, l\n ans = notPresentList[3] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB5():\n global notPresentList, element, l\n ans = notPresentList[4] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB6():\n global notPresentList, element, l\n ans = notPresentList[5] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB7():\n global notPresentList, element, l\n ans = notPresentList[6] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB8():\n global notPresentList, element, l\n ans = notPresentList[7] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef funForB9():\n global notPresentList, element, l\n ans = notPresentList[8] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef present():\n with open('data\\\\database\\\\present.txt', 'r') as file:\n content = file.read().split('\\n')\n presentList = [content[random.randint(0, 400)], content[random.\n randint(0, 400)], content[random.randint(0, 400)], content[\n random.randint(0, 400)], content[random.randint(0, 400)],\n content[random.randint(0, 400)], content[random.randint(0, 400)\n ], content[random.randint(0, 400)], content[random.randint(0, 400)]\n ]\n element = presentList[random.randint(0, 8)]\n return presentList, element\n\n\ndef notPresent():\n global buttonList, start\n with open('data\\\\database\\\\notpresent.txt', 'r') as file:\n content = file.read().split('\\n')\n notPresentList = [content[random.randint(0, 35)], content[random.\n randint(0, 35)], content[random.randint(0, 35)], content[random\n .randint(0, 35)], content[random.randint(0, 35)], content[\n random.randint(0, 35)], content[random.randint(0, 35)], content\n [random.randint(0, 35)]]\n start.config(state='normal')\n obj = present()\n presentList, element = obj[0], obj[1]\n for i in range(9):\n buttonList[i].config(text=presentList[i], state='disabled')\n notPresentList.insert(random.randint(0, 9), element)\n return notPresentList, element\n\n\ndef start():\n global buttonList, start, notPresentList, element\n start.config(state='disabled')\n for i in range(9):\n buttonList[i].config(text=notPresentList[i], state='normal')\n\n\n<mask token>\nroot.title('Memory Game')\nroot.geometry('400x500')\nroot.resizable(0, 0)\nroot.config(bg='white')\n<mask token>\nstart.place(x=150, y=110)\n<mask token>\nframeMain.place(x=10, y=150)\n<mask token>\nl.place(x=180, y=5)\n<mask token>\nb1.place(x=10, y=16)\nb2.place(x=150, y=16)\nb3.place(x=290, y=16)\nb4.place(x=10, y=110)\nb5.place(x=150, y=110)\nb6.place(x=290, y=110)\nb7.place(x=10, y=204)\nb8.place(x=150, y=204)\nb9.place(x=290, y=204)\n<mask token>\nrestartButton.place(x=60, y=460)\n<mask token>\nroot.mainloop()\n", "step-5": "import time,random,os\nfrom tkinter import *\n\ndef restart():\n root.destroy()\n os.startfile(r\"data\\programs\\game with tkinter.py\")\n \ndef disableButton():\n global l,restartButton,start\n b1.config(state=\"disabled\")\n b2.config(state=\"disabled\")\n b3.config(state=\"disabled\")\n b4.config(state=\"disabled\")\n b5.config(state=\"disabled\")\n b6.config(state=\"disabled\")\n b7.config(state=\"disabled\")\n b8.config(state=\"disabled\")\n b9.config(state=\"disabled\")\n start.config(state=\"disabled\")\n restartButton.config(state=\"normal\",command=restart,text=\" --->press to restart<--- \")\n \ndef funForB1():\n global notPresentList,element,l,start\n ans = notPresentList[0] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\ndef funForB2():\n global notPresentList,element,l\n ans = notPresentList[1] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\ndef funForB3():\n global notPresentList,element,l\n ans = notPresentList[2] == element\n if ans:\n \n l.config(image=image1)\n else:\n\n l.config(image=image2)\n disableButton()\n\ndef funForB4():\n global notPresentList,element,l\n ans = notPresentList[3] == element\n if ans:\n\n l.config(image=image1)\n else:\n\n l.config(image=image2)\n disableButton()\n\ndef funForB5():\n global notPresentList,element,l\n ans = notPresentList[4] == element\n if ans:\n\n l.config(image=image1)\n else:\n\n l.config(image=image2)\n disableButton()\n\ndef funForB6():\n global notPresentList,element,l\n ans = notPresentList[5] == element\n if ans:\n\n l.config(image=image1)\n else:\n\n l.config(image=image2)\n disableButton()\n\ndef funForB7():\n global notPresentList,element,l\n ans = notPresentList[6] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\ndef funForB8():\n global notPresentList,element,l\n ans = notPresentList[7] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\ndef funForB9():\n global notPresentList,element,l\n ans = notPresentList[8] == element\n if ans:\n l.config(image=image1)\n else:\n l.config(image=image2)\n disableButton()\n\n\ndef present():\n with open(r\"data\\database\\present.txt\", \"r\") as file:\n content = file.read().split(\"\\n\")\n presentList = [\n content[random.randint(0,400)],\n content[random.randint(0,400)],\n content[random.randint(0,400)],\n content[random.randint(0,400)],\n content[random.randint(0,400)],\n content[random.randint(0,400)],\n content[random.randint(0,400)],\n content[random.randint(0,400)],\n content[random.randint(0,400)]\n ]\n \n element = presentList[random.randint(0,8)]\n return (presentList,element)\n\ndef notPresent():\n global buttonList,start\n with open(r\"data\\database\\notpresent.txt\",\"r\") as file:\n content = file.read().split(\"\\n\")\n notPresentList = [\n content[random.randint(0,35)],\n content[random.randint(0,35)],\n content[random.randint(0,35)],\n content[random.randint(0,35)],\n content[random.randint(0,35)],\n content[random.randint(0,35)],\n content[random.randint(0,35)],\n content[random.randint(0,35)],\n ]\n start.config(state=\"normal\")\n obj = present()\n presentList,element = obj[0],obj[1]\n for i in range(9):\n buttonList[i].config(text = presentList[i], state=\"disabled\")\n notPresentList.insert(random.randint(0,9),element)\n\n return (notPresentList,element)\n\ndef start():\n global buttonList,start,notPresentList,element\n start.config(state=\"disabled\")\n\n for i in range(9):\n buttonList[i].config(text = notPresentList[i], state=\"normal\")\n\n \n \n\n \n# main\n\nroot =Tk()\nroot.title(\"Memory Game\")\nroot.geometry(\"400x500\")\nroot.resizable(0,0)\nroot.config(bg=\"white\")\n\nimage1 = PhotoImage(file=r\"data\\img\\smiley.png\")\nimage2 = PhotoImage(file=r\"data\\img\\pleading.png\")\n\n\nstart = Button(root, bg=\"black\", fg=\"white\", text=\"-->Start<--\", font=\"comicsansms 15 bold\", command=start, relief=\"raised\",state=\"normal\", bd=2)\nstart.place(x=150,y=110)\n\n\n\nframeMain = Frame(root, relief=\"flat\", bd=1, background=\"white\", width=400, height=417)\nframeMain.place(x=10, y=150)\n\n\nimage=PhotoImage(file=r\"data\\img\\emoji.png\")\nl=Label(root,image=image ,font=\"comicsansms 15 bold\", fg=\"black\", bg=\"white\")\nl.place(x=180,y=5)\n\nb1=Button(frameMain, bg='cyan', text=\"plz start\", fg=\"white\", width=10, height=5, relief='raised',bd=3, state=\"normal\",disabledforeground=\"white\",command = funForB1)\nb2=Button(frameMain, bg='teal', text=\"plz start\", fg=\"white\", width=10, height=5, relief='raised',bd=3, state=\"normal\",disabledforeground=\"white\",command = funForB2)\nb3=Button(frameMain, bg='cyan', text=\"plz start\", fg=\"white\", width=10, height=5, relief='raised',bd=3, state=\"normal\",disabledforeground=\"white\",command = funForB3)\nb4=Button(frameMain, bg='teal', text=\"plz start\", fg=\"white\", width=10, height=5, relief='raised',bd=3, state=\"normal\",disabledforeground=\"white\",command = funForB4)\nb5=Button(frameMain, bg='cyan', text=\"plz start\", fg=\"white\", width=10, height=5, relief='raised',bd=3, state=\"normal\",disabledforeground=\"white\",command = funForB5)\nb6=Button(frameMain, bg='teal', text=\"plz start\", fg=\"white\", width=10, height=5, relief='raised',bd=3, state=\"normal\",disabledforeground=\"white\",command = funForB6)\nb7=Button(frameMain, bg='cyan', text=\"plz start\", fg=\"white\", width=10, height=5, relief='raised',bd=3, state=\"normal\",disabledforeground=\"white\",command = funForB7)\nb8=Button(frameMain, bg='teal', text=\"plz start\", fg=\"white\", width=10, height=5, relief='raised',bd=3, state=\"normal\",disabledforeground=\"white\",command = funForB8)\nb9=Button(frameMain, bg='cyan', text=\"plz start\", fg=\"white\", width=10, height=5, relief='raised',bd=3, state=\"normal\",disabledforeground=\"white\",command = funForB9)\n\n\nb1.place(x=10,y=16)\nb2.place(x=150,y=16)\nb3.place(x=290,y=16)\nb4.place(x=10,y=110)\nb5.place(x=150,y=110)\nb6.place(x=290,y=110)\nb7.place(x=10,y=204)\nb8.place(x=150,y=204)\nb9.place(x=290,y=204)\n\nbuttonList = [b1,b2,b3,b4,b5,b6,b7,b8,b9]\n\n\nrestartButton = Button(root, bg=\"teal\", fg=\"white\", text=\"!!! Remember these items !!!\", font=\"comicsansms 15 bold\", relief=\"raised\",state=\"disabled\",disabledforeground=\"white\")\nrestartButton.place(x=60,y=460)\nobj = notPresent()\nnotPresentList,element = obj[0],obj[1]\n\nroot.mainloop()\n", "step-ids": [ 11, 12, 14, 15, 18 ] }
[ 11, 12, 14, 15, 18 ]
from django.contrib import admin from django.urls import path, include from accounts import views urlpatterns = [ path('google/login', views.google_login), path('google/callback/', views.google_callback), path('accounts/google/login/finish/', views.GoogleLogin.as_view(), name = 'google_login_todjango'), ]
normal
{ "blob_id": "68319663aad13b562e56b8ee25f25c7b548417df", "index": 4739, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [path('google/login', views.google_login), path(\n 'google/callback/', views.google_callback), path(\n 'accounts/google/login/finish/', views.GoogleLogin.as_view(), name=\n 'google_login_todjango')]\n", "step-3": "from django.contrib import admin\nfrom django.urls import path, include\nfrom accounts import views\nurlpatterns = [path('google/login', views.google_login), path(\n 'google/callback/', views.google_callback), path(\n 'accounts/google/login/finish/', views.GoogleLogin.as_view(), name=\n 'google_login_todjango')]\n", "step-4": "from django.contrib import admin\nfrom django.urls import path, include\n\nfrom accounts import views\n\nurlpatterns = [\n path('google/login', views.google_login),\n path('google/callback/', views.google_callback),\n path('accounts/google/login/finish/', views.GoogleLogin.as_view(), name = 'google_login_todjango'),\n]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import re import datetime as dt from datetime import datetime import time import random import json import sys import requests import os import pickle import cv2 import numpy as np import cPickle import multiprocessing as mp import math root = "/datasets/sagarj/instaSample6000/" # post_dir = root + "/" videos_dir = root + "videos/" #frame_dir = root + "AestheticSamples/" sample_dir = root + "finesamples/" sampledLog = "../Logs/instaLongSampling.txt" def sampleVideo(videoPath , facesPath , postID , rate): cap = cv2.VideoCapture(videoPath) #print videoPath totFrames = 0 i = 0 framesRead = 0 framesSaved = 0 frameRate = cap.get(cv2.cv.CV_CAP_PROP_FPS) if math.isnan(frameRate): frameRate = int(24 * rate) frameRate = int(frameRate*rate) if frameRate == 0: frameRate = int(24 * rate) while True: ret, frame = cap.read() if ret: framesRead += 1 procs = [] totFrames += 1 cv2.waitKey(20) if totFrames%frameRate == 0: i = int(totFrames/frameRate) framesSaved +=1 imageName = facesPath + "/" + str(postID) + "+" + str(i) + ".jpg" cv2.imwrite( imageName , frame) logline = str(postID) + "," + imageName #print logline logfile = open(sampledLog, 'a+') cPickle.dump(logline , logfile); logfile.close() else: print "Done processing Post: %s with %d frames Read and %d saved at %d FPS"%(postID,framesRead,framesSaved,frameRate) return framesSaved # def readJson(path): # f = open(path) # data = json.loads(f.read()) # return data # def getPosts(postsDir): # crawledPosts = os.listdir(postsDir) # posts = [] # for post in crawledPosts: # record = readJson(postsDir + post) # p = record['data'] # if isinstance(p,dict): # posts.append(p['records'][0]) # return posts # def getMappingDict(postList): # mapping = dict() # for p in postList: # postId = p['postId'] # vidName = p['videoUrl'].split('/')[5].split('?')[0] # mapping[postId] = vidName # return mapping if __name__ == '__main__': #postList = getPosts(post_dir) #mappingDict = getMappingDict(postList) vidList = os.listdir(videos_dir) for k in vidList: postID = k.split('.')[0] #sampledNumbers = sampleVideo(videos_dir+mappingDict[k] ,frame_dir , postID , 1) sampledNumbers = sampleVideo(videos_dir+k ,sample_dir , postID , 1)
normal
{ "blob_id": "ac978accc821600ad8def04b9c7423fbe6759e43", "index": 6203, "step-1": "import re\nimport datetime as dt\nfrom datetime import datetime\nimport time\nimport random\nimport json\nimport sys\nimport requests\nimport os\nimport pickle\nimport cv2\nimport numpy as np\nimport cPickle\nimport multiprocessing as mp\nimport math\n\nroot = \"/datasets/sagarj/instaSample6000/\"\n\n# post_dir = root + \"/\"\nvideos_dir = root + \"videos/\"\n#frame_dir = root + \"AestheticSamples/\"\nsample_dir = root + \"finesamples/\"\n\nsampledLog = \"../Logs/instaLongSampling.txt\"\n\n\ndef sampleVideo(videoPath , facesPath , postID , rate):\n cap = cv2.VideoCapture(videoPath)\n #print videoPath\n totFrames = 0\n i = 0\n framesRead = 0\n framesSaved = 0\n frameRate = cap.get(cv2.cv.CV_CAP_PROP_FPS)\n\n if math.isnan(frameRate):\n frameRate = int(24 * rate)\n frameRate = int(frameRate*rate)\n if frameRate == 0:\n frameRate = int(24 * rate)\n while True:\n ret, frame = cap.read()\n if ret:\n framesRead += 1\n procs = []\n totFrames += 1\n cv2.waitKey(20)\n if totFrames%frameRate == 0:\n i = int(totFrames/frameRate)\n framesSaved +=1\n imageName = facesPath + \"/\" + str(postID) + \"+\" + str(i) + \".jpg\"\n cv2.imwrite( imageName , frame)\n logline = str(postID) + \",\" + imageName\n #print logline\n logfile = open(sampledLog, 'a+')\n cPickle.dump(logline , logfile);\n logfile.close()\n \n else:\n print \"Done processing Post: %s with %d frames Read and %d saved at %d FPS\"%(postID,framesRead,framesSaved,frameRate)\n return framesSaved\n\n# def readJson(path):\n# f = open(path)\n# data = json.loads(f.read())\n# return data\n\n# def getPosts(postsDir):\n# crawledPosts = os.listdir(postsDir)\n# posts = []\n# for post in crawledPosts:\n# record = readJson(postsDir + post)\n# p = record['data']\n# if isinstance(p,dict):\n# posts.append(p['records'][0])\n# return posts\n\n# def getMappingDict(postList):\n# mapping = dict()\n# for p in postList:\n# postId = p['postId']\n# vidName = p['videoUrl'].split('/')[5].split('?')[0]\n# mapping[postId] = vidName\n# return mapping\n\nif __name__ == '__main__':\n \n #postList = getPosts(post_dir)\n #mappingDict = getMappingDict(postList)\n vidList = os.listdir(videos_dir)\n \n for k in vidList: \n postID = k.split('.')[0]\n #sampledNumbers = sampleVideo(videos_dir+mappingDict[k] ,frame_dir , postID , 1)\n sampledNumbers = sampleVideo(videos_dir+k ,sample_dir , postID , 1)", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#! /usr/bin/env python import os import glob import math from array import array import sys import time import subprocess import ROOT mass=[600,700,800,900,1000] cprime=[01,02,03,05,07,10] BRnew=[00,01,02,03,04,05] for i in range(len(mass)): for j in range(len(cprime)): for k in range(len(BRnew)): command="hadd -f cards_combo/higgsCombinehwwlvj_pval_exp_ggH%03d_combo_%02d_%02d_unbin.ProfileLikelihood.mH%03d.root cards_combo/higgsCombinehwwlvj_pval_exp_ggH%03d_combo_%02d_%02d_unbin_*"%(mass[i],cprime[j],BRnew[k],mass[i],mass[i],cprime[j],BRnew[k]); os.system(command);
normal
{ "blob_id": "a9e5d4d48f96974da772f47a4c20ebc96bc31d85", "index": 8740, "step-1": "#! /usr/bin/env python\nimport os\nimport glob\nimport math\nfrom array import array\nimport sys\nimport time\nimport subprocess\nimport ROOT\n\nmass=[600,700,800,900,1000]\ncprime=[01,02,03,05,07,10]\nBRnew=[00,01,02,03,04,05]\n\nfor i in range(len(mass)):\n for j in range(len(cprime)):\n for k in range(len(BRnew)):\n\n command=\"hadd -f cards_combo/higgsCombinehwwlvj_pval_exp_ggH%03d_combo_%02d_%02d_unbin.ProfileLikelihood.mH%03d.root cards_combo/higgsCombinehwwlvj_pval_exp_ggH%03d_combo_%02d_%02d_unbin_*\"%(mass[i],cprime[j],BRnew[k],mass[i],mass[i],cprime[j],BRnew[k]);\n os.system(command);\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from model.area import AreaModel from flask_restful import Resource, reqparse from flask_jwt import jwt_required class Area(Resource): pareser = reqparse.RequestParser() pareser.add_argument('name', type = str, required = True, help = 'Area name is required') @jwt_required() def get(self, name): area = AreaModel.search_area_byname(name) if area: return area.json(), 200 else: return {'message': 'Area not found'}, 404 @jwt_required() def put(self, name): area = AreaModel.search_area_byname(name) if area: return {'message': 'Aread already exists'}, 404 else: area = AreaModel(name) area.save_to_db() return area.json() @jwt_required() def delete(self,name): area = AreaModel.search_area_byname(name) if area: area.delete() return {'message':"Area with name '{}' deleted".format(name)}, 204 else: return {'message': 'Wrong area name provided'}, 404 class AreaList(Resource): @jwt_required() def get(self): return(list[map(lambda x: x.json() for x in StoreMode.query.all())])
normal
{ "blob_id": "4dcc0261abdb783c60471736567faf7db8b56190", "index": 9548, "step-1": "<mask token>\n\n\nclass Area(Resource):\n <mask token>\n pareser.add_argument('name', type=str, required=True, help=\n 'Area name is required')\n\n @jwt_required()\n def get(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n return area.json(), 200\n else:\n return {'message': 'Area not found'}, 404\n\n @jwt_required()\n def put(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n return {'message': 'Aread already exists'}, 404\n else:\n area = AreaModel(name)\n area.save_to_db()\n return area.json()\n <mask token>\n\n\nclass AreaList(Resource):\n\n @jwt_required()\n def get(self):\n return list[map(lambda x: x.json() for x in StoreMode.query.all())]\n", "step-2": "<mask token>\n\n\nclass Area(Resource):\n <mask token>\n pareser.add_argument('name', type=str, required=True, help=\n 'Area name is required')\n\n @jwt_required()\n def get(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n return area.json(), 200\n else:\n return {'message': 'Area not found'}, 404\n\n @jwt_required()\n def put(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n return {'message': 'Aread already exists'}, 404\n else:\n area = AreaModel(name)\n area.save_to_db()\n return area.json()\n\n @jwt_required()\n def delete(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n area.delete()\n return {'message': \"Area with name '{}' deleted\".format(name)}, 204\n else:\n return {'message': 'Wrong area name provided'}, 404\n\n\nclass AreaList(Resource):\n\n @jwt_required()\n def get(self):\n return list[map(lambda x: x.json() for x in StoreMode.query.all())]\n", "step-3": "<mask token>\n\n\nclass Area(Resource):\n pareser = reqparse.RequestParser()\n pareser.add_argument('name', type=str, required=True, help=\n 'Area name is required')\n\n @jwt_required()\n def get(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n return area.json(), 200\n else:\n return {'message': 'Area not found'}, 404\n\n @jwt_required()\n def put(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n return {'message': 'Aread already exists'}, 404\n else:\n area = AreaModel(name)\n area.save_to_db()\n return area.json()\n\n @jwt_required()\n def delete(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n area.delete()\n return {'message': \"Area with name '{}' deleted\".format(name)}, 204\n else:\n return {'message': 'Wrong area name provided'}, 404\n\n\nclass AreaList(Resource):\n\n @jwt_required()\n def get(self):\n return list[map(lambda x: x.json() for x in StoreMode.query.all())]\n", "step-4": "from model.area import AreaModel\nfrom flask_restful import Resource, reqparse\nfrom flask_jwt import jwt_required\n\n\nclass Area(Resource):\n pareser = reqparse.RequestParser()\n pareser.add_argument('name', type=str, required=True, help=\n 'Area name is required')\n\n @jwt_required()\n def get(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n return area.json(), 200\n else:\n return {'message': 'Area not found'}, 404\n\n @jwt_required()\n def put(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n return {'message': 'Aread already exists'}, 404\n else:\n area = AreaModel(name)\n area.save_to_db()\n return area.json()\n\n @jwt_required()\n def delete(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n area.delete()\n return {'message': \"Area with name '{}' deleted\".format(name)}, 204\n else:\n return {'message': 'Wrong area name provided'}, 404\n\n\nclass AreaList(Resource):\n\n @jwt_required()\n def get(self):\n return list[map(lambda x: x.json() for x in StoreMode.query.all())]\n", "step-5": "from model.area import AreaModel\nfrom flask_restful import Resource, reqparse\nfrom flask_jwt import jwt_required\n\nclass Area(Resource):\n pareser = reqparse.RequestParser()\n pareser.add_argument('name', \n type = str,\n required = True,\n help = 'Area name is required')\n\n @jwt_required()\n def get(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n return area.json(), 200\n else:\n return {'message': 'Area not found'}, 404\n \n @jwt_required()\n def put(self, name):\n area = AreaModel.search_area_byname(name)\n if area:\n return {'message': 'Aread already exists'}, 404\n else:\n area = AreaModel(name)\n area.save_to_db()\n return area.json()\n\n @jwt_required()\n def delete(self,name):\n area = AreaModel.search_area_byname(name)\n if area:\n area.delete()\n return {'message':\"Area with name '{}' deleted\".format(name)}, 204\n else:\n return {'message': 'Wrong area name provided'}, 404\n\nclass AreaList(Resource):\n @jwt_required()\n def get(self):\n return(list[map(lambda x: x.json() for x in StoreMode.query.all())])", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
#!/usr/bin/python # # Author: Johnson Kachikaran ([email protected]) # Date: 7th August 2016 # Google Drive API: # https://developers.google.com/drive/v3/reference/ # https://developers.google.com/resources/api-libraries/documentation/drive/v3/python/latest/ """ Includes functions to integrate with a user's Google drive. The results and implementation is based on the API provided by the Google Drive API: https://developers.google.com/drive/v3/reference/ https://developers.google.com/resources/api-libraries/documentation/drive/v3/python/latest/ """ import io import os import threading from googleapiclient.http import MediaIoBaseDownload from colorker.security import CredentialManager from colorker.settings import STORAGE def list_files(query=None, order_by=None, files=False, user_settings=None): drive_service = CredentialManager.get_client_drive_service(user_settings) response = drive_service.files().list( orderBy=order_by, q=query, pageSize=1000, fields='nextPageToken, files(id, name, mimeType, fileExtension, parents)').execute(num_retries=3) result, resources, names, parents = [], [], {}, {} for drive_file in response.get('files', []): names[str(drive_file['id'])] = str(drive_file['name']) parents[str(drive_file['id'])] = drive_file.get('parents', []) resources.append({'id': drive_file['id'], 'name': drive_file['name'], 'parents': [str(parent) for parent in drive_file.get('parents', [])], 'mimeType': drive_file['mimeType']}) while response.get('nextPageToken', None): drive_files = drive_service.files() response = drive_files.list(orderBy=order_by, q=query, pageSize=1000, pageToken=response['nextPageToken'], fields='nextPageToken, files(id, name, mimeType, fileExtension, parents)').execute(num_retries=3) for drive_file in response.get('files', []): names[str(drive_file['id'])] = str(drive_file['name']) parents[str(drive_file['id'])] = drive_file.get('parents', []) resources.append({'id': drive_file['id'], 'name': drive_file['name'], 'parents': [str(parent) for parent in drive_file.get('parents', [])], 'mimeType': drive_file['mimeType']}) for resource in resources: if resource['parents']: for parent in resource['parents']: path = str(names.get(parent, '')) + str('/') + str(resource['name']) while parents.get(parent, []): parent = str(parents[parent][0]) path = str(names.get(parent, '')) + str('/') + path resource['name'] = path if files: if resource['mimeType'] != 'application/vnd.google-apps.folder': result.append(resource) else: result.append(resource) else: if files: if resource['mimeType'] != 'application/vnd.google-apps.folder': result.append(resource) else: result.append(resource) return result def get_metadata(file_id, user_settings=None): """ Obtains the metadata of a file :param str file_id: the identifier of the file whose metadata is needed :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services. If one is not provided, then this method must be invoked by an EngineThread which defines the settings :return: metadata of the file including id, mimeType, size, parents, kind, fileExtension, and webContentLink """ drive_service = CredentialManager.get_client_drive_service(user_settings) files_service = drive_service.files().get( fileId=file_id, fields='id, mimeType, size, parents, kind, name, fileExtension, webContentLink') return files_service.execute(num_retries=3) def get_file_contents(file_id, meta_err=False, user_settings=None): """ Obtains the contents of a file as a list of dictionaries. File type of the requested file must be a csv or a Google fusion table. :param str file_id: the identifier of the file whose content is needed :param bool meta_err: optional, internal use only :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services. If one is not provided, then this method must be invoked by an EngineThread which defines the settings :return: list of dictionaries where each dictionary is a row in the file :rtype: list """ metadata = get_metadata(file_id, user_settings) if (metadata.get('fileExtension', None) == 'csv' or metadata.get('mimeType', None) == 'text/csv') and metadata.get( 'webContentLink', None): drive_service = CredentialManager.get_client_drive_service(user_settings) if user_settings is None: user_settings = threading.current_thread().settings temp_dir_path = user_settings.get(STORAGE.TEMPORARY.LOCAL, None) if not os.path.exists(temp_dir_path): os.makedirs(temp_dir_path) file_path = temp_dir_path + str(file_id) + ".csv" if not os.path.exists(file_path): request = drive_service.files().get_media(fileId=file_id) fh = io.FileIO(file_path, mode='wb') downloader = MediaIoBaseDownload(fh, request, chunksize=1024 * 1024) done = False while done is False: status, done = downloader.next_chunk() fh.close() header, rows = [], [] with open(file_path, 'rb') as csv_file: for line in csv_file.readlines(): if not header: header = [str(heading).strip() for heading in str(line).split(',')] else: row = line.split(',') row_dict = {} for index, column in enumerate(row): row_dict[header[index]] = str(column).strip() rows.append(row_dict) return rows elif metadata.get('mimeType', None) == 'application/vnd.google-apps.fusiontable': ft_service = CredentialManager.get_client_fusion_table_service(user_settings) query = ft_service.query() table = query.sql(sql='SELECT * FROM ' + str(file_id), hdrs=False).execute(num_retries=3) result_rows = [] columns = [str(column) for column in table['columns']] rows = table['rows'] for row in rows: result_row = {} for index, cell in enumerate(row): result_row[columns[index]] = str(cell) if isinstance(cell, unicode) else cell result_rows.append(result_row) return result_rows elif meta_err: raise Exception('Unsupported file type for the file - ' + str(metadata['name'] + '.')) return []
normal
{ "blob_id": "033719313f92aaf3c62eb1b07a9aa08f13c7bb6e", "index": 2600, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef get_metadata(file_id, user_settings=None):\n \"\"\"\n Obtains the metadata of a file\n\n :param str file_id: the identifier of the file whose metadata is needed\n :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services.\n If one is not provided, then this method must be invoked by an EngineThread\n which defines the settings\n :return: metadata of the file including id, mimeType, size, parents, kind, fileExtension, and webContentLink\n \"\"\"\n drive_service = CredentialManager.get_client_drive_service(user_settings)\n files_service = drive_service.files().get(fileId=file_id, fields=\n 'id, mimeType, size, parents, kind, name, fileExtension, webContentLink'\n )\n return files_service.execute(num_retries=3)\n\n\ndef get_file_contents(file_id, meta_err=False, user_settings=None):\n \"\"\"\n Obtains the contents of a file as a list of dictionaries. File type of the requested file must be a csv or a\n Google fusion table.\n\n :param str file_id: the identifier of the file whose content is needed\n :param bool meta_err: optional, internal use only\n :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services.\n If one is not provided, then this method must be invoked by an EngineThread\n which defines the settings\n\n :return: list of dictionaries where each dictionary is a row in the file\n :rtype: list\n \"\"\"\n metadata = get_metadata(file_id, user_settings)\n if (metadata.get('fileExtension', None) == 'csv' or metadata.get(\n 'mimeType', None) == 'text/csv') and metadata.get('webContentLink',\n None):\n drive_service = CredentialManager.get_client_drive_service(\n user_settings)\n if user_settings is None:\n user_settings = threading.current_thread().settings\n temp_dir_path = user_settings.get(STORAGE.TEMPORARY.LOCAL, None)\n if not os.path.exists(temp_dir_path):\n os.makedirs(temp_dir_path)\n file_path = temp_dir_path + str(file_id) + '.csv'\n if not os.path.exists(file_path):\n request = drive_service.files().get_media(fileId=file_id)\n fh = io.FileIO(file_path, mode='wb')\n downloader = MediaIoBaseDownload(fh, request, chunksize=1024 * 1024\n )\n done = False\n while done is False:\n status, done = downloader.next_chunk()\n fh.close()\n header, rows = [], []\n with open(file_path, 'rb') as csv_file:\n for line in csv_file.readlines():\n if not header:\n header = [str(heading).strip() for heading in str(line)\n .split(',')]\n else:\n row = line.split(',')\n row_dict = {}\n for index, column in enumerate(row):\n row_dict[header[index]] = str(column).strip()\n rows.append(row_dict)\n return rows\n elif metadata.get('mimeType', None\n ) == 'application/vnd.google-apps.fusiontable':\n ft_service = CredentialManager.get_client_fusion_table_service(\n user_settings)\n query = ft_service.query()\n table = query.sql(sql='SELECT * FROM ' + str(file_id), hdrs=False\n ).execute(num_retries=3)\n result_rows = []\n columns = [str(column) for column in table['columns']]\n rows = table['rows']\n for row in rows:\n result_row = {}\n for index, cell in enumerate(row):\n result_row[columns[index]] = str(cell) if isinstance(cell,\n unicode) else cell\n result_rows.append(result_row)\n return result_rows\n elif meta_err:\n raise Exception('Unsupported file type for the file - ' + str(\n metadata['name'] + '.'))\n return []\n", "step-3": "<mask token>\n\n\ndef list_files(query=None, order_by=None, files=False, user_settings=None):\n drive_service = CredentialManager.get_client_drive_service(user_settings)\n response = drive_service.files().list(orderBy=order_by, q=query,\n pageSize=1000, fields=\n 'nextPageToken, files(id, name, mimeType, fileExtension, parents)'\n ).execute(num_retries=3)\n result, resources, names, parents = [], [], {}, {}\n for drive_file in response.get('files', []):\n names[str(drive_file['id'])] = str(drive_file['name'])\n parents[str(drive_file['id'])] = drive_file.get('parents', [])\n resources.append({'id': drive_file['id'], 'name': drive_file['name'\n ], 'parents': [str(parent) for parent in drive_file.get(\n 'parents', [])], 'mimeType': drive_file['mimeType']})\n while response.get('nextPageToken', None):\n drive_files = drive_service.files()\n response = drive_files.list(orderBy=order_by, q=query, pageSize=\n 1000, pageToken=response['nextPageToken'], fields=\n 'nextPageToken, files(id, name, mimeType, fileExtension, parents)'\n ).execute(num_retries=3)\n for drive_file in response.get('files', []):\n names[str(drive_file['id'])] = str(drive_file['name'])\n parents[str(drive_file['id'])] = drive_file.get('parents', [])\n resources.append({'id': drive_file['id'], 'name': drive_file[\n 'name'], 'parents': [str(parent) for parent in drive_file.\n get('parents', [])], 'mimeType': drive_file['mimeType']})\n for resource in resources:\n if resource['parents']:\n for parent in resource['parents']:\n path = str(names.get(parent, '')) + str('/') + str(resource\n ['name'])\n while parents.get(parent, []):\n parent = str(parents[parent][0])\n path = str(names.get(parent, '')) + str('/') + path\n resource['name'] = path\n if files:\n if resource['mimeType'\n ] != 'application/vnd.google-apps.folder':\n result.append(resource)\n else:\n result.append(resource)\n elif files:\n if resource['mimeType'] != 'application/vnd.google-apps.folder':\n result.append(resource)\n else:\n result.append(resource)\n return result\n\n\ndef get_metadata(file_id, user_settings=None):\n \"\"\"\n Obtains the metadata of a file\n\n :param str file_id: the identifier of the file whose metadata is needed\n :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services.\n If one is not provided, then this method must be invoked by an EngineThread\n which defines the settings\n :return: metadata of the file including id, mimeType, size, parents, kind, fileExtension, and webContentLink\n \"\"\"\n drive_service = CredentialManager.get_client_drive_service(user_settings)\n files_service = drive_service.files().get(fileId=file_id, fields=\n 'id, mimeType, size, parents, kind, name, fileExtension, webContentLink'\n )\n return files_service.execute(num_retries=3)\n\n\ndef get_file_contents(file_id, meta_err=False, user_settings=None):\n \"\"\"\n Obtains the contents of a file as a list of dictionaries. File type of the requested file must be a csv or a\n Google fusion table.\n\n :param str file_id: the identifier of the file whose content is needed\n :param bool meta_err: optional, internal use only\n :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services.\n If one is not provided, then this method must be invoked by an EngineThread\n which defines the settings\n\n :return: list of dictionaries where each dictionary is a row in the file\n :rtype: list\n \"\"\"\n metadata = get_metadata(file_id, user_settings)\n if (metadata.get('fileExtension', None) == 'csv' or metadata.get(\n 'mimeType', None) == 'text/csv') and metadata.get('webContentLink',\n None):\n drive_service = CredentialManager.get_client_drive_service(\n user_settings)\n if user_settings is None:\n user_settings = threading.current_thread().settings\n temp_dir_path = user_settings.get(STORAGE.TEMPORARY.LOCAL, None)\n if not os.path.exists(temp_dir_path):\n os.makedirs(temp_dir_path)\n file_path = temp_dir_path + str(file_id) + '.csv'\n if not os.path.exists(file_path):\n request = drive_service.files().get_media(fileId=file_id)\n fh = io.FileIO(file_path, mode='wb')\n downloader = MediaIoBaseDownload(fh, request, chunksize=1024 * 1024\n )\n done = False\n while done is False:\n status, done = downloader.next_chunk()\n fh.close()\n header, rows = [], []\n with open(file_path, 'rb') as csv_file:\n for line in csv_file.readlines():\n if not header:\n header = [str(heading).strip() for heading in str(line)\n .split(',')]\n else:\n row = line.split(',')\n row_dict = {}\n for index, column in enumerate(row):\n row_dict[header[index]] = str(column).strip()\n rows.append(row_dict)\n return rows\n elif metadata.get('mimeType', None\n ) == 'application/vnd.google-apps.fusiontable':\n ft_service = CredentialManager.get_client_fusion_table_service(\n user_settings)\n query = ft_service.query()\n table = query.sql(sql='SELECT * FROM ' + str(file_id), hdrs=False\n ).execute(num_retries=3)\n result_rows = []\n columns = [str(column) for column in table['columns']]\n rows = table['rows']\n for row in rows:\n result_row = {}\n for index, cell in enumerate(row):\n result_row[columns[index]] = str(cell) if isinstance(cell,\n unicode) else cell\n result_rows.append(result_row)\n return result_rows\n elif meta_err:\n raise Exception('Unsupported file type for the file - ' + str(\n metadata['name'] + '.'))\n return []\n", "step-4": "<mask token>\nimport io\nimport os\nimport threading\nfrom googleapiclient.http import MediaIoBaseDownload\nfrom colorker.security import CredentialManager\nfrom colorker.settings import STORAGE\n\n\ndef list_files(query=None, order_by=None, files=False, user_settings=None):\n drive_service = CredentialManager.get_client_drive_service(user_settings)\n response = drive_service.files().list(orderBy=order_by, q=query,\n pageSize=1000, fields=\n 'nextPageToken, files(id, name, mimeType, fileExtension, parents)'\n ).execute(num_retries=3)\n result, resources, names, parents = [], [], {}, {}\n for drive_file in response.get('files', []):\n names[str(drive_file['id'])] = str(drive_file['name'])\n parents[str(drive_file['id'])] = drive_file.get('parents', [])\n resources.append({'id': drive_file['id'], 'name': drive_file['name'\n ], 'parents': [str(parent) for parent in drive_file.get(\n 'parents', [])], 'mimeType': drive_file['mimeType']})\n while response.get('nextPageToken', None):\n drive_files = drive_service.files()\n response = drive_files.list(orderBy=order_by, q=query, pageSize=\n 1000, pageToken=response['nextPageToken'], fields=\n 'nextPageToken, files(id, name, mimeType, fileExtension, parents)'\n ).execute(num_retries=3)\n for drive_file in response.get('files', []):\n names[str(drive_file['id'])] = str(drive_file['name'])\n parents[str(drive_file['id'])] = drive_file.get('parents', [])\n resources.append({'id': drive_file['id'], 'name': drive_file[\n 'name'], 'parents': [str(parent) for parent in drive_file.\n get('parents', [])], 'mimeType': drive_file['mimeType']})\n for resource in resources:\n if resource['parents']:\n for parent in resource['parents']:\n path = str(names.get(parent, '')) + str('/') + str(resource\n ['name'])\n while parents.get(parent, []):\n parent = str(parents[parent][0])\n path = str(names.get(parent, '')) + str('/') + path\n resource['name'] = path\n if files:\n if resource['mimeType'\n ] != 'application/vnd.google-apps.folder':\n result.append(resource)\n else:\n result.append(resource)\n elif files:\n if resource['mimeType'] != 'application/vnd.google-apps.folder':\n result.append(resource)\n else:\n result.append(resource)\n return result\n\n\ndef get_metadata(file_id, user_settings=None):\n \"\"\"\n Obtains the metadata of a file\n\n :param str file_id: the identifier of the file whose metadata is needed\n :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services.\n If one is not provided, then this method must be invoked by an EngineThread\n which defines the settings\n :return: metadata of the file including id, mimeType, size, parents, kind, fileExtension, and webContentLink\n \"\"\"\n drive_service = CredentialManager.get_client_drive_service(user_settings)\n files_service = drive_service.files().get(fileId=file_id, fields=\n 'id, mimeType, size, parents, kind, name, fileExtension, webContentLink'\n )\n return files_service.execute(num_retries=3)\n\n\ndef get_file_contents(file_id, meta_err=False, user_settings=None):\n \"\"\"\n Obtains the contents of a file as a list of dictionaries. File type of the requested file must be a csv or a\n Google fusion table.\n\n :param str file_id: the identifier of the file whose content is needed\n :param bool meta_err: optional, internal use only\n :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services.\n If one is not provided, then this method must be invoked by an EngineThread\n which defines the settings\n\n :return: list of dictionaries where each dictionary is a row in the file\n :rtype: list\n \"\"\"\n metadata = get_metadata(file_id, user_settings)\n if (metadata.get('fileExtension', None) == 'csv' or metadata.get(\n 'mimeType', None) == 'text/csv') and metadata.get('webContentLink',\n None):\n drive_service = CredentialManager.get_client_drive_service(\n user_settings)\n if user_settings is None:\n user_settings = threading.current_thread().settings\n temp_dir_path = user_settings.get(STORAGE.TEMPORARY.LOCAL, None)\n if not os.path.exists(temp_dir_path):\n os.makedirs(temp_dir_path)\n file_path = temp_dir_path + str(file_id) + '.csv'\n if not os.path.exists(file_path):\n request = drive_service.files().get_media(fileId=file_id)\n fh = io.FileIO(file_path, mode='wb')\n downloader = MediaIoBaseDownload(fh, request, chunksize=1024 * 1024\n )\n done = False\n while done is False:\n status, done = downloader.next_chunk()\n fh.close()\n header, rows = [], []\n with open(file_path, 'rb') as csv_file:\n for line in csv_file.readlines():\n if not header:\n header = [str(heading).strip() for heading in str(line)\n .split(',')]\n else:\n row = line.split(',')\n row_dict = {}\n for index, column in enumerate(row):\n row_dict[header[index]] = str(column).strip()\n rows.append(row_dict)\n return rows\n elif metadata.get('mimeType', None\n ) == 'application/vnd.google-apps.fusiontable':\n ft_service = CredentialManager.get_client_fusion_table_service(\n user_settings)\n query = ft_service.query()\n table = query.sql(sql='SELECT * FROM ' + str(file_id), hdrs=False\n ).execute(num_retries=3)\n result_rows = []\n columns = [str(column) for column in table['columns']]\n rows = table['rows']\n for row in rows:\n result_row = {}\n for index, cell in enumerate(row):\n result_row[columns[index]] = str(cell) if isinstance(cell,\n unicode) else cell\n result_rows.append(result_row)\n return result_rows\n elif meta_err:\n raise Exception('Unsupported file type for the file - ' + str(\n metadata['name'] + '.'))\n return []\n", "step-5": "#!/usr/bin/python\r\n#\r\n# Author: Johnson Kachikaran ([email protected])\r\n# Date: 7th August 2016\r\n# Google Drive API:\r\n# https://developers.google.com/drive/v3/reference/\r\n# https://developers.google.com/resources/api-libraries/documentation/drive/v3/python/latest/\r\n\"\"\"\r\nIncludes functions to integrate with a user's Google drive. The results and implementation is based on the API\r\nprovided by the Google Drive API:\r\n\r\nhttps://developers.google.com/drive/v3/reference/\r\n\r\nhttps://developers.google.com/resources/api-libraries/documentation/drive/v3/python/latest/\r\n\"\"\"\r\nimport io\r\nimport os\r\nimport threading\r\n\r\nfrom googleapiclient.http import MediaIoBaseDownload\r\n\r\nfrom colorker.security import CredentialManager\r\nfrom colorker.settings import STORAGE\r\n\r\n\r\ndef list_files(query=None, order_by=None, files=False, user_settings=None):\r\n drive_service = CredentialManager.get_client_drive_service(user_settings)\r\n response = drive_service.files().list(\r\n orderBy=order_by, q=query, pageSize=1000,\r\n fields='nextPageToken, files(id, name, mimeType, fileExtension, parents)').execute(num_retries=3)\r\n result, resources, names, parents = [], [], {}, {}\r\n for drive_file in response.get('files', []):\r\n names[str(drive_file['id'])] = str(drive_file['name'])\r\n parents[str(drive_file['id'])] = drive_file.get('parents', [])\r\n resources.append({'id': drive_file['id'], 'name': drive_file['name'],\r\n 'parents': [str(parent) for parent in drive_file.get('parents', [])],\r\n 'mimeType': drive_file['mimeType']})\r\n while response.get('nextPageToken', None):\r\n drive_files = drive_service.files()\r\n response = drive_files.list(orderBy=order_by, q=query, pageSize=1000, pageToken=response['nextPageToken'],\r\n fields='nextPageToken, files(id, name, mimeType, fileExtension, parents)').execute(num_retries=3)\r\n for drive_file in response.get('files', []):\r\n names[str(drive_file['id'])] = str(drive_file['name'])\r\n parents[str(drive_file['id'])] = drive_file.get('parents', [])\r\n resources.append({'id': drive_file['id'], 'name': drive_file['name'],\r\n 'parents': [str(parent) for parent in drive_file.get('parents', [])],\r\n 'mimeType': drive_file['mimeType']})\r\n for resource in resources:\r\n if resource['parents']:\r\n for parent in resource['parents']:\r\n path = str(names.get(parent, '')) + str('/') + str(resource['name'])\r\n while parents.get(parent, []):\r\n parent = str(parents[parent][0])\r\n path = str(names.get(parent, '')) + str('/') + path\r\n resource['name'] = path\r\n if files:\r\n if resource['mimeType'] != 'application/vnd.google-apps.folder':\r\n result.append(resource)\r\n else:\r\n result.append(resource)\r\n else:\r\n if files:\r\n if resource['mimeType'] != 'application/vnd.google-apps.folder':\r\n result.append(resource)\r\n else:\r\n result.append(resource)\r\n return result\r\n\r\n\r\ndef get_metadata(file_id, user_settings=None):\r\n \"\"\"\r\n Obtains the metadata of a file\r\n\r\n :param str file_id: the identifier of the file whose metadata is needed\r\n :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services.\r\n If one is not provided, then this method must be invoked by an EngineThread\r\n which defines the settings\r\n :return: metadata of the file including id, mimeType, size, parents, kind, fileExtension, and webContentLink\r\n \"\"\"\r\n drive_service = CredentialManager.get_client_drive_service(user_settings)\r\n files_service = drive_service.files().get(\r\n fileId=file_id, fields='id, mimeType, size, parents, kind, name, fileExtension, webContentLink')\r\n return files_service.execute(num_retries=3)\r\n\r\n\r\ndef get_file_contents(file_id, meta_err=False, user_settings=None):\r\n \"\"\"\r\n Obtains the contents of a file as a list of dictionaries. File type of the requested file must be a csv or a\r\n Google fusion table.\r\n\r\n :param str file_id: the identifier of the file whose content is needed\r\n :param bool meta_err: optional, internal use only\r\n :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services.\r\n If one is not provided, then this method must be invoked by an EngineThread\r\n which defines the settings\r\n\r\n :return: list of dictionaries where each dictionary is a row in the file\r\n :rtype: list\r\n \"\"\"\r\n metadata = get_metadata(file_id, user_settings)\r\n if (metadata.get('fileExtension', None) == 'csv' or metadata.get('mimeType', None) == 'text/csv') and metadata.get(\r\n 'webContentLink', None):\r\n drive_service = CredentialManager.get_client_drive_service(user_settings)\r\n if user_settings is None:\r\n user_settings = threading.current_thread().settings\r\n temp_dir_path = user_settings.get(STORAGE.TEMPORARY.LOCAL, None)\r\n if not os.path.exists(temp_dir_path):\r\n os.makedirs(temp_dir_path)\r\n file_path = temp_dir_path + str(file_id) + \".csv\"\r\n if not os.path.exists(file_path):\r\n request = drive_service.files().get_media(fileId=file_id)\r\n fh = io.FileIO(file_path, mode='wb')\r\n downloader = MediaIoBaseDownload(fh, request, chunksize=1024 * 1024)\r\n done = False\r\n while done is False:\r\n status, done = downloader.next_chunk()\r\n fh.close()\r\n header, rows = [], []\r\n with open(file_path, 'rb') as csv_file:\r\n for line in csv_file.readlines():\r\n if not header:\r\n header = [str(heading).strip() for heading in str(line).split(',')]\r\n else:\r\n row = line.split(',')\r\n row_dict = {}\r\n for index, column in enumerate(row):\r\n row_dict[header[index]] = str(column).strip()\r\n rows.append(row_dict)\r\n return rows\r\n elif metadata.get('mimeType', None) == 'application/vnd.google-apps.fusiontable':\r\n ft_service = CredentialManager.get_client_fusion_table_service(user_settings)\r\n query = ft_service.query()\r\n table = query.sql(sql='SELECT * FROM ' + str(file_id), hdrs=False).execute(num_retries=3)\r\n result_rows = []\r\n columns = [str(column) for column in table['columns']]\r\n rows = table['rows']\r\n for row in rows:\r\n result_row = {}\r\n for index, cell in enumerate(row):\r\n result_row[columns[index]] = str(cell) if isinstance(cell, unicode) else cell\r\n result_rows.append(result_row)\r\n return result_rows\r\n elif meta_err:\r\n raise Exception('Unsupported file type for the file - ' + str(metadata['name'] + '.'))\r\n return []\r\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
# Start the HTML and Javascript code print ''' <html> <head> <script type="text/javascript" src="https://www.google.com/jsapi"></script> <script type="text/javascript"> google.load("visualization", "1", {packages:["treemap"]}); google.setOnLoadCallback(drawChart); function drawChart() { ''' print CountBugs('path/to/repo') # Finish the HTML and Javascript print ''' ]); // Create and draw the visualization. var tree = new google.visualization.TreeMap(document.getElementById('chart_div')); tree.draw(data, { maxDepth: 2, minColor: 'YellowGreen', midColor: 'LightGoldenRodYellow', maxColor: 'Red', headerHeight: 15, fontColor: 'black', showScale: true}); } </script> </head> <body> <div id="chart_div" style="width: 900px; height: 500px;"></div> </body> </html> '''
normal
{ "blob_id": "0e112ecfd4ccf762234dff564dd6f3987418dedd", "index": 1033, "step-1": "# Start the HTML and Javascript code\nprint '''\n<html>\n <head>\n <script type=\"text/javascript\" src=\"https://www.google.com/jsapi\"></script>\n <script type=\"text/javascript\">\n google.load(\"visualization\", \"1\", {packages:[\"treemap\"]});\n google.setOnLoadCallback(drawChart);\n function drawChart() {\n'''\n\nprint CountBugs('path/to/repo')\n\n# Finish the HTML and Javascript\nprint '''\n ]);\n\n // Create and draw the visualization.\n var tree = new google.visualization.TreeMap(document.getElementById('chart_div'));\n tree.draw(data, {\n maxDepth: 2,\n minColor: 'YellowGreen',\n midColor: 'LightGoldenRodYellow',\n maxColor: 'Red',\n headerHeight: 15,\n fontColor: 'black',\n showScale: true});\n }\n </script>\n </head>\n\n <body>\n <div id=\"chart_div\" style=\"width: 900px; height: 500px;\"></div>\n </body>\n</html>\n'''\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
''' vetor = ["pares de pregos ligados por uma linha"] indice do vetor representa os pregos na vertical, e o inteiro em cada pos, os pregos na horizontal. i(vertical) e j(horizontal) entao: vetor[i] = j pregos a(vertical) e pregos b(horizontal) se a>i and b<j or a<i and b>j a e i(são indices) b e j(são os elemntos salvos na pos) ''' def merge(p,n): global vet global aux if n <= 1: return 0 c = merge(p,n//2) + merge(p+n//2,n-n//2) d,a,b = 0,0,n//2 while d<n: if a != n//2 and (b == n or vet[p+a]<vet[p+b]): aux[d] = vet[p+a] a+=1 else: aux[d] = vet[p+b] c+=n//2+a b+=1 d+=1 for i in range(n): vet[p+i] = aux[i] return c entrada = int(input()) vet = [int(x) for x in input().split()] aux = [0]*entrada print(merge(0,entrada))
normal
{ "blob_id": "fe081a422db6b7f10c89179beab852c6b74ec687", "index": 2795, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef merge(p, n):\n global vet\n global aux\n if n <= 1:\n return 0\n c = merge(p, n // 2) + merge(p + n // 2, n - n // 2)\n d, a, b = 0, 0, n // 2\n while d < n:\n if a != n // 2 and (b == n or vet[p + a] < vet[p + b]):\n aux[d] = vet[p + a]\n a += 1\n else:\n aux[d] = vet[p + b]\n c += n // 2 + a\n b += 1\n d += 1\n for i in range(n):\n vet[p + i] = aux[i]\n return c\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef merge(p, n):\n global vet\n global aux\n if n <= 1:\n return 0\n c = merge(p, n // 2) + merge(p + n // 2, n - n // 2)\n d, a, b = 0, 0, n // 2\n while d < n:\n if a != n // 2 and (b == n or vet[p + a] < vet[p + b]):\n aux[d] = vet[p + a]\n a += 1\n else:\n aux[d] = vet[p + b]\n c += n // 2 + a\n b += 1\n d += 1\n for i in range(n):\n vet[p + i] = aux[i]\n return c\n\n\n<mask token>\nprint(merge(0, entrada))\n", "step-4": "<mask token>\n\n\ndef merge(p, n):\n global vet\n global aux\n if n <= 1:\n return 0\n c = merge(p, n // 2) + merge(p + n // 2, n - n // 2)\n d, a, b = 0, 0, n // 2\n while d < n:\n if a != n // 2 and (b == n or vet[p + a] < vet[p + b]):\n aux[d] = vet[p + a]\n a += 1\n else:\n aux[d] = vet[p + b]\n c += n // 2 + a\n b += 1\n d += 1\n for i in range(n):\n vet[p + i] = aux[i]\n return c\n\n\nentrada = int(input())\nvet = [int(x) for x in input().split()]\naux = [0] * entrada\nprint(merge(0, entrada))\n", "step-5": "'''\nvetor = [\"pares de pregos ligados por uma linha\"]\nindice do vetor representa os pregos na vertical, e o\ninteiro em cada pos, os pregos na horizontal.\n\ni(vertical) e j(horizontal) entao:\n vetor[i] = j\n\npregos a(vertical) e pregos b(horizontal)\n\nse a>i and b<j or a<i and b>j\n\na e i(são indices) b e j(são os elemntos salvos na pos)\n'''\n\ndef merge(p,n):\n global vet\n global aux\n if n <= 1:\n return 0\n c = merge(p,n//2) + merge(p+n//2,n-n//2)\n d,a,b = 0,0,n//2\n while d<n:\n if a != n//2 and (b == n or vet[p+a]<vet[p+b]):\n aux[d] = vet[p+a]\n a+=1\n else:\n aux[d] = vet[p+b]\n c+=n//2+a\n b+=1\n d+=1\n for i in range(n):\n vet[p+i] = aux[i]\n return c\n\nentrada = int(input())\nvet = [int(x) for x in input().split()]\naux = [0]*entrada\nprint(merge(0,entrada))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: Dang Kai # @Date: 2018-10-30 15:52:57 # @Last Modified time: 2018-11-10 09:09:21 # @E-mail: [email protected] # @Description: from time import sleep import sys sys.path.append('../') from common.encapsulation import BasePage class IndexPage: def login(self, username, password): # 登录页面 BasePage.open_url(self,self.base_url) BasePage.send_key(self,'css','#username',username) BasePage.send_key(self,'css',"#password",password) BasePage.click_element(self,"css",".ant-btn") if __name__ == '__main__': login_cookies(self)
normal
{ "blob_id": "463f50567c9dd4b7b47a84eea715541cec5d3cb5", "index": 2110, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass IndexPage:\n\n def login(self, username, password):\n BasePage.open_url(self, self.base_url)\n BasePage.send_key(self, 'css', '#username', username)\n BasePage.send_key(self, 'css', '#password', password)\n BasePage.click_element(self, 'css', '.ant-btn')\n\n\n<mask token>\n", "step-3": "<mask token>\nsys.path.append('../')\n<mask token>\n\n\nclass IndexPage:\n\n def login(self, username, password):\n BasePage.open_url(self, self.base_url)\n BasePage.send_key(self, 'css', '#username', username)\n BasePage.send_key(self, 'css', '#password', password)\n BasePage.click_element(self, 'css', '.ant-btn')\n\n\nif __name__ == '__main__':\n login_cookies(self)\n", "step-4": "from time import sleep\nimport sys\nsys.path.append('../')\nfrom common.encapsulation import BasePage\n\n\nclass IndexPage:\n\n def login(self, username, password):\n BasePage.open_url(self, self.base_url)\n BasePage.send_key(self, 'css', '#username', username)\n BasePage.send_key(self, 'css', '#password', password)\n BasePage.click_element(self, 'css', '.ant-btn')\n\n\nif __name__ == '__main__':\n login_cookies(self)\n", "step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n# @Author: Dang Kai\n# @Date: 2018-10-30 15:52:57\n# @Last Modified time: 2018-11-10 09:09:21\n# @E-mail: [email protected]\n# @Description:\nfrom time import sleep\nimport sys\nsys.path.append('../')\nfrom common.encapsulation import BasePage\n\n\nclass IndexPage:\n\n def login(self, username, password):\n # 登录页面\n BasePage.open_url(self,self.base_url)\n BasePage.send_key(self,'css','#username',username)\n BasePage.send_key(self,'css',\"#password\",password)\n BasePage.click_element(self,\"css\",\".ant-btn\")\n\nif __name__ == '__main__':\n login_cookies(self)\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
""" Copyright (C) 2018-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from extensions.ops.interpolate import Interpolate from mo.front.caffe.collect_attributes import merge_attrs from mo.front.common.partial_infer.utils import int64_array from mo.front.extractor import FrontExtractorOp class InterpFrontExtractor(FrontExtractorOp): op = 'Interp' enabled = True @classmethod def extract(cls, node): proto_layer = node.pb param = proto_layer.interp_param update_attrs = { 'height': param.height, 'width': param.width, 'zoom_factor': param.zoom_factor, 'shrink_factor': param.shrink_factor, } mapping_rule = merge_attrs(param, update_attrs) mapping_rule.update({'fw': 'caffe', 'mode': 'linear', 'axes': int64_array([2, 3]), 'pads_begin': param.pad_beg, 'pads_end': param.pad_end, 'align_corners': 1}) Interpolate.update_node_stat(node, mapping_rule) return cls.enabled
normal
{ "blob_id": "ce28462621a423c6661c672cf92d7e9c91875cfa", "index": 8247, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass InterpFrontExtractor(FrontExtractorOp):\n <mask token>\n <mask token>\n\n @classmethod\n def extract(cls, node):\n proto_layer = node.pb\n param = proto_layer.interp_param\n update_attrs = {'height': param.height, 'width': param.width,\n 'zoom_factor': param.zoom_factor, 'shrink_factor': param.\n shrink_factor}\n mapping_rule = merge_attrs(param, update_attrs)\n mapping_rule.update({'fw': 'caffe', 'mode': 'linear', 'axes':\n int64_array([2, 3]), 'pads_begin': param.pad_beg, 'pads_end':\n param.pad_end, 'align_corners': 1})\n Interpolate.update_node_stat(node, mapping_rule)\n return cls.enabled\n", "step-3": "<mask token>\n\n\nclass InterpFrontExtractor(FrontExtractorOp):\n op = 'Interp'\n enabled = True\n\n @classmethod\n def extract(cls, node):\n proto_layer = node.pb\n param = proto_layer.interp_param\n update_attrs = {'height': param.height, 'width': param.width,\n 'zoom_factor': param.zoom_factor, 'shrink_factor': param.\n shrink_factor}\n mapping_rule = merge_attrs(param, update_attrs)\n mapping_rule.update({'fw': 'caffe', 'mode': 'linear', 'axes':\n int64_array([2, 3]), 'pads_begin': param.pad_beg, 'pads_end':\n param.pad_end, 'align_corners': 1})\n Interpolate.update_node_stat(node, mapping_rule)\n return cls.enabled\n", "step-4": "<mask token>\nfrom extensions.ops.interpolate import Interpolate\nfrom mo.front.caffe.collect_attributes import merge_attrs\nfrom mo.front.common.partial_infer.utils import int64_array\nfrom mo.front.extractor import FrontExtractorOp\n\n\nclass InterpFrontExtractor(FrontExtractorOp):\n op = 'Interp'\n enabled = True\n\n @classmethod\n def extract(cls, node):\n proto_layer = node.pb\n param = proto_layer.interp_param\n update_attrs = {'height': param.height, 'width': param.width,\n 'zoom_factor': param.zoom_factor, 'shrink_factor': param.\n shrink_factor}\n mapping_rule = merge_attrs(param, update_attrs)\n mapping_rule.update({'fw': 'caffe', 'mode': 'linear', 'axes':\n int64_array([2, 3]), 'pads_begin': param.pad_beg, 'pads_end':\n param.pad_end, 'align_corners': 1})\n Interpolate.update_node_stat(node, mapping_rule)\n return cls.enabled\n", "step-5": "\"\"\"\n Copyright (C) 2018-2020 Intel Corporation\n\n Licensed under the Apache License, Version 2.0 (the \"License\");\n you may not use this file except in compliance with the License.\n You may obtain a copy of the License at\n\n http://www.apache.org/licenses/LICENSE-2.0\n\n Unless required by applicable law or agreed to in writing, software\n distributed under the License is distributed on an \"AS IS\" BASIS,\n WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n See the License for the specific language governing permissions and\n limitations under the License.\n\"\"\"\n\nfrom extensions.ops.interpolate import Interpolate\nfrom mo.front.caffe.collect_attributes import merge_attrs\nfrom mo.front.common.partial_infer.utils import int64_array\nfrom mo.front.extractor import FrontExtractorOp\n\n\nclass InterpFrontExtractor(FrontExtractorOp):\n op = 'Interp'\n enabled = True\n\n @classmethod\n def extract(cls, node):\n proto_layer = node.pb\n param = proto_layer.interp_param\n\n update_attrs = {\n 'height': param.height,\n 'width': param.width,\n 'zoom_factor': param.zoom_factor,\n 'shrink_factor': param.shrink_factor,\n }\n\n mapping_rule = merge_attrs(param, update_attrs)\n mapping_rule.update({'fw': 'caffe', 'mode': 'linear', 'axes': int64_array([2, 3]),\n 'pads_begin': param.pad_beg, 'pads_end': param.pad_end, 'align_corners': 1})\n Interpolate.update_node_stat(node, mapping_rule)\n return cls.enabled\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
thisdict = {"brand": "ford", "model": "Mustang", "year": 1964} module = thisdict["modal"] print("model:", module) thisdict = {"brand": "ford", "model": "Mustang", "year": 1964} module = thisdict.get["modal"] print("model:", module)
normal
{ "blob_id": "3d854c83488eeafa035ccf5d333eeeae63505255", "index": 6908, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('model:', module)\n<mask token>\nprint('model:', module)\n", "step-3": "thisdict = {'brand': 'ford', 'model': 'Mustang', 'year': 1964}\nmodule = thisdict['modal']\nprint('model:', module)\nthisdict = {'brand': 'ford', 'model': 'Mustang', 'year': 1964}\nmodule = thisdict.get['modal']\nprint('model:', module)\n", "step-4": "thisdict = {\"brand\": \"ford\", \"model\": \"Mustang\", \"year\": 1964}\nmodule = thisdict[\"modal\"]\nprint(\"model:\", module)\n\nthisdict = {\"brand\": \"ford\", \"model\": \"Mustang\", \"year\": 1964}\nmodule = thisdict.get[\"modal\"]\nprint(\"model:\", module)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from api.serializers.cart import CartSerializer from api.serializers.product import ProductSerializer, ProductPopular from api.serializers.type import TypeSerializer from api.serializers.user import UserCreationSerializer, UserSerializer from api.serializers.history import HistorySerializer from api.serializers.order import OrderSerializer from api.serializers.comment import CommentSerializer from api.serializers.reply import ReplySerializer from api.serializers.reason import ReasonSerializer from api.serializers.waitinglist import WaitinglistSerializer
normal
{ "blob_id": "f0ff15a2392b439a54c5ec304192117c08978755", "index": 4930, "step-1": "<mask token>\n", "step-2": "from api.serializers.cart import CartSerializer\nfrom api.serializers.product import ProductSerializer, ProductPopular\nfrom api.serializers.type import TypeSerializer\nfrom api.serializers.user import UserCreationSerializer, UserSerializer\nfrom api.serializers.history import HistorySerializer\nfrom api.serializers.order import OrderSerializer\nfrom api.serializers.comment import CommentSerializer\nfrom api.serializers.reply import ReplySerializer\nfrom api.serializers.reason import ReasonSerializer\nfrom api.serializers.waitinglist import WaitinglistSerializer\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
# Generated by Django 2.2.6 on 2019-12-23 16:38 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('Pages', '0014_auto_20191223_2032'), ] operations = [ migrations.AlterField( model_name='dept', name='Hospital_id', field=models.ForeignKey(default='null', on_delete=django.db.models.deletion.CASCADE, to='Pages.Hospital'), ), ]
normal
{ "blob_id": "d09984c6e6a0ce82389dbbbade63507e9687355d", "index": 771, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('Pages', '0014_auto_20191223_2032')]\n operations = [migrations.AlterField(model_name='dept', name=\n 'Hospital_id', field=models.ForeignKey(default='null', on_delete=\n django.db.models.deletion.CASCADE, to='Pages.Hospital'))]\n", "step-4": "from django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n dependencies = [('Pages', '0014_auto_20191223_2032')]\n operations = [migrations.AlterField(model_name='dept', name=\n 'Hospital_id', field=models.ForeignKey(default='null', on_delete=\n django.db.models.deletion.CASCADE, to='Pages.Hospital'))]\n", "step-5": "# Generated by Django 2.2.6 on 2019-12-23 16:38\n\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('Pages', '0014_auto_20191223_2032'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='dept',\n name='Hospital_id',\n field=models.ForeignKey(default='null', on_delete=django.db.models.deletion.CASCADE, to='Pages.Hospital'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python # -*-coding:utf-8-*- # Author:SemaseMing <blog.v-api.cn> # Email: [email protected] # Time: 2016-10-19 11:56 import gevent def foo(): print('Running in foo') gevent.sleep(0) print('Explicit context switch to foo ageni') def bar(): print('Explicit context to bar') gevent.sleep(0) print('Implicit contenxt switch back to bar') gevent.joinall([gevent.spawn(foo), gevent.spawn(bar)])
normal
{ "blob_id": "7f131e17f4fbd7d6b333a51dae557ddb07c30046", "index": 9077, "step-1": "<mask token>\n\n\ndef bar():\n print('Explicit context to bar')\n gevent.sleep(0)\n print('Implicit contenxt switch back to bar')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef foo():\n print('Running in foo')\n gevent.sleep(0)\n print('Explicit context switch to foo ageni')\n\n\ndef bar():\n print('Explicit context to bar')\n gevent.sleep(0)\n print('Implicit contenxt switch back to bar')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef foo():\n print('Running in foo')\n gevent.sleep(0)\n print('Explicit context switch to foo ageni')\n\n\ndef bar():\n print('Explicit context to bar')\n gevent.sleep(0)\n print('Implicit contenxt switch back to bar')\n\n\ngevent.joinall([gevent.spawn(foo), gevent.spawn(bar)])\n", "step-4": "import gevent\n\n\ndef foo():\n print('Running in foo')\n gevent.sleep(0)\n print('Explicit context switch to foo ageni')\n\n\ndef bar():\n print('Explicit context to bar')\n gevent.sleep(0)\n print('Implicit contenxt switch back to bar')\n\n\ngevent.joinall([gevent.spawn(foo), gevent.spawn(bar)])\n", "step-5": "#!/usr/bin/env python\n# -*-coding:utf-8-*-\n# Author:SemaseMing <blog.v-api.cn>\n# Email: [email protected]\n# Time: 2016-10-19 11:56\n\nimport gevent\n\n\ndef foo():\n print('Running in foo')\n gevent.sleep(0)\n print('Explicit context switch to foo ageni')\n\n\ndef bar():\n print('Explicit context to bar')\n gevent.sleep(0)\n print('Implicit contenxt switch back to bar')\n\ngevent.joinall([gevent.spawn(foo), gevent.spawn(bar)])", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
def main(): a, b = map(int, input().split()) diff = abs(max(b, a) - min(a, b)) if diff % 2 != 0: print("IMPOSSIBLE") else: bigger = max(a, b) ans = bigger - (diff//2) print(ans) if __name__ == "__main__": main()
normal
{ "blob_id": "f73cbc25152a63bb6552e2cd8272c67a1f4277ba", "index": 9044, "step-1": "<mask token>\n", "step-2": "def main():\n a, b = map(int, input().split())\n diff = abs(max(b, a) - min(a, b))\n if diff % 2 != 0:\n print('IMPOSSIBLE')\n else:\n bigger = max(a, b)\n ans = bigger - diff // 2\n print(ans)\n\n\n<mask token>\n", "step-3": "def main():\n a, b = map(int, input().split())\n diff = abs(max(b, a) - min(a, b))\n if diff % 2 != 0:\n print('IMPOSSIBLE')\n else:\n bigger = max(a, b)\n ans = bigger - diff // 2\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "def main():\n a, b = map(int, input().split())\n diff = abs(max(b, a) - min(a, b))\n if diff % 2 != 0:\n print(\"IMPOSSIBLE\")\n else:\n bigger = max(a, b)\n ans = bigger - (diff//2)\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# Testing import sys, os sys.dont_write_bytecode = True import argparse, socket from requestframe import RequestFrame if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--header-mutate-level", type=int, choices=range(11), nargs='?', help="Set the mutation level for the headers (0-10). Default = 5", default=5) parser.add_argument("--body-mutate-level", type=int, choices=range(11), nargs='?', help="Set the mutation level for the body (0-10). Default = 5", default=5) parser.add_argument("--request-mutate-level", type=int, choices=range(11), nargs='?', help="Set the mutation level for the request line (0-10). Default = 5", default=5) parser.add_argument("--body-type", type=str, choices=['json', 'junk', 'rand'], help="Set the data generated in the request body. Default = rand", default='rand') parser.add_argument("--num-headers", type=int, help="Sets the maximum number of headers. Default = number of available headers", default=-1) parser.add_argument("--generate-num", type=int, help="Number of requests to generate. Any more than 1 generated request will output to a new folder called output/. Default = 1", default=1) parser.add_argument('-v', '--version', action='version', version='HTTPFuzz Version: 1.0.1') args = parser.parse_args() if args.generate_num > 1: try: os.mkdir("output") for i in range(args.generate_num): with open("output/{}.txt".format(i + 1), 'w') as f: request_frame = RequestFrame(args) request_frame.generate() f.write(request_frame.request) print("[+] Wrote request to /output/{}.txt".format(i + 1)) exit("[+] Finished creating requests") except: exit("[-] Couldn't make the output directory. It might already exist.") request_frame = RequestFrame(args) request_frame.generate() exit(request_frame.request)
normal
{ "blob_id": "350a79d6cead6814ad48292b14a204e753dc938c", "index": 4363, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('--header-mutate-level', type=int, choices=range(11\n ), nargs='?', help=\n 'Set the mutation level for the headers (0-10). Default = 5', default=5\n )\n parser.add_argument('--body-mutate-level', type=int, choices=range(11),\n nargs='?', help=\n 'Set the mutation level for the body (0-10). Default = 5', default=5)\n parser.add_argument('--request-mutate-level', type=int, choices=range(\n 11), nargs='?', help=\n 'Set the mutation level for the request line (0-10). Default = 5',\n default=5)\n parser.add_argument('--body-type', type=str, choices=['json', 'junk',\n 'rand'], help=\n 'Set the data generated in the request body. Default = rand',\n default='rand')\n parser.add_argument('--num-headers', type=int, help=\n 'Sets the maximum number of headers. Default = number of available headers'\n , default=-1)\n parser.add_argument('--generate-num', type=int, help=\n 'Number of requests to generate. Any more than 1 generated request will output to a new folder called output/. Default = 1'\n , default=1)\n parser.add_argument('-v', '--version', action='version', version=\n 'HTTPFuzz Version: 1.0.1')\n args = parser.parse_args()\n if args.generate_num > 1:\n try:\n os.mkdir('output')\n for i in range(args.generate_num):\n with open('output/{}.txt'.format(i + 1), 'w') as f:\n request_frame = RequestFrame(args)\n request_frame.generate()\n f.write(request_frame.request)\n print('[+] Wrote request to /output/{}.txt'.format(i + 1))\n exit('[+] Finished creating requests')\n except:\n exit(\n \"[-] Couldn't make the output directory. It might already exist.\"\n )\n request_frame = RequestFrame(args)\n request_frame.generate()\n exit(request_frame.request)\n", "step-3": "<mask token>\nsys.dont_write_bytecode = True\n<mask token>\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('--header-mutate-level', type=int, choices=range(11\n ), nargs='?', help=\n 'Set the mutation level for the headers (0-10). Default = 5', default=5\n )\n parser.add_argument('--body-mutate-level', type=int, choices=range(11),\n nargs='?', help=\n 'Set the mutation level for the body (0-10). Default = 5', default=5)\n parser.add_argument('--request-mutate-level', type=int, choices=range(\n 11), nargs='?', help=\n 'Set the mutation level for the request line (0-10). Default = 5',\n default=5)\n parser.add_argument('--body-type', type=str, choices=['json', 'junk',\n 'rand'], help=\n 'Set the data generated in the request body. Default = rand',\n default='rand')\n parser.add_argument('--num-headers', type=int, help=\n 'Sets the maximum number of headers. Default = number of available headers'\n , default=-1)\n parser.add_argument('--generate-num', type=int, help=\n 'Number of requests to generate. Any more than 1 generated request will output to a new folder called output/. Default = 1'\n , default=1)\n parser.add_argument('-v', '--version', action='version', version=\n 'HTTPFuzz Version: 1.0.1')\n args = parser.parse_args()\n if args.generate_num > 1:\n try:\n os.mkdir('output')\n for i in range(args.generate_num):\n with open('output/{}.txt'.format(i + 1), 'w') as f:\n request_frame = RequestFrame(args)\n request_frame.generate()\n f.write(request_frame.request)\n print('[+] Wrote request to /output/{}.txt'.format(i + 1))\n exit('[+] Finished creating requests')\n except:\n exit(\n \"[-] Couldn't make the output directory. It might already exist.\"\n )\n request_frame = RequestFrame(args)\n request_frame.generate()\n exit(request_frame.request)\n", "step-4": "import sys, os\nsys.dont_write_bytecode = True\nimport argparse, socket\nfrom requestframe import RequestFrame\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('--header-mutate-level', type=int, choices=range(11\n ), nargs='?', help=\n 'Set the mutation level for the headers (0-10). Default = 5', default=5\n )\n parser.add_argument('--body-mutate-level', type=int, choices=range(11),\n nargs='?', help=\n 'Set the mutation level for the body (0-10). Default = 5', default=5)\n parser.add_argument('--request-mutate-level', type=int, choices=range(\n 11), nargs='?', help=\n 'Set the mutation level for the request line (0-10). Default = 5',\n default=5)\n parser.add_argument('--body-type', type=str, choices=['json', 'junk',\n 'rand'], help=\n 'Set the data generated in the request body. Default = rand',\n default='rand')\n parser.add_argument('--num-headers', type=int, help=\n 'Sets the maximum number of headers. Default = number of available headers'\n , default=-1)\n parser.add_argument('--generate-num', type=int, help=\n 'Number of requests to generate. Any more than 1 generated request will output to a new folder called output/. Default = 1'\n , default=1)\n parser.add_argument('-v', '--version', action='version', version=\n 'HTTPFuzz Version: 1.0.1')\n args = parser.parse_args()\n if args.generate_num > 1:\n try:\n os.mkdir('output')\n for i in range(args.generate_num):\n with open('output/{}.txt'.format(i + 1), 'w') as f:\n request_frame = RequestFrame(args)\n request_frame.generate()\n f.write(request_frame.request)\n print('[+] Wrote request to /output/{}.txt'.format(i + 1))\n exit('[+] Finished creating requests')\n except:\n exit(\n \"[-] Couldn't make the output directory. It might already exist.\"\n )\n request_frame = RequestFrame(args)\n request_frame.generate()\n exit(request_frame.request)\n", "step-5": "# Testing\nimport sys, os\nsys.dont_write_bytecode = True\n\nimport argparse, socket\nfrom requestframe import RequestFrame\n\nif __name__ == \"__main__\":\n parser = argparse.ArgumentParser()\n parser.add_argument(\"--header-mutate-level\", type=int, choices=range(11), nargs='?', help=\"Set the mutation level for the headers (0-10). Default = 5\", default=5)\n parser.add_argument(\"--body-mutate-level\", type=int, choices=range(11), nargs='?', help=\"Set the mutation level for the body (0-10). Default = 5\", default=5)\n parser.add_argument(\"--request-mutate-level\", type=int, choices=range(11), nargs='?', help=\"Set the mutation level for the request line (0-10). Default = 5\", default=5)\n parser.add_argument(\"--body-type\", type=str, choices=['json', 'junk', 'rand'], help=\"Set the data generated in the request body. Default = rand\", default='rand')\n parser.add_argument(\"--num-headers\", type=int, help=\"Sets the maximum number of headers. Default = number of available headers\", default=-1)\n parser.add_argument(\"--generate-num\", type=int, help=\"Number of requests to generate. Any more than 1 generated request will output to a new folder called output/. Default = 1\", default=1)\n parser.add_argument('-v', '--version', action='version', version='HTTPFuzz Version: 1.0.1')\n args = parser.parse_args()\n if args.generate_num > 1:\n try:\n os.mkdir(\"output\")\n for i in range(args.generate_num):\n with open(\"output/{}.txt\".format(i + 1), 'w') as f:\n request_frame = RequestFrame(args)\n request_frame.generate()\n f.write(request_frame.request)\n print(\"[+] Wrote request to /output/{}.txt\".format(i + 1))\n exit(\"[+] Finished creating requests\")\n except:\n exit(\"[-] Couldn't make the output directory. It might already exist.\")\n request_frame = RequestFrame(args)\n request_frame.generate()\n exit(request_frame.request)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import math import time def calculate_time(func): def inner_fn(*args, **kwargs): start = time.time() func(*args, **kwargs) end = time.time() print("Time taken to execute \'{}\' function is: {} seconds".format(func.__name__, round(end - start, 2))) return inner_fn @calculate_time def factorial(num): time.sleep(2) print(math.factorial(num)) factorial(20)
normal
{ "blob_id": "7c9c13974e1deeb55f08c9e251e8c876cedcad6b", "index": 2484, "step-1": "<mask token>\n\n\n@calculate_time\ndef factorial(num):\n time.sleep(2)\n print(math.factorial(num))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef calculate_time(func):\n\n def inner_fn(*args, **kwargs):\n start = time.time()\n func(*args, **kwargs)\n end = time.time()\n print(\"Time taken to execute '{}' function is: {} seconds\".format(\n func.__name__, round(end - start, 2)))\n return inner_fn\n\n\n@calculate_time\ndef factorial(num):\n time.sleep(2)\n print(math.factorial(num))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef calculate_time(func):\n\n def inner_fn(*args, **kwargs):\n start = time.time()\n func(*args, **kwargs)\n end = time.time()\n print(\"Time taken to execute '{}' function is: {} seconds\".format(\n func.__name__, round(end - start, 2)))\n return inner_fn\n\n\n@calculate_time\ndef factorial(num):\n time.sleep(2)\n print(math.factorial(num))\n\n\nfactorial(20)\n", "step-4": "import math\nimport time\n\n\ndef calculate_time(func):\n\n def inner_fn(*args, **kwargs):\n start = time.time()\n func(*args, **kwargs)\n end = time.time()\n print(\"Time taken to execute '{}' function is: {} seconds\".format(\n func.__name__, round(end - start, 2)))\n return inner_fn\n\n\n@calculate_time\ndef factorial(num):\n time.sleep(2)\n print(math.factorial(num))\n\n\nfactorial(20)\n", "step-5": "import math\r\nimport time\r\n\r\ndef calculate_time(func):\r\n\r\n def inner_fn(*args, **kwargs):\r\n start = time.time()\r\n func(*args, **kwargs)\r\n end = time.time()\r\n\r\n print(\"Time taken to execute \\'{}\\' function is: {} seconds\".format(func.__name__, round(end - start, 2)))\r\n \r\n return inner_fn\r\n\r\n@calculate_time\r\ndef factorial(num):\r\n time.sleep(2)\r\n print(math.factorial(num))\r\n\r\nfactorial(20)", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from flask import Flask, jsonify, request, send_file, render_template from flask_cors import CORS from twilio.rest import Client import autocomplete from gtts import gTTS import os # Set up the model. autocomplete.load() app = Flask(__name__) CORS(app) # The application @app.route("/") def index(): return render_template("index.html") # Create a class for custom error messages (reference: http://flask.pocoo.org/docs/0.12/patterns/apierrors/). class InvalidUsage(Exception): status_code = 400 # Initialize the InvalidUsage exception. def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload # Convert the exception information into a dictionary. def to_dict(self): rv = dict(self.payload or ()) rv['message'] = self.message return rv # Register the custom exception with the error handler (reference: http://flask.pocoo.org/docs/0.12/patterns/apierrors/). @app.errorhandler(InvalidUsage) def handle_invalid_usage(error): response = jsonify(error.to_dict()) response.status_code = error.status_code return response # Converts English text to speech. @app.route('/convert_text_to_speech', methods=['POST']) def convert_text_to_speech(): # Check to see if the required parameters are present. if 'text_to_convert' not in request.values.keys(): raise InvalidUsage("No text included for conversion", status_code = 400) # Send the post request. tts = gTTS(text=request.values['text_to_convert'], lang='en') tts.save('converted_text.mp3') os.system('start converted_text.mp3') # Return the sound file. return send_file('converted_text.mp3', mimetype='audio/mpeg') # Get suggestions for words that the user typed in. @app.route('/get_suggestion', methods=['GET','POST']) def get_suggestion(): # Raise an exception if the required parameters are not specified. if "words" not in request.values.keys(): raise InvalidUsage("No words were specified for prediction.", status_code = 400) # Predict the next word. text = request.values['words'] prediction = []; if len(text.split(" ")) > 1: prediction = autocomplete.split_predict(text, 10) else: prediction = autocomplete.predict_currword(text, 10) return jsonify(prediction) # Adds text message support to allow Don to send text messages. @app.route('/send_text', methods=['GET', 'POST']) def send_text(): # Raise an exception if the required parameters are not specified. if "text" not in request.values.keys(): raise InvalidUsage("The text message was not found in the request.", status_code = 400) if "to" not in request.values.keys(): raise InvalidUsage("The to-number was not found in the request", status_code = 400) # Extract the required information from the request body. text = request.values['text'] to_number = request.values['to'] # Set up the account credentials - in a production project, this would be placed in a "secrets" file. account_sid = "ACbbd2cff98bcbbad08f76b03701a0f2d9" auth_token = "7d786ff14c6b4572a6e8e78f8ad6aee5" # Send the text message. client = Client(account_sid, auth_token) message = client.messages.create( from_="+12267992139", to=to_number, body=text) return jsonify({"to":to_number, "message":message.body, "error code":message.error_code})
normal
{ "blob_id": "8980ac4db2657d3dbd2b70b33a4d13a077d4590e", "index": 2266, "step-1": "<mask token>\n\n\nclass InvalidUsage(Exception):\n status_code = 400\n\n def __init__(self, message, status_code=None, payload=None):\n Exception.__init__(self)\n self.message = message\n if status_code is not None:\n self.status_code = status_code\n self.payload = payload\n\n def to_dict(self):\n rv = dict(self.payload or ())\n rv['message'] = self.message\n return rv\n\n\[email protected](InvalidUsage)\ndef handle_invalid_usage(error):\n response = jsonify(error.to_dict())\n response.status_code = error.status_code\n return response\n\n\n<mask token>\n\n\[email protected]('/get_suggestion', methods=['GET', 'POST'])\ndef get_suggestion():\n if 'words' not in request.values.keys():\n raise InvalidUsage('No words were specified for prediction.',\n status_code=400)\n text = request.values['words']\n prediction = []\n if len(text.split(' ')) > 1:\n prediction = autocomplete.split_predict(text, 10)\n else:\n prediction = autocomplete.predict_currword(text, 10)\n return jsonify(prediction)\n\n\[email protected]('/send_text', methods=['GET', 'POST'])\ndef send_text():\n if 'text' not in request.values.keys():\n raise InvalidUsage('The text message was not found in the request.',\n status_code=400)\n if 'to' not in request.values.keys():\n raise InvalidUsage('The to-number was not found in the request',\n status_code=400)\n text = request.values['text']\n to_number = request.values['to']\n account_sid = 'ACbbd2cff98bcbbad08f76b03701a0f2d9'\n auth_token = '7d786ff14c6b4572a6e8e78f8ad6aee5'\n client = Client(account_sid, auth_token)\n message = client.messages.create(from_='+12267992139', to=to_number,\n body=text)\n return jsonify({'to': to_number, 'message': message.body, 'error code':\n message.error_code})\n", "step-2": "<mask token>\n\n\[email protected]('/')\ndef index():\n return render_template('index.html')\n\n\nclass InvalidUsage(Exception):\n status_code = 400\n\n def __init__(self, message, status_code=None, payload=None):\n Exception.__init__(self)\n self.message = message\n if status_code is not None:\n self.status_code = status_code\n self.payload = payload\n\n def to_dict(self):\n rv = dict(self.payload or ())\n rv['message'] = self.message\n return rv\n\n\[email protected](InvalidUsage)\ndef handle_invalid_usage(error):\n response = jsonify(error.to_dict())\n response.status_code = error.status_code\n return response\n\n\[email protected]('/convert_text_to_speech', methods=['POST'])\ndef convert_text_to_speech():\n if 'text_to_convert' not in request.values.keys():\n raise InvalidUsage('No text included for conversion', status_code=400)\n tts = gTTS(text=request.values['text_to_convert'], lang='en')\n tts.save('converted_text.mp3')\n os.system('start converted_text.mp3')\n return send_file('converted_text.mp3', mimetype='audio/mpeg')\n\n\[email protected]('/get_suggestion', methods=['GET', 'POST'])\ndef get_suggestion():\n if 'words' not in request.values.keys():\n raise InvalidUsage('No words were specified for prediction.',\n status_code=400)\n text = request.values['words']\n prediction = []\n if len(text.split(' ')) > 1:\n prediction = autocomplete.split_predict(text, 10)\n else:\n prediction = autocomplete.predict_currword(text, 10)\n return jsonify(prediction)\n\n\[email protected]('/send_text', methods=['GET', 'POST'])\ndef send_text():\n if 'text' not in request.values.keys():\n raise InvalidUsage('The text message was not found in the request.',\n status_code=400)\n if 'to' not in request.values.keys():\n raise InvalidUsage('The to-number was not found in the request',\n status_code=400)\n text = request.values['text']\n to_number = request.values['to']\n account_sid = 'ACbbd2cff98bcbbad08f76b03701a0f2d9'\n auth_token = '7d786ff14c6b4572a6e8e78f8ad6aee5'\n client = Client(account_sid, auth_token)\n message = client.messages.create(from_='+12267992139', to=to_number,\n body=text)\n return jsonify({'to': to_number, 'message': message.body, 'error code':\n message.error_code})\n", "step-3": "<mask token>\nautocomplete.load()\n<mask token>\nCORS(app)\n\n\[email protected]('/')\ndef index():\n return render_template('index.html')\n\n\nclass InvalidUsage(Exception):\n status_code = 400\n\n def __init__(self, message, status_code=None, payload=None):\n Exception.__init__(self)\n self.message = message\n if status_code is not None:\n self.status_code = status_code\n self.payload = payload\n\n def to_dict(self):\n rv = dict(self.payload or ())\n rv['message'] = self.message\n return rv\n\n\[email protected](InvalidUsage)\ndef handle_invalid_usage(error):\n response = jsonify(error.to_dict())\n response.status_code = error.status_code\n return response\n\n\[email protected]('/convert_text_to_speech', methods=['POST'])\ndef convert_text_to_speech():\n if 'text_to_convert' not in request.values.keys():\n raise InvalidUsage('No text included for conversion', status_code=400)\n tts = gTTS(text=request.values['text_to_convert'], lang='en')\n tts.save('converted_text.mp3')\n os.system('start converted_text.mp3')\n return send_file('converted_text.mp3', mimetype='audio/mpeg')\n\n\[email protected]('/get_suggestion', methods=['GET', 'POST'])\ndef get_suggestion():\n if 'words' not in request.values.keys():\n raise InvalidUsage('No words were specified for prediction.',\n status_code=400)\n text = request.values['words']\n prediction = []\n if len(text.split(' ')) > 1:\n prediction = autocomplete.split_predict(text, 10)\n else:\n prediction = autocomplete.predict_currword(text, 10)\n return jsonify(prediction)\n\n\[email protected]('/send_text', methods=['GET', 'POST'])\ndef send_text():\n if 'text' not in request.values.keys():\n raise InvalidUsage('The text message was not found in the request.',\n status_code=400)\n if 'to' not in request.values.keys():\n raise InvalidUsage('The to-number was not found in the request',\n status_code=400)\n text = request.values['text']\n to_number = request.values['to']\n account_sid = 'ACbbd2cff98bcbbad08f76b03701a0f2d9'\n auth_token = '7d786ff14c6b4572a6e8e78f8ad6aee5'\n client = Client(account_sid, auth_token)\n message = client.messages.create(from_='+12267992139', to=to_number,\n body=text)\n return jsonify({'to': to_number, 'message': message.body, 'error code':\n message.error_code})\n", "step-4": "<mask token>\nautocomplete.load()\napp = Flask(__name__)\nCORS(app)\n\n\[email protected]('/')\ndef index():\n return render_template('index.html')\n\n\nclass InvalidUsage(Exception):\n status_code = 400\n\n def __init__(self, message, status_code=None, payload=None):\n Exception.__init__(self)\n self.message = message\n if status_code is not None:\n self.status_code = status_code\n self.payload = payload\n\n def to_dict(self):\n rv = dict(self.payload or ())\n rv['message'] = self.message\n return rv\n\n\[email protected](InvalidUsage)\ndef handle_invalid_usage(error):\n response = jsonify(error.to_dict())\n response.status_code = error.status_code\n return response\n\n\[email protected]('/convert_text_to_speech', methods=['POST'])\ndef convert_text_to_speech():\n if 'text_to_convert' not in request.values.keys():\n raise InvalidUsage('No text included for conversion', status_code=400)\n tts = gTTS(text=request.values['text_to_convert'], lang='en')\n tts.save('converted_text.mp3')\n os.system('start converted_text.mp3')\n return send_file('converted_text.mp3', mimetype='audio/mpeg')\n\n\[email protected]('/get_suggestion', methods=['GET', 'POST'])\ndef get_suggestion():\n if 'words' not in request.values.keys():\n raise InvalidUsage('No words were specified for prediction.',\n status_code=400)\n text = request.values['words']\n prediction = []\n if len(text.split(' ')) > 1:\n prediction = autocomplete.split_predict(text, 10)\n else:\n prediction = autocomplete.predict_currword(text, 10)\n return jsonify(prediction)\n\n\[email protected]('/send_text', methods=['GET', 'POST'])\ndef send_text():\n if 'text' not in request.values.keys():\n raise InvalidUsage('The text message was not found in the request.',\n status_code=400)\n if 'to' not in request.values.keys():\n raise InvalidUsage('The to-number was not found in the request',\n status_code=400)\n text = request.values['text']\n to_number = request.values['to']\n account_sid = 'ACbbd2cff98bcbbad08f76b03701a0f2d9'\n auth_token = '7d786ff14c6b4572a6e8e78f8ad6aee5'\n client = Client(account_sid, auth_token)\n message = client.messages.create(from_='+12267992139', to=to_number,\n body=text)\n return jsonify({'to': to_number, 'message': message.body, 'error code':\n message.error_code})\n", "step-5": "from flask import Flask, jsonify, request, send_file, render_template\nfrom flask_cors import CORS\nfrom twilio.rest import Client\nimport autocomplete\nfrom gtts import gTTS\nimport os\n\n# Set up the model.\nautocomplete.load()\napp = Flask(__name__)\nCORS(app)\n\n# The application\[email protected](\"/\")\ndef index():\n\treturn render_template(\"index.html\")\n\n# Create a class for custom error messages (reference: http://flask.pocoo.org/docs/0.12/patterns/apierrors/).\nclass InvalidUsage(Exception):\n\tstatus_code = 400\n\n\t# Initialize the InvalidUsage exception.\n\tdef __init__(self, message, status_code=None, payload=None):\n\t\tException.__init__(self)\n\t\tself.message = message\n\t\tif status_code is not None:\n\t\t\tself.status_code = status_code\n\t\tself.payload = payload\n\n\t# Convert the exception information into a dictionary.\n\tdef to_dict(self):\n\t\trv = dict(self.payload or ())\n\t\trv['message'] = self.message\n\t\treturn rv\n\n# Register the custom exception with the error handler (reference: http://flask.pocoo.org/docs/0.12/patterns/apierrors/).\[email protected](InvalidUsage)\ndef handle_invalid_usage(error):\n\tresponse = jsonify(error.to_dict())\n\tresponse.status_code = error.status_code\n\treturn response\n\n# Converts English text to speech.\[email protected]('/convert_text_to_speech', methods=['POST'])\ndef convert_text_to_speech():\n\t# Check to see if the required parameters are present.\n\tif 'text_to_convert' not in request.values.keys():\n\t\traise InvalidUsage(\"No text included for conversion\", status_code = 400)\n\t\t\n\t# Send the post request.\n\ttts = gTTS(text=request.values['text_to_convert'], lang='en')\n\ttts.save('converted_text.mp3')\n\tos.system('start converted_text.mp3')\n\t\n\t# Return the sound file.\n\treturn send_file('converted_text.mp3', mimetype='audio/mpeg')\n\n# Get suggestions for words that the user typed in.\[email protected]('/get_suggestion', methods=['GET','POST'])\ndef get_suggestion():\n\t# Raise an exception if the required parameters are not specified.\n\tif \"words\" not in request.values.keys():\n\t\traise InvalidUsage(\"No words were specified for prediction.\", status_code = 400)\n\t\n\t# Predict the next word.\n\ttext = request.values['words']\n\tprediction = [];\n\tif len(text.split(\" \")) > 1:\n\t\tprediction = autocomplete.split_predict(text, 10)\n\telse:\n\t\tprediction = autocomplete.predict_currword(text, 10)\n\t\t\n\treturn jsonify(prediction)\n\t\n# Adds text message support to allow Don to send text messages.\[email protected]('/send_text', methods=['GET', 'POST'])\ndef send_text():\n\t# Raise an exception if the required parameters are not specified.\n\tif \"text\" not in request.values.keys():\n\t\traise InvalidUsage(\"The text message was not found in the request.\", status_code = 400)\n\tif \"to\" not in request.values.keys():\n\t\traise InvalidUsage(\"The to-number was not found in the request\", status_code = 400)\n\t\n\t# Extract the required information from the request body.\n\ttext = request.values['text']\n\tto_number = request.values['to']\n\t\n\t# Set up the account credentials - in a production project, this would be placed in a \"secrets\" file.\n\taccount_sid = \"ACbbd2cff98bcbbad08f76b03701a0f2d9\"\n\tauth_token = \"7d786ff14c6b4572a6e8e78f8ad6aee5\"\n\t\n\t# Send the text message.\n\tclient = Client(account_sid, auth_token)\n\tmessage = client.messages.create(\n\t\tfrom_=\"+12267992139\",\n\t\tto=to_number,\n\t\tbody=text)\n\n\treturn jsonify({\"to\":to_number, \"message\":message.body, \"error code\":message.error_code})\n\t", "step-ids": [ 7, 9, 10, 11, 13 ] }
[ 7, 9, 10, 11, 13 ]
#!/usr/bin/python #_*_ coding: utf-8 _*_ import MySQLdb as mdb import sys con = mdb.connect("localhost","testuser","testdB","testdb") with con: cur = con.cursor() cur.execute("UPDATE Writers SET Name = %s WHERE Id = %s ", ("Guy de manupassant", "4")) print "Number of rows updated: %d "% cur.rowcount
normal
{ "blob_id": "94a84c7143763c6b7ccea1049cdec8b7011798cd", "index": 6569, "step-1": "#!/usr/bin/python\n#_*_ coding: utf-8 _*_\n\nimport MySQLdb as mdb\nimport sys\n\ncon = mdb.connect(\"localhost\",\"testuser\",\"testdB\",\"testdb\")\n\nwith con:\n cur = con.cursor()\n\n cur.execute(\"UPDATE Writers SET Name = %s WHERE Id = %s \",\n (\"Guy de manupassant\", \"4\"))\n print \"Number of rows updated: %d \"% cur.rowcount\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
def chess(): row = 0 line = 0 chess1 = [] chess2 = [] for line in range(3): x1 = (0,line) chess1.append(x1) for line in range(3): x2 = (1,line) chess2.append(x2) print(chess1) print(chess2) for x in range(len(chess1)) if chess2[x][1] != chess1[] chess()
normal
{ "blob_id": "7d0d1a53a249167edade24a4e9305c95288a8574", "index": 4851, "step-1": "def chess():\n row = 0\n line = 0\n chess1 = []\n chess2 = []\n for line in range(3):\n x1 = (0,line)\n chess1.append(x1)\n for line in range(3):\n x2 = (1,line)\n chess2.append(x2)\n print(chess1)\n print(chess2)\n for x in range(len(chess1))\n if chess2[x][1] != chess1[]\n \nchess()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# Generated by Django 2.0.5 on 2018-07-12 11:08 import assessment.models from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('assessment', '0006_auto_20180712_1428'), ] operations = [ migrations.AlterModelManagers( name='season', managers=[ ('objects', assessment.models.SeasonManager()), ], ), migrations.AlterField( model_name='punishmentreward', name='method', field=models.TextField(verbose_name='روش'), ), migrations.AlterField( model_name='scaleanswer', name='carried_on', field=models.BooleanField(default=False, verbose_name='انجام\u200cشده'), ), migrations.AlterField( model_name='scaleanswer', name='qualitativeAnswer', field=models.CharField(blank=True, max_length=100, null=True, verbose_name='پاسخ کیفی'), ), migrations.AlterField( model_name='scaleanswer', name='quantitativeAnswer', field=models.CharField(blank=True, max_length=100, null=True, verbose_name='پاسخ کمی'), ), ]
normal
{ "blob_id": "adff75857a1de24267e771c599e4d89486a6ad32", "index": 7439, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('assessment', '0006_auto_20180712_1428')]\n operations = [migrations.AlterModelManagers(name='season', managers=[(\n 'objects', assessment.models.SeasonManager())]), migrations.\n AlterField(model_name='punishmentreward', name='method', field=\n models.TextField(verbose_name='روش')), migrations.AlterField(\n model_name='scaleanswer', name='carried_on', field=models.\n BooleanField(default=False, verbose_name='انجام\\u200cشده')),\n migrations.AlterField(model_name='scaleanswer', name=\n 'qualitativeAnswer', field=models.CharField(blank=True, max_length=\n 100, null=True, verbose_name='پاسخ کیفی')), migrations.AlterField(\n model_name='scaleanswer', name='quantitativeAnswer', field=models.\n CharField(blank=True, max_length=100, null=True, verbose_name=\n 'پاسخ کمی'))]\n", "step-4": "import assessment.models\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('assessment', '0006_auto_20180712_1428')]\n operations = [migrations.AlterModelManagers(name='season', managers=[(\n 'objects', assessment.models.SeasonManager())]), migrations.\n AlterField(model_name='punishmentreward', name='method', field=\n models.TextField(verbose_name='روش')), migrations.AlterField(\n model_name='scaleanswer', name='carried_on', field=models.\n BooleanField(default=False, verbose_name='انجام\\u200cشده')),\n migrations.AlterField(model_name='scaleanswer', name=\n 'qualitativeAnswer', field=models.CharField(blank=True, max_length=\n 100, null=True, verbose_name='پاسخ کیفی')), migrations.AlterField(\n model_name='scaleanswer', name='quantitativeAnswer', field=models.\n CharField(blank=True, max_length=100, null=True, verbose_name=\n 'پاسخ کمی'))]\n", "step-5": "# Generated by Django 2.0.5 on 2018-07-12 11:08\n\nimport assessment.models\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('assessment', '0006_auto_20180712_1428'),\n ]\n\n operations = [\n migrations.AlterModelManagers(\n name='season',\n managers=[\n ('objects', assessment.models.SeasonManager()),\n ],\n ),\n migrations.AlterField(\n model_name='punishmentreward',\n name='method',\n field=models.TextField(verbose_name='روش'),\n ),\n migrations.AlterField(\n model_name='scaleanswer',\n name='carried_on',\n field=models.BooleanField(default=False, verbose_name='انجام\\u200cشده'),\n ),\n migrations.AlterField(\n model_name='scaleanswer',\n name='qualitativeAnswer',\n field=models.CharField(blank=True, max_length=100, null=True, verbose_name='پاسخ کیفی'),\n ),\n migrations.AlterField(\n model_name='scaleanswer',\n name='quantitativeAnswer',\n field=models.CharField(blank=True, max_length=100, null=True, verbose_name='پاسخ کمی'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# Generated by Django 3.2.7 on 2021-09-11 19:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cryptocurrency', '0012_rename_cancel_exists_order_cancel_exist'), ] operations = [ migrations.AlterField( model_name='order', name='created_at', field=models.IntegerField(blank=True, null=True), ), ]
normal
{ "blob_id": "de347b41cd88947690cb42e043880a80d81e2c5c", "index": 436, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('cryptocurrency',\n '0012_rename_cancel_exists_order_cancel_exist')]\n operations = [migrations.AlterField(model_name='order', name=\n 'created_at', field=models.IntegerField(blank=True, null=True))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('cryptocurrency',\n '0012_rename_cancel_exists_order_cancel_exist')]\n operations = [migrations.AlterField(model_name='order', name=\n 'created_at', field=models.IntegerField(blank=True, null=True))]\n", "step-5": "# Generated by Django 3.2.7 on 2021-09-11 19:38\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('cryptocurrency', '0012_rename_cancel_exists_order_cancel_exist'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='order',\n name='created_at',\n field=models.IntegerField(blank=True, null=True),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
class Queue: def __init__(self): self.head = None self.tail = None class Node: def __init__(self, data): self.data = data self.next = None def isEmpty(self): return self.head is None def peek(self): return self.head.data if self.head is not None else None def add(self, data): node = self.Node(data) if(self.tail is not None): self.tail.next = node self.tail = node if (self.head is None): self.head = node def remove(self): data = self.head.data self.head = self.head.next if (self.head is None): self.tail = None return data
normal
{ "blob_id": "1aca1cf11d64374d0e0786e74c16567a4c5a1dec", "index": 6452, "step-1": "class Queue:\n\n def __init__(self):\n self.head = None\n self.tail = None\n\n\n class Node:\n\n def __init__(self, data):\n self.data = data\n self.next = None\n <mask token>\n\n def peek(self):\n return self.head.data if self.head is not None else None\n <mask token>\n <mask token>\n", "step-2": "class Queue:\n\n def __init__(self):\n self.head = None\n self.tail = None\n\n\n class Node:\n\n def __init__(self, data):\n self.data = data\n self.next = None\n <mask token>\n\n def peek(self):\n return self.head.data if self.head is not None else None\n <mask token>\n\n def remove(self):\n data = self.head.data\n self.head = self.head.next\n if self.head is None:\n self.tail = None\n return data\n", "step-3": "class Queue:\n\n def __init__(self):\n self.head = None\n self.tail = None\n\n\n class Node:\n\n def __init__(self, data):\n self.data = data\n self.next = None\n <mask token>\n\n def peek(self):\n return self.head.data if self.head is not None else None\n\n def add(self, data):\n node = self.Node(data)\n if self.tail is not None:\n self.tail.next = node\n self.tail = node\n if self.head is None:\n self.head = node\n\n def remove(self):\n data = self.head.data\n self.head = self.head.next\n if self.head is None:\n self.tail = None\n return data\n", "step-4": "class Queue:\n\n def __init__(self):\n self.head = None\n self.tail = None\n\n\n class Node:\n\n def __init__(self, data):\n self.data = data\n self.next = None\n\n def isEmpty(self):\n return self.head is None\n\n def peek(self):\n return self.head.data if self.head is not None else None\n\n def add(self, data):\n node = self.Node(data)\n if self.tail is not None:\n self.tail.next = node\n self.tail = node\n if self.head is None:\n self.head = node\n\n def remove(self):\n data = self.head.data\n self.head = self.head.next\n if self.head is None:\n self.tail = None\n return data\n", "step-5": "class Queue:\n def __init__(self):\n self.head = None\n self.tail = None\n \n class Node:\n def __init__(self, data):\n self.data = data\n self.next = None\n def isEmpty(self):\n return self.head is None\n def peek(self):\n return self.head.data if self.head is not None else None\n def add(self, data):\n node = self.Node(data)\n if(self.tail is not None):\n self.tail.next = node\n self.tail = node\n if (self.head is None):\n self.head = node\n def remove(self):\n data = self.head.data\n self.head = self.head.next\n if (self.head is None):\n self.tail = None\n return data\n ", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import sys def digit_sum(x): sum = 0 while x != 0: sum = sum + x % 10 x = x // 10 return sum for i in sys.stdin: test_num = int(i) if test_num == 0: break count = 11 while digit_sum(test_num) != digit_sum(count * test_num): count = count + 1 print('{}'.format(count))
normal
{ "blob_id": "0d37b6f0ea8854f9d4d4cd2ff235fa39bab7cc12", "index": 6549, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef digit_sum(x):\n sum = 0\n while x != 0:\n sum = sum + x % 10\n x = x // 10\n return sum\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef digit_sum(x):\n sum = 0\n while x != 0:\n sum = sum + x % 10\n x = x // 10\n return sum\n\n\nfor i in sys.stdin:\n test_num = int(i)\n if test_num == 0:\n break\n count = 11\n while digit_sum(test_num) != digit_sum(count * test_num):\n count = count + 1\n print('{}'.format(count))\n", "step-4": "import sys\n\n\ndef digit_sum(x):\n sum = 0\n while x != 0:\n sum = sum + x % 10\n x = x // 10\n return sum\n\n\nfor i in sys.stdin:\n test_num = int(i)\n if test_num == 0:\n break\n count = 11\n while digit_sum(test_num) != digit_sum(count * test_num):\n count = count + 1\n print('{}'.format(count))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# ------------------------------------------- # MODULES # ------------------------------------------- import sys import platform if(platform.system()== "Windows"): dir_sep = "\\" else: dir_sep = "/" import time import os import numpy as np import subprocess import math from mathutils import Vector try: from CifFile import CifFile pars_check = False except: print("PyCIFRW not installed, try: pip install PyCifRW") pars_check = True try: import bpy Blender_env = True except: print("Not in blender environment.") # ------------------------------------------- # VARIABLES # ------------------------------------------- # global variables file_path = "Select a file" # path to CIF-file draw_bonds = False # draws bonds between atoms draw_style = "SPACE FILLING" # sets draw style draw_quality = "MED" # sets key for qualitydic draw_lattice = False # draws unit cell outline atom_name = False # displays names of atoms bond_distance = 2 # set the max distance between bound atoms lattice_size = 0.03 # sets size of lattice borders bond_radius = 0.05 # radius of bond add_camera = True # render final image atom_color = True # draw atoms in color user_feedback = "" # feedback for the user print_data = True # dictionaries # sets detail of spheres styledic = { "SPACE FILLING" : [1,0], "BALL AND STICK" : [0.5,0], "STICK" : [0,1] } # sets detail of spheres qualitydic = { "MIN" : 8, "LOW" : 16, "MED" : 32, "HIGH" : 64, "MAX" : 128 } ''' Uncomment this when no external dictionaries are found # dictionary which couples atoms to a color colordic = { "O" : [1,0,0], "Si" : [0.25,0.25,1], "Fe" : [1,0.2,0.2], } # dictionary which couples atoms to a specific size sizedic = { "O" : 0.3, "Si" : 0.6, "Fe" : 1.4, } ''' # Read in dictionaries from external files path = os.path.dirname(os.path.realpath(__file__)) # dictionary which couples atoms to a color # Color scheme, in RGB percentages, following the CPK convention was extracted from https://en.wikipedia.org/wiki/CPK_coloring#Typical_assignments # data can be changed by modifying the values in colordic.txt with open(path+dir_sep+'colordic.txt','r') as inf: colordic = eval(inf.read()) # dictionary which couples atoms to a specific size # Atom data, in Ångström, was extracted from https://en.wikipedia.org/wiki/Atomic_radii_of_the_elements_(data_page) # data can be changed by modifying the values in sizedic.txt with open(path+dir_sep+'sizedic.txt','r') as inf: sizedic = eval(inf.read()) # ---------------------------------------------- # BLENDER ADD-ON # ---------------------------------------------- # add-on info bl_info = { "name": "Crystallographic Drawing Tool for Blender", "description": "Add-on for drawing crystals from CIF-files.", "author": "Jarrit Boons", "blender": (2, 80,0), "location": "View3D", "category": "Crystallography in Blender" } # Operator to open the file browser and select a file class ScanFileOperator(bpy.types.Operator): bl_idname = "error.scan_file" bl_label = "Scan file for return" filepath = bpy.props.StringProperty(subtype="FILE_PATH") def execute(self, context): global file_path global user_feedback user_feedback = "" file_path = self.filepath return {'FINISHED'} def invoke(self, context, event): context.window_manager.fileselect_add(self) return {'RUNNING_MODAL'} def register(): bpy.types.Scene.path_to_file = bpy.props.StringProperty( name="", description="Path to CIF file", default = "empty" ) # Operator to hold CDTB-data and program execution class Operator(bpy.types.Operator): bl_idname = "object.cdtb_operator" bl_label = "CDTB_operator" bl_descriptor = "Operator for drawing crystal" # Runs the whole program def execute(self, context): global pars_check global user_feedback if(pars_check): user_feedback = "CiFFile module not installed" return {'FINISHED'} if(file_path == "Select a file"): print("No file selected") user_feedback = "No File selected" else: user_feedback = "Crystal drawn" global draw_bonds draw_bonds = context.scene.draw_bonds global bond_distance bond_distance = context.scene.bond_distance global draw_lattice draw_lattice = context.scene.draw_lattice global atom_name atom_name = context.scene.atom_name global print_data print_data = context.scene.print_data global draw_style global atom_color draw_style = context.scene.style_selection_mode if(draw_style=="STICK"): draw_bonds = True atom_color = False else: atom_color = True global draw_quality draw_quality = context.scene.quality_selection_mode global add_camera add_camera = context.scene.add_camera drawCrystal(file_path) return {'FINISHED'} @classmethod def register(cls): print("Registered class: %s " % cls.bl_label) bpy.types.Scene.draw_bonds = bpy.props.BoolProperty( name="Draw bonds", description="Draw bonds between elements" ) bpy.types.Scene.bond_distance = bpy.props.FloatProperty( name="Bond distance", description="Set max distance for bonds to occur", default=2, min=0.0, max=10.0, precision=2 ) bpy.types.Scene.atom_name = bpy.props.BoolProperty( name="Atom names", description="Display the name of atoms" ) bpy.types.Scene.draw_lattice = bpy.props.BoolProperty( name="Draw lattice", description="Draw unit cell outline" ) bpy.types.Scene.print_data = bpy.props.BoolProperty( name="Print data", description="Print crystal data in terminal" ) # Dropdown menu for drawing style selection_style = [ ("SPACE FILLING", "SPACE FILLING", "", 1), ("BALL AND STICK", "BALL AND STICK", "", 2), ("STICK", "STICK", "", 3), ] bpy.types.Scene.style_selection_mode = bpy.props.EnumProperty( items=selection_style, name="Style" ) # Dropdown menu for drawing quality selection_qual = [ ("MIN", "MIN", "", 1), ("LOW", "LOW", "", 2), ("MED", "MED", "", 3), ("HIGH", "HIGH", "", 4), ("MAX", "MAX", "", 5) ] bpy.types.Scene.quality_selection_mode = bpy.props.EnumProperty( items=selection_qual, name="Quality", default="MED" ) bpy.types.Scene.add_camera = bpy.props.BoolProperty( name="Place camera", description="Place a camera and light to make rendering possible" ) @classmethod def unregister(cls): print("Unregistered class: %s " % cls.bl_label) # Panel to display add-on in Blender environment class Panel(bpy.types.Panel): bl_idname = "CDTB_Panel" bl_label = "CDTB_Panel" bl_space_type = "VIEW_3D" bl_region_type = "TOOLS" bl_context = "objectmode" bl_category = "CDTB" def draw(self,context): scn = context.scene layout = self.layout layout.label(text = 'Input file',icon_value=112) ''' for i in range(100): layout.label(text = str(i),icon_value =i) ''' box = layout.box() row = box.row() splitrow = row.split(factor=0.075) left_col = splitrow.column() right_col = splitrow.column() left_col.operator('error.scan_file',icon_value=108,text="") right_col.label(text=file_path.rsplit('\\', 2)[-1]) layout.label(text = 'Settings',icon_value =117) box = layout.box() box.prop(scn,'draw_bonds') box.prop(scn,'bond_distance') box.prop(scn,'draw_lattice') box.prop(scn, 'atom_name') box.prop(scn,'print_data') box.prop(scn, 'style_selection_mode') box.prop(scn, 'quality_selection_mode') box.prop(scn, 'add_camera') layout.separator() splitrow = layout.split(factor=0.3) col = splitrow.column() col.operator('object.cdtb_operator',text="Draw Crystal") col = splitrow.column() col.label(text=user_feedback) layout.separator() @classmethod def register(cls): print("Registered class: %s " % cls.bl_label) @classmethod def unregister(cls): print("Unregistered class: %s " % cls.bl_label) def register(): bpy.utils.register_class(Operator) bpy.utils.register_class(ScanFileOperator) bpy.utils.register_class(Panel) def unregister(): bpy.utils.unregister_class(Operator) bpy.utils.unregister_class(Panel) bpy.utils.unregister_class(ScanFileOperator) #---------------------------------------------- # MAIN PROGRAM #---------------------------------------------- class Crysdata(): def __init__(self,F,cb): self.start = time.time() print("Draw timer started") self.name = F self.cell = Cell(cb) self.atoms = readEl(cb) self.pos = readPos(cb) c = self.cell self.ftoc = self.get_fractional_to_cartesian_matrix(c.alen,c.blen,c.clen,c.alpha,c.beta,c.gamma) def printout(self): print(self.name) print() self.cell.printout() print() for element in self.pos: element.printout() print() for element in self.atoms: element.printout() print() print("Fractional to cartesian matrix:") print(self.ftoc) def get_fractional_to_cartesian_matrix(self,a, b, c, alpha, beta, gamma): """ Original code found at: https://gist.github.com/Bismarrck/a68da01f19b39320f78a !changed formula to resemble one found on: https://en.wikipedia.org/wiki/Fractional_coordinates Return the transformation matrix that converts fractional coordinates to cartesian coordinates. Parameters ---------- a, b, c : float The lengths of the edges. alpha, gamma, beta : float The angles between the sides. angle_in_degrees : bool True if alpha, beta and gamma are expressed in degrees. Returns ------- r : array_like The 3x3 rotation matrix. ``V_cart = np.dot(r, V_frac)``. """ alpha = np.deg2rad(alpha) beta = np.deg2rad(beta) gamma = np.deg2rad(gamma) cosa = np.cos(alpha) sina = np.sin(alpha) cosb = np.cos(beta) sinb = np.sin(beta) cosg = np.cos(gamma) sing = np.sin(gamma) volume = 1.0 - cosa**2.0 - cosb**2.0 - cosg**2.0 + 2.0 * cosa * cosb * cosg volume = a*b*c*np.sqrt(volume) r = np.zeros((3, 3)) r[0, 0] = float(a) r[0, 1] = float(b * cosg) r[0, 2] = float(c * cosb) r[1, 0] = float(0) r[1, 1] = float(b * sing) r[1, 2] = float(c * (cosa - cosb * cosg) / sing) r[2, 0] = float(0) r[2, 1] = float(0) r[2, 2] = float(volume / (a*b*sing)) return r def drawCrystal(self): if draw_lattice: self.drawCell() print("Lattice drawn after {:.3f} seconds".format((time.time()-self.start))) self.drawAtoms() print("Atoms drawn after {:.3f} seconds".format((time.time()-self.start))) if(draw_bonds): self.drawBonds() print("Bonds drawn after {:.3f} seconds".format((time.time()-self.start))) def drawAtoms(self): for a in self.atoms: a.drawObj(self.ftoc) print("Atoms drawn:",len(self.atoms)) def drawCell(self): cell_corners=[] cell_edges=[] # calculate and draw corners for i in range(2): for j in range(2): for k in range(2): bpy.ops.mesh.primitive_uv_sphere_add(size=lattice_size,location=toCarth(self.ftoc,[i,j,k])) activeObject = bpy.context.active_object # Set active object to variable cell_corners.append(activeObject) mat = bpy.data.materials.new(name="MaterialName") # set new material to variable activeObject.data.materials.append(mat) # add the material to the object bpy.context.object.active_material.diffuse_color = [0,0,0] # change color # draw lines for i,j in zip([0,0,0,1,1,2,2,3,4,4,5,6],[1,2,4,3,5,3,6,7,5,6,7,7]): cell_edges.append(self.drawLine(cell_corners[i].location,cell_corners[j].location)) # select all line and corners for i in cell_corners: i.select_set(action="SELECT") for i in cell_edges: i.select_set(action="SELECT") # set corner in origin as active and join meshes as one object bpy.context.view_layer.objects.active = cell_corners[0] bpy.ops.object.join() print("Cell box drawn") def drawLine(self,ac,tc): dx = tc[0] - ac[0] dy = tc[1] - ac[1] dz = tc[2] - ac[2] dist = np.sqrt(dx**2 + dy**2 + dz**2) bpy.ops.mesh.primitive_cylinder_add(vertices=qualitydic[draw_quality],radius=lattice_size,depth = dist,location = (dx/2 + ac[0], dy/2 + ac[1], dz/2 + ac[2])) activeObject = bpy.context.active_object mat = bpy.data.materials.new(name="MaterialName") # set new material to variable activeObject.data.materials.append(mat) # add the material to the object bpy.context.object.active_material.diffuse_color = [0,0,0] # change color phi = math.atan2(dy, dx) theta = math.acos(dz/dist) bpy.context.object.rotation_euler[1] = theta bpy.context.object.rotation_euler[2] = phi return activeObject def drawBonds(self): cnt = 0 bpy.ops.curve.primitive_bezier_circle_add(location=(0,0,0),radius = bond_radius) bpy.context.object.name = 'bez' for atom in self.atoms: for target in self.atoms: if atom != target: if("bond{}-{}".format(target.elid,atom.elid)in bpy.data.objects): continue if(atom.sym == 'H' and target.sym == 'H'): continue if calcDistance(self.ftoc,atom,target) <= bond_distance: self.makeBond(atom,target) cnt += 1 print("Atom bonds drawn:",cnt) # This function hooks the bond to the atoms def makeBond(self,atom,target): if 'OBJECT'!=bpy.context.mode: bpy.ops.object.mode_set(mode='OBJECT') o1 = bpy.data.objects[atom.elid] o2 = bpy.data.objects[target.elid] bond = self.hookCurve(o1,o2, bpy.context.scene) bpy.context.object.data.bevel_object = bpy.data.objects["bez"] bpy.context.object.name = "bond{}-{}".format(atom.elid,target.elid) activeObject = bpy.context.active_object # Set active object to variable mat = bpy.data.materials.new(name="MaterialName") # set new material to variable activeObject.data.materials.append(mat) # add the material to the object bpy.context.object.active_material.diffuse_color = [255,255,255] # change color if 'OBJECT'!=bpy.context.mode: bpy.ops.object.mode_set(mode='OBJECT') def hookCurve(self,o1, o2, scn): curve = bpy.data.curves.new("link", 'CURVE') curve.dimensions = '3D' spline = curve.splines.new('BEZIER') spline.bezier_points.add(1) p0 = spline.bezier_points[0] p1 = spline.bezier_points[1] # p0.co = o1.location p0.handle_right_type = 'VECTOR' # p1.co = o2.location p1.handle_left_type = 'VECTOR' obj = bpy.data.objects.new("link", curve) m0 = obj.modifiers.new("alpha", 'HOOK') m0.object = o1 m1 = obj.modifiers.new("beta", 'HOOK') m1.object = o2 bpy.context.collection.objects.link(obj) bpy.context.view_layer.objects.active = obj bpy.ops.object.mode_set(mode='EDIT') # Reassign the points p0 = curve.splines[0].bezier_points[0] p1 = curve.splines[0].bezier_points[1] # Hook first control point to first atom p0.select_control_point = True p1.select_control_point = False bpy.ops.object.hook_assign(modifier="alpha") # Hook second control point to first atom p0 = curve.splines[0].bezier_points[0] p1 = curve.splines[0].bezier_points[1] p1.select_control_point = True p0.select_control_point = False bpy.ops.object.hook_assign(modifier="beta") return obj class Cell(): def __init__(self,cb): self.alen = float(cb["_cell_length_a"]) self.blen = float(cb["_cell_length_b"]) self.clen = float(cb["_cell_length_c"]) self.alpha = float(cb["_cell_angle_alpha"]) self.beta = float(cb["_cell_angle_beta"]) self.gamma = float(cb["_cell_angle_gamma"]) def printout(self): print("alen:{:8} \nblen:{:8} \nclen:{:8} \nalpha:{:8} \nbeta: {:8} \ngamma:{:8}".format(self.alen,self.blen,self.clen,self.alpha,self.beta,self.gamma)) class Atom(): def __init__(self,elid,sym,xpos,ypos,zpos): self.elid = elid self.sym = sym self.xpos = float(xpos) self.ypos = float(ypos) self.zpos = float(zpos) def printout(self): print("id:{:3} symbol:{:2} x:{:.4f} y:{:.4f} z:{:.4f}".format(self.elid,self.sym,self.xpos,self.ypos,self.zpos)) def drawObj(self,ftoc): size = sizedic[self.sym]*styledic[draw_style][0]+bond_radius*styledic[draw_style][1] bpy.ops.mesh.primitive_uv_sphere_add(segments=qualitydic[draw_quality],ring_count=qualitydic[draw_quality]/2,size=size,location=toCarth(ftoc,[self.xpos,self.ypos,self.zpos])) bpy.context.object.name = self.elid activeObject = bpy.context.active_object # Set active object to variable mat = bpy.data.materials.new(name="MaterialName") # set new material to variable activeObject.data.materials.append(mat) # add the material to the object if(atom_name): bpy.context.object.show_name = True if(atom_color): bpy.context.object.active_material.diffuse_color = colordic[self.sym] # change color to dictionary color else: bpy.context.object.active_material.diffuse_color = [1,1,1] # change color to white class sympos(): def __init__(self,string): self.xsym = (string[0].split(','))[0] self.ysym = (string[0].split(','))[1] self.zsym = (string[0].split(','))[2] def printout(self): print("x:{:8} y:{:8} z:{:8}".format(self.xsym,self.ysym,self.zsym)) def readEl(cb): elements = [] previd = [] idcnt = [] lb = cb.GetLoop("_atom_site_label") for el in lb: flag = False for i in range(len(previd)): if(el[0] == previd[i]): flag = True break if(flag): idcnt[i] += 1 else: previd.append(el[0]) idcnt.append(0) i = len(idcnt)-1 id_t = "{}.{}".format(el[0],idcnt[i]) elements.append(Atom(id_t,el[1],el[2],el[3],el[4])) return elements def readPos(cb): positions = []; lb = cb.GetLoop("_symmetry_equiv_pos_as_xyz") for el in lb: positions.append(sympos(el)) return positions def obabel_fill_unit_cell(cif_file, p1_file): # Convert symmetry to P1 using openbabel as subprocess # Notation: obabel [-i<input-type>] <infilename> [-o<output-type>] -O<outfilename> [Options] subprocess.run(['obabel', '-icif', cif_file, '-ocif', '-O', p1_file, '--fillUC', 'keepconnect']) def calcDistance(ftoc,atom1,atom2): ac = toCarth(ftoc,[atom1.xpos,atom1.ypos,atom1.zpos]) tc = toCarth(ftoc,[atom2.xpos,atom2.ypos,atom2.zpos]) dx = tc[0] - ac[0] dy = tc[1] - ac[1] dz = tc[2] - ac[2] dist = np.sqrt(dx**2 + dy**2 + dz**2) return dist def toCarth(ftoc,V_frac): return np.dot(ftoc, V_frac) def look_at(obj_camera, point): loc_camera = obj_camera.matrix_world.to_translation() direction = point - loc_camera # point the cameras '-Z' and use its 'Y' as up rot_quat = direction.to_track_quat('-Z', 'Y') # assume we're using euler rotation obj_camera.rotation_euler = rot_quat.to_euler() def addCamera(x,y,z): bpy.ops.object.camera_add(view_align=True, enter_editmode=False, location=(5*x,5*y,5*z)) print("camera added") bpy.ops.object.light_add(type='SUN', view_align=False, location=(0, 0, 0)) obj_camera = bpy.data.objects["Camera"] look_at(obj_camera, Vector([0,0,z/4])) obj_camera.data.type = 'ORTHO' obj_camera.data.ortho_scale = ((x+y+z)) def clearWS(): if 'OBJECT'!=bpy.context.mode: bpy.ops.object.mode_set(mode='OBJECT') bpy.ops.object.select_all(action='SELECT') bpy.ops.object.delete(use_global=False) # remove all previous curves for i in bpy.data.curves: bpy.data.curves.remove(i) # remove all previous materials for m in bpy.data.materials: bpy.data.materials.remove(m) # remove all previous camera's for c in bpy.data.cameras: bpy.data.cameras.remove(c) print("Workspace cleared.") return def drawCrystal(file): # Check if file is file: S = time.time() global user_feedback ext = file[len(file)-4:] if(ext.lower() != ".cif"): print("Only cif files can be visualised") user_feedback = "Not a cif file" return # Check OpenBabel installation try: # Convert the cif file to its P1 symmetry notation as a temporary cif file print('Converting %s to P1' %file) obabel_fill_unit_cell(file, "temp.CIF") cf = CifFile("temp.CIF") except: print("No OpenBabel installation found, install it from http://openbabel.org/wiki/Category:Installation") user_feedback = "OpenBabel not installed" #cf = CifFile(file) CifFile apparently can't read in long filepaths return # Open and parse our cif f = file.rsplit(dir_sep, 1)[-1] F = f[:3] print(f) cb = cf.first_block() Crystal = Crysdata(F,cb) # Print crystal data in terminal if checked if(print_data): Crystal.printout() print("Crystal data read after "+ str(time.time() - S) + " seconds") # Draw crystal if in Blender environment if(Blender_env): clearWS() Crystal.drawCrystal() bpy.ops.object.select_all(action='DESELECT') if(add_camera): addCamera(Crystal.cell.alen,Crystal.cell.blen,Crystal.cell.clen)
normal
{ "blob_id": "e14319e705a3c1cdf85e0a2fe77c211e2afa9baa", "index": 9880, "step-1": "<mask token>\n\n\nclass Crysdata:\n\n def __init__(self, F, cb):\n self.start = time.time()\n print('Draw timer started')\n self.name = F\n self.cell = Cell(cb)\n self.atoms = readEl(cb)\n self.pos = readPos(cb)\n c = self.cell\n self.ftoc = self.get_fractional_to_cartesian_matrix(c.alen, c.blen,\n c.clen, c.alpha, c.beta, c.gamma)\n\n def printout(self):\n print(self.name)\n print()\n self.cell.printout()\n print()\n for element in self.pos:\n element.printout()\n print()\n for element in self.atoms:\n element.printout()\n print()\n print('Fractional to cartesian matrix:')\n print(self.ftoc)\n\n def get_fractional_to_cartesian_matrix(self, a, b, c, alpha, beta, gamma):\n \"\"\"\n Original code found at: https://gist.github.com/Bismarrck/a68da01f19b39320f78a\n\n !changed formula to resemble one found on: https://en.wikipedia.org/wiki/Fractional_coordinates\n\n Return the transformation matrix that converts fractional coordinates to\n cartesian coordinates.\n Parameters\n ----------\n a, b, c : float\n The lengths of the edges.\n alpha, gamma, beta : float\n The angles between the sides.\n angle_in_degrees : bool\n True if alpha, beta and gamma are expressed in degrees.\n Returns\n -------\n r : array_like\n The 3x3 rotation matrix. ``V_cart = np.dot(r, V_frac)``.\n \"\"\"\n alpha = np.deg2rad(alpha)\n beta = np.deg2rad(beta)\n gamma = np.deg2rad(gamma)\n cosa = np.cos(alpha)\n sina = np.sin(alpha)\n cosb = np.cos(beta)\n sinb = np.sin(beta)\n cosg = np.cos(gamma)\n sing = np.sin(gamma)\n volume = (1.0 - cosa ** 2.0 - cosb ** 2.0 - cosg ** 2.0 + 2.0 *\n cosa * cosb * cosg)\n volume = a * b * c * np.sqrt(volume)\n r = np.zeros((3, 3))\n r[0, 0] = float(a)\n r[0, 1] = float(b * cosg)\n r[0, 2] = float(c * cosb)\n r[1, 0] = float(0)\n r[1, 1] = float(b * sing)\n r[1, 2] = float(c * (cosa - cosb * cosg) / sing)\n r[2, 0] = float(0)\n r[2, 1] = float(0)\n r[2, 2] = float(volume / (a * b * sing))\n return r\n\n def drawCrystal(self):\n if draw_lattice:\n self.drawCell()\n print('Lattice drawn after {:.3f} seconds'.format(time.time() -\n self.start))\n self.drawAtoms()\n print('Atoms drawn after {:.3f} seconds'.format(time.time() - self.\n start))\n if draw_bonds:\n self.drawBonds()\n print('Bonds drawn after {:.3f} seconds'.format(time.time() -\n self.start))\n\n def drawAtoms(self):\n for a in self.atoms:\n a.drawObj(self.ftoc)\n print('Atoms drawn:', len(self.atoms))\n\n def drawCell(self):\n cell_corners = []\n cell_edges = []\n for i in range(2):\n for j in range(2):\n for k in range(2):\n bpy.ops.mesh.primitive_uv_sphere_add(size=lattice_size,\n location=toCarth(self.ftoc, [i, j, k]))\n activeObject = bpy.context.active_object\n cell_corners.append(activeObject)\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [0, 0, 0\n ]\n for i, j in zip([0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6], [1, 2, 4, 3, \n 5, 3, 6, 7, 5, 6, 7, 7]):\n cell_edges.append(self.drawLine(cell_corners[i].location,\n cell_corners[j].location))\n for i in cell_corners:\n i.select_set(action='SELECT')\n for i in cell_edges:\n i.select_set(action='SELECT')\n bpy.context.view_layer.objects.active = cell_corners[0]\n bpy.ops.object.join()\n print('Cell box drawn')\n\n def drawLine(self, ac, tc):\n dx = tc[0] - ac[0]\n dy = tc[1] - ac[1]\n dz = tc[2] - ac[2]\n dist = np.sqrt(dx ** 2 + dy ** 2 + dz ** 2)\n bpy.ops.mesh.primitive_cylinder_add(vertices=qualitydic[\n draw_quality], radius=lattice_size, depth=dist, location=(dx / \n 2 + ac[0], dy / 2 + ac[1], dz / 2 + ac[2]))\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [0, 0, 0]\n phi = math.atan2(dy, dx)\n theta = math.acos(dz / dist)\n bpy.context.object.rotation_euler[1] = theta\n bpy.context.object.rotation_euler[2] = phi\n return activeObject\n\n def drawBonds(self):\n cnt = 0\n bpy.ops.curve.primitive_bezier_circle_add(location=(0, 0, 0),\n radius=bond_radius)\n bpy.context.object.name = 'bez'\n for atom in self.atoms:\n for target in self.atoms:\n if atom != target:\n if 'bond{}-{}'.format(target.elid, atom.elid\n ) in bpy.data.objects:\n continue\n if atom.sym == 'H' and target.sym == 'H':\n continue\n if calcDistance(self.ftoc, atom, target) <= bond_distance:\n self.makeBond(atom, target)\n cnt += 1\n print('Atom bonds drawn:', cnt)\n\n def makeBond(self, atom, target):\n if 'OBJECT' != bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n o1 = bpy.data.objects[atom.elid]\n o2 = bpy.data.objects[target.elid]\n bond = self.hookCurve(o1, o2, bpy.context.scene)\n bpy.context.object.data.bevel_object = bpy.data.objects['bez']\n bpy.context.object.name = 'bond{}-{}'.format(atom.elid, target.elid)\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [255, 255, 255]\n if 'OBJECT' != bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n <mask token>\n\n\nclass Cell:\n\n def __init__(self, cb):\n self.alen = float(cb['_cell_length_a'])\n self.blen = float(cb['_cell_length_b'])\n self.clen = float(cb['_cell_length_c'])\n self.alpha = float(cb['_cell_angle_alpha'])\n self.beta = float(cb['_cell_angle_beta'])\n self.gamma = float(cb['_cell_angle_gamma'])\n\n def printout(self):\n print(\n 'alen:{:8} \\nblen:{:8} \\nclen:{:8} \\nalpha:{:8} \\nbeta: {:8} \\ngamma:{:8}'\n .format(self.alen, self.blen, self.clen, self.alpha, self.beta,\n self.gamma))\n\n\nclass Atom:\n\n def __init__(self, elid, sym, xpos, ypos, zpos):\n self.elid = elid\n self.sym = sym\n self.xpos = float(xpos)\n self.ypos = float(ypos)\n self.zpos = float(zpos)\n\n def printout(self):\n print('id:{:3} symbol:{:2} x:{:.4f} y:{:.4f} z:{:.4f}'.format(self.\n elid, self.sym, self.xpos, self.ypos, self.zpos))\n\n def drawObj(self, ftoc):\n size = sizedic[self.sym] * styledic[draw_style][0\n ] + bond_radius * styledic[draw_style][1]\n bpy.ops.mesh.primitive_uv_sphere_add(segments=qualitydic[\n draw_quality], ring_count=qualitydic[draw_quality] / 2, size=\n size, location=toCarth(ftoc, [self.xpos, self.ypos, self.zpos]))\n bpy.context.object.name = self.elid\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n if atom_name:\n bpy.context.object.show_name = True\n if atom_color:\n bpy.context.object.active_material.diffuse_color = colordic[self\n .sym]\n else:\n bpy.context.object.active_material.diffuse_color = [1, 1, 1]\n\n\nclass sympos:\n\n def __init__(self, string):\n self.xsym = string[0].split(',')[0]\n self.ysym = string[0].split(',')[1]\n self.zsym = string[0].split(',')[2]\n\n def printout(self):\n print('x:{:8} y:{:8} z:{:8}'.format(self.xsym, self.ysym, self.zsym))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ScanFileOperator(bpy.types.Operator):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass Operator(bpy.types.Operator):\n bl_idname = 'object.cdtb_operator'\n bl_label = 'CDTB_operator'\n bl_descriptor = 'Operator for drawing crystal'\n\n def execute(self, context):\n global pars_check\n global user_feedback\n if pars_check:\n user_feedback = 'CiFFile module not installed'\n return {'FINISHED'}\n if file_path == 'Select a file':\n print('No file selected')\n user_feedback = 'No File selected'\n else:\n user_feedback = 'Crystal drawn'\n global draw_bonds\n draw_bonds = context.scene.draw_bonds\n global bond_distance\n bond_distance = context.scene.bond_distance\n global draw_lattice\n draw_lattice = context.scene.draw_lattice\n global atom_name\n atom_name = context.scene.atom_name\n global print_data\n print_data = context.scene.print_data\n global draw_style\n global atom_color\n draw_style = context.scene.style_selection_mode\n if draw_style == 'STICK':\n draw_bonds = True\n atom_color = False\n else:\n atom_color = True\n global draw_quality\n draw_quality = context.scene.quality_selection_mode\n global add_camera\n add_camera = context.scene.add_camera\n drawCrystal(file_path)\n return {'FINISHED'}\n\n @classmethod\n def register(cls):\n print('Registered class: %s ' % cls.bl_label)\n bpy.types.Scene.draw_bonds = bpy.props.BoolProperty(name=\n 'Draw bonds', description='Draw bonds between elements')\n bpy.types.Scene.bond_distance = bpy.props.FloatProperty(name=\n 'Bond distance', description=\n 'Set max distance for bonds to occur', default=2, min=0.0, max=\n 10.0, precision=2)\n bpy.types.Scene.atom_name = bpy.props.BoolProperty(name=\n 'Atom names', description='Display the name of atoms')\n bpy.types.Scene.draw_lattice = bpy.props.BoolProperty(name=\n 'Draw lattice', description='Draw unit cell outline')\n bpy.types.Scene.print_data = bpy.props.BoolProperty(name=\n 'Print data', description='Print crystal data in terminal')\n selection_style = [('SPACE FILLING', 'SPACE FILLING', '', 1), (\n 'BALL AND STICK', 'BALL AND STICK', '', 2), ('STICK', 'STICK',\n '', 3)]\n bpy.types.Scene.style_selection_mode = bpy.props.EnumProperty(items\n =selection_style, name='Style')\n selection_qual = [('MIN', 'MIN', '', 1), ('LOW', 'LOW', '', 2), (\n 'MED', 'MED', '', 3), ('HIGH', 'HIGH', '', 4), ('MAX', 'MAX',\n '', 5)]\n bpy.types.Scene.quality_selection_mode = bpy.props.EnumProperty(items\n =selection_qual, name='Quality', default='MED')\n bpy.types.Scene.add_camera = bpy.props.BoolProperty(name=\n 'Place camera', description=\n 'Place a camera and light to make rendering possible')\n\n @classmethod\n def unregister(cls):\n print('Unregistered class: %s ' % cls.bl_label)\n\n\nclass Panel(bpy.types.Panel):\n bl_idname = 'CDTB_Panel'\n bl_label = 'CDTB_Panel'\n bl_space_type = 'VIEW_3D'\n bl_region_type = 'TOOLS'\n bl_context = 'objectmode'\n bl_category = 'CDTB'\n\n def draw(self, context):\n scn = context.scene\n layout = self.layout\n layout.label(text='Input file', icon_value=112)\n \"\"\"\n for i in range(100):\n layout.label(text = str(i),icon_value =i)\n \"\"\"\n box = layout.box()\n row = box.row()\n splitrow = row.split(factor=0.075)\n left_col = splitrow.column()\n right_col = splitrow.column()\n left_col.operator('error.scan_file', icon_value=108, text='')\n right_col.label(text=file_path.rsplit('\\\\', 2)[-1])\n layout.label(text='Settings', icon_value=117)\n box = layout.box()\n box.prop(scn, 'draw_bonds')\n box.prop(scn, 'bond_distance')\n box.prop(scn, 'draw_lattice')\n box.prop(scn, 'atom_name')\n box.prop(scn, 'print_data')\n box.prop(scn, 'style_selection_mode')\n box.prop(scn, 'quality_selection_mode')\n box.prop(scn, 'add_camera')\n layout.separator()\n splitrow = layout.split(factor=0.3)\n col = splitrow.column()\n col.operator('object.cdtb_operator', text='Draw Crystal')\n col = splitrow.column()\n col.label(text=user_feedback)\n layout.separator()\n\n @classmethod\n def register(cls):\n print('Registered class: %s ' % cls.bl_label)\n\n @classmethod\n def unregister(cls):\n print('Unregistered class: %s ' % cls.bl_label)\n\n\n<mask token>\n\n\nclass Crysdata:\n\n def __init__(self, F, cb):\n self.start = time.time()\n print('Draw timer started')\n self.name = F\n self.cell = Cell(cb)\n self.atoms = readEl(cb)\n self.pos = readPos(cb)\n c = self.cell\n self.ftoc = self.get_fractional_to_cartesian_matrix(c.alen, c.blen,\n c.clen, c.alpha, c.beta, c.gamma)\n\n def printout(self):\n print(self.name)\n print()\n self.cell.printout()\n print()\n for element in self.pos:\n element.printout()\n print()\n for element in self.atoms:\n element.printout()\n print()\n print('Fractional to cartesian matrix:')\n print(self.ftoc)\n\n def get_fractional_to_cartesian_matrix(self, a, b, c, alpha, beta, gamma):\n \"\"\"\n Original code found at: https://gist.github.com/Bismarrck/a68da01f19b39320f78a\n\n !changed formula to resemble one found on: https://en.wikipedia.org/wiki/Fractional_coordinates\n\n Return the transformation matrix that converts fractional coordinates to\n cartesian coordinates.\n Parameters\n ----------\n a, b, c : float\n The lengths of the edges.\n alpha, gamma, beta : float\n The angles between the sides.\n angle_in_degrees : bool\n True if alpha, beta and gamma are expressed in degrees.\n Returns\n -------\n r : array_like\n The 3x3 rotation matrix. ``V_cart = np.dot(r, V_frac)``.\n \"\"\"\n alpha = np.deg2rad(alpha)\n beta = np.deg2rad(beta)\n gamma = np.deg2rad(gamma)\n cosa = np.cos(alpha)\n sina = np.sin(alpha)\n cosb = np.cos(beta)\n sinb = np.sin(beta)\n cosg = np.cos(gamma)\n sing = np.sin(gamma)\n volume = (1.0 - cosa ** 2.0 - cosb ** 2.0 - cosg ** 2.0 + 2.0 *\n cosa * cosb * cosg)\n volume = a * b * c * np.sqrt(volume)\n r = np.zeros((3, 3))\n r[0, 0] = float(a)\n r[0, 1] = float(b * cosg)\n r[0, 2] = float(c * cosb)\n r[1, 0] = float(0)\n r[1, 1] = float(b * sing)\n r[1, 2] = float(c * (cosa - cosb * cosg) / sing)\n r[2, 0] = float(0)\n r[2, 1] = float(0)\n r[2, 2] = float(volume / (a * b * sing))\n return r\n\n def drawCrystal(self):\n if draw_lattice:\n self.drawCell()\n print('Lattice drawn after {:.3f} seconds'.format(time.time() -\n self.start))\n self.drawAtoms()\n print('Atoms drawn after {:.3f} seconds'.format(time.time() - self.\n start))\n if draw_bonds:\n self.drawBonds()\n print('Bonds drawn after {:.3f} seconds'.format(time.time() -\n self.start))\n\n def drawAtoms(self):\n for a in self.atoms:\n a.drawObj(self.ftoc)\n print('Atoms drawn:', len(self.atoms))\n\n def drawCell(self):\n cell_corners = []\n cell_edges = []\n for i in range(2):\n for j in range(2):\n for k in range(2):\n bpy.ops.mesh.primitive_uv_sphere_add(size=lattice_size,\n location=toCarth(self.ftoc, [i, j, k]))\n activeObject = bpy.context.active_object\n cell_corners.append(activeObject)\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [0, 0, 0\n ]\n for i, j in zip([0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6], [1, 2, 4, 3, \n 5, 3, 6, 7, 5, 6, 7, 7]):\n cell_edges.append(self.drawLine(cell_corners[i].location,\n cell_corners[j].location))\n for i in cell_corners:\n i.select_set(action='SELECT')\n for i in cell_edges:\n i.select_set(action='SELECT')\n bpy.context.view_layer.objects.active = cell_corners[0]\n bpy.ops.object.join()\n print('Cell box drawn')\n\n def drawLine(self, ac, tc):\n dx = tc[0] - ac[0]\n dy = tc[1] - ac[1]\n dz = tc[2] - ac[2]\n dist = np.sqrt(dx ** 2 + dy ** 2 + dz ** 2)\n bpy.ops.mesh.primitive_cylinder_add(vertices=qualitydic[\n draw_quality], radius=lattice_size, depth=dist, location=(dx / \n 2 + ac[0], dy / 2 + ac[1], dz / 2 + ac[2]))\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [0, 0, 0]\n phi = math.atan2(dy, dx)\n theta = math.acos(dz / dist)\n bpy.context.object.rotation_euler[1] = theta\n bpy.context.object.rotation_euler[2] = phi\n return activeObject\n\n def drawBonds(self):\n cnt = 0\n bpy.ops.curve.primitive_bezier_circle_add(location=(0, 0, 0),\n radius=bond_radius)\n bpy.context.object.name = 'bez'\n for atom in self.atoms:\n for target in self.atoms:\n if atom != target:\n if 'bond{}-{}'.format(target.elid, atom.elid\n ) in bpy.data.objects:\n continue\n if atom.sym == 'H' and target.sym == 'H':\n continue\n if calcDistance(self.ftoc, atom, target) <= bond_distance:\n self.makeBond(atom, target)\n cnt += 1\n print('Atom bonds drawn:', cnt)\n\n def makeBond(self, atom, target):\n if 'OBJECT' != bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n o1 = bpy.data.objects[atom.elid]\n o2 = bpy.data.objects[target.elid]\n bond = self.hookCurve(o1, o2, bpy.context.scene)\n bpy.context.object.data.bevel_object = bpy.data.objects['bez']\n bpy.context.object.name = 'bond{}-{}'.format(atom.elid, target.elid)\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [255, 255, 255]\n if 'OBJECT' != bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n\n def hookCurve(self, o1, o2, scn):\n curve = bpy.data.curves.new('link', 'CURVE')\n curve.dimensions = '3D'\n spline = curve.splines.new('BEZIER')\n spline.bezier_points.add(1)\n p0 = spline.bezier_points[0]\n p1 = spline.bezier_points[1]\n p0.handle_right_type = 'VECTOR'\n p1.handle_left_type = 'VECTOR'\n obj = bpy.data.objects.new('link', curve)\n m0 = obj.modifiers.new('alpha', 'HOOK')\n m0.object = o1\n m1 = obj.modifiers.new('beta', 'HOOK')\n m1.object = o2\n bpy.context.collection.objects.link(obj)\n bpy.context.view_layer.objects.active = obj\n bpy.ops.object.mode_set(mode='EDIT')\n p0 = curve.splines[0].bezier_points[0]\n p1 = curve.splines[0].bezier_points[1]\n p0.select_control_point = True\n p1.select_control_point = False\n bpy.ops.object.hook_assign(modifier='alpha')\n p0 = curve.splines[0].bezier_points[0]\n p1 = curve.splines[0].bezier_points[1]\n p1.select_control_point = True\n p0.select_control_point = False\n bpy.ops.object.hook_assign(modifier='beta')\n return obj\n\n\nclass Cell:\n\n def __init__(self, cb):\n self.alen = float(cb['_cell_length_a'])\n self.blen = float(cb['_cell_length_b'])\n self.clen = float(cb['_cell_length_c'])\n self.alpha = float(cb['_cell_angle_alpha'])\n self.beta = float(cb['_cell_angle_beta'])\n self.gamma = float(cb['_cell_angle_gamma'])\n\n def printout(self):\n print(\n 'alen:{:8} \\nblen:{:8} \\nclen:{:8} \\nalpha:{:8} \\nbeta: {:8} \\ngamma:{:8}'\n .format(self.alen, self.blen, self.clen, self.alpha, self.beta,\n self.gamma))\n\n\nclass Atom:\n\n def __init__(self, elid, sym, xpos, ypos, zpos):\n self.elid = elid\n self.sym = sym\n self.xpos = float(xpos)\n self.ypos = float(ypos)\n self.zpos = float(zpos)\n\n def printout(self):\n print('id:{:3} symbol:{:2} x:{:.4f} y:{:.4f} z:{:.4f}'.format(self.\n elid, self.sym, self.xpos, self.ypos, self.zpos))\n\n def drawObj(self, ftoc):\n size = sizedic[self.sym] * styledic[draw_style][0\n ] + bond_radius * styledic[draw_style][1]\n bpy.ops.mesh.primitive_uv_sphere_add(segments=qualitydic[\n draw_quality], ring_count=qualitydic[draw_quality] / 2, size=\n size, location=toCarth(ftoc, [self.xpos, self.ypos, self.zpos]))\n bpy.context.object.name = self.elid\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n if atom_name:\n bpy.context.object.show_name = True\n if atom_color:\n bpy.context.object.active_material.diffuse_color = colordic[self\n .sym]\n else:\n bpy.context.object.active_material.diffuse_color = [1, 1, 1]\n\n\nclass sympos:\n\n def __init__(self, string):\n self.xsym = string[0].split(',')[0]\n self.ysym = string[0].split(',')[1]\n self.zsym = string[0].split(',')[2]\n\n def printout(self):\n print('x:{:8} y:{:8} z:{:8}'.format(self.xsym, self.ysym, self.zsym))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ScanFileOperator(bpy.types.Operator):\n bl_idname = 'error.scan_file'\n bl_label = 'Scan file for return'\n filepath = bpy.props.StringProperty(subtype='FILE_PATH')\n\n def execute(self, context):\n global file_path\n global user_feedback\n user_feedback = ''\n file_path = self.filepath\n return {'FINISHED'}\n\n def invoke(self, context, event):\n context.window_manager.fileselect_add(self)\n return {'RUNNING_MODAL'}\n\n def register():\n bpy.types.Scene.path_to_file = bpy.props.StringProperty(name='',\n description='Path to CIF file', default='empty')\n\n\nclass Operator(bpy.types.Operator):\n bl_idname = 'object.cdtb_operator'\n bl_label = 'CDTB_operator'\n bl_descriptor = 'Operator for drawing crystal'\n\n def execute(self, context):\n global pars_check\n global user_feedback\n if pars_check:\n user_feedback = 'CiFFile module not installed'\n return {'FINISHED'}\n if file_path == 'Select a file':\n print('No file selected')\n user_feedback = 'No File selected'\n else:\n user_feedback = 'Crystal drawn'\n global draw_bonds\n draw_bonds = context.scene.draw_bonds\n global bond_distance\n bond_distance = context.scene.bond_distance\n global draw_lattice\n draw_lattice = context.scene.draw_lattice\n global atom_name\n atom_name = context.scene.atom_name\n global print_data\n print_data = context.scene.print_data\n global draw_style\n global atom_color\n draw_style = context.scene.style_selection_mode\n if draw_style == 'STICK':\n draw_bonds = True\n atom_color = False\n else:\n atom_color = True\n global draw_quality\n draw_quality = context.scene.quality_selection_mode\n global add_camera\n add_camera = context.scene.add_camera\n drawCrystal(file_path)\n return {'FINISHED'}\n\n @classmethod\n def register(cls):\n print('Registered class: %s ' % cls.bl_label)\n bpy.types.Scene.draw_bonds = bpy.props.BoolProperty(name=\n 'Draw bonds', description='Draw bonds between elements')\n bpy.types.Scene.bond_distance = bpy.props.FloatProperty(name=\n 'Bond distance', description=\n 'Set max distance for bonds to occur', default=2, min=0.0, max=\n 10.0, precision=2)\n bpy.types.Scene.atom_name = bpy.props.BoolProperty(name=\n 'Atom names', description='Display the name of atoms')\n bpy.types.Scene.draw_lattice = bpy.props.BoolProperty(name=\n 'Draw lattice', description='Draw unit cell outline')\n bpy.types.Scene.print_data = bpy.props.BoolProperty(name=\n 'Print data', description='Print crystal data in terminal')\n selection_style = [('SPACE FILLING', 'SPACE FILLING', '', 1), (\n 'BALL AND STICK', 'BALL AND STICK', '', 2), ('STICK', 'STICK',\n '', 3)]\n bpy.types.Scene.style_selection_mode = bpy.props.EnumProperty(items\n =selection_style, name='Style')\n selection_qual = [('MIN', 'MIN', '', 1), ('LOW', 'LOW', '', 2), (\n 'MED', 'MED', '', 3), ('HIGH', 'HIGH', '', 4), ('MAX', 'MAX',\n '', 5)]\n bpy.types.Scene.quality_selection_mode = bpy.props.EnumProperty(items\n =selection_qual, name='Quality', default='MED')\n bpy.types.Scene.add_camera = bpy.props.BoolProperty(name=\n 'Place camera', description=\n 'Place a camera and light to make rendering possible')\n\n @classmethod\n def unregister(cls):\n print('Unregistered class: %s ' % cls.bl_label)\n\n\nclass Panel(bpy.types.Panel):\n bl_idname = 'CDTB_Panel'\n bl_label = 'CDTB_Panel'\n bl_space_type = 'VIEW_3D'\n bl_region_type = 'TOOLS'\n bl_context = 'objectmode'\n bl_category = 'CDTB'\n\n def draw(self, context):\n scn = context.scene\n layout = self.layout\n layout.label(text='Input file', icon_value=112)\n \"\"\"\n for i in range(100):\n layout.label(text = str(i),icon_value =i)\n \"\"\"\n box = layout.box()\n row = box.row()\n splitrow = row.split(factor=0.075)\n left_col = splitrow.column()\n right_col = splitrow.column()\n left_col.operator('error.scan_file', icon_value=108, text='')\n right_col.label(text=file_path.rsplit('\\\\', 2)[-1])\n layout.label(text='Settings', icon_value=117)\n box = layout.box()\n box.prop(scn, 'draw_bonds')\n box.prop(scn, 'bond_distance')\n box.prop(scn, 'draw_lattice')\n box.prop(scn, 'atom_name')\n box.prop(scn, 'print_data')\n box.prop(scn, 'style_selection_mode')\n box.prop(scn, 'quality_selection_mode')\n box.prop(scn, 'add_camera')\n layout.separator()\n splitrow = layout.split(factor=0.3)\n col = splitrow.column()\n col.operator('object.cdtb_operator', text='Draw Crystal')\n col = splitrow.column()\n col.label(text=user_feedback)\n layout.separator()\n\n @classmethod\n def register(cls):\n print('Registered class: %s ' % cls.bl_label)\n\n @classmethod\n def unregister(cls):\n print('Unregistered class: %s ' % cls.bl_label)\n\n\n<mask token>\n\n\ndef unregister():\n bpy.utils.unregister_class(Operator)\n bpy.utils.unregister_class(Panel)\n bpy.utils.unregister_class(ScanFileOperator)\n\n\nclass Crysdata:\n\n def __init__(self, F, cb):\n self.start = time.time()\n print('Draw timer started')\n self.name = F\n self.cell = Cell(cb)\n self.atoms = readEl(cb)\n self.pos = readPos(cb)\n c = self.cell\n self.ftoc = self.get_fractional_to_cartesian_matrix(c.alen, c.blen,\n c.clen, c.alpha, c.beta, c.gamma)\n\n def printout(self):\n print(self.name)\n print()\n self.cell.printout()\n print()\n for element in self.pos:\n element.printout()\n print()\n for element in self.atoms:\n element.printout()\n print()\n print('Fractional to cartesian matrix:')\n print(self.ftoc)\n\n def get_fractional_to_cartesian_matrix(self, a, b, c, alpha, beta, gamma):\n \"\"\"\n Original code found at: https://gist.github.com/Bismarrck/a68da01f19b39320f78a\n\n !changed formula to resemble one found on: https://en.wikipedia.org/wiki/Fractional_coordinates\n\n Return the transformation matrix that converts fractional coordinates to\n cartesian coordinates.\n Parameters\n ----------\n a, b, c : float\n The lengths of the edges.\n alpha, gamma, beta : float\n The angles between the sides.\n angle_in_degrees : bool\n True if alpha, beta and gamma are expressed in degrees.\n Returns\n -------\n r : array_like\n The 3x3 rotation matrix. ``V_cart = np.dot(r, V_frac)``.\n \"\"\"\n alpha = np.deg2rad(alpha)\n beta = np.deg2rad(beta)\n gamma = np.deg2rad(gamma)\n cosa = np.cos(alpha)\n sina = np.sin(alpha)\n cosb = np.cos(beta)\n sinb = np.sin(beta)\n cosg = np.cos(gamma)\n sing = np.sin(gamma)\n volume = (1.0 - cosa ** 2.0 - cosb ** 2.0 - cosg ** 2.0 + 2.0 *\n cosa * cosb * cosg)\n volume = a * b * c * np.sqrt(volume)\n r = np.zeros((3, 3))\n r[0, 0] = float(a)\n r[0, 1] = float(b * cosg)\n r[0, 2] = float(c * cosb)\n r[1, 0] = float(0)\n r[1, 1] = float(b * sing)\n r[1, 2] = float(c * (cosa - cosb * cosg) / sing)\n r[2, 0] = float(0)\n r[2, 1] = float(0)\n r[2, 2] = float(volume / (a * b * sing))\n return r\n\n def drawCrystal(self):\n if draw_lattice:\n self.drawCell()\n print('Lattice drawn after {:.3f} seconds'.format(time.time() -\n self.start))\n self.drawAtoms()\n print('Atoms drawn after {:.3f} seconds'.format(time.time() - self.\n start))\n if draw_bonds:\n self.drawBonds()\n print('Bonds drawn after {:.3f} seconds'.format(time.time() -\n self.start))\n\n def drawAtoms(self):\n for a in self.atoms:\n a.drawObj(self.ftoc)\n print('Atoms drawn:', len(self.atoms))\n\n def drawCell(self):\n cell_corners = []\n cell_edges = []\n for i in range(2):\n for j in range(2):\n for k in range(2):\n bpy.ops.mesh.primitive_uv_sphere_add(size=lattice_size,\n location=toCarth(self.ftoc, [i, j, k]))\n activeObject = bpy.context.active_object\n cell_corners.append(activeObject)\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [0, 0, 0\n ]\n for i, j in zip([0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6], [1, 2, 4, 3, \n 5, 3, 6, 7, 5, 6, 7, 7]):\n cell_edges.append(self.drawLine(cell_corners[i].location,\n cell_corners[j].location))\n for i in cell_corners:\n i.select_set(action='SELECT')\n for i in cell_edges:\n i.select_set(action='SELECT')\n bpy.context.view_layer.objects.active = cell_corners[0]\n bpy.ops.object.join()\n print('Cell box drawn')\n\n def drawLine(self, ac, tc):\n dx = tc[0] - ac[0]\n dy = tc[1] - ac[1]\n dz = tc[2] - ac[2]\n dist = np.sqrt(dx ** 2 + dy ** 2 + dz ** 2)\n bpy.ops.mesh.primitive_cylinder_add(vertices=qualitydic[\n draw_quality], radius=lattice_size, depth=dist, location=(dx / \n 2 + ac[0], dy / 2 + ac[1], dz / 2 + ac[2]))\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [0, 0, 0]\n phi = math.atan2(dy, dx)\n theta = math.acos(dz / dist)\n bpy.context.object.rotation_euler[1] = theta\n bpy.context.object.rotation_euler[2] = phi\n return activeObject\n\n def drawBonds(self):\n cnt = 0\n bpy.ops.curve.primitive_bezier_circle_add(location=(0, 0, 0),\n radius=bond_radius)\n bpy.context.object.name = 'bez'\n for atom in self.atoms:\n for target in self.atoms:\n if atom != target:\n if 'bond{}-{}'.format(target.elid, atom.elid\n ) in bpy.data.objects:\n continue\n if atom.sym == 'H' and target.sym == 'H':\n continue\n if calcDistance(self.ftoc, atom, target) <= bond_distance:\n self.makeBond(atom, target)\n cnt += 1\n print('Atom bonds drawn:', cnt)\n\n def makeBond(self, atom, target):\n if 'OBJECT' != bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n o1 = bpy.data.objects[atom.elid]\n o2 = bpy.data.objects[target.elid]\n bond = self.hookCurve(o1, o2, bpy.context.scene)\n bpy.context.object.data.bevel_object = bpy.data.objects['bez']\n bpy.context.object.name = 'bond{}-{}'.format(atom.elid, target.elid)\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [255, 255, 255]\n if 'OBJECT' != bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n\n def hookCurve(self, o1, o2, scn):\n curve = bpy.data.curves.new('link', 'CURVE')\n curve.dimensions = '3D'\n spline = curve.splines.new('BEZIER')\n spline.bezier_points.add(1)\n p0 = spline.bezier_points[0]\n p1 = spline.bezier_points[1]\n p0.handle_right_type = 'VECTOR'\n p1.handle_left_type = 'VECTOR'\n obj = bpy.data.objects.new('link', curve)\n m0 = obj.modifiers.new('alpha', 'HOOK')\n m0.object = o1\n m1 = obj.modifiers.new('beta', 'HOOK')\n m1.object = o2\n bpy.context.collection.objects.link(obj)\n bpy.context.view_layer.objects.active = obj\n bpy.ops.object.mode_set(mode='EDIT')\n p0 = curve.splines[0].bezier_points[0]\n p1 = curve.splines[0].bezier_points[1]\n p0.select_control_point = True\n p1.select_control_point = False\n bpy.ops.object.hook_assign(modifier='alpha')\n p0 = curve.splines[0].bezier_points[0]\n p1 = curve.splines[0].bezier_points[1]\n p1.select_control_point = True\n p0.select_control_point = False\n bpy.ops.object.hook_assign(modifier='beta')\n return obj\n\n\nclass Cell:\n\n def __init__(self, cb):\n self.alen = float(cb['_cell_length_a'])\n self.blen = float(cb['_cell_length_b'])\n self.clen = float(cb['_cell_length_c'])\n self.alpha = float(cb['_cell_angle_alpha'])\n self.beta = float(cb['_cell_angle_beta'])\n self.gamma = float(cb['_cell_angle_gamma'])\n\n def printout(self):\n print(\n 'alen:{:8} \\nblen:{:8} \\nclen:{:8} \\nalpha:{:8} \\nbeta: {:8} \\ngamma:{:8}'\n .format(self.alen, self.blen, self.clen, self.alpha, self.beta,\n self.gamma))\n\n\nclass Atom:\n\n def __init__(self, elid, sym, xpos, ypos, zpos):\n self.elid = elid\n self.sym = sym\n self.xpos = float(xpos)\n self.ypos = float(ypos)\n self.zpos = float(zpos)\n\n def printout(self):\n print('id:{:3} symbol:{:2} x:{:.4f} y:{:.4f} z:{:.4f}'.format(self.\n elid, self.sym, self.xpos, self.ypos, self.zpos))\n\n def drawObj(self, ftoc):\n size = sizedic[self.sym] * styledic[draw_style][0\n ] + bond_radius * styledic[draw_style][1]\n bpy.ops.mesh.primitive_uv_sphere_add(segments=qualitydic[\n draw_quality], ring_count=qualitydic[draw_quality] / 2, size=\n size, location=toCarth(ftoc, [self.xpos, self.ypos, self.zpos]))\n bpy.context.object.name = self.elid\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n if atom_name:\n bpy.context.object.show_name = True\n if atom_color:\n bpy.context.object.active_material.diffuse_color = colordic[self\n .sym]\n else:\n bpy.context.object.active_material.diffuse_color = [1, 1, 1]\n\n\nclass sympos:\n\n def __init__(self, string):\n self.xsym = string[0].split(',')[0]\n self.ysym = string[0].split(',')[1]\n self.zsym = string[0].split(',')[2]\n\n def printout(self):\n print('x:{:8} y:{:8} z:{:8}'.format(self.xsym, self.ysym, self.zsym))\n\n\ndef readEl(cb):\n elements = []\n previd = []\n idcnt = []\n lb = cb.GetLoop('_atom_site_label')\n for el in lb:\n flag = False\n for i in range(len(previd)):\n if el[0] == previd[i]:\n flag = True\n break\n if flag:\n idcnt[i] += 1\n else:\n previd.append(el[0])\n idcnt.append(0)\n i = len(idcnt) - 1\n id_t = '{}.{}'.format(el[0], idcnt[i])\n elements.append(Atom(id_t, el[1], el[2], el[3], el[4]))\n return elements\n\n\ndef readPos(cb):\n positions = []\n lb = cb.GetLoop('_symmetry_equiv_pos_as_xyz')\n for el in lb:\n positions.append(sympos(el))\n return positions\n\n\n<mask token>\n\n\ndef addCamera(x, y, z):\n bpy.ops.object.camera_add(view_align=True, enter_editmode=False,\n location=(5 * x, 5 * y, 5 * z))\n print('camera added')\n bpy.ops.object.light_add(type='SUN', view_align=False, location=(0, 0, 0))\n obj_camera = bpy.data.objects['Camera']\n look_at(obj_camera, Vector([0, 0, z / 4]))\n obj_camera.data.type = 'ORTHO'\n obj_camera.data.ortho_scale = x + y + z\n\n\ndef clearWS():\n if 'OBJECT' != bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n bpy.ops.object.select_all(action='SELECT')\n bpy.ops.object.delete(use_global=False)\n for i in bpy.data.curves:\n bpy.data.curves.remove(i)\n for m in bpy.data.materials:\n bpy.data.materials.remove(m)\n for c in bpy.data.cameras:\n bpy.data.cameras.remove(c)\n print('Workspace cleared.')\n return\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass ScanFileOperator(bpy.types.Operator):\n bl_idname = 'error.scan_file'\n bl_label = 'Scan file for return'\n filepath = bpy.props.StringProperty(subtype='FILE_PATH')\n\n def execute(self, context):\n global file_path\n global user_feedback\n user_feedback = ''\n file_path = self.filepath\n return {'FINISHED'}\n\n def invoke(self, context, event):\n context.window_manager.fileselect_add(self)\n return {'RUNNING_MODAL'}\n\n def register():\n bpy.types.Scene.path_to_file = bpy.props.StringProperty(name='',\n description='Path to CIF file', default='empty')\n\n\nclass Operator(bpy.types.Operator):\n bl_idname = 'object.cdtb_operator'\n bl_label = 'CDTB_operator'\n bl_descriptor = 'Operator for drawing crystal'\n\n def execute(self, context):\n global pars_check\n global user_feedback\n if pars_check:\n user_feedback = 'CiFFile module not installed'\n return {'FINISHED'}\n if file_path == 'Select a file':\n print('No file selected')\n user_feedback = 'No File selected'\n else:\n user_feedback = 'Crystal drawn'\n global draw_bonds\n draw_bonds = context.scene.draw_bonds\n global bond_distance\n bond_distance = context.scene.bond_distance\n global draw_lattice\n draw_lattice = context.scene.draw_lattice\n global atom_name\n atom_name = context.scene.atom_name\n global print_data\n print_data = context.scene.print_data\n global draw_style\n global atom_color\n draw_style = context.scene.style_selection_mode\n if draw_style == 'STICK':\n draw_bonds = True\n atom_color = False\n else:\n atom_color = True\n global draw_quality\n draw_quality = context.scene.quality_selection_mode\n global add_camera\n add_camera = context.scene.add_camera\n drawCrystal(file_path)\n return {'FINISHED'}\n\n @classmethod\n def register(cls):\n print('Registered class: %s ' % cls.bl_label)\n bpy.types.Scene.draw_bonds = bpy.props.BoolProperty(name=\n 'Draw bonds', description='Draw bonds between elements')\n bpy.types.Scene.bond_distance = bpy.props.FloatProperty(name=\n 'Bond distance', description=\n 'Set max distance for bonds to occur', default=2, min=0.0, max=\n 10.0, precision=2)\n bpy.types.Scene.atom_name = bpy.props.BoolProperty(name=\n 'Atom names', description='Display the name of atoms')\n bpy.types.Scene.draw_lattice = bpy.props.BoolProperty(name=\n 'Draw lattice', description='Draw unit cell outline')\n bpy.types.Scene.print_data = bpy.props.BoolProperty(name=\n 'Print data', description='Print crystal data in terminal')\n selection_style = [('SPACE FILLING', 'SPACE FILLING', '', 1), (\n 'BALL AND STICK', 'BALL AND STICK', '', 2), ('STICK', 'STICK',\n '', 3)]\n bpy.types.Scene.style_selection_mode = bpy.props.EnumProperty(items\n =selection_style, name='Style')\n selection_qual = [('MIN', 'MIN', '', 1), ('LOW', 'LOW', '', 2), (\n 'MED', 'MED', '', 3), ('HIGH', 'HIGH', '', 4), ('MAX', 'MAX',\n '', 5)]\n bpy.types.Scene.quality_selection_mode = bpy.props.EnumProperty(items\n =selection_qual, name='Quality', default='MED')\n bpy.types.Scene.add_camera = bpy.props.BoolProperty(name=\n 'Place camera', description=\n 'Place a camera and light to make rendering possible')\n\n @classmethod\n def unregister(cls):\n print('Unregistered class: %s ' % cls.bl_label)\n\n\nclass Panel(bpy.types.Panel):\n bl_idname = 'CDTB_Panel'\n bl_label = 'CDTB_Panel'\n bl_space_type = 'VIEW_3D'\n bl_region_type = 'TOOLS'\n bl_context = 'objectmode'\n bl_category = 'CDTB'\n\n def draw(self, context):\n scn = context.scene\n layout = self.layout\n layout.label(text='Input file', icon_value=112)\n \"\"\"\n for i in range(100):\n layout.label(text = str(i),icon_value =i)\n \"\"\"\n box = layout.box()\n row = box.row()\n splitrow = row.split(factor=0.075)\n left_col = splitrow.column()\n right_col = splitrow.column()\n left_col.operator('error.scan_file', icon_value=108, text='')\n right_col.label(text=file_path.rsplit('\\\\', 2)[-1])\n layout.label(text='Settings', icon_value=117)\n box = layout.box()\n box.prop(scn, 'draw_bonds')\n box.prop(scn, 'bond_distance')\n box.prop(scn, 'draw_lattice')\n box.prop(scn, 'atom_name')\n box.prop(scn, 'print_data')\n box.prop(scn, 'style_selection_mode')\n box.prop(scn, 'quality_selection_mode')\n box.prop(scn, 'add_camera')\n layout.separator()\n splitrow = layout.split(factor=0.3)\n col = splitrow.column()\n col.operator('object.cdtb_operator', text='Draw Crystal')\n col = splitrow.column()\n col.label(text=user_feedback)\n layout.separator()\n\n @classmethod\n def register(cls):\n print('Registered class: %s ' % cls.bl_label)\n\n @classmethod\n def unregister(cls):\n print('Unregistered class: %s ' % cls.bl_label)\n\n\n<mask token>\n\n\ndef unregister():\n bpy.utils.unregister_class(Operator)\n bpy.utils.unregister_class(Panel)\n bpy.utils.unregister_class(ScanFileOperator)\n\n\nclass Crysdata:\n\n def __init__(self, F, cb):\n self.start = time.time()\n print('Draw timer started')\n self.name = F\n self.cell = Cell(cb)\n self.atoms = readEl(cb)\n self.pos = readPos(cb)\n c = self.cell\n self.ftoc = self.get_fractional_to_cartesian_matrix(c.alen, c.blen,\n c.clen, c.alpha, c.beta, c.gamma)\n\n def printout(self):\n print(self.name)\n print()\n self.cell.printout()\n print()\n for element in self.pos:\n element.printout()\n print()\n for element in self.atoms:\n element.printout()\n print()\n print('Fractional to cartesian matrix:')\n print(self.ftoc)\n\n def get_fractional_to_cartesian_matrix(self, a, b, c, alpha, beta, gamma):\n \"\"\"\n Original code found at: https://gist.github.com/Bismarrck/a68da01f19b39320f78a\n\n !changed formula to resemble one found on: https://en.wikipedia.org/wiki/Fractional_coordinates\n\n Return the transformation matrix that converts fractional coordinates to\n cartesian coordinates.\n Parameters\n ----------\n a, b, c : float\n The lengths of the edges.\n alpha, gamma, beta : float\n The angles between the sides.\n angle_in_degrees : bool\n True if alpha, beta and gamma are expressed in degrees.\n Returns\n -------\n r : array_like\n The 3x3 rotation matrix. ``V_cart = np.dot(r, V_frac)``.\n \"\"\"\n alpha = np.deg2rad(alpha)\n beta = np.deg2rad(beta)\n gamma = np.deg2rad(gamma)\n cosa = np.cos(alpha)\n sina = np.sin(alpha)\n cosb = np.cos(beta)\n sinb = np.sin(beta)\n cosg = np.cos(gamma)\n sing = np.sin(gamma)\n volume = (1.0 - cosa ** 2.0 - cosb ** 2.0 - cosg ** 2.0 + 2.0 *\n cosa * cosb * cosg)\n volume = a * b * c * np.sqrt(volume)\n r = np.zeros((3, 3))\n r[0, 0] = float(a)\n r[0, 1] = float(b * cosg)\n r[0, 2] = float(c * cosb)\n r[1, 0] = float(0)\n r[1, 1] = float(b * sing)\n r[1, 2] = float(c * (cosa - cosb * cosg) / sing)\n r[2, 0] = float(0)\n r[2, 1] = float(0)\n r[2, 2] = float(volume / (a * b * sing))\n return r\n\n def drawCrystal(self):\n if draw_lattice:\n self.drawCell()\n print('Lattice drawn after {:.3f} seconds'.format(time.time() -\n self.start))\n self.drawAtoms()\n print('Atoms drawn after {:.3f} seconds'.format(time.time() - self.\n start))\n if draw_bonds:\n self.drawBonds()\n print('Bonds drawn after {:.3f} seconds'.format(time.time() -\n self.start))\n\n def drawAtoms(self):\n for a in self.atoms:\n a.drawObj(self.ftoc)\n print('Atoms drawn:', len(self.atoms))\n\n def drawCell(self):\n cell_corners = []\n cell_edges = []\n for i in range(2):\n for j in range(2):\n for k in range(2):\n bpy.ops.mesh.primitive_uv_sphere_add(size=lattice_size,\n location=toCarth(self.ftoc, [i, j, k]))\n activeObject = bpy.context.active_object\n cell_corners.append(activeObject)\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [0, 0, 0\n ]\n for i, j in zip([0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6], [1, 2, 4, 3, \n 5, 3, 6, 7, 5, 6, 7, 7]):\n cell_edges.append(self.drawLine(cell_corners[i].location,\n cell_corners[j].location))\n for i in cell_corners:\n i.select_set(action='SELECT')\n for i in cell_edges:\n i.select_set(action='SELECT')\n bpy.context.view_layer.objects.active = cell_corners[0]\n bpy.ops.object.join()\n print('Cell box drawn')\n\n def drawLine(self, ac, tc):\n dx = tc[0] - ac[0]\n dy = tc[1] - ac[1]\n dz = tc[2] - ac[2]\n dist = np.sqrt(dx ** 2 + dy ** 2 + dz ** 2)\n bpy.ops.mesh.primitive_cylinder_add(vertices=qualitydic[\n draw_quality], radius=lattice_size, depth=dist, location=(dx / \n 2 + ac[0], dy / 2 + ac[1], dz / 2 + ac[2]))\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [0, 0, 0]\n phi = math.atan2(dy, dx)\n theta = math.acos(dz / dist)\n bpy.context.object.rotation_euler[1] = theta\n bpy.context.object.rotation_euler[2] = phi\n return activeObject\n\n def drawBonds(self):\n cnt = 0\n bpy.ops.curve.primitive_bezier_circle_add(location=(0, 0, 0),\n radius=bond_radius)\n bpy.context.object.name = 'bez'\n for atom in self.atoms:\n for target in self.atoms:\n if atom != target:\n if 'bond{}-{}'.format(target.elid, atom.elid\n ) in bpy.data.objects:\n continue\n if atom.sym == 'H' and target.sym == 'H':\n continue\n if calcDistance(self.ftoc, atom, target) <= bond_distance:\n self.makeBond(atom, target)\n cnt += 1\n print('Atom bonds drawn:', cnt)\n\n def makeBond(self, atom, target):\n if 'OBJECT' != bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n o1 = bpy.data.objects[atom.elid]\n o2 = bpy.data.objects[target.elid]\n bond = self.hookCurve(o1, o2, bpy.context.scene)\n bpy.context.object.data.bevel_object = bpy.data.objects['bez']\n bpy.context.object.name = 'bond{}-{}'.format(atom.elid, target.elid)\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n bpy.context.object.active_material.diffuse_color = [255, 255, 255]\n if 'OBJECT' != bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n\n def hookCurve(self, o1, o2, scn):\n curve = bpy.data.curves.new('link', 'CURVE')\n curve.dimensions = '3D'\n spline = curve.splines.new('BEZIER')\n spline.bezier_points.add(1)\n p0 = spline.bezier_points[0]\n p1 = spline.bezier_points[1]\n p0.handle_right_type = 'VECTOR'\n p1.handle_left_type = 'VECTOR'\n obj = bpy.data.objects.new('link', curve)\n m0 = obj.modifiers.new('alpha', 'HOOK')\n m0.object = o1\n m1 = obj.modifiers.new('beta', 'HOOK')\n m1.object = o2\n bpy.context.collection.objects.link(obj)\n bpy.context.view_layer.objects.active = obj\n bpy.ops.object.mode_set(mode='EDIT')\n p0 = curve.splines[0].bezier_points[0]\n p1 = curve.splines[0].bezier_points[1]\n p0.select_control_point = True\n p1.select_control_point = False\n bpy.ops.object.hook_assign(modifier='alpha')\n p0 = curve.splines[0].bezier_points[0]\n p1 = curve.splines[0].bezier_points[1]\n p1.select_control_point = True\n p0.select_control_point = False\n bpy.ops.object.hook_assign(modifier='beta')\n return obj\n\n\nclass Cell:\n\n def __init__(self, cb):\n self.alen = float(cb['_cell_length_a'])\n self.blen = float(cb['_cell_length_b'])\n self.clen = float(cb['_cell_length_c'])\n self.alpha = float(cb['_cell_angle_alpha'])\n self.beta = float(cb['_cell_angle_beta'])\n self.gamma = float(cb['_cell_angle_gamma'])\n\n def printout(self):\n print(\n 'alen:{:8} \\nblen:{:8} \\nclen:{:8} \\nalpha:{:8} \\nbeta: {:8} \\ngamma:{:8}'\n .format(self.alen, self.blen, self.clen, self.alpha, self.beta,\n self.gamma))\n\n\nclass Atom:\n\n def __init__(self, elid, sym, xpos, ypos, zpos):\n self.elid = elid\n self.sym = sym\n self.xpos = float(xpos)\n self.ypos = float(ypos)\n self.zpos = float(zpos)\n\n def printout(self):\n print('id:{:3} symbol:{:2} x:{:.4f} y:{:.4f} z:{:.4f}'.format(self.\n elid, self.sym, self.xpos, self.ypos, self.zpos))\n\n def drawObj(self, ftoc):\n size = sizedic[self.sym] * styledic[draw_style][0\n ] + bond_radius * styledic[draw_style][1]\n bpy.ops.mesh.primitive_uv_sphere_add(segments=qualitydic[\n draw_quality], ring_count=qualitydic[draw_quality] / 2, size=\n size, location=toCarth(ftoc, [self.xpos, self.ypos, self.zpos]))\n bpy.context.object.name = self.elid\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name='MaterialName')\n activeObject.data.materials.append(mat)\n if atom_name:\n bpy.context.object.show_name = True\n if atom_color:\n bpy.context.object.active_material.diffuse_color = colordic[self\n .sym]\n else:\n bpy.context.object.active_material.diffuse_color = [1, 1, 1]\n\n\nclass sympos:\n\n def __init__(self, string):\n self.xsym = string[0].split(',')[0]\n self.ysym = string[0].split(',')[1]\n self.zsym = string[0].split(',')[2]\n\n def printout(self):\n print('x:{:8} y:{:8} z:{:8}'.format(self.xsym, self.ysym, self.zsym))\n\n\ndef readEl(cb):\n elements = []\n previd = []\n idcnt = []\n lb = cb.GetLoop('_atom_site_label')\n for el in lb:\n flag = False\n for i in range(len(previd)):\n if el[0] == previd[i]:\n flag = True\n break\n if flag:\n idcnt[i] += 1\n else:\n previd.append(el[0])\n idcnt.append(0)\n i = len(idcnt) - 1\n id_t = '{}.{}'.format(el[0], idcnt[i])\n elements.append(Atom(id_t, el[1], el[2], el[3], el[4]))\n return elements\n\n\ndef readPos(cb):\n positions = []\n lb = cb.GetLoop('_symmetry_equiv_pos_as_xyz')\n for el in lb:\n positions.append(sympos(el))\n return positions\n\n\n<mask token>\n\n\ndef look_at(obj_camera, point):\n loc_camera = obj_camera.matrix_world.to_translation()\n direction = point - loc_camera\n rot_quat = direction.to_track_quat('-Z', 'Y')\n obj_camera.rotation_euler = rot_quat.to_euler()\n\n\ndef addCamera(x, y, z):\n bpy.ops.object.camera_add(view_align=True, enter_editmode=False,\n location=(5 * x, 5 * y, 5 * z))\n print('camera added')\n bpy.ops.object.light_add(type='SUN', view_align=False, location=(0, 0, 0))\n obj_camera = bpy.data.objects['Camera']\n look_at(obj_camera, Vector([0, 0, z / 4]))\n obj_camera.data.type = 'ORTHO'\n obj_camera.data.ortho_scale = x + y + z\n\n\ndef clearWS():\n if 'OBJECT' != bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n bpy.ops.object.select_all(action='SELECT')\n bpy.ops.object.delete(use_global=False)\n for i in bpy.data.curves:\n bpy.data.curves.remove(i)\n for m in bpy.data.materials:\n bpy.data.materials.remove(m)\n for c in bpy.data.cameras:\n bpy.data.cameras.remove(c)\n print('Workspace cleared.')\n return\n\n\n<mask token>\n", "step-5": "# -------------------------------------------\n# MODULES\n# -------------------------------------------\nimport sys\nimport platform\nif(platform.system()== \"Windows\"):\n\tdir_sep = \"\\\\\"\nelse:\n\tdir_sep = \"/\"\nimport time\nimport os\nimport numpy as np\nimport subprocess\nimport math\nfrom mathutils import Vector\ntry:\n from CifFile import CifFile\n pars_check = False\nexcept:\n print(\"PyCIFRW not installed, try: pip install PyCifRW\")\n pars_check = True\ntry:\n import bpy\n Blender_env = True\nexcept:\n print(\"Not in blender environment.\")\n\n# -------------------------------------------\n# VARIABLES\n# -------------------------------------------\n\n# global variables\nfile_path = \"Select a file\" # path to CIF-file\ndraw_bonds = False # draws bonds between atoms\ndraw_style = \"SPACE FILLING\" # sets draw style\ndraw_quality = \"MED\" # sets key for qualitydic\ndraw_lattice = False # draws unit cell outline\natom_name = False # displays names of atoms\nbond_distance = 2 # set the max distance between bound atoms\nlattice_size = 0.03 # sets size of lattice borders\nbond_radius = 0.05 # radius of bond\nadd_camera\t =\tTrue\t\t\t# render final image\natom_color\t\t=\tTrue\t\t\t# draw atoms in color\nuser_feedback = \"\" # feedback for the user\nprint_data = True\n\n\n# dictionaries\n# sets detail of spheres\nstyledic = {\n \"SPACE FILLING\" : [1,0],\n \"BALL AND STICK\" : [0.5,0],\n \"STICK\" : [0,1]\n }\n\n# sets detail of spheres\nqualitydic = {\n \"MIN\" : 8,\n \"LOW\" : 16,\n \"MED\" : 32,\n \"HIGH\" : 64,\n \"MAX\" : 128\n }\n\n'''\nUncomment this when no external dictionaries are found\n# dictionary which couples atoms to a color\ncolordic = {\n \"O\" : [1,0,0],\n \"Si\" : [0.25,0.25,1],\n \"Fe\" : [1,0.2,0.2],\n }\n\n# dictionary which couples atoms to a specific size\nsizedic = {\n \"O\" : 0.3,\n \"Si\" : 0.6,\n \"Fe\" : 1.4,\n }\n'''\n# Read in dictionaries from external files\n\n\n\npath = os.path.dirname(os.path.realpath(__file__))\n# dictionary which couples atoms to a color\n# Color scheme, in RGB percentages, following the CPK convention was extracted from https://en.wikipedia.org/wiki/CPK_coloring#Typical_assignments\n# data can be changed by modifying the values in colordic.txt\nwith open(path+dir_sep+'colordic.txt','r') as inf:\n colordic = eval(inf.read())\n\n# dictionary which couples atoms to a specific size\n# Atom data, in Ångström, was extracted from https://en.wikipedia.org/wiki/Atomic_radii_of_the_elements_(data_page)\n# data can be changed by modifying the values in sizedic.txt\nwith open(path+dir_sep+'sizedic.txt','r') as inf:\n sizedic = eval(inf.read())\n\n\n# ----------------------------------------------\n# BLENDER ADD-ON\n# ----------------------------------------------\n\n# add-on info\nbl_info = {\n \"name\": \"Crystallographic Drawing Tool for Blender\",\n \"description\": \"Add-on for drawing crystals from CIF-files.\",\n \"author\": \"Jarrit Boons\",\n \"blender\": (2, 80,0),\n \"location\": \"View3D\",\n \"category\": \"Crystallography in Blender\"\n}\n\n\n# Operator to open the file browser and select a file\nclass ScanFileOperator(bpy.types.Operator):\n\n bl_idname = \"error.scan_file\"\n bl_label = \"Scan file for return\"\n filepath = bpy.props.StringProperty(subtype=\"FILE_PATH\")\n\n def execute(self, context):\n\n global file_path\n global user_feedback\n user_feedback = \"\"\n file_path = self.filepath\n return {'FINISHED'}\n\n\n def invoke(self, context, event):\n\n context.window_manager.fileselect_add(self)\n return {'RUNNING_MODAL'}\n\n\n def register():\n\n bpy.types.Scene.path_to_file = bpy.props.StringProperty(\n name=\"\",\n description=\"Path to CIF file\",\n default = \"empty\"\n )\n\n# Operator to hold CDTB-data and program execution\nclass Operator(bpy.types.Operator):\n\n bl_idname = \"object.cdtb_operator\"\n bl_label = \"CDTB_operator\"\n bl_descriptor = \"Operator for drawing crystal\"\n\n # Runs the whole program\n def execute(self, context):\n global pars_check\n global user_feedback\n\n if(pars_check):\n user_feedback = \"CiFFile module not installed\"\n return {'FINISHED'}\n\n if(file_path == \"Select a file\"):\n print(\"No file selected\")\n user_feedback = \"No File selected\"\n else:\n user_feedback = \"Crystal drawn\"\n\n global draw_bonds\n draw_bonds = context.scene.draw_bonds\n\n global bond_distance\n bond_distance = context.scene.bond_distance\n\n global draw_lattice\n draw_lattice = context.scene.draw_lattice\n\n global atom_name\n atom_name = context.scene.atom_name\n\n global print_data\n print_data = context.scene.print_data\n\n global draw_style\n global atom_color\n draw_style = context.scene.style_selection_mode\n if(draw_style==\"STICK\"):\n draw_bonds = True\n atom_color = False\n else:\n atom_color = True\n\n global draw_quality\n draw_quality = context.scene.quality_selection_mode\n global add_camera\n add_camera = context.scene.add_camera\n drawCrystal(file_path)\n\n return {'FINISHED'}\n\n\n @classmethod\n def register(cls):\n\n print(\"Registered class: %s \" % cls.bl_label)\n bpy.types.Scene.draw_bonds = bpy.props.BoolProperty(\n name=\"Draw bonds\",\n description=\"Draw bonds between elements\"\n )\n\n bpy.types.Scene.bond_distance = bpy.props.FloatProperty(\n name=\"Bond distance\",\n description=\"Set max distance for bonds to occur\",\n default=2,\n min=0.0,\n max=10.0,\n precision=2\n )\n\n bpy.types.Scene.atom_name = bpy.props.BoolProperty(\n name=\"Atom names\",\n description=\"Display the name of atoms\"\n )\n\n bpy.types.Scene.draw_lattice = bpy.props.BoolProperty(\n name=\"Draw lattice\",\n description=\"Draw unit cell outline\"\n )\n\n bpy.types.Scene.print_data = bpy.props.BoolProperty(\n name=\"Print data\",\n description=\"Print crystal data in terminal\"\n )\n\n # Dropdown menu for drawing style\n selection_style = [\n (\"SPACE FILLING\", \"SPACE FILLING\", \"\", 1),\n (\"BALL AND STICK\", \"BALL AND STICK\", \"\", 2),\n (\"STICK\", \"STICK\", \"\", 3),\n ]\n\n bpy.types.Scene.style_selection_mode = bpy.props.EnumProperty(\n items=selection_style,\n name=\"Style\"\n )\n\n # Dropdown menu for drawing quality\n selection_qual = [\n (\"MIN\", \"MIN\", \"\", 1),\n (\"LOW\", \"LOW\", \"\", 2),\n (\"MED\", \"MED\", \"\", 3),\n (\"HIGH\", \"HIGH\", \"\", 4),\n (\"MAX\", \"MAX\", \"\", 5)\n ]\n\n bpy.types.Scene.quality_selection_mode = bpy.props.EnumProperty(\n items=selection_qual,\n name=\"Quality\",\n default=\"MED\"\n )\n bpy.types.Scene.add_camera = bpy.props.BoolProperty(\n name=\"Place camera\",\n description=\"Place a camera and light to make rendering possible\"\n )\n\n\n @classmethod\n def unregister(cls):\n\n print(\"Unregistered class: %s \" % cls.bl_label)\n\n# Panel to display add-on in Blender environment\nclass Panel(bpy.types.Panel):\n\n bl_idname = \"CDTB_Panel\"\n bl_label = \"CDTB_Panel\"\n bl_space_type = \"VIEW_3D\"\n bl_region_type = \"TOOLS\"\n bl_context = \"objectmode\"\n bl_category = \"CDTB\"\n\n def draw(self,context):\n\n scn = context.scene\n layout = self.layout\n layout.label(text = 'Input file',icon_value=112)\n\n '''\n for i in range(100):\n layout.label(text = str(i),icon_value =i)\n '''\n\n box = layout.box()\n row = box.row()\n splitrow = row.split(factor=0.075)\n left_col = splitrow.column()\n right_col = splitrow.column()\n left_col.operator('error.scan_file',icon_value=108,text=\"\")\n right_col.label(text=file_path.rsplit('\\\\', 2)[-1])\n layout.label(text = 'Settings',icon_value =117)\n box = layout.box()\n box.prop(scn,'draw_bonds')\n box.prop(scn,'bond_distance')\n box.prop(scn,'draw_lattice')\n box.prop(scn, 'atom_name')\n box.prop(scn,'print_data')\n box.prop(scn, 'style_selection_mode')\n box.prop(scn, 'quality_selection_mode')\n box.prop(scn, 'add_camera')\n layout.separator()\n splitrow = layout.split(factor=0.3)\n col = splitrow.column()\n col.operator('object.cdtb_operator',text=\"Draw Crystal\")\n col = splitrow.column()\n col.label(text=user_feedback)\n layout.separator()\n\n\n @classmethod\n def register(cls):\n\n print(\"Registered class: %s \" % cls.bl_label)\n\n\n @classmethod\n def unregister(cls):\n\n print(\"Unregistered class: %s \" % cls.bl_label)\n\n\ndef register():\n\n bpy.utils.register_class(Operator)\n bpy.utils.register_class(ScanFileOperator)\n bpy.utils.register_class(Panel)\n\n\ndef unregister():\n\n bpy.utils.unregister_class(Operator)\n bpy.utils.unregister_class(Panel)\n bpy.utils.unregister_class(ScanFileOperator)\n\n\n#----------------------------------------------\n# MAIN PROGRAM\n#----------------------------------------------\n\n\nclass Crysdata():\n\n def __init__(self,F,cb):\n\n self.start = time.time()\n print(\"Draw timer started\")\n self.name = F\n self.cell = Cell(cb)\n self.atoms = readEl(cb)\n self.pos = readPos(cb)\n c = self.cell\n self.ftoc = self.get_fractional_to_cartesian_matrix(c.alen,c.blen,c.clen,c.alpha,c.beta,c.gamma)\n\n\n def printout(self):\n\n print(self.name)\n print()\n self.cell.printout()\n print()\n for element in self.pos:\n element.printout()\n print()\n for element in self.atoms:\n element.printout()\n print()\n print(\"Fractional to cartesian matrix:\")\n print(self.ftoc)\n\n\n def get_fractional_to_cartesian_matrix(self,a, b, c, alpha, beta, gamma):\n\n \"\"\"\n Original code found at: https://gist.github.com/Bismarrck/a68da01f19b39320f78a\n\n !changed formula to resemble one found on: https://en.wikipedia.org/wiki/Fractional_coordinates\n\n Return the transformation matrix that converts fractional coordinates to\n cartesian coordinates.\n Parameters\n ----------\n a, b, c : float\n The lengths of the edges.\n alpha, gamma, beta : float\n The angles between the sides.\n angle_in_degrees : bool\n True if alpha, beta and gamma are expressed in degrees.\n Returns\n -------\n r : array_like\n The 3x3 rotation matrix. ``V_cart = np.dot(r, V_frac)``.\n \"\"\"\n\n alpha = np.deg2rad(alpha)\n beta = np.deg2rad(beta)\n gamma = np.deg2rad(gamma)\n cosa = np.cos(alpha)\n sina = np.sin(alpha)\n cosb = np.cos(beta)\n sinb = np.sin(beta)\n cosg = np.cos(gamma)\n sing = np.sin(gamma)\n volume = 1.0 - cosa**2.0 - cosb**2.0 - cosg**2.0 + 2.0 * cosa * cosb * cosg\n volume = a*b*c*np.sqrt(volume)\n r = np.zeros((3, 3))\n r[0, 0] = float(a)\n r[0, 1] = float(b * cosg)\n r[0, 2] = float(c * cosb)\n r[1, 0] = float(0)\n r[1, 1] = float(b * sing)\n r[1, 2] = float(c * (cosa - cosb * cosg) / sing)\n r[2, 0] = float(0)\n r[2, 1] = float(0)\n r[2, 2] = float(volume / (a*b*sing))\n return r\n\n\n def drawCrystal(self):\n\n if draw_lattice:\n self.drawCell()\n print(\"Lattice drawn after {:.3f} seconds\".format((time.time()-self.start)))\n self.drawAtoms()\n print(\"Atoms drawn after {:.3f} seconds\".format((time.time()-self.start)))\n if(draw_bonds):\n self.drawBonds()\n print(\"Bonds drawn after {:.3f} seconds\".format((time.time()-self.start)))\n\n\n def drawAtoms(self):\n\n for a in self.atoms:\n a.drawObj(self.ftoc)\n print(\"Atoms drawn:\",len(self.atoms))\n\n\n def drawCell(self):\n\n cell_corners=[]\n cell_edges=[]\n # calculate and draw corners\n for i in range(2):\n for j in range(2):\n for k in range(2):\n bpy.ops.mesh.primitive_uv_sphere_add(size=lattice_size,location=toCarth(self.ftoc,[i,j,k]))\n activeObject = bpy.context.active_object # Set active object to variable\n cell_corners.append(activeObject)\n mat = bpy.data.materials.new(name=\"MaterialName\") # set new material to variable\n activeObject.data.materials.append(mat) # add the material to the object\n bpy.context.object.active_material.diffuse_color = [0,0,0] # change color\n # draw lines\n for i,j in zip([0,0,0,1,1,2,2,3,4,4,5,6],[1,2,4,3,5,3,6,7,5,6,7,7]):\n cell_edges.append(self.drawLine(cell_corners[i].location,cell_corners[j].location))\n # select all line and corners\n for i in cell_corners:\n i.select_set(action=\"SELECT\")\n for i in cell_edges:\n i.select_set(action=\"SELECT\")\n # set corner in origin as active and join meshes as one object\n bpy.context.view_layer.objects.active = cell_corners[0]\n bpy.ops.object.join()\n\n print(\"Cell box drawn\")\n\n\n def drawLine(self,ac,tc):\n\n dx = tc[0] - ac[0]\n dy = tc[1] - ac[1]\n dz = tc[2] - ac[2]\n dist = np.sqrt(dx**2 + dy**2 + dz**2)\n bpy.ops.mesh.primitive_cylinder_add(vertices=qualitydic[draw_quality],radius=lattice_size,depth = dist,location = (dx/2 + ac[0], dy/2 + ac[1], dz/2 + ac[2]))\n activeObject = bpy.context.active_object\n mat = bpy.data.materials.new(name=\"MaterialName\") # set new material to variable\n activeObject.data.materials.append(mat) # add the material to the object\n bpy.context.object.active_material.diffuse_color = [0,0,0] # change color\n\n phi = math.atan2(dy, dx)\n theta = math.acos(dz/dist)\n\n bpy.context.object.rotation_euler[1] = theta\n bpy.context.object.rotation_euler[2] = phi\n return activeObject\n\n\n def drawBonds(self):\n\n cnt = 0\n bpy.ops.curve.primitive_bezier_circle_add(location=(0,0,0),radius = bond_radius)\n bpy.context.object.name = 'bez'\n for atom in self.atoms:\n for target in self.atoms:\n if atom != target:\n if(\"bond{}-{}\".format(target.elid,atom.elid)in bpy.data.objects):\n continue\n if(atom.sym == 'H' and target.sym == 'H'):\n continue\n if calcDistance(self.ftoc,atom,target) <= bond_distance:\n self.makeBond(atom,target)\n cnt += 1\n print(\"Atom bonds drawn:\",cnt)\n\n\n # This function hooks the bond to the atoms\n def makeBond(self,atom,target):\n\n if 'OBJECT'!=bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n o1 = bpy.data.objects[atom.elid]\n o2 = bpy.data.objects[target.elid]\n bond = self.hookCurve(o1,o2, bpy.context.scene)\n bpy.context.object.data.bevel_object = bpy.data.objects[\"bez\"]\n bpy.context.object.name = \"bond{}-{}\".format(atom.elid,target.elid)\n activeObject = bpy.context.active_object # Set active object to variable\n mat = bpy.data.materials.new(name=\"MaterialName\") # set new material to variable\n activeObject.data.materials.append(mat) # add the material to the object\n bpy.context.object.active_material.diffuse_color = [255,255,255] # change color\n if 'OBJECT'!=bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n\n\n def hookCurve(self,o1, o2, scn):\n\n curve = bpy.data.curves.new(\"link\", 'CURVE')\n curve.dimensions = '3D'\n spline = curve.splines.new('BEZIER')\n\n spline.bezier_points.add(1)\n p0 = spline.bezier_points[0]\n p1 = spline.bezier_points[1]\n # p0.co = o1.location\n p0.handle_right_type = 'VECTOR'\n # p1.co = o2.location\n p1.handle_left_type = 'VECTOR'\n\n\n obj = bpy.data.objects.new(\"link\", curve)\n m0 = obj.modifiers.new(\"alpha\", 'HOOK')\n m0.object = o1\n m1 = obj.modifiers.new(\"beta\", 'HOOK')\n m1.object = o2\n\n bpy.context.collection.objects.link(obj)\n bpy.context.view_layer.objects.active = obj\n\n bpy.ops.object.mode_set(mode='EDIT')\n\n # Reassign the points\n p0 = curve.splines[0].bezier_points[0]\n p1 = curve.splines[0].bezier_points[1]\n\n # Hook first control point to first atom\n p0.select_control_point = True\n p1.select_control_point = False\n bpy.ops.object.hook_assign(modifier=\"alpha\")\n\n # Hook second control point to first atom\n p0 = curve.splines[0].bezier_points[0]\n p1 = curve.splines[0].bezier_points[1]\n p1.select_control_point = True\n p0.select_control_point = False\n bpy.ops.object.hook_assign(modifier=\"beta\")\n\n return obj\n\n\nclass Cell():\n\n def __init__(self,cb):\n\n self.alen = float(cb[\"_cell_length_a\"])\n self.blen = float(cb[\"_cell_length_b\"])\n self.clen = float(cb[\"_cell_length_c\"])\n self.alpha = float(cb[\"_cell_angle_alpha\"])\n self.beta = float(cb[\"_cell_angle_beta\"])\n self.gamma = float(cb[\"_cell_angle_gamma\"])\n\n\n def printout(self):\n\n print(\"alen:{:8} \\nblen:{:8} \\nclen:{:8} \\nalpha:{:8} \\nbeta: {:8} \\ngamma:{:8}\".format(self.alen,self.blen,self.clen,self.alpha,self.beta,self.gamma))\n\n\n\n\nclass Atom():\n\n def __init__(self,elid,sym,xpos,ypos,zpos):\n\n self.elid = elid\n self.sym = sym\n self.xpos = float(xpos)\n self.ypos = float(ypos)\n self.zpos = float(zpos)\n\n\n def printout(self):\n\n print(\"id:{:3} symbol:{:2} x:{:.4f} y:{:.4f} z:{:.4f}\".format(self.elid,self.sym,self.xpos,self.ypos,self.zpos))\n\n\n def drawObj(self,ftoc):\n size = sizedic[self.sym]*styledic[draw_style][0]+bond_radius*styledic[draw_style][1]\n bpy.ops.mesh.primitive_uv_sphere_add(segments=qualitydic[draw_quality],ring_count=qualitydic[draw_quality]/2,size=size,location=toCarth(ftoc,[self.xpos,self.ypos,self.zpos]))\n bpy.context.object.name = self.elid\n activeObject = bpy.context.active_object # Set active object to variable\n mat = bpy.data.materials.new(name=\"MaterialName\") # set new material to variable\n activeObject.data.materials.append(mat) # add the material to the object\n if(atom_name):\n bpy.context.object.show_name = True\n if(atom_color):\n bpy.context.object.active_material.diffuse_color = colordic[self.sym] # change color to dictionary color\n else:\n bpy.context.object.active_material.diffuse_color = [1,1,1] # change color to white\n\n\nclass sympos():\n\n def __init__(self,string):\n\n self.xsym = (string[0].split(','))[0]\n self.ysym = (string[0].split(','))[1]\n self.zsym = (string[0].split(','))[2]\n\n\n def printout(self):\n\n print(\"x:{:8} y:{:8} z:{:8}\".format(self.xsym,self.ysym,self.zsym))\n\n\n\ndef readEl(cb):\n\n elements = []\n previd = []\n idcnt = []\n lb = cb.GetLoop(\"_atom_site_label\")\n for el in lb:\n flag = False\n for i in range(len(previd)):\n if(el[0] == previd[i]):\n flag = True\n break\n if(flag):\n idcnt[i] += 1\n else:\n previd.append(el[0])\n idcnt.append(0)\n i = len(idcnt)-1\n id_t = \"{}.{}\".format(el[0],idcnt[i])\n elements.append(Atom(id_t,el[1],el[2],el[3],el[4]))\n return elements\n\n\ndef readPos(cb):\n\n positions = [];\n lb = cb.GetLoop(\"_symmetry_equiv_pos_as_xyz\")\n for el in lb:\n positions.append(sympos(el))\n return positions\n\n\ndef obabel_fill_unit_cell(cif_file, p1_file):\n\n # Convert symmetry to P1 using openbabel as subprocess\n # Notation: obabel [-i<input-type>] <infilename> [-o<output-type>] -O<outfilename> [Options]\n subprocess.run(['obabel', '-icif', cif_file, '-ocif', '-O', p1_file, '--fillUC', 'keepconnect'])\n\n\ndef calcDistance(ftoc,atom1,atom2):\n\n ac = toCarth(ftoc,[atom1.xpos,atom1.ypos,atom1.zpos])\n tc = toCarth(ftoc,[atom2.xpos,atom2.ypos,atom2.zpos])\n dx = tc[0] - ac[0]\n dy = tc[1] - ac[1]\n dz = tc[2] - ac[2]\n dist = np.sqrt(dx**2 + dy**2 + dz**2)\n return dist\n\n\ndef toCarth(ftoc,V_frac):\n\n return np.dot(ftoc, V_frac)\n\n\ndef look_at(obj_camera, point):\n\n loc_camera = obj_camera.matrix_world.to_translation()\n direction = point - loc_camera\n # point the cameras '-Z' and use its 'Y' as up\n rot_quat = direction.to_track_quat('-Z', 'Y')\n # assume we're using euler rotation\n obj_camera.rotation_euler = rot_quat.to_euler()\n\n\ndef addCamera(x,y,z):\n\n bpy.ops.object.camera_add(view_align=True, enter_editmode=False, location=(5*x,5*y,5*z))\n print(\"camera added\")\n bpy.ops.object.light_add(type='SUN', view_align=False, location=(0, 0, 0))\n obj_camera = bpy.data.objects[\"Camera\"]\n look_at(obj_camera, Vector([0,0,z/4]))\n obj_camera.data.type = 'ORTHO'\n obj_camera.data.ortho_scale = ((x+y+z))\n\n\ndef clearWS():\n\n if 'OBJECT'!=bpy.context.mode:\n bpy.ops.object.mode_set(mode='OBJECT')\n bpy.ops.object.select_all(action='SELECT')\n bpy.ops.object.delete(use_global=False)\n # remove all previous curves\n for i in bpy.data.curves:\n bpy.data.curves.remove(i)\n # remove all previous materials\n for m in bpy.data.materials:\n bpy.data.materials.remove(m)\n # remove all previous camera's\n for c in bpy.data.cameras:\n bpy.data.cameras.remove(c)\n\n print(\"Workspace cleared.\")\n return\n\n\ndef drawCrystal(file):\n # Check if file is file:\n S = time.time()\n global user_feedback\n ext = file[len(file)-4:]\n if(ext.lower() != \".cif\"):\n print(\"Only cif files can be visualised\")\n user_feedback = \"Not a cif file\"\n return\n # Check OpenBabel installation\n try:\n # Convert the cif file to its P1 symmetry notation as a temporary cif file\n print('Converting %s to P1' %file)\n obabel_fill_unit_cell(file, \"temp.CIF\")\n cf = CifFile(\"temp.CIF\")\n except:\n print(\"No OpenBabel installation found, install it from http://openbabel.org/wiki/Category:Installation\")\n user_feedback = \"OpenBabel not installed\"\n #cf = CifFile(file) CifFile apparently can't read in long filepaths\n return\n # Open and parse our cif\n f = file.rsplit(dir_sep, 1)[-1]\n F = f[:3]\n print(f)\n cb = cf.first_block()\n Crystal = Crysdata(F,cb)\n\n # Print crystal data in terminal if checked\n if(print_data):\n Crystal.printout()\n\n print(\"Crystal data read after \"+ str(time.time() - S) + \" seconds\")\n\n # Draw crystal if in Blender environment\n if(Blender_env):\n clearWS()\n Crystal.drawCrystal()\n bpy.ops.object.select_all(action='DESELECT')\n if(add_camera):\n addCamera(Crystal.cell.alen,Crystal.cell.blen,Crystal.cell.clen)\n", "step-ids": [ 20, 32, 41, 42, 51 ] }
[ 20, 32, 41, 42, 51 ]
#!/usr/bin/env python from __future__ import print_function, division, unicode_literals import os import sys import json import logging import tempfile import itertools import traceback import subprocess as sp from os.path import basename from datetime import datetime from argparse import ArgumentParser, FileType PREPROC_CMDS = { 'exon': "awk '$3 == \"exon\"' {input[0]} | sort -k1,1 -k4,4n | mergeBed -i stdin | awk 'BEGIN{{OFS=\"\\t\"}}{{$(NF+1)=\"exon\";print}}' > {output}", 'gene': "awk '$3 == \"gene\"' {input[0]} | sort -k1,1 -k4,4n | mergeBed -i stdin | awk 'BEGIN{{OFS=\"\\t\"}}{{$(NF+1)=\"gene\";print}}' > {output}", 'intron': "subtractBed -a {input[0]} -b {input[1]} | awk 'BEGIN{{OFS=\"\\t\"}}{{$(NF)=\"intron\";print}}' > {output}", 'intergenic': "complementBed -i {input[0]} -g <(cut -f 1-2 {input[1]} | sort -k1,1) | awk 'BEGIN{{OFS=\"\\t\"}}{{$(NF+1)=\"intergenic\";print}}' > {output}" } def strfdelta(tdelta, fmt): d = {"days": tdelta.days} d["hours"], rem = divmod(tdelta.seconds, 3600) d["minutes"], d["seconds"] = divmod(rem, 60) return fmt.format(**d) def preprocess(element, inputs=None): '''element can be one of <gene> <exon> <intron> <intergenic>''' log = logging.getLogger('gencov') element_bed = tempfile.mkstemp(suffix='.bed')[1] if not inputs: inputs = [ args.annotation ] else: inputs = inputs[element] command = PREPROC_CMDS[element].format(input=inputs, output=element_bed) log.debug(command) proc = sp.Popen(command, shell=True, executable='/bin/bash', stderr=sp.PIPE) err_msg = proc.communicate()[1] if err_msg: raise IOError(err_msg) log.info("%s preprocessed" % element.title()) return element_bed def gtf_processing(genome=None, prefix='gencov'): """Annotation preprocessing. Provide a bed file with the following elements: - projected exons - projected genes - introns - integenic regions """ all_bed = prefix + ".all.bed" if not os.path.exists(all_bed) or os.stat(all_bed).st_size == 0: log.info("Preprocessing annotation...") features = ('exon', 'gene', 'intron', 'intergenic') merged_exons, merged_genes = map(preprocess, features[:2]) ins = { 'intron': [merged_genes, merged_exons], 'intergenic': [merged_genes, genome] } intron_bed, intergenic_bed = map(preprocess, features[2:], [ins, ins]) log.info("Concatenate bed files for all elements...") with open(all_bed, 'w') as out_bed: cat_all(merged_exons, merged_genes, intron_bed, intergenic_bed, out_bed=out_bed) for f in (merged_exons, merged_genes, intron_bed, intergenic_bed): os.remove(f) return all_bed def cat_all(*args, **kwargs): out_bed = kwargs.get('out_bed', sys.stdout) for bed in args: print(open(bed,'r').read(), end='', file=out_bed) def get_chromosomes(genome_file): with open(genome_file) as genome: chrs = [l.split()[0] for l in genome] return chrs def process_bam(bam, all_elements, chrs=None, all_reads=False): if not os.path.exists(bam): raise IOError("Fail to open {0!r} for reading".format(bam)) bai = "{0}.bai".format(bam) if chrs and not os.path.exists(bai): log.info("Indexing {0}...".format(bam)) sp.call('samtools index {0}'.format(bam), shell=True) log.info('Processing {0}...'.format(bam)) command = "samtools view -u" sam_filter = 4 if not all_reads: sam_filter += 256 command += " -F {0} {1}".format(str(sam_filter), bam) if chrs: command += " {0}".format(" ".join(chrs)) command = "{0} | bamToBed -i stdin -tag NH -bed12 | intersectBed -a stdin -b {1} -split -wao".format(command, all_elements) log.debug(command) return sp.Popen(command, shell=True, stdout=sp.PIPE, stderr=sp.PIPE, bufsize=1) def update_counts(element, tot_counts, cont_counts, split_counts, is_split): elem='total' tot_counts[elem] = tot_counts.get(elem,0) + 1 if is_split: split_counts['total'] = split_counts.get('total',0) + 1 if len(element) > 1: if len(set(element)) == 1: elem = element[0] else: if 'intergenic' in element: elem = 'others' else: elem = 'exonic_intronic' else: elem = element[0] split_counts[elem] = split_counts.get(elem, 0) + 1 else: cont_counts['total'] = cont_counts.get('total', 0) + 1 if len(element) > 1: if 'intergenic' in element: elem = 'others' else: elem = 'exonic_intronic' else: elem = element[0] cont_counts[elem] = cont_counts.get(elem, 0) + 1 def count_features(bed, uniq=False): # Initialize n_skipped = {} newRead = False # keep track of different reads prev_rid = None # read id of the previous read is_split = False # check if current read is a split element = [] # list with all elements intersecting the read cont_counts = {} # Continuous read counts split_counts = {} # Split read counts tot_counts = {} # Total number of reads o = bed.stdout log.info("Compute genomic coverage...") # Iterate while True: try: line = o.next() if not line: n_skipped['empty'] = n_skipped.get('gene', 0) + 1 continue if 'gene' in line: n_skipped['gene'] = n_skipped.get('gene', 0) + 1 continue rchr, rstart, rend, rid, rflag, rstrand, rtstart, rtend, rrgb, rbcount, rbsizes, rbstarts, achr, astart, aend, ael, covg = line.strip().split("\t") if uniq and int(rflag) != 1: n_skipped['non-uniq'] = n_skipped.get('non-uniq', 0) + 1 continue newRead = (rid != prev_rid) if (newRead) and prev_rid!=None: update_counts(element, tot_counts, cont_counts, split_counts, is_split) # Re-Initialize the counters element = [] element.append(ael) prev_rid = rid is_split = int(rbcount) > 1 except StopIteration: update_counts(element, tot_counts, cont_counts, split_counts, is_split) break for k,v in n_skipped.iteritems(): log.info("Skipped {1} {0} lines".format(k, v)) return (tot_counts, cont_counts, split_counts) def write_output(stats, out, output_format='tsv', json_indent=4): if not args.ID: args.ID = basename(args.bam) if output_format == 'tsv': for k, v in stats.iteritems(): for k1, v1 in v.iteritems(): line_array = [args.ID, k, str(k1), str(v1)] out.write("\t".join(line_array)+"\n") elif output_format == 'json': out.write('Total reads: {0}\n'.format(json.dumps(stats['total'], indent=json_indent))) out.write('Continuous reads: {0}\n'.format(json.dumps(stats['continuous'], indent=json_indent))) out.write('Split reads: {0}\n'.format(json.dumps(stats['split'], indent=json_indent))) def main(args): bn_bam = os.path.basename(args.bam).rsplit(".", 1)[0] bn_gtf = os.path.basename(args.annotation).rsplit(".", 1)[0] start = datetime.now() all_elements = gtf_processing(genome=args.genome, prefix=bn_bam + "." + bn_gtf) chrs = None if args.all_chrs else get_chromosomes(args.genome) if args.uniq: args.all_reads = False bed = process_bam(args.bam, all_elements, chrs=chrs, all_reads=args.all_reads) read_type = "UNIQ" if args.uniq else "ALL" if args.all_reads else "PRIMARY" chroms = ", ".join(chrs) if chrs else "ALL" log.info("Chromosomes: {0}".format(str(chroms))) log.info("Mapped reads: {0}".format(str(read_type))) tot, cont, split = count_features(bed, uniq=args.uniq) stats_summary = {"total" : tot, "continuous" : cont, "split" : split} write_output(stats_summary, args.output, output_format=args.output_format) end = datetime.now() - start log.info('DONE ({0})'.format(strfdelta(end, "{hours}h{minutes}m{seconds}s"))) if not args.keep: os.remove(all_elements) def parse_arguments(argv): """ Parsing arguments """ parser = ArgumentParser(argv, description = "Count the number of reads in genomic regions. NOTE: SAMtools and BEDtools must be installed") parser.add_argument("-a", "--annotation", type=str, help="gtf with all elements (genes, transcripts and exons)", required=True) parser.add_argument("-g", "--genome", type=str, help="genome chromosome sizes", required=True) parser.add_argument("-b", "--bam", type=str, help="bam file", required=True) parser.add_argument("-o", "--output", type=FileType('w'), default=sys.stdout, help="output file name") parser.add_argument("-I", "--ID", type=str, help="the ID of the experiment, from which the bam comes from") parser.add_argument("--keep", dest='keep', help="Do not delete the temporary files generated during the run", action='store_true', default=False) parser.add_argument("--uniq", dest='uniq', action='store_true', help="Only use uniquely mapped reads", default=False) parser.add_argument("--loglevel", dest='loglevel', help="Set the loglevel", default="info") parser.add_argument("--all-reads", dest='all_reads', action='store_true', help="Use all reads from the BAM file. Default: use primary alignments only ('samtools view -F 260')", default=False) parser.add_argument("--output-format", dest='output_format', help="Set the output format", default="tsv") parser.add_argument("--all-chromosomes", dest='all_chrs', action='store_true', help="Use all chromosomes from the BAM file header. Default: use only chromosomes in the genome index file.", default=False) return parser.parse_args() def setup_logger(): """ Logging setup """ log = logging.getLogger("gencov") log.setLevel(logging.getLevelName(args.loglevel.upper())) ch = logging.StreamHandler() ch.setLevel = log.level fmt = logging.Formatter('%(asctime)s - %(message)s', '%Y-%m-%d %H:%M:%S') ch.setFormatter(fmt) log.addHandler(ch) return log if __name__ == "__main__": """ Given a bam file, compute the read coverage for different genomic regions: - exons - introns - exon-intron junctions - intergenic *** ONLY PRIMARY alignments are used *** """ try: args = parse_arguments(sys.argv) log = setup_logger() main(args) exit(0) except Exception,err: log.error("Error:") errinfo = traceback.format_exception(sys.exc_type, sys.exc_value, sys.exc_traceback) log.error("".join(errinfo)) exit(1)
normal
{ "blob_id": "ac19ae96d8262cadd43314c29198fccbc008c1b5", "index": 6590, "step-1": "#!/usr/bin/env python\n\nfrom __future__ import print_function, division, unicode_literals\nimport os\nimport sys\nimport json\nimport logging\nimport tempfile\nimport itertools\nimport traceback\nimport subprocess as sp\nfrom os.path import basename\nfrom datetime import datetime\nfrom argparse import ArgumentParser, FileType\n\nPREPROC_CMDS = {\n 'exon': \"awk '$3 == \\\"exon\\\"' {input[0]} | sort -k1,1 -k4,4n | mergeBed -i stdin | awk 'BEGIN{{OFS=\\\"\\\\t\\\"}}{{$(NF+1)=\\\"exon\\\";print}}' > {output}\",\n 'gene': \"awk '$3 == \\\"gene\\\"' {input[0]} | sort -k1,1 -k4,4n | mergeBed -i stdin | awk 'BEGIN{{OFS=\\\"\\\\t\\\"}}{{$(NF+1)=\\\"gene\\\";print}}' > {output}\",\n 'intron': \"subtractBed -a {input[0]} -b {input[1]} | awk 'BEGIN{{OFS=\\\"\\\\t\\\"}}{{$(NF)=\\\"intron\\\";print}}' > {output}\",\n 'intergenic': \"complementBed -i {input[0]} -g <(cut -f 1-2 {input[1]} | sort -k1,1) | awk 'BEGIN{{OFS=\\\"\\\\t\\\"}}{{$(NF+1)=\\\"intergenic\\\";print}}' > {output}\"\n}\n\ndef strfdelta(tdelta, fmt):\n d = {\"days\": tdelta.days}\n d[\"hours\"], rem = divmod(tdelta.seconds, 3600)\n d[\"minutes\"], d[\"seconds\"] = divmod(rem, 60)\n return fmt.format(**d)\n\ndef preprocess(element, inputs=None):\n '''element can be one of <gene> <exon> <intron> <intergenic>'''\n log = logging.getLogger('gencov')\n element_bed = tempfile.mkstemp(suffix='.bed')[1]\n if not inputs:\n inputs = [ args.annotation ]\n else:\n inputs = inputs[element]\n command = PREPROC_CMDS[element].format(input=inputs, output=element_bed)\n\n log.debug(command)\n proc = sp.Popen(command, shell=True, executable='/bin/bash', stderr=sp.PIPE)\n err_msg = proc.communicate()[1]\n if err_msg:\n raise IOError(err_msg)\n\n log.info(\"%s preprocessed\" % element.title())\n return element_bed\n\ndef gtf_processing(genome=None, prefix='gencov'):\n \"\"\"Annotation preprocessing. Provide a bed file with the\n following elements:\n\n - projected exons\n - projected genes\n - introns\n - integenic regions\n\n \"\"\"\n all_bed = prefix + \".all.bed\"\n\n if not os.path.exists(all_bed) or os.stat(all_bed).st_size == 0:\n log.info(\"Preprocessing annotation...\")\n features = ('exon', 'gene', 'intron', 'intergenic')\n merged_exons, merged_genes = map(preprocess, features[:2])\n ins = {\n 'intron': [merged_genes, merged_exons],\n 'intergenic': [merged_genes, genome]\n }\n intron_bed, intergenic_bed = map(preprocess, features[2:], [ins, ins])\n\n log.info(\"Concatenate bed files for all elements...\")\n with open(all_bed, 'w') as out_bed:\n cat_all(merged_exons, merged_genes, intron_bed, intergenic_bed, out_bed=out_bed)\n\n for f in (merged_exons, merged_genes, intron_bed, intergenic_bed):\n os.remove(f)\n\n return all_bed\n\ndef cat_all(*args, **kwargs):\n out_bed = kwargs.get('out_bed', sys.stdout)\n for bed in args:\n print(open(bed,'r').read(), end='', file=out_bed)\n\ndef get_chromosomes(genome_file):\n with open(genome_file) as genome:\n chrs = [l.split()[0] for l in genome]\n return chrs\n\ndef process_bam(bam, all_elements, chrs=None, all_reads=False):\n if not os.path.exists(bam):\n raise IOError(\"Fail to open {0!r} for reading\".format(bam))\n bai = \"{0}.bai\".format(bam)\n if chrs and not os.path.exists(bai):\n log.info(\"Indexing {0}...\".format(bam))\n sp.call('samtools index {0}'.format(bam), shell=True)\n\n log.info('Processing {0}...'.format(bam))\n command = \"samtools view -u\"\n sam_filter = 4\n if not all_reads:\n sam_filter += 256\n command += \" -F {0} {1}\".format(str(sam_filter), bam)\n if chrs:\n command += \" {0}\".format(\" \".join(chrs))\n command = \"{0} | bamToBed -i stdin -tag NH -bed12 | intersectBed -a stdin -b {1} -split -wao\".format(command, all_elements)\n log.debug(command)\n return sp.Popen(command, shell=True, stdout=sp.PIPE, stderr=sp.PIPE, bufsize=1)\n\ndef update_counts(element, tot_counts, cont_counts, split_counts, is_split):\n elem='total'\n tot_counts[elem] = tot_counts.get(elem,0) + 1\n if is_split:\n split_counts['total'] = split_counts.get('total',0) + 1\n if len(element) > 1:\n if len(set(element)) == 1:\n elem = element[0]\n else:\n if 'intergenic' in element:\n elem = 'others'\n else:\n elem = 'exonic_intronic'\n else:\n elem = element[0]\n\n split_counts[elem] = split_counts.get(elem, 0) + 1\n\n else:\n cont_counts['total'] = cont_counts.get('total', 0) + 1\n if len(element) > 1:\n if 'intergenic' in element:\n elem = 'others'\n else:\n elem = 'exonic_intronic'\n else:\n elem = element[0]\n\n cont_counts[elem] = cont_counts.get(elem, 0) + 1\n\ndef count_features(bed, uniq=False):\n\n # Initialize\n n_skipped = {}\n newRead = False # keep track of different reads\n prev_rid = None # read id of the previous read\n is_split = False # check if current read is a split\n element = [] # list with all elements intersecting the read\n cont_counts = {} # Continuous read counts\n split_counts = {} # Split read counts\n tot_counts = {} # Total number of reads\n\n o = bed.stdout\n\n log.info(\"Compute genomic coverage...\")\n\n # Iterate\n while True:\n try:\n line = o.next()\n if not line:\n n_skipped['empty'] = n_skipped.get('gene', 0) + 1\n continue\n if 'gene' in line:\n n_skipped['gene'] = n_skipped.get('gene', 0) + 1\n continue\n rchr, rstart, rend, rid, rflag, rstrand, rtstart, rtend, rrgb, rbcount, rbsizes, rbstarts, achr, astart, aend, ael, covg = line.strip().split(\"\\t\")\n if uniq and int(rflag) != 1:\n n_skipped['non-uniq'] = n_skipped.get('non-uniq', 0) + 1\n continue\n newRead = (rid != prev_rid)\n if (newRead) and prev_rid!=None:\n update_counts(element, tot_counts, cont_counts, split_counts, is_split)\n # Re-Initialize the counters\n element = []\n\n element.append(ael)\n prev_rid = rid\n is_split = int(rbcount) > 1\n except StopIteration:\n update_counts(element, tot_counts, cont_counts, split_counts, is_split)\n break\n\n for k,v in n_skipped.iteritems():\n log.info(\"Skipped {1} {0} lines\".format(k, v))\n\n return (tot_counts, cont_counts, split_counts)\n\ndef write_output(stats, out, output_format='tsv', json_indent=4):\n if not args.ID:\n args.ID = basename(args.bam)\n\n if output_format == 'tsv':\n for k, v in stats.iteritems():\n for k1, v1 in v.iteritems():\n line_array = [args.ID, k, str(k1), str(v1)]\n out.write(\"\\t\".join(line_array)+\"\\n\")\n elif output_format == 'json':\n out.write('Total reads: {0}\\n'.format(json.dumps(stats['total'], indent=json_indent)))\n out.write('Continuous reads: {0}\\n'.format(json.dumps(stats['continuous'], indent=json_indent)))\n out.write('Split reads: {0}\\n'.format(json.dumps(stats['split'], indent=json_indent)))\n\ndef main(args):\n\n bn_bam = os.path.basename(args.bam).rsplit(\".\", 1)[0]\n bn_gtf = os.path.basename(args.annotation).rsplit(\".\", 1)[0]\n\n start = datetime.now()\n\n all_elements = gtf_processing(genome=args.genome, prefix=bn_bam + \".\" + bn_gtf)\n\n chrs = None if args.all_chrs else get_chromosomes(args.genome)\n if args.uniq:\n args.all_reads = False\n bed = process_bam(args.bam, all_elements, chrs=chrs, all_reads=args.all_reads)\n\n read_type = \"UNIQ\" if args.uniq else \"ALL\" if args.all_reads else \"PRIMARY\"\n chroms = \", \".join(chrs) if chrs else \"ALL\"\n log.info(\"Chromosomes: {0}\".format(str(chroms)))\n log.info(\"Mapped reads: {0}\".format(str(read_type)))\n tot, cont, split = count_features(bed, uniq=args.uniq)\n\n stats_summary = {\"total\" : tot, \"continuous\" : cont, \"split\" : split}\n\n write_output(stats_summary, args.output, output_format=args.output_format)\n\n end = datetime.now() - start\n log.info('DONE ({0})'.format(strfdelta(end, \"{hours}h{minutes}m{seconds}s\")))\n\n if not args.keep:\n os.remove(all_elements)\n\ndef parse_arguments(argv):\n \"\"\" Parsing arguments \"\"\"\n\n parser = ArgumentParser(argv, description = \"Count the number of reads in genomic regions. NOTE: SAMtools and BEDtools must be installed\")\n parser.add_argument(\"-a\", \"--annotation\", type=str, help=\"gtf with all elements (genes, transcripts and exons)\", required=True)\n parser.add_argument(\"-g\", \"--genome\", type=str, help=\"genome chromosome sizes\", required=True)\n parser.add_argument(\"-b\", \"--bam\", type=str, help=\"bam file\", required=True)\n parser.add_argument(\"-o\", \"--output\", type=FileType('w'), default=sys.stdout, help=\"output file name\")\n parser.add_argument(\"-I\", \"--ID\", type=str, help=\"the ID of the experiment, from which the bam comes from\")\n parser.add_argument(\"--keep\", dest='keep', help=\"Do not delete the temporary files generated during the run\", action='store_true', default=False)\n parser.add_argument(\"--uniq\", dest='uniq', action='store_true', help=\"Only use uniquely mapped reads\", default=False)\n parser.add_argument(\"--loglevel\", dest='loglevel', help=\"Set the loglevel\", default=\"info\")\n parser.add_argument(\"--all-reads\", dest='all_reads', action='store_true', help=\"Use all reads from the BAM file. Default: use primary alignments only ('samtools view -F 260')\", default=False)\n parser.add_argument(\"--output-format\", dest='output_format', help=\"Set the output format\", default=\"tsv\")\n parser.add_argument(\"--all-chromosomes\", dest='all_chrs', action='store_true', help=\"Use all chromosomes from the BAM file header. Default: use only chromosomes in the genome index file.\", default=False)\n\n return parser.parse_args()\n\ndef setup_logger():\n \"\"\" Logging setup \"\"\"\n log = logging.getLogger(\"gencov\")\n log.setLevel(logging.getLevelName(args.loglevel.upper()))\n ch = logging.StreamHandler()\n ch.setLevel = log.level\n fmt = logging.Formatter('%(asctime)s - %(message)s', '%Y-%m-%d %H:%M:%S')\n ch.setFormatter(fmt)\n log.addHandler(ch)\n return log\n\nif __name__ == \"__main__\":\n \"\"\"\n Given a bam file, compute the read coverage for different genomic regions:\n\n - exons\n - introns\n - exon-intron junctions\n - intergenic\n\n *** ONLY PRIMARY alignments are used ***\n \"\"\"\n try:\n args = parse_arguments(sys.argv)\n log = setup_logger()\n main(args)\n exit(0)\n except Exception,err:\n log.error(\"Error:\")\n errinfo = traceback.format_exception(sys.exc_type, sys.exc_value, sys.exc_traceback)\n log.error(\"\".join(errinfo))\n exit(1)\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import pandas as pd import numpy as np import datetime as dt def sum_unique(x): return np.unique(x).shape[0] def analyze_count(data): """real time, vk, itemid, action""" dsct_vk = pd.unique(data['vk']) dsct_itemid = pd.unique(data['itemid']) print 'number of user:', dsct_vk.shape print 'number of items:', dsct_itemid.shape print 'the number of ratings:', data.shape print 'unique actions:', pd.unique(data['action']) print 'the number of action 0:', np.sum(data['action'] == 0) print 'the number of action 1:', np.sum(data['action'] == 1) print 'the number of action 2:', np.sum(data['action'] == 2) print 'the number of action 3:', np.sum(data['action'] == 3) print 'the number of action 4:', np.sum(data['action'] == 4) time_range_item = data.groupby('itemid')['real_time'].aggregate(sum_unique) print 'Max Range:', np.max(time_range_item) print 'Mean Range:', np.mean(time_range_item) print 'Median Range:', np.median(time_range_item)
normal
{ "blob_id": "1db16ae1fc6546575150187432265ac1cf834ec2", "index": 1809, "step-1": "import pandas as pd\nimport numpy as np\nimport datetime as dt\n\ndef sum_unique(x):\n return np.unique(x).shape[0]\n\ndef analyze_count(data):\n \n \"\"\"real time, vk, itemid, action\"\"\"\n\n dsct_vk = pd.unique(data['vk'])\n dsct_itemid = pd.unique(data['itemid'])\n\n print 'number of user:', dsct_vk.shape\n print 'number of items:', dsct_itemid.shape\n print 'the number of ratings:', data.shape\n\n print 'unique actions:', pd.unique(data['action'])\n print 'the number of action 0:', np.sum(data['action'] == 0)\n print 'the number of action 1:', np.sum(data['action'] == 1)\n print 'the number of action 2:', np.sum(data['action'] == 2)\n print 'the number of action 3:', np.sum(data['action'] == 3)\n print 'the number of action 4:', np.sum(data['action'] == 4)\n \n time_range_item = data.groupby('itemid')['real_time'].aggregate(sum_unique)\n print 'Max Range:', np.max(time_range_item)\n print 'Mean Range:', np.mean(time_range_item)\n print 'Median Range:', np.median(time_range_item)\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import math z = 1j cosinus_real = math.cos(z.real) cosinus_imaginary = math.cos(z.imag) sinus_real = math.sin(z.real) sinus_imag = math.sin(z.imag) print (cosinus_real) print (cosinus_imaginary) print (sinus_real) print (sinus_imag)
normal
{ "blob_id": "7ea608b73f592cffc7723b4319cf1a87b3e9b443", "index": 4220, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(cosinus_real)\nprint(cosinus_imaginary)\nprint(sinus_real)\nprint(sinus_imag)\n", "step-3": "<mask token>\nz = 1.0j\ncosinus_real = math.cos(z.real)\ncosinus_imaginary = math.cos(z.imag)\nsinus_real = math.sin(z.real)\nsinus_imag = math.sin(z.imag)\nprint(cosinus_real)\nprint(cosinus_imaginary)\nprint(sinus_real)\nprint(sinus_imag)\n", "step-4": "import math\nz = 1.0j\ncosinus_real = math.cos(z.real)\ncosinus_imaginary = math.cos(z.imag)\nsinus_real = math.sin(z.real)\nsinus_imag = math.sin(z.imag)\nprint(cosinus_real)\nprint(cosinus_imaginary)\nprint(sinus_real)\nprint(sinus_imag)\n", "step-5": "import math\n\nz = 1j\n\n\ncosinus_real = math.cos(z.real)\ncosinus_imaginary = math.cos(z.imag)\nsinus_real = math.sin(z.real)\nsinus_imag = math.sin(z.imag)\n\nprint (cosinus_real)\nprint (cosinus_imaginary)\nprint (sinus_real)\nprint (sinus_imag)\n\n\n\n\n\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import code2 print ("Main en code1: %s\n" % __name__)
normal
{ "blob_id": "ecbc1da3efb39300b60aeb47897fb01b6bd7af31", "index": 6028, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('Main en code1: %s\\n' % __name__)\n", "step-3": "import code2\nprint('Main en code1: %s\\n' % __name__)\n", "step-4": "\nimport code2\nprint (\"Main en code1: %s\\n\" % __name__)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import glob import html import os import re import sys import textwrap from pathlib import Path from typing import Any, Dict, List, Optional, Tuple, Union import pycountry import requests from pyd2v import D2V from pymediainfo import MediaInfo, Track from pynfogen.formatter import CustomFormats class NFO: AUDIO_CHANNEL_LAYOUT_WEIGHT = { "LFE": 0.1 } IMDB_ID_T = re.compile(r"^tt\d{7,8}$") TMDB_ID_T = re.compile(r"^(tv|movie)/\d+$") TVDB_ID_T = re.compile(r"^\d+$") def __init__(self) -> None: self.media_info: MediaInfo self.file: str self.season: Optional[Union[int, str]] self.episode: Optional[int] self.episode_name: Optional[str] self.videos: List[Track] self.audio: List[Track] self.subtitles: List[Track] self.chapters: Dict[str, str] self.chapters_numbered: bool self.fanart_api_key: Optional[str] self.source: Optional[str] self.note: Optional[str] self.preview: Optional[str] self.imdb: str self.tmdb: Optional[str] self.tvdb: Optional[int] self.title_name: str self.title_year: str self.episodes: int self.release_name: str self.preview_images: List[dict[str, str]] self.banner_image: Optional[str] self.session = self.get_session() def __repr__(self) -> str: return "<{c} {attrs}>".format( c=self.__class__.__name__, attrs=" ".join("{}={!r}".format(k, v) for k, v in self.__dict__.items()), ) def run(self, template: str, art: Optional[str] = None, **kwargs: Any) -> str: """ Evaluate and apply formatting on template, apply any art if provided. Any additional parameters are passed as extra variables to the template. The extra variables have priority when there's conflicting variable names. """ variables = self.__dict__ variables.update(kwargs) template = CustomFormats().format(template, **variables) if art: art = art.format(nfo=template) template = art for m in re.finditer(r"<\?([01])\?([\D\d]*?)\?>", template): # TODO: This if check is quite yucky, look into alternative options. # Ideally a custom format spec would be great. template = template.replace( m.group(0), m.group(2) if int(m.group(1)) else "" ) template = "\n".join(map(str.rstrip, template.splitlines(keepends=False))) return template def set_config(self, file: str, **config: Any) -> None: self.file = file self.media_info = MediaInfo.parse(self.file) self.fanart_api_key = config.get("fanart_api_key") self.source = config.get("source") self.note = config.get("note") self.preview = config.get("preview") self.season = config.get("season") self.episode, self.episode_name = config.get("episode") or (None, None) self.episodes = self.get_tv_episodes() self.release_name = self.get_release_name() self.videos = self.media_info.video_tracks self.audio = self.media_info.audio_tracks self.subtitles = self.media_info.text_tracks tracks_without_language = [ x for x in self.videos + self.audio + self.subtitles if not x.language or x.language == "und" ] if tracks_without_language: print("The following tracks have no language tag! All tracks need a language tag!") for track in tracks_without_language: print(f"{track.track_type} Track #{track.track_id} ({track.format}, {track.bit_rate / 1000} kb/s)") print( "Yes, even Video Track's have language e.g., Credits, Signs, Letters, Different Intro Sequence, etc.\n" "Don't forget to verify and add language tags to the rest of the files too!" ) sys.exit(1) chapters = next(iter(self.media_info.menu_tracks), None) if chapters: self.chapters = { ".".join([k.replace("_", ".")[:-3], k[-3:]]): v.strip(":") for k, v in chapters.to_data().items() if f"1{k.replace('_', '')}".isdigit() } self.chapters_numbered = all( x.split(":", 1)[-1].lower() in [f"chapter {i + 1}", f"chapter {str(i + 1).zfill(2)}"] for i, x in enumerate(self.chapters.values()) ) else: self.chapters = {} self.chapters_numbered = False self.imdb = self.get_imdb_id(config.get("imdb")) self.tmdb = self.get_tmdb_id(config.get("tmdb")) self.tvdb = self.get_tvdb_id(config.get("tvdb")) self.title_name, self.title_year = self.get_title_name_year() self.banner_image = self.get_banner_image(self.tvdb) if self.tvdb and self.fanart_api_key else None self.preview_images = self.get_preview_images(self.preview) if self.preview else [] def get_imdb_id(self, imdb_id: Any) -> str: """ Get an IMDB ID from either the media's global tags, or the config. Since IMDB IDs are required for this project, it will bug the user for one interactively if not found. """ if not imdb_id: general_track = self.media_info.general_tracks[0].to_data() imdb_id = general_track.get("imdb") if not imdb_id: print("No IMDB ID was provided but is required...") while not imdb_id or not isinstance(imdb_id, str): user_id = input("IMDB ID (e.g., 'tt0487831'): ") if not self.IMDB_ID_T.match(user_id): print(f"The provided IMDB ID {user_id!r} is not valid...") print("Expected e.g., 'tt0487831', 'tt10810424', (include the 'tt').") else: imdb_id = user_id return imdb_id def get_tmdb_id(self, tmdb_id: Any) -> Optional[str]: """ Get a TMDB ID from either the media's global tags, or the config. It will raise a ValueError if the provided ID is invalid. """ if not tmdb_id: general_track = self.media_info.general_tracks[0].to_data() tmdb_id = general_track.get("tmdb") if not tmdb_id: print("Warning: No TMDB ID was provided...") return None if not self.TMDB_ID_T.match(tmdb_id) or not isinstance(tmdb_id, str): print(f"The provided TMDB ID {tmdb_id!r} is not valid...") print("Expected e.g., 'tv/2490', 'movie/14836', (include the 'tv/' or 'movie/').") raise ValueError("Invalid TMDB ID") return tmdb_id def get_tvdb_id(self, tvdb_id: Any) -> Optional[int]: """ Get a TVDB ID from either the media's global tags, or the config. It will raise a ValueError if the provided ID is invalid. """ if not tvdb_id: general_track = self.media_info.general_tracks[0].to_data() tvdb_id = general_track.get("tvdb") if not tvdb_id: print("Warning: No TVDB ID was provided...") return None if isinstance(tvdb_id, int): tvdb_id = str(tvdb_id) if not self.TVDB_ID_T.match(tvdb_id) or not isinstance(tvdb_id, str): print(f"The provided TVDB ID {tvdb_id!r} is not valid...") print("Expected e.g., '79216', '1395', (not the url slug e.g., 'the-office-us').") raise ValueError("Invalid TVDB ID") return int(tvdb_id) def get_title_name_year(self) -> Tuple[str, str]: """Scrape Title Name and Year (including e.g. 2019-) from IMDB""" r = self.session.get(f"https://www.imdb.com/title/{self.imdb}") if r.status_code != 200: raise ValueError(f"An unexpected error occurred getting IMDB Title Page [{r.status_code}]") imdb_page = html.unescape(r.text) imdb_title = re.search( # testing ground: https://regex101.com/r/bEoEDn/1 r"<title>(?P<name>.+) \(((?P<type>TV (Movie|Series|Mini[- ]Series|Short|Episode) |Video |Short |)" r"(?P<year>(\d{4})(|– |–\d{4})))\) - IMDb</title>", imdb_page ) if not imdb_title: raise ValueError(f"Could not scrape Movie Title or Year for {self.imdb}...") return imdb_title.group("name").strip(), imdb_title.group("year").strip() def get_tv_episodes(self) -> int: """Calculate total episode count based on neighbouring same-extension files.""" return len(glob.glob(os.path.join( os.path.dirname(self.file), f"*{os.path.splitext(self.file)[-1]}" ))) def get_release_name(self) -> str: """ Retrieve the release name based on the file used during MediaInfo. If a season was specified, but an episode number was not, it presumes the release is a Pack. Hence when pack, it uses the parent folder's name as the release name. """ if self.season is not None and self.episode is None: return os.path.basename(os.path.dirname(self.file)) return os.path.splitext(os.path.basename(self.file))[0] def get_banner_image(self, tvdb_id: int) -> Optional[str]: """ Get a wide banner image from fanart.tv. Currently restricts banners to English-only. """ if not tvdb_id: return None if not self.fanart_api_key: raise ValueError("Need Fanart.tv api key for TV titles!") r = self.session.get(f"http://webservice.fanart.tv/v3/tv/{tvdb_id}?api_key={self.fanart_api_key}") if r.status_code == 404: return None res = r.json() error = res.get("error message") if error: if error == "Not found": return None raise ValueError(f"An unexpected error occurred while calling Fanart.tv, {res}") banner = next(( x["url"] for x in (res.get("tvbanner") or []) if x["lang"] == sorted(self.audio, key=lambda x: x.streamorder)[0].language ), None) return banner def get_preview_images(self, url: str) -> List[Dict[str, str]]: if not url: return [] images = [] for domain in ["imgbox.com", "beyondhd.co"]: if domain not in url.lower(): continue page = self.session.get(url).text if domain == "imgbox.com": for m in re.finditer('src="(https://thumbs2.imgbox.com.+/)(\\w+)_b.([^"]+)', page): images.append({ "url": f"https://imgbox.com/{m.group(2)}", "src": f"{m.group(1)}{m.group(2)}_t.{m.group(3)}" }) elif domain == "beyondhd.co": for m in re.finditer('/image/([^"]+)"\\D+src="(https://.*beyondhd.co/images.+/(\\w+).md.[^"]+)', page): images.append({ "url": f"https://beyondhd.co/image/{m.group(1)}", "src": m.group(2) }) break return images def get_video_print(self, videos: List[Track]) -> List[List[str]]: if not videos: return [["--"]] data = [] for video in videos: codec = { "MPEG Video": f"MPEG-{(video.format_version or '').replace('Version ', '')}" }.get(video.format, video.format) scan_overview = video.scan_type vst = False if codec in ["MPEG-1", "MPEG-2"]: # parse d2v file with pyd2v, generates D2V if needed d2v = D2V.load(Path(self.file)) self.file = d2v.path # get every frames' flag data, this contains information on displaying frames # add vob and cell number to each frames flag data as well flags = [f for line in [ [dict(**y, vob=x["vob"], cell=x["cell"]) for y in x["flags"]] for x in d2v.data ] for f in line] interlaced_percent = (sum(1 for f in flags if not f["progressive_frame"]) / len(flags)) * 100 if interlaced_percent == 100: scan_overview = "Interlaced (CST)" else: scan_overview = f"{round(interlaced_percent, 2)}% Interlaced (VST)" vst = True for ext in ["log", "d2v", "mpg", "mpeg"]: fp = os.path.splitext(self.file)[0] + "." + ext if os.path.exists(fp): os.unlink(fp) line_1 = "- {language}, {codec} ({profile}) {width}x{height} ({aspect}) @ {bitrate}".format( language=pycountry.languages.get(alpha_2=video.language).name, codec=codec, profile=video.format_profile, width=video.width, height=video.height, aspect=video.other_display_aspect_ratio[0], bitrate=f"{video.other_bit_rate[0]}{f' ({video.bit_rate_mode})' if video.bit_rate_mode else ''}" ) line_2 = " {fps} FPS ({fps_mode}), {color_space}{subsampling}P{bit_depth}, {scan}".format( fps=f"{video.framerate_num}/{video.framerate_den}" if video.framerate_num else video.frame_rate, fps_mode="VFR" if vst else video.frame_rate_mode, color_space=video.color_space, subsampling=video.chroma_subsampling.replace(":", ""), bit_depth=video.bit_depth, scan=scan_overview ) data.append([line_1, line_2]) return data def get_audio_print(self, audio: List[Track]) -> List[str]: if not audio: return ["--"] data = [] for t in audio: if t.title and "Commentary" in t.title: title = t.title else: title = pycountry.languages.get(alpha_2=t.language).name if t.channel_layout: channels = float(sum(self.AUDIO_CHANNEL_LAYOUT_WEIGHT.get(x, 1) for x in t.channel_layout.split(" "))) else: channels = float(t.channel_s) bit_rate_mode = f" ({t.bit_rate_mode})" if t.bit_rate_mode else "" l1 = f"- {title}, {t.format} {channels} @ {t.other_bit_rate[0]}{bit_rate_mode}" data += [(" " + x if i > 0 else x) for i, x in enumerate(textwrap.wrap(l1, 64))] return data @staticmethod def get_subtitle_print(subs: List[Track]) -> List[str]: """ Return a list of a brief subtitle overview per-subtitle. e.g. - English, Forced, SubRip (SRT) - English, SubRip (SRT) - English, SDH, SubRip (SRT) - Spanish, Latin American (SDH), SubRip (SRT) The bit of text between the Language and the Subtitle format is the Track Title. It can be of any format, but it is recommended to be used as shown above. It will be returned as a list of strings with the `- ` already pre-pended to each entry. """ data = [] if not subs: data.append("--") for sub in subs: line_items = [] # following sub.title tree checks and supports three different language and title scenarios # The second scenario is the recommended option to choose if you are open to choosing any # The third scenario should be used if you have nothing unique to state about the track # | Language | Track Title | Output | # | ------------ | ----------------------------- | --------------------------------------------- | # | es / Spanish | Spanish (Latin American, SDH) | - Spanish (Latin American, SDH), SubRip (SRT) | # | es / Spanish | Latin American (SDH) | - Spanish, Latin American (SDH), SubRip (SRT) | # | es / Spanish | None | - Spanish, SubRip (SRT) | language = pycountry.languages.get(alpha_2=sub.language).name if sub.title: if language.lower() in sub.title.lower(): line_items.append(sub.title) else: line_items.append(f"{language}, {sub.title}") else: line_items.append(language) line_items.append(sub.format.replace("UTF-8", "SubRip (SRT)")) line = "- " + ", ".join(line_items) data += [ (" " + x if i > 0 else x) for i, x in enumerate(textwrap.wrap(line, 64)) ] return data @staticmethod def get_chapter_print(chapters: Dict[str, str]) -> List[str]: if not chapters: return ["--"] return [ f"- {k}: {v}" for k, v in chapters.items() ] def get_chapter_print_short(self, chapters: Dict[str, str]) -> str: if not chapters: return "No" if self.chapters_numbered: return f"Yes (Numbered 01-{str(len(chapters)).zfill(2)})" return "Yes (Named)" @staticmethod def get_session() -> requests.Session: session = requests.Session() session.headers.update({ "User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:81.0) Gecko/20100101 Firefox/81.0", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "Accept-Language": "en-US,en;q=0.5", "DNT": "1", "UPGRADE-INSECURE-REQUESTS": "1" }) return session
normal
{ "blob_id": "e434d5519e3ba4255ed928769070de391cb0955b", "index": 3462, "step-1": "<mask token>\n\n\nclass NFO:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __repr__(self) ->str:\n return '<{c} {attrs}>'.format(c=self.__class__.__name__, attrs=' '.\n join('{}={!r}'.format(k, v) for k, v in self.__dict__.items()))\n\n def run(self, template: str, art: Optional[str]=None, **kwargs: Any) ->str:\n \"\"\"\n Evaluate and apply formatting on template, apply any art if provided.\n Any additional parameters are passed as extra variables to the template.\n The extra variables have priority when there's conflicting variable names.\n \"\"\"\n variables = self.__dict__\n variables.update(kwargs)\n template = CustomFormats().format(template, **variables)\n if art:\n art = art.format(nfo=template)\n template = art\n for m in re.finditer('<\\\\?([01])\\\\?([\\\\D\\\\d]*?)\\\\?>', template):\n template = template.replace(m.group(0), m.group(2) if int(m.\n group(1)) else '')\n template = '\\n'.join(map(str.rstrip, template.splitlines(keepends=\n False)))\n return template\n\n def set_config(self, file: str, **config: Any) ->None:\n self.file = file\n self.media_info = MediaInfo.parse(self.file)\n self.fanart_api_key = config.get('fanart_api_key')\n self.source = config.get('source')\n self.note = config.get('note')\n self.preview = config.get('preview')\n self.season = config.get('season')\n self.episode, self.episode_name = config.get('episode') or (None, None)\n self.episodes = self.get_tv_episodes()\n self.release_name = self.get_release_name()\n self.videos = self.media_info.video_tracks\n self.audio = self.media_info.audio_tracks\n self.subtitles = self.media_info.text_tracks\n tracks_without_language = [x for x in self.videos + self.audio +\n self.subtitles if not x.language or x.language == 'und']\n if tracks_without_language:\n print(\n 'The following tracks have no language tag! All tracks need a language tag!'\n )\n for track in tracks_without_language:\n print(\n f'{track.track_type} Track #{track.track_id} ({track.format}, {track.bit_rate / 1000} kb/s)'\n )\n print(\n \"\"\"Yes, even Video Track's have language e.g., Credits, Signs, Letters, Different Intro Sequence, etc.\nDon't forget to verify and add language tags to the rest of the files too!\"\"\"\n )\n sys.exit(1)\n chapters = next(iter(self.media_info.menu_tracks), None)\n if chapters:\n self.chapters = {'.'.join([k.replace('_', '.')[:-3], k[-3:]]):\n v.strip(':') for k, v in chapters.to_data().items() if\n f\"1{k.replace('_', '')}\".isdigit()}\n self.chapters_numbered = all(x.split(':', 1)[-1].lower() in [\n f'chapter {i + 1}', f'chapter {str(i + 1).zfill(2)}'] for i,\n x in enumerate(self.chapters.values()))\n else:\n self.chapters = {}\n self.chapters_numbered = False\n self.imdb = self.get_imdb_id(config.get('imdb'))\n self.tmdb = self.get_tmdb_id(config.get('tmdb'))\n self.tvdb = self.get_tvdb_id(config.get('tvdb'))\n self.title_name, self.title_year = self.get_title_name_year()\n self.banner_image = self.get_banner_image(self.tvdb\n ) if self.tvdb and self.fanart_api_key else None\n self.preview_images = self.get_preview_images(self.preview\n ) if self.preview else []\n\n def get_imdb_id(self, imdb_id: Any) ->str:\n \"\"\"\n Get an IMDB ID from either the media's global tags, or the config.\n Since IMDB IDs are required for this project, it will bug the user for\n one interactively if not found.\n \"\"\"\n if not imdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n imdb_id = general_track.get('imdb')\n if not imdb_id:\n print('No IMDB ID was provided but is required...')\n while not imdb_id or not isinstance(imdb_id, str):\n user_id = input(\"IMDB ID (e.g., 'tt0487831'): \")\n if not self.IMDB_ID_T.match(user_id):\n print(f'The provided IMDB ID {user_id!r} is not valid...')\n print(\n \"Expected e.g., 'tt0487831', 'tt10810424', (include the 'tt').\"\n )\n else:\n imdb_id = user_id\n return imdb_id\n\n def get_tmdb_id(self, tmdb_id: Any) ->Optional[str]:\n \"\"\"\n Get a TMDB ID from either the media's global tags, or the config.\n It will raise a ValueError if the provided ID is invalid.\n \"\"\"\n if not tmdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n tmdb_id = general_track.get('tmdb')\n if not tmdb_id:\n print('Warning: No TMDB ID was provided...')\n return None\n if not self.TMDB_ID_T.match(tmdb_id) or not isinstance(tmdb_id, str):\n print(f'The provided TMDB ID {tmdb_id!r} is not valid...')\n print(\n \"Expected e.g., 'tv/2490', 'movie/14836', (include the 'tv/' or 'movie/').\"\n )\n raise ValueError('Invalid TMDB ID')\n return tmdb_id\n\n def get_tvdb_id(self, tvdb_id: Any) ->Optional[int]:\n \"\"\"\n Get a TVDB ID from either the media's global tags, or the config.\n It will raise a ValueError if the provided ID is invalid.\n \"\"\"\n if not tvdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n tvdb_id = general_track.get('tvdb')\n if not tvdb_id:\n print('Warning: No TVDB ID was provided...')\n return None\n if isinstance(tvdb_id, int):\n tvdb_id = str(tvdb_id)\n if not self.TVDB_ID_T.match(tvdb_id) or not isinstance(tvdb_id, str):\n print(f'The provided TVDB ID {tvdb_id!r} is not valid...')\n print(\n \"Expected e.g., '79216', '1395', (not the url slug e.g., 'the-office-us').\"\n )\n raise ValueError('Invalid TVDB ID')\n return int(tvdb_id)\n <mask token>\n <mask token>\n\n def get_release_name(self) ->str:\n \"\"\"\n Retrieve the release name based on the file used during MediaInfo.\n If a season was specified, but an episode number was not, it presumes the release is a Pack.\n Hence when pack, it uses the parent folder's name as the release name.\n \"\"\"\n if self.season is not None and self.episode is None:\n return os.path.basename(os.path.dirname(self.file))\n return os.path.splitext(os.path.basename(self.file))[0]\n\n def get_banner_image(self, tvdb_id: int) ->Optional[str]:\n \"\"\"\n Get a wide banner image from fanart.tv.\n Currently restricts banners to English-only.\n \"\"\"\n if not tvdb_id:\n return None\n if not self.fanart_api_key:\n raise ValueError('Need Fanart.tv api key for TV titles!')\n r = self.session.get(\n f'http://webservice.fanart.tv/v3/tv/{tvdb_id}?api_key={self.fanart_api_key}'\n )\n if r.status_code == 404:\n return None\n res = r.json()\n error = res.get('error message')\n if error:\n if error == 'Not found':\n return None\n raise ValueError(\n f'An unexpected error occurred while calling Fanart.tv, {res}')\n banner = next((x['url'] for x in res.get('tvbanner') or [] if x[\n 'lang'] == sorted(self.audio, key=lambda x: x.streamorder)[0].\n language), None)\n return banner\n\n def get_preview_images(self, url: str) ->List[Dict[str, str]]:\n if not url:\n return []\n images = []\n for domain in ['imgbox.com', 'beyondhd.co']:\n if domain not in url.lower():\n continue\n page = self.session.get(url).text\n if domain == 'imgbox.com':\n for m in re.finditer(\n 'src=\"(https://thumbs2.imgbox.com.+/)(\\\\w+)_b.([^\"]+)',\n page):\n images.append({'url':\n f'https://imgbox.com/{m.group(2)}', 'src':\n f'{m.group(1)}{m.group(2)}_t.{m.group(3)}'})\n elif domain == 'beyondhd.co':\n for m in re.finditer(\n '/image/([^\"]+)\"\\\\D+src=\"(https://.*beyondhd.co/images.+/(\\\\w+).md.[^\"]+)'\n , page):\n images.append({'url':\n f'https://beyondhd.co/image/{m.group(1)}', 'src': m\n .group(2)})\n break\n return images\n\n def get_video_print(self, videos: List[Track]) ->List[List[str]]:\n if not videos:\n return [['--']]\n data = []\n for video in videos:\n codec = {'MPEG Video':\n f\"MPEG-{(video.format_version or '').replace('Version ', '')}\"\n }.get(video.format, video.format)\n scan_overview = video.scan_type\n vst = False\n if codec in ['MPEG-1', 'MPEG-2']:\n d2v = D2V.load(Path(self.file))\n self.file = d2v.path\n flags = [f for line in [[dict(**y, vob=x['vob'], cell=x[\n 'cell']) for y in x['flags']] for x in d2v.data] for f in\n line]\n interlaced_percent = sum(1 for f in flags if not f[\n 'progressive_frame']) / len(flags) * 100\n if interlaced_percent == 100:\n scan_overview = 'Interlaced (CST)'\n else:\n scan_overview = (\n f'{round(interlaced_percent, 2)}% Interlaced (VST)')\n vst = True\n for ext in ['log', 'd2v', 'mpg', 'mpeg']:\n fp = os.path.splitext(self.file)[0] + '.' + ext\n if os.path.exists(fp):\n os.unlink(fp)\n line_1 = (\n '- {language}, {codec} ({profile}) {width}x{height} ({aspect}) @ {bitrate}'\n .format(language=pycountry.languages.get(alpha_2=video.\n language).name, codec=codec, profile=video.format_profile,\n width=video.width, height=video.height, aspect=video.\n other_display_aspect_ratio[0], bitrate=\n f\"{video.other_bit_rate[0]}{f' ({video.bit_rate_mode})' if video.bit_rate_mode else ''}\"\n ))\n line_2 = (\n ' {fps} FPS ({fps_mode}), {color_space}{subsampling}P{bit_depth}, {scan}'\n .format(fps=f'{video.framerate_num}/{video.framerate_den}' if\n video.framerate_num else video.frame_rate, fps_mode='VFR' if\n vst else video.frame_rate_mode, color_space=video.\n color_space, subsampling=video.chroma_subsampling.replace(\n ':', ''), bit_depth=video.bit_depth, scan=scan_overview))\n data.append([line_1, line_2])\n return data\n\n def get_audio_print(self, audio: List[Track]) ->List[str]:\n if not audio:\n return ['--']\n data = []\n for t in audio:\n if t.title and 'Commentary' in t.title:\n title = t.title\n else:\n title = pycountry.languages.get(alpha_2=t.language).name\n if t.channel_layout:\n channels = float(sum(self.AUDIO_CHANNEL_LAYOUT_WEIGHT.get(x,\n 1) for x in t.channel_layout.split(' ')))\n else:\n channels = float(t.channel_s)\n bit_rate_mode = f' ({t.bit_rate_mode})' if t.bit_rate_mode else ''\n l1 = (\n f'- {title}, {t.format} {channels} @ {t.other_bit_rate[0]}{bit_rate_mode}'\n )\n data += [(' ' + x if i > 0 else x) for i, x in enumerate(\n textwrap.wrap(l1, 64))]\n return data\n <mask token>\n <mask token>\n\n def get_chapter_print_short(self, chapters: Dict[str, str]) ->str:\n if not chapters:\n return 'No'\n if self.chapters_numbered:\n return f'Yes (Numbered 01-{str(len(chapters)).zfill(2)})'\n return 'Yes (Named)'\n\n @staticmethod\n def get_session() ->requests.Session:\n session = requests.Session()\n session.headers.update({'User-Agent':\n 'Mozilla/5.0 (X11; Linux x86_64; rv:81.0) Gecko/20100101 Firefox/81.0'\n , 'Accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'\n , 'Accept-Language': 'en-US,en;q=0.5', 'DNT': '1',\n 'UPGRADE-INSECURE-REQUESTS': '1'})\n return session\n", "step-2": "<mask token>\n\n\nclass NFO:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __repr__(self) ->str:\n return '<{c} {attrs}>'.format(c=self.__class__.__name__, attrs=' '.\n join('{}={!r}'.format(k, v) for k, v in self.__dict__.items()))\n\n def run(self, template: str, art: Optional[str]=None, **kwargs: Any) ->str:\n \"\"\"\n Evaluate and apply formatting on template, apply any art if provided.\n Any additional parameters are passed as extra variables to the template.\n The extra variables have priority when there's conflicting variable names.\n \"\"\"\n variables = self.__dict__\n variables.update(kwargs)\n template = CustomFormats().format(template, **variables)\n if art:\n art = art.format(nfo=template)\n template = art\n for m in re.finditer('<\\\\?([01])\\\\?([\\\\D\\\\d]*?)\\\\?>', template):\n template = template.replace(m.group(0), m.group(2) if int(m.\n group(1)) else '')\n template = '\\n'.join(map(str.rstrip, template.splitlines(keepends=\n False)))\n return template\n\n def set_config(self, file: str, **config: Any) ->None:\n self.file = file\n self.media_info = MediaInfo.parse(self.file)\n self.fanart_api_key = config.get('fanart_api_key')\n self.source = config.get('source')\n self.note = config.get('note')\n self.preview = config.get('preview')\n self.season = config.get('season')\n self.episode, self.episode_name = config.get('episode') or (None, None)\n self.episodes = self.get_tv_episodes()\n self.release_name = self.get_release_name()\n self.videos = self.media_info.video_tracks\n self.audio = self.media_info.audio_tracks\n self.subtitles = self.media_info.text_tracks\n tracks_without_language = [x for x in self.videos + self.audio +\n self.subtitles if not x.language or x.language == 'und']\n if tracks_without_language:\n print(\n 'The following tracks have no language tag! All tracks need a language tag!'\n )\n for track in tracks_without_language:\n print(\n f'{track.track_type} Track #{track.track_id} ({track.format}, {track.bit_rate / 1000} kb/s)'\n )\n print(\n \"\"\"Yes, even Video Track's have language e.g., Credits, Signs, Letters, Different Intro Sequence, etc.\nDon't forget to verify and add language tags to the rest of the files too!\"\"\"\n )\n sys.exit(1)\n chapters = next(iter(self.media_info.menu_tracks), None)\n if chapters:\n self.chapters = {'.'.join([k.replace('_', '.')[:-3], k[-3:]]):\n v.strip(':') for k, v in chapters.to_data().items() if\n f\"1{k.replace('_', '')}\".isdigit()}\n self.chapters_numbered = all(x.split(':', 1)[-1].lower() in [\n f'chapter {i + 1}', f'chapter {str(i + 1).zfill(2)}'] for i,\n x in enumerate(self.chapters.values()))\n else:\n self.chapters = {}\n self.chapters_numbered = False\n self.imdb = self.get_imdb_id(config.get('imdb'))\n self.tmdb = self.get_tmdb_id(config.get('tmdb'))\n self.tvdb = self.get_tvdb_id(config.get('tvdb'))\n self.title_name, self.title_year = self.get_title_name_year()\n self.banner_image = self.get_banner_image(self.tvdb\n ) if self.tvdb and self.fanart_api_key else None\n self.preview_images = self.get_preview_images(self.preview\n ) if self.preview else []\n\n def get_imdb_id(self, imdb_id: Any) ->str:\n \"\"\"\n Get an IMDB ID from either the media's global tags, or the config.\n Since IMDB IDs are required for this project, it will bug the user for\n one interactively if not found.\n \"\"\"\n if not imdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n imdb_id = general_track.get('imdb')\n if not imdb_id:\n print('No IMDB ID was provided but is required...')\n while not imdb_id or not isinstance(imdb_id, str):\n user_id = input(\"IMDB ID (e.g., 'tt0487831'): \")\n if not self.IMDB_ID_T.match(user_id):\n print(f'The provided IMDB ID {user_id!r} is not valid...')\n print(\n \"Expected e.g., 'tt0487831', 'tt10810424', (include the 'tt').\"\n )\n else:\n imdb_id = user_id\n return imdb_id\n\n def get_tmdb_id(self, tmdb_id: Any) ->Optional[str]:\n \"\"\"\n Get a TMDB ID from either the media's global tags, or the config.\n It will raise a ValueError if the provided ID is invalid.\n \"\"\"\n if not tmdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n tmdb_id = general_track.get('tmdb')\n if not tmdb_id:\n print('Warning: No TMDB ID was provided...')\n return None\n if not self.TMDB_ID_T.match(tmdb_id) or not isinstance(tmdb_id, str):\n print(f'The provided TMDB ID {tmdb_id!r} is not valid...')\n print(\n \"Expected e.g., 'tv/2490', 'movie/14836', (include the 'tv/' or 'movie/').\"\n )\n raise ValueError('Invalid TMDB ID')\n return tmdb_id\n\n def get_tvdb_id(self, tvdb_id: Any) ->Optional[int]:\n \"\"\"\n Get a TVDB ID from either the media's global tags, or the config.\n It will raise a ValueError if the provided ID is invalid.\n \"\"\"\n if not tvdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n tvdb_id = general_track.get('tvdb')\n if not tvdb_id:\n print('Warning: No TVDB ID was provided...')\n return None\n if isinstance(tvdb_id, int):\n tvdb_id = str(tvdb_id)\n if not self.TVDB_ID_T.match(tvdb_id) or not isinstance(tvdb_id, str):\n print(f'The provided TVDB ID {tvdb_id!r} is not valid...')\n print(\n \"Expected e.g., '79216', '1395', (not the url slug e.g., 'the-office-us').\"\n )\n raise ValueError('Invalid TVDB ID')\n return int(tvdb_id)\n\n def get_title_name_year(self) ->Tuple[str, str]:\n \"\"\"Scrape Title Name and Year (including e.g. 2019-) from IMDB\"\"\"\n r = self.session.get(f'https://www.imdb.com/title/{self.imdb}')\n if r.status_code != 200:\n raise ValueError(\n f'An unexpected error occurred getting IMDB Title Page [{r.status_code}]'\n )\n imdb_page = html.unescape(r.text)\n imdb_title = re.search(\n '<title>(?P<name>.+) \\\\(((?P<type>TV (Movie|Series|Mini[- ]Series|Short|Episode) |Video |Short |)(?P<year>(\\\\d{4})(|– |–\\\\d{4})))\\\\) - IMDb</title>'\n , imdb_page)\n if not imdb_title:\n raise ValueError(\n f'Could not scrape Movie Title or Year for {self.imdb}...')\n return imdb_title.group('name').strip(), imdb_title.group('year'\n ).strip()\n <mask token>\n\n def get_release_name(self) ->str:\n \"\"\"\n Retrieve the release name based on the file used during MediaInfo.\n If a season was specified, but an episode number was not, it presumes the release is a Pack.\n Hence when pack, it uses the parent folder's name as the release name.\n \"\"\"\n if self.season is not None and self.episode is None:\n return os.path.basename(os.path.dirname(self.file))\n return os.path.splitext(os.path.basename(self.file))[0]\n\n def get_banner_image(self, tvdb_id: int) ->Optional[str]:\n \"\"\"\n Get a wide banner image from fanart.tv.\n Currently restricts banners to English-only.\n \"\"\"\n if not tvdb_id:\n return None\n if not self.fanart_api_key:\n raise ValueError('Need Fanart.tv api key for TV titles!')\n r = self.session.get(\n f'http://webservice.fanart.tv/v3/tv/{tvdb_id}?api_key={self.fanart_api_key}'\n )\n if r.status_code == 404:\n return None\n res = r.json()\n error = res.get('error message')\n if error:\n if error == 'Not found':\n return None\n raise ValueError(\n f'An unexpected error occurred while calling Fanart.tv, {res}')\n banner = next((x['url'] for x in res.get('tvbanner') or [] if x[\n 'lang'] == sorted(self.audio, key=lambda x: x.streamorder)[0].\n language), None)\n return banner\n\n def get_preview_images(self, url: str) ->List[Dict[str, str]]:\n if not url:\n return []\n images = []\n for domain in ['imgbox.com', 'beyondhd.co']:\n if domain not in url.lower():\n continue\n page = self.session.get(url).text\n if domain == 'imgbox.com':\n for m in re.finditer(\n 'src=\"(https://thumbs2.imgbox.com.+/)(\\\\w+)_b.([^\"]+)',\n page):\n images.append({'url':\n f'https://imgbox.com/{m.group(2)}', 'src':\n f'{m.group(1)}{m.group(2)}_t.{m.group(3)}'})\n elif domain == 'beyondhd.co':\n for m in re.finditer(\n '/image/([^\"]+)\"\\\\D+src=\"(https://.*beyondhd.co/images.+/(\\\\w+).md.[^\"]+)'\n , page):\n images.append({'url':\n f'https://beyondhd.co/image/{m.group(1)}', 'src': m\n .group(2)})\n break\n return images\n\n def get_video_print(self, videos: List[Track]) ->List[List[str]]:\n if not videos:\n return [['--']]\n data = []\n for video in videos:\n codec = {'MPEG Video':\n f\"MPEG-{(video.format_version or '').replace('Version ', '')}\"\n }.get(video.format, video.format)\n scan_overview = video.scan_type\n vst = False\n if codec in ['MPEG-1', 'MPEG-2']:\n d2v = D2V.load(Path(self.file))\n self.file = d2v.path\n flags = [f for line in [[dict(**y, vob=x['vob'], cell=x[\n 'cell']) for y in x['flags']] for x in d2v.data] for f in\n line]\n interlaced_percent = sum(1 for f in flags if not f[\n 'progressive_frame']) / len(flags) * 100\n if interlaced_percent == 100:\n scan_overview = 'Interlaced (CST)'\n else:\n scan_overview = (\n f'{round(interlaced_percent, 2)}% Interlaced (VST)')\n vst = True\n for ext in ['log', 'd2v', 'mpg', 'mpeg']:\n fp = os.path.splitext(self.file)[0] + '.' + ext\n if os.path.exists(fp):\n os.unlink(fp)\n line_1 = (\n '- {language}, {codec} ({profile}) {width}x{height} ({aspect}) @ {bitrate}'\n .format(language=pycountry.languages.get(alpha_2=video.\n language).name, codec=codec, profile=video.format_profile,\n width=video.width, height=video.height, aspect=video.\n other_display_aspect_ratio[0], bitrate=\n f\"{video.other_bit_rate[0]}{f' ({video.bit_rate_mode})' if video.bit_rate_mode else ''}\"\n ))\n line_2 = (\n ' {fps} FPS ({fps_mode}), {color_space}{subsampling}P{bit_depth}, {scan}'\n .format(fps=f'{video.framerate_num}/{video.framerate_den}' if\n video.framerate_num else video.frame_rate, fps_mode='VFR' if\n vst else video.frame_rate_mode, color_space=video.\n color_space, subsampling=video.chroma_subsampling.replace(\n ':', ''), bit_depth=video.bit_depth, scan=scan_overview))\n data.append([line_1, line_2])\n return data\n\n def get_audio_print(self, audio: List[Track]) ->List[str]:\n if not audio:\n return ['--']\n data = []\n for t in audio:\n if t.title and 'Commentary' in t.title:\n title = t.title\n else:\n title = pycountry.languages.get(alpha_2=t.language).name\n if t.channel_layout:\n channels = float(sum(self.AUDIO_CHANNEL_LAYOUT_WEIGHT.get(x,\n 1) for x in t.channel_layout.split(' ')))\n else:\n channels = float(t.channel_s)\n bit_rate_mode = f' ({t.bit_rate_mode})' if t.bit_rate_mode else ''\n l1 = (\n f'- {title}, {t.format} {channels} @ {t.other_bit_rate[0]}{bit_rate_mode}'\n )\n data += [(' ' + x if i > 0 else x) for i, x in enumerate(\n textwrap.wrap(l1, 64))]\n return data\n\n @staticmethod\n def get_subtitle_print(subs: List[Track]) ->List[str]:\n \"\"\"\n Return a list of a brief subtitle overview per-subtitle.\n\n e.g.\n - English, Forced, SubRip (SRT)\n - English, SubRip (SRT)\n - English, SDH, SubRip (SRT)\n - Spanish, Latin American (SDH), SubRip (SRT)\n\n The bit of text between the Language and the Subtitle format is the Track Title.\n It can be of any format, but it is recommended to be used as shown above.\n\n It will be returned as a list of strings with the `- ` already pre-pended to each entry.\n \"\"\"\n data = []\n if not subs:\n data.append('--')\n for sub in subs:\n line_items = []\n language = pycountry.languages.get(alpha_2=sub.language).name\n if sub.title:\n if language.lower() in sub.title.lower():\n line_items.append(sub.title)\n else:\n line_items.append(f'{language}, {sub.title}')\n else:\n line_items.append(language)\n line_items.append(sub.format.replace('UTF-8', 'SubRip (SRT)'))\n line = '- ' + ', '.join(line_items)\n data += [(' ' + x if i > 0 else x) for i, x in enumerate(\n textwrap.wrap(line, 64))]\n return data\n <mask token>\n\n def get_chapter_print_short(self, chapters: Dict[str, str]) ->str:\n if not chapters:\n return 'No'\n if self.chapters_numbered:\n return f'Yes (Numbered 01-{str(len(chapters)).zfill(2)})'\n return 'Yes (Named)'\n\n @staticmethod\n def get_session() ->requests.Session:\n session = requests.Session()\n session.headers.update({'User-Agent':\n 'Mozilla/5.0 (X11; Linux x86_64; rv:81.0) Gecko/20100101 Firefox/81.0'\n , 'Accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'\n , 'Accept-Language': 'en-US,en;q=0.5', 'DNT': '1',\n 'UPGRADE-INSECURE-REQUESTS': '1'})\n return session\n", "step-3": "<mask token>\n\n\nclass NFO:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __repr__(self) ->str:\n return '<{c} {attrs}>'.format(c=self.__class__.__name__, attrs=' '.\n join('{}={!r}'.format(k, v) for k, v in self.__dict__.items()))\n\n def run(self, template: str, art: Optional[str]=None, **kwargs: Any) ->str:\n \"\"\"\n Evaluate and apply formatting on template, apply any art if provided.\n Any additional parameters are passed as extra variables to the template.\n The extra variables have priority when there's conflicting variable names.\n \"\"\"\n variables = self.__dict__\n variables.update(kwargs)\n template = CustomFormats().format(template, **variables)\n if art:\n art = art.format(nfo=template)\n template = art\n for m in re.finditer('<\\\\?([01])\\\\?([\\\\D\\\\d]*?)\\\\?>', template):\n template = template.replace(m.group(0), m.group(2) if int(m.\n group(1)) else '')\n template = '\\n'.join(map(str.rstrip, template.splitlines(keepends=\n False)))\n return template\n\n def set_config(self, file: str, **config: Any) ->None:\n self.file = file\n self.media_info = MediaInfo.parse(self.file)\n self.fanart_api_key = config.get('fanart_api_key')\n self.source = config.get('source')\n self.note = config.get('note')\n self.preview = config.get('preview')\n self.season = config.get('season')\n self.episode, self.episode_name = config.get('episode') or (None, None)\n self.episodes = self.get_tv_episodes()\n self.release_name = self.get_release_name()\n self.videos = self.media_info.video_tracks\n self.audio = self.media_info.audio_tracks\n self.subtitles = self.media_info.text_tracks\n tracks_without_language = [x for x in self.videos + self.audio +\n self.subtitles if not x.language or x.language == 'und']\n if tracks_without_language:\n print(\n 'The following tracks have no language tag! All tracks need a language tag!'\n )\n for track in tracks_without_language:\n print(\n f'{track.track_type} Track #{track.track_id} ({track.format}, {track.bit_rate / 1000} kb/s)'\n )\n print(\n \"\"\"Yes, even Video Track's have language e.g., Credits, Signs, Letters, Different Intro Sequence, etc.\nDon't forget to verify and add language tags to the rest of the files too!\"\"\"\n )\n sys.exit(1)\n chapters = next(iter(self.media_info.menu_tracks), None)\n if chapters:\n self.chapters = {'.'.join([k.replace('_', '.')[:-3], k[-3:]]):\n v.strip(':') for k, v in chapters.to_data().items() if\n f\"1{k.replace('_', '')}\".isdigit()}\n self.chapters_numbered = all(x.split(':', 1)[-1].lower() in [\n f'chapter {i + 1}', f'chapter {str(i + 1).zfill(2)}'] for i,\n x in enumerate(self.chapters.values()))\n else:\n self.chapters = {}\n self.chapters_numbered = False\n self.imdb = self.get_imdb_id(config.get('imdb'))\n self.tmdb = self.get_tmdb_id(config.get('tmdb'))\n self.tvdb = self.get_tvdb_id(config.get('tvdb'))\n self.title_name, self.title_year = self.get_title_name_year()\n self.banner_image = self.get_banner_image(self.tvdb\n ) if self.tvdb and self.fanart_api_key else None\n self.preview_images = self.get_preview_images(self.preview\n ) if self.preview else []\n\n def get_imdb_id(self, imdb_id: Any) ->str:\n \"\"\"\n Get an IMDB ID from either the media's global tags, or the config.\n Since IMDB IDs are required for this project, it will bug the user for\n one interactively if not found.\n \"\"\"\n if not imdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n imdb_id = general_track.get('imdb')\n if not imdb_id:\n print('No IMDB ID was provided but is required...')\n while not imdb_id or not isinstance(imdb_id, str):\n user_id = input(\"IMDB ID (e.g., 'tt0487831'): \")\n if not self.IMDB_ID_T.match(user_id):\n print(f'The provided IMDB ID {user_id!r} is not valid...')\n print(\n \"Expected e.g., 'tt0487831', 'tt10810424', (include the 'tt').\"\n )\n else:\n imdb_id = user_id\n return imdb_id\n\n def get_tmdb_id(self, tmdb_id: Any) ->Optional[str]:\n \"\"\"\n Get a TMDB ID from either the media's global tags, or the config.\n It will raise a ValueError if the provided ID is invalid.\n \"\"\"\n if not tmdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n tmdb_id = general_track.get('tmdb')\n if not tmdb_id:\n print('Warning: No TMDB ID was provided...')\n return None\n if not self.TMDB_ID_T.match(tmdb_id) or not isinstance(tmdb_id, str):\n print(f'The provided TMDB ID {tmdb_id!r} is not valid...')\n print(\n \"Expected e.g., 'tv/2490', 'movie/14836', (include the 'tv/' or 'movie/').\"\n )\n raise ValueError('Invalid TMDB ID')\n return tmdb_id\n\n def get_tvdb_id(self, tvdb_id: Any) ->Optional[int]:\n \"\"\"\n Get a TVDB ID from either the media's global tags, or the config.\n It will raise a ValueError if the provided ID is invalid.\n \"\"\"\n if not tvdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n tvdb_id = general_track.get('tvdb')\n if not tvdb_id:\n print('Warning: No TVDB ID was provided...')\n return None\n if isinstance(tvdb_id, int):\n tvdb_id = str(tvdb_id)\n if not self.TVDB_ID_T.match(tvdb_id) or not isinstance(tvdb_id, str):\n print(f'The provided TVDB ID {tvdb_id!r} is not valid...')\n print(\n \"Expected e.g., '79216', '1395', (not the url slug e.g., 'the-office-us').\"\n )\n raise ValueError('Invalid TVDB ID')\n return int(tvdb_id)\n\n def get_title_name_year(self) ->Tuple[str, str]:\n \"\"\"Scrape Title Name and Year (including e.g. 2019-) from IMDB\"\"\"\n r = self.session.get(f'https://www.imdb.com/title/{self.imdb}')\n if r.status_code != 200:\n raise ValueError(\n f'An unexpected error occurred getting IMDB Title Page [{r.status_code}]'\n )\n imdb_page = html.unescape(r.text)\n imdb_title = re.search(\n '<title>(?P<name>.+) \\\\(((?P<type>TV (Movie|Series|Mini[- ]Series|Short|Episode) |Video |Short |)(?P<year>(\\\\d{4})(|– |–\\\\d{4})))\\\\) - IMDb</title>'\n , imdb_page)\n if not imdb_title:\n raise ValueError(\n f'Could not scrape Movie Title or Year for {self.imdb}...')\n return imdb_title.group('name').strip(), imdb_title.group('year'\n ).strip()\n\n def get_tv_episodes(self) ->int:\n \"\"\"Calculate total episode count based on neighbouring same-extension files.\"\"\"\n return len(glob.glob(os.path.join(os.path.dirname(self.file),\n f'*{os.path.splitext(self.file)[-1]}')))\n\n def get_release_name(self) ->str:\n \"\"\"\n Retrieve the release name based on the file used during MediaInfo.\n If a season was specified, but an episode number was not, it presumes the release is a Pack.\n Hence when pack, it uses the parent folder's name as the release name.\n \"\"\"\n if self.season is not None and self.episode is None:\n return os.path.basename(os.path.dirname(self.file))\n return os.path.splitext(os.path.basename(self.file))[0]\n\n def get_banner_image(self, tvdb_id: int) ->Optional[str]:\n \"\"\"\n Get a wide banner image from fanart.tv.\n Currently restricts banners to English-only.\n \"\"\"\n if not tvdb_id:\n return None\n if not self.fanart_api_key:\n raise ValueError('Need Fanart.tv api key for TV titles!')\n r = self.session.get(\n f'http://webservice.fanart.tv/v3/tv/{tvdb_id}?api_key={self.fanart_api_key}'\n )\n if r.status_code == 404:\n return None\n res = r.json()\n error = res.get('error message')\n if error:\n if error == 'Not found':\n return None\n raise ValueError(\n f'An unexpected error occurred while calling Fanart.tv, {res}')\n banner = next((x['url'] for x in res.get('tvbanner') or [] if x[\n 'lang'] == sorted(self.audio, key=lambda x: x.streamorder)[0].\n language), None)\n return banner\n\n def get_preview_images(self, url: str) ->List[Dict[str, str]]:\n if not url:\n return []\n images = []\n for domain in ['imgbox.com', 'beyondhd.co']:\n if domain not in url.lower():\n continue\n page = self.session.get(url).text\n if domain == 'imgbox.com':\n for m in re.finditer(\n 'src=\"(https://thumbs2.imgbox.com.+/)(\\\\w+)_b.([^\"]+)',\n page):\n images.append({'url':\n f'https://imgbox.com/{m.group(2)}', 'src':\n f'{m.group(1)}{m.group(2)}_t.{m.group(3)}'})\n elif domain == 'beyondhd.co':\n for m in re.finditer(\n '/image/([^\"]+)\"\\\\D+src=\"(https://.*beyondhd.co/images.+/(\\\\w+).md.[^\"]+)'\n , page):\n images.append({'url':\n f'https://beyondhd.co/image/{m.group(1)}', 'src': m\n .group(2)})\n break\n return images\n\n def get_video_print(self, videos: List[Track]) ->List[List[str]]:\n if not videos:\n return [['--']]\n data = []\n for video in videos:\n codec = {'MPEG Video':\n f\"MPEG-{(video.format_version or '').replace('Version ', '')}\"\n }.get(video.format, video.format)\n scan_overview = video.scan_type\n vst = False\n if codec in ['MPEG-1', 'MPEG-2']:\n d2v = D2V.load(Path(self.file))\n self.file = d2v.path\n flags = [f for line in [[dict(**y, vob=x['vob'], cell=x[\n 'cell']) for y in x['flags']] for x in d2v.data] for f in\n line]\n interlaced_percent = sum(1 for f in flags if not f[\n 'progressive_frame']) / len(flags) * 100\n if interlaced_percent == 100:\n scan_overview = 'Interlaced (CST)'\n else:\n scan_overview = (\n f'{round(interlaced_percent, 2)}% Interlaced (VST)')\n vst = True\n for ext in ['log', 'd2v', 'mpg', 'mpeg']:\n fp = os.path.splitext(self.file)[0] + '.' + ext\n if os.path.exists(fp):\n os.unlink(fp)\n line_1 = (\n '- {language}, {codec} ({profile}) {width}x{height} ({aspect}) @ {bitrate}'\n .format(language=pycountry.languages.get(alpha_2=video.\n language).name, codec=codec, profile=video.format_profile,\n width=video.width, height=video.height, aspect=video.\n other_display_aspect_ratio[0], bitrate=\n f\"{video.other_bit_rate[0]}{f' ({video.bit_rate_mode})' if video.bit_rate_mode else ''}\"\n ))\n line_2 = (\n ' {fps} FPS ({fps_mode}), {color_space}{subsampling}P{bit_depth}, {scan}'\n .format(fps=f'{video.framerate_num}/{video.framerate_den}' if\n video.framerate_num else video.frame_rate, fps_mode='VFR' if\n vst else video.frame_rate_mode, color_space=video.\n color_space, subsampling=video.chroma_subsampling.replace(\n ':', ''), bit_depth=video.bit_depth, scan=scan_overview))\n data.append([line_1, line_2])\n return data\n\n def get_audio_print(self, audio: List[Track]) ->List[str]:\n if not audio:\n return ['--']\n data = []\n for t in audio:\n if t.title and 'Commentary' in t.title:\n title = t.title\n else:\n title = pycountry.languages.get(alpha_2=t.language).name\n if t.channel_layout:\n channels = float(sum(self.AUDIO_CHANNEL_LAYOUT_WEIGHT.get(x,\n 1) for x in t.channel_layout.split(' ')))\n else:\n channels = float(t.channel_s)\n bit_rate_mode = f' ({t.bit_rate_mode})' if t.bit_rate_mode else ''\n l1 = (\n f'- {title}, {t.format} {channels} @ {t.other_bit_rate[0]}{bit_rate_mode}'\n )\n data += [(' ' + x if i > 0 else x) for i, x in enumerate(\n textwrap.wrap(l1, 64))]\n return data\n\n @staticmethod\n def get_subtitle_print(subs: List[Track]) ->List[str]:\n \"\"\"\n Return a list of a brief subtitle overview per-subtitle.\n\n e.g.\n - English, Forced, SubRip (SRT)\n - English, SubRip (SRT)\n - English, SDH, SubRip (SRT)\n - Spanish, Latin American (SDH), SubRip (SRT)\n\n The bit of text between the Language and the Subtitle format is the Track Title.\n It can be of any format, but it is recommended to be used as shown above.\n\n It will be returned as a list of strings with the `- ` already pre-pended to each entry.\n \"\"\"\n data = []\n if not subs:\n data.append('--')\n for sub in subs:\n line_items = []\n language = pycountry.languages.get(alpha_2=sub.language).name\n if sub.title:\n if language.lower() in sub.title.lower():\n line_items.append(sub.title)\n else:\n line_items.append(f'{language}, {sub.title}')\n else:\n line_items.append(language)\n line_items.append(sub.format.replace('UTF-8', 'SubRip (SRT)'))\n line = '- ' + ', '.join(line_items)\n data += [(' ' + x if i > 0 else x) for i, x in enumerate(\n textwrap.wrap(line, 64))]\n return data\n\n @staticmethod\n def get_chapter_print(chapters: Dict[str, str]) ->List[str]:\n if not chapters:\n return ['--']\n return [f'- {k}: {v}' for k, v in chapters.items()]\n\n def get_chapter_print_short(self, chapters: Dict[str, str]) ->str:\n if not chapters:\n return 'No'\n if self.chapters_numbered:\n return f'Yes (Numbered 01-{str(len(chapters)).zfill(2)})'\n return 'Yes (Named)'\n\n @staticmethod\n def get_session() ->requests.Session:\n session = requests.Session()\n session.headers.update({'User-Agent':\n 'Mozilla/5.0 (X11; Linux x86_64; rv:81.0) Gecko/20100101 Firefox/81.0'\n , 'Accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'\n , 'Accept-Language': 'en-US,en;q=0.5', 'DNT': '1',\n 'UPGRADE-INSECURE-REQUESTS': '1'})\n return session\n", "step-4": "<mask token>\n\n\nclass NFO:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self) ->None:\n self.media_info: MediaInfo\n self.file: str\n self.season: Optional[Union[int, str]]\n self.episode: Optional[int]\n self.episode_name: Optional[str]\n self.videos: List[Track]\n self.audio: List[Track]\n self.subtitles: List[Track]\n self.chapters: Dict[str, str]\n self.chapters_numbered: bool\n self.fanart_api_key: Optional[str]\n self.source: Optional[str]\n self.note: Optional[str]\n self.preview: Optional[str]\n self.imdb: str\n self.tmdb: Optional[str]\n self.tvdb: Optional[int]\n self.title_name: str\n self.title_year: str\n self.episodes: int\n self.release_name: str\n self.preview_images: List[dict[str, str]]\n self.banner_image: Optional[str]\n self.session = self.get_session()\n\n def __repr__(self) ->str:\n return '<{c} {attrs}>'.format(c=self.__class__.__name__, attrs=' '.\n join('{}={!r}'.format(k, v) for k, v in self.__dict__.items()))\n\n def run(self, template: str, art: Optional[str]=None, **kwargs: Any) ->str:\n \"\"\"\n Evaluate and apply formatting on template, apply any art if provided.\n Any additional parameters are passed as extra variables to the template.\n The extra variables have priority when there's conflicting variable names.\n \"\"\"\n variables = self.__dict__\n variables.update(kwargs)\n template = CustomFormats().format(template, **variables)\n if art:\n art = art.format(nfo=template)\n template = art\n for m in re.finditer('<\\\\?([01])\\\\?([\\\\D\\\\d]*?)\\\\?>', template):\n template = template.replace(m.group(0), m.group(2) if int(m.\n group(1)) else '')\n template = '\\n'.join(map(str.rstrip, template.splitlines(keepends=\n False)))\n return template\n\n def set_config(self, file: str, **config: Any) ->None:\n self.file = file\n self.media_info = MediaInfo.parse(self.file)\n self.fanart_api_key = config.get('fanart_api_key')\n self.source = config.get('source')\n self.note = config.get('note')\n self.preview = config.get('preview')\n self.season = config.get('season')\n self.episode, self.episode_name = config.get('episode') or (None, None)\n self.episodes = self.get_tv_episodes()\n self.release_name = self.get_release_name()\n self.videos = self.media_info.video_tracks\n self.audio = self.media_info.audio_tracks\n self.subtitles = self.media_info.text_tracks\n tracks_without_language = [x for x in self.videos + self.audio +\n self.subtitles if not x.language or x.language == 'und']\n if tracks_without_language:\n print(\n 'The following tracks have no language tag! All tracks need a language tag!'\n )\n for track in tracks_without_language:\n print(\n f'{track.track_type} Track #{track.track_id} ({track.format}, {track.bit_rate / 1000} kb/s)'\n )\n print(\n \"\"\"Yes, even Video Track's have language e.g., Credits, Signs, Letters, Different Intro Sequence, etc.\nDon't forget to verify and add language tags to the rest of the files too!\"\"\"\n )\n sys.exit(1)\n chapters = next(iter(self.media_info.menu_tracks), None)\n if chapters:\n self.chapters = {'.'.join([k.replace('_', '.')[:-3], k[-3:]]):\n v.strip(':') for k, v in chapters.to_data().items() if\n f\"1{k.replace('_', '')}\".isdigit()}\n self.chapters_numbered = all(x.split(':', 1)[-1].lower() in [\n f'chapter {i + 1}', f'chapter {str(i + 1).zfill(2)}'] for i,\n x in enumerate(self.chapters.values()))\n else:\n self.chapters = {}\n self.chapters_numbered = False\n self.imdb = self.get_imdb_id(config.get('imdb'))\n self.tmdb = self.get_tmdb_id(config.get('tmdb'))\n self.tvdb = self.get_tvdb_id(config.get('tvdb'))\n self.title_name, self.title_year = self.get_title_name_year()\n self.banner_image = self.get_banner_image(self.tvdb\n ) if self.tvdb and self.fanart_api_key else None\n self.preview_images = self.get_preview_images(self.preview\n ) if self.preview else []\n\n def get_imdb_id(self, imdb_id: Any) ->str:\n \"\"\"\n Get an IMDB ID from either the media's global tags, or the config.\n Since IMDB IDs are required for this project, it will bug the user for\n one interactively if not found.\n \"\"\"\n if not imdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n imdb_id = general_track.get('imdb')\n if not imdb_id:\n print('No IMDB ID was provided but is required...')\n while not imdb_id or not isinstance(imdb_id, str):\n user_id = input(\"IMDB ID (e.g., 'tt0487831'): \")\n if not self.IMDB_ID_T.match(user_id):\n print(f'The provided IMDB ID {user_id!r} is not valid...')\n print(\n \"Expected e.g., 'tt0487831', 'tt10810424', (include the 'tt').\"\n )\n else:\n imdb_id = user_id\n return imdb_id\n\n def get_tmdb_id(self, tmdb_id: Any) ->Optional[str]:\n \"\"\"\n Get a TMDB ID from either the media's global tags, or the config.\n It will raise a ValueError if the provided ID is invalid.\n \"\"\"\n if not tmdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n tmdb_id = general_track.get('tmdb')\n if not tmdb_id:\n print('Warning: No TMDB ID was provided...')\n return None\n if not self.TMDB_ID_T.match(tmdb_id) or not isinstance(tmdb_id, str):\n print(f'The provided TMDB ID {tmdb_id!r} is not valid...')\n print(\n \"Expected e.g., 'tv/2490', 'movie/14836', (include the 'tv/' or 'movie/').\"\n )\n raise ValueError('Invalid TMDB ID')\n return tmdb_id\n\n def get_tvdb_id(self, tvdb_id: Any) ->Optional[int]:\n \"\"\"\n Get a TVDB ID from either the media's global tags, or the config.\n It will raise a ValueError if the provided ID is invalid.\n \"\"\"\n if not tvdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n tvdb_id = general_track.get('tvdb')\n if not tvdb_id:\n print('Warning: No TVDB ID was provided...')\n return None\n if isinstance(tvdb_id, int):\n tvdb_id = str(tvdb_id)\n if not self.TVDB_ID_T.match(tvdb_id) or not isinstance(tvdb_id, str):\n print(f'The provided TVDB ID {tvdb_id!r} is not valid...')\n print(\n \"Expected e.g., '79216', '1395', (not the url slug e.g., 'the-office-us').\"\n )\n raise ValueError('Invalid TVDB ID')\n return int(tvdb_id)\n\n def get_title_name_year(self) ->Tuple[str, str]:\n \"\"\"Scrape Title Name and Year (including e.g. 2019-) from IMDB\"\"\"\n r = self.session.get(f'https://www.imdb.com/title/{self.imdb}')\n if r.status_code != 200:\n raise ValueError(\n f'An unexpected error occurred getting IMDB Title Page [{r.status_code}]'\n )\n imdb_page = html.unescape(r.text)\n imdb_title = re.search(\n '<title>(?P<name>.+) \\\\(((?P<type>TV (Movie|Series|Mini[- ]Series|Short|Episode) |Video |Short |)(?P<year>(\\\\d{4})(|– |–\\\\d{4})))\\\\) - IMDb</title>'\n , imdb_page)\n if not imdb_title:\n raise ValueError(\n f'Could not scrape Movie Title or Year for {self.imdb}...')\n return imdb_title.group('name').strip(), imdb_title.group('year'\n ).strip()\n\n def get_tv_episodes(self) ->int:\n \"\"\"Calculate total episode count based on neighbouring same-extension files.\"\"\"\n return len(glob.glob(os.path.join(os.path.dirname(self.file),\n f'*{os.path.splitext(self.file)[-1]}')))\n\n def get_release_name(self) ->str:\n \"\"\"\n Retrieve the release name based on the file used during MediaInfo.\n If a season was specified, but an episode number was not, it presumes the release is a Pack.\n Hence when pack, it uses the parent folder's name as the release name.\n \"\"\"\n if self.season is not None and self.episode is None:\n return os.path.basename(os.path.dirname(self.file))\n return os.path.splitext(os.path.basename(self.file))[0]\n\n def get_banner_image(self, tvdb_id: int) ->Optional[str]:\n \"\"\"\n Get a wide banner image from fanart.tv.\n Currently restricts banners to English-only.\n \"\"\"\n if not tvdb_id:\n return None\n if not self.fanart_api_key:\n raise ValueError('Need Fanart.tv api key for TV titles!')\n r = self.session.get(\n f'http://webservice.fanart.tv/v3/tv/{tvdb_id}?api_key={self.fanart_api_key}'\n )\n if r.status_code == 404:\n return None\n res = r.json()\n error = res.get('error message')\n if error:\n if error == 'Not found':\n return None\n raise ValueError(\n f'An unexpected error occurred while calling Fanart.tv, {res}')\n banner = next((x['url'] for x in res.get('tvbanner') or [] if x[\n 'lang'] == sorted(self.audio, key=lambda x: x.streamorder)[0].\n language), None)\n return banner\n\n def get_preview_images(self, url: str) ->List[Dict[str, str]]:\n if not url:\n return []\n images = []\n for domain in ['imgbox.com', 'beyondhd.co']:\n if domain not in url.lower():\n continue\n page = self.session.get(url).text\n if domain == 'imgbox.com':\n for m in re.finditer(\n 'src=\"(https://thumbs2.imgbox.com.+/)(\\\\w+)_b.([^\"]+)',\n page):\n images.append({'url':\n f'https://imgbox.com/{m.group(2)}', 'src':\n f'{m.group(1)}{m.group(2)}_t.{m.group(3)}'})\n elif domain == 'beyondhd.co':\n for m in re.finditer(\n '/image/([^\"]+)\"\\\\D+src=\"(https://.*beyondhd.co/images.+/(\\\\w+).md.[^\"]+)'\n , page):\n images.append({'url':\n f'https://beyondhd.co/image/{m.group(1)}', 'src': m\n .group(2)})\n break\n return images\n\n def get_video_print(self, videos: List[Track]) ->List[List[str]]:\n if not videos:\n return [['--']]\n data = []\n for video in videos:\n codec = {'MPEG Video':\n f\"MPEG-{(video.format_version or '').replace('Version ', '')}\"\n }.get(video.format, video.format)\n scan_overview = video.scan_type\n vst = False\n if codec in ['MPEG-1', 'MPEG-2']:\n d2v = D2V.load(Path(self.file))\n self.file = d2v.path\n flags = [f for line in [[dict(**y, vob=x['vob'], cell=x[\n 'cell']) for y in x['flags']] for x in d2v.data] for f in\n line]\n interlaced_percent = sum(1 for f in flags if not f[\n 'progressive_frame']) / len(flags) * 100\n if interlaced_percent == 100:\n scan_overview = 'Interlaced (CST)'\n else:\n scan_overview = (\n f'{round(interlaced_percent, 2)}% Interlaced (VST)')\n vst = True\n for ext in ['log', 'd2v', 'mpg', 'mpeg']:\n fp = os.path.splitext(self.file)[0] + '.' + ext\n if os.path.exists(fp):\n os.unlink(fp)\n line_1 = (\n '- {language}, {codec} ({profile}) {width}x{height} ({aspect}) @ {bitrate}'\n .format(language=pycountry.languages.get(alpha_2=video.\n language).name, codec=codec, profile=video.format_profile,\n width=video.width, height=video.height, aspect=video.\n other_display_aspect_ratio[0], bitrate=\n f\"{video.other_bit_rate[0]}{f' ({video.bit_rate_mode})' if video.bit_rate_mode else ''}\"\n ))\n line_2 = (\n ' {fps} FPS ({fps_mode}), {color_space}{subsampling}P{bit_depth}, {scan}'\n .format(fps=f'{video.framerate_num}/{video.framerate_den}' if\n video.framerate_num else video.frame_rate, fps_mode='VFR' if\n vst else video.frame_rate_mode, color_space=video.\n color_space, subsampling=video.chroma_subsampling.replace(\n ':', ''), bit_depth=video.bit_depth, scan=scan_overview))\n data.append([line_1, line_2])\n return data\n\n def get_audio_print(self, audio: List[Track]) ->List[str]:\n if not audio:\n return ['--']\n data = []\n for t in audio:\n if t.title and 'Commentary' in t.title:\n title = t.title\n else:\n title = pycountry.languages.get(alpha_2=t.language).name\n if t.channel_layout:\n channels = float(sum(self.AUDIO_CHANNEL_LAYOUT_WEIGHT.get(x,\n 1) for x in t.channel_layout.split(' ')))\n else:\n channels = float(t.channel_s)\n bit_rate_mode = f' ({t.bit_rate_mode})' if t.bit_rate_mode else ''\n l1 = (\n f'- {title}, {t.format} {channels} @ {t.other_bit_rate[0]}{bit_rate_mode}'\n )\n data += [(' ' + x if i > 0 else x) for i, x in enumerate(\n textwrap.wrap(l1, 64))]\n return data\n\n @staticmethod\n def get_subtitle_print(subs: List[Track]) ->List[str]:\n \"\"\"\n Return a list of a brief subtitle overview per-subtitle.\n\n e.g.\n - English, Forced, SubRip (SRT)\n - English, SubRip (SRT)\n - English, SDH, SubRip (SRT)\n - Spanish, Latin American (SDH), SubRip (SRT)\n\n The bit of text between the Language and the Subtitle format is the Track Title.\n It can be of any format, but it is recommended to be used as shown above.\n\n It will be returned as a list of strings with the `- ` already pre-pended to each entry.\n \"\"\"\n data = []\n if not subs:\n data.append('--')\n for sub in subs:\n line_items = []\n language = pycountry.languages.get(alpha_2=sub.language).name\n if sub.title:\n if language.lower() in sub.title.lower():\n line_items.append(sub.title)\n else:\n line_items.append(f'{language}, {sub.title}')\n else:\n line_items.append(language)\n line_items.append(sub.format.replace('UTF-8', 'SubRip (SRT)'))\n line = '- ' + ', '.join(line_items)\n data += [(' ' + x if i > 0 else x) for i, x in enumerate(\n textwrap.wrap(line, 64))]\n return data\n\n @staticmethod\n def get_chapter_print(chapters: Dict[str, str]) ->List[str]:\n if not chapters:\n return ['--']\n return [f'- {k}: {v}' for k, v in chapters.items()]\n\n def get_chapter_print_short(self, chapters: Dict[str, str]) ->str:\n if not chapters:\n return 'No'\n if self.chapters_numbered:\n return f'Yes (Numbered 01-{str(len(chapters)).zfill(2)})'\n return 'Yes (Named)'\n\n @staticmethod\n def get_session() ->requests.Session:\n session = requests.Session()\n session.headers.update({'User-Agent':\n 'Mozilla/5.0 (X11; Linux x86_64; rv:81.0) Gecko/20100101 Firefox/81.0'\n , 'Accept':\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'\n , 'Accept-Language': 'en-US,en;q=0.5', 'DNT': '1',\n 'UPGRADE-INSECURE-REQUESTS': '1'})\n return session\n", "step-5": "import glob\nimport html\nimport os\nimport re\nimport sys\nimport textwrap\nfrom pathlib import Path\nfrom typing import Any, Dict, List, Optional, Tuple, Union\n\nimport pycountry\nimport requests\nfrom pyd2v import D2V\nfrom pymediainfo import MediaInfo, Track\n\nfrom pynfogen.formatter import CustomFormats\n\n\nclass NFO:\n AUDIO_CHANNEL_LAYOUT_WEIGHT = {\n \"LFE\": 0.1\n }\n IMDB_ID_T = re.compile(r\"^tt\\d{7,8}$\")\n TMDB_ID_T = re.compile(r\"^(tv|movie)/\\d+$\")\n TVDB_ID_T = re.compile(r\"^\\d+$\")\n\n def __init__(self) -> None:\n self.media_info: MediaInfo\n\n self.file: str\n self.season: Optional[Union[int, str]]\n self.episode: Optional[int]\n self.episode_name: Optional[str]\n\n self.videos: List[Track]\n self.audio: List[Track]\n self.subtitles: List[Track]\n self.chapters: Dict[str, str]\n self.chapters_numbered: bool\n\n self.fanart_api_key: Optional[str]\n self.source: Optional[str]\n self.note: Optional[str]\n self.preview: Optional[str]\n\n self.imdb: str\n self.tmdb: Optional[str]\n self.tvdb: Optional[int]\n\n self.title_name: str\n self.title_year: str\n self.episodes: int\n self.release_name: str\n self.preview_images: List[dict[str, str]]\n self.banner_image: Optional[str]\n\n self.session = self.get_session()\n\n def __repr__(self) -> str:\n return \"<{c} {attrs}>\".format(\n c=self.__class__.__name__,\n attrs=\" \".join(\"{}={!r}\".format(k, v) for k, v in self.__dict__.items()),\n )\n\n def run(self, template: str, art: Optional[str] = None, **kwargs: Any) -> str:\n \"\"\"\n Evaluate and apply formatting on template, apply any art if provided.\n Any additional parameters are passed as extra variables to the template.\n The extra variables have priority when there's conflicting variable names.\n \"\"\"\n variables = self.__dict__\n variables.update(kwargs)\n\n template = CustomFormats().format(template, **variables)\n if art:\n art = art.format(nfo=template)\n template = art\n\n for m in re.finditer(r\"<\\?([01])\\?([\\D\\d]*?)\\?>\", template):\n # TODO: This if check is quite yucky, look into alternative options.\n # Ideally a custom format spec would be great.\n template = template.replace(\n m.group(0),\n m.group(2) if int(m.group(1)) else \"\"\n )\n\n template = \"\\n\".join(map(str.rstrip, template.splitlines(keepends=False)))\n\n return template\n\n def set_config(self, file: str, **config: Any) -> None:\n self.file = file\n self.media_info = MediaInfo.parse(self.file)\n\n self.fanart_api_key = config.get(\"fanart_api_key\")\n self.source = config.get(\"source\")\n self.note = config.get(\"note\")\n self.preview = config.get(\"preview\")\n\n self.season = config.get(\"season\")\n self.episode, self.episode_name = config.get(\"episode\") or (None, None)\n self.episodes = self.get_tv_episodes()\n self.release_name = self.get_release_name()\n\n self.videos = self.media_info.video_tracks\n self.audio = self.media_info.audio_tracks\n self.subtitles = self.media_info.text_tracks\n\n tracks_without_language = [\n x for x in self.videos + self.audio + self.subtitles\n if not x.language or x.language == \"und\"\n ]\n if tracks_without_language:\n print(\"The following tracks have no language tag! All tracks need a language tag!\")\n for track in tracks_without_language:\n print(f\"{track.track_type} Track #{track.track_id} ({track.format}, {track.bit_rate / 1000} kb/s)\")\n print(\n \"Yes, even Video Track's have language e.g., Credits, Signs, Letters, Different Intro Sequence, etc.\\n\"\n \"Don't forget to verify and add language tags to the rest of the files too!\"\n )\n sys.exit(1)\n\n chapters = next(iter(self.media_info.menu_tracks), None)\n if chapters:\n self.chapters = {\n \".\".join([k.replace(\"_\", \".\")[:-3], k[-3:]]): v.strip(\":\")\n for k, v in chapters.to_data().items()\n if f\"1{k.replace('_', '')}\".isdigit()\n }\n self.chapters_numbered = all(\n x.split(\":\", 1)[-1].lower() in [f\"chapter {i + 1}\", f\"chapter {str(i + 1).zfill(2)}\"]\n for i, x in enumerate(self.chapters.values())\n )\n else:\n self.chapters = {}\n self.chapters_numbered = False\n\n self.imdb = self.get_imdb_id(config.get(\"imdb\"))\n self.tmdb = self.get_tmdb_id(config.get(\"tmdb\"))\n self.tvdb = self.get_tvdb_id(config.get(\"tvdb\"))\n\n self.title_name, self.title_year = self.get_title_name_year()\n self.banner_image = self.get_banner_image(self.tvdb) if self.tvdb and self.fanart_api_key else None\n self.preview_images = self.get_preview_images(self.preview) if self.preview else []\n\n def get_imdb_id(self, imdb_id: Any) -> str:\n \"\"\"\n Get an IMDB ID from either the media's global tags, or the config.\n Since IMDB IDs are required for this project, it will bug the user for\n one interactively if not found.\n \"\"\"\n if not imdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n imdb_id = general_track.get(\"imdb\")\n if not imdb_id:\n print(\"No IMDB ID was provided but is required...\")\n while not imdb_id or not isinstance(imdb_id, str):\n user_id = input(\"IMDB ID (e.g., 'tt0487831'): \")\n if not self.IMDB_ID_T.match(user_id):\n print(f\"The provided IMDB ID {user_id!r} is not valid...\")\n print(\"Expected e.g., 'tt0487831', 'tt10810424', (include the 'tt').\")\n else:\n imdb_id = user_id\n return imdb_id\n\n def get_tmdb_id(self, tmdb_id: Any) -> Optional[str]:\n \"\"\"\n Get a TMDB ID from either the media's global tags, or the config.\n It will raise a ValueError if the provided ID is invalid.\n \"\"\"\n if not tmdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n tmdb_id = general_track.get(\"tmdb\")\n if not tmdb_id:\n print(\"Warning: No TMDB ID was provided...\")\n return None\n if not self.TMDB_ID_T.match(tmdb_id) or not isinstance(tmdb_id, str):\n print(f\"The provided TMDB ID {tmdb_id!r} is not valid...\")\n print(\"Expected e.g., 'tv/2490', 'movie/14836', (include the 'tv/' or 'movie/').\")\n raise ValueError(\"Invalid TMDB ID\")\n return tmdb_id\n\n def get_tvdb_id(self, tvdb_id: Any) -> Optional[int]:\n \"\"\"\n Get a TVDB ID from either the media's global tags, or the config.\n It will raise a ValueError if the provided ID is invalid.\n \"\"\"\n if not tvdb_id:\n general_track = self.media_info.general_tracks[0].to_data()\n tvdb_id = general_track.get(\"tvdb\")\n if not tvdb_id:\n print(\"Warning: No TVDB ID was provided...\")\n return None\n if isinstance(tvdb_id, int):\n tvdb_id = str(tvdb_id)\n if not self.TVDB_ID_T.match(tvdb_id) or not isinstance(tvdb_id, str):\n print(f\"The provided TVDB ID {tvdb_id!r} is not valid...\")\n print(\"Expected e.g., '79216', '1395', (not the url slug e.g., 'the-office-us').\")\n raise ValueError(\"Invalid TVDB ID\")\n return int(tvdb_id)\n\n def get_title_name_year(self) -> Tuple[str, str]:\n \"\"\"Scrape Title Name and Year (including e.g. 2019-) from IMDB\"\"\"\n r = self.session.get(f\"https://www.imdb.com/title/{self.imdb}\")\n if r.status_code != 200:\n raise ValueError(f\"An unexpected error occurred getting IMDB Title Page [{r.status_code}]\")\n imdb_page = html.unescape(r.text)\n imdb_title = re.search(\n # testing ground: https://regex101.com/r/bEoEDn/1\n r\"<title>(?P<name>.+) \\(((?P<type>TV (Movie|Series|Mini[- ]Series|Short|Episode) |Video |Short |)\"\n r\"(?P<year>(\\d{4})(|– |–\\d{4})))\\) - IMDb</title>\",\n imdb_page\n )\n if not imdb_title:\n raise ValueError(f\"Could not scrape Movie Title or Year for {self.imdb}...\")\n return imdb_title.group(\"name\").strip(), imdb_title.group(\"year\").strip()\n\n def get_tv_episodes(self) -> int:\n \"\"\"Calculate total episode count based on neighbouring same-extension files.\"\"\"\n return len(glob.glob(os.path.join(\n os.path.dirname(self.file),\n f\"*{os.path.splitext(self.file)[-1]}\"\n )))\n\n def get_release_name(self) -> str:\n \"\"\"\n Retrieve the release name based on the file used during MediaInfo.\n If a season was specified, but an episode number was not, it presumes the release is a Pack.\n Hence when pack, it uses the parent folder's name as the release name.\n \"\"\"\n if self.season is not None and self.episode is None:\n return os.path.basename(os.path.dirname(self.file))\n return os.path.splitext(os.path.basename(self.file))[0]\n\n def get_banner_image(self, tvdb_id: int) -> Optional[str]:\n \"\"\"\n Get a wide banner image from fanart.tv.\n Currently restricts banners to English-only.\n \"\"\"\n if not tvdb_id:\n return None\n if not self.fanart_api_key:\n raise ValueError(\"Need Fanart.tv api key for TV titles!\")\n\n r = self.session.get(f\"http://webservice.fanart.tv/v3/tv/{tvdb_id}?api_key={self.fanart_api_key}\")\n if r.status_code == 404:\n return None\n res = r.json()\n\n error = res.get(\"error message\")\n if error:\n if error == \"Not found\":\n return None\n raise ValueError(f\"An unexpected error occurred while calling Fanart.tv, {res}\")\n\n banner = next((\n x[\"url\"] for x in (res.get(\"tvbanner\") or [])\n if x[\"lang\"] == sorted(self.audio, key=lambda x: x.streamorder)[0].language\n ), None)\n\n return banner\n\n def get_preview_images(self, url: str) -> List[Dict[str, str]]:\n if not url:\n return []\n images = []\n for domain in [\"imgbox.com\", \"beyondhd.co\"]:\n if domain not in url.lower():\n continue\n page = self.session.get(url).text\n if domain == \"imgbox.com\":\n for m in re.finditer('src=\"(https://thumbs2.imgbox.com.+/)(\\\\w+)_b.([^\"]+)', page):\n images.append({\n \"url\": f\"https://imgbox.com/{m.group(2)}\",\n \"src\": f\"{m.group(1)}{m.group(2)}_t.{m.group(3)}\"\n })\n elif domain == \"beyondhd.co\":\n for m in re.finditer('/image/([^\"]+)\"\\\\D+src=\"(https://.*beyondhd.co/images.+/(\\\\w+).md.[^\"]+)', page):\n images.append({\n \"url\": f\"https://beyondhd.co/image/{m.group(1)}\",\n \"src\": m.group(2)\n })\n break\n return images\n\n def get_video_print(self, videos: List[Track]) -> List[List[str]]:\n if not videos:\n return [[\"--\"]]\n data = []\n for video in videos:\n codec = {\n \"MPEG Video\": f\"MPEG-{(video.format_version or '').replace('Version ', '')}\"\n }.get(video.format, video.format)\n scan_overview = video.scan_type\n vst = False\n if codec in [\"MPEG-1\", \"MPEG-2\"]:\n # parse d2v file with pyd2v, generates D2V if needed\n d2v = D2V.load(Path(self.file))\n self.file = d2v.path\n # get every frames' flag data, this contains information on displaying frames\n # add vob and cell number to each frames flag data as well\n flags = [f for line in [\n [dict(**y, vob=x[\"vob\"], cell=x[\"cell\"]) for y in x[\"flags\"]] for x in d2v.data\n ] for f in line]\n interlaced_percent = (sum(1 for f in flags if not f[\"progressive_frame\"]) / len(flags)) * 100\n if interlaced_percent == 100:\n scan_overview = \"Interlaced (CST)\"\n else:\n scan_overview = f\"{round(interlaced_percent, 2)}% Interlaced (VST)\"\n vst = True\n for ext in [\"log\", \"d2v\", \"mpg\", \"mpeg\"]:\n fp = os.path.splitext(self.file)[0] + \".\" + ext\n if os.path.exists(fp):\n os.unlink(fp)\n line_1 = \"- {language}, {codec} ({profile}) {width}x{height} ({aspect}) @ {bitrate}\".format(\n language=pycountry.languages.get(alpha_2=video.language).name,\n codec=codec,\n profile=video.format_profile,\n width=video.width, height=video.height,\n aspect=video.other_display_aspect_ratio[0],\n bitrate=f\"{video.other_bit_rate[0]}{f' ({video.bit_rate_mode})' if video.bit_rate_mode else ''}\"\n )\n line_2 = \" {fps} FPS ({fps_mode}), {color_space}{subsampling}P{bit_depth}, {scan}\".format(\n fps=f\"{video.framerate_num}/{video.framerate_den}\" if video.framerate_num else video.frame_rate,\n fps_mode=\"VFR\" if vst else video.frame_rate_mode,\n color_space=video.color_space,\n subsampling=video.chroma_subsampling.replace(\":\", \"\"),\n bit_depth=video.bit_depth,\n scan=scan_overview\n )\n data.append([line_1, line_2])\n return data\n\n def get_audio_print(self, audio: List[Track]) -> List[str]:\n if not audio:\n return [\"--\"]\n data = []\n for t in audio:\n if t.title and \"Commentary\" in t.title:\n title = t.title\n else:\n title = pycountry.languages.get(alpha_2=t.language).name\n if t.channel_layout:\n channels = float(sum(self.AUDIO_CHANNEL_LAYOUT_WEIGHT.get(x, 1) for x in t.channel_layout.split(\" \")))\n else:\n channels = float(t.channel_s)\n bit_rate_mode = f\" ({t.bit_rate_mode})\" if t.bit_rate_mode else \"\"\n l1 = f\"- {title}, {t.format} {channels} @ {t.other_bit_rate[0]}{bit_rate_mode}\"\n data += [(\" \" + x if i > 0 else x) for i, x in enumerate(textwrap.wrap(l1, 64))]\n return data\n\n @staticmethod\n def get_subtitle_print(subs: List[Track]) -> List[str]:\n \"\"\"\n Return a list of a brief subtitle overview per-subtitle.\n\n e.g.\n - English, Forced, SubRip (SRT)\n - English, SubRip (SRT)\n - English, SDH, SubRip (SRT)\n - Spanish, Latin American (SDH), SubRip (SRT)\n\n The bit of text between the Language and the Subtitle format is the Track Title.\n It can be of any format, but it is recommended to be used as shown above.\n\n It will be returned as a list of strings with the `- ` already pre-pended to each entry.\n \"\"\"\n data = []\n if not subs:\n data.append(\"--\")\n for sub in subs:\n line_items = []\n\n # following sub.title tree checks and supports three different language and title scenarios\n # The second scenario is the recommended option to choose if you are open to choosing any\n # The third scenario should be used if you have nothing unique to state about the track\n # | Language | Track Title | Output |\n # | ------------ | ----------------------------- | --------------------------------------------- |\n # | es / Spanish | Spanish (Latin American, SDH) | - Spanish (Latin American, SDH), SubRip (SRT) |\n # | es / Spanish | Latin American (SDH) | - Spanish, Latin American (SDH), SubRip (SRT) |\n # | es / Spanish | None | - Spanish, SubRip (SRT) |\n language = pycountry.languages.get(alpha_2=sub.language).name\n if sub.title:\n if language.lower() in sub.title.lower():\n line_items.append(sub.title)\n else:\n line_items.append(f\"{language}, {sub.title}\")\n else:\n line_items.append(language)\n\n line_items.append(sub.format.replace(\"UTF-8\", \"SubRip (SRT)\"))\n\n line = \"- \" + \", \".join(line_items)\n data += [\n (\" \" + x if i > 0 else x)\n for i, x in enumerate(textwrap.wrap(line, 64))\n ]\n return data\n\n @staticmethod\n def get_chapter_print(chapters: Dict[str, str]) -> List[str]:\n if not chapters:\n return [\"--\"]\n return [\n f\"- {k}: {v}\"\n for k, v in chapters.items()\n ]\n\n def get_chapter_print_short(self, chapters: Dict[str, str]) -> str:\n if not chapters:\n return \"No\"\n if self.chapters_numbered:\n return f\"Yes (Numbered 01-{str(len(chapters)).zfill(2)})\"\n return \"Yes (Named)\"\n\n @staticmethod\n def get_session() -> requests.Session:\n session = requests.Session()\n session.headers.update({\n \"User-Agent\": \"Mozilla/5.0 (X11; Linux x86_64; rv:81.0) Gecko/20100101 Firefox/81.0\",\n \"Accept\": \"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\",\n \"Accept-Language\": \"en-US,en;q=0.5\",\n \"DNT\": \"1\",\n \"UPGRADE-INSECURE-REQUESTS\": \"1\"\n })\n return session\n", "step-ids": [ 14, 16, 18, 19, 22 ] }
[ 14, 16, 18, 19, 22 ]
import pandas as pd # 데이터 로드 train_data = pd.read_csv('./dataset/train_park_daycare.csv') cctv = pd.read_csv("./dataset/cctv_origin.csv", encoding="EUC-KR") ## 데이터 전처리 # 데이터 추출 cctv = cctv.iloc[1:, :2] # 구 매핑 gu_dict_num = {'용산구': 0, '양천구': 1, '강동구': 2, '관악구': 3, '노원구': 4, '영등포': 5, '영등포구': 5, '마포구': 6, '서초구': 7, '성동구': 8, '금천구': 9, '도봉구': 10, '동작구': 11, '강서구': 12, '동대문': 13, '동대문구': 13, '강북구': 14, '서대문': 15, '서대문구': 15, '광진구': 16, '구로구': 17, '성북구': 18, '강남구': 19, '종로구': 20, '중구': 21, '중랑구': 22, '송파구': 23, '은평구': 24} gu_list = [] for i in cctv['구분']: gu_list.append(gu_dict_num[i]) cctv['gu'] = gu_list cctv.drop(['구분'], axis=1, inplace=True) # 컬럼 이름 변경 cctv = cctv.rename(columns={'총계': 'cctv_num'}) # 데이터 타입 변경 cctv['cctv_num'] = cctv['cctv_num'].apply(lambda x: "".join(x.split(','))) cctv['cctv_num'] = pd.to_numeric(cctv['cctv_num']) # 조인 new_data = pd.merge(train_data, cctv, on='gu', how='left') print(new_data.info()) # 저장 new_data.to_csv("./dataset/train_add_cctv.csv", header=True, index=False)
normal
{ "blob_id": "ea2e9399a8384600d8457a9de3f263db44dc883d", "index": 752, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in cctv['구분']:\n gu_list.append(gu_dict_num[i])\n<mask token>\ncctv.drop(['구분'], axis=1, inplace=True)\n<mask token>\nprint(new_data.info())\nnew_data.to_csv('./dataset/train_add_cctv.csv', header=True, index=False)\n", "step-3": "<mask token>\ntrain_data = pd.read_csv('./dataset/train_park_daycare.csv')\ncctv = pd.read_csv('./dataset/cctv_origin.csv', encoding='EUC-KR')\ncctv = cctv.iloc[1:, :2]\ngu_dict_num = {'용산구': 0, '양천구': 1, '강동구': 2, '관악구': 3, '노원구': 4, '영등포': 5,\n '영등포구': 5, '마포구': 6, '서초구': 7, '성동구': 8, '금천구': 9, '도봉구': 10, '동작구': 11,\n '강서구': 12, '동대문': 13, '동대문구': 13, '강북구': 14, '서대문': 15, '서대문구': 15,\n '광진구': 16, '구로구': 17, '성북구': 18, '강남구': 19, '종로구': 20, '중구': 21, '중랑구':\n 22, '송파구': 23, '은평구': 24}\ngu_list = []\nfor i in cctv['구분']:\n gu_list.append(gu_dict_num[i])\ncctv['gu'] = gu_list\ncctv.drop(['구분'], axis=1, inplace=True)\ncctv = cctv.rename(columns={'총계': 'cctv_num'})\ncctv['cctv_num'] = cctv['cctv_num'].apply(lambda x: ''.join(x.split(',')))\ncctv['cctv_num'] = pd.to_numeric(cctv['cctv_num'])\nnew_data = pd.merge(train_data, cctv, on='gu', how='left')\nprint(new_data.info())\nnew_data.to_csv('./dataset/train_add_cctv.csv', header=True, index=False)\n", "step-4": "import pandas as pd\ntrain_data = pd.read_csv('./dataset/train_park_daycare.csv')\ncctv = pd.read_csv('./dataset/cctv_origin.csv', encoding='EUC-KR')\ncctv = cctv.iloc[1:, :2]\ngu_dict_num = {'용산구': 0, '양천구': 1, '강동구': 2, '관악구': 3, '노원구': 4, '영등포': 5,\n '영등포구': 5, '마포구': 6, '서초구': 7, '성동구': 8, '금천구': 9, '도봉구': 10, '동작구': 11,\n '강서구': 12, '동대문': 13, '동대문구': 13, '강북구': 14, '서대문': 15, '서대문구': 15,\n '광진구': 16, '구로구': 17, '성북구': 18, '강남구': 19, '종로구': 20, '중구': 21, '중랑구':\n 22, '송파구': 23, '은평구': 24}\ngu_list = []\nfor i in cctv['구분']:\n gu_list.append(gu_dict_num[i])\ncctv['gu'] = gu_list\ncctv.drop(['구분'], axis=1, inplace=True)\ncctv = cctv.rename(columns={'총계': 'cctv_num'})\ncctv['cctv_num'] = cctv['cctv_num'].apply(lambda x: ''.join(x.split(',')))\ncctv['cctv_num'] = pd.to_numeric(cctv['cctv_num'])\nnew_data = pd.merge(train_data, cctv, on='gu', how='left')\nprint(new_data.info())\nnew_data.to_csv('./dataset/train_add_cctv.csv', header=True, index=False)\n", "step-5": "import pandas as pd\n\n# 데이터 로드\ntrain_data = pd.read_csv('./dataset/train_park_daycare.csv')\ncctv = pd.read_csv(\"./dataset/cctv_origin.csv\", encoding=\"EUC-KR\")\n\n## 데이터 전처리\n# 데이터 추출\ncctv = cctv.iloc[1:, :2]\n\n# 구 매핑\ngu_dict_num = {'용산구': 0, '양천구': 1, '강동구': 2, '관악구': 3, '노원구': 4, '영등포': 5, '영등포구': 5, '마포구': 6, '서초구': 7, '성동구': 8, '금천구': 9, '도봉구': 10, '동작구': 11, '강서구': 12, '동대문': 13, '동대문구': 13, '강북구': 14, '서대문': 15, '서대문구': 15, '광진구': 16, '구로구': 17, '성북구': 18, '강남구': 19, '종로구': 20, '중구': 21, '중랑구': 22, '송파구': 23, '은평구': 24}\ngu_list = []\nfor i in cctv['구분']:\n gu_list.append(gu_dict_num[i])\ncctv['gu'] = gu_list\ncctv.drop(['구분'], axis=1, inplace=True)\n\n# 컬럼 이름 변경\ncctv = cctv.rename(columns={'총계': 'cctv_num'})\n\n# 데이터 타입 변경\ncctv['cctv_num'] = cctv['cctv_num'].apply(lambda x: \"\".join(x.split(',')))\ncctv['cctv_num'] = pd.to_numeric(cctv['cctv_num'])\n\n# 조인\nnew_data = pd.merge(train_data, cctv, on='gu', how='left')\n\nprint(new_data.info())\n# 저장\nnew_data.to_csv(\"./dataset/train_add_cctv.csv\", header=True, index=False)\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/8/15 下午5:04 # @Author : Zessay from .ffm import * from .fm import * from .utils import * from .base_model import * from .base_trainer import * from .logger import * from .metric import * from .input_fn import *
normal
{ "blob_id": "bbdb07a81d785bdf067707c4e56622a2ada76b7b", "index": 1692, "step-1": "<mask token>\n", "step-2": "from .ffm import *\nfrom .fm import *\nfrom .utils import *\nfrom .base_model import *\nfrom .base_trainer import *\nfrom .logger import *\nfrom .metric import *\nfrom .input_fn import *\n", "step-3": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n# @Time : 2019/8/15 下午5:04\n# @Author : Zessay\n\nfrom .ffm import *\nfrom .fm import *\nfrom .utils import *\nfrom .base_model import *\nfrom .base_trainer import *\nfrom .logger import * \nfrom .metric import *\nfrom .input_fn import *", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from typing import Sequence import matplotlib.pyplot as plt import matplotlib.colors as colors import numpy as np def plot3D(X, Y, Z, proporcao=1, espelharZ = False): fig = plt.figure() ax = fig.gca(projection='3d') ax.set_xlabel('X ') ax.set_ylabel('Y ') ax.set_zlabel('Z ') np.floor colortuple = (colors.to_rgba('#FFFF4488'), colors.to_rgb('#4444FF88')) colorsArray = np.empty([len(X), len(Y)], dtype=tuple) for y in range(len(Y)): for x in range(len(X)): colorsArray[x, y] = colortuple[int( np.ceil(x/proporcao) + np.ceil(y/proporcao)) % len(colortuple)] surf = ax.plot_surface(X, Y, Z, facecolors=colorsArray, linewidth=0) if(espelharZ): surf = ax.plot_surface(X, Y, -Z, facecolors=colorsArray, linewidth=0) #surf = ax.plot_wireframe(X, Y, Z, linewidth=1) #plt.show() def limitZ(Z, limit = 10): for i in range(len(Z)): for j in range(len(Z[i])): if(Z[i][j]>limit): Z[i][j] = np.inf if(Z[i][j]<-limit): Z[i][j] = -np.inf def plotPontos3D(X,Y,Z): fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(X, Y, Z, marker='o') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.show() def curvaNivel(X,Y,Z,levels): fig = plt.figure() ax = fig.add_subplot() curva = ax.contourf(X,Y,Z,levels) ax.set_xlabel('X') ax.set_ylabel('Y') #curva.cmap.set_under('white') #curva.cmap.set_over('cyan') fig.colorbar(curva) plt.show()
normal
{ "blob_id": "ff20b65f35614415ad786602c0fc2cabd08124fb", "index": 4065, "step-1": "<mask token>\n\n\ndef limitZ(Z, limit=10):\n for i in range(len(Z)):\n for j in range(len(Z[i])):\n if Z[i][j] > limit:\n Z[i][j] = np.inf\n if Z[i][j] < -limit:\n Z[i][j] = -np.inf\n\n\ndef plotPontos3D(X, Y, Z):\n fig = plt.figure()\n ax = fig.add_subplot(projection='3d')\n ax.scatter(X, Y, Z, marker='o')\n ax.set_xlabel('X')\n ax.set_ylabel('Y')\n ax.set_zlabel('Z')\n plt.show()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef plot3D(X, Y, Z, proporcao=1, espelharZ=False):\n fig = plt.figure()\n ax = fig.gca(projection='3d')\n ax.set_xlabel('X ')\n ax.set_ylabel('Y ')\n ax.set_zlabel('Z ')\n np.floor\n colortuple = colors.to_rgba('#FFFF4488'), colors.to_rgb('#4444FF88')\n colorsArray = np.empty([len(X), len(Y)], dtype=tuple)\n for y in range(len(Y)):\n for x in range(len(X)):\n colorsArray[x, y] = colortuple[int(np.ceil(x / proporcao) + np.\n ceil(y / proporcao)) % len(colortuple)]\n surf = ax.plot_surface(X, Y, Z, facecolors=colorsArray, linewidth=0)\n if espelharZ:\n surf = ax.plot_surface(X, Y, -Z, facecolors=colorsArray, linewidth=0)\n\n\ndef limitZ(Z, limit=10):\n for i in range(len(Z)):\n for j in range(len(Z[i])):\n if Z[i][j] > limit:\n Z[i][j] = np.inf\n if Z[i][j] < -limit:\n Z[i][j] = -np.inf\n\n\ndef plotPontos3D(X, Y, Z):\n fig = plt.figure()\n ax = fig.add_subplot(projection='3d')\n ax.scatter(X, Y, Z, marker='o')\n ax.set_xlabel('X')\n ax.set_ylabel('Y')\n ax.set_zlabel('Z')\n plt.show()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef plot3D(X, Y, Z, proporcao=1, espelharZ=False):\n fig = plt.figure()\n ax = fig.gca(projection='3d')\n ax.set_xlabel('X ')\n ax.set_ylabel('Y ')\n ax.set_zlabel('Z ')\n np.floor\n colortuple = colors.to_rgba('#FFFF4488'), colors.to_rgb('#4444FF88')\n colorsArray = np.empty([len(X), len(Y)], dtype=tuple)\n for y in range(len(Y)):\n for x in range(len(X)):\n colorsArray[x, y] = colortuple[int(np.ceil(x / proporcao) + np.\n ceil(y / proporcao)) % len(colortuple)]\n surf = ax.plot_surface(X, Y, Z, facecolors=colorsArray, linewidth=0)\n if espelharZ:\n surf = ax.plot_surface(X, Y, -Z, facecolors=colorsArray, linewidth=0)\n\n\ndef limitZ(Z, limit=10):\n for i in range(len(Z)):\n for j in range(len(Z[i])):\n if Z[i][j] > limit:\n Z[i][j] = np.inf\n if Z[i][j] < -limit:\n Z[i][j] = -np.inf\n\n\ndef plotPontos3D(X, Y, Z):\n fig = plt.figure()\n ax = fig.add_subplot(projection='3d')\n ax.scatter(X, Y, Z, marker='o')\n ax.set_xlabel('X')\n ax.set_ylabel('Y')\n ax.set_zlabel('Z')\n plt.show()\n\n\ndef curvaNivel(X, Y, Z, levels):\n fig = plt.figure()\n ax = fig.add_subplot()\n curva = ax.contourf(X, Y, Z, levels)\n ax.set_xlabel('X')\n ax.set_ylabel('Y')\n fig.colorbar(curva)\n plt.show()\n", "step-4": "from typing import Sequence\nimport matplotlib.pyplot as plt\nimport matplotlib.colors as colors\nimport numpy as np\n\n\ndef plot3D(X, Y, Z, proporcao=1, espelharZ=False):\n fig = plt.figure()\n ax = fig.gca(projection='3d')\n ax.set_xlabel('X ')\n ax.set_ylabel('Y ')\n ax.set_zlabel('Z ')\n np.floor\n colortuple = colors.to_rgba('#FFFF4488'), colors.to_rgb('#4444FF88')\n colorsArray = np.empty([len(X), len(Y)], dtype=tuple)\n for y in range(len(Y)):\n for x in range(len(X)):\n colorsArray[x, y] = colortuple[int(np.ceil(x / proporcao) + np.\n ceil(y / proporcao)) % len(colortuple)]\n surf = ax.plot_surface(X, Y, Z, facecolors=colorsArray, linewidth=0)\n if espelharZ:\n surf = ax.plot_surface(X, Y, -Z, facecolors=colorsArray, linewidth=0)\n\n\ndef limitZ(Z, limit=10):\n for i in range(len(Z)):\n for j in range(len(Z[i])):\n if Z[i][j] > limit:\n Z[i][j] = np.inf\n if Z[i][j] < -limit:\n Z[i][j] = -np.inf\n\n\ndef plotPontos3D(X, Y, Z):\n fig = plt.figure()\n ax = fig.add_subplot(projection='3d')\n ax.scatter(X, Y, Z, marker='o')\n ax.set_xlabel('X')\n ax.set_ylabel('Y')\n ax.set_zlabel('Z')\n plt.show()\n\n\ndef curvaNivel(X, Y, Z, levels):\n fig = plt.figure()\n ax = fig.add_subplot()\n curva = ax.contourf(X, Y, Z, levels)\n ax.set_xlabel('X')\n ax.set_ylabel('Y')\n fig.colorbar(curva)\n plt.show()\n", "step-5": "from typing import Sequence\nimport matplotlib.pyplot as plt\nimport matplotlib.colors as colors\nimport numpy as np\n\n\ndef plot3D(X, Y, Z, proporcao=1, espelharZ = False):\n\n fig = plt.figure()\n ax = fig.gca(projection='3d')\n\n ax.set_xlabel('X ')\n ax.set_ylabel('Y ')\n ax.set_zlabel('Z ')\n np.floor\n colortuple = (colors.to_rgba('#FFFF4488'), colors.to_rgb('#4444FF88'))\n colorsArray = np.empty([len(X), len(Y)], dtype=tuple)\n for y in range(len(Y)):\n for x in range(len(X)):\n colorsArray[x, y] = colortuple[int(\n np.ceil(x/proporcao) + np.ceil(y/proporcao)) % len(colortuple)]\n\n surf = ax.plot_surface(X, Y, Z, facecolors=colorsArray, linewidth=0)\n if(espelharZ):\n surf = ax.plot_surface(X, Y, -Z, facecolors=colorsArray, linewidth=0)\n #surf = ax.plot_wireframe(X, Y, Z, linewidth=1)\n\n #plt.show()\n\ndef limitZ(Z, limit = 10):\n for i in range(len(Z)):\n for j in range(len(Z[i])):\n if(Z[i][j]>limit):\n Z[i][j] = np.inf\n if(Z[i][j]<-limit):\n Z[i][j] = -np.inf\n\n\ndef plotPontos3D(X,Y,Z):\n fig = plt.figure()\n ax = fig.add_subplot(projection='3d')\n ax.scatter(X, Y, Z, marker='o')\n ax.set_xlabel('X')\n ax.set_ylabel('Y')\n ax.set_zlabel('Z')\n\n plt.show()\n\n\ndef curvaNivel(X,Y,Z,levels):\n fig = plt.figure()\n ax = fig.add_subplot()\n curva = ax.contourf(X,Y,Z,levels)\n ax.set_xlabel('X')\n ax.set_ylabel('Y')\n #curva.cmap.set_under('white')\n #curva.cmap.set_over('cyan')\n fig.colorbar(curva)\n plt.show()\n\n\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from proxmin import nmf from proxmin.utils import Traceback from proxmin import operators as po from scipy.optimize import linear_sum_assignment import numpy as np import matplotlib.pyplot as plt import time from functools import partial # initialize and run NMF import logging logging.basicConfig() logger = logging.getLogger('proxmin') logger.setLevel(logging.INFO) def generateComponent(m): """Creates oscillating components to be mixed""" freq = 25*np.random.random() phase = 2*np.pi*np.random.random() x = np.arange(m) return np.cos(x/freq-phase)**2 def generateAmplitudes(k): """Makes mixing coefficients""" res = np.array([np.random.random() for i in range(k)]) return res/res.sum() def add_noise(Y, sigma): """Adds noise to Y""" return Y + np.random.normal(0, sigma, Y.shape) def match(A, S, trueS): """Rearranges columns of S to best fit the components they likely represent (maximizes sum of correlations)""" cov = np.cov(trueS, S) k = S.shape[0] corr = np.zeros([k,k]) for i in range(k): for j in range(k): corr[i][j] = cov[i + k][j]/np.sqrt(cov[i + k][i + k]*cov[j][j]) arrangement = linear_sum_assignment(-corr) resS = np.zeros_like(S) resAT = np.zeros_like(A.T) for t in range(k): resS[arrangement[1][t]] = S[arrangement[0][t]] resAT[arrangement[1][t]] = A.T[arrangement[0][t]] return resAT.T, resS if __name__ == "__main__": n = 50 # component resolution k = 3 # number of components b = 100 # number of observations noise = 0.02 # stdev of added noise np.random.seed(101) # set up test data trueA = np.array([generateAmplitudes(k) for i in range(b)]) trueS = np.array([generateComponent(n) for i in range(k)]) trueY = np.dot(trueA,trueS) Y = add_noise(trueY, noise) # if noise is variable, specify variance matrix of the same shape as Y W = None A = np.array([generateAmplitudes(k) for i in range(b)]) S = np.array([generateComponent(n) for i in range(k)]) p1 = partial(po.prox_unity_plus, axis=1) proxs_g=[[p1], None] tr = Traceback(2) nmf(Y, A, S, W=W, prox_A=p1, e_rel=1e-6, e_abs=1e-6/noise**2, traceback=tr) # sort components to best match inputs A, S = match(A, S, trueS) # show data and model fig = plt.figure(figsize=(6,7)) ax = fig.add_subplot(311) ax.set_title("True Components S") ax.plot(trueS.T) ax2 = fig.add_subplot(312) ax2.set_title("Data Y") ax2.plot(Y.T) ax3 = fig.add_subplot(313) ax3.set_title("Found Components S") ax3.set_xlabel("Pixel") ax3.plot(S.T) fig.subplots_adjust(bottom=0.07, top=0.95, hspace=0.35) fig.show() # convergence plot from traceback convergences = [] As = tr['X',0] Ss = tr['X',1] for it in range(tr.it): Y = np.dot(As[it], Ss[it]) convergences.append(((Y - trueY)**2).sum()) fig2 = plt.figure(figsize=(6,4)) ax4 = fig2.add_subplot(111) ax4.set_title("Convergence") ax4.semilogy(convergences) ax4.set_ylabel("$||Y-AS||^2$") ax4.set_xlabel("Iterations") fig2.show() """ # noise plot #noises = np.linspace(0,0.05,21) #repeat = 10 noises = [noise] repeat = 1000 A_chi_squared = np.empty((len(noises), repeat)) S_chi_squared = np.empty((len(noises), repeat)) for i in range(len(noises)): e = noises[i] for r in range(repeat): Y = add_noise(trueY, e) A, S = nmf.nmf(Y, A0, S0, e_rel=1e-4, e_abs=1e-4, ) A, S = match(A, S, trueS) A_chi_squared[i,r] = np.sum((A - trueA)**2) S_chi_squared[i,r] = np.sum((S - trueS)**2) fig3 = plt.figure(figsize=(6,4)) ax5 = fig3.add_subplot(111) dof_A = A.shape[0]*A.shape[1] dof_S = S.shape[0]*S.shape[1] ax5.errorbar(noises, S_chi_squared.mean(axis=1)/dof_S, yerr=S_chi_squared.std(axis=1)/dof_S, label="$\chi^2_S$ / DOF") ax5.errorbar(noises, A_chi_squared.mean(axis=1)/dof_A, yerr=A_chi_squared.std(axis=1)/dof_A, label="$\chi^2_A$ / DOF") ax5.legend() ax5.set_ylabel("Chi-squared") ax5.set_xlabel("Standard deviation of noise") fig3.show() """
normal
{ "blob_id": "0edc0c2f86bda0122d4b231eed700d7a5b08ec1e", "index": 8279, "step-1": "<mask token>\n\n\ndef generateComponent(m):\n \"\"\"Creates oscillating components to be mixed\"\"\"\n freq = 25 * np.random.random()\n phase = 2 * np.pi * np.random.random()\n x = np.arange(m)\n return np.cos(x / freq - phase) ** 2\n\n\n<mask token>\n\n\ndef add_noise(Y, sigma):\n \"\"\"Adds noise to Y\"\"\"\n return Y + np.random.normal(0, sigma, Y.shape)\n\n\ndef match(A, S, trueS):\n \"\"\"Rearranges columns of S to best fit the components they likely represent (maximizes sum of correlations)\"\"\"\n cov = np.cov(trueS, S)\n k = S.shape[0]\n corr = np.zeros([k, k])\n for i in range(k):\n for j in range(k):\n corr[i][j] = cov[i + k][j] / np.sqrt(cov[i + k][i + k] * cov[j][j])\n arrangement = linear_sum_assignment(-corr)\n resS = np.zeros_like(S)\n resAT = np.zeros_like(A.T)\n for t in range(k):\n resS[arrangement[1][t]] = S[arrangement[0][t]]\n resAT[arrangement[1][t]] = A.T[arrangement[0][t]]\n return resAT.T, resS\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef generateComponent(m):\n \"\"\"Creates oscillating components to be mixed\"\"\"\n freq = 25 * np.random.random()\n phase = 2 * np.pi * np.random.random()\n x = np.arange(m)\n return np.cos(x / freq - phase) ** 2\n\n\ndef generateAmplitudes(k):\n \"\"\"Makes mixing coefficients\"\"\"\n res = np.array([np.random.random() for i in range(k)])\n return res / res.sum()\n\n\ndef add_noise(Y, sigma):\n \"\"\"Adds noise to Y\"\"\"\n return Y + np.random.normal(0, sigma, Y.shape)\n\n\ndef match(A, S, trueS):\n \"\"\"Rearranges columns of S to best fit the components they likely represent (maximizes sum of correlations)\"\"\"\n cov = np.cov(trueS, S)\n k = S.shape[0]\n corr = np.zeros([k, k])\n for i in range(k):\n for j in range(k):\n corr[i][j] = cov[i + k][j] / np.sqrt(cov[i + k][i + k] * cov[j][j])\n arrangement = linear_sum_assignment(-corr)\n resS = np.zeros_like(S)\n resAT = np.zeros_like(A.T)\n for t in range(k):\n resS[arrangement[1][t]] = S[arrangement[0][t]]\n resAT[arrangement[1][t]] = A.T[arrangement[0][t]]\n return resAT.T, resS\n\n\n<mask token>\n", "step-3": "<mask token>\nlogging.basicConfig()\nlogger = logging.getLogger('proxmin')\nlogger.setLevel(logging.INFO)\n\n\ndef generateComponent(m):\n \"\"\"Creates oscillating components to be mixed\"\"\"\n freq = 25 * np.random.random()\n phase = 2 * np.pi * np.random.random()\n x = np.arange(m)\n return np.cos(x / freq - phase) ** 2\n\n\ndef generateAmplitudes(k):\n \"\"\"Makes mixing coefficients\"\"\"\n res = np.array([np.random.random() for i in range(k)])\n return res / res.sum()\n\n\ndef add_noise(Y, sigma):\n \"\"\"Adds noise to Y\"\"\"\n return Y + np.random.normal(0, sigma, Y.shape)\n\n\ndef match(A, S, trueS):\n \"\"\"Rearranges columns of S to best fit the components they likely represent (maximizes sum of correlations)\"\"\"\n cov = np.cov(trueS, S)\n k = S.shape[0]\n corr = np.zeros([k, k])\n for i in range(k):\n for j in range(k):\n corr[i][j] = cov[i + k][j] / np.sqrt(cov[i + k][i + k] * cov[j][j])\n arrangement = linear_sum_assignment(-corr)\n resS = np.zeros_like(S)\n resAT = np.zeros_like(A.T)\n for t in range(k):\n resS[arrangement[1][t]] = S[arrangement[0][t]]\n resAT[arrangement[1][t]] = A.T[arrangement[0][t]]\n return resAT.T, resS\n\n\nif __name__ == '__main__':\n n = 50\n k = 3\n b = 100\n noise = 0.02\n np.random.seed(101)\n trueA = np.array([generateAmplitudes(k) for i in range(b)])\n trueS = np.array([generateComponent(n) for i in range(k)])\n trueY = np.dot(trueA, trueS)\n Y = add_noise(trueY, noise)\n W = None\n A = np.array([generateAmplitudes(k) for i in range(b)])\n S = np.array([generateComponent(n) for i in range(k)])\n p1 = partial(po.prox_unity_plus, axis=1)\n proxs_g = [[p1], None]\n tr = Traceback(2)\n nmf(Y, A, S, W=W, prox_A=p1, e_rel=1e-06, e_abs=1e-06 / noise ** 2,\n traceback=tr)\n A, S = match(A, S, trueS)\n fig = plt.figure(figsize=(6, 7))\n ax = fig.add_subplot(311)\n ax.set_title('True Components S')\n ax.plot(trueS.T)\n ax2 = fig.add_subplot(312)\n ax2.set_title('Data Y')\n ax2.plot(Y.T)\n ax3 = fig.add_subplot(313)\n ax3.set_title('Found Components S')\n ax3.set_xlabel('Pixel')\n ax3.plot(S.T)\n fig.subplots_adjust(bottom=0.07, top=0.95, hspace=0.35)\n fig.show()\n convergences = []\n As = tr['X', 0]\n Ss = tr['X', 1]\n for it in range(tr.it):\n Y = np.dot(As[it], Ss[it])\n convergences.append(((Y - trueY) ** 2).sum())\n fig2 = plt.figure(figsize=(6, 4))\n ax4 = fig2.add_subplot(111)\n ax4.set_title('Convergence')\n ax4.semilogy(convergences)\n ax4.set_ylabel('$||Y-AS||^2$')\n ax4.set_xlabel('Iterations')\n fig2.show()\n \"\"\"\n # noise plot\n #noises = np.linspace(0,0.05,21)\n #repeat = 10\n noises = [noise]\n repeat = 1000\n A_chi_squared = np.empty((len(noises), repeat))\n S_chi_squared = np.empty((len(noises), repeat))\n for i in range(len(noises)):\n e = noises[i]\n for r in range(repeat):\n Y = add_noise(trueY, e)\n A, S = nmf.nmf(Y, A0, S0, e_rel=1e-4, e_abs=1e-4, )\n A, S = match(A, S, trueS)\n A_chi_squared[i,r] = np.sum((A - trueA)**2)\n S_chi_squared[i,r] = np.sum((S - trueS)**2)\n fig3 = plt.figure(figsize=(6,4))\n ax5 = fig3.add_subplot(111)\n dof_A = A.shape[0]*A.shape[1]\n dof_S = S.shape[0]*S.shape[1]\n ax5.errorbar(noises, S_chi_squared.mean(axis=1)/dof_S, yerr=S_chi_squared.std(axis=1)/dof_S, label=\"$\\\\chi^2_S$ / DOF\")\n ax5.errorbar(noises, A_chi_squared.mean(axis=1)/dof_A, yerr=A_chi_squared.std(axis=1)/dof_A, label=\"$\\\\chi^2_A$ / DOF\")\n ax5.legend()\n ax5.set_ylabel(\"Chi-squared\")\n ax5.set_xlabel(\"Standard deviation of noise\")\n fig3.show()\n \"\"\"\n", "step-4": "from proxmin import nmf\nfrom proxmin.utils import Traceback\nfrom proxmin import operators as po\nfrom scipy.optimize import linear_sum_assignment\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport time\nfrom functools import partial\nimport logging\nlogging.basicConfig()\nlogger = logging.getLogger('proxmin')\nlogger.setLevel(logging.INFO)\n\n\ndef generateComponent(m):\n \"\"\"Creates oscillating components to be mixed\"\"\"\n freq = 25 * np.random.random()\n phase = 2 * np.pi * np.random.random()\n x = np.arange(m)\n return np.cos(x / freq - phase) ** 2\n\n\ndef generateAmplitudes(k):\n \"\"\"Makes mixing coefficients\"\"\"\n res = np.array([np.random.random() for i in range(k)])\n return res / res.sum()\n\n\ndef add_noise(Y, sigma):\n \"\"\"Adds noise to Y\"\"\"\n return Y + np.random.normal(0, sigma, Y.shape)\n\n\ndef match(A, S, trueS):\n \"\"\"Rearranges columns of S to best fit the components they likely represent (maximizes sum of correlations)\"\"\"\n cov = np.cov(trueS, S)\n k = S.shape[0]\n corr = np.zeros([k, k])\n for i in range(k):\n for j in range(k):\n corr[i][j] = cov[i + k][j] / np.sqrt(cov[i + k][i + k] * cov[j][j])\n arrangement = linear_sum_assignment(-corr)\n resS = np.zeros_like(S)\n resAT = np.zeros_like(A.T)\n for t in range(k):\n resS[arrangement[1][t]] = S[arrangement[0][t]]\n resAT[arrangement[1][t]] = A.T[arrangement[0][t]]\n return resAT.T, resS\n\n\nif __name__ == '__main__':\n n = 50\n k = 3\n b = 100\n noise = 0.02\n np.random.seed(101)\n trueA = np.array([generateAmplitudes(k) for i in range(b)])\n trueS = np.array([generateComponent(n) for i in range(k)])\n trueY = np.dot(trueA, trueS)\n Y = add_noise(trueY, noise)\n W = None\n A = np.array([generateAmplitudes(k) for i in range(b)])\n S = np.array([generateComponent(n) for i in range(k)])\n p1 = partial(po.prox_unity_plus, axis=1)\n proxs_g = [[p1], None]\n tr = Traceback(2)\n nmf(Y, A, S, W=W, prox_A=p1, e_rel=1e-06, e_abs=1e-06 / noise ** 2,\n traceback=tr)\n A, S = match(A, S, trueS)\n fig = plt.figure(figsize=(6, 7))\n ax = fig.add_subplot(311)\n ax.set_title('True Components S')\n ax.plot(trueS.T)\n ax2 = fig.add_subplot(312)\n ax2.set_title('Data Y')\n ax2.plot(Y.T)\n ax3 = fig.add_subplot(313)\n ax3.set_title('Found Components S')\n ax3.set_xlabel('Pixel')\n ax3.plot(S.T)\n fig.subplots_adjust(bottom=0.07, top=0.95, hspace=0.35)\n fig.show()\n convergences = []\n As = tr['X', 0]\n Ss = tr['X', 1]\n for it in range(tr.it):\n Y = np.dot(As[it], Ss[it])\n convergences.append(((Y - trueY) ** 2).sum())\n fig2 = plt.figure(figsize=(6, 4))\n ax4 = fig2.add_subplot(111)\n ax4.set_title('Convergence')\n ax4.semilogy(convergences)\n ax4.set_ylabel('$||Y-AS||^2$')\n ax4.set_xlabel('Iterations')\n fig2.show()\n \"\"\"\n # noise plot\n #noises = np.linspace(0,0.05,21)\n #repeat = 10\n noises = [noise]\n repeat = 1000\n A_chi_squared = np.empty((len(noises), repeat))\n S_chi_squared = np.empty((len(noises), repeat))\n for i in range(len(noises)):\n e = noises[i]\n for r in range(repeat):\n Y = add_noise(trueY, e)\n A, S = nmf.nmf(Y, A0, S0, e_rel=1e-4, e_abs=1e-4, )\n A, S = match(A, S, trueS)\n A_chi_squared[i,r] = np.sum((A - trueA)**2)\n S_chi_squared[i,r] = np.sum((S - trueS)**2)\n fig3 = plt.figure(figsize=(6,4))\n ax5 = fig3.add_subplot(111)\n dof_A = A.shape[0]*A.shape[1]\n dof_S = S.shape[0]*S.shape[1]\n ax5.errorbar(noises, S_chi_squared.mean(axis=1)/dof_S, yerr=S_chi_squared.std(axis=1)/dof_S, label=\"$\\\\chi^2_S$ / DOF\")\n ax5.errorbar(noises, A_chi_squared.mean(axis=1)/dof_A, yerr=A_chi_squared.std(axis=1)/dof_A, label=\"$\\\\chi^2_A$ / DOF\")\n ax5.legend()\n ax5.set_ylabel(\"Chi-squared\")\n ax5.set_xlabel(\"Standard deviation of noise\")\n fig3.show()\n \"\"\"\n", "step-5": "from proxmin import nmf\r\nfrom proxmin.utils import Traceback\r\nfrom proxmin import operators as po\r\nfrom scipy.optimize import linear_sum_assignment\r\nimport numpy as np\r\nimport matplotlib.pyplot as plt\r\nimport time\r\nfrom functools import partial\r\n\r\n# initialize and run NMF\r\nimport logging\r\nlogging.basicConfig()\r\nlogger = logging.getLogger('proxmin')\r\nlogger.setLevel(logging.INFO)\r\n\r\ndef generateComponent(m):\r\n \"\"\"Creates oscillating components to be mixed\"\"\"\r\n freq = 25*np.random.random()\r\n phase = 2*np.pi*np.random.random()\r\n x = np.arange(m)\r\n return np.cos(x/freq-phase)**2\r\n\r\ndef generateAmplitudes(k):\r\n \"\"\"Makes mixing coefficients\"\"\"\r\n res = np.array([np.random.random() for i in range(k)])\r\n return res/res.sum()\r\n\r\ndef add_noise(Y, sigma):\r\n \"\"\"Adds noise to Y\"\"\"\r\n return Y + np.random.normal(0, sigma, Y.shape)\r\n\r\ndef match(A, S, trueS):\r\n \"\"\"Rearranges columns of S to best fit the components they likely represent (maximizes sum of correlations)\"\"\"\r\n cov = np.cov(trueS, S)\r\n k = S.shape[0]\r\n corr = np.zeros([k,k])\r\n for i in range(k):\r\n for j in range(k):\r\n corr[i][j] = cov[i + k][j]/np.sqrt(cov[i + k][i + k]*cov[j][j])\r\n arrangement = linear_sum_assignment(-corr)\r\n resS = np.zeros_like(S)\r\n resAT = np.zeros_like(A.T)\r\n for t in range(k):\r\n resS[arrangement[1][t]] = S[arrangement[0][t]]\r\n resAT[arrangement[1][t]] = A.T[arrangement[0][t]]\r\n return resAT.T, resS\r\n\r\nif __name__ == \"__main__\":\r\n n = 50 \t\t\t# component resolution\r\n k = 3 \t\t\t# number of components\r\n b = 100\t\t\t# number of observations\r\n noise = 0.02 # stdev of added noise\r\n np.random.seed(101)\r\n\r\n # set up test data\r\n trueA = np.array([generateAmplitudes(k) for i in range(b)])\r\n trueS = np.array([generateComponent(n) for i in range(k)])\r\n trueY = np.dot(trueA,trueS)\r\n Y = add_noise(trueY, noise)\r\n # if noise is variable, specify variance matrix of the same shape as Y\r\n W = None\r\n\r\n A = np.array([generateAmplitudes(k) for i in range(b)])\r\n S = np.array([generateComponent(n) for i in range(k)])\r\n p1 = partial(po.prox_unity_plus, axis=1)\r\n proxs_g=[[p1], None]\r\n tr = Traceback(2)\r\n nmf(Y, A, S, W=W, prox_A=p1, e_rel=1e-6, e_abs=1e-6/noise**2, traceback=tr)\r\n # sort components to best match inputs\r\n A, S = match(A, S, trueS)\r\n\r\n # show data and model\r\n fig = plt.figure(figsize=(6,7))\r\n ax = fig.add_subplot(311)\r\n ax.set_title(\"True Components S\")\r\n ax.plot(trueS.T)\r\n ax2 = fig.add_subplot(312)\r\n ax2.set_title(\"Data Y\")\r\n ax2.plot(Y.T)\r\n ax3 = fig.add_subplot(313)\r\n ax3.set_title(\"Found Components S\")\r\n ax3.set_xlabel(\"Pixel\")\r\n ax3.plot(S.T)\r\n fig.subplots_adjust(bottom=0.07, top=0.95, hspace=0.35)\r\n fig.show()\r\n\r\n # convergence plot from traceback\r\n convergences = []\r\n As = tr['X',0]\r\n Ss = tr['X',1]\r\n for it in range(tr.it):\r\n Y = np.dot(As[it], Ss[it])\r\n convergences.append(((Y - trueY)**2).sum())\r\n fig2 = plt.figure(figsize=(6,4))\r\n ax4 = fig2.add_subplot(111)\r\n ax4.set_title(\"Convergence\")\r\n ax4.semilogy(convergences)\r\n ax4.set_ylabel(\"$||Y-AS||^2$\")\r\n ax4.set_xlabel(\"Iterations\")\r\n fig2.show()\r\n\r\n \"\"\"\r\n # noise plot\r\n #noises = np.linspace(0,0.05,21)\r\n #repeat = 10\r\n noises = [noise]\r\n repeat = 1000\r\n A_chi_squared = np.empty((len(noises), repeat))\r\n S_chi_squared = np.empty((len(noises), repeat))\r\n for i in range(len(noises)):\r\n e = noises[i]\r\n for r in range(repeat):\r\n Y = add_noise(trueY, e)\r\n A, S = nmf.nmf(Y, A0, S0, e_rel=1e-4, e_abs=1e-4, )\r\n A, S = match(A, S, trueS)\r\n A_chi_squared[i,r] = np.sum((A - trueA)**2)\r\n S_chi_squared[i,r] = np.sum((S - trueS)**2)\r\n fig3 = plt.figure(figsize=(6,4))\r\n ax5 = fig3.add_subplot(111)\r\n dof_A = A.shape[0]*A.shape[1]\r\n dof_S = S.shape[0]*S.shape[1]\r\n ax5.errorbar(noises, S_chi_squared.mean(axis=1)/dof_S, yerr=S_chi_squared.std(axis=1)/dof_S, label=\"$\\chi^2_S$ / DOF\")\r\n ax5.errorbar(noises, A_chi_squared.mean(axis=1)/dof_A, yerr=A_chi_squared.std(axis=1)/dof_A, label=\"$\\chi^2_A$ / DOF\")\r\n ax5.legend()\r\n ax5.set_ylabel(\"Chi-squared\")\r\n ax5.set_xlabel(\"Standard deviation of noise\")\r\n fig3.show()\r\n \"\"\"\r\n", "step-ids": [ 3, 4, 6, 7, 8 ] }
[ 3, 4, 6, 7, 8 ]
class Solution: # @param num, a list of integer # @return an integer def rob(self, num): n = len(num) if n == 0: return 0 if(n == 1): return num[0] f = [0] * n f[0] = num[0] f[1] = max(num[0],num[1]) for i in xrange(2,n): f[i] = max(f[i-1],f[i-2] + num[i]) return f[n-1]
normal
{ "blob_id": "bca0baaffefed6917939614defadf9960ffa4727", "index": 8062, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def rob(self, num):\n n = len(num)\n if n == 0:\n return 0\n if n == 1:\n return num[0]\n f = [0] * n\n f[0] = num[0]\n f[1] = max(num[0], num[1])\n for i in xrange(2, n):\n f[i] = max(f[i - 1], f[i - 2] + num[i])\n return f[n - 1]\n", "step-4": "class Solution:\n # @param num, a list of integer\n # @return an integer\n def rob(self, num):\n n = len(num)\n if n == 0:\n return 0\n if(n == 1):\n return num[0]\n f = [0] * n\n f[0] = num[0]\n f[1] = max(num[0],num[1])\n for i in xrange(2,n):\n f[i] = max(f[i-1],f[i-2] + num[i])\n return f[n-1]", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from sys import exit def hard(): print("Nice! Let's try something harder") print("Could you calculate this for me?") print("4 * 35 + 18 / 2 = ") aws = input(">") while True: if aws == "176": print("Nice, you correctly answer all the questions") exit(0) else: print("Ummm not quite right, let's try something easier") easy() def easy(): print("Ok, seems like you are not good at math.") print("What about this.") print("Say you have 10 apples, your Mom gave you another 2.") print("How many apples you have now?") choice = input("> ") if choice == "12": print("You did a good job!") exit(0) else: print("Oh well, it's not end of the world if you did badly in math") exit(0) def start(): print("Let's do some math") print("How old are you?") choice = input("> ") age = int(choice) + 20 print(f"So after 20 years, you'll be {age}, right? (y/n)") choice = input("> ") while True: if "y" in choice: hard() elif "n" in choice: easy() else: print("I don't know what that mean") start()
normal
{ "blob_id": "5d05351cd6cd6c0d216e8bc09308532605bfd26e", "index": 3007, "step-1": "<mask token>\n\n\ndef easy():\n print('Ok, seems like you are not good at math.')\n print('What about this.')\n print('Say you have 10 apples, your Mom gave you another 2.')\n print('How many apples you have now?')\n choice = input('> ')\n if choice == '12':\n print('You did a good job!')\n exit(0)\n else:\n print(\"Oh well, it's not end of the world if you did badly in math\")\n exit(0)\n\n\ndef start():\n print(\"Let's do some math\")\n print('How old are you?')\n choice = input('> ')\n age = int(choice) + 20\n print(f\"So after 20 years, you'll be {age}, right? (y/n)\")\n choice = input('> ')\n while True:\n if 'y' in choice:\n hard()\n elif 'n' in choice:\n easy()\n else:\n print(\"I don't know what that mean\")\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef hard():\n print(\"Nice! Let's try something harder\")\n print('Could you calculate this for me?')\n print('4 * 35 + 18 / 2 = ')\n aws = input('>')\n while True:\n if aws == '176':\n print('Nice, you correctly answer all the questions')\n exit(0)\n else:\n print(\"Ummm not quite right, let's try something easier\")\n easy()\n\n\ndef easy():\n print('Ok, seems like you are not good at math.')\n print('What about this.')\n print('Say you have 10 apples, your Mom gave you another 2.')\n print('How many apples you have now?')\n choice = input('> ')\n if choice == '12':\n print('You did a good job!')\n exit(0)\n else:\n print(\"Oh well, it's not end of the world if you did badly in math\")\n exit(0)\n\n\ndef start():\n print(\"Let's do some math\")\n print('How old are you?')\n choice = input('> ')\n age = int(choice) + 20\n print(f\"So after 20 years, you'll be {age}, right? (y/n)\")\n choice = input('> ')\n while True:\n if 'y' in choice:\n hard()\n elif 'n' in choice:\n easy()\n else:\n print(\"I don't know what that mean\")\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef hard():\n print(\"Nice! Let's try something harder\")\n print('Could you calculate this for me?')\n print('4 * 35 + 18 / 2 = ')\n aws = input('>')\n while True:\n if aws == '176':\n print('Nice, you correctly answer all the questions')\n exit(0)\n else:\n print(\"Ummm not quite right, let's try something easier\")\n easy()\n\n\ndef easy():\n print('Ok, seems like you are not good at math.')\n print('What about this.')\n print('Say you have 10 apples, your Mom gave you another 2.')\n print('How many apples you have now?')\n choice = input('> ')\n if choice == '12':\n print('You did a good job!')\n exit(0)\n else:\n print(\"Oh well, it's not end of the world if you did badly in math\")\n exit(0)\n\n\ndef start():\n print(\"Let's do some math\")\n print('How old are you?')\n choice = input('> ')\n age = int(choice) + 20\n print(f\"So after 20 years, you'll be {age}, right? (y/n)\")\n choice = input('> ')\n while True:\n if 'y' in choice:\n hard()\n elif 'n' in choice:\n easy()\n else:\n print(\"I don't know what that mean\")\n\n\nstart()\n", "step-4": "from sys import exit\n\n\ndef hard():\n print(\"Nice! Let's try something harder\")\n print('Could you calculate this for me?')\n print('4 * 35 + 18 / 2 = ')\n aws = input('>')\n while True:\n if aws == '176':\n print('Nice, you correctly answer all the questions')\n exit(0)\n else:\n print(\"Ummm not quite right, let's try something easier\")\n easy()\n\n\ndef easy():\n print('Ok, seems like you are not good at math.')\n print('What about this.')\n print('Say you have 10 apples, your Mom gave you another 2.')\n print('How many apples you have now?')\n choice = input('> ')\n if choice == '12':\n print('You did a good job!')\n exit(0)\n else:\n print(\"Oh well, it's not end of the world if you did badly in math\")\n exit(0)\n\n\ndef start():\n print(\"Let's do some math\")\n print('How old are you?')\n choice = input('> ')\n age = int(choice) + 20\n print(f\"So after 20 years, you'll be {age}, right? (y/n)\")\n choice = input('> ')\n while True:\n if 'y' in choice:\n hard()\n elif 'n' in choice:\n easy()\n else:\n print(\"I don't know what that mean\")\n\n\nstart()\n", "step-5": "from sys import exit\n\n\ndef hard():\n print(\"Nice! Let's try something harder\")\n print(\"Could you calculate this for me?\")\n print(\"4 * 35 + 18 / 2 = \")\n\n aws = input(\">\")\n\n while True:\n if aws == \"176\":\n print(\"Nice, you correctly answer all the questions\")\n exit(0)\n else:\n print(\"Ummm not quite right, let's try something easier\")\n easy()\n\n\ndef easy():\n print(\"Ok, seems like you are not good at math.\")\n print(\"What about this.\")\n print(\"Say you have 10 apples, your Mom gave you another 2.\")\n print(\"How many apples you have now?\")\n\n choice = input(\"> \")\n\n if choice == \"12\":\n print(\"You did a good job!\")\n exit(0)\n else:\n print(\"Oh well, it's not end of the world if you did badly in math\")\n exit(0)\n\n\ndef start():\n print(\"Let's do some math\")\n print(\"How old are you?\")\n\n choice = input(\"> \")\n age = int(choice) + 20\n\n print(f\"So after 20 years, you'll be {age}, right? (y/n)\")\n\n choice = input(\"> \")\n\n while True:\n if \"y\" in choice:\n hard()\n elif \"n\" in choice:\n easy()\n else:\n print(\"I don't know what that mean\")\n\n\nstart()\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import numpy as np class Constants(): DNN_DEFAULT_ACTIVATION = 'relu' DNN_DEFAULT_KERNEL_REGULARIZATION = [0, 5e-5] DNN_DEFAULT_BIAS_REGULARIZATION = [0, 5e-5] DNN_DEFAULT_LOSS = 'mean_squared_error' DNN_DEFAULT_VALIDATION_SPLIT = 0.2 DNN_DEFAULT_EPOCHS = 100 DNN_DEFAULT_CHECKPOINT_PERIOD = 100 DNN_DEFAULT_VALIDATION_PERIOD = 1 DNN_DEFAULT_PATIENCE = 1000 DNN_DEFAULT_BATCH_SIZE = 16 DNN_DEFAULT_OPTIMIZER = 'adam' DNN_DEFAULT_DROPOUT_RATE = 0.02 DNN_DEFAULT_DECAY = 0 DNN_DEFAULT_BIAS = 0.1 DNN_DEFAULT_OUTPUT_BIAS = 0.5
normal
{ "blob_id": "b2bb7393bf7955f5de30c59364b495b8f888e178", "index": 4073, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Constants:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Constants:\n DNN_DEFAULT_ACTIVATION = 'relu'\n DNN_DEFAULT_KERNEL_REGULARIZATION = [0, 5e-05]\n DNN_DEFAULT_BIAS_REGULARIZATION = [0, 5e-05]\n DNN_DEFAULT_LOSS = 'mean_squared_error'\n DNN_DEFAULT_VALIDATION_SPLIT = 0.2\n DNN_DEFAULT_EPOCHS = 100\n DNN_DEFAULT_CHECKPOINT_PERIOD = 100\n DNN_DEFAULT_VALIDATION_PERIOD = 1\n DNN_DEFAULT_PATIENCE = 1000\n DNN_DEFAULT_BATCH_SIZE = 16\n DNN_DEFAULT_OPTIMIZER = 'adam'\n DNN_DEFAULT_DROPOUT_RATE = 0.02\n DNN_DEFAULT_DECAY = 0\n DNN_DEFAULT_BIAS = 0.1\n DNN_DEFAULT_OUTPUT_BIAS = 0.5\n", "step-4": "import numpy as np\n\n\nclass Constants:\n DNN_DEFAULT_ACTIVATION = 'relu'\n DNN_DEFAULT_KERNEL_REGULARIZATION = [0, 5e-05]\n DNN_DEFAULT_BIAS_REGULARIZATION = [0, 5e-05]\n DNN_DEFAULT_LOSS = 'mean_squared_error'\n DNN_DEFAULT_VALIDATION_SPLIT = 0.2\n DNN_DEFAULT_EPOCHS = 100\n DNN_DEFAULT_CHECKPOINT_PERIOD = 100\n DNN_DEFAULT_VALIDATION_PERIOD = 1\n DNN_DEFAULT_PATIENCE = 1000\n DNN_DEFAULT_BATCH_SIZE = 16\n DNN_DEFAULT_OPTIMIZER = 'adam'\n DNN_DEFAULT_DROPOUT_RATE = 0.02\n DNN_DEFAULT_DECAY = 0\n DNN_DEFAULT_BIAS = 0.1\n DNN_DEFAULT_OUTPUT_BIAS = 0.5\n", "step-5": "import numpy as np\n\nclass Constants():\n DNN_DEFAULT_ACTIVATION = 'relu'\n DNN_DEFAULT_KERNEL_REGULARIZATION = [0, 5e-5]\n DNN_DEFAULT_BIAS_REGULARIZATION = [0, 5e-5]\n DNN_DEFAULT_LOSS = 'mean_squared_error'\n DNN_DEFAULT_VALIDATION_SPLIT = 0.2\n DNN_DEFAULT_EPOCHS = 100\n DNN_DEFAULT_CHECKPOINT_PERIOD = 100\n DNN_DEFAULT_VALIDATION_PERIOD = 1\n DNN_DEFAULT_PATIENCE = 1000\n DNN_DEFAULT_BATCH_SIZE = 16\n DNN_DEFAULT_OPTIMIZER = 'adam'\n DNN_DEFAULT_DROPOUT_RATE = 0.02\n DNN_DEFAULT_DECAY = 0\n DNN_DEFAULT_BIAS = 0.1\n DNN_DEFAULT_OUTPUT_BIAS = 0.5", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" AuthService class module. """ from urllib.parse import urlencode from http.client import HTTPConnection, HTTPResponse, HTTPException from dms2021sensor.data.rest.exc import NotFoundError class AuthService(): """ REST client to connect to the authentication service. """ def __init__(self, host: str, port: int): """ Constructor method. Initializes the client. --- Parameters: - host: The authentication service host string. - port: The authentication service port number. """ self.__host: str = host self.__port: int = port def __get_connection(self) -> HTTPConnection: """ Creates a new connection to the authentication server. --- Returns: The connection object. """ return HTTPConnection(self.__host, self.__port) def has_right(self, username: str, right: str) -> bool: """ Determines whether a given user from the authentication server has a certain right or not. --- Parameters: - username: The user name string. - right: The right name. Returns: True if the user has the given right Throws: - NotFoundError: if the user does not have the right, the user does not exist, or the right does not exist. - HTTPException: On an unhandled 500 error. """ form: str = urlencode({'username': username, 'right': right}) headers: dict = { 'Content-type': 'application/x-www-form-urlencoded' } connection: HTTPConnection = self.__get_connection() connection.request('GET', '/users/'+str(username)+'/rights/'+str(right), form, headers) response: HTTPResponse = connection.getresponse() if response.status == 200: return True if response.status == 404: raise NotFoundError() if response.status == 500: raise HTTPException('Server error') return False
normal
{ "blob_id": "1438a268780217e647999ba031aa4a50a6912d2f", "index": 3069, "step-1": "<mask token>\n\n\nclass AuthService:\n <mask token>\n <mask token>\n\n def __get_connection(self) ->HTTPConnection:\n \"\"\" Creates a new connection to the authentication server.\n ---\n Returns:\n The connection object.\n \"\"\"\n return HTTPConnection(self.__host, self.__port)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass AuthService:\n <mask token>\n\n def __init__(self, host: str, port: int):\n \"\"\" Constructor method.\n\n Initializes the client.\n ---\n Parameters:\n - host: The authentication service host string.\n - port: The authentication service port number.\n \"\"\"\n self.__host: str = host\n self.__port: int = port\n\n def __get_connection(self) ->HTTPConnection:\n \"\"\" Creates a new connection to the authentication server.\n ---\n Returns:\n The connection object.\n \"\"\"\n return HTTPConnection(self.__host, self.__port)\n <mask token>\n", "step-3": "<mask token>\n\n\nclass AuthService:\n \"\"\" REST client to connect to the authentication service.\n \"\"\"\n\n def __init__(self, host: str, port: int):\n \"\"\" Constructor method.\n\n Initializes the client.\n ---\n Parameters:\n - host: The authentication service host string.\n - port: The authentication service port number.\n \"\"\"\n self.__host: str = host\n self.__port: int = port\n\n def __get_connection(self) ->HTTPConnection:\n \"\"\" Creates a new connection to the authentication server.\n ---\n Returns:\n The connection object.\n \"\"\"\n return HTTPConnection(self.__host, self.__port)\n\n def has_right(self, username: str, right: str) ->bool:\n \"\"\" Determines whether a given user from the authentication server\n has a certain right or not.\n ---\n Parameters:\n - username: The user name string.\n - right: The right name.\n Returns:\n True if the user has the given right\n Throws:\n - NotFoundError: if the user does not have the right, the user does not\n exist, or the right does not exist.\n - HTTPException: On an unhandled 500 error.\n \"\"\"\n form: str = urlencode({'username': username, 'right': right})\n headers: dict = {'Content-type': 'application/x-www-form-urlencoded'}\n connection: HTTPConnection = self.__get_connection()\n connection.request('GET', '/users/' + str(username) + '/rights/' +\n str(right), form, headers)\n response: HTTPResponse = connection.getresponse()\n if response.status == 200:\n return True\n if response.status == 404:\n raise NotFoundError()\n if response.status == 500:\n raise HTTPException('Server error')\n return False\n", "step-4": "<mask token>\nfrom urllib.parse import urlencode\nfrom http.client import HTTPConnection, HTTPResponse, HTTPException\nfrom dms2021sensor.data.rest.exc import NotFoundError\n\n\nclass AuthService:\n \"\"\" REST client to connect to the authentication service.\n \"\"\"\n\n def __init__(self, host: str, port: int):\n \"\"\" Constructor method.\n\n Initializes the client.\n ---\n Parameters:\n - host: The authentication service host string.\n - port: The authentication service port number.\n \"\"\"\n self.__host: str = host\n self.__port: int = port\n\n def __get_connection(self) ->HTTPConnection:\n \"\"\" Creates a new connection to the authentication server.\n ---\n Returns:\n The connection object.\n \"\"\"\n return HTTPConnection(self.__host, self.__port)\n\n def has_right(self, username: str, right: str) ->bool:\n \"\"\" Determines whether a given user from the authentication server\n has a certain right or not.\n ---\n Parameters:\n - username: The user name string.\n - right: The right name.\n Returns:\n True if the user has the given right\n Throws:\n - NotFoundError: if the user does not have the right, the user does not\n exist, or the right does not exist.\n - HTTPException: On an unhandled 500 error.\n \"\"\"\n form: str = urlencode({'username': username, 'right': right})\n headers: dict = {'Content-type': 'application/x-www-form-urlencoded'}\n connection: HTTPConnection = self.__get_connection()\n connection.request('GET', '/users/' + str(username) + '/rights/' +\n str(right), form, headers)\n response: HTTPResponse = connection.getresponse()\n if response.status == 200:\n return True\n if response.status == 404:\n raise NotFoundError()\n if response.status == 500:\n raise HTTPException('Server error')\n return False\n", "step-5": "\"\"\" AuthService class module.\n\"\"\"\n\nfrom urllib.parse import urlencode\nfrom http.client import HTTPConnection, HTTPResponse, HTTPException\nfrom dms2021sensor.data.rest.exc import NotFoundError\n\n\nclass AuthService():\n \"\"\" REST client to connect to the authentication service.\n \"\"\"\n\n def __init__(self, host: str, port: int):\n \"\"\" Constructor method.\n\n Initializes the client.\n ---\n Parameters:\n - host: The authentication service host string.\n - port: The authentication service port number.\n \"\"\"\n self.__host: str = host\n self.__port: int = port\n\n def __get_connection(self) -> HTTPConnection:\n \"\"\" Creates a new connection to the authentication server.\n ---\n Returns:\n The connection object.\n \"\"\"\n return HTTPConnection(self.__host, self.__port)\n\n def has_right(self, username: str, right: str) -> bool:\n \"\"\" Determines whether a given user from the authentication server\n has a certain right or not.\n ---\n Parameters:\n - username: The user name string.\n - right: The right name.\n Returns:\n True if the user has the given right\n Throws:\n - NotFoundError: if the user does not have the right, the user does not\n exist, or the right does not exist.\n - HTTPException: On an unhandled 500 error.\n \"\"\"\n form: str = urlencode({'username': username, 'right': right})\n headers: dict = {\n 'Content-type': 'application/x-www-form-urlencoded'\n }\n connection: HTTPConnection = self.__get_connection()\n connection.request('GET', '/users/'+str(username)+'/rights/'+str(right), form, headers)\n response: HTTPResponse = connection.getresponse()\n if response.status == 200:\n return True\n if response.status == 404:\n raise NotFoundError()\n if response.status == 500:\n raise HTTPException('Server error')\n return False\n", "step-ids": [ 2, 3, 5, 6, 7 ] }
[ 2, 3, 5, 6, 7 ]
from youtube_transcript_api import YouTubeTranscriptApi transcript_list = YouTubeTranscriptApi.list_transcripts('i8pOulVUz0A') transcript = transcript_list.find_transcript(['en']) transcript = transcript.fetch() with open("transcript.txt", 'w') as f: for line in transcript: f.write(line['text']+ '\n')
normal
{ "blob_id": "c2d6e4286e1b9d6dc852bde994da60d353e03e5c", "index": 8031, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('transcript.txt', 'w') as f:\n for line in transcript:\n f.write(line['text'] + '\\n')\n", "step-3": "<mask token>\ntranscript_list = YouTubeTranscriptApi.list_transcripts('i8pOulVUz0A')\ntranscript = transcript_list.find_transcript(['en'])\ntranscript = transcript.fetch()\nwith open('transcript.txt', 'w') as f:\n for line in transcript:\n f.write(line['text'] + '\\n')\n", "step-4": "from youtube_transcript_api import YouTubeTranscriptApi\ntranscript_list = YouTubeTranscriptApi.list_transcripts('i8pOulVUz0A')\ntranscript = transcript_list.find_transcript(['en'])\ntranscript = transcript.fetch()\nwith open('transcript.txt', 'w') as f:\n for line in transcript:\n f.write(line['text'] + '\\n')\n", "step-5": "from youtube_transcript_api import YouTubeTranscriptApi\n\ntranscript_list = YouTubeTranscriptApi.list_transcripts('i8pOulVUz0A')\ntranscript = transcript_list.find_transcript(['en'])\ntranscript = transcript.fetch()\n\nwith open(\"transcript.txt\", 'w') as f:\n for line in transcript:\n f.write(line['text']+ '\\n')", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# 문제 풀이 진행중..(나중에 재도전) import collections class Solution(object): def removeStones(self, stones): """ :type stones: List[List[int]] :rtype: int """ # 전체 연결점 개수 확인한다. # 개수가 적은 것 부터 처리한다 # # 연결된 게 0개인 애들은 제외 # # data init stones_share_list = [] for i in range(len(stones)): stones_share_list.append(0) # set data(connecting count of stones) for i in range(len(stones)): check_stone = stones[i] connect_count = 0 for j in range(len(stones)): if i is j: continue if check_stone[0] is stones[j][0] or check_stone[1] is stones[j][1]: connect_count += 1 stones_share_list[i] = connect_count connect_sum = 0 for share in stones_share_list: connect_sum += share if connect_sum is 0: return 0 island = 0 print(stones_share_list) for connect in stones_share_list: if connect is 0: island += 1 print(island) return len(stones) - (island + 1) s = Solution() # temp_value = [[0,0],[0,1],[1,0],[1,2],[2,1],[2,2],[2,3]] # temp_value = [[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]] # temp_value = [[0,0],[0,2],[1,1],[2,0],[2,2]] temp_value = [[3,2],[3,1],[4,4],[1,1],[0,2],[4,0]] print(s.removeStones(temp_value))
normal
{ "blob_id": "896329a8b14d79f849e4a8c31c697f3981395790", "index": 3327, "step-1": "<mask token>\n\n\nclass Solution(object):\n\n def removeStones(self, stones):\n \"\"\"\n :type stones: List[List[int]]\n :rtype: int\n \"\"\"\n stones_share_list = []\n for i in range(len(stones)):\n stones_share_list.append(0)\n for i in range(len(stones)):\n check_stone = stones[i]\n connect_count = 0\n for j in range(len(stones)):\n if i is j:\n continue\n if check_stone[0] is stones[j][0] or check_stone[1] is stones[j\n ][1]:\n connect_count += 1\n stones_share_list[i] = connect_count\n connect_sum = 0\n for share in stones_share_list:\n connect_sum += share\n if connect_sum is 0:\n return 0\n island = 0\n print(stones_share_list)\n for connect in stones_share_list:\n if connect is 0:\n island += 1\n print(island)\n return len(stones) - (island + 1)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Solution(object):\n\n def removeStones(self, stones):\n \"\"\"\n :type stones: List[List[int]]\n :rtype: int\n \"\"\"\n stones_share_list = []\n for i in range(len(stones)):\n stones_share_list.append(0)\n for i in range(len(stones)):\n check_stone = stones[i]\n connect_count = 0\n for j in range(len(stones)):\n if i is j:\n continue\n if check_stone[0] is stones[j][0] or check_stone[1] is stones[j\n ][1]:\n connect_count += 1\n stones_share_list[i] = connect_count\n connect_sum = 0\n for share in stones_share_list:\n connect_sum += share\n if connect_sum is 0:\n return 0\n island = 0\n print(stones_share_list)\n for connect in stones_share_list:\n if connect is 0:\n island += 1\n print(island)\n return len(stones) - (island + 1)\n\n\n<mask token>\nprint(s.removeStones(temp_value))\n", "step-3": "<mask token>\n\n\nclass Solution(object):\n\n def removeStones(self, stones):\n \"\"\"\n :type stones: List[List[int]]\n :rtype: int\n \"\"\"\n stones_share_list = []\n for i in range(len(stones)):\n stones_share_list.append(0)\n for i in range(len(stones)):\n check_stone = stones[i]\n connect_count = 0\n for j in range(len(stones)):\n if i is j:\n continue\n if check_stone[0] is stones[j][0] or check_stone[1] is stones[j\n ][1]:\n connect_count += 1\n stones_share_list[i] = connect_count\n connect_sum = 0\n for share in stones_share_list:\n connect_sum += share\n if connect_sum is 0:\n return 0\n island = 0\n print(stones_share_list)\n for connect in stones_share_list:\n if connect is 0:\n island += 1\n print(island)\n return len(stones) - (island + 1)\n\n\ns = Solution()\ntemp_value = [[3, 2], [3, 1], [4, 4], [1, 1], [0, 2], [4, 0]]\nprint(s.removeStones(temp_value))\n", "step-4": "import collections\n\n\nclass Solution(object):\n\n def removeStones(self, stones):\n \"\"\"\n :type stones: List[List[int]]\n :rtype: int\n \"\"\"\n stones_share_list = []\n for i in range(len(stones)):\n stones_share_list.append(0)\n for i in range(len(stones)):\n check_stone = stones[i]\n connect_count = 0\n for j in range(len(stones)):\n if i is j:\n continue\n if check_stone[0] is stones[j][0] or check_stone[1] is stones[j\n ][1]:\n connect_count += 1\n stones_share_list[i] = connect_count\n connect_sum = 0\n for share in stones_share_list:\n connect_sum += share\n if connect_sum is 0:\n return 0\n island = 0\n print(stones_share_list)\n for connect in stones_share_list:\n if connect is 0:\n island += 1\n print(island)\n return len(stones) - (island + 1)\n\n\ns = Solution()\ntemp_value = [[3, 2], [3, 1], [4, 4], [1, 1], [0, 2], [4, 0]]\nprint(s.removeStones(temp_value))\n", "step-5": "# 문제 풀이 진행중..(나중에 재도전)\nimport collections\nclass Solution(object):\n def removeStones(self, stones):\n \"\"\"\n :type stones: List[List[int]]\n :rtype: int\n \"\"\"\n # 전체 연결점 개수 확인한다.\n # 개수가 적은 것 부터 처리한다\n # # 연결된 게 0개인 애들은 제외\n #\n\n # data init\n stones_share_list = []\n for i in range(len(stones)):\n stones_share_list.append(0)\n\n # set data(connecting count of stones)\n for i in range(len(stones)):\n check_stone = stones[i]\n connect_count = 0\n for j in range(len(stones)):\n if i is j:\n continue\n if check_stone[0] is stones[j][0] or check_stone[1] is stones[j][1]:\n connect_count += 1\n\n stones_share_list[i] = connect_count\n\n connect_sum = 0\n for share in stones_share_list:\n connect_sum += share\n\n if connect_sum is 0:\n return 0\n\n island = 0\n print(stones_share_list)\n for connect in stones_share_list:\n if connect is 0:\n island += 1\n print(island)\n return len(stones) - (island + 1)\n\n\ns = Solution()\n\n# temp_value = [[0,0],[0,1],[1,0],[1,2],[2,1],[2,2],[2,3]]\n# temp_value = [[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]]\n# temp_value = [[0,0],[0,2],[1,1],[2,0],[2,2]]\ntemp_value = [[3,2],[3,1],[4,4],[1,1],[0,2],[4,0]]\nprint(s.removeStones(temp_value))", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
tej="votary" for i in range(5): print(tej[i])
normal
{ "blob_id": "1f385fda1bdc0008ff91b935998c95c8ffcbd297", "index": 2797, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(5):\n print(tej[i])\n", "step-3": "tej = 'votary'\nfor i in range(5):\n print(tej[i])\n", "step-4": "tej=\"votary\"\nfor i in range(5):\n\tprint(tej[i])\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
__author__ = 'Joe' import sys sys.path.insert(0,'../src/') import grocery_functions import unittest class TestGroceryFuncs(unittest.TestCase): def test_getRecipeNames(self): recipe_names = grocery_functions.get_recipe_names("test-recipes") self.assertTrue(recipe_names[0] == "Cajun Chicken & Rice") self.assertTrue(recipe_names[1] == "Chicken Curry in a Hurry") self.assertTrue(recipe_names[2] == 'Chicken_Zucchini_and_Prosciutto') self.assertTrue(recipe_names[3] == 'Healthy Roasted Chicken and Veggies (one pan)') self.assertTrue(recipe_names[4] == 'Kielbasa, Pepper, Onion and Potato Hash') def test_getIngredientsFromFile(self): list=grocery_functions.get_ingredients_from_recipe_file("test-recipes\Kielbasa, Pepper, Onion and Potato Hash.txt") self.assertTrue(list[0].name == 'turkey kielbasa') self.assertTrue(list[0].unit == 'ounce') self.assertTrue(list[0].number == '14') self.assertTrue(list[2].name == 'non-green bell pepper') self.assertTrue(list[2].unit == '') self.assertTrue(list[2].number == '1') self.assertTrue(list[6].name == 'salt') self.assertTrue(list[6].unit == '') self.assertTrue(list[6].number == '1') def test_getTagsFromFile(self): list=grocery_functions.get_tags_from_recipe_file("test-recipes\Chicken Curry in a Hurry.txt") self.assertTrue(list[0] == 'chicken') self.assertTrue(list[1] == 'easy') self.assertTrue(list[2] == 'stove') def test_getRecipeFromFile(self): list=grocery_functions.get_recipe_from_recipe_file("test-recipes\Healthy Roasted Chicken and Veggies (one pan).txt") self.assertTrue(list[2]=="1 cup bell pepper, chopped (any colors you like)") self.assertTrue(list[10]=="1 teaspoon italian seasoning") self.assertTrue(list[15]=="Place the chicken and veggies in a medium roasting dish or sheet pan. Add the olive oil, ") def test_condenseList(self): recipe_names = grocery_functions.get_recipe_names("test-recipes") grocery_list=[] for recipe in recipe_names: grocery_list += grocery_functions.get_ingredients_from_recipe_file("test-recipes\\"+recipe+".txt") grocery_list=grocery_functions.condense_grocery_list(grocery_list) # grocery_functions.print_grocery_list(grocery_list) # grocery_functions.sort_and_print_grocery_List(grocery_list, "Smiths-Eu-JT-ItemDepartments.txt") def test_makeAllIngredientsFile(self): grocery_functions.make_all_ingredients_file() def test_getItemDeptDicts(self): grocery_functions.get_item_dept_dicts("Smiths-Eu-JT-ItemDepartments.txt") def test_checkRecipeFormat(self): errors=grocery_functions.check_recipe_format("test-recipes", False) self.assertTrue(errors == []) errors=grocery_functions.check_recipe_format("broken-test-recipes", False) self.assertTrue('invalid format, "1 lb, chicken breasts" in: broken-test-recipes//broken_recipe.txt' in errors) self.assertTrue('invalid heading, "wrong_header" in file: broken-test-recipes//broken_recipe.txt' in errors) self.assertTrue('Blank recipe in: broken-test-recipes//broken_recipe.txt' in errors) def test_update_default_ing_dept_file(self): grocery_functions.update_default_ing_dept_file(grocery_functions.get_all_ingredients("test-recipes")) def suite(self): return unittest.TestLoader().loadTestsFromTestCase(TestGroceryFuncs) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestGroceryFuncs) unittest.TextTestRunner(verbosity=2).run(suite)
normal
{ "blob_id": "c4fbf206482a04f3e2d2aa98a0dbf525a176c4e7", "index": 1087, "step-1": "<mask token>\n\n\nclass TestGroceryFuncs(unittest.TestCase):\n\n def test_getRecipeNames(self):\n recipe_names = grocery_functions.get_recipe_names('test-recipes')\n self.assertTrue(recipe_names[0] == 'Cajun Chicken & Rice')\n self.assertTrue(recipe_names[1] == 'Chicken Curry in a Hurry')\n self.assertTrue(recipe_names[2] == 'Chicken_Zucchini_and_Prosciutto')\n self.assertTrue(recipe_names[3] ==\n 'Healthy Roasted Chicken and Veggies (one pan)')\n self.assertTrue(recipe_names[4] ==\n 'Kielbasa, Pepper, Onion and Potato Hash')\n <mask token>\n <mask token>\n <mask token>\n\n def test_condenseList(self):\n recipe_names = grocery_functions.get_recipe_names('test-recipes')\n grocery_list = []\n for recipe in recipe_names:\n grocery_list += grocery_functions.get_ingredients_from_recipe_file(\n 'test-recipes\\\\' + recipe + '.txt')\n grocery_list = grocery_functions.condense_grocery_list(grocery_list)\n <mask token>\n <mask token>\n <mask token>\n\n def test_update_default_ing_dept_file(self):\n grocery_functions.update_default_ing_dept_file(grocery_functions.\n get_all_ingredients('test-recipes'))\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestGroceryFuncs(unittest.TestCase):\n\n def test_getRecipeNames(self):\n recipe_names = grocery_functions.get_recipe_names('test-recipes')\n self.assertTrue(recipe_names[0] == 'Cajun Chicken & Rice')\n self.assertTrue(recipe_names[1] == 'Chicken Curry in a Hurry')\n self.assertTrue(recipe_names[2] == 'Chicken_Zucchini_and_Prosciutto')\n self.assertTrue(recipe_names[3] ==\n 'Healthy Roasted Chicken and Veggies (one pan)')\n self.assertTrue(recipe_names[4] ==\n 'Kielbasa, Pepper, Onion and Potato Hash')\n\n def test_getIngredientsFromFile(self):\n list = grocery_functions.get_ingredients_from_recipe_file(\n 'test-recipes\\\\Kielbasa, Pepper, Onion and Potato Hash.txt')\n self.assertTrue(list[0].name == 'turkey kielbasa')\n self.assertTrue(list[0].unit == 'ounce')\n self.assertTrue(list[0].number == '14')\n self.assertTrue(list[2].name == 'non-green bell pepper')\n self.assertTrue(list[2].unit == '')\n self.assertTrue(list[2].number == '1')\n self.assertTrue(list[6].name == 'salt')\n self.assertTrue(list[6].unit == '')\n self.assertTrue(list[6].number == '1')\n\n def test_getTagsFromFile(self):\n list = grocery_functions.get_tags_from_recipe_file(\n 'test-recipes\\\\Chicken Curry in a Hurry.txt')\n self.assertTrue(list[0] == 'chicken')\n self.assertTrue(list[1] == 'easy')\n self.assertTrue(list[2] == 'stove')\n\n def test_getRecipeFromFile(self):\n list = grocery_functions.get_recipe_from_recipe_file(\n 'test-recipes\\\\Healthy Roasted Chicken and Veggies (one pan).txt')\n self.assertTrue(list[2] ==\n '1 cup bell pepper, chopped (any colors you like)')\n self.assertTrue(list[10] == '1 teaspoon italian seasoning')\n self.assertTrue(list[15] ==\n 'Place the chicken and veggies in a medium roasting dish or sheet pan. Add the olive oil, '\n )\n\n def test_condenseList(self):\n recipe_names = grocery_functions.get_recipe_names('test-recipes')\n grocery_list = []\n for recipe in recipe_names:\n grocery_list += grocery_functions.get_ingredients_from_recipe_file(\n 'test-recipes\\\\' + recipe + '.txt')\n grocery_list = grocery_functions.condense_grocery_list(grocery_list)\n <mask token>\n <mask token>\n <mask token>\n\n def test_update_default_ing_dept_file(self):\n grocery_functions.update_default_ing_dept_file(grocery_functions.\n get_all_ingredients('test-recipes'))\n\n def suite(self):\n return unittest.TestLoader().loadTestsFromTestCase(TestGroceryFuncs)\n\n\n<mask token>\n", "step-3": "<mask token>\nsys.path.insert(0, '../src/')\n<mask token>\n\n\nclass TestGroceryFuncs(unittest.TestCase):\n\n def test_getRecipeNames(self):\n recipe_names = grocery_functions.get_recipe_names('test-recipes')\n self.assertTrue(recipe_names[0] == 'Cajun Chicken & Rice')\n self.assertTrue(recipe_names[1] == 'Chicken Curry in a Hurry')\n self.assertTrue(recipe_names[2] == 'Chicken_Zucchini_and_Prosciutto')\n self.assertTrue(recipe_names[3] ==\n 'Healthy Roasted Chicken and Veggies (one pan)')\n self.assertTrue(recipe_names[4] ==\n 'Kielbasa, Pepper, Onion and Potato Hash')\n\n def test_getIngredientsFromFile(self):\n list = grocery_functions.get_ingredients_from_recipe_file(\n 'test-recipes\\\\Kielbasa, Pepper, Onion and Potato Hash.txt')\n self.assertTrue(list[0].name == 'turkey kielbasa')\n self.assertTrue(list[0].unit == 'ounce')\n self.assertTrue(list[0].number == '14')\n self.assertTrue(list[2].name == 'non-green bell pepper')\n self.assertTrue(list[2].unit == '')\n self.assertTrue(list[2].number == '1')\n self.assertTrue(list[6].name == 'salt')\n self.assertTrue(list[6].unit == '')\n self.assertTrue(list[6].number == '1')\n\n def test_getTagsFromFile(self):\n list = grocery_functions.get_tags_from_recipe_file(\n 'test-recipes\\\\Chicken Curry in a Hurry.txt')\n self.assertTrue(list[0] == 'chicken')\n self.assertTrue(list[1] == 'easy')\n self.assertTrue(list[2] == 'stove')\n\n def test_getRecipeFromFile(self):\n list = grocery_functions.get_recipe_from_recipe_file(\n 'test-recipes\\\\Healthy Roasted Chicken and Veggies (one pan).txt')\n self.assertTrue(list[2] ==\n '1 cup bell pepper, chopped (any colors you like)')\n self.assertTrue(list[10] == '1 teaspoon italian seasoning')\n self.assertTrue(list[15] ==\n 'Place the chicken and veggies in a medium roasting dish or sheet pan. Add the olive oil, '\n )\n\n def test_condenseList(self):\n recipe_names = grocery_functions.get_recipe_names('test-recipes')\n grocery_list = []\n for recipe in recipe_names:\n grocery_list += grocery_functions.get_ingredients_from_recipe_file(\n 'test-recipes\\\\' + recipe + '.txt')\n grocery_list = grocery_functions.condense_grocery_list(grocery_list)\n\n def test_makeAllIngredientsFile(self):\n grocery_functions.make_all_ingredients_file()\n\n def test_getItemDeptDicts(self):\n grocery_functions.get_item_dept_dicts(\n 'Smiths-Eu-JT-ItemDepartments.txt')\n\n def test_checkRecipeFormat(self):\n errors = grocery_functions.check_recipe_format('test-recipes', False)\n self.assertTrue(errors == [])\n errors = grocery_functions.check_recipe_format('broken-test-recipes',\n False)\n self.assertTrue(\n 'invalid format, \"1 lb, chicken breasts\" in: broken-test-recipes//broken_recipe.txt'\n in errors)\n self.assertTrue(\n 'invalid heading, \"wrong_header\" in file: broken-test-recipes//broken_recipe.txt'\n in errors)\n self.assertTrue(\n 'Blank recipe in: broken-test-recipes//broken_recipe.txt' in errors\n )\n\n def test_update_default_ing_dept_file(self):\n grocery_functions.update_default_ing_dept_file(grocery_functions.\n get_all_ingredients('test-recipes'))\n\n def suite(self):\n return unittest.TestLoader().loadTestsFromTestCase(TestGroceryFuncs)\n\n\nif __name__ == '__main__':\n suite = unittest.TestLoader().loadTestsFromTestCase(TestGroceryFuncs)\n unittest.TextTestRunner(verbosity=2).run(suite)\n", "step-4": "__author__ = 'Joe'\nimport sys\nsys.path.insert(0, '../src/')\nimport grocery_functions\nimport unittest\n\n\nclass TestGroceryFuncs(unittest.TestCase):\n\n def test_getRecipeNames(self):\n recipe_names = grocery_functions.get_recipe_names('test-recipes')\n self.assertTrue(recipe_names[0] == 'Cajun Chicken & Rice')\n self.assertTrue(recipe_names[1] == 'Chicken Curry in a Hurry')\n self.assertTrue(recipe_names[2] == 'Chicken_Zucchini_and_Prosciutto')\n self.assertTrue(recipe_names[3] ==\n 'Healthy Roasted Chicken and Veggies (one pan)')\n self.assertTrue(recipe_names[4] ==\n 'Kielbasa, Pepper, Onion and Potato Hash')\n\n def test_getIngredientsFromFile(self):\n list = grocery_functions.get_ingredients_from_recipe_file(\n 'test-recipes\\\\Kielbasa, Pepper, Onion and Potato Hash.txt')\n self.assertTrue(list[0].name == 'turkey kielbasa')\n self.assertTrue(list[0].unit == 'ounce')\n self.assertTrue(list[0].number == '14')\n self.assertTrue(list[2].name == 'non-green bell pepper')\n self.assertTrue(list[2].unit == '')\n self.assertTrue(list[2].number == '1')\n self.assertTrue(list[6].name == 'salt')\n self.assertTrue(list[6].unit == '')\n self.assertTrue(list[6].number == '1')\n\n def test_getTagsFromFile(self):\n list = grocery_functions.get_tags_from_recipe_file(\n 'test-recipes\\\\Chicken Curry in a Hurry.txt')\n self.assertTrue(list[0] == 'chicken')\n self.assertTrue(list[1] == 'easy')\n self.assertTrue(list[2] == 'stove')\n\n def test_getRecipeFromFile(self):\n list = grocery_functions.get_recipe_from_recipe_file(\n 'test-recipes\\\\Healthy Roasted Chicken and Veggies (one pan).txt')\n self.assertTrue(list[2] ==\n '1 cup bell pepper, chopped (any colors you like)')\n self.assertTrue(list[10] == '1 teaspoon italian seasoning')\n self.assertTrue(list[15] ==\n 'Place the chicken and veggies in a medium roasting dish or sheet pan. Add the olive oil, '\n )\n\n def test_condenseList(self):\n recipe_names = grocery_functions.get_recipe_names('test-recipes')\n grocery_list = []\n for recipe in recipe_names:\n grocery_list += grocery_functions.get_ingredients_from_recipe_file(\n 'test-recipes\\\\' + recipe + '.txt')\n grocery_list = grocery_functions.condense_grocery_list(grocery_list)\n\n def test_makeAllIngredientsFile(self):\n grocery_functions.make_all_ingredients_file()\n\n def test_getItemDeptDicts(self):\n grocery_functions.get_item_dept_dicts(\n 'Smiths-Eu-JT-ItemDepartments.txt')\n\n def test_checkRecipeFormat(self):\n errors = grocery_functions.check_recipe_format('test-recipes', False)\n self.assertTrue(errors == [])\n errors = grocery_functions.check_recipe_format('broken-test-recipes',\n False)\n self.assertTrue(\n 'invalid format, \"1 lb, chicken breasts\" in: broken-test-recipes//broken_recipe.txt'\n in errors)\n self.assertTrue(\n 'invalid heading, \"wrong_header\" in file: broken-test-recipes//broken_recipe.txt'\n in errors)\n self.assertTrue(\n 'Blank recipe in: broken-test-recipes//broken_recipe.txt' in errors\n )\n\n def test_update_default_ing_dept_file(self):\n grocery_functions.update_default_ing_dept_file(grocery_functions.\n get_all_ingredients('test-recipes'))\n\n def suite(self):\n return unittest.TestLoader().loadTestsFromTestCase(TestGroceryFuncs)\n\n\nif __name__ == '__main__':\n suite = unittest.TestLoader().loadTestsFromTestCase(TestGroceryFuncs)\n unittest.TextTestRunner(verbosity=2).run(suite)\n", "step-5": "__author__ = 'Joe'\nimport sys\nsys.path.insert(0,'../src/')\n\nimport grocery_functions\nimport unittest\n\nclass TestGroceryFuncs(unittest.TestCase):\n\n def test_getRecipeNames(self):\n recipe_names = grocery_functions.get_recipe_names(\"test-recipes\")\n self.assertTrue(recipe_names[0] == \"Cajun Chicken & Rice\")\n self.assertTrue(recipe_names[1] == \"Chicken Curry in a Hurry\")\n self.assertTrue(recipe_names[2] == 'Chicken_Zucchini_and_Prosciutto')\n self.assertTrue(recipe_names[3] == 'Healthy Roasted Chicken and Veggies (one pan)')\n self.assertTrue(recipe_names[4] == 'Kielbasa, Pepper, Onion and Potato Hash')\n\n def test_getIngredientsFromFile(self):\n list=grocery_functions.get_ingredients_from_recipe_file(\"test-recipes\\Kielbasa, Pepper, Onion and Potato Hash.txt\")\n self.assertTrue(list[0].name == 'turkey kielbasa')\n self.assertTrue(list[0].unit == 'ounce')\n self.assertTrue(list[0].number == '14')\n self.assertTrue(list[2].name == 'non-green bell pepper')\n self.assertTrue(list[2].unit == '')\n self.assertTrue(list[2].number == '1')\n self.assertTrue(list[6].name == 'salt')\n self.assertTrue(list[6].unit == '')\n self.assertTrue(list[6].number == '1')\n\n def test_getTagsFromFile(self):\n list=grocery_functions.get_tags_from_recipe_file(\"test-recipes\\Chicken Curry in a Hurry.txt\")\n self.assertTrue(list[0] == 'chicken')\n self.assertTrue(list[1] == 'easy')\n self.assertTrue(list[2] == 'stove')\n\n def test_getRecipeFromFile(self):\n list=grocery_functions.get_recipe_from_recipe_file(\"test-recipes\\Healthy Roasted Chicken and Veggies (one pan).txt\")\n self.assertTrue(list[2]==\"1 cup bell pepper, chopped (any colors you like)\")\n self.assertTrue(list[10]==\"1 teaspoon italian seasoning\")\n self.assertTrue(list[15]==\"Place the chicken and veggies in a medium roasting dish or sheet pan. Add the olive oil, \")\n\n def test_condenseList(self):\n recipe_names = grocery_functions.get_recipe_names(\"test-recipes\")\n grocery_list=[]\n for recipe in recipe_names:\n grocery_list += grocery_functions.get_ingredients_from_recipe_file(\"test-recipes\\\\\"+recipe+\".txt\")\n grocery_list=grocery_functions.condense_grocery_list(grocery_list)\n # grocery_functions.print_grocery_list(grocery_list)\n # grocery_functions.sort_and_print_grocery_List(grocery_list, \"Smiths-Eu-JT-ItemDepartments.txt\")\n\n def test_makeAllIngredientsFile(self):\n grocery_functions.make_all_ingredients_file()\n\n def test_getItemDeptDicts(self):\n grocery_functions.get_item_dept_dicts(\"Smiths-Eu-JT-ItemDepartments.txt\")\n\n def test_checkRecipeFormat(self):\n errors=grocery_functions.check_recipe_format(\"test-recipes\", False)\n self.assertTrue(errors == [])\n errors=grocery_functions.check_recipe_format(\"broken-test-recipes\", False)\n self.assertTrue('invalid format, \"1 lb, chicken breasts\" in: broken-test-recipes//broken_recipe.txt' in errors)\n self.assertTrue('invalid heading, \"wrong_header\" in file: broken-test-recipes//broken_recipe.txt' in errors)\n self.assertTrue('Blank recipe in: broken-test-recipes//broken_recipe.txt' in errors)\n\n def test_update_default_ing_dept_file(self):\n grocery_functions.update_default_ing_dept_file(grocery_functions.get_all_ingredients(\"test-recipes\"))\n\n def suite(self):\n return unittest.TestLoader().loadTestsFromTestCase(TestGroceryFuncs)\n\nif __name__ == '__main__':\n suite = unittest.TestLoader().loadTestsFromTestCase(TestGroceryFuncs)\n unittest.TextTestRunner(verbosity=2).run(suite)", "step-ids": [ 4, 8, 12, 14, 15 ] }
[ 4, 8, 12, 14, 15 ]
"""config URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.conf import settings from django.urls import include, path from rest_framework import routers from BugBytes import views from django.conf.urls.static import static router = routers.DefaultRouter() router.register(r'species', views.SpeciesViewSet) router.register(r'com_names', views.Com_NamesViewSet) router.register(r'photos', views.PhotosViewSet) urlpatterns = [ path('admin/', admin.site.urls), path('api/', include(router.urls)), path('api-auth/', include('rest_framework.urls', namespace='rest_framework')), path('bugbytes/<int:tensorflow_id>/view_species', views.view_species, name='view_species'), path('', views.landing, name='landing'), path('model_json/', views.model_json, name='model_json'), ] if settings.DEBUG: # new urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
normal
{ "blob_id": "786bc5d44115b46bd246e85e85c8f8c1f20737b9", "index": 7921, "step-1": "<mask token>\n", "step-2": "<mask token>\nrouter.register('species', views.SpeciesViewSet)\nrouter.register('com_names', views.Com_NamesViewSet)\nrouter.register('photos', views.PhotosViewSet)\n<mask token>\nif settings.DEBUG:\n urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT\n )\n", "step-3": "<mask token>\nrouter = routers.DefaultRouter()\nrouter.register('species', views.SpeciesViewSet)\nrouter.register('com_names', views.Com_NamesViewSet)\nrouter.register('photos', views.PhotosViewSet)\nurlpatterns = [path('admin/', admin.site.urls), path('api/', include(router\n .urls)), path('api-auth/', include('rest_framework.urls', namespace=\n 'rest_framework')), path('bugbytes/<int:tensorflow_id>/view_species',\n views.view_species, name='view_species'), path('', views.landing, name=\n 'landing'), path('model_json/', views.model_json, name='model_json')]\nif settings.DEBUG:\n urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT\n )\n", "step-4": "<mask token>\nfrom django.contrib import admin\nfrom django.conf import settings\nfrom django.urls import include, path\nfrom rest_framework import routers\nfrom BugBytes import views\nfrom django.conf.urls.static import static\nrouter = routers.DefaultRouter()\nrouter.register('species', views.SpeciesViewSet)\nrouter.register('com_names', views.Com_NamesViewSet)\nrouter.register('photos', views.PhotosViewSet)\nurlpatterns = [path('admin/', admin.site.urls), path('api/', include(router\n .urls)), path('api-auth/', include('rest_framework.urls', namespace=\n 'rest_framework')), path('bugbytes/<int:tensorflow_id>/view_species',\n views.view_species, name='view_species'), path('', views.landing, name=\n 'landing'), path('model_json/', views.model_json, name='model_json')]\nif settings.DEBUG:\n urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT\n )\n", "step-5": "\"\"\"config URL Configuration\n\nThe `urlpatterns` list routes URLs to views. For more information please see:\n https://docs.djangoproject.com/en/2.2/topics/http/urls/\nExamples:\nFunction views\n 1. Add an import: from my_app import views\n 2. Add a URL to urlpatterns: path('', views.home, name='home')\nClass-based views\n 1. Add an import: from other_app.views import Home\n 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')\nIncluding another URLconf\n 1. Import the include() function: from django.urls import include, path\n 2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))\n\"\"\"\nfrom django.contrib import admin\nfrom django.conf import settings\nfrom django.urls import include, path\nfrom rest_framework import routers\nfrom BugBytes import views\nfrom django.conf.urls.static import static\n\nrouter = routers.DefaultRouter()\nrouter.register(r'species', views.SpeciesViewSet)\nrouter.register(r'com_names', views.Com_NamesViewSet)\nrouter.register(r'photos', views.PhotosViewSet)\n\nurlpatterns = [\n path('admin/', admin.site.urls),\n path('api/', include(router.urls)),\n path('api-auth/', include('rest_framework.urls', namespace='rest_framework')),\n path('bugbytes/<int:tensorflow_id>/view_species',\n views.view_species, name='view_species'),\n path('', views.landing, name='landing'),\n path('model_json/', views.model_json, name='model_json'),\n]\n\nif settings.DEBUG: # new\n urlpatterns += static(settings.MEDIA_URL,\n document_root=settings.MEDIA_ROOT)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import pytest from pandas import ( Index, NaT, ) import pandas._testing as tm def test_astype_str_from_bytes(): # https://github.com/pandas-dev/pandas/issues/38607 idx = Index(["あ", b"a"], dtype="object") result = idx.astype(str) expected = Index(["あ", "a"], dtype="object") tm.assert_index_equal(result, expected) def test_astype_invalid_nas_to_tdt64_raises(): # GH#45722 don't cast np.datetime64 NaTs to timedelta64 NaT idx = Index([NaT.asm8] * 2, dtype=object) msg = r"Cannot cast Index to dtype timedelta64\[ns\]" with pytest.raises(TypeError, match=msg): idx.astype("m8[ns]")
normal
{ "blob_id": "13b2fea09f5a4300563dd8870fe1841b47756b36", "index": 9972, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef test_astype_invalid_nas_to_tdt64_raises():\n idx = Index([NaT.asm8] * 2, dtype=object)\n msg = 'Cannot cast Index to dtype timedelta64\\\\[ns\\\\]'\n with pytest.raises(TypeError, match=msg):\n idx.astype('m8[ns]')\n", "step-3": "<mask token>\n\n\ndef test_astype_str_from_bytes():\n idx = Index(['あ', b'a'], dtype='object')\n result = idx.astype(str)\n expected = Index(['あ', 'a'], dtype='object')\n tm.assert_index_equal(result, expected)\n\n\ndef test_astype_invalid_nas_to_tdt64_raises():\n idx = Index([NaT.asm8] * 2, dtype=object)\n msg = 'Cannot cast Index to dtype timedelta64\\\\[ns\\\\]'\n with pytest.raises(TypeError, match=msg):\n idx.astype('m8[ns]')\n", "step-4": "import pytest\nfrom pandas import Index, NaT\nimport pandas._testing as tm\n\n\ndef test_astype_str_from_bytes():\n idx = Index(['あ', b'a'], dtype='object')\n result = idx.astype(str)\n expected = Index(['あ', 'a'], dtype='object')\n tm.assert_index_equal(result, expected)\n\n\ndef test_astype_invalid_nas_to_tdt64_raises():\n idx = Index([NaT.asm8] * 2, dtype=object)\n msg = 'Cannot cast Index to dtype timedelta64\\\\[ns\\\\]'\n with pytest.raises(TypeError, match=msg):\n idx.astype('m8[ns]')\n", "step-5": "import pytest\n\nfrom pandas import (\n Index,\n NaT,\n)\nimport pandas._testing as tm\n\n\ndef test_astype_str_from_bytes():\n # https://github.com/pandas-dev/pandas/issues/38607\n idx = Index([\"あ\", b\"a\"], dtype=\"object\")\n result = idx.astype(str)\n expected = Index([\"あ\", \"a\"], dtype=\"object\")\n tm.assert_index_equal(result, expected)\n\n\ndef test_astype_invalid_nas_to_tdt64_raises():\n # GH#45722 don't cast np.datetime64 NaTs to timedelta64 NaT\n idx = Index([NaT.asm8] * 2, dtype=object)\n\n msg = r\"Cannot cast Index to dtype timedelta64\\[ns\\]\"\n with pytest.raises(TypeError, match=msg):\n idx.astype(\"m8[ns]\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from os import environ import boto3 from flask import Flask, redirect from flask_sqlalchemy import SQLAlchemy from json import load from pathlib import Path path = Path(__file__).parent db = SQLAlchemy() with open(path / "../schemas.json", "r") as fp: schemas = load(fp) with open(path / "../config.json", "r") as fp: config = load(fp) app = Flask(__name__, template_folder="templates") app.config["SECRET_KEY"] = "3205fc85cd004116bfe218f14192e49a" app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///app.db" app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False app.config["SWAGGER_UI_OAUTH_CLIENT_ID"] = "documentation" domain = app.config.get("SERVER_NAME") port = environ.get("PORT", config["default_port"]) redirect_uri = environ.get("REDIRECT_URI", config["redirect_uri"]) client_uri = environ.get("CLIENT_URI", config["client_uri"]) client_s3 = boto3.resource("s3") @app.route("/") def redirect_to_swagger(): return redirect("/swagger", 302)
normal
{ "blob_id": "631904ae96584bd19756f9335175a419397ac252", "index": 8562, "step-1": "<mask token>\n\n\[email protected]('/')\ndef redirect_to_swagger():\n return redirect('/swagger', 302)\n", "step-2": "<mask token>\nwith open(path / '../schemas.json', 'r') as fp:\n schemas = load(fp)\nwith open(path / '../config.json', 'r') as fp:\n config = load(fp)\n<mask token>\n\n\[email protected]('/')\ndef redirect_to_swagger():\n return redirect('/swagger', 302)\n", "step-3": "<mask token>\npath = Path(__file__).parent\ndb = SQLAlchemy()\nwith open(path / '../schemas.json', 'r') as fp:\n schemas = load(fp)\nwith open(path / '../config.json', 'r') as fp:\n config = load(fp)\napp = Flask(__name__, template_folder='templates')\napp.config['SECRET_KEY'] = '3205fc85cd004116bfe218f14192e49a'\napp.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///app.db'\napp.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\napp.config['SWAGGER_UI_OAUTH_CLIENT_ID'] = 'documentation'\ndomain = app.config.get('SERVER_NAME')\nport = environ.get('PORT', config['default_port'])\nredirect_uri = environ.get('REDIRECT_URI', config['redirect_uri'])\nclient_uri = environ.get('CLIENT_URI', config['client_uri'])\nclient_s3 = boto3.resource('s3')\n\n\[email protected]('/')\ndef redirect_to_swagger():\n return redirect('/swagger', 302)\n", "step-4": "from os import environ\nimport boto3\nfrom flask import Flask, redirect\nfrom flask_sqlalchemy import SQLAlchemy\nfrom json import load\nfrom pathlib import Path\npath = Path(__file__).parent\ndb = SQLAlchemy()\nwith open(path / '../schemas.json', 'r') as fp:\n schemas = load(fp)\nwith open(path / '../config.json', 'r') as fp:\n config = load(fp)\napp = Flask(__name__, template_folder='templates')\napp.config['SECRET_KEY'] = '3205fc85cd004116bfe218f14192e49a'\napp.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///app.db'\napp.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\napp.config['SWAGGER_UI_OAUTH_CLIENT_ID'] = 'documentation'\ndomain = app.config.get('SERVER_NAME')\nport = environ.get('PORT', config['default_port'])\nredirect_uri = environ.get('REDIRECT_URI', config['redirect_uri'])\nclient_uri = environ.get('CLIENT_URI', config['client_uri'])\nclient_s3 = boto3.resource('s3')\n\n\[email protected]('/')\ndef redirect_to_swagger():\n return redirect('/swagger', 302)\n", "step-5": "from os import environ\n\nimport boto3\nfrom flask import Flask, redirect\nfrom flask_sqlalchemy import SQLAlchemy\nfrom json import load\nfrom pathlib import Path\n\n\npath = Path(__file__).parent\n\n\ndb = SQLAlchemy()\n\nwith open(path / \"../schemas.json\", \"r\") as fp:\n schemas = load(fp)\n\nwith open(path / \"../config.json\", \"r\") as fp:\n config = load(fp)\n\napp = Flask(__name__, template_folder=\"templates\")\napp.config[\"SECRET_KEY\"] = \"3205fc85cd004116bfe218f14192e49a\"\napp.config[\"SQLALCHEMY_DATABASE_URI\"] = \"sqlite:///app.db\"\napp.config[\"SQLALCHEMY_TRACK_MODIFICATIONS\"] = False\napp.config[\"SWAGGER_UI_OAUTH_CLIENT_ID\"] = \"documentation\"\ndomain = app.config.get(\"SERVER_NAME\")\n\n\nport = environ.get(\"PORT\", config[\"default_port\"])\nredirect_uri = environ.get(\"REDIRECT_URI\", config[\"redirect_uri\"])\nclient_uri = environ.get(\"CLIENT_URI\", config[\"client_uri\"])\n\nclient_s3 = boto3.resource(\"s3\")\n\n\[email protected](\"/\")\ndef redirect_to_swagger():\n return redirect(\"/swagger\", 302)\n\n\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. # For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, # which means that 28 is a perfect number. # # A number whose proper divisors are less than the number is called deficient and # a number whose proper divisors exceed the number is called abundant. # # As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, # the smallest number that can be written as the sum of two abundant numbers is 24. # By mathematical analysis, it can be shown that all integers greater than 28123 # can be written as the sum of two abundant numbers. # However, this upper limit cannot be reduced any further by analysis even though # it is known that the greatest number that cannot be expressed as the sum of two abundant numbers # is less than this limit. # # Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers. UPPER_LIMIT = 28124 import math import cProfile from bisect import bisect def sum_divisors(N): total = 1 for i in xrange(2, math.sqrt(N)+1): if (N % i == 0): total += i if ((i * i) != N): total += (N / i) return total abundant = [] for i in xrange(11, UPPER_LIMIT): if (sum_divisors(i) > i): abundant.append(i) print "found: ", len(abundant), " abundant numbers less than ", UPPER_LIMIT print "highest abundant number: ", abundant[-1] # Smart: compute all the sums of the abundant numbers we have. Store everything in an array. def AddIntegersNotExpressibleAsTheSumOfTwoAbundantNumbers(): # Create an array that is zero everywhere, then punch out the number # that are expressible as the sum of two abundant numbers integers = [0] * UPPER_LIMIT for i in xrange(0, len(abundant)): for j in xrange(i, len(abundant)): addend = abundant[i] + abundant[j] if (addend < UPPER_LIMIT): integers[addend] = 1 else: break; #don't bother going this high # We've filled in the array. Now do the sum return sum(i for i in xrange(0, UPPER_LIMIT) if integers[i] == 0) #cProfile.run('AddIntegersNotExpressibleAsTheSumOfTwoAbundantNumbers()') print AddIntegersNotExpressibleAsTheSumOfTwoAbundantNumbers() # Somebody else (norvig) did this, which is really slick! def norvig(): abundants = set(i for i in range(1,28124) if sum_divisors(i) > i) def abundantsum(i): return any(i-a in abundants for a in abundants) return sum(i for i in range(1,28124) if not abundantsum(i))
normal
{ "blob_id": "8ca77ed608108a9aa693acb686156e661794d7ab", "index": 394, "step-1": "# A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. \r\n# For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, \r\n# which means that 28 is a perfect number.\r\n#\r\n# A number whose proper divisors are less than the number is called deficient and \r\n# a number whose proper divisors exceed the number is called abundant.\r\n#\r\n# As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, \r\n# the smallest number that can be written as the sum of two abundant numbers is 24. \r\n# By mathematical analysis, it can be shown that all integers greater than 28123 \r\n# can be written as the sum of two abundant numbers. \r\n# However, this upper limit cannot be reduced any further by analysis even though\r\n# it is known that the greatest number that cannot be expressed as the sum of two abundant numbers \r\n# is less than this limit.\r\n#\r\n# Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.\r\n\r\nUPPER_LIMIT = 28124\r\n\r\nimport math\r\nimport cProfile\r\nfrom bisect import bisect\r\ndef sum_divisors(N):\r\n total = 1\r\n for i in xrange(2, math.sqrt(N)+1):\r\n if (N % i == 0):\r\n total += i\r\n if ((i * i) != N):\r\n total += (N / i)\r\n return total\r\n\r\nabundant = []\r\nfor i in xrange(11, UPPER_LIMIT):\r\n if (sum_divisors(i) > i):\r\n abundant.append(i)\r\n\r\n\r\nprint \"found: \", len(abundant), \" abundant numbers less than \", UPPER_LIMIT\r\nprint \"highest abundant number: \", abundant[-1]\r\n\r\n# Smart: compute all the sums of the abundant numbers we have. Store everything in an array.\r\ndef AddIntegersNotExpressibleAsTheSumOfTwoAbundantNumbers():\r\n # Create an array that is zero everywhere, then punch out the number\r\n # that are expressible as the sum of two abundant numbers\r\n integers = [0] * UPPER_LIMIT\r\n for i in xrange(0, len(abundant)):\r\n for j in xrange(i, len(abundant)):\r\n addend = abundant[i] + abundant[j]\r\n if (addend < UPPER_LIMIT):\r\n integers[addend] = 1\r\n else:\r\n break; #don't bother going this high\r\n\r\n # We've filled in the array. Now do the sum\r\n return sum(i for i in xrange(0, UPPER_LIMIT) if integers[i] == 0)\r\n\r\n#cProfile.run('AddIntegersNotExpressibleAsTheSumOfTwoAbundantNumbers()')\r\nprint AddIntegersNotExpressibleAsTheSumOfTwoAbundantNumbers()\r\n\r\n\r\n# Somebody else (norvig) did this, which is really slick!\r\ndef norvig():\r\n abundants = set(i for i in range(1,28124) if sum_divisors(i) > i)\r\n def abundantsum(i):\r\n return any(i-a in abundants for a in abundants)\r\n return sum(i for i in range(1,28124) if not abundantsum(i))\r\n\r\n \r\n \r\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import dlib import cv2 import imageio import torch from PIL import Image from model import AgeGenderModel from mix_model import MixModel from torchvision.transforms import transforms from tqdm import tqdm from retinaface.pre_trained_models import get_model transform = transforms.Compose([ transforms.Resize((112, 112)), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) # Load model age gender model = MixModel() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ckpt = torch.load("outputs_w_free/model_epoch_50.pth") model.load_state_dict(ckpt['model_state_dict']) model.eval() model.to(device) model_face = get_model("resnet50_2020-07-20", max_size=512, device='cuda:1') model_face.eval() # load the detector detector = dlib.get_frontal_face_detector() FPS = 30 # read the video out_video = imageio.get_writer("/home/cybercore/haimd/w_freeze_osaka.mp4", format='mp4', mode='I', fps=FPS) video = imageio.get_reader("/home/cybercore/haimd/osaka.mp4") for img in tqdm(video): if img is not None: # gray = cv2.cvtColor(src=img, code=cv2.COLOR_BGR2GRAY) # faces = detector(gray) annotation = model_face.predict_jsons(img) max_thresh = annotation[0]['score'] bbox = annotation[0]['bbox'] if max_thresh > 0.3: max_head_bbox = [bbox[0], bbox[1], bbox[2], bbox[3]] # for face in faces: # print(face) x1 = bbox[0] y1 = bbox[1] x2 = bbox[2] y2 = bbox[3] x1_face = bbox[0]-20 y1_face = bbox[1]-20 x2_face = bbox[2]+20 y2_face = bbox[3]+20 if x1_face > 0 and y1_face > 0: img_face = img[y1_face:y2_face, x1_face:x2_face] imageio.imwrite('face.jpg', img_face) img_face = Image.fromarray(img_face) img_face = transform(img_face) img_face = torch.unsqueeze(img_face, 0) img_face = img_face.to(device) gen_pred, age_cls_pred, age_reg_pred = model(img_face) _, gen_preds = torch.max(gen_pred, 1) _, age_cls_pred = torch.max(age_cls_pred, 1) if gen_preds.item() == 1: text = f'M:{int(age_reg_pred.item()*100)}' cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(255,0,0), thickness=4) cv2.putText(img, text, org=(x1, y1), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255, 0, 0), thickness=2, lineType=cv2.LINE_AA) elif gen_preds.item() == 0: text = f'F:{int(age_reg_pred.item()*100)}' cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(0,0,255), thickness=4) cv2.putText(img, text, org=(x1, y1), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA) out_video.append_data(img) out_video.close() print('Done')
normal
{ "blob_id": "1cc14836808d70c1e53a9ca948a52776ebc89f4a", "index": 4624, "step-1": "<mask token>\n", "step-2": "<mask token>\nmodel.load_state_dict(ckpt['model_state_dict'])\nmodel.eval()\nmodel.to(device)\n<mask token>\nmodel_face.eval()\n<mask token>\nfor img in tqdm(video):\n if img is not None:\n annotation = model_face.predict_jsons(img)\n max_thresh = annotation[0]['score']\n bbox = annotation[0]['bbox']\n if max_thresh > 0.3:\n max_head_bbox = [bbox[0], bbox[1], bbox[2], bbox[3]]\n x1 = bbox[0]\n y1 = bbox[1]\n x2 = bbox[2]\n y2 = bbox[3]\n x1_face = bbox[0] - 20\n y1_face = bbox[1] - 20\n x2_face = bbox[2] + 20\n y2_face = bbox[3] + 20\n if x1_face > 0 and y1_face > 0:\n img_face = img[y1_face:y2_face, x1_face:x2_face]\n imageio.imwrite('face.jpg', img_face)\n img_face = Image.fromarray(img_face)\n img_face = transform(img_face)\n img_face = torch.unsqueeze(img_face, 0)\n img_face = img_face.to(device)\n gen_pred, age_cls_pred, age_reg_pred = model(img_face)\n _, gen_preds = torch.max(gen_pred, 1)\n _, age_cls_pred = torch.max(age_cls_pred, 1)\n if gen_preds.item() == 1:\n text = f'M:{int(age_reg_pred.item() * 100)}'\n cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2),\n color=(255, 0, 0), thickness=4)\n cv2.putText(img, text, org=(x1, y1), fontFace=cv2.\n FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255, 0, 0\n ), thickness=2, lineType=cv2.LINE_AA)\n elif gen_preds.item() == 0:\n text = f'F:{int(age_reg_pred.item() * 100)}'\n cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2),\n color=(0, 0, 255), thickness=4)\n cv2.putText(img, text, org=(x1, y1), fontFace=cv2.\n FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255\n ), thickness=2, lineType=cv2.LINE_AA)\n out_video.append_data(img)\nout_video.close()\nprint('Done')\n", "step-3": "<mask token>\ntransform = transforms.Compose([transforms.Resize((112, 112)), transforms.\n ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, \n 0.1994, 0.201))])\nmodel = MixModel()\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\nckpt = torch.load('outputs_w_free/model_epoch_50.pth')\nmodel.load_state_dict(ckpt['model_state_dict'])\nmodel.eval()\nmodel.to(device)\nmodel_face = get_model('resnet50_2020-07-20', max_size=512, device='cuda:1')\nmodel_face.eval()\ndetector = dlib.get_frontal_face_detector()\nFPS = 30\nout_video = imageio.get_writer('/home/cybercore/haimd/w_freeze_osaka.mp4',\n format='mp4', mode='I', fps=FPS)\nvideo = imageio.get_reader('/home/cybercore/haimd/osaka.mp4')\nfor img in tqdm(video):\n if img is not None:\n annotation = model_face.predict_jsons(img)\n max_thresh = annotation[0]['score']\n bbox = annotation[0]['bbox']\n if max_thresh > 0.3:\n max_head_bbox = [bbox[0], bbox[1], bbox[2], bbox[3]]\n x1 = bbox[0]\n y1 = bbox[1]\n x2 = bbox[2]\n y2 = bbox[3]\n x1_face = bbox[0] - 20\n y1_face = bbox[1] - 20\n x2_face = bbox[2] + 20\n y2_face = bbox[3] + 20\n if x1_face > 0 and y1_face > 0:\n img_face = img[y1_face:y2_face, x1_face:x2_face]\n imageio.imwrite('face.jpg', img_face)\n img_face = Image.fromarray(img_face)\n img_face = transform(img_face)\n img_face = torch.unsqueeze(img_face, 0)\n img_face = img_face.to(device)\n gen_pred, age_cls_pred, age_reg_pred = model(img_face)\n _, gen_preds = torch.max(gen_pred, 1)\n _, age_cls_pred = torch.max(age_cls_pred, 1)\n if gen_preds.item() == 1:\n text = f'M:{int(age_reg_pred.item() * 100)}'\n cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2),\n color=(255, 0, 0), thickness=4)\n cv2.putText(img, text, org=(x1, y1), fontFace=cv2.\n FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255, 0, 0\n ), thickness=2, lineType=cv2.LINE_AA)\n elif gen_preds.item() == 0:\n text = f'F:{int(age_reg_pred.item() * 100)}'\n cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2),\n color=(0, 0, 255), thickness=4)\n cv2.putText(img, text, org=(x1, y1), fontFace=cv2.\n FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255\n ), thickness=2, lineType=cv2.LINE_AA)\n out_video.append_data(img)\nout_video.close()\nprint('Done')\n", "step-4": "import dlib\nimport cv2\nimport imageio\nimport torch\nfrom PIL import Image\nfrom model import AgeGenderModel\nfrom mix_model import MixModel\nfrom torchvision.transforms import transforms\nfrom tqdm import tqdm\nfrom retinaface.pre_trained_models import get_model\ntransform = transforms.Compose([transforms.Resize((112, 112)), transforms.\n ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, \n 0.1994, 0.201))])\nmodel = MixModel()\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\nckpt = torch.load('outputs_w_free/model_epoch_50.pth')\nmodel.load_state_dict(ckpt['model_state_dict'])\nmodel.eval()\nmodel.to(device)\nmodel_face = get_model('resnet50_2020-07-20', max_size=512, device='cuda:1')\nmodel_face.eval()\ndetector = dlib.get_frontal_face_detector()\nFPS = 30\nout_video = imageio.get_writer('/home/cybercore/haimd/w_freeze_osaka.mp4',\n format='mp4', mode='I', fps=FPS)\nvideo = imageio.get_reader('/home/cybercore/haimd/osaka.mp4')\nfor img in tqdm(video):\n if img is not None:\n annotation = model_face.predict_jsons(img)\n max_thresh = annotation[0]['score']\n bbox = annotation[0]['bbox']\n if max_thresh > 0.3:\n max_head_bbox = [bbox[0], bbox[1], bbox[2], bbox[3]]\n x1 = bbox[0]\n y1 = bbox[1]\n x2 = bbox[2]\n y2 = bbox[3]\n x1_face = bbox[0] - 20\n y1_face = bbox[1] - 20\n x2_face = bbox[2] + 20\n y2_face = bbox[3] + 20\n if x1_face > 0 and y1_face > 0:\n img_face = img[y1_face:y2_face, x1_face:x2_face]\n imageio.imwrite('face.jpg', img_face)\n img_face = Image.fromarray(img_face)\n img_face = transform(img_face)\n img_face = torch.unsqueeze(img_face, 0)\n img_face = img_face.to(device)\n gen_pred, age_cls_pred, age_reg_pred = model(img_face)\n _, gen_preds = torch.max(gen_pred, 1)\n _, age_cls_pred = torch.max(age_cls_pred, 1)\n if gen_preds.item() == 1:\n text = f'M:{int(age_reg_pred.item() * 100)}'\n cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2),\n color=(255, 0, 0), thickness=4)\n cv2.putText(img, text, org=(x1, y1), fontFace=cv2.\n FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255, 0, 0\n ), thickness=2, lineType=cv2.LINE_AA)\n elif gen_preds.item() == 0:\n text = f'F:{int(age_reg_pred.item() * 100)}'\n cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2),\n color=(0, 0, 255), thickness=4)\n cv2.putText(img, text, org=(x1, y1), fontFace=cv2.\n FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255\n ), thickness=2, lineType=cv2.LINE_AA)\n out_video.append_data(img)\nout_video.close()\nprint('Done')\n", "step-5": "import dlib\nimport cv2\nimport imageio\nimport torch\nfrom PIL import Image \nfrom model import AgeGenderModel\nfrom mix_model import MixModel\nfrom torchvision.transforms import transforms\nfrom tqdm import tqdm\nfrom retinaface.pre_trained_models import get_model\n\n\ntransform = transforms.Compose([\n transforms.Resize((112, 112)),\n transforms.ToTensor(),\n transforms.Normalize((0.4914, 0.4822, 0.4465),\n (0.2023, 0.1994, 0.2010)),\n])\n\n# Load model age gender\nmodel = MixModel()\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\nckpt = torch.load(\"outputs_w_free/model_epoch_50.pth\")\n\nmodel.load_state_dict(ckpt['model_state_dict'])\nmodel.eval()\nmodel.to(device)\n\nmodel_face = get_model(\"resnet50_2020-07-20\", max_size=512, device='cuda:1')\nmodel_face.eval()\n\n# load the detector\ndetector = dlib.get_frontal_face_detector()\nFPS = 30\n# read the video\nout_video = imageio.get_writer(\"/home/cybercore/haimd/w_freeze_osaka.mp4\", format='mp4', mode='I', fps=FPS)\nvideo = imageio.get_reader(\"/home/cybercore/haimd/osaka.mp4\")\nfor img in tqdm(video):\n if img is not None:\n # gray = cv2.cvtColor(src=img, code=cv2.COLOR_BGR2GRAY)\n \n # faces = detector(gray)\n \n annotation = model_face.predict_jsons(img)\n max_thresh = annotation[0]['score']\n bbox = annotation[0]['bbox']\n if max_thresh > 0.3:\n max_head_bbox = [bbox[0], bbox[1], bbox[2], bbox[3]]\n \n \n # for face in faces:\n # print(face)\n x1 = bbox[0]\n y1 = bbox[1]\n x2 = bbox[2]\n y2 = bbox[3]\n \n x1_face = bbox[0]-20\n y1_face = bbox[1]-20\n x2_face = bbox[2]+20\n y2_face = bbox[3]+20\n if x1_face > 0 and y1_face > 0:\n \n img_face = img[y1_face:y2_face, x1_face:x2_face]\n \n imageio.imwrite('face.jpg', img_face)\n img_face = Image.fromarray(img_face)\n img_face = transform(img_face)\n\n img_face = torch.unsqueeze(img_face, 0)\n img_face = img_face.to(device) \n\n gen_pred, age_cls_pred, age_reg_pred = model(img_face)\n _, gen_preds = torch.max(gen_pred, 1)\n _, age_cls_pred = torch.max(age_cls_pred, 1)\n\n if gen_preds.item() == 1:\n text = f'M:{int(age_reg_pred.item()*100)}'\n cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(255,0,0), thickness=4)\n cv2.putText(img, text, org=(x1, y1), fontFace=cv2.FONT_HERSHEY_SIMPLEX,\n fontScale=1, color=(255, 0, 0), thickness=2, lineType=cv2.LINE_AA)\n elif gen_preds.item() == 0:\n text = f'F:{int(age_reg_pred.item()*100)}'\n cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(0,0,255), thickness=4)\n cv2.putText(img, text, org=(x1, y1), fontFace=cv2.FONT_HERSHEY_SIMPLEX,\n fontScale=1, color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA)\n out_video.append_data(img)\nout_video.close()\nprint('Done')\n \n \n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from contextlib import suppress import asyncio import shutil from aiohttp import web from bot import app from var import var from logger import update_logging_files loop = asyncio.get_event_loop() def import_handlers(): from deezer import handlers, callback_handlers from spotify import handlers, integration, callback_handlers from vk import handlers, callback_handlers from soundcloud import handlers, callback_handlers import handlers import inline_handlers import callback_handlers import error_handlers if __name__ == '__main__': with suppress(FileNotFoundError): shutil.rmtree('downloads') logging = asyncio.ensure_future(update_logging_files()) import_handlers() web.run_app(app, port=8081) loop.close()
normal
{ "blob_id": "d957fd5fbcdcf2e549323677185eabb8a50536c6", "index": 5716, "step-1": "<mask token>\n\n\ndef import_handlers():\n from deezer import handlers, callback_handlers\n from spotify import handlers, integration, callback_handlers\n from vk import handlers, callback_handlers\n from soundcloud import handlers, callback_handlers\n import handlers\n import inline_handlers\n import callback_handlers\n import error_handlers\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef import_handlers():\n from deezer import handlers, callback_handlers\n from spotify import handlers, integration, callback_handlers\n from vk import handlers, callback_handlers\n from soundcloud import handlers, callback_handlers\n import handlers\n import inline_handlers\n import callback_handlers\n import error_handlers\n\n\nif __name__ == '__main__':\n with suppress(FileNotFoundError):\n shutil.rmtree('downloads')\n logging = asyncio.ensure_future(update_logging_files())\n import_handlers()\n web.run_app(app, port=8081)\n loop.close()\n", "step-3": "<mask token>\nloop = asyncio.get_event_loop()\n\n\ndef import_handlers():\n from deezer import handlers, callback_handlers\n from spotify import handlers, integration, callback_handlers\n from vk import handlers, callback_handlers\n from soundcloud import handlers, callback_handlers\n import handlers\n import inline_handlers\n import callback_handlers\n import error_handlers\n\n\nif __name__ == '__main__':\n with suppress(FileNotFoundError):\n shutil.rmtree('downloads')\n logging = asyncio.ensure_future(update_logging_files())\n import_handlers()\n web.run_app(app, port=8081)\n loop.close()\n", "step-4": "from contextlib import suppress\nimport asyncio\nimport shutil\nfrom aiohttp import web\nfrom bot import app\nfrom var import var\nfrom logger import update_logging_files\nloop = asyncio.get_event_loop()\n\n\ndef import_handlers():\n from deezer import handlers, callback_handlers\n from spotify import handlers, integration, callback_handlers\n from vk import handlers, callback_handlers\n from soundcloud import handlers, callback_handlers\n import handlers\n import inline_handlers\n import callback_handlers\n import error_handlers\n\n\nif __name__ == '__main__':\n with suppress(FileNotFoundError):\n shutil.rmtree('downloads')\n logging = asyncio.ensure_future(update_logging_files())\n import_handlers()\n web.run_app(app, port=8081)\n loop.close()\n", "step-5": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\nfrom contextlib import suppress\nimport asyncio\nimport shutil\n\nfrom aiohttp import web\n\nfrom bot import app\nfrom var import var\nfrom logger import update_logging_files\n\nloop = asyncio.get_event_loop()\n\n\ndef import_handlers():\n from deezer import handlers, callback_handlers\n from spotify import handlers, integration, callback_handlers\n from vk import handlers, callback_handlers\n from soundcloud import handlers, callback_handlers\n import handlers\n import inline_handlers\n import callback_handlers\n import error_handlers\n\n\nif __name__ == '__main__':\n with suppress(FileNotFoundError):\n shutil.rmtree('downloads')\n logging = asyncio.ensure_future(update_logging_files())\n import_handlers()\n web.run_app(app, port=8081)\n loop.close()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#!/usr/bin/python2.7 import os, sys COMPILER = "gcc" SRC_DIR = "../src" INCLUDE_DIR = "../src" BIN_DIR = "../bin" BIN_NAME = False CFLAGS = ["-O3", "-Wall", "-Wextra", "--std=c89", "-pedantic"] DLIBS = ["ws2_32"] if os.name == "nt" else [] DEFINES = [] def strformat(fmt, var): for k in var: fmt = fmt.replace("{%s}" % str(k), var[k]) return fmt def listdir(path): return [os.path.join(dp, f) for dp, dn, fn in os.walk(path) for f in fn] def main(): os.chdir(sys.path[0]) if len(sys.argv) < 2: print "usage: build.py c_file" sys.exit() global BIN_NAME if not BIN_NAME: BIN_NAME = sys.argv[1].replace(".c", ".exe" if os.name == "nt" else "") if not os.path.exists(BIN_DIR): os.makedirs(BIN_DIR) cfiles = filter(lambda x:x.endswith((".c", ".C")), listdir(SRC_DIR)) cfiles.append(sys.argv[1]) cmd = strformat( "{compiler} {flags} {include} {def} -o {outfile} {srcfiles} {libs} {argv}", { "compiler" : COMPILER, "flags" : " ".join(CFLAGS), "include" : "-I" + INCLUDE_DIR, "def" : " ".join(map(lambda x: "-D " + x, DEFINES)), "outfile" : BIN_DIR + "/" + BIN_NAME, "srcfiles" : " ".join(cfiles), "libs" : " ".join(map(lambda x: "-l" + x, DLIBS)), "argv" : " ".join(sys.argv[2:]) }) print "compiling..." res = os.system(cmd) if not res: print(BIN_DIR + "/" + BIN_NAME) print("done" + (" with errors" if res else "")) if __name__ == "__main__": main()
normal
{ "blob_id": "1b4c86fe3aae25aeec6cd75fa8177983ce9d14a2", "index": 1819, "step-1": "#!/usr/bin/python2.7\nimport os, sys\n\nCOMPILER = \"gcc\"\nSRC_DIR = \"../src\"\nINCLUDE_DIR = \"../src\"\nBIN_DIR = \"../bin\"\nBIN_NAME = False\nCFLAGS = [\"-O3\", \"-Wall\", \"-Wextra\", \"--std=c89\", \"-pedantic\"]\nDLIBS = [\"ws2_32\"] if os.name == \"nt\" else []\nDEFINES = []\n\n\ndef strformat(fmt, var):\n for k in var:\n fmt = fmt.replace(\"{%s}\" % str(k), var[k])\n return fmt\n\n\ndef listdir(path):\n return [os.path.join(dp, f) for dp, dn, fn in os.walk(path) for f in fn]\n\n\ndef main():\n os.chdir(sys.path[0])\n\n if len(sys.argv) < 2:\n print \"usage: build.py c_file\"\n sys.exit()\n\n global BIN_NAME\n if not BIN_NAME:\n BIN_NAME = sys.argv[1].replace(\".c\", \".exe\" if os.name == \"nt\" else \"\")\n\n if not os.path.exists(BIN_DIR):\n os.makedirs(BIN_DIR)\n\n cfiles = filter(lambda x:x.endswith((\".c\", \".C\")), listdir(SRC_DIR))\n cfiles.append(sys.argv[1])\n\n cmd = strformat(\n \"{compiler} {flags} {include} {def} -o {outfile} {srcfiles} {libs} {argv}\",\n {\n \"compiler\" : COMPILER,\n \"flags\" : \" \".join(CFLAGS),\n \"include\" : \"-I\" + INCLUDE_DIR,\n \"def\" : \" \".join(map(lambda x: \"-D \" + x, DEFINES)),\n \"outfile\" : BIN_DIR + \"/\" + BIN_NAME,\n \"srcfiles\" : \" \".join(cfiles),\n \"libs\" : \" \".join(map(lambda x: \"-l\" + x, DLIBS)),\n \"argv\" : \" \".join(sys.argv[2:])\n })\n\n print \"compiling...\"\n res = os.system(cmd)\n\n if not res:\n print(BIN_DIR + \"/\" + BIN_NAME)\n\n print(\"done\" + (\" with errors\" if res else \"\"))\n\n\n\nif __name__ == \"__main__\":\n main()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import smart_imports smart_imports.all() class LogicTests(utils_testcase.TestCase): def setUp(self): super(LogicTests, self).setUp() game_logic.create_test_map() self.account_1 = self.accounts_factory.create_account() self.account_1_items = prototypes.AccountItemsPrototype.get_by_account_id(self.account_1.id) self.collection_1 = prototypes.CollectionPrototype.create(caption='collection_1', description='description_1') self.collection_2 = prototypes.CollectionPrototype.create(caption='collection_2', description='description_2', approved=True) self.kit_1 = prototypes.KitPrototype.create(collection=self.collection_1, caption='kit_1', description='description_1') self.kit_2 = prototypes.KitPrototype.create(collection=self.collection_2, caption='kit_2', description='description_2', approved=True) self.kit_3 = prototypes.KitPrototype.create(collection=self.collection_2, caption='kit_3', description='description_3', approved=True) self.item_1_1 = prototypes.ItemPrototype.create(kit=self.kit_1, caption='item_1_1', text='text_1_1', approved=False) self.item_1_2 = prototypes.ItemPrototype.create(kit=self.kit_1, caption='item_1_2', text='text_1_2', approved=True) self.item_2_1 = prototypes.ItemPrototype.create(kit=self.kit_2, caption='item_2_1', text='text_2_1', approved=True) self.item_2_2 = prototypes.ItemPrototype.create(kit=self.kit_2, caption='item_2_2', text='text_2_2', approved=False) self.item_3_1 = prototypes.ItemPrototype.create(kit=self.kit_3, caption='item_3_1', text='text_3_1', approved=True) def test_get_items_count(self): self.assertEqual(logic.get_items_count(prototypes.ItemPrototype._db_all()), (collections.Counter({self.kit_2.id: 1, self.kit_3.id: 1}), {self.collection_2.id: 2})) def test_get_items_count__with_account(self): self.account_1_items.add_item(self.item_3_1) self.account_1_items.save() self.assertEqual(logic.get_items_count(prototypes.ItemPrototype._db_filter(id__in=self.account_1_items.items_ids())), (collections.Counter({self.kit_3.id: 1}), {self.collection_2.id: 1})) def test_get_collections_statistics__no_account(self): self.assertEqual(logic.get_collections_statistics(None), {'total_items_in_collections': {self.collection_2.id: 2}, 'total_items_in_kits': collections.Counter({self.kit_2.id: 1, self.kit_3.id: 1}), 'account_items_in_collections': {}, 'account_items_in_kits': {}, 'total_items': 2, 'account_items': 0}) def test_get_collections_statistics__with_account(self): self.account_1_items.add_item(self.item_3_1) self.account_1_items.save() self.assertEqual(logic.get_collections_statistics(self.account_1_items), {'total_items_in_collections': {self.collection_2.id: 2}, 'total_items_in_kits': collections.Counter({self.kit_2.id: 1, self.kit_3.id: 1}), 'account_items_in_collections': {self.collection_2.id: 1}, 'account_items_in_kits': collections.Counter({self.kit_3.id: 1}), 'total_items': 2, 'account_items': 1})
normal
{ "blob_id": "89e5e82c073f7f87c00fc844c861c6c5cbe6a695", "index": 8893, "step-1": "<mask token>\n\n\nclass LogicTests(utils_testcase.TestCase):\n\n def setUp(self):\n super(LogicTests, self).setUp()\n game_logic.create_test_map()\n self.account_1 = self.accounts_factory.create_account()\n self.account_1_items = (prototypes.AccountItemsPrototype.\n get_by_account_id(self.account_1.id))\n self.collection_1 = prototypes.CollectionPrototype.create(caption=\n 'collection_1', description='description_1')\n self.collection_2 = prototypes.CollectionPrototype.create(caption=\n 'collection_2', description='description_2', approved=True)\n self.kit_1 = prototypes.KitPrototype.create(collection=self.\n collection_1, caption='kit_1', description='description_1')\n self.kit_2 = prototypes.KitPrototype.create(collection=self.\n collection_2, caption='kit_2', description='description_2',\n approved=True)\n self.kit_3 = prototypes.KitPrototype.create(collection=self.\n collection_2, caption='kit_3', description='description_3',\n approved=True)\n self.item_1_1 = prototypes.ItemPrototype.create(kit=self.kit_1,\n caption='item_1_1', text='text_1_1', approved=False)\n self.item_1_2 = prototypes.ItemPrototype.create(kit=self.kit_1,\n caption='item_1_2', text='text_1_2', approved=True)\n self.item_2_1 = prototypes.ItemPrototype.create(kit=self.kit_2,\n caption='item_2_1', text='text_2_1', approved=True)\n self.item_2_2 = prototypes.ItemPrototype.create(kit=self.kit_2,\n caption='item_2_2', text='text_2_2', approved=False)\n self.item_3_1 = prototypes.ItemPrototype.create(kit=self.kit_3,\n caption='item_3_1', text='text_3_1', approved=True)\n <mask token>\n\n def test_get_items_count__with_account(self):\n self.account_1_items.add_item(self.item_3_1)\n self.account_1_items.save()\n self.assertEqual(logic.get_items_count(prototypes.ItemPrototype.\n _db_filter(id__in=self.account_1_items.items_ids())), (\n collections.Counter({self.kit_3.id: 1}), {self.collection_2.id: 1})\n )\n\n def test_get_collections_statistics__no_account(self):\n self.assertEqual(logic.get_collections_statistics(None), {\n 'total_items_in_collections': {self.collection_2.id: 2},\n 'total_items_in_kits': collections.Counter({self.kit_2.id: 1,\n self.kit_3.id: 1}), 'account_items_in_collections': {},\n 'account_items_in_kits': {}, 'total_items': 2, 'account_items': 0})\n\n def test_get_collections_statistics__with_account(self):\n self.account_1_items.add_item(self.item_3_1)\n self.account_1_items.save()\n self.assertEqual(logic.get_collections_statistics(self.\n account_1_items), {'total_items_in_collections': {self.\n collection_2.id: 2}, 'total_items_in_kits': collections.Counter\n ({self.kit_2.id: 1, self.kit_3.id: 1}),\n 'account_items_in_collections': {self.collection_2.id: 1},\n 'account_items_in_kits': collections.Counter({self.kit_3.id: 1}\n ), 'total_items': 2, 'account_items': 1})\n", "step-2": "<mask token>\n\n\nclass LogicTests(utils_testcase.TestCase):\n\n def setUp(self):\n super(LogicTests, self).setUp()\n game_logic.create_test_map()\n self.account_1 = self.accounts_factory.create_account()\n self.account_1_items = (prototypes.AccountItemsPrototype.\n get_by_account_id(self.account_1.id))\n self.collection_1 = prototypes.CollectionPrototype.create(caption=\n 'collection_1', description='description_1')\n self.collection_2 = prototypes.CollectionPrototype.create(caption=\n 'collection_2', description='description_2', approved=True)\n self.kit_1 = prototypes.KitPrototype.create(collection=self.\n collection_1, caption='kit_1', description='description_1')\n self.kit_2 = prototypes.KitPrototype.create(collection=self.\n collection_2, caption='kit_2', description='description_2',\n approved=True)\n self.kit_3 = prototypes.KitPrototype.create(collection=self.\n collection_2, caption='kit_3', description='description_3',\n approved=True)\n self.item_1_1 = prototypes.ItemPrototype.create(kit=self.kit_1,\n caption='item_1_1', text='text_1_1', approved=False)\n self.item_1_2 = prototypes.ItemPrototype.create(kit=self.kit_1,\n caption='item_1_2', text='text_1_2', approved=True)\n self.item_2_1 = prototypes.ItemPrototype.create(kit=self.kit_2,\n caption='item_2_1', text='text_2_1', approved=True)\n self.item_2_2 = prototypes.ItemPrototype.create(kit=self.kit_2,\n caption='item_2_2', text='text_2_2', approved=False)\n self.item_3_1 = prototypes.ItemPrototype.create(kit=self.kit_3,\n caption='item_3_1', text='text_3_1', approved=True)\n\n def test_get_items_count(self):\n self.assertEqual(logic.get_items_count(prototypes.ItemPrototype.\n _db_all()), (collections.Counter({self.kit_2.id: 1, self.kit_3.\n id: 1}), {self.collection_2.id: 2}))\n\n def test_get_items_count__with_account(self):\n self.account_1_items.add_item(self.item_3_1)\n self.account_1_items.save()\n self.assertEqual(logic.get_items_count(prototypes.ItemPrototype.\n _db_filter(id__in=self.account_1_items.items_ids())), (\n collections.Counter({self.kit_3.id: 1}), {self.collection_2.id: 1})\n )\n\n def test_get_collections_statistics__no_account(self):\n self.assertEqual(logic.get_collections_statistics(None), {\n 'total_items_in_collections': {self.collection_2.id: 2},\n 'total_items_in_kits': collections.Counter({self.kit_2.id: 1,\n self.kit_3.id: 1}), 'account_items_in_collections': {},\n 'account_items_in_kits': {}, 'total_items': 2, 'account_items': 0})\n\n def test_get_collections_statistics__with_account(self):\n self.account_1_items.add_item(self.item_3_1)\n self.account_1_items.save()\n self.assertEqual(logic.get_collections_statistics(self.\n account_1_items), {'total_items_in_collections': {self.\n collection_2.id: 2}, 'total_items_in_kits': collections.Counter\n ({self.kit_2.id: 1, self.kit_3.id: 1}),\n 'account_items_in_collections': {self.collection_2.id: 1},\n 'account_items_in_kits': collections.Counter({self.kit_3.id: 1}\n ), 'total_items': 2, 'account_items': 1})\n", "step-3": "<mask token>\nsmart_imports.all()\n\n\nclass LogicTests(utils_testcase.TestCase):\n\n def setUp(self):\n super(LogicTests, self).setUp()\n game_logic.create_test_map()\n self.account_1 = self.accounts_factory.create_account()\n self.account_1_items = (prototypes.AccountItemsPrototype.\n get_by_account_id(self.account_1.id))\n self.collection_1 = prototypes.CollectionPrototype.create(caption=\n 'collection_1', description='description_1')\n self.collection_2 = prototypes.CollectionPrototype.create(caption=\n 'collection_2', description='description_2', approved=True)\n self.kit_1 = prototypes.KitPrototype.create(collection=self.\n collection_1, caption='kit_1', description='description_1')\n self.kit_2 = prototypes.KitPrototype.create(collection=self.\n collection_2, caption='kit_2', description='description_2',\n approved=True)\n self.kit_3 = prototypes.KitPrototype.create(collection=self.\n collection_2, caption='kit_3', description='description_3',\n approved=True)\n self.item_1_1 = prototypes.ItemPrototype.create(kit=self.kit_1,\n caption='item_1_1', text='text_1_1', approved=False)\n self.item_1_2 = prototypes.ItemPrototype.create(kit=self.kit_1,\n caption='item_1_2', text='text_1_2', approved=True)\n self.item_2_1 = prototypes.ItemPrototype.create(kit=self.kit_2,\n caption='item_2_1', text='text_2_1', approved=True)\n self.item_2_2 = prototypes.ItemPrototype.create(kit=self.kit_2,\n caption='item_2_2', text='text_2_2', approved=False)\n self.item_3_1 = prototypes.ItemPrototype.create(kit=self.kit_3,\n caption='item_3_1', text='text_3_1', approved=True)\n\n def test_get_items_count(self):\n self.assertEqual(logic.get_items_count(prototypes.ItemPrototype.\n _db_all()), (collections.Counter({self.kit_2.id: 1, self.kit_3.\n id: 1}), {self.collection_2.id: 2}))\n\n def test_get_items_count__with_account(self):\n self.account_1_items.add_item(self.item_3_1)\n self.account_1_items.save()\n self.assertEqual(logic.get_items_count(prototypes.ItemPrototype.\n _db_filter(id__in=self.account_1_items.items_ids())), (\n collections.Counter({self.kit_3.id: 1}), {self.collection_2.id: 1})\n )\n\n def test_get_collections_statistics__no_account(self):\n self.assertEqual(logic.get_collections_statistics(None), {\n 'total_items_in_collections': {self.collection_2.id: 2},\n 'total_items_in_kits': collections.Counter({self.kit_2.id: 1,\n self.kit_3.id: 1}), 'account_items_in_collections': {},\n 'account_items_in_kits': {}, 'total_items': 2, 'account_items': 0})\n\n def test_get_collections_statistics__with_account(self):\n self.account_1_items.add_item(self.item_3_1)\n self.account_1_items.save()\n self.assertEqual(logic.get_collections_statistics(self.\n account_1_items), {'total_items_in_collections': {self.\n collection_2.id: 2}, 'total_items_in_kits': collections.Counter\n ({self.kit_2.id: 1, self.kit_3.id: 1}),\n 'account_items_in_collections': {self.collection_2.id: 1},\n 'account_items_in_kits': collections.Counter({self.kit_3.id: 1}\n ), 'total_items': 2, 'account_items': 1})\n", "step-4": "import smart_imports\nsmart_imports.all()\n\n\nclass LogicTests(utils_testcase.TestCase):\n\n def setUp(self):\n super(LogicTests, self).setUp()\n game_logic.create_test_map()\n self.account_1 = self.accounts_factory.create_account()\n self.account_1_items = (prototypes.AccountItemsPrototype.\n get_by_account_id(self.account_1.id))\n self.collection_1 = prototypes.CollectionPrototype.create(caption=\n 'collection_1', description='description_1')\n self.collection_2 = prototypes.CollectionPrototype.create(caption=\n 'collection_2', description='description_2', approved=True)\n self.kit_1 = prototypes.KitPrototype.create(collection=self.\n collection_1, caption='kit_1', description='description_1')\n self.kit_2 = prototypes.KitPrototype.create(collection=self.\n collection_2, caption='kit_2', description='description_2',\n approved=True)\n self.kit_3 = prototypes.KitPrototype.create(collection=self.\n collection_2, caption='kit_3', description='description_3',\n approved=True)\n self.item_1_1 = prototypes.ItemPrototype.create(kit=self.kit_1,\n caption='item_1_1', text='text_1_1', approved=False)\n self.item_1_2 = prototypes.ItemPrototype.create(kit=self.kit_1,\n caption='item_1_2', text='text_1_2', approved=True)\n self.item_2_1 = prototypes.ItemPrototype.create(kit=self.kit_2,\n caption='item_2_1', text='text_2_1', approved=True)\n self.item_2_2 = prototypes.ItemPrototype.create(kit=self.kit_2,\n caption='item_2_2', text='text_2_2', approved=False)\n self.item_3_1 = prototypes.ItemPrototype.create(kit=self.kit_3,\n caption='item_3_1', text='text_3_1', approved=True)\n\n def test_get_items_count(self):\n self.assertEqual(logic.get_items_count(prototypes.ItemPrototype.\n _db_all()), (collections.Counter({self.kit_2.id: 1, self.kit_3.\n id: 1}), {self.collection_2.id: 2}))\n\n def test_get_items_count__with_account(self):\n self.account_1_items.add_item(self.item_3_1)\n self.account_1_items.save()\n self.assertEqual(logic.get_items_count(prototypes.ItemPrototype.\n _db_filter(id__in=self.account_1_items.items_ids())), (\n collections.Counter({self.kit_3.id: 1}), {self.collection_2.id: 1})\n )\n\n def test_get_collections_statistics__no_account(self):\n self.assertEqual(logic.get_collections_statistics(None), {\n 'total_items_in_collections': {self.collection_2.id: 2},\n 'total_items_in_kits': collections.Counter({self.kit_2.id: 1,\n self.kit_3.id: 1}), 'account_items_in_collections': {},\n 'account_items_in_kits': {}, 'total_items': 2, 'account_items': 0})\n\n def test_get_collections_statistics__with_account(self):\n self.account_1_items.add_item(self.item_3_1)\n self.account_1_items.save()\n self.assertEqual(logic.get_collections_statistics(self.\n account_1_items), {'total_items_in_collections': {self.\n collection_2.id: 2}, 'total_items_in_kits': collections.Counter\n ({self.kit_2.id: 1, self.kit_3.id: 1}),\n 'account_items_in_collections': {self.collection_2.id: 1},\n 'account_items_in_kits': collections.Counter({self.kit_3.id: 1}\n ), 'total_items': 2, 'account_items': 1})\n", "step-5": "\nimport smart_imports\n\nsmart_imports.all()\n\n\nclass LogicTests(utils_testcase.TestCase):\n\n def setUp(self):\n super(LogicTests, self).setUp()\n\n game_logic.create_test_map()\n\n self.account_1 = self.accounts_factory.create_account()\n\n self.account_1_items = prototypes.AccountItemsPrototype.get_by_account_id(self.account_1.id)\n\n self.collection_1 = prototypes.CollectionPrototype.create(caption='collection_1', description='description_1')\n self.collection_2 = prototypes.CollectionPrototype.create(caption='collection_2', description='description_2', approved=True)\n\n self.kit_1 = prototypes.KitPrototype.create(collection=self.collection_1, caption='kit_1', description='description_1')\n self.kit_2 = prototypes.KitPrototype.create(collection=self.collection_2, caption='kit_2', description='description_2', approved=True)\n self.kit_3 = prototypes.KitPrototype.create(collection=self.collection_2, caption='kit_3', description='description_3', approved=True)\n\n self.item_1_1 = prototypes.ItemPrototype.create(kit=self.kit_1, caption='item_1_1', text='text_1_1', approved=False)\n self.item_1_2 = prototypes.ItemPrototype.create(kit=self.kit_1, caption='item_1_2', text='text_1_2', approved=True)\n self.item_2_1 = prototypes.ItemPrototype.create(kit=self.kit_2, caption='item_2_1', text='text_2_1', approved=True)\n self.item_2_2 = prototypes.ItemPrototype.create(kit=self.kit_2, caption='item_2_2', text='text_2_2', approved=False)\n self.item_3_1 = prototypes.ItemPrototype.create(kit=self.kit_3, caption='item_3_1', text='text_3_1', approved=True)\n\n def test_get_items_count(self):\n self.assertEqual(logic.get_items_count(prototypes.ItemPrototype._db_all()),\n (collections.Counter({self.kit_2.id: 1, self.kit_3.id: 1}), {self.collection_2.id: 2}))\n\n def test_get_items_count__with_account(self):\n self.account_1_items.add_item(self.item_3_1)\n self.account_1_items.save()\n\n self.assertEqual(logic.get_items_count(prototypes.ItemPrototype._db_filter(id__in=self.account_1_items.items_ids())),\n (collections.Counter({self.kit_3.id: 1}), {self.collection_2.id: 1}))\n\n def test_get_collections_statistics__no_account(self):\n self.assertEqual(logic.get_collections_statistics(None),\n {'total_items_in_collections': {self.collection_2.id: 2},\n 'total_items_in_kits': collections.Counter({self.kit_2.id: 1, self.kit_3.id: 1}),\n 'account_items_in_collections': {},\n 'account_items_in_kits': {},\n 'total_items': 2,\n 'account_items': 0})\n\n def test_get_collections_statistics__with_account(self):\n\n self.account_1_items.add_item(self.item_3_1)\n self.account_1_items.save()\n\n self.assertEqual(logic.get_collections_statistics(self.account_1_items),\n {'total_items_in_collections': {self.collection_2.id: 2},\n 'total_items_in_kits': collections.Counter({self.kit_2.id: 1, self.kit_3.id: 1}),\n 'account_items_in_collections': {self.collection_2.id: 1},\n 'account_items_in_kits': collections.Counter({self.kit_3.id: 1}),\n 'total_items': 2,\n 'account_items': 1})\n", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
#the method of same name present in any class, it is call by anywhere #object of different type is responds to same methods class pycharm: def execute(self): print("COde check") print("compile") class MyEditor: def execute(self): print("Spell Cheack") print("Auto COmpile") print("COde check") print("compile") class laptop: def code(self,ide): ide.execute() ide=pycharm() ide2=MyEditor() a1=laptop() a1.code(ide) print() a1.code(ide2)
normal
{ "blob_id": "3ec162070f79ae38d6ae3ceb858c15b6e39f7027", "index": 9870, "step-1": "<mask token>\n\n\nclass MyEditor:\n\n def execute(self):\n print('Spell Cheack')\n print('Auto COmpile')\n print('COde check')\n print('compile')\n\n\nclass laptop:\n\n def code(self, ide):\n ide.execute()\n\n\n<mask token>\n", "step-2": "class pycharm:\n\n def execute(self):\n print('COde check')\n print('compile')\n\n\nclass MyEditor:\n\n def execute(self):\n print('Spell Cheack')\n print('Auto COmpile')\n print('COde check')\n print('compile')\n\n\nclass laptop:\n\n def code(self, ide):\n ide.execute()\n\n\n<mask token>\n", "step-3": "class pycharm:\n\n def execute(self):\n print('COde check')\n print('compile')\n\n\nclass MyEditor:\n\n def execute(self):\n print('Spell Cheack')\n print('Auto COmpile')\n print('COde check')\n print('compile')\n\n\nclass laptop:\n\n def code(self, ide):\n ide.execute()\n\n\n<mask token>\na1.code(ide)\nprint()\na1.code(ide2)\n", "step-4": "class pycharm:\n\n def execute(self):\n print('COde check')\n print('compile')\n\n\nclass MyEditor:\n\n def execute(self):\n print('Spell Cheack')\n print('Auto COmpile')\n print('COde check')\n print('compile')\n\n\nclass laptop:\n\n def code(self, ide):\n ide.execute()\n\n\nide = pycharm()\nide2 = MyEditor()\na1 = laptop()\na1.code(ide)\nprint()\na1.code(ide2)\n", "step-5": "#the method of same name present in any class, it is call by anywhere\n#object of different type is responds to same methods\nclass pycharm:\n def execute(self):\n print(\"COde check\")\n print(\"compile\")\nclass MyEditor:\n def execute(self):\n print(\"Spell Cheack\")\n print(\"Auto COmpile\")\n print(\"COde check\")\n print(\"compile\")\n\n\nclass laptop:\n def code(self,ide):\n ide.execute()\n\nide=pycharm()\nide2=MyEditor()\na1=laptop()\na1.code(ide)\nprint()\na1.code(ide2)\n\n", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]
import pandas as pd import numpy as np import json from pprint import pprint from shapely.geometry import shape, Point from geopy.geocoders import Nominatim from geopy.exc import GeocoderTimedOut from geopy.exc import GeocoderServiceError import collections from matplotlib import pyplot as plt import time import csv geolocator = Nominatim(user_agent='Neel') def get_neighborhoods(): with open('AnalysisNeighborhoods.geojson') as f: neighborhoods_obj = json.load(f) return neighborhoods_obj def get_point_from_loc(location_str): location_str = location_str.replace('(', '') location_str = location_str.replace(')', '') location_str = location_str.replace(',', '') lat_lon = location_str.split(' ') return Point(float(lat_lon[1]), float(lat_lon[0])) def get_address_from_block(block_addr): block_addr = block_addr.replace('Block Of', '') block_addr_split = block_addr.split(' ') block_addr = block_addr_split # make it an address instead of block start #print block_addr block_addr[0] = str(int(block_addr[0]) + 1) block_addr = ' '.join(block_addr) + ' San Francisco CA' return block_addr # Using latitude longitude location, find the neighborhood the eviction belongs to def get_neighborhoods_from_locations(evictions, neighborhoods): num_found = 0 num_total = 0 locations_dict = collections.defaultdict(int) locations_with_years_dict = collections.defaultdict(lambda: collections.defaultdict(int)) for index, eviction in evictions.iterrows(): point = get_point_from_loc(eviction['Location']) found_location = False for feature in neighborhoods['features']: polygon = shape(feature['geometry']) if polygon.contains(point): #print('Found containing polygon:', feature['properties']['nhood']()) num_found += 1 found_location = True neighborhood = feature['properties']['nhood'] year = int(eviction['File Date'].split('/')[2]) if year > 90: year = year + 1900 else: year = year + 2000 locations_dict[neighborhood] += 1 locations_with_years_dict[neighborhood][str(year)] += 1 break if not found_location: print('Location ' + str(eviction['Eviction ID']) + ' not found, Given [location: ' + str(eviction['Neighborhoods - Analysis Boundaries'])) num_total += 1 years = [str(i) for i in range(1997, 2019)] #years = ['97', '98', '99', '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12', '13', '14', '15', '16', '17', '18'] with open('Evictions_By_Location.csv', mode='w') as csv_file: csv_writer = csv.writer(csv_file, delimiter=',', quotechar='"') csv_writer.writerow(['Location', 'Number of Evictions']) for k, v in locations_dict.items(): csv_writer.writerow([k, v]) with open('Evictions_By_Year_Location.csv', mode='w') as csv_file: csv_writer = csv.writer(csv_file, delimiter=',', quotechar='"') header = ['Location'] for year in years: header.append(year) csv_writer.writerow(header) for k, v in locations_with_years_dict.items(): row = [k] for year in years: row.append(v[year]) csv_writer.writerow(row) for k, v in locations_with_years_dict.items(): print k evictions = [int(v[year]) for year in years] # plt.figure() # plt.plot(years, evictions) plt.title(k) for year in years: print year + ': ' + str(v[year]) print '' # plt.show() return locations_dict, locations_with_years_dict def get_geocode_address(addr): try: return geolocator.geocode(addr) except (GeocoderTimedOut, GeocoderServiceError) as e: time.sleep(5) return get_geocode_address(addr) #For rows missing latitude longitude location, # use the block address to add missing lat long to dataframe # If the block address is incorrect, print it so we can correct it manually def set_missing_locations(evictions): missing_location_rows = evictions[evictions['Location'].isnull()] print('Num missing ' + str(len(missing_location_rows))) num_not_found = 0 num_found = 0 for index, row in missing_location_rows.iterrows(): #print row['Eviction ID'] addr = get_address_from_block(row['Address']) location = get_geocode_address(addr) if location == None: num_not_found += 1 print('NOT FOUND ' + str(row['Eviction ID']) + ': ' + addr) else: evictions.at[index, 'Location'] = '(' + str(location.latitude) + ', ' + str(location.longitude) + ')' num_found += 1 if (num_found + num_not_found) % 50 == 0: print('Processed ' + str(num_found + num_not_found) + ' evictions') print 'Total not found ' + str(num_not_found) print 'Total found ' + str(num_found) evictions.to_csv('Eviction_Notices_With_Locations.csv') evictions = pd.read_csv('Eviction_Notices_With_Locations.csv') neighborhoods = get_neighborhoods() #set_missing_locations(evictions) locations_dict, locations_with_years_dict = get_neighborhoods_from_locations(evictions, neighborhoods) with open('AnalysisNeighborhoods.geojson') as f: data = json.loads(f.read()) years = [i for i in range(1997, 2019)] for neighborhood_obj in data['features']: neighborhood_name = neighborhood_obj['properties']['nhood'] neighborhood_obj['properties']['evictions'] = {} neighborhood_obj['properties']['evictions']['total'] = locations_dict[neighborhood_name] for year in years: neighborhood_obj['properties']['evictions'][str(year)] = locations_with_years_dict[neighborhood_name][year] with open('AnalysisNeighborhoods.geojson', 'w') as f: json.dump(data, f)
normal
{ "blob_id": "c1bb2052b3f623c6787ba080dff2dc81f4d6f55e", "index": 1818, "step-1": "import pandas as pd\nimport numpy as np\nimport json\nfrom pprint import pprint\nfrom shapely.geometry import shape, Point\nfrom geopy.geocoders import Nominatim\nfrom geopy.exc import GeocoderTimedOut\nfrom geopy.exc import GeocoderServiceError\nimport collections\nfrom matplotlib import pyplot as plt\nimport time\nimport csv\n\n\ngeolocator = Nominatim(user_agent='Neel')\n\ndef get_neighborhoods():\n with open('AnalysisNeighborhoods.geojson') as f:\n neighborhoods_obj = json.load(f)\n return neighborhoods_obj\n\ndef get_point_from_loc(location_str):\n location_str = location_str.replace('(', '')\n location_str = location_str.replace(')', '')\n location_str = location_str.replace(',', '')\n lat_lon = location_str.split(' ')\n return Point(float(lat_lon[1]), float(lat_lon[0]))\n\ndef get_address_from_block(block_addr):\n block_addr = block_addr.replace('Block Of', '')\n block_addr_split = block_addr.split(' ')\n\n block_addr = block_addr_split\n # make it an address instead of block start\n #print block_addr\n block_addr[0] = str(int(block_addr[0]) + 1)\n block_addr = ' '.join(block_addr) + ' San Francisco CA'\n return block_addr\n\n# Using latitude longitude location, find the neighborhood the eviction belongs to\ndef get_neighborhoods_from_locations(evictions, neighborhoods):\n num_found = 0\n num_total = 0\n locations_dict = collections.defaultdict(int)\n locations_with_years_dict = collections.defaultdict(lambda: collections.defaultdict(int))\n for index, eviction in evictions.iterrows():\n point = get_point_from_loc(eviction['Location'])\n found_location = False\n for feature in neighborhoods['features']:\n polygon = shape(feature['geometry'])\n if polygon.contains(point):\n #print('Found containing polygon:', feature['properties']['nhood']())\n num_found += 1\n found_location = True\n neighborhood = feature['properties']['nhood']\n year = int(eviction['File Date'].split('/')[2])\n if year > 90: year = year + 1900\n else: year = year + 2000\n\n locations_dict[neighborhood] += 1\n locations_with_years_dict[neighborhood][str(year)] += 1\n break\n if not found_location:\n print('Location ' + str(eviction['Eviction ID']) + ' not found, Given [location: ' + str(eviction['Neighborhoods - Analysis Boundaries']))\n num_total += 1\n\n years = [str(i) for i in range(1997, 2019)]\n #years = ['97', '98', '99', '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12', '13', '14', '15', '16', '17', '18']\n with open('Evictions_By_Location.csv', mode='w') as csv_file:\n csv_writer = csv.writer(csv_file, delimiter=',', quotechar='\"')\n csv_writer.writerow(['Location', 'Number of Evictions'])\n for k, v in locations_dict.items():\n csv_writer.writerow([k, v])\n\n with open('Evictions_By_Year_Location.csv', mode='w') as csv_file:\n csv_writer = csv.writer(csv_file, delimiter=',', quotechar='\"')\n header = ['Location']\n for year in years:\n header.append(year)\n csv_writer.writerow(header)\n for k, v in locations_with_years_dict.items():\n row = [k]\n for year in years:\n row.append(v[year])\n csv_writer.writerow(row)\n\n\n for k, v in locations_with_years_dict.items():\n print k\n evictions = [int(v[year]) for year in years]\n # plt.figure()\n # plt.plot(years, evictions)\n plt.title(k)\n for year in years:\n print year + ': ' + str(v[year])\n print ''\n # plt.show()\n return locations_dict, locations_with_years_dict\n\n\ndef get_geocode_address(addr):\n try:\n return geolocator.geocode(addr)\n except (GeocoderTimedOut, GeocoderServiceError) as e:\n time.sleep(5)\n return get_geocode_address(addr)\n\n#For rows missing latitude longitude location,\n# use the block address to add missing lat long to dataframe\n# If the block address is incorrect, print it so we can correct it manually\ndef set_missing_locations(evictions):\n\n missing_location_rows = evictions[evictions['Location'].isnull()]\n print('Num missing ' + str(len(missing_location_rows)))\n num_not_found = 0\n num_found = 0\n for index, row in missing_location_rows.iterrows():\n #print row['Eviction ID']\n addr = get_address_from_block(row['Address'])\n location = get_geocode_address(addr)\n if location == None:\n num_not_found += 1\n print('NOT FOUND ' + str(row['Eviction ID']) + ': ' + addr)\n else:\n evictions.at[index, 'Location'] = '(' + str(location.latitude) + ', ' + str(location.longitude) + ')'\n num_found += 1\n if (num_found + num_not_found) % 50 == 0:\n print('Processed ' + str(num_found + num_not_found) + ' evictions')\n\n print 'Total not found ' + str(num_not_found)\n print 'Total found ' + str(num_found)\n evictions.to_csv('Eviction_Notices_With_Locations.csv')\n\n\nevictions = pd.read_csv('Eviction_Notices_With_Locations.csv')\nneighborhoods = get_neighborhoods()\n#set_missing_locations(evictions)\n\nlocations_dict, locations_with_years_dict = get_neighborhoods_from_locations(evictions, neighborhoods)\n\nwith open('AnalysisNeighborhoods.geojson') as f:\n data = json.loads(f.read())\n\nyears = [i for i in range(1997, 2019)]\n\nfor neighborhood_obj in data['features']:\n neighborhood_name = neighborhood_obj['properties']['nhood']\n neighborhood_obj['properties']['evictions'] = {}\n neighborhood_obj['properties']['evictions']['total'] = locations_dict[neighborhood_name]\n for year in years:\n neighborhood_obj['properties']['evictions'][str(year)] = locations_with_years_dict[neighborhood_name][year]\n\nwith open('AnalysisNeighborhoods.geojson', 'w') as f:\n json.dump(data, f)", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
""" Generate test pads for padder. """ # usage: python gen.py > pads.txt import random pad = "" count = 0 # The pad chars MUST match the character set used by padder. # See the 'characters' variable in 'main.hpp' for more # information. chars = "abcdefghijklmnopqrstuvwxyz0123456789-" print "#", "Pad" while count < 12: for x in xrange(0, 98): pad += random.choice(chars) count = count+1 print count, pad pad = ""
normal
{ "blob_id": "2cdcd6976a1ec99b927adcedc48c36bbda1b4e18", "index": 1005, "step-1": "\"\"\" Generate test pads for padder. \"\"\"\n\n# usage: python gen.py > pads.txt\n\nimport random\n\npad = \"\"\ncount = 0\n\n# The pad chars MUST match the character set used by padder.\n# See the 'characters' variable in 'main.hpp' for more\n# information.\nchars = \"abcdefghijklmnopqrstuvwxyz0123456789-\"\n\nprint \"#\", \"Pad\"\nwhile count < 12:\n for x in xrange(0, 98):\n pad += random.choice(chars)\n\n count = count+1\n print count, pad\n pad = \"\"\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
"""Unit tests for misc. ticket functions.""" from pdm_utils.classes import bundle from pdm_utils.classes import genome from pdm_utils.classes import ticket from pdm_utils.classes import eval from pdm_utils.functions import tickets from pdm_utils.constants import constants import unittest class TestTicketFunctions1(unittest.TestCase): def setUp(self): self.required_keys = constants.IMPORT_TABLE_STRUCTURE["required"] self.optional_keys = constants.IMPORT_TABLE_STRUCTURE["optional"] self.keywords = constants.IMPORT_TABLE_STRUCTURE["keywords"] self.ticket_dict1 = {} self.ticket_dict1["type"] = "add" self.ticket_dict1["phage_id"] = "Trixie" self.ticket_dict1["description_field"] = "product" self.ticket_dict1["eval_mode"] = "final" self.ticket_dict1["host_genus"] = "retrieve" self.ticket_dict1["cluster"] = "retain" self.ticket_dict1["subcluster"] = "A2" self.ticket_dict1["accession"] = "parse" self.ticket_dict2 = {} self.ticket_dict3 = {} self.ticket_dict3["type"] = "ADD" self.ticket_dict3["phage_id"] = "Trixie" self.ticket_dict3["description_field"] = "PRODUCT" self.ticket_dict3["eval_mode"] = "FINAL" self.ticket_dict3["host_genus"] = "RETRIEVE" self.ticket_dict3["subcluster"] = None self.ticket_dict3["accession"] = "PARSE" self.ticket_dict3["retrieve_record"] = "RETAIN" self.ticket_dict4 = {} self.ticket_dict4["type"] = "ADD" self.ticket_dict4["phage_id"] = "Trixie" def test_modify_import_data_1(self): """Verify returns False if there are missing required keys.""" result = tickets.modify_import_data(self.ticket_dict2, self.required_keys, self.optional_keys, self.keywords) self.assertFalse(result) def test_modify_import_data_2(self): """Verify returns False if there are extra keys.""" self.ticket_dict3["extra"] = "extra" result = tickets.modify_import_data(self.ticket_dict3, self.required_keys, self.optional_keys, self.keywords) self.assertFalse(result) def test_modify_import_data_3(self): """Verify returns True with keywords identified and values lowercased.""" result = tickets.modify_import_data(self.ticket_dict3, self.required_keys, self.optional_keys, self.keywords) with self.subTest(): self.assertTrue(result) with self.subTest(): self.assertEqual(self.ticket_dict3["host_genus"], "retrieve") with self.subTest(): self.assertEqual(self.ticket_dict3["retrieve_record"], "retain") with self.subTest(): self.assertEqual(self.ticket_dict3["subcluster"], "retrieve") with self.subTest(): self.assertEqual(self.ticket_dict3["accession"], "parse") with self.subTest(): self.assertEqual(self.ticket_dict3["type"], "add") with self.subTest(): self.assertEqual(self.ticket_dict3["description_field"], "product") with self.subTest(): self.assertEqual(self.ticket_dict3["eval_mode"], "final") def test_modify_import_data_4(self): """Verify returns True with completed dictionary from a minimal add ticket.""" self.ticket_dict4["description_field"] = "product" self.ticket_dict4["eval_mode"] = "final" result = tickets.modify_import_data(self.ticket_dict4, self.required_keys, self.optional_keys, self.keywords) with self.subTest(): self.assertTrue(result) with self.subTest(): self.assertEqual(self.ticket_dict4["host_genus"], "retrieve") with self.subTest(): self.assertEqual(self.ticket_dict4["cluster"], "retrieve") with self.subTest(): self.assertEqual(self.ticket_dict4["subcluster"], "retrieve") with self.subTest(): self.assertEqual(self.ticket_dict4["annotation_author"], "1") with self.subTest(): self.assertEqual(self.ticket_dict4["retrieve_record"], "1") with self.subTest(): self.assertEqual(self.ticket_dict4["annotation_status"], "draft") with self.subTest(): self.assertEqual(self.ticket_dict4["accession"], "") def test_modify_import_data_5(self): """Verify returns True with completed dictionary from a minimal replace ticket.""" self.ticket_dict4["type"] = "replace" self.ticket_dict4["description_field"] = "product" self.ticket_dict4["eval_mode"] = "final" result = tickets.modify_import_data(self.ticket_dict4, self.required_keys, self.optional_keys, self.keywords) with self.subTest(): self.assertTrue(result) with self.subTest(): self.assertEqual(self.ticket_dict4["host_genus"], "retain") with self.subTest(): self.assertEqual(self.ticket_dict4["cluster"], "retain") with self.subTest(): self.assertEqual(self.ticket_dict4["subcluster"], "retain") with self.subTest(): self.assertEqual(self.ticket_dict4["annotation_author"], "retain") with self.subTest(): self.assertEqual(self.ticket_dict4["retrieve_record"], "retain") with self.subTest(): self.assertEqual(self.ticket_dict4["annotation_status"], "final") with self.subTest(): self.assertEqual(self.ticket_dict4["accession"], "retain") def test_parse_import_ticket_data_1(self): """Verify ticket is generated from correct data dictionary.""" tkt = tickets.parse_import_ticket_data(self.ticket_dict1) with self.subTest(): self.assertEqual(tkt.type, "add") with self.subTest(): self.assertEqual(tkt.phage_id, "Trixie") with self.subTest(): self.assertEqual(tkt.description_field, "product") with self.subTest(): self.assertEqual(tkt.eval_mode, "final") with self.subTest(): self.assertEqual(len(tkt.data_dict.keys()), 8) with self.subTest(): self.assertEqual(tkt.data_retrieve, set(["host_genus"])) with self.subTest(): self.assertEqual(tkt.data_retain, set(["cluster"])) with self.subTest(): self.assertEqual(tkt.data_parse, set(["accession"])) with self.subTest(): self.assertEqual(tkt.data_add, set(["subcluster"])) def test_parse_import_ticket_data_2(self): """Verify ticket is generated from correct data dictionary with no data in 'retain', 'retrieve', or 'parse' sets.""" self.ticket_dict1["host_genus"] = "Mycobacterium" self.ticket_dict1["cluster"] = "A" self.ticket_dict1["subcluster"] = "A2" self.ticket_dict1["accession"] = "ABC123" tkt = tickets.parse_import_ticket_data(self.ticket_dict1) with self.subTest(): self.assertEqual(tkt.type, "add") with self.subTest(): self.assertEqual(tkt.phage_id, "Trixie") with self.subTest(): self.assertEqual(tkt.description_field, "product") with self.subTest(): self.assertEqual(tkt.eval_mode, "final") with self.subTest(): self.assertEqual(len(tkt.data_dict.keys()), 8) with self.subTest(): self.assertEqual(tkt.data_retrieve, set()) with self.subTest(): self.assertEqual(tkt.data_retain, set()) with self.subTest(): self.assertEqual(tkt.data_parse, set()) with self.subTest(): self.assertEqual(tkt.data_add, set(["subcluster", "host_genus", "cluster", "accession"])) def test_parse_import_ticket_data_3(self): """Verify ticket is generated from correct data dictionary with no data in 'add' sets.""" self.ticket_dict1["host_genus"] = "retrieve" self.ticket_dict1["cluster"] = "retrieve" self.ticket_dict1["subcluster"] = "retrieve" self.ticket_dict1["accession"] = "retrieve" tkt = tickets.parse_import_ticket_data(self.ticket_dict1) with self.subTest(): self.assertEqual(tkt.type, "add") with self.subTest(): self.assertEqual(tkt.phage_id, "Trixie") with self.subTest(): self.assertEqual(tkt.description_field, "product") with self.subTest(): self.assertEqual(tkt.eval_mode, "final") with self.subTest(): self.assertEqual(len(tkt.data_dict.keys()), 8) with self.subTest(): self.assertEqual(tkt.data_retrieve, set(["subcluster", "host_genus", "cluster", "accession"])) with self.subTest(): self.assertEqual(tkt.data_retain, set()) with self.subTest(): self.assertEqual(tkt.data_parse, set()) with self.subTest(): self.assertEqual(tkt.data_add, set()) def test_set_empty_1(self): """Verify one None value is set to ''.""" data_dict = {"type":"add","cluster":None} tickets.set_empty(data_dict) with self.subTest(): self.assertEqual(data_dict["type"], "add") with self.subTest(): self.assertEqual(data_dict["cluster"], "") def test_set_keywords_1(self): """Verify one value is lowercased.""" data_dict = {"type":"ADD", "cluster":"RETRIEVE", "subcluster": "NONE", "host_genus": "PARSE", "retrieve_record": "RETAIN"} keywords = set(["retrieve", "retain"]) tickets.set_keywords(data_dict, self.keywords) with self.subTest(): self.assertEqual(data_dict["type"], "ADD") with self.subTest(): self.assertEqual(data_dict["cluster"], "retrieve") with self.subTest(): self.assertEqual(data_dict["subcluster"], "none") with self.subTest(): self.assertEqual(data_dict["host_genus"], "parse") with self.subTest(): self.assertEqual(data_dict["retrieve_record"], "retain") def test_set_missing_keys_1(self): """Verify one missing key is added.""" data_dict = {"type":"add", "cluster":""} key_set = set(["type", "host_genus"]) tickets.set_missing_keys(data_dict, key_set) with self.subTest(): self.assertEqual(len(data_dict.keys()), 3) with self.subTest(): self.assertEqual(data_dict["host_genus"], "") def test_set_missing_keys_2(self): """Verify no missing key is added.""" data_dict = {"type":"add", "cluster":""} key_set = set(["type", "cluster"]) tickets.set_missing_keys(data_dict, key_set) self.assertEqual(len(data_dict.keys()), 2) def test_set_dict_value_1(self): """Verify empty value is replaced with first value.""" data_dict = {"type":"add", "cluster":""} tickets.set_dict_value(data_dict, "cluster", "A", "B") self.assertEqual(data_dict["cluster"], "A") def test_set_dict_value_2(self): """Verify empty value is replaced with second value.""" data_dict = {"type":"replace", "cluster":""} tickets.set_dict_value(data_dict, "cluster", "A", "B") self.assertEqual(data_dict["cluster"], "B") def test_set_dict_value_3(self): """Verify non-empty value is not replaced.""" data_dict = {"type":"replace", "cluster":"C"} tickets.set_dict_value(data_dict, "cluster", "A", "B") self.assertEqual(data_dict["cluster"], "C") def test_construct_tickets_1(self): """Verify two tickets are constructed correctly. The first ticket contains all required and optional fields. The second ticket contains all required fields.""" dict_list = [self.ticket_dict1, self.ticket_dict4] eval_data_dict = {"eval_mode": "custom_eval_mode", "eval_flag_dict": {"check_locus_tag": False}} list_of_tickets = tickets.construct_tickets(dict_list, eval_data_dict, "function", self.required_keys, self.optional_keys, self.keywords) with self.subTest(): self.assertEqual(len(list_of_tickets), 2) with self.subTest(): self.assertEqual(list_of_tickets[0].id, 1) with self.subTest(): self.assertEqual(list_of_tickets[0].eval_mode, "final") with self.subTest(): self.assertEqual(list_of_tickets[0].description_field, "product") with self.subTest(): self.assertTrue(list_of_tickets[0].eval_flags["check_locus_tag"]) with self.subTest(): self.assertEqual(list_of_tickets[1].id, 2) with self.subTest(): self.assertEqual(list_of_tickets[1].eval_mode, "custom_eval_mode") with self.subTest(): self.assertEqual(list_of_tickets[1].description_field, "function") with self.subTest(): self.assertFalse(list_of_tickets[1].eval_flags["check_locus_tag"]) def test_construct_tickets_2(self): """Verify one ticket is constructed correctly. The second data dictionary is not structured correctly.""" dict_list = [self.ticket_dict1, self.ticket_dict2] eval_data_dict = {"eval_mode": "custom_eval_mode", "eval_flag_dict": {}} list_of_tickets = tickets.construct_tickets(dict_list, eval_data_dict, "function", self.required_keys, self.optional_keys, self.keywords) with self.subTest(): self.assertEqual(len(list_of_tickets), 1) def test_construct_tickets_3(self): """Verify four tickets constructed correctly. The first two tickets contain all required and optional fields. The second two tickets contain all required fields. Verify that each eval_flag dictionary is a separate object that can be modified without impacting the other eval_flag dictionaries.""" tkt_dict1 = {} tkt_dict1["type"] = "add" tkt_dict1["phage_id"] = "Trixie" tkt_dict1["description_field"] = "product" tkt_dict1["eval_mode"] = "final" tkt_dict2 = {} tkt_dict2["type"] = "add" tkt_dict2["phage_id"] = "L5" tkt_dict2["description_field"] = "product" tkt_dict2["eval_mode"] = "final" tkt_dict3 = {} tkt_dict3["type"] = "add" tkt_dict3["phage_id"] = "RedRock" tkt_dict4 = {} tkt_dict4["type"] = "add" tkt_dict4["phage_id"] = "Bxb1" dict_list = [tkt_dict1, tkt_dict2, tkt_dict3, tkt_dict4] eval_data_dict = {"eval_mode": "custom_eval_mode", "eval_flag_dict": {"check_locus_tag": False}} tkt_list = tickets.construct_tickets(dict_list, eval_data_dict, "function", self.required_keys, self.optional_keys, self.keywords) tkt_list[0].eval_flags["check_locus_tag"] = 0 tkt_list[1].eval_flags["check_locus_tag"] = 1 tkt_list[2].eval_flags["check_locus_tag"] = 2 tkt_list[3].eval_flags["check_locus_tag"] = 3 with self.subTest(): self.assertEqual(tkt_list[0].eval_flags["check_locus_tag"], 0) with self.subTest(): self.assertEqual(tkt_list[1].eval_flags["check_locus_tag"], 1) with self.subTest(): self.assertEqual(tkt_list[2].eval_flags["check_locus_tag"], 2) with self.subTest(): self.assertEqual(tkt_list[3].eval_flags["check_locus_tag"], 3) def test_identify_duplicates_1(self): """Verify no duplicates are produced.""" ticket1 = ticket.ImportTicket() ticket1.id = 1 ticket1.type = "replace" ticket1.phage_id = "Trixie" ticket2 = ticket.ImportTicket() ticket2.id = 2 ticket2.type = "replace" ticket2.phage_id = "L5" null_set = set(["none"]) list_of_tickets = [ticket1, ticket2] id_dupes, phage_id_dupes = \ tickets.identify_duplicates(list_of_tickets, null_set=null_set) with self.subTest(): self.assertEqual(len(id_dupes), 0) with self.subTest(): self.assertEqual(len(phage_id_dupes), 0) def test_identify_duplicates_2(self): """Verify two tickets with 'none' duplicates do not generate an error.""" ticket1 = ticket.ImportTicket() ticket1.id = "none" ticket1.type = "replace" ticket1.phage_id = "none" ticket2 = ticket.ImportTicket() ticket2.id = "none" ticket2.type = "replace" ticket2.phage_id = "none" null_set = set(["none"]) list_of_tickets = [ticket1, ticket2] id_dupes, phage_id_dupes = \ tickets.identify_duplicates(list_of_tickets, null_set=null_set) with self.subTest(): self.assertEqual(len(id_dupes), 0) with self.subTest(): self.assertEqual(len(phage_id_dupes), 0) def test_identify_duplicates_3(self): """Verify two tickets with id duplicates do generate an error.""" ticket1 = ticket.ImportTicket() ticket1.id = 1 ticket1.type = "replace" ticket1.phage_id = "L5" ticket2 = ticket.ImportTicket() ticket2.id = 1 ticket2.type = "replace" ticket2.phage_id = "Trixie" null_set = set(["none"]) list_of_tickets = [ticket1, ticket2] id_dupes, phage_id_dupes = \ tickets.identify_duplicates(list_of_tickets, null_set=null_set) with self.subTest(): self.assertEqual(len(id_dupes), 1) with self.subTest(): self.assertEqual(len(phage_id_dupes), 0) def test_identify_duplicates_4(self): """Verify two tickets with Primary Phage ID duplicates do generate an error.""" ticket1 = ticket.ImportTicket() ticket1.id = 1 ticket1.type = "replace" ticket1.phage_id = "Trixie" ticket2 = ticket.ImportTicket() ticket2.id = 2 ticket2.type = "replace" ticket2.phage_id = "Trixie" null_set = set(["none"]) list_of_tickets = [ticket1, ticket2] id_dupes, phage_id_dupes = \ tickets.identify_duplicates(list_of_tickets, null_set=null_set) with self.subTest(): self.assertEqual(len(id_dupes), 0) with self.subTest(): self.assertEqual(len(phage_id_dupes), 1) def test_identify_duplicates_6(self): """Verify two tickets with multiple duplicates do generate multiple errors.""" ticket1 = ticket.ImportTicket() ticket1.id = 1 ticket1.type = "replace" ticket1.phage_id = "Trixie" ticket2 = ticket.ImportTicket() ticket2.id = 1 ticket2.type = "replace" ticket2.phage_id = "Trixie" null_set = set(["none"]) list_of_tickets = [ticket1, ticket2] id_dupes, phage_id_dupes = \ tickets.identify_duplicates(list_of_tickets, null_set=null_set) with self.subTest(): self.assertEqual(len(id_dupes), 1) with self.subTest(): self.assertEqual(len(phage_id_dupes), 1) class TestTicketFunctions2(unittest.TestCase): def setUp(self): self.ticket1 = ticket.ImportTicket() self.ticket2 = ticket.ImportTicket() self.ticket1.phage_id = "Trixie" self.ticket2.phage_id = "L5" self.bundle1 = bundle.Bundle() self.bundle2 = bundle.Bundle() self.bundle1.ticket = self.ticket1 self.bundle2.ticket = self.ticket2 class TestTicketFunctions3(unittest.TestCase): def setUp(self): self.data_dict = {} self.data_dict["host_genus"] = "Mycobacterium smegmatis" self.data_dict["accession"] = "ABC123.1" self.data_dict["annotation_status"] = "final" self.data_dict["cluster"] = "A" self.data_dict["subcluster"] = "A2" self.data_dict["annotation_author"] = 1 self.data_dict["retrieve_record"] = 1 self.tkt1 = ticket.ImportTicket() self.tkt1.phage_id = "Trixie_Draft" self.tkt1.data_dict = self.data_dict def test_get_genome_1(self): """Verify no data from ticket is added to genome.""" self.tkt1.data_add = set([""]) gnm = tickets.get_genome(self.tkt1, gnm_type="add") with self.subTest(): self.assertEqual(gnm.id, "Trixie") with self.subTest(): self.assertEqual(gnm.name, "Trixie_Draft") with self.subTest(): self.assertEqual(gnm.type, "add") with self.subTest(): self.assertEqual(gnm.host_genus, "") with self.subTest(): self.assertEqual(gnm.cluster, "") with self.subTest(): self.assertEqual(gnm.subcluster, "") with self.subTest(): self.assertEqual(gnm.annotation_status, "") with self.subTest(): self.assertEqual(gnm.annotation_author, -1) with self.subTest(): self.assertEqual(gnm.retrieve_record, -1) with self.subTest(): self.assertEqual(gnm.accession, "") def test_get_genome_2(self): """Verify host_genus data from ticket is added to genome.""" self.tkt1.data_add = set(["host_genus"]) gnm = tickets.get_genome(self.tkt1, gnm_type="add") with self.subTest(): self.assertEqual(gnm.host_genus, "Mycobacterium") with self.subTest(): self.assertEqual(gnm.cluster, "") def test_get_genome_3(self): """Verify cluster data from ticket is added to genome.""" self.tkt1.data_add = set(["cluster"]) gnm = tickets.get_genome(self.tkt1, gnm_type="add") with self.subTest(): self.assertEqual(gnm.host_genus, "") with self.subTest(): self.assertEqual(gnm.cluster, "A") def test_get_genome_4(self): """Verify subcluster data from ticket is added to genome.""" self.tkt1.data_add = set(["subcluster"]) gnm = tickets.get_genome(self.tkt1, gnm_type="add") with self.subTest(): self.assertEqual(gnm.host_genus, "") with self.subTest(): self.assertEqual(gnm.subcluster, "A2") def test_get_genome_5(self): """Verify annotation_status data from ticket is added to genome.""" self.tkt1.data_add = set(["annotation_status"]) gnm = tickets.get_genome(self.tkt1, gnm_type="add") with self.subTest(): self.assertEqual(gnm.host_genus, "") with self.subTest(): self.assertEqual(gnm.annotation_status, "final") def test_get_genome_6(self): """Verify annotation_author data from ticket is added to genome.""" self.tkt1.data_add = set(["annotation_author"]) gnm = tickets.get_genome(self.tkt1, gnm_type="add") with self.subTest(): self.assertEqual(gnm.host_genus, "") with self.subTest(): self.assertEqual(gnm.annotation_author, 1) def test_get_genome_7(self): """Verify retrieve_record data from ticket is added to genome.""" self.tkt1.data_add = set(["retrieve_record"]) gnm = tickets.get_genome(self.tkt1, gnm_type="add") with self.subTest(): self.assertEqual(gnm.host_genus, "") with self.subTest(): self.assertEqual(gnm.retrieve_record, 1) def test_get_genome_8(self): """Verify accession data from ticket is added to genome.""" self.tkt1.data_add = set(["accession"]) gnm = tickets.get_genome(self.tkt1, gnm_type="add") with self.subTest(): self.assertEqual(gnm.host_genus, "") with self.subTest(): self.assertEqual(gnm.accession, "ABC123") if __name__ == '__main__': unittest.main()
normal
{ "blob_id": "d8ba2557e20920eaadd2fd35f0ebdf1b4a5b33da", "index": 9010, "step-1": "<mask token>\n\n\nclass TestTicketFunctions1(unittest.TestCase):\n\n def setUp(self):\n self.required_keys = constants.IMPORT_TABLE_STRUCTURE['required']\n self.optional_keys = constants.IMPORT_TABLE_STRUCTURE['optional']\n self.keywords = constants.IMPORT_TABLE_STRUCTURE['keywords']\n self.ticket_dict1 = {}\n self.ticket_dict1['type'] = 'add'\n self.ticket_dict1['phage_id'] = 'Trixie'\n self.ticket_dict1['description_field'] = 'product'\n self.ticket_dict1['eval_mode'] = 'final'\n self.ticket_dict1['host_genus'] = 'retrieve'\n self.ticket_dict1['cluster'] = 'retain'\n self.ticket_dict1['subcluster'] = 'A2'\n self.ticket_dict1['accession'] = 'parse'\n self.ticket_dict2 = {}\n self.ticket_dict3 = {}\n self.ticket_dict3['type'] = 'ADD'\n self.ticket_dict3['phage_id'] = 'Trixie'\n self.ticket_dict3['description_field'] = 'PRODUCT'\n self.ticket_dict3['eval_mode'] = 'FINAL'\n self.ticket_dict3['host_genus'] = 'RETRIEVE'\n self.ticket_dict3['subcluster'] = None\n self.ticket_dict3['accession'] = 'PARSE'\n self.ticket_dict3['retrieve_record'] = 'RETAIN'\n self.ticket_dict4 = {}\n self.ticket_dict4['type'] = 'ADD'\n self.ticket_dict4['phage_id'] = 'Trixie'\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def test_modify_import_data_5(self):\n \"\"\"Verify returns True with completed dictionary from a\n minimal replace ticket.\"\"\"\n self.ticket_dict4['type'] = 'replace'\n self.ticket_dict4['description_field'] = 'product'\n self.ticket_dict4['eval_mode'] = 'final'\n result = tickets.modify_import_data(self.ticket_dict4, self.\n required_keys, self.optional_keys, self.keywords)\n with self.subTest():\n self.assertTrue(result)\n with self.subTest():\n self.assertEqual(self.ticket_dict4['host_genus'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['cluster'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['subcluster'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['annotation_author'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['retrieve_record'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['annotation_status'], 'final')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['accession'], 'retain')\n <mask token>\n\n def test_parse_import_ticket_data_2(self):\n \"\"\"Verify ticket is generated from correct data dictionary with\n no data in 'retain', 'retrieve', or 'parse' sets.\"\"\"\n self.ticket_dict1['host_genus'] = 'Mycobacterium'\n self.ticket_dict1['cluster'] = 'A'\n self.ticket_dict1['subcluster'] = 'A2'\n self.ticket_dict1['accession'] = 'ABC123'\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, 'add')\n with self.subTest():\n self.assertEqual(tkt.phage_id, 'Trixie')\n with self.subTest():\n self.assertEqual(tkt.description_field, 'product')\n with self.subTest():\n self.assertEqual(tkt.eval_mode, 'final')\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set())\n with self.subTest():\n self.assertEqual(tkt.data_retain, set())\n with self.subTest():\n self.assertEqual(tkt.data_parse, set())\n with self.subTest():\n self.assertEqual(tkt.data_add, set(['subcluster', 'host_genus',\n 'cluster', 'accession']))\n\n def test_parse_import_ticket_data_3(self):\n \"\"\"Verify ticket is generated from correct data dictionary with\n no data in 'add' sets.\"\"\"\n self.ticket_dict1['host_genus'] = 'retrieve'\n self.ticket_dict1['cluster'] = 'retrieve'\n self.ticket_dict1['subcluster'] = 'retrieve'\n self.ticket_dict1['accession'] = 'retrieve'\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, 'add')\n with self.subTest():\n self.assertEqual(tkt.phage_id, 'Trixie')\n with self.subTest():\n self.assertEqual(tkt.description_field, 'product')\n with self.subTest():\n self.assertEqual(tkt.eval_mode, 'final')\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set(['subcluster',\n 'host_genus', 'cluster', 'accession']))\n with self.subTest():\n self.assertEqual(tkt.data_retain, set())\n with self.subTest():\n self.assertEqual(tkt.data_parse, set())\n with self.subTest():\n self.assertEqual(tkt.data_add, set())\n <mask token>\n\n def test_set_keywords_1(self):\n \"\"\"Verify one value is lowercased.\"\"\"\n data_dict = {'type': 'ADD', 'cluster': 'RETRIEVE', 'subcluster':\n 'NONE', 'host_genus': 'PARSE', 'retrieve_record': 'RETAIN'}\n keywords = set(['retrieve', 'retain'])\n tickets.set_keywords(data_dict, self.keywords)\n with self.subTest():\n self.assertEqual(data_dict['type'], 'ADD')\n with self.subTest():\n self.assertEqual(data_dict['cluster'], 'retrieve')\n with self.subTest():\n self.assertEqual(data_dict['subcluster'], 'none')\n with self.subTest():\n self.assertEqual(data_dict['host_genus'], 'parse')\n with self.subTest():\n self.assertEqual(data_dict['retrieve_record'], 'retain')\n\n def test_set_missing_keys_1(self):\n \"\"\"Verify one missing key is added.\"\"\"\n data_dict = {'type': 'add', 'cluster': ''}\n key_set = set(['type', 'host_genus'])\n tickets.set_missing_keys(data_dict, key_set)\n with self.subTest():\n self.assertEqual(len(data_dict.keys()), 3)\n with self.subTest():\n self.assertEqual(data_dict['host_genus'], '')\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def test_construct_tickets_1(self):\n \"\"\"Verify two tickets are constructed correctly.\n The first ticket contains all required and optional fields.\n The second ticket contains all required fields.\"\"\"\n dict_list = [self.ticket_dict1, self.ticket_dict4]\n eval_data_dict = {'eval_mode': 'custom_eval_mode', 'eval_flag_dict':\n {'check_locus_tag': False}}\n list_of_tickets = tickets.construct_tickets(dict_list,\n eval_data_dict, 'function', self.required_keys, self.\n optional_keys, self.keywords)\n with self.subTest():\n self.assertEqual(len(list_of_tickets), 2)\n with self.subTest():\n self.assertEqual(list_of_tickets[0].id, 1)\n with self.subTest():\n self.assertEqual(list_of_tickets[0].eval_mode, 'final')\n with self.subTest():\n self.assertEqual(list_of_tickets[0].description_field, 'product')\n with self.subTest():\n self.assertTrue(list_of_tickets[0].eval_flags['check_locus_tag'])\n with self.subTest():\n self.assertEqual(list_of_tickets[1].id, 2)\n with self.subTest():\n self.assertEqual(list_of_tickets[1].eval_mode, 'custom_eval_mode')\n with self.subTest():\n self.assertEqual(list_of_tickets[1].description_field, 'function')\n with self.subTest():\n self.assertFalse(list_of_tickets[1].eval_flags['check_locus_tag'])\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def test_identify_duplicates_4(self):\n \"\"\"Verify two tickets with Primary Phage ID duplicates\n do generate an error.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'Trixie'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 2\n ticket2.type = 'replace'\n ticket2.phage_id = 'Trixie'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 1)\n\n def test_identify_duplicates_6(self):\n \"\"\"Verify two tickets with multiple duplicates\n do generate multiple errors.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'Trixie'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 1\n ticket2.type = 'replace'\n ticket2.phage_id = 'Trixie'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 1)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 1)\n\n\nclass TestTicketFunctions2(unittest.TestCase):\n\n def setUp(self):\n self.ticket1 = ticket.ImportTicket()\n self.ticket2 = ticket.ImportTicket()\n self.ticket1.phage_id = 'Trixie'\n self.ticket2.phage_id = 'L5'\n self.bundle1 = bundle.Bundle()\n self.bundle2 = bundle.Bundle()\n self.bundle1.ticket = self.ticket1\n self.bundle2.ticket = self.ticket2\n\n\nclass TestTicketFunctions3(unittest.TestCase):\n\n def setUp(self):\n self.data_dict = {}\n self.data_dict['host_genus'] = 'Mycobacterium smegmatis'\n self.data_dict['accession'] = 'ABC123.1'\n self.data_dict['annotation_status'] = 'final'\n self.data_dict['cluster'] = 'A'\n self.data_dict['subcluster'] = 'A2'\n self.data_dict['annotation_author'] = 1\n self.data_dict['retrieve_record'] = 1\n self.tkt1 = ticket.ImportTicket()\n self.tkt1.phage_id = 'Trixie_Draft'\n self.tkt1.data_dict = self.data_dict\n\n def test_get_genome_1(self):\n \"\"\"Verify no data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([''])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.id, 'Trixie')\n with self.subTest():\n self.assertEqual(gnm.name, 'Trixie_Draft')\n with self.subTest():\n self.assertEqual(gnm.type, 'add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.cluster, '')\n with self.subTest():\n self.assertEqual(gnm.subcluster, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_status, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_author, -1)\n with self.subTest():\n self.assertEqual(gnm.retrieve_record, -1)\n with self.subTest():\n self.assertEqual(gnm.accession, '')\n\n def test_get_genome_2(self):\n \"\"\"Verify host_genus data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['host_genus'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, 'Mycobacterium')\n with self.subTest():\n self.assertEqual(gnm.cluster, '')\n\n def test_get_genome_3(self):\n \"\"\"Verify cluster data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['cluster'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.cluster, 'A')\n\n def test_get_genome_4(self):\n \"\"\"Verify subcluster data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['subcluster'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.subcluster, 'A2')\n\n def test_get_genome_5(self):\n \"\"\"Verify annotation_status data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['annotation_status'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_status, 'final')\n\n def test_get_genome_6(self):\n \"\"\"Verify annotation_author data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['annotation_author'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_author, 1)\n\n def test_get_genome_7(self):\n \"\"\"Verify retrieve_record data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['retrieve_record'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.retrieve_record, 1)\n\n def test_get_genome_8(self):\n \"\"\"Verify accession data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['accession'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.accession, 'ABC123')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestTicketFunctions1(unittest.TestCase):\n\n def setUp(self):\n self.required_keys = constants.IMPORT_TABLE_STRUCTURE['required']\n self.optional_keys = constants.IMPORT_TABLE_STRUCTURE['optional']\n self.keywords = constants.IMPORT_TABLE_STRUCTURE['keywords']\n self.ticket_dict1 = {}\n self.ticket_dict1['type'] = 'add'\n self.ticket_dict1['phage_id'] = 'Trixie'\n self.ticket_dict1['description_field'] = 'product'\n self.ticket_dict1['eval_mode'] = 'final'\n self.ticket_dict1['host_genus'] = 'retrieve'\n self.ticket_dict1['cluster'] = 'retain'\n self.ticket_dict1['subcluster'] = 'A2'\n self.ticket_dict1['accession'] = 'parse'\n self.ticket_dict2 = {}\n self.ticket_dict3 = {}\n self.ticket_dict3['type'] = 'ADD'\n self.ticket_dict3['phage_id'] = 'Trixie'\n self.ticket_dict3['description_field'] = 'PRODUCT'\n self.ticket_dict3['eval_mode'] = 'FINAL'\n self.ticket_dict3['host_genus'] = 'RETRIEVE'\n self.ticket_dict3['subcluster'] = None\n self.ticket_dict3['accession'] = 'PARSE'\n self.ticket_dict3['retrieve_record'] = 'RETAIN'\n self.ticket_dict4 = {}\n self.ticket_dict4['type'] = 'ADD'\n self.ticket_dict4['phage_id'] = 'Trixie'\n <mask token>\n\n def test_modify_import_data_2(self):\n \"\"\"Verify returns False if there are extra keys.\"\"\"\n self.ticket_dict3['extra'] = 'extra'\n result = tickets.modify_import_data(self.ticket_dict3, self.\n required_keys, self.optional_keys, self.keywords)\n self.assertFalse(result)\n <mask token>\n <mask token>\n\n def test_modify_import_data_5(self):\n \"\"\"Verify returns True with completed dictionary from a\n minimal replace ticket.\"\"\"\n self.ticket_dict4['type'] = 'replace'\n self.ticket_dict4['description_field'] = 'product'\n self.ticket_dict4['eval_mode'] = 'final'\n result = tickets.modify_import_data(self.ticket_dict4, self.\n required_keys, self.optional_keys, self.keywords)\n with self.subTest():\n self.assertTrue(result)\n with self.subTest():\n self.assertEqual(self.ticket_dict4['host_genus'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['cluster'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['subcluster'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['annotation_author'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['retrieve_record'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['annotation_status'], 'final')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['accession'], 'retain')\n <mask token>\n\n def test_parse_import_ticket_data_2(self):\n \"\"\"Verify ticket is generated from correct data dictionary with\n no data in 'retain', 'retrieve', or 'parse' sets.\"\"\"\n self.ticket_dict1['host_genus'] = 'Mycobacterium'\n self.ticket_dict1['cluster'] = 'A'\n self.ticket_dict1['subcluster'] = 'A2'\n self.ticket_dict1['accession'] = 'ABC123'\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, 'add')\n with self.subTest():\n self.assertEqual(tkt.phage_id, 'Trixie')\n with self.subTest():\n self.assertEqual(tkt.description_field, 'product')\n with self.subTest():\n self.assertEqual(tkt.eval_mode, 'final')\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set())\n with self.subTest():\n self.assertEqual(tkt.data_retain, set())\n with self.subTest():\n self.assertEqual(tkt.data_parse, set())\n with self.subTest():\n self.assertEqual(tkt.data_add, set(['subcluster', 'host_genus',\n 'cluster', 'accession']))\n\n def test_parse_import_ticket_data_3(self):\n \"\"\"Verify ticket is generated from correct data dictionary with\n no data in 'add' sets.\"\"\"\n self.ticket_dict1['host_genus'] = 'retrieve'\n self.ticket_dict1['cluster'] = 'retrieve'\n self.ticket_dict1['subcluster'] = 'retrieve'\n self.ticket_dict1['accession'] = 'retrieve'\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, 'add')\n with self.subTest():\n self.assertEqual(tkt.phage_id, 'Trixie')\n with self.subTest():\n self.assertEqual(tkt.description_field, 'product')\n with self.subTest():\n self.assertEqual(tkt.eval_mode, 'final')\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set(['subcluster',\n 'host_genus', 'cluster', 'accession']))\n with self.subTest():\n self.assertEqual(tkt.data_retain, set())\n with self.subTest():\n self.assertEqual(tkt.data_parse, set())\n with self.subTest():\n self.assertEqual(tkt.data_add, set())\n <mask token>\n\n def test_set_keywords_1(self):\n \"\"\"Verify one value is lowercased.\"\"\"\n data_dict = {'type': 'ADD', 'cluster': 'RETRIEVE', 'subcluster':\n 'NONE', 'host_genus': 'PARSE', 'retrieve_record': 'RETAIN'}\n keywords = set(['retrieve', 'retain'])\n tickets.set_keywords(data_dict, self.keywords)\n with self.subTest():\n self.assertEqual(data_dict['type'], 'ADD')\n with self.subTest():\n self.assertEqual(data_dict['cluster'], 'retrieve')\n with self.subTest():\n self.assertEqual(data_dict['subcluster'], 'none')\n with self.subTest():\n self.assertEqual(data_dict['host_genus'], 'parse')\n with self.subTest():\n self.assertEqual(data_dict['retrieve_record'], 'retain')\n\n def test_set_missing_keys_1(self):\n \"\"\"Verify one missing key is added.\"\"\"\n data_dict = {'type': 'add', 'cluster': ''}\n key_set = set(['type', 'host_genus'])\n tickets.set_missing_keys(data_dict, key_set)\n with self.subTest():\n self.assertEqual(len(data_dict.keys()), 3)\n with self.subTest():\n self.assertEqual(data_dict['host_genus'], '')\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def test_construct_tickets_1(self):\n \"\"\"Verify two tickets are constructed correctly.\n The first ticket contains all required and optional fields.\n The second ticket contains all required fields.\"\"\"\n dict_list = [self.ticket_dict1, self.ticket_dict4]\n eval_data_dict = {'eval_mode': 'custom_eval_mode', 'eval_flag_dict':\n {'check_locus_tag': False}}\n list_of_tickets = tickets.construct_tickets(dict_list,\n eval_data_dict, 'function', self.required_keys, self.\n optional_keys, self.keywords)\n with self.subTest():\n self.assertEqual(len(list_of_tickets), 2)\n with self.subTest():\n self.assertEqual(list_of_tickets[0].id, 1)\n with self.subTest():\n self.assertEqual(list_of_tickets[0].eval_mode, 'final')\n with self.subTest():\n self.assertEqual(list_of_tickets[0].description_field, 'product')\n with self.subTest():\n self.assertTrue(list_of_tickets[0].eval_flags['check_locus_tag'])\n with self.subTest():\n self.assertEqual(list_of_tickets[1].id, 2)\n with self.subTest():\n self.assertEqual(list_of_tickets[1].eval_mode, 'custom_eval_mode')\n with self.subTest():\n self.assertEqual(list_of_tickets[1].description_field, 'function')\n with self.subTest():\n self.assertFalse(list_of_tickets[1].eval_flags['check_locus_tag'])\n <mask token>\n <mask token>\n <mask token>\n\n def test_identify_duplicates_2(self):\n \"\"\"Verify two tickets with 'none' duplicates\n do not generate an error.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 'none'\n ticket1.type = 'replace'\n ticket1.phage_id = 'none'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 'none'\n ticket2.type = 'replace'\n ticket2.phage_id = 'none'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 0)\n <mask token>\n\n def test_identify_duplicates_4(self):\n \"\"\"Verify two tickets with Primary Phage ID duplicates\n do generate an error.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'Trixie'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 2\n ticket2.type = 'replace'\n ticket2.phage_id = 'Trixie'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 1)\n\n def test_identify_duplicates_6(self):\n \"\"\"Verify two tickets with multiple duplicates\n do generate multiple errors.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'Trixie'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 1\n ticket2.type = 'replace'\n ticket2.phage_id = 'Trixie'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 1)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 1)\n\n\nclass TestTicketFunctions2(unittest.TestCase):\n\n def setUp(self):\n self.ticket1 = ticket.ImportTicket()\n self.ticket2 = ticket.ImportTicket()\n self.ticket1.phage_id = 'Trixie'\n self.ticket2.phage_id = 'L5'\n self.bundle1 = bundle.Bundle()\n self.bundle2 = bundle.Bundle()\n self.bundle1.ticket = self.ticket1\n self.bundle2.ticket = self.ticket2\n\n\nclass TestTicketFunctions3(unittest.TestCase):\n\n def setUp(self):\n self.data_dict = {}\n self.data_dict['host_genus'] = 'Mycobacterium smegmatis'\n self.data_dict['accession'] = 'ABC123.1'\n self.data_dict['annotation_status'] = 'final'\n self.data_dict['cluster'] = 'A'\n self.data_dict['subcluster'] = 'A2'\n self.data_dict['annotation_author'] = 1\n self.data_dict['retrieve_record'] = 1\n self.tkt1 = ticket.ImportTicket()\n self.tkt1.phage_id = 'Trixie_Draft'\n self.tkt1.data_dict = self.data_dict\n\n def test_get_genome_1(self):\n \"\"\"Verify no data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([''])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.id, 'Trixie')\n with self.subTest():\n self.assertEqual(gnm.name, 'Trixie_Draft')\n with self.subTest():\n self.assertEqual(gnm.type, 'add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.cluster, '')\n with self.subTest():\n self.assertEqual(gnm.subcluster, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_status, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_author, -1)\n with self.subTest():\n self.assertEqual(gnm.retrieve_record, -1)\n with self.subTest():\n self.assertEqual(gnm.accession, '')\n\n def test_get_genome_2(self):\n \"\"\"Verify host_genus data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['host_genus'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, 'Mycobacterium')\n with self.subTest():\n self.assertEqual(gnm.cluster, '')\n\n def test_get_genome_3(self):\n \"\"\"Verify cluster data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['cluster'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.cluster, 'A')\n\n def test_get_genome_4(self):\n \"\"\"Verify subcluster data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['subcluster'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.subcluster, 'A2')\n\n def test_get_genome_5(self):\n \"\"\"Verify annotation_status data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['annotation_status'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_status, 'final')\n\n def test_get_genome_6(self):\n \"\"\"Verify annotation_author data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['annotation_author'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_author, 1)\n\n def test_get_genome_7(self):\n \"\"\"Verify retrieve_record data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['retrieve_record'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.retrieve_record, 1)\n\n def test_get_genome_8(self):\n \"\"\"Verify accession data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['accession'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.accession, 'ABC123')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TestTicketFunctions1(unittest.TestCase):\n\n def setUp(self):\n self.required_keys = constants.IMPORT_TABLE_STRUCTURE['required']\n self.optional_keys = constants.IMPORT_TABLE_STRUCTURE['optional']\n self.keywords = constants.IMPORT_TABLE_STRUCTURE['keywords']\n self.ticket_dict1 = {}\n self.ticket_dict1['type'] = 'add'\n self.ticket_dict1['phage_id'] = 'Trixie'\n self.ticket_dict1['description_field'] = 'product'\n self.ticket_dict1['eval_mode'] = 'final'\n self.ticket_dict1['host_genus'] = 'retrieve'\n self.ticket_dict1['cluster'] = 'retain'\n self.ticket_dict1['subcluster'] = 'A2'\n self.ticket_dict1['accession'] = 'parse'\n self.ticket_dict2 = {}\n self.ticket_dict3 = {}\n self.ticket_dict3['type'] = 'ADD'\n self.ticket_dict3['phage_id'] = 'Trixie'\n self.ticket_dict3['description_field'] = 'PRODUCT'\n self.ticket_dict3['eval_mode'] = 'FINAL'\n self.ticket_dict3['host_genus'] = 'RETRIEVE'\n self.ticket_dict3['subcluster'] = None\n self.ticket_dict3['accession'] = 'PARSE'\n self.ticket_dict3['retrieve_record'] = 'RETAIN'\n self.ticket_dict4 = {}\n self.ticket_dict4['type'] = 'ADD'\n self.ticket_dict4['phage_id'] = 'Trixie'\n <mask token>\n\n def test_modify_import_data_2(self):\n \"\"\"Verify returns False if there are extra keys.\"\"\"\n self.ticket_dict3['extra'] = 'extra'\n result = tickets.modify_import_data(self.ticket_dict3, self.\n required_keys, self.optional_keys, self.keywords)\n self.assertFalse(result)\n <mask token>\n <mask token>\n\n def test_modify_import_data_5(self):\n \"\"\"Verify returns True with completed dictionary from a\n minimal replace ticket.\"\"\"\n self.ticket_dict4['type'] = 'replace'\n self.ticket_dict4['description_field'] = 'product'\n self.ticket_dict4['eval_mode'] = 'final'\n result = tickets.modify_import_data(self.ticket_dict4, self.\n required_keys, self.optional_keys, self.keywords)\n with self.subTest():\n self.assertTrue(result)\n with self.subTest():\n self.assertEqual(self.ticket_dict4['host_genus'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['cluster'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['subcluster'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['annotation_author'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['retrieve_record'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['annotation_status'], 'final')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['accession'], 'retain')\n\n def test_parse_import_ticket_data_1(self):\n \"\"\"Verify ticket is generated from correct data dictionary.\"\"\"\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, 'add')\n with self.subTest():\n self.assertEqual(tkt.phage_id, 'Trixie')\n with self.subTest():\n self.assertEqual(tkt.description_field, 'product')\n with self.subTest():\n self.assertEqual(tkt.eval_mode, 'final')\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set(['host_genus']))\n with self.subTest():\n self.assertEqual(tkt.data_retain, set(['cluster']))\n with self.subTest():\n self.assertEqual(tkt.data_parse, set(['accession']))\n with self.subTest():\n self.assertEqual(tkt.data_add, set(['subcluster']))\n\n def test_parse_import_ticket_data_2(self):\n \"\"\"Verify ticket is generated from correct data dictionary with\n no data in 'retain', 'retrieve', or 'parse' sets.\"\"\"\n self.ticket_dict1['host_genus'] = 'Mycobacterium'\n self.ticket_dict1['cluster'] = 'A'\n self.ticket_dict1['subcluster'] = 'A2'\n self.ticket_dict1['accession'] = 'ABC123'\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, 'add')\n with self.subTest():\n self.assertEqual(tkt.phage_id, 'Trixie')\n with self.subTest():\n self.assertEqual(tkt.description_field, 'product')\n with self.subTest():\n self.assertEqual(tkt.eval_mode, 'final')\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set())\n with self.subTest():\n self.assertEqual(tkt.data_retain, set())\n with self.subTest():\n self.assertEqual(tkt.data_parse, set())\n with self.subTest():\n self.assertEqual(tkt.data_add, set(['subcluster', 'host_genus',\n 'cluster', 'accession']))\n\n def test_parse_import_ticket_data_3(self):\n \"\"\"Verify ticket is generated from correct data dictionary with\n no data in 'add' sets.\"\"\"\n self.ticket_dict1['host_genus'] = 'retrieve'\n self.ticket_dict1['cluster'] = 'retrieve'\n self.ticket_dict1['subcluster'] = 'retrieve'\n self.ticket_dict1['accession'] = 'retrieve'\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, 'add')\n with self.subTest():\n self.assertEqual(tkt.phage_id, 'Trixie')\n with self.subTest():\n self.assertEqual(tkt.description_field, 'product')\n with self.subTest():\n self.assertEqual(tkt.eval_mode, 'final')\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set(['subcluster',\n 'host_genus', 'cluster', 'accession']))\n with self.subTest():\n self.assertEqual(tkt.data_retain, set())\n with self.subTest():\n self.assertEqual(tkt.data_parse, set())\n with self.subTest():\n self.assertEqual(tkt.data_add, set())\n <mask token>\n\n def test_set_keywords_1(self):\n \"\"\"Verify one value is lowercased.\"\"\"\n data_dict = {'type': 'ADD', 'cluster': 'RETRIEVE', 'subcluster':\n 'NONE', 'host_genus': 'PARSE', 'retrieve_record': 'RETAIN'}\n keywords = set(['retrieve', 'retain'])\n tickets.set_keywords(data_dict, self.keywords)\n with self.subTest():\n self.assertEqual(data_dict['type'], 'ADD')\n with self.subTest():\n self.assertEqual(data_dict['cluster'], 'retrieve')\n with self.subTest():\n self.assertEqual(data_dict['subcluster'], 'none')\n with self.subTest():\n self.assertEqual(data_dict['host_genus'], 'parse')\n with self.subTest():\n self.assertEqual(data_dict['retrieve_record'], 'retain')\n\n def test_set_missing_keys_1(self):\n \"\"\"Verify one missing key is added.\"\"\"\n data_dict = {'type': 'add', 'cluster': ''}\n key_set = set(['type', 'host_genus'])\n tickets.set_missing_keys(data_dict, key_set)\n with self.subTest():\n self.assertEqual(len(data_dict.keys()), 3)\n with self.subTest():\n self.assertEqual(data_dict['host_genus'], '')\n\n def test_set_missing_keys_2(self):\n \"\"\"Verify no missing key is added.\"\"\"\n data_dict = {'type': 'add', 'cluster': ''}\n key_set = set(['type', 'cluster'])\n tickets.set_missing_keys(data_dict, key_set)\n self.assertEqual(len(data_dict.keys()), 2)\n <mask token>\n <mask token>\n <mask token>\n\n def test_construct_tickets_1(self):\n \"\"\"Verify two tickets are constructed correctly.\n The first ticket contains all required and optional fields.\n The second ticket contains all required fields.\"\"\"\n dict_list = [self.ticket_dict1, self.ticket_dict4]\n eval_data_dict = {'eval_mode': 'custom_eval_mode', 'eval_flag_dict':\n {'check_locus_tag': False}}\n list_of_tickets = tickets.construct_tickets(dict_list,\n eval_data_dict, 'function', self.required_keys, self.\n optional_keys, self.keywords)\n with self.subTest():\n self.assertEqual(len(list_of_tickets), 2)\n with self.subTest():\n self.assertEqual(list_of_tickets[0].id, 1)\n with self.subTest():\n self.assertEqual(list_of_tickets[0].eval_mode, 'final')\n with self.subTest():\n self.assertEqual(list_of_tickets[0].description_field, 'product')\n with self.subTest():\n self.assertTrue(list_of_tickets[0].eval_flags['check_locus_tag'])\n with self.subTest():\n self.assertEqual(list_of_tickets[1].id, 2)\n with self.subTest():\n self.assertEqual(list_of_tickets[1].eval_mode, 'custom_eval_mode')\n with self.subTest():\n self.assertEqual(list_of_tickets[1].description_field, 'function')\n with self.subTest():\n self.assertFalse(list_of_tickets[1].eval_flags['check_locus_tag'])\n <mask token>\n <mask token>\n\n def test_identify_duplicates_1(self):\n \"\"\"Verify no duplicates are produced.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'Trixie'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 2\n ticket2.type = 'replace'\n ticket2.phage_id = 'L5'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 0)\n\n def test_identify_duplicates_2(self):\n \"\"\"Verify two tickets with 'none' duplicates\n do not generate an error.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 'none'\n ticket1.type = 'replace'\n ticket1.phage_id = 'none'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 'none'\n ticket2.type = 'replace'\n ticket2.phage_id = 'none'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 0)\n <mask token>\n\n def test_identify_duplicates_4(self):\n \"\"\"Verify two tickets with Primary Phage ID duplicates\n do generate an error.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'Trixie'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 2\n ticket2.type = 'replace'\n ticket2.phage_id = 'Trixie'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 1)\n\n def test_identify_duplicates_6(self):\n \"\"\"Verify two tickets with multiple duplicates\n do generate multiple errors.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'Trixie'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 1\n ticket2.type = 'replace'\n ticket2.phage_id = 'Trixie'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 1)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 1)\n\n\nclass TestTicketFunctions2(unittest.TestCase):\n\n def setUp(self):\n self.ticket1 = ticket.ImportTicket()\n self.ticket2 = ticket.ImportTicket()\n self.ticket1.phage_id = 'Trixie'\n self.ticket2.phage_id = 'L5'\n self.bundle1 = bundle.Bundle()\n self.bundle2 = bundle.Bundle()\n self.bundle1.ticket = self.ticket1\n self.bundle2.ticket = self.ticket2\n\n\nclass TestTicketFunctions3(unittest.TestCase):\n\n def setUp(self):\n self.data_dict = {}\n self.data_dict['host_genus'] = 'Mycobacterium smegmatis'\n self.data_dict['accession'] = 'ABC123.1'\n self.data_dict['annotation_status'] = 'final'\n self.data_dict['cluster'] = 'A'\n self.data_dict['subcluster'] = 'A2'\n self.data_dict['annotation_author'] = 1\n self.data_dict['retrieve_record'] = 1\n self.tkt1 = ticket.ImportTicket()\n self.tkt1.phage_id = 'Trixie_Draft'\n self.tkt1.data_dict = self.data_dict\n\n def test_get_genome_1(self):\n \"\"\"Verify no data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([''])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.id, 'Trixie')\n with self.subTest():\n self.assertEqual(gnm.name, 'Trixie_Draft')\n with self.subTest():\n self.assertEqual(gnm.type, 'add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.cluster, '')\n with self.subTest():\n self.assertEqual(gnm.subcluster, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_status, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_author, -1)\n with self.subTest():\n self.assertEqual(gnm.retrieve_record, -1)\n with self.subTest():\n self.assertEqual(gnm.accession, '')\n\n def test_get_genome_2(self):\n \"\"\"Verify host_genus data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['host_genus'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, 'Mycobacterium')\n with self.subTest():\n self.assertEqual(gnm.cluster, '')\n\n def test_get_genome_3(self):\n \"\"\"Verify cluster data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['cluster'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.cluster, 'A')\n\n def test_get_genome_4(self):\n \"\"\"Verify subcluster data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['subcluster'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.subcluster, 'A2')\n\n def test_get_genome_5(self):\n \"\"\"Verify annotation_status data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['annotation_status'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_status, 'final')\n\n def test_get_genome_6(self):\n \"\"\"Verify annotation_author data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['annotation_author'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_author, 1)\n\n def test_get_genome_7(self):\n \"\"\"Verify retrieve_record data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['retrieve_record'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.retrieve_record, 1)\n\n def test_get_genome_8(self):\n \"\"\"Verify accession data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['accession'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.accession, 'ABC123')\n\n\n<mask token>\n", "step-4": "<mask token>\nfrom pdm_utils.classes import bundle\nfrom pdm_utils.classes import genome\nfrom pdm_utils.classes import ticket\nfrom pdm_utils.classes import eval\nfrom pdm_utils.functions import tickets\nfrom pdm_utils.constants import constants\nimport unittest\n\n\nclass TestTicketFunctions1(unittest.TestCase):\n\n def setUp(self):\n self.required_keys = constants.IMPORT_TABLE_STRUCTURE['required']\n self.optional_keys = constants.IMPORT_TABLE_STRUCTURE['optional']\n self.keywords = constants.IMPORT_TABLE_STRUCTURE['keywords']\n self.ticket_dict1 = {}\n self.ticket_dict1['type'] = 'add'\n self.ticket_dict1['phage_id'] = 'Trixie'\n self.ticket_dict1['description_field'] = 'product'\n self.ticket_dict1['eval_mode'] = 'final'\n self.ticket_dict1['host_genus'] = 'retrieve'\n self.ticket_dict1['cluster'] = 'retain'\n self.ticket_dict1['subcluster'] = 'A2'\n self.ticket_dict1['accession'] = 'parse'\n self.ticket_dict2 = {}\n self.ticket_dict3 = {}\n self.ticket_dict3['type'] = 'ADD'\n self.ticket_dict3['phage_id'] = 'Trixie'\n self.ticket_dict3['description_field'] = 'PRODUCT'\n self.ticket_dict3['eval_mode'] = 'FINAL'\n self.ticket_dict3['host_genus'] = 'RETRIEVE'\n self.ticket_dict3['subcluster'] = None\n self.ticket_dict3['accession'] = 'PARSE'\n self.ticket_dict3['retrieve_record'] = 'RETAIN'\n self.ticket_dict4 = {}\n self.ticket_dict4['type'] = 'ADD'\n self.ticket_dict4['phage_id'] = 'Trixie'\n\n def test_modify_import_data_1(self):\n \"\"\"Verify returns False if there are missing required keys.\"\"\"\n result = tickets.modify_import_data(self.ticket_dict2, self.\n required_keys, self.optional_keys, self.keywords)\n self.assertFalse(result)\n\n def test_modify_import_data_2(self):\n \"\"\"Verify returns False if there are extra keys.\"\"\"\n self.ticket_dict3['extra'] = 'extra'\n result = tickets.modify_import_data(self.ticket_dict3, self.\n required_keys, self.optional_keys, self.keywords)\n self.assertFalse(result)\n\n def test_modify_import_data_3(self):\n \"\"\"Verify returns True with keywords identified and values lowercased.\"\"\"\n result = tickets.modify_import_data(self.ticket_dict3, self.\n required_keys, self.optional_keys, self.keywords)\n with self.subTest():\n self.assertTrue(result)\n with self.subTest():\n self.assertEqual(self.ticket_dict3['host_genus'], 'retrieve')\n with self.subTest():\n self.assertEqual(self.ticket_dict3['retrieve_record'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict3['subcluster'], 'retrieve')\n with self.subTest():\n self.assertEqual(self.ticket_dict3['accession'], 'parse')\n with self.subTest():\n self.assertEqual(self.ticket_dict3['type'], 'add')\n with self.subTest():\n self.assertEqual(self.ticket_dict3['description_field'], 'product')\n with self.subTest():\n self.assertEqual(self.ticket_dict3['eval_mode'], 'final')\n\n def test_modify_import_data_4(self):\n \"\"\"Verify returns True with completed dictionary from a\n minimal add ticket.\"\"\"\n self.ticket_dict4['description_field'] = 'product'\n self.ticket_dict4['eval_mode'] = 'final'\n result = tickets.modify_import_data(self.ticket_dict4, self.\n required_keys, self.optional_keys, self.keywords)\n with self.subTest():\n self.assertTrue(result)\n with self.subTest():\n self.assertEqual(self.ticket_dict4['host_genus'], 'retrieve')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['cluster'], 'retrieve')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['subcluster'], 'retrieve')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['annotation_author'], '1')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['retrieve_record'], '1')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['annotation_status'], 'draft')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['accession'], '')\n\n def test_modify_import_data_5(self):\n \"\"\"Verify returns True with completed dictionary from a\n minimal replace ticket.\"\"\"\n self.ticket_dict4['type'] = 'replace'\n self.ticket_dict4['description_field'] = 'product'\n self.ticket_dict4['eval_mode'] = 'final'\n result = tickets.modify_import_data(self.ticket_dict4, self.\n required_keys, self.optional_keys, self.keywords)\n with self.subTest():\n self.assertTrue(result)\n with self.subTest():\n self.assertEqual(self.ticket_dict4['host_genus'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['cluster'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['subcluster'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['annotation_author'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['retrieve_record'], 'retain')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['annotation_status'], 'final')\n with self.subTest():\n self.assertEqual(self.ticket_dict4['accession'], 'retain')\n\n def test_parse_import_ticket_data_1(self):\n \"\"\"Verify ticket is generated from correct data dictionary.\"\"\"\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, 'add')\n with self.subTest():\n self.assertEqual(tkt.phage_id, 'Trixie')\n with self.subTest():\n self.assertEqual(tkt.description_field, 'product')\n with self.subTest():\n self.assertEqual(tkt.eval_mode, 'final')\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set(['host_genus']))\n with self.subTest():\n self.assertEqual(tkt.data_retain, set(['cluster']))\n with self.subTest():\n self.assertEqual(tkt.data_parse, set(['accession']))\n with self.subTest():\n self.assertEqual(tkt.data_add, set(['subcluster']))\n\n def test_parse_import_ticket_data_2(self):\n \"\"\"Verify ticket is generated from correct data dictionary with\n no data in 'retain', 'retrieve', or 'parse' sets.\"\"\"\n self.ticket_dict1['host_genus'] = 'Mycobacterium'\n self.ticket_dict1['cluster'] = 'A'\n self.ticket_dict1['subcluster'] = 'A2'\n self.ticket_dict1['accession'] = 'ABC123'\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, 'add')\n with self.subTest():\n self.assertEqual(tkt.phage_id, 'Trixie')\n with self.subTest():\n self.assertEqual(tkt.description_field, 'product')\n with self.subTest():\n self.assertEqual(tkt.eval_mode, 'final')\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set())\n with self.subTest():\n self.assertEqual(tkt.data_retain, set())\n with self.subTest():\n self.assertEqual(tkt.data_parse, set())\n with self.subTest():\n self.assertEqual(tkt.data_add, set(['subcluster', 'host_genus',\n 'cluster', 'accession']))\n\n def test_parse_import_ticket_data_3(self):\n \"\"\"Verify ticket is generated from correct data dictionary with\n no data in 'add' sets.\"\"\"\n self.ticket_dict1['host_genus'] = 'retrieve'\n self.ticket_dict1['cluster'] = 'retrieve'\n self.ticket_dict1['subcluster'] = 'retrieve'\n self.ticket_dict1['accession'] = 'retrieve'\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, 'add')\n with self.subTest():\n self.assertEqual(tkt.phage_id, 'Trixie')\n with self.subTest():\n self.assertEqual(tkt.description_field, 'product')\n with self.subTest():\n self.assertEqual(tkt.eval_mode, 'final')\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set(['subcluster',\n 'host_genus', 'cluster', 'accession']))\n with self.subTest():\n self.assertEqual(tkt.data_retain, set())\n with self.subTest():\n self.assertEqual(tkt.data_parse, set())\n with self.subTest():\n self.assertEqual(tkt.data_add, set())\n\n def test_set_empty_1(self):\n \"\"\"Verify one None value is set to ''.\"\"\"\n data_dict = {'type': 'add', 'cluster': None}\n tickets.set_empty(data_dict)\n with self.subTest():\n self.assertEqual(data_dict['type'], 'add')\n with self.subTest():\n self.assertEqual(data_dict['cluster'], '')\n\n def test_set_keywords_1(self):\n \"\"\"Verify one value is lowercased.\"\"\"\n data_dict = {'type': 'ADD', 'cluster': 'RETRIEVE', 'subcluster':\n 'NONE', 'host_genus': 'PARSE', 'retrieve_record': 'RETAIN'}\n keywords = set(['retrieve', 'retain'])\n tickets.set_keywords(data_dict, self.keywords)\n with self.subTest():\n self.assertEqual(data_dict['type'], 'ADD')\n with self.subTest():\n self.assertEqual(data_dict['cluster'], 'retrieve')\n with self.subTest():\n self.assertEqual(data_dict['subcluster'], 'none')\n with self.subTest():\n self.assertEqual(data_dict['host_genus'], 'parse')\n with self.subTest():\n self.assertEqual(data_dict['retrieve_record'], 'retain')\n\n def test_set_missing_keys_1(self):\n \"\"\"Verify one missing key is added.\"\"\"\n data_dict = {'type': 'add', 'cluster': ''}\n key_set = set(['type', 'host_genus'])\n tickets.set_missing_keys(data_dict, key_set)\n with self.subTest():\n self.assertEqual(len(data_dict.keys()), 3)\n with self.subTest():\n self.assertEqual(data_dict['host_genus'], '')\n\n def test_set_missing_keys_2(self):\n \"\"\"Verify no missing key is added.\"\"\"\n data_dict = {'type': 'add', 'cluster': ''}\n key_set = set(['type', 'cluster'])\n tickets.set_missing_keys(data_dict, key_set)\n self.assertEqual(len(data_dict.keys()), 2)\n\n def test_set_dict_value_1(self):\n \"\"\"Verify empty value is replaced with first value.\"\"\"\n data_dict = {'type': 'add', 'cluster': ''}\n tickets.set_dict_value(data_dict, 'cluster', 'A', 'B')\n self.assertEqual(data_dict['cluster'], 'A')\n\n def test_set_dict_value_2(self):\n \"\"\"Verify empty value is replaced with second value.\"\"\"\n data_dict = {'type': 'replace', 'cluster': ''}\n tickets.set_dict_value(data_dict, 'cluster', 'A', 'B')\n self.assertEqual(data_dict['cluster'], 'B')\n\n def test_set_dict_value_3(self):\n \"\"\"Verify non-empty value is not replaced.\"\"\"\n data_dict = {'type': 'replace', 'cluster': 'C'}\n tickets.set_dict_value(data_dict, 'cluster', 'A', 'B')\n self.assertEqual(data_dict['cluster'], 'C')\n\n def test_construct_tickets_1(self):\n \"\"\"Verify two tickets are constructed correctly.\n The first ticket contains all required and optional fields.\n The second ticket contains all required fields.\"\"\"\n dict_list = [self.ticket_dict1, self.ticket_dict4]\n eval_data_dict = {'eval_mode': 'custom_eval_mode', 'eval_flag_dict':\n {'check_locus_tag': False}}\n list_of_tickets = tickets.construct_tickets(dict_list,\n eval_data_dict, 'function', self.required_keys, self.\n optional_keys, self.keywords)\n with self.subTest():\n self.assertEqual(len(list_of_tickets), 2)\n with self.subTest():\n self.assertEqual(list_of_tickets[0].id, 1)\n with self.subTest():\n self.assertEqual(list_of_tickets[0].eval_mode, 'final')\n with self.subTest():\n self.assertEqual(list_of_tickets[0].description_field, 'product')\n with self.subTest():\n self.assertTrue(list_of_tickets[0].eval_flags['check_locus_tag'])\n with self.subTest():\n self.assertEqual(list_of_tickets[1].id, 2)\n with self.subTest():\n self.assertEqual(list_of_tickets[1].eval_mode, 'custom_eval_mode')\n with self.subTest():\n self.assertEqual(list_of_tickets[1].description_field, 'function')\n with self.subTest():\n self.assertFalse(list_of_tickets[1].eval_flags['check_locus_tag'])\n\n def test_construct_tickets_2(self):\n \"\"\"Verify one ticket is constructed correctly. The second data\n dictionary is not structured correctly.\"\"\"\n dict_list = [self.ticket_dict1, self.ticket_dict2]\n eval_data_dict = {'eval_mode': 'custom_eval_mode', 'eval_flag_dict': {}\n }\n list_of_tickets = tickets.construct_tickets(dict_list,\n eval_data_dict, 'function', self.required_keys, self.\n optional_keys, self.keywords)\n with self.subTest():\n self.assertEqual(len(list_of_tickets), 1)\n\n def test_construct_tickets_3(self):\n \"\"\"Verify four tickets constructed correctly. The first two tickets\n contain all required and optional fields. The second two tickets\n contain all required fields. Verify that each eval_flag dictionary\n is a separate object that can be modified without impacting the other\n eval_flag dictionaries.\"\"\"\n tkt_dict1 = {}\n tkt_dict1['type'] = 'add'\n tkt_dict1['phage_id'] = 'Trixie'\n tkt_dict1['description_field'] = 'product'\n tkt_dict1['eval_mode'] = 'final'\n tkt_dict2 = {}\n tkt_dict2['type'] = 'add'\n tkt_dict2['phage_id'] = 'L5'\n tkt_dict2['description_field'] = 'product'\n tkt_dict2['eval_mode'] = 'final'\n tkt_dict3 = {}\n tkt_dict3['type'] = 'add'\n tkt_dict3['phage_id'] = 'RedRock'\n tkt_dict4 = {}\n tkt_dict4['type'] = 'add'\n tkt_dict4['phage_id'] = 'Bxb1'\n dict_list = [tkt_dict1, tkt_dict2, tkt_dict3, tkt_dict4]\n eval_data_dict = {'eval_mode': 'custom_eval_mode', 'eval_flag_dict':\n {'check_locus_tag': False}}\n tkt_list = tickets.construct_tickets(dict_list, eval_data_dict,\n 'function', self.required_keys, self.optional_keys, self.keywords)\n tkt_list[0].eval_flags['check_locus_tag'] = 0\n tkt_list[1].eval_flags['check_locus_tag'] = 1\n tkt_list[2].eval_flags['check_locus_tag'] = 2\n tkt_list[3].eval_flags['check_locus_tag'] = 3\n with self.subTest():\n self.assertEqual(tkt_list[0].eval_flags['check_locus_tag'], 0)\n with self.subTest():\n self.assertEqual(tkt_list[1].eval_flags['check_locus_tag'], 1)\n with self.subTest():\n self.assertEqual(tkt_list[2].eval_flags['check_locus_tag'], 2)\n with self.subTest():\n self.assertEqual(tkt_list[3].eval_flags['check_locus_tag'], 3)\n\n def test_identify_duplicates_1(self):\n \"\"\"Verify no duplicates are produced.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'Trixie'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 2\n ticket2.type = 'replace'\n ticket2.phage_id = 'L5'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 0)\n\n def test_identify_duplicates_2(self):\n \"\"\"Verify two tickets with 'none' duplicates\n do not generate an error.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 'none'\n ticket1.type = 'replace'\n ticket1.phage_id = 'none'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 'none'\n ticket2.type = 'replace'\n ticket2.phage_id = 'none'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 0)\n\n def test_identify_duplicates_3(self):\n \"\"\"Verify two tickets with id duplicates\n do generate an error.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'L5'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 1\n ticket2.type = 'replace'\n ticket2.phage_id = 'Trixie'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 1)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 0)\n\n def test_identify_duplicates_4(self):\n \"\"\"Verify two tickets with Primary Phage ID duplicates\n do generate an error.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'Trixie'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 2\n ticket2.type = 'replace'\n ticket2.phage_id = 'Trixie'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 1)\n\n def test_identify_duplicates_6(self):\n \"\"\"Verify two tickets with multiple duplicates\n do generate multiple errors.\"\"\"\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = 'replace'\n ticket1.phage_id = 'Trixie'\n ticket2 = ticket.ImportTicket()\n ticket2.id = 1\n ticket2.type = 'replace'\n ticket2.phage_id = 'Trixie'\n null_set = set(['none'])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = tickets.identify_duplicates(list_of_tickets,\n null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 1)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 1)\n\n\nclass TestTicketFunctions2(unittest.TestCase):\n\n def setUp(self):\n self.ticket1 = ticket.ImportTicket()\n self.ticket2 = ticket.ImportTicket()\n self.ticket1.phage_id = 'Trixie'\n self.ticket2.phage_id = 'L5'\n self.bundle1 = bundle.Bundle()\n self.bundle2 = bundle.Bundle()\n self.bundle1.ticket = self.ticket1\n self.bundle2.ticket = self.ticket2\n\n\nclass TestTicketFunctions3(unittest.TestCase):\n\n def setUp(self):\n self.data_dict = {}\n self.data_dict['host_genus'] = 'Mycobacterium smegmatis'\n self.data_dict['accession'] = 'ABC123.1'\n self.data_dict['annotation_status'] = 'final'\n self.data_dict['cluster'] = 'A'\n self.data_dict['subcluster'] = 'A2'\n self.data_dict['annotation_author'] = 1\n self.data_dict['retrieve_record'] = 1\n self.tkt1 = ticket.ImportTicket()\n self.tkt1.phage_id = 'Trixie_Draft'\n self.tkt1.data_dict = self.data_dict\n\n def test_get_genome_1(self):\n \"\"\"Verify no data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([''])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.id, 'Trixie')\n with self.subTest():\n self.assertEqual(gnm.name, 'Trixie_Draft')\n with self.subTest():\n self.assertEqual(gnm.type, 'add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.cluster, '')\n with self.subTest():\n self.assertEqual(gnm.subcluster, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_status, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_author, -1)\n with self.subTest():\n self.assertEqual(gnm.retrieve_record, -1)\n with self.subTest():\n self.assertEqual(gnm.accession, '')\n\n def test_get_genome_2(self):\n \"\"\"Verify host_genus data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['host_genus'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, 'Mycobacterium')\n with self.subTest():\n self.assertEqual(gnm.cluster, '')\n\n def test_get_genome_3(self):\n \"\"\"Verify cluster data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['cluster'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.cluster, 'A')\n\n def test_get_genome_4(self):\n \"\"\"Verify subcluster data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['subcluster'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.subcluster, 'A2')\n\n def test_get_genome_5(self):\n \"\"\"Verify annotation_status data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['annotation_status'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_status, 'final')\n\n def test_get_genome_6(self):\n \"\"\"Verify annotation_author data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['annotation_author'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.annotation_author, 1)\n\n def test_get_genome_7(self):\n \"\"\"Verify retrieve_record data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['retrieve_record'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.retrieve_record, 1)\n\n def test_get_genome_8(self):\n \"\"\"Verify accession data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set(['accession'])\n gnm = tickets.get_genome(self.tkt1, gnm_type='add')\n with self.subTest():\n self.assertEqual(gnm.host_genus, '')\n with self.subTest():\n self.assertEqual(gnm.accession, 'ABC123')\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-5": "\"\"\"Unit tests for misc. ticket functions.\"\"\"\n\nfrom pdm_utils.classes import bundle\nfrom pdm_utils.classes import genome\nfrom pdm_utils.classes import ticket\nfrom pdm_utils.classes import eval\nfrom pdm_utils.functions import tickets\nfrom pdm_utils.constants import constants\nimport unittest\n\n\n\n\n\nclass TestTicketFunctions1(unittest.TestCase):\n\n\n def setUp(self):\n self.required_keys = constants.IMPORT_TABLE_STRUCTURE[\"required\"]\n self.optional_keys = constants.IMPORT_TABLE_STRUCTURE[\"optional\"]\n self.keywords = constants.IMPORT_TABLE_STRUCTURE[\"keywords\"]\n\n self.ticket_dict1 = {}\n self.ticket_dict1[\"type\"] = \"add\"\n self.ticket_dict1[\"phage_id\"] = \"Trixie\"\n self.ticket_dict1[\"description_field\"] = \"product\"\n self.ticket_dict1[\"eval_mode\"] = \"final\"\n self.ticket_dict1[\"host_genus\"] = \"retrieve\"\n self.ticket_dict1[\"cluster\"] = \"retain\"\n self.ticket_dict1[\"subcluster\"] = \"A2\"\n self.ticket_dict1[\"accession\"] = \"parse\"\n\n\n self.ticket_dict2 = {}\n\n self.ticket_dict3 = {}\n self.ticket_dict3[\"type\"] = \"ADD\"\n self.ticket_dict3[\"phage_id\"] = \"Trixie\"\n self.ticket_dict3[\"description_field\"] = \"PRODUCT\"\n self.ticket_dict3[\"eval_mode\"] = \"FINAL\"\n self.ticket_dict3[\"host_genus\"] = \"RETRIEVE\"\n self.ticket_dict3[\"subcluster\"] = None\n self.ticket_dict3[\"accession\"] = \"PARSE\"\n self.ticket_dict3[\"retrieve_record\"] = \"RETAIN\"\n\n\n self.ticket_dict4 = {}\n self.ticket_dict4[\"type\"] = \"ADD\"\n self.ticket_dict4[\"phage_id\"] = \"Trixie\"\n\n\n def test_modify_import_data_1(self):\n \"\"\"Verify returns False if there are missing required keys.\"\"\"\n result = tickets.modify_import_data(self.ticket_dict2,\n self.required_keys, self.optional_keys, self.keywords)\n self.assertFalse(result)\n\n\n def test_modify_import_data_2(self):\n \"\"\"Verify returns False if there are extra keys.\"\"\"\n self.ticket_dict3[\"extra\"] = \"extra\"\n result = tickets.modify_import_data(self.ticket_dict3,\n self.required_keys, self.optional_keys, self.keywords)\n self.assertFalse(result)\n\n\n def test_modify_import_data_3(self):\n \"\"\"Verify returns True with keywords identified and values lowercased.\"\"\"\n result = tickets.modify_import_data(self.ticket_dict3,\n self.required_keys, self.optional_keys, self.keywords)\n with self.subTest():\n self.assertTrue(result)\n with self.subTest():\n self.assertEqual(self.ticket_dict3[\"host_genus\"], \"retrieve\")\n with self.subTest():\n self.assertEqual(self.ticket_dict3[\"retrieve_record\"], \"retain\")\n with self.subTest():\n self.assertEqual(self.ticket_dict3[\"subcluster\"], \"retrieve\")\n with self.subTest():\n self.assertEqual(self.ticket_dict3[\"accession\"], \"parse\")\n with self.subTest():\n self.assertEqual(self.ticket_dict3[\"type\"], \"add\")\n with self.subTest():\n self.assertEqual(self.ticket_dict3[\"description_field\"], \"product\")\n with self.subTest():\n self.assertEqual(self.ticket_dict3[\"eval_mode\"], \"final\")\n\n\n def test_modify_import_data_4(self):\n \"\"\"Verify returns True with completed dictionary from a\n minimal add ticket.\"\"\"\n self.ticket_dict4[\"description_field\"] = \"product\"\n self.ticket_dict4[\"eval_mode\"] = \"final\"\n result = tickets.modify_import_data(self.ticket_dict4,\n self.required_keys, self.optional_keys, self.keywords)\n with self.subTest():\n self.assertTrue(result)\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"host_genus\"], \"retrieve\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"cluster\"], \"retrieve\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"subcluster\"], \"retrieve\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"annotation_author\"], \"1\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"retrieve_record\"], \"1\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"annotation_status\"], \"draft\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"accession\"], \"\")\n\n\n def test_modify_import_data_5(self):\n \"\"\"Verify returns True with completed dictionary from a\n minimal replace ticket.\"\"\"\n self.ticket_dict4[\"type\"] = \"replace\"\n self.ticket_dict4[\"description_field\"] = \"product\"\n self.ticket_dict4[\"eval_mode\"] = \"final\"\n result = tickets.modify_import_data(self.ticket_dict4,\n self.required_keys, self.optional_keys, self.keywords)\n with self.subTest():\n self.assertTrue(result)\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"host_genus\"], \"retain\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"cluster\"], \"retain\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"subcluster\"], \"retain\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"annotation_author\"], \"retain\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"retrieve_record\"], \"retain\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"annotation_status\"], \"final\")\n with self.subTest():\n self.assertEqual(self.ticket_dict4[\"accession\"], \"retain\")\n\n\n\n\n def test_parse_import_ticket_data_1(self):\n \"\"\"Verify ticket is generated from correct data dictionary.\"\"\"\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, \"add\")\n with self.subTest():\n self.assertEqual(tkt.phage_id, \"Trixie\")\n with self.subTest():\n self.assertEqual(tkt.description_field, \"product\")\n with self.subTest():\n self.assertEqual(tkt.eval_mode, \"final\")\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set([\"host_genus\"]))\n with self.subTest():\n self.assertEqual(tkt.data_retain, set([\"cluster\"]))\n with self.subTest():\n self.assertEqual(tkt.data_parse, set([\"accession\"]))\n with self.subTest():\n self.assertEqual(tkt.data_add, set([\"subcluster\"]))\n\n def test_parse_import_ticket_data_2(self):\n \"\"\"Verify ticket is generated from correct data dictionary with\n no data in 'retain', 'retrieve', or 'parse' sets.\"\"\"\n self.ticket_dict1[\"host_genus\"] = \"Mycobacterium\"\n self.ticket_dict1[\"cluster\"] = \"A\"\n self.ticket_dict1[\"subcluster\"] = \"A2\"\n self.ticket_dict1[\"accession\"] = \"ABC123\"\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, \"add\")\n with self.subTest():\n self.assertEqual(tkt.phage_id, \"Trixie\")\n with self.subTest():\n self.assertEqual(tkt.description_field, \"product\")\n with self.subTest():\n self.assertEqual(tkt.eval_mode, \"final\")\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set())\n with self.subTest():\n self.assertEqual(tkt.data_retain, set())\n with self.subTest():\n self.assertEqual(tkt.data_parse, set())\n with self.subTest():\n self.assertEqual(tkt.data_add, set([\"subcluster\", \"host_genus\",\n \"cluster\", \"accession\"]))\n\n def test_parse_import_ticket_data_3(self):\n \"\"\"Verify ticket is generated from correct data dictionary with\n no data in 'add' sets.\"\"\"\n self.ticket_dict1[\"host_genus\"] = \"retrieve\"\n self.ticket_dict1[\"cluster\"] = \"retrieve\"\n self.ticket_dict1[\"subcluster\"] = \"retrieve\"\n self.ticket_dict1[\"accession\"] = \"retrieve\"\n tkt = tickets.parse_import_ticket_data(self.ticket_dict1)\n with self.subTest():\n self.assertEqual(tkt.type, \"add\")\n with self.subTest():\n self.assertEqual(tkt.phage_id, \"Trixie\")\n with self.subTest():\n self.assertEqual(tkt.description_field, \"product\")\n with self.subTest():\n self.assertEqual(tkt.eval_mode, \"final\")\n with self.subTest():\n self.assertEqual(len(tkt.data_dict.keys()), 8)\n with self.subTest():\n self.assertEqual(tkt.data_retrieve, set([\"subcluster\", \"host_genus\",\n \"cluster\", \"accession\"]))\n with self.subTest():\n self.assertEqual(tkt.data_retain, set())\n with self.subTest():\n self.assertEqual(tkt.data_parse, set())\n with self.subTest():\n self.assertEqual(tkt.data_add, set())\n\n\n\n\n def test_set_empty_1(self):\n \"\"\"Verify one None value is set to ''.\"\"\"\n data_dict = {\"type\":\"add\",\"cluster\":None}\n tickets.set_empty(data_dict)\n with self.subTest():\n self.assertEqual(data_dict[\"type\"], \"add\")\n with self.subTest():\n self.assertEqual(data_dict[\"cluster\"], \"\")\n\n\n\n\n def test_set_keywords_1(self):\n \"\"\"Verify one value is lowercased.\"\"\"\n data_dict = {\"type\":\"ADD\",\n \"cluster\":\"RETRIEVE\",\n \"subcluster\": \"NONE\",\n \"host_genus\": \"PARSE\",\n \"retrieve_record\": \"RETAIN\"}\n keywords = set([\"retrieve\", \"retain\"])\n tickets.set_keywords(data_dict, self.keywords)\n with self.subTest():\n self.assertEqual(data_dict[\"type\"], \"ADD\")\n with self.subTest():\n self.assertEqual(data_dict[\"cluster\"], \"retrieve\")\n with self.subTest():\n self.assertEqual(data_dict[\"subcluster\"], \"none\")\n with self.subTest():\n self.assertEqual(data_dict[\"host_genus\"], \"parse\")\n with self.subTest():\n self.assertEqual(data_dict[\"retrieve_record\"], \"retain\")\n\n\n\n\n def test_set_missing_keys_1(self):\n \"\"\"Verify one missing key is added.\"\"\"\n data_dict = {\"type\":\"add\", \"cluster\":\"\"}\n key_set = set([\"type\", \"host_genus\"])\n tickets.set_missing_keys(data_dict, key_set)\n with self.subTest():\n self.assertEqual(len(data_dict.keys()), 3)\n with self.subTest():\n self.assertEqual(data_dict[\"host_genus\"], \"\")\n\n def test_set_missing_keys_2(self):\n \"\"\"Verify no missing key is added.\"\"\"\n data_dict = {\"type\":\"add\", \"cluster\":\"\"}\n key_set = set([\"type\", \"cluster\"])\n tickets.set_missing_keys(data_dict, key_set)\n self.assertEqual(len(data_dict.keys()), 2)\n\n\n\n\n def test_set_dict_value_1(self):\n \"\"\"Verify empty value is replaced with first value.\"\"\"\n data_dict = {\"type\":\"add\", \"cluster\":\"\"}\n tickets.set_dict_value(data_dict, \"cluster\", \"A\", \"B\")\n self.assertEqual(data_dict[\"cluster\"], \"A\")\n\n def test_set_dict_value_2(self):\n \"\"\"Verify empty value is replaced with second value.\"\"\"\n data_dict = {\"type\":\"replace\", \"cluster\":\"\"}\n tickets.set_dict_value(data_dict, \"cluster\", \"A\", \"B\")\n self.assertEqual(data_dict[\"cluster\"], \"B\")\n\n def test_set_dict_value_3(self):\n \"\"\"Verify non-empty value is not replaced.\"\"\"\n data_dict = {\"type\":\"replace\", \"cluster\":\"C\"}\n tickets.set_dict_value(data_dict, \"cluster\", \"A\", \"B\")\n self.assertEqual(data_dict[\"cluster\"], \"C\")\n\n\n\n\n def test_construct_tickets_1(self):\n \"\"\"Verify two tickets are constructed correctly.\n The first ticket contains all required and optional fields.\n The second ticket contains all required fields.\"\"\"\n dict_list = [self.ticket_dict1, self.ticket_dict4]\n eval_data_dict = {\"eval_mode\": \"custom_eval_mode\",\n \"eval_flag_dict\": {\"check_locus_tag\": False}}\n list_of_tickets = tickets.construct_tickets(dict_list,\n eval_data_dict, \"function\", self.required_keys,\n self.optional_keys, self.keywords)\n with self.subTest():\n self.assertEqual(len(list_of_tickets), 2)\n with self.subTest():\n self.assertEqual(list_of_tickets[0].id, 1)\n with self.subTest():\n self.assertEqual(list_of_tickets[0].eval_mode, \"final\")\n with self.subTest():\n self.assertEqual(list_of_tickets[0].description_field, \"product\")\n with self.subTest():\n self.assertTrue(list_of_tickets[0].eval_flags[\"check_locus_tag\"])\n with self.subTest():\n self.assertEqual(list_of_tickets[1].id, 2)\n with self.subTest():\n self.assertEqual(list_of_tickets[1].eval_mode, \"custom_eval_mode\")\n with self.subTest():\n self.assertEqual(list_of_tickets[1].description_field, \"function\")\n with self.subTest():\n self.assertFalse(list_of_tickets[1].eval_flags[\"check_locus_tag\"])\n\n def test_construct_tickets_2(self):\n \"\"\"Verify one ticket is constructed correctly. The second data\n dictionary is not structured correctly.\"\"\"\n dict_list = [self.ticket_dict1, self.ticket_dict2]\n eval_data_dict = {\"eval_mode\": \"custom_eval_mode\",\n \"eval_flag_dict\": {}}\n list_of_tickets = tickets.construct_tickets(dict_list,\n eval_data_dict, \"function\", self.required_keys,\n self.optional_keys, self.keywords)\n with self.subTest():\n self.assertEqual(len(list_of_tickets), 1)\n\n def test_construct_tickets_3(self):\n \"\"\"Verify four tickets constructed correctly. The first two tickets\n contain all required and optional fields. The second two tickets\n contain all required fields. Verify that each eval_flag dictionary\n is a separate object that can be modified without impacting the other\n eval_flag dictionaries.\"\"\"\n\n tkt_dict1 = {}\n tkt_dict1[\"type\"] = \"add\"\n tkt_dict1[\"phage_id\"] = \"Trixie\"\n tkt_dict1[\"description_field\"] = \"product\"\n tkt_dict1[\"eval_mode\"] = \"final\"\n\n tkt_dict2 = {}\n tkt_dict2[\"type\"] = \"add\"\n tkt_dict2[\"phage_id\"] = \"L5\"\n tkt_dict2[\"description_field\"] = \"product\"\n tkt_dict2[\"eval_mode\"] = \"final\"\n\n tkt_dict3 = {}\n tkt_dict3[\"type\"] = \"add\"\n tkt_dict3[\"phage_id\"] = \"RedRock\"\n\n tkt_dict4 = {}\n tkt_dict4[\"type\"] = \"add\"\n tkt_dict4[\"phage_id\"] = \"Bxb1\"\n\n dict_list = [tkt_dict1, tkt_dict2, tkt_dict3, tkt_dict4]\n eval_data_dict = {\"eval_mode\": \"custom_eval_mode\",\n \"eval_flag_dict\": {\"check_locus_tag\": False}}\n tkt_list = tickets.construct_tickets(dict_list,\n eval_data_dict, \"function\", self.required_keys,\n self.optional_keys, self.keywords)\n\n tkt_list[0].eval_flags[\"check_locus_tag\"] = 0\n tkt_list[1].eval_flags[\"check_locus_tag\"] = 1\n tkt_list[2].eval_flags[\"check_locus_tag\"] = 2\n tkt_list[3].eval_flags[\"check_locus_tag\"] = 3\n\n with self.subTest():\n self.assertEqual(tkt_list[0].eval_flags[\"check_locus_tag\"], 0)\n with self.subTest():\n self.assertEqual(tkt_list[1].eval_flags[\"check_locus_tag\"], 1)\n with self.subTest():\n self.assertEqual(tkt_list[2].eval_flags[\"check_locus_tag\"], 2)\n with self.subTest():\n self.assertEqual(tkt_list[3].eval_flags[\"check_locus_tag\"], 3)\n\n\n\n def test_identify_duplicates_1(self):\n \"\"\"Verify no duplicates are produced.\"\"\"\n\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = \"replace\"\n ticket1.phage_id = \"Trixie\"\n\n ticket2 = ticket.ImportTicket()\n ticket2.id = 2\n ticket2.type = \"replace\"\n ticket2.phage_id = \"L5\"\n\n null_set = set([\"none\"])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = \\\n tickets.identify_duplicates(list_of_tickets, null_set=null_set)\n\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 0)\n\n\n def test_identify_duplicates_2(self):\n \"\"\"Verify two tickets with 'none' duplicates\n do not generate an error.\"\"\"\n\n ticket1 = ticket.ImportTicket()\n ticket1.id = \"none\"\n ticket1.type = \"replace\"\n ticket1.phage_id = \"none\"\n\n ticket2 = ticket.ImportTicket()\n ticket2.id = \"none\"\n ticket2.type = \"replace\"\n ticket2.phage_id = \"none\"\n\n null_set = set([\"none\"])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = \\\n tickets.identify_duplicates(list_of_tickets, null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 0)\n\n\n def test_identify_duplicates_3(self):\n \"\"\"Verify two tickets with id duplicates\n do generate an error.\"\"\"\n\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = \"replace\"\n ticket1.phage_id = \"L5\"\n\n ticket2 = ticket.ImportTicket()\n ticket2.id = 1\n ticket2.type = \"replace\"\n ticket2.phage_id = \"Trixie\"\n\n null_set = set([\"none\"])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = \\\n tickets.identify_duplicates(list_of_tickets, null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 1)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 0)\n\n\n\n def test_identify_duplicates_4(self):\n \"\"\"Verify two tickets with Primary Phage ID duplicates\n do generate an error.\"\"\"\n\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = \"replace\"\n ticket1.phage_id = \"Trixie\"\n\n ticket2 = ticket.ImportTicket()\n ticket2.id = 2\n ticket2.type = \"replace\"\n ticket2.phage_id = \"Trixie\"\n\n null_set = set([\"none\"])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = \\\n tickets.identify_duplicates(list_of_tickets, null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 0)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 1)\n\n\n def test_identify_duplicates_6(self):\n \"\"\"Verify two tickets with multiple duplicates\n do generate multiple errors.\"\"\"\n\n ticket1 = ticket.ImportTicket()\n ticket1.id = 1\n ticket1.type = \"replace\"\n ticket1.phage_id = \"Trixie\"\n\n ticket2 = ticket.ImportTicket()\n ticket2.id = 1\n ticket2.type = \"replace\"\n ticket2.phage_id = \"Trixie\"\n\n null_set = set([\"none\"])\n list_of_tickets = [ticket1, ticket2]\n id_dupes, phage_id_dupes = \\\n tickets.identify_duplicates(list_of_tickets, null_set=null_set)\n with self.subTest():\n self.assertEqual(len(id_dupes), 1)\n with self.subTest():\n self.assertEqual(len(phage_id_dupes), 1)\n\n\n\nclass TestTicketFunctions2(unittest.TestCase):\n\n def setUp(self):\n\n self.ticket1 = ticket.ImportTicket()\n self.ticket2 = ticket.ImportTicket()\n\n self.ticket1.phage_id = \"Trixie\"\n self.ticket2.phage_id = \"L5\"\n\n self.bundle1 = bundle.Bundle()\n self.bundle2 = bundle.Bundle()\n\n self.bundle1.ticket = self.ticket1\n self.bundle2.ticket = self.ticket2\n\n\n\n\nclass TestTicketFunctions3(unittest.TestCase):\n\n def setUp(self):\n self.data_dict = {}\n self.data_dict[\"host_genus\"] = \"Mycobacterium smegmatis\"\n self.data_dict[\"accession\"] = \"ABC123.1\"\n self.data_dict[\"annotation_status\"] = \"final\"\n self.data_dict[\"cluster\"] = \"A\"\n self.data_dict[\"subcluster\"] = \"A2\"\n self.data_dict[\"annotation_author\"] = 1\n self.data_dict[\"retrieve_record\"] = 1\n self.tkt1 = ticket.ImportTicket()\n self.tkt1.phage_id = \"Trixie_Draft\"\n self.tkt1.data_dict = self.data_dict\n\n def test_get_genome_1(self):\n \"\"\"Verify no data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([\"\"])\n gnm = tickets.get_genome(self.tkt1, gnm_type=\"add\")\n with self.subTest():\n self.assertEqual(gnm.id, \"Trixie\")\n with self.subTest():\n self.assertEqual(gnm.name, \"Trixie_Draft\")\n with self.subTest():\n self.assertEqual(gnm.type, \"add\")\n with self.subTest():\n self.assertEqual(gnm.host_genus, \"\")\n with self.subTest():\n self.assertEqual(gnm.cluster, \"\")\n with self.subTest():\n self.assertEqual(gnm.subcluster, \"\")\n with self.subTest():\n self.assertEqual(gnm.annotation_status, \"\")\n with self.subTest():\n self.assertEqual(gnm.annotation_author, -1)\n with self.subTest():\n self.assertEqual(gnm.retrieve_record, -1)\n with self.subTest():\n self.assertEqual(gnm.accession, \"\")\n\n def test_get_genome_2(self):\n \"\"\"Verify host_genus data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([\"host_genus\"])\n gnm = tickets.get_genome(self.tkt1, gnm_type=\"add\")\n with self.subTest():\n self.assertEqual(gnm.host_genus, \"Mycobacterium\")\n with self.subTest():\n self.assertEqual(gnm.cluster, \"\")\n\n def test_get_genome_3(self):\n \"\"\"Verify cluster data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([\"cluster\"])\n gnm = tickets.get_genome(self.tkt1, gnm_type=\"add\")\n with self.subTest():\n self.assertEqual(gnm.host_genus, \"\")\n with self.subTest():\n self.assertEqual(gnm.cluster, \"A\")\n\n def test_get_genome_4(self):\n \"\"\"Verify subcluster data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([\"subcluster\"])\n gnm = tickets.get_genome(self.tkt1, gnm_type=\"add\")\n with self.subTest():\n self.assertEqual(gnm.host_genus, \"\")\n with self.subTest():\n self.assertEqual(gnm.subcluster, \"A2\")\n\n def test_get_genome_5(self):\n \"\"\"Verify annotation_status data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([\"annotation_status\"])\n gnm = tickets.get_genome(self.tkt1, gnm_type=\"add\")\n with self.subTest():\n self.assertEqual(gnm.host_genus, \"\")\n with self.subTest():\n self.assertEqual(gnm.annotation_status, \"final\")\n\n def test_get_genome_6(self):\n \"\"\"Verify annotation_author data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([\"annotation_author\"])\n gnm = tickets.get_genome(self.tkt1, gnm_type=\"add\")\n with self.subTest():\n self.assertEqual(gnm.host_genus, \"\")\n with self.subTest():\n self.assertEqual(gnm.annotation_author, 1)\n\n def test_get_genome_7(self):\n \"\"\"Verify retrieve_record data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([\"retrieve_record\"])\n gnm = tickets.get_genome(self.tkt1, gnm_type=\"add\")\n with self.subTest():\n self.assertEqual(gnm.host_genus, \"\")\n with self.subTest():\n self.assertEqual(gnm.retrieve_record, 1)\n\n def test_get_genome_8(self):\n \"\"\"Verify accession data from ticket is added to genome.\"\"\"\n self.tkt1.data_add = set([\"accession\"])\n gnm = tickets.get_genome(self.tkt1, gnm_type=\"add\")\n with self.subTest():\n self.assertEqual(gnm.host_genus, \"\")\n with self.subTest():\n self.assertEqual(gnm.accession, \"ABC123\")\n\nif __name__ == '__main__':\n unittest.main()\n", "step-ids": [ 22, 24, 27, 39, 40 ] }
[ 22, 24, 27, 39, 40 ]
# -- coding: utf-8 -- from django.conf.urls import url from myapp.view import views from myapp.view import story from myapp.view import img # 添加 from myapp.view import login from myapp.view import tuling from myapp.view import utilView from myapp.view.wechat import wechat_modules from myapp.view import router urlpatterns = [ url(r'get_img_api$', router.get_img_api), url(r'add_book$', views.add_book, ), url(r'show_books$', views.show_books, ), url(r'add_story$', story.add_story), url(r'show_storys$', story.show_storys), url(r'add_comment$', story.add_comment), url(r'show_comments$', story.show_comments), url(r'uploadImg$', img.uploadImg), url(r'showImg$', img.showImg), url(r'uploadImgForUs$', img.uploadImgForUs), url(r'showImgForUs', img.showImgForUs), url(r'add_user', login.add_user), url(r'login', login.login), url(r'get_username', login.get_username), url(r'send_register_email', login.send_register_email), url(r'check_username', login.check_username), url(r'chat_with_tuling', tuling.chat_with_tuling), url(r'utilView_getLive2d', utilView.get_live2d), url(r'utilView_getRandJson', utilView.get_rand_json), url(r'get_wechat', wechat_modules.on_get), url(r'', login.other_request), ]
normal
{ "blob_id": "373c102018fdcc5211263304c368c2e8beef3257", "index": 720, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [url('get_img_api$', router.get_img_api), url('add_book$',\n views.add_book), url('show_books$', views.show_books), url('add_story$',\n story.add_story), url('show_storys$', story.show_storys), url(\n 'add_comment$', story.add_comment), url('show_comments$', story.\n show_comments), url('uploadImg$', img.uploadImg), url('showImg$', img.\n showImg), url('uploadImgForUs$', img.uploadImgForUs), url(\n 'showImgForUs', img.showImgForUs), url('add_user', login.add_user), url\n ('login', login.login), url('get_username', login.get_username), url(\n 'send_register_email', login.send_register_email), url('check_username',\n login.check_username), url('chat_with_tuling', tuling.chat_with_tuling),\n url('utilView_getLive2d', utilView.get_live2d), url(\n 'utilView_getRandJson', utilView.get_rand_json), url('get_wechat',\n wechat_modules.on_get), url('', login.other_request)]\n", "step-3": "from django.conf.urls import url\nfrom myapp.view import views\nfrom myapp.view import story\nfrom myapp.view import img\nfrom myapp.view import login\nfrom myapp.view import tuling\nfrom myapp.view import utilView\nfrom myapp.view.wechat import wechat_modules\nfrom myapp.view import router\nurlpatterns = [url('get_img_api$', router.get_img_api), url('add_book$',\n views.add_book), url('show_books$', views.show_books), url('add_story$',\n story.add_story), url('show_storys$', story.show_storys), url(\n 'add_comment$', story.add_comment), url('show_comments$', story.\n show_comments), url('uploadImg$', img.uploadImg), url('showImg$', img.\n showImg), url('uploadImgForUs$', img.uploadImgForUs), url(\n 'showImgForUs', img.showImgForUs), url('add_user', login.add_user), url\n ('login', login.login), url('get_username', login.get_username), url(\n 'send_register_email', login.send_register_email), url('check_username',\n login.check_username), url('chat_with_tuling', tuling.chat_with_tuling),\n url('utilView_getLive2d', utilView.get_live2d), url(\n 'utilView_getRandJson', utilView.get_rand_json), url('get_wechat',\n wechat_modules.on_get), url('', login.other_request)]\n", "step-4": "# -- coding: utf-8 --\nfrom django.conf.urls import url\nfrom myapp.view import views\nfrom myapp.view import story\nfrom myapp.view import img # 添加\nfrom myapp.view import login\nfrom myapp.view import tuling\nfrom myapp.view import utilView\nfrom myapp.view.wechat import wechat_modules\nfrom myapp.view import router\n\nurlpatterns = [\n url(r'get_img_api$', router.get_img_api),\n url(r'add_book$', views.add_book, ),\n url(r'show_books$', views.show_books, ),\n\n url(r'add_story$', story.add_story),\n url(r'show_storys$', story.show_storys),\n\n url(r'add_comment$', story.add_comment),\n url(r'show_comments$', story.show_comments),\n\n url(r'uploadImg$', img.uploadImg),\n url(r'showImg$', img.showImg),\n url(r'uploadImgForUs$', img.uploadImgForUs),\n url(r'showImgForUs', img.showImgForUs),\n\n url(r'add_user', login.add_user),\n url(r'login', login.login),\n url(r'get_username', login.get_username),\n url(r'send_register_email', login.send_register_email),\n url(r'check_username', login.check_username),\n\n url(r'chat_with_tuling', tuling.chat_with_tuling),\n url(r'utilView_getLive2d', utilView.get_live2d),\n url(r'utilView_getRandJson', utilView.get_rand_json),\n\n url(r'get_wechat', wechat_modules.on_get),\n\n url(r'', login.other_request),\n]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import random from z3 import * def combine(iter): tmp_list = [i for i in iter] res = tmp_list[0] for i in tmp_list[1:]: res += i return res def co_prime(num1, num2): for num in range(2, min(num1, num2) + 1): if num1 % num == 0 and num2 % num == 0: return False return True def gcd(*nums): min_num = 1 << 32 for num in nums: if num != 0: min_num = min(min_num, abs(num)) for i in range(min_num, 1, -1): flag = True for num in nums: if num % i != 0: flag = False break if flag: return i return 1 class FormulaTemplate: def __init__(self, vi ,w ,k, h, m ,timeout=3000000): ####加了w self.k = k # amount of clause 多少个子句 self.h = h # number of inequality 第一类不等式数量上限 self.m = m # number of mode number 第二类不等式数量上限 self.w = w self.vi = vi n = len(vi) self.n = n self.aeij = [[Int('ae' + str(i) + str(j)) for j in range(n)] for i in range(h)] self.bi = [Int('b' + str(i)) for i in range(h)] self.amij = [[Int('am' + str(i) + str(j)) for j in range(n)] for i in range(m)] self.ei = [Int('e' + str(i)) for i in range(m)] ##改成定值 , 写一个函数,从2开始一个个试????(还没实现) self.ci = [Int('c' + str(i)) for i in range(m)] self.heij = [[Bool('h_e' + str(j) + str(i)) for i in range(h)] for j in range(k)] self.hgeij = [[Bool('h_ge' + str(j) + str(i)) for i in range(h)] for j in range(k)] self.hleij = [[Bool('h_le' + str(j) + str(i)) for i in range(h)] for j in range(k)] self.tij = [[Bool('t' + str(j) + str(i)) for i in range(m)] for j in range(k)] self.ntij = [[Bool('nt' + str(j) + str(i)) for i in range(m)] for j in range(k)] self.s = Solver() for i in range(h): # 不等式系数ae_ij不能全部为0 self.s.add(Or(*[a > 0 for a in self.aeij[i]])) for j in range(i + 1, h): self.s.add(Or(*[self.aeij[i][w] != self.aeij[j][w] for w in range(n)])) for i in range(m): # 模等式的系数am_ij不能全部小于等于0 self.s.add(Or(*[am > 0 for am in self.amij[i]])) # 模等式的系数am_ij不能大于模e self.s.add(*[And(0 <= am, am < self.ei[i]) for am in self.amij[i]]) # for j in range(i + 1, m): # self.s.add(Or(self.ei[i] != self.ei[j], # *[self.amij[i][w] != self.amij[j][w] for w in range(n)])) # 余数c_i必须小于模e self.s.add(*[And(self.ei[i] > self.ci[i], self.ci[i] >= 0) for i in range(m)]) # 模必须大于等于2,并且小于一定范围 self.s.add(*[And(e <= 10 * m, e >= 2) for e in self.ei]) for i in range(k): # 判断条件一定有一个是False,避免逻辑出现False for j in range(i + 1, k): all_true = [And(self.heij[i][w], self.hgeij[i][w], self.hleij[i][w]) for w in range(h)] all_true.extend([And(self.tij[i][w], self.ntij[i][w]) for w in range(m)]) struct_const = [Or(self.heij[i][w] != self.heij[j][w], self.hgeij[i][w] != self.hgeij[j][w], self.hleij[i][w] != self.hleij[j][w]) for w in range(h)] struct_const.extend([Or(self.tij[i][w] != self.tij[j][w], self.ntij[i][w] != self.ntij[j][w]) for w in range(m)]) self.s.add(Or(*struct_const, *all_true)) self.s.set("timeout", timeout) def add(self, example, label): self.s.add(self.encoding(example, label)) def check(self): check = self.s.check() if check == sat: self.solve_model() return check def W_size(m): return m+2 def encoding(self, example, label): Equ = [combine(example[j] * self.aeij[i][j] for j in range(self.n)) != self.bi[i] for i in range(self.h)] Ge = [combine(example[j] * self.aeij[i][j] for j in range(self.n)) >= self.bi[i] for i in range(self.h)] Le = [combine(example[j] * self.aeij[i][j] for j in range(self.n)) <= self.bi[i] for i in range(self.h)] Me = [combine(example[j] * self.amij[i][j] for j in range(self.n)) % self.ei[i] == self.ci[i] for i in range(self.m)] Tk = [] for k in range(self.k): clause = [] clause.extend([Implies(self.heij[k][h], Equ[h]) for h in range(self.h)]) clause.extend([Implies(self.hgeij[k][h], Ge[h]) for h in range(self.h)]) clause.extend([Implies(self.hleij[k][h], Le[h]) for h in range(self.h)]) clause.extend([Implies(self.tij[k][m], Me[m]) for m in range(self.m)]) clause.extend([Implies(self.ntij[k][m], Not(Me[m])) for m in range(self.m)]) Tk.append(And(*clause)) # print("Or(*Tk) , label=\n",Or(*Tk),label) return Or(*Tk) == label def solve_model(self): #求出取值 ####加了w print("w", self.w) #W_size = [2,3,4,5,6,7,8,9] model = self.s.model() self.M = [[model[self.amij[i][j]].as_long() if model[self.amij[i][j]] is not None else 0 for j in range(self.n)] for i in range(self.m)] ##用z3求解e(此处要改) # self.E = [model[self.ei[i]].as_long() if model[self.ei[i]] is not None else 1 for i in range(self.m)] # print("E= \n",self.E) ####改动 for i in range(self.m): self.ei[i] = FormulaTemplate.W_size(self.w) self.E = [self.ei[i] for i in range(self.m)] print("E = \n",self.E) #### self.C = [model[self.ci[i]].as_long() if model[self.ci[i]] is not None else 0 for i in range(self.m)] self.A = [[model[self.aeij[i][j]].as_long() if model[self.aeij[i][j]] is not None else 0 for j in range(self.n)] for i in range(self.h)] self.B = [model[self.bi[i]].as_long() if model[self.bi[i]] is not None else 0 for i in range(self.h)] self.He = [ [bool(model[self.heij[i][j]]) if model[self.heij[i][j]] is not None else False for j in range(self.h)] for i in range(self.k) ] self.Hge = [ [bool(model[self.hgeij[i][j]]) if model[self.hgeij[i][j]] is not None else False for j in range(self.h)] for i in range(self.k) ] self.Hle = [ [bool(model[self.hleij[i][j]]) if model[self.hleij[i][j]] is not None else False for j in range(self.h)] for i in range(self.k) ] self.T = [ [bool(model[self.tij[i][j]]) if model[self.tij[i][j]] is not None else False for j in range(self.m)] for i in range(self.k) ] self.Nt = [ [bool(model[self.ntij[i][j]]) if model[self.ntij[i][j]] is not None else False for j in range(self.m)] for i in range(self.k) ] for i in range(self.m): flag = True # 判断是否全部系数都相等 pix = -1 for am in self.M[i]: if pix == -1: if am != 0: pix = am elif am != 0 and am != pix: flag = False break if flag: # 系数全部相同 if self.C[i] == 0: # if co_prime(pix, self.E[i]): # for j in range(self.n): # if self.M[i][j] != 0: # self.M[i][j] = 1 # else: # div = gcd(pix, self.E[i]) # self.E[i] /= div # for j in range(self.n): # self.M[i][j] /= div if not co_prime(pix, self.E[i]): self.E[i] /= gcd(pix, self.E[i]) for j in range(self.n): self.M[i][j] = 1 else: div = gcd(pix, self.E[i], self.C[i]) self.E[i] /= div self.C[i] /= div pix /= div for j in range(self.n): self.M[i][j] /= div div = gcd(int(pix), int(self.C[i])) for j in range(self.n): self.M[i][j] /= div self.C[i] /= div for i in range(self.h): divisior = gcd(*self.A[i], self.B[i]) self.B[i] /= divisior for j in range(self.n): self.A[i][j] /= divisior for i in range(len(self.E)): self.E[i] = int(self.E[i]) def formula_model(self, *val): # 得到一个公式模型 kd:代入变量求得变量,代入数值就是求得一个值 if len(val) == 0: val = self.vi formu = [] for k in range(self.k): clause = [] for h in range(self.h): Coe = combine(self.A[h][j] * val[j] for j in range(self.n)) status = (self.He[k][h], self.Hge[k][h], self.Hle[k][h]) if status == (False, False, True): #选择大于小于等于 clause.append(Coe <= self.B[h]) elif status == (False, True, False): clause.append(Coe >= self.B[h]) elif status == (True, False, False): clause.append(Coe != self.B[h]) elif status == (False, True, True): clause.append(Coe == self.B[h]) elif status == (True, False, True): clause.append(Coe < self.B[h]) elif status == (True, True, False): clause.append(Coe > self.B[h]) elif status == (True, True, True): clause.append(False) for m in range(self.m): status = (self.T[k][m], self.Nt[k][m]) if status == (True, False): #选择取模 clause.append(combine(self.M[m][j] * val[j] for j in range(self.n)) % self.E[m] == self.C[m]) elif status == (False, True): clause.append(combine(self.M[m][j] * val[j] for j in range(self.n)) % self.E[m] != self.C[m]) elif status == (True, True): clause.append(False) formu.append(And(*clause)) # print("simplify(Or(*formu))=\n",simplify(Or(*formu))) return simplify(Or(*formu)) def refine_modu(self, coe, e, b, res, tmp, last=0): if len(coe) == 1: if coe[0] == 0: if last % e == b: tmp.append(0) else: return for i in range(e): if (i + last) % e == b: tmp.append(i) break res.append(list(tmp)) tmp.pop() elif coe[0] == 0: tmp.append(0) self.refine_modu(coe[1:], e, b, res, tmp, last) tmp.pop() else: for i in range(e): tmp.append(i) self.refine_modu(coe[1:], e, b, res, tmp, last + i) tmp.pop() def build_formula(self, coe, V, e, C): expr = And(*[(coe[i] * v) % e == C[i] for i, v in enumerate(V)]) return simplify(expr) def refine_model(self): formu_arr = [] for k in range(self.k): clause = [] for h in range(self.h): Coe = combine(self.A[h][j] * self.vi[j] for j in range(self.n)) status = (self.He[k][h], self.Hge[k][h], self.Hle[k][h]) if status == (False, False, True): clause.append([Coe < self.B[h], Coe == self.B[h]]) elif status == (False, True, False): clause.append([Coe > self.B[h], Coe == self.B[h]]) elif status == (True, False, False): clause.append([Coe < self.B[h], Coe > self.B[h]]) elif status == (False, True, True): clause.append([Coe == self.B[h]]) elif status == (True, False, True): clause.append([Coe < self.B[h]]) elif status == (True, True, False): clause.append([Coe > self.B[h]]) elif status == (True, True, True): clause.append([False]) for m in range(self.m): status = (self.T[k][m], self.Nt[k][m]) # Com = combine(self.M[m][j] * self.vi[j] for j in range(self.n)) if status == (True, False): # clause.append([Com % self.E[m] == self.C[m]]) mod_res = [] self.refine_modu(self.M[m], self.E[m], self.C[m], mod_res, []) for C in mod_res: clause.append([self.build_formula(self.M[m], self.vi, self.E[m], C)]) elif status == (False, True): mod_clause = [] for i in range(self.E[m]): if i != self.C[m]: # mod_clause.append(Com % self.E[m] == i) mod_res = [] self.refine_modu(self.M[m], self.E[m], i, mod_res, []) for C in mod_res: mod_clause.append(self.build_formula(self.M[m], self.vi, self.E[m], C)) clause.append(mod_clause) elif status == (True, True): clause.append([False]) formu_arr.append(clause) return formu_arr class EquTemplate: def __init__(self, n): self.vi = [Int('v' + str(i)) for i in range(n)] self.b = Int('b') self.s = Solver() def add(self, vector): vi, target = vector[:-1], vector[-1] expr = combine(vi[i] * self.vi[i] for i in range(len(self.vi))) + self.b == target self.s.add(expr) def check(self): return self.s.check() def solve_model(self): model = self.s.model() V = [model[v].as_long() if model[v] is not None else 0 for v in self.vi] B = model[self.b].as_long() if model[self.b] is not None else 0 expr = combine(V[i] * self.vi[i] for i in range(len(self.vi))) + B return simplify(expr) if __name__ == '__main__': # smt = FormulaTemplate([Int('v1'), Int('v2')], 4, 3, 2) # smt.add([1, 2], True) # smt.add([2, 3], False) # print(smt.s) # print(smt.check()) # # arr = smt.refine_model() # for a in arr: # print(a) # # formu = smt.formula_model() # print(formu) # print('-' * 50) # print(simplify(formu)) # print('-' * 50) smt = EquTemplate(2) smt.add([0, 1, 1]) smt.add([1, 2, 1]) smt.add([3, 6, 3]) if smt.check() == sat: print(smt.solve_model()) # 1*v0 + 2*v1 + 1 else: print(unsat)
normal
{ "blob_id": "81fce5314a7611de11648e412151112e29271871", "index": 4626, "step-1": "<mask token>\n\n\nclass FormulaTemplate:\n\n def __init__(self, vi, w, k, h, m, timeout=3000000):\n self.k = k\n self.h = h\n self.m = m\n self.w = w\n self.vi = vi\n n = len(vi)\n self.n = n\n self.aeij = [[Int('ae' + str(i) + str(j)) for j in range(n)] for i in\n range(h)]\n self.bi = [Int('b' + str(i)) for i in range(h)]\n self.amij = [[Int('am' + str(i) + str(j)) for j in range(n)] for i in\n range(m)]\n self.ei = [Int('e' + str(i)) for i in range(m)]\n self.ci = [Int('c' + str(i)) for i in range(m)]\n self.heij = [[Bool('h_e' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.hgeij = [[Bool('h_ge' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.hleij = [[Bool('h_le' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.tij = [[Bool('t' + str(j) + str(i)) for i in range(m)] for j in\n range(k)]\n self.ntij = [[Bool('nt' + str(j) + str(i)) for i in range(m)] for j in\n range(k)]\n self.s = Solver()\n for i in range(h):\n self.s.add(Or(*[(a > 0) for a in self.aeij[i]]))\n for j in range(i + 1, h):\n self.s.add(Or(*[(self.aeij[i][w] != self.aeij[j][w]) for w in\n range(n)]))\n for i in range(m):\n self.s.add(Or(*[(am > 0) for am in self.amij[i]]))\n self.s.add(*[And(0 <= am, am < self.ei[i]) for am in self.amij[i]])\n self.s.add(*[And(self.ei[i] > self.ci[i], self.ci[i] >= 0) for i in\n range(m)])\n self.s.add(*[And(e <= 10 * m, e >= 2) for e in self.ei])\n for i in range(k):\n for j in range(i + 1, k):\n all_true = [And(self.heij[i][w], self.hgeij[i][w], self.\n hleij[i][w]) for w in range(h)]\n all_true.extend([And(self.tij[i][w], self.ntij[i][w]) for w in\n range(m)])\n struct_const = [Or(self.heij[i][w] != self.heij[j][w], self\n .hgeij[i][w] != self.hgeij[j][w], self.hleij[i][w] !=\n self.hleij[j][w]) for w in range(h)]\n struct_const.extend([Or(self.tij[i][w] != self.tij[j][w], \n self.ntij[i][w] != self.ntij[j][w]) for w in range(m)])\n self.s.add(Or(*struct_const, *all_true))\n self.s.set('timeout', timeout)\n <mask token>\n <mask token>\n\n def W_size(m):\n return m + 2\n <mask token>\n <mask token>\n\n def formula_model(self, *val):\n if len(val) == 0:\n val = self.vi\n formu = []\n for k in range(self.k):\n clause = []\n for h in range(self.h):\n Coe = combine(self.A[h][j] * val[j] for j in range(self.n))\n status = self.He[k][h], self.Hge[k][h], self.Hle[k][h]\n if status == (False, False, True):\n clause.append(Coe <= self.B[h])\n elif status == (False, True, False):\n clause.append(Coe >= self.B[h])\n elif status == (True, False, False):\n clause.append(Coe != self.B[h])\n elif status == (False, True, True):\n clause.append(Coe == self.B[h])\n elif status == (True, False, True):\n clause.append(Coe < self.B[h])\n elif status == (True, True, False):\n clause.append(Coe > self.B[h])\n elif status == (True, True, True):\n clause.append(False)\n for m in range(self.m):\n status = self.T[k][m], self.Nt[k][m]\n if status == (True, False):\n clause.append(combine(self.M[m][j] * val[j] for j in\n range(self.n)) % self.E[m] == self.C[m])\n elif status == (False, True):\n clause.append(combine(self.M[m][j] * val[j] for j in\n range(self.n)) % self.E[m] != self.C[m])\n elif status == (True, True):\n clause.append(False)\n formu.append(And(*clause))\n return simplify(Or(*formu))\n\n def refine_modu(self, coe, e, b, res, tmp, last=0):\n if len(coe) == 1:\n if coe[0] == 0:\n if last % e == b:\n tmp.append(0)\n else:\n return\n for i in range(e):\n if (i + last) % e == b:\n tmp.append(i)\n break\n res.append(list(tmp))\n tmp.pop()\n elif coe[0] == 0:\n tmp.append(0)\n self.refine_modu(coe[1:], e, b, res, tmp, last)\n tmp.pop()\n else:\n for i in range(e):\n tmp.append(i)\n self.refine_modu(coe[1:], e, b, res, tmp, last + i)\n tmp.pop()\n\n def build_formula(self, coe, V, e, C):\n expr = And(*[(coe[i] * v % e == C[i]) for i, v in enumerate(V)])\n return simplify(expr)\n <mask token>\n\n\nclass EquTemplate:\n\n def __init__(self, n):\n self.vi = [Int('v' + str(i)) for i in range(n)]\n self.b = Int('b')\n self.s = Solver()\n\n def add(self, vector):\n vi, target = vector[:-1], vector[-1]\n expr = combine(vi[i] * self.vi[i] for i in range(len(self.vi))\n ) + self.b == target\n self.s.add(expr)\n\n def check(self):\n return self.s.check()\n\n def solve_model(self):\n model = self.s.model()\n V = [(model[v].as_long() if model[v] is not None else 0) for v in\n self.vi]\n B = model[self.b].as_long() if model[self.b] is not None else 0\n expr = combine(V[i] * self.vi[i] for i in range(len(self.vi))) + B\n return simplify(expr)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass FormulaTemplate:\n\n def __init__(self, vi, w, k, h, m, timeout=3000000):\n self.k = k\n self.h = h\n self.m = m\n self.w = w\n self.vi = vi\n n = len(vi)\n self.n = n\n self.aeij = [[Int('ae' + str(i) + str(j)) for j in range(n)] for i in\n range(h)]\n self.bi = [Int('b' + str(i)) for i in range(h)]\n self.amij = [[Int('am' + str(i) + str(j)) for j in range(n)] for i in\n range(m)]\n self.ei = [Int('e' + str(i)) for i in range(m)]\n self.ci = [Int('c' + str(i)) for i in range(m)]\n self.heij = [[Bool('h_e' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.hgeij = [[Bool('h_ge' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.hleij = [[Bool('h_le' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.tij = [[Bool('t' + str(j) + str(i)) for i in range(m)] for j in\n range(k)]\n self.ntij = [[Bool('nt' + str(j) + str(i)) for i in range(m)] for j in\n range(k)]\n self.s = Solver()\n for i in range(h):\n self.s.add(Or(*[(a > 0) for a in self.aeij[i]]))\n for j in range(i + 1, h):\n self.s.add(Or(*[(self.aeij[i][w] != self.aeij[j][w]) for w in\n range(n)]))\n for i in range(m):\n self.s.add(Or(*[(am > 0) for am in self.amij[i]]))\n self.s.add(*[And(0 <= am, am < self.ei[i]) for am in self.amij[i]])\n self.s.add(*[And(self.ei[i] > self.ci[i], self.ci[i] >= 0) for i in\n range(m)])\n self.s.add(*[And(e <= 10 * m, e >= 2) for e in self.ei])\n for i in range(k):\n for j in range(i + 1, k):\n all_true = [And(self.heij[i][w], self.hgeij[i][w], self.\n hleij[i][w]) for w in range(h)]\n all_true.extend([And(self.tij[i][w], self.ntij[i][w]) for w in\n range(m)])\n struct_const = [Or(self.heij[i][w] != self.heij[j][w], self\n .hgeij[i][w] != self.hgeij[j][w], self.hleij[i][w] !=\n self.hleij[j][w]) for w in range(h)]\n struct_const.extend([Or(self.tij[i][w] != self.tij[j][w], \n self.ntij[i][w] != self.ntij[j][w]) for w in range(m)])\n self.s.add(Or(*struct_const, *all_true))\n self.s.set('timeout', timeout)\n\n def add(self, example, label):\n self.s.add(self.encoding(example, label))\n\n def check(self):\n check = self.s.check()\n if check == sat:\n self.solve_model()\n return check\n\n def W_size(m):\n return m + 2\n <mask token>\n <mask token>\n\n def formula_model(self, *val):\n if len(val) == 0:\n val = self.vi\n formu = []\n for k in range(self.k):\n clause = []\n for h in range(self.h):\n Coe = combine(self.A[h][j] * val[j] for j in range(self.n))\n status = self.He[k][h], self.Hge[k][h], self.Hle[k][h]\n if status == (False, False, True):\n clause.append(Coe <= self.B[h])\n elif status == (False, True, False):\n clause.append(Coe >= self.B[h])\n elif status == (True, False, False):\n clause.append(Coe != self.B[h])\n elif status == (False, True, True):\n clause.append(Coe == self.B[h])\n elif status == (True, False, True):\n clause.append(Coe < self.B[h])\n elif status == (True, True, False):\n clause.append(Coe > self.B[h])\n elif status == (True, True, True):\n clause.append(False)\n for m in range(self.m):\n status = self.T[k][m], self.Nt[k][m]\n if status == (True, False):\n clause.append(combine(self.M[m][j] * val[j] for j in\n range(self.n)) % self.E[m] == self.C[m])\n elif status == (False, True):\n clause.append(combine(self.M[m][j] * val[j] for j in\n range(self.n)) % self.E[m] != self.C[m])\n elif status == (True, True):\n clause.append(False)\n formu.append(And(*clause))\n return simplify(Or(*formu))\n\n def refine_modu(self, coe, e, b, res, tmp, last=0):\n if len(coe) == 1:\n if coe[0] == 0:\n if last % e == b:\n tmp.append(0)\n else:\n return\n for i in range(e):\n if (i + last) % e == b:\n tmp.append(i)\n break\n res.append(list(tmp))\n tmp.pop()\n elif coe[0] == 0:\n tmp.append(0)\n self.refine_modu(coe[1:], e, b, res, tmp, last)\n tmp.pop()\n else:\n for i in range(e):\n tmp.append(i)\n self.refine_modu(coe[1:], e, b, res, tmp, last + i)\n tmp.pop()\n\n def build_formula(self, coe, V, e, C):\n expr = And(*[(coe[i] * v % e == C[i]) for i, v in enumerate(V)])\n return simplify(expr)\n\n def refine_model(self):\n formu_arr = []\n for k in range(self.k):\n clause = []\n for h in range(self.h):\n Coe = combine(self.A[h][j] * self.vi[j] for j in range(self.n))\n status = self.He[k][h], self.Hge[k][h], self.Hle[k][h]\n if status == (False, False, True):\n clause.append([Coe < self.B[h], Coe == self.B[h]])\n elif status == (False, True, False):\n clause.append([Coe > self.B[h], Coe == self.B[h]])\n elif status == (True, False, False):\n clause.append([Coe < self.B[h], Coe > self.B[h]])\n elif status == (False, True, True):\n clause.append([Coe == self.B[h]])\n elif status == (True, False, True):\n clause.append([Coe < self.B[h]])\n elif status == (True, True, False):\n clause.append([Coe > self.B[h]])\n elif status == (True, True, True):\n clause.append([False])\n for m in range(self.m):\n status = self.T[k][m], self.Nt[k][m]\n if status == (True, False):\n mod_res = []\n self.refine_modu(self.M[m], self.E[m], self.C[m],\n mod_res, [])\n for C in mod_res:\n clause.append([self.build_formula(self.M[m], self.\n vi, self.E[m], C)])\n elif status == (False, True):\n mod_clause = []\n for i in range(self.E[m]):\n if i != self.C[m]:\n mod_res = []\n self.refine_modu(self.M[m], self.E[m], i,\n mod_res, [])\n for C in mod_res:\n mod_clause.append(self.build_formula(self.M\n [m], self.vi, self.E[m], C))\n clause.append(mod_clause)\n elif status == (True, True):\n clause.append([False])\n formu_arr.append(clause)\n return formu_arr\n\n\nclass EquTemplate:\n\n def __init__(self, n):\n self.vi = [Int('v' + str(i)) for i in range(n)]\n self.b = Int('b')\n self.s = Solver()\n\n def add(self, vector):\n vi, target = vector[:-1], vector[-1]\n expr = combine(vi[i] * self.vi[i] for i in range(len(self.vi))\n ) + self.b == target\n self.s.add(expr)\n\n def check(self):\n return self.s.check()\n\n def solve_model(self):\n model = self.s.model()\n V = [(model[v].as_long() if model[v] is not None else 0) for v in\n self.vi]\n B = model[self.b].as_long() if model[self.b] is not None else 0\n expr = combine(V[i] * self.vi[i] for i in range(len(self.vi))) + B\n return simplify(expr)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass FormulaTemplate:\n\n def __init__(self, vi, w, k, h, m, timeout=3000000):\n self.k = k\n self.h = h\n self.m = m\n self.w = w\n self.vi = vi\n n = len(vi)\n self.n = n\n self.aeij = [[Int('ae' + str(i) + str(j)) for j in range(n)] for i in\n range(h)]\n self.bi = [Int('b' + str(i)) for i in range(h)]\n self.amij = [[Int('am' + str(i) + str(j)) for j in range(n)] for i in\n range(m)]\n self.ei = [Int('e' + str(i)) for i in range(m)]\n self.ci = [Int('c' + str(i)) for i in range(m)]\n self.heij = [[Bool('h_e' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.hgeij = [[Bool('h_ge' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.hleij = [[Bool('h_le' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.tij = [[Bool('t' + str(j) + str(i)) for i in range(m)] for j in\n range(k)]\n self.ntij = [[Bool('nt' + str(j) + str(i)) for i in range(m)] for j in\n range(k)]\n self.s = Solver()\n for i in range(h):\n self.s.add(Or(*[(a > 0) for a in self.aeij[i]]))\n for j in range(i + 1, h):\n self.s.add(Or(*[(self.aeij[i][w] != self.aeij[j][w]) for w in\n range(n)]))\n for i in range(m):\n self.s.add(Or(*[(am > 0) for am in self.amij[i]]))\n self.s.add(*[And(0 <= am, am < self.ei[i]) for am in self.amij[i]])\n self.s.add(*[And(self.ei[i] > self.ci[i], self.ci[i] >= 0) for i in\n range(m)])\n self.s.add(*[And(e <= 10 * m, e >= 2) for e in self.ei])\n for i in range(k):\n for j in range(i + 1, k):\n all_true = [And(self.heij[i][w], self.hgeij[i][w], self.\n hleij[i][w]) for w in range(h)]\n all_true.extend([And(self.tij[i][w], self.ntij[i][w]) for w in\n range(m)])\n struct_const = [Or(self.heij[i][w] != self.heij[j][w], self\n .hgeij[i][w] != self.hgeij[j][w], self.hleij[i][w] !=\n self.hleij[j][w]) for w in range(h)]\n struct_const.extend([Or(self.tij[i][w] != self.tij[j][w], \n self.ntij[i][w] != self.ntij[j][w]) for w in range(m)])\n self.s.add(Or(*struct_const, *all_true))\n self.s.set('timeout', timeout)\n\n def add(self, example, label):\n self.s.add(self.encoding(example, label))\n\n def check(self):\n check = self.s.check()\n if check == sat:\n self.solve_model()\n return check\n\n def W_size(m):\n return m + 2\n\n def encoding(self, example, label):\n Equ = [(combine(example[j] * self.aeij[i][j] for j in range(self.n)\n ) != self.bi[i]) for i in range(self.h)]\n Ge = [(combine(example[j] * self.aeij[i][j] for j in range(self.n)) >=\n self.bi[i]) for i in range(self.h)]\n Le = [(combine(example[j] * self.aeij[i][j] for j in range(self.n)) <=\n self.bi[i]) for i in range(self.h)]\n Me = [(combine(example[j] * self.amij[i][j] for j in range(self.n)) %\n self.ei[i] == self.ci[i]) for i in range(self.m)]\n Tk = []\n for k in range(self.k):\n clause = []\n clause.extend([Implies(self.heij[k][h], Equ[h]) for h in range(\n self.h)])\n clause.extend([Implies(self.hgeij[k][h], Ge[h]) for h in range(\n self.h)])\n clause.extend([Implies(self.hleij[k][h], Le[h]) for h in range(\n self.h)])\n clause.extend([Implies(self.tij[k][m], Me[m]) for m in range(\n self.m)])\n clause.extend([Implies(self.ntij[k][m], Not(Me[m])) for m in\n range(self.m)])\n Tk.append(And(*clause))\n return Or(*Tk) == label\n <mask token>\n\n def formula_model(self, *val):\n if len(val) == 0:\n val = self.vi\n formu = []\n for k in range(self.k):\n clause = []\n for h in range(self.h):\n Coe = combine(self.A[h][j] * val[j] for j in range(self.n))\n status = self.He[k][h], self.Hge[k][h], self.Hle[k][h]\n if status == (False, False, True):\n clause.append(Coe <= self.B[h])\n elif status == (False, True, False):\n clause.append(Coe >= self.B[h])\n elif status == (True, False, False):\n clause.append(Coe != self.B[h])\n elif status == (False, True, True):\n clause.append(Coe == self.B[h])\n elif status == (True, False, True):\n clause.append(Coe < self.B[h])\n elif status == (True, True, False):\n clause.append(Coe > self.B[h])\n elif status == (True, True, True):\n clause.append(False)\n for m in range(self.m):\n status = self.T[k][m], self.Nt[k][m]\n if status == (True, False):\n clause.append(combine(self.M[m][j] * val[j] for j in\n range(self.n)) % self.E[m] == self.C[m])\n elif status == (False, True):\n clause.append(combine(self.M[m][j] * val[j] for j in\n range(self.n)) % self.E[m] != self.C[m])\n elif status == (True, True):\n clause.append(False)\n formu.append(And(*clause))\n return simplify(Or(*formu))\n\n def refine_modu(self, coe, e, b, res, tmp, last=0):\n if len(coe) == 1:\n if coe[0] == 0:\n if last % e == b:\n tmp.append(0)\n else:\n return\n for i in range(e):\n if (i + last) % e == b:\n tmp.append(i)\n break\n res.append(list(tmp))\n tmp.pop()\n elif coe[0] == 0:\n tmp.append(0)\n self.refine_modu(coe[1:], e, b, res, tmp, last)\n tmp.pop()\n else:\n for i in range(e):\n tmp.append(i)\n self.refine_modu(coe[1:], e, b, res, tmp, last + i)\n tmp.pop()\n\n def build_formula(self, coe, V, e, C):\n expr = And(*[(coe[i] * v % e == C[i]) for i, v in enumerate(V)])\n return simplify(expr)\n\n def refine_model(self):\n formu_arr = []\n for k in range(self.k):\n clause = []\n for h in range(self.h):\n Coe = combine(self.A[h][j] * self.vi[j] for j in range(self.n))\n status = self.He[k][h], self.Hge[k][h], self.Hle[k][h]\n if status == (False, False, True):\n clause.append([Coe < self.B[h], Coe == self.B[h]])\n elif status == (False, True, False):\n clause.append([Coe > self.B[h], Coe == self.B[h]])\n elif status == (True, False, False):\n clause.append([Coe < self.B[h], Coe > self.B[h]])\n elif status == (False, True, True):\n clause.append([Coe == self.B[h]])\n elif status == (True, False, True):\n clause.append([Coe < self.B[h]])\n elif status == (True, True, False):\n clause.append([Coe > self.B[h]])\n elif status == (True, True, True):\n clause.append([False])\n for m in range(self.m):\n status = self.T[k][m], self.Nt[k][m]\n if status == (True, False):\n mod_res = []\n self.refine_modu(self.M[m], self.E[m], self.C[m],\n mod_res, [])\n for C in mod_res:\n clause.append([self.build_formula(self.M[m], self.\n vi, self.E[m], C)])\n elif status == (False, True):\n mod_clause = []\n for i in range(self.E[m]):\n if i != self.C[m]:\n mod_res = []\n self.refine_modu(self.M[m], self.E[m], i,\n mod_res, [])\n for C in mod_res:\n mod_clause.append(self.build_formula(self.M\n [m], self.vi, self.E[m], C))\n clause.append(mod_clause)\n elif status == (True, True):\n clause.append([False])\n formu_arr.append(clause)\n return formu_arr\n\n\nclass EquTemplate:\n\n def __init__(self, n):\n self.vi = [Int('v' + str(i)) for i in range(n)]\n self.b = Int('b')\n self.s = Solver()\n\n def add(self, vector):\n vi, target = vector[:-1], vector[-1]\n expr = combine(vi[i] * self.vi[i] for i in range(len(self.vi))\n ) + self.b == target\n self.s.add(expr)\n\n def check(self):\n return self.s.check()\n\n def solve_model(self):\n model = self.s.model()\n V = [(model[v].as_long() if model[v] is not None else 0) for v in\n self.vi]\n B = model[self.b].as_long() if model[self.b] is not None else 0\n expr = combine(V[i] * self.vi[i] for i in range(len(self.vi))) + B\n return simplify(expr)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass FormulaTemplate:\n\n def __init__(self, vi, w, k, h, m, timeout=3000000):\n self.k = k\n self.h = h\n self.m = m\n self.w = w\n self.vi = vi\n n = len(vi)\n self.n = n\n self.aeij = [[Int('ae' + str(i) + str(j)) for j in range(n)] for i in\n range(h)]\n self.bi = [Int('b' + str(i)) for i in range(h)]\n self.amij = [[Int('am' + str(i) + str(j)) for j in range(n)] for i in\n range(m)]\n self.ei = [Int('e' + str(i)) for i in range(m)]\n self.ci = [Int('c' + str(i)) for i in range(m)]\n self.heij = [[Bool('h_e' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.hgeij = [[Bool('h_ge' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.hleij = [[Bool('h_le' + str(j) + str(i)) for i in range(h)] for\n j in range(k)]\n self.tij = [[Bool('t' + str(j) + str(i)) for i in range(m)] for j in\n range(k)]\n self.ntij = [[Bool('nt' + str(j) + str(i)) for i in range(m)] for j in\n range(k)]\n self.s = Solver()\n for i in range(h):\n self.s.add(Or(*[(a > 0) for a in self.aeij[i]]))\n for j in range(i + 1, h):\n self.s.add(Or(*[(self.aeij[i][w] != self.aeij[j][w]) for w in\n range(n)]))\n for i in range(m):\n self.s.add(Or(*[(am > 0) for am in self.amij[i]]))\n self.s.add(*[And(0 <= am, am < self.ei[i]) for am in self.amij[i]])\n self.s.add(*[And(self.ei[i] > self.ci[i], self.ci[i] >= 0) for i in\n range(m)])\n self.s.add(*[And(e <= 10 * m, e >= 2) for e in self.ei])\n for i in range(k):\n for j in range(i + 1, k):\n all_true = [And(self.heij[i][w], self.hgeij[i][w], self.\n hleij[i][w]) for w in range(h)]\n all_true.extend([And(self.tij[i][w], self.ntij[i][w]) for w in\n range(m)])\n struct_const = [Or(self.heij[i][w] != self.heij[j][w], self\n .hgeij[i][w] != self.hgeij[j][w], self.hleij[i][w] !=\n self.hleij[j][w]) for w in range(h)]\n struct_const.extend([Or(self.tij[i][w] != self.tij[j][w], \n self.ntij[i][w] != self.ntij[j][w]) for w in range(m)])\n self.s.add(Or(*struct_const, *all_true))\n self.s.set('timeout', timeout)\n\n def add(self, example, label):\n self.s.add(self.encoding(example, label))\n\n def check(self):\n check = self.s.check()\n if check == sat:\n self.solve_model()\n return check\n\n def W_size(m):\n return m + 2\n\n def encoding(self, example, label):\n Equ = [(combine(example[j] * self.aeij[i][j] for j in range(self.n)\n ) != self.bi[i]) for i in range(self.h)]\n Ge = [(combine(example[j] * self.aeij[i][j] for j in range(self.n)) >=\n self.bi[i]) for i in range(self.h)]\n Le = [(combine(example[j] * self.aeij[i][j] for j in range(self.n)) <=\n self.bi[i]) for i in range(self.h)]\n Me = [(combine(example[j] * self.amij[i][j] for j in range(self.n)) %\n self.ei[i] == self.ci[i]) for i in range(self.m)]\n Tk = []\n for k in range(self.k):\n clause = []\n clause.extend([Implies(self.heij[k][h], Equ[h]) for h in range(\n self.h)])\n clause.extend([Implies(self.hgeij[k][h], Ge[h]) for h in range(\n self.h)])\n clause.extend([Implies(self.hleij[k][h], Le[h]) for h in range(\n self.h)])\n clause.extend([Implies(self.tij[k][m], Me[m]) for m in range(\n self.m)])\n clause.extend([Implies(self.ntij[k][m], Not(Me[m])) for m in\n range(self.m)])\n Tk.append(And(*clause))\n return Or(*Tk) == label\n\n def solve_model(self):\n print('w', self.w)\n model = self.s.model()\n self.M = [[(model[self.amij[i][j]].as_long() if model[self.amij[i][\n j]] is not None else 0) for j in range(self.n)] for i in range(\n self.m)]\n for i in range(self.m):\n self.ei[i] = FormulaTemplate.W_size(self.w)\n self.E = [self.ei[i] for i in range(self.m)]\n print('E = \\n', self.E)\n self.C = [(model[self.ci[i]].as_long() if model[self.ci[i]] is not\n None else 0) for i in range(self.m)]\n self.A = [[(model[self.aeij[i][j]].as_long() if model[self.aeij[i][\n j]] is not None else 0) for j in range(self.n)] for i in range(\n self.h)]\n self.B = [(model[self.bi[i]].as_long() if model[self.bi[i]] is not\n None else 0) for i in range(self.h)]\n self.He = [[(bool(model[self.heij[i][j]]) if model[self.heij[i][j]]\n is not None else False) for j in range(self.h)] for i in range\n (self.k)]\n self.Hge = [[(bool(model[self.hgeij[i][j]]) if model[self.hgeij[i][\n j]] is not None else False) for j in range(self.h)] for i in\n range(self.k)]\n self.Hle = [[(bool(model[self.hleij[i][j]]) if model[self.hleij[i][\n j]] is not None else False) for j in range(self.h)] for i in\n range(self.k)]\n self.T = [[(bool(model[self.tij[i][j]]) if model[self.tij[i][j]] is not\n None else False) for j in range(self.m)] for i in range(self.k)]\n self.Nt = [[(bool(model[self.ntij[i][j]]) if model[self.ntij[i][j]]\n is not None else False) for j in range(self.m)] for i in range\n (self.k)]\n for i in range(self.m):\n flag = True\n pix = -1\n for am in self.M[i]:\n if pix == -1:\n if am != 0:\n pix = am\n elif am != 0 and am != pix:\n flag = False\n break\n if flag:\n if self.C[i] == 0:\n if not co_prime(pix, self.E[i]):\n self.E[i] /= gcd(pix, self.E[i])\n for j in range(self.n):\n self.M[i][j] = 1\n else:\n div = gcd(pix, self.E[i], self.C[i])\n self.E[i] /= div\n self.C[i] /= div\n pix /= div\n for j in range(self.n):\n self.M[i][j] /= div\n div = gcd(int(pix), int(self.C[i]))\n for j in range(self.n):\n self.M[i][j] /= div\n self.C[i] /= div\n for i in range(self.h):\n divisior = gcd(*self.A[i], self.B[i])\n self.B[i] /= divisior\n for j in range(self.n):\n self.A[i][j] /= divisior\n for i in range(len(self.E)):\n self.E[i] = int(self.E[i])\n\n def formula_model(self, *val):\n if len(val) == 0:\n val = self.vi\n formu = []\n for k in range(self.k):\n clause = []\n for h in range(self.h):\n Coe = combine(self.A[h][j] * val[j] for j in range(self.n))\n status = self.He[k][h], self.Hge[k][h], self.Hle[k][h]\n if status == (False, False, True):\n clause.append(Coe <= self.B[h])\n elif status == (False, True, False):\n clause.append(Coe >= self.B[h])\n elif status == (True, False, False):\n clause.append(Coe != self.B[h])\n elif status == (False, True, True):\n clause.append(Coe == self.B[h])\n elif status == (True, False, True):\n clause.append(Coe < self.B[h])\n elif status == (True, True, False):\n clause.append(Coe > self.B[h])\n elif status == (True, True, True):\n clause.append(False)\n for m in range(self.m):\n status = self.T[k][m], self.Nt[k][m]\n if status == (True, False):\n clause.append(combine(self.M[m][j] * val[j] for j in\n range(self.n)) % self.E[m] == self.C[m])\n elif status == (False, True):\n clause.append(combine(self.M[m][j] * val[j] for j in\n range(self.n)) % self.E[m] != self.C[m])\n elif status == (True, True):\n clause.append(False)\n formu.append(And(*clause))\n return simplify(Or(*formu))\n\n def refine_modu(self, coe, e, b, res, tmp, last=0):\n if len(coe) == 1:\n if coe[0] == 0:\n if last % e == b:\n tmp.append(0)\n else:\n return\n for i in range(e):\n if (i + last) % e == b:\n tmp.append(i)\n break\n res.append(list(tmp))\n tmp.pop()\n elif coe[0] == 0:\n tmp.append(0)\n self.refine_modu(coe[1:], e, b, res, tmp, last)\n tmp.pop()\n else:\n for i in range(e):\n tmp.append(i)\n self.refine_modu(coe[1:], e, b, res, tmp, last + i)\n tmp.pop()\n\n def build_formula(self, coe, V, e, C):\n expr = And(*[(coe[i] * v % e == C[i]) for i, v in enumerate(V)])\n return simplify(expr)\n\n def refine_model(self):\n formu_arr = []\n for k in range(self.k):\n clause = []\n for h in range(self.h):\n Coe = combine(self.A[h][j] * self.vi[j] for j in range(self.n))\n status = self.He[k][h], self.Hge[k][h], self.Hle[k][h]\n if status == (False, False, True):\n clause.append([Coe < self.B[h], Coe == self.B[h]])\n elif status == (False, True, False):\n clause.append([Coe > self.B[h], Coe == self.B[h]])\n elif status == (True, False, False):\n clause.append([Coe < self.B[h], Coe > self.B[h]])\n elif status == (False, True, True):\n clause.append([Coe == self.B[h]])\n elif status == (True, False, True):\n clause.append([Coe < self.B[h]])\n elif status == (True, True, False):\n clause.append([Coe > self.B[h]])\n elif status == (True, True, True):\n clause.append([False])\n for m in range(self.m):\n status = self.T[k][m], self.Nt[k][m]\n if status == (True, False):\n mod_res = []\n self.refine_modu(self.M[m], self.E[m], self.C[m],\n mod_res, [])\n for C in mod_res:\n clause.append([self.build_formula(self.M[m], self.\n vi, self.E[m], C)])\n elif status == (False, True):\n mod_clause = []\n for i in range(self.E[m]):\n if i != self.C[m]:\n mod_res = []\n self.refine_modu(self.M[m], self.E[m], i,\n mod_res, [])\n for C in mod_res:\n mod_clause.append(self.build_formula(self.M\n [m], self.vi, self.E[m], C))\n clause.append(mod_clause)\n elif status == (True, True):\n clause.append([False])\n formu_arr.append(clause)\n return formu_arr\n\n\nclass EquTemplate:\n\n def __init__(self, n):\n self.vi = [Int('v' + str(i)) for i in range(n)]\n self.b = Int('b')\n self.s = Solver()\n\n def add(self, vector):\n vi, target = vector[:-1], vector[-1]\n expr = combine(vi[i] * self.vi[i] for i in range(len(self.vi))\n ) + self.b == target\n self.s.add(expr)\n\n def check(self):\n return self.s.check()\n\n def solve_model(self):\n model = self.s.model()\n V = [(model[v].as_long() if model[v] is not None else 0) for v in\n self.vi]\n B = model[self.b].as_long() if model[self.b] is not None else 0\n expr = combine(V[i] * self.vi[i] for i in range(len(self.vi))) + B\n return simplify(expr)\n\n\n<mask token>\n", "step-5": "import random\n\nfrom z3 import *\n\n\ndef combine(iter):\n tmp_list = [i for i in iter]\n res = tmp_list[0]\n for i in tmp_list[1:]:\n res += i\n return res\n\n\ndef co_prime(num1, num2):\n for num in range(2, min(num1, num2) + 1):\n if num1 % num == 0 and num2 % num == 0:\n return False\n return True\n\n\ndef gcd(*nums):\n min_num = 1 << 32\n for num in nums:\n if num != 0:\n min_num = min(min_num, abs(num))\n for i in range(min_num, 1, -1):\n flag = True\n for num in nums:\n if num % i != 0:\n flag = False\n break\n if flag:\n return i\n return 1\n\n\nclass FormulaTemplate:\n def __init__(self, vi ,w ,k, h, m ,timeout=3000000): ####加了w\n self.k = k # amount of clause 多少个子句\n self.h = h # number of inequality 第一类不等式数量上限\n self.m = m # number of mode number 第二类不等式数量上限\n\n self.w = w\n\n self.vi = vi\n n = len(vi)\n self.n = n\n self.aeij = [[Int('ae' + str(i) + str(j)) for j in range(n)] for i in range(h)]\n self.bi = [Int('b' + str(i)) for i in range(h)]\n self.amij = [[Int('am' + str(i) + str(j)) for j in range(n)] for i in range(m)]\n self.ei = [Int('e' + str(i)) for i in range(m)] ##改成定值 , 写一个函数,从2开始一个个试????(还没实现)\n self.ci = [Int('c' + str(i)) for i in range(m)]\n self.heij = [[Bool('h_e' + str(j) + str(i)) for i in range(h)] for j in range(k)]\n self.hgeij = [[Bool('h_ge' + str(j) + str(i)) for i in range(h)] for j in range(k)]\n self.hleij = [[Bool('h_le' + str(j) + str(i)) for i in range(h)] for j in range(k)]\n self.tij = [[Bool('t' + str(j) + str(i)) for i in range(m)] for j in range(k)]\n self.ntij = [[Bool('nt' + str(j) + str(i)) for i in range(m)] for j in range(k)]\n self.s = Solver()\n\n\n\n\n for i in range(h):\n # 不等式系数ae_ij不能全部为0\n self.s.add(Or(*[a > 0 for a in self.aeij[i]]))\n for j in range(i + 1, h):\n self.s.add(Or(*[self.aeij[i][w] != self.aeij[j][w] for w in range(n)]))\n for i in range(m):\n # 模等式的系数am_ij不能全部小于等于0\n self.s.add(Or(*[am > 0 for am in self.amij[i]]))\n # 模等式的系数am_ij不能大于模e\n self.s.add(*[And(0 <= am, am < self.ei[i]) for am in self.amij[i]])\n # for j in range(i + 1, m):\n # self.s.add(Or(self.ei[i] != self.ei[j],\n # *[self.amij[i][w] != self.amij[j][w] for w in range(n)]))\n # 余数c_i必须小于模e\n self.s.add(*[And(self.ei[i] > self.ci[i], self.ci[i] >= 0) for i in range(m)])\n # 模必须大于等于2,并且小于一定范围\n self.s.add(*[And(e <= 10 * m, e >= 2) for e in self.ei])\n for i in range(k):\n # 判断条件一定有一个是False,避免逻辑出现False\n for j in range(i + 1, k):\n all_true = [And(self.heij[i][w], self.hgeij[i][w], self.hleij[i][w]) for w in range(h)]\n all_true.extend([And(self.tij[i][w], self.ntij[i][w]) for w in range(m)])\n struct_const = [Or(self.heij[i][w] != self.heij[j][w],\n self.hgeij[i][w] != self.hgeij[j][w],\n self.hleij[i][w] != self.hleij[j][w]) for w in range(h)]\n struct_const.extend([Or(self.tij[i][w] != self.tij[j][w],\n self.ntij[i][w] != self.ntij[j][w]) for w in range(m)])\n\n self.s.add(Or(*struct_const, *all_true))\n\n self.s.set(\"timeout\", timeout)\n\n def add(self, example, label):\n self.s.add(self.encoding(example, label))\n\n def check(self):\n check = self.s.check()\n if check == sat:\n self.solve_model()\n return check\n\n def W_size(m):\n return m+2\n\n\n\n def encoding(self, example, label):\n Equ = [combine(example[j] * self.aeij[i][j] for j in range(self.n)) != self.bi[i] for i in range(self.h)]\n Ge = [combine(example[j] * self.aeij[i][j] for j in range(self.n)) >= self.bi[i] for i in range(self.h)]\n Le = [combine(example[j] * self.aeij[i][j] for j in range(self.n)) <= self.bi[i] for i in range(self.h)]\n Me = [combine(example[j] * self.amij[i][j] for j in range(self.n)) % self.ei[i] == self.ci[i] for i in\n range(self.m)]\n Tk = []\n for k in range(self.k):\n clause = []\n clause.extend([Implies(self.heij[k][h], Equ[h]) for h in range(self.h)])\n clause.extend([Implies(self.hgeij[k][h], Ge[h]) for h in range(self.h)])\n clause.extend([Implies(self.hleij[k][h], Le[h]) for h in range(self.h)])\n clause.extend([Implies(self.tij[k][m], Me[m]) for m in range(self.m)])\n clause.extend([Implies(self.ntij[k][m], Not(Me[m])) for m in range(self.m)])\n Tk.append(And(*clause))\n # print(\"Or(*Tk) , label=\\n\",Or(*Tk),label)\n return Or(*Tk) == label\n\n def solve_model(self): #求出取值 ####加了w\n print(\"w\", self.w)\n #W_size = [2,3,4,5,6,7,8,9]\n model = self.s.model()\n self.M = [[model[self.amij[i][j]].as_long() if model[self.amij[i][j]] is not None else 0\n for j in range(self.n)]\n for i in range(self.m)]\n ##用z3求解e(此处要改)\n # self.E = [model[self.ei[i]].as_long() if model[self.ei[i]] is not None else 1 for i in range(self.m)]\n # print(\"E= \\n\",self.E)\n ####改动\n for i in range(self.m):\n self.ei[i] = FormulaTemplate.W_size(self.w)\n self.E = [self.ei[i] for i in range(self.m)]\n print(\"E = \\n\",self.E)\n ####\n self.C = [model[self.ci[i]].as_long() if model[self.ci[i]] is not None else 0 for i in range(self.m)]\n self.A = [[model[self.aeij[i][j]].as_long() if model[self.aeij[i][j]] is not None else 0\n for j in range(self.n)]\n for i in range(self.h)]\n self.B = [model[self.bi[i]].as_long() if model[self.bi[i]] is not None else 0 for i in range(self.h)]\n self.He = [\n [bool(model[self.heij[i][j]]) if model[self.heij[i][j]] is not None else False\n for j in range(self.h)]\n for i in range(self.k)\n ]\n self.Hge = [\n [bool(model[self.hgeij[i][j]]) if model[self.hgeij[i][j]] is not None else False\n for j in range(self.h)]\n for i in range(self.k)\n ]\n self.Hle = [\n [bool(model[self.hleij[i][j]]) if model[self.hleij[i][j]] is not None else False\n for j in range(self.h)]\n for i in range(self.k)\n ]\n self.T = [\n [bool(model[self.tij[i][j]]) if model[self.tij[i][j]] is not None else False\n for j in range(self.m)]\n for i in range(self.k)\n ]\n self.Nt = [\n [bool(model[self.ntij[i][j]]) if model[self.ntij[i][j]] is not None else False\n for j in range(self.m)]\n for i in range(self.k)\n ]\n for i in range(self.m):\n flag = True # 判断是否全部系数都相等\n pix = -1\n for am in self.M[i]:\n if pix == -1:\n if am != 0:\n pix = am\n elif am != 0 and am != pix:\n flag = False\n break\n if flag: # 系数全部相同\n if self.C[i] == 0:\n # if co_prime(pix, self.E[i]):\n # for j in range(self.n):\n # if self.M[i][j] != 0:\n # self.M[i][j] = 1\n # else:\n # div = gcd(pix, self.E[i])\n # self.E[i] /= div\n # for j in range(self.n):\n # self.M[i][j] /= div\n if not co_prime(pix, self.E[i]):\n self.E[i] /= gcd(pix, self.E[i])\n for j in range(self.n):\n self.M[i][j] = 1\n else:\n div = gcd(pix, self.E[i], self.C[i])\n self.E[i] /= div\n self.C[i] /= div\n pix /= div\n for j in range(self.n):\n self.M[i][j] /= div\n div = gcd(int(pix), int(self.C[i]))\n for j in range(self.n):\n self.M[i][j] /= div\n self.C[i] /= div\n for i in range(self.h):\n divisior = gcd(*self.A[i], self.B[i])\n self.B[i] /= divisior\n for j in range(self.n):\n self.A[i][j] /= divisior\n for i in range(len(self.E)):\n self.E[i] = int(self.E[i])\n\n def formula_model(self, *val): # 得到一个公式模型 kd:代入变量求得变量,代入数值就是求得一个值\n if len(val) == 0:\n val = self.vi\n formu = []\n for k in range(self.k):\n clause = []\n for h in range(self.h):\n Coe = combine(self.A[h][j] * val[j] for j in range(self.n))\n status = (self.He[k][h], self.Hge[k][h], self.Hle[k][h])\n if status == (False, False, True): #选择大于小于等于\n clause.append(Coe <= self.B[h])\n elif status == (False, True, False):\n clause.append(Coe >= self.B[h])\n elif status == (True, False, False):\n clause.append(Coe != self.B[h])\n elif status == (False, True, True):\n clause.append(Coe == self.B[h])\n elif status == (True, False, True):\n clause.append(Coe < self.B[h])\n elif status == (True, True, False):\n clause.append(Coe > self.B[h])\n elif status == (True, True, True):\n clause.append(False)\n for m in range(self.m):\n status = (self.T[k][m], self.Nt[k][m])\n if status == (True, False): #选择取模\n clause.append(combine(self.M[m][j] * val[j] for j in range(self.n)) % self.E[m] == self.C[m])\n elif status == (False, True):\n clause.append(combine(self.M[m][j] * val[j] for j in range(self.n)) % self.E[m] != self.C[m])\n elif status == (True, True):\n clause.append(False)\n formu.append(And(*clause))\n # print(\"simplify(Or(*formu))=\\n\",simplify(Or(*formu)))\n return simplify(Or(*formu))\n\n def refine_modu(self, coe, e, b, res, tmp, last=0):\n if len(coe) == 1:\n if coe[0] == 0:\n if last % e == b:\n tmp.append(0)\n else:\n return\n for i in range(e):\n if (i + last) % e == b:\n tmp.append(i)\n break\n res.append(list(tmp))\n tmp.pop()\n elif coe[0] == 0:\n tmp.append(0)\n self.refine_modu(coe[1:], e, b, res, tmp, last)\n tmp.pop()\n else:\n for i in range(e):\n tmp.append(i)\n self.refine_modu(coe[1:], e, b, res, tmp, last + i)\n tmp.pop()\n\n def build_formula(self, coe, V, e, C):\n expr = And(*[(coe[i] * v) % e == C[i] for i, v in enumerate(V)])\n return simplify(expr)\n\n def refine_model(self):\n formu_arr = []\n for k in range(self.k):\n clause = []\n for h in range(self.h):\n Coe = combine(self.A[h][j] * self.vi[j] for j in range(self.n))\n status = (self.He[k][h], self.Hge[k][h], self.Hle[k][h])\n if status == (False, False, True):\n clause.append([Coe < self.B[h], Coe == self.B[h]])\n elif status == (False, True, False):\n clause.append([Coe > self.B[h], Coe == self.B[h]])\n elif status == (True, False, False):\n clause.append([Coe < self.B[h], Coe > self.B[h]])\n elif status == (False, True, True):\n clause.append([Coe == self.B[h]])\n elif status == (True, False, True):\n clause.append([Coe < self.B[h]])\n elif status == (True, True, False):\n clause.append([Coe > self.B[h]])\n elif status == (True, True, True):\n clause.append([False])\n for m in range(self.m):\n status = (self.T[k][m], self.Nt[k][m])\n # Com = combine(self.M[m][j] * self.vi[j] for j in range(self.n))\n if status == (True, False):\n # clause.append([Com % self.E[m] == self.C[m]])\n mod_res = []\n self.refine_modu(self.M[m], self.E[m], self.C[m], mod_res, [])\n for C in mod_res:\n clause.append([self.build_formula(self.M[m], self.vi, self.E[m], C)])\n elif status == (False, True):\n mod_clause = []\n for i in range(self.E[m]):\n if i != self.C[m]:\n # mod_clause.append(Com % self.E[m] == i)\n mod_res = []\n self.refine_modu(self.M[m], self.E[m], i, mod_res, [])\n for C in mod_res:\n mod_clause.append(self.build_formula(self.M[m], self.vi, self.E[m], C))\n clause.append(mod_clause)\n elif status == (True, True):\n clause.append([False])\n formu_arr.append(clause)\n return formu_arr\n\n\nclass EquTemplate:\n def __init__(self, n):\n self.vi = [Int('v' + str(i)) for i in range(n)]\n self.b = Int('b')\n self.s = Solver()\n\n def add(self, vector):\n vi, target = vector[:-1], vector[-1]\n expr = combine(vi[i] * self.vi[i] for i in range(len(self.vi))) + self.b == target\n self.s.add(expr)\n\n def check(self):\n return self.s.check()\n\n def solve_model(self):\n model = self.s.model()\n V = [model[v].as_long() if model[v] is not None else 0 for v in self.vi]\n B = model[self.b].as_long() if model[self.b] is not None else 0\n expr = combine(V[i] * self.vi[i] for i in range(len(self.vi))) + B\n return simplify(expr)\n\n\nif __name__ == '__main__':\n # smt = FormulaTemplate([Int('v1'), Int('v2')], 4, 3, 2)\n # smt.add([1, 2], True)\n # smt.add([2, 3], False)\n # print(smt.s)\n # print(smt.check())\n #\n # arr = smt.refine_model()\n # for a in arr:\n # print(a)\n #\n # formu = smt.formula_model()\n # print(formu)\n # print('-' * 50)\n # print(simplify(formu))\n # print('-' * 50)\n\n smt = EquTemplate(2)\n smt.add([0, 1, 1])\n smt.add([1, 2, 1])\n smt.add([3, 6, 3])\n if smt.check() == sat:\n print(smt.solve_model()) # 1*v0 + 2*v1 + 1\n else:\n print(unsat)\n\n\n", "step-ids": [ 11, 14, 15, 16, 22 ] }
[ 11, 14, 15, 16, 22 ]
from django import forms from django.core import validators class NameSearch(forms.Form): name = forms.CharField(label='Search By Name')
normal
{ "blob_id": "7620ff333422d0354cc41c2a66444c3e8a0c011f", "index": 1606, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass NameSearch(forms.Form):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass NameSearch(forms.Form):\n name = forms.CharField(label='Search By Name')\n", "step-4": "from django import forms\nfrom django.core import validators\n\n\nclass NameSearch(forms.Form):\n name = forms.CharField(label='Search By Name')\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import torch from torch import nn import torch.nn.functional as F import numpy as np from config_pos import config from backbone.resnet50 import ResNet50 from backbone.fpn import FPN from module.rpn import RPN from layers.pooler import roi_pooler from det_oprs.bbox_opr import bbox_transform_inv_opr from det_oprs.bbox_opr import bbox_transform_inv_opr_v2 from det_oprs.fpn_roi_target import fpn_roi_target from det_oprs.loss_opr import softmax_loss, smooth_l1_loss from det_oprs.utils import get_padded_tensor class Network(nn.Module): def __init__(self): super().__init__() self.resnet50 = ResNet50(config.backbone_freeze_at, False) self.FPN = FPN(self.resnet50, 2, 6) self.RPN = RPN(config.rpn_channel) self.RCNN = RCNN() def forward(self, image, im_info, gt_boxes=None): image = (image - torch.tensor(config.image_mean[None, :, None, None]).type_as(image)) / ( torch.tensor(config.image_std[None, :, None, None]).type_as(image)) image = get_padded_tensor(image, 64) if self.training: return self._forward_train(image, im_info, gt_boxes) else: return self._forward_test(image, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} fpn_fms = self.FPN(image) # fpn_fms stride: 64,32,16,8,4, p6->p2 rpn_rois, loss_dict_rpn = self.RPN(fpn_fms, im_info, gt_boxes) rcnn_rois, rcnn_labels, rcnn_bbox_targets = fpn_roi_target( rpn_rois, im_info, gt_boxes, top_k=1) loss_dict_rcnn = self.RCNN(fpn_fms, rcnn_rois, rcnn_labels, rcnn_bbox_targets) loss_dict.update(loss_dict_rpn) loss_dict.update(loss_dict_rcnn) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.FPN(image) rpn_rois = self.RPN(fpn_fms, im_info) pred_bbox, num_classes = self.RCNN(fpn_fms, rpn_rois) return pred_bbox.cpu().detach(), num_classes class RCNN(nn.Module): def __init__(self): super().__init__() # roi head self.fc1 = nn.Linear(256*7*7, 1024) self.fc2 = nn.Linear(1024, 1024) for l in [self.fc1, self.fc2]: nn.init.kaiming_uniform_(l.weight, a=1) nn.init.constant_(l.bias, 0) # box predictor self.pred_cls = nn.Linear(1024, config.num_classes) self.pred_delta = nn.Linear(1024, config.num_classes * 4) for l in [self.pred_cls]: nn.init.normal_(l.weight, std=0.01) nn.init.constant_(l.bias, 0) for l in [self.pred_delta]: nn.init.normal_(l.weight, std=0.001) nn.init.constant_(l.bias, 0) def forward(self, fpn_fms, rcnn_rois, labels=None, bbox_targets=None): # input p2-p5 fpn_fms = fpn_fms[1:][::-1] stride = [4, 8, 16, 32] pool_features = roi_pooler(fpn_fms, rcnn_rois, stride, (7, 7), "ROIAlignV2") flatten_feature = torch.flatten(pool_features, start_dim=1) flatten_feature = F.relu_(self.fc1(flatten_feature)) flatten_feature = F.relu_(self.fc2(flatten_feature)) pred_cls = self.pred_cls(flatten_feature) pred_delta = self.pred_delta(flatten_feature) if self.training: # loss for regression labels = labels.long().flatten() fg_masks = labels > 0 valid_masks = labels >= 0 # multi class pred_delta = pred_delta.reshape(-1, config.num_classes, 4) fg_gt_classes = labels[fg_masks] pred_delta = pred_delta[fg_masks, fg_gt_classes, :] localization_loss = smooth_l1_loss( # pred_regression, pred_delta, bbox_targets[fg_masks], config.rcnn_smooth_l1_beta) # loss for classification objectness_loss = softmax_loss(pred_cls, labels, num_classes=config.num_classes) objectness_loss = objectness_loss * valid_masks normalizer = 1.0 / valid_masks.sum().item() loss_rcnn_loc = localization_loss.sum() * normalizer loss_rcnn_cls = objectness_loss.sum() * normalizer loss_dict = {} loss_dict['loss_rcnn_loc'] = loss_rcnn_loc loss_dict['loss_rcnn_cls'] = loss_rcnn_cls return loss_dict else: class_num = pred_cls.shape[-1] - 1 tag = torch.arange(class_num).type_as(pred_cls)+1 tag = tag.repeat(pred_cls.shape[0], 1).reshape(-1,1) pred_scores = F.softmax(pred_cls, dim=-1)[:, 1:].reshape(-1, 1) pred_delta = pred_delta[:, 4:].reshape(-1, 4) base_rois = rcnn_rois[:, 1:5].repeat(1, class_num).reshape(-1, 4) pred_bbox = restore_bbox(base_rois, pred_delta, True) pred_bbox = torch.cat([pred_bbox, pred_scores, tag], axis=1) return pred_bbox, class_num def restore_bbox(rois, deltas, unnormalize=True): if unnormalize: std_opr = torch.tensor(config.bbox_normalize_stds[None, :]).type_as(deltas) mean_opr = torch.tensor(config.bbox_normalize_means[None, :]).type_as(deltas) deltas = deltas * std_opr deltas = deltas + mean_opr pred_bbox = bbox_transform_inv_opr(rois, deltas) return pred_bbox
normal
{ "blob_id": "6ac13665c2348bf251482f250c0fcc1fc1a8af75", "index": 4721, "step-1": "<mask token>\n\n\nclass Network(nn.Module):\n\n def __init__(self):\n super().__init__()\n self.resnet50 = ResNet50(config.backbone_freeze_at, False)\n self.FPN = FPN(self.resnet50, 2, 6)\n self.RPN = RPN(config.rpn_channel)\n self.RCNN = RCNN()\n <mask token>\n <mask token>\n <mask token>\n\n\nclass RCNN(nn.Module):\n\n def __init__(self):\n super().__init__()\n self.fc1 = nn.Linear(256 * 7 * 7, 1024)\n self.fc2 = nn.Linear(1024, 1024)\n for l in [self.fc1, self.fc2]:\n nn.init.kaiming_uniform_(l.weight, a=1)\n nn.init.constant_(l.bias, 0)\n self.pred_cls = nn.Linear(1024, config.num_classes)\n self.pred_delta = nn.Linear(1024, config.num_classes * 4)\n for l in [self.pred_cls]:\n nn.init.normal_(l.weight, std=0.01)\n nn.init.constant_(l.bias, 0)\n for l in [self.pred_delta]:\n nn.init.normal_(l.weight, std=0.001)\n nn.init.constant_(l.bias, 0)\n\n def forward(self, fpn_fms, rcnn_rois, labels=None, bbox_targets=None):\n fpn_fms = fpn_fms[1:][::-1]\n stride = [4, 8, 16, 32]\n pool_features = roi_pooler(fpn_fms, rcnn_rois, stride, (7, 7),\n 'ROIAlignV2')\n flatten_feature = torch.flatten(pool_features, start_dim=1)\n flatten_feature = F.relu_(self.fc1(flatten_feature))\n flatten_feature = F.relu_(self.fc2(flatten_feature))\n pred_cls = self.pred_cls(flatten_feature)\n pred_delta = self.pred_delta(flatten_feature)\n if self.training:\n labels = labels.long().flatten()\n fg_masks = labels > 0\n valid_masks = labels >= 0\n pred_delta = pred_delta.reshape(-1, config.num_classes, 4)\n fg_gt_classes = labels[fg_masks]\n pred_delta = pred_delta[fg_masks, fg_gt_classes, :]\n localization_loss = smooth_l1_loss(pred_delta, bbox_targets[\n fg_masks], config.rcnn_smooth_l1_beta)\n objectness_loss = softmax_loss(pred_cls, labels, num_classes=\n config.num_classes)\n objectness_loss = objectness_loss * valid_masks\n normalizer = 1.0 / valid_masks.sum().item()\n loss_rcnn_loc = localization_loss.sum() * normalizer\n loss_rcnn_cls = objectness_loss.sum() * normalizer\n loss_dict = {}\n loss_dict['loss_rcnn_loc'] = loss_rcnn_loc\n loss_dict['loss_rcnn_cls'] = loss_rcnn_cls\n return loss_dict\n else:\n class_num = pred_cls.shape[-1] - 1\n tag = torch.arange(class_num).type_as(pred_cls) + 1\n tag = tag.repeat(pred_cls.shape[0], 1).reshape(-1, 1)\n pred_scores = F.softmax(pred_cls, dim=-1)[:, 1:].reshape(-1, 1)\n pred_delta = pred_delta[:, 4:].reshape(-1, 4)\n base_rois = rcnn_rois[:, 1:5].repeat(1, class_num).reshape(-1, 4)\n pred_bbox = restore_bbox(base_rois, pred_delta, True)\n pred_bbox = torch.cat([pred_bbox, pred_scores, tag], axis=1)\n return pred_bbox, class_num\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Network(nn.Module):\n\n def __init__(self):\n super().__init__()\n self.resnet50 = ResNet50(config.backbone_freeze_at, False)\n self.FPN = FPN(self.resnet50, 2, 6)\n self.RPN = RPN(config.rpn_channel)\n self.RCNN = RCNN()\n\n def forward(self, image, im_info, gt_boxes=None):\n image = (image - torch.tensor(config.image_mean[None, :, None, None\n ]).type_as(image)) / torch.tensor(config.image_std[None, :,\n None, None]).type_as(image)\n image = get_padded_tensor(image, 64)\n if self.training:\n return self._forward_train(image, im_info, gt_boxes)\n else:\n return self._forward_test(image, im_info)\n <mask token>\n <mask token>\n\n\nclass RCNN(nn.Module):\n\n def __init__(self):\n super().__init__()\n self.fc1 = nn.Linear(256 * 7 * 7, 1024)\n self.fc2 = nn.Linear(1024, 1024)\n for l in [self.fc1, self.fc2]:\n nn.init.kaiming_uniform_(l.weight, a=1)\n nn.init.constant_(l.bias, 0)\n self.pred_cls = nn.Linear(1024, config.num_classes)\n self.pred_delta = nn.Linear(1024, config.num_classes * 4)\n for l in [self.pred_cls]:\n nn.init.normal_(l.weight, std=0.01)\n nn.init.constant_(l.bias, 0)\n for l in [self.pred_delta]:\n nn.init.normal_(l.weight, std=0.001)\n nn.init.constant_(l.bias, 0)\n\n def forward(self, fpn_fms, rcnn_rois, labels=None, bbox_targets=None):\n fpn_fms = fpn_fms[1:][::-1]\n stride = [4, 8, 16, 32]\n pool_features = roi_pooler(fpn_fms, rcnn_rois, stride, (7, 7),\n 'ROIAlignV2')\n flatten_feature = torch.flatten(pool_features, start_dim=1)\n flatten_feature = F.relu_(self.fc1(flatten_feature))\n flatten_feature = F.relu_(self.fc2(flatten_feature))\n pred_cls = self.pred_cls(flatten_feature)\n pred_delta = self.pred_delta(flatten_feature)\n if self.training:\n labels = labels.long().flatten()\n fg_masks = labels > 0\n valid_masks = labels >= 0\n pred_delta = pred_delta.reshape(-1, config.num_classes, 4)\n fg_gt_classes = labels[fg_masks]\n pred_delta = pred_delta[fg_masks, fg_gt_classes, :]\n localization_loss = smooth_l1_loss(pred_delta, bbox_targets[\n fg_masks], config.rcnn_smooth_l1_beta)\n objectness_loss = softmax_loss(pred_cls, labels, num_classes=\n config.num_classes)\n objectness_loss = objectness_loss * valid_masks\n normalizer = 1.0 / valid_masks.sum().item()\n loss_rcnn_loc = localization_loss.sum() * normalizer\n loss_rcnn_cls = objectness_loss.sum() * normalizer\n loss_dict = {}\n loss_dict['loss_rcnn_loc'] = loss_rcnn_loc\n loss_dict['loss_rcnn_cls'] = loss_rcnn_cls\n return loss_dict\n else:\n class_num = pred_cls.shape[-1] - 1\n tag = torch.arange(class_num).type_as(pred_cls) + 1\n tag = tag.repeat(pred_cls.shape[0], 1).reshape(-1, 1)\n pred_scores = F.softmax(pred_cls, dim=-1)[:, 1:].reshape(-1, 1)\n pred_delta = pred_delta[:, 4:].reshape(-1, 4)\n base_rois = rcnn_rois[:, 1:5].repeat(1, class_num).reshape(-1, 4)\n pred_bbox = restore_bbox(base_rois, pred_delta, True)\n pred_bbox = torch.cat([pred_bbox, pred_scores, tag], axis=1)\n return pred_bbox, class_num\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Network(nn.Module):\n\n def __init__(self):\n super().__init__()\n self.resnet50 = ResNet50(config.backbone_freeze_at, False)\n self.FPN = FPN(self.resnet50, 2, 6)\n self.RPN = RPN(config.rpn_channel)\n self.RCNN = RCNN()\n\n def forward(self, image, im_info, gt_boxes=None):\n image = (image - torch.tensor(config.image_mean[None, :, None, None\n ]).type_as(image)) / torch.tensor(config.image_std[None, :,\n None, None]).type_as(image)\n image = get_padded_tensor(image, 64)\n if self.training:\n return self._forward_train(image, im_info, gt_boxes)\n else:\n return self._forward_test(image, im_info)\n\n def _forward_train(self, image, im_info, gt_boxes):\n loss_dict = {}\n fpn_fms = self.FPN(image)\n rpn_rois, loss_dict_rpn = self.RPN(fpn_fms, im_info, gt_boxes)\n rcnn_rois, rcnn_labels, rcnn_bbox_targets = fpn_roi_target(rpn_rois,\n im_info, gt_boxes, top_k=1)\n loss_dict_rcnn = self.RCNN(fpn_fms, rcnn_rois, rcnn_labels,\n rcnn_bbox_targets)\n loss_dict.update(loss_dict_rpn)\n loss_dict.update(loss_dict_rcnn)\n return loss_dict\n <mask token>\n\n\nclass RCNN(nn.Module):\n\n def __init__(self):\n super().__init__()\n self.fc1 = nn.Linear(256 * 7 * 7, 1024)\n self.fc2 = nn.Linear(1024, 1024)\n for l in [self.fc1, self.fc2]:\n nn.init.kaiming_uniform_(l.weight, a=1)\n nn.init.constant_(l.bias, 0)\n self.pred_cls = nn.Linear(1024, config.num_classes)\n self.pred_delta = nn.Linear(1024, config.num_classes * 4)\n for l in [self.pred_cls]:\n nn.init.normal_(l.weight, std=0.01)\n nn.init.constant_(l.bias, 0)\n for l in [self.pred_delta]:\n nn.init.normal_(l.weight, std=0.001)\n nn.init.constant_(l.bias, 0)\n\n def forward(self, fpn_fms, rcnn_rois, labels=None, bbox_targets=None):\n fpn_fms = fpn_fms[1:][::-1]\n stride = [4, 8, 16, 32]\n pool_features = roi_pooler(fpn_fms, rcnn_rois, stride, (7, 7),\n 'ROIAlignV2')\n flatten_feature = torch.flatten(pool_features, start_dim=1)\n flatten_feature = F.relu_(self.fc1(flatten_feature))\n flatten_feature = F.relu_(self.fc2(flatten_feature))\n pred_cls = self.pred_cls(flatten_feature)\n pred_delta = self.pred_delta(flatten_feature)\n if self.training:\n labels = labels.long().flatten()\n fg_masks = labels > 0\n valid_masks = labels >= 0\n pred_delta = pred_delta.reshape(-1, config.num_classes, 4)\n fg_gt_classes = labels[fg_masks]\n pred_delta = pred_delta[fg_masks, fg_gt_classes, :]\n localization_loss = smooth_l1_loss(pred_delta, bbox_targets[\n fg_masks], config.rcnn_smooth_l1_beta)\n objectness_loss = softmax_loss(pred_cls, labels, num_classes=\n config.num_classes)\n objectness_loss = objectness_loss * valid_masks\n normalizer = 1.0 / valid_masks.sum().item()\n loss_rcnn_loc = localization_loss.sum() * normalizer\n loss_rcnn_cls = objectness_loss.sum() * normalizer\n loss_dict = {}\n loss_dict['loss_rcnn_loc'] = loss_rcnn_loc\n loss_dict['loss_rcnn_cls'] = loss_rcnn_cls\n return loss_dict\n else:\n class_num = pred_cls.shape[-1] - 1\n tag = torch.arange(class_num).type_as(pred_cls) + 1\n tag = tag.repeat(pred_cls.shape[0], 1).reshape(-1, 1)\n pred_scores = F.softmax(pred_cls, dim=-1)[:, 1:].reshape(-1, 1)\n pred_delta = pred_delta[:, 4:].reshape(-1, 4)\n base_rois = rcnn_rois[:, 1:5].repeat(1, class_num).reshape(-1, 4)\n pred_bbox = restore_bbox(base_rois, pred_delta, True)\n pred_bbox = torch.cat([pred_bbox, pred_scores, tag], axis=1)\n return pred_bbox, class_num\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass Network(nn.Module):\n\n def __init__(self):\n super().__init__()\n self.resnet50 = ResNet50(config.backbone_freeze_at, False)\n self.FPN = FPN(self.resnet50, 2, 6)\n self.RPN = RPN(config.rpn_channel)\n self.RCNN = RCNN()\n\n def forward(self, image, im_info, gt_boxes=None):\n image = (image - torch.tensor(config.image_mean[None, :, None, None\n ]).type_as(image)) / torch.tensor(config.image_std[None, :,\n None, None]).type_as(image)\n image = get_padded_tensor(image, 64)\n if self.training:\n return self._forward_train(image, im_info, gt_boxes)\n else:\n return self._forward_test(image, im_info)\n\n def _forward_train(self, image, im_info, gt_boxes):\n loss_dict = {}\n fpn_fms = self.FPN(image)\n rpn_rois, loss_dict_rpn = self.RPN(fpn_fms, im_info, gt_boxes)\n rcnn_rois, rcnn_labels, rcnn_bbox_targets = fpn_roi_target(rpn_rois,\n im_info, gt_boxes, top_k=1)\n loss_dict_rcnn = self.RCNN(fpn_fms, rcnn_rois, rcnn_labels,\n rcnn_bbox_targets)\n loss_dict.update(loss_dict_rpn)\n loss_dict.update(loss_dict_rcnn)\n return loss_dict\n\n def _forward_test(self, image, im_info):\n fpn_fms = self.FPN(image)\n rpn_rois = self.RPN(fpn_fms, im_info)\n pred_bbox, num_classes = self.RCNN(fpn_fms, rpn_rois)\n return pred_bbox.cpu().detach(), num_classes\n\n\nclass RCNN(nn.Module):\n\n def __init__(self):\n super().__init__()\n self.fc1 = nn.Linear(256 * 7 * 7, 1024)\n self.fc2 = nn.Linear(1024, 1024)\n for l in [self.fc1, self.fc2]:\n nn.init.kaiming_uniform_(l.weight, a=1)\n nn.init.constant_(l.bias, 0)\n self.pred_cls = nn.Linear(1024, config.num_classes)\n self.pred_delta = nn.Linear(1024, config.num_classes * 4)\n for l in [self.pred_cls]:\n nn.init.normal_(l.weight, std=0.01)\n nn.init.constant_(l.bias, 0)\n for l in [self.pred_delta]:\n nn.init.normal_(l.weight, std=0.001)\n nn.init.constant_(l.bias, 0)\n\n def forward(self, fpn_fms, rcnn_rois, labels=None, bbox_targets=None):\n fpn_fms = fpn_fms[1:][::-1]\n stride = [4, 8, 16, 32]\n pool_features = roi_pooler(fpn_fms, rcnn_rois, stride, (7, 7),\n 'ROIAlignV2')\n flatten_feature = torch.flatten(pool_features, start_dim=1)\n flatten_feature = F.relu_(self.fc1(flatten_feature))\n flatten_feature = F.relu_(self.fc2(flatten_feature))\n pred_cls = self.pred_cls(flatten_feature)\n pred_delta = self.pred_delta(flatten_feature)\n if self.training:\n labels = labels.long().flatten()\n fg_masks = labels > 0\n valid_masks = labels >= 0\n pred_delta = pred_delta.reshape(-1, config.num_classes, 4)\n fg_gt_classes = labels[fg_masks]\n pred_delta = pred_delta[fg_masks, fg_gt_classes, :]\n localization_loss = smooth_l1_loss(pred_delta, bbox_targets[\n fg_masks], config.rcnn_smooth_l1_beta)\n objectness_loss = softmax_loss(pred_cls, labels, num_classes=\n config.num_classes)\n objectness_loss = objectness_loss * valid_masks\n normalizer = 1.0 / valid_masks.sum().item()\n loss_rcnn_loc = localization_loss.sum() * normalizer\n loss_rcnn_cls = objectness_loss.sum() * normalizer\n loss_dict = {}\n loss_dict['loss_rcnn_loc'] = loss_rcnn_loc\n loss_dict['loss_rcnn_cls'] = loss_rcnn_cls\n return loss_dict\n else:\n class_num = pred_cls.shape[-1] - 1\n tag = torch.arange(class_num).type_as(pred_cls) + 1\n tag = tag.repeat(pred_cls.shape[0], 1).reshape(-1, 1)\n pred_scores = F.softmax(pred_cls, dim=-1)[:, 1:].reshape(-1, 1)\n pred_delta = pred_delta[:, 4:].reshape(-1, 4)\n base_rois = rcnn_rois[:, 1:5].repeat(1, class_num).reshape(-1, 4)\n pred_bbox = restore_bbox(base_rois, pred_delta, True)\n pred_bbox = torch.cat([pred_bbox, pred_scores, tag], axis=1)\n return pred_bbox, class_num\n\n\n<mask token>\n", "step-5": "import torch\nfrom torch import nn\nimport torch.nn.functional as F\nimport numpy as np\n\nfrom config_pos import config\nfrom backbone.resnet50 import ResNet50\nfrom backbone.fpn import FPN\nfrom module.rpn import RPN\nfrom layers.pooler import roi_pooler\nfrom det_oprs.bbox_opr import bbox_transform_inv_opr\nfrom det_oprs.bbox_opr import bbox_transform_inv_opr_v2\nfrom det_oprs.fpn_roi_target import fpn_roi_target\nfrom det_oprs.loss_opr import softmax_loss, smooth_l1_loss\nfrom det_oprs.utils import get_padded_tensor\n\nclass Network(nn.Module):\n def __init__(self):\n super().__init__()\n self.resnet50 = ResNet50(config.backbone_freeze_at, False)\n self.FPN = FPN(self.resnet50, 2, 6)\n self.RPN = RPN(config.rpn_channel)\n self.RCNN = RCNN()\n\n def forward(self, image, im_info, gt_boxes=None):\n image = (image - torch.tensor(config.image_mean[None, :, None, None]).type_as(image)) / (\n torch.tensor(config.image_std[None, :, None, None]).type_as(image))\n image = get_padded_tensor(image, 64)\n if self.training:\n return self._forward_train(image, im_info, gt_boxes)\n else:\n return self._forward_test(image, im_info)\n\n def _forward_train(self, image, im_info, gt_boxes):\n loss_dict = {}\n fpn_fms = self.FPN(image)\n # fpn_fms stride: 64,32,16,8,4, p6->p2\n rpn_rois, loss_dict_rpn = self.RPN(fpn_fms, im_info, gt_boxes)\n rcnn_rois, rcnn_labels, rcnn_bbox_targets = fpn_roi_target(\n rpn_rois, im_info, gt_boxes, top_k=1)\n loss_dict_rcnn = self.RCNN(fpn_fms, rcnn_rois,\n rcnn_labels, rcnn_bbox_targets)\n loss_dict.update(loss_dict_rpn)\n loss_dict.update(loss_dict_rcnn)\n return loss_dict\n\n def _forward_test(self, image, im_info):\n fpn_fms = self.FPN(image)\n rpn_rois = self.RPN(fpn_fms, im_info)\n pred_bbox, num_classes = self.RCNN(fpn_fms, rpn_rois)\n return pred_bbox.cpu().detach(), num_classes\n\nclass RCNN(nn.Module):\n def __init__(self):\n super().__init__()\n # roi head\n self.fc1 = nn.Linear(256*7*7, 1024)\n self.fc2 = nn.Linear(1024, 1024)\n\n for l in [self.fc1, self.fc2]:\n nn.init.kaiming_uniform_(l.weight, a=1)\n nn.init.constant_(l.bias, 0)\n # box predictor\n self.pred_cls = nn.Linear(1024, config.num_classes)\n self.pred_delta = nn.Linear(1024, config.num_classes * 4)\n for l in [self.pred_cls]:\n nn.init.normal_(l.weight, std=0.01)\n nn.init.constant_(l.bias, 0)\n for l in [self.pred_delta]:\n nn.init.normal_(l.weight, std=0.001)\n nn.init.constant_(l.bias, 0)\n\n def forward(self, fpn_fms, rcnn_rois, labels=None, bbox_targets=None):\n # input p2-p5\n fpn_fms = fpn_fms[1:][::-1]\n stride = [4, 8, 16, 32]\n pool_features = roi_pooler(fpn_fms, rcnn_rois, stride, (7, 7), \"ROIAlignV2\")\n flatten_feature = torch.flatten(pool_features, start_dim=1)\n flatten_feature = F.relu_(self.fc1(flatten_feature))\n flatten_feature = F.relu_(self.fc2(flatten_feature))\n pred_cls = self.pred_cls(flatten_feature)\n pred_delta = self.pred_delta(flatten_feature)\n if self.training:\n # loss for regression\n labels = labels.long().flatten()\n fg_masks = labels > 0\n valid_masks = labels >= 0\n # multi class\n pred_delta = pred_delta.reshape(-1, config.num_classes, 4)\n fg_gt_classes = labels[fg_masks]\n pred_delta = pred_delta[fg_masks, fg_gt_classes, :]\n localization_loss = smooth_l1_loss(\n # pred_regression,\n pred_delta,\n bbox_targets[fg_masks],\n config.rcnn_smooth_l1_beta)\n # loss for classification\n objectness_loss = softmax_loss(pred_cls, labels, num_classes=config.num_classes)\n objectness_loss = objectness_loss * valid_masks\n normalizer = 1.0 / valid_masks.sum().item()\n loss_rcnn_loc = localization_loss.sum() * normalizer\n loss_rcnn_cls = objectness_loss.sum() * normalizer\n loss_dict = {}\n loss_dict['loss_rcnn_loc'] = loss_rcnn_loc\n loss_dict['loss_rcnn_cls'] = loss_rcnn_cls\n return loss_dict\n else:\n class_num = pred_cls.shape[-1] - 1\n tag = torch.arange(class_num).type_as(pred_cls)+1\n tag = tag.repeat(pred_cls.shape[0], 1).reshape(-1,1)\n pred_scores = F.softmax(pred_cls, dim=-1)[:, 1:].reshape(-1, 1)\n pred_delta = pred_delta[:, 4:].reshape(-1, 4)\n base_rois = rcnn_rois[:, 1:5].repeat(1, class_num).reshape(-1, 4)\n pred_bbox = restore_bbox(base_rois, pred_delta, True)\n pred_bbox = torch.cat([pred_bbox, pred_scores, tag], axis=1)\n return pred_bbox, class_num\n\ndef restore_bbox(rois, deltas, unnormalize=True):\n if unnormalize:\n std_opr = torch.tensor(config.bbox_normalize_stds[None, :]).type_as(deltas)\n mean_opr = torch.tensor(config.bbox_normalize_means[None, :]).type_as(deltas)\n deltas = deltas * std_opr\n deltas = deltas + mean_opr\n pred_bbox = bbox_transform_inv_opr(rois, deltas)\n return pred_bbox\n", "step-ids": [ 5, 6, 7, 8, 11 ] }
[ 5, 6, 7, 8, 11 ]
from time import strftime from Stats.SQL.Compteur import compteurSQL from Stats.SQL.Rapports import rapportsSQL from Stats.SQL.Daily import dailySQL from Stats.SQL.CompteurP4 import compteurJeuxSQL from Stats.SQL.Historique import histoSQL, histoSQLJeux from Stats.SQL.ConnectSQL import connectSQL tableauMois={"01":"janvier","02":"février","03":"mars","04":"avril","05":"mai","06":"juin","07":"juillet","08":"aout","09":"septembre","10":"octobre","11":"novembre","12":"décembre","TO":"TOTAL"} def exeClassic(count,id,nom,curseurGuild,guild): dateID=int(strftime("%y")+strftime("%m")+strftime("%d")) connexionGL,curseurGL=connectSQL(guild.id,nom,"Stats","GL","") connexion,curseur=connectSQL(guild.id,nom,"Stats",strftime("%m"),strftime("%y")) compteurSQL(curseur,tableauMois[strftime("%m")]+strftime("%y"),id,(0,id,strftime("%m"),strftime("%y"),count,0),count,(strftime("%d"),strftime("%m"),strftime("%y")),(strftime("%m"),strftime("%y")),"persoM",False,True,1,curseurGL) connexion.commit() connexion,curseur=connectSQL(guild.id,nom,"Stats","TO",strftime("%y")) compteurSQL(curseur,"to"+strftime("%y"),id,(0,id,"TO",strftime("%y"),count,0),count,(strftime("%d"),strftime("%m"),strftime("%y")),("TO",strftime("%y")),"persoA",False,True,1,curseurGL) connexion.commit() liste=compteurSQL(curseurGL,"glob",id,(0,id,"TO","GL",count,0),count,(strftime("%d"),strftime("%m"),strftime("%y")),("TO","GL"),"persoA",False,True,1,curseurGL) if nom in ("Messages","Voice"): compteurSQL(curseurGL,"dayRank",int(strftime("%y")+strftime("%m")+strftime("%d")),(0,int(strftime("%y")+strftime("%m")+strftime("%d")),strftime("%d"),strftime("%m"),strftime("%y"),count),count,None,None,None,None,False,3,curseurGL) if nom in ("Emotes","Reactions"): countGL=curseurGL.execute("SELECT Count FROM glob WHERE ID={0}".format(id)).fetchone()["Count"] for i in liste: if i["Rank"]>400: curseurGL.execute("DROP TABLE IF EXISTS persoM{0}".format(i["ID"])) curseurGL.execute("DROP TABLE IF EXISTS persoA{0}".format(i["ID"])) connexionGL.commit() dailySQL(dateID,(strftime("%d"),strftime("%m"),strftime("%y")),nom,curseurGuild,guild.id,"Stats") if nom not in ("Mentions","Mentionne"): rapportsSQL(guild,"ranks",id,None,count,(0,id,strftime("%d"),strftime("%m"),strftime("%y"),dateID,count,nom),strftime("%d"),strftime("%m"),strftime("%y"),nom) def exeObj(count,idObj,id,obj,guild,nom): dateID=int(strftime("%y")+strftime("%m")+strftime("%d")) connexionGL,curseurGL=connectSQL(guild.id,nom,"Stats","GL","") connexion,curseur=connectSQL(guild.id,nom,"Stats",strftime("%m"),strftime("%y")) compteurSQL(curseur,tableauMois[strftime("%m")]+strftime("%y")+str(idObj),id,(0,id,idObj,strftime("%m"),strftime("%y"),count),count,(strftime("%d"),strftime("%m"),strftime("%y")),(strftime("%m"),strftime("%y")),"persoM",obj,False,2,curseurGL) if nom in ("Emotes","Reactions") and curseur.execute("SELECT Count FROM {0}{1} WHERE ID={2}".format(tableauMois[strftime("%m")],strftime("%y"),idObj)).fetchone()["Count"]<10: curseur.execute("DROP TABLE {0}{1}{2}".format(tableauMois[strftime("%m")],strftime("%y"),idObj)) connexion.commit() connexion,curseur=connectSQL(guild.id,nom,"Stats","TO",strftime("%y")) compteurSQL(curseur,"to"+strftime("%y")+str(idObj),id,(0,id,idObj,"TO",strftime("%y"),count),count,(strftime("%d"),strftime("%m"),strftime("%y")),("TO",strftime("%y")),"persoA",obj,False,2,curseurGL) if nom in ("Emotes","Reactions") and curseur.execute("SELECT Count FROM to{0} WHERE ID={1}".format(strftime("%y"),idObj)).fetchone()["Count"]<25: curseur.execute("DROP TABLE to{0}{1}".format(strftime("%y"),idObj)) connexion.commit() liste=compteurSQL(curseurGL,"glob"+str(idObj),id,(0,id,idObj,"TO","GL",count),count,(strftime("%d"),strftime("%m"),strftime("%y")),("TO","GL"),"persoA",obj,False,2,curseurGL) if nom in ("Emotes","Reactions"): if curseurGL.execute("SELECT Count FROM glob WHERE ID={0}".format(idObj)).fetchone()["Count"]<50: curseurGL.execute("DROP TABLE glob{0}".format(idObj)) if curseurGL.execute("SELECT Rank FROM glob WHERE ID={0}".format(idObj)).fetchone()["Rank"]>400: for i in liste: curseurGL.execute("DROP TABLE IF EXISTS persoM{0}{1}".format(i["ID"],idObj)) curseurGL.execute("DROP TABLE IF EXISTS persoA{0}{1}".format(i["ID"],idObj)) connexionGL.commit() if nom not in ("Mentions","Mentionne"): rapportsSQL(guild,"objs",idObj,id,count,(0,id,idObj,strftime("%d"),strftime("%m"),strftime("%y"),dateID,count,nom),strftime("%d"),strftime("%m"),strftime("%y"),nom) def exeJeuxSQL(id,idObj,state,guild,curseurGuild,count,option,tours): dictCount={"W":2,"L":-1} dictW={"W":1,"L":0} dictL={"W":0,"L":1} connexionGL,curseurGL=connectSQL(guild,option,"Jeux","GL","") connexion,curseur=connectSQL(guild,option,"Jeux",strftime("%m"),strftime("%y")) compteurJeuxSQL(curseur,tableauMois[strftime("%m")]+strftime("%y"),id,(0,id,strftime("%m"),strftime("%y"),dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime("%d"),strftime("%m"),strftime("%y")),(strftime("%m"),strftime("%y")),"persoM",False,state,4,curseurGL) if idObj!=None: compteurJeuxSQL(curseur,tableauMois[strftime("%m")]+strftime("%y")+str(idObj),id,(0,id,idObj,strftime("%m"),strftime("%y"),dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime("%d"),strftime("%m"),strftime("%y")),(strftime("%m"),strftime("%y")),"persoM",True,state,5,curseurGL) connexion.commit() connexion,curseur=connectSQL(guild,option,"Jeux","TO",strftime("%y")) compteurJeuxSQL(curseur,"to"+strftime("%y"),id,(0,id,"TO",strftime("%y"),dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime("%d"),strftime("%m"),strftime("%y")),("TO",strftime("%y")),"persoA",False,state,4,curseurGL) if idObj!=None: compteurJeuxSQL(curseur,"to"+strftime("%y")+str(idObj),id,(0,id,idObj,"TO",strftime("%y"),dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime("%d"),strftime("%m"),strftime("%y")),("TO",strftime("%y")),"persoA",True,state,5,curseurGL) connexion.commit() compteurJeuxSQL(curseurGL,"glob",id,(0,id,"TO","GL",dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime("%d"),strftime("%m"),strftime("%y")),("TO","GL"),"persoA",False,state,4,curseurGL) if idObj!=None: compteurJeuxSQL(curseurGL,"glob"+str(idObj),id,(0,id,idObj,"TO","GL",dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime("%d"),strftime("%m"),strftime("%y")),("TO","GL"),"persoA",True,state,5,curseurGL) histoSQLJeux(curseurGL,id,tours,strftime("%d")+"/"+strftime("%m")+"/"+strftime("%y"),idObj,state) connexionGL.commit() dailySQL(int(strftime("%y")+strftime("%m")+strftime("%d")),(strftime("%d"),strftime("%m"),strftime("%y")),option,curseurGuild,guild,"Jeux")
normal
{ "blob_id": "19ff064f8c27b9796eb435c7d2b9ebf87ee90ad6", "index": 7982, "step-1": "<mask token>\n\n\ndef exeObj(count, idObj, id, obj, guild, nom):\n dateID = int(strftime('%y') + strftime('%m') + strftime('%d'))\n connexionGL, curseurGL = connectSQL(guild.id, nom, 'Stats', 'GL', '')\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', strftime('%m'),\n strftime('%y'))\n compteurSQL(curseur, tableauMois[strftime('%m')] + strftime('%y') + str\n (idObj), id, (0, id, idObj, strftime('%m'), strftime('%y'), count),\n count, (strftime('%d'), strftime('%m'), strftime('%y')), (strftime(\n '%m'), strftime('%y')), 'persoM', obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions') and curseur.execute(\n 'SELECT Count FROM {0}{1} WHERE ID={2}'.format(tableauMois[strftime\n ('%m')], strftime('%y'), idObj)).fetchone()['Count'] < 10:\n curseur.execute('DROP TABLE {0}{1}{2}'.format(tableauMois[strftime(\n '%m')], strftime('%y'), idObj))\n connexion.commit()\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', 'TO', strftime(\n '%y'))\n compteurSQL(curseur, 'to' + strftime('%y') + str(idObj), id, (0, id,\n idObj, 'TO', strftime('%y'), count), count, (strftime('%d'),\n strftime('%m'), strftime('%y')), ('TO', strftime('%y')), 'persoA',\n obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions') and curseur.execute(\n 'SELECT Count FROM to{0} WHERE ID={1}'.format(strftime('%y'), idObj)\n ).fetchone()['Count'] < 25:\n curseur.execute('DROP TABLE to{0}{1}'.format(strftime('%y'), idObj))\n connexion.commit()\n liste = compteurSQL(curseurGL, 'glob' + str(idObj), id, (0, id, idObj,\n 'TO', 'GL', count), count, (strftime('%d'), strftime('%m'),\n strftime('%y')), ('TO', 'GL'), 'persoA', obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions'):\n if curseurGL.execute('SELECT Count FROM glob WHERE ID={0}'.format(\n idObj)).fetchone()['Count'] < 50:\n curseurGL.execute('DROP TABLE glob{0}'.format(idObj))\n if curseurGL.execute('SELECT Rank FROM glob WHERE ID={0}'.format(idObj)\n ).fetchone()['Rank'] > 400:\n for i in liste:\n curseurGL.execute('DROP TABLE IF EXISTS persoM{0}{1}'.\n format(i['ID'], idObj))\n curseurGL.execute('DROP TABLE IF EXISTS persoA{0}{1}'.\n format(i['ID'], idObj))\n connexionGL.commit()\n if nom not in ('Mentions', 'Mentionne'):\n rapportsSQL(guild, 'objs', idObj, id, count, (0, id, idObj,\n strftime('%d'), strftime('%m'), strftime('%y'), dateID, count,\n nom), strftime('%d'), strftime('%m'), strftime('%y'), nom)\n\n\ndef exeJeuxSQL(id, idObj, state, guild, curseurGuild, count, option, tours):\n dictCount = {'W': 2, 'L': -1}\n dictW = {'W': 1, 'L': 0}\n dictL = {'W': 0, 'L': 1}\n connexionGL, curseurGL = connectSQL(guild, option, 'Jeux', 'GL', '')\n connexion, curseur = connectSQL(guild, option, 'Jeux', strftime('%m'),\n strftime('%y'))\n compteurJeuxSQL(curseur, tableauMois[strftime('%m')] + strftime('%y'),\n id, (0, id, strftime('%m'), strftime('%y'), dictW[state], dictL[\n state], dictCount[state], 0), dictCount[state], (strftime('%d'),\n strftime('%m'), strftime('%y')), (strftime('%m'), strftime('%y')),\n 'persoM', False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseur, tableauMois[strftime('%m')] + strftime(\n '%y') + str(idObj), id, (0, id, idObj, strftime('%m'), strftime\n ('%y'), dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime(\n '%y')), (strftime('%m'), strftime('%y')), 'persoM', True, state,\n 5, curseurGL)\n connexion.commit()\n connexion, curseur = connectSQL(guild, option, 'Jeux', 'TO', strftime('%y')\n )\n compteurJeuxSQL(curseur, 'to' + strftime('%y'), id, (0, id, 'TO',\n strftime('%y'), dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime('%y')),\n ('TO', strftime('%y')), 'persoA', False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseur, 'to' + strftime('%y') + str(idObj), id, (0,\n id, idObj, 'TO', strftime('%y'), dictW[state], dictL[state],\n dictCount[state], 0), dictCount[state], (strftime('%d'),\n strftime('%m'), strftime('%y')), ('TO', strftime('%y')),\n 'persoA', True, state, 5, curseurGL)\n connexion.commit()\n compteurJeuxSQL(curseurGL, 'glob', id, (0, id, 'TO', 'GL', dictW[state],\n dictL[state], dictCount[state], 0), dictCount[state], (strftime(\n '%d'), strftime('%m'), strftime('%y')), ('TO', 'GL'), 'persoA', \n False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseurGL, 'glob' + str(idObj), id, (0, id, idObj,\n 'TO', 'GL', dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime(\n '%y')), ('TO', 'GL'), 'persoA', True, state, 5, curseurGL)\n histoSQLJeux(curseurGL, id, tours, strftime('%d') + '/' + strftime(\n '%m') + '/' + strftime('%y'), idObj, state)\n connexionGL.commit()\n dailySQL(int(strftime('%y') + strftime('%m') + strftime('%d')), (\n strftime('%d'), strftime('%m'), strftime('%y')), option,\n curseurGuild, guild, 'Jeux')\n", "step-2": "<mask token>\n\n\ndef exeClassic(count, id, nom, curseurGuild, guild):\n dateID = int(strftime('%y') + strftime('%m') + strftime('%d'))\n connexionGL, curseurGL = connectSQL(guild.id, nom, 'Stats', 'GL', '')\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', strftime('%m'),\n strftime('%y'))\n compteurSQL(curseur, tableauMois[strftime('%m')] + strftime('%y'), id,\n (0, id, strftime('%m'), strftime('%y'), count, 0), count, (strftime\n ('%d'), strftime('%m'), strftime('%y')), (strftime('%m'), strftime(\n '%y')), 'persoM', False, True, 1, curseurGL)\n connexion.commit()\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', 'TO', strftime(\n '%y'))\n compteurSQL(curseur, 'to' + strftime('%y'), id, (0, id, 'TO', strftime(\n '%y'), count, 0), count, (strftime('%d'), strftime('%m'), strftime(\n '%y')), ('TO', strftime('%y')), 'persoA', False, True, 1, curseurGL)\n connexion.commit()\n liste = compteurSQL(curseurGL, 'glob', id, (0, id, 'TO', 'GL', count, 0\n ), count, (strftime('%d'), strftime('%m'), strftime('%y')), ('TO',\n 'GL'), 'persoA', False, True, 1, curseurGL)\n if nom in ('Messages', 'Voice'):\n compteurSQL(curseurGL, 'dayRank', int(strftime('%y') + strftime(\n '%m') + strftime('%d')), (0, int(strftime('%y') + strftime('%m'\n ) + strftime('%d')), strftime('%d'), strftime('%m'), strftime(\n '%y'), count), count, None, None, None, None, False, 3, curseurGL)\n if nom in ('Emotes', 'Reactions'):\n countGL = curseurGL.execute('SELECT Count FROM glob WHERE ID={0}'.\n format(id)).fetchone()['Count']\n for i in liste:\n if i['Rank'] > 400:\n curseurGL.execute('DROP TABLE IF EXISTS persoM{0}'.format(i\n ['ID']))\n curseurGL.execute('DROP TABLE IF EXISTS persoA{0}'.format(i\n ['ID']))\n connexionGL.commit()\n dailySQL(dateID, (strftime('%d'), strftime('%m'), strftime('%y')), nom,\n curseurGuild, guild.id, 'Stats')\n if nom not in ('Mentions', 'Mentionne'):\n rapportsSQL(guild, 'ranks', id, None, count, (0, id, strftime('%d'),\n strftime('%m'), strftime('%y'), dateID, count, nom), strftime(\n '%d'), strftime('%m'), strftime('%y'), nom)\n\n\ndef exeObj(count, idObj, id, obj, guild, nom):\n dateID = int(strftime('%y') + strftime('%m') + strftime('%d'))\n connexionGL, curseurGL = connectSQL(guild.id, nom, 'Stats', 'GL', '')\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', strftime('%m'),\n strftime('%y'))\n compteurSQL(curseur, tableauMois[strftime('%m')] + strftime('%y') + str\n (idObj), id, (0, id, idObj, strftime('%m'), strftime('%y'), count),\n count, (strftime('%d'), strftime('%m'), strftime('%y')), (strftime(\n '%m'), strftime('%y')), 'persoM', obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions') and curseur.execute(\n 'SELECT Count FROM {0}{1} WHERE ID={2}'.format(tableauMois[strftime\n ('%m')], strftime('%y'), idObj)).fetchone()['Count'] < 10:\n curseur.execute('DROP TABLE {0}{1}{2}'.format(tableauMois[strftime(\n '%m')], strftime('%y'), idObj))\n connexion.commit()\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', 'TO', strftime(\n '%y'))\n compteurSQL(curseur, 'to' + strftime('%y') + str(idObj), id, (0, id,\n idObj, 'TO', strftime('%y'), count), count, (strftime('%d'),\n strftime('%m'), strftime('%y')), ('TO', strftime('%y')), 'persoA',\n obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions') and curseur.execute(\n 'SELECT Count FROM to{0} WHERE ID={1}'.format(strftime('%y'), idObj)\n ).fetchone()['Count'] < 25:\n curseur.execute('DROP TABLE to{0}{1}'.format(strftime('%y'), idObj))\n connexion.commit()\n liste = compteurSQL(curseurGL, 'glob' + str(idObj), id, (0, id, idObj,\n 'TO', 'GL', count), count, (strftime('%d'), strftime('%m'),\n strftime('%y')), ('TO', 'GL'), 'persoA', obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions'):\n if curseurGL.execute('SELECT Count FROM glob WHERE ID={0}'.format(\n idObj)).fetchone()['Count'] < 50:\n curseurGL.execute('DROP TABLE glob{0}'.format(idObj))\n if curseurGL.execute('SELECT Rank FROM glob WHERE ID={0}'.format(idObj)\n ).fetchone()['Rank'] > 400:\n for i in liste:\n curseurGL.execute('DROP TABLE IF EXISTS persoM{0}{1}'.\n format(i['ID'], idObj))\n curseurGL.execute('DROP TABLE IF EXISTS persoA{0}{1}'.\n format(i['ID'], idObj))\n connexionGL.commit()\n if nom not in ('Mentions', 'Mentionne'):\n rapportsSQL(guild, 'objs', idObj, id, count, (0, id, idObj,\n strftime('%d'), strftime('%m'), strftime('%y'), dateID, count,\n nom), strftime('%d'), strftime('%m'), strftime('%y'), nom)\n\n\ndef exeJeuxSQL(id, idObj, state, guild, curseurGuild, count, option, tours):\n dictCount = {'W': 2, 'L': -1}\n dictW = {'W': 1, 'L': 0}\n dictL = {'W': 0, 'L': 1}\n connexionGL, curseurGL = connectSQL(guild, option, 'Jeux', 'GL', '')\n connexion, curseur = connectSQL(guild, option, 'Jeux', strftime('%m'),\n strftime('%y'))\n compteurJeuxSQL(curseur, tableauMois[strftime('%m')] + strftime('%y'),\n id, (0, id, strftime('%m'), strftime('%y'), dictW[state], dictL[\n state], dictCount[state], 0), dictCount[state], (strftime('%d'),\n strftime('%m'), strftime('%y')), (strftime('%m'), strftime('%y')),\n 'persoM', False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseur, tableauMois[strftime('%m')] + strftime(\n '%y') + str(idObj), id, (0, id, idObj, strftime('%m'), strftime\n ('%y'), dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime(\n '%y')), (strftime('%m'), strftime('%y')), 'persoM', True, state,\n 5, curseurGL)\n connexion.commit()\n connexion, curseur = connectSQL(guild, option, 'Jeux', 'TO', strftime('%y')\n )\n compteurJeuxSQL(curseur, 'to' + strftime('%y'), id, (0, id, 'TO',\n strftime('%y'), dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime('%y')),\n ('TO', strftime('%y')), 'persoA', False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseur, 'to' + strftime('%y') + str(idObj), id, (0,\n id, idObj, 'TO', strftime('%y'), dictW[state], dictL[state],\n dictCount[state], 0), dictCount[state], (strftime('%d'),\n strftime('%m'), strftime('%y')), ('TO', strftime('%y')),\n 'persoA', True, state, 5, curseurGL)\n connexion.commit()\n compteurJeuxSQL(curseurGL, 'glob', id, (0, id, 'TO', 'GL', dictW[state],\n dictL[state], dictCount[state], 0), dictCount[state], (strftime(\n '%d'), strftime('%m'), strftime('%y')), ('TO', 'GL'), 'persoA', \n False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseurGL, 'glob' + str(idObj), id, (0, id, idObj,\n 'TO', 'GL', dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime(\n '%y')), ('TO', 'GL'), 'persoA', True, state, 5, curseurGL)\n histoSQLJeux(curseurGL, id, tours, strftime('%d') + '/' + strftime(\n '%m') + '/' + strftime('%y'), idObj, state)\n connexionGL.commit()\n dailySQL(int(strftime('%y') + strftime('%m') + strftime('%d')), (\n strftime('%d'), strftime('%m'), strftime('%y')), option,\n curseurGuild, guild, 'Jeux')\n", "step-3": "<mask token>\ntableauMois = {'01': 'janvier', '02': 'février', '03': 'mars', '04':\n 'avril', '05': 'mai', '06': 'juin', '07': 'juillet', '08': 'aout', '09':\n 'septembre', '10': 'octobre', '11': 'novembre', '12': 'décembre', 'TO':\n 'TOTAL'}\n\n\ndef exeClassic(count, id, nom, curseurGuild, guild):\n dateID = int(strftime('%y') + strftime('%m') + strftime('%d'))\n connexionGL, curseurGL = connectSQL(guild.id, nom, 'Stats', 'GL', '')\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', strftime('%m'),\n strftime('%y'))\n compteurSQL(curseur, tableauMois[strftime('%m')] + strftime('%y'), id,\n (0, id, strftime('%m'), strftime('%y'), count, 0), count, (strftime\n ('%d'), strftime('%m'), strftime('%y')), (strftime('%m'), strftime(\n '%y')), 'persoM', False, True, 1, curseurGL)\n connexion.commit()\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', 'TO', strftime(\n '%y'))\n compteurSQL(curseur, 'to' + strftime('%y'), id, (0, id, 'TO', strftime(\n '%y'), count, 0), count, (strftime('%d'), strftime('%m'), strftime(\n '%y')), ('TO', strftime('%y')), 'persoA', False, True, 1, curseurGL)\n connexion.commit()\n liste = compteurSQL(curseurGL, 'glob', id, (0, id, 'TO', 'GL', count, 0\n ), count, (strftime('%d'), strftime('%m'), strftime('%y')), ('TO',\n 'GL'), 'persoA', False, True, 1, curseurGL)\n if nom in ('Messages', 'Voice'):\n compteurSQL(curseurGL, 'dayRank', int(strftime('%y') + strftime(\n '%m') + strftime('%d')), (0, int(strftime('%y') + strftime('%m'\n ) + strftime('%d')), strftime('%d'), strftime('%m'), strftime(\n '%y'), count), count, None, None, None, None, False, 3, curseurGL)\n if nom in ('Emotes', 'Reactions'):\n countGL = curseurGL.execute('SELECT Count FROM glob WHERE ID={0}'.\n format(id)).fetchone()['Count']\n for i in liste:\n if i['Rank'] > 400:\n curseurGL.execute('DROP TABLE IF EXISTS persoM{0}'.format(i\n ['ID']))\n curseurGL.execute('DROP TABLE IF EXISTS persoA{0}'.format(i\n ['ID']))\n connexionGL.commit()\n dailySQL(dateID, (strftime('%d'), strftime('%m'), strftime('%y')), nom,\n curseurGuild, guild.id, 'Stats')\n if nom not in ('Mentions', 'Mentionne'):\n rapportsSQL(guild, 'ranks', id, None, count, (0, id, strftime('%d'),\n strftime('%m'), strftime('%y'), dateID, count, nom), strftime(\n '%d'), strftime('%m'), strftime('%y'), nom)\n\n\ndef exeObj(count, idObj, id, obj, guild, nom):\n dateID = int(strftime('%y') + strftime('%m') + strftime('%d'))\n connexionGL, curseurGL = connectSQL(guild.id, nom, 'Stats', 'GL', '')\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', strftime('%m'),\n strftime('%y'))\n compteurSQL(curseur, tableauMois[strftime('%m')] + strftime('%y') + str\n (idObj), id, (0, id, idObj, strftime('%m'), strftime('%y'), count),\n count, (strftime('%d'), strftime('%m'), strftime('%y')), (strftime(\n '%m'), strftime('%y')), 'persoM', obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions') and curseur.execute(\n 'SELECT Count FROM {0}{1} WHERE ID={2}'.format(tableauMois[strftime\n ('%m')], strftime('%y'), idObj)).fetchone()['Count'] < 10:\n curseur.execute('DROP TABLE {0}{1}{2}'.format(tableauMois[strftime(\n '%m')], strftime('%y'), idObj))\n connexion.commit()\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', 'TO', strftime(\n '%y'))\n compteurSQL(curseur, 'to' + strftime('%y') + str(idObj), id, (0, id,\n idObj, 'TO', strftime('%y'), count), count, (strftime('%d'),\n strftime('%m'), strftime('%y')), ('TO', strftime('%y')), 'persoA',\n obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions') and curseur.execute(\n 'SELECT Count FROM to{0} WHERE ID={1}'.format(strftime('%y'), idObj)\n ).fetchone()['Count'] < 25:\n curseur.execute('DROP TABLE to{0}{1}'.format(strftime('%y'), idObj))\n connexion.commit()\n liste = compteurSQL(curseurGL, 'glob' + str(idObj), id, (0, id, idObj,\n 'TO', 'GL', count), count, (strftime('%d'), strftime('%m'),\n strftime('%y')), ('TO', 'GL'), 'persoA', obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions'):\n if curseurGL.execute('SELECT Count FROM glob WHERE ID={0}'.format(\n idObj)).fetchone()['Count'] < 50:\n curseurGL.execute('DROP TABLE glob{0}'.format(idObj))\n if curseurGL.execute('SELECT Rank FROM glob WHERE ID={0}'.format(idObj)\n ).fetchone()['Rank'] > 400:\n for i in liste:\n curseurGL.execute('DROP TABLE IF EXISTS persoM{0}{1}'.\n format(i['ID'], idObj))\n curseurGL.execute('DROP TABLE IF EXISTS persoA{0}{1}'.\n format(i['ID'], idObj))\n connexionGL.commit()\n if nom not in ('Mentions', 'Mentionne'):\n rapportsSQL(guild, 'objs', idObj, id, count, (0, id, idObj,\n strftime('%d'), strftime('%m'), strftime('%y'), dateID, count,\n nom), strftime('%d'), strftime('%m'), strftime('%y'), nom)\n\n\ndef exeJeuxSQL(id, idObj, state, guild, curseurGuild, count, option, tours):\n dictCount = {'W': 2, 'L': -1}\n dictW = {'W': 1, 'L': 0}\n dictL = {'W': 0, 'L': 1}\n connexionGL, curseurGL = connectSQL(guild, option, 'Jeux', 'GL', '')\n connexion, curseur = connectSQL(guild, option, 'Jeux', strftime('%m'),\n strftime('%y'))\n compteurJeuxSQL(curseur, tableauMois[strftime('%m')] + strftime('%y'),\n id, (0, id, strftime('%m'), strftime('%y'), dictW[state], dictL[\n state], dictCount[state], 0), dictCount[state], (strftime('%d'),\n strftime('%m'), strftime('%y')), (strftime('%m'), strftime('%y')),\n 'persoM', False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseur, tableauMois[strftime('%m')] + strftime(\n '%y') + str(idObj), id, (0, id, idObj, strftime('%m'), strftime\n ('%y'), dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime(\n '%y')), (strftime('%m'), strftime('%y')), 'persoM', True, state,\n 5, curseurGL)\n connexion.commit()\n connexion, curseur = connectSQL(guild, option, 'Jeux', 'TO', strftime('%y')\n )\n compteurJeuxSQL(curseur, 'to' + strftime('%y'), id, (0, id, 'TO',\n strftime('%y'), dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime('%y')),\n ('TO', strftime('%y')), 'persoA', False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseur, 'to' + strftime('%y') + str(idObj), id, (0,\n id, idObj, 'TO', strftime('%y'), dictW[state], dictL[state],\n dictCount[state], 0), dictCount[state], (strftime('%d'),\n strftime('%m'), strftime('%y')), ('TO', strftime('%y')),\n 'persoA', True, state, 5, curseurGL)\n connexion.commit()\n compteurJeuxSQL(curseurGL, 'glob', id, (0, id, 'TO', 'GL', dictW[state],\n dictL[state], dictCount[state], 0), dictCount[state], (strftime(\n '%d'), strftime('%m'), strftime('%y')), ('TO', 'GL'), 'persoA', \n False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseurGL, 'glob' + str(idObj), id, (0, id, idObj,\n 'TO', 'GL', dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime(\n '%y')), ('TO', 'GL'), 'persoA', True, state, 5, curseurGL)\n histoSQLJeux(curseurGL, id, tours, strftime('%d') + '/' + strftime(\n '%m') + '/' + strftime('%y'), idObj, state)\n connexionGL.commit()\n dailySQL(int(strftime('%y') + strftime('%m') + strftime('%d')), (\n strftime('%d'), strftime('%m'), strftime('%y')), option,\n curseurGuild, guild, 'Jeux')\n", "step-4": "from time import strftime\nfrom Stats.SQL.Compteur import compteurSQL\nfrom Stats.SQL.Rapports import rapportsSQL\nfrom Stats.SQL.Daily import dailySQL\nfrom Stats.SQL.CompteurP4 import compteurJeuxSQL\nfrom Stats.SQL.Historique import histoSQL, histoSQLJeux\nfrom Stats.SQL.ConnectSQL import connectSQL\ntableauMois = {'01': 'janvier', '02': 'février', '03': 'mars', '04':\n 'avril', '05': 'mai', '06': 'juin', '07': 'juillet', '08': 'aout', '09':\n 'septembre', '10': 'octobre', '11': 'novembre', '12': 'décembre', 'TO':\n 'TOTAL'}\n\n\ndef exeClassic(count, id, nom, curseurGuild, guild):\n dateID = int(strftime('%y') + strftime('%m') + strftime('%d'))\n connexionGL, curseurGL = connectSQL(guild.id, nom, 'Stats', 'GL', '')\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', strftime('%m'),\n strftime('%y'))\n compteurSQL(curseur, tableauMois[strftime('%m')] + strftime('%y'), id,\n (0, id, strftime('%m'), strftime('%y'), count, 0), count, (strftime\n ('%d'), strftime('%m'), strftime('%y')), (strftime('%m'), strftime(\n '%y')), 'persoM', False, True, 1, curseurGL)\n connexion.commit()\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', 'TO', strftime(\n '%y'))\n compteurSQL(curseur, 'to' + strftime('%y'), id, (0, id, 'TO', strftime(\n '%y'), count, 0), count, (strftime('%d'), strftime('%m'), strftime(\n '%y')), ('TO', strftime('%y')), 'persoA', False, True, 1, curseurGL)\n connexion.commit()\n liste = compteurSQL(curseurGL, 'glob', id, (0, id, 'TO', 'GL', count, 0\n ), count, (strftime('%d'), strftime('%m'), strftime('%y')), ('TO',\n 'GL'), 'persoA', False, True, 1, curseurGL)\n if nom in ('Messages', 'Voice'):\n compteurSQL(curseurGL, 'dayRank', int(strftime('%y') + strftime(\n '%m') + strftime('%d')), (0, int(strftime('%y') + strftime('%m'\n ) + strftime('%d')), strftime('%d'), strftime('%m'), strftime(\n '%y'), count), count, None, None, None, None, False, 3, curseurGL)\n if nom in ('Emotes', 'Reactions'):\n countGL = curseurGL.execute('SELECT Count FROM glob WHERE ID={0}'.\n format(id)).fetchone()['Count']\n for i in liste:\n if i['Rank'] > 400:\n curseurGL.execute('DROP TABLE IF EXISTS persoM{0}'.format(i\n ['ID']))\n curseurGL.execute('DROP TABLE IF EXISTS persoA{0}'.format(i\n ['ID']))\n connexionGL.commit()\n dailySQL(dateID, (strftime('%d'), strftime('%m'), strftime('%y')), nom,\n curseurGuild, guild.id, 'Stats')\n if nom not in ('Mentions', 'Mentionne'):\n rapportsSQL(guild, 'ranks', id, None, count, (0, id, strftime('%d'),\n strftime('%m'), strftime('%y'), dateID, count, nom), strftime(\n '%d'), strftime('%m'), strftime('%y'), nom)\n\n\ndef exeObj(count, idObj, id, obj, guild, nom):\n dateID = int(strftime('%y') + strftime('%m') + strftime('%d'))\n connexionGL, curseurGL = connectSQL(guild.id, nom, 'Stats', 'GL', '')\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', strftime('%m'),\n strftime('%y'))\n compteurSQL(curseur, tableauMois[strftime('%m')] + strftime('%y') + str\n (idObj), id, (0, id, idObj, strftime('%m'), strftime('%y'), count),\n count, (strftime('%d'), strftime('%m'), strftime('%y')), (strftime(\n '%m'), strftime('%y')), 'persoM', obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions') and curseur.execute(\n 'SELECT Count FROM {0}{1} WHERE ID={2}'.format(tableauMois[strftime\n ('%m')], strftime('%y'), idObj)).fetchone()['Count'] < 10:\n curseur.execute('DROP TABLE {0}{1}{2}'.format(tableauMois[strftime(\n '%m')], strftime('%y'), idObj))\n connexion.commit()\n connexion, curseur = connectSQL(guild.id, nom, 'Stats', 'TO', strftime(\n '%y'))\n compteurSQL(curseur, 'to' + strftime('%y') + str(idObj), id, (0, id,\n idObj, 'TO', strftime('%y'), count), count, (strftime('%d'),\n strftime('%m'), strftime('%y')), ('TO', strftime('%y')), 'persoA',\n obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions') and curseur.execute(\n 'SELECT Count FROM to{0} WHERE ID={1}'.format(strftime('%y'), idObj)\n ).fetchone()['Count'] < 25:\n curseur.execute('DROP TABLE to{0}{1}'.format(strftime('%y'), idObj))\n connexion.commit()\n liste = compteurSQL(curseurGL, 'glob' + str(idObj), id, (0, id, idObj,\n 'TO', 'GL', count), count, (strftime('%d'), strftime('%m'),\n strftime('%y')), ('TO', 'GL'), 'persoA', obj, False, 2, curseurGL)\n if nom in ('Emotes', 'Reactions'):\n if curseurGL.execute('SELECT Count FROM glob WHERE ID={0}'.format(\n idObj)).fetchone()['Count'] < 50:\n curseurGL.execute('DROP TABLE glob{0}'.format(idObj))\n if curseurGL.execute('SELECT Rank FROM glob WHERE ID={0}'.format(idObj)\n ).fetchone()['Rank'] > 400:\n for i in liste:\n curseurGL.execute('DROP TABLE IF EXISTS persoM{0}{1}'.\n format(i['ID'], idObj))\n curseurGL.execute('DROP TABLE IF EXISTS persoA{0}{1}'.\n format(i['ID'], idObj))\n connexionGL.commit()\n if nom not in ('Mentions', 'Mentionne'):\n rapportsSQL(guild, 'objs', idObj, id, count, (0, id, idObj,\n strftime('%d'), strftime('%m'), strftime('%y'), dateID, count,\n nom), strftime('%d'), strftime('%m'), strftime('%y'), nom)\n\n\ndef exeJeuxSQL(id, idObj, state, guild, curseurGuild, count, option, tours):\n dictCount = {'W': 2, 'L': -1}\n dictW = {'W': 1, 'L': 0}\n dictL = {'W': 0, 'L': 1}\n connexionGL, curseurGL = connectSQL(guild, option, 'Jeux', 'GL', '')\n connexion, curseur = connectSQL(guild, option, 'Jeux', strftime('%m'),\n strftime('%y'))\n compteurJeuxSQL(curseur, tableauMois[strftime('%m')] + strftime('%y'),\n id, (0, id, strftime('%m'), strftime('%y'), dictW[state], dictL[\n state], dictCount[state], 0), dictCount[state], (strftime('%d'),\n strftime('%m'), strftime('%y')), (strftime('%m'), strftime('%y')),\n 'persoM', False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseur, tableauMois[strftime('%m')] + strftime(\n '%y') + str(idObj), id, (0, id, idObj, strftime('%m'), strftime\n ('%y'), dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime(\n '%y')), (strftime('%m'), strftime('%y')), 'persoM', True, state,\n 5, curseurGL)\n connexion.commit()\n connexion, curseur = connectSQL(guild, option, 'Jeux', 'TO', strftime('%y')\n )\n compteurJeuxSQL(curseur, 'to' + strftime('%y'), id, (0, id, 'TO',\n strftime('%y'), dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime('%y')),\n ('TO', strftime('%y')), 'persoA', False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseur, 'to' + strftime('%y') + str(idObj), id, (0,\n id, idObj, 'TO', strftime('%y'), dictW[state], dictL[state],\n dictCount[state], 0), dictCount[state], (strftime('%d'),\n strftime('%m'), strftime('%y')), ('TO', strftime('%y')),\n 'persoA', True, state, 5, curseurGL)\n connexion.commit()\n compteurJeuxSQL(curseurGL, 'glob', id, (0, id, 'TO', 'GL', dictW[state],\n dictL[state], dictCount[state], 0), dictCount[state], (strftime(\n '%d'), strftime('%m'), strftime('%y')), ('TO', 'GL'), 'persoA', \n False, state, 4, curseurGL)\n if idObj != None:\n compteurJeuxSQL(curseurGL, 'glob' + str(idObj), id, (0, id, idObj,\n 'TO', 'GL', dictW[state], dictL[state], dictCount[state], 0),\n dictCount[state], (strftime('%d'), strftime('%m'), strftime(\n '%y')), ('TO', 'GL'), 'persoA', True, state, 5, curseurGL)\n histoSQLJeux(curseurGL, id, tours, strftime('%d') + '/' + strftime(\n '%m') + '/' + strftime('%y'), idObj, state)\n connexionGL.commit()\n dailySQL(int(strftime('%y') + strftime('%m') + strftime('%d')), (\n strftime('%d'), strftime('%m'), strftime('%y')), option,\n curseurGuild, guild, 'Jeux')\n", "step-5": "from time import strftime\nfrom Stats.SQL.Compteur import compteurSQL\nfrom Stats.SQL.Rapports import rapportsSQL\nfrom Stats.SQL.Daily import dailySQL\nfrom Stats.SQL.CompteurP4 import compteurJeuxSQL\nfrom Stats.SQL.Historique import histoSQL, histoSQLJeux\nfrom Stats.SQL.ConnectSQL import connectSQL\n\ntableauMois={\"01\":\"janvier\",\"02\":\"février\",\"03\":\"mars\",\"04\":\"avril\",\"05\":\"mai\",\"06\":\"juin\",\"07\":\"juillet\",\"08\":\"aout\",\"09\":\"septembre\",\"10\":\"octobre\",\"11\":\"novembre\",\"12\":\"décembre\",\"TO\":\"TOTAL\"}\n\ndef exeClassic(count,id,nom,curseurGuild,guild):\n dateID=int(strftime(\"%y\")+strftime(\"%m\")+strftime(\"%d\"))\n connexionGL,curseurGL=connectSQL(guild.id,nom,\"Stats\",\"GL\",\"\")\n\n connexion,curseur=connectSQL(guild.id,nom,\"Stats\",strftime(\"%m\"),strftime(\"%y\"))\n compteurSQL(curseur,tableauMois[strftime(\"%m\")]+strftime(\"%y\"),id,(0,id,strftime(\"%m\"),strftime(\"%y\"),count,0),count,(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(strftime(\"%m\"),strftime(\"%y\")),\"persoM\",False,True,1,curseurGL)\n connexion.commit()\n\n connexion,curseur=connectSQL(guild.id,nom,\"Stats\",\"TO\",strftime(\"%y\"))\n compteurSQL(curseur,\"to\"+strftime(\"%y\"),id,(0,id,\"TO\",strftime(\"%y\"),count,0),count,(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(\"TO\",strftime(\"%y\")),\"persoA\",False,True,1,curseurGL)\n connexion.commit()\n\n liste=compteurSQL(curseurGL,\"glob\",id,(0,id,\"TO\",\"GL\",count,0),count,(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(\"TO\",\"GL\"),\"persoA\",False,True,1,curseurGL)\n if nom in (\"Messages\",\"Voice\"):\n compteurSQL(curseurGL,\"dayRank\",int(strftime(\"%y\")+strftime(\"%m\")+strftime(\"%d\")),(0,int(strftime(\"%y\")+strftime(\"%m\")+strftime(\"%d\")),strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\"),count),count,None,None,None,None,False,3,curseurGL)\n \n if nom in (\"Emotes\",\"Reactions\"):\n countGL=curseurGL.execute(\"SELECT Count FROM glob WHERE ID={0}\".format(id)).fetchone()[\"Count\"]\n for i in liste:\n if i[\"Rank\"]>400:\n curseurGL.execute(\"DROP TABLE IF EXISTS persoM{0}\".format(i[\"ID\"]))\n curseurGL.execute(\"DROP TABLE IF EXISTS persoA{0}\".format(i[\"ID\"]))\n connexionGL.commit()\n\n dailySQL(dateID,(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),nom,curseurGuild,guild.id,\"Stats\")\n if nom not in (\"Mentions\",\"Mentionne\"):\n rapportsSQL(guild,\"ranks\",id,None,count,(0,id,strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\"),dateID,count,nom),strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\"),nom)\n\ndef exeObj(count,idObj,id,obj,guild,nom):\n dateID=int(strftime(\"%y\")+strftime(\"%m\")+strftime(\"%d\"))\n connexionGL,curseurGL=connectSQL(guild.id,nom,\"Stats\",\"GL\",\"\")\n\n connexion,curseur=connectSQL(guild.id,nom,\"Stats\",strftime(\"%m\"),strftime(\"%y\"))\n compteurSQL(curseur,tableauMois[strftime(\"%m\")]+strftime(\"%y\")+str(idObj),id,(0,id,idObj,strftime(\"%m\"),strftime(\"%y\"),count),count,(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(strftime(\"%m\"),strftime(\"%y\")),\"persoM\",obj,False,2,curseurGL)\n if nom in (\"Emotes\",\"Reactions\") and curseur.execute(\"SELECT Count FROM {0}{1} WHERE ID={2}\".format(tableauMois[strftime(\"%m\")],strftime(\"%y\"),idObj)).fetchone()[\"Count\"]<10:\n curseur.execute(\"DROP TABLE {0}{1}{2}\".format(tableauMois[strftime(\"%m\")],strftime(\"%y\"),idObj))\n connexion.commit()\n\n connexion,curseur=connectSQL(guild.id,nom,\"Stats\",\"TO\",strftime(\"%y\"))\n compteurSQL(curseur,\"to\"+strftime(\"%y\")+str(idObj),id,(0,id,idObj,\"TO\",strftime(\"%y\"),count),count,(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(\"TO\",strftime(\"%y\")),\"persoA\",obj,False,2,curseurGL)\n if nom in (\"Emotes\",\"Reactions\") and curseur.execute(\"SELECT Count FROM to{0} WHERE ID={1}\".format(strftime(\"%y\"),idObj)).fetchone()[\"Count\"]<25:\n curseur.execute(\"DROP TABLE to{0}{1}\".format(strftime(\"%y\"),idObj))\n connexion.commit()\n\n liste=compteurSQL(curseurGL,\"glob\"+str(idObj),id,(0,id,idObj,\"TO\",\"GL\",count),count,(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(\"TO\",\"GL\"),\"persoA\",obj,False,2,curseurGL)\n if nom in (\"Emotes\",\"Reactions\"):\n if curseurGL.execute(\"SELECT Count FROM glob WHERE ID={0}\".format(idObj)).fetchone()[\"Count\"]<50:\n curseurGL.execute(\"DROP TABLE glob{0}\".format(idObj))\n if curseurGL.execute(\"SELECT Rank FROM glob WHERE ID={0}\".format(idObj)).fetchone()[\"Rank\"]>400:\n for i in liste:\n curseurGL.execute(\"DROP TABLE IF EXISTS persoM{0}{1}\".format(i[\"ID\"],idObj))\n curseurGL.execute(\"DROP TABLE IF EXISTS persoA{0}{1}\".format(i[\"ID\"],idObj))\n connexionGL.commit()\n\n if nom not in (\"Mentions\",\"Mentionne\"):\n rapportsSQL(guild,\"objs\",idObj,id,count,(0,id,idObj,strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\"),dateID,count,nom),strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\"),nom)\n\ndef exeJeuxSQL(id,idObj,state,guild,curseurGuild,count,option,tours):\n dictCount={\"W\":2,\"L\":-1}\n dictW={\"W\":1,\"L\":0}\n dictL={\"W\":0,\"L\":1}\n connexionGL,curseurGL=connectSQL(guild,option,\"Jeux\",\"GL\",\"\")\n\n connexion,curseur=connectSQL(guild,option,\"Jeux\",strftime(\"%m\"),strftime(\"%y\"))\n compteurJeuxSQL(curseur,tableauMois[strftime(\"%m\")]+strftime(\"%y\"),id,(0,id,strftime(\"%m\"),strftime(\"%y\"),dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(strftime(\"%m\"),strftime(\"%y\")),\"persoM\",False,state,4,curseurGL)\n if idObj!=None:\n compteurJeuxSQL(curseur,tableauMois[strftime(\"%m\")]+strftime(\"%y\")+str(idObj),id,(0,id,idObj,strftime(\"%m\"),strftime(\"%y\"),dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(strftime(\"%m\"),strftime(\"%y\")),\"persoM\",True,state,5,curseurGL)\n connexion.commit()\n\n connexion,curseur=connectSQL(guild,option,\"Jeux\",\"TO\",strftime(\"%y\"))\n compteurJeuxSQL(curseur,\"to\"+strftime(\"%y\"),id,(0,id,\"TO\",strftime(\"%y\"),dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(\"TO\",strftime(\"%y\")),\"persoA\",False,state,4,curseurGL)\n if idObj!=None:\n compteurJeuxSQL(curseur,\"to\"+strftime(\"%y\")+str(idObj),id,(0,id,idObj,\"TO\",strftime(\"%y\"),dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(\"TO\",strftime(\"%y\")),\"persoA\",True,state,5,curseurGL)\n connexion.commit()\n\n compteurJeuxSQL(curseurGL,\"glob\",id,(0,id,\"TO\",\"GL\",dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(\"TO\",\"GL\"),\"persoA\",False,state,4,curseurGL)\n if idObj!=None:\n compteurJeuxSQL(curseurGL,\"glob\"+str(idObj),id,(0,id,idObj,\"TO\",\"GL\",dictW[state],dictL[state],dictCount[state],0),dictCount[state],(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),(\"TO\",\"GL\"),\"persoA\",True,state,5,curseurGL)\n histoSQLJeux(curseurGL,id,tours,strftime(\"%d\")+\"/\"+strftime(\"%m\")+\"/\"+strftime(\"%y\"),idObj,state)\n connexionGL.commit()\n\n dailySQL(int(strftime(\"%y\")+strftime(\"%m\")+strftime(\"%d\")),(strftime(\"%d\"),strftime(\"%m\"),strftime(\"%y\")),option,curseurGuild,guild,\"Jeux\")", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import sys import time import math from neopixel import * count = int(sys.argv[1]) percent = int(sys.argv[2]) # LED strip configuration: LED_COUNT = count # Number of LED pixels. LED_PIN = 18 # GPIO pin connected to the pixels (must support PWM!). LED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz) LED_DMA = 5 # DMA channel to use for generating signal (try 5) LED_BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest LED_INVERT = False # True to invert the signal (when using NPN transistor level shift) LED_CHANNEL = 0 LED_STRIP = ws.WS2811_STRIP_GRB #LED_STRIP = ws.SK6812W_STRIP lightUp = math.floor(percent/count) # Intialize the library (must be called once before other functions). def setPixel(strip): for i in range(count): if(i<lightUp): strip.setPixelColor(i, Color(0, 255, 0)) strip.show() else: strip.setPixelColor(i, Color(255, 0, 0)) strip.show() if __name__ == '__main__': strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, LED_BRIGHTNESS, LED_CHANNEL, LED_STRIP) strip.begin() setPixel(strip)
normal
{ "blob_id": "5ff7a3843314dfd3914c5e96164385d61fbe7fa5", "index": 684, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef setPixel(strip):\n for i in range(count):\n if i < lightUp:\n strip.setPixelColor(i, Color(0, 255, 0))\n strip.show()\n else:\n strip.setPixelColor(i, Color(255, 0, 0))\n strip.show()\n\n\nif __name__ == '__main__':\n strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA,\n LED_INVERT, LED_BRIGHTNESS, LED_CHANNEL, LED_STRIP)\n strip.begin()\n setPixel(strip)\n", "step-3": "<mask token>\ncount = int(sys.argv[1])\npercent = int(sys.argv[2])\nLED_COUNT = count\nLED_PIN = 18\nLED_FREQ_HZ = 800000\nLED_DMA = 5\nLED_BRIGHTNESS = 255\nLED_INVERT = False\nLED_CHANNEL = 0\nLED_STRIP = ws.WS2811_STRIP_GRB\nlightUp = math.floor(percent / count)\n\n\ndef setPixel(strip):\n for i in range(count):\n if i < lightUp:\n strip.setPixelColor(i, Color(0, 255, 0))\n strip.show()\n else:\n strip.setPixelColor(i, Color(255, 0, 0))\n strip.show()\n\n\nif __name__ == '__main__':\n strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA,\n LED_INVERT, LED_BRIGHTNESS, LED_CHANNEL, LED_STRIP)\n strip.begin()\n setPixel(strip)\n", "step-4": "import sys\nimport time\nimport math\nfrom neopixel import *\ncount = int(sys.argv[1])\npercent = int(sys.argv[2])\nLED_COUNT = count\nLED_PIN = 18\nLED_FREQ_HZ = 800000\nLED_DMA = 5\nLED_BRIGHTNESS = 255\nLED_INVERT = False\nLED_CHANNEL = 0\nLED_STRIP = ws.WS2811_STRIP_GRB\nlightUp = math.floor(percent / count)\n\n\ndef setPixel(strip):\n for i in range(count):\n if i < lightUp:\n strip.setPixelColor(i, Color(0, 255, 0))\n strip.show()\n else:\n strip.setPixelColor(i, Color(255, 0, 0))\n strip.show()\n\n\nif __name__ == '__main__':\n strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA,\n LED_INVERT, LED_BRIGHTNESS, LED_CHANNEL, LED_STRIP)\n strip.begin()\n setPixel(strip)\n", "step-5": "import sys\nimport time\nimport math\nfrom neopixel import *\ncount = int(sys.argv[1])\npercent = int(sys.argv[2])\n# LED strip configuration:\nLED_COUNT = count # Number of LED pixels.\nLED_PIN = 18 # GPIO pin connected to the pixels (must support PWM!).\nLED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz)\nLED_DMA = 5 # DMA channel to use for generating signal (try 5)\nLED_BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest\nLED_INVERT = False # True to invert the signal (when using NPN transistor level shift)\nLED_CHANNEL = 0\nLED_STRIP = ws.WS2811_STRIP_GRB\t\n#LED_STRIP = ws.SK6812W_STRIP\nlightUp = math.floor(percent/count)\n# Intialize the library (must be called once before other functions).\ndef setPixel(strip):\n\tfor i in range(count):\n\t\tif(i<lightUp):\n\t\t\tstrip.setPixelColor(i, Color(0, 255, 0))\n\t\t\tstrip.show()\n\t\telse:\n\t\t\tstrip.setPixelColor(i, Color(255, 0, 0))\n\t\t\tstrip.show()\nif __name__ == '__main__':\n\tstrip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, LED_BRIGHTNESS, LED_CHANNEL, LED_STRIP)\t\t\n\tstrip.begin()\n\tsetPixel(strip)\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
# -*- coding: utf-8 -*- from .log_config import LogBase import os __all__ = ['MyLog'] class MyLog(LogBase): """ 功能: 将日志分日志等级记录,并自动压缩2019-11-11.info.log.gz 参数: :param dir_path: 日志记录的路径,默认是当前路径下的log文件夹 :param logger_name: logger对象的名字 :param info_name: 保存info等级的文件名字 :param error_name: :param warning_name: :param debug_name: :param interval: 压缩日志的频率,默认是7天 :param detail: bool值,记录日志是否为详细记录 :param debug: 是否记录debug,默认不记录 :param info: 是否记录info,默认记录 :param error: :param warning: 实例方法: get_logger()-->logger 使用举例: # 记录四种类型的日志 logger = MyLog(debug=True).get_logger() logger.info('info') logger.debug('debug') logger.error('error') logger.warning('warning') # # # # # # # # # # # # # # # # # # # # # # # # # # 只记录错误日志 logger = MyLog(info=False,warning=False).get_logger() logger.info('info') logger.debug('debug') logger.error('error') logger.warning('warning') 注意: MyLog()的实例只会同时存在一个,默认记录首次创建实例的属性. 例如: mylog = MyLog('./logs/logs/') mylog2 = MyLog() logger = mylog.get_logger() logger2 = mylog2.get_logger() logger.info('info') logger2 = MyLog('./logs/logs2/').get_logger() logger2.info('info2') 以上两个logger logger2,会以logger(第一次创建实例)的属性为准,日志会存放在./logs/logs/下 """ def __init__(self, log_path: str = './logs/', **kwargs): self.type_need(log_path, str) if not log_path.endswith('/'): log_path += '/' if not os.path.exists(log_path): os.makedirs(log_path) super(MyLog, self).__init__(dir_path=log_path, **kwargs) def get_logger(self): return self._get_logger() @staticmethod def type_need(parm, type_): if not isinstance(parm, type_): raise TypeError(f'expect {type_},but got {type(parm)}')
normal
{ "blob_id": "3a9987ac326131878b80cb819e3d06ce2f4cb054", "index": 8461, "step-1": "<mask token>\n\n\nclass MyLog(LogBase):\n <mask token>\n <mask token>\n\n def get_logger(self):\n return self._get_logger()\n\n @staticmethod\n def type_need(parm, type_):\n if not isinstance(parm, type_):\n raise TypeError(f'expect {type_},but got {type(parm)}')\n", "step-2": "<mask token>\n\n\nclass MyLog(LogBase):\n \"\"\"\n 功能:\n 将日志分日志等级记录,并自动压缩2019-11-11.info.log.gz\n\n 参数:\n :param dir_path: 日志记录的路径,默认是当前路径下的log文件夹\n :param logger_name: logger对象的名字\n :param info_name: 保存info等级的文件名字\n :param error_name:\n :param warning_name:\n :param debug_name:\n :param interval: 压缩日志的频率,默认是7天\n :param detail: bool值,记录日志是否为详细记录\n :param debug: 是否记录debug,默认不记录\n :param info: 是否记录info,默认记录\n :param error:\n :param warning:\n 实例方法:\n get_logger()-->logger\n\n 使用举例:\n # 记录四种类型的日志\n logger = MyLog(debug=True).get_logger()\n logger.info('info')\n logger.debug('debug')\n logger.error('error')\n logger.warning('warning')\n\n # # # # # # # # # # # # # # # # # # # # # # # # #\n\n # 只记录错误日志\n logger = MyLog(info=False,warning=False).get_logger()\n logger.info('info')\n logger.debug('debug')\n logger.error('error')\n logger.warning('warning')\n 注意:\n MyLog()的实例只会同时存在一个,默认记录首次创建实例的属性.\n 例如:\n\n mylog = MyLog('./logs/logs/')\n mylog2 = MyLog()\n logger = mylog.get_logger()\n logger2 = mylog2.get_logger()\n logger.info('info')\n\n logger2 = MyLog('./logs/logs2/').get_logger()\n logger2.info('info2')\n\n 以上两个logger logger2,会以logger(第一次创建实例)的属性为准,日志会存放在./logs/logs/下\n\n\n\n \"\"\"\n\n def __init__(self, log_path: str='./logs/', **kwargs):\n self.type_need(log_path, str)\n if not log_path.endswith('/'):\n log_path += '/'\n if not os.path.exists(log_path):\n os.makedirs(log_path)\n super(MyLog, self).__init__(dir_path=log_path, **kwargs)\n\n def get_logger(self):\n return self._get_logger()\n\n @staticmethod\n def type_need(parm, type_):\n if not isinstance(parm, type_):\n raise TypeError(f'expect {type_},but got {type(parm)}')\n", "step-3": "<mask token>\n__all__ = ['MyLog']\n\n\nclass MyLog(LogBase):\n \"\"\"\n 功能:\n 将日志分日志等级记录,并自动压缩2019-11-11.info.log.gz\n\n 参数:\n :param dir_path: 日志记录的路径,默认是当前路径下的log文件夹\n :param logger_name: logger对象的名字\n :param info_name: 保存info等级的文件名字\n :param error_name:\n :param warning_name:\n :param debug_name:\n :param interval: 压缩日志的频率,默认是7天\n :param detail: bool值,记录日志是否为详细记录\n :param debug: 是否记录debug,默认不记录\n :param info: 是否记录info,默认记录\n :param error:\n :param warning:\n 实例方法:\n get_logger()-->logger\n\n 使用举例:\n # 记录四种类型的日志\n logger = MyLog(debug=True).get_logger()\n logger.info('info')\n logger.debug('debug')\n logger.error('error')\n logger.warning('warning')\n\n # # # # # # # # # # # # # # # # # # # # # # # # #\n\n # 只记录错误日志\n logger = MyLog(info=False,warning=False).get_logger()\n logger.info('info')\n logger.debug('debug')\n logger.error('error')\n logger.warning('warning')\n 注意:\n MyLog()的实例只会同时存在一个,默认记录首次创建实例的属性.\n 例如:\n\n mylog = MyLog('./logs/logs/')\n mylog2 = MyLog()\n logger = mylog.get_logger()\n logger2 = mylog2.get_logger()\n logger.info('info')\n\n logger2 = MyLog('./logs/logs2/').get_logger()\n logger2.info('info2')\n\n 以上两个logger logger2,会以logger(第一次创建实例)的属性为准,日志会存放在./logs/logs/下\n\n\n\n \"\"\"\n\n def __init__(self, log_path: str='./logs/', **kwargs):\n self.type_need(log_path, str)\n if not log_path.endswith('/'):\n log_path += '/'\n if not os.path.exists(log_path):\n os.makedirs(log_path)\n super(MyLog, self).__init__(dir_path=log_path, **kwargs)\n\n def get_logger(self):\n return self._get_logger()\n\n @staticmethod\n def type_need(parm, type_):\n if not isinstance(parm, type_):\n raise TypeError(f'expect {type_},but got {type(parm)}')\n", "step-4": "from .log_config import LogBase\nimport os\n__all__ = ['MyLog']\n\n\nclass MyLog(LogBase):\n \"\"\"\n 功能:\n 将日志分日志等级记录,并自动压缩2019-11-11.info.log.gz\n\n 参数:\n :param dir_path: 日志记录的路径,默认是当前路径下的log文件夹\n :param logger_name: logger对象的名字\n :param info_name: 保存info等级的文件名字\n :param error_name:\n :param warning_name:\n :param debug_name:\n :param interval: 压缩日志的频率,默认是7天\n :param detail: bool值,记录日志是否为详细记录\n :param debug: 是否记录debug,默认不记录\n :param info: 是否记录info,默认记录\n :param error:\n :param warning:\n 实例方法:\n get_logger()-->logger\n\n 使用举例:\n # 记录四种类型的日志\n logger = MyLog(debug=True).get_logger()\n logger.info('info')\n logger.debug('debug')\n logger.error('error')\n logger.warning('warning')\n\n # # # # # # # # # # # # # # # # # # # # # # # # #\n\n # 只记录错误日志\n logger = MyLog(info=False,warning=False).get_logger()\n logger.info('info')\n logger.debug('debug')\n logger.error('error')\n logger.warning('warning')\n 注意:\n MyLog()的实例只会同时存在一个,默认记录首次创建实例的属性.\n 例如:\n\n mylog = MyLog('./logs/logs/')\n mylog2 = MyLog()\n logger = mylog.get_logger()\n logger2 = mylog2.get_logger()\n logger.info('info')\n\n logger2 = MyLog('./logs/logs2/').get_logger()\n logger2.info('info2')\n\n 以上两个logger logger2,会以logger(第一次创建实例)的属性为准,日志会存放在./logs/logs/下\n\n\n\n \"\"\"\n\n def __init__(self, log_path: str='./logs/', **kwargs):\n self.type_need(log_path, str)\n if not log_path.endswith('/'):\n log_path += '/'\n if not os.path.exists(log_path):\n os.makedirs(log_path)\n super(MyLog, self).__init__(dir_path=log_path, **kwargs)\n\n def get_logger(self):\n return self._get_logger()\n\n @staticmethod\n def type_need(parm, type_):\n if not isinstance(parm, type_):\n raise TypeError(f'expect {type_},but got {type(parm)}')\n", "step-5": "# -*- coding: utf-8 -*-\r\n\r\nfrom .log_config import LogBase\r\nimport os\r\n\r\n__all__ = ['MyLog']\r\n\r\n\r\nclass MyLog(LogBase):\r\n \"\"\"\r\n 功能:\r\n 将日志分日志等级记录,并自动压缩2019-11-11.info.log.gz\r\n\r\n 参数:\r\n :param dir_path: 日志记录的路径,默认是当前路径下的log文件夹\r\n :param logger_name: logger对象的名字\r\n :param info_name: 保存info等级的文件名字\r\n :param error_name:\r\n :param warning_name:\r\n :param debug_name:\r\n :param interval: 压缩日志的频率,默认是7天\r\n :param detail: bool值,记录日志是否为详细记录\r\n :param debug: 是否记录debug,默认不记录\r\n :param info: 是否记录info,默认记录\r\n :param error:\r\n :param warning:\r\n 实例方法:\r\n get_logger()-->logger\r\n\r\n 使用举例:\r\n # 记录四种类型的日志\r\n logger = MyLog(debug=True).get_logger()\r\n logger.info('info')\r\n logger.debug('debug')\r\n logger.error('error')\r\n logger.warning('warning')\r\n\r\n # # # # # # # # # # # # # # # # # # # # # # # # #\r\n\r\n # 只记录错误日志\r\n logger = MyLog(info=False,warning=False).get_logger()\r\n logger.info('info')\r\n logger.debug('debug')\r\n logger.error('error')\r\n logger.warning('warning')\r\n 注意:\r\n MyLog()的实例只会同时存在一个,默认记录首次创建实例的属性.\r\n 例如:\r\n\r\n mylog = MyLog('./logs/logs/')\r\n mylog2 = MyLog()\r\n logger = mylog.get_logger()\r\n logger2 = mylog2.get_logger()\r\n logger.info('info')\r\n\r\n logger2 = MyLog('./logs/logs2/').get_logger()\r\n logger2.info('info2')\r\n\r\n 以上两个logger logger2,会以logger(第一次创建实例)的属性为准,日志会存放在./logs/logs/下\r\n\r\n\r\n\r\n \"\"\"\r\n\r\n def __init__(self, log_path: str = './logs/', **kwargs):\r\n self.type_need(log_path, str)\r\n if not log_path.endswith('/'):\r\n log_path += '/'\r\n if not os.path.exists(log_path):\r\n os.makedirs(log_path)\r\n super(MyLog, self).__init__(dir_path=log_path, **kwargs)\r\n\r\n def get_logger(self):\r\n return self._get_logger()\r\n\r\n @staticmethod\r\n def type_need(parm, type_):\r\n if not isinstance(parm, type_):\r\n raise TypeError(f'expect {type_},but got {type(parm)}')\r\n", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
import sys heights = [] for i in range(10): line = sys.stdin.readline() height = int(line) heights.append(height) heights.sort() heights.reverse() for i in range(3): print(heights[i])
normal
{ "blob_id": "3e48de2e3b12965de1b3b5cb6c3cf68c90ec6212", "index": 2274, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(10):\n line = sys.stdin.readline()\n height = int(line)\n heights.append(height)\nheights.sort()\nheights.reverse()\nfor i in range(3):\n print(heights[i])\n", "step-3": "<mask token>\nheights = []\nfor i in range(10):\n line = sys.stdin.readline()\n height = int(line)\n heights.append(height)\nheights.sort()\nheights.reverse()\nfor i in range(3):\n print(heights[i])\n", "step-4": "import sys\nheights = []\nfor i in range(10):\n line = sys.stdin.readline()\n height = int(line)\n heights.append(height)\nheights.sort()\nheights.reverse()\nfor i in range(3):\n print(heights[i])\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
def primeiras_ocorrencias(str): dic = {} for i, letra in enumerate(str): if letra not in dic: dic[letra] = i return dic
normal
{ "blob_id": "bb1a6815649eb9e79e2ab1e110ea8acd8adce5aa", "index": 3379, "step-1": "<mask token>\n", "step-2": "def primeiras_ocorrencias(str):\n dic = {}\n for i, letra in enumerate(str):\n if letra not in dic:\n dic[letra] = i\n return dic\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
num=int(input("Enter the number: ")) table=[num*i for i in range(1,11)] print(table) with open("table.txt","a") as f: f.write(f"{num} table is: {str(table)}") f.write('\n')
normal
{ "blob_id": "657ac500c40ddbd29f5e3736a78ed43e7d105478", "index": 9417, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(table)\nwith open('table.txt', 'a') as f:\n f.write(f'{num} table is: {str(table)}')\n f.write('\\n')\n", "step-3": "num = int(input('Enter the number: '))\ntable = [(num * i) for i in range(1, 11)]\nprint(table)\nwith open('table.txt', 'a') as f:\n f.write(f'{num} table is: {str(table)}')\n f.write('\\n')\n", "step-4": "num=int(input(\"Enter the number: \"))\n\ntable=[num*i for i in range(1,11)]\nprint(table)\nwith open(\"table.txt\",\"a\") as f:\n f.write(f\"{num} table is: {str(table)}\")\n f.write('\\n')", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import re BASICPATTERN = '[!/](%s)\s{,1}(.*)' # example "/animefind baka" -> (animefind, baka) # returns compiled BASICPATTERN for each given string def basicRegex(strings): if not isinstance(strings,list): return [] ans = [] for string in strings: pattern = re.compile(BASICPATTERN % string.strip()) ans.append(pattern) return ans
normal
{ "blob_id": "1a28aea824752d18cbd462693f8f8980dba4974e", "index": 9387, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef basicRegex(strings):\n if not isinstance(strings, list):\n return []\n ans = []\n for string in strings:\n pattern = re.compile(BASICPATTERN % string.strip())\n ans.append(pattern)\n return ans\n", "step-3": "<mask token>\nBASICPATTERN = '[!/](%s)\\\\s{,1}(.*)'\n\n\ndef basicRegex(strings):\n if not isinstance(strings, list):\n return []\n ans = []\n for string in strings:\n pattern = re.compile(BASICPATTERN % string.strip())\n ans.append(pattern)\n return ans\n", "step-4": "import re\nBASICPATTERN = '[!/](%s)\\\\s{,1}(.*)'\n\n\ndef basicRegex(strings):\n if not isinstance(strings, list):\n return []\n ans = []\n for string in strings:\n pattern = re.compile(BASICPATTERN % string.strip())\n ans.append(pattern)\n return ans\n", "step-5": "import re\n\nBASICPATTERN = '[!/](%s)\\s{,1}(.*)' # example \"/animefind baka\" -> (animefind, baka)\n\n\n# returns compiled BASICPATTERN for each given string\ndef basicRegex(strings):\n if not isinstance(strings,list):\n return []\n ans = []\n for string in strings:\n pattern = re.compile(BASICPATTERN % string.strip())\n ans.append(pattern)\n return ans\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# bot.py import os import shutil import discord import youtube_dl from discord.ext import commands import urllib.parse import urllib.request import re import dotenv from pathlib import Path # Python 3.6+ only from dotenv import load_dotenv env_path = Path('.') / '.env' load_dotenv(dotenv_path=env_path) client = discord.Client() botCommand = commands.Bot(command_prefix='.') token = os.getenv("DISCORD_TOKEN") players = {} @botCommand.event async def on_ready(): print( f'{client.user} is connected to the following guild:\n' ) @botCommand.command(pass_context=True, aliases=['y']) async def youtube(ctx, *, search): query_string = urllib.parse.urlencode({ 'search_query': search }) htm_content = urllib.request.urlopen( 'http://www.youtube.com/results?' + query_string ) print(r'/watch\?v=(.{11})') search_results = re.findall(r'/watch\?v=(.{11})', htm_content.read().decode('utf-8')) await ctx.send('http://www.youtube.com/watch?v=' + search_results[0]) voice = None q_num = 0 @botCommand.command(pass_context=True, aliases=['p', 'play']) async def plays(ctx, *, url): server = ctx.message.guild global voice channel = ctx.message.author.voice.channel if not str(url).startswith('http'): query_string = urllib.parse.urlencode({ 'search_query': url }) htm_content = urllib.request.urlopen( 'http://www.youtube.com/results?' + query_string ) print(r'/watch\?v=(.{11})') search_results = re.findall(r'/watch\?v=(.{11})', htm_content.read().decode('utf-8')) url = 'http://www.youtube.com/watch?v=' + search_results[0] if voice: print("ok") else: voice = await channel.connect() await ctx.send(f"Joined {channel}") # if voice is None: # voice = await channel.connect() # song_there = os.path.isfile("song.mp3") def check_queue(): print('Test') Queue_infile = os.path.isdir("./Queue") if Queue_infile is True: DIR = os.path.abspath(os.path.realpath("Queue")) length = len(os.listdir(DIR)) still_q = length - 1 try: first_file = os.listdir(DIR)[0] except: print("No more queue\n") queues.clear() return main_location = os.path.dirname(os.path.realpath(__file__)) song_path = os.path.abspath(os.path.realpath("Queue") + "\\" + first_file) if length != 0: print("Song done , playing next queue\n") print(f"song still in queue: {still_q}") song_there = os.path.isfile("song.mp3") if song_there: os.remove("song.mp3") shutil.move(song_path, main_location) for file in os.listdir("./"): if file.endswith(".mp3"): os.rename(file, 'song.mp3') voice.play(discord.FFmpegPCMAudio('song.mp3'), after=lambda e: check_queue()) voice.source = discord.PCMVolumeTransformer(voice.source) voice.source.volume = 0.07 else: queues.clear() return else: queues.clear() print("No song founds") def add_queue(): print("Test") Queue_infile = os.path.isdir("./Queue") if Queue_infile is False: os.mkdir("Queue") DIR = os.path.abspath(os.path.realpath("Queue")) q_num = len(os.listdir(DIR)) q_num += 1 add_queue = True while add_queue: if q_num in queues: q_num += 1 else: add_queue = False queues[q_num] = q_num queue_path = os.path.abspath(os.path.realpath("Queue") + f"\song{q_num}.%(ext)s") ydl_opts = { 'format': 'bestaudio/best', 'quiet': True, 'outtmpl': queue_path, 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192' }], } with youtube_dl.YoutubeDL(ydl_opts) as ydl: print("Downloading audio now\n") ydl.download([url]) print("Song added to queue\n") song_there = os.path.isfile("song.mp3") try: if song_there: os.remove("song.mp3") queues.clear() print("remove old song file") except PermissionError: add_queue() await ctx.send("Adding song to the queue") return Queue_infile = os.path.isdir("./Queue") try: Queue_folder = "./Queue" if Queue_infile is True: print("Removed old Queue folder") shutil.rmtree(Queue_folder) except: print("No old queue folder") await ctx.send("Getting everything ready now") # voice = get(client.voice_clients, guild=ctx.guild) ydl_opts = { 'format': 'bestaudio/best', 'quiet': True, 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192' }], } with youtube_dl.YoutubeDL(ydl_opts) as ydl: print("Downloading audio now\n") ydl.download([url]) for file in os.listdir("./"): if file.endswith(".mp3"): name = file print(f"renamed file : {file}\n") os.rename(file, "song.mp3") voice.play(discord.FFmpegPCMAudio('song.mp3'), after=lambda e: check_queue()) voice.source = discord.PCMVolumeTransformer(voice.source) voice.source.volume = 0.07 nname = name.rsplit("-", 1) await ctx.send(f"Playing :notes: `{nname[0]}` :notes:") print("Playing\n") queues = {} @botCommand.command(pass_context=True) async def ping(ctx): await ctx.send('test') @botCommand.command(pass_context=True) async def join(ctx): global vc channel = ctx.message.author.voice.channel vc = channel.connect() await channel.connect() @botCommand.event async def on_message(message): if message.author == client.user: return msg1 = '<@333863300892721152> davis kok pepe ya' if message.content == 'command list': await message.channel.send('- davis mah\n- davis\n- .plays + youtubeURL') if message.content == 'davis mah': for x in range(3): await message.channel.send('davis mah paling jago') if message.content == 'davis': response = msg1 for x in range(3): await message.channel.send(response) if message.content == 'bel sama jessica': response = 'jessica lah , https://imgur.com/TrtyIVa' await message.channel.send(response) if message.content == 'ig jessica': response = 'https://www.instagram.com/h.yojeong/' await message.channel.send(response) await botCommand.process_commands(message) botCommand.run(token)
normal
{ "blob_id": "94ca18088664393fdfdc68bfb8bcad8b78e9e36a", "index": 7887, "step-1": "<mask token>\n", "step-2": "<mask token>\nload_dotenv(dotenv_path=env_path)\n<mask token>\n\n\[email protected]\nasync def on_ready():\n print(f'{client.user} is connected to the following guild:\\n')\n\n\[email protected](pass_context=True, aliases=['y'])\nasync def youtube(ctx, *, search):\n query_string = urllib.parse.urlencode({'search_query': search})\n htm_content = urllib.request.urlopen('http://www.youtube.com/results?' +\n query_string)\n print('/watch\\\\?v=(.{11})')\n search_results = re.findall('/watch\\\\?v=(.{11})', htm_content.read().\n decode('utf-8'))\n await ctx.send('http://www.youtube.com/watch?v=' + search_results[0])\n\n\n<mask token>\n\n\[email protected](pass_context=True, aliases=['p', 'play'])\nasync def plays(ctx, *, url):\n server = ctx.message.guild\n global voice\n channel = ctx.message.author.voice.channel\n if not str(url).startswith('http'):\n query_string = urllib.parse.urlencode({'search_query': url})\n htm_content = urllib.request.urlopen(\n 'http://www.youtube.com/results?' + query_string)\n print('/watch\\\\?v=(.{11})')\n search_results = re.findall('/watch\\\\?v=(.{11})', htm_content.read(\n ).decode('utf-8'))\n url = 'http://www.youtube.com/watch?v=' + search_results[0]\n if voice:\n print('ok')\n else:\n voice = await channel.connect()\n await ctx.send(f'Joined {channel}')\n\n def check_queue():\n print('Test')\n Queue_infile = os.path.isdir('./Queue')\n if Queue_infile is True:\n DIR = os.path.abspath(os.path.realpath('Queue'))\n length = len(os.listdir(DIR))\n still_q = length - 1\n try:\n first_file = os.listdir(DIR)[0]\n except:\n print('No more queue\\n')\n queues.clear()\n return\n main_location = os.path.dirname(os.path.realpath(__file__))\n song_path = os.path.abspath(os.path.realpath('Queue') + '\\\\' +\n first_file)\n if length != 0:\n print('Song done , playing next queue\\n')\n print(f'song still in queue: {still_q}')\n song_there = os.path.isfile('song.mp3')\n if song_there:\n os.remove('song.mp3')\n shutil.move(song_path, main_location)\n for file in os.listdir('./'):\n if file.endswith('.mp3'):\n os.rename(file, 'song.mp3')\n voice.play(discord.FFmpegPCMAudio('song.mp3'), after=lambda\n e: check_queue())\n voice.source = discord.PCMVolumeTransformer(voice.source)\n voice.source.volume = 0.07\n else:\n queues.clear()\n return\n else:\n queues.clear()\n print('No song founds')\n\n def add_queue():\n print('Test')\n Queue_infile = os.path.isdir('./Queue')\n if Queue_infile is False:\n os.mkdir('Queue')\n DIR = os.path.abspath(os.path.realpath('Queue'))\n q_num = len(os.listdir(DIR))\n q_num += 1\n add_queue = True\n while add_queue:\n if q_num in queues:\n q_num += 1\n else:\n add_queue = False\n queues[q_num] = q_num\n queue_path = os.path.abspath(os.path.realpath('Queue') +\n f'\\\\song{q_num}.%(ext)s')\n ydl_opts = {'format': 'bestaudio/best', 'quiet': True, 'outtmpl':\n queue_path, 'postprocessors': [{'key': 'FFmpegExtractAudio',\n 'preferredcodec': 'mp3', 'preferredquality': '192'}]}\n with youtube_dl.YoutubeDL(ydl_opts) as ydl:\n print('Downloading audio now\\n')\n ydl.download([url])\n print('Song added to queue\\n')\n song_there = os.path.isfile('song.mp3')\n try:\n if song_there:\n os.remove('song.mp3')\n queues.clear()\n print('remove old song file')\n except PermissionError:\n add_queue()\n await ctx.send('Adding song to the queue')\n return\n Queue_infile = os.path.isdir('./Queue')\n try:\n Queue_folder = './Queue'\n if Queue_infile is True:\n print('Removed old Queue folder')\n shutil.rmtree(Queue_folder)\n except:\n print('No old queue folder')\n await ctx.send('Getting everything ready now')\n ydl_opts = {'format': 'bestaudio/best', 'quiet': True, 'postprocessors':\n [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3',\n 'preferredquality': '192'}]}\n with youtube_dl.YoutubeDL(ydl_opts) as ydl:\n print('Downloading audio now\\n')\n ydl.download([url])\n for file in os.listdir('./'):\n if file.endswith('.mp3'):\n name = file\n print(f'renamed file : {file}\\n')\n os.rename(file, 'song.mp3')\n voice.play(discord.FFmpegPCMAudio('song.mp3'), after=lambda e:\n check_queue())\n voice.source = discord.PCMVolumeTransformer(voice.source)\n voice.source.volume = 0.07\n nname = name.rsplit('-', 1)\n await ctx.send(f'Playing :notes: `{nname[0]}` :notes:')\n print('Playing\\n')\n\n\n<mask token>\n\n\[email protected](pass_context=True)\nasync def ping(ctx):\n await ctx.send('test')\n\n\[email protected](pass_context=True)\nasync def join(ctx):\n global vc\n channel = ctx.message.author.voice.channel\n vc = channel.connect()\n await channel.connect()\n\n\[email protected]\nasync def on_message(message):\n if message.author == client.user:\n return\n msg1 = '<@333863300892721152> davis kok pepe ya'\n if message.content == 'command list':\n await message.channel.send(\n '- davis mah\\n- davis\\n- .plays + youtubeURL')\n if message.content == 'davis mah':\n for x in range(3):\n await message.channel.send('davis mah paling jago')\n if message.content == 'davis':\n response = msg1\n for x in range(3):\n await message.channel.send(response)\n if message.content == 'bel sama jessica':\n response = 'jessica lah , https://imgur.com/TrtyIVa'\n await message.channel.send(response)\n if message.content == 'ig jessica':\n response = 'https://www.instagram.com/h.yojeong/'\n await message.channel.send(response)\n await botCommand.process_commands(message)\n\n\nbotCommand.run(token)\n", "step-3": "<mask token>\nenv_path = Path('.') / '.env'\nload_dotenv(dotenv_path=env_path)\nclient = discord.Client()\nbotCommand = commands.Bot(command_prefix='.')\ntoken = os.getenv('DISCORD_TOKEN')\nplayers = {}\n\n\[email protected]\nasync def on_ready():\n print(f'{client.user} is connected to the following guild:\\n')\n\n\[email protected](pass_context=True, aliases=['y'])\nasync def youtube(ctx, *, search):\n query_string = urllib.parse.urlencode({'search_query': search})\n htm_content = urllib.request.urlopen('http://www.youtube.com/results?' +\n query_string)\n print('/watch\\\\?v=(.{11})')\n search_results = re.findall('/watch\\\\?v=(.{11})', htm_content.read().\n decode('utf-8'))\n await ctx.send('http://www.youtube.com/watch?v=' + search_results[0])\n\n\nvoice = None\nq_num = 0\n\n\[email protected](pass_context=True, aliases=['p', 'play'])\nasync def plays(ctx, *, url):\n server = ctx.message.guild\n global voice\n channel = ctx.message.author.voice.channel\n if not str(url).startswith('http'):\n query_string = urllib.parse.urlencode({'search_query': url})\n htm_content = urllib.request.urlopen(\n 'http://www.youtube.com/results?' + query_string)\n print('/watch\\\\?v=(.{11})')\n search_results = re.findall('/watch\\\\?v=(.{11})', htm_content.read(\n ).decode('utf-8'))\n url = 'http://www.youtube.com/watch?v=' + search_results[0]\n if voice:\n print('ok')\n else:\n voice = await channel.connect()\n await ctx.send(f'Joined {channel}')\n\n def check_queue():\n print('Test')\n Queue_infile = os.path.isdir('./Queue')\n if Queue_infile is True:\n DIR = os.path.abspath(os.path.realpath('Queue'))\n length = len(os.listdir(DIR))\n still_q = length - 1\n try:\n first_file = os.listdir(DIR)[0]\n except:\n print('No more queue\\n')\n queues.clear()\n return\n main_location = os.path.dirname(os.path.realpath(__file__))\n song_path = os.path.abspath(os.path.realpath('Queue') + '\\\\' +\n first_file)\n if length != 0:\n print('Song done , playing next queue\\n')\n print(f'song still in queue: {still_q}')\n song_there = os.path.isfile('song.mp3')\n if song_there:\n os.remove('song.mp3')\n shutil.move(song_path, main_location)\n for file in os.listdir('./'):\n if file.endswith('.mp3'):\n os.rename(file, 'song.mp3')\n voice.play(discord.FFmpegPCMAudio('song.mp3'), after=lambda\n e: check_queue())\n voice.source = discord.PCMVolumeTransformer(voice.source)\n voice.source.volume = 0.07\n else:\n queues.clear()\n return\n else:\n queues.clear()\n print('No song founds')\n\n def add_queue():\n print('Test')\n Queue_infile = os.path.isdir('./Queue')\n if Queue_infile is False:\n os.mkdir('Queue')\n DIR = os.path.abspath(os.path.realpath('Queue'))\n q_num = len(os.listdir(DIR))\n q_num += 1\n add_queue = True\n while add_queue:\n if q_num in queues:\n q_num += 1\n else:\n add_queue = False\n queues[q_num] = q_num\n queue_path = os.path.abspath(os.path.realpath('Queue') +\n f'\\\\song{q_num}.%(ext)s')\n ydl_opts = {'format': 'bestaudio/best', 'quiet': True, 'outtmpl':\n queue_path, 'postprocessors': [{'key': 'FFmpegExtractAudio',\n 'preferredcodec': 'mp3', 'preferredquality': '192'}]}\n with youtube_dl.YoutubeDL(ydl_opts) as ydl:\n print('Downloading audio now\\n')\n ydl.download([url])\n print('Song added to queue\\n')\n song_there = os.path.isfile('song.mp3')\n try:\n if song_there:\n os.remove('song.mp3')\n queues.clear()\n print('remove old song file')\n except PermissionError:\n add_queue()\n await ctx.send('Adding song to the queue')\n return\n Queue_infile = os.path.isdir('./Queue')\n try:\n Queue_folder = './Queue'\n if Queue_infile is True:\n print('Removed old Queue folder')\n shutil.rmtree(Queue_folder)\n except:\n print('No old queue folder')\n await ctx.send('Getting everything ready now')\n ydl_opts = {'format': 'bestaudio/best', 'quiet': True, 'postprocessors':\n [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3',\n 'preferredquality': '192'}]}\n with youtube_dl.YoutubeDL(ydl_opts) as ydl:\n print('Downloading audio now\\n')\n ydl.download([url])\n for file in os.listdir('./'):\n if file.endswith('.mp3'):\n name = file\n print(f'renamed file : {file}\\n')\n os.rename(file, 'song.mp3')\n voice.play(discord.FFmpegPCMAudio('song.mp3'), after=lambda e:\n check_queue())\n voice.source = discord.PCMVolumeTransformer(voice.source)\n voice.source.volume = 0.07\n nname = name.rsplit('-', 1)\n await ctx.send(f'Playing :notes: `{nname[0]}` :notes:')\n print('Playing\\n')\n\n\nqueues = {}\n\n\[email protected](pass_context=True)\nasync def ping(ctx):\n await ctx.send('test')\n\n\[email protected](pass_context=True)\nasync def join(ctx):\n global vc\n channel = ctx.message.author.voice.channel\n vc = channel.connect()\n await channel.connect()\n\n\[email protected]\nasync def on_message(message):\n if message.author == client.user:\n return\n msg1 = '<@333863300892721152> davis kok pepe ya'\n if message.content == 'command list':\n await message.channel.send(\n '- davis mah\\n- davis\\n- .plays + youtubeURL')\n if message.content == 'davis mah':\n for x in range(3):\n await message.channel.send('davis mah paling jago')\n if message.content == 'davis':\n response = msg1\n for x in range(3):\n await message.channel.send(response)\n if message.content == 'bel sama jessica':\n response = 'jessica lah , https://imgur.com/TrtyIVa'\n await message.channel.send(response)\n if message.content == 'ig jessica':\n response = 'https://www.instagram.com/h.yojeong/'\n await message.channel.send(response)\n await botCommand.process_commands(message)\n\n\nbotCommand.run(token)\n", "step-4": "import os\nimport shutil\nimport discord\nimport youtube_dl\nfrom discord.ext import commands\nimport urllib.parse\nimport urllib.request\nimport re\nimport dotenv\nfrom pathlib import Path\nfrom dotenv import load_dotenv\nenv_path = Path('.') / '.env'\nload_dotenv(dotenv_path=env_path)\nclient = discord.Client()\nbotCommand = commands.Bot(command_prefix='.')\ntoken = os.getenv('DISCORD_TOKEN')\nplayers = {}\n\n\[email protected]\nasync def on_ready():\n print(f'{client.user} is connected to the following guild:\\n')\n\n\[email protected](pass_context=True, aliases=['y'])\nasync def youtube(ctx, *, search):\n query_string = urllib.parse.urlencode({'search_query': search})\n htm_content = urllib.request.urlopen('http://www.youtube.com/results?' +\n query_string)\n print('/watch\\\\?v=(.{11})')\n search_results = re.findall('/watch\\\\?v=(.{11})', htm_content.read().\n decode('utf-8'))\n await ctx.send('http://www.youtube.com/watch?v=' + search_results[0])\n\n\nvoice = None\nq_num = 0\n\n\[email protected](pass_context=True, aliases=['p', 'play'])\nasync def plays(ctx, *, url):\n server = ctx.message.guild\n global voice\n channel = ctx.message.author.voice.channel\n if not str(url).startswith('http'):\n query_string = urllib.parse.urlencode({'search_query': url})\n htm_content = urllib.request.urlopen(\n 'http://www.youtube.com/results?' + query_string)\n print('/watch\\\\?v=(.{11})')\n search_results = re.findall('/watch\\\\?v=(.{11})', htm_content.read(\n ).decode('utf-8'))\n url = 'http://www.youtube.com/watch?v=' + search_results[0]\n if voice:\n print('ok')\n else:\n voice = await channel.connect()\n await ctx.send(f'Joined {channel}')\n\n def check_queue():\n print('Test')\n Queue_infile = os.path.isdir('./Queue')\n if Queue_infile is True:\n DIR = os.path.abspath(os.path.realpath('Queue'))\n length = len(os.listdir(DIR))\n still_q = length - 1\n try:\n first_file = os.listdir(DIR)[0]\n except:\n print('No more queue\\n')\n queues.clear()\n return\n main_location = os.path.dirname(os.path.realpath(__file__))\n song_path = os.path.abspath(os.path.realpath('Queue') + '\\\\' +\n first_file)\n if length != 0:\n print('Song done , playing next queue\\n')\n print(f'song still in queue: {still_q}')\n song_there = os.path.isfile('song.mp3')\n if song_there:\n os.remove('song.mp3')\n shutil.move(song_path, main_location)\n for file in os.listdir('./'):\n if file.endswith('.mp3'):\n os.rename(file, 'song.mp3')\n voice.play(discord.FFmpegPCMAudio('song.mp3'), after=lambda\n e: check_queue())\n voice.source = discord.PCMVolumeTransformer(voice.source)\n voice.source.volume = 0.07\n else:\n queues.clear()\n return\n else:\n queues.clear()\n print('No song founds')\n\n def add_queue():\n print('Test')\n Queue_infile = os.path.isdir('./Queue')\n if Queue_infile is False:\n os.mkdir('Queue')\n DIR = os.path.abspath(os.path.realpath('Queue'))\n q_num = len(os.listdir(DIR))\n q_num += 1\n add_queue = True\n while add_queue:\n if q_num in queues:\n q_num += 1\n else:\n add_queue = False\n queues[q_num] = q_num\n queue_path = os.path.abspath(os.path.realpath('Queue') +\n f'\\\\song{q_num}.%(ext)s')\n ydl_opts = {'format': 'bestaudio/best', 'quiet': True, 'outtmpl':\n queue_path, 'postprocessors': [{'key': 'FFmpegExtractAudio',\n 'preferredcodec': 'mp3', 'preferredquality': '192'}]}\n with youtube_dl.YoutubeDL(ydl_opts) as ydl:\n print('Downloading audio now\\n')\n ydl.download([url])\n print('Song added to queue\\n')\n song_there = os.path.isfile('song.mp3')\n try:\n if song_there:\n os.remove('song.mp3')\n queues.clear()\n print('remove old song file')\n except PermissionError:\n add_queue()\n await ctx.send('Adding song to the queue')\n return\n Queue_infile = os.path.isdir('./Queue')\n try:\n Queue_folder = './Queue'\n if Queue_infile is True:\n print('Removed old Queue folder')\n shutil.rmtree(Queue_folder)\n except:\n print('No old queue folder')\n await ctx.send('Getting everything ready now')\n ydl_opts = {'format': 'bestaudio/best', 'quiet': True, 'postprocessors':\n [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3',\n 'preferredquality': '192'}]}\n with youtube_dl.YoutubeDL(ydl_opts) as ydl:\n print('Downloading audio now\\n')\n ydl.download([url])\n for file in os.listdir('./'):\n if file.endswith('.mp3'):\n name = file\n print(f'renamed file : {file}\\n')\n os.rename(file, 'song.mp3')\n voice.play(discord.FFmpegPCMAudio('song.mp3'), after=lambda e:\n check_queue())\n voice.source = discord.PCMVolumeTransformer(voice.source)\n voice.source.volume = 0.07\n nname = name.rsplit('-', 1)\n await ctx.send(f'Playing :notes: `{nname[0]}` :notes:')\n print('Playing\\n')\n\n\nqueues = {}\n\n\[email protected](pass_context=True)\nasync def ping(ctx):\n await ctx.send('test')\n\n\[email protected](pass_context=True)\nasync def join(ctx):\n global vc\n channel = ctx.message.author.voice.channel\n vc = channel.connect()\n await channel.connect()\n\n\[email protected]\nasync def on_message(message):\n if message.author == client.user:\n return\n msg1 = '<@333863300892721152> davis kok pepe ya'\n if message.content == 'command list':\n await message.channel.send(\n '- davis mah\\n- davis\\n- .plays + youtubeURL')\n if message.content == 'davis mah':\n for x in range(3):\n await message.channel.send('davis mah paling jago')\n if message.content == 'davis':\n response = msg1\n for x in range(3):\n await message.channel.send(response)\n if message.content == 'bel sama jessica':\n response = 'jessica lah , https://imgur.com/TrtyIVa'\n await message.channel.send(response)\n if message.content == 'ig jessica':\n response = 'https://www.instagram.com/h.yojeong/'\n await message.channel.send(response)\n await botCommand.process_commands(message)\n\n\nbotCommand.run(token)\n", "step-5": "# bot.py\nimport os\nimport shutil\nimport discord\nimport youtube_dl\nfrom discord.ext import commands\nimport urllib.parse\nimport urllib.request\nimport re\nimport dotenv\nfrom pathlib import Path # Python 3.6+ only\nfrom dotenv import load_dotenv\n\nenv_path = Path('.') / '.env'\nload_dotenv(dotenv_path=env_path)\n\nclient = discord.Client()\nbotCommand = commands.Bot(command_prefix='.')\ntoken = os.getenv(\"DISCORD_TOKEN\")\nplayers = {}\n\n\[email protected]\nasync def on_ready():\n print(\n f'{client.user} is connected to the following guild:\\n'\n )\n\n\[email protected](pass_context=True, aliases=['y'])\nasync def youtube(ctx, *, search):\n query_string = urllib.parse.urlencode({\n 'search_query': search\n })\n\n htm_content = urllib.request.urlopen(\n 'http://www.youtube.com/results?' + query_string\n )\n print(r'/watch\\?v=(.{11})')\n\n search_results = re.findall(r'/watch\\?v=(.{11})', htm_content.read().decode('utf-8'))\n await ctx.send('http://www.youtube.com/watch?v=' + search_results[0])\n\n\nvoice = None\n\nq_num = 0\n\n\[email protected](pass_context=True, aliases=['p', 'play'])\nasync def plays(ctx, *, url):\n server = ctx.message.guild\n global voice\n channel = ctx.message.author.voice.channel\n if not str(url).startswith('http'):\n query_string = urllib.parse.urlencode({\n 'search_query': url\n })\n\n htm_content = urllib.request.urlopen(\n 'http://www.youtube.com/results?' + query_string\n )\n print(r'/watch\\?v=(.{11})')\n\n search_results = re.findall(r'/watch\\?v=(.{11})', htm_content.read().decode('utf-8'))\n url = 'http://www.youtube.com/watch?v=' + search_results[0]\n\n if voice:\n print(\"ok\")\n else:\n\n voice = await channel.connect()\n await ctx.send(f\"Joined {channel}\")\n\n # if voice is None:\n # voice = await channel.connect()\n # song_there = os.path.isfile(\"song.mp3\")\n\n def check_queue():\n print('Test')\n Queue_infile = os.path.isdir(\"./Queue\")\n if Queue_infile is True:\n DIR = os.path.abspath(os.path.realpath(\"Queue\"))\n length = len(os.listdir(DIR))\n still_q = length - 1\n try:\n first_file = os.listdir(DIR)[0]\n except:\n print(\"No more queue\\n\")\n queues.clear()\n return\n main_location = os.path.dirname(os.path.realpath(__file__))\n song_path = os.path.abspath(os.path.realpath(\"Queue\") + \"\\\\\" + first_file)\n if length != 0:\n print(\"Song done , playing next queue\\n\")\n print(f\"song still in queue: {still_q}\")\n song_there = os.path.isfile(\"song.mp3\")\n if song_there:\n os.remove(\"song.mp3\")\n shutil.move(song_path, main_location)\n for file in os.listdir(\"./\"):\n if file.endswith(\".mp3\"):\n os.rename(file, 'song.mp3')\n\n voice.play(discord.FFmpegPCMAudio('song.mp3'), after=lambda e: check_queue())\n voice.source = discord.PCMVolumeTransformer(voice.source)\n voice.source.volume = 0.07\n else:\n queues.clear()\n return\n else:\n queues.clear()\n print(\"No song founds\")\n\n def add_queue():\n print(\"Test\")\n Queue_infile = os.path.isdir(\"./Queue\")\n if Queue_infile is False:\n os.mkdir(\"Queue\")\n DIR = os.path.abspath(os.path.realpath(\"Queue\"))\n q_num = len(os.listdir(DIR))\n q_num += 1\n add_queue = True\n while add_queue:\n if q_num in queues:\n q_num += 1\n else:\n add_queue = False\n queues[q_num] = q_num\n\n queue_path = os.path.abspath(os.path.realpath(\"Queue\") + f\"\\song{q_num}.%(ext)s\")\n ydl_opts = {\n 'format': 'bestaudio/best',\n 'quiet': True,\n 'outtmpl': queue_path,\n 'postprocessors': [{\n 'key': 'FFmpegExtractAudio',\n 'preferredcodec': 'mp3',\n 'preferredquality': '192'\n }],\n }\n\n with youtube_dl.YoutubeDL(ydl_opts) as ydl:\n print(\"Downloading audio now\\n\")\n ydl.download([url])\n\n print(\"Song added to queue\\n\")\n\n song_there = os.path.isfile(\"song.mp3\")\n try:\n if song_there:\n os.remove(\"song.mp3\")\n queues.clear()\n print(\"remove old song file\")\n except PermissionError:\n add_queue()\n await ctx.send(\"Adding song to the queue\")\n return\n\n Queue_infile = os.path.isdir(\"./Queue\")\n try:\n Queue_folder = \"./Queue\"\n if Queue_infile is True:\n print(\"Removed old Queue folder\")\n shutil.rmtree(Queue_folder)\n except:\n print(\"No old queue folder\")\n\n await ctx.send(\"Getting everything ready now\")\n\n # voice = get(client.voice_clients, guild=ctx.guild)\n\n ydl_opts = {\n 'format': 'bestaudio/best',\n 'quiet': True,\n 'postprocessors': [{\n 'key': 'FFmpegExtractAudio',\n 'preferredcodec': 'mp3',\n 'preferredquality': '192'\n }],\n }\n\n with youtube_dl.YoutubeDL(ydl_opts) as ydl:\n print(\"Downloading audio now\\n\")\n ydl.download([url])\n\n for file in os.listdir(\"./\"):\n if file.endswith(\".mp3\"):\n name = file\n print(f\"renamed file : {file}\\n\")\n os.rename(file, \"song.mp3\")\n\n voice.play(discord.FFmpegPCMAudio('song.mp3'), after=lambda e: check_queue())\n voice.source = discord.PCMVolumeTransformer(voice.source)\n voice.source.volume = 0.07\n\n nname = name.rsplit(\"-\", 1)\n await ctx.send(f\"Playing :notes: `{nname[0]}` :notes:\")\n print(\"Playing\\n\")\n\n\nqueues = {}\n\n\[email protected](pass_context=True)\nasync def ping(ctx):\n await ctx.send('test')\n\n\[email protected](pass_context=True)\nasync def join(ctx):\n global vc\n channel = ctx.message.author.voice.channel\n vc = channel.connect()\n await channel.connect()\n\n\[email protected]\nasync def on_message(message):\n if message.author == client.user:\n return\n\n msg1 = '<@333863300892721152> davis kok pepe ya'\n\n if message.content == 'command list':\n await message.channel.send('- davis mah\\n- davis\\n- .plays + youtubeURL')\n\n if message.content == 'davis mah':\n for x in range(3):\n await message.channel.send('davis mah paling jago')\n if message.content == 'davis':\n response = msg1\n for x in range(3):\n await message.channel.send(response)\n if message.content == 'bel sama jessica':\n response = 'jessica lah , https://imgur.com/TrtyIVa'\n await message.channel.send(response)\n if message.content == 'ig jessica':\n response = 'https://www.instagram.com/h.yojeong/'\n await message.channel.send(response)\n await botCommand.process_commands(message)\n\n\nbotCommand.run(token)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.db.models import Q, Avg from django.http import JsonResponse from rest_framework import permissions from rest_framework.authtoken.models import Token from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.decorators import action from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.viewsets import ModelViewSet from base_backend import permissions as my_perms from base_backend.utils import RequestDataFixer from restaurants.models import User, Cuisine, MealType, AppVersion, RestaurantType, Restaurant, Menu, Order, OrderLine, \ Wilaya, City, Address, Phone from restaurants.serializers import UserSerializer, SmsConfirmationSerializer, CuisineSerializer, \ RestaurantTypeSerializer, RestaurantSerializer, MenuSerializer, OrderLineSerializer, WilayaSerializer, \ CitySerializer, OrderWRestaurantSerializer, MealTypesWithMenuSerializer, MealTypeSerializer, OrderSerializer, \ AddressSerializer, PhoneSerializer class LoginApi(ObtainAuthToken): def post(self, request, *args, **kwargs): serializer = self.serializer_class(data=request.data, context=dict(request=request)) serializer.is_valid(raise_exception=True) user = serializer.validated_data['user'] token, created = Token.objects.get_or_create(user=user) return Response( dict( token=token.key, user_id=user.pk, phone=user.phone, email=user.email, type=user.user_type, photo=user.photo.url if user.photo else None, address=user.address, city=user.lives_in_id, birth_date=user.birth_date, username=user.username, # is_participant=user.client.is_participant if user.client is not None else None, # participant_id=user.client.participant.participant_id if user.client else None, ) ) class UserViewSet(ModelViewSet): serializer_class = UserSerializer queryset = User.objects.filter(is_active=True) def get_permissions(self): if self.action == 'create' or self.action == 'register': return [permissions.AllowAny()] else: return [permissions.IsAuthenticatedOrReadOnly()] @action(methods=['post'], detail=False, url_path='register', permission_classes=[permissions.AllowAny()]) def register(self, request, *args, **kwargs): response = super().create(request, *args, **kwargs) if response: response.data = dict(status=True, code=4) return response def create(self, request, *args, **kwargs): return self.register(request, *args, **kwargs) class OtpApi(APIView): permission_classes = [permissions.AllowAny] def get(self, request): serializer = SmsConfirmationSerializer(data=request.GET) result = serializer.resend() if result: response = dict(status=True, code=5) else: response = dict(status=False, code=21) return Response(response) def put(self, request): serializer = SmsConfirmationSerializer(data=request.data) result = serializer.activate() if result: response = dict(status=True, code=5) else: response = dict(status=False, code=20) return Response(response) class CuisineViewSet(ModelViewSet): serializer_class = CuisineSerializer permission_classes = [my_perms.IsAdminOrReadOnly] queryset = Cuisine.objects.all() class MealTypeViewSet(ModelViewSet): permission_classes = [my_perms.IsAdminOrReadOnly] serializer_class = MealTypeSerializer queryset = MealType.objects.all() def get_serializer(self, *args, **kwargs): if self.action == "get_types_with_menus": serializer_class = MealTypesWithMenuSerializer kwargs['context'] = self.get_serializer_context() return serializer_class(*args, **kwargs) return super(MealTypeViewSet, self).get_serializer(*args, **kwargs) @action(['get'], detail=False, url_path="type-with-menus", ) def get_types_with_menus(self, request, *args, **kwargs): types = self.get_queryset().filter(menus__offered_by=request.query_params.get('restaurant', 0)) types = self.get_serializer(types, many=True).data return Response(types) class RestaurantTypeViewSet(ModelViewSet): serializer_class = RestaurantTypeSerializer permission_classes = [my_perms.IsAdminOrReadOnly] queryset = RestaurantType.objects.all() class RestaurantViewSet(ModelViewSet): serializer_class = RestaurantSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly] queryset = Restaurant.objects.all() def _get_recommended_restaurants(self) -> queryset: queryset = self.get_queryset() recommended = queryset.all().annotate(rates_avg=Avg('rates__stars')) return recommended def _get_special_restaurants(self) -> queryset: queryset = self.get_queryset() special_offers_restaurants = queryset.filter(Q(menus__discount__gt=0) | Q(on_special_day=True)) return special_offers_restaurants @action(['get'], detail=False, url_path="get-home") def home(self, request, *args, **kwargs): recommended = self._get_recommended_restaurants().order_by('?')[:5] special = self._get_special_restaurants().order_by('?')[:5] all_restaurants = self.get_queryset().order_by('?')[:5] recommended = self.get_serializer(recommended, many=True).data special = self.get_serializer(special, many=True).data all_restaurants = self.get_serializer(all_restaurants, many=True).data response = { 'recommended': recommended, 'special': special, 'all': all_restaurants } return Response(response) @action(['get'], detail=False, url_path="special-offers") def special_offers(self, request, *args, **kwargs): serializer = self.get_serializer(self._get_special_restaurants().order_by('-created_at'), many=True) return Response(serializer.data) @action(['get'], detail=False, url_path="recommended-offers") def recommended_offers(self, request, *args, **kwargs): serializer = self.get_serializer(self._get_recommended_restaurants().order_by('-rates_avg'), many=True) return Response(serializer.data) @action(['get'], detail=True, url_path="restaurant-menus") def get_restaurant_menus(self, request, *args, **kwargs): categorized_menus = Menu.objects.grouped_by_meal_type_for_a_restaurant(restaurant_id=self.kwargs.get('pk')) return Response(categorized_menus) class MenuViewSet(ModelViewSet): serializer_class = MenuSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly] queryset = Menu.objects.all() @action(['get'], detail=False, url_path="get-home") def home(self, request, *args, **kwargs): queryset = self.get_queryset() special_offers = queryset.filter(~Q(discount=0)).order_by('?')[:5] recommended = queryset.all().order_by('?')[:5] special_offers = self.get_serializer(special_offers, many=True).data recommended = self.get_serializer(recommended, many=True).data response = { 'recommended': recommended, 'special_offers': special_offers } return Response(data=response) @action(['get'], detail=False, url_path="special-offers") def special_offers(self, request, *args, **kwargs): queryset = self.get_queryset() special_offers = queryset.filter(~Q(discount=0)).order_by('-created_at') serializer = self.get_serializer(special_offers, many=True) return Response(serializer.data) @action(['get'], detail=False, url_path="recommended-offers") def recommended_offers(self, request, *args, **kwargs): queryset = self.get_queryset() recommended = queryset.all().order_by('-created_at') serializer = self.get_serializer(recommended, many=True) return Response(serializer.data) class OrderViewSet(ModelViewSet): serializer_class = OrderWRestaurantSerializer permission_classes = [permissions.IsAuthenticated] queryset = Order.objects.all().order_by('-created_at') def get_serializer(self, *args, **kwargs): if self.action == "create": return OrderSerializer(*args, **kwargs) return super(OrderViewSet, self).get_serializer(*args, **kwargs) def get_queryset(self): return super(OrderViewSet, self).get_queryset().filter(client=self.request.user.client) def create(self, request, *args, **kwargs): fixer = RequestDataFixer(request=request) return super(OrderViewSet, self).create(fixer, *args, **kwargs) class OrderLineViewSet(ModelViewSet): serializer_class = OrderLineSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly] queryset = OrderLine.objects.all() class WilayaViewSet(ModelViewSet): serializer_class = WilayaSerializer permission_classes = [my_perms.IsAdminOrReadOnly] queryset = Wilaya.objects.all() class CityViewSet(ModelViewSet): serializer_class = CitySerializer permission_classes = [my_perms.IsAdminOrReadOnly] queryset = City.objects.all() def version(request): print('inside this') if request.GET.get('code', None): code = request.GET.get('code') AppVersion.objects.all().update(code=code) return JsonResponse({'updated': True}) else: code = AppVersion.objects.all().first().code return JsonResponse({'code': code}) class AddressViewSet(ModelViewSet): serializer_class = AddressSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly] queryset = Address.objects.all() @action(['PUT'], detail=True, url_path="set-default", url_name='set-default') def set_default(self, request, *args, **kwargs): instance = self.get_object() instance.default = True instance.save() self.get_queryset().filter(~Q(pk=instance.pk), belongs_to=request.user.client).update(default=False) return Response(self.get_serializer(instance).data) @action(['PUT'], detail=False, url_path="set-main", url_name='set-main') def set_main(self, request, *args, **kwargs): self.get_queryset().filter(belongs_to=request.user.client).update(default=False) return Response({"status": True}) def get_queryset(self): return super(AddressViewSet, self).get_queryset().filter(belongs_to=self.request.user.client) class PhoneViewSet(ModelViewSet): permission_classes = [permissions.IsAuthenticatedOrReadOnly] serializer_class = PhoneSerializer queryset = Phone.objects.all() @action(['PUT'], detail=False, url_path="set-main", url_name='set-main') def set_main(self, request, *args, **kwargs): self.get_queryset().filter(user=request.user).update(default=False) return Response({"status": True}) @action(['PUT'], detail=True, url_path="set-default", url_name='set-default') def set_default(self, request, *args, **kwargs): instance = self.get_object() instance.default = True instance.save() self.get_queryset().filter(~Q(pk=instance.pk), user=request.user).update(default=False) return Response(self.get_serializer(instance).data) def get_queryset(self): return self.get_queryset().filter(user=self.request.user)
normal
{ "blob_id": "9e8b5cebd48b3b98e421c896d9835ada5ec4166e", "index": 2740, "step-1": "<mask token>\n\n\nclass RestaurantViewSet(ModelViewSet):\n serializer_class = RestaurantSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Restaurant.objects.all()\n\n def _get_recommended_restaurants(self) ->queryset:\n queryset = self.get_queryset()\n recommended = queryset.all().annotate(rates_avg=Avg('rates__stars'))\n return recommended\n\n def _get_special_restaurants(self) ->queryset:\n queryset = self.get_queryset()\n special_offers_restaurants = queryset.filter(Q(menus__discount__gt=\n 0) | Q(on_special_day=True))\n return special_offers_restaurants\n\n @action(['get'], detail=False, url_path='get-home')\n def home(self, request, *args, **kwargs):\n recommended = self._get_recommended_restaurants().order_by('?')[:5]\n special = self._get_special_restaurants().order_by('?')[:5]\n all_restaurants = self.get_queryset().order_by('?')[:5]\n recommended = self.get_serializer(recommended, many=True).data\n special = self.get_serializer(special, many=True).data\n all_restaurants = self.get_serializer(all_restaurants, many=True).data\n response = {'recommended': recommended, 'special': special, 'all':\n all_restaurants}\n return Response(response)\n\n @action(['get'], detail=False, url_path='special-offers')\n def special_offers(self, request, *args, **kwargs):\n serializer = self.get_serializer(self._get_special_restaurants().\n order_by('-created_at'), many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=False, url_path='recommended-offers')\n def recommended_offers(self, request, *args, **kwargs):\n serializer = self.get_serializer(self._get_recommended_restaurants(\n ).order_by('-rates_avg'), many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=True, url_path='restaurant-menus')\n def get_restaurant_menus(self, request, *args, **kwargs):\n categorized_menus = Menu.objects.grouped_by_meal_type_for_a_restaurant(\n restaurant_id=self.kwargs.get('pk'))\n return Response(categorized_menus)\n\n\nclass MenuViewSet(ModelViewSet):\n serializer_class = MenuSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Menu.objects.all()\n\n @action(['get'], detail=False, url_path='get-home')\n def home(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n special_offers = queryset.filter(~Q(discount=0)).order_by('?')[:5]\n recommended = queryset.all().order_by('?')[:5]\n special_offers = self.get_serializer(special_offers, many=True).data\n recommended = self.get_serializer(recommended, many=True).data\n response = {'recommended': recommended, 'special_offers':\n special_offers}\n return Response(data=response)\n\n @action(['get'], detail=False, url_path='special-offers')\n def special_offers(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n special_offers = queryset.filter(~Q(discount=0)).order_by('-created_at'\n )\n serializer = self.get_serializer(special_offers, many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=False, url_path='recommended-offers')\n def recommended_offers(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n recommended = queryset.all().order_by('-created_at')\n serializer = self.get_serializer(recommended, many=True)\n return Response(serializer.data)\n\n\nclass OrderViewSet(ModelViewSet):\n serializer_class = OrderWRestaurantSerializer\n permission_classes = [permissions.IsAuthenticated]\n queryset = Order.objects.all().order_by('-created_at')\n\n def get_serializer(self, *args, **kwargs):\n if self.action == 'create':\n return OrderSerializer(*args, **kwargs)\n return super(OrderViewSet, self).get_serializer(*args, **kwargs)\n\n def get_queryset(self):\n return super(OrderViewSet, self).get_queryset().filter(client=self.\n request.user.client)\n\n def create(self, request, *args, **kwargs):\n fixer = RequestDataFixer(request=request)\n return super(OrderViewSet, self).create(fixer, *args, **kwargs)\n\n\nclass OrderLineViewSet(ModelViewSet):\n serializer_class = OrderLineSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = OrderLine.objects.all()\n\n\nclass WilayaViewSet(ModelViewSet):\n serializer_class = WilayaSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = Wilaya.objects.all()\n\n\nclass CityViewSet(ModelViewSet):\n serializer_class = CitySerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = City.objects.all()\n\n\n<mask token>\n\n\nclass AddressViewSet(ModelViewSet):\n serializer_class = AddressSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Address.objects.all()\n\n @action(['PUT'], detail=True, url_path='set-default', url_name=\n 'set-default')\n def set_default(self, request, *args, **kwargs):\n instance = self.get_object()\n instance.default = True\n instance.save()\n self.get_queryset().filter(~Q(pk=instance.pk), belongs_to=request.\n user.client).update(default=False)\n return Response(self.get_serializer(instance).data)\n\n @action(['PUT'], detail=False, url_path='set-main', url_name='set-main')\n def set_main(self, request, *args, **kwargs):\n self.get_queryset().filter(belongs_to=request.user.client).update(\n default=False)\n return Response({'status': True})\n\n def get_queryset(self):\n return super(AddressViewSet, self).get_queryset().filter(belongs_to\n =self.request.user.client)\n\n\nclass PhoneViewSet(ModelViewSet):\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n serializer_class = PhoneSerializer\n queryset = Phone.objects.all()\n\n @action(['PUT'], detail=False, url_path='set-main', url_name='set-main')\n def set_main(self, request, *args, **kwargs):\n self.get_queryset().filter(user=request.user).update(default=False)\n return Response({'status': True})\n\n @action(['PUT'], detail=True, url_path='set-default', url_name=\n 'set-default')\n def set_default(self, request, *args, **kwargs):\n instance = self.get_object()\n instance.default = True\n instance.save()\n self.get_queryset().filter(~Q(pk=instance.pk), user=request.user\n ).update(default=False)\n return Response(self.get_serializer(instance).data)\n\n def get_queryset(self):\n return self.get_queryset().filter(user=self.request.user)\n", "step-2": "<mask token>\n\n\nclass MealTypeViewSet(ModelViewSet):\n permission_classes = [my_perms.IsAdminOrReadOnly]\n serializer_class = MealTypeSerializer\n queryset = MealType.objects.all()\n\n def get_serializer(self, *args, **kwargs):\n if self.action == 'get_types_with_menus':\n serializer_class = MealTypesWithMenuSerializer\n kwargs['context'] = self.get_serializer_context()\n return serializer_class(*args, **kwargs)\n return super(MealTypeViewSet, self).get_serializer(*args, **kwargs)\n\n @action(['get'], detail=False, url_path='type-with-menus')\n def get_types_with_menus(self, request, *args, **kwargs):\n types = self.get_queryset().filter(menus__offered_by=request.\n query_params.get('restaurant', 0))\n types = self.get_serializer(types, many=True).data\n return Response(types)\n\n\nclass RestaurantTypeViewSet(ModelViewSet):\n serializer_class = RestaurantTypeSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = RestaurantType.objects.all()\n\n\nclass RestaurantViewSet(ModelViewSet):\n serializer_class = RestaurantSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Restaurant.objects.all()\n\n def _get_recommended_restaurants(self) ->queryset:\n queryset = self.get_queryset()\n recommended = queryset.all().annotate(rates_avg=Avg('rates__stars'))\n return recommended\n\n def _get_special_restaurants(self) ->queryset:\n queryset = self.get_queryset()\n special_offers_restaurants = queryset.filter(Q(menus__discount__gt=\n 0) | Q(on_special_day=True))\n return special_offers_restaurants\n\n @action(['get'], detail=False, url_path='get-home')\n def home(self, request, *args, **kwargs):\n recommended = self._get_recommended_restaurants().order_by('?')[:5]\n special = self._get_special_restaurants().order_by('?')[:5]\n all_restaurants = self.get_queryset().order_by('?')[:5]\n recommended = self.get_serializer(recommended, many=True).data\n special = self.get_serializer(special, many=True).data\n all_restaurants = self.get_serializer(all_restaurants, many=True).data\n response = {'recommended': recommended, 'special': special, 'all':\n all_restaurants}\n return Response(response)\n\n @action(['get'], detail=False, url_path='special-offers')\n def special_offers(self, request, *args, **kwargs):\n serializer = self.get_serializer(self._get_special_restaurants().\n order_by('-created_at'), many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=False, url_path='recommended-offers')\n def recommended_offers(self, request, *args, **kwargs):\n serializer = self.get_serializer(self._get_recommended_restaurants(\n ).order_by('-rates_avg'), many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=True, url_path='restaurant-menus')\n def get_restaurant_menus(self, request, *args, **kwargs):\n categorized_menus = Menu.objects.grouped_by_meal_type_for_a_restaurant(\n restaurant_id=self.kwargs.get('pk'))\n return Response(categorized_menus)\n\n\nclass MenuViewSet(ModelViewSet):\n serializer_class = MenuSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Menu.objects.all()\n\n @action(['get'], detail=False, url_path='get-home')\n def home(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n special_offers = queryset.filter(~Q(discount=0)).order_by('?')[:5]\n recommended = queryset.all().order_by('?')[:5]\n special_offers = self.get_serializer(special_offers, many=True).data\n recommended = self.get_serializer(recommended, many=True).data\n response = {'recommended': recommended, 'special_offers':\n special_offers}\n return Response(data=response)\n\n @action(['get'], detail=False, url_path='special-offers')\n def special_offers(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n special_offers = queryset.filter(~Q(discount=0)).order_by('-created_at'\n )\n serializer = self.get_serializer(special_offers, many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=False, url_path='recommended-offers')\n def recommended_offers(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n recommended = queryset.all().order_by('-created_at')\n serializer = self.get_serializer(recommended, many=True)\n return Response(serializer.data)\n\n\nclass OrderViewSet(ModelViewSet):\n serializer_class = OrderWRestaurantSerializer\n permission_classes = [permissions.IsAuthenticated]\n queryset = Order.objects.all().order_by('-created_at')\n\n def get_serializer(self, *args, **kwargs):\n if self.action == 'create':\n return OrderSerializer(*args, **kwargs)\n return super(OrderViewSet, self).get_serializer(*args, **kwargs)\n\n def get_queryset(self):\n return super(OrderViewSet, self).get_queryset().filter(client=self.\n request.user.client)\n\n def create(self, request, *args, **kwargs):\n fixer = RequestDataFixer(request=request)\n return super(OrderViewSet, self).create(fixer, *args, **kwargs)\n\n\nclass OrderLineViewSet(ModelViewSet):\n serializer_class = OrderLineSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = OrderLine.objects.all()\n\n\nclass WilayaViewSet(ModelViewSet):\n serializer_class = WilayaSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = Wilaya.objects.all()\n\n\nclass CityViewSet(ModelViewSet):\n serializer_class = CitySerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = City.objects.all()\n\n\n<mask token>\n\n\nclass AddressViewSet(ModelViewSet):\n serializer_class = AddressSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Address.objects.all()\n\n @action(['PUT'], detail=True, url_path='set-default', url_name=\n 'set-default')\n def set_default(self, request, *args, **kwargs):\n instance = self.get_object()\n instance.default = True\n instance.save()\n self.get_queryset().filter(~Q(pk=instance.pk), belongs_to=request.\n user.client).update(default=False)\n return Response(self.get_serializer(instance).data)\n\n @action(['PUT'], detail=False, url_path='set-main', url_name='set-main')\n def set_main(self, request, *args, **kwargs):\n self.get_queryset().filter(belongs_to=request.user.client).update(\n default=False)\n return Response({'status': True})\n\n def get_queryset(self):\n return super(AddressViewSet, self).get_queryset().filter(belongs_to\n =self.request.user.client)\n\n\nclass PhoneViewSet(ModelViewSet):\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n serializer_class = PhoneSerializer\n queryset = Phone.objects.all()\n\n @action(['PUT'], detail=False, url_path='set-main', url_name='set-main')\n def set_main(self, request, *args, **kwargs):\n self.get_queryset().filter(user=request.user).update(default=False)\n return Response({'status': True})\n\n @action(['PUT'], detail=True, url_path='set-default', url_name=\n 'set-default')\n def set_default(self, request, *args, **kwargs):\n instance = self.get_object()\n instance.default = True\n instance.save()\n self.get_queryset().filter(~Q(pk=instance.pk), user=request.user\n ).update(default=False)\n return Response(self.get_serializer(instance).data)\n\n def get_queryset(self):\n return self.get_queryset().filter(user=self.request.user)\n", "step-3": "<mask token>\n\n\nclass CuisineViewSet(ModelViewSet):\n <mask token>\n <mask token>\n <mask token>\n\n\nclass MealTypeViewSet(ModelViewSet):\n permission_classes = [my_perms.IsAdminOrReadOnly]\n serializer_class = MealTypeSerializer\n queryset = MealType.objects.all()\n\n def get_serializer(self, *args, **kwargs):\n if self.action == 'get_types_with_menus':\n serializer_class = MealTypesWithMenuSerializer\n kwargs['context'] = self.get_serializer_context()\n return serializer_class(*args, **kwargs)\n return super(MealTypeViewSet, self).get_serializer(*args, **kwargs)\n\n @action(['get'], detail=False, url_path='type-with-menus')\n def get_types_with_menus(self, request, *args, **kwargs):\n types = self.get_queryset().filter(menus__offered_by=request.\n query_params.get('restaurant', 0))\n types = self.get_serializer(types, many=True).data\n return Response(types)\n\n\nclass RestaurantTypeViewSet(ModelViewSet):\n serializer_class = RestaurantTypeSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = RestaurantType.objects.all()\n\n\nclass RestaurantViewSet(ModelViewSet):\n serializer_class = RestaurantSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Restaurant.objects.all()\n\n def _get_recommended_restaurants(self) ->queryset:\n queryset = self.get_queryset()\n recommended = queryset.all().annotate(rates_avg=Avg('rates__stars'))\n return recommended\n\n def _get_special_restaurants(self) ->queryset:\n queryset = self.get_queryset()\n special_offers_restaurants = queryset.filter(Q(menus__discount__gt=\n 0) | Q(on_special_day=True))\n return special_offers_restaurants\n\n @action(['get'], detail=False, url_path='get-home')\n def home(self, request, *args, **kwargs):\n recommended = self._get_recommended_restaurants().order_by('?')[:5]\n special = self._get_special_restaurants().order_by('?')[:5]\n all_restaurants = self.get_queryset().order_by('?')[:5]\n recommended = self.get_serializer(recommended, many=True).data\n special = self.get_serializer(special, many=True).data\n all_restaurants = self.get_serializer(all_restaurants, many=True).data\n response = {'recommended': recommended, 'special': special, 'all':\n all_restaurants}\n return Response(response)\n\n @action(['get'], detail=False, url_path='special-offers')\n def special_offers(self, request, *args, **kwargs):\n serializer = self.get_serializer(self._get_special_restaurants().\n order_by('-created_at'), many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=False, url_path='recommended-offers')\n def recommended_offers(self, request, *args, **kwargs):\n serializer = self.get_serializer(self._get_recommended_restaurants(\n ).order_by('-rates_avg'), many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=True, url_path='restaurant-menus')\n def get_restaurant_menus(self, request, *args, **kwargs):\n categorized_menus = Menu.objects.grouped_by_meal_type_for_a_restaurant(\n restaurant_id=self.kwargs.get('pk'))\n return Response(categorized_menus)\n\n\nclass MenuViewSet(ModelViewSet):\n serializer_class = MenuSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Menu.objects.all()\n\n @action(['get'], detail=False, url_path='get-home')\n def home(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n special_offers = queryset.filter(~Q(discount=0)).order_by('?')[:5]\n recommended = queryset.all().order_by('?')[:5]\n special_offers = self.get_serializer(special_offers, many=True).data\n recommended = self.get_serializer(recommended, many=True).data\n response = {'recommended': recommended, 'special_offers':\n special_offers}\n return Response(data=response)\n\n @action(['get'], detail=False, url_path='special-offers')\n def special_offers(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n special_offers = queryset.filter(~Q(discount=0)).order_by('-created_at'\n )\n serializer = self.get_serializer(special_offers, many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=False, url_path='recommended-offers')\n def recommended_offers(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n recommended = queryset.all().order_by('-created_at')\n serializer = self.get_serializer(recommended, many=True)\n return Response(serializer.data)\n\n\nclass OrderViewSet(ModelViewSet):\n serializer_class = OrderWRestaurantSerializer\n permission_classes = [permissions.IsAuthenticated]\n queryset = Order.objects.all().order_by('-created_at')\n\n def get_serializer(self, *args, **kwargs):\n if self.action == 'create':\n return OrderSerializer(*args, **kwargs)\n return super(OrderViewSet, self).get_serializer(*args, **kwargs)\n\n def get_queryset(self):\n return super(OrderViewSet, self).get_queryset().filter(client=self.\n request.user.client)\n\n def create(self, request, *args, **kwargs):\n fixer = RequestDataFixer(request=request)\n return super(OrderViewSet, self).create(fixer, *args, **kwargs)\n\n\nclass OrderLineViewSet(ModelViewSet):\n serializer_class = OrderLineSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = OrderLine.objects.all()\n\n\nclass WilayaViewSet(ModelViewSet):\n serializer_class = WilayaSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = Wilaya.objects.all()\n\n\nclass CityViewSet(ModelViewSet):\n serializer_class = CitySerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = City.objects.all()\n\n\n<mask token>\n\n\nclass AddressViewSet(ModelViewSet):\n serializer_class = AddressSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Address.objects.all()\n\n @action(['PUT'], detail=True, url_path='set-default', url_name=\n 'set-default')\n def set_default(self, request, *args, **kwargs):\n instance = self.get_object()\n instance.default = True\n instance.save()\n self.get_queryset().filter(~Q(pk=instance.pk), belongs_to=request.\n user.client).update(default=False)\n return Response(self.get_serializer(instance).data)\n\n @action(['PUT'], detail=False, url_path='set-main', url_name='set-main')\n def set_main(self, request, *args, **kwargs):\n self.get_queryset().filter(belongs_to=request.user.client).update(\n default=False)\n return Response({'status': True})\n\n def get_queryset(self):\n return super(AddressViewSet, self).get_queryset().filter(belongs_to\n =self.request.user.client)\n\n\nclass PhoneViewSet(ModelViewSet):\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n serializer_class = PhoneSerializer\n queryset = Phone.objects.all()\n\n @action(['PUT'], detail=False, url_path='set-main', url_name='set-main')\n def set_main(self, request, *args, **kwargs):\n self.get_queryset().filter(user=request.user).update(default=False)\n return Response({'status': True})\n\n @action(['PUT'], detail=True, url_path='set-default', url_name=\n 'set-default')\n def set_default(self, request, *args, **kwargs):\n instance = self.get_object()\n instance.default = True\n instance.save()\n self.get_queryset().filter(~Q(pk=instance.pk), user=request.user\n ).update(default=False)\n return Response(self.get_serializer(instance).data)\n\n def get_queryset(self):\n return self.get_queryset().filter(user=self.request.user)\n", "step-4": "<mask token>\n\n\nclass CuisineViewSet(ModelViewSet):\n serializer_class = CuisineSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = Cuisine.objects.all()\n\n\nclass MealTypeViewSet(ModelViewSet):\n permission_classes = [my_perms.IsAdminOrReadOnly]\n serializer_class = MealTypeSerializer\n queryset = MealType.objects.all()\n\n def get_serializer(self, *args, **kwargs):\n if self.action == 'get_types_with_menus':\n serializer_class = MealTypesWithMenuSerializer\n kwargs['context'] = self.get_serializer_context()\n return serializer_class(*args, **kwargs)\n return super(MealTypeViewSet, self).get_serializer(*args, **kwargs)\n\n @action(['get'], detail=False, url_path='type-with-menus')\n def get_types_with_menus(self, request, *args, **kwargs):\n types = self.get_queryset().filter(menus__offered_by=request.\n query_params.get('restaurant', 0))\n types = self.get_serializer(types, many=True).data\n return Response(types)\n\n\nclass RestaurantTypeViewSet(ModelViewSet):\n serializer_class = RestaurantTypeSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = RestaurantType.objects.all()\n\n\nclass RestaurantViewSet(ModelViewSet):\n serializer_class = RestaurantSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Restaurant.objects.all()\n\n def _get_recommended_restaurants(self) ->queryset:\n queryset = self.get_queryset()\n recommended = queryset.all().annotate(rates_avg=Avg('rates__stars'))\n return recommended\n\n def _get_special_restaurants(self) ->queryset:\n queryset = self.get_queryset()\n special_offers_restaurants = queryset.filter(Q(menus__discount__gt=\n 0) | Q(on_special_day=True))\n return special_offers_restaurants\n\n @action(['get'], detail=False, url_path='get-home')\n def home(self, request, *args, **kwargs):\n recommended = self._get_recommended_restaurants().order_by('?')[:5]\n special = self._get_special_restaurants().order_by('?')[:5]\n all_restaurants = self.get_queryset().order_by('?')[:5]\n recommended = self.get_serializer(recommended, many=True).data\n special = self.get_serializer(special, many=True).data\n all_restaurants = self.get_serializer(all_restaurants, many=True).data\n response = {'recommended': recommended, 'special': special, 'all':\n all_restaurants}\n return Response(response)\n\n @action(['get'], detail=False, url_path='special-offers')\n def special_offers(self, request, *args, **kwargs):\n serializer = self.get_serializer(self._get_special_restaurants().\n order_by('-created_at'), many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=False, url_path='recommended-offers')\n def recommended_offers(self, request, *args, **kwargs):\n serializer = self.get_serializer(self._get_recommended_restaurants(\n ).order_by('-rates_avg'), many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=True, url_path='restaurant-menus')\n def get_restaurant_menus(self, request, *args, **kwargs):\n categorized_menus = Menu.objects.grouped_by_meal_type_for_a_restaurant(\n restaurant_id=self.kwargs.get('pk'))\n return Response(categorized_menus)\n\n\nclass MenuViewSet(ModelViewSet):\n serializer_class = MenuSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Menu.objects.all()\n\n @action(['get'], detail=False, url_path='get-home')\n def home(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n special_offers = queryset.filter(~Q(discount=0)).order_by('?')[:5]\n recommended = queryset.all().order_by('?')[:5]\n special_offers = self.get_serializer(special_offers, many=True).data\n recommended = self.get_serializer(recommended, many=True).data\n response = {'recommended': recommended, 'special_offers':\n special_offers}\n return Response(data=response)\n\n @action(['get'], detail=False, url_path='special-offers')\n def special_offers(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n special_offers = queryset.filter(~Q(discount=0)).order_by('-created_at'\n )\n serializer = self.get_serializer(special_offers, many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=False, url_path='recommended-offers')\n def recommended_offers(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n recommended = queryset.all().order_by('-created_at')\n serializer = self.get_serializer(recommended, many=True)\n return Response(serializer.data)\n\n\nclass OrderViewSet(ModelViewSet):\n serializer_class = OrderWRestaurantSerializer\n permission_classes = [permissions.IsAuthenticated]\n queryset = Order.objects.all().order_by('-created_at')\n\n def get_serializer(self, *args, **kwargs):\n if self.action == 'create':\n return OrderSerializer(*args, **kwargs)\n return super(OrderViewSet, self).get_serializer(*args, **kwargs)\n\n def get_queryset(self):\n return super(OrderViewSet, self).get_queryset().filter(client=self.\n request.user.client)\n\n def create(self, request, *args, **kwargs):\n fixer = RequestDataFixer(request=request)\n return super(OrderViewSet, self).create(fixer, *args, **kwargs)\n\n\nclass OrderLineViewSet(ModelViewSet):\n serializer_class = OrderLineSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = OrderLine.objects.all()\n\n\nclass WilayaViewSet(ModelViewSet):\n serializer_class = WilayaSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = Wilaya.objects.all()\n\n\nclass CityViewSet(ModelViewSet):\n serializer_class = CitySerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = City.objects.all()\n\n\n<mask token>\n\n\nclass AddressViewSet(ModelViewSet):\n serializer_class = AddressSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Address.objects.all()\n\n @action(['PUT'], detail=True, url_path='set-default', url_name=\n 'set-default')\n def set_default(self, request, *args, **kwargs):\n instance = self.get_object()\n instance.default = True\n instance.save()\n self.get_queryset().filter(~Q(pk=instance.pk), belongs_to=request.\n user.client).update(default=False)\n return Response(self.get_serializer(instance).data)\n\n @action(['PUT'], detail=False, url_path='set-main', url_name='set-main')\n def set_main(self, request, *args, **kwargs):\n self.get_queryset().filter(belongs_to=request.user.client).update(\n default=False)\n return Response({'status': True})\n\n def get_queryset(self):\n return super(AddressViewSet, self).get_queryset().filter(belongs_to\n =self.request.user.client)\n\n\nclass PhoneViewSet(ModelViewSet):\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n serializer_class = PhoneSerializer\n queryset = Phone.objects.all()\n\n @action(['PUT'], detail=False, url_path='set-main', url_name='set-main')\n def set_main(self, request, *args, **kwargs):\n self.get_queryset().filter(user=request.user).update(default=False)\n return Response({'status': True})\n\n @action(['PUT'], detail=True, url_path='set-default', url_name=\n 'set-default')\n def set_default(self, request, *args, **kwargs):\n instance = self.get_object()\n instance.default = True\n instance.save()\n self.get_queryset().filter(~Q(pk=instance.pk), user=request.user\n ).update(default=False)\n return Response(self.get_serializer(instance).data)\n\n def get_queryset(self):\n return self.get_queryset().filter(user=self.request.user)\n", "step-5": "from django.db.models import Q, Avg\nfrom django.http import JsonResponse\nfrom rest_framework import permissions\nfrom rest_framework.authtoken.models import Token\nfrom rest_framework.authtoken.views import ObtainAuthToken\nfrom rest_framework.decorators import action\nfrom rest_framework.response import Response\nfrom rest_framework.views import APIView\nfrom rest_framework.viewsets import ModelViewSet\n\nfrom base_backend import permissions as my_perms\nfrom base_backend.utils import RequestDataFixer\nfrom restaurants.models import User, Cuisine, MealType, AppVersion, RestaurantType, Restaurant, Menu, Order, OrderLine, \\\n Wilaya, City, Address, Phone\nfrom restaurants.serializers import UserSerializer, SmsConfirmationSerializer, CuisineSerializer, \\\n RestaurantTypeSerializer, RestaurantSerializer, MenuSerializer, OrderLineSerializer, WilayaSerializer, \\\n CitySerializer, OrderWRestaurantSerializer, MealTypesWithMenuSerializer, MealTypeSerializer, OrderSerializer, \\\n AddressSerializer, PhoneSerializer\n\n\nclass LoginApi(ObtainAuthToken):\n def post(self, request, *args, **kwargs):\n serializer = self.serializer_class(data=request.data,\n context=dict(request=request))\n serializer.is_valid(raise_exception=True)\n user = serializer.validated_data['user']\n token, created = Token.objects.get_or_create(user=user)\n\n return Response(\n dict(\n token=token.key,\n user_id=user.pk,\n phone=user.phone,\n email=user.email,\n type=user.user_type,\n photo=user.photo.url if user.photo else None,\n address=user.address,\n city=user.lives_in_id,\n birth_date=user.birth_date,\n username=user.username,\n # is_participant=user.client.is_participant if user.client is not None else None,\n # participant_id=user.client.participant.participant_id if user.client else None,\n )\n )\n\n\nclass UserViewSet(ModelViewSet):\n serializer_class = UserSerializer\n queryset = User.objects.filter(is_active=True)\n\n def get_permissions(self):\n if self.action == 'create' or self.action == 'register':\n return [permissions.AllowAny()]\n else:\n return [permissions.IsAuthenticatedOrReadOnly()]\n\n @action(methods=['post'], detail=False, url_path='register', permission_classes=[permissions.AllowAny()])\n def register(self, request, *args, **kwargs):\n response = super().create(request, *args, **kwargs)\n if response:\n response.data = dict(status=True, code=4)\n return response\n\n def create(self, request, *args, **kwargs):\n return self.register(request, *args, **kwargs)\n\n\nclass OtpApi(APIView):\n permission_classes = [permissions.AllowAny]\n\n def get(self, request):\n serializer = SmsConfirmationSerializer(data=request.GET)\n result = serializer.resend()\n if result:\n response = dict(status=True, code=5)\n else:\n response = dict(status=False, code=21)\n return Response(response)\n\n def put(self, request):\n serializer = SmsConfirmationSerializer(data=request.data)\n result = serializer.activate()\n if result:\n response = dict(status=True, code=5)\n else:\n response = dict(status=False, code=20)\n return Response(response)\n\n\nclass CuisineViewSet(ModelViewSet):\n serializer_class = CuisineSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = Cuisine.objects.all()\n\n\nclass MealTypeViewSet(ModelViewSet):\n permission_classes = [my_perms.IsAdminOrReadOnly]\n serializer_class = MealTypeSerializer\n queryset = MealType.objects.all()\n\n def get_serializer(self, *args, **kwargs):\n if self.action == \"get_types_with_menus\":\n serializer_class = MealTypesWithMenuSerializer\n kwargs['context'] = self.get_serializer_context()\n return serializer_class(*args, **kwargs)\n return super(MealTypeViewSet, self).get_serializer(*args, **kwargs)\n\n @action(['get'], detail=False, url_path=\"type-with-menus\", )\n def get_types_with_menus(self, request, *args, **kwargs):\n types = self.get_queryset().filter(menus__offered_by=request.query_params.get('restaurant', 0))\n types = self.get_serializer(types, many=True).data\n return Response(types)\n\n\nclass RestaurantTypeViewSet(ModelViewSet):\n serializer_class = RestaurantTypeSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = RestaurantType.objects.all()\n\n\nclass RestaurantViewSet(ModelViewSet):\n serializer_class = RestaurantSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Restaurant.objects.all()\n\n def _get_recommended_restaurants(self) -> queryset:\n queryset = self.get_queryset()\n recommended = queryset.all().annotate(rates_avg=Avg('rates__stars'))\n return recommended\n\n def _get_special_restaurants(self) -> queryset:\n queryset = self.get_queryset()\n special_offers_restaurants = queryset.filter(Q(menus__discount__gt=0) | Q(on_special_day=True))\n return special_offers_restaurants\n\n @action(['get'], detail=False, url_path=\"get-home\")\n def home(self, request, *args, **kwargs):\n recommended = self._get_recommended_restaurants().order_by('?')[:5]\n special = self._get_special_restaurants().order_by('?')[:5]\n all_restaurants = self.get_queryset().order_by('?')[:5]\n recommended = self.get_serializer(recommended, many=True).data\n special = self.get_serializer(special, many=True).data\n all_restaurants = self.get_serializer(all_restaurants, many=True).data\n response = {\n 'recommended': recommended,\n 'special': special,\n 'all': all_restaurants\n }\n return Response(response)\n\n @action(['get'], detail=False, url_path=\"special-offers\")\n def special_offers(self, request, *args, **kwargs):\n serializer = self.get_serializer(self._get_special_restaurants().order_by('-created_at'), many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=False, url_path=\"recommended-offers\")\n def recommended_offers(self, request, *args, **kwargs):\n serializer = self.get_serializer(self._get_recommended_restaurants().order_by('-rates_avg'), many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=True, url_path=\"restaurant-menus\")\n def get_restaurant_menus(self, request, *args, **kwargs):\n categorized_menus = Menu.objects.grouped_by_meal_type_for_a_restaurant(restaurant_id=self.kwargs.get('pk'))\n return Response(categorized_menus)\n\n\nclass MenuViewSet(ModelViewSet):\n serializer_class = MenuSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Menu.objects.all()\n\n @action(['get'], detail=False, url_path=\"get-home\")\n def home(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n special_offers = queryset.filter(~Q(discount=0)).order_by('?')[:5]\n recommended = queryset.all().order_by('?')[:5]\n special_offers = self.get_serializer(special_offers, many=True).data\n recommended = self.get_serializer(recommended, many=True).data\n response = {\n 'recommended': recommended,\n 'special_offers': special_offers\n }\n return Response(data=response)\n\n @action(['get'], detail=False, url_path=\"special-offers\")\n def special_offers(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n special_offers = queryset.filter(~Q(discount=0)).order_by('-created_at')\n serializer = self.get_serializer(special_offers, many=True)\n return Response(serializer.data)\n\n @action(['get'], detail=False, url_path=\"recommended-offers\")\n def recommended_offers(self, request, *args, **kwargs):\n queryset = self.get_queryset()\n recommended = queryset.all().order_by('-created_at')\n serializer = self.get_serializer(recommended, many=True)\n return Response(serializer.data)\n\n\nclass OrderViewSet(ModelViewSet):\n serializer_class = OrderWRestaurantSerializer\n permission_classes = [permissions.IsAuthenticated]\n queryset = Order.objects.all().order_by('-created_at')\n\n def get_serializer(self, *args, **kwargs):\n if self.action == \"create\":\n return OrderSerializer(*args, **kwargs)\n return super(OrderViewSet, self).get_serializer(*args, **kwargs)\n\n def get_queryset(self):\n return super(OrderViewSet, self).get_queryset().filter(client=self.request.user.client)\n\n def create(self, request, *args, **kwargs):\n fixer = RequestDataFixer(request=request)\n return super(OrderViewSet, self).create(fixer, *args, **kwargs)\n\n\nclass OrderLineViewSet(ModelViewSet):\n serializer_class = OrderLineSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = OrderLine.objects.all()\n\n\nclass WilayaViewSet(ModelViewSet):\n serializer_class = WilayaSerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = Wilaya.objects.all()\n\n\nclass CityViewSet(ModelViewSet):\n serializer_class = CitySerializer\n permission_classes = [my_perms.IsAdminOrReadOnly]\n queryset = City.objects.all()\n\n\ndef version(request):\n print('inside this')\n if request.GET.get('code', None):\n code = request.GET.get('code')\n AppVersion.objects.all().update(code=code)\n return JsonResponse({'updated': True})\n else:\n code = AppVersion.objects.all().first().code\n return JsonResponse({'code': code})\n\n\nclass AddressViewSet(ModelViewSet):\n serializer_class = AddressSerializer\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n queryset = Address.objects.all()\n\n @action(['PUT'], detail=True, url_path=\"set-default\", url_name='set-default')\n def set_default(self, request, *args, **kwargs):\n instance = self.get_object()\n instance.default = True\n instance.save()\n self.get_queryset().filter(~Q(pk=instance.pk), belongs_to=request.user.client).update(default=False)\n return Response(self.get_serializer(instance).data)\n\n @action(['PUT'], detail=False, url_path=\"set-main\", url_name='set-main')\n def set_main(self, request, *args, **kwargs):\n self.get_queryset().filter(belongs_to=request.user.client).update(default=False)\n return Response({\"status\": True})\n\n def get_queryset(self):\n return super(AddressViewSet, self).get_queryset().filter(belongs_to=self.request.user.client)\n\n\nclass PhoneViewSet(ModelViewSet):\n permission_classes = [permissions.IsAuthenticatedOrReadOnly]\n serializer_class = PhoneSerializer\n queryset = Phone.objects.all()\n\n @action(['PUT'], detail=False, url_path=\"set-main\", url_name='set-main')\n def set_main(self, request, *args, **kwargs):\n self.get_queryset().filter(user=request.user).update(default=False)\n return Response({\"status\": True})\n\n @action(['PUT'], detail=True, url_path=\"set-default\", url_name='set-default')\n def set_default(self, request, *args, **kwargs):\n instance = self.get_object()\n instance.default = True\n instance.save()\n self.get_queryset().filter(~Q(pk=instance.pk), user=request.user).update(default=False)\n return Response(self.get_serializer(instance).data)\n\n def get_queryset(self):\n return self.get_queryset().filter(user=self.request.user)\n", "step-ids": [ 34, 40, 41, 42, 56 ] }
[ 34, 40, 41, 42, 56 ]
# https://github.com/jscancella/NYTribuneOCRExperiments/blob/master/findText_usingSums.py import os import io from pathlib import Path import sys os.environ['OPENCV_IO_ENABLE_JASPER']='True' # has to be set before importing cv2 otherwise it won't read the variable import numpy as np import cv2 import subprocess from multiprocessing import Pool from scipy.signal import find_peaks, find_peaks_cwt import scipy.ndimage as ndimage from IPython.display import Image as KImage #custom kernel that is used to blend together text in the Y axis DILATE_KERNEL = np.array([ [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0]], dtype=np.uint8) # Run adaptative thresholding (is slow af compared to not using it in pipeline) def adaptative_thresholding(img, threshold): # Load image I = img # Convert image to grayscale gray = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY) # Original image size orignrows, origncols = gray.shape # Windows size M = int(np.floor(orignrows/16) + 1) N = int(np.floor(origncols/16) + 1) # Image border padding related to windows size Mextend = round(M/2)-1 Nextend = round(N/2)-1 # Padding image aux =cv2.copyMakeBorder(gray, top=Mextend, bottom=Mextend, left=Nextend, right=Nextend, borderType=cv2.BORDER_REFLECT) windows = np.zeros((M,N),np.int32) # Image integral calculation imageIntegral = cv2.integral(aux, windows,-1) # Integral image size nrows, ncols = imageIntegral.shape # Memory allocation for cumulative region image result = np.zeros((orignrows, origncols)) # Image cumulative pixels in windows size calculation for i in range(nrows-M): for j in range(ncols-N): result[i, j] = imageIntegral[i+M, j+N] - imageIntegral[i, j+N]+ imageIntegral[i, j] - imageIntegral[i+M,j] # Output binary image memory allocation binar = np.ones((orignrows, origncols), dtype=np.bool) # Gray image weighted by windows size graymult = (gray).astype('float64')*M*N # Output image binarization binar[graymult <= result*(100.0 - threshold)/100.0] = False # binary image to UINT8 conversion binar = (255*binar).astype(np.uint8) return binar def Q_test(sorted_data): conf95_level = {3: .97, 4: .829, 5: .71, 6: .625, 7: .568, 8: .526, 9: .493} q_exp = abs(sorted_data[1] - sorted_data[0]) / abs(sorted_data[-1] - sorted_data[0]) print(str(abs(sorted_data[1] - sorted_data[0])) + ' / ' + str(abs(sorted_data[-1] - sorted_data[0]))) print("q_exp : " + str(q_exp)) return q_exp > conf95_level[min(9, len(sorted_data))] # static variables for clarity COLUMNS = 0 GREEN = (0, 255, 0) # parameters that can be tweaked LINE_THICKNESS = 3 # how thick to make the line around the found contours in the debug output PADDING = 10 # padding to add around the found possible column to help account for image skew and such CREATE_COLUMN_OUTLINE_IMAGES = True # if we detect that we didn't find all the columns. Create a debug image (tiff) showing the columns that were found def columnIndexes(a): """ creates pair of indexes for left and right index of the image column For example [13, 1257, 2474, 3695, 4907, 6149] becomes: [[13 1257], [1257 2474], [2474 3695], [3695 4907], [4907 6149]] """ nrows = (a.size-2)+1 return a[1*np.arange(nrows)[:,None] + np.arange(2)] def convertToGrayscale(img): temp_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) return temp_img def invert(img): """ Black -> White | White -> Black """ print("invert image") # Should we edit these parameters? #3/18/21 - experimented on threshold, 140 is good. _,temp_img = cv2.threshold(img, 140, 255, cv2.THRESH_BINARY_INV) return temp_img def dilateDirection(img, debug=False): """ It is just opposite of erosion. Here, a pixel element is '1' if atleast one pixel under the kernel is '1'. So it increases the white region in the image or size of foreground object increases. Normally, in cases like noise removal, erosion is followed by dilation. Because, erosion removes white noises, but it also shrinks our object. So we dilate it. Since noise is gone, they won't come back, but our object area increases. It is also useful in joining broken parts of an object. """ print("applying dilation morph") temp_img = cv2.dilate(img, DILATE_KERNEL, iterations=15) #the more iterations the more the text gets stretched in the Y axis, 15 seems about right. ''' if debug: filepath = os.path.join(debugOutputDirectory, '%s-dilation.tiff' % basename) cv2.imwrite(filepath, temp_img) ''' return temp_img def createColumnImages(img, basename, directory): """ we sum each column of the inverted image. The columns should show up as peaks in the sums uses scipy.signal.find_peaks to find those peaks and use them as column indexes """ files = [] temp_img = convertToGrayscale(img) temp_img = invert(temp_img) temp_img = dilateDirection(temp_img) sums = np.sum(temp_img, axis = COLUMNS) sums[0] = 1000 # some random value so that find_peaks properly detects the peak for the left most column sums = sums * -4 # invert so that minimums become maximums and exagerate the data so it is more clear what the peaks are peaks, _ = find_peaks(sums, distance=600) # the column indexs of the img array, spaced at least 800 away from the previous peak sum_to_index = dict((sums[peaks[i]], peaks[i]) for i in range(len(peaks))) sorted_sums = sorted(sum_to_index.keys()) ''' qr = Q_test(sorted_sums) if qr: peaks = peaks[peaks != sum_to_index[sorted_sums[0]]] ''' print("PeakNum, Sum, QRemove for " + basename) for x in peaks: print(str(x) + ', ' + str(sums[x])) print("----------") if peaks.size == 0: with open('troublesomeImages.txt', 'a') as f: print("ERROR: something went wrong with finding the peaks for image: ", os.path.join(directory, basename)) f.write(os.path.join(directory, basename) + ".jpg 0\n") return files peaks[0] = 0 # automatically make the left most column index the start of the image peaks[-1] =sums.size -1 # automatically make the right most column index the end of the image boxed = np.copy(img) if peaks.size < 6: with open('troublesomeImages.txt', 'a') as f: print("found image that is causing problems: ", os.path.join(directory, basename)) f.write(os.path.join(directory, basename) + ".jpg " + str(peaks.size) + "\n") columnIndexPairs = columnIndexes(peaks) ystart = 0 yend = img.shape[0] for columnIndexPair in columnIndexPairs: xstart = max(columnIndexPair[0]-PADDING, 0) xend = min(columnIndexPair[1]+PADDING, img.shape[1]) if not os.path.exists(directory): os.makedirs(directory) filepath = os.path.join(directory, '%s_xStart%s_xEnd%s.jpg' % (basename, xstart,xend)) files.append(filepath) crop_img = img[ystart:yend, xstart:xend] print("writing out cropped image: ", filepath) # Apply adaptative thresholding to the image with a threshold of 25/100 #crop_img = adaptative_thresholding(crop_img, 25) if not cv2.imwrite(filepath, crop_img): print('failed') if CREATE_COLUMN_OUTLINE_IMAGES: cv2.rectangle(boxed,(xstart,ystart),(xend,yend), GREEN, LINE_THICKNESS) if CREATE_COLUMN_OUTLINE_IMAGES: filepath = os.path.join(directory, '%s-contours.jpeg' % basename) cv2.imwrite(filepath, boxed, [cv2.IMWRITE_JPEG_QUALITY, 50]) # For removing the old image? # os.remove(os.path.join(directory, basename + ".jp2")) return files def invert_experiment(): test_img = cv2.imread('./ocr/data/8k71pf94q/1_commonwealth_8k71pf94q_accessFull.jpg') for thresh in range(1, 200, 20): print('writing thresh= ' + str(thresh)) _,temp_img = cv2.threshold(test_img, thresh, 255, cv2.THRESH_BINARY_INV) cv2.imwrite('./ocr/test_images/thresh='+str(thresh)+'.jpg', temp_img) def test(img, basename): #h, w, _ = img.shape #test_img = cv2.imread('./ocr/data/8k71pf94q/2_commonwealth_8k71pf94q_accessFull.jpg') test_img = convertToGrayscale(img) #ret,test_img = cv2.threshold(test_img,25,255,0) #cv2.imwrite('./ocr/test_images/contours/'+basename+'prepixelcrop.jpg', test_img) #test_img = test_img[10:h-10, 10: w-10] #y_nonzero, x_nonzero = np.nonzero(test_img) #test_img = test_img[np.min(y_nonzero):np.max(y_nonzero), np.min(x_nonzero):np.max(x_nonzero)] test_img = invert(test_img) test_img = dilateDirection(test_img) #contours,hierarchy = cv2.findContours(test_img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) #cnt = contours[0] #x,y,w,h = cv2.boundingRect(cnt) #test_img = cv2.rectangle(img,(10,10),(w-10, h-10), GREEN, LINE_THICKNESS) #test_img = cv2.drawContours(test_img, contours, -1, GREEN, LINE_THICKNESS) #crop = test_img[y:y+h,x:x+w] cv2.imwrite('./ocr/test_images/contours/'+basename+'dilated.jpg', test_img) ''' for r in range(0, 40, 5): name = 'rank=' + str(r) + ".jpg" path = './ocr/test_images/' + name new_img = ndimage.rank_filter(test_img, rank=r, size=20) print("writing " + name) cv2.imwrite(path, new_img) ''' #cv2.imwrite('./ocr/test_images/inverted.jpg', test_img) if __name__ == "__main__": print("STARTING") for f in os.listdir('./ocr/data/gb19gw39h/'): if f.endswith(".jpg"): #test(cv2.imread(os.path.join('./ocr/data/gb19gw39h/', f)), 'gb19gw39h-' + f[0]) createColumnImages(cv2.imread(os.path.join('./ocr/data/gb19gw39h/', f)), 'gb19gw39h-' + f[0], './ocr/columns/gb19gw39h/') for f in os.listdir('./ocr/data/8k71pf94q/'): if f.endswith(".jpg"): #test(cv2.imread(os.path.join('./ocr/data/gb19gw39h/', f)), 'gb19gw39h-' + f[0]) createColumnImages(cv2.imread(os.path.join('./ocr/data/8k71pf94q/', f)), '8k71pf94q-' + f[0], './ocr/columns/8k71pf94q/') for f in os.listdir('./ocr/data/mc87rq85m/'): if f.endswith(".jpg"): #test(cv2.imread(os.path.join('./ocr/data/gb19gw39h/', f)), 'gb19gw39h-' + f[0]) createColumnImages(cv2.imread(os.path.join('./ocr/data/mc87rq85m/', f)), 'mc87rq85m-' + f[0], './ocr/columns/mc87rq85m/') ''' data_folder = './ocr/data/' for folder in os.listdir(data_folder): if folder == ".DS_Store": continue for file in os.listdir(os.path.join(data_folder, folder)): if file.endswith(".jpg"): print("calling test() on " + file) #test(cv2.imread(os.path.join(data_folder, folder, file)),folder+'-'+file[0]) createColumnImages(cv2.imread(os.path.join(data_folder, folder, file)), folder+'-'+file[0], './ocr/columns/'+folder+'/') for f in os.listdir('./ocr/data/8k71pr786/'): if f.endswith(".jpg"): for d in range(550, 850, 50): createColumnImages(cv2.imread(os.path.join('./ocr/data/8k71pr786/', f)), '8k71pr786-'+f[0]+'-d=' + str(d), './ocr/test_images/test_contour/8k71pr786/', d) #createColumnImages(cv2.imread('./ocr/data/8k71pr786/'), 'tester2', './ocr/data/columns/tester/') '''
normal
{ "blob_id": "91d240b02b9d7a6c569656337521482d57918754", "index": 4333, "step-1": "<mask token>\n\n\ndef adaptative_thresholding(img, threshold):\n I = img\n gray = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)\n orignrows, origncols = gray.shape\n M = int(np.floor(orignrows / 16) + 1)\n N = int(np.floor(origncols / 16) + 1)\n Mextend = round(M / 2) - 1\n Nextend = round(N / 2) - 1\n aux = cv2.copyMakeBorder(gray, top=Mextend, bottom=Mextend, left=\n Nextend, right=Nextend, borderType=cv2.BORDER_REFLECT)\n windows = np.zeros((M, N), np.int32)\n imageIntegral = cv2.integral(aux, windows, -1)\n nrows, ncols = imageIntegral.shape\n result = np.zeros((orignrows, origncols))\n for i in range(nrows - M):\n for j in range(ncols - N):\n result[i, j] = imageIntegral[i + M, j + N] - imageIntegral[i, j + N\n ] + imageIntegral[i, j] - imageIntegral[i + M, j]\n binar = np.ones((orignrows, origncols), dtype=np.bool)\n graymult = gray.astype('float64') * M * N\n binar[graymult <= result * (100.0 - threshold) / 100.0] = False\n binar = (255 * binar).astype(np.uint8)\n return binar\n\n\n<mask token>\n\n\ndef convertToGrayscale(img):\n temp_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n return temp_img\n\n\ndef invert(img):\n \"\"\" Black -> White | White -> Black \"\"\"\n print('invert image')\n _, temp_img = cv2.threshold(img, 140, 255, cv2.THRESH_BINARY_INV)\n return temp_img\n\n\ndef dilateDirection(img, debug=False):\n \"\"\"\n It is just opposite of erosion. Here, a pixel element is '1' if atleast one pixel under the kernel is '1'. \n So it increases the white region in the image or size of foreground object increases. \n Normally, in cases like noise removal, erosion is followed by dilation. \n Because, erosion removes white noises, but it also shrinks our object. \n So we dilate it. Since noise is gone, they won't come back, but our object area increases. \n It is also useful in joining broken parts of an object. \n \"\"\"\n print('applying dilation morph')\n temp_img = cv2.dilate(img, DILATE_KERNEL, iterations=15)\n \"\"\"\n if debug:\n filepath = os.path.join(debugOutputDirectory, '%s-dilation.tiff' % basename)\n cv2.imwrite(filepath, temp_img)\n \"\"\"\n return temp_img\n\n\ndef createColumnImages(img, basename, directory):\n \"\"\"\n we sum each column of the inverted image. The columns should show up as peaks in the sums\n uses scipy.signal.find_peaks to find those peaks and use them as column indexes\n \"\"\"\n files = []\n temp_img = convertToGrayscale(img)\n temp_img = invert(temp_img)\n temp_img = dilateDirection(temp_img)\n sums = np.sum(temp_img, axis=COLUMNS)\n sums[0] = 1000\n sums = sums * -4\n peaks, _ = find_peaks(sums, distance=600)\n sum_to_index = dict((sums[peaks[i]], peaks[i]) for i in range(len(peaks)))\n sorted_sums = sorted(sum_to_index.keys())\n \"\"\"\n qr = Q_test(sorted_sums)\n if qr:\n peaks = peaks[peaks != sum_to_index[sorted_sums[0]]]\n \"\"\"\n print('PeakNum, Sum, QRemove for ' + basename)\n for x in peaks:\n print(str(x) + ', ' + str(sums[x]))\n print('----------')\n if peaks.size == 0:\n with open('troublesomeImages.txt', 'a') as f:\n print(\n 'ERROR: something went wrong with finding the peaks for image: '\n , os.path.join(directory, basename))\n f.write(os.path.join(directory, basename) + '.jpg 0\\n')\n return files\n peaks[0] = 0\n peaks[-1] = sums.size - 1\n boxed = np.copy(img)\n if peaks.size < 6:\n with open('troublesomeImages.txt', 'a') as f:\n print('found image that is causing problems: ', os.path.join(\n directory, basename))\n f.write(os.path.join(directory, basename) + '.jpg ' + str(peaks\n .size) + '\\n')\n columnIndexPairs = columnIndexes(peaks)\n ystart = 0\n yend = img.shape[0]\n for columnIndexPair in columnIndexPairs:\n xstart = max(columnIndexPair[0] - PADDING, 0)\n xend = min(columnIndexPair[1] + PADDING, img.shape[1])\n if not os.path.exists(directory):\n os.makedirs(directory)\n filepath = os.path.join(directory, '%s_xStart%s_xEnd%s.jpg' % (\n basename, xstart, xend))\n files.append(filepath)\n crop_img = img[ystart:yend, xstart:xend]\n print('writing out cropped image: ', filepath)\n if not cv2.imwrite(filepath, crop_img):\n print('failed')\n if CREATE_COLUMN_OUTLINE_IMAGES:\n cv2.rectangle(boxed, (xstart, ystart), (xend, yend), GREEN,\n LINE_THICKNESS)\n if CREATE_COLUMN_OUTLINE_IMAGES:\n filepath = os.path.join(directory, '%s-contours.jpeg' % basename)\n cv2.imwrite(filepath, boxed, [cv2.IMWRITE_JPEG_QUALITY, 50])\n return files\n\n\n<mask token>\n\n\ndef test(img, basename):\n test_img = convertToGrayscale(img)\n test_img = invert(test_img)\n test_img = dilateDirection(test_img)\n cv2.imwrite('./ocr/test_images/contours/' + basename + 'dilated.jpg',\n test_img)\n \"\"\"\n for r in range(0, 40, 5):\n name = 'rank=' + str(r) + \".jpg\"\n path = './ocr/test_images/' + name\n\n new_img = ndimage.rank_filter(test_img, rank=r, size=20)\n print(\"writing \" + name)\n cv2.imwrite(path, new_img)\n \"\"\"\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef adaptative_thresholding(img, threshold):\n I = img\n gray = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)\n orignrows, origncols = gray.shape\n M = int(np.floor(orignrows / 16) + 1)\n N = int(np.floor(origncols / 16) + 1)\n Mextend = round(M / 2) - 1\n Nextend = round(N / 2) - 1\n aux = cv2.copyMakeBorder(gray, top=Mextend, bottom=Mextend, left=\n Nextend, right=Nextend, borderType=cv2.BORDER_REFLECT)\n windows = np.zeros((M, N), np.int32)\n imageIntegral = cv2.integral(aux, windows, -1)\n nrows, ncols = imageIntegral.shape\n result = np.zeros((orignrows, origncols))\n for i in range(nrows - M):\n for j in range(ncols - N):\n result[i, j] = imageIntegral[i + M, j + N] - imageIntegral[i, j + N\n ] + imageIntegral[i, j] - imageIntegral[i + M, j]\n binar = np.ones((orignrows, origncols), dtype=np.bool)\n graymult = gray.astype('float64') * M * N\n binar[graymult <= result * (100.0 - threshold) / 100.0] = False\n binar = (255 * binar).astype(np.uint8)\n return binar\n\n\n<mask token>\n\n\ndef convertToGrayscale(img):\n temp_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n return temp_img\n\n\ndef invert(img):\n \"\"\" Black -> White | White -> Black \"\"\"\n print('invert image')\n _, temp_img = cv2.threshold(img, 140, 255, cv2.THRESH_BINARY_INV)\n return temp_img\n\n\ndef dilateDirection(img, debug=False):\n \"\"\"\n It is just opposite of erosion. Here, a pixel element is '1' if atleast one pixel under the kernel is '1'. \n So it increases the white region in the image or size of foreground object increases. \n Normally, in cases like noise removal, erosion is followed by dilation. \n Because, erosion removes white noises, but it also shrinks our object. \n So we dilate it. Since noise is gone, they won't come back, but our object area increases. \n It is also useful in joining broken parts of an object. \n \"\"\"\n print('applying dilation morph')\n temp_img = cv2.dilate(img, DILATE_KERNEL, iterations=15)\n \"\"\"\n if debug:\n filepath = os.path.join(debugOutputDirectory, '%s-dilation.tiff' % basename)\n cv2.imwrite(filepath, temp_img)\n \"\"\"\n return temp_img\n\n\ndef createColumnImages(img, basename, directory):\n \"\"\"\n we sum each column of the inverted image. The columns should show up as peaks in the sums\n uses scipy.signal.find_peaks to find those peaks and use them as column indexes\n \"\"\"\n files = []\n temp_img = convertToGrayscale(img)\n temp_img = invert(temp_img)\n temp_img = dilateDirection(temp_img)\n sums = np.sum(temp_img, axis=COLUMNS)\n sums[0] = 1000\n sums = sums * -4\n peaks, _ = find_peaks(sums, distance=600)\n sum_to_index = dict((sums[peaks[i]], peaks[i]) for i in range(len(peaks)))\n sorted_sums = sorted(sum_to_index.keys())\n \"\"\"\n qr = Q_test(sorted_sums)\n if qr:\n peaks = peaks[peaks != sum_to_index[sorted_sums[0]]]\n \"\"\"\n print('PeakNum, Sum, QRemove for ' + basename)\n for x in peaks:\n print(str(x) + ', ' + str(sums[x]))\n print('----------')\n if peaks.size == 0:\n with open('troublesomeImages.txt', 'a') as f:\n print(\n 'ERROR: something went wrong with finding the peaks for image: '\n , os.path.join(directory, basename))\n f.write(os.path.join(directory, basename) + '.jpg 0\\n')\n return files\n peaks[0] = 0\n peaks[-1] = sums.size - 1\n boxed = np.copy(img)\n if peaks.size < 6:\n with open('troublesomeImages.txt', 'a') as f:\n print('found image that is causing problems: ', os.path.join(\n directory, basename))\n f.write(os.path.join(directory, basename) + '.jpg ' + str(peaks\n .size) + '\\n')\n columnIndexPairs = columnIndexes(peaks)\n ystart = 0\n yend = img.shape[0]\n for columnIndexPair in columnIndexPairs:\n xstart = max(columnIndexPair[0] - PADDING, 0)\n xend = min(columnIndexPair[1] + PADDING, img.shape[1])\n if not os.path.exists(directory):\n os.makedirs(directory)\n filepath = os.path.join(directory, '%s_xStart%s_xEnd%s.jpg' % (\n basename, xstart, xend))\n files.append(filepath)\n crop_img = img[ystart:yend, xstart:xend]\n print('writing out cropped image: ', filepath)\n if not cv2.imwrite(filepath, crop_img):\n print('failed')\n if CREATE_COLUMN_OUTLINE_IMAGES:\n cv2.rectangle(boxed, (xstart, ystart), (xend, yend), GREEN,\n LINE_THICKNESS)\n if CREATE_COLUMN_OUTLINE_IMAGES:\n filepath = os.path.join(directory, '%s-contours.jpeg' % basename)\n cv2.imwrite(filepath, boxed, [cv2.IMWRITE_JPEG_QUALITY, 50])\n return files\n\n\ndef invert_experiment():\n test_img = cv2.imread(\n './ocr/data/8k71pf94q/1_commonwealth_8k71pf94q_accessFull.jpg')\n for thresh in range(1, 200, 20):\n print('writing thresh= ' + str(thresh))\n _, temp_img = cv2.threshold(test_img, thresh, 255, cv2.\n THRESH_BINARY_INV)\n cv2.imwrite('./ocr/test_images/thresh=' + str(thresh) + '.jpg',\n temp_img)\n\n\ndef test(img, basename):\n test_img = convertToGrayscale(img)\n test_img = invert(test_img)\n test_img = dilateDirection(test_img)\n cv2.imwrite('./ocr/test_images/contours/' + basename + 'dilated.jpg',\n test_img)\n \"\"\"\n for r in range(0, 40, 5):\n name = 'rank=' + str(r) + \".jpg\"\n path = './ocr/test_images/' + name\n\n new_img = ndimage.rank_filter(test_img, rank=r, size=20)\n print(\"writing \" + name)\n cv2.imwrite(path, new_img)\n \"\"\"\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef adaptative_thresholding(img, threshold):\n I = img\n gray = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)\n orignrows, origncols = gray.shape\n M = int(np.floor(orignrows / 16) + 1)\n N = int(np.floor(origncols / 16) + 1)\n Mextend = round(M / 2) - 1\n Nextend = round(N / 2) - 1\n aux = cv2.copyMakeBorder(gray, top=Mextend, bottom=Mextend, left=\n Nextend, right=Nextend, borderType=cv2.BORDER_REFLECT)\n windows = np.zeros((M, N), np.int32)\n imageIntegral = cv2.integral(aux, windows, -1)\n nrows, ncols = imageIntegral.shape\n result = np.zeros((orignrows, origncols))\n for i in range(nrows - M):\n for j in range(ncols - N):\n result[i, j] = imageIntegral[i + M, j + N] - imageIntegral[i, j + N\n ] + imageIntegral[i, j] - imageIntegral[i + M, j]\n binar = np.ones((orignrows, origncols), dtype=np.bool)\n graymult = gray.astype('float64') * M * N\n binar[graymult <= result * (100.0 - threshold) / 100.0] = False\n binar = (255 * binar).astype(np.uint8)\n return binar\n\n\n<mask token>\n\n\ndef columnIndexes(a):\n \"\"\"\n creates pair of indexes for left and right index of the image column\n For example [13, 1257, 2474, 3695, 4907, 6149]\n becomes: [[13 1257], [1257 2474], [2474 3695], [3695 4907], [4907 6149]]\n \"\"\"\n nrows = a.size - 2 + 1\n return a[1 * np.arange(nrows)[:, None] + np.arange(2)]\n\n\ndef convertToGrayscale(img):\n temp_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n return temp_img\n\n\ndef invert(img):\n \"\"\" Black -> White | White -> Black \"\"\"\n print('invert image')\n _, temp_img = cv2.threshold(img, 140, 255, cv2.THRESH_BINARY_INV)\n return temp_img\n\n\ndef dilateDirection(img, debug=False):\n \"\"\"\n It is just opposite of erosion. Here, a pixel element is '1' if atleast one pixel under the kernel is '1'. \n So it increases the white region in the image or size of foreground object increases. \n Normally, in cases like noise removal, erosion is followed by dilation. \n Because, erosion removes white noises, but it also shrinks our object. \n So we dilate it. Since noise is gone, they won't come back, but our object area increases. \n It is also useful in joining broken parts of an object. \n \"\"\"\n print('applying dilation morph')\n temp_img = cv2.dilate(img, DILATE_KERNEL, iterations=15)\n \"\"\"\n if debug:\n filepath = os.path.join(debugOutputDirectory, '%s-dilation.tiff' % basename)\n cv2.imwrite(filepath, temp_img)\n \"\"\"\n return temp_img\n\n\ndef createColumnImages(img, basename, directory):\n \"\"\"\n we sum each column of the inverted image. The columns should show up as peaks in the sums\n uses scipy.signal.find_peaks to find those peaks and use them as column indexes\n \"\"\"\n files = []\n temp_img = convertToGrayscale(img)\n temp_img = invert(temp_img)\n temp_img = dilateDirection(temp_img)\n sums = np.sum(temp_img, axis=COLUMNS)\n sums[0] = 1000\n sums = sums * -4\n peaks, _ = find_peaks(sums, distance=600)\n sum_to_index = dict((sums[peaks[i]], peaks[i]) for i in range(len(peaks)))\n sorted_sums = sorted(sum_to_index.keys())\n \"\"\"\n qr = Q_test(sorted_sums)\n if qr:\n peaks = peaks[peaks != sum_to_index[sorted_sums[0]]]\n \"\"\"\n print('PeakNum, Sum, QRemove for ' + basename)\n for x in peaks:\n print(str(x) + ', ' + str(sums[x]))\n print('----------')\n if peaks.size == 0:\n with open('troublesomeImages.txt', 'a') as f:\n print(\n 'ERROR: something went wrong with finding the peaks for image: '\n , os.path.join(directory, basename))\n f.write(os.path.join(directory, basename) + '.jpg 0\\n')\n return files\n peaks[0] = 0\n peaks[-1] = sums.size - 1\n boxed = np.copy(img)\n if peaks.size < 6:\n with open('troublesomeImages.txt', 'a') as f:\n print('found image that is causing problems: ', os.path.join(\n directory, basename))\n f.write(os.path.join(directory, basename) + '.jpg ' + str(peaks\n .size) + '\\n')\n columnIndexPairs = columnIndexes(peaks)\n ystart = 0\n yend = img.shape[0]\n for columnIndexPair in columnIndexPairs:\n xstart = max(columnIndexPair[0] - PADDING, 0)\n xend = min(columnIndexPair[1] + PADDING, img.shape[1])\n if not os.path.exists(directory):\n os.makedirs(directory)\n filepath = os.path.join(directory, '%s_xStart%s_xEnd%s.jpg' % (\n basename, xstart, xend))\n files.append(filepath)\n crop_img = img[ystart:yend, xstart:xend]\n print('writing out cropped image: ', filepath)\n if not cv2.imwrite(filepath, crop_img):\n print('failed')\n if CREATE_COLUMN_OUTLINE_IMAGES:\n cv2.rectangle(boxed, (xstart, ystart), (xend, yend), GREEN,\n LINE_THICKNESS)\n if CREATE_COLUMN_OUTLINE_IMAGES:\n filepath = os.path.join(directory, '%s-contours.jpeg' % basename)\n cv2.imwrite(filepath, boxed, [cv2.IMWRITE_JPEG_QUALITY, 50])\n return files\n\n\ndef invert_experiment():\n test_img = cv2.imread(\n './ocr/data/8k71pf94q/1_commonwealth_8k71pf94q_accessFull.jpg')\n for thresh in range(1, 200, 20):\n print('writing thresh= ' + str(thresh))\n _, temp_img = cv2.threshold(test_img, thresh, 255, cv2.\n THRESH_BINARY_INV)\n cv2.imwrite('./ocr/test_images/thresh=' + str(thresh) + '.jpg',\n temp_img)\n\n\ndef test(img, basename):\n test_img = convertToGrayscale(img)\n test_img = invert(test_img)\n test_img = dilateDirection(test_img)\n cv2.imwrite('./ocr/test_images/contours/' + basename + 'dilated.jpg',\n test_img)\n \"\"\"\n for r in range(0, 40, 5):\n name = 'rank=' + str(r) + \".jpg\"\n path = './ocr/test_images/' + name\n\n new_img = ndimage.rank_filter(test_img, rank=r, size=20)\n print(\"writing \" + name)\n cv2.imwrite(path, new_img)\n \"\"\"\n\n\n<mask token>\n", "step-4": "<mask token>\nos.environ['OPENCV_IO_ENABLE_JASPER'] = 'True'\n<mask token>\nDILATE_KERNEL = np.array([[0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0,\n 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0,\n 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0,\n 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0]], dtype\n =np.uint8)\n\n\ndef adaptative_thresholding(img, threshold):\n I = img\n gray = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)\n orignrows, origncols = gray.shape\n M = int(np.floor(orignrows / 16) + 1)\n N = int(np.floor(origncols / 16) + 1)\n Mextend = round(M / 2) - 1\n Nextend = round(N / 2) - 1\n aux = cv2.copyMakeBorder(gray, top=Mextend, bottom=Mextend, left=\n Nextend, right=Nextend, borderType=cv2.BORDER_REFLECT)\n windows = np.zeros((M, N), np.int32)\n imageIntegral = cv2.integral(aux, windows, -1)\n nrows, ncols = imageIntegral.shape\n result = np.zeros((orignrows, origncols))\n for i in range(nrows - M):\n for j in range(ncols - N):\n result[i, j] = imageIntegral[i + M, j + N] - imageIntegral[i, j + N\n ] + imageIntegral[i, j] - imageIntegral[i + M, j]\n binar = np.ones((orignrows, origncols), dtype=np.bool)\n graymult = gray.astype('float64') * M * N\n binar[graymult <= result * (100.0 - threshold) / 100.0] = False\n binar = (255 * binar).astype(np.uint8)\n return binar\n\n\ndef Q_test(sorted_data):\n conf95_level = {(3): 0.97, (4): 0.829, (5): 0.71, (6): 0.625, (7): \n 0.568, (8): 0.526, (9): 0.493}\n q_exp = abs(sorted_data[1] - sorted_data[0]) / abs(sorted_data[-1] -\n sorted_data[0])\n print(str(abs(sorted_data[1] - sorted_data[0])) + ' / ' + str(abs(\n sorted_data[-1] - sorted_data[0])))\n print('q_exp : ' + str(q_exp))\n return q_exp > conf95_level[min(9, len(sorted_data))]\n\n\nCOLUMNS = 0\nGREEN = 0, 255, 0\nLINE_THICKNESS = 3\nPADDING = 10\nCREATE_COLUMN_OUTLINE_IMAGES = True\n\n\ndef columnIndexes(a):\n \"\"\"\n creates pair of indexes for left and right index of the image column\n For example [13, 1257, 2474, 3695, 4907, 6149]\n becomes: [[13 1257], [1257 2474], [2474 3695], [3695 4907], [4907 6149]]\n \"\"\"\n nrows = a.size - 2 + 1\n return a[1 * np.arange(nrows)[:, None] + np.arange(2)]\n\n\ndef convertToGrayscale(img):\n temp_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n return temp_img\n\n\ndef invert(img):\n \"\"\" Black -> White | White -> Black \"\"\"\n print('invert image')\n _, temp_img = cv2.threshold(img, 140, 255, cv2.THRESH_BINARY_INV)\n return temp_img\n\n\ndef dilateDirection(img, debug=False):\n \"\"\"\n It is just opposite of erosion. Here, a pixel element is '1' if atleast one pixel under the kernel is '1'. \n So it increases the white region in the image or size of foreground object increases. \n Normally, in cases like noise removal, erosion is followed by dilation. \n Because, erosion removes white noises, but it also shrinks our object. \n So we dilate it. Since noise is gone, they won't come back, but our object area increases. \n It is also useful in joining broken parts of an object. \n \"\"\"\n print('applying dilation morph')\n temp_img = cv2.dilate(img, DILATE_KERNEL, iterations=15)\n \"\"\"\n if debug:\n filepath = os.path.join(debugOutputDirectory, '%s-dilation.tiff' % basename)\n cv2.imwrite(filepath, temp_img)\n \"\"\"\n return temp_img\n\n\ndef createColumnImages(img, basename, directory):\n \"\"\"\n we sum each column of the inverted image. The columns should show up as peaks in the sums\n uses scipy.signal.find_peaks to find those peaks and use them as column indexes\n \"\"\"\n files = []\n temp_img = convertToGrayscale(img)\n temp_img = invert(temp_img)\n temp_img = dilateDirection(temp_img)\n sums = np.sum(temp_img, axis=COLUMNS)\n sums[0] = 1000\n sums = sums * -4\n peaks, _ = find_peaks(sums, distance=600)\n sum_to_index = dict((sums[peaks[i]], peaks[i]) for i in range(len(peaks)))\n sorted_sums = sorted(sum_to_index.keys())\n \"\"\"\n qr = Q_test(sorted_sums)\n if qr:\n peaks = peaks[peaks != sum_to_index[sorted_sums[0]]]\n \"\"\"\n print('PeakNum, Sum, QRemove for ' + basename)\n for x in peaks:\n print(str(x) + ', ' + str(sums[x]))\n print('----------')\n if peaks.size == 0:\n with open('troublesomeImages.txt', 'a') as f:\n print(\n 'ERROR: something went wrong with finding the peaks for image: '\n , os.path.join(directory, basename))\n f.write(os.path.join(directory, basename) + '.jpg 0\\n')\n return files\n peaks[0] = 0\n peaks[-1] = sums.size - 1\n boxed = np.copy(img)\n if peaks.size < 6:\n with open('troublesomeImages.txt', 'a') as f:\n print('found image that is causing problems: ', os.path.join(\n directory, basename))\n f.write(os.path.join(directory, basename) + '.jpg ' + str(peaks\n .size) + '\\n')\n columnIndexPairs = columnIndexes(peaks)\n ystart = 0\n yend = img.shape[0]\n for columnIndexPair in columnIndexPairs:\n xstart = max(columnIndexPair[0] - PADDING, 0)\n xend = min(columnIndexPair[1] + PADDING, img.shape[1])\n if not os.path.exists(directory):\n os.makedirs(directory)\n filepath = os.path.join(directory, '%s_xStart%s_xEnd%s.jpg' % (\n basename, xstart, xend))\n files.append(filepath)\n crop_img = img[ystart:yend, xstart:xend]\n print('writing out cropped image: ', filepath)\n if not cv2.imwrite(filepath, crop_img):\n print('failed')\n if CREATE_COLUMN_OUTLINE_IMAGES:\n cv2.rectangle(boxed, (xstart, ystart), (xend, yend), GREEN,\n LINE_THICKNESS)\n if CREATE_COLUMN_OUTLINE_IMAGES:\n filepath = os.path.join(directory, '%s-contours.jpeg' % basename)\n cv2.imwrite(filepath, boxed, [cv2.IMWRITE_JPEG_QUALITY, 50])\n return files\n\n\ndef invert_experiment():\n test_img = cv2.imread(\n './ocr/data/8k71pf94q/1_commonwealth_8k71pf94q_accessFull.jpg')\n for thresh in range(1, 200, 20):\n print('writing thresh= ' + str(thresh))\n _, temp_img = cv2.threshold(test_img, thresh, 255, cv2.\n THRESH_BINARY_INV)\n cv2.imwrite('./ocr/test_images/thresh=' + str(thresh) + '.jpg',\n temp_img)\n\n\ndef test(img, basename):\n test_img = convertToGrayscale(img)\n test_img = invert(test_img)\n test_img = dilateDirection(test_img)\n cv2.imwrite('./ocr/test_images/contours/' + basename + 'dilated.jpg',\n test_img)\n \"\"\"\n for r in range(0, 40, 5):\n name = 'rank=' + str(r) + \".jpg\"\n path = './ocr/test_images/' + name\n\n new_img = ndimage.rank_filter(test_img, rank=r, size=20)\n print(\"writing \" + name)\n cv2.imwrite(path, new_img)\n \"\"\"\n\n\nif __name__ == '__main__':\n print('STARTING')\n for f in os.listdir('./ocr/data/gb19gw39h/'):\n if f.endswith('.jpg'):\n createColumnImages(cv2.imread(os.path.join(\n './ocr/data/gb19gw39h/', f)), 'gb19gw39h-' + f[0],\n './ocr/columns/gb19gw39h/')\n for f in os.listdir('./ocr/data/8k71pf94q/'):\n if f.endswith('.jpg'):\n createColumnImages(cv2.imread(os.path.join(\n './ocr/data/8k71pf94q/', f)), '8k71pf94q-' + f[0],\n './ocr/columns/8k71pf94q/')\n for f in os.listdir('./ocr/data/mc87rq85m/'):\n if f.endswith('.jpg'):\n createColumnImages(cv2.imread(os.path.join(\n './ocr/data/mc87rq85m/', f)), 'mc87rq85m-' + f[0],\n './ocr/columns/mc87rq85m/')\n \"\"\"\n data_folder = './ocr/data/'\n for folder in os.listdir(data_folder):\n if folder == \".DS_Store\":\n continue\n for file in os.listdir(os.path.join(data_folder, folder)):\n if file.endswith(\".jpg\"):\n print(\"calling test() on \" + file)\n #test(cv2.imread(os.path.join(data_folder, folder, file)),folder+'-'+file[0])\n createColumnImages(cv2.imread(os.path.join(data_folder, folder, file)), folder+'-'+file[0], './ocr/columns/'+folder+'/')\n \n for f in os.listdir('./ocr/data/8k71pr786/'):\n if f.endswith(\".jpg\"):\n for d in range(550, 850, 50):\n createColumnImages(cv2.imread(os.path.join('./ocr/data/8k71pr786/', f)), '8k71pr786-'+f[0]+'-d=' + str(d), './ocr/test_images/test_contour/8k71pr786/', d)\n #createColumnImages(cv2.imread('./ocr/data/8k71pr786/'), 'tester2', './ocr/data/columns/tester/')\n \"\"\"\n", "step-5": "\n# https://github.com/jscancella/NYTribuneOCRExperiments/blob/master/findText_usingSums.py\nimport os\nimport io\nfrom pathlib import Path\nimport sys\nos.environ['OPENCV_IO_ENABLE_JASPER']='True' # has to be set before importing cv2 otherwise it won't read the variable\nimport numpy as np\nimport cv2\n\nimport subprocess\nfrom multiprocessing import Pool\nfrom scipy.signal import find_peaks, find_peaks_cwt\n\nimport scipy.ndimage as ndimage\nfrom IPython.display import Image as KImage\n\n#custom kernel that is used to blend together text in the Y axis\nDILATE_KERNEL = np.array([\n [0, 0, 0, 0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 1, 0, 0, 0, 0]], dtype=np.uint8)\n\n\n# Run adaptative thresholding (is slow af compared to not using it in pipeline)\ndef adaptative_thresholding(img, threshold):\n # Load image\n I = img\n # Convert image to grayscale\n gray = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)\n # Original image size\n orignrows, origncols = gray.shape\n # Windows size\n M = int(np.floor(orignrows/16) + 1)\n N = int(np.floor(origncols/16) + 1)\n # Image border padding related to windows size\n Mextend = round(M/2)-1\n Nextend = round(N/2)-1\n # Padding image\n aux =cv2.copyMakeBorder(gray, top=Mextend, bottom=Mextend, left=Nextend,\n right=Nextend, borderType=cv2.BORDER_REFLECT)\n windows = np.zeros((M,N),np.int32)\n # Image integral calculation\n imageIntegral = cv2.integral(aux, windows,-1)\n # Integral image size\n nrows, ncols = imageIntegral.shape\n # Memory allocation for cumulative region image\n result = np.zeros((orignrows, origncols))\n # Image cumulative pixels in windows size calculation\n for i in range(nrows-M):\n for j in range(ncols-N):\n result[i, j] = imageIntegral[i+M, j+N] - imageIntegral[i, j+N]+ imageIntegral[i, j] - imageIntegral[i+M,j]\n\n # Output binary image memory allocation\n binar = np.ones((orignrows, origncols), dtype=np.bool)\n # Gray image weighted by windows size\n graymult = (gray).astype('float64')*M*N\n # Output image binarization\n binar[graymult <= result*(100.0 - threshold)/100.0] = False\n # binary image to UINT8 conversion\n binar = (255*binar).astype(np.uint8)\n\n return binar\n\ndef Q_test(sorted_data):\n conf95_level = {3: .97, 4: .829, 5: .71, 6: .625, 7: .568, 8: .526, 9: .493}\n q_exp = abs(sorted_data[1] - sorted_data[0]) / abs(sorted_data[-1] - sorted_data[0])\n print(str(abs(sorted_data[1] - sorted_data[0])) + ' / ' + str(abs(sorted_data[-1] - sorted_data[0])))\n print(\"q_exp : \" + str(q_exp))\n return q_exp > conf95_level[min(9, len(sorted_data))]\n\n\n# static variables for clarity\nCOLUMNS = 0\nGREEN = (0, 255, 0)\n\n# parameters that can be tweaked\nLINE_THICKNESS = 3 # how thick to make the line around the found contours in the debug output\nPADDING = 10 # padding to add around the found possible column to help account for image skew and such\nCREATE_COLUMN_OUTLINE_IMAGES = True # if we detect that we didn't find all the columns. Create a debug image (tiff) showing the columns that were found\n\ndef columnIndexes(a):\n \"\"\"\n creates pair of indexes for left and right index of the image column\n For example [13, 1257, 2474, 3695, 4907, 6149]\n becomes: [[13 1257], [1257 2474], [2474 3695], [3695 4907], [4907 6149]]\n \"\"\"\n nrows = (a.size-2)+1\n return a[1*np.arange(nrows)[:,None] + np.arange(2)]\n\ndef convertToGrayscale(img):\n temp_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)\n return temp_img\n\ndef invert(img):\n \"\"\" Black -> White | White -> Black \"\"\"\n print(\"invert image\")\n # Should we edit these parameters?\n #3/18/21 - experimented on threshold, 140 is good.\n _,temp_img = cv2.threshold(img, 140, 255, cv2.THRESH_BINARY_INV)\n return temp_img\n\ndef dilateDirection(img, debug=False):\n \"\"\"\n It is just opposite of erosion. Here, a pixel element is '1' if atleast one pixel under the kernel is '1'. \n So it increases the white region in the image or size of foreground object increases. \n Normally, in cases like noise removal, erosion is followed by dilation. \n Because, erosion removes white noises, but it also shrinks our object. \n So we dilate it. Since noise is gone, they won't come back, but our object area increases. \n It is also useful in joining broken parts of an object. \n \"\"\"\n print(\"applying dilation morph\")\n temp_img = cv2.dilate(img, DILATE_KERNEL, iterations=15) #the more iterations the more the text gets stretched in the Y axis, 15 seems about right.\n '''\n if debug:\n filepath = os.path.join(debugOutputDirectory, '%s-dilation.tiff' % basename)\n cv2.imwrite(filepath, temp_img)\n '''\n return temp_img\n\ndef createColumnImages(img, basename, directory):\n \"\"\"\n we sum each column of the inverted image. The columns should show up as peaks in the sums\n uses scipy.signal.find_peaks to find those peaks and use them as column indexes\n \"\"\"\n files = []\n temp_img = convertToGrayscale(img)\n temp_img = invert(temp_img)\n temp_img = dilateDirection(temp_img)\n \n sums = np.sum(temp_img, axis = COLUMNS)\n \n sums[0] = 1000 # some random value so that find_peaks properly detects the peak for the left most column\n sums = sums * -4 # invert so that minimums become maximums and exagerate the data so it is more clear what the peaks are \n peaks, _ = find_peaks(sums, distance=600) # the column indexs of the img array, spaced at least 800 away from the previous peak\n\n sum_to_index = dict((sums[peaks[i]], peaks[i]) for i in range(len(peaks)))\n sorted_sums = sorted(sum_to_index.keys())\n '''\n qr = Q_test(sorted_sums)\n if qr:\n peaks = peaks[peaks != sum_to_index[sorted_sums[0]]]\n '''\n print(\"PeakNum, Sum, QRemove for \" + basename)\n for x in peaks:\n print(str(x) + ', ' + str(sums[x]))\n print(\"----------\")\n\n if peaks.size == 0:\n with open('troublesomeImages.txt', 'a') as f:\n print(\"ERROR: something went wrong with finding the peaks for image: \", os.path.join(directory, basename))\n f.write(os.path.join(directory, basename) + \".jpg 0\\n\")\n return files\n\n peaks[0] = 0 # automatically make the left most column index the start of the image\n peaks[-1] =sums.size -1 # automatically make the right most column index the end of the image\n\n boxed = np.copy(img)\n if peaks.size < 6:\n with open('troublesomeImages.txt', 'a') as f:\n print(\"found image that is causing problems: \", os.path.join(directory, basename))\n f.write(os.path.join(directory, basename) + \".jpg \" + str(peaks.size) + \"\\n\")\n\n columnIndexPairs = columnIndexes(peaks)\n\n ystart = 0\n yend = img.shape[0]\n for columnIndexPair in columnIndexPairs:\n xstart = max(columnIndexPair[0]-PADDING, 0)\n xend = min(columnIndexPair[1]+PADDING, img.shape[1])\n if not os.path.exists(directory):\n os.makedirs(directory)\n filepath = os.path.join(directory, '%s_xStart%s_xEnd%s.jpg' % (basename, xstart,xend))\n files.append(filepath)\n crop_img = img[ystart:yend, xstart:xend]\n \n print(\"writing out cropped image: \", filepath)\n # Apply adaptative thresholding to the image with a threshold of 25/100\n #crop_img = adaptative_thresholding(crop_img, 25)\n if not cv2.imwrite(filepath, crop_img):\n print('failed')\n\n if CREATE_COLUMN_OUTLINE_IMAGES:\n cv2.rectangle(boxed,(xstart,ystart),(xend,yend), GREEN, LINE_THICKNESS)\n\n if CREATE_COLUMN_OUTLINE_IMAGES:\n filepath = os.path.join(directory, '%s-contours.jpeg' % basename)\n cv2.imwrite(filepath, boxed, [cv2.IMWRITE_JPEG_QUALITY, 50])\n # For removing the old image?\n # os.remove(os.path.join(directory, basename + \".jp2\"))\n\n return files\n\ndef invert_experiment():\n test_img = cv2.imread('./ocr/data/8k71pf94q/1_commonwealth_8k71pf94q_accessFull.jpg')\n for thresh in range(1, 200, 20):\n print('writing thresh= ' + str(thresh))\n _,temp_img = cv2.threshold(test_img, thresh, 255, cv2.THRESH_BINARY_INV)\n cv2.imwrite('./ocr/test_images/thresh='+str(thresh)+'.jpg', temp_img)\n\n\n\ndef test(img, basename):\n #h, w, _ = img.shape\n #test_img = cv2.imread('./ocr/data/8k71pf94q/2_commonwealth_8k71pf94q_accessFull.jpg')\n test_img = convertToGrayscale(img)\n #ret,test_img = cv2.threshold(test_img,25,255,0)\n #cv2.imwrite('./ocr/test_images/contours/'+basename+'prepixelcrop.jpg', test_img)\n #test_img = test_img[10:h-10, 10: w-10]\n #y_nonzero, x_nonzero = np.nonzero(test_img)\n #test_img = test_img[np.min(y_nonzero):np.max(y_nonzero), np.min(x_nonzero):np.max(x_nonzero)]\n test_img = invert(test_img)\n test_img = dilateDirection(test_img)\n\n #contours,hierarchy = cv2.findContours(test_img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)\n #cnt = contours[0]\n #x,y,w,h = cv2.boundingRect(cnt)\n #test_img = cv2.rectangle(img,(10,10),(w-10, h-10), GREEN, LINE_THICKNESS)\n #test_img = cv2.drawContours(test_img, contours, -1, GREEN, LINE_THICKNESS)\n #crop = test_img[y:y+h,x:x+w]\n cv2.imwrite('./ocr/test_images/contours/'+basename+'dilated.jpg', test_img)\n '''\n for r in range(0, 40, 5):\n name = 'rank=' + str(r) + \".jpg\"\n path = './ocr/test_images/' + name\n\n new_img = ndimage.rank_filter(test_img, rank=r, size=20)\n print(\"writing \" + name)\n cv2.imwrite(path, new_img)\n '''\n #cv2.imwrite('./ocr/test_images/inverted.jpg', test_img)\n\n \n\n\nif __name__ == \"__main__\":\n print(\"STARTING\")\n for f in os.listdir('./ocr/data/gb19gw39h/'):\n if f.endswith(\".jpg\"):\n #test(cv2.imread(os.path.join('./ocr/data/gb19gw39h/', f)), 'gb19gw39h-' + f[0])\n createColumnImages(cv2.imread(os.path.join('./ocr/data/gb19gw39h/', f)), 'gb19gw39h-' + f[0], './ocr/columns/gb19gw39h/')\n\n for f in os.listdir('./ocr/data/8k71pf94q/'):\n if f.endswith(\".jpg\"):\n #test(cv2.imread(os.path.join('./ocr/data/gb19gw39h/', f)), 'gb19gw39h-' + f[0])\n createColumnImages(cv2.imread(os.path.join('./ocr/data/8k71pf94q/', f)), '8k71pf94q-' + f[0], './ocr/columns/8k71pf94q/')\n\n for f in os.listdir('./ocr/data/mc87rq85m/'):\n if f.endswith(\".jpg\"):\n #test(cv2.imread(os.path.join('./ocr/data/gb19gw39h/', f)), 'gb19gw39h-' + f[0])\n createColumnImages(cv2.imread(os.path.join('./ocr/data/mc87rq85m/', f)), 'mc87rq85m-' + f[0], './ocr/columns/mc87rq85m/')\n\n '''\n data_folder = './ocr/data/'\n for folder in os.listdir(data_folder):\n if folder == \".DS_Store\":\n continue\n for file in os.listdir(os.path.join(data_folder, folder)):\n if file.endswith(\".jpg\"):\n print(\"calling test() on \" + file)\n #test(cv2.imread(os.path.join(data_folder, folder, file)),folder+'-'+file[0])\n createColumnImages(cv2.imread(os.path.join(data_folder, folder, file)), folder+'-'+file[0], './ocr/columns/'+folder+'/')\n \n for f in os.listdir('./ocr/data/8k71pr786/'):\n if f.endswith(\".jpg\"):\n for d in range(550, 850, 50):\n createColumnImages(cv2.imread(os.path.join('./ocr/data/8k71pr786/', f)), '8k71pr786-'+f[0]+'-d=' + str(d), './ocr/test_images/test_contour/8k71pr786/', d)\n #createColumnImages(cv2.imread('./ocr/data/8k71pr786/'), 'tester2', './ocr/data/columns/tester/')\n '''\n\n", "step-ids": [ 6, 7, 8, 11, 13 ] }
[ 6, 7, 8, 11, 13 ]
from django.test import TestCase # Create your tests here. def Add_course(self,user):
normal
{ "blob_id": "7fc239e7f44c5f6a8e5bebe3e4910aee4d8e4af3", "index": 9266, "step-1": "from django.test import TestCase\n\n# Create your tests here.\n\ndef Add_course(self,user):\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/python3 experiment_name = "nodes10" wall = "wall2" wall_image = "irati_110" mr_dif_policy = True spn_dif_policy = True destination_ip = "2001:40b0:7500:286:84:88:81:57"
normal
{ "blob_id": "78db25586f742b0a20bc3fad382b0d4f1a271841", "index": 3970, "step-1": "<mask token>\n", "step-2": "experiment_name = 'nodes10'\nwall = 'wall2'\nwall_image = 'irati_110'\nmr_dif_policy = True\nspn_dif_policy = True\ndestination_ip = '2001:40b0:7500:286:84:88:81:57'\n", "step-3": "#!/usr/bin/python3\n\nexperiment_name = \"nodes10\"\nwall = \"wall2\"\nwall_image = \"irati_110\"\nmr_dif_policy = True\nspn_dif_policy = True\ndestination_ip = \"2001:40b0:7500:286:84:88:81:57\"\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from fgpio import GPIO import boards
normal
{ "blob_id": "f66f79cd4132b23c082149a3a1d887f661fd7ee5", "index": 7247, "step-1": "<mask token>\n", "step-2": "from fgpio import GPIO\nimport boards\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
# %% import pandas as pd import numpy as np from dataprep.eda import plot from dataprep.eda import plot_correlation from dataprep.eda import plot_missing import matplotlib.pyplot as plt import seaborn as sns sns.set(style="whitegrid", color_codes=True) sns.set(font_scale=1) # %% # Minimal Processing wines = pd.read_csv("winemag-data-130k-v2.csv") wines.columns wines.drop(columns='Unnamed: 0', inplace=True) wines.dropna(axis='index', subset=['price'], inplace=True) wines.drop_duplicates(inplace=True) # %% # Overall Distribution plot(wines) # %% # Price Dist -> Clean plot(wines, "price") # %% plot(wines, "points") # %% plot(wines, "price", "points") # %% plot_correlation(wines, "price", "points") # %% plot_missing(wines) # %% plot_missing(wines, "price", "points") # %% plot_correlation(wines, "price") # %% # END EDA # %
normal
{ "blob_id": "79e8ed64058dda6c8d7bacc08727bc978088ad2d", "index": 4963, "step-1": "<mask token>\n", "step-2": "<mask token>\nsns.set(style='whitegrid', color_codes=True)\nsns.set(font_scale=1)\n<mask token>\nwines.columns\nwines.drop(columns='Unnamed: 0', inplace=True)\nwines.dropna(axis='index', subset=['price'], inplace=True)\nwines.drop_duplicates(inplace=True)\nplot(wines)\nplot(wines, 'price')\nplot(wines, 'points')\nplot(wines, 'price', 'points')\nplot_correlation(wines, 'price', 'points')\nplot_missing(wines)\nplot_missing(wines, 'price', 'points')\nplot_correlation(wines, 'price')\n", "step-3": "<mask token>\nsns.set(style='whitegrid', color_codes=True)\nsns.set(font_scale=1)\nwines = pd.read_csv('winemag-data-130k-v2.csv')\nwines.columns\nwines.drop(columns='Unnamed: 0', inplace=True)\nwines.dropna(axis='index', subset=['price'], inplace=True)\nwines.drop_duplicates(inplace=True)\nplot(wines)\nplot(wines, 'price')\nplot(wines, 'points')\nplot(wines, 'price', 'points')\nplot_correlation(wines, 'price', 'points')\nplot_missing(wines)\nplot_missing(wines, 'price', 'points')\nplot_correlation(wines, 'price')\n", "step-4": "import pandas as pd\nimport numpy as np\nfrom dataprep.eda import plot\nfrom dataprep.eda import plot_correlation\nfrom dataprep.eda import plot_missing\nimport matplotlib.pyplot as plt\nimport seaborn as sns\nsns.set(style='whitegrid', color_codes=True)\nsns.set(font_scale=1)\nwines = pd.read_csv('winemag-data-130k-v2.csv')\nwines.columns\nwines.drop(columns='Unnamed: 0', inplace=True)\nwines.dropna(axis='index', subset=['price'], inplace=True)\nwines.drop_duplicates(inplace=True)\nplot(wines)\nplot(wines, 'price')\nplot(wines, 'points')\nplot(wines, 'price', 'points')\nplot_correlation(wines, 'price', 'points')\nplot_missing(wines)\nplot_missing(wines, 'price', 'points')\nplot_correlation(wines, 'price')\n", "step-5": "# %%\nimport pandas as pd\nimport numpy as np\n\nfrom dataprep.eda import plot\nfrom dataprep.eda import plot_correlation\nfrom dataprep.eda import plot_missing\n\n\nimport matplotlib.pyplot as plt\nimport seaborn as sns\nsns.set(style=\"whitegrid\", color_codes=True)\nsns.set(font_scale=1)\n\n# %%\n# Minimal Processing\nwines = pd.read_csv(\"winemag-data-130k-v2.csv\")\nwines.columns\nwines.drop(columns='Unnamed: 0', inplace=True)\nwines.dropna(axis='index', subset=['price'], inplace=True)\nwines.drop_duplicates(inplace=True)\n# %%\n# Overall Distribution\nplot(wines)\n# %% # Price Dist -> Clean\nplot(wines, \"price\")\n\n# %%\nplot(wines, \"points\")\n\n# %%\nplot(wines, \"price\", \"points\")\n\n# %%\nplot_correlation(wines, \"price\", \"points\")\n# %%\nplot_missing(wines)\n# %%\nplot_missing(wines, \"price\", \"points\")\n\n# %%\nplot_correlation(wines, \"price\")\n# %%\n# END EDA\n# %\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import pandas as pd import os from appia.processors.core import normalizer from math import ceil class Experiment: def __init__(self, id) -> None: self.id = id self.version = 4 self._hplc = None self._fplc = None @property def hplc(self): try: return self._hplc except AttributeError: return None @hplc.setter def hplc(self, df): if isinstance(df, pd.DataFrame) or df is None: try: self._hplc = df.sort_values(by=["Normalization", "Channel", "mL"]) except AttributeError: self._hplc = df else: raise TypeError("HPLC input is not a pandas dataframe") @property def fplc(self): try: return self._fplc except AttributeError: return None @fplc.setter def fplc(self, df): if isinstance(df, pd.DataFrame) or df is None: self._fplc = df else: raise TypeError("FPLC input is not a pandas dataframe") @property def wide(self): wide = self.hplc.copy() wide = wide.loc[wide["Normalization"] == "Signal"] wide["Sample"] = wide["Sample"].astype(str) + " " + wide["Channel"] wide.drop(["Channel", "Normalization"], axis=1) wide = wide.pivot_table(index="Time", columns="Sample", values="Value") return wide def __repr__(self): to_return = f'Experiment "{self.id}" with ' if self.hplc is not None: to_return += "HPLC " if self.hplc is not None and self.fplc is not None: to_return += "and " if self.fplc is not None: to_return += "FPLC " if self.hplc is None and self.fplc is None: to_return += "no " to_return += "data" return to_return def extend_hplc(self, hplc): if not isinstance(hplc, pd.DataFrame): raise TypeError(f"Tried to extend experiment hplc with {type(hplc)}") self.hplc = pd.concat([self.hplc, hplc]) def show_tables(self): print("HPLC:") print(self.hplc) print("FPLC:") print(self.fplc) def jsonify(self): if self.hplc is not None: hplc_json = ( self.hplc.pivot_table( index=["mL", "Channel", "Time", "Normalization"], columns="Sample", values="Value", ) .reset_index() .to_json() ) else: hplc_json = "" if self.fplc is not None: fplc_json = self.fplc.to_json() else: fplc_json = "" doc = { "_id": self.id, "version": self.version, "hplc": hplc_json, "fplc": fplc_json, } return doc def renormalize_hplc(self, norm_range, strict): if self.hplc is None: raise ValueError("No HPLC data") # this arcane string of pandas commands is the equivalent of pivot_wider from tidyverse # from https://medium.com/@durgaswaroop/reshaping-pandas-dataframes-melt-and-unmelt-9f57518c7738;.'/ hplc = self.hplc.pivot( index=["mL", "Sample", "Channel", "Time"], columns=["Normalization"] )["Value"].reset_index() hplc = hplc.groupby(["Sample", "Channel"], group_keys=False).apply( lambda x: normalizer(x, norm_range, strict) ) hplc = hplc.melt( id_vars=["mL", "Sample", "Channel", "Time"], value_vars=["Signal", "Normalized"], var_name="Normalization", value_name="Value", ) self.hplc = hplc def renormalize_fplc(self, norm_range, strict): if self.fplc is None: raise ValueError("No FPLC data") fplc = self.fplc.pivot( index=["mL", "CV", "Fraction", "Channel", "Sample"], columns=["Normalization"], )["Value"].reset_index() fplc = fplc.groupby(["Sample", "Channel"], group_keys=False).apply( lambda x: normalizer(x, norm_range, strict) ) fplc = fplc.melt( id_vars=["mL", "CV", "Channel", "Fraction", "Sample"], value_vars=["Signal", "Normalized"], var_name="Normalization", value_name="Value", ) self.fplc = fplc def reduce_hplc(self, num_points): # reduce the number of points in the hplc trace to num_points per sample/channel/norm def reduction_factor(df, final_points): reduction_factor = ceil(df.shape[0] / final_points) return df[::reduction_factor] try: self.hplc = self.hplc.groupby( ["Channel", "Sample", "Normalization"], group_keys=False, as_index=False ).apply(lambda x: reduction_factor(x, num_points)) self.hplc = self.hplc.reset_index(drop=True) except AttributeError: return def rename_channels(self, channel_name_dict): self.hplc = self.hplc.replace({"Channel": channel_name_dict}) def hplc_csv(self, outfile): if outfile[-4:] == ".csv": outfile = outfile[:-4] if self.hplc is not None: self.hplc.to_csv(outfile + "-long.csv", index=False) self.wide.to_csv(outfile + "-wide.csv", index=True) return outfile + "-long.csv" def fplc_csv(self, outfile): if outfile[-4:] != ".csv": outfile = outfile + ".csv" if self.fplc is not None: self.fplc.to_csv(outfile, index=False) return outfile def save_csvs(self, path): hplc_csv = self.hplc_csv(os.path.join(path, f"{self.id}_hplc")) fplc_csv = self.fplc_csv(os.path.join(path, f"{self.id}_fplc")) return hplc_csv, fplc_csv def concat_experiments(exp_list): hplcs = [] fplcs = [] for exp in [x for x in exp_list if x.hplc is not None]: hplc = exp.hplc hplc["Sample"] = f"{exp.id}: " + hplc["Sample"].astype(str) hplcs.append(hplc) for exp in [x for x in exp_list if x.fplc is not None]: fplc = exp.fplc fplc["Sample"] = exp.id fplcs.append(fplc) concat_exp = Experiment("concat") try: concat_exp.hplc = pd.concat(hplcs) except ValueError: pass try: concat_exp.fplc = pd.concat(fplcs) except ValueError: pass return concat_exp
normal
{ "blob_id": "754b34028780231c7eccb98cdf3e83bd615d843f", "index": 5276, "step-1": "<mask token>\n\n\nclass Experiment:\n <mask token>\n <mask token>\n\n @hplc.setter\n def hplc(self, df):\n if isinstance(df, pd.DataFrame) or df is None:\n try:\n self._hplc = df.sort_values(by=['Normalization', 'Channel',\n 'mL'])\n except AttributeError:\n self._hplc = df\n else:\n raise TypeError('HPLC input is not a pandas dataframe')\n\n @property\n def fplc(self):\n try:\n return self._fplc\n except AttributeError:\n return None\n <mask token>\n\n @property\n def wide(self):\n wide = self.hplc.copy()\n wide = wide.loc[wide['Normalization'] == 'Signal']\n wide['Sample'] = wide['Sample'].astype(str) + ' ' + wide['Channel']\n wide.drop(['Channel', 'Normalization'], axis=1)\n wide = wide.pivot_table(index='Time', columns='Sample', values='Value')\n return wide\n\n def __repr__(self):\n to_return = f'Experiment \"{self.id}\" with '\n if self.hplc is not None:\n to_return += 'HPLC '\n if self.hplc is not None and self.fplc is not None:\n to_return += 'and '\n if self.fplc is not None:\n to_return += 'FPLC '\n if self.hplc is None and self.fplc is None:\n to_return += 'no '\n to_return += 'data'\n return to_return\n\n def extend_hplc(self, hplc):\n if not isinstance(hplc, pd.DataFrame):\n raise TypeError(\n f'Tried to extend experiment hplc with {type(hplc)}')\n self.hplc = pd.concat([self.hplc, hplc])\n <mask token>\n\n def jsonify(self):\n if self.hplc is not None:\n hplc_json = self.hplc.pivot_table(index=['mL', 'Channel',\n 'Time', 'Normalization'], columns='Sample', values='Value'\n ).reset_index().to_json()\n else:\n hplc_json = ''\n if self.fplc is not None:\n fplc_json = self.fplc.to_json()\n else:\n fplc_json = ''\n doc = {'_id': self.id, 'version': self.version, 'hplc': hplc_json,\n 'fplc': fplc_json}\n return doc\n <mask token>\n\n def renormalize_fplc(self, norm_range, strict):\n if self.fplc is None:\n raise ValueError('No FPLC data')\n fplc = self.fplc.pivot(index=['mL', 'CV', 'Fraction', 'Channel',\n 'Sample'], columns=['Normalization'])['Value'].reset_index()\n fplc = fplc.groupby(['Sample', 'Channel'], group_keys=False).apply(\n lambda x: normalizer(x, norm_range, strict))\n fplc = fplc.melt(id_vars=['mL', 'CV', 'Channel', 'Fraction',\n 'Sample'], value_vars=['Signal', 'Normalized'], var_name=\n 'Normalization', value_name='Value')\n self.fplc = fplc\n\n def reduce_hplc(self, num_points):\n\n def reduction_factor(df, final_points):\n reduction_factor = ceil(df.shape[0] / final_points)\n return df[::reduction_factor]\n try:\n self.hplc = self.hplc.groupby(['Channel', 'Sample',\n 'Normalization'], group_keys=False, as_index=False).apply(\n lambda x: reduction_factor(x, num_points))\n self.hplc = self.hplc.reset_index(drop=True)\n except AttributeError:\n return\n\n def rename_channels(self, channel_name_dict):\n self.hplc = self.hplc.replace({'Channel': channel_name_dict})\n\n def hplc_csv(self, outfile):\n if outfile[-4:] == '.csv':\n outfile = outfile[:-4]\n if self.hplc is not None:\n self.hplc.to_csv(outfile + '-long.csv', index=False)\n self.wide.to_csv(outfile + '-wide.csv', index=True)\n return outfile + '-long.csv'\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Experiment:\n\n def __init__(self, id) ->None:\n self.id = id\n self.version = 4\n self._hplc = None\n self._fplc = None\n\n @property\n def hplc(self):\n try:\n return self._hplc\n except AttributeError:\n return None\n\n @hplc.setter\n def hplc(self, df):\n if isinstance(df, pd.DataFrame) or df is None:\n try:\n self._hplc = df.sort_values(by=['Normalization', 'Channel',\n 'mL'])\n except AttributeError:\n self._hplc = df\n else:\n raise TypeError('HPLC input is not a pandas dataframe')\n\n @property\n def fplc(self):\n try:\n return self._fplc\n except AttributeError:\n return None\n <mask token>\n\n @property\n def wide(self):\n wide = self.hplc.copy()\n wide = wide.loc[wide['Normalization'] == 'Signal']\n wide['Sample'] = wide['Sample'].astype(str) + ' ' + wide['Channel']\n wide.drop(['Channel', 'Normalization'], axis=1)\n wide = wide.pivot_table(index='Time', columns='Sample', values='Value')\n return wide\n\n def __repr__(self):\n to_return = f'Experiment \"{self.id}\" with '\n if self.hplc is not None:\n to_return += 'HPLC '\n if self.hplc is not None and self.fplc is not None:\n to_return += 'and '\n if self.fplc is not None:\n to_return += 'FPLC '\n if self.hplc is None and self.fplc is None:\n to_return += 'no '\n to_return += 'data'\n return to_return\n\n def extend_hplc(self, hplc):\n if not isinstance(hplc, pd.DataFrame):\n raise TypeError(\n f'Tried to extend experiment hplc with {type(hplc)}')\n self.hplc = pd.concat([self.hplc, hplc])\n <mask token>\n\n def jsonify(self):\n if self.hplc is not None:\n hplc_json = self.hplc.pivot_table(index=['mL', 'Channel',\n 'Time', 'Normalization'], columns='Sample', values='Value'\n ).reset_index().to_json()\n else:\n hplc_json = ''\n if self.fplc is not None:\n fplc_json = self.fplc.to_json()\n else:\n fplc_json = ''\n doc = {'_id': self.id, 'version': self.version, 'hplc': hplc_json,\n 'fplc': fplc_json}\n return doc\n\n def renormalize_hplc(self, norm_range, strict):\n if self.hplc is None:\n raise ValueError('No HPLC data')\n hplc = self.hplc.pivot(index=['mL', 'Sample', 'Channel', 'Time'],\n columns=['Normalization'])['Value'].reset_index()\n hplc = hplc.groupby(['Sample', 'Channel'], group_keys=False).apply(\n lambda x: normalizer(x, norm_range, strict))\n hplc = hplc.melt(id_vars=['mL', 'Sample', 'Channel', 'Time'],\n value_vars=['Signal', 'Normalized'], var_name='Normalization',\n value_name='Value')\n self.hplc = hplc\n\n def renormalize_fplc(self, norm_range, strict):\n if self.fplc is None:\n raise ValueError('No FPLC data')\n fplc = self.fplc.pivot(index=['mL', 'CV', 'Fraction', 'Channel',\n 'Sample'], columns=['Normalization'])['Value'].reset_index()\n fplc = fplc.groupby(['Sample', 'Channel'], group_keys=False).apply(\n lambda x: normalizer(x, norm_range, strict))\n fplc = fplc.melt(id_vars=['mL', 'CV', 'Channel', 'Fraction',\n 'Sample'], value_vars=['Signal', 'Normalized'], var_name=\n 'Normalization', value_name='Value')\n self.fplc = fplc\n\n def reduce_hplc(self, num_points):\n\n def reduction_factor(df, final_points):\n reduction_factor = ceil(df.shape[0] / final_points)\n return df[::reduction_factor]\n try:\n self.hplc = self.hplc.groupby(['Channel', 'Sample',\n 'Normalization'], group_keys=False, as_index=False).apply(\n lambda x: reduction_factor(x, num_points))\n self.hplc = self.hplc.reset_index(drop=True)\n except AttributeError:\n return\n\n def rename_channels(self, channel_name_dict):\n self.hplc = self.hplc.replace({'Channel': channel_name_dict})\n\n def hplc_csv(self, outfile):\n if outfile[-4:] == '.csv':\n outfile = outfile[:-4]\n if self.hplc is not None:\n self.hplc.to_csv(outfile + '-long.csv', index=False)\n self.wide.to_csv(outfile + '-wide.csv', index=True)\n return outfile + '-long.csv'\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Experiment:\n\n def __init__(self, id) ->None:\n self.id = id\n self.version = 4\n self._hplc = None\n self._fplc = None\n\n @property\n def hplc(self):\n try:\n return self._hplc\n except AttributeError:\n return None\n\n @hplc.setter\n def hplc(self, df):\n if isinstance(df, pd.DataFrame) or df is None:\n try:\n self._hplc = df.sort_values(by=['Normalization', 'Channel',\n 'mL'])\n except AttributeError:\n self._hplc = df\n else:\n raise TypeError('HPLC input is not a pandas dataframe')\n\n @property\n def fplc(self):\n try:\n return self._fplc\n except AttributeError:\n return None\n\n @fplc.setter\n def fplc(self, df):\n if isinstance(df, pd.DataFrame) or df is None:\n self._fplc = df\n else:\n raise TypeError('FPLC input is not a pandas dataframe')\n\n @property\n def wide(self):\n wide = self.hplc.copy()\n wide = wide.loc[wide['Normalization'] == 'Signal']\n wide['Sample'] = wide['Sample'].astype(str) + ' ' + wide['Channel']\n wide.drop(['Channel', 'Normalization'], axis=1)\n wide = wide.pivot_table(index='Time', columns='Sample', values='Value')\n return wide\n\n def __repr__(self):\n to_return = f'Experiment \"{self.id}\" with '\n if self.hplc is not None:\n to_return += 'HPLC '\n if self.hplc is not None and self.fplc is not None:\n to_return += 'and '\n if self.fplc is not None:\n to_return += 'FPLC '\n if self.hplc is None and self.fplc is None:\n to_return += 'no '\n to_return += 'data'\n return to_return\n\n def extend_hplc(self, hplc):\n if not isinstance(hplc, pd.DataFrame):\n raise TypeError(\n f'Tried to extend experiment hplc with {type(hplc)}')\n self.hplc = pd.concat([self.hplc, hplc])\n\n def show_tables(self):\n print('HPLC:')\n print(self.hplc)\n print('FPLC:')\n print(self.fplc)\n\n def jsonify(self):\n if self.hplc is not None:\n hplc_json = self.hplc.pivot_table(index=['mL', 'Channel',\n 'Time', 'Normalization'], columns='Sample', values='Value'\n ).reset_index().to_json()\n else:\n hplc_json = ''\n if self.fplc is not None:\n fplc_json = self.fplc.to_json()\n else:\n fplc_json = ''\n doc = {'_id': self.id, 'version': self.version, 'hplc': hplc_json,\n 'fplc': fplc_json}\n return doc\n\n def renormalize_hplc(self, norm_range, strict):\n if self.hplc is None:\n raise ValueError('No HPLC data')\n hplc = self.hplc.pivot(index=['mL', 'Sample', 'Channel', 'Time'],\n columns=['Normalization'])['Value'].reset_index()\n hplc = hplc.groupby(['Sample', 'Channel'], group_keys=False).apply(\n lambda x: normalizer(x, norm_range, strict))\n hplc = hplc.melt(id_vars=['mL', 'Sample', 'Channel', 'Time'],\n value_vars=['Signal', 'Normalized'], var_name='Normalization',\n value_name='Value')\n self.hplc = hplc\n\n def renormalize_fplc(self, norm_range, strict):\n if self.fplc is None:\n raise ValueError('No FPLC data')\n fplc = self.fplc.pivot(index=['mL', 'CV', 'Fraction', 'Channel',\n 'Sample'], columns=['Normalization'])['Value'].reset_index()\n fplc = fplc.groupby(['Sample', 'Channel'], group_keys=False).apply(\n lambda x: normalizer(x, norm_range, strict))\n fplc = fplc.melt(id_vars=['mL', 'CV', 'Channel', 'Fraction',\n 'Sample'], value_vars=['Signal', 'Normalized'], var_name=\n 'Normalization', value_name='Value')\n self.fplc = fplc\n\n def reduce_hplc(self, num_points):\n\n def reduction_factor(df, final_points):\n reduction_factor = ceil(df.shape[0] / final_points)\n return df[::reduction_factor]\n try:\n self.hplc = self.hplc.groupby(['Channel', 'Sample',\n 'Normalization'], group_keys=False, as_index=False).apply(\n lambda x: reduction_factor(x, num_points))\n self.hplc = self.hplc.reset_index(drop=True)\n except AttributeError:\n return\n\n def rename_channels(self, channel_name_dict):\n self.hplc = self.hplc.replace({'Channel': channel_name_dict})\n\n def hplc_csv(self, outfile):\n if outfile[-4:] == '.csv':\n outfile = outfile[:-4]\n if self.hplc is not None:\n self.hplc.to_csv(outfile + '-long.csv', index=False)\n self.wide.to_csv(outfile + '-wide.csv', index=True)\n return outfile + '-long.csv'\n\n def fplc_csv(self, outfile):\n if outfile[-4:] != '.csv':\n outfile = outfile + '.csv'\n if self.fplc is not None:\n self.fplc.to_csv(outfile, index=False)\n return outfile\n\n def save_csvs(self, path):\n hplc_csv = self.hplc_csv(os.path.join(path, f'{self.id}_hplc'))\n fplc_csv = self.fplc_csv(os.path.join(path, f'{self.id}_fplc'))\n return hplc_csv, fplc_csv\n\n\ndef concat_experiments(exp_list):\n hplcs = []\n fplcs = []\n for exp in [x for x in exp_list if x.hplc is not None]:\n hplc = exp.hplc\n hplc['Sample'] = f'{exp.id}: ' + hplc['Sample'].astype(str)\n hplcs.append(hplc)\n for exp in [x for x in exp_list if x.fplc is not None]:\n fplc = exp.fplc\n fplc['Sample'] = exp.id\n fplcs.append(fplc)\n concat_exp = Experiment('concat')\n try:\n concat_exp.hplc = pd.concat(hplcs)\n except ValueError:\n pass\n try:\n concat_exp.fplc = pd.concat(fplcs)\n except ValueError:\n pass\n return concat_exp\n", "step-4": "import pandas as pd\nimport os\nfrom appia.processors.core import normalizer\nfrom math import ceil\n\n\nclass Experiment:\n\n def __init__(self, id) ->None:\n self.id = id\n self.version = 4\n self._hplc = None\n self._fplc = None\n\n @property\n def hplc(self):\n try:\n return self._hplc\n except AttributeError:\n return None\n\n @hplc.setter\n def hplc(self, df):\n if isinstance(df, pd.DataFrame) or df is None:\n try:\n self._hplc = df.sort_values(by=['Normalization', 'Channel',\n 'mL'])\n except AttributeError:\n self._hplc = df\n else:\n raise TypeError('HPLC input is not a pandas dataframe')\n\n @property\n def fplc(self):\n try:\n return self._fplc\n except AttributeError:\n return None\n\n @fplc.setter\n def fplc(self, df):\n if isinstance(df, pd.DataFrame) or df is None:\n self._fplc = df\n else:\n raise TypeError('FPLC input is not a pandas dataframe')\n\n @property\n def wide(self):\n wide = self.hplc.copy()\n wide = wide.loc[wide['Normalization'] == 'Signal']\n wide['Sample'] = wide['Sample'].astype(str) + ' ' + wide['Channel']\n wide.drop(['Channel', 'Normalization'], axis=1)\n wide = wide.pivot_table(index='Time', columns='Sample', values='Value')\n return wide\n\n def __repr__(self):\n to_return = f'Experiment \"{self.id}\" with '\n if self.hplc is not None:\n to_return += 'HPLC '\n if self.hplc is not None and self.fplc is not None:\n to_return += 'and '\n if self.fplc is not None:\n to_return += 'FPLC '\n if self.hplc is None and self.fplc is None:\n to_return += 'no '\n to_return += 'data'\n return to_return\n\n def extend_hplc(self, hplc):\n if not isinstance(hplc, pd.DataFrame):\n raise TypeError(\n f'Tried to extend experiment hplc with {type(hplc)}')\n self.hplc = pd.concat([self.hplc, hplc])\n\n def show_tables(self):\n print('HPLC:')\n print(self.hplc)\n print('FPLC:')\n print(self.fplc)\n\n def jsonify(self):\n if self.hplc is not None:\n hplc_json = self.hplc.pivot_table(index=['mL', 'Channel',\n 'Time', 'Normalization'], columns='Sample', values='Value'\n ).reset_index().to_json()\n else:\n hplc_json = ''\n if self.fplc is not None:\n fplc_json = self.fplc.to_json()\n else:\n fplc_json = ''\n doc = {'_id': self.id, 'version': self.version, 'hplc': hplc_json,\n 'fplc': fplc_json}\n return doc\n\n def renormalize_hplc(self, norm_range, strict):\n if self.hplc is None:\n raise ValueError('No HPLC data')\n hplc = self.hplc.pivot(index=['mL', 'Sample', 'Channel', 'Time'],\n columns=['Normalization'])['Value'].reset_index()\n hplc = hplc.groupby(['Sample', 'Channel'], group_keys=False).apply(\n lambda x: normalizer(x, norm_range, strict))\n hplc = hplc.melt(id_vars=['mL', 'Sample', 'Channel', 'Time'],\n value_vars=['Signal', 'Normalized'], var_name='Normalization',\n value_name='Value')\n self.hplc = hplc\n\n def renormalize_fplc(self, norm_range, strict):\n if self.fplc is None:\n raise ValueError('No FPLC data')\n fplc = self.fplc.pivot(index=['mL', 'CV', 'Fraction', 'Channel',\n 'Sample'], columns=['Normalization'])['Value'].reset_index()\n fplc = fplc.groupby(['Sample', 'Channel'], group_keys=False).apply(\n lambda x: normalizer(x, norm_range, strict))\n fplc = fplc.melt(id_vars=['mL', 'CV', 'Channel', 'Fraction',\n 'Sample'], value_vars=['Signal', 'Normalized'], var_name=\n 'Normalization', value_name='Value')\n self.fplc = fplc\n\n def reduce_hplc(self, num_points):\n\n def reduction_factor(df, final_points):\n reduction_factor = ceil(df.shape[0] / final_points)\n return df[::reduction_factor]\n try:\n self.hplc = self.hplc.groupby(['Channel', 'Sample',\n 'Normalization'], group_keys=False, as_index=False).apply(\n lambda x: reduction_factor(x, num_points))\n self.hplc = self.hplc.reset_index(drop=True)\n except AttributeError:\n return\n\n def rename_channels(self, channel_name_dict):\n self.hplc = self.hplc.replace({'Channel': channel_name_dict})\n\n def hplc_csv(self, outfile):\n if outfile[-4:] == '.csv':\n outfile = outfile[:-4]\n if self.hplc is not None:\n self.hplc.to_csv(outfile + '-long.csv', index=False)\n self.wide.to_csv(outfile + '-wide.csv', index=True)\n return outfile + '-long.csv'\n\n def fplc_csv(self, outfile):\n if outfile[-4:] != '.csv':\n outfile = outfile + '.csv'\n if self.fplc is not None:\n self.fplc.to_csv(outfile, index=False)\n return outfile\n\n def save_csvs(self, path):\n hplc_csv = self.hplc_csv(os.path.join(path, f'{self.id}_hplc'))\n fplc_csv = self.fplc_csv(os.path.join(path, f'{self.id}_fplc'))\n return hplc_csv, fplc_csv\n\n\ndef concat_experiments(exp_list):\n hplcs = []\n fplcs = []\n for exp in [x for x in exp_list if x.hplc is not None]:\n hplc = exp.hplc\n hplc['Sample'] = f'{exp.id}: ' + hplc['Sample'].astype(str)\n hplcs.append(hplc)\n for exp in [x for x in exp_list if x.fplc is not None]:\n fplc = exp.fplc\n fplc['Sample'] = exp.id\n fplcs.append(fplc)\n concat_exp = Experiment('concat')\n try:\n concat_exp.hplc = pd.concat(hplcs)\n except ValueError:\n pass\n try:\n concat_exp.fplc = pd.concat(fplcs)\n except ValueError:\n pass\n return concat_exp\n", "step-5": "import pandas as pd\nimport os\nfrom appia.processors.core import normalizer\nfrom math import ceil\n\n\nclass Experiment:\n def __init__(self, id) -> None:\n self.id = id\n self.version = 4\n self._hplc = None\n self._fplc = None\n\n @property\n def hplc(self):\n try:\n return self._hplc\n except AttributeError:\n return None\n\n @hplc.setter\n def hplc(self, df):\n if isinstance(df, pd.DataFrame) or df is None:\n try:\n self._hplc = df.sort_values(by=[\"Normalization\", \"Channel\", \"mL\"])\n except AttributeError:\n self._hplc = df\n else:\n raise TypeError(\"HPLC input is not a pandas dataframe\")\n\n @property\n def fplc(self):\n try:\n return self._fplc\n except AttributeError:\n return None\n\n @fplc.setter\n def fplc(self, df):\n if isinstance(df, pd.DataFrame) or df is None:\n self._fplc = df\n else:\n raise TypeError(\"FPLC input is not a pandas dataframe\")\n\n @property\n def wide(self):\n wide = self.hplc.copy()\n wide = wide.loc[wide[\"Normalization\"] == \"Signal\"]\n wide[\"Sample\"] = wide[\"Sample\"].astype(str) + \" \" + wide[\"Channel\"]\n wide.drop([\"Channel\", \"Normalization\"], axis=1)\n wide = wide.pivot_table(index=\"Time\", columns=\"Sample\", values=\"Value\")\n return wide\n\n def __repr__(self):\n to_return = f'Experiment \"{self.id}\" with '\n if self.hplc is not None:\n to_return += \"HPLC \"\n if self.hplc is not None and self.fplc is not None:\n to_return += \"and \"\n if self.fplc is not None:\n to_return += \"FPLC \"\n if self.hplc is None and self.fplc is None:\n to_return += \"no \"\n to_return += \"data\"\n\n return to_return\n\n def extend_hplc(self, hplc):\n if not isinstance(hplc, pd.DataFrame):\n raise TypeError(f\"Tried to extend experiment hplc with {type(hplc)}\")\n\n self.hplc = pd.concat([self.hplc, hplc])\n\n def show_tables(self):\n print(\"HPLC:\")\n print(self.hplc)\n print(\"FPLC:\")\n print(self.fplc)\n\n def jsonify(self):\n if self.hplc is not None:\n hplc_json = (\n self.hplc.pivot_table(\n index=[\"mL\", \"Channel\", \"Time\", \"Normalization\"],\n columns=\"Sample\",\n values=\"Value\",\n )\n .reset_index()\n .to_json()\n )\n else:\n hplc_json = \"\"\n\n if self.fplc is not None:\n fplc_json = self.fplc.to_json()\n else:\n fplc_json = \"\"\n\n doc = {\n \"_id\": self.id,\n \"version\": self.version,\n \"hplc\": hplc_json,\n \"fplc\": fplc_json,\n }\n\n return doc\n\n def renormalize_hplc(self, norm_range, strict):\n if self.hplc is None:\n raise ValueError(\"No HPLC data\")\n\n # this arcane string of pandas commands is the equivalent of pivot_wider from tidyverse\n # from https://medium.com/@durgaswaroop/reshaping-pandas-dataframes-melt-and-unmelt-9f57518c7738;.'/\n hplc = self.hplc.pivot(\n index=[\"mL\", \"Sample\", \"Channel\", \"Time\"], columns=[\"Normalization\"]\n )[\"Value\"].reset_index()\n hplc = hplc.groupby([\"Sample\", \"Channel\"], group_keys=False).apply(\n lambda x: normalizer(x, norm_range, strict)\n )\n hplc = hplc.melt(\n id_vars=[\"mL\", \"Sample\", \"Channel\", \"Time\"],\n value_vars=[\"Signal\", \"Normalized\"],\n var_name=\"Normalization\",\n value_name=\"Value\",\n )\n self.hplc = hplc\n\n def renormalize_fplc(self, norm_range, strict):\n if self.fplc is None:\n raise ValueError(\"No FPLC data\")\n\n fplc = self.fplc.pivot(\n index=[\"mL\", \"CV\", \"Fraction\", \"Channel\", \"Sample\"],\n columns=[\"Normalization\"],\n )[\"Value\"].reset_index()\n fplc = fplc.groupby([\"Sample\", \"Channel\"], group_keys=False).apply(\n lambda x: normalizer(x, norm_range, strict)\n )\n fplc = fplc.melt(\n id_vars=[\"mL\", \"CV\", \"Channel\", \"Fraction\", \"Sample\"],\n value_vars=[\"Signal\", \"Normalized\"],\n var_name=\"Normalization\",\n value_name=\"Value\",\n )\n self.fplc = fplc\n\n def reduce_hplc(self, num_points):\n # reduce the number of points in the hplc trace to num_points per sample/channel/norm\n\n def reduction_factor(df, final_points):\n reduction_factor = ceil(df.shape[0] / final_points)\n return df[::reduction_factor]\n\n try:\n self.hplc = self.hplc.groupby(\n [\"Channel\", \"Sample\", \"Normalization\"], group_keys=False, as_index=False\n ).apply(lambda x: reduction_factor(x, num_points))\n self.hplc = self.hplc.reset_index(drop=True)\n except AttributeError:\n return\n\n def rename_channels(self, channel_name_dict):\n self.hplc = self.hplc.replace({\"Channel\": channel_name_dict})\n\n def hplc_csv(self, outfile):\n if outfile[-4:] == \".csv\":\n outfile = outfile[:-4]\n if self.hplc is not None:\n self.hplc.to_csv(outfile + \"-long.csv\", index=False)\n self.wide.to_csv(outfile + \"-wide.csv\", index=True)\n\n return outfile + \"-long.csv\"\n\n def fplc_csv(self, outfile):\n if outfile[-4:] != \".csv\":\n outfile = outfile + \".csv\"\n\n if self.fplc is not None:\n self.fplc.to_csv(outfile, index=False)\n return outfile\n\n def save_csvs(self, path):\n hplc_csv = self.hplc_csv(os.path.join(path, f\"{self.id}_hplc\"))\n fplc_csv = self.fplc_csv(os.path.join(path, f\"{self.id}_fplc\"))\n\n return hplc_csv, fplc_csv\n\n\ndef concat_experiments(exp_list):\n hplcs = []\n fplcs = []\n\n for exp in [x for x in exp_list if x.hplc is not None]:\n hplc = exp.hplc\n hplc[\"Sample\"] = f\"{exp.id}: \" + hplc[\"Sample\"].astype(str)\n hplcs.append(hplc)\n\n for exp in [x for x in exp_list if x.fplc is not None]:\n fplc = exp.fplc\n fplc[\"Sample\"] = exp.id\n fplcs.append(fplc)\n\n concat_exp = Experiment(\"concat\")\n try:\n concat_exp.hplc = pd.concat(hplcs)\n except ValueError:\n pass\n\n try:\n concat_exp.fplc = pd.concat(fplcs)\n except ValueError:\n pass\n\n return concat_exp\n", "step-ids": [ 11, 14, 19, 20, 21 ] }
[ 11, 14, 19, 20, 21 ]
try: from setuptools import setup from setuptools import find_packages has_setup_tools = true except ImportError: from distutils.core import setup has_setup_tools = false with open("README.md", "r") as fh: long_description = fh.read() if has_setup_tools is True: packages = setuptools.find_packages() else: packages = ["otmux"] setup( name="otmux", version="__version", description="multiple remote activities using ssh and tmux", long_description=long_description, url="https://github.com/rda3mon/otmux", author="Mallikarjun", author_email="[email protected]", license="Apache License 2.0", packages=["otmux"], classifiers=[ 'Topic :: tmux :: ssh', 'Development Status :: 2 - Experimental/Unstable', 'Environment :: Console', 'License :: Apache License 2.0', 'Programming Language :: Python :: 2.7', "Operating System :: OS Independent" ] )
normal
{ "blob_id": "5d988d159902e4a4cb17ee0ec61153de2dda4691", "index": 9120, "step-1": "<mask token>\n", "step-2": "try:\n from setuptools import setup\n from setuptools import find_packages\n has_setup_tools = true\nexcept ImportError:\n from distutils.core import setup\n has_setup_tools = false\nwith open('README.md', 'r') as fh:\n long_description = fh.read()\nif has_setup_tools is True:\n packages = setuptools.find_packages()\nelse:\n packages = ['otmux']\nsetup(name='otmux', version='__version', description=\n 'multiple remote activities using ssh and tmux', long_description=\n long_description, url='https://github.com/rda3mon/otmux', author=\n 'Mallikarjun', author_email='[email protected]', license=\n 'Apache License 2.0', packages=['otmux'], classifiers=[\n 'Topic :: tmux :: ssh',\n 'Development Status :: 2 - Experimental/Unstable',\n 'Environment :: Console', 'License :: Apache License 2.0',\n 'Programming Language :: Python :: 2.7',\n 'Operating System :: OS Independent'])\n", "step-3": "try:\n from setuptools import setup\n from setuptools import find_packages\n has_setup_tools = true\nexcept ImportError:\n from distutils.core import setup\n has_setup_tools = false\n\nwith open(\"README.md\", \"r\") as fh:\n long_description = fh.read()\n\nif has_setup_tools is True:\n packages = setuptools.find_packages()\nelse:\n packages = [\"otmux\"]\n\nsetup(\n name=\"otmux\",\n version=\"__version\",\n description=\"multiple remote activities using ssh and tmux\",\n long_description=long_description,\n url=\"https://github.com/rda3mon/otmux\",\n author=\"Mallikarjun\",\n author_email=\"[email protected]\",\n license=\"Apache License 2.0\",\n packages=[\"otmux\"],\n classifiers=[\n 'Topic :: tmux :: ssh',\n 'Development Status :: 2 - Experimental/Unstable',\n 'Environment :: Console',\n 'License :: Apache License 2.0',\n 'Programming Language :: Python :: 2.7',\n \"Operating System :: OS Independent\"\n ]\n)\n\n\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import os import numpy as np from . import tmp_dir_fixture from . import TEST_SAMPLE_DATA def test_tensor_dataset_functional(): from dtoolai.data import TensorDataSet tds_uri = os.path.join(TEST_SAMPLE_DATA, "example_tensor_dataset") tds = TensorDataSet(tds_uri) assert tds.name == "example_tensor_dataset" assert tds.uuid == "6b6f9a0e-8547-4903-9090-6dcfc6abdf83" assert len(tds) == 100 data, label = tds[0] assert data.shape == (1, 9, 9) assert data[0][0][0] == 0 assert label == 0 assert tds.input_channels == 1 assert tds.dim == 9 def test_image_dataset_functional(): from dtoolai.data import ImageDataSet ids_uri = "http://bit.ly/2Uho6tN" ids = ImageDataSet(ids_uri) assert ids.name == "tiny.image.dataset.example" assert ids.uuid == "839ae396-74a7-44f9-9b08-436be53b1090" assert len(ids) == 6 assert ids.input_channels == 3 assert ids.dim == 256 im, label = ids[0] assert isinstance(im, np.ndarray) assert label == 0 def test_create_tensor_dataset_from_arrays(tmp_dir_fixture): pass
normal
{ "blob_id": "97dfcce6e82ef33334b49de72bb126150dfef196", "index": 2844, "step-1": "<mask token>\n\n\ndef test_create_tensor_dataset_from_arrays(tmp_dir_fixture):\n pass\n", "step-2": "<mask token>\n\n\ndef test_image_dataset_functional():\n from dtoolai.data import ImageDataSet\n ids_uri = 'http://bit.ly/2Uho6tN'\n ids = ImageDataSet(ids_uri)\n assert ids.name == 'tiny.image.dataset.example'\n assert ids.uuid == '839ae396-74a7-44f9-9b08-436be53b1090'\n assert len(ids) == 6\n assert ids.input_channels == 3\n assert ids.dim == 256\n im, label = ids[0]\n assert isinstance(im, np.ndarray)\n assert label == 0\n\n\ndef test_create_tensor_dataset_from_arrays(tmp_dir_fixture):\n pass\n", "step-3": "<mask token>\n\n\ndef test_tensor_dataset_functional():\n from dtoolai.data import TensorDataSet\n tds_uri = os.path.join(TEST_SAMPLE_DATA, 'example_tensor_dataset')\n tds = TensorDataSet(tds_uri)\n assert tds.name == 'example_tensor_dataset'\n assert tds.uuid == '6b6f9a0e-8547-4903-9090-6dcfc6abdf83'\n assert len(tds) == 100\n data, label = tds[0]\n assert data.shape == (1, 9, 9)\n assert data[0][0][0] == 0\n assert label == 0\n assert tds.input_channels == 1\n assert tds.dim == 9\n\n\ndef test_image_dataset_functional():\n from dtoolai.data import ImageDataSet\n ids_uri = 'http://bit.ly/2Uho6tN'\n ids = ImageDataSet(ids_uri)\n assert ids.name == 'tiny.image.dataset.example'\n assert ids.uuid == '839ae396-74a7-44f9-9b08-436be53b1090'\n assert len(ids) == 6\n assert ids.input_channels == 3\n assert ids.dim == 256\n im, label = ids[0]\n assert isinstance(im, np.ndarray)\n assert label == 0\n\n\ndef test_create_tensor_dataset_from_arrays(tmp_dir_fixture):\n pass\n", "step-4": "import os\nimport numpy as np\nfrom . import tmp_dir_fixture\nfrom . import TEST_SAMPLE_DATA\n\n\ndef test_tensor_dataset_functional():\n from dtoolai.data import TensorDataSet\n tds_uri = os.path.join(TEST_SAMPLE_DATA, 'example_tensor_dataset')\n tds = TensorDataSet(tds_uri)\n assert tds.name == 'example_tensor_dataset'\n assert tds.uuid == '6b6f9a0e-8547-4903-9090-6dcfc6abdf83'\n assert len(tds) == 100\n data, label = tds[0]\n assert data.shape == (1, 9, 9)\n assert data[0][0][0] == 0\n assert label == 0\n assert tds.input_channels == 1\n assert tds.dim == 9\n\n\ndef test_image_dataset_functional():\n from dtoolai.data import ImageDataSet\n ids_uri = 'http://bit.ly/2Uho6tN'\n ids = ImageDataSet(ids_uri)\n assert ids.name == 'tiny.image.dataset.example'\n assert ids.uuid == '839ae396-74a7-44f9-9b08-436be53b1090'\n assert len(ids) == 6\n assert ids.input_channels == 3\n assert ids.dim == 256\n im, label = ids[0]\n assert isinstance(im, np.ndarray)\n assert label == 0\n\n\ndef test_create_tensor_dataset_from_arrays(tmp_dir_fixture):\n pass\n", "step-5": "import os\n\nimport numpy as np\n\nfrom . import tmp_dir_fixture\nfrom . import TEST_SAMPLE_DATA\n\n\n\ndef test_tensor_dataset_functional():\n\n from dtoolai.data import TensorDataSet\n\n tds_uri = os.path.join(TEST_SAMPLE_DATA, \"example_tensor_dataset\")\n\n tds = TensorDataSet(tds_uri)\n assert tds.name == \"example_tensor_dataset\"\n assert tds.uuid == \"6b6f9a0e-8547-4903-9090-6dcfc6abdf83\"\n assert len(tds) == 100\n\n data, label = tds[0]\n assert data.shape == (1, 9, 9)\n assert data[0][0][0] == 0\n assert label == 0\n\n assert tds.input_channels == 1\n assert tds.dim == 9\n\n\ndef test_image_dataset_functional():\n\n from dtoolai.data import ImageDataSet\n\n ids_uri = \"http://bit.ly/2Uho6tN\"\n\n ids = ImageDataSet(ids_uri)\n assert ids.name == \"tiny.image.dataset.example\"\n assert ids.uuid == \"839ae396-74a7-44f9-9b08-436be53b1090\"\n assert len(ids) == 6\n\n assert ids.input_channels == 3\n assert ids.dim == 256\n\n im, label = ids[0]\n assert isinstance(im, np.ndarray)\n assert label == 0\n \n\ndef test_create_tensor_dataset_from_arrays(tmp_dir_fixture):\n pass\n\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import pytest from debbiedowner import make_it_negative, complain_about def test_negativity(): assert make_it_negative(8) == -8 assert complain_about('enthusiasm') == "I hate enthusiasm. Totally boring." def test_easy(): assert 1 == 1 def test_cleverness(): assert make_it_negative(-3) == 3
normal
{ "blob_id": "e73e40a63b67ee1a6cca53a328af05e3eb3d8519", "index": 703, "step-1": "<mask token>\n\n\ndef test_negativity():\n assert make_it_negative(8) == -8\n assert complain_about('enthusiasm') == 'I hate enthusiasm. Totally boring.'\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef test_negativity():\n assert make_it_negative(8) == -8\n assert complain_about('enthusiasm') == 'I hate enthusiasm. Totally boring.'\n\n\n<mask token>\n\n\ndef test_cleverness():\n assert make_it_negative(-3) == 3\n", "step-3": "<mask token>\n\n\ndef test_negativity():\n assert make_it_negative(8) == -8\n assert complain_about('enthusiasm') == 'I hate enthusiasm. Totally boring.'\n\n\ndef test_easy():\n assert 1 == 1\n\n\ndef test_cleverness():\n assert make_it_negative(-3) == 3\n", "step-4": "import pytest\nfrom debbiedowner import make_it_negative, complain_about\n\n\ndef test_negativity():\n assert make_it_negative(8) == -8\n assert complain_about('enthusiasm') == 'I hate enthusiasm. Totally boring.'\n\n\ndef test_easy():\n assert 1 == 1\n\n\ndef test_cleverness():\n assert make_it_negative(-3) == 3\n", "step-5": "import pytest\n\nfrom debbiedowner import make_it_negative, complain_about\n\ndef test_negativity():\n assert make_it_negative(8) == -8\n assert complain_about('enthusiasm') == \"I hate enthusiasm. Totally boring.\"\n\ndef test_easy():\n assert 1 == 1\n\ndef test_cleverness():\n assert make_it_negative(-3) == 3", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
name = input("Введите ваше имя ") print("Добрый день,", name)
normal
{ "blob_id": "e44c4b2c3b60d34d4540ec2d3a782c777c52fbc0", "index": 8662, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('Добрый день,', name)\n", "step-3": "name = input('Введите ваше имя ')\nprint('Добрый день,', name)\n", "step-4": "name = input(\"Введите ваше имя \")\nprint(\"Добрый день,\", name)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python2 import os import sys import textwrap COMMAND = ( 'convert -size 1920x1080 canvas:"rgb(149, 1, 1)" ' '-font Dejavu-Sans-Bold -pointsize {0} -gravity center -stroke none ' '-fill white -annotate 0 "{1}" -size 1920x1080 "{2}.png"' ) def makeimage(text, point_size=100, width=30): tw = textwrap.TextWrapper(width=width) text = "\n".join( a.replace("\\n", "\n") for a in tw.wrap(text) ) filename = "".join( c for c in text.replace(" ", "-") if c.isalpha() or c.isdigit() or c in ["-", "_"] ) os.system(COMMAND.format(point_size, text, filename)) def main(): text = None if len(sys.argv) > 1: pt = int(sys.argv[1]) width = int(-0.3 * float(sys.argv[1]) + 60) if width < 10: print("Too large.") sys.exit(2) if len(sys.argv) > 2: text = " ".join(sys.argv[2:]) else: pt = 100 width = 30 if not text: text = input("Text: ") makeimage(text, pt, width) if __name__ == '__main__': main()
normal
{ "blob_id": "a486ec6b27a6b84e454a1bed096be9fe22d91612", "index": 1561, "step-1": "<mask token>\n\n\ndef makeimage(text, point_size=100, width=30):\n tw = textwrap.TextWrapper(width=width)\n text = '\\n'.join(a.replace('\\\\n', '\\n') for a in tw.wrap(text))\n filename = ''.join(c for c in text.replace(' ', '-') if c.isalpha() or\n c.isdigit() or c in ['-', '_'])\n os.system(COMMAND.format(point_size, text, filename))\n\n\ndef main():\n text = None\n if len(sys.argv) > 1:\n pt = int(sys.argv[1])\n width = int(-0.3 * float(sys.argv[1]) + 60)\n if width < 10:\n print('Too large.')\n sys.exit(2)\n if len(sys.argv) > 2:\n text = ' '.join(sys.argv[2:])\n else:\n pt = 100\n width = 30\n if not text:\n text = input('Text: ')\n makeimage(text, pt, width)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef makeimage(text, point_size=100, width=30):\n tw = textwrap.TextWrapper(width=width)\n text = '\\n'.join(a.replace('\\\\n', '\\n') for a in tw.wrap(text))\n filename = ''.join(c for c in text.replace(' ', '-') if c.isalpha() or\n c.isdigit() or c in ['-', '_'])\n os.system(COMMAND.format(point_size, text, filename))\n\n\ndef main():\n text = None\n if len(sys.argv) > 1:\n pt = int(sys.argv[1])\n width = int(-0.3 * float(sys.argv[1]) + 60)\n if width < 10:\n print('Too large.')\n sys.exit(2)\n if len(sys.argv) > 2:\n text = ' '.join(sys.argv[2:])\n else:\n pt = 100\n width = 30\n if not text:\n text = input('Text: ')\n makeimage(text, pt, width)\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\nCOMMAND = (\n 'convert -size 1920x1080 canvas:\"rgb(149, 1, 1)\" -font Dejavu-Sans-Bold -pointsize {0} -gravity center -stroke none -fill white -annotate 0 \"{1}\" -size 1920x1080 \"{2}.png\"'\n )\n\n\ndef makeimage(text, point_size=100, width=30):\n tw = textwrap.TextWrapper(width=width)\n text = '\\n'.join(a.replace('\\\\n', '\\n') for a in tw.wrap(text))\n filename = ''.join(c for c in text.replace(' ', '-') if c.isalpha() or\n c.isdigit() or c in ['-', '_'])\n os.system(COMMAND.format(point_size, text, filename))\n\n\ndef main():\n text = None\n if len(sys.argv) > 1:\n pt = int(sys.argv[1])\n width = int(-0.3 * float(sys.argv[1]) + 60)\n if width < 10:\n print('Too large.')\n sys.exit(2)\n if len(sys.argv) > 2:\n text = ' '.join(sys.argv[2:])\n else:\n pt = 100\n width = 30\n if not text:\n text = input('Text: ')\n makeimage(text, pt, width)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import os\nimport sys\nimport textwrap\nCOMMAND = (\n 'convert -size 1920x1080 canvas:\"rgb(149, 1, 1)\" -font Dejavu-Sans-Bold -pointsize {0} -gravity center -stroke none -fill white -annotate 0 \"{1}\" -size 1920x1080 \"{2}.png\"'\n )\n\n\ndef makeimage(text, point_size=100, width=30):\n tw = textwrap.TextWrapper(width=width)\n text = '\\n'.join(a.replace('\\\\n', '\\n') for a in tw.wrap(text))\n filename = ''.join(c for c in text.replace(' ', '-') if c.isalpha() or\n c.isdigit() or c in ['-', '_'])\n os.system(COMMAND.format(point_size, text, filename))\n\n\ndef main():\n text = None\n if len(sys.argv) > 1:\n pt = int(sys.argv[1])\n width = int(-0.3 * float(sys.argv[1]) + 60)\n if width < 10:\n print('Too large.')\n sys.exit(2)\n if len(sys.argv) > 2:\n text = ' '.join(sys.argv[2:])\n else:\n pt = 100\n width = 30\n if not text:\n text = input('Text: ')\n makeimage(text, pt, width)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python2\nimport os\nimport sys\nimport textwrap\n\nCOMMAND = (\n 'convert -size 1920x1080 canvas:\"rgb(149, 1, 1)\" '\n '-font Dejavu-Sans-Bold -pointsize {0} -gravity center -stroke none '\n '-fill white -annotate 0 \"{1}\" -size 1920x1080 \"{2}.png\"'\n)\n\n\ndef makeimage(text, point_size=100, width=30):\n tw = textwrap.TextWrapper(width=width)\n text = \"\\n\".join(\n a.replace(\"\\\\n\", \"\\n\") for a in tw.wrap(text)\n )\n\n filename = \"\".join(\n c\n for c in text.replace(\" \", \"-\")\n if c.isalpha() or c.isdigit() or c in [\"-\", \"_\"]\n )\n\n\n os.system(COMMAND.format(point_size, text, filename))\n\n\ndef main():\n text = None\n if len(sys.argv) > 1:\n pt = int(sys.argv[1])\n width = int(-0.3 * float(sys.argv[1]) + 60)\n\n if width < 10:\n print(\"Too large.\")\n sys.exit(2)\n\n if len(sys.argv) > 2:\n text = \" \".join(sys.argv[2:])\n else:\n pt = 100\n width = 30\n\n if not text:\n text = input(\"Text: \")\n\n makeimage(text, pt, width)\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import smtplib from email.message import EmailMessage from functools import wraps from threading import Thread import flask_login from flask import flash, current_app from togger import db from togger.auth.models import User, Role from togger.calendar.models import Calendar def get_user(username): if username is None: return user = User.query.filter(User.username == username).first() return user def get_user_by_id(id): if id is None: return user = User.query.filter(User.alias_id == id).first() return user def add_user(username, password, first_name, last_name): if username is None or password is None: return calendar = Calendar(name=username) role = Role(type=Role.OWNER, calendar=calendar, is_default=True) user = User(username=username, first_name=first_name, last_name=last_name, roles=[role]) user.set_password(password) verify_email(user) db.session.add(user) db.session.commit() return user def update_user(first_name, last_name): user = flask_login.current_user user.first_name = first_name user.last_name = last_name db.session.merge(user) db.session.commit() return True def verify_email(user): token = user.generate_validate_token() url = current_app.config['APP_URL'] + "/auth/verify/" + token subject = "[Togger] Welcome to Togger. Verify your email" prepare_email(user.username, subject, url) def restore_password(token, new_password): user = User() if user.check_password_token(token): user = get_user(user.username) user.set_password(new_password) db.session.merge(user) db.session.commit() flask_login.login_user(user, remember=True) return True else: flash("Restoration link got expired. Please request a new one.", 'danger') return False def password_email(username): user = get_user(username) if user and user.is_verified: token = user.generate_password_token() url = current_app.config['APP_URL'] + "/auth/restore/" + token subject = "[Togger] Forgot your password? The restoration link is inside" prepare_email(user.username, subject, url) def prepare_email(address, subject, content): thread = Thread(target=send_email, args=(address, subject, content, current_app.config,)) thread.daemon = True thread.start() def send_email(username, subject, content, config): msg = EmailMessage() msg.set_content(content) msg['Subject'] = subject msg['From'] = config['SMTP_MAILBOX'] msg['To'] = username s = smtplib.SMTP(config['SMTP_SERVER'], config['SMTP_PORT']) s.login(config['SMTP_LOGIN'], config['SMTP_PASSWORD']) s.send_message(msg) s.quit() def confirm_verify_email(token): user = User() if user.check_validate_token(token): user = get_user(user.username) user.is_verified = True db.session.merge(user) db.session.commit() else: flash('Verification link got expired. Please request a new one.', 'danger') def change_password(old_password, new_password): if flask_login.current_user.check_password(old_password): flask_login.current_user.set_password(new_password) db.session.merge(flask_login.current_user) db.session.commit() flash('Password was changed. Please sign in using new password.', 'success') return True flash('Current password is incorrect.', 'danger') return False def get_roles(): try: return flask_login.current_user.roles except AttributeError: return [] def get_role(): for role in get_roles(): if role.is_default: return role return None def has_role(role_type): def decorator(function): @wraps(function) def wrapper(*args, **kwargs): role = get_role() if role and role.type >= role_type: result = function(*args, **kwargs) else: result = current_app.login_manager.unauthorized() return result return wrapper return decorator
normal
{ "blob_id": "fab3e524edf6783775fabf402f9148bf31ac06d6", "index": 2914, "step-1": "<mask token>\n\n\ndef get_user_by_id(id):\n if id is None:\n return\n user = User.query.filter(User.alias_id == id).first()\n return user\n\n\n<mask token>\n\n\ndef update_user(first_name, last_name):\n user = flask_login.current_user\n user.first_name = first_name\n user.last_name = last_name\n db.session.merge(user)\n db.session.commit()\n return True\n\n\ndef verify_email(user):\n token = user.generate_validate_token()\n url = current_app.config['APP_URL'] + '/auth/verify/' + token\n subject = '[Togger] Welcome to Togger. Verify your email'\n prepare_email(user.username, subject, url)\n\n\ndef restore_password(token, new_password):\n user = User()\n if user.check_password_token(token):\n user = get_user(user.username)\n user.set_password(new_password)\n db.session.merge(user)\n db.session.commit()\n flask_login.login_user(user, remember=True)\n return True\n else:\n flash('Restoration link got expired. Please request a new one.',\n 'danger')\n return False\n\n\ndef password_email(username):\n user = get_user(username)\n if user and user.is_verified:\n token = user.generate_password_token()\n url = current_app.config['APP_URL'] + '/auth/restore/' + token\n subject = (\n '[Togger] Forgot your password? The restoration link is inside')\n prepare_email(user.username, subject, url)\n\n\n<mask token>\n\n\ndef send_email(username, subject, content, config):\n msg = EmailMessage()\n msg.set_content(content)\n msg['Subject'] = subject\n msg['From'] = config['SMTP_MAILBOX']\n msg['To'] = username\n s = smtplib.SMTP(config['SMTP_SERVER'], config['SMTP_PORT'])\n s.login(config['SMTP_LOGIN'], config['SMTP_PASSWORD'])\n s.send_message(msg)\n s.quit()\n\n\ndef confirm_verify_email(token):\n user = User()\n if user.check_validate_token(token):\n user = get_user(user.username)\n user.is_verified = True\n db.session.merge(user)\n db.session.commit()\n else:\n flash('Verification link got expired. Please request a new one.',\n 'danger')\n\n\ndef change_password(old_password, new_password):\n if flask_login.current_user.check_password(old_password):\n flask_login.current_user.set_password(new_password)\n db.session.merge(flask_login.current_user)\n db.session.commit()\n flash('Password was changed. Please sign in using new password.',\n 'success')\n return True\n flash('Current password is incorrect.', 'danger')\n return False\n\n\ndef get_roles():\n try:\n return flask_login.current_user.roles\n except AttributeError:\n return []\n\n\ndef get_role():\n for role in get_roles():\n if role.is_default:\n return role\n return None\n\n\ndef has_role(role_type):\n\n def decorator(function):\n\n @wraps(function)\n def wrapper(*args, **kwargs):\n role = get_role()\n if role and role.type >= role_type:\n result = function(*args, **kwargs)\n else:\n result = current_app.login_manager.unauthorized()\n return result\n return wrapper\n return decorator\n", "step-2": "<mask token>\n\n\ndef get_user(username):\n if username is None:\n return\n user = User.query.filter(User.username == username).first()\n return user\n\n\ndef get_user_by_id(id):\n if id is None:\n return\n user = User.query.filter(User.alias_id == id).first()\n return user\n\n\n<mask token>\n\n\ndef update_user(first_name, last_name):\n user = flask_login.current_user\n user.first_name = first_name\n user.last_name = last_name\n db.session.merge(user)\n db.session.commit()\n return True\n\n\ndef verify_email(user):\n token = user.generate_validate_token()\n url = current_app.config['APP_URL'] + '/auth/verify/' + token\n subject = '[Togger] Welcome to Togger. Verify your email'\n prepare_email(user.username, subject, url)\n\n\ndef restore_password(token, new_password):\n user = User()\n if user.check_password_token(token):\n user = get_user(user.username)\n user.set_password(new_password)\n db.session.merge(user)\n db.session.commit()\n flask_login.login_user(user, remember=True)\n return True\n else:\n flash('Restoration link got expired. Please request a new one.',\n 'danger')\n return False\n\n\ndef password_email(username):\n user = get_user(username)\n if user and user.is_verified:\n token = user.generate_password_token()\n url = current_app.config['APP_URL'] + '/auth/restore/' + token\n subject = (\n '[Togger] Forgot your password? The restoration link is inside')\n prepare_email(user.username, subject, url)\n\n\n<mask token>\n\n\ndef send_email(username, subject, content, config):\n msg = EmailMessage()\n msg.set_content(content)\n msg['Subject'] = subject\n msg['From'] = config['SMTP_MAILBOX']\n msg['To'] = username\n s = smtplib.SMTP(config['SMTP_SERVER'], config['SMTP_PORT'])\n s.login(config['SMTP_LOGIN'], config['SMTP_PASSWORD'])\n s.send_message(msg)\n s.quit()\n\n\ndef confirm_verify_email(token):\n user = User()\n if user.check_validate_token(token):\n user = get_user(user.username)\n user.is_verified = True\n db.session.merge(user)\n db.session.commit()\n else:\n flash('Verification link got expired. Please request a new one.',\n 'danger')\n\n\ndef change_password(old_password, new_password):\n if flask_login.current_user.check_password(old_password):\n flask_login.current_user.set_password(new_password)\n db.session.merge(flask_login.current_user)\n db.session.commit()\n flash('Password was changed. Please sign in using new password.',\n 'success')\n return True\n flash('Current password is incorrect.', 'danger')\n return False\n\n\ndef get_roles():\n try:\n return flask_login.current_user.roles\n except AttributeError:\n return []\n\n\ndef get_role():\n for role in get_roles():\n if role.is_default:\n return role\n return None\n\n\ndef has_role(role_type):\n\n def decorator(function):\n\n @wraps(function)\n def wrapper(*args, **kwargs):\n role = get_role()\n if role and role.type >= role_type:\n result = function(*args, **kwargs)\n else:\n result = current_app.login_manager.unauthorized()\n return result\n return wrapper\n return decorator\n", "step-3": "<mask token>\n\n\ndef get_user(username):\n if username is None:\n return\n user = User.query.filter(User.username == username).first()\n return user\n\n\ndef get_user_by_id(id):\n if id is None:\n return\n user = User.query.filter(User.alias_id == id).first()\n return user\n\n\ndef add_user(username, password, first_name, last_name):\n if username is None or password is None:\n return\n calendar = Calendar(name=username)\n role = Role(type=Role.OWNER, calendar=calendar, is_default=True)\n user = User(username=username, first_name=first_name, last_name=\n last_name, roles=[role])\n user.set_password(password)\n verify_email(user)\n db.session.add(user)\n db.session.commit()\n return user\n\n\ndef update_user(first_name, last_name):\n user = flask_login.current_user\n user.first_name = first_name\n user.last_name = last_name\n db.session.merge(user)\n db.session.commit()\n return True\n\n\ndef verify_email(user):\n token = user.generate_validate_token()\n url = current_app.config['APP_URL'] + '/auth/verify/' + token\n subject = '[Togger] Welcome to Togger. Verify your email'\n prepare_email(user.username, subject, url)\n\n\ndef restore_password(token, new_password):\n user = User()\n if user.check_password_token(token):\n user = get_user(user.username)\n user.set_password(new_password)\n db.session.merge(user)\n db.session.commit()\n flask_login.login_user(user, remember=True)\n return True\n else:\n flash('Restoration link got expired. Please request a new one.',\n 'danger')\n return False\n\n\ndef password_email(username):\n user = get_user(username)\n if user and user.is_verified:\n token = user.generate_password_token()\n url = current_app.config['APP_URL'] + '/auth/restore/' + token\n subject = (\n '[Togger] Forgot your password? The restoration link is inside')\n prepare_email(user.username, subject, url)\n\n\n<mask token>\n\n\ndef send_email(username, subject, content, config):\n msg = EmailMessage()\n msg.set_content(content)\n msg['Subject'] = subject\n msg['From'] = config['SMTP_MAILBOX']\n msg['To'] = username\n s = smtplib.SMTP(config['SMTP_SERVER'], config['SMTP_PORT'])\n s.login(config['SMTP_LOGIN'], config['SMTP_PASSWORD'])\n s.send_message(msg)\n s.quit()\n\n\ndef confirm_verify_email(token):\n user = User()\n if user.check_validate_token(token):\n user = get_user(user.username)\n user.is_verified = True\n db.session.merge(user)\n db.session.commit()\n else:\n flash('Verification link got expired. Please request a new one.',\n 'danger')\n\n\ndef change_password(old_password, new_password):\n if flask_login.current_user.check_password(old_password):\n flask_login.current_user.set_password(new_password)\n db.session.merge(flask_login.current_user)\n db.session.commit()\n flash('Password was changed. Please sign in using new password.',\n 'success')\n return True\n flash('Current password is incorrect.', 'danger')\n return False\n\n\ndef get_roles():\n try:\n return flask_login.current_user.roles\n except AttributeError:\n return []\n\n\ndef get_role():\n for role in get_roles():\n if role.is_default:\n return role\n return None\n\n\ndef has_role(role_type):\n\n def decorator(function):\n\n @wraps(function)\n def wrapper(*args, **kwargs):\n role = get_role()\n if role and role.type >= role_type:\n result = function(*args, **kwargs)\n else:\n result = current_app.login_manager.unauthorized()\n return result\n return wrapper\n return decorator\n", "step-4": "import smtplib\nfrom email.message import EmailMessage\nfrom functools import wraps\nfrom threading import Thread\nimport flask_login\nfrom flask import flash, current_app\nfrom togger import db\nfrom togger.auth.models import User, Role\nfrom togger.calendar.models import Calendar\n\n\ndef get_user(username):\n if username is None:\n return\n user = User.query.filter(User.username == username).first()\n return user\n\n\ndef get_user_by_id(id):\n if id is None:\n return\n user = User.query.filter(User.alias_id == id).first()\n return user\n\n\ndef add_user(username, password, first_name, last_name):\n if username is None or password is None:\n return\n calendar = Calendar(name=username)\n role = Role(type=Role.OWNER, calendar=calendar, is_default=True)\n user = User(username=username, first_name=first_name, last_name=\n last_name, roles=[role])\n user.set_password(password)\n verify_email(user)\n db.session.add(user)\n db.session.commit()\n return user\n\n\ndef update_user(first_name, last_name):\n user = flask_login.current_user\n user.first_name = first_name\n user.last_name = last_name\n db.session.merge(user)\n db.session.commit()\n return True\n\n\ndef verify_email(user):\n token = user.generate_validate_token()\n url = current_app.config['APP_URL'] + '/auth/verify/' + token\n subject = '[Togger] Welcome to Togger. Verify your email'\n prepare_email(user.username, subject, url)\n\n\ndef restore_password(token, new_password):\n user = User()\n if user.check_password_token(token):\n user = get_user(user.username)\n user.set_password(new_password)\n db.session.merge(user)\n db.session.commit()\n flask_login.login_user(user, remember=True)\n return True\n else:\n flash('Restoration link got expired. Please request a new one.',\n 'danger')\n return False\n\n\ndef password_email(username):\n user = get_user(username)\n if user and user.is_verified:\n token = user.generate_password_token()\n url = current_app.config['APP_URL'] + '/auth/restore/' + token\n subject = (\n '[Togger] Forgot your password? The restoration link is inside')\n prepare_email(user.username, subject, url)\n\n\ndef prepare_email(address, subject, content):\n thread = Thread(target=send_email, args=(address, subject, content,\n current_app.config))\n thread.daemon = True\n thread.start()\n\n\ndef send_email(username, subject, content, config):\n msg = EmailMessage()\n msg.set_content(content)\n msg['Subject'] = subject\n msg['From'] = config['SMTP_MAILBOX']\n msg['To'] = username\n s = smtplib.SMTP(config['SMTP_SERVER'], config['SMTP_PORT'])\n s.login(config['SMTP_LOGIN'], config['SMTP_PASSWORD'])\n s.send_message(msg)\n s.quit()\n\n\ndef confirm_verify_email(token):\n user = User()\n if user.check_validate_token(token):\n user = get_user(user.username)\n user.is_verified = True\n db.session.merge(user)\n db.session.commit()\n else:\n flash('Verification link got expired. Please request a new one.',\n 'danger')\n\n\ndef change_password(old_password, new_password):\n if flask_login.current_user.check_password(old_password):\n flask_login.current_user.set_password(new_password)\n db.session.merge(flask_login.current_user)\n db.session.commit()\n flash('Password was changed. Please sign in using new password.',\n 'success')\n return True\n flash('Current password is incorrect.', 'danger')\n return False\n\n\ndef get_roles():\n try:\n return flask_login.current_user.roles\n except AttributeError:\n return []\n\n\ndef get_role():\n for role in get_roles():\n if role.is_default:\n return role\n return None\n\n\ndef has_role(role_type):\n\n def decorator(function):\n\n @wraps(function)\n def wrapper(*args, **kwargs):\n role = get_role()\n if role and role.type >= role_type:\n result = function(*args, **kwargs)\n else:\n result = current_app.login_manager.unauthorized()\n return result\n return wrapper\n return decorator\n", "step-5": "import smtplib\nfrom email.message import EmailMessage\nfrom functools import wraps\nfrom threading import Thread\n\nimport flask_login\nfrom flask import flash, current_app\n\nfrom togger import db\nfrom togger.auth.models import User, Role\nfrom togger.calendar.models import Calendar\n\n\ndef get_user(username):\n if username is None:\n return\n user = User.query.filter(User.username == username).first()\n return user\n\n\ndef get_user_by_id(id):\n if id is None:\n return\n user = User.query.filter(User.alias_id == id).first()\n return user\n\n\ndef add_user(username, password, first_name, last_name):\n if username is None or password is None:\n return\n calendar = Calendar(name=username)\n role = Role(type=Role.OWNER, calendar=calendar, is_default=True)\n user = User(username=username, first_name=first_name, last_name=last_name, roles=[role])\n user.set_password(password)\n verify_email(user)\n db.session.add(user)\n db.session.commit()\n return user\n\n\ndef update_user(first_name, last_name):\n user = flask_login.current_user\n user.first_name = first_name\n user.last_name = last_name\n db.session.merge(user)\n db.session.commit()\n return True\n\n\ndef verify_email(user):\n token = user.generate_validate_token()\n url = current_app.config['APP_URL'] + \"/auth/verify/\" + token\n subject = \"[Togger] Welcome to Togger. Verify your email\"\n prepare_email(user.username, subject, url)\n\n\ndef restore_password(token, new_password):\n user = User()\n if user.check_password_token(token):\n user = get_user(user.username)\n user.set_password(new_password)\n db.session.merge(user)\n db.session.commit()\n flask_login.login_user(user, remember=True)\n return True\n else:\n flash(\"Restoration link got expired. Please request a new one.\", 'danger')\n return False\n\n\ndef password_email(username):\n user = get_user(username)\n if user and user.is_verified:\n token = user.generate_password_token()\n url = current_app.config['APP_URL'] + \"/auth/restore/\" + token\n subject = \"[Togger] Forgot your password? The restoration link is inside\"\n prepare_email(user.username, subject, url)\n\n\ndef prepare_email(address, subject, content):\n thread = Thread(target=send_email,\n args=(address, subject, content, current_app.config,))\n thread.daemon = True\n thread.start()\n\n\ndef send_email(username, subject, content, config):\n msg = EmailMessage()\n msg.set_content(content)\n msg['Subject'] = subject\n msg['From'] = config['SMTP_MAILBOX']\n msg['To'] = username\n s = smtplib.SMTP(config['SMTP_SERVER'], config['SMTP_PORT'])\n s.login(config['SMTP_LOGIN'], config['SMTP_PASSWORD'])\n s.send_message(msg)\n s.quit()\n\n\ndef confirm_verify_email(token):\n user = User()\n if user.check_validate_token(token):\n user = get_user(user.username)\n user.is_verified = True\n db.session.merge(user)\n db.session.commit()\n else:\n flash('Verification link got expired. Please request a new one.', 'danger')\n\n\ndef change_password(old_password, new_password):\n if flask_login.current_user.check_password(old_password):\n flask_login.current_user.set_password(new_password)\n db.session.merge(flask_login.current_user)\n db.session.commit()\n flash('Password was changed. Please sign in using new password.', 'success')\n return True\n flash('Current password is incorrect.', 'danger')\n return False\n\n\ndef get_roles():\n try:\n return flask_login.current_user.roles\n except AttributeError:\n return []\n\n\ndef get_role():\n for role in get_roles():\n if role.is_default:\n return role\n return None\n\n\ndef has_role(role_type):\n def decorator(function):\n @wraps(function)\n def wrapper(*args, **kwargs):\n role = get_role()\n if role and role.type >= role_type:\n result = function(*args, **kwargs)\n else:\n result = current_app.login_manager.unauthorized()\n return result\n return wrapper\n return decorator\n", "step-ids": [ 11, 12, 13, 15, 16 ] }
[ 11, 12, 13, 15, 16 ]
import os import pytest def get_client(): from apiserver import app, is_caching_enabled app.config['TESTING'] = True app.enable_cache(is_caching_enabled()) return app.test_client() @pytest.fixture def client(): os.environ['FLASK_ENV'] = 'testing' yield get_client() @pytest.fixture def client_with_caching(): os.environ['FLASK_ENV'] = 'production' yield get_client()
normal
{ "blob_id": "c0b5a0605bdfcb7cb84211d3ad0d24f78f838cdf", "index": 5421, "step-1": "<mask token>\n\n\[email protected]\ndef client():\n os.environ['FLASK_ENV'] = 'testing'\n yield get_client()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_client():\n from apiserver import app, is_caching_enabled\n app.config['TESTING'] = True\n app.enable_cache(is_caching_enabled())\n return app.test_client()\n\n\[email protected]\ndef client():\n os.environ['FLASK_ENV'] = 'testing'\n yield get_client()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef get_client():\n from apiserver import app, is_caching_enabled\n app.config['TESTING'] = True\n app.enable_cache(is_caching_enabled())\n return app.test_client()\n\n\[email protected]\ndef client():\n os.environ['FLASK_ENV'] = 'testing'\n yield get_client()\n\n\[email protected]\ndef client_with_caching():\n os.environ['FLASK_ENV'] = 'production'\n yield get_client()\n", "step-4": "import os\nimport pytest\n\n\ndef get_client():\n from apiserver import app, is_caching_enabled\n app.config['TESTING'] = True\n app.enable_cache(is_caching_enabled())\n return app.test_client()\n\n\[email protected]\ndef client():\n os.environ['FLASK_ENV'] = 'testing'\n yield get_client()\n\n\[email protected]\ndef client_with_caching():\n os.environ['FLASK_ENV'] = 'production'\n yield get_client()\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
#!/usr/bin/env python # -*- coding:utf-8 _*- """ :Author :weijinlong :Time: :2020/1/10 17:22 :File :graph.py :content: """ import tensorflow as tf from .base import TFLayer class TFModel(TFLayer): def build_model(self): raise NotImplementedError def add_outputs(self, *args, **kwargs): """模型的输出值 :param args: :param kwargs: :return: """ outputs = {} for value in args: assert isinstance(value, tf.Tensor), "function add_outputs parameter's value must be tf.Tensor" name = value.name outputs[name.split(':')[0]] = name for key, value in kwargs.items(): assert isinstance(value, tf.Tensor), "function add_outputs parameter's value must be tf.Tensor" outputs[key] = value.name self.update_outputs(outputs) class TFCompile(TFLayer): def compile(self): raise NotImplementedError def add_metrics(self, *args, **kwargs): """加入模型的评估指标、优化操作等,例如损失值,正确率等张量或者操作 :param args: :param kwargs: :return: """ metrics = {} for value in args: assert isinstance(value, (tf.Operation, tf.Tensor)), \ "function add_metrics parameter's value must be tf.Operation" name = value.name metrics[name.split(':')[0]] = name for key, value in kwargs.items(): assert isinstance(value, (tf.Operation, tf.Tensor)), \ "function add_metrics parameter's value must be tf.Operation" metrics[key] = value.name self.update_metrics(metrics) @property def fetches(self): """ 获取模型输出值或者评估值, 来优化训练模型 :return: """ return self.metrics class TFComModel(TFModel, TFCompile): """ 基于TensorFlow的复合模型,即使用一个算子构建模型的和模型的编译 """ def build_model(self): raise NotImplementedError def compile(self): pass
normal
{ "blob_id": "cdabb4a118cb0ef55c271a446fa190a457ebe142", "index": 7383, "step-1": "<mask token>\n\n\nclass TFCompile(TFLayer):\n <mask token>\n <mask token>\n <mask token>\n\n\nclass TFComModel(TFModel, TFCompile):\n \"\"\"\n 基于TensorFlow的复合模型,即使用一个算子构建模型的和模型的编译\n \"\"\"\n\n def build_model(self):\n raise NotImplementedError\n\n def compile(self):\n pass\n", "step-2": "<mask token>\n\n\nclass TFCompile(TFLayer):\n\n def compile(self):\n raise NotImplementedError\n\n def add_metrics(self, *args, **kwargs):\n \"\"\"加入模型的评估指标、优化操作等,例如损失值,正确率等张量或者操作\n\n :param args:\n :param kwargs:\n :return:\n \"\"\"\n metrics = {}\n for value in args:\n assert isinstance(value, (tf.Operation, tf.Tensor)\n ), \"function add_metrics parameter's value must be tf.Operation\"\n name = value.name\n metrics[name.split(':')[0]] = name\n for key, value in kwargs.items():\n assert isinstance(value, (tf.Operation, tf.Tensor)\n ), \"function add_metrics parameter's value must be tf.Operation\"\n metrics[key] = value.name\n self.update_metrics(metrics)\n\n @property\n def fetches(self):\n \"\"\" 获取模型输出值或者评估值, 来优化训练模型\n\n :return:\n \"\"\"\n return self.metrics\n\n\nclass TFComModel(TFModel, TFCompile):\n \"\"\"\n 基于TensorFlow的复合模型,即使用一个算子构建模型的和模型的编译\n \"\"\"\n\n def build_model(self):\n raise NotImplementedError\n\n def compile(self):\n pass\n", "step-3": "<mask token>\n\n\nclass TFModel(TFLayer):\n <mask token>\n\n def add_outputs(self, *args, **kwargs):\n \"\"\"模型的输出值\n\n :param args:\n :param kwargs:\n :return:\n \"\"\"\n outputs = {}\n for value in args:\n assert isinstance(value, tf.Tensor\n ), \"function add_outputs parameter's value must be tf.Tensor\"\n name = value.name\n outputs[name.split(':')[0]] = name\n for key, value in kwargs.items():\n assert isinstance(value, tf.Tensor\n ), \"function add_outputs parameter's value must be tf.Tensor\"\n outputs[key] = value.name\n self.update_outputs(outputs)\n\n\nclass TFCompile(TFLayer):\n\n def compile(self):\n raise NotImplementedError\n\n def add_metrics(self, *args, **kwargs):\n \"\"\"加入模型的评估指标、优化操作等,例如损失值,正确率等张量或者操作\n\n :param args:\n :param kwargs:\n :return:\n \"\"\"\n metrics = {}\n for value in args:\n assert isinstance(value, (tf.Operation, tf.Tensor)\n ), \"function add_metrics parameter's value must be tf.Operation\"\n name = value.name\n metrics[name.split(':')[0]] = name\n for key, value in kwargs.items():\n assert isinstance(value, (tf.Operation, tf.Tensor)\n ), \"function add_metrics parameter's value must be tf.Operation\"\n metrics[key] = value.name\n self.update_metrics(metrics)\n\n @property\n def fetches(self):\n \"\"\" 获取模型输出值或者评估值, 来优化训练模型\n\n :return:\n \"\"\"\n return self.metrics\n\n\nclass TFComModel(TFModel, TFCompile):\n \"\"\"\n 基于TensorFlow的复合模型,即使用一个算子构建模型的和模型的编译\n \"\"\"\n\n def build_model(self):\n raise NotImplementedError\n\n def compile(self):\n pass\n", "step-4": "<mask token>\n\n\nclass TFModel(TFLayer):\n\n def build_model(self):\n raise NotImplementedError\n\n def add_outputs(self, *args, **kwargs):\n \"\"\"模型的输出值\n\n :param args:\n :param kwargs:\n :return:\n \"\"\"\n outputs = {}\n for value in args:\n assert isinstance(value, tf.Tensor\n ), \"function add_outputs parameter's value must be tf.Tensor\"\n name = value.name\n outputs[name.split(':')[0]] = name\n for key, value in kwargs.items():\n assert isinstance(value, tf.Tensor\n ), \"function add_outputs parameter's value must be tf.Tensor\"\n outputs[key] = value.name\n self.update_outputs(outputs)\n\n\nclass TFCompile(TFLayer):\n\n def compile(self):\n raise NotImplementedError\n\n def add_metrics(self, *args, **kwargs):\n \"\"\"加入模型的评估指标、优化操作等,例如损失值,正确率等张量或者操作\n\n :param args:\n :param kwargs:\n :return:\n \"\"\"\n metrics = {}\n for value in args:\n assert isinstance(value, (tf.Operation, tf.Tensor)\n ), \"function add_metrics parameter's value must be tf.Operation\"\n name = value.name\n metrics[name.split(':')[0]] = name\n for key, value in kwargs.items():\n assert isinstance(value, (tf.Operation, tf.Tensor)\n ), \"function add_metrics parameter's value must be tf.Operation\"\n metrics[key] = value.name\n self.update_metrics(metrics)\n\n @property\n def fetches(self):\n \"\"\" 获取模型输出值或者评估值, 来优化训练模型\n\n :return:\n \"\"\"\n return self.metrics\n\n\nclass TFComModel(TFModel, TFCompile):\n \"\"\"\n 基于TensorFlow的复合模型,即使用一个算子构建模型的和模型的编译\n \"\"\"\n\n def build_model(self):\n raise NotImplementedError\n\n def compile(self):\n pass\n", "step-5": "#!/usr/bin/env python\r\n# -*- coding:utf-8 _*-\r\n\r\n\"\"\"\r\n:Author :weijinlong\r\n:Time: :2020/1/10 17:22\r\n:File :graph.py\r\n:content:\r\n \r\n\"\"\"\r\n\r\nimport tensorflow as tf\r\n\r\nfrom .base import TFLayer\r\n\r\n\r\nclass TFModel(TFLayer):\r\n\r\n def build_model(self):\r\n raise NotImplementedError\r\n\r\n def add_outputs(self, *args, **kwargs):\r\n \"\"\"模型的输出值\r\n\r\n :param args:\r\n :param kwargs:\r\n :return:\r\n \"\"\"\r\n outputs = {}\r\n for value in args:\r\n assert isinstance(value, tf.Tensor), \"function add_outputs parameter's value must be tf.Tensor\"\r\n name = value.name\r\n outputs[name.split(':')[0]] = name\r\n for key, value in kwargs.items():\r\n assert isinstance(value, tf.Tensor), \"function add_outputs parameter's value must be tf.Tensor\"\r\n outputs[key] = value.name\r\n self.update_outputs(outputs)\r\n\r\n\r\nclass TFCompile(TFLayer):\r\n\r\n def compile(self):\r\n raise NotImplementedError\r\n\r\n def add_metrics(self, *args, **kwargs):\r\n \"\"\"加入模型的评估指标、优化操作等,例如损失值,正确率等张量或者操作\r\n\r\n :param args:\r\n :param kwargs:\r\n :return:\r\n \"\"\"\r\n metrics = {}\r\n for value in args:\r\n assert isinstance(value, (tf.Operation, tf.Tensor)), \\\r\n \"function add_metrics parameter's value must be tf.Operation\"\r\n name = value.name\r\n metrics[name.split(':')[0]] = name\r\n for key, value in kwargs.items():\r\n assert isinstance(value, (tf.Operation, tf.Tensor)), \\\r\n \"function add_metrics parameter's value must be tf.Operation\"\r\n metrics[key] = value.name\r\n self.update_metrics(metrics)\r\n\r\n @property\r\n def fetches(self):\r\n \"\"\" 获取模型输出值或者评估值, 来优化训练模型\r\n\r\n :return:\r\n \"\"\"\r\n return self.metrics\r\n\r\n\r\nclass TFComModel(TFModel, TFCompile):\r\n \"\"\"\r\n 基于TensorFlow的复合模型,即使用一个算子构建模型的和模型的编译\r\n \"\"\"\r\n\r\n def build_model(self):\r\n raise NotImplementedError\r\n\r\n def compile(self):\r\n pass\r\n", "step-ids": [ 5, 8, 10, 11, 13 ] }
[ 5, 8, 10, 11, 13 ]
import math def sieve(limit): ans = [] a = [1] * limit a[0] = a[1] = 0 for i in range(2, limit): if a[i] == 0: continue ans.append(i) for j in range(i*i, limit, i): a[j] = 0; return ans is_square = lambda x: int(math.sqrt(x) + 1e-9) ** 2 == x N = 10 ** 6 p = sieve(N) ps = set(p) for i in range(9, N, 2): if i in ps: continue found = False for j in p[1:]: if j > i: break q = (i - j) // 2 if is_square(q): found = True break if not found: print(i) break
normal
{ "blob_id": "ff6dc347637a81c9f6a541775646b4901d719790", "index": 9478, "step-1": "<mask token>\n\n\ndef sieve(limit):\n ans = []\n a = [1] * limit\n a[0] = a[1] = 0\n for i in range(2, limit):\n if a[i] == 0:\n continue\n ans.append(i)\n for j in range(i * i, limit, i):\n a[j] = 0\n return ans\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef sieve(limit):\n ans = []\n a = [1] * limit\n a[0] = a[1] = 0\n for i in range(2, limit):\n if a[i] == 0:\n continue\n ans.append(i)\n for j in range(i * i, limit, i):\n a[j] = 0\n return ans\n\n\n<mask token>\nfor i in range(9, N, 2):\n if i in ps:\n continue\n found = False\n for j in p[1:]:\n if j > i:\n break\n q = (i - j) // 2\n if is_square(q):\n found = True\n break\n if not found:\n print(i)\n break\n", "step-3": "<mask token>\n\n\ndef sieve(limit):\n ans = []\n a = [1] * limit\n a[0] = a[1] = 0\n for i in range(2, limit):\n if a[i] == 0:\n continue\n ans.append(i)\n for j in range(i * i, limit, i):\n a[j] = 0\n return ans\n\n\nis_square = lambda x: int(math.sqrt(x) + 1e-09) ** 2 == x\nN = 10 ** 6\np = sieve(N)\nps = set(p)\nfor i in range(9, N, 2):\n if i in ps:\n continue\n found = False\n for j in p[1:]:\n if j > i:\n break\n q = (i - j) // 2\n if is_square(q):\n found = True\n break\n if not found:\n print(i)\n break\n", "step-4": "import math\n\n\ndef sieve(limit):\n ans = []\n a = [1] * limit\n a[0] = a[1] = 0\n for i in range(2, limit):\n if a[i] == 0:\n continue\n ans.append(i)\n for j in range(i * i, limit, i):\n a[j] = 0\n return ans\n\n\nis_square = lambda x: int(math.sqrt(x) + 1e-09) ** 2 == x\nN = 10 ** 6\np = sieve(N)\nps = set(p)\nfor i in range(9, N, 2):\n if i in ps:\n continue\n found = False\n for j in p[1:]:\n if j > i:\n break\n q = (i - j) // 2\n if is_square(q):\n found = True\n break\n if not found:\n print(i)\n break\n", "step-5": "import math\n\ndef sieve(limit):\n ans = []\n a = [1] * limit\n a[0] = a[1] = 0\n for i in range(2, limit):\n if a[i] == 0:\n continue\n ans.append(i)\n for j in range(i*i, limit, i):\n a[j] = 0;\n return ans\n\nis_square = lambda x: int(math.sqrt(x) + 1e-9) ** 2 == x\n\nN = 10 ** 6\n\np = sieve(N)\nps = set(p)\nfor i in range(9, N, 2):\n if i in ps:\n continue\n found = False\n for j in p[1:]:\n if j > i:\n break\n q = (i - j) // 2\n if is_square(q):\n found = True\n break\n if not found:\n print(i)\n break\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
""" """ import os import json import csv cutoff = float(input("Tolerance (decimal)? ")) docpath = "C:/Users/RackS/Documents/" out = open("isosegmenter_scoring_error"+str(cutoff*100)+".csv", 'w', encoding='UTF-8') summary = open("isosegmenter_score_summary_error"+str(cutoff*100)+".txt", 'w', encoding='UTF-8') out.write("SEQUENCE_ID,TYPE,DOMAINS,TP,FP,FN,Sens,PPV,Jaccard\n") tp_eq = 0 fp_eq = 0 fn_eq = 0 for file in os.listdir(docpath+"isoSegmenter100"): if file.endswith(".csv") and "E" in file: predict_data = csv.DictReader(open(docpath+"isoSegmenter100/"+file, 'r', encoding='UTF-8')) seqid = file.replace(".csv", "") with open(docpath+"ground_truth100/"+seqid+".json", 'r', encoding='UTF-8') as json_file: truth_data = json.load(json_file) true_boundaries = [] tp_seq = 0 fp_seq = 0 fn_seq = 0 for i in range(0, int(truth_data['tot_length']) + 1, int(truth_data['domain_length'])): true_boundaries.append(i) for pred_domain in predict_data: matched = False for i in range(0, len(true_boundaries) - 1): startdiff = int(pred_domain['Start']) - true_boundaries[i] enddiff = int(pred_domain['End']) - true_boundaries[i+1] tolerance = cutoff*(true_boundaries[i+1] - true_boundaries[i]) if abs(startdiff) <= tolerance: if abs(enddiff) <= tolerance: tp_seq += 1 matched = True print(seqid) print("START MATCH: " + str(true_boundaries[i]) + ", " + pred_domain['Start']) print("END MATCH: " + str(true_boundaries[i+1]) + ", " + pred_domain['End']) print("DIFFERENCES: " + str(startdiff) + ", " + str(enddiff) + ", TOLERANCE = " + str(tolerance)) print() break if not matched: fp_seq += 1 fn_seq = int(truth_data['domains']) - tp_seq tp_eq += tp_seq fp_eq += fp_seq fn_eq += fn_seq sensitivity = round(tp_seq/(tp_seq + fn_seq), 5) ppv = round(tp_seq/(tp_seq+fp_seq), 5) jaccard = round(tp_seq/(tp_seq + fp_seq + fn_seq), 5) out.write(seqid+",E,"+str(truth_data['domains'])+","+str(tp_seq)+","+str(fp_seq)+","+str(fn_seq)+","+str(sensitivity)+","+str(ppv)+","+str(jaccard)+"\n") summary.write("EQUAL-LENGTH STATISTICS\n") summary.write("TP equal domain: " + str(tp_eq) + "\n") summary.write("FP equal domain: " + str(fp_eq) + "\n") summary.write("FN equal domain: " + str(fn_eq) + "\n") summary.write("Sensitivity: " + str(round(tp_eq/(tp_eq + fn_eq),5)) + "\n") summary.write("Precision(PPV): " + str(round(tp_eq/(tp_eq + fp_eq),5)) + "\n") summary.write("Jaccard Index: " + str(round(tp_eq/(tp_eq + fp_eq + fn_eq),5)) + "\n\n") tp_var = 0 fp_var = 0 fn_var = 0 for file in os.listdir(docpath+"isoSegmenter100"): if file.endswith(".csv") and "V" in file: predict_data = csv.DictReader(open(docpath+"isoSegmenter100/"+file, 'r', encoding='UTF-8')) seqid = file.replace(".csv", "") with open(docpath+"ground_truth100/"+seqid+".json", 'r', encoding='UTF-8') as json_file: truth_data = json.load(json_file) true_boundaries = [1] tp_seq = 0 fp_seq = 0 fn_seq = 0 for i in range(1, int(truth_data['domains']) + 1): b_next = true_boundaries[i-1] + int(truth_data['length_'+str(i)]) true_boundaries.append(b_next) for pred_domain in predict_data: matched = False for i in range(0, len(true_boundaries) - 1): startdiff = int(pred_domain['Start']) - true_boundaries[i] enddiff = int(pred_domain['End']) - true_boundaries[i+1] tolerance = cutoff*(true_boundaries[i+1] - true_boundaries[i]) if abs(startdiff) <= tolerance: if abs(enddiff) <= tolerance: tp_seq += 1 matched = True print(seqid) print("START MATCH: " + str(true_boundaries[i]) + ", " + pred_domain['Start']) print("END MATCH: " + str(true_boundaries[i+1]) + ", " + pred_domain['End']) print("DIFFERENCES: " + str(startdiff) + ", " + str(enddiff) + ", TOLERANCE = " + str(tolerance)) print() break if not matched: fp_seq += 1 fn_seq = int(truth_data['domains']) - tp_seq tp_var += tp_seq fp_var += fp_seq fn_var += fn_seq sensitivity = round(tp_seq/(tp_seq + fn_seq), 5) ppv = round(tp_seq/(tp_seq+fp_seq), 5) jaccard = round(tp_seq/(tp_seq + fp_seq + fn_seq), 5) out.write(seqid+",V,"+str(truth_data['domains'])+","+str(tp_seq)+","+str(fp_seq)+","+str(fn_seq)+","+str(sensitivity)+","+str(ppv)+","+str(jaccard)+"\n") summary.write("VARIABLE-LENGTH STATISTICS\n") summary.write("TP equal domain: " + str(tp_var) + "\n") summary.write("FP equal domain: " + str(fp_var) + "\n") summary.write("FN equal domain: " + str(fn_var) + "\n") summary.write("Sensitivity: " + str(round(tp_var/(tp_var + fn_var),5)) + "\n") summary.write("Precision(PPV): " + str(round(tp_var/(tp_var + fp_var),5)) + "\n") summary.write("Jaccard Index: " + str(round(tp_var/(tp_var + fp_var + fn_var),5)) + "\n\n") summary.write("OVERALL STATISTICS\n") summary.write("TP: " + str(tp_var + tp_eq) + "\n") summary.write("FP: " + str(fp_var + fp_eq) + "\n") summary.write("FN: " + str(fn_var + fn_eq) + "\n") summary.write("Sensitivity: " + str(round((tp_var + tp_eq)/(tp_var + fn_var + tp_eq + fn_eq),5)) + "\n") summary.write("Precision(PPV): " + str(round((tp_var + tp_eq)/(tp_var + fp_var + tp_eq + fp_eq),5)) + "\n") summary.write("Jaccard Index: " + str(round((tp_var + tp_eq)/(tp_var + fp_var + fn_var + tp_eq + fp_eq + fn_eq),5)) + "\n")
normal
{ "blob_id": "af2aa236f6bfc582093faf868a374be1ebdfabf2", "index": 1235, "step-1": "<mask token>\n", "step-2": "<mask token>\nout.write('SEQUENCE_ID,TYPE,DOMAINS,TP,FP,FN,Sens,PPV,Jaccard\\n')\n<mask token>\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'E' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = []\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(0, int(truth_data['tot_length']) + 1, int(truth_data\n ['domain_length'])):\n true_boundaries.append(i)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_eq += tp_seq\n fp_eq += fp_seq\n fn_eq += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',E,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('EQUAL-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_eq) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_eq) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_eq / (tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_eq / (tp_eq + fp_eq), 5)) +\n '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_eq / (tp_eq + fp_eq + fn_eq),\n 5)) + '\\n\\n')\n<mask token>\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'V' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = [1]\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(1, int(truth_data['domains']) + 1):\n b_next = true_boundaries[i - 1] + int(truth_data['length_' +\n str(i)])\n true_boundaries.append(b_next)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_var += tp_seq\n fp_var += fp_seq\n fn_var += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',V,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('VARIABLE-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_var) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_var) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_var) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_var / (tp_var + fn_var), 5)) +\n '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_var / (tp_var + fp_var), 5)\n ) + '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_var / (tp_var + fp_var +\n fn_var), 5)) + '\\n\\n')\nsummary.write('OVERALL STATISTICS\\n')\nsummary.write('TP: ' + str(tp_var + tp_eq) + '\\n')\nsummary.write('FP: ' + str(fp_var + fp_eq) + '\\n')\nsummary.write('FN: ' + str(fn_var + fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round((tp_var + tp_eq) / (tp_var +\n fn_var + tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + tp_eq + fp_eq), 5)) + '\\n')\nsummary.write('Jaccard Index: ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + fn_var + tp_eq + fp_eq + fn_eq), 5)) + '\\n')\n", "step-3": "<mask token>\ncutoff = float(input('Tolerance (decimal)? '))\ndocpath = 'C:/Users/RackS/Documents/'\nout = open('isosegmenter_scoring_error' + str(cutoff * 100) + '.csv', 'w',\n encoding='UTF-8')\nsummary = open('isosegmenter_score_summary_error' + str(cutoff * 100) +\n '.txt', 'w', encoding='UTF-8')\nout.write('SEQUENCE_ID,TYPE,DOMAINS,TP,FP,FN,Sens,PPV,Jaccard\\n')\ntp_eq = 0\nfp_eq = 0\nfn_eq = 0\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'E' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = []\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(0, int(truth_data['tot_length']) + 1, int(truth_data\n ['domain_length'])):\n true_boundaries.append(i)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_eq += tp_seq\n fp_eq += fp_seq\n fn_eq += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',E,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('EQUAL-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_eq) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_eq) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_eq / (tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_eq / (tp_eq + fp_eq), 5)) +\n '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_eq / (tp_eq + fp_eq + fn_eq),\n 5)) + '\\n\\n')\ntp_var = 0\nfp_var = 0\nfn_var = 0\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'V' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = [1]\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(1, int(truth_data['domains']) + 1):\n b_next = true_boundaries[i - 1] + int(truth_data['length_' +\n str(i)])\n true_boundaries.append(b_next)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_var += tp_seq\n fp_var += fp_seq\n fn_var += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',V,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('VARIABLE-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_var) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_var) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_var) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_var / (tp_var + fn_var), 5)) +\n '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_var / (tp_var + fp_var), 5)\n ) + '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_var / (tp_var + fp_var +\n fn_var), 5)) + '\\n\\n')\nsummary.write('OVERALL STATISTICS\\n')\nsummary.write('TP: ' + str(tp_var + tp_eq) + '\\n')\nsummary.write('FP: ' + str(fp_var + fp_eq) + '\\n')\nsummary.write('FN: ' + str(fn_var + fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round((tp_var + tp_eq) / (tp_var +\n fn_var + tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + tp_eq + fp_eq), 5)) + '\\n')\nsummary.write('Jaccard Index: ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + fn_var + tp_eq + fp_eq + fn_eq), 5)) + '\\n')\n", "step-4": "<mask token>\nimport os\nimport json\nimport csv\ncutoff = float(input('Tolerance (decimal)? '))\ndocpath = 'C:/Users/RackS/Documents/'\nout = open('isosegmenter_scoring_error' + str(cutoff * 100) + '.csv', 'w',\n encoding='UTF-8')\nsummary = open('isosegmenter_score_summary_error' + str(cutoff * 100) +\n '.txt', 'w', encoding='UTF-8')\nout.write('SEQUENCE_ID,TYPE,DOMAINS,TP,FP,FN,Sens,PPV,Jaccard\\n')\ntp_eq = 0\nfp_eq = 0\nfn_eq = 0\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'E' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = []\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(0, int(truth_data['tot_length']) + 1, int(truth_data\n ['domain_length'])):\n true_boundaries.append(i)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_eq += tp_seq\n fp_eq += fp_seq\n fn_eq += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',E,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('EQUAL-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_eq) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_eq) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_eq / (tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_eq / (tp_eq + fp_eq), 5)) +\n '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_eq / (tp_eq + fp_eq + fn_eq),\n 5)) + '\\n\\n')\ntp_var = 0\nfp_var = 0\nfn_var = 0\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'V' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = [1]\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(1, int(truth_data['domains']) + 1):\n b_next = true_boundaries[i - 1] + int(truth_data['length_' +\n str(i)])\n true_boundaries.append(b_next)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_var += tp_seq\n fp_var += fp_seq\n fn_var += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',V,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('VARIABLE-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_var) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_var) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_var) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_var / (tp_var + fn_var), 5)) +\n '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_var / (tp_var + fp_var), 5)\n ) + '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_var / (tp_var + fp_var +\n fn_var), 5)) + '\\n\\n')\nsummary.write('OVERALL STATISTICS\\n')\nsummary.write('TP: ' + str(tp_var + tp_eq) + '\\n')\nsummary.write('FP: ' + str(fp_var + fp_eq) + '\\n')\nsummary.write('FN: ' + str(fn_var + fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round((tp_var + tp_eq) / (tp_var +\n fn_var + tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + tp_eq + fp_eq), 5)) + '\\n')\nsummary.write('Jaccard Index: ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + fn_var + tp_eq + fp_eq + fn_eq), 5)) + '\\n')\n", "step-5": "\"\"\"\n\"\"\"\nimport os\nimport json\nimport csv\n\ncutoff = float(input(\"Tolerance (decimal)? \"))\ndocpath = \"C:/Users/RackS/Documents/\"\nout = open(\"isosegmenter_scoring_error\"+str(cutoff*100)+\".csv\", 'w', encoding='UTF-8')\nsummary = open(\"isosegmenter_score_summary_error\"+str(cutoff*100)+\".txt\", 'w', encoding='UTF-8')\nout.write(\"SEQUENCE_ID,TYPE,DOMAINS,TP,FP,FN,Sens,PPV,Jaccard\\n\")\n\ntp_eq = 0\nfp_eq = 0\nfn_eq = 0\n\nfor file in os.listdir(docpath+\"isoSegmenter100\"):\n if file.endswith(\".csv\") and \"E\" in file:\n predict_data = csv.DictReader(open(docpath+\"isoSegmenter100/\"+file, 'r', encoding='UTF-8'))\n seqid = file.replace(\".csv\", \"\")\n with open(docpath+\"ground_truth100/\"+seqid+\".json\", 'r', encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n\n true_boundaries = []\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(0, int(truth_data['tot_length']) + 1, int(truth_data['domain_length'])):\n true_boundaries.append(i)\n\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i+1]\n tolerance = cutoff*(true_boundaries[i+1] - true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print(\"START MATCH: \" + str(true_boundaries[i]) + \", \" + pred_domain['Start'])\n print(\"END MATCH: \" + str(true_boundaries[i+1]) + \", \" + pred_domain['End'])\n print(\"DIFFERENCES: \" + str(startdiff) + \", \" + str(enddiff) + \", TOLERANCE = \" + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_eq += tp_seq\n fp_eq += fp_seq\n fn_eq += fn_seq\n sensitivity = round(tp_seq/(tp_seq + fn_seq), 5)\n ppv = round(tp_seq/(tp_seq+fp_seq), 5)\n jaccard = round(tp_seq/(tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid+\",E,\"+str(truth_data['domains'])+\",\"+str(tp_seq)+\",\"+str(fp_seq)+\",\"+str(fn_seq)+\",\"+str(sensitivity)+\",\"+str(ppv)+\",\"+str(jaccard)+\"\\n\")\n\nsummary.write(\"EQUAL-LENGTH STATISTICS\\n\")\nsummary.write(\"TP equal domain: \" + str(tp_eq) + \"\\n\")\nsummary.write(\"FP equal domain: \" + str(fp_eq) + \"\\n\")\nsummary.write(\"FN equal domain: \" + str(fn_eq) + \"\\n\")\nsummary.write(\"Sensitivity: \" + str(round(tp_eq/(tp_eq + fn_eq),5)) + \"\\n\")\nsummary.write(\"Precision(PPV): \" + str(round(tp_eq/(tp_eq + fp_eq),5)) + \"\\n\")\nsummary.write(\"Jaccard Index: \" + str(round(tp_eq/(tp_eq + fp_eq + fn_eq),5)) + \"\\n\\n\")\n\ntp_var = 0\nfp_var = 0\nfn_var = 0\nfor file in os.listdir(docpath+\"isoSegmenter100\"):\n if file.endswith(\".csv\") and \"V\" in file:\n predict_data = csv.DictReader(open(docpath+\"isoSegmenter100/\"+file, 'r', encoding='UTF-8'))\n seqid = file.replace(\".csv\", \"\")\n with open(docpath+\"ground_truth100/\"+seqid+\".json\", 'r', encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n\n true_boundaries = [1]\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(1, int(truth_data['domains']) + 1):\n b_next = true_boundaries[i-1] + int(truth_data['length_'+str(i)])\n true_boundaries.append(b_next)\n\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i+1]\n tolerance = cutoff*(true_boundaries[i+1] - true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print(\"START MATCH: \" + str(true_boundaries[i]) + \", \" + pred_domain['Start'])\n print(\"END MATCH: \" + str(true_boundaries[i+1]) + \", \" + pred_domain['End'])\n print(\"DIFFERENCES: \" + str(startdiff) + \", \" + str(enddiff) + \", TOLERANCE = \" + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_var += tp_seq\n fp_var += fp_seq\n fn_var += fn_seq\n sensitivity = round(tp_seq/(tp_seq + fn_seq), 5)\n ppv = round(tp_seq/(tp_seq+fp_seq), 5)\n jaccard = round(tp_seq/(tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid+\",V,\"+str(truth_data['domains'])+\",\"+str(tp_seq)+\",\"+str(fp_seq)+\",\"+str(fn_seq)+\",\"+str(sensitivity)+\",\"+str(ppv)+\",\"+str(jaccard)+\"\\n\")\n\nsummary.write(\"VARIABLE-LENGTH STATISTICS\\n\")\nsummary.write(\"TP equal domain: \" + str(tp_var) + \"\\n\")\nsummary.write(\"FP equal domain: \" + str(fp_var) + \"\\n\")\nsummary.write(\"FN equal domain: \" + str(fn_var) + \"\\n\")\nsummary.write(\"Sensitivity: \" + str(round(tp_var/(tp_var + fn_var),5)) + \"\\n\")\nsummary.write(\"Precision(PPV): \" + str(round(tp_var/(tp_var + fp_var),5)) + \"\\n\")\nsummary.write(\"Jaccard Index: \" + str(round(tp_var/(tp_var + fp_var + fn_var),5)) + \"\\n\\n\")\n \n\nsummary.write(\"OVERALL STATISTICS\\n\")\nsummary.write(\"TP: \" + str(tp_var + tp_eq) + \"\\n\")\nsummary.write(\"FP: \" + str(fp_var + fp_eq) + \"\\n\")\nsummary.write(\"FN: \" + str(fn_var + fn_eq) + \"\\n\")\nsummary.write(\"Sensitivity: \" + str(round((tp_var + tp_eq)/(tp_var + fn_var + tp_eq + fn_eq),5)) + \"\\n\")\nsummary.write(\"Precision(PPV): \" + str(round((tp_var + tp_eq)/(tp_var + fp_var + tp_eq + fp_eq),5)) + \"\\n\")\nsummary.write(\"Jaccard Index: \" + str(round((tp_var + tp_eq)/(tp_var + fp_var + fn_var + tp_eq + fp_eq + fn_eq),5)) + \"\\n\")", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import renderdoc as rd from typing import List import rdtest class D3D12_Resource_Mapping_Zoo(rdtest.TestCase): demos_test_name = 'D3D12_Resource_Mapping_Zoo' def test_debug_pixel(self, x, y, test_name): pipe: rd.PipeState = self.controller.GetPipelineState() if not pipe.GetShaderReflection(rd.ShaderStage.Pixel).debugInfo.debuggable: rdtest.log.print("Skipping undebuggable shader at {}.".format(test_name)) return # Debug the shader trace: rd.ShaderDebugTrace = self.controller.DebugPixel(x, y, rd.ReplayController.NoPreference, rd.ReplayController.NoPreference) cycles, variables = self.process_trace(trace) output = self.find_output_source_var(trace, rd.ShaderBuiltin.ColorOutput, 0) debugged = self.evaluate_source_var(output, variables) try: self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, x, y, debugged.value.f32v[0:4]) except rdtest.TestFailureException as ex: rdtest.log.error("Test {} did not match. {}".format(test_name, str(ex))) return False finally: self.controller.FreeTrace(trace) rdtest.log.success("Test {} matched as expected".format(test_name)) return True def check_capture(self): if not self.controller.GetAPIProperties().shaderDebugging: rdtest.log.success("Shader debugging not enabled, skipping test") return failed = False test_marker: rd.ActionDescription = self.find_action("sm_5_0") action = test_marker.next self.controller.SetFrameEvent(action.eventId, False) failed = not self.test_debug_pixel(200, 200, "sm_5_0") or failed test_marker: rd.ActionDescription = self.find_action("sm_5_1") action = test_marker.next self.controller.SetFrameEvent(action.eventId, False) failed = not self.test_debug_pixel(200, 200, "sm_5_1") or failed rdtest.log.begin_section("Resource array tests") test_marker: rd.ActionDescription = self.find_action("ResArray") action = test_marker.next self.controller.SetFrameEvent(action.eventId, False) for y in range(4): for x in range(4): failed = not self.test_debug_pixel(200 + x, 200 + y, "ResArray({},{})".format(x, y)) or failed rdtest.log.end_section("Resource array tests") rdtest.log.begin_section("Bindless tests") test_marker: rd.ActionDescription = self.find_action("Bindless") action = test_marker.next self.controller.SetFrameEvent(action.eventId, False) for y in range(4): for x in range(4): failed = not self.test_debug_pixel(200 + x, 200 + y, "Bindless({},{})".format(x, y)) or failed rdtest.log.end_section("Bindless tests") if failed: raise rdtest.TestFailureException("Some tests were not as expected") rdtest.log.success("All tests matched")
normal
{ "blob_id": "565888d771f53934805555390e48d4886a43bdb6", "index": 189, "step-1": "<mask token>\n\n\nclass D3D12_Resource_Mapping_Zoo(rdtest.TestCase):\n <mask token>\n <mask token>\n\n def check_capture(self):\n if not self.controller.GetAPIProperties().shaderDebugging:\n rdtest.log.success('Shader debugging not enabled, skipping test')\n return\n failed = False\n test_marker: rd.ActionDescription = self.find_action('sm_5_0')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n failed = not self.test_debug_pixel(200, 200, 'sm_5_0') or failed\n test_marker: rd.ActionDescription = self.find_action('sm_5_1')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n failed = not self.test_debug_pixel(200, 200, 'sm_5_1') or failed\n rdtest.log.begin_section('Resource array tests')\n test_marker: rd.ActionDescription = self.find_action('ResArray')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n for y in range(4):\n for x in range(4):\n failed = not self.test_debug_pixel(200 + x, 200 + y,\n 'ResArray({},{})'.format(x, y)) or failed\n rdtest.log.end_section('Resource array tests')\n rdtest.log.begin_section('Bindless tests')\n test_marker: rd.ActionDescription = self.find_action('Bindless')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n for y in range(4):\n for x in range(4):\n failed = not self.test_debug_pixel(200 + x, 200 + y,\n 'Bindless({},{})'.format(x, y)) or failed\n rdtest.log.end_section('Bindless tests')\n if failed:\n raise rdtest.TestFailureException('Some tests were not as expected'\n )\n rdtest.log.success('All tests matched')\n", "step-2": "<mask token>\n\n\nclass D3D12_Resource_Mapping_Zoo(rdtest.TestCase):\n <mask token>\n\n def test_debug_pixel(self, x, y, test_name):\n pipe: rd.PipeState = self.controller.GetPipelineState()\n if not pipe.GetShaderReflection(rd.ShaderStage.Pixel\n ).debugInfo.debuggable:\n rdtest.log.print('Skipping undebuggable shader at {}.'.format(\n test_name))\n return\n trace: rd.ShaderDebugTrace = self.controller.DebugPixel(x, y, rd.\n ReplayController.NoPreference, rd.ReplayController.NoPreference)\n cycles, variables = self.process_trace(trace)\n output = self.find_output_source_var(trace, rd.ShaderBuiltin.\n ColorOutput, 0)\n debugged = self.evaluate_source_var(output, variables)\n try:\n self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, x,\n y, debugged.value.f32v[0:4])\n except rdtest.TestFailureException as ex:\n rdtest.log.error('Test {} did not match. {}'.format(test_name,\n str(ex)))\n return False\n finally:\n self.controller.FreeTrace(trace)\n rdtest.log.success('Test {} matched as expected'.format(test_name))\n return True\n\n def check_capture(self):\n if not self.controller.GetAPIProperties().shaderDebugging:\n rdtest.log.success('Shader debugging not enabled, skipping test')\n return\n failed = False\n test_marker: rd.ActionDescription = self.find_action('sm_5_0')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n failed = not self.test_debug_pixel(200, 200, 'sm_5_0') or failed\n test_marker: rd.ActionDescription = self.find_action('sm_5_1')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n failed = not self.test_debug_pixel(200, 200, 'sm_5_1') or failed\n rdtest.log.begin_section('Resource array tests')\n test_marker: rd.ActionDescription = self.find_action('ResArray')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n for y in range(4):\n for x in range(4):\n failed = not self.test_debug_pixel(200 + x, 200 + y,\n 'ResArray({},{})'.format(x, y)) or failed\n rdtest.log.end_section('Resource array tests')\n rdtest.log.begin_section('Bindless tests')\n test_marker: rd.ActionDescription = self.find_action('Bindless')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n for y in range(4):\n for x in range(4):\n failed = not self.test_debug_pixel(200 + x, 200 + y,\n 'Bindless({},{})'.format(x, y)) or failed\n rdtest.log.end_section('Bindless tests')\n if failed:\n raise rdtest.TestFailureException('Some tests were not as expected'\n )\n rdtest.log.success('All tests matched')\n", "step-3": "<mask token>\n\n\nclass D3D12_Resource_Mapping_Zoo(rdtest.TestCase):\n demos_test_name = 'D3D12_Resource_Mapping_Zoo'\n\n def test_debug_pixel(self, x, y, test_name):\n pipe: rd.PipeState = self.controller.GetPipelineState()\n if not pipe.GetShaderReflection(rd.ShaderStage.Pixel\n ).debugInfo.debuggable:\n rdtest.log.print('Skipping undebuggable shader at {}.'.format(\n test_name))\n return\n trace: rd.ShaderDebugTrace = self.controller.DebugPixel(x, y, rd.\n ReplayController.NoPreference, rd.ReplayController.NoPreference)\n cycles, variables = self.process_trace(trace)\n output = self.find_output_source_var(trace, rd.ShaderBuiltin.\n ColorOutput, 0)\n debugged = self.evaluate_source_var(output, variables)\n try:\n self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, x,\n y, debugged.value.f32v[0:4])\n except rdtest.TestFailureException as ex:\n rdtest.log.error('Test {} did not match. {}'.format(test_name,\n str(ex)))\n return False\n finally:\n self.controller.FreeTrace(trace)\n rdtest.log.success('Test {} matched as expected'.format(test_name))\n return True\n\n def check_capture(self):\n if not self.controller.GetAPIProperties().shaderDebugging:\n rdtest.log.success('Shader debugging not enabled, skipping test')\n return\n failed = False\n test_marker: rd.ActionDescription = self.find_action('sm_5_0')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n failed = not self.test_debug_pixel(200, 200, 'sm_5_0') or failed\n test_marker: rd.ActionDescription = self.find_action('sm_5_1')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n failed = not self.test_debug_pixel(200, 200, 'sm_5_1') or failed\n rdtest.log.begin_section('Resource array tests')\n test_marker: rd.ActionDescription = self.find_action('ResArray')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n for y in range(4):\n for x in range(4):\n failed = not self.test_debug_pixel(200 + x, 200 + y,\n 'ResArray({},{})'.format(x, y)) or failed\n rdtest.log.end_section('Resource array tests')\n rdtest.log.begin_section('Bindless tests')\n test_marker: rd.ActionDescription = self.find_action('Bindless')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n for y in range(4):\n for x in range(4):\n failed = not self.test_debug_pixel(200 + x, 200 + y,\n 'Bindless({},{})'.format(x, y)) or failed\n rdtest.log.end_section('Bindless tests')\n if failed:\n raise rdtest.TestFailureException('Some tests were not as expected'\n )\n rdtest.log.success('All tests matched')\n", "step-4": "import renderdoc as rd\nfrom typing import List\nimport rdtest\n\n\nclass D3D12_Resource_Mapping_Zoo(rdtest.TestCase):\n demos_test_name = 'D3D12_Resource_Mapping_Zoo'\n\n def test_debug_pixel(self, x, y, test_name):\n pipe: rd.PipeState = self.controller.GetPipelineState()\n if not pipe.GetShaderReflection(rd.ShaderStage.Pixel\n ).debugInfo.debuggable:\n rdtest.log.print('Skipping undebuggable shader at {}.'.format(\n test_name))\n return\n trace: rd.ShaderDebugTrace = self.controller.DebugPixel(x, y, rd.\n ReplayController.NoPreference, rd.ReplayController.NoPreference)\n cycles, variables = self.process_trace(trace)\n output = self.find_output_source_var(trace, rd.ShaderBuiltin.\n ColorOutput, 0)\n debugged = self.evaluate_source_var(output, variables)\n try:\n self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, x,\n y, debugged.value.f32v[0:4])\n except rdtest.TestFailureException as ex:\n rdtest.log.error('Test {} did not match. {}'.format(test_name,\n str(ex)))\n return False\n finally:\n self.controller.FreeTrace(trace)\n rdtest.log.success('Test {} matched as expected'.format(test_name))\n return True\n\n def check_capture(self):\n if not self.controller.GetAPIProperties().shaderDebugging:\n rdtest.log.success('Shader debugging not enabled, skipping test')\n return\n failed = False\n test_marker: rd.ActionDescription = self.find_action('sm_5_0')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n failed = not self.test_debug_pixel(200, 200, 'sm_5_0') or failed\n test_marker: rd.ActionDescription = self.find_action('sm_5_1')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n failed = not self.test_debug_pixel(200, 200, 'sm_5_1') or failed\n rdtest.log.begin_section('Resource array tests')\n test_marker: rd.ActionDescription = self.find_action('ResArray')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n for y in range(4):\n for x in range(4):\n failed = not self.test_debug_pixel(200 + x, 200 + y,\n 'ResArray({},{})'.format(x, y)) or failed\n rdtest.log.end_section('Resource array tests')\n rdtest.log.begin_section('Bindless tests')\n test_marker: rd.ActionDescription = self.find_action('Bindless')\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n for y in range(4):\n for x in range(4):\n failed = not self.test_debug_pixel(200 + x, 200 + y,\n 'Bindless({},{})'.format(x, y)) or failed\n rdtest.log.end_section('Bindless tests')\n if failed:\n raise rdtest.TestFailureException('Some tests were not as expected'\n )\n rdtest.log.success('All tests matched')\n", "step-5": "import renderdoc as rd\nfrom typing import List\nimport rdtest\n\n\nclass D3D12_Resource_Mapping_Zoo(rdtest.TestCase):\n demos_test_name = 'D3D12_Resource_Mapping_Zoo'\n\n def test_debug_pixel(self, x, y, test_name):\n pipe: rd.PipeState = self.controller.GetPipelineState()\n\n if not pipe.GetShaderReflection(rd.ShaderStage.Pixel).debugInfo.debuggable:\n rdtest.log.print(\"Skipping undebuggable shader at {}.\".format(test_name))\n return\n\n # Debug the shader\n trace: rd.ShaderDebugTrace = self.controller.DebugPixel(x, y, rd.ReplayController.NoPreference,\n rd.ReplayController.NoPreference)\n\n cycles, variables = self.process_trace(trace)\n\n output = self.find_output_source_var(trace, rd.ShaderBuiltin.ColorOutput, 0)\n\n debugged = self.evaluate_source_var(output, variables)\n\n try:\n self.check_pixel_value(pipe.GetOutputTargets()[0].resourceId, x, y, debugged.value.f32v[0:4])\n except rdtest.TestFailureException as ex:\n rdtest.log.error(\"Test {} did not match. {}\".format(test_name, str(ex)))\n return False\n finally:\n self.controller.FreeTrace(trace)\n\n rdtest.log.success(\"Test {} matched as expected\".format(test_name))\n return True\n\n def check_capture(self):\n if not self.controller.GetAPIProperties().shaderDebugging:\n rdtest.log.success(\"Shader debugging not enabled, skipping test\")\n return\n\n failed = False\n\n test_marker: rd.ActionDescription = self.find_action(\"sm_5_0\")\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n failed = not self.test_debug_pixel(200, 200, \"sm_5_0\") or failed\n\n test_marker: rd.ActionDescription = self.find_action(\"sm_5_1\")\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n failed = not self.test_debug_pixel(200, 200, \"sm_5_1\") or failed\n\n rdtest.log.begin_section(\"Resource array tests\")\n test_marker: rd.ActionDescription = self.find_action(\"ResArray\")\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n\n for y in range(4):\n for x in range(4):\n failed = not self.test_debug_pixel(200 + x, 200 + y, \"ResArray({},{})\".format(x, y)) or failed\n\n rdtest.log.end_section(\"Resource array tests\")\n\n rdtest.log.begin_section(\"Bindless tests\")\n test_marker: rd.ActionDescription = self.find_action(\"Bindless\")\n action = test_marker.next\n self.controller.SetFrameEvent(action.eventId, False)\n\n for y in range(4):\n for x in range(4):\n failed = not self.test_debug_pixel(200 + x, 200 + y, \"Bindless({},{})\".format(x, y)) or failed\n\n rdtest.log.end_section(\"Bindless tests\")\n\n if failed:\n raise rdtest.TestFailureException(\"Some tests were not as expected\")\n\n rdtest.log.success(\"All tests matched\")\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
""" Platformer Game """ import arcade import os from Toad_arcade import Toad # Constants SCREEN_WIDTH = 1920 SCREEN_HEIGHT = 1080 SCREEN_TITLE = "PyToads - Battletoads reimplementation" # Constants used to scale our sprites from their original size CHARACTER_SCALING = 1 TILE_SCALING = 0.5 COIN_SCALING = 0.5 MOVEMENT_SPEED = 5 class MyGame(arcade.Window): """ Main application class. """ def __init__(self, width, height, title): """ Initializer """ super().__init__(width, height, title) # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) """ Set up the game and initialize the variables. """ # Sprite lists self.player_list = None # Set up the player self.score = 0 self.player = None def setup(self): self.player_list = arcade.SpriteList() # Set up the player self.score = 0 self.player = Toad() self.player.center_x = SCREEN_WIDTH // 2 self.player.center_y = SCREEN_HEIGHT // 2 #self.player.scale = 0.8 self.player_list.append(self.player) # Set the background color arcade.set_background_color(arcade.color.AMAZON) def on_draw(self): """ Render the screen. """ # This command has to happen before we start drawing arcade.start_render() # Draw all the sprites. self.player_list.draw() # Put the text on the screen. output = f"Score: {self.score}" arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14) def on_key_press(self, key, modifiers): """ Called whenever a key is pressed. """ if key == arcade.key.UP: self.player.change_y = MOVEMENT_SPEED elif key == arcade.key.DOWN: self.player.change_y = -MOVEMENT_SPEED elif key == arcade.key.LEFT: self.player.change_x = -MOVEMENT_SPEED elif key == arcade.key.RIGHT: self.player.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """ Called when the user releases a key. """ if key == arcade.key.UP or key == arcade.key.DOWN: self.player.change_y = 0 elif key == arcade.key.LEFT or key == arcade.key.RIGHT: self.player.change_x = 0 def on_update(self, delta_time): """ Movement and game logic """ self.player_list.update() self.player_list.update_animation() def main(): """ Main method """ window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) window.setup() arcade.run() if __name__ == "__main__": main()
normal
{ "blob_id": "28d8f9d9b39c40c43a362e57a7907c0a38a6bd05", "index": 748, "step-1": "<mask token>\n\n\nclass MyGame(arcade.Window):\n <mask token>\n\n def __init__(self, width, height, title):\n \"\"\"\n Initializer\n \"\"\"\n super().__init__(width, height, title)\n file_path = os.path.dirname(os.path.abspath(__file__))\n os.chdir(file_path)\n \"\"\" Set up the game and initialize the variables. \"\"\"\n self.player_list = None\n self.score = 0\n self.player = None\n <mask token>\n\n def on_draw(self):\n \"\"\"\n Render the screen.\n \"\"\"\n arcade.start_render()\n self.player_list.draw()\n output = f'Score: {self.score}'\n arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14)\n\n def on_key_press(self, key, modifiers):\n \"\"\"\n Called whenever a key is pressed.\n \"\"\"\n if key == arcade.key.UP:\n self.player.change_y = MOVEMENT_SPEED\n elif key == arcade.key.DOWN:\n self.player.change_y = -MOVEMENT_SPEED\n elif key == arcade.key.LEFT:\n self.player.change_x = -MOVEMENT_SPEED\n elif key == arcade.key.RIGHT:\n self.player.change_x = MOVEMENT_SPEED\n\n def on_key_release(self, key, modifiers):\n \"\"\"\n Called when the user releases a key.\n \"\"\"\n if key == arcade.key.UP or key == arcade.key.DOWN:\n self.player.change_y = 0\n elif key == arcade.key.LEFT or key == arcade.key.RIGHT:\n self.player.change_x = 0\n\n def on_update(self, delta_time):\n \"\"\" Movement and game logic \"\"\"\n self.player_list.update()\n self.player_list.update_animation()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass MyGame(arcade.Window):\n <mask token>\n\n def __init__(self, width, height, title):\n \"\"\"\n Initializer\n \"\"\"\n super().__init__(width, height, title)\n file_path = os.path.dirname(os.path.abspath(__file__))\n os.chdir(file_path)\n \"\"\" Set up the game and initialize the variables. \"\"\"\n self.player_list = None\n self.score = 0\n self.player = None\n\n def setup(self):\n self.player_list = arcade.SpriteList()\n self.score = 0\n self.player = Toad()\n self.player.center_x = SCREEN_WIDTH // 2\n self.player.center_y = SCREEN_HEIGHT // 2\n self.player_list.append(self.player)\n arcade.set_background_color(arcade.color.AMAZON)\n\n def on_draw(self):\n \"\"\"\n Render the screen.\n \"\"\"\n arcade.start_render()\n self.player_list.draw()\n output = f'Score: {self.score}'\n arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14)\n\n def on_key_press(self, key, modifiers):\n \"\"\"\n Called whenever a key is pressed.\n \"\"\"\n if key == arcade.key.UP:\n self.player.change_y = MOVEMENT_SPEED\n elif key == arcade.key.DOWN:\n self.player.change_y = -MOVEMENT_SPEED\n elif key == arcade.key.LEFT:\n self.player.change_x = -MOVEMENT_SPEED\n elif key == arcade.key.RIGHT:\n self.player.change_x = MOVEMENT_SPEED\n\n def on_key_release(self, key, modifiers):\n \"\"\"\n Called when the user releases a key.\n \"\"\"\n if key == arcade.key.UP or key == arcade.key.DOWN:\n self.player.change_y = 0\n elif key == arcade.key.LEFT or key == arcade.key.RIGHT:\n self.player.change_x = 0\n\n def on_update(self, delta_time):\n \"\"\" Movement and game logic \"\"\"\n self.player_list.update()\n self.player_list.update_animation()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass MyGame(arcade.Window):\n \"\"\" Main application class. \"\"\"\n\n def __init__(self, width, height, title):\n \"\"\"\n Initializer\n \"\"\"\n super().__init__(width, height, title)\n file_path = os.path.dirname(os.path.abspath(__file__))\n os.chdir(file_path)\n \"\"\" Set up the game and initialize the variables. \"\"\"\n self.player_list = None\n self.score = 0\n self.player = None\n\n def setup(self):\n self.player_list = arcade.SpriteList()\n self.score = 0\n self.player = Toad()\n self.player.center_x = SCREEN_WIDTH // 2\n self.player.center_y = SCREEN_HEIGHT // 2\n self.player_list.append(self.player)\n arcade.set_background_color(arcade.color.AMAZON)\n\n def on_draw(self):\n \"\"\"\n Render the screen.\n \"\"\"\n arcade.start_render()\n self.player_list.draw()\n output = f'Score: {self.score}'\n arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14)\n\n def on_key_press(self, key, modifiers):\n \"\"\"\n Called whenever a key is pressed.\n \"\"\"\n if key == arcade.key.UP:\n self.player.change_y = MOVEMENT_SPEED\n elif key == arcade.key.DOWN:\n self.player.change_y = -MOVEMENT_SPEED\n elif key == arcade.key.LEFT:\n self.player.change_x = -MOVEMENT_SPEED\n elif key == arcade.key.RIGHT:\n self.player.change_x = MOVEMENT_SPEED\n\n def on_key_release(self, key, modifiers):\n \"\"\"\n Called when the user releases a key.\n \"\"\"\n if key == arcade.key.UP or key == arcade.key.DOWN:\n self.player.change_y = 0\n elif key == arcade.key.LEFT or key == arcade.key.RIGHT:\n self.player.change_x = 0\n\n def on_update(self, delta_time):\n \"\"\" Movement and game logic \"\"\"\n self.player_list.update()\n self.player_list.update_animation()\n\n\ndef main():\n \"\"\" Main method \"\"\"\n window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)\n window.setup()\n arcade.run()\n\n\n<mask token>\n", "step-4": "<mask token>\nimport arcade\nimport os\nfrom Toad_arcade import Toad\nSCREEN_WIDTH = 1920\nSCREEN_HEIGHT = 1080\nSCREEN_TITLE = 'PyToads - Battletoads reimplementation'\nCHARACTER_SCALING = 1\nTILE_SCALING = 0.5\nCOIN_SCALING = 0.5\nMOVEMENT_SPEED = 5\n\n\nclass MyGame(arcade.Window):\n \"\"\" Main application class. \"\"\"\n\n def __init__(self, width, height, title):\n \"\"\"\n Initializer\n \"\"\"\n super().__init__(width, height, title)\n file_path = os.path.dirname(os.path.abspath(__file__))\n os.chdir(file_path)\n \"\"\" Set up the game and initialize the variables. \"\"\"\n self.player_list = None\n self.score = 0\n self.player = None\n\n def setup(self):\n self.player_list = arcade.SpriteList()\n self.score = 0\n self.player = Toad()\n self.player.center_x = SCREEN_WIDTH // 2\n self.player.center_y = SCREEN_HEIGHT // 2\n self.player_list.append(self.player)\n arcade.set_background_color(arcade.color.AMAZON)\n\n def on_draw(self):\n \"\"\"\n Render the screen.\n \"\"\"\n arcade.start_render()\n self.player_list.draw()\n output = f'Score: {self.score}'\n arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14)\n\n def on_key_press(self, key, modifiers):\n \"\"\"\n Called whenever a key is pressed.\n \"\"\"\n if key == arcade.key.UP:\n self.player.change_y = MOVEMENT_SPEED\n elif key == arcade.key.DOWN:\n self.player.change_y = -MOVEMENT_SPEED\n elif key == arcade.key.LEFT:\n self.player.change_x = -MOVEMENT_SPEED\n elif key == arcade.key.RIGHT:\n self.player.change_x = MOVEMENT_SPEED\n\n def on_key_release(self, key, modifiers):\n \"\"\"\n Called when the user releases a key.\n \"\"\"\n if key == arcade.key.UP or key == arcade.key.DOWN:\n self.player.change_y = 0\n elif key == arcade.key.LEFT or key == arcade.key.RIGHT:\n self.player.change_x = 0\n\n def on_update(self, delta_time):\n \"\"\" Movement and game logic \"\"\"\n self.player_list.update()\n self.player_list.update_animation()\n\n\ndef main():\n \"\"\" Main method \"\"\"\n window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)\n window.setup()\n arcade.run()\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "\"\"\"\nPlatformer Game\n\"\"\"\nimport arcade\nimport os\nfrom Toad_arcade import Toad\n# Constants\nSCREEN_WIDTH = 1920\nSCREEN_HEIGHT = 1080\nSCREEN_TITLE = \"PyToads - Battletoads reimplementation\"\n\n# Constants used to scale our sprites from their original size\nCHARACTER_SCALING = 1\nTILE_SCALING = 0.5\nCOIN_SCALING = 0.5\nMOVEMENT_SPEED = 5\n\nclass MyGame(arcade.Window):\n \"\"\" Main application class. \"\"\"\n\n def __init__(self, width, height, title):\n \"\"\"\n Initializer\n \"\"\"\n super().__init__(width, height, title)\n\n # Set the working directory (where we expect to find files) to the same\n # directory this .py file is in. You can leave this out of your own\n # code, but it is needed to easily run the examples using \"python -m\"\n # as mentioned at the top of this program.\n file_path = os.path.dirname(os.path.abspath(__file__))\n os.chdir(file_path)\n\n \"\"\" Set up the game and initialize the variables. \"\"\"\n\n # Sprite lists\n self.player_list = None\n\n # Set up the player\n self.score = 0\n self.player = None\n\n def setup(self):\n self.player_list = arcade.SpriteList()\n # Set up the player\n self.score = 0\n self.player = Toad()\n\n self.player.center_x = SCREEN_WIDTH // 2\n self.player.center_y = SCREEN_HEIGHT // 2\n #self.player.scale = 0.8\n\n self.player_list.append(self.player)\n # Set the background color\n arcade.set_background_color(arcade.color.AMAZON)\n\n def on_draw(self):\n \"\"\"\n Render the screen.\n \"\"\"\n # This command has to happen before we start drawing\n arcade.start_render()\n\n # Draw all the sprites.\n self.player_list.draw()\n\n # Put the text on the screen.\n output = f\"Score: {self.score}\"\n arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14)\n\n def on_key_press(self, key, modifiers):\n \"\"\"\n Called whenever a key is pressed.\n \"\"\"\n if key == arcade.key.UP:\n self.player.change_y = MOVEMENT_SPEED\n elif key == arcade.key.DOWN:\n self.player.change_y = -MOVEMENT_SPEED\n elif key == arcade.key.LEFT:\n self.player.change_x = -MOVEMENT_SPEED\n elif key == arcade.key.RIGHT:\n self.player.change_x = MOVEMENT_SPEED\n\n def on_key_release(self, key, modifiers):\n \"\"\"\n Called when the user releases a key.\n \"\"\"\n if key == arcade.key.UP or key == arcade.key.DOWN:\n self.player.change_y = 0\n elif key == arcade.key.LEFT or key == arcade.key.RIGHT:\n self.player.change_x = 0\n\n def on_update(self, delta_time):\n \"\"\" Movement and game logic \"\"\"\n\n self.player_list.update()\n self.player_list.update_animation()\n\n\ndef main():\n \"\"\" Main method \"\"\"\n window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE)\n window.setup()\n arcade.run()\n\n\nif __name__ == \"__main__\":\n main()", "step-ids": [ 6, 7, 9, 12, 13 ] }
[ 6, 7, 9, 12, 13 ]
# coding: utf-8 ''' Programa : py02_variavel.py Homepage : http://www Autor : Helber Palheta <[email protected]> Execução: python py02_variavel.py ''' #variável curso e sua atribuição curso = "Introdução a Biopython!" #função print print("Nome do Curso: "+curso)
normal
{ "blob_id": "ad59c1f0038294144b1c63db5f048b0a6b5ebb89", "index": 4654, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('Nome do Curso: ' + curso)\n", "step-3": "<mask token>\ncurso = 'Introdução a Biopython!'\nprint('Nome do Curso: ' + curso)\n", "step-4": "# coding: utf-8\n'''\n \n Programa : py02_variavel.py\n Homepage : http://www\n Autor : Helber Palheta <[email protected]>\n\n Execução:\n python py02_variavel.py\n\n''' \n#variável curso e sua atribuição\ncurso = \"Introdução a Biopython!\"\n\n#função print\nprint(\"Nome do Curso: \"+curso)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from trac.db import DatabaseManager def do_upgrade(env, ver, cursor): """Change schema name from taskboard_schema to agiletools_version """ cursor.execute('UPDATE system SET name=%s WHERE name=%s', ("agiletools_version", "taskboard_schema"))
normal
{ "blob_id": "56ed5bb22d77f4d8c061f97d832a60ed9a106549", "index": 5231, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef do_upgrade(env, ver, cursor):\n \"\"\"Change schema name from taskboard_schema to agiletools_version\n \"\"\"\n cursor.execute('UPDATE system SET name=%s WHERE name=%s', (\n 'agiletools_version', 'taskboard_schema'))\n", "step-3": "from trac.db import DatabaseManager\n\n\ndef do_upgrade(env, ver, cursor):\n \"\"\"Change schema name from taskboard_schema to agiletools_version\n \"\"\"\n cursor.execute('UPDATE system SET name=%s WHERE name=%s', (\n 'agiletools_version', 'taskboard_schema'))\n", "step-4": "from trac.db import DatabaseManager\n\ndef do_upgrade(env, ver, cursor):\n \"\"\"Change schema name from taskboard_schema to agiletools_version\n \"\"\"\n cursor.execute('UPDATE system SET name=%s WHERE name=%s',\n (\"agiletools_version\", \"taskboard_schema\"))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import math import decimal from typing import Union, List, Set from sqlalchemy import text from .model import BaseMixin from ..core.db import db Orders = List[Set(str, Union(str, int, decimal.Decimal))] class BaseDBMgr: def get_page(self, cls_:BaseMixin, filters:set, orders:Orders=list(), field:tuple=(), page:int=1, per_page:int=10)->dict: '''获取分页数据 @param BaseMixin cls 数据库模型实体类 @param set filters 查询条件 @param str order 排序 @param tuple field 返回字段 @param int page 页码 @param int per_page 每页数据数量 @return dict ''' res = { 'page': { 'current_page': page, 'per_page': per_page, 'total_page': 0, 'count': 0, }, 'items': [] } query = db.query(cls_).filter(*filters) if hasattr(cls_, 'deleted_at'): query = query.filter(cls_.deleted_at==0) res['page']['count'] = query.count() res['page']['total_page'] = math.ceil(res['page']['count'] / per_page) for order in orders: field, sort = order sort = 'desc' if sort not in ['asc', 'desc'] else sort query = query.order_by(text(f'{field} {sort}')) data = query.offset((page-1)*per_page).limit(per_page) if not field: res['items'] = [item.to_dict() for item in data] else: res['items'] = [item.to_dict(only=field) for item in data] return res def get_all(self, cls_:BaseMixin, filters:set, orders:Orders=list(), field:tuple=(), limit:int=0)->list: '''获取所有满足条件的数据 @param BaseMixin cls 数据库模型实体类 @param set filters 查询条件 @param str order 排序 @param tuple field 返回字段 @param int limit 取数据最大数量 @return list ''' query = db.query(cls_) if filters: query = query.filter(*filters) if hasattr(cls_, 'deleted_at'): query = query.filter(cls_.deleted_at==0) for order in orders: field, sort = order sort = 'desc' if sort not in ['asc', 'desc'] else sort query = query.order_by(text(f'{field} {sort}')) if limit != 0: query = query.limit(limit) query = query.all() if not field: items = [item.to_dict() for item in items] else: items = [item.to_dict(only=field) for item in items] return items def get_first(self, cls_:BaseMixin, filters:set, orders:Orders=list(), field:tuple=())->dict: '''获取所有满足条件的第一条数据 @param BaseMixin cls 数据库模型实体类 @param set filters 查询条件 @param str order 排序 @param tuple field 返回字段 @return dict ''' items = self.get_all(cls_, filters, orders, field, limit=1) return items[0] if items else None def add(self, cls_:BaseMixin, data:dict)->int: '''插入一条数据 @param BaseMixin cls 数据库模型实体类 @param dict data 数据 @return int 插入数据的主键 ''' item = cls_(**data) db.add(item) db.flush() return item.id def update(self, cls_:BaseMixin, data:dict, filters:set)->int: '''更新数据 @param BaseMixin cls 数据库模型实体类 @param dict data 数据 @param set filters 过滤条件 @return int 影响的行数 ''' query = db.query(cls_).filter(*filters) if hasattr(cls_, 'deleted_at'): query = query.filter(cls_.deleted_at==0) return query.update(data, synchronize_session=False) def delete(self, cls_:BaseMixin, filters:set)->int: '''更新数据 @param BaseMixin cls 数据库模型实体类 @param set filters 过滤条件 @return int 影响的行数 ''' query = db.query(cls_).filter(*filters) if hasattr(cls_, 'deleted_at'): items = query.filter(cls_.deleted_at==0).all() for item in items: item.delete() affect_rows = len(items) else: affect_rows = query.filter(*filters).delete(synchronize_session=False) db.commit() return affect_rows def count(self, cls_:BaseMixin, filters:set, field=None)->int: '''获取满足条件的总行数 @param BaseMixin cls 数据库模型实体类 @param set filters 过滤条件 @param string|None field 统计的字段 @return int ''' query = db.query(cls_).filter(*filters) if hasattr(cls_, 'deleted_at'): query = query.filter(cls_.deleted_at==0) if field is None: return query.count() else: return query.count(field)
normal
{ "blob_id": "2c90c4e0b42a75d6d387b9b2d0118d8e991b5a08", "index": 39, "step-1": "<mask token>\n\n\nclass BaseDBMgr:\n\n def get_page(self, cls_: BaseMixin, filters: set, orders: Orders=list(),\n field: tuple=(), page: int=1, per_page: int=10) ->dict:\n \"\"\"获取分页数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @param int page 页码\n @param int per_page 每页数据数量\n @return dict\n \"\"\"\n res = {'page': {'current_page': page, 'per_page': per_page,\n 'total_page': 0, 'count': 0}, 'items': []}\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n res['page']['count'] = query.count()\n res['page']['total_page'] = math.ceil(res['page']['count'] / per_page)\n for order in orders:\n field, sort = order\n sort = 'desc' if sort not in ['asc', 'desc'] else sort\n query = query.order_by(text(f'{field} {sort}'))\n data = query.offset((page - 1) * per_page).limit(per_page)\n if not field:\n res['items'] = [item.to_dict() for item in data]\n else:\n res['items'] = [item.to_dict(only=field) for item in data]\n return res\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def delete(self, cls_: BaseMixin, filters: set) ->int:\n \"\"\"更新数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 过滤条件\n @return int 影响的行数\n \"\"\"\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n items = query.filter(cls_.deleted_at == 0).all()\n for item in items:\n item.delete()\n affect_rows = len(items)\n else:\n affect_rows = query.filter(*filters).delete(synchronize_session\n =False)\n db.commit()\n return affect_rows\n <mask token>\n", "step-2": "<mask token>\n\n\nclass BaseDBMgr:\n\n def get_page(self, cls_: BaseMixin, filters: set, orders: Orders=list(),\n field: tuple=(), page: int=1, per_page: int=10) ->dict:\n \"\"\"获取分页数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @param int page 页码\n @param int per_page 每页数据数量\n @return dict\n \"\"\"\n res = {'page': {'current_page': page, 'per_page': per_page,\n 'total_page': 0, 'count': 0}, 'items': []}\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n res['page']['count'] = query.count()\n res['page']['total_page'] = math.ceil(res['page']['count'] / per_page)\n for order in orders:\n field, sort = order\n sort = 'desc' if sort not in ['asc', 'desc'] else sort\n query = query.order_by(text(f'{field} {sort}'))\n data = query.offset((page - 1) * per_page).limit(per_page)\n if not field:\n res['items'] = [item.to_dict() for item in data]\n else:\n res['items'] = [item.to_dict(only=field) for item in data]\n return res\n\n def get_all(self, cls_: BaseMixin, filters: set, orders: Orders=list(),\n field: tuple=(), limit: int=0) ->list:\n \"\"\"获取所有满足条件的数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @param int limit 取数据最大数量\n @return list\n \"\"\"\n query = db.query(cls_)\n if filters:\n query = query.filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n for order in orders:\n field, sort = order\n sort = 'desc' if sort not in ['asc', 'desc'] else sort\n query = query.order_by(text(f'{field} {sort}'))\n if limit != 0:\n query = query.limit(limit)\n query = query.all()\n if not field:\n items = [item.to_dict() for item in items]\n else:\n items = [item.to_dict(only=field) for item in items]\n return items\n\n def get_first(self, cls_: BaseMixin, filters: set, orders: Orders=list(\n ), field: tuple=()) ->dict:\n \"\"\"获取所有满足条件的第一条数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @return dict\n \"\"\"\n items = self.get_all(cls_, filters, orders, field, limit=1)\n return items[0] if items else None\n\n def add(self, cls_: BaseMixin, data: dict) ->int:\n \"\"\"插入一条数据\n @param BaseMixin cls 数据库模型实体类\n @param dict data 数据\n @return int 插入数据的主键\n \"\"\"\n item = cls_(**data)\n db.add(item)\n db.flush()\n return item.id\n\n def update(self, cls_: BaseMixin, data: dict, filters: set) ->int:\n \"\"\"更新数据\n @param BaseMixin cls 数据库模型实体类\n @param dict data 数据\n @param set filters 过滤条件\n @return int 影响的行数\n \"\"\"\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n return query.update(data, synchronize_session=False)\n\n def delete(self, cls_: BaseMixin, filters: set) ->int:\n \"\"\"更新数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 过滤条件\n @return int 影响的行数\n \"\"\"\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n items = query.filter(cls_.deleted_at == 0).all()\n for item in items:\n item.delete()\n affect_rows = len(items)\n else:\n affect_rows = query.filter(*filters).delete(synchronize_session\n =False)\n db.commit()\n return affect_rows\n <mask token>\n", "step-3": "<mask token>\n\n\nclass BaseDBMgr:\n\n def get_page(self, cls_: BaseMixin, filters: set, orders: Orders=list(),\n field: tuple=(), page: int=1, per_page: int=10) ->dict:\n \"\"\"获取分页数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @param int page 页码\n @param int per_page 每页数据数量\n @return dict\n \"\"\"\n res = {'page': {'current_page': page, 'per_page': per_page,\n 'total_page': 0, 'count': 0}, 'items': []}\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n res['page']['count'] = query.count()\n res['page']['total_page'] = math.ceil(res['page']['count'] / per_page)\n for order in orders:\n field, sort = order\n sort = 'desc' if sort not in ['asc', 'desc'] else sort\n query = query.order_by(text(f'{field} {sort}'))\n data = query.offset((page - 1) * per_page).limit(per_page)\n if not field:\n res['items'] = [item.to_dict() for item in data]\n else:\n res['items'] = [item.to_dict(only=field) for item in data]\n return res\n\n def get_all(self, cls_: BaseMixin, filters: set, orders: Orders=list(),\n field: tuple=(), limit: int=0) ->list:\n \"\"\"获取所有满足条件的数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @param int limit 取数据最大数量\n @return list\n \"\"\"\n query = db.query(cls_)\n if filters:\n query = query.filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n for order in orders:\n field, sort = order\n sort = 'desc' if sort not in ['asc', 'desc'] else sort\n query = query.order_by(text(f'{field} {sort}'))\n if limit != 0:\n query = query.limit(limit)\n query = query.all()\n if not field:\n items = [item.to_dict() for item in items]\n else:\n items = [item.to_dict(only=field) for item in items]\n return items\n\n def get_first(self, cls_: BaseMixin, filters: set, orders: Orders=list(\n ), field: tuple=()) ->dict:\n \"\"\"获取所有满足条件的第一条数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @return dict\n \"\"\"\n items = self.get_all(cls_, filters, orders, field, limit=1)\n return items[0] if items else None\n\n def add(self, cls_: BaseMixin, data: dict) ->int:\n \"\"\"插入一条数据\n @param BaseMixin cls 数据库模型实体类\n @param dict data 数据\n @return int 插入数据的主键\n \"\"\"\n item = cls_(**data)\n db.add(item)\n db.flush()\n return item.id\n\n def update(self, cls_: BaseMixin, data: dict, filters: set) ->int:\n \"\"\"更新数据\n @param BaseMixin cls 数据库模型实体类\n @param dict data 数据\n @param set filters 过滤条件\n @return int 影响的行数\n \"\"\"\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n return query.update(data, synchronize_session=False)\n\n def delete(self, cls_: BaseMixin, filters: set) ->int:\n \"\"\"更新数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 过滤条件\n @return int 影响的行数\n \"\"\"\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n items = query.filter(cls_.deleted_at == 0).all()\n for item in items:\n item.delete()\n affect_rows = len(items)\n else:\n affect_rows = query.filter(*filters).delete(synchronize_session\n =False)\n db.commit()\n return affect_rows\n\n def count(self, cls_: BaseMixin, filters: set, field=None) ->int:\n \"\"\"获取满足条件的总行数\n @param BaseMixin cls 数据库模型实体类\n @param set filters 过滤条件\n @param string|None field 统计的字段\n @return int\n \"\"\"\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n if field is None:\n return query.count()\n else:\n return query.count(field)\n", "step-4": "<mask token>\nOrders = List[Set(str, Union(str, int, decimal.Decimal))]\n\n\nclass BaseDBMgr:\n\n def get_page(self, cls_: BaseMixin, filters: set, orders: Orders=list(),\n field: tuple=(), page: int=1, per_page: int=10) ->dict:\n \"\"\"获取分页数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @param int page 页码\n @param int per_page 每页数据数量\n @return dict\n \"\"\"\n res = {'page': {'current_page': page, 'per_page': per_page,\n 'total_page': 0, 'count': 0}, 'items': []}\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n res['page']['count'] = query.count()\n res['page']['total_page'] = math.ceil(res['page']['count'] / per_page)\n for order in orders:\n field, sort = order\n sort = 'desc' if sort not in ['asc', 'desc'] else sort\n query = query.order_by(text(f'{field} {sort}'))\n data = query.offset((page - 1) * per_page).limit(per_page)\n if not field:\n res['items'] = [item.to_dict() for item in data]\n else:\n res['items'] = [item.to_dict(only=field) for item in data]\n return res\n\n def get_all(self, cls_: BaseMixin, filters: set, orders: Orders=list(),\n field: tuple=(), limit: int=0) ->list:\n \"\"\"获取所有满足条件的数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @param int limit 取数据最大数量\n @return list\n \"\"\"\n query = db.query(cls_)\n if filters:\n query = query.filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n for order in orders:\n field, sort = order\n sort = 'desc' if sort not in ['asc', 'desc'] else sort\n query = query.order_by(text(f'{field} {sort}'))\n if limit != 0:\n query = query.limit(limit)\n query = query.all()\n if not field:\n items = [item.to_dict() for item in items]\n else:\n items = [item.to_dict(only=field) for item in items]\n return items\n\n def get_first(self, cls_: BaseMixin, filters: set, orders: Orders=list(\n ), field: tuple=()) ->dict:\n \"\"\"获取所有满足条件的第一条数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @return dict\n \"\"\"\n items = self.get_all(cls_, filters, orders, field, limit=1)\n return items[0] if items else None\n\n def add(self, cls_: BaseMixin, data: dict) ->int:\n \"\"\"插入一条数据\n @param BaseMixin cls 数据库模型实体类\n @param dict data 数据\n @return int 插入数据的主键\n \"\"\"\n item = cls_(**data)\n db.add(item)\n db.flush()\n return item.id\n\n def update(self, cls_: BaseMixin, data: dict, filters: set) ->int:\n \"\"\"更新数据\n @param BaseMixin cls 数据库模型实体类\n @param dict data 数据\n @param set filters 过滤条件\n @return int 影响的行数\n \"\"\"\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n return query.update(data, synchronize_session=False)\n\n def delete(self, cls_: BaseMixin, filters: set) ->int:\n \"\"\"更新数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 过滤条件\n @return int 影响的行数\n \"\"\"\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n items = query.filter(cls_.deleted_at == 0).all()\n for item in items:\n item.delete()\n affect_rows = len(items)\n else:\n affect_rows = query.filter(*filters).delete(synchronize_session\n =False)\n db.commit()\n return affect_rows\n\n def count(self, cls_: BaseMixin, filters: set, field=None) ->int:\n \"\"\"获取满足条件的总行数\n @param BaseMixin cls 数据库模型实体类\n @param set filters 过滤条件\n @param string|None field 统计的字段\n @return int\n \"\"\"\n query = db.query(cls_).filter(*filters)\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at == 0)\n if field is None:\n return query.count()\n else:\n return query.count(field)\n", "step-5": "import math\nimport decimal\nfrom typing import Union, List, Set\n\nfrom sqlalchemy import text\n\nfrom .model import BaseMixin\nfrom ..core.db import db\n\n\nOrders = List[Set(str, Union(str, int, decimal.Decimal))]\n\n\nclass BaseDBMgr:\n\n def get_page(self, cls_:BaseMixin, filters:set, orders:Orders=list(), field:tuple=(), page:int=1, per_page:int=10)->dict:\n '''获取分页数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @param int page 页码\n @param int per_page 每页数据数量\n @return dict\n '''\n res = {\n 'page': {\n 'current_page': page,\n 'per_page': per_page,\n 'total_page': 0,\n 'count': 0,\n },\n 'items': []\n }\n query = db.query(cls_).filter(*filters)\n \n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at==0)\n\n res['page']['count'] = query.count()\n res['page']['total_page'] = math.ceil(res['page']['count'] / per_page)\n\n for order in orders:\n field, sort = order\n sort = 'desc' if sort not in ['asc', 'desc'] else sort\n query = query.order_by(text(f'{field} {sort}'))\n\n data = query.offset((page-1)*per_page).limit(per_page)\n if not field:\n res['items'] = [item.to_dict() for item in data]\n else:\n res['items'] = [item.to_dict(only=field) for item in data]\n \n return res\n\n\n def get_all(self, cls_:BaseMixin, filters:set, orders:Orders=list(), field:tuple=(), limit:int=0)->list:\n '''获取所有满足条件的数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @param int limit 取数据最大数量\n @return list\n '''\n query = db.query(cls_)\n \n if filters:\n query = query.filter(*filters)\n\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at==0)\n\n for order in orders:\n field, sort = order\n sort = 'desc' if sort not in ['asc', 'desc'] else sort\n query = query.order_by(text(f'{field} {sort}'))\n\n if limit != 0:\n query = query.limit(limit)\n \n query = query.all()\n\n if not field:\n items = [item.to_dict() for item in items]\n else:\n items = [item.to_dict(only=field) for item in items]\n \n return items\n\n\n def get_first(self, cls_:BaseMixin, filters:set, orders:Orders=list(), field:tuple=())->dict:\n '''获取所有满足条件的第一条数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 查询条件\n @param str order 排序\n @param tuple field 返回字段\n @return dict\n '''\n items = self.get_all(cls_, filters, orders, field, limit=1)\n return items[0] if items else None\n\n\n def add(self, cls_:BaseMixin, data:dict)->int:\n '''插入一条数据\n @param BaseMixin cls 数据库模型实体类\n @param dict data 数据\n @return int 插入数据的主键\n '''\n item = cls_(**data)\n db.add(item)\n db.flush()\n return item.id\n\n\n def update(self, cls_:BaseMixin, data:dict, filters:set)->int:\n '''更新数据\n @param BaseMixin cls 数据库模型实体类\n @param dict data 数据\n @param set filters 过滤条件\n @return int 影响的行数\n '''\n query = db.query(cls_).filter(*filters)\n\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at==0)\n\n return query.update(data, synchronize_session=False)\n\n\n def delete(self, cls_:BaseMixin, filters:set)->int:\n '''更新数据\n @param BaseMixin cls 数据库模型实体类\n @param set filters 过滤条件\n @return int 影响的行数\n '''\n query = db.query(cls_).filter(*filters)\n\n if hasattr(cls_, 'deleted_at'):\n items = query.filter(cls_.deleted_at==0).all()\n for item in items:\n item.delete()\n affect_rows = len(items)\n else:\n affect_rows = query.filter(*filters).delete(synchronize_session=False)\n db.commit()\n return affect_rows\n\n\n def count(self, cls_:BaseMixin, filters:set, field=None)->int:\n '''获取满足条件的总行数\n @param BaseMixin cls 数据库模型实体类\n @param set filters 过滤条件\n @param string|None field 统计的字段\n @return int\n '''\n query = db.query(cls_).filter(*filters)\n\n if hasattr(cls_, 'deleted_at'):\n query = query.filter(cls_.deleted_at==0)\n \n if field is None:\n return query.count()\n else:\n return query.count(field)\n", "step-ids": [ 3, 7, 8, 9, 11 ] }
[ 3, 7, 8, 9, 11 ]
#!/usr/bin/python #Autor: Jesus Fabian Cubas <[email protected]> #if sesion = 2 if sesion == 1 : print 'estamos en la sesion 01' elif sesion == 2 : print 'estamos en la sesion 02' else : print 'no estamos en la sesion 01' #while edad = 0 while edad < 18 : edad = edad + 1 print edad #for lista = ["a", "b", "c", "d"] for elemento in lista : print elemento
normal
{ "blob_id": "64c4b64b6fb0cfa25c17f66243c60a5dc0166017", "index": 7698, "step-1": "#!/usr/bin/python\n#Autor: Jesus Fabian Cubas <[email protected]>\n\n#if\nsesion = 2\nif sesion == 1 :\n\tprint 'estamos en la sesion 01'\nelif sesion == 2 :\n\tprint 'estamos en la sesion 02'\nelse :\n\tprint 'no estamos en la sesion 01'\n\n#while\nedad = 0\nwhile edad < 18 :\n\tedad = edad + 1\nprint edad\n\n#for\nlista = [\"a\", \"b\", \"c\", \"d\"]\nfor elemento in lista :\n\tprint elemento\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from django.db import models from datetime import datetime # Message model for testing purposes class Message(models.Model): type = models.CharField(max_length=10) body = models.CharField(max_length=50) def __str__(self): return self.type + ":" + self.body # Company model class Company(models.Model): name = models.CharField(max_length=10) @classmethod def create(cls, name): company = cls(name=name) return company def __str__(self): return self.name # model for storing message and its prediction class Entry(models.Model): fetched_date = models.DateTimeField() message = models.CharField(max_length=200) prediction = models.CharField(max_length=10) parent_company = models.ForeignKey(Company, on_delete=models.CASCADE) @classmethod def create(cls, message, prediction, company): entry = cls(message=message, prediction=prediction, parent_company=company) entry.fetched_date = datetime.now() return entry def __str__(self): return self.fetched_date.strftime("%m/%d/%Y, %H:%M:%S") + " " + self.prediction + ":" + self.message
normal
{ "blob_id": "47f6c4b3c279a065b8f21dab2faa71271db8d6ab", "index": 6680, "step-1": "<mask token>\n\n\nclass Company(models.Model):\n <mask token>\n\n @classmethod\n def create(cls, name):\n company = cls(name=name)\n return company\n\n def __str__(self):\n return self.name\n\n\nclass Entry(models.Model):\n fetched_date = models.DateTimeField()\n message = models.CharField(max_length=200)\n prediction = models.CharField(max_length=10)\n parent_company = models.ForeignKey(Company, on_delete=models.CASCADE)\n\n @classmethod\n def create(cls, message, prediction, company):\n entry = cls(message=message, prediction=prediction, parent_company=\n company)\n entry.fetched_date = datetime.now()\n return entry\n\n def __str__(self):\n return self.fetched_date.strftime('%m/%d/%Y, %H:%M:%S'\n ) + ' ' + self.prediction + ':' + self.message\n", "step-2": "<mask token>\n\n\nclass Company(models.Model):\n name = models.CharField(max_length=10)\n\n @classmethod\n def create(cls, name):\n company = cls(name=name)\n return company\n\n def __str__(self):\n return self.name\n\n\nclass Entry(models.Model):\n fetched_date = models.DateTimeField()\n message = models.CharField(max_length=200)\n prediction = models.CharField(max_length=10)\n parent_company = models.ForeignKey(Company, on_delete=models.CASCADE)\n\n @classmethod\n def create(cls, message, prediction, company):\n entry = cls(message=message, prediction=prediction, parent_company=\n company)\n entry.fetched_date = datetime.now()\n return entry\n\n def __str__(self):\n return self.fetched_date.strftime('%m/%d/%Y, %H:%M:%S'\n ) + ' ' + self.prediction + ':' + self.message\n", "step-3": "<mask token>\n\n\nclass Message(models.Model):\n type = models.CharField(max_length=10)\n body = models.CharField(max_length=50)\n\n def __str__(self):\n return self.type + ':' + self.body\n\n\nclass Company(models.Model):\n name = models.CharField(max_length=10)\n\n @classmethod\n def create(cls, name):\n company = cls(name=name)\n return company\n\n def __str__(self):\n return self.name\n\n\nclass Entry(models.Model):\n fetched_date = models.DateTimeField()\n message = models.CharField(max_length=200)\n prediction = models.CharField(max_length=10)\n parent_company = models.ForeignKey(Company, on_delete=models.CASCADE)\n\n @classmethod\n def create(cls, message, prediction, company):\n entry = cls(message=message, prediction=prediction, parent_company=\n company)\n entry.fetched_date = datetime.now()\n return entry\n\n def __str__(self):\n return self.fetched_date.strftime('%m/%d/%Y, %H:%M:%S'\n ) + ' ' + self.prediction + ':' + self.message\n", "step-4": "from django.db import models\nfrom datetime import datetime\n\n\nclass Message(models.Model):\n type = models.CharField(max_length=10)\n body = models.CharField(max_length=50)\n\n def __str__(self):\n return self.type + ':' + self.body\n\n\nclass Company(models.Model):\n name = models.CharField(max_length=10)\n\n @classmethod\n def create(cls, name):\n company = cls(name=name)\n return company\n\n def __str__(self):\n return self.name\n\n\nclass Entry(models.Model):\n fetched_date = models.DateTimeField()\n message = models.CharField(max_length=200)\n prediction = models.CharField(max_length=10)\n parent_company = models.ForeignKey(Company, on_delete=models.CASCADE)\n\n @classmethod\n def create(cls, message, prediction, company):\n entry = cls(message=message, prediction=prediction, parent_company=\n company)\n entry.fetched_date = datetime.now()\n return entry\n\n def __str__(self):\n return self.fetched_date.strftime('%m/%d/%Y, %H:%M:%S'\n ) + ' ' + self.prediction + ':' + self.message\n", "step-5": "from django.db import models\r\nfrom datetime import datetime\r\n\r\n\r\n# Message model for testing purposes\r\nclass Message(models.Model):\r\n type = models.CharField(max_length=10)\r\n body = models.CharField(max_length=50)\r\n\r\n def __str__(self):\r\n return self.type + \":\" + self.body\r\n\r\n\r\n# Company model\r\nclass Company(models.Model):\r\n name = models.CharField(max_length=10)\r\n\r\n @classmethod\r\n def create(cls, name):\r\n company = cls(name=name)\r\n return company\r\n\r\n def __str__(self):\r\n return self.name\r\n\r\n\r\n# model for storing message and its prediction\r\nclass Entry(models.Model):\r\n fetched_date = models.DateTimeField()\r\n message = models.CharField(max_length=200)\r\n prediction = models.CharField(max_length=10)\r\n parent_company = models.ForeignKey(Company, on_delete=models.CASCADE)\r\n\r\n @classmethod\r\n def create(cls, message, prediction, company):\r\n entry = cls(message=message, prediction=prediction, parent_company=company)\r\n entry.fetched_date = datetime.now()\r\n return entry\r\n\r\n def __str__(self):\r\n return self.fetched_date.strftime(\"%m/%d/%Y, %H:%M:%S\") + \" \" + self.prediction + \":\" + self.message\r\n", "step-ids": [ 7, 8, 11, 12, 13 ] }
[ 7, 8, 11, 12, 13 ]
class NumMatrix(object): def __init__(self, matrix): if matrix: self.dp = [[0] * (len(matrix[0]) + 1) for i in range(len(matrix)+1)] for i in xrange(1,len(matrix)+1): for j in xrange(1,len(matrix[0])+1): self.dp[i][j] = self.dp[i-1][j] + self.dp[i][j-1] + matrix[i-1][j-1] - self.dp[i-1][j-1] def sumRegion(self, row1, col1, row2, col2): return self.dp[row2+1][col2+1] + self.dp[row1][col1] - self.dp[row1][col2+1] - self.dp[row2+1][col1] # Your NumMatrix object will be instantiated and called as such: matrix = [[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]] for m in matrix: print m print numMatrix = NumMatrix(matrix) print numMatrix.sumRegion(2, 1, 4, 3) print numMatrix.sumRegion(1, 2, 3, 4)
normal
{ "blob_id": "443ce5c2ec86b9f89ad39ef2ac6772fa002e7e16", "index": 8377, "step-1": "class NumMatrix(object):\n\n def __init__(self, matrix):\n if matrix:\n self.dp = [[0] * (len(matrix[0]) + 1) for i in range(len(matrix)+1)]\n for i in xrange(1,len(matrix)+1):\n for j in xrange(1,len(matrix[0])+1):\n self.dp[i][j] = self.dp[i-1][j] + self.dp[i][j-1] + matrix[i-1][j-1] - self.dp[i-1][j-1]\n\n\n\n def sumRegion(self, row1, col1, row2, col2):\n\n return self.dp[row2+1][col2+1] + self.dp[row1][col1] - self.dp[row1][col2+1] - self.dp[row2+1][col1]\n\n\n\n# Your NumMatrix object will be instantiated and called as such:\nmatrix = [[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]\nfor m in matrix:\n print m\nprint\nnumMatrix = NumMatrix(matrix)\nprint numMatrix.sumRegion(2, 1, 4, 3)\nprint numMatrix.sumRegion(1, 2, 3, 4)\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
conf = {'PROJECT': 'WCCIA', 'NAS_FOLDER': 'Q:\\GROUPS\\CORP_JGS_DSE\\ATI\\quotations', 'DB_SERVER': '10.0.36.129', 'DB_PORT': '34000/'}
normal
{ "blob_id": "fbce185671267bd70cf7b91696867b72dfcc8d5b", "index": 1585, "step-1": "<mask token>\n", "step-2": "conf = {'PROJECT': 'WCCIA', 'NAS_FOLDER':\n 'Q:\\\\GROUPS\\\\CORP_JGS_DSE\\\\ATI\\\\quotations', 'DB_SERVER': '10.0.36.129',\n 'DB_PORT': '34000/'}\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
import urllib3 import json def download(url): print('Downloading ', url) userAgent = 'Mozilla/5.0 (Linux; U; Android 10; zh-cn; MI 9 Build/QKQ1.190825.002) AppleWebKit/533.1 (KHTML, like Gecko) Version/5.0 Mobile Safari/533.1' userAgent = 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Mobile Safari/537.36' AcceptLanguage ='zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7' AcceptEncoding= 'gzip, deflate' Accept = 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9' Cookie = 'JSESSIONID=A58B0B1DC96828832B92EE91D9E92605.7; tuNQaYE2WCOr80S=O43ziCfC7BLZm.F5edsUL84qX_T8DekwZhjFvL0AXMCYWDFH2_2qqyIQwdLwjfJb; tuNQaYE2WCOr80T=4zC94ZgkJ7NBDRsPXe.HrtFd3tXcvwudE41SSD4iUqL2TMsVQSF_QZ8LinHlNDmqOg_SeNEwr7NLRVyTJ7tG81Q310tSQQPTX0GJJDgefw7pPhWCn2BTVLKZ.MM_8iydxo1hNiKsmf7t9C5h3dn5b0DwZgfFZIzR1Ji4dsQdfhFkYTG5rdPQUPR5Y9.SG8jXjtXLxhv98Jx9DkyPYf2HWMJSWhjZlSe1sjjzACwcCozHaqBCvc_6F9mVCbKTdW44GKor91iD_VU2yaig6LwIHC5lVS0hSMTZQVlYPRJiQPf9AdA' http = urllib3.PoolManager(num_pools=5, headers={'User-Agent': userAgent,'Accept - Language': AcceptLanguage, 'Accept-Encoding': AcceptEncoding ,'Accept':Accept, 'Proxy-Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Cookie':Cookie}) r = http.request('GET', url) print(r.status) html = r.data.decode() return html if __name__ == '__main__': demoURL = 'http://mobile.nmpa.gov.cn/datasearch/QueryList?tableId=25&searchF=Quick%20SearchK&pageIndex=1&pageSize=1500' demoDetailUrl = 'http://mobile.nmpa.gov.cn/datasearch/QueryRecord?tableId=25&searchF=ID&searchK=109228' demoDetailUrl = 'http://mobile.nmpa.gov.cn/datasearch/QueryRecord?tableId=25&searchF=ID&searchK=' for i in range(1,10): demoURL = 'http://mobile.nmpa.gov.cn/datasearch/QueryList?tableId=25&searchF=Quick%20SearchK&pageIndex='+str(i)+'&pageSize=1500' ss = download(demoURL) print(ss) data = json.loads(ss) for item in data: # searchK = item['COUNT'] searchK = item['ID'] print(item['CONTENT']) detailInfoJson = download(demoDetailUrl + str(searchK)) detailInfo = json.loads(detailInfoJson) detailJson = '{' for detail in detailInfo: if detail['NAME'] != '注': detailJson = detailJson + '"' + detail['NAME'] + '":"' + detail['CONTENT'] + '",' detailJson = detailJson[:-1] detailJson = detailJson + '}' print(detailJson) detailData = json.loads(detailJson) # print(item['CONTENT'])
normal
{ "blob_id": "9d302ff2de8280bd8786794cdd533107d2a458bc", "index": 5611, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef download(url):\n print('Downloading ', url)\n userAgent = (\n 'Mozilla/5.0 (Linux; U; Android 10; zh-cn; MI 9 Build/QKQ1.190825.002) AppleWebKit/533.1 (KHTML, like Gecko) Version/5.0 Mobile Safari/533.1'\n )\n userAgent = (\n 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Mobile Safari/537.36'\n )\n AcceptLanguage = 'zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7'\n AcceptEncoding = 'gzip, deflate'\n Accept = (\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9'\n )\n Cookie = (\n 'JSESSIONID=A58B0B1DC96828832B92EE91D9E92605.7; tuNQaYE2WCOr80S=O43ziCfC7BLZm.F5edsUL84qX_T8DekwZhjFvL0AXMCYWDFH2_2qqyIQwdLwjfJb; tuNQaYE2WCOr80T=4zC94ZgkJ7NBDRsPXe.HrtFd3tXcvwudE41SSD4iUqL2TMsVQSF_QZ8LinHlNDmqOg_SeNEwr7NLRVyTJ7tG81Q310tSQQPTX0GJJDgefw7pPhWCn2BTVLKZ.MM_8iydxo1hNiKsmf7t9C5h3dn5b0DwZgfFZIzR1Ji4dsQdfhFkYTG5rdPQUPR5Y9.SG8jXjtXLxhv98Jx9DkyPYf2HWMJSWhjZlSe1sjjzACwcCozHaqBCvc_6F9mVCbKTdW44GKor91iD_VU2yaig6LwIHC5lVS0hSMTZQVlYPRJiQPf9AdA'\n )\n http = urllib3.PoolManager(num_pools=5, headers={'User-Agent':\n userAgent, 'Accept - Language': AcceptLanguage, 'Accept-Encoding':\n AcceptEncoding, 'Accept': Accept, 'Proxy-Connection': 'keep-alive',\n 'Cache-Control': 'max-age=0', 'Cookie': Cookie})\n r = http.request('GET', url)\n print(r.status)\n html = r.data.decode()\n return html\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef download(url):\n print('Downloading ', url)\n userAgent = (\n 'Mozilla/5.0 (Linux; U; Android 10; zh-cn; MI 9 Build/QKQ1.190825.002) AppleWebKit/533.1 (KHTML, like Gecko) Version/5.0 Mobile Safari/533.1'\n )\n userAgent = (\n 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Mobile Safari/537.36'\n )\n AcceptLanguage = 'zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7'\n AcceptEncoding = 'gzip, deflate'\n Accept = (\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9'\n )\n Cookie = (\n 'JSESSIONID=A58B0B1DC96828832B92EE91D9E92605.7; tuNQaYE2WCOr80S=O43ziCfC7BLZm.F5edsUL84qX_T8DekwZhjFvL0AXMCYWDFH2_2qqyIQwdLwjfJb; tuNQaYE2WCOr80T=4zC94ZgkJ7NBDRsPXe.HrtFd3tXcvwudE41SSD4iUqL2TMsVQSF_QZ8LinHlNDmqOg_SeNEwr7NLRVyTJ7tG81Q310tSQQPTX0GJJDgefw7pPhWCn2BTVLKZ.MM_8iydxo1hNiKsmf7t9C5h3dn5b0DwZgfFZIzR1Ji4dsQdfhFkYTG5rdPQUPR5Y9.SG8jXjtXLxhv98Jx9DkyPYf2HWMJSWhjZlSe1sjjzACwcCozHaqBCvc_6F9mVCbKTdW44GKor91iD_VU2yaig6LwIHC5lVS0hSMTZQVlYPRJiQPf9AdA'\n )\n http = urllib3.PoolManager(num_pools=5, headers={'User-Agent':\n userAgent, 'Accept - Language': AcceptLanguage, 'Accept-Encoding':\n AcceptEncoding, 'Accept': Accept, 'Proxy-Connection': 'keep-alive',\n 'Cache-Control': 'max-age=0', 'Cookie': Cookie})\n r = http.request('GET', url)\n print(r.status)\n html = r.data.decode()\n return html\n\n\nif __name__ == '__main__':\n demoURL = (\n 'http://mobile.nmpa.gov.cn/datasearch/QueryList?tableId=25&searchF=Quick%20SearchK&pageIndex=1&pageSize=1500'\n )\n demoDetailUrl = (\n 'http://mobile.nmpa.gov.cn/datasearch/QueryRecord?tableId=25&searchF=ID&searchK=109228'\n )\n demoDetailUrl = (\n 'http://mobile.nmpa.gov.cn/datasearch/QueryRecord?tableId=25&searchF=ID&searchK='\n )\n for i in range(1, 10):\n demoURL = (\n 'http://mobile.nmpa.gov.cn/datasearch/QueryList?tableId=25&searchF=Quick%20SearchK&pageIndex='\n + str(i) + '&pageSize=1500')\n ss = download(demoURL)\n print(ss)\n data = json.loads(ss)\n for item in data:\n searchK = item['ID']\n print(item['CONTENT'])\n detailInfoJson = download(demoDetailUrl + str(searchK))\n detailInfo = json.loads(detailInfoJson)\n detailJson = '{'\n for detail in detailInfo:\n if detail['NAME'] != '注':\n detailJson = detailJson + '\"' + detail['NAME'\n ] + '\":\"' + detail['CONTENT'] + '\",'\n detailJson = detailJson[:-1]\n detailJson = detailJson + '}'\n print(detailJson)\n detailData = json.loads(detailJson)\n", "step-4": "import urllib3\nimport json\n\n\ndef download(url):\n print('Downloading ', url)\n userAgent = (\n 'Mozilla/5.0 (Linux; U; Android 10; zh-cn; MI 9 Build/QKQ1.190825.002) AppleWebKit/533.1 (KHTML, like Gecko) Version/5.0 Mobile Safari/533.1'\n )\n userAgent = (\n 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Mobile Safari/537.36'\n )\n AcceptLanguage = 'zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7'\n AcceptEncoding = 'gzip, deflate'\n Accept = (\n 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9'\n )\n Cookie = (\n 'JSESSIONID=A58B0B1DC96828832B92EE91D9E92605.7; tuNQaYE2WCOr80S=O43ziCfC7BLZm.F5edsUL84qX_T8DekwZhjFvL0AXMCYWDFH2_2qqyIQwdLwjfJb; tuNQaYE2WCOr80T=4zC94ZgkJ7NBDRsPXe.HrtFd3tXcvwudE41SSD4iUqL2TMsVQSF_QZ8LinHlNDmqOg_SeNEwr7NLRVyTJ7tG81Q310tSQQPTX0GJJDgefw7pPhWCn2BTVLKZ.MM_8iydxo1hNiKsmf7t9C5h3dn5b0DwZgfFZIzR1Ji4dsQdfhFkYTG5rdPQUPR5Y9.SG8jXjtXLxhv98Jx9DkyPYf2HWMJSWhjZlSe1sjjzACwcCozHaqBCvc_6F9mVCbKTdW44GKor91iD_VU2yaig6LwIHC5lVS0hSMTZQVlYPRJiQPf9AdA'\n )\n http = urllib3.PoolManager(num_pools=5, headers={'User-Agent':\n userAgent, 'Accept - Language': AcceptLanguage, 'Accept-Encoding':\n AcceptEncoding, 'Accept': Accept, 'Proxy-Connection': 'keep-alive',\n 'Cache-Control': 'max-age=0', 'Cookie': Cookie})\n r = http.request('GET', url)\n print(r.status)\n html = r.data.decode()\n return html\n\n\nif __name__ == '__main__':\n demoURL = (\n 'http://mobile.nmpa.gov.cn/datasearch/QueryList?tableId=25&searchF=Quick%20SearchK&pageIndex=1&pageSize=1500'\n )\n demoDetailUrl = (\n 'http://mobile.nmpa.gov.cn/datasearch/QueryRecord?tableId=25&searchF=ID&searchK=109228'\n )\n demoDetailUrl = (\n 'http://mobile.nmpa.gov.cn/datasearch/QueryRecord?tableId=25&searchF=ID&searchK='\n )\n for i in range(1, 10):\n demoURL = (\n 'http://mobile.nmpa.gov.cn/datasearch/QueryList?tableId=25&searchF=Quick%20SearchK&pageIndex='\n + str(i) + '&pageSize=1500')\n ss = download(demoURL)\n print(ss)\n data = json.loads(ss)\n for item in data:\n searchK = item['ID']\n print(item['CONTENT'])\n detailInfoJson = download(demoDetailUrl + str(searchK))\n detailInfo = json.loads(detailInfoJson)\n detailJson = '{'\n for detail in detailInfo:\n if detail['NAME'] != '注':\n detailJson = detailJson + '\"' + detail['NAME'\n ] + '\":\"' + detail['CONTENT'] + '\",'\n detailJson = detailJson[:-1]\n detailJson = detailJson + '}'\n print(detailJson)\n detailData = json.loads(detailJson)\n", "step-5": "import urllib3\nimport json\ndef download(url):\n print('Downloading ', url)\n userAgent = 'Mozilla/5.0 (Linux; U; Android 10; zh-cn; MI 9 Build/QKQ1.190825.002) AppleWebKit/533.1 (KHTML, like Gecko) Version/5.0 Mobile Safari/533.1'\n userAgent = 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Mobile Safari/537.36'\n AcceptLanguage ='zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7'\n AcceptEncoding= 'gzip, deflate'\n Accept = 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9'\n\n Cookie = 'JSESSIONID=A58B0B1DC96828832B92EE91D9E92605.7; tuNQaYE2WCOr80S=O43ziCfC7BLZm.F5edsUL84qX_T8DekwZhjFvL0AXMCYWDFH2_2qqyIQwdLwjfJb; tuNQaYE2WCOr80T=4zC94ZgkJ7NBDRsPXe.HrtFd3tXcvwudE41SSD4iUqL2TMsVQSF_QZ8LinHlNDmqOg_SeNEwr7NLRVyTJ7tG81Q310tSQQPTX0GJJDgefw7pPhWCn2BTVLKZ.MM_8iydxo1hNiKsmf7t9C5h3dn5b0DwZgfFZIzR1Ji4dsQdfhFkYTG5rdPQUPR5Y9.SG8jXjtXLxhv98Jx9DkyPYf2HWMJSWhjZlSe1sjjzACwcCozHaqBCvc_6F9mVCbKTdW44GKor91iD_VU2yaig6LwIHC5lVS0hSMTZQVlYPRJiQPf9AdA'\n\n http = urllib3.PoolManager(num_pools=5, headers={'User-Agent': userAgent,'Accept - Language': AcceptLanguage,\n 'Accept-Encoding': AcceptEncoding ,'Accept':Accept,\n 'Proxy-Connection': 'keep-alive',\n 'Cache-Control': 'max-age=0',\n 'Cookie':Cookie})\n r = http.request('GET', url)\n print(r.status)\n html = r.data.decode()\n return html\n\n\nif __name__ == '__main__':\n demoURL = 'http://mobile.nmpa.gov.cn/datasearch/QueryList?tableId=25&searchF=Quick%20SearchK&pageIndex=1&pageSize=1500'\n demoDetailUrl = 'http://mobile.nmpa.gov.cn/datasearch/QueryRecord?tableId=25&searchF=ID&searchK=109228'\n demoDetailUrl = 'http://mobile.nmpa.gov.cn/datasearch/QueryRecord?tableId=25&searchF=ID&searchK='\n\n for i in range(1,10):\n demoURL = 'http://mobile.nmpa.gov.cn/datasearch/QueryList?tableId=25&searchF=Quick%20SearchK&pageIndex='+str(i)+'&pageSize=1500'\n ss = download(demoURL)\n\n print(ss)\n data = json.loads(ss)\n for item in data:\n # searchK = item['COUNT']\n searchK = item['ID']\n print(item['CONTENT'])\n detailInfoJson = download(demoDetailUrl + str(searchK))\n detailInfo = json.loads(detailInfoJson)\n detailJson = '{'\n for detail in detailInfo:\n if detail['NAME'] != '注':\n detailJson = detailJson + '\"' + detail['NAME'] + '\":\"' + detail['CONTENT'] + '\",'\n detailJson = detailJson[:-1]\n detailJson = detailJson + '}'\n print(detailJson)\n detailData = json.loads(detailJson)\n # print(item['CONTENT'])\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
"""Proper parenthetics extra credit kata.""" from _que_structure import Q def proper_parenthetics(string): """Return if parentheses are matching or not.""" if isinstance(string, str): paren_q = Q() for i in range(len(string)): paren_q.enqueue(string[i]) opening_parens = 0 closing_parens = 0 while paren_q.size() > 0 and paren_q.queue.head is not None: i = paren_q.dequeue() if i != '(' and i != ')': raise TypeError('proper_parenthetics takes only parentheses.') if i == '(' and closing_parens == 0: opening_parens += 1 elif i == '(' and closing_parens > 0: closing_parens -= 1 elif i == ')' and opening_parens == 0: return -1 elif i == ')' and opening_parens > 0: opening_parens -= 1 if opening_parens - closing_parens == 0: return 0 if opening_parens - closing_parens > 0: return 1 raise TypeError('proper_parenthetics takes only strings')
normal
{ "blob_id": "a28ece0db9bf0d4c3ab26207216b1da45f7aaa0f", "index": 7582, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef proper_parenthetics(string):\n \"\"\"Return if parentheses are matching or not.\"\"\"\n if isinstance(string, str):\n paren_q = Q()\n for i in range(len(string)):\n paren_q.enqueue(string[i])\n opening_parens = 0\n closing_parens = 0\n while paren_q.size() > 0 and paren_q.queue.head is not None:\n i = paren_q.dequeue()\n if i != '(' and i != ')':\n raise TypeError('proper_parenthetics takes only parentheses.')\n if i == '(' and closing_parens == 0:\n opening_parens += 1\n elif i == '(' and closing_parens > 0:\n closing_parens -= 1\n elif i == ')' and opening_parens == 0:\n return -1\n elif i == ')' and opening_parens > 0:\n opening_parens -= 1\n if opening_parens - closing_parens == 0:\n return 0\n if opening_parens - closing_parens > 0:\n return 1\n raise TypeError('proper_parenthetics takes only strings')\n", "step-3": "<mask token>\nfrom _que_structure import Q\n\n\ndef proper_parenthetics(string):\n \"\"\"Return if parentheses are matching or not.\"\"\"\n if isinstance(string, str):\n paren_q = Q()\n for i in range(len(string)):\n paren_q.enqueue(string[i])\n opening_parens = 0\n closing_parens = 0\n while paren_q.size() > 0 and paren_q.queue.head is not None:\n i = paren_q.dequeue()\n if i != '(' and i != ')':\n raise TypeError('proper_parenthetics takes only parentheses.')\n if i == '(' and closing_parens == 0:\n opening_parens += 1\n elif i == '(' and closing_parens > 0:\n closing_parens -= 1\n elif i == ')' and opening_parens == 0:\n return -1\n elif i == ')' and opening_parens > 0:\n opening_parens -= 1\n if opening_parens - closing_parens == 0:\n return 0\n if opening_parens - closing_parens > 0:\n return 1\n raise TypeError('proper_parenthetics takes only strings')\n", "step-4": "\"\"\"Proper parenthetics extra credit kata.\"\"\"\n\nfrom _que_structure import Q\n\n\ndef proper_parenthetics(string):\n \"\"\"Return if parentheses are matching or not.\"\"\"\n if isinstance(string, str):\n paren_q = Q()\n for i in range(len(string)):\n paren_q.enqueue(string[i])\n opening_parens = 0\n closing_parens = 0\n while paren_q.size() > 0 and paren_q.queue.head is not None:\n i = paren_q.dequeue()\n if i != '(' and i != ')':\n raise TypeError('proper_parenthetics takes only parentheses.')\n if i == '(' and closing_parens == 0:\n opening_parens += 1\n elif i == '(' and closing_parens > 0:\n closing_parens -= 1\n elif i == ')' and opening_parens == 0:\n return -1\n elif i == ')' and opening_parens > 0:\n opening_parens -= 1\n if opening_parens - closing_parens == 0:\n return 0\n if opening_parens - closing_parens > 0:\n return 1\n raise TypeError('proper_parenthetics takes only strings')\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import FWCore.ParameterSet.Config as cms from RecoTracker.MeasurementDet.UpdaterService_cfi import * from RecoTracker.MeasurementDet.MeasurementTrackerESProducer_cfi import *
normal
{ "blob_id": "e79505e802a06f091bbb12708c45e04c4e80da60", "index": 7618, "step-1": "<mask token>\n", "step-2": "import FWCore.ParameterSet.Config as cms\nfrom RecoTracker.MeasurementDet.UpdaterService_cfi import *\nfrom RecoTracker.MeasurementDet.MeasurementTrackerESProducer_cfi import *\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
""" CP1404 Practical unreliable car test """ from unreliable_car import UnreliableCar def main(): good_car = UnreliableCar("good car", 100, 80) bad_car = UnreliableCar("bad car", 100, 10) for i in range(10): print("try to drive {} km".format(i)) print("{:10} drove {:2}km".format(good_car.name, good_car.drive(i))) print("{:10} drove {:2}km".format(bad_car.name, bad_car.drive(i))) print(good_car) print(bad_car) if __name__ == '__main__': main()
normal
{ "blob_id": "f29ad02f3781c7a7d2a1f0c97626dd5c7ea2417e", "index": 7867, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n good_car = UnreliableCar('good car', 100, 80)\n bad_car = UnreliableCar('bad car', 100, 10)\n for i in range(10):\n print('try to drive {} km'.format(i))\n print('{:10} drove {:2}km'.format(good_car.name, good_car.drive(i)))\n print('{:10} drove {:2}km'.format(bad_car.name, bad_car.drive(i)))\n print(good_car)\n print(bad_car)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n good_car = UnreliableCar('good car', 100, 80)\n bad_car = UnreliableCar('bad car', 100, 10)\n for i in range(10):\n print('try to drive {} km'.format(i))\n print('{:10} drove {:2}km'.format(good_car.name, good_car.drive(i)))\n print('{:10} drove {:2}km'.format(bad_car.name, bad_car.drive(i)))\n print(good_car)\n print(bad_car)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nfrom unreliable_car import UnreliableCar\n\n\ndef main():\n good_car = UnreliableCar('good car', 100, 80)\n bad_car = UnreliableCar('bad car', 100, 10)\n for i in range(10):\n print('try to drive {} km'.format(i))\n print('{:10} drove {:2}km'.format(good_car.name, good_car.drive(i)))\n print('{:10} drove {:2}km'.format(bad_car.name, bad_car.drive(i)))\n print(good_car)\n print(bad_car)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "\"\"\"\nCP1404 Practical\nunreliable car test\n\"\"\"\nfrom unreliable_car import UnreliableCar\n\n\ndef main():\n good_car = UnreliableCar(\"good car\", 100, 80)\n bad_car = UnreliableCar(\"bad car\", 100, 10)\n\n for i in range(10):\n print(\"try to drive {} km\".format(i))\n print(\"{:10} drove {:2}km\".format(good_car.name, good_car.drive(i)))\n print(\"{:10} drove {:2}km\".format(bad_car.name, bad_car.drive(i)))\n print(good_car)\n print(bad_car)\n\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python # -*- coding: utf-8 -*- from datetime import datetime archivo = open("salida2.csv", "a+") startTime = datetime.now() def mergeSort(alist): print("Splitting ",alist) if len(alist)>1: mid = len(alist)//2 lefthalf = alist[:mid] righthalf = alist[mid:] mergeSort(lefthalf) mergeSort(righthalf) a=0 b=0 k=0 while a < len(lefthalf) and b < len(righthalf): if lefthalf[a] < righthalf[b]: alist[k]=lefthalf[a] a=a+1 else: alist[k]=righthalf[b] b=b+1 k=k+1 while a < len(lefthalf): alist[k]=lefthalf[a] a=a+1 k=k+1 while b < len(righthalf): alist[k]=righthalf[b] b=b+1 k=k+1 alist = [] N = int(input("")) nums = input("").split() for a in nums: alist.append(int(a)) mergeSort(alist) print(' '.join(str(a) for a in alist)+' \n') tiempo = datetime.now() - startTime archivo.write(str(N)+",") archivo.write(str(tiempo)+"\n") archivo.close()
normal
{ "blob_id": "9e98c6b59433369bca3d4f7ae261f7e7ab3aae6b", "index": 4161, "step-1": "<mask token>\n\n\ndef mergeSort(alist):\n print('Splitting ', alist)\n if len(alist) > 1:\n mid = len(alist) // 2\n lefthalf = alist[:mid]\n righthalf = alist[mid:]\n mergeSort(lefthalf)\n mergeSort(righthalf)\n a = 0\n b = 0\n k = 0\n while a < len(lefthalf) and b < len(righthalf):\n if lefthalf[a] < righthalf[b]:\n alist[k] = lefthalf[a]\n a = a + 1\n else:\n alist[k] = righthalf[b]\n b = b + 1\n k = k + 1\n while a < len(lefthalf):\n alist[k] = lefthalf[a]\n a = a + 1\n k = k + 1\n while b < len(righthalf):\n alist[k] = righthalf[b]\n b = b + 1\n k = k + 1\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef mergeSort(alist):\n print('Splitting ', alist)\n if len(alist) > 1:\n mid = len(alist) // 2\n lefthalf = alist[:mid]\n righthalf = alist[mid:]\n mergeSort(lefthalf)\n mergeSort(righthalf)\n a = 0\n b = 0\n k = 0\n while a < len(lefthalf) and b < len(righthalf):\n if lefthalf[a] < righthalf[b]:\n alist[k] = lefthalf[a]\n a = a + 1\n else:\n alist[k] = righthalf[b]\n b = b + 1\n k = k + 1\n while a < len(lefthalf):\n alist[k] = lefthalf[a]\n a = a + 1\n k = k + 1\n while b < len(righthalf):\n alist[k] = righthalf[b]\n b = b + 1\n k = k + 1\n\n\n<mask token>\nfor a in nums:\n alist.append(int(a))\nmergeSort(alist)\nprint(' '.join(str(a) for a in alist) + ' \\n')\n<mask token>\narchivo.write(str(N) + ',')\narchivo.write(str(tiempo) + '\\n')\narchivo.close()\n", "step-3": "<mask token>\narchivo = open('salida2.csv', 'a+')\nstartTime = datetime.now()\n\n\ndef mergeSort(alist):\n print('Splitting ', alist)\n if len(alist) > 1:\n mid = len(alist) // 2\n lefthalf = alist[:mid]\n righthalf = alist[mid:]\n mergeSort(lefthalf)\n mergeSort(righthalf)\n a = 0\n b = 0\n k = 0\n while a < len(lefthalf) and b < len(righthalf):\n if lefthalf[a] < righthalf[b]:\n alist[k] = lefthalf[a]\n a = a + 1\n else:\n alist[k] = righthalf[b]\n b = b + 1\n k = k + 1\n while a < len(lefthalf):\n alist[k] = lefthalf[a]\n a = a + 1\n k = k + 1\n while b < len(righthalf):\n alist[k] = righthalf[b]\n b = b + 1\n k = k + 1\n\n\nalist = []\nN = int(input(''))\nnums = input('').split()\nfor a in nums:\n alist.append(int(a))\nmergeSort(alist)\nprint(' '.join(str(a) for a in alist) + ' \\n')\ntiempo = datetime.now() - startTime\narchivo.write(str(N) + ',')\narchivo.write(str(tiempo) + '\\n')\narchivo.close()\n", "step-4": "from datetime import datetime\narchivo = open('salida2.csv', 'a+')\nstartTime = datetime.now()\n\n\ndef mergeSort(alist):\n print('Splitting ', alist)\n if len(alist) > 1:\n mid = len(alist) // 2\n lefthalf = alist[:mid]\n righthalf = alist[mid:]\n mergeSort(lefthalf)\n mergeSort(righthalf)\n a = 0\n b = 0\n k = 0\n while a < len(lefthalf) and b < len(righthalf):\n if lefthalf[a] < righthalf[b]:\n alist[k] = lefthalf[a]\n a = a + 1\n else:\n alist[k] = righthalf[b]\n b = b + 1\n k = k + 1\n while a < len(lefthalf):\n alist[k] = lefthalf[a]\n a = a + 1\n k = k + 1\n while b < len(righthalf):\n alist[k] = righthalf[b]\n b = b + 1\n k = k + 1\n\n\nalist = []\nN = int(input(''))\nnums = input('').split()\nfor a in nums:\n alist.append(int(a))\nmergeSort(alist)\nprint(' '.join(str(a) for a in alist) + ' \\n')\ntiempo = datetime.now() - startTime\narchivo.write(str(N) + ',')\narchivo.write(str(tiempo) + '\\n')\narchivo.close()\n", "step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\nfrom datetime import datetime\n\narchivo = open(\"salida2.csv\", \"a+\")\n\nstartTime = datetime.now()\ndef mergeSort(alist):\n print(\"Splitting \",alist)\n if len(alist)>1:\n mid = len(alist)//2\n lefthalf = alist[:mid]\n righthalf = alist[mid:]\n\n mergeSort(lefthalf)\n mergeSort(righthalf)\n\n a=0\n b=0\n k=0\n while a < len(lefthalf) and b < len(righthalf):\n if lefthalf[a] < righthalf[b]:\n alist[k]=lefthalf[a]\n a=a+1\n else:\n alist[k]=righthalf[b]\n b=b+1\n k=k+1\n\n while a < len(lefthalf):\n alist[k]=lefthalf[a]\n a=a+1\n k=k+1\n\n while b < len(righthalf):\n alist[k]=righthalf[b]\n b=b+1\n k=k+1\n\nalist = []\nN = int(input(\"\"))\nnums = input(\"\").split()\nfor a in nums:\n alist.append(int(a))\nmergeSort(alist)\nprint(' '.join(str(a) for a in alist)+' \\n')\ntiempo = datetime.now() - startTime\n\narchivo.write(str(N)+\",\")\narchivo.write(str(tiempo)+\"\\n\")\narchivo.close()", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from UI.Window import Window class PolygonApplication: def __init__(self): self.window = Window( "Détermination des périmètre, surface et centre de gravité d'un polygone" ) self.window.addMouseClickListener(self.window.onClick) def start(self): self.window.show()
normal
{ "blob_id": "795bd22fb805069b342915638c52900ea52a4939", "index": 9321, "step-1": "<mask token>\n\n\nclass PolygonApplication:\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass PolygonApplication:\n <mask token>\n\n def start(self):\n self.window.show()\n", "step-3": "<mask token>\n\n\nclass PolygonApplication:\n\n def __init__(self):\n self.window = Window(\n \"Détermination des périmètre, surface et centre de gravité d'un polygone\"\n )\n self.window.addMouseClickListener(self.window.onClick)\n\n def start(self):\n self.window.show()\n", "step-4": "from UI.Window import Window\n\n\nclass PolygonApplication:\n\n def __init__(self):\n self.window = Window(\n \"Détermination des périmètre, surface et centre de gravité d'un polygone\"\n )\n self.window.addMouseClickListener(self.window.onClick)\n\n def start(self):\n self.window.show()\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]